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Résumé

Dans cette thèse, nous avons développé des outils pour simuler des images longitu-

dinales réalistes de cerveau présentant de l’atrophie ou de la croissance. Cette méth-

ode a été spécifiquement élaborée pour simuler les effets de la maladie d’Alzheimer

sur le cerveau. Elle se fonde sur un modéle de déformation du cerveau qui décrit

les effets biomécaniques d’une perte de tissue due à une carte d’atrophie prescrite.

Nous avons élaboré une méthode pour interpoler et extrapoler les images longitu-

dinales d’un patient en simulant des images avec une carte d’atrophie spécifique

au sujet. Cette méthode a été utilisée pour interpoler des acquisitions temporelles

d’Images par Résonnance Magnétique (IRM) de 46 patients souffrant de la maladie

d’Alzheimer. Pour ce faire, des cartes d’atrophie sont estimées pour chaque patient,

d’après deux acquisitions IRM temporelles distinctes. Les IRM cliniques présentent

du bruit et des artefacts. De plus, les acquisitions longitudinales présentent des

variations d’intensité d’une image à l’autre. Nous avons donc élaboré une méthode

qui combine le modèle de déformation du cerveau, ainsi que les différentes images

cliniques disponibles d’un patient donné, afin de simuler les variations d’intensité

des acquisitions longitudinale. Pour finir, les outils de simulation d’images réalistes

développés au cours de cette thèse sont mis à disposition en open-source.

Mots clés: Neurodegeneration, la maladie d’Alzheimer, la modélisation

biophysique et la simulation de l’atrophie, la simulation d’IRM longitudinales,

simulation biomécanique, images longitudinales synthétiques.
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Abstract

Atrophy of the brain due to the death of neurons in Alzheimer’s Disease (AD) is well

observed in longitudinal structural magnetic resonance images (MRIs). This thesis

focuses on developing a biophysical model able to reproduce changes observed in

the longitudinal MRIs of AD patients. Simulating realistic longitudinal MRIs with

atrophy from such a model could be used to evaluate brain morphometry algorithms

and data driven disease progression models that use information extracted from

structural MRIs. The long term perspectives of such a model would be in simulating

different scenarios of disease evolution, and trying to disentangle potentially different

mechanisms of structural changes and their relationship in time.

In this thesis, we develop a framework to simulate realistic longitudinal brain

images with atrophy (and potentially growth). The core component of the frame-

work is a brain deformation model: a carefully designed biomechanics-based tissue

loss model to simulate the deformations with prescribed atrophy patterns. We also

develop a method to interpolate or extrapolate longitudinal images of a subject by

simulating images with subject-specific atrophy patterns. The method was used to

simulate interpolated time-point MRIs of 46 AD patients by prescribing atrophy

estimated for each patient from the available two time-point MRIs.

Real images have noise and image acquisition artefacts, and real longitudinal

images have variation of intensity characteristics among the individual images. We

present a method that uses the brain deformation model and different available

images of a subject to add realistic variations of intensities in the synthetic

longitudinal images. Finally, the software developed during the thesis, named

Simul@trophy, to simulate realistic longitudinal brain images with our brain

deformation model is released in an open-source repository.

Keywords: Neurodegeneration, Alzheimer’s disease, biophysical modelling

and simulation of atrophy, longitudinal MRIs simulation, biomechanical simulation,

synthetic longitudinal images.



iii

Acknowledgements

I would like to first thank my advisors Xavier Pennec and Nicholas Ayache. Thanks

Xavier for mentoring me from the very beginning of this work, and playing a key

role in laying out the foundation of the work. I really appreciate your dedication

to research and caring of your students. Thank you Nicholas for all helpful advice

and to let me have two mentors with complementary qualities. Being in Asclepios

under your leadership, I have experienced a learning example on how to build a

strong team with a friendly environment. Let me also thank Hervé Delingette and

Maxime Sermesant for the valuable discussions and completing up an awesome team

of research scientists in Asclepios.

I am grateful to Julia Schnabel and François Rousseau for accepting to review

my PhD thesis, reading it and providing important reports. I would also like to

thank Olivier Colliot and Sebastien Ourselin for accepting to be part of the jury

members.

Thanks Isabelle for the very kind handling of all the administration and organi-

zation during this PhD.

Thanks to all the colleagues and friends for such a wonderful experience. Marco

for playing the roles of both a friend and a mentor. Alan for being patient with my

software engineering and version control related questions; Vikash for being such a

lovely office mate and bringing so much to the team; Matthieu who helped me with

the thesis resume in French; Chloé for being so kind and helping me understand

several not so obvious French administrative documents and procedures, searching

for apartments etc.; Nina for the educational challenge video; Hervé, Jan and Loïc

L. F. for interesting frequent discussions about science, life, career and goals in our

lives. Thanks to the friends who attended my wedding in Nepal; made the MICCAI

conferences in Boston and Munich so much fun; helped me with medInria problems;

helped me with many of my “déménagements”; offered me car rides for travels.

I have been very fortunate to have made some good friends outside of Asclepios

too. Manish, I almost felt like I had two apartments when your were living in Nice!

Thank you for all the wonderful times we had. Thanks to Pema, Neetya didi and

Biraj for not letting me miss home too much although we were living thousands of

miles away from home for all these years!

From getting to know Pratikshya during the first year of my PhD to now being

married for more than three years has simply been amazing! Pratikshya, I am

perhaps not that good in expressing how much you mean to me, but I think you

know it; thanks a lot for everything.

Biggest thanks to my father, who had to start working for a living at the age

of 15 even before completing high school. He has dedicated his life to mine and my

sister’s education. No amount of thanks is enough for my mother who quit high

school when I was born to look after me. She has devoted her life to the well-being

and happiness of our family. I know that I have a long way to go and this is a

beginning of an important road ahead. But this moment is theirs as they are the

happiest and proudest people to see me graduate; I dedicate this thesis to them.



Contents

1 Introduction 1

1.1 Alzheimer’s Disease (AD) . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Characteristics of AD . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Biomarkers for AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Senile plaques . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Tau pathology . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 Neurodegeneration . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Structure of the Manuscript and Contributions . . . . . . . . . . . . 11

1.6 List of Publications and Awards . . . . . . . . . . . . . . . . . . . . . 13

2 A Biophysical Model of Brain Deformation to Simulate and Anal-

yse Longitudinal MRIs of Patients with Alzheimer’s Disease 14

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Biophysical Model of Brain Deformation . . . . . . . . . . . . . . . . 19

2.2.1 Impact of Loss of Volume on Conservation Equation . . . . . 20

2.2.2 Constrained Minimization of the Elastic Energy . . . . . . . . 20

2.2.3 Modeling CSF Region . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Implementation of the Biomechanical Tissue Loss Model . . . . . . . 23

2.3.1 Skull Stripping and Brain Segmentation . . . . . . . . . . . . 23

2.3.2 Input Prescribed Atrophy Map . . . . . . . . . . . . . . . . . 23

2.3.3 Staggered Grid Discretization and Finite Difference Method . 23

2.4 Using the Model to Explore Different Atrophy Patterns . . . . . . . 24

2.4.1 Simulating Images with Any Desired Atrophy Maps . . . . . 24

2.4.2 Simulating Realistic Atrophy Patterns . . . . . . . . . . . . . 25

2.4.3 Simulating Large Atrophy With Multiple Time-steps . . . . . 26

2.4.4 Role of Different Model Parameters . . . . . . . . . . . . . . . 27

2.5 Investigating the Relationship Between Image Appearance and Atro-

phy Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 A Synthetic Example with Binary Image . . . . . . . . . . . . 32

2.5.2 Varying the Spatial Distribution of Atrophy in Real Brain

Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Simulating Complex Patterns of Patient-specific Atrophy for the

Evaluation of Atrophy Measurement Algorithms . . . . . . . . . . . . 37

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



Contents v

3 Simulating Patient Specific Multiple Time-point MRIs From a Bio-

physical Model of Brain Deformation in Alzheimer’s Disease 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Biophysical Model of Brain Deformation due to Atrophy . . . . . . . 49

3.2.1 Modeling CSF Region . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Staggered Grid Discretization and Finite Difference Method . 51

3.3 Simulating New Time-points from Two Available scans of MRIs . . . 52

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Simulating Realistic Synthetic Longitudinal Brain MRIs with

known Volume Changes 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Simulating Realistic Longitudinal Images with Atrophy/Growth . . . 63

4.2.1 Pre-processing to generate a segmentation image and atrophy

maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.2 A biophysical model of brain deformation with prescribed vol-

ume changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.3 Adding realistic intensity variation to synthetic longitudinal

MRIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Simulation Examples with Simul@trophy . . . . . . . . . . . . . . . 68

4.4 Simul@trophy: choices available and practical considerations . . . . 73

4.4.1 Impact of registration on simulated images . . . . . . . . . . 74

4.4.2 Discretization scheme for the divergence computation . . . . . 77

4.4.3 Implementation of image warping . . . . . . . . . . . . . . . . 79

4.4.4 Standalone utility tools and scripts for pre-processing and

post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7.1 Running Simul@trophy from command lines . . . . . . . . . . 83

5 Conclusions and Perspectives 85

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 Creating Databases of Synthetic Longitudinal MRIs for Ma-

chine Learning Applications . . . . . . . . . . . . . . . . . . 86

5.2.2 Optimisation of Model Parameters . . . . . . . . . . . . . . . 87

5.2.3 Towards an Integrative Multimodal Model . . . . . . . . . . . 87

A Deformation theory 89

A.1 Body, Configurations and Motion . . . . . . . . . . . . . . . . . . . . 89

A.2 Deformation and Strain . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.3 Saint Venant-Kirchoff Model of Hyperelastic Materials . . . . . . . . 92



Contents vi

B Derivation of the System of Equations of the Biophysical Model of

Brain Deformation 94

B.1 Derivation of the Conservation Law . . . . . . . . . . . . . . . . . . . 94

B.2 Minimization of Strain Energy . . . . . . . . . . . . . . . . . . . . . 95

B.2.1 Directional Derivatives of Some Useful Quantities . . . . . . . 95

B.2.2 Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Bibliography 99



Chapter 1

Introduction
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1.1 Alzheimer’s Disease (AD)

In 1907, Alois Alzheimer reported a study of one of his patients with “an unusual

illness of the cerebral cortex” [Alzheimer 1907, Stelzmann 1995]. Alzheimer detailed

the symptoms of his patient suggesting that they were so unusual that the patient

could not be classified as having one of the recognized illnesses. Indeed, Alzheimer

was right when he said that he was dealing with a special illness, which is now

named after himself, as Alzheimer’s Disease (AD). Ever since this first reporting,

several studies have been performed in the past century and in particular the last

couple of decades. However, the exact mechanisms of AD and its causes are poorly

understood, and there are still no cure to date.

Progressive decline of cognitive functions of the human brain associated with the

gradual death of neurons is a more general condition named dementia. Prominent

symptoms of dementia are loss of memory, mood changes, and problems with com-

munication and reasoning. AD is the most common form of dementia contributing

to 60− 70% of cases [WHO 2015]. It primarily affects the aging population and the

risk increases with age. The increment of longevity in most parts of the world due to

the advancement of medical science and consequently better health care can cause

a significant rise in the incidence of AD in the coming years. Thus, it is imperative

to improve our understanding of AD to alleviate the growing socio-economic impact

of AD in the world.



1.2. Characteristics of AD 2

Figure 1.1: Diagram comparing normal adult brain (left) with a brain having

AD (right) [Wikipedia 2016a]. The diseased brain has widespread diffuse cortical

atrophy, extreme hippocampal atrophy, and ventricular enlargement.

Figure 1.2: Figure reproduced with permission from [Bird 2008], which shows ex-

tracellular senile plaque (also called neuritic plaque) in the lower left corner and

NFTs in the upper right corner. They are the most important characteristics of AD

along with widespread brain atrophy and progressive cognitive impairment.

1.2 Characteristics of AD

The primary characteristics of AD before external cognitive symptoms appears are

[Braak 1995]:

• the presence of neuronal atrophy (Figure 1.1),
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• abnormal accumulation of Amyloid-beta (Aβ) as senile plaques in extracellular

matrix (Figure 1.2),

• abnormal accumulation of hyperphosphorylated tau protein as neurofibrillary

tangles (NFTs) inside neurons (Figure 1.2).

Although the exact cause of AD is not known, there has been some hypotheses

to explain the cause of AD, and they mostly focus on either the Aβ plaques or

taupathy leading to NFTs. One such hypothesis is the amyloid cascade hypothesis

where the accumulation of amyloid beta peptide (Aβ) as amyloid plaques leads

to AD [Hardy 1992, Hardy 2002]. Many researchers support this hypothesis but

some others consider tangle formation due to the aggregation of tau protein to be

the major cause [Carlo 2012]. The possible causes of AD can be classified into three

groups of deficiencies shown in Figure 1.3: cellular, molecular and genetic imbalances

[Herrup 2015].

Figure 1.3: Figure reproduced from [Herrup 2015], with permission, to illustrate

the groups of three main categories of possible causes of AD: (top oval) cellular

events; (bottom left oval) molecular events showing the sequences that result in

two hallmarks of AD: NFTs and senile plaques; (bottom right oval) genetic events

showing the risk factor genes where PSEN2, PSEN1 and APP are emphasized to

indicate their involvement in familial AD (fAD). See [Herrup 2015] for detailed de-

scription.

The brain shape changes due to atrophy can be observed in longitudinal time-

series structural magnetic resonance images (MRIs). This thesis focuses on develop-

ing plausible biophysical model of brain shape changes as a consequence of neuronal
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deaths and to use the model to simulate longitudinal images that can reproduce the

changes we observe in real images.

Before detailing the context and motivation of the thesis, we briefly present some

of the established biomarkers that are based on the three primary characteristics of

AD mentioned above. These are the most widely studied aspects of AD. However,

it is worth noting that there are also recent studies proposing other hypotheses and

possible mechanisms [Pisa 2015, Lopategui Cabezas 2014, Hong 2016, Chung 2015].

As these studies are still at a nascent stage, and since it is not the objective of the

thesis to completely understand the mechanisms of AD, they are not discussed in

this chapter.

1.3 Biomarkers for AD

The entities whose presence, activity or concentration indicate the presence or sever-

ity of a disease are known as the biomarkers for that disease. Several in-vivo

markers of Alzheimer’s pathology are available which aid in the diagnosis of AD

[Dubois 2010]. These biomarkers have different relevance at different stages of AD

progression. Jack et al [Jack 2010, Jack 2013] describe the temporal evolution of AD

biomarkers and their interrelationships amongst themselves, and with the onset and

progression of clinical symptoms. The staging of the disease follow a progression

from normal to mild cognitive impairment (MCI) to eventually dementia. Figure 1.4

shows the staging of the disease and the dynamics of biomarkers for AD as proposed

by Jack et al in [Jack 2010, Jack 2013]. Well established biomarkers for AD are the

following:

• Cerbrospinal fluid (CSF) based and imaging based biomarkers targeting Aβ

pathology

• CSF based and imaging based biomarkers (very recent and still under research)

targeting taupathy

• Flurodeoxyglucose based positron emission tomography (FGD-PET) targeting

neurodegeneration

• Structural MRI based morphometry targeting neurodegeneration and tissue

atrophy

• Cognitive impairment

Cognitive impairment starts to appear many years after the changes that can be ob-

served using the other biomarkers. The next sections describe briefly the biomarkers

other than cognitive impairment.

1.3.1 Senile plaques

One major school of thought in AD links the cause of AD to Aβ pathophysiology

supporting the amyloid cascade hypothesis proposed by Hardy et al. [Hardy 1992].
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Figure 1.4: A hypothetical model of dynamic biomarkers of AD, reproduced from

[Jack 2013] with permission. This model incorporates tau and Aβ pathology as in-

dependent processes trying to reconcile the following two seemingly contradictory

existing hypotheses: i) Several AD biomarkers study suggesting Aβ pathophysiology

occurs first followed by tau-related neurodegeneration. ii) Autopsy data suggesting

AD like tauopathy precedes Aβ deposition [Braak 2010]. The model thus suggests

that in many individuals the first AD pathophysiological process to arise is the sub-

cortical taupathy which is detectable only by immunostaining methods. However,

the tauopathy alone does not lead to AD and Aβ pathophysiology arising later

independently from pre-existing tauopathy accelerate the spread of NFTs through

unknown mechanisms.

The main idea of this hypothesis is that the deposition of Aβ, a peptide fragment

of a membrane protein called amyloid precursor protein (APP), is the root cause

of AD which directly results in the NFTs, neuronal deaths, vascular damage, and

dementia. Aβ peptides aggregate to form oligomers 1 that subsequently produce

depositions of extracellular macroscopic Aβ plaques (also known as senile plaques).

There are only three genes known to lead to the early onset in familial form of

AD (fAD): APP, PSEN1 and PSEN2 [Bird 2008]. Due to the role of these three

genes in the sequence of senile plaques formation from the Aβ peptides, the amyloid

cascade hypothesis has received stronger support [Herrup 2015]. Although lots of

studies have been based on this hypothesis, it is important to note that there are

also studies disagreeing with it [Herrup 2015]. The existing debate is in whether

Aβ is the primary cause of AD or not. However, with the growing body of evidence

from several studies, it is universally accepted that Aβ is strongly correlated to AD

1Oligomer is a macromolecular complex consisting of a few macromolecules like proteins or

nucleic acid [Wikipedia 2015].
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and it will remain as an important component in AD research.

Both CSF and imaging biomarkers targeting Aβ pathophysiology are available

and have been widely used in AD research. The established CSF biomarker is the

decreased level of amyloid-β1−42 (Aβ42) in AD [Anoop 2010], while the most used

imaging biomarker is the increased level of Pittsburgh Compound-B (PiB) seen in

Positron Emission Tomography (PET) scans of AD patients [Johnson 2012]. Aβ42
is 42-amino-acid soluble form of Aβ and is believed to be lowered when it gets

converted to the insoluble Aβ plaques. This view is consistent to the findings of

inverse relationship between CSF Aβ42 levels, and PIB levels which binds with Aβ

plaques [Fagan 2006]. Figure 1.4 shows the dynamics of these biomarkers where

we see that biomarkers targeting Aβ pathophysiology are sensitive well before the

cognitive impairment begins. Aβ related biomarkers are already in saturation phase

for demented patients. Figure 1.5 shows the distribution of amyloid image levels in

normal, MCI and AD patients.

Figure 1.5: Figure reproduced from [Johnson 2012], with permission, to illustrate

the variation of PiB PET images in normal control (NC), mild cognitive impaired

(MCI), and AD subjects with a range of Aβ plaque deposition. Starting from the

left: NC- are normal controls showing no evidence of Aβ deposition. NC+ are

(around 25%) normal controls with some Aβ deposition. MCI- are around 40%−

50% of patients with MCI showing no evidence of Aβ pathology, while the remaining

show either moderate (MCI+) or severe Aβ deposition (MCI++). AD are the

large majority of clinically diagnosed AD patients showing heavy Aβ deposition. The

figure is based on several sources and studies that are detailed in [Johnson 2012].

1.3.2 Tau pathology

Microtubules are small tubular structures present inside human cells playing im-

portant role in maintaining the structure of cells and also in several other cellular

processes. These microtubules are critical structures for stable neuronal morphol-

ogy serving as tracks for long-distance transport, providing dynamic and mechan-

ical functions, and controlling local signaling events [Kapitein 2015]. The major

protein associated to microtubule in healthy neurons is tau which promotes the as-
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sembly of tubulin into microtubules and aids in the stabilization of their structure

[Weingarten 1975].

The abnormal hyperphosphorylation of tau proteins and its aggregation into

bundles of filaments can lead to a class of neurodegenerative diseases called as tau-

pathies. AD is the best known tauopathy with the aggregation of hyperphosphory-

lated tau proteins leading to the deposition of neurofibrillary tangles (NFTs) within

neurons. The presence of NFTs is one of the two major hallmarks of AD, the other

being the senile plaques described in the previous section. The progression of cog-

nitive impairment in AD follows more closely the spatio-temporal spread of NFTs

rather than the senile plaques [Braak 1995, Jack 2013].

CSF biomarkers targeting tau proteins are available just like with Aβ, but the

imaging biomarkers targeting tau are very recent developments and finding the best

PET tracers that can bind with high sensitivity and selectivity to phosphorylated

tau is an ongoing research topic [Villemagne 2015]. High levels of total tau (t-

Tau) and of phosphorylated tau (p-Tau) in CSF along with low levels of Aβ42

have been shown to be highly predictive of MCI to AD converters [Shaw 2009].

Since the tau is an intracellular protein binding to microtubules, in the CSF of

healthy subjects they are found in low numbers. In taupathies these normal tau

proteins become phosphorylated and get dissociated from microtubules, eventually

contributing to the formation of NFTs [Goedert 1993]. Tau protein could be released

into CSF during the process of formation of NFTs and the subsequent disruption of

neuronal architecture and cell deaths [Formichi 2006]. Hence the elevated levels of

t-Tau and p-Tau in CSF can correlate with the the onset of neurodegeneration in

AD [Anoop 2010]. There are several tau imaging ligands currently under research

[Villemagne 2015] with fluroine-18 (18F) isotopes based PET tracers being the most

promising [Murray 2014].

