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Introduction

Version francaise

Les équations de Saint-Venastobtiennent a partir des équations de Navier-Stokes, en sup-
posant que la dimension verticale est beaucoup plus petite que la dimension horizontale, et
gue la longueur d'onde des phénoménes modélisés est beaucoup plus grande que la pro-
fondeur de l'eau. Elles sont utilisées dans de nombreux domaines, comme la géophysique,
I'océanographie ou I'évaluation des risques. Par exemple, le modéle de Saint-Venant est uti-
lisé pour la simulation de ruptures de barragecomme celle du barrage de Malpasset (voir
[153]), qui s'est rompu en 1959dans le Var, au sud de la France. A n de mieux comprendre
les conséquences d'une hypothétique rupture de barrage, le comportement de I'eau apreés la
rupture doit étre modélisé.

Une autre application directe des équations de Saint-Venant est I'étude de tsunamisou d'i-
nondations comme par exemple a Madeére (Portugal) ou a La Faute sur Mer (France) en 2010.
D'autres travaux concernant la simulation et la prévention de tsunamis utilisent également les
éguations de Saint-Venant (voir [129, 9, 50]). Des glissements de terrain furent aussi modélisés
en utilisant un modele inspiré des équations de Saint-Venant (voir [104] par exemple).

Les équations de Saint-Venant en une dimension d'espace, munies des termes source de
topographiet de friction de Manning sont gouvernées par le systéme suivant (voir par exemple

[122, 57)): 8
2@h+ Qq=0;
> ¢, 1 - (F1)
@t @ -+ 5oh" = gh@Z  kaqgh

Dans (F1), h(t; x), la hauteur d'eau, est positive ou nulle et q(t;x), le débit de I'eau, a été
moyenné sur la profondeur. De plus, g est la constante de gravité, Z(x) est la fonction re-
présentant la topographie, k est le coef cient de friction de Manning, et  est un parameétre,
égal a7 ;. Remarquons que, lorsque Z = cst, la topographie est plate et le terme source de
topographie s'annule, tandis que, lorsque k =0, le terme source de friction devient nul.

Le but de ce manuscrit est de construire un schéma numérique adapté aux équations de
Saint-Venant avec topographie et friction (F1). Notons que, lors de la simulation numérique
de tsunamis, la préservation exacte d'un certain type de solutions est d'une importance cru-
ciale. En effet, loin du tsunami, |'eau est au repos et sa surface ne doit pas étre perturbée. La
nécessité de cette propriété est particulierement visible prés de la céte, ou, I'eau étant peu
profonde, de petites perturbations de la hauteur d'eau deviennent relativement plus impor-
tantes, et viennent polluer I'approximation de la vitesse de pénétration du tsunami.
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Par conséquent, un schéma numérique devrait assurer la préservation de solutions au re-
pos, qui sont des cas particuliers de solutions stationnaire<Ces derniéres sont obtenues lorsque
h et g ne dépendent pas du temps, ce qui donne le systéme suivant :

8
2@q=0;
>@ %+§th = gh@Z kqjgjh

La premiére équation de (F2) impose immédiatement un débit uniforme g. Comme les états
stationnaires avec friction sont inconnus, une premiere partie de ce travail est d'étudier en
détail la seconde équation, surtout dans le cas d'une topographie plate. Le but de cette étude
est de comprendre au mieux les solutions stationnaires, a n d'aider a construire un schéma
numérique capable de toutes les préserver.

La préservation numérique des états stationnaires des équations de Saint-Venant a été
un important sujet de recherche au cours des deux derniéres décennies. Nous devons a Ber-
mudez et Vazquez [11], ainsi qu'a Greenberg et Leroux [87], les travaux pionniers dans ce
domaine. Ces travaux portent sur la préservation des états stationnaires au repos. Dans ce
deuxiéme article est introduite la propriété de well-balanced'un schéma, dé nie a l'origine
pour guali er un schéma capable de préserver ou capturer exactement les états stationnaires
au repos. De tels schémas sont quali és de schémas équilibr&nsuite, Gosse [82] étendit cette
approche pour obtenir un schéma numérique pour les équations de Saint-Venant capable de
préserver tous les états stationnaires, y compris ceux en mouvement, au prix d'une résolu-
tion approchée de I'équation non-linéaire les gouvernant. Ce travail fut ensuite simpli é par
Audusse et al. [5], qui proposérent la méthode de reconstruction hydrostatique, permettant
de préserver les états stationnaires au repos sans avoir besoin de résoudre d'équation non-
linéaire.

L'objectif principal de ce travail est de construire un schéma équilibre pour les équations
(F1). Ce schéma doit étre capable de capturer toutes les solutions stationnaires données par
(F2). Le schéma numérique doit donc satisfaire les propriétés suivantes :

» préservation des états stationnaires donnés par (F2), y compris ceux ou le débit est non nul;
 préservation de la positivité de la hauteur d'eau;
 capacité a approcher des transitions entres zones mouillées (h 6 0) et seches fi = 0).

De plus, la préservation des états stationnaires doit étre réalisée sans résoudre d'équation
non-linéaire, contrairement au schéma proposeé par Gosse dans [82].

Un autre objectif de ce travail est de fournir deux extensions du schéma mentionné ci-
dessus. La premiére extension concerne des géométries bidimensionnelles, primordiales pour
pouvoir simuler des situations réelles, comme par exemple des inondations, des tsunamis ou
des ruptures de barrage. La deuxiéme extension consiste a augmenter la précision du schéma,
autrement dit & monter en ordre. La principale dif culté dans les deux cas est de recouvrer
la propriété de préservation des états stationnaires véri ée par le schéma unidimensionnel
d'ordre un.
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Plan du manuscrit
Premier chapitre : Les équations de Saint-Venant avec topographie et friction de Manning

Le premier chapitre de cette thése est dédié a I'étude des équations de Saint-Venant et
de ses termes sources de topographie et de friction de Manning. Ce systéme est gouverné
par (F1). Ce chapitre contient a la fois des résultats connus (voir par exemple [80, 112]) et de
nouveaux développements, qui portent surtout le terme de friction de Manning. Ces résultats
seront largement utilisés lors de la dérivation d'un schéma numérique permettant une bonne
approximation des solutions des équations de Saint-Venant.

Nous nhous intéressons tout d'abord au systéme de Saint-Venant homogene, et nous rap-
pelons plusieurs résultats connus, qui seront utiles pour étudier les effets des termes source.
En particulier, nous exhibons les propriétés algébriques de ce systéme. Nous montrons que
c'est un systéme hyperbolique de lois de conservation, et ce pour tout h 0 et pour tout q.
De plus, nous prouvons qu'il possede deux champs caractéristiques vraiment non-linéaires.
Lors de I'étude d'un probléme de Riemann pour les équations de Saint-Venant, chacun de
ces champs caractéristiques est associé soit a unende de chodiscontinue, soit a une onde de
détente continue. Nous exhibons plusieurs contraintes sur la solution exacte du probléme de
Riemann a la traversée de ces ondes. Dans le cas d'une onde de choc, la solution satisfait les
relations de Rankine-Hugoniot, tandis que des quantités appelées invariants de Riemann sont
constants a l'intérieur de I'éventail de I'onde de détente. Grace a ces informations, nous ob-
tenons ensuite la solution exacte du probléme de Riemann. Plusieurs exemples de solutions
exactes de problemes de Riemann sont présentées, a n de mettre en lumiére les propriétés du
systéme de Saint-Venant homogéne.

Par la suite, nous ajoutons les deux termes source au systéme de Saint-Venant. Nous pré-
sentons une nouvelle étude algébrique du systéme, qui prouve que I'hyperbolicité du systeme
n'est pas perdue en présence des termes source, pourvu qu'une certaine condition soit sa-
tisfaite. Nous montrons aussi l'existence des deux mémes champs caractéristiques vraiment
non-linéaires. De plus, les termes source engendrent un champ caractéristique supplémen-
taire. Ce champ stationnaire est linéairement dégénéré, et il est associé a uneonde stationnaire
c'est-a-dire une onde dont la vitesse caractéristique est nulle. Cette onde stationnaire est une
discontinuité de contact, a la traversée de laquelle les invariants de Riemann sont constants.
Cependant, cette onde stationnaire due aux termes source constitue une obstruction au calcul
d'une solution exacte explicite du probléeme de Riemann.

En présence des termes source, nous avons donc une connaissance partielle de la structure
du probléeme de Riemann. Nous essayons a présent d'exhiber les solutions stationnaires du
systeme de Saint-Venant équipé de ses termes source. De telles solutions ne dépendent que
de la variable d'espace, et satisfont donc un systéme d'équations différentielles ordinaires.
Dans un souci de complétude et a n d'introduire plusieurs concepts essentiels par la suite,
nous commencons par étudier les solutions stationnaires associées au seul terme source de
topographie (voir [44]). Nous nous ramenons alors a étudier les zéros d'une fonction. Si une
solution a ce probleme existe, alors soit elle est unique, soit il y en a exactement deux. Dans
ce deuxiéme cas, une des solutions essubcritique tandis que la deuxiéme est supercritique

Ensuite, nous étudions les solutions stationnaires régulieres associées au seul terme source
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de friction. Le probléeme de I'existence et de l'unicité de ces solutions se raméne encore a
I'étude des zéros d'une fonction. En particulier, trois cas se présentent : soit il n'y a pas de
solution, soit la solution est unique, soit deux solutions, I'une subcritique et l'autre supercri-
tique, cohabitent. De plus, la hauteur d'eau critique, associée a la solution unique, est la méme
pour les deux termes source. Nous nous intéressons aussi a des solutions stationnaires discon-
tinues, c'est-a-dire présentant des discontinuités admissibles. Les hauteurs d'eau de chaque
c6té d'une telle discontinuité doivent satisfaire a la fois les relations de Rankine-Hugoniot
et une inégalité d'entropie. Nous donnons en n quelques notions concernant les solutions
stationnaires en présence des deux termes source de topographie et de friction.

Deuxiéme chapitre : Méthode des volumes nis

L'objectif du deuxiéme chapitre est d'introduire certaines notions essentielles a I'approxi-
mation numérigue des équations de Saint-Venant, et plus largement de n'importe quel sys-
téme hyperbolique de lois de conservation. Ces résultats sont bien connus, il n'y a pas de
nouveauté dans ce chapitre. En revanche, il nous permet d'introduire des concepts et des
notations qui seront utiles dans la suite du manuscrit.

Nous commengons par nous intéresser a la dérivation de schémas aux volumes nis en
une dimension d'espace. De tels schémas sont utilisés pour approcher les solutions faibles
de systemes hyperboliques de lois de conservation. Aprés avoir introduit la discrétisation
de I'espace en cellules et la discrétisation constante par morceaux de la solution du systéme,
nous intégrons la loi de conservation a n d'exhiber le ux numérique, qui permet d'appro-
cher l'intégrale en temps du ux physique. Plusieurs propriétés cruciales sont introduites :
consistance, conservation et robustesse. Nous dérivons ensuite un schéma numérique aux
volumes nis bien connu, le schéma de Godunowtroduit par Godunov en 1959 dans [81]. Ce
schéma utilise la connaissance de la solution exacte du probleme de Riemann associé a la loi
de conservation a n d'obtenir un ux numérique. Cependant, connaitre cette solution exacte
est ardu, voire impossible, dans beaucoup de cas. Nous introduisons donc une autre tech-
nigue, qui consiste a remplacer cette solution exacte par une solution approchée, obtenue par
un solveur de Riemann approché. Cette méthode permet de dé nir les schémas de type Godu-
nov, introduits au début des années 1980 par Roe (voir [135]) et Harten, Lax et van Leer (voir
[90]). Un tel schéma numérique sera utilisé dans la suite du manuscrit a n d'approcher les
solutions des équations de Saint-Venant, tout en respectant certaines propriétés essentielles.

Les schémas mentionnés ci-dessus sont d'ordre un en espace et en temps. An de les
rendre plus précis et d'obtenir un ordre deux de convergence en espace, la méthode MUSCL
a été proposée par van Leer dans [154]. Cette technique consiste a remplacer, dans chaque cel-
lule, I'approximation constante par morceaux par une approximation linéaire par morceaux.
Cette méthode peut étre étendue pour obtenir un ordre supérieur a deux, en utilisant des
reconstructions polynomiales de degré plus élevé. Cependant, cette technique introduit des
instabilités, qui peuvent étre corrigées par I'emploi d'un limiteur de pente.

Aprés avoir traité le cas d'une dimension d'espace, nous nous intéressons a des lois de
conservation en deux dimensiond'espace. De la méme facon que précédemment, l'espace est
découpé en cellules, ou la solution approchée est constante par morceaux. Le systeme de lois
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de conservation est ensuite intégré sur les cellules a n d'obtenir un schéma aux volumes nis
en deux dimensions d'espace. En particulier, ce schéma fait intervenir le ux numérique a
chaque interface entre cellules. Nous démontrons aussi un résultat selon lequel ce schéma 2D
peut s'écrire comme combinaison convexe de schémas 1D. Ce résultat permet de connaitre
aisément certaines propriétés du schéma 2D, pourvu qu'elles soient véri ées par les schémas
1D.

En n, nous introduisons un terme source dans la loi de conservation 2D, et nous dérivons
un schéma numeérique d' ordre élevéc'est-a-dire d'ordre strictement supérieur a deux), qui se
base sur une technique de reconstruction polynomiale introduite par Clain, Diot et Loubére
(voir [46, 63, 65]). L'ordre élevé en temps est obtenu par I'utilisation de méthodes de type
SSPRK (voir [84]). Comme dans le cas 1D, nous observons que cette reconstruction engendre
des oscillations. A n de s'en affranchir, nous suggérons d'utiliser la méthode MOOD. Cette
méthode a elle aussi été introduite par Clain, Diot et Loubére; elle consiste a baisser graduel-
lement le degré de la reconstruction polynomiale dans les cellules ou cela s'impose, jusqu'a
ce que les oscillations disparaissent, et que les propriétés de robustesse du schéma 2D d'ordre
un soient recouvrées.

Troisiéme chapitre : Un schéma équilibre pour les équations de Saint-Venant

Ce troisieme chapitre est dédié a I'étude numérique des équations de Saint-Venant, dans
le but de dériver un schéma numérique possédant certaines propriétés essentielles. Il doit étre
consistant, robuste, doit permettre d'approcher les interfaces entre zones mouillées et seches,
et il doit exactement préserver tous les états stationnaires des équations de Saint-Venant avec
topographie et/ou friction de Manning.

A n de s'assurer de la préservation des états stationnaires, on utilise un schéma de type
Godunov, qui s'appuie sur la présence de I'onde stationnaire créée par les termes source,
ainsi que sur une discrétisation pertinente de ceux-ci. Ce schéma est tout d'abord dérivé pour
un terme source générique sur I'équation de conservation du débit, que I'on approche par
une moyenne. Cette approximation est ensuite calculée pour les termes source individuels
de topographie et de friction. Cependant, lorsque les deux termes source sont présents, la
méme méthode ne peut pas étre appliquée puisque les états stationnaires sont gouvernés par
une équation différentielle et ne peuvent pas étre vus comme les zéros d'une certaine fonc-
tion. Par conséquent, tous les états stationnaires avec topographie et friction ne peuvent pas
étre préservés exactement; seuls ceux provenant d'une certaine discrétisation de I'équation
différentielle peuvent I'étre. Nous donnons aussi une technique permettant d'assurer la ro-
bustesse du schéma, quel que soit le terme source (voir [7]). En n, nous étendons ce schéma
pour prendre en compte des hauteurs d'eau nulles.

En revanche, le schéma que nous avons suggéré ne permet pas de donner une bonne
approximation des transitions entre zones mouillées et zones seches. En effet, le terme source
de friction devient raide lorsque la hauteur d'eau diminue. A n de remédier a ce probleme
sans maodi er le pas de temps du schéma, nous proposons une méthode semi-implicite, qui
consiste a traiter les parties ux et topographie de facon explicite, puis la partie friction de
facon implicite. La propriété de préservation des états stationnaires est maintenue grace a
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une discrétisation pertinente de la hauteur d'eau.

La derniére étape de ce chapitre consiste a proposer des tests numériques permettant de
valider les propriétés du schéma. Notons que, puisque nous avons dérivé un schéma équi-
libre, nous ne pouvons pas le valider avec les cas-tests usuels basés sur des solutions station-
naires; en effet, de telles solutions sont exactement préservées. Nous effectuons tout d'abord
des tests visant a véri er que différents types de solutions stationnaires sont exactement pre-
servées par le schéma : des solutions au repos, ainsi que des solutions stationnaires génériques
pour les termes sources de topographie et/ou de friction, dont certains cas-tests bien connus
venant de [86]. Des cas-tests de validation du schéma sont ensuite proposés. lls permettent de
Véri er les propriétés de consistance et de robustesse du schéma, ainsi que sa capacité a ap-
procher les transitions entre zones mouillées et zones séches. Nous proposons deux cas-tests
tirés de [44], ainsi que plusieurs cas-tests de rupture de barrage, sur fond mouillé ou sec. En
particulier, une rupture de barrage sur fond sec avec une topographie non plate permet de
Véri er toutes les propriétés du schéma, y compris la préservation des solutions stationnaires
au repos.

Quatrieme chapitre : Extensions a deux dimension d'espace et a I'ordre élevé

Dans le chapitre précédent, nous avons dérivé un schéma numérique préservant tous les
états stationnaires des équations de Saint-Venant munies des termes source de topographie
et de friction de Manning. Le but de ce quatrieme et dernier chapitre est d'étendre ce schéma
pour prendre en compte des géométries bidimensionnelles et d'obtenir un ordre élevé d'ap-
proximation.

Tout d'abord, I'extension a deux dimensiong'espace est effectuée dans I'esprit de la com-
binaison convexe évoquée dans le deuxiéme chapitre. Certaines propriétés du schéma 1D
sont ainsi conservées, comme la robustesse et le traitement semi-implicite de la friction. Ce-
pendant, la préservation des états stationnaires ne s'étend pas complétement en deux dimen-
sions. En effet, les états stationnaires vraiment 2D sont régis par une équation aux dérivées
partielles, et seuls les états stationnaires 1D par direction sont préservés.

La deuxieéme partie de ce chapitre concerne l'obtention d'un schéma d' ordre élevé@ partir
du schéma 2D proposé dans la premiére partie. Ce schéma est obtenu en suivant les idées
énoncées dans le deuxiéme chapitre. La méthode MOOD est utilisée a n d'éliminer les oscil-
lations induites par la reconstruction polynomiale. Cependant, la reconstruction modi e aussi
les valeurs approchées aux interfaces, ce qui entraine la perte de la propriété de préservation
des états stationnaires. A n de recouvrer cette propriété, nous suggérons une combinaison
convexentre le schéma d'ordre un et le schéma d'ordre élevé. Ce dernier est utilisé loin d'une
solution stationnaire, tandis que le schéma d'ordre un est utilisé lorsque la solution approchée
est assez proche d'une solution stationnaire. Par conséquent, le schéma obtenu est au moins
d'ordre éleve, puisque le schéma d'ordre un est utilisé dans les zones stationnaires, ou il est
en fait exact (c'est-a-dire d'ordre in ni).

Ensuite, nous évoquons l'implémentation de ce schéma. Nous choisissons de développer
un code en Fortran, muni d'une parallélisation en OpenMP. Plusieurs fonctions de la biblio-
theque LAPACK sont utilisées dans ce code, et ses chiers de sortie sont au format vtk . Nous
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étudions aussi I'ef cacité de la parallélisation.

En n, nous proposons plusieurs cas-tests destinés a tester les propriétés du schéma bidi-
mensionnel d'ordre élevé. Nous véri ons tout d'abord qu'il préserve bien les états station-
naires 1D par direction, et en particulier les états stationnaires au repos. Ensuite, nous propo-
sons deux cas-tests destinés a véri er I'ordre du schéma. S'ensuivent plusieurs simulations de
validation numérique du schéma. Ces cas-tests sont des ruptures de barrage, sur fond mouillé
ou sur fond sec. lls permettent de mettre en évidence la contribution du terme source de fric-
tion, ainsi que la pertinence de la combinaison convexe. Finalement, deux simulations réelles
sont proposées : celle du tsunami qui a frappé le Japon en 2011, et celle d'un tsunami sur une
topographie urbaine.
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English version

The shallow-water equationare derived from the Navier-Stokes equations, with the as-
sumption that the vertical dimension is much smaller than the horizontal one, and that the
wavelength of the phenomenon is much larger than the depth of the water. They are widely
used in many elds, such as geophysics, oceanography or risk assessment. For instance, the
shallow-water model is used in the simulation of dam-breakssuch as the Malpasset dam-
break (see [153]), which took place in southern France in 1959 To better understand the
consequences of a hypothetical dam failure, one has to model the behavior of water after the
dam has failed.

Another direct application of the shallow-water equations is the study of  oodsor tsunamis
For instance, we mention the oods in La Faute sur Mer, in France, in 2010, and Madeira, in
Portugal, also in 2010. Other work related to tsunami prevention and simulation also use the
shallow-water equations (see [129, 9, 50]). A model inspired from the shallow-water equations
was also used to perform landslide simulations (see [104] for instance).

The shallow-water equations in one space dimension with the topographyand the Manning
friction source terms read as follows (see [122, 57] for instance):

g @h+ @Qq=0;

Z@q+ @ ?12+ %gh2 = gh@Z kagjgh : (&
In (E1), h(t; x) is the nonnegative water height, g(t; x) is the depth-averaged discharge of the
water, g is the gravity constant, Z(x) is the topography function representing the shape of
the bottom, k is the Manning friction coef cient, and is a parameter, equal to 7 3. One can
easily see that, whenZ = cst, the topography is at and the topography source term vanishes,
while, when k = 0, the friction source term vanishes.

The goal of this manuscript is to derive a numerical scheme suited to the shallow-water
equations with topography and friction (E1). Let us remark that, in numerical simulations,
for instance those involving tsunamis, the preservation a certain class of solutions is of prime
importance. Indeed, away from the tsunami, the water is at rest and its surface should not be
perturbed. This property is especially relevant next to the shore, since small perturbations in
the water height are more detrimental to the solution in this area, and the approximation of
the velocity of the tip of the tsunami is polluted by such perturbations.

As a consequence, a numerical scheme should ensure that the solutions at rest, which are
noting but speci ¢ cases of steady state solutiongre exactly preserved. The steady state solu-
tions are obtained by making the time derivatives in (E1) vanish, thus yielding the following
system: 8
2 @q=0;

¢ 1 . (E2)

2@ F+§gh2 = gh@Z kqjgh

The rst equation immediately imposes a uniform discharge g. Since the steady states with
friction are unknown, the rst part of the present work is to perform an in-depth study of
the second equation, especially in the case of a at topography. The goal of this study is to
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understand the steady state solutions as best as possible, in order to help build a relevant
numerical scheme, able to preserve these steady states.

The numerical preservation of steady states for the shallow-water equations has been of
prime importance during the last two decades. This work was pioneered by Bermudez and
Vazquez [11] as well as Greenberg and Leroux [87], who tackled the preservation of steady
states at rest. This second paper introduced the well-balanceproperty of a scheme, originally
de ned as the ability of a scheme to exactly preserve and capture the steady states at rest.
Next, Gosse [82] extended this approach to yield a well-balanced scheme for the shallow-
water equations able to preserve all the steady states, including the moving ones, with the ad-
ditional requirement of approximately solving the governing nonlinear equation. This work
was later simpli ed by Audusse et al. [5], who proposed the so-called hydrostatic reconstruc-
tion, which allows the preservation of the steady states at rest without needing to solve a
nonlinear equation.

As a consequence, the main objective of this work is to build a well-balanced scheme
for the equations (E1). Here, the expressionwell-balancediescribes a scheme that is able to
exactly capture all the steady states (E2). Therefore, the numerical scheme needs to satisfy the
following properties:

» well-balance, i.e. preservation of the steady states (E2), even the moving ones;
* robustness, i.e. preservation of the non-negativity of the water height;
* ability to approximate transitions between wet ( h 6 0) and dry (h = 0) areas.

In addition, the well-balance property must be satis ed without having to solve a nonlinear
eqguation, unlike the scheme suggested by Gosse in [82].

Another objective of this work is the extension of the above scheme to two-dimensional
geometries. Indeed, such an extension is primordial in order to consider real-life simulations,
such as simulations of catastrophic events (for instance oods, tsunamis, dam-breaks). In
addition, a high-order extension of the scheme must be considered. The main challenge of
these two extensions is the recovery of the well-balance property.

Outline of the manuscript
Chapter 1: The shallow-water equations with topography and Manning friction

The rst chapter is devoted to the study of the shallow-water system, supplemented with
the source terms of topography and Manning friction, and governed by (E1). This chapter
contains both known results (see for example [80, 112]) and new developments, especially
concerning the Manning friction source term. These results will be heavily used when de-
riving a suitable numerical scheme to provide approximate solutions to the shallow-water
equations.

We rst consider the homogeneous shallow-water system, and we recall some well-known
results, which will be instrumental when studying the effects of the source terms. In particu-
lar, we exhibit the algebraic properties of this system. It is shown to be a hyperbolic system of
conservation laws forall h  Oand all g. In addition, we prove that it possesses two genuinely
nonlinear characteristic elds. When considering a Riemann problem for the shallow-water
equations, each one of the characteristic elds is associated either to a discontinuous shock
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waveor to a continuous rarefaction waveAcross these waves, several constraints are exhibited
for the exact Riemann solution. Namely, the Rankine-Hugoniot relations are satis ed in the
case of a shock wave, while the Riemann invariants are constant within the fan of a rarefac-
tion wave. Equipped with the knowledge of these relations, the exact solution of the Riemann
problem is derived. Several examples of Riemann problems, together with their exact solu-
tions, are given to highlight the properties of the homogeneous shallow-water system.

Afterwards, we add both source terms to the shallow-water system. Another algebraic
study of the system is then performed, which proves that it is still hyperbolic even in the
presence of the source terms, under a speci ¢ condition. The same two genuinely nonlinear
elds are also uncovered. Moreover, there is now an additional characteristic eld, which cor-
responds to the source term. This stationary characteristic eld is linearly degenerate and it is
associated to astationary wavei.e. a wave with a zero characteristic velocity. This stationary
wave is a contact discontinuity, through which the Riemann invariants are constant. How-
ever, the presence of the source terms, and thus that of this wave, does not allow computing
an explicit solution to the Riemann problem anymore.

Equipped with some knowledge of the structure of the Riemann problem, we then turn
to exhibiting several steady state solutions of the shallow-water system endowed with the
source terms. Such solutions only depend on the space variable, and they satisfy a system
of ordinary differential equations. For the sake of completeness and in order to introduce
several key concepts, we rst study the steady state solutions associated to the topography
source term only (see [44]). We then show that this is equivalent to studying the zeros of a
function. If a solution to this problem exists, then either it is unique or there are exactly two
solutions. If two solutions exist, then one of themis subcriticaland the other one is supercritical

Subsequently, we study the smooth steady state solutions associated to the friction source
term only. Studying the existence and the uniqueness of these solutions is again equivalent
to nding the zeros of a function. In particular, there may be no solution, or there may be
a unique solution, or there may be two solutions, a subcritical one and a supercritical one.
In addition, the critical water height, associated to the unique solution, is the same for both
source terms. We also study discontinuous steady states, i.e. steady states presenting admis-
sible discontinuities. The water heights on each side of such discontinuities must satisfy both
the Rankine-Hugoniot relations and an entropy inequality. Namely, their existence is tied to
the direction of the steady water ow. We nally give a few words about the steady state
solutions with both source terms of topography and friction.

Chapter 2: Finite volume methods

The objective of the second chapter of this manuscript is to introduce several essential
notions related to the numerical approximation of the shallow-water equations, and more
widely of any hyperbolic system of conservation laws. These notions are well-known, and
there are no new results in this chapter. However, in the remainder of the manuscript, the
concepts and notations introduced in this chapter will be heavily used.

We begin with the derivation of nite volume schemes in one space dimension. Such
schemes are used to approximate weak solutions of hyperbolic systems of conservation laws.
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After having introduced the discretization of the space domain in cells and the piecewise
constant approximation of the solution, the conservation law is integrated in order to exhibit

the numerical ux, which provides an approximation of the time integral of the physical

ux. Several essential properties are introduced; namely, the consistency, the conservation
and the robustness. We then derive a well-known nite volume scheme, Godunov's scheme
introduced by Godunov in 1959 in [81]. This scheme uses the knowledge of the exact solution
to the Riemann problem associated to the conservation law in order to propose a humerical
ux. However, knowing this exact solution is no easy task in the general case; it may even
be impossible. We therefore introduce another method, which consists in replacing the exact
Riemann solution with an approximate one, obtained thanks to an approximate Riemann
solver. This technigue allows de ning the Godunov-type schemdstroduced at the beginning
of the 1980s by Roe (see [135]) and Harten, Lax and van Leer (see [90]). Such a scheme will be
used later in the manuscript in order to provide approximate solutions of the shallow-water
equations, while retaining several essential properties.

The schemes mentioned above are rst-order accurate in space and time. In order to im-
prove the accuracy of such schemes and to obtain a second order of accuracy in space, we
choose the MUSCL method, suggested by van Leer in [154]. This technique consists in replac-
ing, in each cell, the piecewise constant approximation with a piecewise linear approxima-
tion. This method can also be extended to get a better order of convergence, by using a higher
reconstruction degree. However, this technique also introduces instabilities, which may be
corrected thanks to slope limiters.

After having tackled the case of one space dimension, we focus on conservation laws in
two space dimensionSimilarly to the 1D case, the space domain is discretized with cells, and
the approximate solution is assumed to be piecewise constant. The system of conservation
laws is then integrated over the cells in order to obtain a nite volume scheme in two space
dimensions. In particular, the numerical ux is used at each interface between cells. We also
prove a result stating that this 2D scheme may be rewritten as a convex combination of 1D
schemes. This result allows to immediately establish several properties of the 2D scheme,
provided they are satis ed by the 1D scheme.

Finally, we add a source term to the 2D conservation law, and we derive a high-order accu-
rate numerical scheme, i.e. a scheme of order strictly superior to two, based on a polynomial
reconstruction technique introduced by Clain, Diot and Loubére (see [46, 63, 65]). The high
order accuracy in time is obtained by using SSPRK methods (see [84]). As in the 1D case, we
observe that this reconstruction procedure induces spurious oscillations. In order to ensure
that such oscillations do not appear, we suggest using the MOOD method. This technique
was also introduced by Clain, Diot and Loubére; it consists in gradually lowering the degree
of the polynomial reconstruction in cells where this is needed, until the oscillations disappeatr,
and until the robustness properties of the 2D schemes are recovered.

Chapter 3: A well-balanced scheme for the shallow-water equations

In this third chapter, we begin the numerical study of the shallow-water equations in order
to derive a numerical scheme, which must satisfy several essential properties. It must be
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consistent, robust, able to approximate the interfaces between wet and dry areas, and it must
be well-balanced, i.e. it must exactly preserve all the steady state solutions of the shallow-
water equations with topography and/or Manning friction.

In order to ensure the preservation of the steady states, we use a Godunov-type scheme,
based on the stationary wave created by the source terms, and on a relevant discretization
of the source terms. This scheme is rst derived for a generic source term on the discharge
equation, by introducing an approximation of the average of this source term. This approxi-
mation is then computed for the individual source terms of topography and friction. To that
end, we rely on the fact that the steady states associated to the individual source terms can
be seen as the zeros of a nonlinear function, and solving the nonlinear equations arising in
this case is not necessary. However, when both source terms are present, the same method
cannot be applied since the steady state solutions are now governed by a differential equation
and cannot be seen as the zeros of a function. As a consequence, all the steady state solutions
with topography and friction cannot be exactly preserved; the scheme is able to preserve only
those obtained from a speci ¢ discretization of the differential equation. We also suggest a
technique ensuring the robustness of the scheme, for any source term (see [7]). Finally, we
extend this scheme to take vanishing water heights into account.

However, this scheme does not give a good approximation of the transitions between wet
and dry areas. Indeed, the friction source term becomes stiff when the water height tends to
zero. To address such an issue without modifying the time step of the scheme, we suggest a
semi-implicit method. This technique consists in providing an explicit treatment of the ux
and the topography, and an implicit treatment of the friction. The well-balance property is
satis ed thanks to a relevant discretization of the water height.

The last part of this chapter consists in performing several numerical experiments, whose
goal is to assess the properties of the scheme. Note that, since the scheme is well-balanced,
we cannot perform the usual validation experiments involving steady state solutions; indeed,
such solutions are exactly preserved. We rst check the well-balance of the scheme. To that
end, we try to preserve several types of steady state solutions: steady states at rest and moving
steady states for the topography and/or the friction, including several well-known test cases
from [86]. Several validation test cases are then carried out. They allow the veri cation of
the consistency and robustness properties, as well as the ability of the scheme to approximate
the transitions between wet and dry areas. We suggest two experiments from [44], as well
as several dam-break simulations, either on a wet bed or on a dry bed. In particular, a dry
dam-break problem with a non- at topography allows assessing of all the properties satis ed
by the scheme, including the well-balance.

Chapter 4: Two-dimensional and high-order extensions

In the previous chapter, we have derived a numerical scheme that preserves all the steady
states of the shallow-water equations endowed with the topography and Manning friction
source terms. The goal of this fourth and last chapter is to provide two-dimensional and
high-order extensions of this scheme.

First, the extension in two space dimensions carried out in the spirit of the convex com-
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bination introduced in the second chapter. Several properties of the 1D scheme are thus con-
served, such as the robustness and the semi-implicit treatment of the friction. However, the
well-balance property is not fully extended to two dimensions. Indeed, the truly 2D steady
states are governed by a partial differential equation, and only the 1D steady states are pre-
served: the scheme is said to be well-balanced by direction.

The second part of this chapter consists in providing a high-orderextension of the 2D
scheme. This extension is obtained by following the ideas presented in the second chapter.
The MOOD method is used in order to eliminate the oscillations induced by the polynomial
reconstruction. However, the reconstruction procedure also modi es the approximate solu-
tion at the interfaces, which leads to a loss of the well-balance property. In order to recover
this property, we suggest a convex combinatiobetween the rst-order well-balanced scheme
and the high-order scheme. The former is used when the approximate solution is close to
being a steady state, while the latter is favored when the approximate solution is far from a
steady state. As a consequence, the scheme is at least high-order accurate, since the rst-order
scheme is used in areas where the solution is steady, that is to say where it is exact (i.e. where
its order of accuracy is in nite).

Then, we discuss the implementation of this scheme. We elect to develop a Fortran code,
which is supplemented with an OpenMP parallelization. Within this code, several routines
from the LAPACK library are used; in addition, its output consistsin  .vtk les. The ef ciency
of the parallelization is also discussed.

Finally, we carry out several numerical experiments, whose purpose is to assess the prop-
erties of the 2D high-order well-balanced scheme. We rst check the well-balance of the
scheme on 1D steady states, and on a truly 2D steady state at rest. Then, two assessments
of the high order of accuracy are performed. Afterwards, several dam-break validation test
cases are carried out. Their purpose is to highlight the contribution of the friction source term,
as well as the relevance of the convex combination procedure suggested to restore the well-
balance property of the high-order scheme. Finally, two real-world simulations are suggested:
the 2011 Great East Japan tsunami, in Dhoku, Japan, and a tsunami on an urban topography.



24 INTRODUCTION

Publication list

Published
V. Michel-Dansac, C. Berthon, S. Clain, and F. Foucher. A well-balanced scheme for the
shallow-water equations with topography. Comput. Math. Appl, 72(3):568--593, 2016.

Preprint

V. Michel-Dansac, C. Berthon, S. Clain, and F. Foucher. A well-balanced scheme for the
shallow-water equations with topography and Manning friction. preprint available on HAL
(HAL id: hal-01247813)December 2015.

In progress
V. Michel-Dansac, C. Berthon, S. Clain, and F. Foucher. A two-dimensional high-order well-
balanced scheme for the shallow-water equations with topography and Manning friction.

Conference proceedings

C. Berthon, M. de Leffe, and V. Michel-Dansac. A conservative well-balanced hybrid SPH
scheme for the shallow-water model. In Finite volumes for complex applications. VII. Ellip-
tic, parabolic and hyperbolic problenvolume 78 of Springer Proc. Math. Staf.pages 817-825.
Springer, Cham, 2014.

Communication list

Talks

3. SHARK-FV 3, Sao Félix, Portugal, May 2016
2. 8th ICIAM, Beijing, China, August 2015
1. 3rd summer school of the GDR EGRIN, Piriac-sur-Mer, France, June 2015

Posters

3. HYP2016, Aachen, Germany, August 2016
2. 2nd summer school of the GDR EGRIN, Domaine de Chalés, France, July 2014
1. Finite Volumes for Complex Applications - FVCA VII, Berlin, Germany, June 2014



CHAPTER 1. THE SHALLOW-WATER EQUATIONS 25

The shallow-water equations with
topography and Manning friction

This chapter is dedicated to an introduction of the shallow-water system with topography
and Manning friction. The shallow-water system has been introduced in 1871 by de Saint-
Venant (see [10]) and is obtained by depth-integrating the Navier-Stokes equations, in the
case where the wavelength of the modeled phenomena is much larger than the depth of the
uid. For instance, tsunami propagation in an ocean falls within this framework. In one space
dimension, the shallow-water system with topography and Manning friction is given by:

8
2@h+ @(hu)=0;

S s 1., o (1.1)
Z@hu)+ @ hu + égh = gh@Z kqgh ;

where h(t;x)  0is the water height u(t; x) is the water velocity and g = 9:81 m.s 2 is the
gravity constant. Both the height and the velocity depend on the time variable t and the space
variable x. The topography source termgh@Z takes into account the geometry of the channel
in which the water is owing, thanks to the function Z : R! R, which models the shape
of the channel bottom, as displayed on Figure 1.1. The topography function is assumed to
be smooth. The Manning friction mode] introduced by Manning in [122], provides the source
term kqigh , where q = hu is the discharge This source term models the friction of the
channel bottom. The Manning coef cient Kk is used to determine the intensity of the friction:
the higher k is, the more friction is exerted by the bottom on the water. The quantity s a
parameter, taken equal to 7 3 in Manning's model.

The system (1.1) can be rewritten under the following condensed form:

@W + @F (W) = S(W);
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Figure 1.1 — The 1D shallow-water equations with a non- at bottom. The gray area is the
topography.

where we have set:
! 0 1 !
u 0
1 ;. S(W) = ; (1.2)

h A
Sar? gh@z  kajgjh

W = . F(W)= @
hu (W) hu? +

where W lives in the admissible states spaceto be de ned later.

Note that the case h = 0 corresponds to a dry area. Such areas naturally appear, for
instance while considering the penetration of a wave on a beach or the breaking of a dam.
We here make the important remark that the shallow-water system (1.1) can be extended for
vanishing water heights. Since the velocity is given by q = hu, a de nition of the velocity has
to be provided for vanishing water heights. To address this issue, the following assumption
is made.

Assumption. The velocity vanishes as soon as the water height does.

This assumption makes physical sense: if there is no water, then the water does not move. We
remark that the friction source term  kgjgih  also requires a special treatment when h tends
to zero. Throughout the manuscript, the following assumption is made.

Assumption. The friction source term vanishes as soon as the water height does.

This assumption is motivated by the fact that a vanishing water height means that the bottom
is no longer able to exert a friction force on the water. Therefore, the admissible states space
is de ned as follows for the shallow-water equations (1.1):

= W=Yhqg2R%;h 0,q2R: (1.3)

In addition, the homogeneous shallow-water equations, obtained by making the source
terms vanish in (1.1), admit an entropy pair(see [112, 5] for instance). The notion of entropy
(see for instance [107, 80, 108]) is used to determine the physical admissibility of a weak so-
lution of the system (1.1), i.e. a solution which satis es (1.1) in the space of distributions. An
entropy pair is made of a convex function s 2 C?() , the entropy, and a function G 2 C?() ,
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the entropy ux, such that the following identity holds:
rwFMW)r ws(W)=r wG(W):

In the context of the homogeneous shallow-water equations, the entropy pair is given by:

2
S(W) = %hu2+ %th and G(W)= hu ”7+ gh : (1.4)

A weak solution W of the homogeneous shallow-water system is called entropy-satisfyingf it
satis es the following entropy inequality:

@s(W)+ @G(W) 0 (1.5)

Regarding the inhomogeneous shallow-water system (1.1), an entropy inequality is also
exhibited (see for instance [5, 12]). With the same entropy pair (1.4), the following entropy
inequality holds for a weak entropy-satisfying solution of (1.1):

@(W)+ @G(W)  ghu@Z kefjgh ™ (1.6)

Since the topography is a smooth function, the entropy inequality (1.6) can be rewritten as
follows:
@s(W;2)+ @8(W;z)  kofjgh % (1.7)

where the entropy pair (s; &) is given by:
s(W;Z)= s(W)+ hgz and G&(W;Z)= G(W)+ hugZ: (1.8)

Equipped with these general properties of the shallow-water equations, the goal of this
chapter is to provide some particular solutions of the shallow-water equations with topogra-
phy and Manning friction (1.1).

Namely, the structure of the solutions of a Riemann problem is studied in Section 1.1.
First, the Riemann problem for the homogeneous shallow-water equations is discussed and
several examples are given. Afterwards, we determine the structure of the Riemann solution
for the inhomogeneous shallow-water system (1.1).

Then, the steady state solutions are exhibited in Section 1.2. The steady states are a spe-
ci ¢ class of solutions for which the time derivative vanishes. These solutions are non-trivial
because of the presence of the source terms. First, steady state solutions for the source term
of topography only are highlighted. Then, we exhibit steady state solutions for the Manning
friction source term only. Finally, a few words are given on the steady state solutions associ-
ated to both source terms of topography and friction.

1.1 Properties of the shallow-water equations

This section is devoted to highlighting some essential properties of the shallow-water
eqguations in one space dimension; it is organized as follows.
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First, we consider in Section 1.1.1 the homogeneous system, obtained by making the
source terms vanish in (1.1). We exhibit the eigenvalues of the Jacobian matrix of its ux
function. These eigenvalues are associated to waves that appear when considering a Rie-
mann problem. The nature of these waves is then discussed by focusing on the characteristic
elds.

Equipped with this algebraic study of the shallow-water system, Section 1.1.2 is then de-
voted to exhibiting the solution of the Riemann problem for the homogeneous shallow-water
equations. This process has been described in [112] (see also [150] for the case of a generic sys-
tem of conservation laws, and see [98] for the Euler equations with two different equations of
state). First, the general form of the solution is established. Then, examples are provided.

Finally, the source terms of topography and Manning friction are added to the system in
Section 1.1.3. The equations (1.1) are studied in the presence of these source terms, and a
stationary wave is exhibited.