1.3.3 Neurodegeneration

Main imaging biomarkers targeting neurodegeneration that are well established are

FDG-PET scan and structural MRI; functional MRI (fMRI) and diffusion weighted

imaging (DWI) have also been increasingly explored in their potential use as an

early biomarker for AD [Sperling 2011, Acosta-Cabronero 2012, Colliot 2013].

fMRI is a noninvasive imaging technique which can be used to probe func-

tional integrity of brain networks. It provides an indirect measure of neuronal ac-

tivity obtained from measuring changes in blood oxygen level-dependent (BOLD)

MR signal. It has been increasingly used to analyse the integrity of brain net-

works supporting memory and other cognitive domains in aging and early AD

[Sperling 2011, Johnson 2012]. Task fMRI activation studies are usually not feasible

in demented patients; for these patients only resting state fMRI may be feasible,

although the head motion of these patients during scan still make it challenging to

obtain better data. Furthermore, high variability and limited reproducibility studies

of BOLD fMRI signals across subjects mean more studies are required exploring the

utility of fMRI in studying AD progression. There is also a need of studies that
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Figure 1.6: Figure reproduced from [Villemagne 2015], with permission, showing

MRI and PET imaging of tau and Aβ in healthy controls, MCI and an AD patient.

Top two rows show that Aβ deposition could be either present or absent in NCs. In

second row tau deposits in NC is seen only in hippocampal region. MCI and AD

patients have progressively increased depositions of both tau and Aβ. Although Aβ

seems to be deposited almost everywhere in the brain regions, tau deposits are more

concentrated in the cortical regions. MMSE=Mini Mental State Examination.

track the evolution of changes in the fMRI activation patterns during the progres-

sion continuum from preclinical to clinical AD. Finally, the contribution of atrophy

observed in sMRI to changes observed with fMRI must also be evaluated.

DWI generates contrasts on images based on the measurements of the random

Brownian motion of water molecules within a voxel of tissue. Diffusion tensor imag-

ing (DTI) and white matter tractography based on DWIs have been used to study

white matter integrity in the human brain. Most of the studies on AD using DTI fo-

cus on measuring differences in white matter integrity of AD patients against normal
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controls. Although there has been several such studies, it is still unclear whether it

can be considered as a reliable biomarker for AD [Acosta-Cabronero 2012].

Figure 1.7: Coronal slices of an AD patient aligned for comparison from two struc-

tural MRIs acquired two years apart. The ventricular expansions and the hippocam-

pal atrophy are clearly observed on both right and left sides. Thinning of the cortical

surfaces along with opening up of sulci can also be seen in the temporal lobes on

either sides near the red horizontal line.

Cerebral metabolic rate of glucose can be measured by PET scan using the

tracer fluorine-18 (F-18) fluorodeoxyglucose (FDG). In AD, the reductions in cere-

bral metabolism is well established and is one of the two biomarkers targeting neu-

rodegeneration. The glucose metabolism measures with FDG-PET scan have been

used with good accuracy to distinguish AD from both NCs and other dementias

[Mosconi 2007, Ballard 2011]. FDG-PET has also been used to predict MCI to AD

converters with better accuracy than structural MRI [Yuan 2008].

Longitudinal structural MRIs have been widely studied as an imaging biomarker

for AD. At present, brain atrophy is measured from the high-resolution acquisitions

with MRI scanners of 1.5T or 3T magnets. The best established and validated atro-

phy assessment methods are based on T1-weighted MRIs [Frisoni 2010]. Progressive

death of neurons or neurodegeneration leads to structural changes in the brain which

can be observed in strucutral MRI. Structural changes seen in MRI correlates well

with the cognitive impairment [Jack 2013]. By this time, Aβ abnormality is already

saturated. Thus, for monitoring the impact of disease modifying drugs, the ability

to track and predict structural changes in MRI can play an important role.

Figure 1.7 shows an example of the changes seen in the brain structure of an AD

patient from the patient’s two brain scans acquired two years apart. In the figure,

we can see hippocampal volume loss, medial temporal lobe atrophy and ventricular

expansion.
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1.4 Context and motivation

There has been several clinical trials and disease modifying drug development efforts

in the past three decades [Schneider 2014]. Since the external symptoms appear sev-

eral years after the changes seen in imaging, longitudinal structural MRIs can play

an important role in the development of disease modifying drugs. So far, structural

MRIs have primarily been used for estimating local volume changes in individual AD

patients; these measurements have been used to test or formulate hypotheses on the

temporal dynamics of atrophy in AD [Whitwell 2005, Sabuncu 2011, Frisoni 2010].

An interesting alternative avenue consists in modeling the tissue loss process

in order to compare (in a forward modeling setting) different hypotheses for the

prediction of patient-specific time series MRIs. The development of reliable models

of brain shape changes to predict accurately patient-specific longitudinal MRIs can

have far reaching consequences. For instance, the patient-specific evolution of the

brain structures predicted by the model could be useful in monitoring drug effects

in AD patients by comparing the prediction against the observed brain changes.

For these models to be practically useful, they must be able to reliably predict

the evolution of brain structures of the patients from available data such as spatial

distribution of Aβ and tau proteins coming from multi-modal imaging sources, ge-

netic information etc. These models could be validated by comparing the predicted

MRIs against the observed real MRIs. Since the disease mechanisms are not well

known, it is very challenging to develop such a comprehensive model that can pre-

dict time series of MRIs following AD patient’s real evolution of brain shape. As

far as we know, there has not been any studies which attempt to develop realistic

models in this direction.

The effect of atrophy of the brain due to the death of neurons is well charac-

terized using longitudinal MRIs. Recent developments in computational anatomy

using longitudinal image registration allow computing statistics on the longitudinal

brain changes in population of patients. For instance, Lorenzi et al. showed that de-

formation trajectories can be reliably computed from time series of structural MRIs

in AD as well as in normal subjects [Lorenzi 2011]. However, the mean deformation

trajectory is parameterized by a very large number of parameters which are difficult

to understand.

One interesting direction to explore in this context is to develop plausible biome-

chanical models of brain atrophy that can explain the results observed from the

images. Biomechanics based modeling have also been used to model the observed

shape evolution during the development of the fetal brain. For instance, the role of

the mechanical forces on the determination of the brain shape is well-illustrated by

Tallinen et al.; using a biophysical model, the authors reproduced remarkably well

the formation of the gyral and sulcal convolutions in a 3D-printed layered gel mimic

of the developing smooth fetal brain [Tallinen 2016]. There is evidence that endoge-

nous mechanical forces at the cellular level influence brain structure and function

[Tyler 2012]. Although the detailed mechanisms of these interaction still deserve

further investigation [Tyler 2012, Mueller 2015], it is clear that they play a role at
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the macroscopic level which is the scale where we observe changes in the structural

MRIs. Thus, we believe that when developing macroscopic models of brain shape

changes due to neurodegeneration, it is important to emphasise the link between

model parameters and the assumptions about the real mechanobiology of neurode-

generation.

A plausible biomechanical model of brain atrophy could be used to simulate

many different scenarios of evolution along the course of the disease. The resulting

simulated longitudinal image sequences could then be used to evaluate the accuracy

of the spatial location and timing of the changes along the course of the disease.

Such a model might also be helpful in studies attempting to disentangle potentially

different mechanisms of structural changes in AD and their relationship in time.

Biomechanical tissue deformation models have been used for the validation of

non-rigid medical image registration. One of the first applications was on the breast

MRIs by Schnabel et al., who proposed a validation framework using the images sim-

ulated with physically plausible, biomechanical tissue deformations [Schnabel 2003].

In the context of brain morphometry tools targeting neurodegeneration, a model

that can generate realistic synthetic MRIs with prescribed local volume changes can

be useful in the development, validation, and evaluation of: i) atrophy estimation

algorithms ii) data-driven disease progression models. In addition to simulating

the appearance of morphological changes in the brain, these synthetic time-series

MRIs should also produce realistic variation present in real longitudinal images

such as independence of noise and MRI acquisition artifacts. There are also several

machine learning algorithms that attempt to automatically classify AD patients in

large databases [Cuingnet 2011]. Simulating a large database of realistic ground

truth images could be helpful in the training of such classification algorithms too.

1.5 Structure of the Manuscript and Contributions

In this thesis, we develop a biophysical model of brain deformation with prescribed

atrophy, which is based on plausible assumptions of brain tissue loss biomechanics

in AD. Using the model of brain deformation as a core component, we also develop a

framework to simulate realistic longitudinal brain images with atrophy/growth and

intensity changes.

The manuscript is organised based on three main ideas as follows:

• Chapter 2 presents the first contribution of the thesis: development of a care-

fully designed biomechanics-based tissue loss model to simulate deformations

with prescribed atrophy. For a given baseline brain MRI, the model yields

a deformation field imposing the desired atrophy at each voxel of the brain

parenchyma, while allowing the CSF to expand as required to globally com-

pensate for the locally prescribed volume loss. The model allows simulating

synthetic MRIs by prescribing complex patterns of atrophy. The chapter also

presents a pipeline that allows evaluating atrophy estimation algorithms by

simulating longitudinal MRIs with complex subject-specific atrophy patterns.
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This chapter was published as a journal article in NeuroImage [Khanal 2016b],

which builds upon a conference paper published in MICCAI [Khanal 2014].

• Chapter 3 presents the second contribution of the thesis: A simple approach

to interpolate or extrapolate new subject specific time-point MRIs by using the

biophysical brain deformation model developed in Chapter 2. Atrophy rates

per year in a large number of segmented brain regions are estimated from the

available two extremal time-point scans of each patient. Middle time-point

atrophy map is then predicted by assuming linear progression; the predicted

atrophy map is prescribed to the biophysical model of brain deformation and

a middle time-point image is simulated. The approach is evaluated on the

MRIs of 46 AD patients. This chapter is adapted from our published work in

[Khanal 2016c].

• Chapter 4 presents our third contribution where we propose a method to

add realistic variations of intensities and noise to synthetic longitudinal image

sequences as observed in the real ones. The proposed method uses the brain

deformation model and different available images of a subject to add realistic

variations of intensities in the synthetic longitudinal images. Simulated ex-

amples of realistic longitudinal MRI sequences are shown which contain the

variations present in real longitudinal images, such as independence of noise

and MRI acquisition artifacts. The software developed during the thesis to

simulate realistic longitudinal brain images with our brain deformation model

is named Simul@atrophy and will be soon released in an open-source repos-

itory. The chapter also explains various options available in Simul@atrophy.

The open-source release of the software is the final contribution of the thesis.

This chapter is under review in NeuroImage [Khanal 2016a].

Finally, Chaper 5 concludes the thesis by summarizing the contributions and

providing some perspectives.
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Abstract We propose a framework for developing a comprehensive biophysical

model that could predict and simulate realistic longitudinal MRIs of patients with

Alzheimer’s Disease (AD). The framework includes three major building blocks: i)

Atrophy generation ii) Brain deformation iii) Realistic MRI generation. Within this

framework, this paper focuses on a detailed implementation of the brain deforma-

tion block with a carefully designed biomechanics-based tissue loss model. For a

given baseline brain MRI, the model yields a deformation field imposing the desired

atrophy at each voxel of the brain parenchyma while allowing the CSF to expand

as required to globally compensate for the locally prescribed volume loss. Our ap-

proach is inspired by biomechanical principles and involves a system of equations

similar to Stokes equations in fluid mechanics but with the presence of a non-zero

mass source term. We use this model to simulate longitudinal MRIs by prescribing

complex patterns of atrophy. We present experiments that provide an insight into

the role of different biomechanical parameters in the model. The model allows sim-

ulating images with exactly the same tissue atrophy but with different underlying

deformation fields in the image. We explore the influence of different spatial distri-

butions of atrophy on the image appearance and on the measurements of atrophy

reported by various global and local atrophy estimation algorithms. We also present

a pipeline that allows evaluating atrophy estimation algorithms by simulating longi-

tudinal MRIs from large number of real subject MRIs with complex subject-specific

atrophy patterns. The proposed framework could help understand the implications

of different model assumptions, regularization choices and spatial priors for the de-

tection and measurement of brain atrophy from longitudinal brain MRIs.

2.1 Introduction

Alzheimer’s Disease (AD) is one of the most common types of dementia. It is a neu-

rodegenerative disease that progresses gradually over several years with the accumu-

lation of neurofibrillary tangles (NFTs) and amyloid-β (A-β) plaques [Braak 1991].

These microscopic neurobiological changes are followed by the progressive neuronal

damage that leads to the atrophy of the brain tissue. The atrophy or the volume

changes of brain tissue is a macroscopic change that structural Magnetic Resonance

Imaging (MRI) can estimate in different brain regions [Frisoni 2010].

There is no treatment of AD so far, partly because the exact mechanisms

of the disease are not well known. Nevertheless, there has been several clinical

trials and disease modifying drug development efforts in the past three decades

[Schneider 2014]. Since the external symptoms appear several years after the

changes seen in imaging [Frisoni 2010], longitudinal images can play an important

role in the development of disease modifying drugs. So far, structural MRIs have

primarily been used for estimating local volume changes in individual AD patients;

these measurements have been used to formulate hypotheses on the temporal dy-

namics of AD.

An interesting alternative avenue consists in modeling the tissue loss process
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in order to compare (in a forward modeling setting) different hypotheses for the

prediction of patient-specific time series MRIs. The ability of developing realistic

individual models of brain shape changes to predict patient-specific longitudinal

MRIs can have far reaching consequences. For instance, the patient specific AD

trajectories predicted by the model could be useful in monitoring drug effects in AD

patients by comparing them against the observed brain changes.

It is nevertheless very challenging to develop a comprehensive model that can

predict realistic synthetic time series of MRIs following AD patient’s trajectory.

Modeling neurodegeneration is a complex task requiring a hierarchy of models ac-

counting respectively i) for how and where neuronal death occurs, ii) for its effects

on brain shape changes, and iii) for the subsequent brain appearance in longitudi-

nal MRI. In Figure 1 we show a breakdown of this complex process in three major

modeling blocks which represents, at a very high level, the comprehensive modeling

and simulation of realistic longitudinal MRIs in AD. The first block abstracts the

multi-scale models of neuronal death at the cellular level into a macroscopic map of

how the atrophy spreads spatially and evolves temporally at each voxel of the brain

MRI.

Figure 2.1: High level systems diagram for modeling and simulation of longitu-

dinal MRIs in AD patients. Spatial and temporal distribution of neuronal deaths

is represented in Atrophy Generation block which causes the brain shape changes

represented in Brain Deformation block. This deformation along with the MRI ac-

quisition conditions variability result intensity change in time series structural MRI

of AD patients. The error in predicted follow-up from the actual observed follow-up

MRI could also be used to optimize for the parameters of the developed models

using a feedback system as shown above.

Knowing the patterns of local neuronal deaths and local volume loss is just one

aspect of the problem; we also need to model the consequences of neuronal loss on

brain shape changes. This is represented by the block Brain Deformation in Figure
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2.1. We believe that biomechanics of brain tissue does play an important role in the

way brain’s shape change as a result of local volume loss, and this topic is going to

be one of the main subjects of this paper.

Finally, time-series of structural MRIs capture the brain shape changes but also

contain additional noise, partial volume effects and image acquisition artifacts. This

is also an important aspect to consider when modeling and simulating the appear-

ance of change in longitudinal MRIs for AD patients. This part is shown in Realistic

MRI generation. Furthermore, a proper optimization framework might also be nec-

essary to estimate the patient specific parameters of the models if we are to perform

model personalization. This is represented by a feedback loop in Figure 2.1.

A number of atrophy simulators [Smith 2003, Camara 2006, Karaçali 2006,

Pieperhoff 2008, Sharma 2010] have been proposed in the literature. These sim-

ulators address either just the Brain Deformation or both the Brain Deformation

and Realistic MRI generation blocks in Figure 2.1. They propose different methods

to simulate time-series images with a desired volume change. All of these simulators

were developed with the objective of evaluating atrophy estimation algorithms. We

can broadly distinguish two major approaches used in such simulators: Jacobian

based, and biomechanical models.

In Jacobian based methods [Karaçali 2006, Pieperhoff 2008, Sharma 2010], the

desired level of atrophy is set at each voxel, and the deformation that best approx-

imates the prescribed level of atrophy is found. Optimization of the deformation

involves regularization to enforce the smoothness of the transformation and topol-

ogy preservation. These simulation approaches have a number of limitations, which

prevent their use and generalization in modeling oriented applications. The main

issues that we identified are the following:

Plausibility and interpretation. The modeling assumptions and the reg-

ularization parameters of the energy minimization cannot be easily linked to the

biophysical and mechanical process of tissue deformation. The choice of certain

regularizations such as topology preservation can also have some undesirable side

effects such as making it difficult to simulate the opening up of sulci.

Spatially varying tissue properties. Brain tissue and CSF are considered

to respond to the volume change with the same law which is not the case in re-

ality. Indeed, while neuronal loss in brain tissue is a gradual process, the CSF is

replaced three to four times with the production of about 500 ml to 600 ml per day

[Damkier 2013]. Jacobian-based approaches with uniform tissue properties are thus

limited to explore questions such as: do different brain regions such as brain stem,

cerebellum, cortex etc. respond with physical deformation in the same way to the

neuronal deaths and local volume loss? Can we have parameters with a physical

meaning for different brain tissue types that change the deformation we get even

for exactly the same atrophy pattern? If tissues respond differently to the same

amount of volume loss in brain, these models cannot accurately model the resulting

shape changes and on the appearance of time-series MRIs unless the regularization

is made spatially varying.

Skull invariance. In AD the brain deforms but the skull is rigid and hence
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the deformation model should not allow skull to move. The skull invariance is not

imposed in [Karaçali 2006]; In [Sharma 2010], as the authors show, imposing skull

invariance results in larger error in the obtained Jacobian near the skull. Since the

cortical surface lying near the skull is an important area for AD, it is desirable not to

have error in the obtained Jacobian in these areas. Finally, when only volume loss is

prescribed, as seems to be the case in the evaluation experiments of [Sharma 2010,

Sharma 2013], it is not clear which regions of the brain expand to compensate for

the volume loss since the volume within the skull must be constant when skull

invariance is imposed. The spatial distribution of the resulting non-zero error in the

desired vs. obtained Jacobian map is not easy to control in this case.

Biomechanical models generate tissue deformation based on biomechanical prin-

ciples. As far as we know, the only model proposed so far for AD application other

than the one we present here was a thermoelastic one [Smith 2003, Camara 2006].

In this thermoelastic model, one defines the volume changes in particular structures

and tissues of a meshed brain by assigning different thermal coefficients. Thermoe-

lastic model of tissue deformation is solved using Finite Element Method (FEM) to

obtain a deformation field. To simulate time series of images, the deformation field

interpolated from the mesh to input baseline image is used. An important limitation

of this method is that it requires estimating regional thermal coefficients based on

the desired volume changes which makes it difficult to prescribe complex voxel-wise

atrophy patterns accurately. Although different tissue types can be differently mod-

eled by considering tissue-specific values of thermo-elastic constants, the meaning of

these parameters are difficult to link to the AD process. Furthermore, the variabil-

ity of the resulting brain deformation depending on the choice of the tissue-specific

parameters has not been investigated. Finally, FEM involves moving back and forth

from voxels of patients MRI to reference labeled 3D mesh which creates numerical

difficulties and inaccuracies in the model personalization.

In [Khanal 2014] we proposed a proof of concept for a new biomechanics-based

tissue loss model that addresses the limitations of the previous simulators discussed

above. This biophysically plausible model of brain deformation due to atrophy is

constrained to fit a prescribed atrophy rate at each voxel of the parenchyma. In this

work, after analyzing in detail the modeling assumptions, we provide a thorough

derivation of the mathematical formulation and of the numerical implementation.

There is evidence that endogenous mechanical forces at the cellular level influence

brain structure and function [Tyler 2012]. Although the detailed mechanisms of

these interaction still deserve further investigation [Tyler 2012, Mueller 2015], it is

clear that they play a role at the macroscopic level which is the scale where we

observe changes in the structural MRIs.

Our model thus emphasizes, for the first time, the link between model parameters

and assumptions on the real mechanobiology of neurodegeneration at a macroscopic

scale. The presented experiments provide a better insight on the role of different

biomechanical parameters of the model, and show that different assumptions about

the atrophy process can lead to different deformations even for the same input tissue

atrophy. Furthermore, we use the proposed model to study the interrelationship of



2.2. Biophysical Model of Brain Deformation 19

various spatial atrophy patterns and how they affect the image intensity appear-

ance. The proposed model implements the Brain Deformation block of Figure 2.1

and provides a mathematically solid and flexible framework to allow the future im-

plementation of more complex modeling assumptions about neurodegeneration in

the Atrophy Generation block.

Concerning the realistic MR image generation block, previous works in

[Camara 2008, Sharma 2010, Sharma 2013] provide an interesting framework for

adding different kinds of intensity noise on the simulated images for the benchmark-

ing of atrophy measurements tools. Even though this is a desirable component of a

generic atrophy simulation tool, intensity noise accounts only for a small part of the

variability of atrophy measurement tools. Indeed, it has been shown that the largest

variability in the atrophy measurements is due to the individual variability of the

brain anatomy and atrophy pattern, as well as to the wrong modeling hypothesis

[Sharma 2013, Rohlfing 2006]. Therefore, in this work we focus on the development

of a framework that can exactly prescribe any complex pattern of atrophy in order

to simulate a wide range of patient specific brain changes.

In the following section we present the detailed assumptions and the development

of our biophysical model of brain deformation due to atrophy. Section 2.3 provides

the implementation details and describes how follow-up images with any desired

atrophy can be simulated from any input brain MRIs. Section 3.3 shows some

examples of such simulations. It also presents experiments that provide an insight

into the role of different model parameters on the model outputs. In Section 2.5,

we study how local and global atrophy estimation algorithms perform when a same

amount of global volume changes are prescribed in two completely different ways:

uniform volume changes exclusively in gray matter vs. uniform volume changes

exclusively in white matter. We also present qualitative analysis of the impact of

varying model parameters on the results of local atrophy estimation method for

the same prescribed atrophy. Section 2.6 presents a framework to evaluate atrophy

measurement algorithms and is illustrated by assessing the atrophy measurements in

various brain structures by using representative segmentation based and registration

based estimation algorithms.