1.1.1 The homogeneous system

The goal of this section is to show that the homogeneous shallow-water system is hyper-
bolic, and to provide some insight on the characteristic elds that this system induces. We
consider a smooth solution of the following homogeneous system, obtained from (1.1):

8
2@h+ @Q(hu)=0;

(1.9)
>@hu)+ @ hu?+ %gh2 =0:

In addition, we assume that h > 0. All the computations in this section will be made with
respect to the primitive variables U = !(h;u). This choice is made for the sake of simplicity,
since the properties of the system are independent of the choice of the variables. As a con-
sequence, in this section, the primitive variables U lie in the following restricted admissible
states space:

u= U=Yhu2R?>: h>0u2R :

The primitive variables

We begin by rewriting the shallow-water system (1.9) with the primitive variables U =
Y(h; u). The goal here is to exhibit the eigenvectors of the Jacobian matrix of the ux function.
For a smooth solution, the system (1.9) reads:

(@h+ u@h+ hQu=0;
@u+ g@h+ u@Qu=0;

We can therefore cast the shallow-water system into the following nonconservative form:

@U + A(U)@U =0; (1.10)
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where A(U) represents a matrix similar to the Jacobian matrix of the physical ux function.
The matrix A(U) is given by: |

A(U) =

Hyperbolicity of the system

The next step in the study of the shallow-water system consists in computing the eigen-
values of the matrix A(U). If A(U) is diagonalizable in R, then the shallow-water system is
hyperbolic. After straightforward computations, we get the following expressions for the two
eigenvalues of the matrix A(U):

(U=u c¢c and +(U)=u+c (1.11)

where we have introduced the sound speed c, de ned by

c= P gh: (1.12)

Sinceh > 0,we have (U)2 Rand . (U) 2 R. In addition, the eigenvalues of A(U) satisfy
(U) < +(U). Therefore, for h > 0, the shallow-water system is strictly hyperbolic, since
its eigenvalues are real and distinct.

Nature of the characteristic elds

Next, the nature of the characteristic elds associated to the hyperbolic problem (1.10)
is studied. This study involves the computation of the eigenvectors R (U) and R. (U) of
the Jacobian matrix A(U). The nature of the characteristic elds is given by the following
de nition.

Denition1.1. LetC (U):=r y (U) R (U). The following three cases arise:

1.ifC (U) 6 0 forall U2 y, then the characteristic eld associated to the eigenvalue
(V) is Genuinely NonLineafGNL);

2. ifC (U)=0 forall U2 ,then the characteristic eld associatedto  (U) is Linearly
DegeneratéLD);

3. otherwise, we cannot conclude on the nature of the characteristic eld.

We now determine the nature of the characteristic elds of the shallow-water equations.
The eigenvectors associated to  (U) are given by:
!

h
R (U)= o
(U) PSR
As a consequence, the quantityC (U) satis es:

3P —
C (U= > gh:

Sinceh > 0, we have proventhat C (U) 60 forall U 2 |, and that both elds are GNL.
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Riemann invariants

To conclude the study of the algebraic properties of the homogeneous shallow-water equa-
tions, we turn to computing the Riemann invariants These quantities are constant in specic
cases, described in the next section. They are functions ( U), governed by the following
equation:

ry(U) RU=0: (1.13)

In the present context, since both components of the eigenvectors are nonzero, (1.13) can be

rewritten as follows:
du? du?

RI(U)  RZ(U)’ (114)

where R (U) 6 0 and R? (U) 6 0 are the two components of the eigenvector R (U), and
where U? and U? are the two components of the vector U of the primitive variables. The
above equation is therefore equivalent to:

dh du

h

hl

which yields, after straightforward computations, the following Riemann invariant for the
eld associatedto  (U):

u 2’ gh: (1.15)

1.1.2 Riemann problem

Now, we consider a Riemann problem for the shallow-water equations. It is a Cauchy
problem with discontinuous initial data, as follows:

8

3 @W + @F (W) =0;

3 W (0:x) (WL if x< O; (1.16)
;X) =

' Wr ifx> 0

where W 2 and F (W) are given by (1.2). The initial data is made of two constant states
W, and Wg, respectively de ned by W, = Y(h ;q ) and Wg = Y(hr;0r). We assume that
h, 6 hg,orq 6 or, or both hy 8 hg and q 6 or. Otherwise, the initial condition is
constant, and it stays solution to (1.16) for all t > 0. Introducing the left and right velocities
u_ and ug, the dischargesq_and ¢r satisfy g. = h_u. and gr = hrugr.

The con guration of the exact solution of the Riemann problem is displayed on (1.2). In
particular, this Riemann solution is self-similar, i.e. it only depends on x=t instead of the
individual variables x andt.

We know that the shallow-water system is hyperbolic and admits two GNL characteristic
elds. Therefore, the exact solution to the Riemann problem (1.16) possesses two waves, the
rst one associated to the eigenvalue , and the second one associated to .. These two
waves will henceforth be referred to as the 1-waveand the 2-wave Since both elds are GNL,
each of these two waves may either be ashock waver a rarefaction waveOn the one hand, a
shock wave connects two constant states with a single jump discontinuity, and the Rankine-
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Figure 1.2 — Riemann problem con guration. The gray area represents the area where the
solution of the Riemann problem (2.19) lies.

Hugoniot relations are satis ed (see [79, 150] for instance). These relations are proven in
Appendix A in a more general setting, and they are given by

(Wr  WL)=F(WR) F(W.); (1.17)

where is the velocity of the discontinuity. In the context of the shallow-water equations, the
Rankine-Hugoniot relations read (see [112] for instance):

8
2 [h]=[d];

> - ‘f+ }ghz _ (1.18)
' h 2 ’

where [X] = Xr X represents the jump of the quantity X across the discontinuity. On the
other hand, a rarefaction wave connects the two constant states with a continuous function.
Within a rarefaction wave, the Riemann invariants (1.15) are constant. Between these two
waves, the Riemann solution is constant, and is denoted W . The structure of such a solution
is displayed on Figure 1.3.

Figure 1.3 — Riemann problem for the shallow-water equations, in the case where the 1-wave
is a rarefaction wave and the 2-wave is a shock wave.

The goal of the present section is to provide the solution to the Riemann problem (1.16)
with respect to the values of W and Wg. The following lemmas state suf cient conditions for
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the 1-wave or the 2-wave to be either rarefaction waves or entropy-satisfying shock waves.
The entropy condition we impose on the shock wave is a suf cient condition for the entropy
inequality (1.5) to be satis ed (see [107, 79] for instance).

Lemma 1.2. The 1-wave of the Riemann problem (1.16)iarafaction wave if the Riemann invari-
ants (1.15) are constant across the wave and if the eigenvalues are ordered, as follows:

( (U) (U);

u +2 ghi=u +2" gn:

Similarly, the 2-wave is a rarefaction wave if:

( +(U) +(URr);

u 2 gh=ue 2 g

Lemma 1.3. The 1-wave of the Riemann problem (1.16) iatropy-satisfying shock wave with
velocity if it satis es the Lax entropy condition and the Rankine-Hugoniot relations (1.18). Namely,
the following relations have to be satis ed:

8
3 (U) (UL);
(h ho)=hu  heu;
- 2,1 9 2 1 o
(h u hLUL)— h us+ Egh hLUL éghl‘
Similarly, the 2-wave is an entropy-satisfying shock wave if:
8
3 (Ur) U);
(b h)=hrur hu;

}ghz:

(hrur  h u )= hgu3 + %ghg h u? 5

Thanks to these lemmas, the following result holds.

Proposition 1.4. The natures of the waves of the Riemann problem (1.16) are given as follows.

e The 1-wave is:

— ararefaction wave if h ,u u_ andu = uSL ZpQ pW pT :
g 1 1

— a shock wave H h ,u u. andu = u_ = —+ — (h h)
2 h. h

* The 2-wave is:

— ararefactonwavei  hg,u ur andu = usR oP g pﬁ pW :
g 1 1

— a shock wave H hr,u Ug andu = ugr = —+ — (hg h).
2 h hr

Proof. The proof of this result relies on using Lemma 1.2 and Lemma 1.3 to determine the
necessary conditions for the nature of each wave. The computations involved are straight-
forward but quite tedious, and we do not write them here; the reader is referred to [112] for

instance. O
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The unknown intermediate state W = Y(h ;h u ) can now be computed by arguing
Proposition 1.4 to exhibit the two relevant relations linking W to the known states W and
WR. However, this computation cannot be done analytically in the general case, and a root-
nding algorithm, such as Newton's method, is required. In addition, the knowledge of this
value does not provide enough information to get the full Riemann problem solution. Indeed,
the velocities of the shock wave and the rarefaction wave still have to be determined. We also
need to provide a value of both h and u within the fan of a rarefaction wave.

The velocity of the shock wave is given by the Rankine-Hugoniot conditions (1.18). There-
fore, if the 1-wave is a shock wave, then its velocity 1 is given as follows:

_a q .
1T (1.19)

Similarly, if the 2-wave is a shock wave, then its velocity » is given by:

-® 9. (1.20)

Regarding the rarefaction waves, we introduce the notion of headand tail of the wave.
The head of a rarefaction wave is the part of the fan that travels the fastest, while its tail is
the part that travels the slowest. If the 1-wave is a rarefaction wave, recall from Lemma 1.2
that  (Up) (U). In this case, the head of the wave travels at the velocity (U.)
and its tail travels at (U ). Similarly, if the 2-wave is a rarefaction wave, then we have

+(U) + (UR): the head of the wave travels at . (Ur), while its tail travelsat (U ). See
Figure 1.4 for a Riemann problem where the 1-wave is a rarefaction wave and the 2-wave is a
shock wave.

Figure 1.4 — Riemann problem for the shallow-water equations, in the case where the 1-wave
is a rarefaction wave and the 2-wave is a shock wave. The wave speeds are displayed.

To achieve the full determination of the Riemann problem solution, we conclude by com-
puting the value of the solution within the fan formed by the rarefaction wave. This solution is
self-similar, i.e. it only depends on  := x=t. Note that, in the fan, the information U = t(h;u)
travels with the speed  (U) fora 1-wave and . (U) for a 2-wave. Therefore, within the fan,
we have = x=t = (U). In addition, recall that the Riemann invariants (1.15) are constant
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in this fan. The combination of these two statements allow to uniquely determine the value of
U within the fan. If the 1-wave is a rarefaction wave, the value of U( ) within the fan, denoted
by U1 = Y(hy;uy), reads as follows:
8
2h(y= 2 ou+2 gn
1() og Ut gh. ;

S D (1.21)
Su( )=+ gh():
Similarly, for a 2-wave, the value of U,( ) is de ned by:
8
1 P — 2
Ehz()zg—uR 2 ghg ;
S g D (1.22)
Sup( )= gha( ):

We conclude this section by presenting four examples of exact Riemann solutions. The rst
solution is made of two rarefaction waves, i.e. both the 1-wave and the 2-wave are rarefaction
waves. The second one is made of two shock waves, while the third one is a dam-break
solution, with the 1-wave being a rarefaction wave and the 2-wave being a shock wave. The
fourth and last one deals with the degenerate case of a dry dam-break, where the water height
of either the left or right state is zero.

Two-rarefaction case

The initial data of the rst example is given as follows:

I [ ! [

b= " = Y and ug= ™= L. (1.23)
up 3 URr 3

Physically speaking, this initial condition represents a body of water with uniform height,

but with two streams of water moving away from one another. Hence, the exact solution

consists in two rarefaction waves, linking the left and right states to an intermediate state

(computed using Proposition 1.4). Note that, in this speci ¢ case of two rarefaction waves,

the intermediate state U can be computed exactly, to get:

8

1 p— p— 2
2h = @ u Uur+?2 gh + ghr ;
> 1 _ b — —
U= E(UL"'UR) pg hr hy

Equipped with this intermediate state, the exact solution of the Riemann problem (1.16) with
the initial condition (1.23) is given as follows, with = x=t:

Ur(;UL;UR)= _U if (U)< < L(U); (1.24)
Ua() if +(U)< < +(URr);

" Ur if > +(UR);

U i< (W)
%ul() it (U< < (U);
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where U1( ) and Ux( ) are respectively given by (1.21) and (1.22), and the eigenvalues (U)
are de ned by (1.11). The exact height and velocity are displayed on Figure 1.5 for t = 0:1s
and x 2 [ 1;1]. In addition, we display the water height and the velocity in the (x;t)-plane
fort 2 [0;0:1]and x 2 [ 1;1]on Figure 1.6 and Figure 1.7, respectively.

Figure 1.5 — Exact solution (1.24) of the Riemann problem (1.16) — (1.23) at time& = 0:1s. This
solution is made of two rarefaction waves.

Figure 1.6 — Exact solution (1.24) of the dam-break problem (1.16) — (1.23). Representation of
the water height in two space dimensions, in the (x;t)-planefort 2 [0;0:1]and x 2 [ 1;1].
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Figure 1.7 — Exact solution (1.24) of the dam-break problem (1.16) — (1.23). Representation of
the velocity in two space dimensions, in the (x;t)-plane fort 2 [0;0:1]and x 2 [ 1;1].

Two-shock case

Concerning the second example, we take the following initial data:

! ! ! !
h 1 h 1
U= =& = and Ug= ~ = : (1.25)
uL 2 UR 2
Such initial data produces two discontinuities, since the two streams of water are coming into
contact with each other. The exact solution hence involves two shock waves, linking the left
state and the right state to the intermediate state U , whose computation uses Proposition 1.4.

This exact solution is hence given by:

8
UL if < g
Ur( ;UL;UR) = BU if 1< < o (1.26)

“Ur if > g

where 1 and  are respectively given by (1.19) and (1.20). This exact solution is displayed
on Figure 1.8 fort = 0:1sandx 2 [ 1;1]. The exact solution in the (x;t)-plane, for t 2 [0; 0:1]
and x 2 [ 1;1],is depicted on Figure 1.9 (water height) and on Figure 1.10 (velocity).

Wet dam-break

The third example is a wet dam-breakinitially, a large quantity of water is held by a dam
to form an arti cial lake. At t = 0s, the dam breaks, thus liberating the water and making
it ow downstream, where a smaller (but nonzero) quantity of water is present. Before the
dam breaks, the water is at rest; it starts moving as soon as the dam breaks. Therefore, the
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Figure 1.8 — Exact solution (1.26) of the Riemann problem (1.16) — (1.25) at timd = 0:1s. This
solution is made of two shock waves.

Figure 1.9 — Exact solution (1.26) of the dam-break problem (1.16) — (1.25). Representation of
the water height in two space dimensions, in the (x;t)-plane for t 2 [0;0:1]and x 2 [ 1;1].

following initial data corresponds to a wet dam-break situation:

! ! ! !
h 5 h 1

U= & = and Ug= " = : (1.27)
uL 0 URr 0

Applying Proposition 1.4, we show that the solution of the Riemann problem (1.16) with the
initial data (1.27) is made of a rarefaction wave traveling left and a shock wave traveling right,
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Figure 1.10 — Exact solution (1.26) of the dam-break problem (1.16) — (1.25). Representation of
the velocity in two space dimensions, in the (x;t)-plane fort 2 [0;0:1]and x 2 [ 1;1].

as follows:
U. if < (UL);

Ug() if (U)< < (U);
it (U)< < 3

Ur if > o

Ur( ;UL;UR) = (1.28)

VWAV AW 00
C

This structure corresponds to the ones sketched on Figure 1.3 and Figure 1.4. The exact so-
lution is displayed on Figure 1.11 for t = 0:1sand x 2 [ 1;1]. In addition, Figure 1.12 and
Figure 1.13 respectively display the exact height and the exact velocity in the (x;t)-plane for
t2 [0;0:1]and x 2 [ 1;1]. This gure may be compared to Figure 1.3 and Figure 1.4.

Figure 1.11 — Exact solution (1.28) of the dam-break problem (1.16) — (1.27) at timg = 0:1s.
This 1-wave is a rarefaction wave and the 2-wave is a shock wave.
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Figure 1.12 — Exact solution (1.28) of the dam-break problem (1.16) — (1.27). Representation of
the water height in two space dimensions, in the (x;t)-planefort 2 [0;0:1]and x 2 [ 1;1].

Figure 1.13 — Exact solution (1.28) of the dam-break problem (1.16) — (1.27). Representation of
the velocity in two space dimensions, inthe (x;t)-plane fort 2 [0;0:1]and x 2 [ 1;1].

Dry dam-break

For the fourth and last experiment, we turnto a dry dam-breakThis experiment consists in
considering the degenerate case of a vanishing water height. To achieve a dry dam-break, we
take the following initial conditions for the Riemann problem (1.16):

! ! ! !
h 1.5 h 0
U= =& = and Ug= ~ = : (1.29)
upL 0 UR 0
Such a Riemann problem is solved by taking the limit of the solution to the wet dam-break
(i.e. the previous example) when hg tends to 0. This process is explained in [57], where the
authors exhibit Ritter's solution [134]. From [57], the exact solution of the Riemann problem
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(1.16) with the initial data (1.29) reads as follows:

8 p
3U if < ghe;
Un( ULiUR) = L B() i Pon< < 2 g (1.30)

P —
“Ug  if > 2 gh

where the intermediate state B is given by:

0 A
4 P
_ ghL _
bO=§% - ° §
3 gh +

In this case, the 1-wave is a rarefaction wave and the 2-wave is a shock wave. In addition,
h vanishes, while u 6 0. Sinceh = hgr = 0, the intermediate water height and the right wa-
ter height are identical. Hence, for the water height, the 2-wave is a shock wave between the
same water heights, and is therefore not visible. On the contrary, u 6 ugr, so both a rarefac-
tion wave and a shock wave are visible on the water velocity. Finally, one can show that the
shock wave travels at the same velocity as the tail of the rarefaction wave. As a consequence,
the constant intermediate state U is never actually used, as shown by the expression (1.30) of
the exact solution.

The exact solution is displayed on Figure 1.14. We also display the exact solution in the
(x;t)-plane, on Figure 1.15 and on Figure 1.16, fort 2 [0;0:1]and x 2 [ 1;1]. To compute the
velocity in dry areas, we have assumed that it vanished as soon as the water height vanished.

Figure 1.14 — Exact water height (left panel) and exact velocity (right panel) (1.30) of the dam-
break problem (1.16) — (1.29) attimet = 0:1s. The 1-wave is a rarefaction wave and the 2-wave
is a shock wave (not visible for the water height).

1.1.3 Algebraic study of the inhomogeneous system

We now turn to studying the shallow-water model equipped with two source terms, the
topography source term and the Manning friction source term. The system is governed by
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Figure 1.15 — Exact solution (1.30) of the dam-break problem (1.16) — (1.29). Representation of
the water height in two space dimensions, in the (x;t)-planefort 2 [0;0:1]and x 2 [ 1;1].

Figure 1.16 — Exact solution (1.30) of the dam-break problem (1.16) — (1.29). Representation of
the velocity in two space dimensions, inthe (x;t)-plane fort 2 [0;0:1]and x 2 [ 1, 1].

the equations (1.1), as follows:

8
2@h+ @(hu)=0;

S , 1, s (1.32)
T@hu)+ @ huc+ égh = gh@Z kujujh

We recall that the smooth function Z represents the shape of the bottom topography and
depends only on the space variable x.

Now, we exhibit the eigenvalues of the Jacobian matrix of the system and the nature of
the characteristic elds, to determine the consequences of the source terms presence in the
eqguations (see [109, 110, 12] for instance).
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A change of variables

To perform the algebraic study of the system, we introduce the function Y such that
Y (x) := x. Therefore, the function Y satis es:

@Y =1 and @Y =0:
Regarding the topography function, we also note that
@Z =0:
As a consequence, the shallow-water system with source terms (1.31) rewrites as follows:

8
%@h+ @(hu) =0;
@bhu)+ @ hu2+%gh2 = gh@Z kujuih? @Y;

(1.32)
@z =0;
@Y =0:
For smooth solutions and positive water heights (i.e. h > 0), the system (1.32) reads:
8
%@h+ u@h+ h@Qu =0;
@Qu+ g@h + uQu + g@Z + kujuih! @Y =0;
J J JH (2.33)
S @z =0;
T @Y =0:

Hence, the shallow-water equations (1.31) rewrite under the condensed form

@uU + A(U)@QU =0;
where U and A(U) are given by:
0 1 0 1
h u h 0 0
k . .hl

U= UE and A(U)= g A g Kuy

0 0 0 0

Y 0 0 0 0

Hyperbolicity of the system

Straightforward computations show that the matrix A(U) possesses the following eigen-
values:

(U)= u p%; (U)=0 ; ((U)=0 ; +(U)=u+p@: (1.34)

Note that 0 is a double eigenvalue and that all four eigenvalues lie in R. To conclude on
the hyperbolicity of the system (1.33), we compute the eigenvectors of A(U). The eigenvec-
tors associated to the eigenvalues (U) are denoted by R (U). There are two additional
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eigenvectors associated to {(U) and ¢ (U). They are denoted by R;(U) and R¢ (U), and they
respectively correspond to the contributions of the topography and the friction. The eigen-
vectors are given by:

0 1 0 1 0 1
) h gh kujujh?
gh gu kuZjujh? E
R (U)= , Ry(U) = and Rf(U)= : 1.35
()%OE t()%gh UZE f()%} 0 (1.35)
0 0 gh u?

These eigenvectors form a basis ofR* if u 6 P gh. Hence, the Jacobian matrixA(U) is diag-
onalizablein Rif u 6 P gh. Therefore, under this condition, the system (1.33) is hyperbolic.

Nature of the characteristic elds

Equipped with the hyperbolicity of the system, the next step in the study of its algebraic
properties is the determination of the nature of its characteristic elds.

The eigenvectorsR (U) associated to the eigenvalues (U) are de ned by (1.35). Using
De nition 1.1, the nature of the eld associated to (U) is given by:

8U2 uy;ru (U) R (U)=§pgh§0:

Therefore, the characteristic elds associatedto  (U) are GNL. As a consequence, the waves
associated to these elds will either be rarefaction waves or shock waves.

For the eigenvalues ((U) and ¢(U), notethatr y ((U)=0 andr y ¢(U) =0. Hence,
from De nition 1.1, the characteristic elds associated to these eigenvalues are Linearly De-
generate (LD). A linearly degenerate eld connects the left and right states with a contact dis-
continuity. This type of discontinuity is governed by the Rankine-Hugoniot conditions, like
a shock wave. In addition, Riemann invariants also apply to contact discontinuities: these
guantities are studied in the next paragraph.

Riemann invariants

From now on, the waves associated to the eigenvalues (U) and . (U) will respectively
be labeled the 1-waveand the 2-wave In addition, the waves associated to {(U) and ¢ (U)
will be respectively called the t-waveand the f-wave The goal of this paragraph is to study the
invariant quantities across the four waves.

First, we study Riemann invariants associated to  (U). To ensure that these waves do
not have a vanishing velocity and that the system is hyperbolic, we assume that u 6 P gh.
The following result states these Riemann invariants.

Lemma 1.5. The Riemann invariants for the 1-wave are:

u+2p®; Z Y
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In addition, the Riemann invariants for the 2-wave are:
p
u 2 gh ; Z ; Y:

Proof. Recall the expression (1.35) of the associated eigenvectors. Since the third and fourth
components of R (U) are zero, the de nition (1.13) of the Riemann invariants ensures that
both quantities Z and Y are Riemann invariants for the 1-wave and the 2-wave. Then, the
third Riemann invariant is governed by (1.14). Straightforward computations prove that this
third Riemann invariantis u+ 2" ghforthe 1-wave and u 2 gh for the 2-wave. The proof
is thus achieved. 0

Second, we turn to the t-wave, associated to the eigenvalue {(U) = 0. For this wave, the
Riemann invariants are given by the following result.

Lemma 1.6. The Riemann invariants for the t-wave, i.e. the wave associated to the topography source

term, are given by:
2

hu : %~+mh+z) 2 (1.36)

Proof. Recall the expression (1.35) of the eigenvectoR;(U) associated to {(U). Note that the
fourth component Rg(U) of this eigenvector is zero. Therefore, after (1.13),Y is a Riemann
invariant for this wave. Now, we determine the other two Riemann invariants. They satisfy:

dul  duz _ dud®
RI(U) ~ RAU)  R¥U)’

or, equivalently,
dh du dz

gh gu gh w?

(1.37)

The rst equality of (1.37) rewrites as follows:
d(hu)=0:

Hence, the dischargeq = hu is a Riemann invariant for t-wave.
A third Riemann invariant is now determined. The second equality of (1.37) rewrites:

g 3 dh+ gdz =0:
Using the constant discharge, we show that the following quantity is a Riemann invariant for

the t-wave: )

u
- +9h+2).

All three Riemann invariants have been determined, and the proof is achieved. O

Third, we focus on the f-wave, associated to ; (U). The following result gives the Rie-
mann invariants for this wave.
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Lemma 1.7. The Riemann invariants for the f-wave, i.e. the wave associated to the friction source

term, are given by:
h +2 oh 1t -
> q 1 + kqqY ; Z: (2.38)

qa . 9

Proof. The eigenvector Rt (U), associated to the f-wave, is given by (1.35). Note that its third
component R3(U) is zero. As a consequence, arguing (1.13) yields thatZ is a Riemann invari-
ant for the f-wave. The other Riemann invariants satisfy:

dut _ du?z _ du*
RHU)  R?(U) R{AU)

The above equalities rewrite as follows:

dh _ du _ kujujh? .

The rst equality of (1.39) yields
d(hu)=0:

Therefore, a Riemann invariant for the f-wave is the discharge g= hu.
Using this Riemann invariant, the second equality of (1.39) rewrites as follows:

(gh**  o?h 2?)dh+ kaqjgidY =0:

Hence, the last Riemann invariant for this wave is the following:

h+2 1

h
2 Ly
7 q 1+kq]qu.

g

The three Riemann invariants for the f-wave have thus been determined, which completes
the proof. O

As a consequence of Lemma 1.6 and Lemma 1.7, we notice that the discharge is constant
across the stationary contact discontinuity associated to the double eigenvalue 0, since itis a
Riemann invariant for both the t-wave and the f-wave.

1.2 Steady state solutions

In the previous section, we have exhibited the algebraic properties of the inhomogeneous
shallow-water equations. Now, in this section, we study the steady state solutions, which
are speci ¢ solutions of the shallow-water system with the source terms of topography and
Manning friction whose time derivative is zero.

Recall that the inhomogeneous shallow-water system is governed by (1.1). As a conse-
quence, a solution W = t(h;q) of the shallow-water equations with both topography and



46 CHAPTER 1. THE SHALLOW-WATER EQUATIONS

Manning friction is a steady state solution if is satis es the following identities:

8
2 @q=0;
2 (1.40)
>@ T+ %th = gh@Z kdigh
The rst equation of (1.40) immediately yields that q = cst. This constant value is denoted,
throughout the whole manuscript, by q. This very important remark greatly simpli es the

study of the steady states, since only the second equation of (1.40) is not trivial.

Therefore, to exhibit the steady states, the second equation of (1.40) is studied in the fol-
lowing three cases:

1. rst, in Section 1.2.1, we consider a vanishing friction contribution, by taking k =0;

2. second, in Section 1.2.2, we consider a vanishing topography contribution, by enforcing
a attopography Z = cst, thus ensuring that @QZ =0;

3. third, in Section 1.2.3, we give some comments on the steady state solutions with both
friction and topography.

1.2.1 Topography steady states

In this section, we focus on the well-known steady state solutions of the shallow-water
equations with topography only (see for instance [44]). Such steady states are obtained by
neglecting the friction contribution in (1.40), i.e. by taking k = 0. As a consequence, these
solutions are governed by the following set of equations:

8
2@q=0;
> (1.41)
>@ L+l = ghez:
h 2
Hence, as expected, the steady discharge is constant, and its value is denoted bygy. Therefore,
for o 2 R, the topography steady states are completely described by the following equation,

which links the unknown water height h to the known topography Z:

%, 1 - _o.
@ o + Egh + gh@Z =0: (1.42)

The focus of this section is the study of the equation (1.42). This study is well-known, but
it is recalled here to introduce several techniques which will be instrumental to the study of
the steady state solutions for the friction source term. We begin by deriving smooth steady
states for a nonzero water height. Afterwards, we give a word on smooth steady states with
a dry area, i.e. an area whereh = 0. Finally, the case of a discontinuous steady state solution
is brie y discussed.



1.2. STEADY STATE SOLUTIONS 47

1.2.1.1 Smooth steady states
The smooth steady states with gg = 0 consist in the lake at ressteady state, given by:
h+ Z =cst: (1.43)

This steady state solution is well-known, and it has been widely studied (see for instance
[87, 26, 74, 19, 7).

We now assume that ¢y 6 0 and study the equation (1.42) in order to exhibit the moving
steady stated~or smooth h > 0 and smooth Z, (1.42) rewrites as follows:

s
@ 5zt 9h+2) =0; (1.44)

which is nothing but a statement of Bernoulli's principle.
We make here an interesting remark. Note that gy = hu, where both h and u depend on x.
As a consequence, the equation (1.44) rewrites:

U2
§+ glh+ Z)=cst:

This uniform quantity is usually called the total head(see [86] for instance); we denote it by
E. This equation describes the moving steady state solutions of the shallow-water equations
with topography. The same equation, as well as the uniformity of the discharge, described
the Riemann invariants (1.36) across the contact discontinuity associated to the topography
source term. As a consequence, Bernoulli's principle governs both the steady state solutions
and the Riemann invariants. We also remark that the total head E is closely related to the
entropy ux & de ned by (1.8). Indeed, we have d= gE.

We now study the equation (1.44) with respect to h in order to obtain a characterization
of the steady water height h associated to a uniform discharge go and a given topography
function Z. Such a study is present in [44] in the context of Riemann invariants, and in [123]
for steady states. Throughout the rest of this section, h is assumed to be a positive function of
X.

Let xg 2 R. We denote by hg and Zg the respective values h(xg) and Z(xg) of the water
height and the topography at the point Xg. Integrating the equation (1.44) on [Xg; x] immedi-
ately yields:

% % .
W+g(h+Z) 27h% g(ho+ Zo)=0; (1.45)

where h = h(x) and Z = Z(x). Recall that the smooth function Z is assumed to be known.
Hence, the knowledge of the water height hg at the point xg and of the uniform discharge
(o is enough to determine the steady water height h at any point x, provided the equation
(1.45) admits at least one solution. Determining the existence and uniqueness of a solution to
(1.45), as well as the properties of such a solution, is therefore the focus of the remainder of
this section.

For the sake of simplicity in the notations, we now introduce the function , de ned as
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follows:

% G
(h;Z;dosho; Zo) == 5 5+ 9(h+2Z) 5 g(ho+ Zo); (1.46)
2h 2h3

such that (1.45) rewrites
(h;Z;q0;ho;Z0) =0 (1.47)

The function thus depends on the unknown steady water height h at point x, as well as on
the parameters Z; do; ho; Zo, which are assumed to be known.

The study of solutions to (1.47) is now performed. As a rst step, we seek the variations
of the function h 7! (h;Z;qo;ho;Zo). To that end, we differentiate  with respect to h, as
follows:

2
gﬁh;Z;qo; ho; Zo) = % +0: (1.48)

As a consequence, the derivative of with respect to h vanishes for h = h¢, with

2
he = Og : (1.49)

From (1.48), we deduce the following result.
Lemma 1.8. With h. de ned by (1.49), the function de ned by (1.46) satis es the following proper-
ties:
* h7! (h;Z;qo;ho;Zo) is a strictly decreasing function fdr < h ¢;
* h7! (h;Z;q0;ho; Zo) is a strictly increasing function foh > h ..
The function therefore admits a single extremum, locatett at h.. Moreover, this extremum is a

minimum.

Now, we determine the existence and uniqueness of solutions to the equation (1.47) (or,
equivalently, (1.45)). To that end, we study the sign of . After straightforward computations,
the following result is proven.

Lemma 1.9. The function de ned by (1.46) admits the following limits:
* JNim - (hiZiqoihoiZo) =+ 1
e lim  (h;Z;do;ho;Zo) =+ 1 .
h! +1

In addition, the following evaluation ofat h. (de ned by (1.49)) is veri ed:

&

3

o(Z) = (he;Z;dos hos Zo) = > 2 2 +9(Z Zo ho):
c 0

Before combining Lemma 1.8 and Lemma 1.9 to prove a result on the existence of roots of
the function , we give examples of situations that may be encountered. For these examples,
the quantities take the following values:

. qozp@,sothathczl;
. h0: hCzl;
e Zp=0:75
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As a consequence, Lemma 1.9 yields, after straightforward computations:
(Z2)=9(Z Zo):

From Lemma 1.8, the function reaches its minimum for h = h¢. The above equality shows
that (Z) Oifandonlyif Z Zg. Therefore, the number of zeros of the function is tied
to the sign of (Z). To highlight this property, we display on Figure 1.17 the function for
Z 2f0:7;,0:75; 0:8g.

Figure 1.17 — Sketches of (h; Z; P 0;1;0:75) for h 2 [0:75; 1:25] and for different values of Z.
Red curve: Z = 0:8, no zero for . Blue curve: Z = 0:75, unique zero for . Green curve:
Z =0:7, two distinct zeros for

Equipped with Lemma 1.8 and Lemma 1.9, the properties inferred from the example pre-
sented in Figure 1.17 are summarized in the following result.

Proposition 1.10. Assumeh > 0O andq 6 0. Then,h, > 0 according to (1.49), and following
properties hold.
(i) If ¢(Z) > 0, then there is no solution to the equation (1.47).
(i) If <(Z) = 0, then the equation (1.47) admits a unique solution. This soluttors hg, is a
double root of the functioh 7! (h; Z; ho; go; Zo).
(iii) If ¢(Z) < 0, then the equation (1.47) admits two distinct solutiohg,, 2 (0; h¢) andhgyy 2
(he;+1).
Proof. The proof of this result relies on using the properties of  we have obtained above.
From Lemma 1.8, the function admits a unique minimum, reached for h = h¢. Moreover,
from Lemma 1.9, the function tends to in nity as h tends to 0" or in nity. Therefore, the
number of zeros of depends on the sign of its minimum value (Z) = (hc; Z; qo; ho; Zo).
Equipped with these results, the proofs of (i), (i) and (iii) are obvious. The proof is thus
achieved. ]
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Note that the three assertions of Proposition 1.10 respectively correspond to the red, blue
and green curves of Figure 1.17.

In the third assertion of Proposition 1.10, we have labeled the two solutions as hs,p and
hsup. These denominations are connected to the Froude number, de ned below.

De nition 1.11. The Froude numbeis a dimensionless quantity de ned by:
Fr= %; (1.50)

where u is the velocity of the water and ¢ = P gh is the sound speed. On the one hand, the
ow is called supercritical(or torrential) if Fr > 1, which corresponds to a large water velocity

and/or a small water height. On the other hand, it is called subcritical(or uvial ) if Fr < 1, i.e.
for a small water velocity and/or a large water height.

In the current context of a steady state solution, the Froude number reads:

_ A% _ he 2
thjﬁ— 5o (1.51)

As a consequence,h < h . corresponds to a supercritical ow, while h > h corresponds to
a subcritical ow. The quantity h¢ is hence called the critical height This remark is the basis
for the notations hsyp and hgyy, introduced in Proposition 1.10 to label the two roots of the
function , sincehgyp 2 (0; he) is a supercritical solution and hgy, 2 (he; +1 ) is a subcritical
solution.

Equipped with Proposition 1.10 and the above remark, we state the following corollary of
Proposition 1.10.

Corollary 1.12. Assumeh > Oandgy 6 0. Thus,h; > 0 according to (1.49). LeZ; be a critical

topography value, given by:
he h?

Zo= Zo+ ho+ 22 3
c 0 0 2 h(z)

The following properties, concerning the solutions of (1.47), hold.
() If Z > Z , then there is no solution to the equation (1.47).
(i) If Z = Z, then the equation (1.47) admits a unique solution. This solutior, he, is a double
root of the functiorh 7! (h; Z; ho; 0o; Zo).
(i) If Z < Z ¢, then the equation (1.47) admits two distinct solutiohg,p 2 (0; hc) and hgyp 2
(he;+1).

Proof. This result directly follows from noting that  (Z) > Oifandonlyif Z > Z .. Thus, the
proof is achieved by invoking Proposition 1.10. O

Remark 1.13. Assume that h > Oand h 6 h.. From (1.42), the derivative of h with respect to
X reads @
z
@h = R he
Therefore, if the solution is subcritical, i.e. h > h, then the sign of @h is the opposite of
the sign of @QZ, whereas the sign of @h is that of @Z if the solution is supercritical. These
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results are in accordance with the subcritical and supercritical experiments presented in [86]
for instance.

Both Proposition 1.10 and Corollary 1.12, as well as Remark 1.13, are illustrated with the
following example. This example consists in exhibiting a solution to (1.47) in the context of
Figure 1.17, i.e. with gy = P 0, hop =1 and Z(xg) = 0:75. Note that, with this value of ¢y, we
have hg = he = 1, and Corollary 1.12 yields Z, = Zg = 0:75. Hence, a steady state will exist
ifand only if Z(x) 0:75. In order to check this property, we take the following topography
function:

1
Z(x)= 21+cos2 (X Xo)+ ik

With xg = 0:75, this topography function satis es the required property that Z(xp) = 0:75.
Equipped with the topography function, we now solve (1.47), using Newton's method, for
X 2 [0:65; 1:35]. The results are displayed on Figure 1.18.

Figure 1.18 — Solutionsh(x) of (1.47) (where they exist). Full line: subcritical solution. Dotted
line: supercritical solution. Gray area: topography.

For x 2 [0:65;0:75)[ (1:25;1:35], we have Z(x) > Z .. Hence, after Proposition 1.10 and
Corollary 1.12, the equation (1.47) does not admit a solution on this domain. The results
presented on Figure 1.18 are in good agreement with this conclusion. In addition, the topog-
raphy is decreasing for x < 1, and increasing for x > 1. As expected, both the supercritical
and subcritical solutions exhibit the behavior predicted by Remark 1.13.

We have thus completed the study, for the topography source term only, of smooth steady
state solutions with positive water heights. More examples of steady state solutions will be
provided in Chapter 3.

1.2.1.2 Caseofadryarea

To complete the determination of smooth steady state solutions for the topography source
terms, we now turn to the study of steady states involving dry areas, i.e. areas where the
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water height is zero. The following result characterizes a steady state solution where a dry
area is present.

Proposition 1.14. As soon as a dry area is involved, smooth steady states must be at rest.
Proof. We begin by de ning the kinetic energy in a wet area where h > 0, as follows:

_ 1

E_ZF'

Since we inject a bounded quantity of energy at the initial time, the kinetic energy has to be
bounded, i.e.

kEky < +1:
The above formula yields
2
lim q——Iim E< +1:
ht 0 h ht 0

As a consequence, we necessarily havey = O(IO h) when h tends to 0* . Thus, we immediately
obtain that, if there is some xp 2 R such that h(xp) = 0, then g(xp) = 0. Now, recall from
(1.41) that, for a steady state,@qg = 0. Therefore, forall x 2 R, q(x) = g(xp) =0, i.e. the water
is at rest. We conclude that, as soon as a smooth steady state solution involves a dry area, this
steady state must be at rest. O

This situation of a steady state with a dry area is displayed on Figure 1.19.

Figure 1.19 — Steady state solution with a dry area. The gray area is the topography.

1.2.1.3 Discontinuous steady state solutions

Finally, we give a few words on discontinuous steady state solutions. Such solutions are
piecewise smooth functions W, whose smooth pieces verify the Bernoulli relation (1.44), and
whose discontinuities satisfy the Rankine-Hugoniot relations (see Appendix A), as well as en
entropy condition. We assume that the topography function Z is also piecewise smooth.

In the present context, the Rankine-Hugoniot relations (A.2) read:

8
2 [h]=[d;

2
> = L4 Lo
~ [q = h+zgh.
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However, note that the discontinuities necessarily have to be stationary for a steady solu-
tion. Therefore, their velocity , present in the Rankine-Hugoniot relations, vanishes. As a
consequence, the Rankine-Hugoniot relations rewrite as follows:

8
2[q=0;

2
> o 1. _4.
.h+zgh 0:

In particular, the discharge is constant across the discontinuity.

The entropy inequality, in the presence of the topography source term only, is given by
(1.7) (see [5, 12] for instance). In the current context of a steady state solution, the entropy
inequality (1.7) reads:

@6é(W;z2) 0o

with &(W; Z) given by (1.8).
As a consequence, for a piecewise smooth topography function Z, a piecewise smooth
steady state solution W = !(h; g) satis es the following properties (see [12]):

 the discharge q= @ is uniform throughout the domain;

e if hand Z are smooth, then the Bernoulli relation @ 2052 + glh+ Z) =0 isveried;

« across a discontinuity of h or Z, the water height satis es the following two relations:
— the jump relation Oh‘%+ %gh2 =0;

2
— the discrete entropy inequality % +gh+ 2) 0.

Such an approach has been used in [86] for the shallow-water equations with topography;, to
de ne the transcritical ow with shocksteady state solution.

1.2.2 Friction steady states

After having exhibited steady state solutions for the topography source term in the previ-
ous section, we now turn to steady state solutions for the Manning friction source term only.
To that end, we take k 6 0 and a at topography, i.e. @Z = 0. As a consequence, the steady
state solutions are governed by the following set of equations:

8
2 @q=0;
2 (1.52)
7@ a, }ghz = kgjgh :
h 2
From the rst equation of (1.52), we recover that the discharge must be uniform, and we label
this uniform discharge @, as usual. Equipped with this notation, only the second equation

governs the water height for steady state solutions, as follows:

z 1 i
@ %+§gh2 = koojgjh : (1.53)
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Note that, if gy = 0, the friction source term vanishes, and (1.53) implies that h = cst. This
behavior is to be expected. Indeed, if the water is at rest, there is no bottom friction. Therefore,

from now on, we only consider steady states with gy 6 0, i.e. moving steady states. First,
smooth steady states are studied. Then, we suggest a way to de ne steady states with a jump
discontinuity.