2.2 Biophysical Model of Brain Deformation

The proposed model is based on a series of basic assumptions motivated by the

following anatomical and biophysical notions. Human brain is enveloped by a set of

membranes called meninges and the CSF that lies between the skull and the brain.

Due to neurodegeneration in AD, the brain shrinks along with some structural

readjustment of the parenchyma. This process can be seen as a deformation of the

brain parenchyma along with its mass and volume loss. The CSF volume increases

to compensate the tissue volume loss while the skull remains rigid without any

deformation. It is important to note that the CSF production is at a much smaller

time-scale (hours) compared to the tissue atrophy (months).
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In the following sections we explicit the mathematical details of the tissue loss

model based on these basic assumptions.

2.2.1 Impact of Loss of Volume on Conservation Equation

When modeling the deformation in AD, classical continuum mechanics formulation

cannot be directly applied because conservation of mass does not hold due to the

presence of atrophy. To model the brain shape changes due to neuronal deaths in

AD, it is important to take note of the observations in longitudinal brain MRIs of

AD patients and also compare against other neurodegenerative diseases. In diseases

like Creutzfeldt-Jakob disease, no gross brain shape changes are reported and the

imaging only shows hyperintense signals on T2-weighted images [Johnson 1998].

However, this is not the case in AD and longitudinal MRIs show a remarkable

decrease of brain volume instead [Frisoni 2010] without any "holes". That means

the tissues should restructure as the neuronal deaths increase with time. This leads

us to a basic assumption in the proposed model that after the death of neurons,

remodeling of the tissue occurs such that the tissue density remains constant while

both the mass and volume decrease. This assumption of incompressible material

but with mass loss leads us to the conservation law given by (see Appendix B for

the derivation):

∇ · u = −a (2.1)

where ∇·u is the divergence of a displacement field u associated to the deformation

of the brain during a period of time t and a = a(x) is the volume loss per unit

volume at position x during this time.

2.2.2 Constrained Minimization of the Elastic Energy

To explicitly model the neuronal loss and tissue remodeling at the microscopic level,

one requires biochemical and cellular physiological knowledge in detail. These mech-

anisms along with the spatial and temporal evolution of the cell loss are not well

known for AD. The proposed model abstracts the phenomenon that evolves during

several months or years in the brain at a macroscopic scale. It is based on the

assumption that atrophy creates internal stress which results in the deformation

minimizing a strain energy. In other words, the brain parenchyma deforms with the

prescribed atrophy by minimizing the strain energy. Using Saint Venant-Kirchoff

model for an elastic material, this can be expressed as the minimization of:

R(u, p) =

∫

µtr(E(u)2) +
λ

2
(tr(E(u)))2 −

∫

p (∇ · u+ a) (2.2)

where p is a Lagrange multiplier, µ and λ are Lamé constants, and E is Langrangian

Green strain defined as: E = 1
2

(

∇u+∇uT +∇uT∇u
)

.

By taking a sufficiently small time step ∆t, this deformation could be reasonably

modeled as being linear elastic. For example, for a 2% global atrophy rate per year,

we have ∆t = 1 year, and the actual atrophy after one year is a = 0.02. This linear
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elastic assumption is done for a small time step only because remodeling occurs to

eliminate the internal stress induced by the death of neurons.

Under linear elastic assumptions, minimizing the energy in equation (2.2) is

equivalent to solving the following system of equations.

µ∆u−∇p = (µ+ λ)∇a

∇ · u = −a

}

(2.3)

where ∆u is a component-wise Laplacian of u. This system of equations is very

similar to the Stokes flow equation in fluid dynamics [Batchelor 2000]. The difference

is in the non-zero divergence term which corresponds to the loss of matter in the

tissue. The right hand side of the first equation of this system can be seen as a force

term. That means the gradient of the prescribed volume loss acts as the force term,

f = (µ+ λ)∇a, that moves the tissue for the structural remodeling. The Lagrange

multiplier p can be interpreted as a virtual pressure whose algebraic values can be

seen as sources and sinks of matter. The second equation of this system of equations

has a mass source term, −a.

2.2.3 Modeling CSF Region

The timescale of CSF production is hours [Damkier 2013], which is much smaller

compared to the time scale of tissue remodeling due to atrophy. Thus the CSF should

be allowed to expand as required when the brain deforms due to the prescribed

atrophy. This expansion should automatically adjust and compensate for the total

loss of volume prescribed in the parenchyma. For this, we release the strict constraint

present in the second equation of the system of equations (2.3) by re-introducing the

variable p as: ∇·u+kp = 0, where k is the compressibility with units of Pa−1. Now,

the pressure in the CSF adapts to the expansion of CSF as required to compensate

the prescribed volume loss in the parenchyma. Furthermore, since all of the CSF is

considered as the fluid circulating in the brain and being constantly produced (for

the timescale of months), the notion of structural readjustment due to the internal

stress is not relevant. Thus the force term in system of equations (2.3) can also be

set to zero. This leads us to the following system of equations for the CSF region:

µ∆u−∇p = 0

∇ · u+ kp = 0

}

(2.4)

If we take the gradient on both sides of the second equation above, we have ∇p =

−(1/k)∇ (∇ · u). Replacing ∇p in the first equation of this system of equations, we

get: µ∆u+ (1/k)∇ (∇ · u) = 0. This is the same equation as that of elasticity but

with no external force and with k = 1/(µ+λ). The CSF deformation is constrained

to be such that the total volume change is equal and opposite to the total prescribed

tissue volume change, and the CSF-tissue interface has a continuity in u and p. How

different regions of CSF contribute to compensate for the global volume loss depends

on the choice of the value of k. This is further discussed in Section 2.4.4

The combined systems of equations for both regions are as follows:
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Brain Parenchyma

µ∆u−∇p=(µ+ λ)∇a

∇ · u =− a

}

CSF

µ∆u−∇p=0

∇ · u+ kp =0

}

(2.5)

Boundary conditions: As the skull is rigid and no deformation occurs in the

skull, we set Dirichlet boundary conditions with zero displacement at the skull. This

means that there is no flux of matter across the brain-skull interface. This interface

is the skull boundary that completely encloses the CSF and brain parenchyma. In

other words, setting u = 0 at the boundary ∂Ω results in
∫

∂Ωu · n ds = 0 where n

is the vector normal to the surface ds of the boundary. Using divergence theorem

we can re-write this surface integral as a volume integral
∫

Ω
∇ · u dΩ = 0. Thus,

with the Dirichlet boundary conditions we set, the sum of integrals of ∇ · u in the

parenchyma and the CSF should equal zero. Since we constrain the divergence in

the parenchyma region with the prescribed atrophy, the system will find u in the

CSF region such that integral of ∇·u over the CSF region is opposite to the integral

of ∇·u in the parenchyma. This is how the CSF expands to compensate the volume

loss prescribed in the tissue.

Material Parameters µ and λ: The Lamé parameters are related to the

material’s Young’s modulus (E) which describes its response to mechanical stress

in the following way:

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(2.6)

where ν is a Poisson’s ratio.

The first Lamé parameter λ does not have a direct physical meaning but is

related to the compressibility. However, there is a strict incompressibility constraint

with ∇·u = −a in our model. The system adapts the value of p based on the chosen

value of µ and the input a. Unlike in standard elasticity, λ does not appear in the

coefficient term of u and is only present in the force term (µ + λ)∇a. It weights

the stress exerted due to the gradient of the prescribed atrophy. Its impact on the

solution is explained with experimental results in Section 2.4.4.

The second Lamé parameter µ, also known as shear modulus or modulus of

rigidity, is related to the stiffness of the material. However there is no consensus on

the stiffness of the brain with widely varying estimates in the range of 0.1 to 16 kPa

[Tyler 2012]. Furthermore, the stiffness of the brain tissue is reported to reduce in

normal aging [Sack 2011] and particularly in AD [Murphy 2011]. In [Nogueira 2015],

authors estimate equivalent mechanical stress related to brain atrophy in AD by

using strains computed from the deformation of the brain in longitudinal images

and with µ = 2.2 kPa taken from [Murphy 2011]. The effect of choosing different

values of µ in the proposed model is further explained in 2.4.4.
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2.3 Implementation of the Biomechanical Tissue Loss

Model

This section describes the major implementation steps required to simulate synthetic

follow-up images from an input baseline brain MRI using the proposed model of

brain deformation.

2.3.1 Skull Stripping and Brain Segmentation

The model minimally requires segmentation of at least three regions of the input

MRI:

i. Brain parenchyma (Gray matter/White matter region)

ii. CSF region

iii. Skull and outside region

Skull stripping separates the brain region from the skull and other outside re-

gions. This enables us to impose Dirichlet boundary conditions of zero displacement

in the skull and outside regions of the input image. Similarly, the segmentation of

the brain into GM/WM and CSF enables us to numerically solve the system of equa-

tions (2.5). Any skull stripping algorithm, and any segmentation algorithm that can

extract GM/WM and CSF can be used. The choice of algorithms/softwares used

for skull stripping and segmentation in this work are detailed in later sections.

2.3.2 Input Prescribed Atrophy Map

To simulate the desired atrophy, a voxel-wise atrophy map in the GM/WM region

must be provided as the input to the model. This corresponds to a in equation (2.3).

This atrophy map is thus a scalar image with desired values of volume changes in

GM/WM regions, and zeros in all other regions. This image should be in the same

space as the input MRI. The model can be initialized with any desired atrophy

pattern, either at the regional level, or voxel-wise. Regional atrophy, such as in the

whole brain, in specific brain tissues, or in regions of interests (ROIs) such as the

hippocampi, can be prescribed by using any reliable anatomical segmentation tools.

Otherwise, desired atrophy patterns can be generated at the voxel level by using

other brain morphometry methods such as non-linear image registration (tensor

based morphometry).

In the following sections we explicitly detail the brain morphometry tools cho-

sen for each experiment. These computational methods are among the state-of-art

instruments for brain morphometry, and are freely available on the web.

2.3.3 Staggered Grid Discretization and Finite Difference Method

For computing the deformation field that would warp the input image, equation (2.5)

must be solved numerically. The computational domain for this equation is obtained



2.4. Using the Model to Explore Different Atrophy Patterns 24

from the input MRI using skull stripping and segmentation as described above. We

use Finite Difference Method (FDM) with staggered grid discretization to solve the

system of PDEs (2.5). Using staggered grid with proper placing of the pressure and

velocity variable ensures stability in the solution. FDM is chosen instead of FEM

to avoid brain meshing and the complexity of transporting computed variables from

mesh to image at each iteration. This allows us to solve the system in a grid that

is of the same size as the input image where the grid fits naturally to the image.

This also makes it easier to obtain the partition of the computational domain into

different regions directly from the skull stripping and segmentation step.

For typical brain MRIs of 1mm3 resolution, this computational problem size

becomes so large that direct solvers are impractical due to memory limitations. The

system of equations (2.5) is similar to Stokes flow equation which is a saddle point

system [Benzi 2005]. It needs a suitable combination of an iterative solver and a

preconditioner to solve it. We use a Schur factorization to split the equations into

the momentum equation and the pressure equation. Each of these equations is

solved using different iterative solvers. Our implementation uses composable solvers

for multiphysics with PETSc library [Balay 2013] using fieldsplit preconditioner,

an approach detailed in [Brown 2012] with an example for Stokes flow solver with

Schur complement factorization. The momentum equation is preconditioned with

hypre which is an algebraic multigrid preconditioner and can be called from the

PETSc interface. The implemented system is run using distributed computing in a

locally available cluster.

2.4 Using the Model to Explore Different Atrophy Pat-

terns

2.4.1 Simulating Images with Any Desired Atrophy Maps

Figure 2.2 shows a simulation example where a 20% hippocampal atrophy is pre-

scribed in addition to a uniform global 2% atrophy. For this case, we used ROBEX

[Iglesias 2011] for skull stripping; FSL FAST [Zhang 2001] to segment the skull

stripped image into GM, WM and CSF regions; and FSL FIRST [Patenaude 2011]

to segment hippocampi and amygdalae to obtain the region of enhanced atrophy.

This is a simple example to illustrate that any desired atrophy can be prescribed at

voxel level once the desired segmentation of the input image is obtained. Solving the

model using equation (2.5) with the prescribed atrophy map results in a deformation

field as shown in the middle of Figure 2.2. The deformation field is superimposed on

the input baseline brain MRI. A simulated follow-up image is obtained by warping

the baseline image using the computed deformation field. The difference between

the real baseline and the simulated follow-up image is shown on the right of Figure

2.2.



2.4. Using the Model to Explore Different Atrophy Patterns 25

Figure 2.2: Atrophy in cortex, white matter and Hippocampus. No atrophy is

prescribed in brain stem and other sub-cortical structures such as Thalami, Putamen

etc. Left: Prescribed atrophy map with uniform atrophy of 4%, 5% and 20% in

WM, GM and Hippocampus respectively. Middle: A coronal slice of the input MRI

superimposed with the obtained displacement field. Right: Difference between the

input (baseline) and the simulated (follow-up) image.

2.4.2 Simulating Realistic Atrophy Patterns

We can also simulate more realistic atrophy patterns in different brain structures by

taking the values reported in literature. For instance, in Figure 2.3 the prescribed

atrophy is derived from a table in [Carmichael 2013] that reports a mean two year

atrophy of amnestic MCI patients in 35 different cortical regions. Bottom row of the

figure is the computed atrophy values from the obtained deformation field. As should

be the case, the divergence map is the same in the tissue while in CSF the region

expands to compensate for the volume loss. We used the FreeSurfer segmentation

tool [Fischl 2002] for the whole brain segmentation and to extract the regions of

interests (ROIs) used in [Carmichael 2013]. The whole brain segmentation with

recon-all step of FreeSurfer includes skull stripping. However, FreeSurfer does not

segment the sulcal CSF and only ventricular regions of CSF are segmented. Once

the FreeSurfer segmentation is obtained, the sulcal CSF regions are added using the

following approach:

Step 1. Binarize FreeSurfer segmentation image into brain tissue vs background.

Step 2. Get a distance map of the binary image which approximates the Euclidean

distance of the foreground (tissue) in number of voxels.

Step 3. In the FreeSurfer segmentation image, label as sulcal CSF the voxels that

correspond to a distance less than the threshold β in the distance map.

The chosen value of β corresponds to the width of CSF region desired outside

of the cortical surface. In the following experiments, β was set to 2 voxels.
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Figure 2.3: Prescribing uniform atrophy in 34 different cortical regions and in hip-

pocampi. The regions are obtained from FreeSurfer whole brain segmentation. The

atrophy values shown in the top row are the mean atrophy reported for amnestic

MCI in [Carmichael 2013]. The computed atrophy map is the negative of the di-

vergence obtained from the solution of the model when solved for the prescribed

atrophy. This is shown in the bottom row. The negative values of the computed at-

rophy map (in blue) corresponds to the expansion of CSF to compensate the volume

loss prescribed in the brain tissues. We can see here that the resulting atrophy of

the parenchyma is exactly the one prescribed at the voxel level while the expansion

of the CSF is not uniform.

2.4.3 Simulating Large Atrophy With Multiple Time-steps

The proposed model allows simulating very large atrophy. In Figure 2.4, we see

several slices a baseline and the simulated follow-up obtained by prescribing large

atrophy of 90% in Hippocampi and cortical gray matter, and 40% atrophy in white

matter. The results in the figure shown was simulated with a single time-step.

Usually such large atrophies are not so common. However, we could use the model

to simulate large atrophies that span over several years. In this case, the linear model

with single time-step may not capture the associated deformation realistically. We

can incorporate nonlinearity by solving the system of equations of the model multiple

times and composing the deformation field obtained at each time-steps as explained

below:

• Get the displacement field u0 by solving the model using the initial atrophy

map a0, baseline image I0, and the segmented label image L0 as input.

• For each time step t = 1 to n:

– Warp at−1, It−1 and L0 using ut−1 ◦ ut−2... ◦ u0 to get at, It and Lt
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respectively.

– Solve for ut using at, It and Lt as input.

In Figure 2.5, we simulate six time steps starting from an initial atrophy map mea-

sured from two MRIs of AD patient 2 years apart with the baseline age of 60 yrs.

Although conceptually there is no limitation in this method to simulate very large

atrophy over very long periods of time, there are nevertheless technical difficulties.

If the material parameters µ is set to be discontinuous with big jump in the values

of µ in different regions of the brain, the solver converges very slowly. Thus, for

these cases of highly discontinuous parameters, it can become challenging to sim-

ulate large number of time steps. Similarly, when simulating multiple time steps,

the atrophy map and the label image must be updated by warping them with the

displacement field of the previous time step. Since the label images are required

to use nearest neighbor interpolation, this can result in some of the tissue atrophy

values to leak into the nearby CSF regions during the warping of the atrophy map.

So, for the next step, we modify the atrophy map by redistributing uniformly all

the non-zero atrophy from these CSF voxels to the nearest tissue voxels in the 3x3

neighborhood.

We qualitatively assessed the results shown in Figure 2.4, by asking to an expert

neurologist of the Nice Resource & Research Memory Centre (Nice, France), to

assess the plausibility of the simulated atrophy progression. According to the clinical

evaluation, the pattern of morphological changes shows realistic CSF expansion at

multiple scales (ventricular enlargement and sulcal widening) and cortical thinning,

along with a plausible pattern of whole brain shrinkage.

2.4.4 Role of Different Model Parameters

Once the atrophy is prescribed and the segmentation of the input brain image is

obtained, the remaining parameters that can be varied in the model are λ, µ and

k. In this section we present the role of these parameters in the model. All of the

numerical values presented in this work are with the following units: λ, µ, p in kPa,

k in kPa−1 and u in mm.

Impact of Changing λ In standard elasticity, once the shear modulus µ is fixed,

λ is linked to the compressibility of the material as its value depends on µ and ν.

However, in the presented model the deformation field must satisfy the incompress-

ibility constraint strictly and consequently λ does not have the same usual meaning.

It appears only in the equation for the brain tissue as a scaling factor to the force

produced by the gradient of the prescribed atrophy. Thus, the choice of λ affects

the equivalent force exerted by the gradient of atrophy and consequently the defor-

mation field obtained from the simulation. In Figure 2.6, we show the results of

varying λ for the same prescribed tissue atrophy and the same values of µ and k.

The figure shows that setting λ too large makes the deformation field unrealistically
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Figure 2.4: The figure shows several slices of a pair of real baseline and simulated

follow-up MRIs with large uniform atrophy of 90% in cortical gray matter and

Hippocampus, and of 40% in white matter. These large atrophies were simulated

in a single time-step in this case. We can see that the model is able to simulate

realistic pattern of widening and opening of sulci, the narrowing of gyri, and at the

same time the cortical surface does not move unrealistically farther away from the

skull.

Figure 2.5: From left to right: Figure shows the initial prescribed atrophy,

simulated follow-up images and the difference between the follow-up and baseline

images for time-step 1, 3 and 6 respectively.

large. Our experiments show that setting λ to zero already provides plausible de-

formation field while changing µ can allow us to get different deformation fields for

the same prescribed atrophy. Thus, we set it to zero in the rest of the experiments
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in this work.

Figure 2.6: Setting larger values of λ scales the force term to very high values and

results in unrealistically large deformation fields.

Impact of Changing µ The shear modulus µ is the stiffness of the material

and changing its values affects the deformation field obtained from the model. It

appears on both the left hand side and the right hand side of Eq. 2.5. On the left

side of Figure 2.7, we see the effect of varying µ in tissue and/or in CSF. When µ is

same everywhere, changing it equally everywhere does not have a big effect on the

deformation field but it scales up the pressure. However, when the value of µ is set

differently in the tissue and the CSF, we see that the pattern of the deformation

field also changes. In the last row of the figure, we see that the displacement

fields are bigger near the regions where the input atrophy was non-zero. In this

case the tissue is much stiffer than the CSF and for the same volume change the

nearby tissue deforms to compensate for the prescribed volume changes. Different

brain structures could have different material properties. However, there has not

been a consensus on how these properties differ in the brain [Cheng 2008]. Varying

the values of µ in the brain structures also produces different results for the same

prescribed atrophy. For example, Figure 2.8 shows the difference in the simulated

image between the same µ in all brain tissue vs. µ in brain stem 100 times more

than other brain structures. It could be interesting to explore the impact of having

different stiffness in various brain regions, or to optimize for these parameters by

using multiple time-point images. This is further discussed in Section 4.5.

Impact of changing k The compressibility coefficient k is always zero in the

brain tissue since we have a strict incompressible constraint. In the CSF, the choice
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Figure 2.7: The prescribed atrophy is a uniform atrophy only in the cortex. Left:

Effect of varying µ with k = 1 kPa−1 and λ = 0 kPa. µ1 and µ2 denote the shear

modulus of the brain tissue and the CSF respectively. Right: Effect of varying k

with µ1 = µ2 = 1 and λ = 0. Setting very small values for the compressibility k in

CSF results in its uniform expansion everywhere while allowing it to by highly com-

pressible with large values of k results in its more local expansion to compensate for

the nearby tissue volume loss. The pattern of the deformation field does not change

much when µ is changed in the same way in both the CSF and tissue. However,

making tissue stiffer compared to the CSF makes the tissue deform differently even

with the same volume loss.

of the value of k determines its ability to expand locally. On the right side of Figure

2.7, we see that setting large value of k allows the CSF to expand more locally in

response to the nearby local tissue loss, while very small values of k minimizes its

expansion by distributing the same value of expansion everywhere. In a certain

range of the values of 1/k, in the same or up to three to four orders smaller than

µ, it does not affect much the deformation pattern. This is the range where the

variation of the redistribution of the CSF expansion in different parts of the brain

is not large enough to have a big impact on the deformation field. However, if the

value of k is made much larger, then all of the volume loss in the tissue will be

compensated by the nearby CSF regions and can even overcompensate such that

the CSF in the ventricles shrink instead of expanding. This is shown in the last row

of Figure 2.9.
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Figure 2.8: We see that the simulated images are different when the values of µ is

changed in the brain stem to be 100 times more (difference in µ overlaid over the

baseline image in second column) even when there is no atrophy prescribed in this

region. The difference is more pronounced in the brain stem and nearby regions.

Figure 2.9: Impact of varying both µ and k. The second row shows that, just

like in the previous figure, making the compressibility of the CSF k much smaller

compared to µ makes CSF expand uniformly everywhere. The last row shows that

when k is large, the CSF can expand very locally in response to the nearby tissue

volume loss.
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2.5 Investigating the Relationship Between Image Ap-

pearance and Atrophy Patterns

One important question investigated in this section concerns the non-trivial effects

induced by a given atrophy pattern on the appearance of the simulated images. It is

important because the atrophy estimation algorithms depend on the image intensity

or the appearance of the follow-up images, and the proposed model is an important

instrument for studying this type of question. For this purpose we initially propose a

toy example to show that different atrophy patterns can lead to very similar changes

in the appearance of binary segmentations of a region of interest (ROI) (2.5.1), to

finally provide an application in brain atrophy detection while using state-of-art

brain morphometry tools (2.5.2).

2.5.1 A Synthetic Example with Binary Image

We consider a hypothetical scenario in which the segmentation of the desired brain

anatomical region of interest (ROI) is provided. Our model is then applied to the

anatomical region by prescribing two different atrophy patterns consisting in the

same amount of global atrophy, but with different spatial distribution. In formal

terms, let ag be a desired global atrophy of the brain and Vg be the global brain

volume. If we want αi as the desired fraction of the total atrophy to be contributed

by region Ri with volume Vi, we have:

ai = αiag
Vg

Vi
.

where ai is the uniform atrophy needed to be prescribed in the region Ri.

The experimental scenario is tested on a cylindrical ROI, on which we generate

two longitudinal deformations with different atrophy properties: the first atrophy

pattern is concentrated in the medial axis, while the second one is more uniformly

distributed in the volume.

We note in Figure 2.10 that since there is not enough texture in the input

image, the resulting simulated images look very similar although the underlying

volume changes are very different. This is experimentally verified by non-linearly

registering the simulated follow-up images to the cylindrical baseline with the LCC-

logDemons algorithm [Lorenzi 2013]. Figure 2.11 shows that the apparent volume

changes detected by the registration algorithm are very similar. Furthermore the

spatial pattern of the estimated volume changes is different than both of the original

input atrophy patterns. This illustrates the dependence of the registration algorithm

on an implicit model (i.e. spatial regularity assumptions) when inferring the volume

changes from the intensity images.
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Figure 2.10: For a given baseline image (first column), we prescribe two different

atrophy patterns (second and fourth columns). The simulated images in these cases

(third and fifth columns) look very similar. The axes in the images show a reference

position to aid comparison of the images. The origins of the shown axes are at the

same physical position for all the images in the same row.

Figure 2.11: Registration results when using the input image of Figure 2.10 as

a fixed image (first column) and the two simulated images of that figure as mov-

ing images (not shown here). Second and fourth columns show the results of the

alignment while the third and fifth columns show the Jacobian determinants of the

transformation obtained in these two cases. We see that these Jacobian determi-

nants inferring the volume changes in the image are fairly similar. However these

two moving images were created from the fixed image by prescribing very different

underlying volume changes as shown in Figure 2.10.
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2.5.2 Varying the Spatial Distribution of Atrophy in Real Brain

Images

Since the brain has a more complex shape and richer intensity information than

the simple ROI considered in the previous section, it is more challenging to identify

plausible atrophy based on intensity information only. It is thus of great interest to

study the results of atrophy estimation algorithms when we have a same underlying

global atrophy but distributed very differently in the brain. For instance, we present

here atrophy estimation for two cases of simulated images having same global atro-

phy but different patterns: i. Only gray matter atrophy, and ii. Only white matter

atrophy. We selected two representative methods of atrophy estimation: one global

(gBSI [Prados 2015]) and one local (LCC-logDemons[Lorenzi 2013]) for these ex-

periments. Both of these methods are available online and are easy to use. For

gBSI, there is no need to install the software locally because the input images can

be uploaded to a website and the results are obtained via email [nif 2016].

Figure 2.12: Brain edge movement reported by gBSI [Prados 2015] for a real baseline

and two different simulated follow-up images: Atrophy prescribed exclusively in

Gray Matter (on left) vs atrophy prescribed exclusively in White Matter (on right).

In both cases the global atrophy prescribed is 4%. The underlying volume changes

prescribed for these two cases are shown in the first and third columns of Figure

2.13. The brain edge movement and the reported atrophy are strikingly similar

based on visual inspection.

Figure 2.12 shows results of a very well known atrophy estimation algorithm

boundary shift integral (BSI) [Freeborough 1997] on images with same global at-

rophy but distributed very differently in the brain. We generated two simulated

images from a single baseline MRI by prescribing global 4% atrophy either only in

GM or only in WM. Figure 2.12 shows the brain edge movement for these two cases
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Figure 2.13: Estimations of volume changes using LCC-Demons registration algo-

rithm for a real baseline and two different simulated follow-up images. The first and

the third columns show the log Jacobian determinants of the transformation that

was used to simulate the images. Both of them have the same global atrophy of 4%

but distributed differently: exclusively in white matter (1st column), exclusively in

cortical gray matter (third column). For each of these underlying volume changes

we show results of the LCC-Demons using two different regularization schemes. Sec-

ond and second-last columns show results when using harmonic regularization while

the third and last columns show result when using traditional Gaussian smoothing

regularization. The Log-Jacobians of the registration results show that they do not

exactly match the actual prescribed Log-Jacobians but they more or less capture

the underlying atrophy patterns. This is expected since the registration algorithm

is unaware of the underlying model that generated the volume changes. When using

the harmonic regularization (Reg1), the Log-Jacobian maps are sharper while using

Gaussian (Reg2) results in more diffused maps.

obtained by running the generalized BSI [Prados 2015], part of NifTK software tools

[nif 2016]. We see that the brain edge movement reported are similar in most areas

of the brain although the underlying atrophy patterns that generated the follow-up

are very different. So from a shape analysis perspective when looking at only GM-

CSF interface, we are not able at all to differentiate between gray and white matter

atrophy.

This is quantitatively confirmed by the estimated volume change: in both cases

we get the same overall volume loss in terms of total volume, and percentage change.

The percentage brain volume change (PBVC) reported for the GM atrophy case was

−2.63% while for the WM case is −2.72%. The baseline (follow-up) total volume

estimated are 1032 ml (1011 ml) and 1032 ml (1000 ml) respectively. This shows

as expected that gBSI can only estimate global brain volume change and cannot

localize the atrophy to be in either gray matter or white matter.

Registration methods are usually used when one needs an estimate of local at-

rophy. Figure 2.13 shows the results of using a non-linear registration, the LCC-
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logDemons [Lorenzi 2013], to estimate the local atrophy pattern for the two different

scenarios. In this case we notice that the resulting atrophy patterns are different,

and mostly localized in white and gray matter respectively. However, the estimated

atrophy patterns are still different from the prescribed ones. This is expected as the

registration algorithm is unaware of the underlying model used in simulating the

images. Furthermore, we also see that changing the regularization schemes changes

the results of the volume changes. The two regularization schemes used were the

penalization of harmonic energy and the Gaussian smoothing respectively. The har-

monic energy penalization (Reg1 in the figure) results in a sharper Log-Jacobian

maps while the Gaussian regularization (Reg2 in the figure) results in the more

diffused atrophy. These parameters of the implicit model used in the registration

algorithm are difficult to relate to the underlying model that generated the time

series images.

Figure 2.14: For the same prescribed uniform volume loss only in cortical gray

matter, registration can provide different values of the measured volume changes in

white matter. In the above figure we can see that in the white matter region on

the right of the intersecting lines, the registration estimates volume loss differently

when changing the parameters of the model without changing the underlying volume

changes.

Figure 2.14 shows the results of LCC-logDemons from the images simulated using

exactly the same pattern of tissue atrophy but with different model parameters. The

figure shows that the LCC-logDemons in general finds well the underlying volume

change for both sets of parameters. However, on the left part of the figure we see

that it estimates non-zero volume change in the region (shown by the axis) where

no underlying volume changes were actually present. Similarly we could find for any

other registration algorithm different model parameters for which the registration

will produce mislocalized atrophy patterns, in particular in the areas where there are

less texture such as the white matter. When estimating atrophy patterns from real

observed time-series images, it is not trivial to study the relationship between the

real underlying unknown deformation and the estimation provided by the algorithms

such as non-linear registration. The ability to simulate different images with same

atrophy patterns but with different, biomechanically inspired, model parameters
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allows us to study the behavior of estimation algorithms under various assumptions.

This could help in the future to make more informed and biologically motivated

modeling choices in the development of atrophy estimation algorithms with spatially

varying regularization.

2.6 Simulating Complex Patterns of Patient-specific At-

rophy for the Evaluation of Atrophy Measurement

Algorithms

In section 2.5.2 we presented a qualitative analysis of the relationship between the

actual underlying deformation and the volume changes inferred by atrophy esti-

mation algorithms. In order to provide a quantitative assessment of the simulation

results, in this section we provide a framework that allows simulating patient-specific

atrophy patterns in large number of patients. The framework could be used as a

starting point for either calibrating the model parameters or as a framework for

benchmarking atrophy estimation algorithms. The general pipeline of the proposed

framework is shown in Figure 2.15.

Figure 2.15: Pipeline illustrating the measurement of atrophy from i) RBRF: real

baseline with respect to real follow-up, and ii) RBSF: real baseline with respect to

simulated follow-up. The two atrophy measurement tools (AMTs) shown above as

AMT1 and AMT2 can either be the same tool or different tools depending on the

goals of the experiment.

The approach can be summarized in the following three steps:
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1. Measure atrophy using real baseline and real follow-up image (RBRF).

2. Prescribe the measured atrophy and simulate a follow-up image.

3. Measure atrophy again using the real baseline and simulated follow-up

(RBSF).

The performance of atrophy measurement tools can thus be studied by comparing

the discrepancy of the measured atrophy in the first and third step. The effect of

noise and image acquisition artifacts is also an important element that could be

considered while simulating the follow-up. However, this is outside the scope of the

presented work, since it would require the study of reliable simulation methods to

generate image artifacts such as bias field, ringing, and motion effects.

Experimental Setup The experiments in this section uses following values for

the model parameters: µ = 1 kPa, λ = 0 kPa, k = 1 kPa−1. The value of the shear

modulus µ is in the range reported in the literature [Tyler 2012]. We used FreeSurfer

as the atrophy measurement tool for AMT1 in Figure 2.15. FreeSurfer is publicly

available, is widely used to study longitudinal changes in different brain regions and

can segment large number of cortical, sub-cortical and white matter regions of the

brain. Then we made two separate measurements of the atrophy from simulated

images: i) using FreeSurfer as AMT2 in Figure 2.15 ii) using LCC-logDemons as

AMT2.

We used T1 structural MRI of 46 Alzheimer’s patients each having multiple

time-point images in the range of 2 weeks to 2 years from the Miriad dataset

[Malone 2013]. For each of these 46 subjects following processing steps are per-

formed:

Step 1. Create a subject specific template using all the available time-points. This

uses longitudinal stream of FreeSurfer to create an unbiased subject specific

template image [Reuter 2012].

Step 2. Get whole-brain FreeSurfer segmentation of the extremal time-point image.

The first time-point corresponds to real baseline (RB) while the last time-

point corresponds to real follow-up (RF) as shown in Figure 2.15.

Step 3. For each segmented region:

• Get the volumes reported by the segmentation in RB and RF images:

V0 and V1.

• Compute the atrophy from the obtained volumes: ar = (V0 − V1)/V0.

This results in the RBRF atrophy map of Figure 2.15.

Step 4. Simulate follow-up image (SF) from the RB image and the RBRF atrophy

map.

Step 5. Get whole-brain segmentation of SF using the previously created subject-

specific template.
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Step 6. Similar to step 3, get the volume measurements in SF: V s
1 , and atrophy

estimates as as = (V0 − V s
1 )/V0. This results in the RBSF atrophy map of

Figure 2.15

For LCC-logDemons, we registered real baseline images with their corresponding

simulated follow-up images and computed the average Jacobian determinants of the

resulting deformation field in each of the ROIs provided by FreeSurfer. The volume

change measure to compare against the FreeSurfer measurements is obtained by

taking the mean of divergence of the stationary velocity field (SVF) obtained from

the registration in each ROI. We used default parameters of the LCC-logDemons

for all the subjects.

It is important to note that the scheme used for divergence computation when

discretizing the grid to solve the model must be compatible to the divergence com-

puted from the atrophy estimation algorithm. We illustrate this issue with a figure

in .. for 2D. 3D case naturally extends this. The divergence computed by many

registration algorithms from the image domain is not the same as the divergence

we compute in the staggered grid formulation. In order to remove bias due to this

difference, we use the scheme compatible to the divergence computed ..

Figure 2.16: The figure shows nine slices of the real baseline, simulated follow-up

and the real follow-up images of one of the subjects generated using the pipeline

shown in Figure 2.15. The real follow-up image is aligned to the real baseline image

using a rigid registration for visualization purpose. This allows visual comparison of

the discrepancies between the simulated follow-up and the real follow-up. For this

particular subject, the ventricular expansion in the simulated follow-up seems to be

less than the real follow-up. It is expected that the simulated and the real follow-

up do not match exactly since the atrophy prescribed to simulate the follow-up

comes from an atrophy estimation algorithm which does not use the same modeling

assumptions as our model.

Results In [Reuter 2012], developers of the FreeSurfer longitudinal stream present

test-retest reliability of the FreeSurfer segmentation by using 115 pairs of same day
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Figure 2.17: FreeSurfer volume measurement comparison on real follow-up vs sim-

ulated follow-up image pairs using Absolute Symmetric Percentage Volume Change

(ASPVC). The top end of the bars are the mean ASPVC values while the ticks show

the plus/minus standard deviation from the mean. Left: Best twenty structures

for which the mean ASPVC was found to be the lowest. Right: Only the brain

structures for which the mean ASPVC of FreeSurfer cross-sectional run and longitu-

dinal run were reported in [Reuter 2012]. In the rightmost two bars we present the

average and standard deviation of mean ASPVCs over all the available regions in

Figure 7 of [Reuter 2012], which used a different dataset TT-115 consisting of test-

retest same day repeat scan pairs of 115 healthy controls. Although not directly

comparable due to the use of different datasets, we do see that the mean ASPVC

computed from our real vs simulated follow-up image pairs are of the same order as

that of the one presented in [Reuter 2012].

scans of healthy controls. The discrepancies in the volumes measured in two scans

of the same patient on same day gives an idea on the variability of FreeSurfer

segmentation. As a dimensionless measure of variability, they compute the absolute

symmetrized percent volume change (ASPVC) of a structure with respect to the

average volume:

ASPVC := 100
|V2 − V1|

0.5(V1 + V2)

Since we simulate follow-up images which should ideally have the same volume

as their corresponding real follow-up images in the selected regions, we use the same

ASPVC measure as in [Reuter 2012] to compare the FreeSurfer volume measure-

ments on the real and simulated follow-up image pairs. Figure 2.17 shows mean and

standard deviation of the ASPVC for two different sets of regions. The regions on

the left are the twenty regions with lowest mean ASPVC while on the right are the

same regions for which the results of the test-retest reliability study are available
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in [Reuter 2012]. For the regions presented in [Reuter 2012], we find that the mean

ASPVCs from our real-simulated image pairs are in the same order as that of the

test-retest real image pairs. The results show that the mean ASPVCs in most re-

gions when using longitudinal FreeSurfer stream in our real-simulated image pairs

are in between the results of cross-sectional and longitudinal stream runs presented

in [Reuter 2012]. However, it should be noted that the result of the test-retest

study is not directly comparable to our real-simulated study because the datasets

used are different; the dataset used in [Reuter 2012] is not available in the public

domain. This might also have resulted in the increased variability of the computed

ASPVC. For instance, a study in [Wenger 2014] shows that the FreeSurfer reliability

on hippocampal volume measurements is non-uniform across different age groups.

In particular, the study shows that the volume measurements in older age groups are

not as reliable as in younger groups. Since in AD patients, the structural changes

are more pronounced than in normal ageing, it is possible that the reliability will be

worse in AD patients compared to normal ageing. In order to ascertain this effect,

further test-retest study is required with several datasets of different age groups.

Similarly, the amount and pattern of atrophy prescribed is different for each of the

subjects. FreeSurfer volume measurements on the simulated images might be im-

pacted differently when images are simulated with varying anatomy and atrophy

patterns. Finally, the ventricles and other CSF regions are not constrained to have

exactly the same volume change as the one measured from the real follow-up. These

factors could also have increased the variability in the real vs. simulated repeat

volume measurements.

We can also compare the distribution of atrophy estimates of the population of

AD patients from real follow-up images (ar) with that from simulated follow-ups

(as). The simulated follow-up images are obtained by warping the corresponding

input baseline images. Thus they have two important differences from the real

follow-up images: i) Image noise in the simulated images are highly correlated to

the noise in their corresponding baseline images, while the noise in the real follow-

up images are independent from the noise in the baseline images. ii) The simulated

images are obtained by resampling the baseline image and hence are smoother than

the real follow-up images. Both of these factors can be expected to reduce the

variability of the measured atrophy in the population when using simulated follow-

up images instead of real follow-up images.

Figures 3.6 and 3.7 show the atrophy estimates in the MIRIAD dataset using

real follow-ups and using the simulated follow-ups. We see that, as expected, vari-

ability in atrophy estimates in the population is reduced remarkably when using

the simulated images. Most regions show a trend of underestimation of atrophy but

again there are some regions such as the white matter of cerebellum in Figure 3.7,

and Pallidum and cortical Cuneus in Figure 3.6 where we observe an overestimation

of the underlying atrophy with FreeSurfer. The observed variability in atrophy mea-

sures of different regions in the proposed controlled scenario could also be related to

the non-uniform reliability of the atrophy estimation algorithms in different brain

regions. For instance, non-uniform reliability of FreeSurfer segmentation for differ-
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Figure 2.18: For each region, the box plots on the left show the estimated at-

rophy from the real follow-up images (RBRF atrophy map in Figure 2.15) using

FreeSurfer, while the one on the middle and right are from the simulated follow-up

images (RBSF atrophy map in Figure 2.15) using FreeSurfer and LCC-logDemons

respectively. The brain structures shown are the regions on the left of Figure 2.17.

We see reduced variability in the estimated atrophy of structures in the population

when simulated follow-up is used. * signifies that the average atrophy of the re-

gion for the population measured from the RBSF is significantly different from the

measurements obtained from RBRF(p < 0.01, two sided paired t-test). The blue *

(bottom) is for LCC-logDemons while the orange one (top) is for FreeSurfer. We

see reduced variablity in atrophy estimation of the population when using simulated

follow-up images.

ent structures can also be seen in the result of test-retest repeat scan experiments

presented in [Reuter 2012].

2.7 Discussion

In this paper we focused on the development of a brain deformation model from a

known map of local volume changes, and on the study of the impact of local tissue

loss on brain shape changes.

In section 2.4.4 we showed that by changing the model parameters we obtain

different deformation fields even for the same input atrophy. Setting different values
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Figure 2.19: Same as Figure 3.6 but the brain structures shown are the regions on

the right of Figure 2.17 (20 regions with least ASPVC). We again see that the atro-

phy estimated in the population from the simulated images has reduced variability

compared to the one from real images. The atrophy estimations in real and simu-

lated images are significantly different only for two regions when using FreeSurfer,

but for nine regions when using LCC-logDemons

of shear modulus in various brain regions can produce different deformations as

seen from an example in Figure 2.8 where we set higher value of shear modulus

in brain stem. It will be interesting in the future to study if one can optimise

the values of µ to obtain even more realistic morphological changes in very specific

structures as expected by the neurologists, such as the rotation of temporal poles in

the coronal view or the movement of inferior part of the temporal lobe farther away

from the cerebellar tentorium. If this set of stiffness parameters corroborates well

with the values reported in the literature, it could provide better understanding of

the response of various brain structures to the local volume loss.

The framework presented in 2.15 could also be used to calibrate the model pa-

rameters for a particular AMT. In Figures 3.6 and 3.7 we see that LCC-logDemons

does not perform the same way as FreeSurfer. The result could be explained by

noticing that the prescribed atrophy used in simulating images are piecewise con-

tinuous since it was computed from the segmented volumes from FreeSurfer but the

model used by LCC-logDemons promotes smoothly varying Jacobian determinants.

These results were obtained by using only one set of model parameters; by defining a
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suitable parameters optimization strategy we could obtain a minimum discrepancy

in the atrophy measurements from the real and simulated follow-up images. Once

the model is calibrated to a particular AMT this way, the pipeline in 2.15 can be

used to study the relative bias of other AMTs.

One interesting future work concerns the optimization of the atrophy parame-

ters to best explain the observed longitudinal images. This is akin to registration

methods where one finds a best explanation of the observed changes based on some

implicit models of regularization. In this case we have an explicit biophysical model

of deformation with the advantages described earlier in the paper. There are two

major challenges that need to be taken care of in this regard. The first one con-

cerns the very large number of parameters: since the atrophy is prescribed in every

voxel, the number of parameters equals the number of voxels in the image, or the

number of considered regions of interest. The second issue is the computational

time for solving the model. It requires from around thirty minutes to few hours

in a locally available cluster computing resource using 80 cores (depending on the

choice of model parameters, and the load in the cluster from other users) to solve

the model for brain MRIs of around 1 mm resolution. This means special efforts

will be required to develop the optimization framework in a computationally feasible

manner for the given image size and number of selected atrophy parameters.