1.2.2.1 Study of smooth steady states

The goal of this section is to study the equation (1.53) with k 6 0, g 6 0 and assuming a
positive smooth water height h(x) > 0. In this case, the equation (1.53) rewrites as follows:

gh 2+ gh* @h+ kgjoj =0; (1.54)
which in turn yields:
h 1 +2
@ o 1 +g 5 + Kopjogpjx  =0: (1.55)

Note that we once again recover the Riemann invariant given by (1.38). Now, we set Xg 2 R,
and we introduce the notation hg = h(xp). The relation (1.55) is then integrated on (Xg; X), to
get:

2
001 h 1 hy! + % h*2 he'? + kaojopj(X Xo)=0: (1.56)

The solutions h of (1.56) represent the water height for steady state solutions. To shorten the
notations, we de ne

® photop s 9 p2 n oy ki - (157
1 0 0 Qj%i(x  Xxo); (1.57)

(h; X; do; Xo; ho) :=
such that (1.56) rewrites
(h;X; do; Xo; ho) =0 (1.58)

The goal is now to nd zeros of the function (h;X; go; Xo; hg). First, we compute the
derivative of  with respect to h, as follows:

gﬁh;x;qO;Xo;hoF gh *+gh™:

Hence, sinceh > 0, the derivative of  with respect to h vanishes for h = h¢, with h; de ned
by (1.49). Note that the same critical height h appears in the previous section, in the case
where only the topography source term was present. The following result therefore holds.

Lemma 1.15. With h; de ned by (1.49), the function de ned by (1.57) satis es the following prop-
erties:
* h7! (h;Xx;qo;Xo; ho) is a strictly decreasing function fdr < h ¢;
* h7! (h;x;0o;Xo; ho) is a strictly increasing function foh > h ..

The function therefore admits a single extremum, locateti & h.. Moreover, this extremum is a
minimum.
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Equipped with the variations of , we now turn to determining the sign of this function
to give existence results for solutions to (1.58) (or, equivalently, to (1.56)). First, we note that
the following limit obviously holds:

lim  (h;x;qo;Xo;hg) =+ 1: (1.59)
h! +1

Then, let -(x) denote the evaluation (0;X; do; Xo; ho) of for h = 0. Concerning -(x), the
following sequence of equalities holds:

1 % ghg i
()= (O G0iXoiho) = hg = ——5 =5+ KGojpi(X o)
o3 o3 (1.60)
1 P .
=ghy - —57 5+ kajoi(x  Xo);

where h¢ is de ned by (1.49). Finally, we denote by  .(x) the value of for h = hg, to get:

2 h3
c(X) = (hg X qo;xoho) = ~(x) hg ! 001 g+‘32
h3 h3
= 00 ghe T 5 (1.61)
Sghc+2
= (X _
® ()

We remark that ¢(x) < -(x). This was expected from Lemma 1.15, since is a strictly
decreasing function on (0; h¢). The following result summarizes the equations (1.59), (1.60)
and (1.61).

Lemma 1.16. With h¢ given by (1.49), the function de ned by (1.57) admits the following evalua-
tions:

h hg
1 +2

N 3ghe*?
(he; X; do; Xo; ho) = ~(X) W<

+ kaojooi(x  Xo),

e ~(x):= (0;%;qo;Xo;ho) = ghy *

o () “(x),

as well as the following limit

h!"Tl (h;X; go;Xo; ho) =+ 1 :

To better understand Lemma 1.15 and Lemma 1.16, we now present sketches of the func-
tion for a speci c set of variables. We take the following values:

¢« = P g=8, so thath, = 0:25
e Xo=0:75

As a consequence, Lemma 1.16 yields:

x0) and (= Fx xo)

. _ 39 . +2 @
(X) = —————-(0:25) X 64

( 1H( +2) 64
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Recall from Lemma 1.15 that the function reaches its minimum for h = h;. The number of
zeros of he function  is therefore related to the signsof - and .. This property is highlighted
by Figure 1.20, where is displayed for x 2 f 0:7;0:75;0:8;0:85gand k = 1.

Figure 1.20 — Sketches of (h;x; P g=8; 0:75;0:25) for h 2 [0; 0:41] and for different values of
X. Red curve: x = 0:7, no zero for . Blue curve: x = 0:75, unique zero for . Green curve:
x = 0:8, two distinct zeros for . Cyan curve: x = 0:85, unique zero for

The next result summarizes the conditions for the function  to possess one or more zeros,
and thus for one or more solutions of (1.58) to exist.

Proposition 1.17. Assumeh > Oandg 6 0. Thus,h; > 0 according to (1.49), and the following
assertions hold.

@) If <(x) > 0, then there is no solution to the equation (1.58).

(i) If <(x) = 0, then the equation (1.58) admits a unique solution. This soluttors hg, is a
double root of the functioh 7! (h; X; do; Xo; ho).

(i) If ¢(x) < Oand -(x) > O, then the equation (1.58) admits two distinct solutiohg,, 2
(0;he) andhgyp 2 (he; +1 ).

(iv) If ¢(x) < Oand -(x) O,thenthe equation (1.58) admits a unique solutiep, 2 (he;+1 ).

Proof. The proof of this result relies on using Lemma 1.15 and Lemma 1.16.

From Lemma 1.15, the function reaches its unique minimum . for h = h¢. The proofs
of (i) and (ii) are therefore immediate.

If ¢ < 0, thereis atleast one zero of locatedin (h¢;+1 ). The number of zeros of now
depends on the value of -(x) = (0O;X; go; Xo; ho), given by Lemma 1.16.
— Ontheone hand, if - > 0, thenthe function admits another zero, located in (0; h¢).
— Onthe other hand, if - < 0, then the function does not admit another zero.
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— Finally, if - = 0, then (0;X;qo;Xo;hg) = 0, i.e. h = 0 is a solution to (1.58). However,
this solution is not admissible since we have assumed h 6 0 in order to proceed with the
previous computations.

The assertions (iii) and (iv) are thus proven, which concludes the proof. O

Note that the four assertions of Proposition 1.17 respectively correspond to the red, blue,
green and cyan curves of Figure 1.20.

The same remark as in the topography case can be made here. Indeed, the Froude num-
ber is still de ned by (1.50) in the general case and by (1.51) in the current case of a steady
state solution. We have again labeled the two solutions of (1.58) as hgyp and hgp, since they
respectively correspond to a supercritical ow and a subcritical ow.

We now determine conditions on x for the existence of solutions to (1.58) (or, equivalently,
of zeros of the function ).

Corollary 1.18. Assumeh > Oandg 6 0. Thus,h. > Oaccording to (1.49). We de ne the following

limit value of the position:

ho* 1 h3 1

Xy = Xo+ :
YT K, +2ng 1

where ¢ = sgn(gp) denotes the sign af, i.e. the direction of the steady water ow. We also de ne
the following critical position:

1 11
( 1 +2)k ohd
1 3he 1
ko( 1) +2)

Xc = Xo + ( Dhy™® ( +2)h3h, ' +3h,*?

Equipped withx, andxc, the following properties hold.
(i) If ox> oXc, then there is no solution to the equation (1.58).

(i) If ox = oXc, then the equation (1.58) admits a unique solution. This solutios, he, is a
double root of the functioh 7!  (h;X; do; Xo; ho).

(i) If ox< oxcand ox> oXy, then the equation (1.58) admits two distinct solutiohg,, 2
(0; he) andhgyp 2 (he; +1 ).
(iv) If ox < oxcand ox oXu, then the equation (1.58) admits a unique solutiog, 2
(he;+1).
Proof. This result is a direct consequence of Proposition 1.17. Indeed, note the following rela-
tions, which are obtained by performing straightforward but tedious computations:
e ¢(x)> Oifandonlyif ox> oX;
e +(x)> Oifandonlyif ox> oXg.

Arguing Proposition 1.17 then proves Corollary 1.18. O

Remark 1.19. The identity (1.54), characterizing the smooth steady states, rewrites:

2
gh 2 %+h3 @h= Kkopjpi:
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Now, recall the de nition (1.49) of h¢, and assume thath > 0and h 6 h.. The above relation
rewrites as follows:

%  Kjqj
h= :
@ h3 h3gh 2
Therefore, the sign of @h is that of go(he h). For instance, if g < 0, then the subcritical
solution (h > h () is increasing, while the supercritical solution ( h < h ;) is decreasing. As a
consequence, since both subcritical solution and supercritical solution are strictly monotonic,
they are bijective on their respective domains.

We conclude this section on smooth steady states for the friction source term with an
example, to illustrate Proposition 1.17, Corollary 1.18 and Remark 1.19. For this example, we
follow the steady state presented on Figure 1.20 and we take ¢y = P g=8 < 0. Therefore, we
have he = 0:25and we take hg = he = 0:25. As a consequenceX. = Xg from Corollary 1.18,
and we set xg = 0:75. In addition, we have X, > X . The solutions h(x) of (1.58), obtained
with Newton's method, are displayed on Figure 1.21 for x 2 [0:7;2x, Xcandk=1.

Figure 1.21 — Solutionsh(x) of (1.58) (where they exist). Full line: subcritical solution. Dotted
line: supercritical solution.

We observe on Figure 1.21 that the solutions of the equation (1.58) indeed follow the pat-
tern of existence and uniqueness predicted by Proposition 1.17 and Corollary 1.18. In ad-
dition, the conclusions of Remark 1.19 are veri ed: here, gu < 0, and we observe that the
subcritical solution is indeed increasing, while the supercritical solution decreases. This ex-
ample concludes this section on friction-only smooth steady states.

1.2.2.2 Considerations on discontinuous steady states

We have obtained the general form of smooth steady states for the shallow-water equa-
tions with friction and at topography, respectively given by the subcritical and supercritical
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solutions. Let us underline that there is no steady state solution as long as go(Xx Xg) > O.
However, there exists an in nity of subcritical and supercritical smooth steady states that are
solution to (1.58), provided the initial conditions Xxg and hg are chosen differently. Now, we re-
mark that, from these smooth steady states, it is possible to de ne discontinuous solutions of
(1.52). The remainder of this section is devoted to de ning such non-smooth steady states. In
order to exhibit relevant discontinuous steady states, we need to nd admissible discontinuities
connecting any two smooth solutions, i.e. discontinuities that verify the Rankine-Hugoniot
relations and the entropy inequality. The Rankine-Hugoniot conditions have been presented
in Appendix A, and the entropy inequality is given by (1.6).

We consider a steady state solution h, subcritical or supercritical, which we try to link to
another steady state solution h, obtained by solving (1.56) with a different initial condition.
In addition, we assume that i 6 h, to avoid the degenerate case of a discontinuity linking
the same two states. For the sake of simplicity in the forthcoming developments, we choose
that h(xp) = hg = hg, i.e. his solution to (h;X; qo; Xo; he) = 0, with  de ned by (1.57). In
addition, we assume that h(xg) = hp = he, i.e. Ais solutionto  (I; X; qo; %0; he) = 0.

We consider an admissible stationary discontinuity. As a rst step, we consider the condi-
tions imposed by the Rankine-Hugoniot relations (A.2) For a stationary discontinuity, we get
(see also Section 1.2.1.3):

g [a] = 0; (1.62a)
2
T4 2o =o0; (1.62b)

where the notation [X ] denotes the jump of the quantity X across the discontinuity. Arguing
the Rankine-Hugoniot relations yields the following result.

Lemma 1.20. Consider two steady state solutiol(®; go) and'(I; qo), subcritical or supercritical.
Assume that these solutions are connected with an admissible discontinuity. As a conseltjuesice,
be viewed as a function bf and the following relation holds:

r !

_ h he .
nh=2> 1+8:5 1 : (1.63)

Proof. Since g is equal to the constant ¢y, the relation (1.62a) obviously holds. Concerning
(1.62b), we have

and we immediately obtain

Introducing a factorization by (A h) and arguing the de nition (1.49) of h¢, we get

r Il r I

3 3
(h h)y n g 1+8% 1 h+g 1+8%+1 =0:
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h3
l+8h—g 1

Sincehl must be positive and i 6 h, itis clear that the admissible discontinuity connects h to
r

h
f(h) = 3
The proof is therefore completed.

1.

As a second step, we focus on the entropy. The entropy inequality (1.6) rewrites as follows
kefjgih %

for a at topography:
@s(W)+ @G(W)
with s and G given by (1.4). In the current context of a steady state solution involving a

stationary discontinuity, this entropy inequality reads:
@G(W)  kagjgih  *:
Note that, since we have assumed a nonzero steady dischargeg, we have kggjgpjh 1< 0.
As a consequence, to recover the above entropy inequality, it is suf cient to take h and i such
that the jump of G between these two states is negative, as follows:

[G]< O

As a consequence, arguing the de nition (1.4) of the entropy ux G, we get that h and h are

connected with an admissible discontinuity if and only if
(1.64)

% .
qoﬁ+gh <0

The study of this equation allows the statement of the following result.

Lemma 1.21. Consider two steady state solutioh(#; go) and(; qp), subcritical or supercritical.
Assume that these solutions are connected with an admissible discontinuity. We de ne the following

guantity: s |
hs 3
f. = e 1+ 1+8h—§ (1.65)

The following two assertions hold:
(i) if @ > 0, thenh 2 (min(h; A+ ); max(h; fis));
(i) if g < O, thentt 2 (min(h; A;); max(h; fiy)).
Proof. We start by proving (i). As a consequence, we assumegy > 0. In this case, the discrete
entropy inequality [G] < O, or equivalently (1.64), reads:
@
h< —= + gh: (1.66)

%
2n2 TOTS one
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Introducing a factorization by (A h), the above inequality rewrites as follows:
!
hin+h ‘1

(" h) > Tz

> 0:

Sinceh?h? > 0, the above estimation reads:
(" h)2h?n?2 h3n hh) < 0
As a consequence, we have[G] < 0if and only if:
m hyn AHm hy)<o

where we have set s [

_ he h?

We immediately note that i < 0. Therefore,i i is always negative, and the discontinuity
satis es the entropy inequality if and only if:

(m hyn fy)<o: (1.67)

As a consequence, we havefi 2 (min(h; i, ); max(h; fi+ ), which achieves the proof of (i).

Regarding the proof of (ii), we assume that ¢p < 0. The inequality (1.66) now reads:

2 2
&+ gh‘> i+

2n2 2h? gh:

We note that the direction of the inequality has been reversed. As a consequence, for g < 0,
the relation (1.67) rewrites:
(m hn Ay)> o

Therefore, the assertioni 2 (min(h; i, ); max(h; i, )) is established. The proof of (ii) is thus
concluded, which completes the proof of Lemma 1.21. O

We have therefore uncovered several relations de ning an admissible discontinuity link-
ing h to h. Namely, Lemma 1.20 states the condition obtained from the Rankine-Hugoniot
relations, which gives an expression of i with respect to h. Lemma 1.21 states the necessary
location of i with respect to h and fi, , de ned by (1.65), to satisfy the entropy conditions.
Note that Lemma 1.21 involves a comparison between i and fi. . The expression (1.63) allows
us to state the following result.

Lemma 1.22. De ne i andfi; by (1.63) and (1.65), as follows:

r ! S !

h h3 h3 h3
=23 1+8h—§ 1 and ﬁ+=4—hc2 1+ 1+8h72: (1.68)
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For allh 2 R, nfh.g, we have:
n< f,:

Proof. Let us prove that i < fi,, with iand fi. de ned by (1.68). As a consequence, we have

to show that r ! r I

he h2 hé he h3

— =+ _t+8= +8 = > 0

hohe ha 8 H 2 1 8h3 1 0
Introducing = h¢=h, the above inequality holds if and only if f( ) > 0, where the function
f is de ned hy:

5 P p—
f()= + 4+8 2 1+8 3 1:

We now study the sign of the function f for 2 (0;+1 ). We remark that f( ) may be
rewritten as follows, after straightforward computations:
" r ! #

3 8 P
f()= 1+ 1+—5 1+ 1+8 3 16:

pj
1+8 3+1

Let ( ):=1+ P 1+8 3. Equipped with this notation, f( ) > Ois equivalent to the following
inequality:

1
— () 1le>0: (1.69)
After straightforward computations, we get:
r S
1 P— 8 1
= ()=1+ 1+8 3+ 1+ 5+ 65+8 3+ 5 . (1.70)

In order to study a lower bound of the above expression, we introduce two following two
notations:

r S

p__
()= 1+8 3+ 1+§3 and ()= 65+8 3+i3

Notethat (1=) ( )=1+ 1( )+ 2().

— We rst study the variations of 1. The following formula gives the derivative of  1:

6
%)= b p—
4 7"1+8 3 1+8 3

Straightforward computations showthat % ) > Oifandonlyif > 1. Asaconsequence,
the function ; reachesits unique minimumfor =1,andweget 1( ) > 1(1). Therefore,
we obtain the following lower bound for  ;:

8 2(0:+1); 1() 6 (1.71)

In (1.71), the equality case correspondsto =1.



1.2. STEADY STATE SOLUTIONS 63

— We then study the variations of the function 5. Since the derivative of » is given by

24 4
o = 6 .
= p 1 ;
0= pere s
we immediately obtain that , also reaches its unique minimum for = 1. The following
lower bound therefore holds:
8 2(00;+1); 2() 9 (1.72)

The equality case in (1.72) again correspondsto =1.

As a consequence, from (1.70), we get that (1=) () 16, with the equality case corre-
spondingto = 1. Therefore, (1.69) holds forall 2 R, nflg. Hence, we conclude that, for
all h 2 R, nfhcg, we have i < fi, . The proof is thus achieved. O

Remark 1.23. The caseh = h¢ leads, by application of Lemma 1.20,to h = he = h. As
a consequence, we do not consider this case, as it is the degenerate case of a discontinuity
connecting the same two states, and we takeh 2 R, nfhcg. Lemma 1.22 therefore holds for
all values of h under consideration.

Equipped with Lemma 1.22, which introduces a comparison between  and fi., we can
eliminate several cases from Lemma 1.21. Indeed, we replace the estimations uncovered in
Lemma 1.21 by the following two assertions.

(1a) If g > O,thenh >nh.
(1b) If g < O,thenhi<h.

Now, remark that the expression of i from Lemma 1.20 immediately yields the following
estimations, with h linked to h through a discontinuity satisfying the Rankine-Hugoniot con-
ditions.

(2a) We haveh > h ifand onlyif h<h..
(2b) We haveh <h ifand only if h>h.

As a consequence, the following result holds.

Proposition 1.24. Letg 2 R, and de neh¢ by (1.49). Leth 2 R, nfhcg. We wish to build a
discontinuous steady state solution, i.e. we geeknnected th by an admissible discontinuity. The
quantity i is given by (1.63). The Rankine-Hugoniot conditions and the entropy inequality yield the
following assertions.

« If g > 0, then the only possible solution that can be connected to another one with an admissible
discontinuity is a supercritical solution, i.é1 < h . In that case, we hawe> h .

« If g < O, then the only possible solution that can be connected to another one with an admissible
discontinuity is a subcritical solution, i.éh > h .. In that case, we have< h .

As a consequence, on the one hand, if we start with a subcritical solution (such that
h > h¢), then the admissible discontinuity connects h to i < h. Therefore, the discontinu-
ity may connect the subcritical solution h to another subcritical solution with A < h, or to a
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supercritical solution. On the other hand, if we wish to link a supercritical solution (satisfy-
ing h < h¢) to f, then we necessarily have i > h . Hence, this supercritical solution may be
connected to either another supercritical solution R > h, or to a subcritical solution.

1.2.3 Topography and friction steady states

In the previous sections, we have studied steady state solutions of the shallow-water equa-
tions endowed with either the topography source term or the Manning friction source term.
The goal of this section is to provide some insight on steady state solutions when both source
terms are present. Such solutions are governed by the following equations:

8
2 @q=0;
¢, 1
7@ + égh2 = gh@Z kdqjgh
As expected, the discharge q is uniform for steady states. As usual, this uniform discharge
is denoted by gy. Then, equipped with @, the steady water height h(x) is a solution of the

following ordinary differential equation:
@ 1, .
@ 59" = gh@Z  kaojpih (1.73)

We now exhibit several steady state solutions obtained in speci ¢ cases. Namely, we ex-
hibit two speci ¢ solutions of (1.73), with h = cst and h+ Z = cst. Then, we give a word on
the solutions of (1.73) in the general case.

Uniform water height

First, with gy 6 0, we consider a uniform water height h(x) = hg 6 0. This case has been
studied in [42], where the authors propose a scheme able to capture this steady state. With
h(x) = hg, (1.73) becomes

gho@Z + kdojapjhy =0:

Recall the notation ¢ = sgn(q). For the steady state with h = hg, we therefore get:

Kjojpj .

Z= :
@ gho+1

(1.74)
As a consequence, the topography function has to be af ne, of slope given by (1.74).

Uniform free surface

Second, we no longer assume that the water height is constant. Instead, we take steady
state solution with a constant free surface Hy, i.e. a steady solution such thath(x)+ Z (x) = Ho.
Using Z(x) = Hg h(x), (1.73) becomes

2
@ @

1 L.
¥ égh2 = gh@h  kqojqojh



1.2. STEADY STATE SOLUTIONS 65

Now, we assume that the solution h of the above equation is a smooth function. Therefore, it

satis es: ,

L@n = keicpih
Using o =sgn(qp) yields:
h 2@h=k ¢

Let xo 2 R. We assume that the water height hg = h(t; Xo) at Xo is known. The above identity
is then integrated over [xg; X], to get:

h Y=hy P+( 1k o(x Xo): (1.75)

The water height h must be nonnegative. As a consequence, there is no solution if the right-
hand side of (1.75) is negative. Hence, we assume that this right-hand side is positive, i.e.
that

hy P+( 1k o(x xg) > O (1.76)

Therefore, recalling that Z(x) = Hg h(x), the water height and topography are given by:

1

1

h(x)= hg *+( Dk ox xo) ;
2.77)

1

1 -

Z(x)=Ho hy "+( 1k ofx xo)

The general case

Third, we turn to the general case, where the steady states are solutions of (1.73) without
simpli cations. We make the very important remark that (1.73) cannot be rewritten under
the algebraic form (h) = 0, contrary to the individual cases of the topography and friction,
where the steady states were respectively governed by (1.47) and (1.58). Therefore, an anal-
ogous study cannot be applied in the case where both source terms are present. In order to
exhibit solutions to (1.73), numerical methods have to be used. Namely, a discretization of
this equation has to be provided.
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Finite volume methods

The goal of this chapter is to present a state of the art regarding nite volume methods ap-
plied to hyperbolic conservation laws and balance laws, in one or two space dimensions. The
techniques discussed in this chapter are all well-known, but we recall them here since they
will be widely used in the remainder of this manuscript. For more information on systems of
conservation laws, the reader is referred to [79, 141, 142] for instance, but this reference list is
not exhaustive. This chapter provides a general setting for the numerical approximation of
the shallow-water system (1.1).

Systems of conservation laws are governed, in one space dimension, by the following
initial value problem: (

@W(tx)+ @F (W(t;x))=0;
W (0; x) = Wo(X):

(2.1)

In (21),W : R+ R! is the vector of conserved variableghose values lie within the
admissible states space RN, supposed to be convex. In addition, we assume that the space
is invariant, i.e.

if, 8x 2 R, Wp(x) 2 , then 8(t;x) 2 R, R, W(t;x)2 : (2.2)

The variable t represents the time, while x is the space variable. The functionF : ! RN is
called the physical ux function, and is assumed to be smooth. We assume that the system (2.1)
is hyperbolic. The initial condition Wj is a potentially discontinuous function of x.

It is a well-known fact that, even with smooth initial data, solutions of (2.1) may present
discontinuitiesin nite time if the ux function is nonlinear. To address this issue, from now
on, we focus on weak solutions of the problem. In addition, it has been proven that, if a
weak solution admits a discontinuity, then this discontinuity satis es the Rankine-Hugoniot
conditions (1.17) (see Appendix A for a proof of this result in a more general setting).

From the numerical point of view, it is crucial that the properties satis ed by the equations
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also be satis ed by the numerical scheme, in order to provide a good approximation of the
solutions to (2.1). In particular, a scheme is called robustif the invariance of the admissible
states space (2.2) is preserved at the discrete level. More detail on these discrete properties
will be given in the next section, in the context of a nite volume scheme.

Over the course of this chapter, Riemann problemwill naturally appear while dealing with
the numerical approximation of (2.1). A Riemann problem is a Cauchy problem with discon-
tinuous initial data, see (1.16). More details on Riemann problems are present in [80, 79] for
instance. Since the conservation law @W + @F (W) = 0 is hyperbolic, the exact solution
of the Riemann problem (1.16) is made of waves, traveling at nite velocities and separating
constant intermediate states. The nature of these waves is linked to the nature of the charac-
teristic elds associated to the eigenvalues of the Jacobian matrix of F (see De nition 1.1). We
assume that each eld is either linearly degenerate or genuinely nonlinear.

This framework ts the shallow-water equations (1.1) (see Chapter 1). This system can be
cast under the general form of a balance law, as follows:

( @W + @F (W) = S(W);

(2.3)
W (0; x) = Wo(X);

where S(W) is a source term and the homogeneous system obtained from making the source
term vanish in (2.3) is hyperbolic. In the context of the shallow-water equations with topog-
raphy and Manning friction, S(W) is made of the two source terms. The presence of the LD
elds causes the Riemann problem for the shallow-water equations with source terms to be
much harder to solve explicitly than in the homogeneous case. As a consequence, numerical
methods have to be applied.

For the balance law (2.3), thesteady state solution®r steady statgsare de ned by making
the time derivative @W vanish, as follows:

@F (W) = S(W): (2.4)

In the context of the shallow-water equations, the steady state solutions have been studied
in Section 1.2. Examples of steady state solutions have been exhibited in the cases of the
topography and the friction source terms. However, since they are governed by very nonlin-
ear equations, usual numerical schemes do not exactly preserve such solutions, and special
treatments have to be introduced. From the numerical point of view, a scheme will be called
well-balancedf it exactly preserves all the steady states at the discrete level.

Well-balanced schemes have been extensively studied in the last two decades. First, in
[11], Bermudez and Vazquez introduced the C-property to describe schemes preserving the
steady states at rest of the shallow-water equations. The term of well-balanced scheme was
then coined by Greenberg and LeRoux in their seminal work [87], where the authors de ned
a well-balanced scheme as able to exactly preserve solutions at rest. Afterwards, Goutal and
Maurel proposed a review [86] of several steady state solutions for the shallow-water water
equations with topography, and of several schemes to approximate such steady states. Then,
still within the framework of the shallow-water equations with topography, Gosse proposed a
scheme in [82], based on an approximate resolution of Bernoulli's equation, to exactly capture
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all the steady states of the equations. His approach was later simpli ed by Audusse et al. in
[5], who focused on the steady states at rest (i.e. where the velocity vanishes) to propose the
well-known hydrostatic reconstruction.

A lot of other rst-order schemes were derived to preserve the steady state solutions of the
shallow-water water equations with the topography source term. In particular, we mention
work dealing with robust schemes that preserve the steady states at rest, see for instance
[100, 133, 26, 44, 105, 28, 19, 23, 7] for 1D meshes, and see for instance [6, 29, 69, 166] for
unstructured 2D geometries. Several schemes that also preserve the moving steady states,
but are not robust, have then been derived (see for instance [33, 72]). Later on, in [12, 13],
the authors suggest a robust and entropy-satisfying scheme that preserves the moving steady
states. The advantages of schemes that preserve all the steady states, including the moving
ones, have been highlighted in [160]. Finally, we mention schemes preserving the steady
states associated to the friction source term in speci ¢ cases (see [115, 42]), and the Coriolis
force source term (see [119, 43]).

Some work involving high-order techniques to capture the steady states exactly or with
a high order of approximation has also been proposed. For instance, in [127, 128, 158], the
authors suggest a WENO approach, while the authors of [161, 157] focus on discontinuous
Galerkin methods (see also the review article [159]). Other high-order methods, using the
steady state solutions, have been developed in [32, 74, 136, 35]. In addition, in [47], a scheme
that preserves the lake at rest on unstructured meshes has been derived.

We also present a non-exhaustive list of well-balanced schemes for other systems. For
instance, we mention well-balanced scheme for the Euler equations with gravity (see [37, 163,
60, 101, 39, 61, 41]), the equations of chemotaxis (see [125, 15]), a two-layer shallow-water
model (see [106, 67]), the Ripa model (see [152, 62], the equations of hemodynamics (see [56]),
and the shallow-water equations with pollutant transport (see [70]).

The goal of this manuscript is to provide a numerical scheme that is consistent and robust.

In addition, it has to be well-balanced, i.e. able to preservand capturethe steady state solutions
exhibited in Section 1.2. These two terms of preservation and capture are de ned as follows.

* Let Wy be an initial condition at rest, i.e. satisfying (2.4). A numerical scheme is said to
preserve the steady states if the approximate solution obtained from Wy stays stationary,
i.e. satis es (2.4).

» Let Wy be an unstationary initial condition, i.e. that does not satisfy (2.4). Assume that,
in nite time, the solution W (t;x) of (2.3) becomes stationary, i.e. satis es (2.4), after a
transient state. A numerical scheme is said to capture the steady states if the approximate
solution obtained from Wg also becomes stationary.

As a consequence, this chapter is dedicated to providing some numerical methods that
will be the basis of the work presented later in this manuscript. The numerical methods are
here presented in the general setting of a system of conservation laws, and will be applied to
the shallow-water system later on. The chapter is organized as follows.

Section 2.1 focuses on the rst-order nite volume approximation of one-dimensional (1D)
hyperbolic conservation laws. To that end, we begin by providing a nite volume discretiza-
tion of the equations. After discretizing the space domain into cells, the conservation law is in-
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tegrated over some cell, in order to exhibit the main ingredients of any nite volume method.
Namely, the approximated solution is piecewise constant on the cells, and the interactions
between cells are represented by a numerical ux function. Then, we introduce Godunov's
method. This method uses the exact solution of a Riemann problem for the conservation law
to approximate the result of the interaction between two contiguous cells. Afterwards, we
present Godunov-type methods, an extension of Godunov's method. Godunov-type methods
do not require the exact solution of a Riemann problem. Instead, they use an approximation
of this solution. Thanks to this approximation, these methods are more versatile, as they can
be applied to systems for which the exact Riemann solution is not known. The derivation of
the HLL scheme, a notable Godunov-type scheme whose approximate Riemann solution is
heavily used later in this manuscript, is also presented.

The second section of this chapter, Section 2.2, presents second-order spatial accuracy tech-
nigues in one space dimension. Such techniques are used to improve the spatial accuracy of
the scheme for smooth and non-smooth solutions. Namely, we introduce the MUSCL tech-
nique, which consists in providing a piecewise linear approximation of the solution in each
cell, instead of piecewise constant. However, robustness properties satis ed by the rst-order
scheme can be lost because of the linear reconstruction, and oscillations may appear in the ap-
proximate solution. In order to recover such properties and eliminate the oscillations, slope
limiters are designed to make sure the slope of the reconstruction is small enough.

The remainder of the chapter is devoted to the approximation of conservation laws and
balance laws in two space dimensions. We begin this study in Section 2.3 by deriving two-
dimensional (2D) rst-order nite volume schemes for 2D conservation laws. As before, we
rst provide a nite volume discretization of the space domain and of the equations. To that
end, we introduce a polygonal mesh of the 2D domain, and we integrate the equations over
this mesh. Then, we prove that this 2D scheme can be rewritten as a convex combination
of 1D schemes. Thanks to this convex combination, the 2D scheme is immediately shown to
satisfy some robustness properties veri ed by the 1D scheme.

Finally, Section 2.4 deals with high-order schemes in two space dimensions. High-order
schemes are based on suitable polynomial reconstructions (for instance, the MUSCL tech-
nique is based on a linear reconstruction). We begin by de ning such a reconstruction. Af-
terwards, the polynomial reconstruction is used to derive a high-order nite volume scheme
for a 2D balance law. First, we present a scheme that is high-order accurate in space. Second,
a high-order time discretization is provided in. Third, the Multidimensional Optimal Or-
der Detection (MOOD) method is presented. The MOOD method consists in enforcing some
properties by choosing to lower the degree of the reconstruction in areas where the properties
are not satis ed.

2.1 One-dimensional rst-order nite volume schemes for hyper-
bolic problems

We turn to the numerical approximation of the solutions of hyperbolic systems of con-
servation laws (2.1). Several challenges arise, such as the ability to approximate discontin-
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uous solutions. To address this issue and to provide a suitable numerical approximation,
we introduce the framework of nite volume schemeskFirst, in Section 2.1.1, we focus on the
discretization of the equations and of the space domain. Then, in Section 2.1.2, we present
Godunov's scheme. This scheme involves the exact solution of a Riemann problem. Finally,
in Section 2.1.3, extensions of Godunov's scheme, the Godunov-type schemes, are discussed.
These schemes use an approximation of the Riemann solution instead of the exact solution.
For the remainder of the section, the reader is referred to [92, 93, 111, 150] for instance, but
this list in non-exhaustive.

2.1.1 Finite volume discretization

The rst step of providing a nite volume discretization of the equation (2.1) consists in
discretizing the space domain R. Let us consider a discretization made of cellsc;. For the
sake of simplicity, we assume that all cells have the same length x. We denote by x; the
x-coordinate of the center of the cell ¢;. In addition, we denote by X;, 1 the x-coordinate of the
interface between cells¢ and ¢+1 . These notations are displayed on Figure 2.1.

Figure 2.1 — Discretization of the one-dimensional space domain R.

We adopt a straightforward time discretization. To discretize the time domain  R. , we set
t"*1 = t"+ (", with t° = 0. Note that the time step  t" depends on the current time t". For
the sake of simplicity in the notations, we do not explicitly write this dependence. Instead,
the time step is labeled by t.

Equipped with the time and space discretization, we turn to discretizing the solution of
(2.1). Forx 2 ¢ and t 2 [t";t"*1), we choose to approximate the exact solution W (t; x) of (2.1)
by a constant value W,". Actually, this value corresponds to the average of the exact solution
W (t; x) at time t" over the cell ¢;, as follows:

Z

l n
— W (t"; x) dx: (2.5)

Ci

Win '

This approximation is initialized by taking the average of the initial condition over each cell:

1 z
X Wo(x)dx:

G

8i22z; wl=

The goal of a numerical scheme is, knowing W" forall i 2 Z, to give a value to the updated
approximation Wi”+1 forall i 2 Z. In order to provide such an approximation, let us write the
average of the conservation law (2.1) over the rectangle formed by the cell ¢ = (X; 1;%;,1)

2 2



72 CHAPTER 2. FINITE VOLUME METHODS

and the time interval [t";t"*1):

11 I+1Ztn+1 1 Z in41 in+1

- = ’ @W (t;x) dtdx + — — > @F (W(t;x)) dxdt =0
X g, X U  x
2 2

Using (2.5) and performing straightforward computations in the above identity yields:

!

FW(tx, %)) dt : (2.6)

Z th+1 Z tn+l

F(W(t;xH%)) dt it

Win +1 - Win 7:( it

tn tn

The main issue with the expression (2.6) of the updated state Win+1 is that the time inte-
grals of the physical ux function are dif cult to evaluate in practice. Indeed, the ux function
F may be strongly nonlinear (in the case of the shallow-water equations or the Euler equations
for instance). To address this issue, we introduce the numerical ux. It is an approximation of
the time integral of the physical ux, as follows:
1 Z tn+1
i'l% ' . F(W(t;xH%)) dt:
The value of this numerical ux depends on the value of the physical ux F at the inter-
face xi+% between the cells ¢; and ¢;+1, which respectively contain the constant values W,"
and W%, . Therefore, the numerical ux can be viewed as a function F suchthatF/ , =
F(W"; W/, ). Examples of such functions will be provided in the next two subsectlons de-
voted respectively to Godunov's scheme and to Godunov-type schemes. Equipped with the
numerical ux function F, we state the nal expression of the 1D rst-order nite volume
scheme:
Win+1 - Win 7:( F|+; E n

1 (2.7
2

Such a scheme is easily shown to satisfy an essential property, the conservation property.
Indeed, the scheme is said to beconservativef the following equality holds:

X X
8n2 N; whtox = w! x (2.8)
i2z i2z
The scheme (2.7) indeed satis es this property, since the sum over Z of the difference F. n 1
Fn 1 vanishes for all n 2 N. This property is required for the scheme to capture the correct
shock waves.

Another property that we require the scheme to satisfy is the consistency property. The
numerical ux function, and therefore the scheme, is said to be consistentwith (2.1) if it satis-
es

8W 2 ; F(W,;W)= F(W): (2.9)

An important ingredient in designing a numerical ux is to make sure that this property is
veri ed. Otherwise, the scheme approximates the wrong equations.

A third important property is the robustness. The scheme (2.7) is robustif we have, for all
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n 2 N, the following discrete analogue of (2.2):
if, 8i22Z, W"2 , then 8i 2z, w"*! 2

This property ensures that the physical admissibility of the initial condition is preserved by
the scheme. A non-robust scheme may therefore yield an approximate solution that is not
physically admissible. This property is another important ingredient in the design of a nu-
merical ux.

Equipped with the nite volume scheme (2.7), we now introduce Godunov's method and
Godunov-type methods. These methods offer a way of de ning the numerical ux function.

2.1.2 Godunov's scheme

Let us recall that the approximate solution at time t" is made of piecewise constant values
W on each cellc;. Therefore, in a neighborhood of each interface x;, 1 the conservation law
(2.1) reads as follows:

5 QW + @F%W) =0;
<SWMif x<x i, 1; (2.10)
ZW(t"x) = i
' -Wirlrlifx>xi+%:
The initial value problem (2.10) is nothing but a Riemann problem (2.19). We suppose that the
exact solution Wg of the Riemann problem (2.10) is known (see [81, 150] for instance). This
solution is self-similar and depends on W;" and W/}, . Fort 2 (0; t) and x 2 [Xj;Xj+1], we
adopt the following notation for the exact Riemann solution:

1 1 X Xyt
2 — 2 . n. n
Wi 2 ——= = WR — Wi Wi

Since the system is hyperbolic, the velocity of the waves originating from the Riemann
problem is nite. Let us denote by 1 < i++ ; the smallest and greatest wave velocities,
2 2

respectively. Within the fan formed by the extremal wave speeds 1 and i"+ , lies the exact

solution of the Riemann problem (2.10). This situation is illustrated by Figure 2.2.

Figure 2.2 — Riemann problem con guration. The gray area represents the area where the
solution of the Riemann problem (2.10) lies.
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As mentioned above, since the equation (2.1) is hyperbolic, the information propagated
by the equation travels at nite speed. Let us therefore emphasize that that the consecutive
Riemann problem solutions do not interact as long as t is small enough. We can thus give a
suf cient condition on the time step  t to ensure that it is small enough to prevent interac-
tions between the waves from two consecutive Riemann problems. An illustration of such a
suf cient condition is presented on Figure 2.3.

Figure 2.3 — Wave interaction to be prevented by the CFL condition (in red). The time step t
is chosen so as to prevent the interaction.

From Figure 2.3, we deduce the following suf cient condition on t to prevent the inter-
actions between waves: )
—max .., . = 2.11
X i2z i+3 i+3 2 (2.11)
This condition is called the Courant-Friedrichs-LewyCFL) condition (see [55]). Foralli 2 Z,
it ensures that the waves from the Riemann problem located at x;, 1 do not penetrate within
the cell (x; 1;X;) or the cell (Xj+1;Xj+2), thus preventing them from interacting with waves
coming from neighboring Riemann problems.

The nal ingredient we need to introduce Godunov's scheme is the following function
W |, which contains the juxtaposition of all the exact Riemann solutions:

1 X X|+

1
— (2.12)

i+

8t2 (0; t];8x2[xi;Xi+1); W (t"+tx)= Wy ?

This function corresponds to the exact Riemann solution over the whole space domain, ob-
tained from the initial condition W (t";x) = W"1(x). This juxtaposition function is dis-
played on Figure 2.4.

The main idea behind Godunov's scheme consists in noting that, for t < t, two con-
secutive Riemann solutions will not interact. Therefore, the exact solution of the Riemann
problem (2.10) can be used in order to build a numerical ux (see [81]). The exact Riemann
solution W (t"*1:x) allows to de ne an updated approximate solution Win+1 within the cell
ci. However, in order to apply the same procedure at time t"*1, the updated solution Win+1
must be constant in each cellc;. Therefore, Godunov suggested to de ne Win+1 as the average
of the juxtaposition W (t"*1;x) of the exact Riemann problem solutions within the cell ¢, as
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Figure 2.4 — Juxtaposition of exact Riemann solutions.

follows: 1 z, )
wht = TTw (" x) dx: (2.13)
X x
2
Note that a wave with velocity  travels adistance tinatime t. Therefore, following Fig-
ure 2.4, the formula (2.13) for the updated approximated solution can be rewritten as follows:

a1 1in%+:%ti1XXi%
_ 2
W T x WR tn+l ¢n dx
X, 1
I
7
1 any T .
i W dx (2.14)
.
ZXi %+ i % t
1 N} i+1 X Xiel
+ — Wg L dx:
X Xi+1+ |+1 t
Z 2

In order to nalize this subsection devoted to Godunov's scheme, let us show that Go-
dunov's scheme is conservative and consistent. To address this issue, we exhibit the numer-
ical ux function associated to this scheme by computing the integrals of the exact Riemann
solution present in (2.14). Arguing that the exact Riemann solution W;{ : is a solution of the
conservation law (2.1) and integrating (2.1) over the rectangle [t";t"*] [x; X 1t |+ . t]

yields:

N .
Wg T n W' dx
Xi %
I #
Ztn+1 i 1 |+% t i 1
+ F Wg? . F Wi ?(0) dt=0
trl

Note from Figure 2.3 that, for all t 2 [0; t]and for x = X, 1 + |+ . t, the exact solution

of the Riemann problem is constant and equal to W". As a consequeznce, the rstintegral of
(2.14) reads:

3 3 (2.15)
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Similarly, the third integral of (2.13) is evaluated as follows:
z

i Xi+% Wi+% X Xi+% d)(: i Xi+% W.” dx
X ox,1+ 4t R t X x, 1+ 4t I
AR 2 i+ (2.16)
t i+1 n
— F Wz 20 FW")
Plugging (2.15) and (2.16) into (2.14) yields:
n+l1 _ n t I+% i %
W' =W, 5 F Wg %(0) F Wg %(0)

We have thus cast Godunov's scheme (2.14) into the conservative form (2.7), with the numer-
ical ux function for Godunov's scheme being given by:
irl

i'l% =F Wg ?(0) :
Therefore, Godunov's scheme is conservative, i.e. the property (2.8) is veri ed. Note that the
scheme is also consistent, i.e. it satis es (2.9). Indeed, we haveF (W; W) = F(Wg (0; W; W))
forall W 2, with the quantity Wg (0; W; W) representing the exact Riemann solution with a
uniform initial condition equalto  W. This exact Riemann solution is thus nothing but the uni-
form initial condition W. Hence, we have F (W; W) = F (W), which proves the consistency
property.

To summarize, Godunov's scheme can be written as a two-step procedure. The rst step,
the evolutionstep, consists in computing the exact solution of the Riemann problem at each
interface. The second step, theprojectionstep, consists in the averaging process (2.13) to de ne
the updated numerical approximation.