The experiments and results presented in section 2.6 are for the illustrative

purpose of using the framework in different scenarios. These experiments are not

a full fledged benchmarking of the atrophy estimation algorithms as it is not the

primary focus of this paper. Extensive analyses are required for proper evaluation

and to find out the discrepancies in the atrophy measurement from the real and

simulated follow-up images. For instance, atrophy in each ROIs can be distributed

differently such as being concentrated towards the middle of the ROIs or in the

boundaries. This could impact the contrast in the edges of each of these ROIs and

consequently affect the atrophy estimations. Similarly, simulated follow-up images

were obtained by resampling the intensity of the baseline images and are in the

same physical space as their corresponding baseline images. This way of simulating

images could possibly have failed to reproduce some of the information available

in the real follow-up images (such as high intensity contrast) that are used by the

atrophy estimation algorithms. Answering such questions with conclusive evidence

requires additional sets of experiments studying the origins of bias and variability,

and the impact of different ways of simulating ground truth images on the estimation

algorithms. These experiments should also be carried out on a number of additional

atrophy estimation algorithms than the ones we presented in this paper and it will

be the focus of one of our future studies.

In [Sharma 2013], the authors create a database of simulated images from 18

MRIs by simulating uniform hippocampal atrophies in the range of 1-14% with step

size of 1%. For each pair of atrophy value and patient image, a number of simulated

images are created by degrading the simulated atrophies with independent Gaus-

sian noise. The authors estimated bias in the atrophy estimation of hippocampus

using the simulated database and also developed a framework to provide confidence
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intervals of the atrophy estimation. The nature and magnitude of bias computed

were based on the database containing simulations of the images with atrophy only

in a single region. The framework presented by the author and the related database

can be enriched by using the model we proposed in this work. We can simulate

more images for the same prescribed atrophies in a particular region by varying the

model parameters, and by varying the atrophy patterns in other brain regions. This

allows studying the nature of bias due to the variation in the underlying model of

deformations and in the presence of complex atrophy patterns in multiple brain re-

gions. In [Carmichael 2013], the authors use all the cortical regions segmented from

FreeSurfer to identify patterns of coordinated atrophy distributed in Gray Matter of

aMCI patients. The objective of that study was to explore the distributed network

account in AD by studying how different groups of cortical regions are correlated to

best explain the longitudinal change. Estimating bias in the measurements from at-

rophy estimation algorithms in the presence of atrophy in large number of structures

simultaneously can be useful in assessing results of such studies too.

Towards an Integrative Multimodal Model The anisotropic nature of the

brain parenchyma due to fibers could have an impact on the way it deforms due to

atrophy. Since not much is known about this, the proposed model can be useful as it

allows such an exploratory study. It has parameters µ and λ where this anisotropic

information could be introduced, for e.g. from DWI images. For the same atrophy

map, the effect of anisotropy on the brain deformation is an interesting question to

explore.

Reliably simulating neurodegeneration due to AD and its trajectory in struc-

tural MRIs is quite challenging as we need accurate models for all three major

blocks shown in Figure 2.1. The most difficult part is to generate accurate patterns

of atrophy and its evolution with time. As we have seen from the examples in Sec-

tion 2.5 with differential patterns of atrophy producing similar images, the atrophy

estimation algorithms would benefit from a biologically motivated prior on the as-

sumed model for regularizations. Accurate atrophy generation models require more

information from other sources in addition to the structural MRIs. In addition to

the research in biology pertaining to AD, perhaps a progress in other imaging modal-

ities could also potentially provide information on the spread of imminent neuronal

deaths. For instance Aβ plaques seem to occur very early at the beginning of at-

rophic process [Chetelat 2010]. Studies such as brain’s structural connection break-

down on AD patients using Diffusion Imaging [Stebbins 2009][Daianu 2013], or func-

tional connectivity breakdown along with the structural connectivity [Filippi 2011]

could also provide better insight in the future. Similarly, there is ongoing research

in developing good tracers to bind to tau proteins and to image in vivo the neu-

rofibrillary tangles (NFT) [James 2015] in AD patients. In the future we might be

able to exploit such data to propose basic hypotheses of spatial atrophy distribution

using multi-modal images. This could be valuable in developing suitable models for

the Atrophy Generation block.
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2.8 Conclusions

We developed a biophysical brain deformation model that describes the consequence

of the neuronal deaths and atrophy on the brain shape changes at macroscopic

scale. The model is inspired from biomechanical principles, and treats the brain

parenchyma and the CSF differently to account for the fact that the CSF is pro-

duced at a very short time-scale of hours compared to the slow process of tissue

atrophy taking months. We were able to achieve different deformations of the brain

even with exactly the same atrophy in the brain tissue by varying the model param-

eters. Any desired atrophy can be prescribed at the voxel level and simulate realistic

deformations of a patient specific MRI. This ability to both i) accurately prescribe

complex patterns of atrophy at each voxel, and ii) to treat different tissue types

differently in accordance to their biomechanical properties, was very difficult with

the previous models of atrophy simulators existing in the literature. The proposed

model could be used in testing hypotheses about the distribution of brain atrophy

and in exploring the interaction of mechanical response of different brain tissues

to neurodegeneration. It can also be a valuable tool to understand better the in-

terrelationship between the underlying brain deformations corresponding to specific

atrophy patterns, longitudinal MRI appearance, and the bias of various atrophy

estimation methods due to the modeling error.
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Abstract This paper proposes a framework to simulate patient specific structural

MRIs from the available scans of Alzheimer’s Disease(AD) subjects. We use a bio-

physical model of brain deformation due to atrophy that can generate biologically

plausible deformation for any given desired volume changes at the voxel level of

the brain MRI. Large number of brain regions are segmented in 46 AD patients

and the atrophy rates per year are estimated in these regions from the available

two extremal time-point scans. Assuming linear progression of atrophy, the volume

changes in scans closest to the half way time period is computed. These atrophy

maps are prescribed to the baseline images to simulate the middle time-point images.

The volume changes in real middle time-point scans are compared to the ones in sim-

ulated middle time-point images. This present framework also allows to introduce

desired atrophy patterns at different time-points to simulate non-linear progression

of atrophy. This opens a way to use a biophysical model of brain deformation to

evaluate methods that study the temporal progression and spatial relationships of

atrophy of different regions in the brain with AD.
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3.1 Introduction

Alzheimer’s Disease (AD) is one of the most common types of dementia. It is a neu-

rodegenerative disease that progresses gradually over several years with the accumu-

lation of neurofibrillary tangles (NFTs) and amyloid-β (A-β) plaques [Braak 1991].

These microscopic neurobiological changes are followed by the progressive neuronal

damage that leads to the atrophy of the brain tissue. The atrophy or the vol-

ume changes of the brain tissue is a macroscopic change that structural Magnetic

Resonance Imaging (MRI) can estimate in different brain regions. Many different

methods have been proposed to estimate atrophy in some particular regions of brain

that are known to be affected in AD [Frisoni 2010].

In addition to estimating specific brain structures with atrophy, longitudinal

imaging data could also potentially be used to study the temporal inter-relationship

of atrophy in different structures. For instance in [Carmichael 2013], authors esti-

mated per-individual rates of atrophy in 34 cortical regions and in the hippocampi.

Then they studied the groupings of these structures based on the correlation of the

atrophy rates. In [Fonteijn 2012], authors modelled AD progression as a series of

discrete events. The occurrences of atrophy in different parts of the brain were taken

as different events along with clinical events. Without any prior to their ordering,

the model finds most probable order for these events from the data itself. They used

Bayesian statistical algorithms for fitting the event-based disease progression model.

The objective of these kinds of studies is to understand how different regions of the

brain interact during the neurodegeneration and find its evolution. Such studies

can benefit from the availability of a large number of longitudinal images of AD

patients. In this context, a model that can simulate many time-point images from

a few available longitudinal images can be a valuable tool.

Atrophy simulators [Karaçali 2006][Pieperhoff 2008][Smith 2003][Camara 2006]

have been proposed in the literature and used mostly for the validation of

registration or segmentation methods [Camara 2007][Sharma 2010], or to esti-

mate uncertainty in the measured atrophy [Sharma 2013]. The simulators

in [Karaçali 2006][Pieperhoff 2008][Sharma 2010] used a Jacobian based methods

where the desired level of atrophy is specified at each voxel, and the deformation

that best approximates the prescribed level of atrophy is found. Regularization

is used in the optimization to enforce certain desired conditions such as topology

preservation. The advantage of these methods is the ability to define atrophy maps

at the voxel level. However, regularization parameters used to enforce topology

preservation are generally difficult to relate to a plausible biophysical process of

AD and can create difficulties in simulating opening of certain structures such as

sulci. It is not trivial to consider different tissue behaviors in such approaches. In

[Smith 2003][Camara 2006], authors proposed a model of brain deformation based

on thermoelasticity. Volume changes were defined in particular structures/tissues

of a meshed brain by assigning different thermal coefficients. Synthetic images were

simulated by warping real images with the displacement fields obtained from a Fi-

nite Element Method (FEM) based solution of the thermo-elastic model; it required
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the interpolation of the displacement field from the mesh to the image grid. Mov-

ing back and forth from voxels to meshes creates numerical difficulties and could

introduce inaccuracies in the model personalization.

In [Khanal 2014] we proposed a new biophysical model of brain deformation due

to atrophy in AD that combines the advantages of the models mentioned in the

previous paragraph. The mechanisms of neuronal deaths and its evolution are not

well known for AD and are likely to be primarily guided by complex physiological

processes. However we believe that the biomechanics of brain tissue might play

an important role in determining the consequence of the neuronal deaths on brain

shape changes. Our biophysical model presented in [Khanal 2014] builds upon the

assumptions that we relate to the biophysical process of tissue shape changes as the

consequence of local volume loss. This model can be used to simulate time-series

MRIs starting from a real input baseline MRI.

In this work we use our biophysical model developed in [Khanal 2014] to present

a framework that allows to interpolate or extrapolate patient specific unseen time-

point images from at least two available time-point images of the subject and to

assess how closely these simulated trajectories follow real patient trajectories. We

also improve the implementation of the boundary condition of the model by im-

posing zero deformation in the skull and all the regions outside of the skull. In

[Khanal 2014] the zero deformation was imposed at the image boundaries and not

at the brain-skull boundary.

The following section briefly explains the assumptions and implementation of

the biophysical model we presented in [Khanal 2014], and in section 3.3 we present

how we interpolate new images between two acquisition time points.

3.2 Biophysical Model of Brain Deformation due to At-

rophy

The atrophy rate ã(x, t) at any position x at time t for a representative elementary

volume of V (x, t) is defined as the negative rate of change of volume per unit volume:

ã =
−1

V

∂V

∂t
.

For any time ∆t that results in sufficiently small displacement, the amount of

atrophy is a = ã∆t. Any deformation field that has atrophy a should satisfy the

following equation:

∇ · u = −a, (3.1)

where u is the displacement of material particles during the ∆t.

We do not explicitly model the neuronal loss and tissue remodeling at the mi-

croscopic level which requires biochemical and cellular physiological knowledge in

detail. We abstract the phenomenon that evolves over several months or years in the

brain. In Creutzfeldt-Jakob disease, no gross brain shape changes are reported and
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the imaging only shows hyperintense signals on T2-weighted images [Johnson 1998].

However, this is not the case in AD and longitudinal MRIs show a decrease of brain

volume instead without any "holes" [Frisoni 2010]. That means the tissues should

restructure as the neuronal deaths increase with time. This leads us to a basic as-

sumption in the proposed model that after the death of neurons, remodeling of the

tissue occurs such that the tissue density remains constant while both the mass and

volume decrease. We further assume that the atrophy creates internal stress which

results in the deformation minimizing a strain energy.

Using Saint Venant-Kirchoff model for an elastic material, this can be expressed

as the minimization of which results in the deformation of the tissue minimizing the

strain energy.

R(u, p) =

∫

µtr(E(u)2) +
λ

2
(tr(E(u)))2 −

∫

p (∇ · u+ a) (3.2)

where p is a Lagrange multiplier, µ and λ are Lamé constants, and E is Langrangian

Green strain defined as: E = 1
2

(

∇u+∇uT +∇uT∇u
)

.

By taking a sufficiently small time step ∆t, this deformation could be reasonably

modeled as being linear elastic. For example, for a 2% global atrophy per year, we

have ∆t = 1 year, and the atrophy during the year as a = 0.02.

Under linear elastic assumptions, minimizing the energy in Eq. (3.2) is equivalent

to solving the following set of equations.

µ∆u−∇p = (µ+ λ)∇a

∇ · u = −a
(3.3)

where ∆u is a component-wise Laplacian of u. This equation is very similar to the

Stokes flow equation in fluid dynamics. The difference is in the non-zero divergence

term which corresponds the loss of mass and volume in the tissue. The momentum

equation shows that the gradient of the prescribed volume loss acts as the force term

that moves the tissue for the structural remodeling. The Lagrange multiplier p is

some sort of virtual pressure whose algebraic values can be seen as the sources and

sinks of fluid.

3.2.1 Modeling CSF Region

The timescale of CSF production is hours, which is much smaller compared to the

time scale of tissue remodeling due to atrophy. To allow the CSF to expand as

required when the brain deforms due to the prescribed atrophy, we release the strict

incompressibility constraint in the system of Eqs. (3.3). Furthermore, the force

term of the momentum equation in the system of Eqs. (3.3) is no longer required.

Thus the combined equation for both the brain parenchyma and the CSF regions is:

µ∆u−∇p = (µ+ λ)∇f

∇ · u+ kp = −f
(3.4)

where we have,
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• Brain parenchyma region: k = 0, and f = a

• CSF region: k = 1, and f = 0.

Boundary Conditions: Dirichlet boundary conditions with zero displacement

is enforced at the skull.

Material Parameters µ and λ: The deformation model here corresponds to

the structural readjustments due to cell loss, thus the Lamé parameters do not have

the same usual meaning as during an elastic deformation of the material due to

application of an external load/force. The voxel-wise volume change constraint and

the boundary conditions i.e. the shape of the tissue-CSF and brain-skull interface

have much more impact on the deformation of the brain parenchyma than any

specific scalar values of µ and λ. In the present work these coefficients are set to 1

and 0 respectively.

3.2.2 Staggered Grid Discretization and Finite Difference Method

Eq. (4.1) requires a partition of the computational domain into different regions.

These regions are obtained by using skull stripping and segmentation of the input

baseline brain MRI. The solution of the PDE provides us a deformation field that is

applied to the baseline image to generate simulated follow-up image. We use Finite

Difference Method (FDM) with staggered grid discretization to solve the system of

PDEs in (4.1). Using staggered grid with proper placing of the pressure and velocity

variable ensures stability in the solution. FDM is chosen instead of FEM to avoid

brain meshing and the complexity of transporting computed variables from mesh to

image at each iteration. This allows us to solve the system in a grid that is of the

same size as the input image where the grid fits naturally to the image. This also

makes it easier to obtain the partition of the computational domain into different

regions directly by using a skull stripping and a segmentation algorithm.

For typical brain MRIs of 1mm3 resolution, this computational problem size

becomes so large that direct solvers are impractical due to memory limitations.

The system of Eqs. (4.1) is similar to the Stokes flow which is a saddle point

system. It needs a suitable combination of an iterative solver and a preconditioner

to solve it. We use a Schur factorization to split the equations into the momentum

equation and the pressure equation. Each of these equations is solved using different

iterative solvers. Our implementation uses composable solvers for multiphysics with

PETSc library [Balay 2013] using fieldsplit preconditioner, an approach detailed

in [Brown 2012] with an example for Stokes flow solver with Schur complement

factorization. The momentum equation is preconditioned with hypre which is an

algebraic multigrid preconditioner and can be called from the PETSc interface. The

implemented system is run using distributed computing in a locally available cluster.
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3.3 Simulating New Time-points from Two Available

scans of MRIs

In this section, we propose a basic approach to simulate patient-specific atrophy pat-

tern and generate new time-point longitudinal MRIs from two available scans. The

method requires an atrophy estimator to estimate atrophy from two available time-

points. Once the atrophy is estimated, an atrophy predictor will predict the atrophy

for the given patient for another time-point. This predicted atrophy is prescribed

to our biomechanical model of brain deformation to produce a new synthetic image

that corresponds to the input time-point. The schematic is shown in Figure 3.1 for

generating a middle time-point image. By replacing the desired time-point tm by

any other desired time-points, one can simulate images for different time-points.

Figure 3.1: Schematic illustrating how a mid-point synthetic image can be generated

using: i) two available real time-point images, ii) an atrophy estimation algorithm,

and iii) an atrophy predictor. If the real middle scan is available, the atrophy

estimated from the real baseline and mid-point scan could be compared against

the atrophy estimated from the real baseline and simulated mid-point scan. This

approach could be adapted to interpolate or extrapolate any other desired time-

points by replacing tm by the one desired.

We use the Miriad dataset [Malone 2013] that has multiple time-point T1 struc-

tural MRIs of 46 Alzheimer’s patients in the range of 2 weeks to 2 years. Since

the dataset contains several time-point scans, we can compare the simulated in-

termediate time-point images to the corresponding real intermediate images. To

prescribe personalized atrophy patterns we need an atrophy estimation for each sub-
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ject from the extremal time-points. We perform the whole brain segmentation using

recon-all command in FreeSurfer [Fischl 2002]. For the segmentation, FreeSurfer’s

longitudinal stream [Reuter 2012] is used to create unbiased subject specific tem-

plates. This allows us to compare the volumes of large number of regions in the

baseline and the follow-up images and estimate atrophy in each of these regions.

These estimated atrophy can then be modified and prescribed to each of the base-

line MRIs to predict intermediate time-point images. The setup of the experiment

we performed is shown in Figure 3.2 and described as follows:

1. Find available extremal time-point scans: baseline Ib and the final follow-up

If . Let tf be the time (in years) between the baseline scan and the final scan.

2. Find a mid-point scan Im that was scanned tm years after the first scan. This

is found by finding tm that is closest to tf/2.

3. Use FreeSurfer to estimate an atrophy map af . This is a scalar image whose

intensities are the atrophy estimated from FreeSurfer for all the segmented

brain regions.

4. Simulate a follow-up image Im that corresponds to the mid-point scan Im by

prescribing am where am = af ∗ tm/tf .

5. Run the FreeSurfer whole brain segmentation on this simulated image Im and

compute volumes of all the segmented regions.

6. Compare FreeSurfer computed volumes of all regions of the images Im and Im.

3.4 Results and Discussion

Figure 3.3 shows the atrophy estimates for all the patients using FreeSurfer seg-

mentation in all the regions that were used in [Carmichael 2013]. Since the volume

changes estimated are for the population of AD patients, as expected, almost all

of these regions have median of the volume change ratio less than zero. But, we

can also see that there is variation in the volume changes of each of the regions in

the population. This variation includes both the natural variation occurring in the

population and the variation due to the variability of FreeSurfer. For example, the

figure also shows that there are cases where volume expansion is reported in the

cortical regions which are unlikely to be occurring in reality in the AD patients.

For all the 46 patients, we also have the FreeSurfer estimates of volume changes

in the simulated midpoint images in all the regions used above. Figure 3.4 shows the

difference between volume change estimates in the real and simulated images. We

can see that for most of the regions, the median difference is close to zero. However,

there are also few regions where the difference is in the order comparable to the

measured volume change ratio itself.
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Figure 3.2: Figure shows the experimental setup that is used in this paper to

simulate mid-point image from the two available images. We use FreeSurfer as the

atrophy estimator shown in Figure 3.1, and the atrophy predictor in Figure 3.1 is

taken to be a basic linear interpolator.

In [Reuter 2012], absolute symmetrized percent volume change (ASPVC) was

used to measure the test-retest reliability of the FreeSurfer segmentation by using

115 pairs of same day scans of healthy controls, where

ASPVC := 100
|V2 − V1|

0.5(V1 + V2)
.

The discrepancies in the volumes measured in two scans of the same patient on

same day gives an idea on the variability of FreeSurfer segmentation. In our case,

we compute ASPVC by considering V1 and V2 to be the volumes measured by

FreeSurfer on the real and predicted mid-point images. Figure 3.5 shows mean and

standard deviation of the ASPVC (from 46 patients) in two different sets of brain

structures reported in [Reuter 2012].

Figures 3.6 and 3.7 show box plots of the estimated atrophy from the real mid-

point images and predicted mid-point images side by side for all the regions for which

ASPVC were shown in Figure 3.5. From the figures, variability of the atrophy in

the population seems to be reduced when using predicted images compared to the

real ones.

Higher variability in the difference seems to be mostly in the regions where there

are higher variability in the atrophy estimates of the real mid-point images. Larger

inter-subject variation of the difference between the atrophy estimate in the real

mid-point image and the interpolated mid-point image could be due to several rea-
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Figure 3.3: Boxplot of the atrophy estimates for the real mid-point images in

the coritcal regions and hippocampus. These are the regions that were used in

[Carmichael 2013]. The data shows the distribution of FreeSurfer atrophy estimates

in the AD population of the MIRIAD dataset when considering the first and the

mid-point scans.

Figure 3.4: Boxplot of the difference in the FreeSurfer atrophy estimate in the real

mid-point image and the interpolated mid-point image for all the 46 AD subjects

present in MIRIAD dataset. The regions shown are the same as the one shown in

Figure 3.3 and are displayed in the same order. The interpolated mid-point image is

obtained by simulation using the pair of extremal time-point images of each subject.
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Figure 3.5: Absolute symmetric percentage volume change (ASPVC) error com-

puted for the best 20 regions (on left), and Reuter regions (on right). Reuter regions

are the regions for which ASPVC results were shown in [Reuter 2012] by computing

FreeSurfer volume measurements on same day test-retest scan pairs of 115 healthy

controls. The bar plots in orange, cross-run-mean and long-run-mean, are mean

error of the Reuter regions shown on the right. cross-run-mean were computed

using FreeSurfer cross sectional stream, while long-run-mean were computed using

FreeSurfer longitudinal stream. ASPVC errors for the real vs. simulated mid-point

images are in the same order as that of the mean error for real baseline repeat scans.

It is worth noting that the dataset used in this work is not the same as the one used

in [Reuter 2012], which is not publicly available.

sons. One obvious issue is that the FreeSurfer segmentation with the longitudinal

stream expects all the images that are to be segmented to be preprocessed in the

same manner. However, in our case the interpolated mid-point image has undergone

an extra resampling step while the real mid-point image has not. This extra resam-

pling step is required because the interpolated mid-point image was obtained by

warping the real baseline image with a displacement field. Furthermore, the choice

of interpolation during the resampling step can also affect the volume measurements

by FreeSurfer. We used trilinear interpolation for the resampling. The extra resam-

pling step and the choice of interpolation does have an effect on the estimation of

volumes. This has been shown, for instance in [Sharma 2010] for other segmenta-

tion based atrophy estimation techniques. Furthermore, the interpolated mid-point

image has a noise (noise inherent in any MRI) that is highly correlated with the

real baseline image. However, the noise in real mid-point image is not correlated to

the baseline image. This also affects the atrophy estimation and hence contributes
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Figure 3.6: For each region, the box plots on the left (green) show estimated

atrophy from the real mid-point images using FreeSurfer (am in Figure 3.2), while

the one on the right (orange) are from the FreeSurfer atrophy estimates of simulated

mid-point images (asm in Figure 3.2). The brain structures shown are the regions

on Reuter-regions shown on the right of Figure 3.5. We see reduced variablity in

atrophy estimation of the population when using simulated follow-up images.

to the variability in the atrophy estimation difference. A detailed analysis must be

done to find out the regions that are the most reliable ones in estimating volume

changes for both the real and simulated images. The performance of the atrophy

measurement tools on simulated images should be thoroughly evaluated to find out

the best regions that we can rely upon to test how closely we predict volume changes

in new time-point images.

In this case we have interpolated the intermediate time-point by linearly scaling

the estimated atrophy. For a small time window of a couple of years this is reasonable

but if we want to extrapolate for instance for several years we would need a non-linear

model of atrophy progression. The presented framework allows one to compare the

trajectory of brain shape changes with different models of atrophy progression. The

ability to prescribe any desired atrophy at any time point allows one to introduce

atrophy at different regions of brain at different times. This can be exploited in

evaluating the methods proposed in studies such as [Fonteijn 2012] which order the

events from time-series data.
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Figure 3.7: Same as Figure 3.6, but the results are for the brain structures shown

on the left of Figure 3.5.

3.5 Conclusions

We proposed a framework to generate patient specific multiple time-point images

based on our biophysical model of brain deformation due to atrophy in AD. The used

model is motivated from biomechanical principles and it models the consequence

of tissue loss in brain shape changes. From the available two scans of MRI of a

patient at two different time-points we estimated atrophy in large number of brain

structures using FreeSurfer whole brain segmentation [Fischl 2002]. The derived

atrophy patterns were linearly scaled and prescribed to the biophysical model to

simulate the another time-point image. Using the MIRIAD dataset [Malone 2013]

of 46 AD subjects with multiple time-points we compared the simulated time-point

images against the actual time-point images. The future works will include building

the most reliable methods to compare the volumes in simulated and real images.

We will also explore the possibility of evaluating methods that study the temporal

relationships, ordering and co-evolution of atrophy in different structures of the

brain.
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Abstract This paper presents a simulator tool that can simulate large databases

of visually realistic longitudinal MRIs with known volume changes. The simulator

is based on a previously proposed biophysical model of brain deformation due to

atrophy in AD. In this work, we propose a novel way of reproducing realistic in-

tensity variation in longitudinal brain MRIs, which is inspired by an approach used

for the generation of synthetic cardiac sequence images. This approach combines

a deformation field obtained from the biophysical model with a deformation field

obtained by a non-rigid registration of two images. The combined deformation field

is then used to simulate a new image with specified atrophy from the first image,

but with the intensity characteristics of the second image. This allows to generate

the realistic variations present in real longitudinal time-series of images, such as

the independence of noise between two acquisitions and the potential presence of

variable acquisition artifacts. Various options available in the simulator software

are briefly explained in this paper. In addition, the software is released as an open-

source repository. The availability of the software allows researchers to produce

tailored databases of images with ground truth volume changes; we believe this will

help developing more robust brain morphometry tools. Additionally, we believe that

the scientific community can also use the software to further experiment with the

proposed model, and add more complex models of brain deformation and atrophy

generation.

4.1 Introduction

Structural Magnetic Resonance Imaging (MRI) has been widely used for in-

vivo observation of morphological changes over time in human brain. Atrophy

or tissue volume loss measure from structural MRI is an established biomarker

for neurodegeneration [Frisoni 2010]. There is a large number of brain mor-

phometry algorithms developed in the literature which estimate global or local

atrophy from structural MRIs [Wright 1995, Freeborough 1997, Ashburner 2000,

Smith 2002, Hua 2008]. Volume/atrophy measurements obtained from such algo-

rithms have been used to test various clinical hypotheses about neurodegenerative

diseases [Wright 1995, Sepulcre 2006, Koch 2016]. Similarly, comparison of different

neurodegenerative diseases have also been performed based on these measurements

[Rosen 2002, Whitwell 2005]. Since atrophy estimation is an inverse problem, the

estimation algorithms require a model with certain parameters. The results obtained

from such algorithms depend on model assumptions and the parameters used. Of-

ten, these assumptions are implicit and cannot be directly linked to the biophysical

process of neurodegeneration. For instance, tensor based morphometry (TBM) en-

codes local volume changes by computing Jacobian determinants of the deformation

field obtained from non-linear registration of longitudinal MRIs [Ashburner 2015].

Such methods contain model biases because TBM results depend on the choices of

regularization used during the registration of images [Ashburner 2013]. Estimating

and correcting the bias present in such morphometry tools is important, especially
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for clinical applications.

In addition to tracking volumetric changes in specific brain structures, longi-

tudinal imaging data can also be used to study the temporal inter-relationship of

atrophy in different structures. For instance, [Carmichael 2013] studied the group-

ings of 34 cortical regions and hippocampi from the per-individual rates of atrophy

estimates in these regions. In [Fonteijn 2012], authors defined AD progression as a

series of discrete events. Along with other clinical events, the timings of atrophy in

various brain structures were included in a set of discrete events. Without any prior

to their ordering, the model finds the most probable order for these events from

the data itself. They used Bayesian statistical algorithms for fitting the event-based

disease progression model. The objective of these studies were to understand how

different regions of brain evolve during the neurodegeneration.

In this context of increasing use of the atrophy measurements from longitudinal

MRIs in testing or discovering clinically relevant hypotheses, it is important to

study the bias and variability of the atrophy estimation algorithms. The actual

volume changes in real longitudinal MRIs are not known. Thus, the evaluation and

validation of atrophy estimation algorithms require generating images with known

volume changes, called ground truth images.

A number of atrophy simulators have been proposed in the literature to pro-

duce ground truth MRIs [Smith 2003, Camara 2006, Karaçali 2006, Pieperhoff 2008,

Sharma 2010, Khanal 2016b]. These simulators use a model that attempts to pro-

duce a deformation field with the specified volume changes in the input brain MRI.

To produce realistic scenarios of noise and acquisition artifacts, some of these sim-

ulators also use a model to produce noise and artifacts in the simulated image.

Such simulators have been used for the validation of registration or segmentation

based atrophy estimation algorithms [Camara 2008, Pieperhoff 2008, Sharma 2010],

to estimate the bias in such algorithms, and also to estimate uncertainty in the mea-

sured atrophy [Sharma 2013]. These studies have estimated the bias by simulating

simple atrophy patterns in a small number of brain regions, or uniform diffused

global atrophies. However, real case scenarios could have a much more complex

atrophy distribution occurring in many brain structures at the same time.

Noise and imaging artifacts have an important impact on the results obtained

from atrophy estimation algorithms [Pieperhoff 2008, Camara 2008, Sharma 2010].

Thus, proper evaluation of atrophy estimation algorithms by using simulated ground

truth images requires simulation of realistic variation in noise and intensity too. All

the previous atrophy simulators have warped the input baseline image with the

deformation field obtained from a model of brain deformation. Then, extra noise

and artifacts are added on this warped image by using another artificial model.

The intensity noise in structural MRIs has been shown to be governed by a Rician

distribution where the noise is Gaussian in k-space [Gudbjartsson 1995]. Thus the

Rician noise can be added in the simulated images as follows:

• Use two independent random variables following zero-mean Gaussian distri-

bution to compute the real and imaginary parts of a complex number at each
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voxel.

• Add the magnitude of this complex number to the intensity of the simulated

MRI at each voxel.

For example, [Sled 1998] used this approach to add noise in simulated MRIs

that were used for the validation of intensity bias correction scheme they presented.

Using the same approach, [Camara 2008] added noise to the simulated ground truth

images with atrophy. In addition to the Rician noise described above, other noise

and artifacts have also been shown to affect the measurements of atrophy estimation

algorithms [Sharma 2010, Pieperhoff 2008]:

• Bias field inhomogeneity arising due to poor radio frequency (RF) coil unifor-

mity.

• Geometrical distortions that are present due to the errors in gradient field

strength and non-linearity of gradient fields in the MR scanner [Langlois 1999].

• Interpolation of intensities during various pre-processing steps of TBM based

analysis framework (e.g., resampling of the images into a common template

space).

Many other acquisition artifacts may not be simulated because we do not have

faithful models. In this work, we develop a new framework to simulate longitudi-

nal images with specified volume changes, and also the realistic intensity variations

including the noise and acquisition artifacts. In the framework, we use our bio-

physical model of brain deformation [Khanal 2016b] to obtain a dense deformation

field with specified volume changes. To obtain the realistic intensity variations, we

use an approach introduced by [Prakosa 2013] where the authors simulate visually

realistic time series of cardiac images. Intensity variation in the simulated images

of a patient is obtained by resampling the intensities from real images of the same

patient taken at different times. Figure 4.1 shows a diagram of this framework.

To implement this framework, we have developed an open-source atrophy simulator

software called Simul@trophy.

Section 4.2 explains all the blocks of the framework shown in Figure 4.1. Starting

from a small set of real scans, we show how longitudinal images with different atro-

phy patterns and realistic intensity variations can be simulated. Section 4.3 shows

some simulation results using Simul@trophy, and also illustrates some potential ap-

plications of the simulator. In Section 4.4, we present some example simulations

to illustrate some of the important points to consider when using Simul@trophy

for different applications, such as evaluation of atrophy estimation algorithms, val-

idation of data-driven disease progression models, training of brain morphometry

algorithms based on machine learning etc.
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Figure 4.1: Pipeline to simulate synthetic images using Simul@trophy. Starting

from a real baseline image of a subject, synthetic images with known volume changes

can be generated. These synthetic images can follow intensity characteristics of ei-

ther the input baseline or other images of the same subject. Pre-processing is

required to generate an atrophy map and a segmentation image, which are fed as

inputs to the brain deformation model. For a given set of parameters, the model

computes a velocity field whose divergence is equal to the prescribed atrophy map

at each voxel of the regions selected by using the segmentation image. Intensity sim-

ulator uses the output field to produce synthetic image whose intensity is resampled

either from the input real baseline or from any other image as desired.

4.2 Simulating Realistic Longitudinal Images with Atro-

phy/Growth

We use the biophysical model presented in [Khanal 2014, Khanal 2016b] to generate

dense deformation field with specified complex patterns of volume changes. This

deformation field is then used to generate realistic synthetic longitudinal images

with intensity variation, noise and artifacts, just like in real longitudinal images.

The major components of the simulation framework, as seen in Figure 4.1, are: i)

Pre-processing ii) Brain deformation model iii) Realistic intensity simulator.
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4.2.1 Pre-processing to generate a segmentation image and atro-

phy maps

A pre-processing step takes a real scan of a patient as an input baseline image, and

generates the required inputs of the brain deformation model: a segmentation image

and a specified atrophy map.

4.2.1.1 Segmentation Image

There are three labels in the segmentation image used by Simul@trophy (Figure 4.1):

• Label0: regions where no deformation should be prescribed,

• Label1: regions where certain volume changes are prescribed (the values of

volume changes are provided with an input atrophy map),

• Label2: regions where the deformation model is allowed to adapt volume

changes as required to compensate for the total volume change prescribed in

regions with Label1.

Pre-processing usually starts with a brain extraction that excludes the skull and

outside regions (also called skull stripping). Skull stripping is followed by a segmen-

tation such that each voxel of the input image could be assigned to one of the three

labels. For example, a typical pre-processing step that includes a segmentation of

brain parenchyma and CSF would produce a segmentation image with the following

labels:

• Label0: Skull and outside regions of the input image

• Label1: Gray and white matter regions

• Label2: CSF regions

4.2.1.2 Atrophy map

An atrophy map is a scalar image with desired values of volume changes in Label1

regions of the segmentation image, and zeros in all the other regions. It is defined

at each voxel as follows:

a =
V0 − V1

V0

,

where V0 and V1 are the volumes of the material lying in a voxel at time t0 and

t1 respectively. Thus, regions with volume loss have positive values of a while the

regions with volume expansion have negative values of a. An example atrophy map

is shown in Figure 4.1.

In this work, we illustrate example simulations where two kinds of pre-processing

steps were used to generate the atrophy maps:

Segmentation based atrophy map

The user can set uniform values of atrophy in regions of interests (ROIs) of the
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brain. In this case, one must first perform a segmentation of all ROIs in which a

non-zero value of atrophy is desired. Then, it is straightforward to create a scalar

image having intensity values taken from a table, which contains the labels of ROIs

and the corresponding desired atrophy values.

Registration based atrophy map

The results of longitudinal non-rigid registration can be used to estimate local vol-

ume changes, for instance by computing Jacobian determinants of the displacement

fields or by computing the divergence of the stationary velocity fields obtained from

the registration. These local volume changes obtained from the registration based

methods are usually smoothly varying in space and can be used to prescribe either:

• smoothly varying atrophy maps,

• or atrophy maps uniform in ROIs obtained by averaging, in each ROIs, the

atrophy obtained above.

Figure 4.2: Examples of two different kinds of atrophy maps. The first row prescribes

atrophy map that is uniform in different regions of the brain, while the second row

prescribes smoothly varying atrophy. Both of these atrophy maps have same average

values in each ROIs. The example also shows that we can prescribe volume changes

in ventricles, if desired, by adapting the input segmentation map accordingly. The

simulated images, as shown, are different although they have same mean regional

atrophy values.

Figure 4.2 shows two such atrophy maps with very different patterns, but having

the same average regional volume changes.

4.2.2 A biophysical model of brain deformation with prescribed

volume changes

Simul@trophy uses the biomechanics based model of brain deformation detailed in

[Khanal 2016b]. The model abstracts the phenomenon that evolves during several

months or years in the brain at a macroscopic scale. It is based on the assumption
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that atrophy creates an internal stress which results in the deformation minimizing

a strain energy. In other words, the brain parenchyma deforms with the prescribed

atrophy by minimizing the strain energy. By taking a sufficiently small time step ∆t,

this deformation could be reasonably modeled as being linear elastic. For example,

for a 2% global atrophy rate per year, we have ∆t = 1 year, and the actual atrophy

after one year is a = 0.02.

For a given segmentation image, the model yields a deformation field with the

prescribed atrophy at each voxel of Label2 regions (e.g. brain parenchyma). Label1

regions (e.g. the CSF) will correspondingly adapt its volume to globally compensate

for the prescribed volume changes in the Label2 regions. For a single time-step, the

displacement field u is obtained by solving the system of Eqs 4.1, where Dirichlet

boundary conditions of zero deformation are prescribed in Label0 regions.

Regions with: Label0

u = 0

Dirichlet boundary conditions











Label1

µ∆u−∇p=0

∇ · u+ kp=0











Label2

µ∆u−∇p=(µ+ λ)∇a

∇ · u =− a











(4.1)

The system of Eqs. 4.1 shows that the incompressibility constraint is relaxed

in Label1 regions, while it is strictly satisfied in Label2 regions. The impact of

the choice of different values for the model parameters µ, λ and k are detailed in

[Khanal 2016b]. For the same prescribed volume changes, we can obtain different

deformation fields by varying these model parameters. In this work, we focus on

generating ground truth images with known volume changes and not necessarily gen-

erating the exact evolution of the AD patients. Hence, we set the model parameters

as follows unless specified otherwise: µ = 1 kPa, λ = 0 kPa, k = 1 kPa−1.

Once the field u with the prescribed volume changes is obtained from the model

as described above by using an input baseline image Ib, we can simulate a synthetic

follow-up image Is as follows:

• Let y = Φsim(x) = u + x describe a mapping of a point x in physical space

to another point y by applying the transformation corresponding to the dense

deformation field Φsim, or the displacement field u.

• Let Φsim ⋆ Ib describe an action of the diffeomorphism Φsim on the image Ib.

Thus, the new synthetic image Is, obtained by warping Ib with the deformation

field Φsim is given by:

Is = Φsim ⋆ Ib = Ib ◦ Φ
−1
sim.

Figure 4.2 shows two simulated images from the same input baseline image but

with two different atrophy patterns.
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Figure 4.3: Ib0 and Ib1 are the repeat scans of a subject taken within a short period

of time during which there is no morphological changes in the brain of the subject.

Ir is taken at a later time when the brain could have undergone some morphological

changes. The deformation field Φreg is obtained by registering Ir to Ib0 , while Φsim is

obtained from the brain deformation model using Ib0 as the input image. The three

simulated images Is0 , Is1 and Is1 are all same time-point images but have different

intensities that come from Ib0 , Ib1 and Ir respectively.

4.2.3 Adding realistic intensity variation to synthetic longitudinal

MRIs

In realistic scenarios, longitudinal MRIs are taken at multiple scan sessions often

with slightly different acquisition parameters or even with different scanners. For

generating more realistic synthetic longitudinal MRIs, variations in intensity and

noise present in real longitudinal MRIs must also be simulated. If multiple repeat

scans of a subject are available, we can use them to simulate such variations in

synthetic longitudinal sequences. Assuming that all the available scans of the sub-

ject are already aligned using affine registration, this section explains the proposed

method of adding realistic variations in the intensity characteristics.

Starting from an input baseline image Ib0 of a subject, the previous sections

explained how we can obtain a deformation field Φsim from the brain deformation

model, and use it to simulate a follow-up image

Is0 = Φsim ⋆ Ib0 .

Is0 has the same intensity characteristics as Ib0 , and the intensity noise in Is0 is

strongly correlated to the noise present in Ib0 .

If Ib1 is another scan of the same subject taken on the same day, we can obtain a

new simulated image by resampling the intensity from Ib1 , but still using the same

Φsim:

Is1 = Φsim ⋆ Ib1

The realistic variation of intensity and artifacts present between the two real scans

Ib0 and Ib1 are now also present between the real baseline image Ib0 and the simulated

follow-up image Is1 .
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The above approach assumes that the brain has not gone any morphological

changes between the scan sessions of the two real images. If the scan time-points

of the two images are too far apart to have this assumption valid, we can no longer

directly apply Φsim to the second image. Let Ir be another real scan of the patient

taken at a time later than that of the baseline image Ib0 . There might be some

morphological changes (e.g. atrophy) in Ir compared to Ib0 .

To simulate a new synthetic image with the same atrophy as that of Is0 but

with the intensity resampled from Ir, we must first perform a non-rigid registration

between Ir and Ib0 . If Φreg is the deformation field obtained from the non-rigid

registration between Ir and Ib0 , it can be used to get an image Φreg ⋆ Ir which is

aligned to Ib0 . In the ideal case, Φreg ⋆ Ir and Ib0 are perfectly aligned with the only

differences lying in the intensity characteristics and the noise.

We can now compose the deformation fields Φsim and Φreg to generate a new

synthetic image as follows:

Is2 = (Φsim ◦ Φreg) ⋆ Ir.

Is2 has the same atrophy as that of Is0 but with the intensity characteristics of Ir.

Figure 4.3 illustrates how we obtain Is0 , Is1 and Is2 . These three simulated images

have the volume changes as encoded by Φsim, but have intensity characteristics

coming from three different real images of the same patient.

Figure 4.4 illustrates how the approach described in this section can be used to

generate multiple sets of longitudinal simulated sequences having identical morpho-

logical evolution but different variations of intensities. The three shaded regions in

Figure 4.4 are the sets of longitudinal sequences with identical volume changes but

with different variations of intensities.

4.3 Simulation Examples with Simul@trophy

This section presents simulation examples of synthetic longitudinal MRIs with

prescribed atrophy patterns and realistic intensity variations 1. The real input

MRIs used for the simulations presented in this section were obtained from the

publicly available OASIS dataset [Marcus 2010]. All these real MRIs had un-

dergone intensity inhomogeneity correction using ANTs - N4BiasFieldCorrection

[Avants 2011], and had been transported to a common space using affine registration

with FSL - FLIRT [Jenkinson 2001]. More precisely, these images had undergone the

Pre-Processing and Position Correction steps of the Longitudinal Log-Demons

Framework (LLDF) detailed in [Hadj-Hamou 2016].