We have thus completed the introduction of Godunov's scheme. It is the most natural
conservative and consistent nite volume scheme to approximate solutions of the hyperbolic
problem (2.1). As previously mentioned, the most important ingredient in the de nition of
Godunov's scheme is the knowledge of the exact solution of the Riemann problem (2.10). Un-
fortunately, computing this solution at each interface and for each time step is usually too
costly, or even outright impossible since the exact Riemann solution is unknown for many
systems. Furthermore, even if the exact solution is used, the projection step (2.13) only allows
a rst-order approximation of the solution. In light of such dif culties, a natural idea, intro-
duced at the beginning of the 1980s by Roe in [135] and Harten, Lax and van Leer in [90], is
to replace the exact solution of the Riemann problem with an approximate solution. Such an
approach, leading to Godunov-type schemas described in the next subsection.

2.1.3 Godunov-type schemes

The main ingredient of Godunov-type schemes is the use of an approximate solution of
the Riemann problem (2.10), instead of the exact one. Thus, Godunov-type schemes consist
in replacing the exact Riemann solvevith an approximate Riemann solveWe rst discuss the
construction of such a solver, and its associated Godunov-type scheme. Then, an example of
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a Godunov-type scheme is presented.
The rst issue in the derivation of the approximate Riemann solver is that the minimal
and maximal exact wave speeds, i1 and are not known anymore. Therefore, we use
2

Ly
approximate wave speeds :—+% and ﬁr% as an approximation of the minimal and maximal
exact wave speeds, respectively. They are chosen so as to ensure that no information is lost.
Thus, the fan formed by the exact wave speeds must be included within the one formed by
the approximate wave speeds, which yields the following required conditions on the approx-
imate wave speeds, illustrated on Figure 2.5:

.'-%< , and R, >
2

I
I
T
|
N[

Figure 2.5 — Wave fans of the exact and approximate Riemann solvers.

We introduce the juxtaposition function for the approximate Riemann solver as follows:

X Xi,1
8t2(0; t];8x2[Xi;Xis1); W (t"+tx)= W %;Wi”;wﬂl : (2.17)

In (2.17), W represents the approximate Riemann solver. Note that, if the approximate Rie-
mann solution is equal to the exact Riemann solution Wg, then the juxtaposition function of
Godunov's scheme (2.12) is recovered. Here, the approximate Riemann solver (v provides
an approximation of the exact solution Wg of the Riemann problem, and this juxtaposition
function contains the approximate Riemann solution at each interface between cells.

We then de ne the approximate Riemann solver W as the following self-similar function:

8
%WL if x=t L;

W ?;WL;WR = §W %;WL;WR if L <x=t< R; (218)
" Wg if x=t R-

Within the fan, i.e. for | < x=t < g, we take W made of (n +1) intermediate states,
separated by n discontinuities. We assume that all the intermediate states are constant; this
choice is made in accordance with the approximate Riemann solvers suggested by Harten,
Lax and van Leer in [90].
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The goal is now to provide several properties that the approximate Riemann solver has to
satisfy. To that end, we consider the following Riemann problem:

8
3 @W + @F (W) =0;
( W, ifx< 0 (2.19)

3 W(0;x) =
| Wgr ifx> O:

Note that this is the same Riemann problem as (2.10), rewritten with simpler notations and
using the change of variables x 7! x  x;, 1. The statesW, and Wg are constant. We denote
by | < g the smallest and greatest approximate wave velocities, respectively. The approx-
imate Riemann solution is made of at least two waves, the extremal waves | and gr. This
situation is illustrated by Figure 2.6.

Figure 2.6 — Structure of the approximate solution of the Riemann problem (2.19). Specic
case with six waves.

An approximate Riemann solver should satisfy two essential consistency properties. The
rst one states that W(xzt;W;W) = W forall W 2 . This property is veri ed by the exact
Riemann solver, and has to be also satis ed by the approximate Riemann solver.

In addition, in [89, 90], Harten and Lax introduced a property of integral consistencwith

the exact solution of the Riemann problem. This property reads as follows:
- Z .
1 X=2 X x=2
— W Zwiiwg dx= —
X x=2 t X

Wr W W dx: (2.20)
X=2 t

We now consider an approximate Riemann solver satisfying this property. We can prove that
the integral of the exact Riemann solution only depends on the left and right states. Indeed,
arguing that the self-similar exact solution of (2.19) satis es (2.1), we integrate (2.1) over the

rectangle[ x=2; x=2] [O; t],toget:

z x=2 X z x=2
Wg —t;WL;WR dx = W (0; x) dx
=2 =2
X Z tX )
F Wk E;WL;WR dt (2.21)
2.

+OF Wr  —SWLWR dt
. 2t
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The initial condition of the Riemann problem (2.19) immediately yields

z x=2
X
W(0;x) dx = T(W" + WR): (2.22)
x=2
In order to compute the ux integrals, we require the knowledge of the value of the exact
Riemann solution along the x = x=2lines, forall t 2 [0; t]. A suf cient CFL condition on
t, which ensures that the exact Riemann solution is uniform along these lines, is exhibited
on Figure 2.7.

Figure 2.7 — CFL condition for Godunov-type schemes. The time step t is chosen to ensure
that the exact Riemann solution is uniform along the x = x=2lines.

From Figure 2.7, the CFL condition on the time step t reads as follows:

t S 1
— ; = 2.2
L max( oLl R 5 (2.23)
Note that this condition is analogous to the CFL condition (2.11) exhibited for Godunov's

scheme. This CFL condition has been chosen such that, for allt 2 (0; t],

Wr EX;WL;WR =W, and Wg 2—;(;W|_;WR = Wkg! (2.24)

Plugging (2.22) and (2.24) into (2.21) yields the following expression of the average of the
solution to the Riemann problem (2.19):

YA xX=2

W + Wr

X
Wr — W ;WRr dx =
R WL WR >

t .
< —(F(W)  F(WL):

Therefore, the integral consistency condition (2.20) rewrites as follows:

z

17 x2 WL + W
=W Ewiwe dx= SR

t .
x=2 t 2 —(F(Wr) F(WL):  (2.25)

Equipped with a approximate Riemann solver { satisfying the integral consistency, we
are able to de ne the Godunov-type scheme. Recall that, for a nite volume scheme, a Rie-
mann problem occurs at each interface between cells. For a Godunov-type scheme, this Rie-
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mann problem is approximately solved using the approximate Riemann solver W. To that
end, we use the juxtaposition function W introduced by (2.17). The Godunov-type scheme
is then de ned by averaging W over the cell ¢, and attime t" + t, as follows:
1 Z Xi+ 1
—~ 2w (" x) dx: (2.26)
X

i1
2

n+l _

Note that this expression is similar to (2.13), but with the juxtaposition function W corre-
sponding to the approximate Riemann solver v, which is made of constant states separated
by waves whose velocities are known. Therefore, the update formula (2.26) involves an inte-
gral that can always be computed explicitly, given an approximate Riemann solver.

We end this presentation of Godunov-type schemes by proving that the scheme (2.26) can
be written under a conservative form. By de nition (2.17) of the juxtaposition function W ,
the expression (2.26) rewrites as follows:

1 Xi X 1
wn*t = —~ v — = wh pwhdx

3 2.27
12wy X X (2.27)
— W ———2whwl, dx

X t

After using the additivity property of integrals on the second integral and arguing the changes

of variables x 7! x  X; 1 andx 7' X X, 1 the expression (2.27) is rewritten as:

Z
n+1 1 x=2 X n n
W, = 5 W —t;Wi W' dx
0
zZ .-
1 x=2 X n n
+ = W Zwhwh, o dx
xZ =2 t
1 x=2 X
~ (1 —t;Wi”;Wi’]rl dx:

Recall that the approximate Riemann solver W satis es the integral consistency condition
(2.25). Therefore, the updated stateWin+1 is given by:

wih = WEX Wi ) Fow)

X
1 z X=2 X 1 z x=2 X (228)
—~ Y —t;Win LW dx + —~ Y —t;Wi”; ny o dx

0 0

Straightforward computations within (2.28) lead to the following conservative form of the
updated approximation:

t
Win+1 =W x FWhSWL FoWo g w!g (2.29)

where the numerical ux function F is given by:

Z
X 1
F(WL;WR) = F(WR) —tWR + —

X=2 X
7 WL W dx: (2.30)
0
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Note that, if we had transformed the rst integral instead of the second one in (2.27), the com-
putations would have yielded the following equivalent form of the numerical ux function:

1Z°

_ X
F(WL;WR) = F(WL) + ﬂWL "
x=2

1 %;WL;WR dx: (2.32)
We remark that, as soon as the integral consistency condition is satis ed by the approximate
Riemann solver ¥, the equality F (W_;WR) = F(W_;WRg) holds. SinceW(xzt;W;W) =W,
both forms of the numerical ux function satisfy the consistency property, i.e. F(W;W) =
F(W) and F(W;W) = F(W). Therefore, the Godunov-type schemes are conservative and
consistent provided the approximate Riemann solver they are based on satis es both the in-
tegral consistency property and W(x:t;W;W) = W.

To conclude this section on Godunov-type schemes, we derive the HLL scheme, based on
an approximate Riemann solver with one intermediate state. This scheme has been suggested
by Harten, Lax and van Leer in 1983 (see [90]). In the current framework of one constant
intermediate state, the approximate Riemann solver (2.18) rewrites as follows:

8 -
3 Wy if x=t L

X
1 ?;WL;WR :BWHLL if | <x=t< Rg; (2.32)

" Wg if x=t R,

where Wy denotes the value of the constant intermediate state. This approximate Riemann
solver is displayed on Figure 2.8.

Figure 2.8 — Structure of the approximate Riemann solver (2.32).

The intermediate state Wy, is determined in order for the approximate Riemann solver

to satisfy the integral consistency property (2.25). We rst consider the speci ¢ case where

L < 0< R. From (2.32), the average offv over [ x=2; x=2] satis es the following
sequence of equalities:

I

1 X=2 Z t z t YA x=2 '

X 1
— W — W ;WRr dx= — W dx + Wy, dx + Wrg dx
X x=2 t X x=2 Lot Rt

_W|_+WR

t
> + 7( LWL RWR+( R L)WhLL):

Using both the above equality and the integral consistency (2.25) immediately yields the fol-
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lowing expression of Wy :

rRWrR LWL F(WR) F(WL).
R L R L '

Wy = (2.33)
Equipped with the expression of Wy , we can now compute the numerical ux function
associated to the HLL scheme. Let us denote this function, which depends on W, and Wkg,
by FyLL . Its expression is given by (2.30) (or, equivalently, (2.31)). We also denoteF (W) by
W, and F(WR) by Wg. Since the approximate Riemann solver is here de ned by (2.32), the
numerical ux Fy . reads as follows:

_X X

Wr+ rRWhL + -— r Wk (2.34)

F W, :WRr)= F
HLL (WL WR) R 5 ¢ 71

Plugging the expression (2.33) of Wy into (2.34) yields, after straightforward computations:

F F W W
Fu (We:We)= RFL LFR R L(Wr L):

R L R L

Recall that we have determined Fy| inthe specic case where | < 0< g. Onthe one
hand, in the case where | > 0, sinceW(x: t; WL ;WR) = W for x= t < 0, using the form
(2.31) of the numerical ux immediately yields Fgy (WL;WR) = FL. On the other hand, if

r < 0, using the form (2.30) yields Fy . (WL;WR) = Fgr. Therefore, the numerical ux of
the HLL scheme is given as follows:

8
EFL if L 0;
F F W W .
Fril (WL W) = rRFL 1LFrR R L(WR L) f <0< g (2.35)
g R L R L
" Fr if R 0:

The goal of this manuscript is to derive a consistent, robust and well-balanced scheme
for the shallow-water equations. Since the shallow-water system is hyperbolic, using a -
nite volume scheme based on an approximate Riemann solver is a suitable choice. However,
the approximate Riemann solver we use cannot possess only one state. Indeed, for a one-
state Riemann solver, merely arguing the consistency property yields the HLL scheme. As
a consequence, we choose a two-state approximate Riemann solver to introduce more un-
known intermediate states and recover the well-balance property. In addition, the two-state
structure is in good agreement with the exact Riemann solution, discussed in Section 1.1.3,
which possesses two intermediate states separated by a stationary contact discontinuity. This
approximate Riemann solver will be derived in Chapter 3. However, other ingredients are
required to enhance the scheme. These ingredients are discussed in the remainder of this
chapter.

2.2 Second-order space accuracy in one dimension

After having derived rst-order nite volume schemes in the previous section, we now
turn to providing a second-order extension of these schemes. The purpose of such an exten-
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sion is to improve the spatial order of accuracy of a scheme. The order of accuracy measures
the rate at which the numerical approximation converges towards the exact solution as X
diminishes. We de ne the average of the exact solution on a cell ¢ as follows:

1 Z
Y Wex (t"; x)dx;

]

(We){! =

where Wex(t; X) is the exact solution of the initial value problem (2.1). The errors between the
approximate solution (W;")i>z and the average of the exact solution ((Wex){')i2z are de ned
as follows:

X

Li-norm: e x)= X W (Wen)! ; (2.36a)
i27 |y
X 2
L2-norm: e x)=  x  W! (We)' 2 (2.36b)
i2z
LY -norm: e ( x)= max W (Wex)! (2.36¢)

Let e 2 f e1; e2; €1 g be the error in any norm. For a smooth exact solution, it is a well-known
fact that, in any norm, the error between the approximate solution and the exact solution
satis es the following property when X tends to O:

e( x) = O( xP);
x! 0

where ¢( x) > 0is the error for the considered space step x and p is the order of accuracy.
We have presented rst-order schemes (i.e. where p = 1) in the previous section. The goal is
now to present second-order techniques, whose aim is ensuring that p= 2.

One class of second-order techniques (and high-order ones) is suited to the framework
of Godunov-type schemes. They consist in replacing the piecewise constant approximation
W in each cell with a piecewise linear approximation W,"(x) (or piecewise polynomial in the
case of higher-order schemes). This piecewise linear approximation %" (x) is called the recon-
struction. An example of such a reconstruction, the MUSCL technique (see [112] for instance),
is discussed later in this section.

We rst introduce the following notations, that represent the values of the reconstruction
at the inner interfaces of each cell:

W, = W (x, 1) and W= WX, 1):
These values at the inner interfaces are then used in the numerical ux function F of the
Godunov-type scheme. Instead of (2.29), the updated stateWi”‘“1 of the second-order scheme
is given as follows:
t
1 : .
W = W X FWSW,, FowW gw,

The reconstruction and the interface values are presented in Figure 2.9. In this gure, '

represents one component of the vector W, which thus lies in a subset of R.
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Figure 2.9 — Reconstruction within the cell ¢,. The constant state' ' (dashed line) is recon-
structed as the linear function 'b'(x) (solid line). The values of 'b'(x) at the inner interfaces
are denoted by ' ; and' [ .

Many reconstruction procedures have been developed over the years. We mention the
MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) reconstruction, pro-
posed by van Leer in [154] (see also [131, 132, 112] for instance). Another procedure, the
MOOD reconstruction, provides a high-order polynomial approximation (see [46, 63, 65, 71]).
We also mention the ENO (Essentially Non-Oscillatory) schemes (see [88]) and their exten-
sion, the WENO (Weighted ENO) schemes (see for instance [116, 99, 143]). Finally, the DG
(Discontinuous Galerkin) method is mentioned as a high-order extension of nite volume
schemes (see for instance [53, 52, 51]).

We conclude this section with a presentation of the MUSCL procedure. We assume known
an approximation of the solution at time t", denoted by (W;")i»z, constant in each cell ¢.
The goal of the MUSCL reconstruction is to provide a linear reconstruction W,"(x) of this
piecewise constant approximation. For each cell ¢, this reconstruction is given by:

W)= W+ f(x o xi);

where " is the slopeof the reconstruction. We immediately remark that ®;"(x;) = W;", i.e.
the piecewise constant approximation is recovered at the center of each cell. In addition, the
values of the reconstruction at the inner interfaces satisfy:

W. = Win

n.
i i

X
2
Now, the last ingredient we need to determine W,"(x) is the slope . We choose [' under

the following form:
Wit W WE W
X ' X

T=L

where L : R" R"! R"is afunction whose arguments are the slopes between the constant
states on each side of both interfaces. Such a reconstruction is presented on Figure 2.10 for a
component' of the vector W.

In order to achieve the determination of the MUSCL reconstruction, we need to provide
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Figure 2.10 — The MUSCL reconstruction procedure. The constant states [' (dashed lines) are
reconstructed to form the piecewise linear functions 'b'(x) (solid lines).

an expression of L as a function of two slopes | and gr. The most natural choice for L is the
average of the slopes, as follows:

L+t R,

L( L; R)= >

However, it is well-known that such a choice induces spurious oscillations. Therefore, the use
of a slope limiteris usually suggested. The purpose of a slope limiter is to make sure that the
slope {'is not too large, in order to reduce or nullify the amplitude of the oscillations. We
here give a few examples of usual slope limiters:

» the minmod limiter L( ; r)= minmod ( ; r),where

8
Emin( L; r) if L >0and r> 0

minmod ( _; r)= Bmax( L; r) if L <0and r<O0;

"0 otherwise;

 the superbee limiterL( _; r) = maxmod(minmod (2 ; r);minmod( ;2 Rr)),where
8 .
Emax(L; r) if o >0and >0

maxmod( | ; Rr)= Bmin( L; r) if | <0and r<0;

"0 otherwise;

« the Monotonized Central-Difference (MC) limite.( _; r)= MC( L; Rr),wWhere

8
- . . LT R - .
%mm 2 1:2 Ri— if _>0and > O
+
MC( ; R):gmasz;z R;% if L<O0and r<O0;

0 otherwise.
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2.3 Two-dimensional rst-order nite volume schemes for hyper-
bolic problems

After having tackled the issues of rst-order schemes for one-dimensional problems in
Section 2.1 and second-order one-dimensional schemes in Section 2.2, we now turn to the
approximation of two-dimensional hyperbolic systems of conservation laws. We consider the
following initial value problem:

(@W+r F(W)=0;

(2.37)
W (0;x) = Wo(X):

Now, the space variable x lies within R? instead of R. Therefore, the physical ux F is now
a function of W with values within M y.2(R). The vector of conserved variables W lives
in the admissible states space RN, supposed to be convex and invariant. For more
information on such systems and the approximation of their solutions, the reader is referred
to [103, 112, 150] for instance.

Now, we focus on approximating solutions of such 2D systems of conservation laws. Once
again, we elect to use nite volume schemes. Therefore, we start by presenting the nite
volume discretization of the space domain and of the equations, to derive a 2D nite volume
scheme. Then, we show that this scheme can actually be rewritten as a convex combination
of 1D schemes, which ensures that some properties veri ed at the 1D level are still satis ed
by the 2D scheme.

2.3.1 Finite volume discretization of the equations

In order to propose a numerical scheme for the 2D equations (2.37), we rst need a dis-
cretization of the space domain R?. We elect to discretize this domain with polygonal cells ¢;
of center x;. Consider two neighboring cells ¢ and ¢, i.e. two cells that possess a common
edge. This edge is denoted bye; and the unit normal vector pointing from ¢ to ¢ is denoted
by nj . The area of the cellc will be denoted by jcj, and the length of the edge e; will be
denoted by je; j. The perimeter of the cell ¢; is denoted by jP;j. The notation ; represents the
set of cells that share an edge with the cell ¢;. These notations are illustrated on Figure 2.11
for a triangle mesh and on Figure 2.12 for a uniform Cartesian mesh.

Figure 2.11 — 2D mesh made of triangles.
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Figure 2.12 — Uniform 2D Cartesian mesh, made of squares.

Equipped with the mesh, we now derive a 2D nite volume scheme. First, we set the time
step t. We assume that it is small; a more precise bound of the time step will be given later
on. Then, the governing equations (2.37) are averaged over the cuboid[t";t"*1] ¢, to get:

Z Z tn+1 1 1 Z tn+1 Z

— @W dtdx + — — r F(W)dxdt=0: 2.38
tjc) ¢ 1G] U i (W) (2:38)

The rstintegral of (2.38) satis es the following equality:

Z Z e yd z
et 1 11

11 @W dtdx = 11 W™t x)dx ==  W(t";x)dx:  (2.39)
tjG] ¢ 1t tjc] tjc)
Now, we de ne the numerical approximation of the solution of (2.37) as piecewise constant
on each cell. Within the cell ¢ and at time t", this approximation is denoted by W,", and it
satis es: 7
w" 1 W (t";x) dx:

JCIJ (o]
As a consequence, (2.39) becomes:
Z Z n+l
11 t 1
T @W dtdx ' — wn o wh (2.40)

We now turn to the second integral of (2.38). Arguing the divergence theorem, we have
z z
r F(W)dx = F(W) nd ; (2.41)
Ci @c¢
where @cis the boundary of the cell ¢, n is the unit outer-pointing normal vector, and d is
an element of length of @¢c Note that the boundary of ¢ satis es the following relation:

@c= ' o (2.42)

i2
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Using (2.42) within the integral in (2.41), we obtain:
Z x Z
r F(W)dx = F(W) njd: (2.43)
G j2 ;i i
Substituting (2.43) into the second term of (2.38) yields:

Z tn+1 Z X Z ! Z tn+1 #

11 r F(W)dxdt= i it F(W) njdtd: (2.44)

Gl two g Gi, o U

We remark that the integral within the brackets is nothing but the average of the physical ux
function on the edge e; over time. Therefore, following the 1D case, we approximate this
average with a numerical ux function F, as follows:

Z tn+1

F(W) nj dt (2.45)

1
Fil = FOWWhng ) —

tn

Note that the function F approximates the physical ux in the direction orthogonal to the
edgee; . Thus, it can be viewed as a 1D numerical ux function, in the direction givenby nj; .
The numerical ux Fi? is then injected into (2.44), noting that Fi? does not depend on , to

get:
1 1 ZenZ X e |
ot r F(W)dxdt' jq{j Fi (2.46)
! t G j2

Combining both equations (2.40) and (2.46) yields the following 2D rst-order nite vol-

ume numerical scheme: o
n+1 n X 1€j ) n
Wi = Wi t 7FI] : (247)
02 IGi)

We now de ne the conservation, consistency and robustness properties. First, the robust-
ness of the 2D scheme (2.47) is de ned the same way as the robustness of the 1D scheme (2.7).
Indeed, the 2D scheme is said to be robust if the following property holds:

if, 8122, W"2 , then 8i 22z, W' 2

Second, the 2D numerical ux F is saidto be consistent if it satis es the following 2D analogue
of (2.9):
8W 2 ;8n2R%F(MW:W;n)= F(W) n: (2.48)

Third, the discrete conservation property reads:

X X

jajwMt = jgjw: (2.49)
i2z i2z

We now exhibit a suf cient condition on the numerical ux function F for this property to be

satis ed. Plugging the value (2.47) of Win+1 within (2.49) immediately yields:

X X
jejjFij =0: (2.50)
222 ;
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Let us perform a reindexation within the expression (2.50). Consider an interface k separating

two cells ¢;, and ¢, . We therefore have jexj = j&,;.J = j§ The expression (2.50) then

kil kj'
rewrites as follows:

X
J&] Fir;;jk + Fjrl;ik =0: (2:31)
k2Z
A suf cient condition for (2.51) to be valid isthat F{},;, = F [} , forall k 2 Z. Performing
the reverse reindexation, arguing the de nition (2.45) of F and noting that njj = nj; proves
that this suf cient condition reads:
812Z;8 2 i; F WhwWhn; = F WhwW" ny

This condition ensures that the numerical ux entering a cell through an edge is the opposite
of the numerical ux leaving the cell though this edge. Therefore, it indeed corresponds to
the conservation property.

2.3.2 2D schemes as convex combinations of 1D schemes

We have thus obtained the general form (2.47) of a nite volume scheme for a 2D conser-
vation law. Following [132] (see also [19, 22, 17, 21]), we rewrite the 2D scheme (2.47) as a
convex combination of 1D schemes. Such a process allows to easily check if properties that
are valid in 1D are still satis ed in 2D. The following result states this convex combination.

Proposition 2.1. LetjP;j be the perimeter of the c@d]j. Assume that the numerical ux of the 2D
scheme (2.47) is consistent. Then, (2.47) rewrites under the following form:

Wt = . j.i".jwi'.”l; (2.52)
o AP

wherewi?+1 is a 1D scheme in the direction given by , given by:

Wit = wht JJZ'JJ FW™NWhng) Fo(Whwihing) e (2.53)
Proving Proposition 2.1 means showing that the convex combination process (2.52) - (2.53)

indeed yields the scheme (2.47). Let us start by noting that, by de nition of the perimeter jPjj,

the following identity is satis ed: X

iPii= e (2.54)

i2i

Therefore, the combination (2.52) is indeed a convex combination, since all its coef cients are

positive and their sum is equal to one. In addition, combining (2.52) and (2.53) yields:

1 wo o P Ewnwting) Fowmwiing) (2.55)

i IPi) I1Gi)

X
Win+1 —
j2

The goal is now to prove that (2.55) holds. If that is the case, then Proposition 2.1 obviously
also holds.
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Proof of Proposition 2.1The goal of this proof is to show (2.55). This equality rewrites as fol-
lows:

W.n+1 = X ;
' BT

2
J&; jJPij
2, JRil jci
IPij e

F (W Wnj) (2.56)

+ F(W™" W nj):

j2
Using (2.54), the rst sum in (2.56) rewrites:

P .
JeIJJWn_Wn lejeiJJ:Wn

IPij ' S 1 .

(2.57)
j2

Recall the de nition (2.45) of the 2D numerical ux. Then, the second sum in (2.56) reads:

’.ei.“_P—'_JF(Wi”'Wj”;”u): t J'aJ'JF"n:
i, 1Pi jaij j2, 16

(2.58)

Arguing the de nition (2.45) of the 2D numerical ux and the consistency property (2.48),
the third sum in (2.56) satis es the following identity:
- t X n
F(WHWing ) = Y j&jp JF (W) nj:

S ieiiPi
162,

jo IPil ci
Now, we argue the divergence theorem. Since F(W,") is a constant, we have the following
sequence of equalities:

X x £
je jF(W") ny = FW" njd
i2 72 €i
= F(W") nd
Z@C
= r FMW")dx:
Y]

Sincer F (W") =0, the third sum in (2.56) vanishes, as follows:

X Jeijj n n
BTy

Combining the three evaluations (2.57) — (2.58) — (2.59) yields:

16 ) n IPi) LRYYLI LRYTL _ i j€iin.
e W g FWEWERG) B (WEWERG)L = W, tjz.jCij Fi:

j2

Arguing (2.47), the right-hand side of the above expression is equal to Win+1 .

As a consequence, (2.55) holds and the convex combination (2.52) — (2.53) indeed allows
the recovery of the 2D scheme (2.47). The proof is thus concluded. O
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Corollary 2.2. The convex combination process from Proposition 2.1 allows giving an upper bound
for the time step t. Itis constrained by the following CFL condition:
1Pi Ly 1
tmax —max j jj;j il 5

i2Z jGij j2 i (2.60)

where ;; and a' respectively represent the minimum and maximum approximate wave speeds at the

interface between the cetisandc; . These two quantities depend 3" ande”.

Proof. The proof of this result relies on noticing that the time step of the 1D scheme (2.53) has
to be constrained with a CFL-like condition. This CFL condition is nothing but the equation
(2.60), which is the analogue of the 1D CFL condition (2.11). Thus, the proof is achieved. [J

The main interest of such a convex combination process is to easily prove some properties
on the 2D scheme with the mere knowledge of the 1D numerical ux function. Indeed, for
instance, recall that the admissible states space is assumed to be convex. Therefore, if the
1D scheme is robust, then the 2D scheme is also robust.

2.4 Two-dimensional high-order nite volume schemes

We now discuss the high-order extension of the rst-order 2D scheme (2.47). Recall the
de nition (2.2) of the order of accuracy. Classical MUSCL techniques (see Section 2.2) may
be applied to obtain a second-order space accuracy, i.e.p = 2. However, we focus here on
high-order schemes, i.e. schemes with orderp 3. The MUSCL scheme used a piecewise lin-
ear reconstruction; high-order schemes require a piecewise polynomial reconstruction. Such
schemes produce a better approximation of the exact solution, but also induce spurious oscil-
lations, similarly to the 1D MUSCL case. As a consequence, speci ¢ techniques are required
to prevent these oscillations. This section is dedicated to deriving a high-order nite vol-
ume scheme, and to presenting an oscillation prevention technique, the MOOD method (see
[46, 63, 65]).

We begin by presenting the polynomial reconstruction procedure. Then, we derive a -
nite volume scheme that is high-order accurate in both space and time. Finally, we mention
the MOOD method, which is a procedure to choose the optimal degree of the polynomial
reconstruction, and ensure that some robustness properties are satis ed.

2.4.1 The polynomial reconstruction

In this subsection, we follow [46, 63, 65] to present a high-order polynomial reconstruction.
Consider a component ' of the vector W. At this level, in each cell ¢ of the mesh, we know
constant values ' ', which represent approximations of ' in the cell ¢ and at time t". Within
each cell ¢ and at time t", we seek an expression”'(x;d) that is a polynomial of degree
d, and that correctly approximates the solution of (2.37) within the cell ¢. A polynomial
reconstruction of degree d will allow a spatial accuracy of order d+ 1 (recall the second-order
MUSCL technique, where a linear reconstruction was applied).
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We begin by requiring that the polynomial "'(x; d) satis es the following essential con-

servation property: 7
1 AN
— M(x;d)dx =" 2.61
S . i (x;d) i (2.61)
Therefore, we elect to use the following form for the polynomial reconstruction:
X
M=+ Ri (x xi) M), (2.62)
j j231dK

where we have de ned:

e 2 N2, amulti-index whose length is denoted by j j= 1+ »;

the usual notation x = X;'X,*%;

Ri = (R;)j j2 s1.dx the unknown coef cients of the polynomial;
Z

M, suchthatM; = Jqu (x  xj) dx.

Y]

Thanks to the presence ofM, , the expression (2.62) is immediately proven to satisfy the con-
servation property (2.61). In addition, it is worth noting that the de nition (2.62) of ~ "\'(x;d)
does not ensure that"\'(x;; d) = * ', unlike in the 1D MUSCL case.

The last step in the full determination of the polynomial reconstruction is nding a value
for the polynomial coef cients R;. We begin by taking a stencil s¢, formed of N cells around
each cellc;, and which does not contain the cell ¢;. The determination of the optimal stencil
for a given mesh is still an open problem; therefore, for the moment, we do not explicitly give
the stencil sf’ of a given cell ¢;. A lower bound of its size Ny will be provided shortly. The
goal of this stencil is to provide a set in which the cells are considered close enough to the
cell ¢ to be used in the polynomial approximation of the solution in  ¢;. Following [46, 63, 65],
we compute the polynomial coef cients R; such that they minimize the least squares error
between the reconstruction and the values ' | of the piecewise constant approximation in
the stencil cells ¢ 2 s{j. This condition is nothing but the minimization of the following

functional: x " . 7 #,
Ei(R)= = —  A(x;dydx T

2 1G] ¢

j2sd 1

Let us note that arguing the de nition (2.62) of "' yields:

Z X 1 Z

— N (x;d)ydx ="+ R, — (x xj) dx M,

1G] ¢ | 2 31dK 1G] ¢
Therefore, the functional E; rewrites as follows:
2 | 3,
Z :
1 X 4 X 1 rn [ n5

Ei(Ri) = > R — (x xi) dx M; +"! ns .

jost | pauak 190 g
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Minimizing E; is therefore equivalent to minimizing the following  L2-norm:

1
Ei(Ri) = ékXiRi iK3; (2.63)
where we have set: " #
Z
. 1
e X;the matrixde ned by X; = i (x xi) dx M ,and
161 g j2sd;j j231dK

e thevectordenedby = ' '"I

] bojasd
In order to ensure that there is at least one solution to the minimization problem (2.63), we
exhibit a condition on the stencil size N4. Indeed, we need more information from the stencil
than we have polynomial coef cients. Therefore, we need #sid > #f 2 N?;j j2 JdKk.
After straightforward computations, we have the following lower bound on the size of the
stencil:
Ng=# > (¥ Dd*2)
2
To solve the minimization problem (2.63), we use the normal equation approach. We know
that R; is a minimum of E;(R;) if and only if R; is a solution of the following equation, called
the normal equation associated to the least squares problem (2.63):

X{TXiRi = X' i

where XiT is the transpose of the matrix X;. Now, assume that the matrix XiTXi is invertible.
Since the matrix X; only depends on the geometry, this invertibility property only depends
on the stencil s?. Therefore, an important ingredient in the choice of the stencil is to make sure
that it leads to the matrix X." X; being invertible. Equipped with this invertibility condition,
the polynomial coef cients R; satisfy:

Ri = (XX X i (2.64)

The matrix (X" X;) X is called the Moore-Penrose pseudoinverse of X j; more details can
be found in [147]. The expression (2.64) makes the determination of the polynomial coef -
cients a lot easier. Indeed, since the matrix X; only depends on the geometry of the mesh,
which does not change over time, it is suf cient to compute the pseudoinverse (X X;) XT
once for each cellg, at the very beginning of the time iterations of the scheme. Thus, solving
the minimization problem only consists in performing the matrix-vector product (2.64) for
each cellg; and at each time step.

The procedure discussed above fully characterizes the polynomial coef cients R;. How-
ever, the condition number of the matrix X; may be very large, especially when dealing with
a high polynomial degree. Therefore, after [1, 73], we suggest a rescaling of the matrix X; to
relax the dependence of the condition number on the geometry and the polynomial degree.
The matrix X; is rescaled as follows:

" 7 I#
Xi = —  (x xj) dx M, : (2.65)
j2sd;j j23LdK
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The equation (2.64) is then solved with the new matrix X;, to yield the rescaled polynomial
coef cients R;, as follows:
R.:()@,Tﬁ.) 1)@,T i

Finally, the actual polynomial coef cients R; to be used within (2.62) are obtained from the
rescaled coef cients R; by setting:

Ri= — o : (2.66)
1G] "2 2k

2.4.2 Derivation of high-order two-dimensional schemes for balance laws

We now focus on approximating solutions of 2D systems of balance laws with a high-order
accuracy. Such systems are governed by the following initial value problem:

( @W+r F (W)= S(W);
W (0; x) = Wo(x):

(2.67)

In (2.67), as in (2.3), the quantity S(W) represents a source term.

In order to provide a high-order approximation of solutions to the system (2.67), we rst
use the polynomial reconstruction (2.62) to derive a scheme that is high-order in space. Then,
we use Runge-Kutta-type methods to provide a high-order time accuracy. This approach is
detailed in the next two sections.

2.4.2.1 High-order space accuracy

This section is dedicated to proposing a high-order nite volume discretization of the 2D
balance law (2.67). As usual, this discretization is obtained by averaging the balance law
(2.67) on the cuboid [t";t"*1] . The main reason this high-order discretization is different
from the rst-order one presented in Section 2.3.1 is that the polynomial reconstruction (2.62)
is used. Therefore, the approximate solution is no longer piecewise constant in each cell, but
piecewise polynomial, as follows:

8i2Z;8x2¢; W'(x;d)" W(t";x); (2.68)

where W,"(x; d) is the vector containing all the components "'(x; d) given by (2.62).

Equipped with the polynomial approximation (2.68), we can proceed to determine a high-
order nite volume discretization of the 2D balance law (2.67). To determine the high-order
nite volume scheme, the system (2.67) is averaged over [t";t"*1] ¢, as follows:

l 1 Z Ztn+1 l Ztn+1 Z
tjG) ¢ tn tJG) ¢ G (2.69)
tn+1 '
= ii S(W) dtdx:
tJCiJ c tn

The goal is now to provide an approximate value of the three integrals in (2.69), while keeping
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the required order of accuracy.

The rstintegral of (2.69) satis es:
Z Znn z z

ii @W dtdx = 1 i W (t"*1: x) dx i W (t"; x) dx
tici ¢ tjai e jaj 4
-1 i W (x; d) dx ! W (x;d)dx :
t JCIJ G (o]

Arguing the conservation property (2.61) of the polynomial reconstruction %", we have, for
the rstintegral of (2.69):
Z Z tn+1

11 wtown
— @w dtdx ' —— 1 (2.70)
tjG] ¢ tn t

The second integral of (2.69) concerns the physical ux. Therefore, its approximation will
involve the numerical uxfunction F. Arguingthe divergence theorem yields, for this second

integral, an expression similar to the one encountered in (2.44):
!

Ztn+1z x Z Ztn+1
— T r F(W)dxdt = — — F(W(t; n; dt
11 oot = L 1 Lt o
tJCiJ tn G JCiJjZi €jj t tn
1 X 4
— F W ( ;d);WJ-”( ;d;n d o
JCIJjZi €jj

where we have used the following approximation of the physical ux:

Z tn+1

FW(; ) njdt

1
FOwiCsdi®rCsding " —

tl’]
We now introduce a quadrature formula on the edge g; . With 2 g; , the quadrature is given
as follows, for any function :gj ! R:

— d ' r r)- .
ail Q9 (0 (2.72)

Appendix B (see also [2]) give the quadrature weights ; and the quadrature points ,, as well
as their number R, so as to ensure a global accuracy of order(d+1) . Now, we approximate the
integral of the numerical ux onthe edge €; using the quadrature formula (2.71), as follows:

z ®R
Foom( d; W ;ding d ') oej e B d); W d)sng

€jj r=1

To shorten the notations, we set:
Fir == F W ¢;d);W"( ;d);nj

ij;r

As a consequence, using the previous expressions, the second integral of (2.69) is approxi-
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mated as follows:

Z tn+1 Z X L )6
11 roFW)axdtr LT e (2.72)
tich o o ool Y

The third integral of (2.69) concerns the source term. We suggest the following approxi-

mation: - Z Z o . 7 . Z I
—— S(W)dtdx = — — S(W(t; x)) dt dx
tjGj ¢ ¢n 1G] ¢ U tn
1 Z
" — S W"(x;d) dx:
IG) ¢

To deal with the integral in the above formula, we introduce a quadrature formula on the cell
G. Itis given as follows, for x 2 ccand ¢! R:

1% X
— (x)dx ' a (Xaq); (2.73)
IG) ¢ =1
where the weights 4 and the points X ¢, as well as the number Q of quadrature points, are
given by [2] (see also Appendix B). Using this quadrature formula (2.73) yields:

1% R
— S W"(x;d) dx' S W (X g d) :
TR =1

We introduce the following shorter notation:
Sig =S W' (X g d) :

As a consequence, the approximation of the third integral of (2.69) reads:

Z Ztn+l )@

S(W) dtdx oS

11

— 2.74
ticG) ¢ ( )

a=1

We can nally derive the high-order nite volume numerical scheme for the 2D balance
law (2.67). Combining the three approximations (2.70) — (2.72) — (2.74) and plugging them into
the average (2.69) of the balance law (2.67) yields the following high-order numerical scheme:
jey j € ®

— . 2.75)
. i (
j2 16 r=1 =1

Win +1 — Win

Concerning the initial condition, we average the function Wy on each cellc;, as follows:

Z
1
wl= = Wy(x)dx:
i Gj . O( )

J G
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Using the quadrature formula on a cell (2.73) then yields the following initial condition:

wP = qWo(X g):
o=1
Note that this expression ensures that the initial condition is approximated with the required
order of accuracy.

2.4.2.2 High-order time accuracy

The scheme (2.75) is high-order accurate in space. However, it is only rst-order accurate
in time: therefore, itis globally rst-order accurate. In this section, we suggest an extension of
the scheme (2.75) to ensure a high-order time accuracy. There are several ways of providing
a high-order time accuracy; one of them is the ADER approach (see [149, 150] for more in-
formation). However, here, we elect to use Strong Stability-Preserving Runge-Kutta (SSPRK)
methods, as introduced in [84, 85]. The goal of such time integrators is to provide a high-
order time accuracy while retaining some robustness property of the original scheme (2.75).
In order to achieve such a time discretization, we use the second-order method SSPRK(2,2)
when d = 1, the third-order method SSPRK(3,3) when d = 2, and the fourth-order method
SSPRK(5,4) wherd 3. These techniques are described in [84, 137] (the reader is also referred
to [144, 85, 138, 146, 139, 83, 102]). For a SSPRKp) method, the number m represents the
number of steps in the Runge-Kutta method, and the number pis the order of approximation
of the time integrator. Note that the SSPRK(2,2) method is nothing but Heun's method.

We now brie y describe the high-order time integrators mentioned above. Let us rewrite
the scheme (2.75) under the following condensed form:

wnt = Hw;

where W" is the vector containing all the constant values W,", i.e. W" = (W");j2z. After [144],
the general form of Runge-Kutta methods reads as follows:

%W(O) =W";
i 1h i
812 J1;mk wh) = (kWO + HW®) (2.76)
Cwntt = w(m:

Note that, in [144], the scheme was written under the form W"* = W" + tL(W"), thus
resulting in a slightly different expression of the Runge-Kutta method. The expression (2.76)
is easily derived from the one present in [144]. In (2.76), the coef cients | and |k depend
on the required order of the time discretization. The values of | and | are given for each
SSPRK method in Appendix C.

For the sake of completeness, we mention the formulas for the SSPRK(2,2) method and
the SSPRK(3,3) method. They are obtained by evaluating the general Runge-Kutta expression
(2.76) with the relevant values of |k and |k given in Appendix C. As a consequence, the
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SSPRK(2,2) method (i.e. Heun's method) reads:

8W(°) = wW"
1 1
w® = WO + ZHw® :
: WO+ H (W)
. Wn+1 — W(Z)’

while the SSPRK(3,3) method is given as follows:

g wo = wn
3 1
w® — WO + ZHwD)y:
4 4 ( )7
we = iy 2w,
3 3 ’
Swrto= o WO

We end this section by noting that the largest order of accuracy of the proposed Runge-
Kutta schemes is 4 for the ve-step SSPRK(5,4) scheme. Therefore, since the spatial order of
accuracy isp = d+ 1, the global order of accuracy will be held back by the time orderif d 4.
The time step t is still constrained with the classical CFL condition (2.60). In order to ensure
an arbitrarily high order of time accuracy, the time step is modi ed as follows, with f t to be
used instead of t in the scheme:

f t tmax(3d;3) :

(2.77)

2.4.3 The MOOD method

Thanks to the polynomial reconstruction, the integration of the 2D balance law and the
relevant SSPRK time discretization, we have designed the scheme (2.75) — (2.76) to be high-
order accurate in both space and time. However, this high-order accuracy comes with the
loss of the robustness property, and the numerical solutions obtained with this scheme may
present unwanted oscillations around the discontinuities (see [154, 111] for instance). Note
that such issues were already present in the 1D second-order case. In the context of the 1D
MUSCL reconstruction, slope limiters were used to prevent these non-physical oscillations
and ensure the robustness of the scheme (see Section 2.2).