Figure 4.5 shows a simulation example where uniform atrophy patterns are pre-

scribed in the hippocampi, the gray matter (GM), and the white matter (WM)

regions. The ventricles and sulcal CSF regions are allowed to expand as required

to compensate for the volume loss in the brain parenchyma. The figure shows two

1The simulation results are made available at http://neurovault.org/collections/

AUKWWYBC/ [Gorgolewski 2015].

http://neurovault.org/collections/AUKWWYBC/
http://neurovault.org/collections/AUKWWYBC/
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Figure 4.4: A general approach to simulate ground truth synthetic longitudinal

images with realistic intensity variations; simulated images are shown within the

shaded regions. The deformation fields with a prescribed atrophy for three time-

points (Φsim1
, Φsim2

, and Φsim3
) are obtained from the biophysical model using Ib0

as the input baseline image. Several different sets of longitudinal images can then

be simulated by resampling intensities from different combinations of available real

images. The topmost shaded region shows a longitudinal sequence with no realistic

intensity variations where the synthetic images are all resampled from Ib0 . The

remaining two shaded regions have longitudinal sequences with realistic intensity

variations where the simulated images are resampled from other available images of

the same subject. In the ideal case, the three sets of longitudinal sequences have

exactly the same morphological changes but with different variations in intensity

characteristics.
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simulated images whose intensities are resampled from two different images: i) the

input baseline image Ib ii) another follow-up image of the same subject, Ir. The

figure also shows intensity histograms of these two simulated images for a selected

ROI. The selected ROI is a 2D WM region where the simulated images do not have

a distinct morphological changes from Ib. Thus, the differences in the intensity his-

tograms of Ib and the simulated images for this ROI is mostly due to the variation in

intensity characteristics of the different images. We can see from the figure that the

intensity characteristics of the simulated image resampled from Ib closely matches

the intensity characteristics of Ib. And resampling the intensity from a different

image Ir of the same subject allows simulating realistic variation of intensities.

To simulate multiple time-point images, the following approach can be used:

• Get u0 by solving the system of Eqs. (4.1) using the initial atrophy map a0
and the initial segmentation image L0 as input.

• For each time step t = 1 to n:

– Warp at−1 and L0 using ut−1 ◦ ut−2... ◦ u0 to get at and Lt respectively.

– Solve for ut using at and Lt as input.

Once all the deformation fields Φsi corresponding to ui for i = 0, 1, ..., n are obtained,

these deformation fields can be used as shown in Figure 4.4 to simulate different

sequences of longitudinal images.

In Figure 4.6, a simulation example of two longitudinal sequences each having

three new time-point images is shown. Both sequences were simulated by prescrib-

ing a smoothly varying atrophy pattern. The smoothly varying atrophy pattern

prescribed in this example is more complex than the simple pattern used in the

previous example. It is adapted from the divergence of a stationary velocity field

obtained by performing LCC log-Demons registration [Lorenzi 2013] of the input

baseline image with a follow-up image of the same subject. The first sequence con-

sists of all the images whose intensities are resampled from the same input baseline

image Ib, while the second sequence consists of the images whose intensities are

resampled from different real MRIs of the same subject. Thus, as shown in Fig-

ure 4.7, the first sequence does not have the realistic variation of intensities while

the second sequence has the realistic variation of intensities. With this example, we

also illustrated that we can generate multiple sequences of longitudinal images with

same atrophy patterns but different variations of intensities.

Figure 4.8 shows a simulation example where we prescribe growth instead of at-

rophy in the brain tissue. The prescribed atrophy in this case is the negative of the

atrophy map prescribed in Figure 4.6. From the segmentation image shown in Fig-

ure 4.8, we can see that the ventricles were allowed to adapt the volume changes as

required to compensate for the volume changes in the brain parenchyma. From the

three simulated time-points, we can see that these ventricles are shrinking and the

brain parenchyma regions are expanding. The example shows that Simul@trophy
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Figure 4.5: Two simulated images are shown on the third row where the image on

the left is resampled from the input baseline image Ib, and the image on the right is

resampled from another image Ir of the same subject. Both Ib and Ir had already

been corrected for the bias field intensity inhomogeneity. The intensity histograms

shown are of a selected ROI (shown on the last row) where there is no significant

morphological changes between the images. From the histograms we can see that

the simulated image Is2,t1 has a different intensity characteristics than Ib, while the

simulated image Is1,t1 has intensity characteristics that closely matches to that of

Ib.

can be used to simulate images of not only future time-points, but also the past

time-point images.

In Figure 4.9, we show an example where synthetic sequence of images is sim-

ulated by starting from a baseline image of a healthy subject. However, the pre-
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Figure 4.6: Two sets of synthetic longitudinal images are shown which are simulated

by prescribing a smoothly varying atrophy pattern. The first row shows the input

prescribed atrophy and the input baseline image Ib of a subject, while the remaining

rows show the two sequences. The sequence shown on the left have simulated images

that are all resampled from Ib. On the right, each simulated image is resampled from

real MRIs of the same subject but taken at different times. As shown by the intensity

histograms of Figure 4.7, the longitudinal synthetic images on the right have more

realistic intensity variations than the one left.

scribed atrophy is derived from an atrophy estimated from the AD patient used

in Figure 4.6. The input baseline images of both the AD patient and the healthy

subject were segmented using FreeSurfer [Fischl 2002]. In all the segmented regions

including the white matter parcellations of the AD patient, the average values of the

smoothly varying atrophy map were computed. These regional average values of the

atrophy computed from the AD patient were then transported to the corresponding

regions of the healthy subject. Thus, in Figure 4.9, we can see that the prescribed

atrophy is region-wise uniform instead of smoothly varying. For comparison, the

figure also shows three real time-point images of the healthy subject along with the

three simulated time-point images with atrophy derived from the AD patient.
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Figure 4.7: Intensity histograms of selected patches of the images simulated in

Figure 4.6. When the simulated images are resampled from the same input baseline

image Ib, as expected, the histograms of the simulated images closely match with

each other. However, when simulated images are resampled from other different

images of the same patients, the histograms of these simulated images do not match

closely. The longitudinal sequence of simulated images Is2,t1 , Is2,t2 and Is2,t3 has

realistic variation in intensities as observed in the real sequences.

4.4 Simul@trophy: choices available and practical consid-

erations

Simul@trophy is available as an open-source repository under git version control.

Researchers can use it according to their needs, improve the presented model, and/or

add new models of brain atrophy. It is based on two core components: i) The Insight

ToolKit (ITK) and ii) PETSc [Balay 2013]. All the input and output images of

the brain deformation model shown in Figure 4.1 can be in any format that ITK

supports. ITK has strongly promoted reproducible science in the medical imaging

domain, and has been widely used in computational science applied to medical

imaging [McCormick 2014, Avants 2015]. Similarly, implementation of the model

solver is based on open-source PETSc, a library based on C programming language.

It has also been very widely used in a very diverse set of applications that also

include the medical field. It is a very powerful library that supports wide range

of iterative solvers and preconditioners for large systems of equations. The solvers

implemented in PETSc can scale very well to large distributive computer systems.

Simul@trophy runs from command lines where the required inputs and optional
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Figure 4.8: The figure shows an example of simulating a longitudinal sequence

with backward time-points. The input baseline image Ib is the same one as used

in Figure 4.6, and the prescribed atrophy map is the negative of the map used in

Figure 4.6. In the figure, we can see the shrinkage of the ventricles and the growth

of the brain parenchyma.

choices are provided via command line arguments. The available command lines

are detailed in Appendix 4.7. In this section, we illustrate some examples of how

certain choices made during the simulation affect output results.

4.4.1 Impact of registration on simulated images

In Section 4.2.3, we explained that starting from an input baseline image of a subject,

Ib, we can generate two synthetic images:

Is1 = Φsim ⋆ If and Is2 = (Φsim ◦ Φreg) ⋆ If

where Φsim is the deformation field obtained from the brain deformation model using

Ib as the input baseline image, and Φreg is the deformation field obtained from the

non-rigid registration between Ib and a real follow-up image If . Perfect alignment of

the two images with a non-rigid registration is possible only in the ideal case scenario.

In such an ideal case, the simulated images Is1 and Is2 have identical shapes of the

brain structures with the only differences lying in the intensity characteristics. In
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Figure 4.9: The figure shows an example of simulating follow-up images of a normal

subject with baseline image Ib, where the prescribed atrophy pattern is adapted

from an AD patient. The prescribed atrophy is adapted from the atrophy estimated

for the AD patient shown in Figure 4.6. Average values of the smoothly varying

prescribed atrophy shown in Figure 4.6 is computed in all the ROIs. The ROIs are

obtained from the FreeSurfer segmentation including all the white matter parcella-

tions [Fischl 2002]. The simulated images on the right have bigger shrinkage of the

brain parenchyma and bigger expansion of the ventricles than the real images on

the left.

practice, this is almost never the case, and we present below an example of the

impact of registration result on the simulated images.

Let us use the following short notations for various images described in this

section.

• RB: Real baseline image: Ib

• RF: Real follow-up image: If

• RB_to_RF: Real baseline aligned to real follow-up: Φ−1
reg ⋆ Ib

• SF_in_RB: Simulated follow-up image with intensity resampled from Ib: Φ
−1
reg ⋆

Ib
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• SF_in_RF: Simulated follow-up image with intensity resampled from If :

(Φs ◦ Φreg) ⋆ If

Figure 4.10: RB and RF are non-rigidly registered and the transformation obtained

from the registration is used to align RB to RF which is shown in the image RB_to_RF.

The figure also shows two simulated follow-up images SF_in_RB and SF_in_RF that

are resampled from (RB) and (RF) respectively. We can see that in most regions of the

brain, the two simulated images have almost identical morphological appearances.

However, there are also regions such as 2 and 5, where the morphological appearances

of the two simulated images are not identical. From the registration results for these

regions 2 and 5 in the zoomed patches, we can see that the registration is also not

accurate in those regions.

Figure 4.10 illustrates the impact of registration result Φreg on the simulation

results. The figure shows both the registration and simulation results along with

zoomed patches of RB, RB_to_RF, SF_in_RB and SF_in_RF. As expected, SF_in_RB

and SF_in_RF have different intensity characteristics coming from RB and RF respec-

tively. In the regions where registration is accurate, the two simulated images look

almost identical except for the differences in the intensity characteristics. However,

in the regions where registration is not accurate enough, SF_in_RB and SF_in_RF

do not have identical shapes as expected. Thus, for the proposed method of using
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deformations obtained by registration for simulation, it might be preferable to use

aggressive non-linear registrations with a much bigger weight given to similarity

terms than the regularization terms.

4.4.2 Discretization scheme for the divergence computation

In [Khanal 2016b], a standard staggered grid discretization was used for solving the

system of Eqs. (4.1). The discretization scheme is shown in Figure 4.11 in 2D for

illustration; explanation on 2D extends naturally to 3D. In the figure, we can see

that the components of the displacement field variable u lie on cell faces and not

at cell centres. However, all the input and output images for the model, including

the output displacement field image, are standard images that have their values

lying in cell centres or voxels. Our implementation of the solver internally creates

the required staggered grid for the given input images. Once u is computed within

the solver of system of Eqs.(4.1), its values at cell faces are interpolated to obtain

the values at cell centres which are then assembled to send as output displacement

field image. Within the solver, the numerical scheme used for the discretization of

∇ · u = −a is:

ui+1/2,j,k − ui−1/2,j,k

hx
+

vi,j+1/2,k − vi,j−1/2,k

hy
+

wi,j,k+1/2 − wi,j,k−1/2

hz
= ai,j,k (4.2)

where,

u =





u

v

w



 .

Simul@trophy then provides output displacement field image with the values of

u lying at cell centres or voxels by using linear interpolation as follows:









ui,j,k

vi,j,k

wi,j,k









=









(

ui+1/2,j,k + ui−1/2,j,k

)

/2
(

vi,j+1/2,k + vi,j−1/2,k

)

/2
(

wi,j,k+1/2 + wi,j,k−1/2

)

/2









(4.3)

To compare divergence maps of this output field with the ones obtained from

tools external of Simul@trophy, the only accessible values are the interpolated ones.

ITK is widely used in registration based brain morphometry algorithms, but the

default derivative computation of ITK has the following centred difference stencil:

ui+1,j,k − ui−1,j,k

2 ∗ hx
+

vi,j+1,k − vi,j−1,k

2 ∗ hy
+

wi,j,k+1 − wi,j,k−1

2 ∗ hz
= ai,j,k (4.4)

Replacing the components of u at cell centres from Eq. 4.3, we get,

ui+3/2,j,k + ui+1/2,j,k − (ui−1/2,j,k + ui+3/2,j,k)

4 ∗ hx
+ ... = ai,j,k (4.5)

The scheme in Eq. (4.5) does not match the one that was used internally by

Simul@trophy shown in Eq. (4.2). This results in discrepancy if we compare input
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Figure 4.11: Standard staggered grid discretization scheme that is used to solve the

system of Eqs. (4.1). Displacement variables are at faces (edges in 2D) of the cells,

while pressure and atrophy values are at centres of the cells.

prescribed atrophy maps against the externally computed divergence maps ∇ · u.

Thus, in this work, we have added an implementation for the scheme in Eq. (4.5)

so that users can choose either of the two possible schemes of Eq. (4.2) and Eq.

(4.5). The latter scheme is consistent with the divergence computed by the default

derivative computation options of ITK. At each 3D cell, the scheme in Eq. (4.2)

involves 6 variables of the displacement field, while the scheme in Eq. (4.5) involves

12 variables. In the rest of the paper, they will be referred to as 6-point and

12-point schemes respectively.

Figure 4.12 shows the error in specified vs. obtained atrophy when using the

two different numerical schemes. As expected, we can see that when a consistent

numerical scheme is used, there is no difference between the specified and obtained

atrophy. When the schemes are not consistent, the error is larger on the areas where

the prescribed atrophy values change sharply.

If the simulated ground truth images using Simul@trophy are used for the evalu-

ation of atrophy estimation algorithms, one must also be careful about the measure

of volume change used in addition to the numerical scheme used. For instance,

many TBM based brain morphometry algorithms use Jacobian determinants as a

measure of volume change. To compute ground truth volume changes of the simu-

lated images for the evaluation of such algorithms, users should compute Jacobian

determinants of the output displacement fields u obtained from Simul@trophy by

using the same numerical scheme as used by the atrophy estimation algorithm being

evaluated.
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Figure 4.12: Error due to non-consistent numerical schemes in Eq. (4.2), and Eqs.

(4.4 and 4.5). ∇ ·u shown in the figure are computed external of Simul@trophy by

using the default ITK derivative computation scheme shown in Eq. (4.4). When

this divergence computation is consistent with the one used in Simul@trophy, we

should obtain zero error with ∇ · u+ a = 0. This is indeed the case, as seen on the

right, when we use 12-point stencil of Eq. 4.5. We see non-zero errors when using

6-point stencil from Eq. (4.2) because this scheme and the default ITK scheme are

not consistent. The figure shows that the error gets larger at areas where prescribed

atrophy has discontinuous jumps.

4.4.3 Implementation of image warping

When implementing an algorithm to warp an image with a given deformation field,

it is more convenient to use the inverse of the deformation field. If Φs is the output

deformation field obtained from the brain deformation model by using Ib as the

input baseline image, Φs maps any point x in Ib to a point y in the simulated image

Is as follows:

y = Φs(x).

However, y is not guaranteed to be a discrete voxel location. Since we do not know

the intensity values of Is a priori in the nearby discrete positions, the problem of

interpolation is much more complex. Thus, we start from a discrete voxel location

y in Is where the value of intensity is to be found. Then, the corresponding position

x in Ib can be obtained by using the inverse deformation field:

x = Φ−1
s (y).

If the transformed point x is not a discrete point, we can interpolate the intensities

of Ib from neighbouring discrete locations. Let us denote the interpolation by square

brackets. Thus i = I[x] describes a mapping of a point x to an intensity, i, of the

MR image I at x. Using this notation, the intensity of the simulated image at any
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position x is given by:

Ib
[

Φ−1
s (x)

]

.

We could avoid the inversion of the deformation field obtained from the model,

if we provide negative values of the actual desired atrophy map. For instance, if

we want a 10% volume loss in hippocampus, we can instead prescribe 10% volume

expansion and solve the model to obtain a deformation field. Assuming this field

as already being inverted and warping the image will simulate an image with 10%

volume loss in the hippocampus as desired.

The simulator can be used to choose whichever method the user prefers by using

the following option:

--invert_field_to_warp #Invert u; default: do not invert

The implementation of the inversion is adapted from a fixed-point scheme imple-

mentation available in ITK [Luethi 2010]. By default, the simulator uses B-spline

interpolation of order three to warp the input images.

4.4.4 Standalone utility tools and scripts for pre-processing and

post-processing

There are some standalone tools and scripts available for various pre-processing and

post-processing operations that are detailed in the documentation of the released

software.

Some of these tools for pre-processing and post-processing operations are C++

executables based on ITK, while others are python scripts. In this work, all the

input segmentation of the model were obtained by using FreeSurfer. As explained

in [Khanal 2016b], these segmentation maps were processed to obtain in the format

required by the model. Although the provided scripts are developed for FreeSurfer

segmentation maps, they can be easily modified to adapt to other pre-processing

tools. Finally, the registration and simulation deformations were composed using

ComposeMultiTransform of Advanced Neuroimaging Tools (ANTs) [Avants 2011].

The core component of Simul@trophy is the implementation of the brain defor-

mation model. Resampling of the intensity is straightforward once the deformations

from the model and from registration are available. The simulator is not dependent

on any one particular registration algorithm. Although we used LCC-LogDemons

for illustrative purposes, this can be replaced with any other non-rigid registra-

tion algorihtms. Similarly pre-processing is also independent of Simul@trophy. We

used FreeSurfer in the simulation examples shown in this work, but any other skull

stripping and segmentation algorithms can be used. Simul@trophy provides some

example scripts and some utility scripts, which could be modified when using other

tools for the pre-processing step.
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4.5 Discussion

In [Khanal 2016b], we presented a method to generate a subject-specific atrophy

pattern by first measuring the atrophy from the available time-points, and then sim-

ulating a new time-point by prescribing the measured atrophy. In [Khanal 2016c],

we extended the method to interpolate an unavailable intermediate time-point MRI.

In this work, we added realistic variation in the intensity of the synthetic images.

The simulation examples were shown using three types of atrophy patterns: i) very

simple uniform volume changes in small number of regions, ii) uniform atrophy in

large number of regions, and iii) smoothly varying atrophy patterns. For each sub-

ject, we could generate large number of synthetic images by perturbing these atrophy

patterns in different ways. Even with the same atrophy pattern, we can generate

multiple sets of longitudinal sequences of varying intensity characteristics using the

approach illustrated in Figure 4.4. Thus, by changing the atrophy patterns and

the image intensities, Simul@trophy could be used to generate a database of very

large number of simulated images. Such a database might be useful for training of

machine learning algorithms.

Simul@trophy can be used in evaluating atrophy estimation algorithms in sim-

ilar ways as done by [Pieperhoff 2008, Camara 2008, Sharma 2010]. The ability to

prescribe atrophy at any time point allows the user to introduce volume changes

at different regions of the brain at different times. Thus, another interesting appli-

cation of the simulator is to train and/or validate disease progression models such

as the models proposed in [Chen 2012, Fonteijn 2012, Jedynak 2012, Dukart 2013,

Schmidt-Richberg 2016]. Having a database of longitudinal MRIs with known

spatio-temporal distribution of atrophy can be useful to validate such algorithms.

Furthermore, since the algorithms use a data driven approach, the simulator could

be useful to train or fine-tune such models.

Another possible application is in filling up unavailable time-point MRIs of some

of the subjects, when performing group-wise longitudinal analysis. In such studies,

usually the available time-point images of each subject are used to estimate subject-

specific volume changes. These subject-specific measurements are then used to per-

form group-wise statistics to check whether there are significant differences amongst

different groups in some particular regions of the brain. Databases used in such

analyses, might not always have all the required time-point images for all the sub-

jects. This could lead to bias if all the subjects are not aligned properly in the

temporal dimension of disease progression. Simulating new time-point images for

some subjects and using them in the analysis might allow evaluating the impact of

such mis-alignments.

We hope to promote two directions of research in the community with open-

source release of Simul@trophy. First, the public availability of Simul@trophy

enables researchers to build their own simulated databases as needed. This might

also hopefully lead to a large public database of ground truth simulated images, that

could be used for benchmarking and evaluation of various image based morphometry

tools. Second, we hope that Simul@trophy allows other researchers to build upon the
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biophysical model we presented in [Khanal 2016b], and investigate further, providing

more accurate models of brain atrophy.

Finally, Simul@trophy is general enough to be used for other imaging modalities

such as CT scans. It could also be used with images of any other organs, where one

requires simulating specified volume changes. In this case, the pre-processing should

be changed accordingly to generate a segmentation image and atrophy maps. Thus,

once the software is public, other researchers might find it useful in applications

that we have not foreseen yet.

4.6 Conclusions

We proposed a simulation framework that can generate realistic longitudinal MRIs

with specified volume changes. The framework allows generating large number of

subject-specific multiple time-point images based on a biophysical model of brain

deformation due to atrophy. We developed an open-source software Simul@trophy

to implement the proposed framework. The major part of Simul@trophy is

the implementation of our brain deformation model presented in [Khanal 2016b].

Simul@trophy is based on widely used state of the art libraries PETSc (for solving

large systems of equations) and ITK (for medical image processing). Since the soft-

ware is publicly available in an open-source repository, we hope that researchers can

use it to create databases of ground truth images. The framework could be used to

generate a common public database, which in turn could be used to validate and

evaluate a large number of available atrophy estimation algorithms. Similarly, these

databases could be valuable for data driven disease progression models including

machine learning algorithms. Validation and training of the models that study tem-

poral relationships, ordering and co-evolution of atrophy in different structures of

the brain could be another interesting application.
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4.7 Appendix

4.7.1 Running Simul@trophy from command lines

Once the pre-processing steps described in Section 4.2.1 are performed and the

desired atrophy map is generated, these images can be used as input to the model

by providing the following command line arguments:

-atrophyFile #Input atrophy map

-maskFile #Input segmentation file

-imageFile #Input image file

If the model parameters µ and λ have uniform values in Label1 and Label2,

they can be provided as an argument to the option -parameters. On the other

hand, if they need to have different values in different parts of the brain, one needs

to provide them as images similar to other input images as shown below:

-parameters #µ,λ in Region1 , Region2. Format: µ1, µ2, λ1, λ2

-muFile #Ignore µ from -parameters , use this image

-lambdaFile #Ignore λ from -parameters , use this image

--useTensorLambda #λ given as DTI; default is scalar image

Some of the important options available are:

-boundary_condition #dirichlet_at_walls or dirichlet_at_skull

--div12pt_stencil #Use 12-point scheme; default: 6-point scheme

--relax_ic_in_csf #Region1: ∇ · u+ kp = 0; default is ∇ · u = −a

-relax_ic_coeff #Value of k

-numOfTimeSteps #Number of time -steps to solve for

To solve the system of Eqs. (4.1), the argument to -boundary_condition

should be dirichlet_at_skull and –relax_ic_in_csf must be provided. Us-

ing dirichlet_at_walls instead of dirichlet_at_skull will consider regions with

label0 in the same way as the regions with label2, and sets the Dirichlet boundary

conditions only at the image borders.