To address these issues in the context of a 2D high-order scheme, we use a MOOD tech-
nique. An overview of this method is presented in [46, 63, 65]. Several applications have also
been suggested in recent years, for instance the recovery of the entropy preservation in [16],
a coupling with the ADER technique in [117, 25], an application to the shallow-water equa-
tions in [71, 47, 50], and applications to some other systems in [49, 54, 64]. These applications
are summarized in [48]. Following the MOOD paradigm, a subcell limiter technique for the
discontinuous Galerkin method has been proposed in [68].

The goal of the MOOD procedure is to recover essential properties of a rst-order scheme,
for instance its robustness, by detecting whether these properties are veri ed by the high-
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order approximation. This detection process is performed by several detection criteriawhich
check whether the properties are satis ed in each cell. If this veri cation fails in some cell, the
degree of the approximation is lowered in this cell, until the properties are satis ed.

First, we present some detection criteria that are commonly used within the MOOD pro-
cedure. Their purpose is to preserve the robustness and control the spurious oscillations. For
a more exhaustive description of these criteria, the reader is referred to [47, 71]. In this sec-
tion, we use the notation W? for the candidate solution, i.e. the solution obtained from W?"
using the high-order scheme (2.75) — (2.76) presented in the previous subsection. This candi-
date solution is then tested against the detection criteria, to determine the cells where it is not
acceptable. In such cells, computing a new candidate solution is required. Second, we state
the detector chain, i.e. the order in which the detectors are used, as well as the MOOD loop.

The Physical Admissibility Detector (PAD)

The PAD determines whether the approximate solution lies within the admissible states
space . Thus, the PAD criterion fails within the cell ¢ if Wi? 2 : Let us underline that,
equipped with the PAD, the high-order scheme is robust.

The Discrete Maximum Principle detector (DMP)

Although the PAD ensures that the robustness is preserved, it does not prevent spurious
oscillations from appearing in the vicinity of discontinuities. To address this issue, we use the
DMP criterion to check for oscillations. The DMP criterion fails if, for some component ' of
W, we have:

min( ;) wo C)F minC )+ "y (278)
where "\ is a constant used to reduce the risk of falsely detecting an oscillation that could be

due to a oating point error. In practice, we usually take "y = 3, where

e,
iPij

Detecting physical oscillations: the u2 criterion

Unfortunately, the DMP criterion (2.78) is too restrictive. It will sometimes detect and
eliminate physical oscillations, thus resulting in a false positive that reduces the accuracy of
the scheme. Therefore, we need another criterion to detect whether an oscillation is physically
admissible. To that end, we introduce the u2 criterion, which uses the constant second deriva-
tive of the second-degree polynomial reconstruction "\'(x;2). With x = '(x;y), we de ne the
following curvatures on the cell ¢:

XM =min @"imin @ ;X" =max @"imax @"
Jei Iz i
Y =min. @min @ Y™ =max @yimax @y
I I

Equipped with the curvatures, we state three criteria, which will be combined to form the
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u2 criterion (see [71, 47]). First, the plateau detector is de ned as follows:
max Ximin ;inman; Yimin ;jYiman : (2.79)

This criterion detects whether the local curvatures are small enough to consider the approx-
imation locally linear. In this case, the reconstruction should not be limited, and the plateau
detector is hence activated. Next, the oscillation detector is given by:

XN X max and Yy (2.80)

This oscillation detector is activated if the local curvatures undergo a change of sign in the
vicinity of the cell. This behavior of the curvatures indicated that an oscillation is present, and
therefore that the reconstruction should be limited in the cell. The third criterion involves a
local smoothness detector, given as follows:

1 min Ximin ;jximaxj' 1 min Yimin ;jYiman

= : 1 and = . 1 2.81
2 max Ximln ;jximan 2 max Yimln ;jYiman ( )

According to this detector, the solution is considered as locally smooth if the minimum and
maximum curvatures are close enough. If the solution is determined to be locally smooth, the
reconstruction should not be limited.

The u2 criterion is nally de ned as a combination of these three detectors. Indeed, if a
plateau is detected by (2.79) or if the solution is considered locally smooth by (2.81), then the
DMP criterion becomes irrelevant and the u2 criterion succeeds, thus leading to a non-limited
reconstruction. On the contrary, if a local oscillation is detected by (2.80), then the u2 criterion
fails, and the polynomial degree is lowered in the cell.

The detector chain

Equipped with these detectors, we state the order in which they are checked. To address
this issue, we introduce the Cell Polynomial Degre€CPD). The CPD is an integer, associated
to a cell ¢, such that CPD(i) 2 JO;dK If CPD(i) = p, then the polynomial reconstruction
used in the cell ¢ is of degree p. Figure 2.13 displays the detector chain for a cell where
CPD(i) = p > 0, and the effect of each detector on the CPD.

Figure 2.13 — The MOOD detector chain within a single cell. At the beginning of the chain,
CPD(i) = p.

At the beginning of the chain, we consider a candidate solution W; computed in the cell
¢ with a polynomial reconstruction of degree p (i.e. CPD(i) = p). At the end of the chain, if
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no criterion failed, then the candidate solution is declared suitable, and it is accepted as the
updated approximate solution W"*! . If one of the criteria did fail, then CPD (i) is settop 1
and the candidate solution is not accepted. If that is the case, a new candidate solution is
computed, using a polynomial reconstruction whose degree in the cell ¢ is equal to CPD(i).
We remark that, if a cell ¢; and its neighborare declared suitable, there is no need to compute a
new candidate solution in this cell ¢;. This remark help signi cantly reduce the computational
cost the MOOD method by computing a new candidate solution only in the cells where it is
required.

Note that this detector chain may be supplemented with additional detectors, to enforce
other properties to be satis ed by the scheme. One such detector concerns the entropy preser-
vation (see [16]). A MOOD-like method could also be used to recover the well-balance prop-
erty of a scheme. Since the reconstruction procedure does not ensure that the well-balance
property is satis ed by the high-order scheme, it is relevant to introduce a well-balance de-
tection criteria to the detector chain. Such a criterion is suggested in Chapter 4.

The full MOOD loop

From the previous paragraphs, we know the MOOD detectors and the order in which
they are applied. We now state the full MOOD loop for a desired reconstruction of degree d,
i.e. a scheme of order(d + 1) . For a single iteration in time of the SSPRK time discretization,
the MOOD loop reads as follows.

1. In each cellg, initialize CPD (i) = d.

2. Compute the candidate solution W? using the scheme (2.75) — (2.76) and the current CPD
map.

3. Apply the detection process displayed Figure 2.13 to compute a potentially new CPD map
and to decide whether to accept the candidate solution. If the candidate solution is rejected,
go to step 2. Otherwise, go to step 4.

4. The candidate solution is accepted, and we setw"*! = wW?.

Note that this loop, at worst, makes the CPD of every cell equal to 1. This situation cor-
responds to using the rst-order scheme (2.47), which is robust and non-oscillatory. Hence,
it satis es all the MOOD criteria. Therefore, the MOOD loop cannot be endless (see also [46]
for a more formal proof). In practice, it is highly unlikely that such a situation happens.
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A well-balanced scheme for the
shallow-water equations

The shallow-water equations equipped with the topography and Manning friction source
terms have been presented in Chapter 1. In addition, nite volume techniques have been
discussed in Chapter 2. Equipped with these studies, the goal of this chapter is to derive a
one-dimensional scheme that possesses the following properties:

e consistencythe scheme is consistent with the shallow-water equations with topography
and Manning friction (1.31);

« well-balancethe scheme preserves the steady states for the shallow-water equations with
topography and Manning friction, given in Section 1.2;

« robustnessthe scheme ensures the non-negativity of the water height;

 capture of wet/dry transitions the scheme is able to correctly model transitions between
wet areas (where h 6 0) and dry areas (where h =0).

In order to obtain such properties, we elect to use a Godunov-type scheme (see Sec-
tion 2.1.3 for more information). This scheme will be based on a two-state approximate
Riemann solver. One of the most famous two-state approximate Riemann solvers is the
HLLC Riemann solver, developed for the Euler system of uid dynamics by Toro, Spruce
and Speares in [151]. The HLLC (HLL —Contact) solver is based on the HLL solver. The goal
of the HLLC scheme is to provide a good approximation of the contact discontinuity present
in the Euler system of uid dynamics. Compared to the HLL solver, it contains an additional
wave, which corresponds to the contact wave in the Riemann problem. Note that adding a
wave also adds unknowns to be determined. Additional relations may be imposed on these
unknowns to satisfy several required properties. For instance, [76] deals with positive and
entropy-satisfying approximate Riemann solvers applied to several systems. We also men-
tion work on several other systems: a radiative transfer model in [14], a sediment transport
model in [34], the Ripa model in [140], and the equations of chemotaxis in [15].
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Several approximate Riemann solvers have also been developed in the framework of the
shallow-water equations. For instance, we mention [75], where the author derives a general
framework for positive and entropy-satisfying numerical approximate Riemann solvers. We
also mention [7], where a two-state approximate Riemann solver is designed to be positive
and to preserve the lake at rest steady state. Finally, in [12], the authors derive a positive and
entropy-satisfying approximate Riemann solver that allows the preservation of all the steady
state solutions of the shallow-water equations with just the topography. In both [7] and [12],
the two states are separated by a wave whose velocity is zero. This choice is motivated by the
presence of the stationary wave exhibited in Section 1.1.3 and created by the source terms.

This approach is used in this manuscript to derive an approximate Riemann solver that
takes into account a generic source term on the discharge equation. The derivation of this
scheme is presented in Section 3.1. Firstly, we derive a well-balanced approximate Riemann
solver for a generic source term on the discharge equation, which may consist in the topog-
raphy, the friction, or yet another source term. A correction is introduced to ensure the ro-
bustness of the scheme. Secondly, the scheme is applied to a speci ¢ class of source terms, to
which the topography and the Manning friction source terms belong. For these two source
terms, explicit expressions are given for the intermediate states of the approximate Riemann
solver. A special treatment is made to consider vanishing water heights.

The scheme suggested in Section 3.1 is well-balanced and robust. However, the friction
source term becomes stiff when a wet/dry transition is considered. Therefore, in order to cor-
rectly model the wet/dry transitions, we introduce in Section 3.2 a semi-implicitation of the
scheme via a splitting technique. The scheme is rst rewritten to exhibit the numerical ux
function as well as the numerical source terms approximation. Then, a semi-implicitation
technique is proposed for the Manning friction source term, in order to recover a good ap-
proximation of wet/dry fronts.

Finally, equipped with the well-balanced scheme, the last section of this chapter, Sec-
tion 3.3, is dedicated to numerical experiments. First, the well-balance property is tested in
the situations described in Section 1.2. The simulations of different lake at rest con gurations,
as well as several moving steady states for the source terms of topography and/or friction,
are carried out. Second, validation experiments are performed. Namely, we present several
dam-break experiments.

3.1 Well-balanced scheme for a generic source term on the discharge
equation

In this section, we consider the shallow-water system endowed with a generic source term
on the discharge equation. This system is governed by the following set of equations:

8
2@h+ Qq=0;

2@+ @ e éghz = S(W);
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where W = (h; ), and where S(W) denotes a generic source term, which can be the topog-
raphy, the friction, or another source term. Note that S(W) may depend on other quantities
than W, for example the topography function Z in the case of the topography source term.
However, for the sake of simplicity in the notations, this dependence is not explicitly written.
The equations (3.1) are rewritten under the following condensed form of a 1D balance law:

@W + @QF (W) = S(W); (3.2)
where ! 0 1 I
h q 0
W = . F(W)= @ A ;. SW)= ; 3.3
; (W) ?12+ %ghz W)= Sy (33)

In order to provide approximate solutions to this set of equations, we choose a Godunov-
type scheme (see Section 2.1.3) equipped with an approximate Riemann solver made of two
constant intermediate states. Recall from Section 2.1 that the nite volume schemes we use
are based on a relevant discretization of the space domain R. We brie y recall this procedure
here. The space domainR is discretized in cells (x; 13X, %), of length  x (see Figure 2.1).
Then, the approximate solution W at time t" is assumed to be piecewise constant in each
cell (x, 1 %). The goal of a Godunov-type scheme is to provide an approximation Win+1
of the solution at time t"*1, knowing the approximate solution within every cell at time  t".

This discretization leads to approximately solving the following Riemann problem at each

1X|+

interface between cells: 8
3 @W + @F (W)= S(W);
W if x< 0 3.4
BW(O;) = Wolx)= oo
) Wgr if x> 0:

Here, the solution of this Riemann problem is approximated with the aforementioned two-
state approximate Riemann solver. This approximate solver is de ned as follows:

if x=t L

Y %;WL;WR = (3.5)

8
S

W, if | <x=t< 0
EWR ifo<x=t< Rg;
7 Wa

if x=t R;

where W, and Wy are the unknown intermediate states, to be determined in order to ensure
that the required properties are satis ed. In addition, recall that the characteristic velocities
for the Riemann problem (3.4) are given by (1.34). As a consequence, we de ne the approxi-
mate characteristic velocities | and g as follows:

min( j uj c;jurj Cr; ")

max(juLj+ c; jugj+ Cr; " );

) (3.6)

R

where u is the velocity of the water, cis the sound speed, de ned by (1.12), and " > 0is
a small constant to be xed in the numerical applications. The constant " is introduced in
order to add some numerical viscosity to the scheme. The de nition (3.6) of the characteristic
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velocities ensures the following crucial relation:
L<0< g: (3.7)

Indeed, a stationary wave with velocity 0 is present in the approximate Riemann solver (3.5).
The condition (3.7) ensures that the three waves with velocities | ,0and g do notcross. The
structure of the approximate Riemann solver (3.5) is displayed on Figure 3.1.

Figure 3.1 — Structure of the chosen approximate Riemann solver.

Equipped with W, the goal is now to provide an expression for the updated state Win+l :
First, we take a time step constrained by the CFL condition (2.11), as follows:

t
—max . . . =
X i27 i+3 7 i+3 2

where =, and ',
i+ % i+3

located at the interface x;, 1. Then, we de ne the juxtaposition function W as follows:

are the approximate characteristic speeds for the Riemann problem

X i1
i+

PRV VALPRY VAL .

vWi y VWil

8t2 (0; t];8x2[xi;Xis1), W (t"+t;x)= W t

where W (X X4 %)=t;Wi”;Wi”+1 is the approximate Riemann solver (3.5), given for x 2
[Xi;Xj+1) and for t 2 (0; t] by

S n X XH’% L
% W, if " 1
X X1
L; PN +3 .
v X Xi+% N Wi+% if i+%< " <0 -
t ) i i+1 o . X XH_% o ( . )
Wl+’% if 0< n < |+%;
X Xjyl
: R .
er‘}'l If t 2 i+%’

where Wif . and WE;% are the intermediate states of the approximate solution to the Riemann
problem located at the interface x;, 1. This juxtaposition function, as well as the approximate
Riemann solver, are displayed on Figure 3.2.

Finally, the updated solution Win+1 is obtained by integrating the juxtaposition function
W onthecell (x; 1;X; %). In the current context of a two-state approximate Riemann solver,

1
2
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Figure 3.2 — The full Godunov-type scheme using the prescribed approximate Riemann solver.

the following sequence of equalities hold:

Z
n+1 1 Xiv % n+1
W' = — W (1" x) dx
X x
2
t. R Xjs 1 t X1 t

_ R R; 2 L 2 R n L L
= R _- + + L - Lo

i 1 W, L X i+3 X X i W i+ 3 xW'+%

t . .
wt = wp Loowh,own RoOwR, wh (3.9)

Itis clear from (3.9) that the updated state Win+1 is fully determined as soon as an expression is
given to the intermediate states Wif% and Wif‘%, forall i 2 Z. Determining these intermediate
states, rst for a generic source term and then in the speci ¢ cases of the topography and the

friction, is the focus of the remainder of this section.

3.1.1 Derivation of the intermediate states

Now, our goal is to propose a suitable approximation of the Riemann problem (3.4). To
that end, we use the two-state approximate Riemann solver W, de ned by (3.5). Itis made of
four constant states separated by three discontinuities. Two of these states, W, and Wg, are
the known initial data of the Riemann problem. The other two, W, and W, are unknown.
The intermediate states W, and Wy are each made of two unknowns, as follows:

| |

h h
w = Lt and wg= R
O 0r

Note that, as soon asW = W_ and W = Wk, the scheme (3.9) obviously becomes
stationary, i.e. Win+1 = W". As a consequence, the intermediate states must satisiyW, = W,
and Wi = Wg as soon as a steady state solution is considered. If this property is satis ed, then
the scheme will be naturally well-balanced. Several other constraints have to be imposed on
the intermediate states: namely, consistency and robustness. The consistency will be imposed
by arguing the integral consistency property (2.20). Regarding the robustness, note that the
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updated water height given by the scheme (3.9) rewrites as follows:

N+l _ pn L t t R; R Ut L; L t
h _h'l+i+%x '%x+hi%i%x h”% i+7 X

Nl

We assume thath! 0. Recallthat I, < Oand <, > O after (3.7), and recall the CFL

2 2
condition (3.1), which constrains the time step  t. As a consequence, we have

and t

Therefore, the following inequality holds:

1+iL

L R
+§ X I

<~

1
2

Furthermore, since :‘+; < Oand iR 1 > 0, we get the following suf cient condition for ~ h**
2

to be non-negative: ’
if i, o0andh“, 0, then h*t o
I3 I+3

Therefore, the scheme is robust as soon as the intermediate water heights are non-negative.
The properties that the intermediate states W, and W, are required to satisfy are thus sum-
marized as follows:

« integral consistency (2.20);
* robustness: hy  Oandhgy O0;

« well-balance: W = W, and W, = Wg as soon as a steady state is reached, i.e. as soon
as the steady relation @F (W) = S(W) is satis ed in a discrete sense to be determined
later.

In this section, we rst brie y study the Riemann problem (3.4). Then, we determine the
intermediate states W, and W such that the required properties of consistency, well-balance
and robustness are satis ed.

3.1.1.1 Properties of the Riemann problem

We now study the properties of the Riemann problem (3.4) for the shallow-water equa-
tions with a generic source term on the discharge equation. In Section 1.1.3, the shallow-water
system has been studied in the case of the topography and the Manning friction source terms.
The study with a generic source term is presented here in order to exhibit the wave struc-
ture and the Riemann invariants for the Riemann problem (3.4). These informations will be
instrumental in the derivation of the intermediate states W, and W.

The system under consideration reads as follows:

8
%@h+ @q=0;

@i+ @ Tl sw@y =o;
; Y W)@y =0;

" @Y =0;
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where the quantity Y satis es Y (t;x) = x (and consequently @Y = 1). We now assume that
h 6 0. We also assume thath and g are smooth functions. Using the velocity u = g=h the
above system reads: 8
§@h+ u@h+ h@Qu=0;

B@u+ g@h+u@u Sh '@y =0;

- @Y =0;

where the dependence of S in W has been temporarily dropped for the sake of simplicity in

the notations. Therefore, the shallow-water system with a generic source term can be cast
under the following non-conservative form:

@U + A(U)@QU =0;

where the vector U and the matrix A(U) are given by:

0 1 0 1
h u h 0
U=BufX and AW)=8 g u sh1k:
v 0 0 0

The eigenvalues of this matrix are  (U) = u p% and o(U) = 0. Concerning (U),
these characteristic velocities are both associated to GNL elds, through which the quantity
Y is preserved (see Section 1.1.3 for the specic case whereS is made of the topography
and the Manning friction source terms). Regarding o(U), the eigenvector associated to this
eigenvalue is given by: 0 1
Sh
RoU)= ® Su X:
gh® hu?
Since ((U) =0, the associated characteristic eld is obviously linearly degenerate, and it will

therefore produce a contact discontinuity. Recall that, across a contact discontinuity, the Rie-
mann invariants are constant quantities. They are functions ( U) given by (1.13), as follows:

ru( U) Ro(U)=0: (3.10)

Note that, for S = 0 (i.e. a vanishing source term contribution), the quantities h and u are
Riemann invariants. This behavior is to be expected since the stationary wave is created by
the source term. Hence, without source term, there is no stationary wave. We now assume
that S 6 0. In this case, (3.10) rewrites:

dh du dy

Sh~ su_ g hu? (3.11)

The rst equality of the relations (3.11) yields:
d(hu) =0:

As a conseguence, we recover, as expected, that the discharge] = hu is constant across the
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stationary wave. Equipped with this constant discharge, the second equality of the relations
(3.11) yields:

R
2 gh dh+ SdY =0:

As a consequence, the Riemann invariants across the stationary wave are governed by the
following two relations: 8
2dq=0;

(3.12)

2
>d %+ %ghz = sdy:

The equations (3.12) cannot be simpli ed further in the case of a generic source term S. In the
speci ¢ cases of the topography and the Manning friction, the expressions from Section 1.1.3
are obtained.

3.1.1.2 Consistency

Using the algebraic properties of the shallow-water equations with a generic source term
(3.1), we now derive suitable intermediate states for the approximate Riemann solver (3.5).
We rst determine a necessary condition on the intermediate states to ensure the consistency
of the scheme. Recall from Section 2.1.3 that the following integral consistencgondition (2.20)
has to be prescribed on the intermediate states:

z

1 X=2
= v owiwg dx= —
X X=2 t X X=2

YA X=2
Wr it;WL;wR dx: (3.13)

In Section 2.1.3, the above integrals have been computed in the case of a hyperbolic conserva-
tion law, i.e. without source terms, to yield (2.25). We now perform these computations in the
case of the shallow-water equations with a generic source term, given under the form (3.2),
and for the approximate Riemann solver (3.5).

The average of the exact Riemann solution Wgr rewrites as follows, by integrating (3.2)
overtherectangle[ x=2; x=2] [0O; t], withthe initial condition Wy given by (3.4):

z x=2 X Z x=2
Wr —;W_;WRr dx = W (X) dx
x=2 t 7 tx=2 )
F WR E; W|_ ; WR dt
2, . (3.14)
+ F Wgr j; W ; Wgr dt
0
vA t Z x=2 X
+ S Wr —;W_;WRg dx dt:
0 x=2 t

Note that, due to the presence of the source term, uniform in space initial data is no longer
solution to the balance law (3.2). Indeed, for a function W (t) uniform in space, (3.2) rewrites
as@W = S(W), and W has to depend on the time to be a solution of this equation. However,
in (3.14), we have made the approximation that the constant initial data is a solution. There-
fore, the integral of the initial condition Wg(Xx) does not depend on time. As a consequence,
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performing straightforward computations and arguing the CFL condition (2.23) lead to the
following expression of the average of the exact Riemann solution:
1 YA x=2

X
— Wr — ;W ;WRr dx =
X - R —p WL WR

e Lrwe) Fw)

Z Z (3.15)

X
S Wg ?;WL;WR dx dt:

1
+ —
X

0 x=2
Note that this expression is very similar to (2.25), which had been obtained in the case without
source terms. Indeed, only the average of the source terms contribution has been added to
(2.25).
Now, using the expression (3.5) of W, the integral of the approximate Riemann solver
rewrites as follows:
Z w2 X X
W 7t,W|_,WR dX: L t+7 W|_ +(O L t)WL
x=2

+(rR t OWR+ 7)( R t Wg:

Therefore, the average offv is given by:

z

1 X=2

= v X wwk dx =
X o t

WL+ W t t
= R (We W)+ L— (WL W): (3.16)
X X
The integral consistency condition is then obtained by plugging (3.15) and (3.16) into
(3.13), to get the following necessary condition on the intermediate states:

RWr W= rWr (WL (F(WR) F(WL))
1% 12 =2 (3.17)

X
+ S Wgr ?;WL;WR dx dt:

t o x=2

Now, recall that the sole intermediate state of the HLL approximate Riemann solver is given
in [90] by (2.33), as follows:

rRWr WL (FrR FL).

Whie = (3.18)
R L
As a consequence, using (3.18), (3.17) reads:
1 z tZ X=2 X
RWr  LtWL=(Rr U)W + — S Wg ?;WL;WR dx dt;
0 x=2

In the context of the shallow-water equations with a source term on the discharge equation
(3.2), we haveW = (h;q) and S(W) = '(0; S(W)). Therefore, the above identity reads:

rRhr  the=( R )DL ; (3.19a)
1 z 1Z X=2
ot

S We SW_:Wgr  dxdt  (3.19b)
0 x=2 t

ROR Lo =( R  L)OHLL *
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where hy . and gq . are given, after (3.18), by:

(R oUbuw = rhr  che  [d]; (3.20a)
@, 1 2
(R L = rRR LG wt égh ; (3.20b)

With (3.19), we have obtained two equations linking the four unknowns h , hg, g and og.
We still need to exhibit two additional relations to uniquely determine these four unknowns.

In addition, the average of the source term present in (3.19b) needs to be dealt with. Both
these issues are addressed in the next section.

3.1.1.3 Well-balance parametrization

In order to deal with the source term average in (3.19b), we introduce a parameter S whose

purpose is to approximate the source term average, as follows:

Z tZ x=2 X
S'" ——— S Wr —;W_;Wr dxdt: (3.21)
t X o x=2 t
The parameter S depends on W, and Wrg. It may also depend on other quantities, for instance
the topography function Z in the case where S represents the topography source term. For
the sake of simplicity, these dependencies are not explicitly written.

This parameter will be de ned in the next section for the speci ¢ cases of the topography
and the Manning friction. For the moment, we assume that such an approximation of the
source term average is known, and that it is consistent. A more precise de nition of the
consistency of S will be given in the next section.

Equipped with S, we impose that the intermediate states satisfy, instead of (3.19), the
following equations, made by combining (3.19) with (3.21):

rRhr  thy=( r  0O)hHw; (3.22a)
ROR LA =( R LG +S X (3.22b)

Now, let us introduce the steady state solutions of the balance law (3.2). The time deriva-
tive of such solutions vanishes. As a consequence, they are governed by the following equa-
tion:

QF (W) = S(W): (3.23)
Arguing the de nitions (3.3) of F and S allows rewriting (3.23) as follows:
8
2 @Qq=0;
2 (3.24)
> @ %+ %th = S(W):

Therefore, the steady state solutions satisfy q = cst. As usual, we denote this uniform value
of the discharge by .
We go back to the discrete level with the Riemann problem (3.4). We assume thath, > 0
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and hg > 0. We elect to consider that the initial data of the Riemann problem (3.4) de nes a
steady state if the following equations hold:

8
2R o =0;
2 2 3.25)
> B, Ll Rl gy (
. hR+29hR hL+ZghL S x

The discrete steady relations (3.25) are nothing but a discrete version of the steady relations at
the continuous level (3.24), with the source term S(W) being approximated by S. Using the
usual jump notation [X]= Xr X, the discrete steady state solutions are therefore de ned
as follows.

De nition 3.1. Two statesW,_ = ‘(h_;q ) and Wg = !(hr;ar), with h, > Oand hg > 0, are
said to de ne a steady statié the following relations hold:

8
20 = R = Qo;
1,9 _ (3.26)

.>0(2)H 2h? =S x

N

Let us emphasize that S must be a consistent approximation of S, as evidenced by (3.21).
As a consequence, the relations (3.26) impose that a suitable expression o6 be derived. This
expression must allow both consistency with S and recovery of the discrete steady state rela-
tions (3.26). This derivation is done in the next section, in the speci ¢ cases of the topography
and the Manning friction source terms. At this level, we assume that such an expression is
known.

Equipped with the discrete steady states (3.26), we can now propose a more precise de -
nition of the well-balance property we seek. Indeed, we wish for intermediate states W, and
Wg which ensure that W, = W and W, = Wgr as soon as a steady state is reached, i.e. as
soon asW| and Wg satisfy the discrete steady state relations (3.26). Note that the relations
(3.24) coincide with the Riemann invariants (3.12) (since Y (t;x) = x). As a consequence, the
de nitions of the intermediate states are also based on the Riemann invariants.

Recall from Section 3.1.1.1 that the source term induces a stationary contact discontinuity,
i.e. a contact discontinuity of velocity 0. Across this wave, the Riemann invariants (3.12)
are constant. The approximate Riemann solver we are building involves three waves (see
Figure 3.1), of respective velocities | < 0 < . Hence, using the Riemann invariants for
the stationary wave, as well as the source term approximation S given by (3.21), leads to
imposing the following relations on the intermediate states W, and W:

| Or cIJL =0 (3.273a)

@®)?2. 9, @?. 9. 2 _= .
hRR +§(hR) hLL +§(h|_) =S x (3.27b)

As a consequence, (3.27a) imposes thaty and o be taken equal. We takeq = g, and we
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denote this value by q . Equipped with q , the consistency relation (3.22b) rewrites as follows:

g = Oqu + (3.28)

-

Therefore, sinceS is assumed to be known, the above formula uniquely determines q .
Using that q = og = g, we compute a relation between h; and hy. The equation (3.27b)

provides such a relation. However, this formula is nonlinear, and the formulas of h; and hg

cannot be explicit. Note that (3.27b) rewrites as follows:

|

, !
r(]qg + g(hL+hR) (hg h)=35 x: (3.29)
LR

In order to give explicit valuesto h; and hg, we consider the following linearization of (3.29):
|

, !
r(]CL‘JR + g(hL +hr) (hg h)=5 x: (3.30)

As a consequence, from the consistency relation (3.22a) and the linearized Riemann invariant
(3.30), we obtain thath, and hy are solutions of the following linear system:

(

rRhr  thi=( rR  LU)DPHL;

_ (3.31)
(hg h))=5S x
where the quantity  is de ned by:
@), g
= he he + é(hL + hg): (3.32)
Solving (3.31) for h; and hg, we get:
hL = hyL RS X ; (333&)
(rR L)
hR = hH|_|_ ﬂ: (333b)
(R L)

Remark 3.2. Note that the expressions (3.28) ofq and (3.33) of h, and hi ensure that we
have g = oy and hy = hg = hy as soon asS = 0. Therefore, if the approximate
source term vanishes, then the suggested approximate Riemann solver degenerates into the
HLL approximate Riemann solver, whose intermediate states are given by (3.18). Since the
Godunov-type scheme associated to the HLL solver is entropy-satisfying, the stability of the
current scheme is improved by having it degenerate to the HLL scheme in the absence of a
source term.

The intermediate states W, = '(h,;q ) and Wy = '(hg;0g) are thus completely and
explicitly determined by ¢ = oz = g and the relations (3.28) — (3.33). Note that these
intermediate states are de ned only for h. > 0and hg > 0. Indeed, the quantity is not
de ned as soon as hy = 0 or hg = 0, and the source term approximation S may also be
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unde ned when dealing with vanishing water heights.

Sinceh. > 0and hg > 0 for now, we focus on a weaker notion of robustness, the posi-
tivity preservation The scheme will be positivity-preserving if positive water heights at time
t" imply positive water heights at time t"*1. From the expression (3.9) of the scheme, the
positivity of h, and hy, is a suf cient condition for the positivity of the scheme. However, we
remark that the expressions (3.33) may lead to non-positive h; or hy, even if h, and hr are
positive. Hence, the intermediate states (3.33) fail to ensure the positivity preservation of the
scheme. A procedure to recover the positivity of the intermediate heights is presented in the
next section.

3.1.1.4 Positivity

In this section, we suggest a modi cation of the intermediate water heights (3.33) to ensure
the robustness of the scheme (3.9) while retaining the well-balance property. To address such
an issue, we follow the procedure proposed in [7] (see also [15]). It consists in enforcing the
positivity of h and hg, while still ensuring that they satisfy the consistency relation (3.22a).
Sinceh; and hg depend on hy L , we rst state the following result, which concerns the sign
of hyL .

Lemma 3.3. With | and gr de ned by (3.6) and assuming th&f. andhgr are positive, the inter-
mediate height of the HLL solver, de ned by (3.20a) and labeled , is necessarily positive.

Proof. From (3.20a), we rewrite hy . as follows:

UR

rh oL (3.34)
L R L

hue = hr
Now, recall the de nitions (3.6) of | and r. From these de nitions, we immediately get:

R J URj+ Cr;

LoJou oo

p— p—
where ¢ and cr are the left and right sound speeds, denedby ¢ = gh.andcg = ghg.
Therefore, (3.34) yields the following estimations of hy, :

JUR] UR* CR julj+uL + o
R L R L

hreC h. ¢
ROR LCL

R L R L
Sinceh, > 0and hg > 0, we have ¢, > Oand cg > 0. As a consequence, we immediately get

hye > 0, which concludes the proof. O

In order to introduce the positivity preservation process, we de ne a small parameter ".
This parameter satis es:
o<" min(h|_; hr; hyo )Z (335)

Equipped with the assumption that h. > 0and hg > 0, as well as Lemma 3.3, the positivity
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of " is ensured, since it is lesser than the minimum of positive quantities. We now present the
positivity preservation procedure.

(1) Ifh, <" ,wetakeh =", andhg is chosen according to (3.22a), to get:
Rhr = ("+( R U)hHLL;
which guarantees that h; > 0 (see Figure 3.3).
(2) Ifhg <" ,wetake hgy = ", and h is chosen according to (3.22a), to get:
the= r" (r  U)hhws

which guarantees that h; > 0, since | < 0 (see Figure 3.3).

(3) Otherwise, we have h;  "and hg ":there is no need for the positivity procedure.

"

After the correction procedure, we have h;, " and hg
recovered the positivity of the intermediate water heights.

. As a consequence, we have

Figure 3.3 — Correction procedure to ensure positive and consistent intermediate water
heights. The line represents the consistency equation (3.22a). If the point(h, ;hg) belongs
to the domain 1, then h; and hg are not modi ed. However, if (h, ;hg) corresponds to a
point within the domain 2, we replace (h_;hg) with (" (1 —)hy + —="), according to
(3.22a).

We now combine the equations (3.28) — (3.33) with the positivity correction, to de ne the
intermediate states W, and Wy as follows:

h
W= -  and Wg= ; (3.36)



3.1. GENERIC SOURCE TERM 117

where the intermediate discharge and water heights are given by:

S X

O =®R=9 = QHL + - L; (3.37a)

h, =min max hui RS X _.w . g R op4 Ru (3.37h)
(rR L) L L

he = mi LS X ., | L Lu .

R = Min max hu —_—, 1 — hp + —" ; (337C)
(rR L) R R

where has been de ned by (3.32), as follows:

_ @’ g .

and where the quantities hy | and gy are de ned by (3.20). The next section exhibits and
proves the properties of the intermediate states we have derived.

3.1.1.5 Properties of the intermediate states
The following statement, regarding the properties of the intermediate states (3.36), holds.

Lemma 3.4. Assumeh; andhgr to be positive. Then, the intermediate staftés and Wy given by
(3.36) satisfy the following properties:

(i) consistency: the quantitidsg , hg, g andagg satisfy the equations (3.22);

(i) positivity preservationh, " andhg ;
(i) well-balance: ifwW,_ and Wgr de ne a steady state, i.e. if (3.26) holds, théh = W, and
WR = WR.

Proof. Since" is constrained by the estimations (3.35), we obviously get the required property
(i). Indeed, after (3.37b) and (3.37c),h; and hg stand for the minimum of quantities that are
greater than or equal to ". Hence, (ii) holds.

Next, let us set

FIL = hHLL ﬂ and FIR = hH|_|_ LS X :
(rR L) ( L)
We immediately get the following identity:
rhy LA =( R Ubaw; (3.39)

which means that the heights ﬁl_ and lﬁR satisfy the consistency relation (3.22a). Since (3.22b)
is obviously veried by q , the property (i) is established as soon ash, and hy are proven to
satisfy (3.22a). Recall from Lemma 3.3 thathy | > 0. We have the following three con gura-
tions for the intermediate heights.

. If ﬁL " and IﬁR ", then the relations (3.37) yield h; = ﬁL and hg = IﬁR.

o If A, <", thenfrom (3.37)wegeth, = "andhy = 1 —= hy + —".
R R
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* Similarly,if f, <" ,thenwehavehy = "andh, = 1 = hy + 2"
L L
We note that, in all three cases, the following identity systematically holds:
rRhrp  thy=(r )b

This identity turns out to be the consistency relation (3.22a). As a consequence, the property
(i) is proven.

Finally, we have to check that the well-balance property is satis ed even in presence of the
positivity correction. In order to prove the well-balance, we assume that W_ and Wr de ne
a steady state, i.e. that (3.26) holds. Our goal is to show that, in this case,W, = W_ and
Wg = WR.

We begin by proving that g = o = ¢p. From the de nition (3.37a) of g and the steady
relations (3.26) satis ed by W and Wg, we deduce that q satis es the following sequence of

equalities:

5 _

q = RO L% 1 $+}gh2+ S X
R L R L h 2 R L
1 5 1 g .2 5 1 g.,2

= Z 4+ =2 = 2
%t e oh

:qJ

As a consequence, we haveq = g = (pand gg = Or = Qo.
We now prove that h; = h_ and hg = hg. First, let us compute S x= atthe equilibrium
using (3.26) and (3.38). We get the following equalities:

= h = [h]:
+ E(hl‘ + hr)

hLhr

We then compute ﬁl_ at the equilibrium. According to (3.37b), we have:

f = rRhr  Lhe [d] RS X
L R L R L (rR L)
_ rhr tht  rhr+ Rrhp
R L
= h|_Z

Similarly, (3.37c) yields:

£ = rRhR Lhr [d] LS X
e
R L R L (r L)
_ RrhRr Lhr thr+ (he
R L

= hRZ
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Moreover, from the de nition (3.35) of ",we haveh, "andhgr ". Therefore ﬁl_ " and
IﬁR ". By construction of the positivity procedure, since ﬁL and IﬁR satisfy the consistency
condition (3.39), we have h, = h_and h, = h_, in this speci c case of a discrete steady state
governed by (3.26). As a consequenceh; = h_ and hg = hg.

Therefore, we have established thatWw, = W, and W = Wg as soon aswW, and Wg de ne
a steady state. This concludes the proof of the well-balance property (iii), and Lemma 3.4 is
thus proven. O

3.1.1.6 Properties of the scheme

Equipped with the intermediate states (3.36) and their properties given by Lemma 3.4, we
can state the following result concerning the full scheme (3.9).

Theorem 3.5. ConsideW," 2 foralli 2 Z, where s the following restricted admissible states
space:
= W='h;g)2R?*; h>0,q2R :
Assume that the intermediate state&t?fl andWiFj;l are given, for all 2 Z, by
2 2

! !
h, (WM W" . he (W W
1 o n InJrl and Wilz‘l = = n In+l
2 o (W Wi, 2 o (W™ Wiy

whereq andgg are de ned by (3.37a), while, andhy are respectively given by (3.37b) and (3.37c).
Also, assume that the source term approximaois consistent with the source terBiaccording to
(3.21). Finally, assume that, as soon(&¥");,, de nes a steady state, the approximatf®iveri es
(3.26). Then, under the CFL restriction (3.1), the Godunov-type scheme (3.9) satis es the following
properties:

(i) consistency with the shallow-water system (3.1);
(i) positivity preservation: for all 2 Z, Wi”"l 2

(iii) well-balance: ifW;"),,, de nes a steady state, i.e. if for al Z, W" andW/}; de ne a steady
state, then for all 2 Z, W = w".

Proof. After [90], the consistency property (i) holds as soon as the approximate Riemann
solver satis es the integral consistency condition (3.13). After Lemma 3.4, the intermediate
states (3.36) ensure that this integral consistency property is satis ed. As a consequence, (i)
holds true.

We turn to proving the positivity preservation property (ii). By de nition of , this is
equivalent to showing that, forall i 2 Z,h*! > 0assoonash! > 0. We set"" > 0constrained
by (3.35), i.e. such that"  min(h{'; hi}; ; hii't ), where hilt is given by evaluating (3.20a)

i1
i+ 3 1

between the statesW," and W/}, . The second item of Lemma 3.4 ensures thathiLjr ., "'and

2
hiR+' , "Massoonash! > 0and h,; > 0. Since the scheme under consideration is given by
2

(3.9),h"? turns out to be the sum of positive quantities, and (ii) is proven.
We nally need to prove the well-balance of the scheme (iii). Once again, this property
comes from Lemma 3.4. Indeed, let us consider that(W;"),,, de nes a steady state. Therefore,
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forall i 2 Z, W" and W/"; de ne a steady state. As a consequence, from Lemma 3.4, we get
forall i 2 Z that Wif% = W and WiFf% = W/, . Hence, arguing the expression (3.9) of the
scheme, we haveWi”+1 = W," forall i 2 Z, and the property (iii) holds. This concludes the

proof of Theorem 3.5. O

Remark 3.6. Because of the arbitrary small parameter " > 0, introduced in (3.36) to enforce
the positivity of the intermediate water heights, the updated water height never vanishes.
In the next section, we will present an extension of the scheme to deal with dry areas in the
case where the expression of the source term is known and consists in the topography or the
Manning friction. At this level, we reject vanishing water heights because of the unknown
de nitions of S and S=, involved within the expressions (3.36) of the intermediate states.
As soon as the full characterization of S is established, the scheme will be extended to allow
" =0 in the de nition (3.36).

3.1.2 Application to a speci c class of source terms

With the intermediate states (3.36), Theorem 3.5 holds as soon as a suitable de nition of the
parameter S is provided. This section focuses on a speci ¢ class of source terms, to which the
topography and the Manning friction source terms belong. We now assume that the generic

source term S is given by:
SW)=hf(g@: (3.40)

From now on, the topography source term will be labeled S!, as follows:
SY(W)= gh@Z: (3.41)
Note that S! falls under the framework (3.40) if we set:
=1 ; f(@=1 ; @ = 9@z (3.42)
In addition, the Manning friction source term is now denoted by ~ S', to get:
ST (W)= kqgjgih : (3.43)
The source term S' can be written under the form (3.40) by taking:
= 5 f@=dd ; @ = k (3.44)

By adopting the source term given by (3.40), the smooth steady state solutions are gov-
erned by (3.24), as follows:

8
2@q=0;
1 (3.45)

> 7 2
> @ F+§gh =hf@:

The rst equation of (3.45) obviously yields that the discharge q = ¢ is uniform. For smooth
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steady states, the second equation reads as follows, after a division by h :

gh 2 +ght @h=f(n)@:

As a consequence, the following identity governs the steady state solutions:
% 1,9 2 -0n-
T @h 5@ h f(m)@ =0:

Hence, at the discrete level, the following algebraic relation describes the smoothsteady
state solutions for nonzero water heights:
h i g h i
ht + > h? f () 1=0: (3.46)

&

1+

Therefore, the discrete smooth steady states are governed byqg. = g = p, as well as the
following relations, made by combining (3.26) and (3.46):

8
3
3

h? =8 x;
h i g h i (3.47)
ht t 5 h? f (o) 1=0:

+

&

S O
NiQ

1+

The system (3.47) is a nonlinear system of two equations, whose two unknowns are S and .
To solve this system, we note that the only unknown present in the second equation of (3.47)
is gp. As a consequence, this nonlinear equation may be solved to obtained the value of qp.
Then, the rst equation yields an expression of Swhen W, and Wr de ne a steady state. This
expression depends only on W, Wr, | and g, and it can be used even when W_ and Wgr
do not de ne a steady state.