If -numofTimeSteps is greater than one, the simulator provides an output dis-

placement field obtained by composing output displacement fields of each time-steps.

For any time-step n < numOfTimeSteps, it also provides output synthetic image by

warping the input image with the displacement field obtained by composing output

displacement fields from time-step 1 to n. In addition to these outputs, if desired,

some other extra outputs can be generated as shown below:
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-resPath #Result path to store all the results

-resultsFilenamesPrefix #Prefix to be provided to all the images

--writePressure #Write p as image to disk.

--writeForce #Write (µ+ λ)∇a as image to disk.

--writeResidual #Write solver residual as image to disk.
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5.1 Conclusions

The thesis envisioned, at a very top level, a framework for developing a comprehen-

sive biophysical model that could predict and simulate realistic longitudinal MRIs

of patients with Alzheimer’s Disease (AD). As shown in Figure 5.1, the frame-

work includes three major building blocks: i) Atrophy generation ii) Brain defor-

mation iii) MRI generation. Within this framework, we developed a biophysical

model of brain deformation that represents the Brain deformation block (Chapter 2,

[Khanal 2014, Khanal 2016b]). Similarly, inspired from the work of [Prakosa 2013],

we implemented the MRI generation block that allows generating realistic variation

of intensity in synthetic longitudinal images (Chapter 4, [Khanal 2016a]). Finally,

we also provided a primitive approach to implement the Atrophy generation block,

which allows generating subject-specific atrophy patterns from the available time-

point MRIs (Chapter 2, 3, [Khanal 2016c, Khanal 2016b]).

The simulator software developed during the thesis will be released as open-

source soon. Making the software open-source and available publicly, we hope that

other researchers can use it:

• To create ground truth images for evaluation and validation of atrophy esti-

mation and disease progression models.

• To create database of large number of realistic longitudinal MRIs to train

machine learning algorithms.

• As a starting point to further study various hypotheses about spatio-temporal

evolution of atrophy and its impact on brain shape changes.
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• As a starting point to develop more realistic models of atrophy generation by

combining multi-modal imaging and other biomedical information.

Figure 5.1: High level block diagram for modeling and simulation of longitudi-

nal MRIs in AD patients. Spatial and temporal distribution of neuronal deaths

is represented in Atrophy Generation block which causes the brain shape changes

represented in Brain Deformation block. This deformation along with the MRI ac-

quisition conditions variability result intensity change in time series structural MRI

of AD patients. The error in predicted follow-up from the actual observed follow-up

MRI could also be used to optimize for the parameters of the developed models

using a feedback system as shown above.

5.2 Perspectives

5.2.1 Creating Databases of Synthetic Longitudinal MRIs for Ma-

chine Learning Applications

In [Sharma 2013], the authors created a database of simulated images from 18 MRIs

by simulating uniform hippocampal atrophies in the range of 1-14% with a step size

of 1%. For each pair of atrophy value and patient image, a number of simulated

images were created by degrading the simulated atrophies with independent Gaus-

sian noise. Using the simulated database, the authors also estimated the bias in

the hippocampal atrophy measurements and also developed a framework to provide

confidence intervals on the atrophy estimation. The nature and magnitude of the

bias computed were based on the database containing simulations of the images with

atrophy only in a single region. The framework presented by [Sharma 2013] and the

related database can be enriched by using Simul@trophy to simulate a large variety

of images with different atrophy patterns and intensities.
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The framework we developed during the thesis could be used to generate a com-

mon public database for the validation and evaluation of the available atrophy esti-

mation algorithms. Such a database could also be valuable for data driven disease

progression models including machine learning algorithms. Validation and train-

ing of the models that study temporal relationships, ordering and co-evolution of

atrophy in different structures of the brain could be another interesting application.

5.2.2 Optimisation of Model Parameters

One interesting future work concerns the optimisation of the atrophy parameters

to best explain the observed longitudinal images. This is an inverse problem akin

to registration methods where one finds a best explanation of the observed changes

based on some implicit models of regularisation. For instance, Schweiger et al. used

the inverse problem approach to estimate regional volume changes by using a ther-

moelastic model of brain atrophy and optimising the unknown regional coefficients

of expansion [Schweiger 2005]. There are two major challenges that need to be

taken care of in this regard. The first one concerns the very large number of pa-

rameters: since the atrophy is prescribed at each voxel, the number of parameters

equals the number of voxels in the image, or the number of considered regions of

interest. The second issue is the computational time required for solving the system

of equations describing the model. For the brain MRIs of about 1 mm resolution,

solving the system of equations requires between a few minutes to a few hours in a

locally available cluster computing resource using 80 cores (depending on the choice

of model parameters and the cluster load). Thus, special efforts will be required

to develop the optimisation framework in a computationally feasible manner. One

possible direction would be to explore the works in optimal control for: i) parame-

ter estimation, for instance [Gholami 2016] ii) regularisation schemes for deformable

registration with a constraint on the divergence of the velocity field [Mang 2015].

5.2.3 Towards an Integrative Multimodal Model

The anisotropic nature of the brain parenchyma due to white matter fibres could

have an impact on the way it deforms due to atrophy. Since not much is known

about this, the proposed model can be useful as it allows such an exploratory study.

Changing the scalar parameters µ and λ to be tensors could allow introducing the

anisotropic information, for e.g. from DWI images. For the same atrophy map, the

effect of anisotropy on the brain deformation is an interesting question to explore.

Reliably simulating neurodegeneration due to AD and its trajectory in struc-

tural MRIs is quite challenging as we need accurate models for all three major

blocks shown in Figure 5.1. The most difficult part is to generate accurate pat-

terns of atrophy and its evolution with time. As we have shown in Chapter 2 that

differential patterns of atrophy can produce similar images, the atrophy estimation

algorithms would benefit from a biologically motivated prior on the assumed model

for regularizations. Accurate atrophy generation models require more information
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from other sources in addition to the structural MRIs. In addition to the research

in biology pertaining to AD, perhaps a progress in other imaging modalities could

also potentially provide information on the spread of imminent neuronal deaths.

For instance Aβ plaques seem to occur very early at the beginning of the atrophic

process [Chetelat 2010]. Studies such as brain’s structural connection breakdown

on AD patients using Diffusion Imaging [Stebbins 2009][Daianu 2013], or functional

connectivity breakdown along with the structural connectivity [Filippi 2011] could

also provide better insight in the future. Similarly, there is ongoing research in

developing good tracers to bind to tau proteins and to image in-vivo the neurofibril-

lary tangles (NFTs) in AD patients [James 2015]. In the future, we might be able to

exploit such data to propose basic hypotheses of spatial atrophy distribution using

multi-modal images. This could be valuable in developing suitable models for the

Atrophy Generation block.

Lack of complete knowledge about the mechanisms of AD makes it very chal-

lenging to develop a comprehensive model able to predict accurately the real evo-

lution of the brain shape at individual patient level. Many promising works in the

past three decades have focused on the image analysis to accurately measure atro-

phy and to discover patterns of structural changes in the brain. This decade has

seen an increased interests in developing data driven models and generative models

of AD progression, and in understanding their relationships with other biomark-

ers of AD [De Souza 2010, Chen 2012, Fonteijn 2012, Jedynak 2012, Dukart 2013,

Young 2014, Schiratti 2015, Young 2015, Ziegler 2015, Schmidt-Richberg 2016]. We

believe that more effort also needs to be concentrated towards developing reliable

mechanistic models able to accurately predict the longitudinal structural images

from the available imaging and other relevant information. The presented work is a

step forward in this direction where we have laid the foundation for a comprehensive

modeling and simulation system for AD.



Appendix A

Deformation theory

A.1 Body, Configurations and Motion

Here we describe briefly mathematical form that is widely used to characterize defor-

mation and motion of materials. The materials presented in this appendix have been

adapted from the sources in [Naghdi 1994] and [Kelly 2012] unless cited otherwise.

A body is an abstract mathematical entity that models physical material. It

consists of continuous form of matter, where small portions of this matter are known

as material particles such that every material particle in the body can be put into

one to one correspondence with an Euclidean space E
3.

Let us consider a body B. Now we can define a configuration which is a region

R in E
3 such that each point Xc in R is mapped one to one from material particles

X̃ of the body B. Thus a configuration may also be considered as a mapping:

Xc = Φ(X̃).

Motion can be described by a set of configurations obtained depending on time

as:

x = Φ(X̃, t). (A.1)

Above equation describes a motion of a body in terms of material particles and

hence is known as a material description of motion.

It is common to choose a reference configuration so that the motion can be

described relative to this configuration. In this work we will use X as a reference

position corresponding to a material particle X̃ of the body. Its corresponding

positions in other configurations will be denoted by x. Referential description of

motion, also known as Lagrangian description is given by:

x = Φ(X, t). (A.2)

A configuration that body occupies at time t is known as current configura-

tion. Spatial description focuses on the positions in current configuration and finds

corresponding positions in reference configuration. This is also known as Eulerian

description and is expressed as:

X = Φ−1(x, t). (A.3)
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Figure A.1: R.C: Reference Configuration; S.C: Spatial Configuration.

Velocity is the time derivative of x, that is:

v =
dx

dt
. (A.4)

A.2 Deformation and Strain

A deformation gradient F, is defined as

F = F(X, t) =
∂Φ(X, t)

∂X
. (A.5)

F describes a local deformation of a material particle whose position is at X in

referential configuration. It is also a second order tensor that transforms a line

element dX in reference configuration to a line element dx in current configuration,

that is: dx = FdX.

A displacement of a material is described by,

U(X, t) = x(X, t)−X, In referential description (A.6)

u(x, t) = x−X(x, t), In spatial description. (A.7)



A.2. Deformation and Strain 91

Figure A.2: Displacement.

Displacement gradient in referential co-ordinates is given by,

∂U

∂X
=

∂(x−X)

∂X
= F− I. (A.8)

where I is a second order identity tensor.

Left Cauchy-Green strain tensor gives us a measure of how the lengths

of line elements and angle between them change between reference and current

configurations and is defined as:

C = FTF. (A.9)

Green-Lagrange strain tensor is a relative measure of strain which vanishes

for rigid motions and is given by:

E =
1

2

(

FTF− I
)

=
1

2
(C− I) . (A.10)

Using A.8, we can express this strain in terms of displacement gradients as:

E =
1

2

(

∇U+∇UT +∇UT∇U
)

. (A.11)

Jacobian determinant or sometimes simply referred to as Jacobian is the

determinant of the Jacobian of transformation from X to x, that is:

J = det

(

∂x

∂X

)

= detF. (A.12)

J is a measure for the change of volume of a material element due to the defor-

mation, and is related to the volume change by,

J =
dv

dV
. (A.13)
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A.3 Saint Venant-Kirchoff Model of Hyperelastic Mate-

rials

In this model, stress is related to the Green-Lagrange strain tensor as

[Wikipedia 2016b]:

S = λ tr(E)I+ 2µE, (A.14)

where, λ and µ are Lamé’s parameters. S is the second Piola-Kirchoff stress

tensor. First Piola-Kirchoff stress tensor is related with S as:

P = SFT . (A.15)

Strain-energy density function is given by:

W (E) =
λ

2
[tr(E)]2 + µtr(E2). (A.16)

S can also be obtained from the following relation:

S =
∂W

∂E
. (A.17)

Most of the materials in this part of the Appendix are adapted from [Kelly 2012].

For any two vectors u and v, a dyadic product results in a second order tensor and

u⊗v is known as a dyad. A dyad can be defined such that it transforms any vector

w in the following way:

(u⊗ v)w = u(v.w). (A.18)

A second order tensor A with components Aij can be expressed in cartesian

co-ordinates using a dyadic product and an index notation as:

A = Aijei ⊗ ej . (A.19)

In the index notation, if the index is present exactly twice in the same term, it

implies summation over that index.

Simple contraction of a tensor and vector is given by:

Ta = Tijajej . (A.20)

Double contraction of dyads are defined as:

(a⊗ b) : (c⊗ d) = (a.c)(b.d). (A.21)

Transpose of a second order tensor can be expressed as:

AT = Ajiei ⊗ ej . (A.22)
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Trace of a tensor is defined as:

trA = I : A. (A.23)

Trace can be expressed as:

trA = Aii. (A.24)

Let us denote directional derivative of W(u) in a direction w by DwW(u) which

is given by,

DwW(u) = lim
ε→0

W(u+ εw)−W(u)

ε
=

d

dε

∣

∣

∣

∣

ε=0

W(u+ εw). (A.25)

Other useful results:

∂trA

∂A
= I

∂tr(A2)

∂A
= 2AT ∂(trA)2

∂A
= 2tr(A)I. (A.26)



Appendix B

Derivation of the System of

Equations of the Biophysical

Model of Brain Deformation

B.1 Derivation of the Conservation Law

The atrophy rate ã(x, t) at any position x at time t for a representative elementary

volume of Vxt is defined as the negative rate of change of volume per unit volume:

ã =
−1

Vxt

∂Vxt

∂t
.

Let us consider a sufficiently small deformation induced in a time interval ∆t.

Let φ denote the deformation of the material during this time. The new position of

a material particle initially at reference position X is given by:

x = φ(X) = X+ u = X+∆tv

where u is the displacement of the particle at position X and v is the particle’s

velocity.

Let Vt and Vt+∆t denote the elementary volume of a material at time t and t+∆t

respectively. By the definition of atrophy rate, we have,

−ãVt =
Vt+∆t − Vt

∆t

Now, a = ã∆t which is the amount of atrophy during time ∆t is given by,

a =
Vt − Vt+∆t

Vt

= 1−
Vt+∆t

Vt

= 1− J

(B.1)

where J is the Jacobian determinant given by,

J = det (∇φ)

= det (∇ (X+∆tv))

= det (I +∆t∇v)
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Using det(I + εA) = 1 + εtrA+O(ε2) we can approximate J as below,

J ≈ 1 + ∆ttr (∇v)

= 1 +∆t∇ · v

= 1 +∇ · u

Now substituting J in equation (B.1), we have:

∇ · u = −a (B.2)

B.2 Minimization of Strain Energy

Second Piola-Kirchoff Tensor is said to be the derivative of energy density with

respect to Green-Lagrange strain tensor. Using the notations introduced in Ap-

pendix A, we have,

S =
∂W(U)

∂E(U)
=

∂
(

µtr(E2) + λ
2
(trE)2

)

∂E

= µ
∂tr(E2)

∂E
+

λ

2

∂(trE)2

∂E
= 2µET + λtr(E)I

= 2µE+ λtr(E)I. (B.3)

We want to minimize the energy. To find the gradient of the energy, we will first

find the direcitonal derivative and then use following relation to get the gradient:

DwΦ = 〈∇φ,wn〉, (B.4)

where, wn is a unit vector in the direction of w.

B.2.1 Directional Derivatives of Some Useful Quantities

In the following, we consider a small variation of U by εw and compute the direc-

tional directive along w.

Dw (∇ ·U) =
d

dε

∣

∣

∣

∣

ε=0

∇ · (U+ εw) = ∇ ·w. (B.5)

Using A.6, we can express deformation gradient F in terms of displacement as:

F(U) =
∂x

∂X
= I+

∂U

∂X
.

So,

DwF(U) =
d

dε

∣

∣

∣

∣

ε=0

F(u+ εw) =
d

dε

∣

∣

∣

∣

ε=0

(

I+
∂U

∂X
+ ε

∂w

∂X

)

=
∂w

∂X
.
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For brevity, let us denote ∂
∂X by ∂. Hence,

DwF(U) = ∂w. (B.6)

Similarly,

DwF
T (U) = (∂w)T . (B.7)

Directional derivative of the energy density W:

DwW(U) =
∂W(U)

∂E(U)
: DwE(U) = S : DwE

= tr
(

STDwE
)

= tr

(

ST 1

2

(

Dw(F
TF)−DwI

)

)

= tr

(

ST 1

2

(

(∂w)TF+ FT∂w)
)

)

=
1

2
tr
(

ST (∂w)TF+ STFT∂w)
)

= tr(SFT∂w) since, ST = S

= tr(P∂w).

Now,

tr(P∂w) = tr

(

Pijei ⊗ ej
∂wk

∂Xl
ek ⊗ el

)

= tr

(

Pij
∂wk

∂Xl
(ej · ek)ei ⊗ el

)

= tr

(

Pij
∂wk

∂Xl
(δjk)ei ⊗ el

)

= tr

(

Pij
∂wj

∂Xl
ei ⊗ el

)

= Pij
∂wj

∂Xi
. (B.8)

Similarly,

tr (∂(Pw)) = tr (∂(Pijei ⊗ ejwkek)) = tr (∂(Pijwkδjkei))

= tr (∂(Pijwjei)) = tr

(

∂Pijwj

∂Xk
ei ⊗ ek

)

=
∂Pijwj

∂Xi
= wj

∂Pij

∂Xi
+ Pij

∂wj

∂Xi

= (∇ ·P)Tw + tr(P∂w).

Using tr (∂(Pw)) = ∇ · (Pw) in above equation,

tr(P∂w) = ∇ · (Pw)− (∇ ·P)Tw.

Using B.8,

DwW(U) = ∇ · (Pw)− (∇ ·P)Tw. (B.9)
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B.2.2 Minimization

Our functional to minimize is:

R(U, p) =

∫

W(U)−

∫

p (∇ ·U+ ã). (B.10)

So the Euler-Lagrange equations which are the necessary conditions for the mini-

mizing function to satisfy are:

∇UR(U, p) = 0 (B.11)

∇pR(U, p) = 0, (B.12)

where, ∇UR(U, p) and ∇pR(U, p) are gradients of the functional R(U, p) with

respect to the functions U and p respectively.

Now,

DwR(U, p) =

∫

Ω

DwW(U)−

∫

Ω

pDw (∇ ·U+ ã)

=

∫

Ω

(

∇ · (Pw)− (∇ ·P)Tw
)

−

∫

Ω

p∇ ·w

=

∫

Ω

∇ · (Pw)−

∫

Ω

(∇ ·P)Tw −

∫

Ω

∇ · (pw) +

∫

Ω

(∇p)Tw

=

∫

∂Ω
(Pw)Tn−

∫

Ω

(∇ ·P)Tw −

∫

∂Ω
(pw)Tn+

∫

Ω

(∇p)Tw

=

∫

∂Ω
((P− Ip)w)T n+

∫

Ω

−(∇ ·P)Tw + (∇p)Tw

= 〈−∇ ·P+∇p,w〉+

∫

∂Ω
((P− Ip)w)T n,

where n is a unit normal vector in the boundary ∂Ω, and we have used Divergence

theorem to change some of the volume integrals into surface integrals. Assuming
∫

∂Ω ((P− Ip)w)T n to be zero, we have,

DwR(U, p) = 〈−∇ ·P+∇p,w〉.

Hence,

∇UR(U, p) = −∇ ·P+∇p. (B.13)

Similarly,

∇pR(U, p) = −

∫

Ω

(∇ ·U+ ã).

The constraint ∇ ·U + ã is true for every small volume element in the domain Ω,

hence the necessary conditions for minimum from Euler-Lagrange equations in B.11

are

∇ ·P−∇p = 0

∇ ·U+ ã = 0. (B.14)
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Since we want to solve the equation for the displacement U and pressure p, we

need to expand ∇ ·P, which is the divergence of first Piola-Kirchoff stress tensor.

Let us denote displacement gradient by G, so from Equation A.8, we have:

F = I+G, (B.15)

G =







∂U1

∂X1

∂U1

∂X2

∂U1

∂X3

∂U2

∂X1

∂U2

∂X2

∂U2

∂X3

∂U3

∂X1

∂U3

∂X2

∂U3

∂X3






, (B.16)

Gij =
∂Ui

∂Xj
. (B.17)

Using equations A.15 and A.14,

P = [2µE+ λtr(E)I]FT

= µ
(

G+GT
)

(I+G)T + λtr (G) I (I+G)T

= µ
(

G+GT +GGT +GTGT
)

+ λtr (G) I+ λtr (G)GT .

Equating quadratic terms in U to zero for linear approximation, we get,

P = µ
(

G+GT
)

+ λtr (G) I

= [µ (Gij +Gji) + λGkkδij ] ei ⊗ ej . (B.18)

Now we expand the divergence as,

∇ ·P =
∂Pij

∂Xj
ei

=

[

µ
∂Gij

∂Xj
+ µ

∂Gji

∂Xj
+ λ

∂Gkkδij
∂Xj

]

ei

=

[

µ
∂

∂Xj

∂Ui

∂Xj
+ µ

∂

∂Xj

∂Uj

∂Xi
+ λ

∂

∂Xi

∂Uj

∂Xj

]

ei

=

[

µ
∂2Ui

∂X2
j

+ (µ+ λ)
∂

∂Xi

∂Uj

∂Xj

]

ei

= µ∆U+ (µ+ λ)∇ (∇ ·U) . (B.19)
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