However, solving the system (3.47) for S is not possible in the general case, wheref (qp) is
an unknown. In the next sections, we solve this system in the speci ¢ cases of the topography
source term or the Manning friction source term. Comments are then given on combining
both source terms and on vanishing water heights.

3.1.2.1 Approximate topography source term

In this section, we consider the topography source term St, given by (3.41). The goal of
this section is to compute a suitable parameter S to approximate S!. In this speci ¢ case of
the topography source term, we shall denote this parameter by S'. We still, for the moment,
assume thath, > 0and hg > 0.

According to (3.42), the steady relations (3.47) rewrite as follows in the present case:
2

G o+ h? = 8 x; (3.48a)

[EEN
NIQ

h—lz + gh]+ g[Z]1=0: (3.48b)

N‘gl\.)

We now exhibit the expression of S! from the above identities. First, from (3.48b), we extract
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the following expression of oZ:

hthg .
hg ht

o =2gh+ Z]

which is plugged into (3.48a) to get the following de nition of ~ S':

ot _9 2 2h|_hR.
S x-2h g[h+Z]hL+hR.

The above expression can be rewritten as follows, after straightforward computations:

2h_ hg + 9 [h]®

at o — g .
S x= g[Z]hL+hR 2h|_+hR.

(3.49)

Let us emphasize that such a de nition of the approximate topography source term can be
found in the literature. For instance, the reader is referred to [12, 13] (see also [128] for related
expressions). When the water height and the topography are smooth functions, this expres-
sion of the approximate source term is consistent with the source term at the continuous level.
This result is proven below.

Lemma 3.7. If the water height is a smooth function, then the expressio®afiven by (3.49) is
consistent withSt.

Proof. With a smooth water height and a smooth topography function, we take h_. = h(x)
and hg = h(x + O( x)),aswellasZ, = Z(x) and Zr = Z(x + O( X)), in (3.49). Taylor's
formula applied to the quantities hgr and Zg yields:

hg = h+ x@h+O( x?) and Zr=Z+ x@Z+ O( x?):

As a consequence, we get:
h, + hg =2h+ O( Xx): (3.50)

In addition, we immediately have [h]® = O( x3), and we get, for the second term in the
expression (3.49) ofSt:

g B _ o(x) _ 2.
2 xh+hr_ 2h+o( x_ O X (3.51)
Moreover, for the rstterm of St, we have:
+ + 2
22+ x@z+0( X) 2 _ G740 x): (3.52)

X X

In addition, with (3.50), we get:

2hihg _ 2h(h+ x@Z + O( x?) _ .
h. + hg 2h+ O( X) = h+ Ol x): (3.53)

Combining the equations (3.51), (3.52) and (3.53) nally yields S' = gh@z + O( x), which
concludes the proof. O
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An important ingredient in the consistency of the scheme is that the source term approx-
imation S has to be consistent with the source term S. In the present case,S! has to be con-
sistent with the actual source term gh@Z, assuming positive water heights. For instance,
when the topography is at, i.e. [Z]= 0, the actual topography source term vanishes. There-
fore, in order for S' to be consistent with the actual source term, we need S! = O( x) as
soon as the topography is at. However, as underlined in [12, 13, 123, 128], S' is no longer
consistent with zero when the topography is at and the water height is not smooth. Indeed,

in this case, we have
at _ g [h®

t - .
S'= Shahy x o( x):

In order to recover the required consistency, i.e. S' = O( x) for a at topography, we
adopt the strategy proposed in [12, 13, 123]. We modify S' as follows:

= 2h h g [h2
t — LR J c
S x= g[Z]hL  he + 2h + hy. (3.54)
In (3.54),[h]c is a cutoff of [n] = hg  h_, de ned as follows:
(
hR hL If]hR h|_j C x;
[h]c = (3.55)

sgnhr h ) C x otherwise;

with C a positive constant that does notdepend on  x. This new expression of St is consistent
with the topography source term St. Indeed, for a at topography, (3.54) becomes:

= g [h2

St= *°__* ¢ 3.56

2(hg + hg) x ( )

Note that the cutoff procedure enforces j[h]j C x. Therefore, according to (3.56), we have
S' = O( x?) as soon as the topography is at. However, the source term approximation St
does not vanish when the topography is at, and therefore the scheme does not reduce to a
conservative scheme in that case.

Remark 3.8. For a smooth water height h, the relation hg  h_. = O( x) obviously holds,
and there existsK 2 R, suchthatjhg h_j K x. Asaconsequence, for a smooth water
height, there exists C such that [h]c = [h], with [h]c given by (3.55). Indeed, taking C < K
suf ces. In this case, S' is given by (3.49). Thus, the relation (3.48a) holds by construction, and
Theorem 3.5 ensures that the suggested intermediate states (3.37) are well-balanced. Hence,
the cutoff procedure does not interfere with the well-balance property of the intermediate
states.

Lemma 3.9. The expression & given by (3.54) is consistent wits!.

Proof. From Lemma 3.7, we know that the rst term of St is consistent with gh@Z. Now,
note that, from the cutoff procedure (3.55), we have j[h]gj C x. Therefore, [n]3 = O( x3),
and S' is necessarily consistent with  gh@2z for any h_ and hgr, which concludes the proof.

O
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3.1.2.2 Approximate friction source term

We now turn to the friction source term S, given by (3.43). In this section, we derive a
suitable approximation S’ of S, to be plugged into the intermediate states (3.37). We still
assume thath, > 0and hg > 0. SinceS' is given by (3.44), the steady relations (3.47) now
read:

1 g =
2 4 942 - &f .
@ H + > h S’ X (3.57a)
2
% 1 g +2 LN
1 h + 2 h + Kaojapj x =0: (3.57b)

From (3.57b), we get the following expression of ¢ for a steady state solution:

[h *2]
2 _ +2 )
Q= T ; (3.58)
1 k o X

where ¢ = sgn(gp) denotes the direction of the steady water ow. Now, to obtain a suitable
expression of ST, we take:
Sf = kggh (3.59)

where the parameter g is consistent with g, and the parameter h is consistentwith h . We
emphasize that nding S’ now amounts to determining suitable parameters gand h . As
a consequence, as soon as a steady state is considered, the quantitg has to be equal to op.
Therefore, the steady relation (3.57a) becomes:

1 g —
2 4 9.2 = 2 :
D i + 5 h kag oh X:
Equipped with the formula (3.58), which gives the value of ¢& when a steady state is consid-
ered, the above equation yields the following formula for h

i U o 1 [h 7 +2
hES R kx h T2 1ip 7 (3.60)
Concerning g, we choose the following average:
S _ 2okl
2q= SR sgn + if g 60 and cg 6 0;
9= 5o+ o o9 @ +a@w) ifa R 60; (3.61)

>
"g=0 ifg =0;0r =0 0ork=0:

This average indeed ensures that, ifq. = ogr,thenq= q. = or. In particular, if a steady state
is considered, we have q. = 0r = (p; hence,q = @ in this case. In addition, gis consistent
with q.

Now, note that the expression (3.60) of h contains . This quantity depends on the
steady state; it would have to be determined for non-steady states. To address such an issue,
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we suggest the expression

h =h (h;hg)=

2mMh*2 kx h_ 2 1+’

] +2 7 1 MM 7 +2 (3.62)

where ~ is the sign of the quantity qgiven by (3.61).
Lemma 3.10. The expression &f given by (3.62) is consistent with

Proof. With smooth water heights, we X, in (3.62), h. = h(x) and hg = h(x + O( x)).
Taylor's formula applied to hg yields hg = h+ x@h + O( x?). In order to evaluate the
Taylor expansions of [h?], [h 1], [h *2] and [h 1], we now compute a Taylor expansion, for
some 2 R, ofthejump [h ]:

[hl=hy h = h+@h x+O( x? h
=h 1+ h '@h x+0O( x?) h
= h '@h x+0O( x?):

Using the above evaluation, we have, for the rst part of the expression of h

2] +2 _ h@h x+ O( x?

- - = = + . .
22 hZ@h x+o( x3 " TOUX (3.63)
Moreover, we have the following Taylor expansion:
1 — 2 2y.
n h “@h x+ O( x°): (3.64)

In addition, we get the following sequence of equalities:

m[h 1 +2  (h@h x+0O( x?))(h 2@h x+ O( x?))

2 1[h*2] h*1@h x+ O( x?) (3.65)
=h ?@h x+ O( x?:

Combining both equations (3.64) and (3.65) immediately yields the Taylor expansion of the
second part of the expression (3.62) ofh :
- 1 [M]h 1 +2 -

" i Tk x0T 00 (3.66)

k x

=l

Sinceh s given by (3.62), using both relations (3.63) and (3.66) givesh = h + O( x),
which concludes the proof. O

Equipped with the respective expressions (3.61) and (3.62) ofgand h , we have fully
determined the approximate friction source term S, given by (3.59). After Lemma 3.10 and
the expression of g, this approximate source term is consistent with S'. In addition, by con-
struction, S’ satis es the discrete steady state relation (3.57a) as soon adV, and Wg de ne a
steady state.
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3.1.2.3 The case of both topography and friction source terms

Equipped with the approximations S' of St and Sf of S, respectively given by (3.54) and
(3.59), we now turn to the approximation of the source term made of both contributions of
topography and friction. As a consequence, we consider the following source term in (3.1):

S(W) = S'(W)+ Sf(W)= gh@z kdqjgjh

The steady state solutions of the shallow-water system endowed with this source term are
given by (3.24), as follows:

8
2@q=0;

¢, 1
2@ t égh2 = st(w)+ sf(w):

(3.67)

Because of the presence of both source terms, the second equation of (3.67) cannot be put
under an algebraic form similar to (3.46). Therefore, we cannot derive an approximation of
the source term S = St+ S' the same way we derived the approximations S' and S . Instead,
we elect to discretize the second equation of (3.67) usingS! and S', as follows:

2

1 _ _

Thgr =8 x+§ x (3.68)

h 2
This discretization has been obtained by taking S = St + S' in (3.26). As a consequence, after
(3.37), we de ne the following intermediate discharges and heights:

St x S

A =0kR=9 = OHw + - |_+ - L; (3.69a)
at af
h, =min  max hpo RS X RS X S R hy, + —" ; (3.69b)
(rR L) (r L) L
at af
hR =min max hp LS X LS X N | L hg + —" ; (369C)
(rR L) (rR L) R

where the quantity  is given by (3.38).

3.1.2.4 Extension of the approximate source terms for vanishing water heights

The intermediate states (3.69) have been derived for nonzero water heights. We now sug-
gest an extension of (3.69) to deal with vanishing water heights. To that end, we recall the
assumption made eatrlier.

Assumption. When the water height vanishes, so does the velocity.

Now, we need to provide expressions of St and S when h. or hr vanishes, and when both
h. and hg vanish. In addition, since  has been de ned by (3.38) for positive water heights,
the expressions S'= and Sf= also need to be extended in order to take vanishing water
heights into account.
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Extension of S! for vanishing water heights

We rst determine a new expression of S! for vanishing h_ and/or hg. Since the expres-
sion (3.54) relied on the assumption that both h_ and hrg were positive, we cannot use this
expression in the present case. We momentarily assume that the friction contribution van-
ishes, in order to derive an expression for the approximate topography source term St.

In order to obtain a new formula for S, we begin by assuming that W, and Wg de ne a
steady state with vanishing h_ or hg, but not both h_ and hg. From Proposition 1.14, we have
O = 0 as soon asW|_ and Wr de ne a steady state. The steady state under consideration
is therefore a lake at rest steady state governed by (1.43), that is to say a steady state with
[h+ Z]=0. Note that (3.48a) can be rewritten as follows:

[hu?] + g h? = § x (3.70)

The above assumption ensures thatu, = ug = 0. As a consequence, (3.70) reads:

hg + h _
ghl=—*% = 8" x:
2
Now, plugging [h] = [Z]into this equality, we get the new expression of S' x, to be substi-
tuted to (3.54) as soon as eitherh, or hg vanishes:

~ hr + h
St x= o(Zr ZL)%Z

(3.71)
The expression (3.71) ofS! is obviously consistent with the actual source term S! given by
(3.42).

Then, note that the lake at rest condition [h + Z] = 0, which comes from studying the
smooth steady states, does not cover two cases of a physical lake at rest with a dry area and
a discontinuous topography. Namely, the cases displayed on Figure 3.4 are physical steady
states at rest which do not satisfy [n+ Z] = 0.

Figure 3.4 — Physical lake at rest con gurations not governed by [h+ Z] = 0. Left panel: lake
atrestwith hg =0 andh_ +Z, Zgr. Right panel: lake atrestwith hy, =0 andhg+Zr Z,.

Therefore, according to Figure 3.4, the states given by

8 8
3%=0; 3%=0;

5 hgr =0; or 5 h. =0; (3.72)
“ho+ZL Zg, "hr+ Zr  Zy;
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do not satisfy [h + Z] = 0 but are steady states at rest. Such steady state solutions are not
included in (3.71), and considering only this expression will not allow their preservation. As

a consequence, in the cases described by (3.72), we modify the expression of!. Still with
u. = ur =0, the equation (3.70) yields:

3 hZ .
g7 ifgg =gr=0,hp =0and hg + Zr  Z;

3 ne
. 97

St x=

ifgg =0r=0,hg=0andh_. + 2, Zgr:

Note that hy = 0 implies g. = 0, and that hg = 0 implies gg = 0. Therefore, the above
expressions read:

ifgr =0,h. =0 and hg + Zr Z.;
(3.73)

W AV ™
Q@
M‘;U:,\,

2
gh— ifq =0,hg=0andh_ + Z, ZR:

Finally, we handle the case where both h. and hg vanish (and thus q. = gr = 0), i.e.
the case where there is no water. Note that, in this case, we havegy . = O after (3.20b). In
order for the discharge to stay equal to zero, we have to make sure that g = 0. To meet this
requirement, we enforce
St x=0: (3.74)

as soon as bothh; and hgr are zero. This expression makes sense since the actual source term
St also vanishes in the absence of water.

We now regroup the four cases (3.54), (3.71), (3.73) and (3.74), to get the following nal
expression of S:

St S (he;hriasoR;ZL; ZRs X)X
ifh, =0and hg =0
ifgr =0,hy =0 andhg + Zgr  Z;;
(3.75)
ifq =0,hg=0andh. + Z, Zg;
+
% [Z]hR h if h. =0 orhg =0;
ZthR [h)2

+9
h+h 2h. + hr

otherwise,

with [h]c given by (3.55).

Equipped with the expression (3.75) of St, we now turn to providing a suitable expression
of S'= . Recall that has rst been introduced to replace the leftmost term of (3.30). Note
that this term is ill-de ned for h; =0 or hg = 0. In order to determine a suitable expression
of for hy =0 or hg =0, recall that, after Proposition 1.14, we have q = ¢ = 0 as soon as
W and Wg de ne a steady state with a vanishing water height. Therefore, u_. = ug =0 and,
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assoonash, =0 or hg =0, isde ned as follows:

= %(hL + hR): (3.76)

Then, we consider hp = hg = 0. As a consequence of such a dry area, we haveg. = g =
0. In this case, after (3.20a), we havehy | = 0. For this area to stay dry, we need to ensure
that h, = hgy = 0. This requirement is met by enforcing, as soon as both h. and hr are zero,

the following value of S' x= :
St x

=0: (8.77)

Finally, we de ne S' x= as follows, using (3.38), (3.71), (3.76) and (3.77):

8

0 if h, =0 and hg = 0;

hr ifgr =0,h. =0 and hg + Zr Z.;

S' x — he ifq =0,hg=0andh, + Z, ZR: (3.78)
[Z] if hp =0 or hg =0;
St x :
3 otherwise.

T8+ 9(h + hR)

Extension of Sf for vanishing water heights

Then, to extend the approximate friction source term S’ , we recall the following assump-
tion made on the friction source term in the presence of vanishing water heights.

Assumption. The friction source term vanishes as soon as the water height does.

In order for both quantities S' and S'= to satisfy this assumption, we have to impose that
they vanish when h_ and/or hg vanishes.

As a consequence, after (3.59) and the above assumptionS' is given by:
S' x:=S(h;hriq;r; X) X
( 0 if h, =0 and/or hg =0; (3.79)
kgigh  otherwise,
where gis given by (3.61) andh is de ned by (3.62). In addition, the quantity S'= is given
by:

st x

8
%O if h, =0 and/or hg =0;
_ P (3.80)

2
fine * 3(he + hg)

otherwise.
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3.1.2.5 Properties of the scheme with both source terms

Equipped with the expressions (3.75), (3.78), (3.79) and (3.80) of the approximate topog-
raphy and friction source terms, we can now extend the formulas (3.69) of the intermediate
states in order to take vanishing water heights into account. Recall that the parameter " > 0
prevented the intermediate heights from vanishing. To allow vanishing intermediate heights,
we take " = 0 in (3.69), to get the following intermediate states:

St x U

O=0R=0 = O + - |_+ - L; (3.81a)
at af
hL = min hH|_|_ R S X R S X 1 R hHLL ) (381b)
(r 1) (r ). L
at af
hR = min haL LS X LS X S L Aol (381C)
(r 1) (r ). R

where (X )+ = max( X; 0) denotes the positive part of a quantity X . The intermediate states
(3.81) allow us to state the following extension of Lemma 3.4 for non-negative water heights.

Lemma 3.11. Assumeh. ~ Oandhr 0. Then, the intermediate stat®¥, andWg given by
(3.81) satisfy the following properties:
(i) consistency: the quantities , hg, g andg, satisfy the equations (3.22), whe8e= S' + S';
(i) non-negativity preservationh,  Oandhg, O;
(i) well-balance: ifW_ and Wr de ne a steady state, i.e. if (3.26) holds, théfh = W, and
WR = WR.

Proof. Concerning (i), g and og given by (3.81) are immediately shown to satisfy the consis-
tency equations (3.22b) with S = St + S’ . Let us introduce the following notations:
L §t X L éf X

(R L) (r L)

Rét X Rgf X

(rR L) (rR L)

FIL = hHLL and FIR = hH|_|_
The quantities ﬁL and IﬁR immediately satisfy the required consistency property (3.22a). Re-
garding h, and hg, the following three cases arise.

o If ﬁl_ 0 and IﬁR 0, then the relations (3.81) yield h| = ﬁl_ and hg = lf]R.

« If h_ < 0,thenfrom (3.37)wegeth, =0 andh, = 1 —= hpyy .
R

 Similarly, if If]R < 0,thenwe havehp =0 andh = 1 —'E hyoL .

In all three cases, the consistency relation (3.22a) holds. As a consequence, (3.22) is satis ed,
and (i) holds.

The expressions (3.81b) and (3.81c) obviously yield that h 0 and hg 0 Indeed,
these intermediate heights are the minima of non-negative quantities, since hy . > 0 after
Lemma 3.3. Therefore, (i) is satis ed.

From Lemma 3.4, we know that the well-balance property (iii) is established as soon as the
approximate source term S satis es (3.26) when W, and Wg de ne a steady state. After (3.48),
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the approximate topography source term S! satis es this relation by construction. Similarly,
the approximate friction source term S’ has been derived from (3.57), and thus the relation
(3.26) holds. As a consequence, for the individual contributions of the topography and the
friction, the property (iii) is veri ed. In addition, for both contributions, the steady relation

we have elected to satisfy is (3.68). Therefore, (3.26) holds forS = St + S'. The proof of (i)
is thus achieved, which concludes the proof of Lemma 3.11. O

Remark 3.12. We note that using the de nitions (3.81) and making the friction source term
vanish allows the recovery of the intermediate states for topography only. Similarly, if the
topography source term vanishes, we recover the intermediate states for friction only. As a
consequence, (3.81) yields intermediate states that are well-balanced for the individual source
terms of topography or friction. Let us recall that the steady states relation for the shallow-
water system with both topography and friction source terms (3.67) cannot be written under
the form of an algebraic relation for all Z. Therefore, we only manage to preserve the steady
states up to the chosen discretization (3.68) of the steady relation (3.67) (for a similar approach,
see [162] for the shallow-water equations with topography and [163, 120, 60, 101] for the Euler
equations with gravity).

Lemma 3.11 allows us to state the following result, which is an extension of Theorem 3.5
to consider non-negative water heights.

Theorem 3.13. ConsiderW," 2 for alli 2 Z, where is the admissible states space de ned by
(1.3). Assume that the intermediate stamélj 1 andWif;l are given, for all 2 Z, by
2 2
! !
Lo he(WhWik and WFR hg (W Wiy

i+l n. n |+l - n. n , (382)
2 o (W Wi, 2 o (W Wiy

whereg, andgg are de ned by (3.81a), whilg, andhy are respectively given by (3.81b) and (3.81c).
Then, under the CFL restriction (3.1), the Godunov-type scheme (3.9) satis es the following properties:

(i) consistency with the shallow-water system (1.1);
(i) robustness: forali 2 Z, w2

(iii) well-balance: if W"),,, de nes a steady state, then for a2 Z, w = win,

Proof. After [90], if the approximate Riemann solver satis es the integral consistency condi-
tion (3.13), then the consistency property (i) holds. This integral consistency property is satis-
ed: indeed, Lemma 3.11 ensures that the intermediate states (3.81) are consistent. Therefore,
(i) holds.

By de nition of , proving the robustness property (ii) is equivalent to showing that for

alli 2 Z, ™! > 0as soon ash!" > 0. The second item of Lemma 3.4 ensures thathiLjr ;O
2

and hiFi; , Oassoonash! Oandhl,; 0. Asaconsequence, after the expression (3.9) of
2

the scheme,hin+1 is the sum of non-negative quantities, which proves (ii).

The well-balance property (iii) is then directly inferred from Lemma 3.11. Indeed, as-
sume that (W"),,, de nes a steady state, i.e. that W and W/, de ne a steady state for
all i 2 Z. Therefore, Lemma 3.11 yields thatWiL;% = WM and WiFj;% = wWn, forall i 2 Z.
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Hence,Wi”J'1 = W," forall i 2 Z, and the property (iii) holds, which concludes the proof of
Theorem 3.13. O

3.2 Semi-implicitation of the scheme

The scheme (3.9) — (3.82) allows the simulation of wet/dry transitions. However, note that
the friction source term becomes stiff (i.e. its value becomes arbitrarily large) in the vicinity
of wet/dry transitions. As a consequence of this stiffness, spurious oscillations appear in the
numerical approximation. In order to get rid of the oscillations, implicit schemes are usually
needed to compute the numerical contribution of stiff source terms. The splitting method(see
[26, 150] for instance) is used to avoid a fully implicit scheme, and rather suggests a semi-
implicitation of the scheme, where only the stiff source terms are treated in an implicit way.
The splitting method has been successfully applied to balance laws, especially in the presence
of stiff source terms (see [113, 124] for instance).

To introduce such a semi-implicitation, we rst rewrite the scheme (3.9) — (3.82) in order
to exhibit the numerical ux function and the source terms contribution. Then, we adopt an
explicit scheme for the ux and the topography, and an implicit scheme for the friction.

3.2.1 Rewriting the scheme

In this section, we exhibit the numerical ux function and the numerical source terms. The
following result states a rewriting of the scheme (3.9) — (3.82) using these two functions (see
for instance [90]).

Proposition 3.14. The scheme (3.9) — (3.82) can be rewritten under the following form:

t t
W = wp — Fli FMy o+ Sh+shy (3.83)
whereFn = F(W";W/l,;Z;Z]\,) is the numerical ux function evaluated at the interfaxgl,

andS', ; = S(Wn W1:ZM; 21, ) is the numerical source term atthemterfzxqgl The numerlcal
2
ux functlon is de ned as follows:

L R

1 vl : ivl .
Fly= 5 FOW)+ FWS) + Trowh, owh o+ ';2 whoowl, ;o (3.84)

2 2

while the numerical source term is given by:
!
0

"= ; (3.85)

T (shn +(sf ’

1
I'*'2

where the quantitie(sSt)i"+ 1 and(S' )i”+ , are approximations of the topography and the friction source
terms, respectively. Adopzting extended notations, they are given by:

(shHn St hNhN i dh Y Zi Zie X (3.86a)

|+1

(SO 1= 8" hihlddhe: X (3.86b)

i+
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whereS! andS' are the approximate source terms already de ned by (3.75) and (3.79).

Proof. After (3.84), the quantity Fi”+ . F i” 1, present in (3.83), rewrites as follows:
2 2

1

- L L; R R; .
ﬂ% F in 17 i+l Wi+% Wi i 3 Wi 1 Wi+ 2 Fin+%+ I:in i (3.87)
where F.”+% = F(W"; W/}, ;Zi; Zi+1), with the function F de ned by:

F(WL;WR;Z1;Zr) = F(WR) F(WL)+ r(Wg Wgr) (WL W)
According to the above identity, the function F satis es the following sequence of equalities:

F(WL;WR;ZL;Zr) = rRWR LW rRWrR WL F(Wr) F(Wp)
= RWr WL (R L)WHLL;

where Wy, | is the intermediate state of the HLL solver, de ned by (3.18). Now, recall from
Lemma 3.11 that the intermediate states (3.81) satisfy the integral consistency property, which
is equivalent to the equations (3.22). SinceS = S' + Sf in the present context, arguing (3.22)
yields:

0

FIWL;WR:Z;ZR) = _ _
S'(hL;hr;Q 0R;ZL;ZR; X) X+ ST(he;hriasar; X)X

As a consequence, recalling the de nition (3.85) — (3.86) of the numerical source term, we get:

t t t .
—XF.” FN, +_—g" +si”% = .L% wh,ow

1 1
I+3 2 2 *3

<|
T
|
T
|

Arguing the de nition (3.9) of the suggested numerical scheme, we get:

t t
W Ry By v Sy sty s Wi
which is nothing but the rewritten scheme (3.83). The proof is thus completed. O

3.2.2 Application to the topography and friction source terms

We now introduce a semi-implicit version of the Godunov-type scheme (3.83). The main
idea of this section is to use a splitting method to reduce the impact of the aforementioned
instabilities. The splitting strategy we use here is to rst consider an explicit treatment of the
ux and the topography source term, then an implicit treatment of the friction source term.

As a consequence, the rst step, devoted to approximating solutions of the partial differ-
ential equation @W + @F (W) = SY(W) containing the ux and the topography source term,
reads as follows:

0 1 I !

't 0
@:HA: —_ FN

t
q qn X i+% i3 7 (St)in+%+(st)in % (388)

Nl= N
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The second and last step concerns the friction and consists in solving the following system
of ordinary differential equations:

8

dh 8 *3
2 =0; o <h©)=h" *;
o with initial data e 1
: £= kgjgih "0 =g *:

This system can be solved to obtain an analytic expression of the solution. Fort 2 [0; t], the
exact solution of the above system reads as follows:

8
2 h(t) = h(0);

_ h©) q0) (3.89)
TA0= R0y + ktjgO)

Note that the analytic expression (3.89) guarantees that, for allt 2 [0; t], the sign of q(t)
stays the same as the sign ofq(0), and that jg(t)j < jqg(0)j. This was to be expected, sinceq
is governed by the damping equation (3.2.2). This behavior is consistent with the fact that
friction should only slow down the movement of the uid, rather than changing its direction.

Then, evaluating (3.89) att = t and plugging the initial data yields the following up-
dated state W"* = {(h"*1; g"*):

8 )

3 ht =2 (3.90a)
Aol gtz

g2 gt = ! (3.90b)

-
h*'t +k tq 2

Let us note that the well-balance property is lost for the discharge. Indeed, if W ;, W," and
W1, de ne a steady state, we do not necessarily recover ¢"** = ', but we have h!"** = h!
since the semi-implicitation procedure does not change the evaluation of the water height. As
a consequence, we decide to consider an approximation (tT)i”+1 of h{‘*l in the discharge
update equation (3.90b), thus replacing the update step (3.90) with the following expressions:

8 y

2 h= (3.91a)
—\n+1 n+%

3 e 00 G (3.91b)

(A +k tq

The approximation (fT){‘*l is now determined in order to ensure that the scheme satis es
the required well-balance property. In order to obtain such an expression of (fT){‘*l, we
momentarily suppose that W," ;, W," and W/",; de ne a steady state. In this case, we need to
ensure that "' = . Therefore, (3.91b) reads:

+1

(I,T)in+1qn+% :(W)irwlqn +k t qn > qn: (3.92)
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Now, note that the explicit scheme (3.83) can be rewritten as follows:

hin+l — h|n )t( (F |+l (F h):’l % : (393a)
qt=q )t((Fq).+1 (FOF 1+ uSH'+ «sSH: (3.93b)

where we have set:
!
F h
F= (St)| =5 (St

cq LSy (S =5 (S

i i +(shHr L (3.99)
Since the scheme (3.83) is well-balanced and we are considering steady states, the equation
(3.93b) yields N+l - = ¢, and it can be rewritten as:

CHERS - FOL e (RO (SO (3.95)

i+3
1
Since the evaluation of qn+ % is obtained from (3.88), we get:
1 t
d 7 =q — FIL, (FO, + s (3.96)

From (3.95) and (3.96), we immediately obtain

n+ 1

G ‘=q  tsH (3.97)

e

Thus, we are now able to determine the expression of (h )"** that ensures the well-balance

+1 +1 . . +1 .
of the scheme. With ' 2 = sgn qn 2 plugging the expression (3.97) ofqn 2 into (3.92) yields:

()M ()M wsH = ()M gkt TE@)? k2 M Eg(sh

I
Hence, (h )M is immediately proven to satisfy:

2 N+3

_ K o
()t = ((qsz)pJ’ kKt "Eg (3.98)

Now, recall that the numerical source term (S )" is de ned by (3.94), and we get:

= U A R LR N TR L
where the averages qi” 1 and (F){‘ 1 are given with clear notations by (3.61) and (3.62),
respectively. However, recall that the only requirement to choose the average gwas that it be
equal to gp as soon as a steady state was reached. In the current contextW;" ;, W" and W},
de ne a steady state; hence, we haveq® ; = " = g; = . A relevant choice is therefore to
take g ! = ¢, which yields the following formula:

_ n+l __ n+l

1 -
SH'=35 kdidih o kqidlih (3.99)

2 2
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In (3.99), we have substituted (h )n 1 with (h )n+1 This substitution has no effect on the
well-balance property, and it makes the scheme more implicit by considering the updated
water height.

With this simpli cation in the source term approximation, we get the following expression
for (h )M, from (3.98) and (3.99):

(h)yt= — 1 1 +k t ;2" (3.100)

n+1 — n+l

i1 i 1
I3 I*+3

Arguing the expressions of (h )"} and (h )"*!, the above equation can then be rewritten
i 5 i+
2 2

as N
n+3 1
(h )n+1 - 2K X +k t in+§qn; (3.101)
n n+1 n+1 n+1 n+1
kox i 1 i+ i %+ i+1
where we have set
n+l 2 n+l 2
n+l _ +2 h|+1 hi and
i+ 3 2 il 2 hn+1 *2
I+1 ! _ L (3.102)
n+ n+
n+l _ 1 1 + n+1 h|+1 hi .
i+1 hn+1 hin+l i+ 1

i+1

Computations within the expression of (h )"*! show that it tends to 0 as soon ash!*}, h*
or h! tends to 0, which is a good behavior when dealing with wet/dry transitions. We have
therefore devised a way to consider the friction contribution in an implicit way, while still

retaining the well-balance property of the scheme. We can thus state the following result.

Theorem 3.15. Assume that forall 2 Z, W 2, with the admissible states space de ned by
(1.3). The semi-implicit scheme (3.88) — (3.91) — (3.101) satis es the following properties:
(i) consistency with the shallow-water system (1.1);
(ii) robustness: forail 2 zZ, W"** 2 ;
(i) well-balance: ifW;"),,, de nes a steady state, then for aR Z,Win+1 = W. Here,(W"),,,
is said to de ne a steady state if any of the three following cases arise:
» topography steady state: for al2 Z, W" andW/1; satisfy (3.26), withS = S;
« friction steady state: for all 2 Z, W" andW/, satisfy (3.26), withS = S';
« topography and friction steady state: for al2 Z, W" and W/}, satisfy (3.26), withS =
St+ St
Proof. We begin by proving the consistency property (i). Arguing Lemma 3.10, we get that
(h .”*1 and (h I”"é are consistent approximations of h . Therefore, we clearly observe
from (3.100) that (h )n+1 is a consistent approximation of h . As a consequence, (3.91b) yields
that q”+1 |s indeed consistent with g. Finally, arguing Theorem 3.13 ensures that the expres-
sions hi "3 and qn+ %, given by (3.88), are respectively consistent with h and g. Therefore, the
consistency property (i) holds.
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Concerning the robustness, note that hin+1 = hin+% from (3.91a), with hin+% de ned by
(3.88). After Theorem 3.13, the scheme (3.88) is robust: therefore, the robustness property
(i1) holds. We make the additional remark that, with (fT){‘*l given by (3.101), the expression
(3.91b) ofqn+1 ensures that this updated discharge vanishes as soon as a dry area is consid-
ered, which is a good behavior when considering transitions between wet and dry areas.

Now, to prove the well-balance, assume that W," ;, W" and W/; de ne a steady state,
according to (3.26) with S= S', S = St or S= S'+ S'. From Theorem 3.13, the scheme (3.88)
is well-balanced. Therefore, sincehh** = hin+ %, we immediately recover that h"** = hP'. To
complete the proof, we now have to show that q”*l = . The updated discharge q”"l

1 _
by (3.90), with qn+ 2 de ned by (3.88). Since (h ){‘*1 is given by (3.101) and has been chosen

is given

to ensure that q”” = q" as soon as a steady state is reached, the proof of the well-balance
property (iii) is concluded. Hence, the proof of Theorem 3.15 is achieved. O

3.3 Numerical experiments

Numerical simulations are carried out to test the scheme derived in the previous sections.
We start by recalling the two schemes we shall test:

 the explicitscheme (3.9) — (3.81);
« the implicit scheme (3.88) — (3.91) — (3.101).

In order to determine the properties of these schemes, we present two sets of numerical ex-
periments.

The rst set assesses the well-balance of the scheme, by considering steady states at rest
and moving steady states with topography and/or friction. Namely, the steady state solutions
exhibited in Section 1.2 are simulated. In addition, we consider the steady solutions reviewed
by Goutal and Maurel in [86].

The second set consists in a numerical validation of the proposed explicit and implicit
schemes. First, two experiments from [77] are presented, namely the drain on a non- at bot-
tom and a vacuum occurrence by double rarefaction. Then, the simulations of several dam-
break situations are carried out. A wet dam-break and two dry dam-breaks are presented.

We also compare the proposed schemes with two classical schemes: theHLL schemég?2.35)
(see [90]) and thehydrostatic reconstructio(HR) schemégsee [5]) applied to the HLL ux (2.35).
Indeed, the HLL scheme is not well-balanced, while the HR scheme preserves the steady
states at rest with a non- at topography, but not the moving steady states.

Since the HLL scheme is designed for conservative systems, we take the topography and
friction contributions into account by using a splitting method. The purpose of carrying out
simulations with the HLL scheme is to highlight that the well-balance is an important prop-
erty for a scheme to possess. In addition, the choice of the HLL scheme for comparisons is
relevant since the construction of our scheme is based on a HLL-like construction.

Moreover, the friction is also introduced into the HR scheme through a splitting method.
Since the expression used for the updated discharge in the splitting method is similar to (3.89),
the friction contribution will be zero as soon as a solution at rest ( g = 0) is considered. As a
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consequence, even in the presence of the friction source term, the HR scheme still preserves
the steady states at rest, for allk.

In order to assess the numerical accuracy of all the schemes, we compare the approximate
solution with the exact solution. To that end, we compare the error estimates in L?!, L? and
L' norms and de ned by (2.36).

Finally, we recall that the CFL condition (3.1) gives the time step t for each iteration, as
follows:

t Z—X where = max :-+%; ﬁr% :

For the numerical experiments involving friction, a suitable value of the Manning coef -
cient k has to be chosen. For instance, the reader is referred to [45], where multiple values of k
are given for different types of channel beds. Here, instead of following [45], we deliberately
impose stronger Manning coef cients than in reality (up to  10times). This choice is made to
ensure that the friction source term is preponderant compared to the topography source term,
in order to study the effects of the friction. The other constants are chosen as follows:

«in(l.1), g=9:81m.s 2

+in(3.6)," =10 ¥ms 1

An important step in these numerical experiments in the choice of the parameter C, intro-
duced in (3.55) to ensure the consistency of the approximate topography source term. In this
manuscript, this parameter is chosen heuristically, and we give its value for each experiment.

A better study of the stability of the scheme could provide several bounds for this parameter.

3.3.1 Well-balance assessment

In this rst set of experiments, we assess the well-balance of the scheme, i.e. its ability to
exactly preserve and capture steady state solutions. Recall that steady states are given by the
equation (1.73), which prescribes a uniform discharge over the space domain, denoted by ¢p.

First, we consider steady states at rest, i.e.qp = 0. Several different topography functions,
continuous and discontinuous, are studied. In addition, the simulations of steady state so-
lutions with dry areas are carried out. We also perform the simulation of a ow at rest with
emerging bottom, proposed in [77].

Then, we consider moving steady states with a vanishing friction contribution, i.e. k =0,
and a non- at topography. Such steady state solutions have been exhibited in Section 1.2.1,
and examples of subcritical and supercritical steady states have been provided. The simula-
tions of both kinds of steady states are therefore carried out.

Afterwards, steady state solutions for the friction source term only are studied, that is to
say we impose g 6 0, @Z = 0 and k 6 0. In Section 1.2.2, we have studied such steady
states, and exhibited two speci c examples, a subcritical solution and a supercritical solution.
We perform the simulations of both these examples.

Subsequently, we consider steady states for both friction and topography, which are ei-
ther analytic solutions in speci ¢ cases or steady states obtained by approximately solving
(1.73). Section 1.2.3 provides two analytic steady state solutions, which we use to test the
well-balance of the scheme. Afterwards, the equation (1.73) is approximately solved to ex-
hibit a steady state solution, the simulation of which is carried out.
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Finally, we perform the simulations of three well-known moving steady state solutions
with a vanishing friction contribution and a non- at topography, presented in [86]. Namely,
the simulations of the subcritical ow, transcritical ow and transcritical ow with shockare car-
ried out.

3.3.1.1 Steady states at rest

In this section, we consider steady state solutions at rest. We recall that these solutions all
satisfy q(t;x) =0 forall t and all x, i.e. gp = 0. After (1.43), the smooth steady state solutions
are governed by @(h + Z) = 0, which corresponds to a lake at rest con guration. This
condition can be extended to non-smooth (and even discontinuous) steady state solutions, to
geth+ Z = cst. As a consequence, at the discrete level, the approximate solution (W;");,, is
said to de ne a steady state at rest if the following relations hold:

Co=o:
8i27Z;
h' +Z{" = hi}y + Z{L;:
We also recall that several physical steady state solutions at rest, given by (3.72), are not gov-
erned by h + Z = cst (see Figure 3.4). We nally recall that, according to Proposition 1.14, a
smooth steady state with a dry/wet transition is necessarily at rest. The goal of this section is
therefore to perform simulations of all these cases.

Continuous topography

We begin with continuous steady states at rest, to assess the well-balance of the explicit
and implicit schemes. In the two cases we consider, we have g = 0 and k = 10. The two
experiments are performed with 200 discretization cells, over the domain [0; 1] and until a
nal time teng = 1s. The initial conditions are q(0;x) = 0 and h(0;x) = (2  Z;j(x))+, with
topographies (Zj);zs 1,24 given by:

Z1(x)=(1 j & 2),;
Zr(xX)=(4x 1),:

These initial free surfaces are depicted on Figure 3.5. Note that the experiment where Z, is
used involves a dry/wet transition. The exact solution at rest is imposed at the boundaries,
in order to ensure that the boundary conditions do not interfere with the well-balance assess-
ment. We used C = + 1 in (3.55). Numerically, we set C as the upper bound of the double
precision oating point numbers. The results of the simulations are presented in Table 3.1 and
Table 3.2.

We observe on Table 3.1 and Table 3.2 that the HR, explicit and implicit schemes indeed
preserve such lake at rest con gurations, even in the case of a transition between a wet area
and a dry area. In particular, we note, as expected, that the presence of the friction contri-
bution in the HR scheme does not alter the preservation of this steady state at rest. We also
remark that, for such steady states at rest, the implicit scheme degenerates into the explicit
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Figure 3.5 — From left to right: free surfaces for the lake at rest experiments with topographies
given by Z; and Z5.

| h+ Z; | q

oLt L2 Lt | Lt L2 L2
HLL 1.21e-04 8.78e-04 1.02e-021.90e-02 2.70e-02 4.41e-02
HR 0 0 0 |[3.37e-16 4.18e-16 1.58e-15

explicit | 1.18e-15 1.30e-15 2.66e-151.76e-14 1.80e-14 2.36e-14
implicit | 1.18e-15 1.30e-15 2.66e-151.76e-14 1.80e-14 2.36e-14

Table 3.1 — Free surface and discharge errors for the steady state at rest experiment with to-
pography given by Z;.

| h+ Z, | q

oLt L2 Lt | Lt L2 L
HLL 1.43e-02 5.50e-02 3.20e-011.48e-02 2.21e-02 4.41e-02
HR 1.44e-17 9.55e-17 1.11e-152.72e-16 3.21e-16 1.58e-15

explicit | 1.75e-16 3.05e-16 8.88e-168.27e-16 1.10e-15 3.65e-15
implicit | 1.75e-16 3.05e-16 8.88e-168.27e-16 1.10e-15 3.65e-15

Table 3.2 — Free surface and discharge errors for the steady state at rest experiment with to-
pography given by Z,.

scheme. Thus, both schemes give the same results. However, concerning the HLL scheme, it
provides an approximation of the steady state.

Discontinuous topography

We now turn to two experiments involving a discontinuous topography, and therefore a
discontinuous water height, since the relation h + Z = cst holds. For these two experiments,
we take gp = 0 and k = 10. The simulations are carried out over the domain [0; 1], discretized
with 200cells. The nal physical timeis teng = 1s. Asinitial conditions, we take the following
steady state at rest: q(0;x) = 0 and h(0;x) = (2  Z;(x))+, where the topography functions



3.3. NUMERICAL EXPERIMENTS 141

(Zi)i2f 3,49 are de ned as follows:

Z3(x) = 1[%;1]()();
Za(x)=(4x 1)1[%;1](x):

These exact topography function and free surfaces are displayed on Figure 3.6. A transition
between a wet area and a dry area is present when the topography is given by Z,4. At the
boundaries, we choose to impose the exact solution. We also takeC = + 1 for these experi-
ments. In Table 3.3 and Table 3.4, we present the results of the simulations.

Figure 3.6 — From left to right: free surfaces for the lake at rest experiments with topographies
given by Z3 and Z4.

‘ h+ Z3 ‘ g

\ Lt L2 Lt \ Lt L2 Lt
HLL 6.25e-03 2.63e-02 2.65e-012.18e-02 9.81e-02 1.04e+00
HR 0 0 0 0 0 0
explicit 0 0 0 0 0 0
implicit 0 0 0 0 0 0

Table 3.3 — Free surface and discharge errors for the steady state at rest experiment with to-
pography given by Zs.

| h+ 24 | q

oLt L2 L* | Lt L2 Lt
HLL 1.89e-02 6.09e-02 3.20e-011.57e-02 1.00e-01 1.05e+00
HR 1.44e-17 9.55e-17 1.11e-152.27e-16 2.28e-16 4.86e-16

explicit | 5.55e-18 5.21e-17 6.66e-162.26e-16 2.28e-16 5.34e-16
implicit | 5.55e-18 5.21e-17 6.66e-162.26e-16 2.28e-16 5.34e-16

Table 3.4 — Free surface and discharge errors for the steady state at rest experiment with to-
pography given by Z4.

Table 3.3 and Table 3.4 present the results of the four schemes at timeteng = 1s. The
HR, explicit and implicit schemes exactly preserve the lake at rest steady state, even for such
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discontinuous topography functions. On the contrary, the HLL scheme only provides an
approximation of this lake at rest steady state.

Emerged discontinuous topography

This third set of experiments focuses on steady state solutions at rest governed by the
equations (3.72) instead ofh + Z = cst. As a consequence, we consider the following two
topography functions on the space domain [0; 1]:

Zs5(x)=3 1[%;1]()()?
Zg(x) =3 1[0;%](x):

Then, the initial condition for the experimentis givenby ¢(0;x) =0 andh(0;x)=(2 Z(X))+,
as displayed on Figure 3.7. Since this experiment consists in a solution at rest, the height and
discharge stay constant over time. Note that the topography source term discretization (3.75)
has been derived in order to able to preserve such steady states.

Figure 3.7 — From left to right: free surfaces for the lake at rest experiments with topographies
given by Zs and Zg.

For the numerical experiments, we take k = 10 and we discretize the domain [0; 1] with
200 cells. The simulations are carried out until the nal physical time teng = 1, and we
setC = + 1 . The exact solution is prescribed as both initial and boundary conditions. The
results are displayed in Table 3.5 and Table 3.6. Thanks to these tables, we observe that the
HR scheme exactly preserves this steady state solution, which does not satisfyh + Z = cst.
In addition, the speci ¢ cases introduced in the expression (3.75) of St allow the explicit and
implicit schemes to preserve this steady state solution at rest. We also note that, as expected,
the HLL scheme does not preserve this lake at rest.

Flow at rest with emerging bottom

This last experiment at rest involves an emerging bottom (see [77]). The space domain
is [0; 25], and the topography is given by Z7(x) = 0:2 0:05(x 10)? .- We take h(0; x) =
(0:15 Z(x))+ and q(0;x) = 0 as initial data. We present a graph of the free surface and the
topography in Figure 3.8.
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‘ h+ Zs ‘ q

oLt L2 L | Lt L2 Lt
HLL 6.28e-03 5.95e-02 8.06e-011.85e-02 1.89e-01 2.54e+00
HR 1.11e-16 1.57e-16 2.22e-162.22e-16 2.22e-16 2.22e-16

explicit | 2.20e-16 2.42e-16 4.44e-167.33e-16 1.11le-15 3.61le-15
implicit | 2.20e-16 2.42e-16 4.44e-167.33e-16 1.11le-15 3.61le-15

Table 3.5 — Free surface and discharge errors for the steady state at rest experiment with to-
pography given by Zs.

‘ h+ Zg ‘ q

Lt L2 Lt | Lt L2 L
HLL 6.28e-03 5.95e-02 8.06e-011.85e-02 1.89e-01 2.54e+00
HR 1.10e-16 1.56e-16 2.22e-162.22e-16 2.22e-16 2.22e-16

explicit | 1.10e-16 1.56e-16 2.22e-161.22e-16 1.99e-16 1.55e-15
implicit | 1.10e-16 1.56e-16 2.22e-1/61.22e-16 1.99e-16 1.55e-15

Table 3.6 — Free surface and discharge errors for the steady state at rest experiment with to-
pography given by Zg.

Figure 3.8 — Free surface and topography for the ow at rest with emerging bottom. The gray
area represents the topography given by Z7.

For this experiment, we set C =+ 1 and we use homogeneous Neumann boundary con-
ditions. The simulation is carried out until the physical time teng = 100s, using 200discretiza-
tion cells. In addition, we take a Manning coef cient k = 10. Such a nonzero friction is not
present in the original experiment introduced in [77]. However, it does not change the steady
state, since the friction contribution vanishes as soon as the discharge vanishes. The results
of the four schemes are displayed in Table 3.7. This last experiment con rms once again the
relevance of using a well-balanced scheme for the simulation of steady states at rest. Indeed,
after Table 3.7, the HLL scheme only provides a rst-order approximation of the steady state,
while the HR, explicit and implicit schemes provide an exact preservation of this lake at rest.
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‘ h+ Z5 ‘ q

oLt L2 L | Lt L2 L
HLL 1.54e-02 2.89e-02 9.98e-025.12e-04 1.50e-03 7.69e-03
HR 2.83e-17 1.41e-16 1.42e-152.25e-16 2.26e-16 5.04e-16

explicit | 4.64e-17 1.48e-16 1.08e-152.22e-16 2.22e-16 2.29e-16
implicit | 4.64e-17 1.48e-16 1.08e-152.22e-16 2.22e-16 2.29e-16

Table 3.7 — Free surface and discharge errors for the ow at rest with emerging bottom.

3.3.1.2 Moving steady states for the topography source term

After steady states at rest, we now focus on the preservation of moving steady state solu-
tions, with ¢y 6 0. More precisely, we start with smooth moving steady states for the topog-
raphy source term only, i.e. we take k = 0. Such solutions have been studied in Section 1.2.1;
they are governed by (1.44). We here remark that, since thek = 0 and only the topography is
considered, the implicit scheme degenerates into the explicit scheme.

In this section, we study the numerical preservation of the subcritical and supercritical
steady solutions, exhibited as examples in Section 1.2.1. The topography function is de ned
as follows for this whole section:

Z(x) = Lt cos? (X Xo)+ = :

T4 T g

For the numerical experiments, we consider the space domain [0:75; 1:25]with 200discretiza-

tion cells. We consider an approximate solution of (1.45) on this space domain, obtained by

using Newton's method with xg = 0:75 X, Qo = P 0, and h(xp) = he = 1. First, we focus
on the subcritical solution, and then on the supercritical solution.

Subcritical topography steady state

We rst consider the subcritical topography steady state. The water height for this steady
state satis es h(t;x) = h(x) > h.. We take, as initial conditions, the subcritical solution
hsup(X) obtained by using Newton's method to get an approximate solution of (1.45). As
a consequence, we takeq(0;x) = @ and h(0;x) = hgy(X). The boundary conditions are
inhomogeneous Dirichlet boundary conditions, taken as the exact solution at points 0:75  x
and 1:25+ x.

The rst experiment consists in the preservation of the subcritical steady state. The sim-
ulations are carried out until the physical time teng = 1, and C = + 1, and their results are
presented on Figure 3.9 and Table 3.8. On Figure 3.9, we note that the explicit and implicit
schemes indeed preserve the subcritical topography steady state up to the machine precision.
This observation is con rmed by Table 3.8, which highlights the fact that both the explicit and
the implicit schemes exactly preserve this steady state, while the HLL and HR schemes only
provide an approximation.

Now, we introduce a preservation of this subcritical steady state solution. We take the
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Figure 3.9 — Left panel: initial free surface for the subcritical topography steady state. Right
panel: free surface (solid line) and discharge (dashed line) errors to the steady state after 1s,
with the explicit scheme.

‘ h+ Z ‘ q
L? L2 L?! L?! L2 L
HLL 1.17e-02 1.83e-02 1.44e-019.80e-03 1.09e-02 2.75e-02
HR 7.13e-03 1.53e-02 1.44e-015.37e-03 6.45e-03 2.40e-02

explicit | 1.61e-16 2.40e-16 6.66e-169.79e-16 1.32e-15 4.00e-15
implicit | 1.61e-16 2.40e-16 6.66e-169.79e-16 1.32e-15 4.00e-15

Table 3.8 — Free surface and discharge errors for the subcritical topography steady state.

following perturbed initial height:

8

2 - .. X 075 3.4
h(0: ) = >h5“'°(x) 05 125 0752 777 °

" haup(X) otherwise.

The initial discharge is still given by ¢(0;x) = . The same boundary conditions as in the
previous experiment are chosen.

After some time has elapsed, the approximate solution should converge to the original,
unperturbed solution. Figure 3.10 shows the convergence to this solution, and Table 3.9 dis-
plays the error to the original solution after the time teng = 3s. On Figure 3.10 and Table 3.9,
we remark that the original steady state solution is indeed recovered. The convergence is ob-
tained up to the machine precision for the explicit and implicit schemes, while the HLL and
HR schemes only provide a rst-order approximation of the steady state solution.

Supercritical topography steady state

We now consider the supercritical steady state solution hsyp(X), which satis es hgyp(x) <
hc. The initial conditions are h(0;x) = hsyp(X) and g(0; x) = . As boundary conditions, we
take inhomogeneous Dirichlet boundary conditions, consisting in the steady state solution
taken at 0:75 x and 1.25 + x. For the preservation of this steady solution, the nal
physical time is teng = 1S, and we take C =+ 1 . The results of the simulations are presented
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Figure 3.10 — Results of the explicit scheme for the perturbed subcritical topography steady
state. Left panel: free surface att = 0s. Right panel: free surface att = 3s.

| h+ Z | q

oLt L2 L | Lt L2 L
HLL 1.17e-02 1.83e-02 1.44e-019.80e-03 1.09e-02 2.75e-02
HR 7.13e-03 1.53e-02 1.44e-015.37e-03 6.45e-03 2.40e-02

explicit | 6.68e-15 8.12e-15 1.51e-141.23e-14 1.57e-14 2.93e-14
implicit | 6.68e-15 8.12e-15 1.51e-141.23e-14 1.57e-14 2.93e-14

Table 3.9 — Free surface and discharge errors for the perturbed subcritical topography steady
state.

on Figure 3.11 and in Table 3.10.

Figure 3.11 — Left panel: initial free surface for the supercritical topography steady state. Right
panel: free surface (solid line) and discharge (dashed line) errors to the steady state after 1s,
with the explicit scheme.

On the right panel of Figure 3.11, we check that the explicit scheme indeed preserves the
steady state up to the machine precision. This observation is con rmed by Table 3.10, where
the explicit and the implicit schemes are shown to exactly preserve the supercritical steady
state. We also check that both HLL and HR schemes do not exactly preserve this moving
steady state, as expected.

We know focus on a perturbation of this supercritical steady state solution. On the space
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| h+Z | q

oLt L2 L Lt L2 L
HLL 9.21e-01 9.79e-01 1.25e+002.94e-02 3.36e-02 8.30e-02
HR 9.45e-01 9.93e-01 1.26e+003.07e-03 4.77e-03 3.71e-02

explicit | 4.97e-16 6.39e-16 1.67e-151.41e-15 1.77e-15 4.88e-15
implicit | 4.97e-16 6.39e-16 1.67e-151.41e-15 1.77e-15 4.88e-15

Table 3.10 — Free surface and discharge errors for the supercritical topography steady state.

domain [0:75; 1:25], we take the following initial water height, which involves a perturbation:

8

2h (x) 05 ifxi():752 3.4
h(O;x) = _ sup 125 075° 7'7

" hgyp(X) otherwise.

The discharge is still initialized to qy, and we take the same boundary conditions as in the
unperturbed case. For a large enough physical time, we should observe a convergence to the
original, unperturbed supercritical steady state solution. To that end, we take tgnq = 3s. The
results of this simulation are displayed on Figure 3.12 and Table 3.11.

Figure 3.12 — Results of the explicit scheme. Left panel: free surface at = 0s. Right panel:
free surface att = 3s.

| h+Zz | q

oLt L2 Lt Lt L2 L
HLL 9.21e-01 9.78e-01 1.25e+003.03e-02 3.45e-02 9.23e-02
HR 9.44e-01 9.93e-01 1.26e+003.00e-03 4.71e-03 3.92e-02

explicit | 8.93e-16 1.23e-15 3.44e-151.40e-15 1.88e-15 5.33e-15
implicit | 8.93e-16 1.23e-15 3.44e-151.40e-15 1.88e-15 5.33e-15

Table 3.11 — Free surface and discharge errors for the perturbed supercritical topography
steady state.

On Figure 3.12 and Table 3.11, we note that both the explicit and implicit schemes converge
to the unperturbed supercritical steady state up to the machine precision. However, the HLL
and HR schemes provide a rst-order approximation of this supercritical steady state.
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3.3.1.3 Moving steady states for the friction source term

We now focus on the preservation of the friction-only steady states, by assuming q 6 0
and a attopography, i.e. @Z = 0. The smooth steady states are then given in Section 1.2.2.1,
according to (1.53), or equivalently to (1.55).

In Section 1.2.2.1, the water height for a smooth friction steady state was obtained by con-
sidering a zero h of the nonlinear function  de ned by (1.57). Depending on the value of
the difference between h and the critical height he > 0, de ned by (1.49), we obtained either
a subcritical solution (where h > h ) or a supercritical solution (where 0 < h < h (). Exam-
ples of such solutions have been presented on Figure 1.21, and we once again consider these
examples as the bases of the well-balance assessment of the proposed explicit and implicit
schemes.

Subcritical friction steady state

For this experiment, the space domain is [0:75; 0:9]. We consider the subcritical solution of
the steady state obtained by setting ¢y = P g=8, xo = 0:75 x and hg = he = 0:25. The
Manning coef cient Kk is chosen equal to 1.

The rst experiment concerns the preservation of this steady state. We take q(0;x) =
o and the exact height hg,p(X), obtained with Newton's method, as initial conditions. In
addition, we impose the exact solution at the points 0:75 xand 0:9+ x asinhomogeneous
Dirichlet boundary conditions. Moreover, we set C = 10 3, and we use a mesh made of200
cells to compute the approximate solution until the naltime tenq = 1S. The numerical results
are presented on Figure 3.13, and the errors to the steady state are displayed in Table 3.12.

Figure 3.13 — Left panel: initial height for the subcritical friction steady state. Right panel:
height (solid line) and discharge (dashed line) errors to the steady state after 1s, with the
explicit scheme.

From Figure 3.13 and Table 3.12, we observe that this friction-only steady state is indeed
preserved up to the machine precision by the explicit and implicit schemes, which now pro-
vide different numerical results because of the implicitation of the friction source term. How-
ever, the HLL and HR schemes do not preserve this steady state solution. It is worth noting
that, here, the results from the HLL and the HR schemes are identical. Indeed, the topography
is at, the HR scheme is based on an HLL ux, and the treatment of the friction is identical
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| ) | a

oLt L2 Lt ] Lt L2 Lt
HLL 1.21e-04 1.86e-04 5.51e-044.57e-05 7.27e-05 3.81e-04
HR 1.21e-04 1.86e-04 5.51e-044.57e-05 7.27e-05 3.81e-04

explicit | 3.28e-16 8.00e-16 6.33e-159.47e-16 1.06e-15 1.67e-15
implicit | 2.44e-16 7.33e-16 6.16e-153.72e-16 4.30e-16 7.77e-16

Table 3.12 — Height and discharge errors for the subcritical friction steady state.

for both schemes. As a consequence, the HR and the HLL schemes provide identical results
in this case of a at topography.

The second experiment introduces a perturbation of the subcritical steady state, as shown
in Figure 3.14. With hg,, the exact height, this perturbation is de ned by choosing the initial
water height as follows:

8
2 40 e X 0:752 3.4
h(0: x) = sb(X) +0:05 if 555752 717
>
" hgup(X) otherwise.
The initial discharge is unperturbed, and taken equalto ¢y = P g=8throughout the domain.

The boundary conditions consist in the unperturbed exact solution. We use 100discretization
cells for the numerical simulation. Moreover, we take C = 10 2. The computations are car-
ried out until the nal time teng = 5s. Indeed, such a nal time allows the perturbation to be
dissipated and a steady state to be reached. In fact, this steady state turns our to be the origi-
nal, unperturbed steady state. The results of the explicit scheme are presented in Figure 3.14
and an error comparison with the unperturbed steady state is provided in Table 3.13.

Figure 3.14 — Results of the explicit scheme for the perturbed subcritical friction steady state.
Left panel: water height at t = 0s. Right panel: water heightat t = 5s.

Figure 3.14 shows that the perturbation is eventually dissipated and that we recover the
unperturbed steady state. This assertion is con rmed by the error analysis presented in Ta-
ble 3.13, which shows that the explicit and implicit schemes recover the unperturbed steady
state up to the machine precision. The HLL and HR schemes still provide an approximation
of this steady state, and their results are identical.
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| h | q

oLt L2 L | Lt L2 L
HLL 2.45e-04 2.72e-04 5.85e-048.86e-05 1.15e-04 4.70e-04
HR 2.45e-04 2.72e-04 5.85e-048.86e-05 1.15e-04 4.70e-04
explicit | 1.87e-15 2.03e-15 7.33e-151.19e-15 1.33e-15 2.61e-15
implicit | 4.24e-15 4.29e-15 8.27e-152.52e-15 2.90e-15 4.83e-15

Table 3.13 — Height and discharge errors for the perturbed subcritical friction steady state.

Supercritical friction steady state

We now consider the space domain [0:75;0:8], and we take k = 1. We focus on the
supercritical branch of the previous steady state, obtained by assuming that ¢ = P g8,
Xo=0:75 x and hg = h, =0:25.

The rst experiment deals with the preservation of this supercritical steady state solution.
The initial conditions of this experiment are ¢(0; x) = ¢p and h(0; X) = hsyp(X), where hgyp(x)
is the supercritical water height obtained by approximately solving (1.53). The inhomoge-
neous Dirichlet boundary conditions consist in the initial condition at the points  0:75 X
and 0:8 + x. The simulation is carried out until the nal time teng = 1S, on a mesh made
of 200 discretization cells. In addition, we again take C = 10 3. The results from the ex-
plicit scheme are depicted on Figure 3.15, and the errors to the steady state are presented in
Table 3.14.

Figure 3.15 — Left panel: initial height for the supercritical friction steady state. Right panel:
height (solid line) and discharge (dashed line) errors to the steady state after 1s, with the
explicit scheme.

| h | q

oLt L2 Lt | L? L2 L1
HLL 3.62e-04 5.14e-04 2.45e-035.30e-08 7.94e-08 2.50e-07
HR 3.62e-04 5.14e-04 2.45e-035.30e-08 7.94e-08 2.50e-07
explicit | 5.29e-15 6.03e-15 1.35e-143.15e-15 4.50e-15 1.38e-14
implicit | 5.21e-15 5.91e-15 1.28e-143.11e-15 4.18e-15 1.23e-14

Table 3.14 — Height and discharge errors for the supercritical friction steady state.
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We observe on Figure 3.15 and Table 3.14 that the explicit and implicit schemes exactly
preserve this supercritical steady state solution. However, the HLL and HR provide a rst-
order approximation of this steady state.

We now study a perturbation of the aforementioned supercritical steady state, as shown in
Figure 3.16. This perturbation is introduced by taking the following the initial water height:

8

> 40 . X 075 3.4
h(0; x) = >hs“p(x) 0:05 If 590752 7'7

" hgyp(X) otherwise,

where hgyp is the supercritical water height.

We set the initial discharge as q(0; x) = ¢ on the whole space domain, and the boundary
conditions still consist in the unperturbed supercritical solution. The numerical simulation
uses 100 cells and we set C = 10 3. The simulation is carried out until teng = 55, time
at which the perturbed supercritical steady state has converged to the original supercritical
steady state. Figure 3.16 depicts the results of the explicit scheme. Table 3.15 provides an error
comparison between the HLL, HR, explicit and implicit schemes.

Figure 3.16 — Results of the explicit scheme for the perturbed supercritical friction steady state.
Left panel: water height at t = 0s. Right panel: water heightat t = 5s.

| h | a

oLt L2 I L2 Lt
HLL 3.62e-04 5.14e-04 2.45e-031.08e-07 1.62e-07 5.09e-07
HR 3.62e-04 5.14e-04 2.45e-031.08e-07 1.62e-07 5.09e-07

explicit | 1.07e-14 1.40e-14 3.37e-142.11e-15 2.96e-15 6.44e-15
implicit | 1.09e-14 1.43e-14 3.54e-142.07e-15 2.85e-15 5.88e-15

Table 3.15 — Height and discharge errors for the perturbed supercritical friction steady state.

From Figure 3.16, we note that the perturbed steady state indeed converges towards the
unperturbed one. Table 3.15 shows that this convergence is valid up to the machine precision
for the explicit and implicit schemes, and that the HLL and HR schemes provide an approxi-
mation of this steady state.
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3.3.1.4 Moving steady states with both topography and friction source terms

We continue the veri cation of the well-balance property with numerical experiments con-
sisting in the preservation of moving steady states involving both topography and friction.
Thus, we setk 6 0, @Z 6 0, and ¢y 6 0: the steady states are therefore given by the full
equation (1.73). Recall that this equation cannot be rewritten under an algebraic form. Thus,
to nd a steady state solution, we have to either numerically solve the equation (1.73) in the
general case, or exactly solve it in speci ¢ cases.

Uniform water height

We begin by considering the specic case where the height is uniform throughout the
space domain. In that case, the derivative of the topography function is given in Section 1.2.3
by (1.74) (see also [42]). This speci c case is tested numerically by takinghg = qp = 1,k =
10, Z(0) = 0 and the slope of Z given by (1.74). As a consequence, we have the following
topography function: y

X

Z(x)= g
The space domain is[0; 1] and is discretized using 100cells. The initial and boundary condi-
tions are the exact solution. The computations are carried out with all four schemes, and we

taketeng = 1saswellasC =+ 1 . The results are presented in Table 3.16.

| h | g

Lt L2 Lt | Lt L2 L1
HLL 3.05e-01 3.69e-01 7.05e-018.64e-01 8.65e-01 9.41e-01
HR 3.07e-01 3.71e-01 7.08e-018.64e-01 8.65e-01 9.42e-01

explicit | 1.24e-16 1.54e-16 2.22e-169.77e-17 1.59e-16 6.66e-16
implicit | 2.22e-17 5.21e-17 2.22e-169.99e-17 1.84e-16 6.66e-16

Table 3.16 — Height and discharge errors for the topography and friction steady state with
constant height.

Table 3.16 shows that this topography and friction steady state with constant height is
indeed exactly preserved the explicit scheme and the implicit scheme. However, the HLL and
HR only provide a rst-order approximation of this steady state solution.

Uniform free surface

To build another exact solution of (1.73), we assume h + Z = Hg. We therefore have a
constant free surfaceH over the whole space domain [0; 1]. The exact height and topography
functions for a steady state solution have been exhibited in Section 1.2.3. They are given by
(1.77), under the existence condition (1.76). We choose the constantg, gy and hg such that h
is positive over the whole domain [0; 1], i.e. such that the condition (1.76) is satis ed. In the
simulation, we set xo = 0 and g = hg = Hgp = 1. As a consequence, the exact height and
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topography functions are given by:

htx)=(1+(  Dkx) T
Z(x)=1 (1+( 1kx) I:

We discretize the space domain with 100 cells and carry out the simulation until the time
tend = 1s. We takeC =+ 1 . An error comparison is displayed in Table 3.17.

| h+ 2z | q

oLt L2 Lt ] Lt L2 Lt
HLL 1.36e-03 1.37e-03 1.59e-038.76e-04 8.80e-04 9.59e-04
HR 4.00e-04 4.00e-04 4.66e-041.63e-03 1.63e-03 1.89e-03

explicit | 1.66e-15 1.74e-15 2.66e-153.05e-14 3.06e-14 3.63e-14
implicit | 5.00e-15 5.38e-15 6.88e-152.00e-14 2.0le-14 2.29e-14

Table 3.17 — Free surface and discharge errors for the topography and friction steady state
with constant free surface.

The results presented in Table 3.17 show that the steady state is preserved up to the ma-
chine precision by the explicit and implicit schemes, while the HLL and HR approximate this
steady state.

The general case

Finally, we derive a steady state for the shallow-water equations with topography and
friction, without considering a constant height or free surface. Therefore, we approximately
solve the discretization (3.68) of the full steady relation (1.73). First, we set k = 0:01 and we
choose[0; 1] to be the space domain. We take the following topography function:

lecos(4x ) e 1

Z(x) = Eﬁ: (3.103)
We setq(0;x) = g = 1 throughout the domain. The equation (3.68) is then approximately
solved using Newton's method, imposing h(0; 0) = 0:3, to get the steady water height hex(X).
This procedure allows us to de ne the water height over the whole domain. This steady state
'(hex; 0o) is then chosen as the initial and boundary conditions for this experiment. We take
100discretization cellsand C = + 1 ; the numerical simulation runs until a nal physical time
tend = 1s. The results of the explicit scheme are presented on Figure 3.17 and the errors to the
steady state are displayed in Table 3.18.

Figure 3.17 shows that the explicit scheme exactly preserves this topography and friction
steady state. Moreover, Table 3.18 shows the implicit scheme also exactly preserve such a
steady state. On the contrary, the HLL and HR schemes produce an approximation of this
solution.

Then, we focus on a perturbation of the above steady state. We denote by hey(Xx) the water
height of the previous topography and friction steady state. The initial water height of this
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Figure 3.17 — Left panel: initial height for the topography and friction steady state. Right
panel: height (solid line) and discharge (dashed line) errors to the steady state with the explicit
scheme.

‘ h+ Z ‘ q

oLt L2 Lt Lt L2 L1
HLL 1.84e-03 3.01e-03 1.20e-023.26e-09 3.64e-09 5.55e-09
HR 5.29e-02 1.43e-01 6.23e-014.63e-02 9.73e-02 2.94e-01

explicit | 8.29e-16 1.36e-15 5.33e-151.07e-15 1.33e-15 3.33e-15
implicit | 6.23e-16 9.68e-16 2.72e-152.45e-15 2.87e-15 5.11le-15

Table 3.18 — Free surface and discharge errors for the topography and friction steady state.

last experiment is de ned by

8
2h.)+0:05 ifx2 231 45,
h(0:x) = ) ex(X)+0:05 if x -7 TR
" hex(X) otherwise;
and the initial discharge is de ned by
S 1 230 45
2 : . L2
o+ = fx2 == ==
q(o;x): S 2 77 77
" o otherwise:

The unperturbed steady state is prescribed as the boundary conditions. For this numerical
experiment, the domain [0; 1] is discretized with 100 cells, and the simulation runs until the
perturbation has been dissipated and the unperturbed steady state has been recovered. The
nal physical time we choose for these conditions to be met is teng = 2s. In addition, we
setC = + 1 . The evolution of the perturbation with the explicit scheme is depicted on Fig-
ure 3.18. Then, in Table 3.19, we present the errors to the original unperturbed steady state
when the physical time has elapsed.

Figure 3.18 and Table 3.19 show that the schemes indeed allow to recover the original
unperturbed steady state. This experiment emphasizes the ability of the explicit and implicit
schemes to exactly capture a topography and friction steady state, even after a perturbation.
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The HLL and HR schemes do not possess such an ability.

Figure 3.18 — Perturbed topography and friction steady state. From left to right: water height
fort =0s,t =0:015% andt = 2s, with the explicit scheme.

| h+Z | q

oLt L2 Lt ] Lt L2 Lt
HLL 1.84e-03 3.01e-03 1.20e-029.20e-10 1.03e-09 1.56e-09
HR 3.18e-01 4.95e-01 9.22e-012.61e-02 3.36e-02 1.30e-01

explicit | 5.71e-16 1.02e-15 4.16e-157.36e-16 1.08e-15 5.44e-15
implicit | 1.47e-15 2.00e-15 5.72e-157.16e-16 9.17e-16 2.89e-15

Table 3.19 — Free surface and discharge errors for the perturbed topography and friction
steady state.

3.3.1.5 Goutal and Maurel's steady ows

We nally carry out three experiments from Goutal and Maurel's test cases [86]. These
benchmarks have been derived by considering the Bernoulli equation (1.44) that governs the
steady state solutions of the shallow-water equations with non- at topography and a vanish-
ing friction contribution, i.e. k = 0. As a consequence, the implicit scheme and the explicit
scheme will yield identical results.

Note that we have already assessed the preservation of moving steady state solutions in
Section 3.3.1.2. However, the experiments presented in [86] are obtained after a transient state,
i.e. from initial conditions which do not de ne a steady state. The goal of presenting these
experiments is to assess the ability of the suggested scheme to capture steady state solutions,
in addition to preserving them.

The experiments from [86] are called the subcritical ow, the transcritical ow without shock
and the transcritical ow with shock In this manuscript, they will be respectively labeled GM1,
GM2 and GM3. The space domainis0< x < 25and the topography function is given by:

Z(x)= 02 005 1007 ,:

The boundary conditions are given hereafter, in function of two quantities ¢y and hg, whose
values depend on the experiment studied:

< on the left boundary, the water height satis es a homogeneous Neumann condition and
the discharge is set to somep;
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» onthe right boundary, the water heightis setto hgwhenthe ow is subcritical (and a ho-
mogeneous Neumann boundary condition is prescribed otherwise), and the discharge
follows a homogeneous Neumann boundary condition.

In addition, the initial conditions are h(0;x) + Z(x) = hg and g(0;x) = 0 throughout the
domain. The values of ¢ and hg are:

« for GM1: o =4:42m3/sand hg=2m;
 for GM2: oo = 1:53m%/s and hg = 0:66m;
* for GM3: ¢p = 0:18m3/s and hgp = 0:33m.

Such initial and boundary conditions yield a transient state followed by a steady state, with
uniform discharge ¢p. For GM1 and GM2, this steady state is continuous, and it should thus
be exactly obtained by the well-balanced scheme. However, the steady state in GM3 involves
a stationary shock, which the well-balanced scheme is not able to capture exactly. After Sec-
tion 1.2.1.3, this stationary shock is governed by the Rankine-Hugoniot relations and the dis-
crete entropy inequality.

On the one hand, for the converged steady states associated to GM1 and GM2, note that
g = (p and that the steady state equation (1.44) is veri ed. This equation is nothing but a
statement of Bernoulli's principle, and it can be rewritten as follows:

2

%

where E is a uniform quantity, the total head (see [86] for instance). As a consequence, to eval-
uate the well-balance of the scheme on GM1 and GM2, we compute the error to the uniform
discharge ¢ and the error to the uniform total head E.

On the other hand, since GM3 presents a stationary shock, the discharge is constant but
the total head is not. Indeed, it presents a discontinuity where the shock is located. Therefore,
only the error to the uniform discharge ¢ is computed for this last experiment.

The nal physical time tgng and the constant C are chosen as follows for each experiment:
— for GM1: tgng =500sandC =+ 1 ;

— for GM2: teng = 125sand C = 2:5;
— for GM3: teng = 1000s and C = 1:1.

Subcritical ow

We display on Figure 3.19 the results of the explicit scheme for the GM1 benchmark. Then,
we compare in Table 3.20 the two well-balanced schemes with the HR scheme and the HLL
scheme. These experiments are performed using a mesh of200 cells. Table 3.20 shows that
both HLL and HR schemes provide a rst-order approximation of the moving steady state
con guration GM1, while the proposed explicit and implicit schemes exactly preserve (i.e.
up to the machine precision) such moving steady states. This result is also observed on Fig-
ure 3.19. Moreover, these schemes recover this steady state after a transient state, even though
the steady state is not prescribed as initial condition.
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Figure 3.19 — Left panel: free surface and topography for the GM1 subcritical ow test case.
Right panel: errors for the subcritical ow using the explicit scheme; the solid line is the total
head error and the dashed line is the discharge error.

| E | a

oLt L2 Lt ] Lt L2 Lt
HLL 8.24e-03 1.19e-02 7.41e-024.31e-03 1.22e-02 5.19e-02
HR 1.32e-02 1.97e-02 7.48e-022.37e-03 6.74e-03 2.74e-02

explicit | 1.18e-13 1.25e-13 1.53e-136.65e-14 6.99e-14 8.26e-14
implicit | 1.18e-13 1.25e-13 1.53e-136.65e-14 6.99e-14 8.26e-14

Table 3.20 — Total head and discharge errors for the GM1 subcritical ow experiment.

Transcritical ow

The results of the explicit scheme for the GM2 experiment are depicted on Figure 3.20.
Then, we present in Table 3.21 the comparison between the well-balanced schemes and the
non well-balanced schemes. We chose a mesh made oR00 discretization cells to carry out
these experiments. From Figure 3.20 and Table 3.21, we get similar conclusions than the case
of the GM1 experiment. Indeed, the HLL and HR approximate the steady state, while the
suggested schemes exactly capture the steady state, even after a transient state.

Figure 3.20 — Left panel: free surface and topography for the GM2 transcritical ow test case.
Right panel: errors for the transcritical ow using the explicit scheme; the solid line is the
total head error and the dashed line is the discharge error.
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| E | q

oLt L2 L | Lt L2 L
HLL 2.72e-02 3.50e-02 7.45e-021.54e-03 6.16e-03 3.70e-02
HR 4.79e-02 6.07e-02 8.12e-028.28e-04 3.30e-03 1.82e-02

explicit | 1.67e-14 2.13e-14 4.26e-141.47e-14 1.58e-14 2.04e-14
implicit | 1.67e-14 2.13e-14 4.26e-141.47e-14 1.58e-14 2.04e-14

Table 3.21 — Total head and discharge errors for the GM2 transcritical ow experiment.

Transcritical ow with shock

Finally, we turn to the GM3 test case. Since it contains a stationary shock, it is not ex-
actly captured by the suggested explicit and implicit schemes, which are designed to capture
smooth steady states. The results of the explicit scheme are displayed on Figure 3.21. Com-
parisons with respect to  x and to the scheme used are presented on Figure 3.22, and com-
parisons with the HR and HLL schemes are presented in Table 3.22. The experiment is rst
carried out with 1000discretization cells, and then with 4000discretization cells.

Figure 3.21 — Transcritical ow with shock experiment (GM3), with the explicit scheme. The
topography is the gray area. Left panel: free surface and topography with 1000discretization
cells. Right panel: free surface and topography with 4000discretization cells.

| q

E L2 L1
HLL 2.99e-04 1.84e-03 3.89e-02
HR 1.54e-04 1.53e-03 4.00e-02

explicit | 2.54e-04 2.99e-03 5.01e-02
implicit | 2.54e-04 2.99e-03 5.01e-02

Table 3.22 — Discharge errors for the experiment of the transcritical ow with shock (GM3) for
1000discretization cells.

From Figure 3.21, we observe, as expected, that the GM3 experiment is not exactly cap-
tured by the explicit scheme. Note the presence of a small inconsistent discontinuity on the
free surface in the vicinity of the top of the bump. The amplitude of this discontinuity de-
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Figure 3.22 — Transcritical ow with shock (GM3) experiment: discharge error in logarithmic
scale with the explicit scheme, with respect to the number of cells.

pends heavily on the value of the constant C. Moreover, this amplitude is reduced when
x is reduced, which means that the explicit scheme indeed converges towards the required
steady state when x tendsto O.

Table 3.22 gives the errors to the steady dischargeq,. We note that they are of the same
order of magnitude with the four schemes under consideration.

On Figure 3.22, we observe the expected behavior of the discharge error. Although we
do not exactly recover the exact solution, the shock becomes narrower as the number of cells
increases.

Note that the proposed well-balanced schemes can also be compared to several other well-
balanced schemes that preserve moving steady states. For instance, in [128, 157], error tables
are provided, to show that the presented schemes indeed exactly preserve the studied mov-
ing steady states. However, it is worth noting that there is no evidence that these schemes are
able to capture the steady states obtained after a transient state, contrary to the explicit and
implicit schemes. We also mention the generalized hydrostatic reconstruction suggested in
[33], which results in a scheme able to capture the moving steady states obtained after a tran-
sient state. However, this scheme is not robust when in the presence of large discontinuities
in the topography function.

3.3.2 \Validation experiments

In the previous section, we have assessed the well-balance of the suggested explicit and
implicit schemes. We now turn to the other properties of the scheme: namely, the consistency
and the robustness.

In this section, we perform several numerical experiments, whose goals are to show that
the proposed schemes approximate the correct solutions when considering unsteady ows.
We rst present two experiments showing the in uence of the parameter C present in the
approximate topography source term S' and used in (3.55). Then, we focus on the topogra-
phy source term, and we take a vanishing friction contribution. To that end, we carry out
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two experiments from [77]; both experiments present dry areas. Finally, several dam-break
experiments are presented. The purpose of these experiments is to highlight the impact of the
friction contribution on the solutions. The well-balance property is also shown to be impor-
tant for these simulations.

3.3.2.1 Inuence of the parameter C

Recall that the approximate source term S', de ned by (3.75), depends on C. Namely,
this parameter is used to ensure the consistency of the approximate source term S' with the
actual source term St, by ensuring that the absolute value of the water height jump [h] is no
larger than C x. The purpose of the rst set of experiments is to highlight the in uence of
this parameter C.

Shock waves over a at topography

The rst experiment we suggest concerns the propagation of shock waves over a at to-
pography. To that end, we consider the domain [0; 1] with a at topography (i.e. Z 0),
homogeneous Neumann boundary conditions, and we take the following Riemann problem

initial data: (
75 if x< 05;
h(O;x)=1 and q(0;x)=
7 ifx 05

According to Section 1.1.2, such a Riemann problem corresponds to the two-shock case, and
will thus produce two shock waves separating a constant intermediate state, the rst one
travelling towards the left of the initial discontinuity, and the second one towards its right.
The exact solution of this Riemann problem can be computed using according to Section 1.1.2.

Recall that the cutoff involving C had been introduced to ensure the consistency of St,
especially for at topographies. As a consequence, for this experiment, the value of C should
be instrumental in getting the correct shocks waves and an accurate approximation of the
intermediate state.

To carry out this experiment, we set a vanishing friction contribution (i.e. k =0), we use
250discretization cells, and we take the naltime tgng = 0:1s. This experiment is performed
with values of the parameter C ranging from 10to 1000 i.e. for C x ranging from 0:04to 4.

The results of the explicit scheme are presented on Figure 3.23, where we display the exact
solution as well as the numerical approximation obtained with the explicit scheme for C =10
and C = 1000. The left panel shows that, for both values of C, the approximate shock waves
are located at a consistent position and seem to have the correct amplitude. However, on the
right panel, we note, on the one hand, that the intermediate state obtained with C = 1000
presents spurious oscillations, whose amplitude does not decrease when X increases. On
the other hand, with C =10, the explicit scheme provides a good approximation of the inter-
mediate state.

In order to quantify the loss of accuracy, we compute the errors, in L' and L? norms,
between the approximate water height and the exact water height. These errors are presented
with respect to the parameter C, for values of C ranging from 10to 100Q on Figure 3.24. In
both norms, the error increases asC increases. We also note that, forC < 20in L*-norm
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Figure 3.23 — Dam-break creating two shock waves over a at bottom. Left panel: whole
domain depicted at t = 0:1s. Right panel: zoom on the intermediate state of the dam-break
problem.

and for C < 75in L?-norm, the error stays the same. Similarly, for C > 600in L-norm and
for C > 500in L2-norm, the error is constant. As a consequence, this experiment is a good
illustration of the fact that the cutoff (3.55) allows the recovery of a consistent scheme.

Figure 3.24 — Height error in L1-norm (left panel) and L?2-norm (right panel) with respect to
the parameter C.

Incident wave on an emerging bottom

The second experiment we perform in order to study the in uence of the parameter C
consists in an incident wave on an emerging bottom. To that end, we modify the ow at rest
with emerging bottom experiment from [77], to add a wave perturbing the water at rest. On
the space domain [0; 15], we consider the topography function Z(x)= 0:2 0:05(xx 10)? .
and the following initial conditions:

( 02 ifx< 5
h(O;x)+ Z(x) = and q(0;x)=0:
0:15 ifx 5

Homogeneous Neumann boundary conditions are prescribed, and 4000discretization cells
are considered. We once again take a vanishing friction contribution, i.e. k = 0. The initial
condition, as well as the reference solution, computed with the HR scheme at teng = 55, are
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displayed on Figure 3.25.

Figure 3.25 — Incident wave on an emerging bottom. Left panel: Initial free surface. Right
panel: Reference free surface obtained with the HR scheme. On both panels, the gray area is
the topography.

In order to study the in uence of the parameter C, we consider the explicit scheme, and
we carry out the simulation with  C =1 and C = 10. The results are displayed on Figure 3.26,
where we once again observe that the consistency is ensured by the cutoff procedure. Indeed,
with C = 10, large spurious oscillations appear, a wave is re ected to the left of the domain,
and an inconsistent dry area appears on the bump. However, with C = 1, we only get small
oscillations near x = 9:75; the amplitude of these oscillations decreases as x decreases.

Figure 3.26 — Incident wave on an emerging bottom: zoomed comparison between the HR
scheme, the explicit scheme with C = 1, and the explicit scheme with C = 10. The gray area
is still the topography.
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3.3.2.2 Drain on a non- at bottom

The next validation experiment we propose is the drain on a non- at bottom (see [77]).
The topography is given on the space domain [0; 25] by

Z(x)= 02 005 10y ,:

We take initial data at rest, as follows: h(0;x)=0:5 Z(x) and g(0;x) =0.

Concerning the boundary conditions, we assume that the left boundary is a solid wall and
that the drain is done by the right boundary, where we impose an outlet condition on a dry
bed (see [66, 30, 77] for more details on this boundary condition). These boundary conditions
are given as follows. Let us denote by h; and g the left boundary conditions, and by hgr and
Or the right boundary conditions. Let us assume that (W;");, 1.y kiS the vector containing the
approximate solution at time t". Then, the left boundary condition, which represents a solid
wall, is taken as follows:

h. =h] and ¢ =0:

Concerning the right boundary condition, the process to obtain an outlet over a dry bed is
detailed in [66, 30]. It consists in choosing the following values at the boundary:

__ 2 _
hr = min glguﬁ+2p ght, ;hy and quh?R ur,l,+2p gh, :

Note that the outlet on a dry bed boundary condition also requires that the numerical ux at
the right boundary be the exact physical ux applied to !(hg;0r). This boundary condition
enables the draining of the water through the right boundary.

The simulation is carried out with the implicit scheme, using a discretization of 200cells,
and until the nal physical time teng = 1000s. Note that, since the friction contribution is zero,
the explicit scheme (3.9) — (3.81) and the implicit scheme (3.88) — (3.91) — (3.101) coincide. In
addition, we take C = 0:65. The results are presented on Figure 3.27, where we observe that
the implicit scheme provides results close to the ones from other schemes, given in [77, 20,
161, 18] for instance.

Figure 3.27 — Drain on a non- at bottom. Left panel: free surface and topography (in gray).
Right panel: discharge.
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Note that this experiment converges to a steady state at rest (i.e. q(t; x) = 0 over the whole
domain), with the free surface equal to 0:2m at the left of the bump, and with a dry state at its
right. Table 3.23 shows the convergence over time of the implicit scheme towards this steady
state.

| h | q

oLt L2 L | Lt L2 L
1505 | 3.73e-03 4.27e-03 7.23e-036.79e-04 7.05e-04 3.50e-03
600s | 4.13e-04 7.95e-04 1.55e-034.64e-05 4.94e-05 8.93e-05

2406 | 9.59e-05 2.83e-04 3.57e-041.45e-06 2.26e-06 4.67e-06
1920G | 2.11e-05 4.09e-05 8.50e-059.21e-08 3.47e-07 5.56e-07

Table 3.23 — Water height and discharge errors over time for the drain on a non- at bottom.

3.3.2.3 Vacuum occurrence by a double rarefaction wave over a step

We then turn to another validation experiment, a vacuum occurrence deriving from a
double rarefaction wave over a step, presented in [77]. We consider the space domain [0; 25],
with a topography given by

8

31 ifx2 %52?5 :
£ 3 0 ifx2 O 25 [ 25'25 :
" ’3 7’ .

The discontinuous initial data is given as follows:

8
2 350 ifx< 53,
h(0;x)=10 and q(O;x)=> 3

- 350 otherwise.

We prescribe homogeneous Neumann boundary conditions. The mesh consists in 200
discretization cells, and the simulation is carried out with the implicit scheme until a nal
physical time tgng = 0:65s. We once again note that the explicit scheme and the implicit one
coincide for a vanishing friction source term. We set C = 1. The results are displayed on
Figure 3.28, where we observe that the implicit scheme provides an approximation that is in
good accordance with the ones obtained by several other schemes, given in [77, 20, 24, 158]
for instance.

Note that, if the physical time t is large enough, the space domain should be completely
drained of water, i.,e. h  Oand g 0. We now analyze whether the four schemes at our
disposal tend to that limit behavior. We introduce the time t; , such that for all x 2 [0; 25],
q(t1 :X) <" machine , Where "machine ' 2:22 10 € s the lower bound of the double precision
oating point numbers. The results are presented in Table 3.24, where we note that the HLL
scheme, the explicit scheme and the implicit scheme all allow the space domain to be com-
pletely devoid of water for t t; . However, with the HR scheme, even in presence of a very
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Figure 3.28 — Vacuum occurrence by a double rarefaction wave over a step. The gray area
represents the topography. Left panel: free surface and topography. Right panel: discharge.

large physical time, there is always some water at rest remaining to the right of the bump,
even if the discharge has reached" machine -

| | h | a

|t | Lt L2 Lt ] Lt L2 Lt
HLL 2.45s | 4.05e-16 2.39e-15 3.37e-143.00e-16 3.20e-16 5.60e-16
HR > 10%s | 7.02e-06 9.93e-06 1.40e-052.22e-16 2.22e-16 2.22e-16

explicit 1.78s | 2.28e-16 2.29e-16 3.78e-162.40e-16 2.50e-16 6.33e-16
implicit 1.78s | 2.28e-16 2.29e-16 3.78e-162.40e-16 2.50e-16 6.33e-16

Table 3.24 — Vacuum occurrence by a double rarefaction wave over a step experiment. Time
t; at which the water has come to a stop.

3.3.2.4 Wet dam-break

We now turn to dam-break experiments. The rst dam-break experiments under consid-
eration are wet dam-breaks. We introduce the following topography function:

Zgam(X) = %cosz( X ): (3.104)

We study the following four wet dam-break cases to highlight the behavior of both source
terms:

DAM1: Z(x)=0 and k =0;
DAM2: Z(x)=0 and k =5;
DAM3: Z(X) = Zgam(x) and k = 0;
DAM4: Z(X) = Zgam(xX) and k =5.

The space domain is|[ 1,; 1], and we choose the same initial data for the four experiments, as

follows: (
5 ifx< 0

h(O;x)+ Z(x) = and (q(0;x)=0:
1 ifx O
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With this initial data, note that the rst wet dam-break experiment corresponds to the Rie-
mann problem studied in Section 1.1.2. In particular, we know the exact solution for this
experiment.

For the numerical simulations, we prescribe homogeneous Neumann boundary condi-
tions at both boundaries. The results are presented at the nal time teng = 0:1s. We use200
discretization cells for the implicit scheme, and present a reference solution computed using
the HLL scheme with 2000cells. Finally, we set C = 10.

Flat topography

The results of the wet dam-break experiments with at topography are displayed on Fig-
ure 3.29. The implicit scheme vyields a correct approximation of the reference solution. The
action of the friction is clearly visible.

Figure 3.29 — Wet dam-break on a at topography: free surface observed at the nal physical
time with the implicit scheme. Left panel: k = 0;right panel: k =5.

Non- at topography

Figure 3.30 depicts the results of the wet dam-break experiments with the topography
function (3.104). Once again, we note that the approximate solution provided by the implicit
scheme is in good agreement with the reference solution.

Note that there is a lake at rest con guration in the regions untouched by the waves.
Indeed, the free surface untouched by the rarefaction wave or the shock wave should remain
unperturbed. This means that h(t;x) + Z(x) = 2 and q(t;x) = 0 for all x inferior to the
position of the head of the rarefaction wave, and h(t;x)+ Z(x) =1 and q(t;x) = 0 for all x
superior to the position of the shock wave. This lake at rest behavior is exactly preserved by
the explicit and implicit schemes. Therefore, this experiment highlights the interest of a using
a well-balanced scheme for such simulations, even if the whole domain does not involve a
steady state solution.

3.3.2.5 Dry dam-break

We then focus on dry dam-break experiments. We study four experiments, with the same
topography functions and values of the Manning coef cient as in the wet dam-breaks DAM1,
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Figure 3.30 — Wet dam-break on a non- at topography: free surface observed at the nal
physical time with the implicit scheme. Left panel: k = 0; right panel: k =5.

DAM2, DAM3 and DAM4, but whose initial data is now givenon [ 1;1] by:

( 15 Z(x) ifx<Q
h(0; x) = and ((0;x)=0:
0 if x O
Note that the initial water height vanishes for x 0. As a consequence, a dry area is present
to the right of the dam. We remark that, in the rst case, where Z(x) = 0 and k = 0, we
recover the Riemann problem with a dry area presented in Section 1.1.2.

In the numerical simulations, both boundaries are endowed with homogeneous Neumann
boundary conditions. The nal physicaltimeis teng = 0:1s. The simulation is carried out with
200cells for the implicit scheme, and with 2000cells for the reference HLL solution. We still
setC = 10.

Flat topography

Figure 3.31 displays the results of the dry dam-break simulations with a at topography.
We note that the implicit scheme provides an approximation that is in good agreement with
the reference solution. In addition, we here remark the effects of the friction, especially in the
shape of the wet/dry front. This font has also been slowed down by the friction.

Non- at topography

On Figure 3.32, the results of the dry dam-break experiments with a non- at topography
function are depicted. As in the case of a at topography, the implicit scheme shows good
agreement with the reference solution, and the slowing effects of the friction are noted.

3.3.2.6 Dry dam-break with two bumps

This next dry dam-break experiment presents a more complicated topography, which con-
sists in two bumps. The space domain is [0; 5] and we choose to use10* discretization cells
with the implicit scheme to have a relevant simulation. The two boundaries at x = 0m and
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Figure 3.31 — Dry dam-break on a at topography: free surface observed at the nal physical
time with the implicit scheme. Left panel: k = 0; right panel: k = 5.

Figure 3.32 — Dry dam-break on a non- at topography: free surface observed at the nal
physical time with the implicit scheme. Left panel: k = 0; right panel: k =5.

x = 5m are solid walls. The topography is de ned by

1 1 (x 5=2)? (x 4)?

2 =25 =25 .’

Z(x) =

and indeed consists in two quadratic bumps, a smaller one followed by a larger one. The dam
is located at xp = 0:7m, breaks att = 0s, and contains an initial water height h, = 6m. The
domain x > X p contains no water, i.e. hg = 0. We choose a Manning coef cient k equal to 1.
The left panel of Figure 3.33 shows that the initial water height is signi cantly larger than the
bumps. Indeed, we elected to have a larger mass of water whose energy is important enough
not to be completely dissipated by the bottom friction. We choose C =0:1, and we depict the
results of the implicit scheme on Figure 3.33 and Figure 3.34.

On Figure 3.33, we observe several waves and re ections created by the two bumps. In
particular, on the right panel, we remark the characteristic pro le of the dry dam-break so-
lution with friction. In addition, the rst bump has created a re ection, which is seen on the
left panel of Figure 3.34 to be propagating to the left of the domain. Note, on the left panel
of Figure 3.34, that a wave re ected from the right bump has appeared and is traveling to
the left, while some water has also leaked above this right bump. Finally, on the right panel
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Figure 3.33 — Free surface for the double bump test case at different times. The gray area is
the topography. Left panel: solution at t = 0s; right panel: solution at t = 0:38s.

Figure 3.34 — Free surface for the double bump test case at different times. The gray area is
the topography. Left panel: solution at t = 0:74s; right panel: solution at t = 1:70s.

of Figure 3.34, the water level is starting to converge towards a steady state at rest to the left
of the right bump. Several waves are still present, interacting among themselves, with the
bumps and with the solid walls. The small quantity of water that had leaked is still traveling

to the right of the domain.

3.3.2.7 Dry dam-break on a sloping channel: asymptotic solution

The last dam-break experiment we consider comes from [96, 97] and consists in a dry
dam-break on a sloping channel. In [96, 97], the author suggests an asymptotic approxima-
tion of the water height, valid far enough away from the dam. The goal of this numerical
experiment is to compare the implicit scheme with Hunt's asymptotic approximation and
with experimental data.

Let us rst mention that, in [96, 97], the author does not use Manning's friction law (3.43).
Instead, the Darcy-Weisbach friction law is used (see for instance [145, 57] and references
therein), and the friction source term S' (W) is given by:

where f is the Darcy-Weisbach friction coef cient. Note that this friction source term can be
rewritten under the more general form Sf(W) =  kgjgih , with k = f=8and = 2. As
a consequence, we are able to adapt the implicit scheme to this new source term simply by
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taking Manning's coef cient k equal to f=8and by setting =2 instead of = 7.

The initial data of the experiment is presented on Figure 3.35. On an in nitely long sloping
channel, a reservoir of length L holds water, up to a dam of height H, which breaks at time
t = 0. Note that the slope of the channel is H=L : therefore, the topography function is given

by
Z(x) = %x:

As a consequence, the initial data is given as follows:

h(o: _(max(O; Z(x)) ifx<L; o
0;x) = 0 L and (¢(0;x)=0;

where the x-axis, as displayed on Figure 3.35, follows the slope of the channel.

Figure 3.35 — Initial water height for the dry dam-break on a sloping channel.

Then, following Hunt [96, 97], we introduce the uniform ow velocity at a normal depth
of H, denoted by U. After having introduced the dimensionless variables u = u=U and
h = h=H, Hunt suggests using the kinematic-wave approximatione. u®> = h , where a sharp
shock is observed at the wet/dry front. Under this approximation, Hunt derives the following
two quantities:

3

* the shock amplitude hg(t) = H & ;
3L Ut 23

* the shock position xs(t) = > T :

In addition, under this kinematic-wave approximation, the shallow-water system can be
solved, to yield the following outer solution

2
ho(t:x)= H =2
o(t:X) 3Ut

This formula is valid far from the dam: Hunt suggests using it for x=L > 5.
Afterwards, Hunt derives the inner solution valid near the wet/dry front. To that end, he
introduces the actual position of the wet/dry front, given by:

|
2 2.

Ut 3 L 3
xo)= L - =8 T+ I =
o(t) 1 Ut

NI W
NI =

Then, the inner solution h; is given as the unique solution within [0; hs(t)) of the following
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nonlinear equation:

hi(t;x)+In 1 hi (t; x) +1+xs(t) X H

he(D) h® 27 L hem O

Finally, Hunt combines the outer solution and the inner solution to get the composite solu-
tion, as follows:

8

gho(t;x)+ hi(t;x) hg(t) if0 x  xg(t);
he(t; x) = 5 hi (t; x) if xs(t) x  Xp(b);

"0 if x> X o(t):

This composite solution, according to Hunt, is valid for x=L > 5.

Our goal is now to compare the results of the implicit scheme with Hunt's composite
solution. To that end, we propose two checks: the water height with respect to the time at
a xed position, far enough away from the dam, and the water height with respect to the
position at a xed time. In both cases, we take homogeneous Neumann boundary conditions
and we use 400 discretization cells for the implicit scheme. In addition, the constants are
chosen according to Table 3.25, where we note that the slope of the channelH=L is very mild
(about 2:5°). For both schemes, the cutoff constantC is taken equal to 1.

H A U f
0:04m 0:932m 1:195m.s 1 0:0932

Table 3.25 — Values of the constants for the dry dam-break on a sloping channel.

Water height with respect to the time at a xed position

We rst follow Hunt [96, 97] and we set x=L = 5:7 to observe the time evolution of the
solution over the time domain [0; 14]. Experimental values for the water height are given
in [96]. Note that the position x=L = 5:7 is well within the domain of validity of Hunt's
asymptotic approximation.

The result of the implicit scheme, as well as the experimental points and Hunt's solution,
are displayed on Figure 3.36, where we note that both the implicit scheme and Hunt's ap-
proximation have a correct shape compared to the experimental points. In addition, for both
approximate solutions, the water arrives at the position x=L = 5:7 at roughly the same time,
which corresponds to the experimental result. We also note that the implicit scheme provides
a correct approximation of the maximum experimental water height, while Hunt's solution
presents an overshoot. This overshoot behavior was already documented in [97]

Water height with respect to the position at a xed time

We then compare Hunt's composite solution with the implicit scheme at the xed time
t = 6 over the space domain[0; 7]. Hunt's solution should be valid for x=L > 5,i.e. x> 4:66m.
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The water height produced by the implicit scheme and Hunt's composite solution are
presented on Figure 3.37. On this gure, we rst note that the wet/dry front is located at
roughly the same position for both approximations. This positionis givenby xg(6) ' 5:57. We
remark that Xo(6) > 4:66, and therefore that the wet/dry front is located within the domain
of validity of Hunt's approximation. We also note that the maximum of Hunt's composite
solution is once again higher than the maximum of the water height approximated by the
implicit scheme.
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Figure 3.36 — Water height with respect to the time at the position x=L = 5:7 for the dry dam-
break on a sloping channel. Comparison between the experimental data (crosses), Hunt's
composite solution (dashed line), and the result of the implicit scheme (solid line).

Figure 3.37 — Water height with respect to the position at the time t = 6 s for the dry dam-break
on a sloping channel. Comparison between Hunt's composite solution (dashed line) and the
result of the implicit scheme (solid line).
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Two-dimensional and high-order
extensions

In the previous chapter, we have suggested a well-balanced scheme for the shallow-water
equations with topography and Manning friction (1.1) in one space dimension. This scheme
is based on a suitable approximate Riemann solver and a semi-implicitation of the friction
contribution. In addition, it has been built to be consistent, non-negativity preserving, and
able to deal with interfaces between wet and dry areas. The goal of this chapter is to propose
two extensions of this scheme, a rst one to consider two-dimensional geometries, and a
second one to provide a high-order accuracy. A requirement for these extensions is to recover
as many properties of the one-dimensional rst-order scheme as possible.

We begin with a brief presentation of the shallow-water equations in two space dimen-
sions. The homogeneous 2D shallow-water equations have been extensively studied (see
[3, 4, 156, 112, 36, 58] for instance). With the source terms, the balance law is governed by the
following equations:

8
3@h+r q=0;
(4.1)

1
2@q+r qhq+ S0z = ghr Z  kakgkh ;
where |, represents the identity matrix of M ,.2(R) and the notation pk:k stands for the eu-
clidean norm of a vector, de ned for X = (X1;X2) 2 R2by kX k =~ X2+ X3. Lastly, the
symbol represents the tensor product of two vectors, which is a matrix de ned as follows:

|
X1Y1 Xi1Ya

8X =Y X1:X2)2R%8Y =YY Y)2RE X Y =
(X1;X2) (Y1;Y2) XoYe XoYo

The equations (4.1) can be rewritten under the following condensed form (2.67) of a 2D bal-
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ance law:

@W+r F(W)= S(W);

where we have setq = '(g; qg,), and:

0 1 0 1
0 1 e & 0
2
w=Bok o Fw= B, e 89 £ sw= B ghgy Kok
qy 2
%% 9,1, kaykgk
h h 29" oh@z  —

The vector W must be taken in the following 2D admissible states space:
= W='hag:q)2R;h 0k2R g 2R :

Finally, we turn to describing some steady state solutions for the 2D shallow-water model
with topography and/or friction. The steady state solutions are as usual de ned by making
the time derivatives vanish, as follows:

8
3r q=0;

3y ¥+ %ghzlz + ghr Z + kagkgkh = 0

We therefore no longer have a uniform discharge as soon as a steady state is involved. Instead,
the discharge eld is divergence free, i.e. the divergence of the discharge vanishes, as follows:

r q=0: 4.2)

Hence, studying the steady state solutions of the shallow-water equations in two dimensions
is much harder than in one dimension.

However, several speci ¢ steady states can still be recovered. For instance, if we take a
smooth steady state at rest (i.e. @ = 0), then we once again get the lake at rest steady state,
de ned as usual by h + Z = cst. In addition, the 1D moving steady states can obviously be
recovered, by taking, with ¢y 6 0, g = '(g;0) or g = *(0; p), as well as a one-dimensional
water ow. As a consequence, our goal is not to preserve all the steady state solutions of the
2D shallow-water equations, but rather to preserve the pseudo-1D steady states, i.e. those
along the x-axis and the y-axis, as well as the lake at rest in every direction. This restricted
well-balance property is called the well-balance by directigra formal de nition will be given
later. The two-dimensional extension of the 1D scheme developed in Chapter 3 is therefore the
focus of Section 4.1. A Cartesian mesh is considered in order to allow the scheme to be well-
balanced by direction. This 2D extension is performed by suggesting a convex combination
involving the 1D scheme derived in the previous chapter. We then state several properties
satis ed by the 2D scheme.

This 2D scheme is then supplemented by a high-order extension in Section 4.2. This high-
order extension consists in providing a polynomial reconstruction of the variables in each cell.
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Afterwards, the high-order strategy from Section 2.4 is used to derive a nite volume scheme
for a 2D balance law with a high order of spatial accuracy. The time accuracy of the scheme
is improved by Strong Stability-Preserving Runge-Kutta (SSPRK) methods. Then, we apply
the MOOD method to the current case, in order to recover the robustness of the scheme and
to eliminate non-physical oscillations. This MOOD method is supplemented by a procedure
to recover the well-balance of the scheme.

The Fortran implementation of this scheme is then discussed in Section 4.3. Namely,
speedup and ef ciency graphs for the OpenMP parallelization are provided.

Finally, we propose in Section 4.4 several numerical experiments to assess the properties of
the scheme. First, the well-balance property is tested with the 2D rst-order and high-order
schemes. Then, we check the order of accuracy of the scheme. Finally, several validation
experiments are suggested, and real-world simulations are presented.

4.1 Two-dimensional extension on a Cartesian grid

The goal of this section is to derive a two-dimensional scheme for the shallow-water equa-
tions on a Cartesian grid. This 2D scheme is based on the 1D scheme developed in the previ-
ous chapter. The choice of a Cartesian grid is motivated by the fact that we want the scheme
to be able to preserve steady state solutions along thex-axis and the y-axis.

We now introduce the discretization of the space domain R2, which consists in a Cartesian
mesh of uniform cells ¢;; , de ned by:

J;Yi;j v Y ;

Ci;j = Xi?j 2 2

- Xij * - Vi
2 2

where (Xi; ;Yi;j ) is the center of the cell ¢;; . Thus, all cells are rectangles of length  x and
width y. From now on, we denote by jc;jj = x Y the area of the cell ¢;j . The piecewise
constant approximate solution, within the cell ¢; and at time t", will henceforth be denoted
by Wi .

In order to propose a way to update the piecewise constant approximate solution in time,
we suggest a two-step scheme. In Section 4.1.1, we introduce the proposed discretization of
the equations, which consists in a two-step semi-implicit scheme. Its rst step is devoted to
the ux and the topography source term, and its second step uses a splitting method to take
the friction contribution into account. Then, in Section 4.1.2, we state the properties of this 2D
scheme. To that end, we rewrite the 2D scheme as a convex combination of 1D schemes in the

spirit of Section 2.3.2.

4.1.1 Derivation of a two-dimensional scheme

In order to derive a numerical scheme for the two-dimensional shallow-water equations
(4.1), we rst cast this system into the following form:

@W + @F (W)+ @G(W) = SY(W)+ S (w); (4.3)
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where the uxes F inthe x-direction and G in the y-direction are de ned by

0 1 0 1
Ok Qy
Fw)= B% 4 Lopl and ow)= | %% &
h ™2 h
K 9 1.0
h h 29

while the topography and friction source terms St and S’ are given by

0,1 o, 1
S‘W)= B gh@z& and STW)= B kqkgkh X: (4.4)
gh@Z kaykgkh

Following the 1D case, we suggest a two-step semi-implicit scheme to approximate solu-
tions of (4.3). The rst step of the scheme is devoted to the ux and the topography, while the
second step concerns the implicit treatment of the friction source term.

The rst step requires an approximation of the following system:
@W + @F (W) + @G(W) = S'(W): (4.5)

Following the 2D scheme (2.47), we introduce two numerical ux functions. The numerical
ux function in the x-direction, denoted by F, has already been introduced in the previous
chapter. Itis given by (3.84) in one dimension. In the two-dimensional case, we set

OFhl

F=BFsK;
h
F v§,
where the functions Fh and F % are de ned as follows:
X X
FR(WLWRiZuiZr; )= 5 FI(WL)+ F'(WR) + —-(hy hi)+ T(hg  he);

FH*(WL;WR;ZL; Zr; X) =

NI NI

F&(WL)+ F®(WR) + 7L(q< (o)) + 7R(Ck (K)R);

where we have setF = {(F"; F%;F%), and where the intermediate states are given by:

he = h(heshr; () ()R ZL5 2R X);
hr = hg(hLihri(o)L; (G)R: ZL; ZR: X); (4.6)
& = g (he;hr; (G ()RS ZLi ZRS X);
with h , hg and q given by (3.81). Moreover, the characteristic velocities are de ned by (3.6),
as follows:
=min( j (V) o J (VORI Ry M)

X
L
R =max(j(v)Lj+ o j(v)ri + Cr; " );
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where (V). and (v0)r are the normal velocities, de ned by V! = g.=h. In addition, the
tangential velocity v§ satis es

t —
vy = (qY)R it "< 0

g(qm it "> 0,
2 I

otherwise.

Then, the numerical ux F is extended to the y-direction, to get a new numerical ux
function, denoted by G. This function is obtained by arguing rotational invariance properties
(see [80]). We selG = Y(G"; G"VL; G¥), where G" and G¥ are de ned by:

y y
G'(WLiWeiZuiZr; ¥)= 5 G'(WL)+ G"(WR) + —(he hi)+ T(hg  he);

y y

GY(WL;WR;Z1;Zr; Y)= 5 GH(WL)+ G¥(WR) + ?L o () + 7R o4 ()R ;

NI NI

where G = {(G"; G%; G%), and where we de ne the intermediate states as follows:

h, = hy(heshg; (ay)e; ()R 20 ZR; Y);
hg = hr(he;hri(qy)L; ()R ZL 2R Y)s 4.7)
o = g (he;hri(q)L; ()R ZL5 ZR; Y):

In addition, the characteristic velocities are de ned by:

{=min (Wi o ) (WRI Cry T
L =max j(vi)Lj+ o J(WRi+ Cr; "

where the normal velocity vy is given by vy = q,=h. Finally, we de ne the tangential velocity
v} as follows:

8
% ()L if G > o

he

V; = (qX)R if Gh < O,
hr

"0 otherwise.

As a consequence, the rst step of the 2D scheme, devoted to the approximation of (4.5),
reads as follows:

Wtz = w)! LEn g 0

g x fied Py Ty Qe G T (Sie)l 48

where we have set the following shorter notations for the numerical uxes:

1 = F(W|Jv |+l]’ZIjizI+lj1 X) and ﬂ _G(W”; |J+1yz|];zlj+lv y)

|+ i+ 3
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In addition, the numerical source term (Sy,;5)7} is de ned by
O . i 1
S)! Sx
(Sx), (505 A (4.9)

(Shalf = 5 Sy )” (Sy.,ﬂ

where the subscript helps identify the well-balanced scheme. In (4.9), the approximate topog-
raphy source terms S} and S| are given as follows:

(S

st hP]’ i+1; (CIx).J (qx)|+1112|],z|+1j, X 3

i+ 2]

(St IJ+1 - St hPJl |J+1 (qy)” ( )|J+l!Z|leIJ+11 y !

where S! is the approximate topography source term, given by (3.75).
Now, the second step of the two-step scheme is devoted to the contribution of the friction
source term. Hence, the following system of ordinary differential equations is considered:

@w = s (w):
As a consequence, the second step consists in solving the following initial value problem:
8 8
2@:0’ < ()_hn+1,
>£ with initial data » (4.10)
" g = kakakh " q(0) = qi;,- 2

Straightforward computations show that this initial value problem admits a unique analytical
solution. This solution is given forall t 2 [0; t] by:

8

2 h(t) = h(0);

_ h(0) q(©) . (4.11)
790 = foy + KtkqOk

Therefore, the solution to the initial value problem (4.10) reads as follows:

8 n+ 1
Ehwl:hmzi
+1
- hitt g 2 (4.12)
Eq n+1 n+% :
hi;j kot Qi

However, merely plugging this analytical solution as the second step of the scheme does
not allow the recovery of the well-balance property. According to the 1D case, we replace the
expression(hi’?j”) with an average in the formula (4.12) that yields q{;‘j”. For the x-discharge,
we take

n+1 ”+%
(g0 = (5™ (@ — (4.13a)

(h )n+1 +k t qin;j+§

while we set, for the y-discharge:



4.1. TWO-DIMENSIONAL EXTENSION ON A CARTESIAN GRID 181

— n+ i

- (WET @)y °

! - -
(M)t +k g

(4.13b)

In (4.13), we have introduced two averages of (hir;‘j+1 . The average in the x-direction is de-

noted by (hy {;‘j” , While the average in the y-direction is denoted by (hT,){?fl . These averages

are given by the 1D formula (3.101) evaluated in both space directions, as follows:

n+ 1
_ 2k( ) 2 1
1 _ i; n+ .
(hX)ir;jJr - 1 1J ) . + ko t( x)i; Z(Qx)ir;j,
n n+ n+ n+ n+
KO % Tt ey TR
n+ i
— 2K( y)iy 2y n+ 1
(hy)it = ! + kot oy 2@
Y k( )N x o4 n+l 4 n+l Wi
i HIE o3 ij+3

where {( ; )= Y(sgn(a); sgn(,)), and where i”:jj, i”:jj, i”,J.*jland ir,‘j"jlaregivenwith
clear notations by (3.102). ’ ’ ’ ’

The full 2D scheme has thus been derived. It is a two-step scheme, given by (4.8) and
(4.13). The next section is devoted to exhibiting the properties satis ed by this scheme.

4.1.2 Properties veri ed by the scheme

In order to highlight the properties satis ed by the 2D scheme (4.8) — (4.13), we rstrewrite
its rst step (4.8) under the form of a convex combination of one-dimensional schemes.

Proposition 4.1. The rst step (4.8) of the two-step scheme can be rewritten as follows:

n#i 1 n+ 1 n+ 1 n+ 3 n+l
Wig 2= g Wiy W # Wy e Wy (4.14)
where we have set
0 1
0
Wn+% _Wn 4 t F Wn.Wn F Wn.Wn +2 t%§t)n +(§t n§_
L T Ty i Vi i Wi g O 1 SIEE
0
0 1
0
Thewh S F whw S + (51, &
Wi*%?j = Wi F WiiWiag FOWii Wi +2 1@y ( itz A
0
0 1 (4.15)
0
"3 n 41 n n n n
Wi 1= Wi —y G Wi, ;Wj G Wy Wi ; +2 t 0 :
i3 - B
NCPRIC
0
Wn+% —Wn 4 t GWn.Wn G Wn.Wn +2 t% 0 §

S + (S

Yij+ 3
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where the quantitiecSt )" b and(Sy i are de ned by:

(g;)[‘] = St hlnj7 Ij ’(q()” ,( )|J 1ZI] !lea X 1

(S )|] =8 h|nj1 |Jv(q)’)|Jv( )|J:ZIJ1ZI11 y

Proof. For the numerical uxes, the proof of is contained within the proof of Proposition 2.1.
Concerning the approximate source terms, the expression (3.75) of St implies that (S)! ij and
(S§,)i;j vanish. As a consequence, (4.14) immediately yields the expression (4.8) of the rst

step. The proof is thus achieved. O

Note that (4.15) represents a collection of four one-dimensional schemes, and that (4.14) is
nothing but a convex combination of these schemes. These 1D schemes are written under the
form (3.83). As a consequence, each of these schemes enjoy the same properties as the actual
1D scheme (3.83), stated in Theorem 3.13. However, the scheme will not be able to preserve
all the 2D steady state solutions. In order to state the weaker well-balance property satis-

ed by the 2D scheme, we introduce the property of well-balance by directioim the following
de nition.

De nition 4.2. The vector (Wif} )(ij )2z2 IS said to de ne a steady state in the x-direction if:
- 8(i:) 222 W] 4 = WS ;
* 8(ij)2 2% (q)) =
« 8(i;j) 2 Z?, the palrst(hIJ ;(ak)P ) and '(hlyy 45 (g ) satisfy (3.68).
Similarly, (Wif} )(i;j )2z2 IS said to de ne a steady state in the y-direction if:
« 8(ij)2 2% Wiy = W.f} ;
« 8(ij) 2 2% ()fy =
e 8(i;j) 2 Z?, the palrst(hIJ ;(a)fy ) and '(hf} g5 (qy)7 4y ) satisfy (3.68).

Equipped with Proposition 4.1 and De nition 4.2, we can state the properties of the 2D
two-step scheme (4.8) — (4.13).

Theorem 4.3. Under the CFL condition (2.60), the following properties are satis ed by the two-
dimensional two-step scheme (4.8) — (4.13).

(i) Robustness: W 2 forall(i;j) 2 Z2, thenW-f‘-+1 2 forall(i;j) 2 Z2.
(i) Well-balance by direction: |(W )ij)2z2 de nes a steady state in the-direction or in the
y-direction, then for alli;j ) 2 Zz, Wit = wi
(i) Preservation of steady states at rest: if, for@l] ) 2 Z2, (@)fj =(a) =0andh} +Z7 =
cst, then for all(i;j ) 2 ZZ,W{}+1 = Wi,

Proof. We start by proving (i). Note that the second step (4.13) of the scheme does not intro-
duce a modi cation of the updated height. As a consequence, the robustness of the scheme
relies only on the rst step of the scheme. Recall Proposition 4.1, which states that the rst
step (4.8) of the 2D scheme can be written as a convex combination of 1D schemes. Therefore,
the 2D scheme is robust if and only if the 1D schemes are robust. Each 1D scheme de ned by
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(4.15) enjoys the same properties as the rst step (3.88) of the truly 1D scheme. From Theo-
rem 3.15, the 1D schemes are robust. Hence, the robustness of the two-step scheme is proven,
and (i) holds.

In order to establish the well-balance property, assume that (Wif} )(ijj )2z2 de nes a steady
state in the x-direction. Therefore, the sum of the vertical uxes in (4.8) vanishes, as does
the y contribution of the topography. Thus, the rst step (4.8) of the scheme becomes the
exact same as in the 1D case, and it is given by (3.88). Then, the contribution of the friction
source term vanishes, leaving only the x contribution to the second step (4.13). In the present
context, this second step is the same as in the 1D case; it is therefore given by (3.91). Therefore,
Theorem 3.15 applies, andWig}‘L1 = W{} for all (i;j) 2 Z2. A similar chain of arguments can
be applied to prove the preservation of the steady states in the y-direction, which completes
the proof of (ii).

Now, to prove (iii), we consider a steady state at rest. According to De nition 4.2, the
relations de ning a steady state at rest de ne both a steady state in the x-direction and in the
y-direction. As a consequence, such data is exactly preserved by the scheme after (ii), and (iii)
holds as a speci ¢ case of (ii). The proof of Theorem 4.3 is thus achieved. O

4.2 High-order extension

In the previous section, we have derived a 2D extension of the 1D well-balanced scheme.
The properties possessed by this 2D scheme have been stated in Theorem 4.3. We now focus
on a high-order extension of this 2D scheme, in order to improve the space and time accuracy.
The general idea of the high-order extension we suggest has been introduced in Section 2.4.
This section shows the application of such techniques to the present case, and the recovery of
several essential properties such as the robustness and the well-balance.

First, we apply in Section 4.2.1 the results from Section 2.4 to derive a high-order scheme.
Then, noting that the reconstruction procedure alters the steady state solutions, we remark
that the well-balance property is not satis ed by the high-order scheme. In order to re-
cover this property, we introduce a convex combination between the rst-order scheme and
the high-order scheme in Section 4.2.2. This convex combination procedure favors the well-
balanced scheme when a steady solution is present, i.e. where this scheme is exact. On the
contrary, for an unsteady solution, the high-order scheme is favored by the convex combina-
tion. In addition, as explained in Section 2.4, the derived scheme is not naturally robust, and
some additional treatment has to be applied. In Section 4.2.3, following Section 2.4.3, we elect
to apply a MOOD procedure to recover the robustness of the scheme, and eliminate spurious
oscillations. Finally, in Section 4.2.4, we discuss the full MOOD loop, including the standard
MOOD procedure and the convex combination with the well-balanced scheme.

4.2.1 Application of the high-order strategy to a Cartesian mesh

Recall from Section 2.4 that two ingredients are necessary to achieve high-order accuracy:

¢ a polynomial reconstruction, see Section 2.4.1;
« a scheme that possesses a high order of accuracy in space and time, see Section 2.4.2.
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The goal of the present section is to apply these ingredients to the current case of a Cartesian
mesh.

The polynomial reconstruction procedure consists in replacing, in each cell, the constant
quantity Wi[} with a polynomial Wi[} (x;d) of degree d, de ned by (2.61). In the case of the
shallow-water equations, we elect to provide a reconstruction of the following variables:

h o ;, o ; h+Z

The coef cients of this polynomial are given by (2.66). Note that computing these coef cients
requires knowing the stencil sid, which, in the general case, depends on the cell and the poly-
nomial degree. However, for the particular case of a Cartesian mesh, we can choose the same
stencil s® for each cell. This stencil is taken as the smallest stencil leading to an invertible
matrix X" ®;, where % is given by (2.65) and is used to compute the coef cients (2.66) of
the polynomial. With respect to the polynomial degree, the stencil is chosen according to
Figure 4.1.

Figure 4.1 — Representation of the stencil ford 2 J1;5K The lower order stencils are always
included in the higher order ones. For the sake of simplicity, we have taken  x = vy in this
gure.

Equipped with the polynomial reconstruction, we are able to introduce the high-order
scheme. For the spatial high-order, the scheme has been derived in Section 2.4.2.1, to get the
expression (2.75). Since this expression has been obtained for a general mesh and for any
balance law, we here apply it to the case of the shallow-water equations with topography and
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Manning friction. The high-order scheme is therefore given by:

Wn+1 _ Wn NG t Fn E n XG t n G n
[ A | r oy i+ i L r 7y j +Lir i S
r=1 r=1
(4.16)
+ t)@ St n 4 Sf n
q ( )l;J;q ( )l;liq
g=1

In Chapter 2, we introduced the quadrature formulas (2.71) and (2.73), respectively concern-
ing the approximation of the integral over an edge and a cell. These quadrature formulas

de ne the coefcients [ and g, aswellas points  and X 4 within edges and cells. For a cell
cij , the quadrature points on the inner edges are denoted with clear notations by Ir ... and

' .. Similarly, the quadrature points within the cell are denoted by X . Equipped with

i
these guadrature formulas, the high-order numerical uxes are de ned as foIIows

n
i+ 2

F oW ;d); Wik ;d)

|+1 |+l

N Gwn

Lj o+ 2o Ij+l'

d) WI]+1 d) '

|J+11

where W” x; d) represents the polynomial reconstruction within the cell ¢ .
p poly i

After (4.6) — (4.7), the intermediate states used in the numerical uxes F and G involve
the approximate friction source term S, since they are given by (3.81). However, in order to
obtain a high-order scheme, the de nition (3.79) of S’ has to be replaced. Within F, i.e. in the
x-direction, we suggest the following expression:

s' x ::(Sf(hL;hR;qL;QR; x) xdt
0 if h, =0 and/or hg =0; (4.17)
kgigh ~ x%*!  otherwise,

where gis de ned by (3.61) and h s given, instead of (3.62), by:

h*_[hz] +2 - 1, [Mh 7 +2
_T[h 2] Kk x9+ h 2 1[h *2]

(4.18)

In the above expressions, the quantity X presentin the rst-order case has been raised to the
power of (d+ 1). As a consequence, the expression oS’ = is no longer given by (4.19), but
rather by:

st x

. d+1 (4.19)
kq]qjh X otherwise.

8
%O if h, =0 and/or hg =0;
3

(q
he

Then, within the numerical ux G in the y-direction, similar expressions are used with vy
instead of x. Note that, if d =0, the expressions (4.17), (4.18) and (4.19) coincide with (3.79),
(3.62) and (3.80). Thus, ifd = 0, the numerical uxes are not modi ed.

Then, the high-order numerical source terms (S')! ti.q and (shHn i.q are de ned by evaluat-
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ing the source terms (4.4) at the quadrature points, as follows:
(SHq = S' Wi (Xd:d) and (S, =S" W (XT:d)
Hence, the numerical source terms are given by:

O .
(r 2 (Xd:d) .
k(A (X 3 ;d 0 : 4.20b
Dk(hiy (X555 d) » (X {30) ( )

(SHkq offy (X 3 ; (4.20a)

(Sfq = Kk (X

Ij !

Since the rst components of these high-order numerical source terms are zero, we also intro-
f .

duce their nonzero components (St O) and (SHO){}j , de ned as follows:

q(St)n = 0 and >@ q(Sf )n = fo . (4 21)
Ll Ll ' '
1 M (Sl =1 “‘ (Sho)l

Let us make the important remark that, from Chapter 2, the derivation of the high-order
accurate scheme involves the approximation of the integral of the source terms over a cell.
In order to preserve the high-order accuracy, these integrals need to be approximated with a
guadrature formula, and the high-order numerical source terms cannot involve the averages
St and S', de ned by (3.75) and (3.79) to ensure the well-balance of the scheme. As a con-
sequence, there is no way for the high-order scheme (4.16) to be well-balanced without an
additional treatment.

The scheme (4.16) has a high-order spatial accuracy. However, its time accuracy is still
of order one. Hence, we use the SSPRK (Strong Stability-Preserving Runge-Kutta) methods
described in Section 2.4.2.2 to improve the time accuracy of the scheme. In order to set up
such techniques, we rst rewrite the scheme (4.16) asW "™ = H(W"), where W" = (W");z.
The generic Runge-Kutta technique is then given by (2.76), where the coef cients | and
for the SSPRK method depend on its order, chosen by following Table C.1. These methods
require the use of the modi cation (2.77) of the time step (2.60). Enhanced with a SSPRK time
integrator, the scheme (4.16) has a high order of space and time accuracy.

4.2.2 Recovery of the well-balance property

The high-order scheme (4.16) derived in the previous section is not well-balanced by di-
rection. Indeed, the reconstruction procedure modi es the approximate solution at the inter-
faces, and the approximate source termsS' and S’ are no longer present to allow an exact
preservation of the steady state solutions: as mentioned in Section 4.2.1, the scheme uses
quadrature formulas instead of S' and S' to approximate the contributions of the source
terms.

We now propose a way to restore this essential property, by introducing a convex combi-
nation between the high-order scheme and the rst-order well-balanced scheme. A similar
technique has been used in [94, 164, 114], where the authors introduce a convex combination
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between two schemes to obtain a high-order positivity-preserving scheme. The goal of the
present convex combination is to use the high-order scheme when the solution is unsteady
and the rst-order well-balanced scheme when the solution is steady. The rst-order scheme
is exact, i.e. its order is in nite, for steady state solutions. As a consequence, such a con-
vex combination would be carried out between a high-order accurate scheme and an exact
scheme. The resulting scheme should thus still be at least high-order accurate.

The convex combination is based on a steady state detector, which we rst introduce.
Then, this detector is used to derive a convex combination favoring either the well-balanced
scheme or the high-order scheme.

4.2.2.1 A one-dimensional steady state detector

Since the two-step 2D scheme (4.8) — (4.13) is well-balanced by direction (see Theorem 4.3),
it makes sense to de ne a steady state detector in each space dimension. Hence, we momen-
tarily consider the 1D shallow-water equations (1.1) and a 1D space discretization.

Recall that steady state solutions in one space dimension are given by (1.40), as follows:

8
2@q=0;
? 1 (4.22)

7@ F+§gh2 = gh@Z kqgh

From (3.68), two statesW and Wg are said to de ne a steady state if the following discretiza-

tion of (4.22) is satis ed: 8
2 [0] =0;
2

> @, 1 5 _ a af .
.h+zgh S x+S x

(4.23)

with St given by (3.75) and S' given by (3.79). As a consequence, it makes sense to consider
the following steady state detector:

0 1

R O
"(WLWRZLZRs X) = @2 @ S Sy
(WL WR;ZL; ZR; X) qji+9h§ h?  (SY x (S") «x
hR hL 2

(4.24)

We immediately note that, if W_ and Wr de ne a steady state according to (4.23), then the
quantity ' (W_;WRr;Z.;Zr; X) vanishes. Therefore," detects whether a steady state is de-
ned by two pairs (W, ;Z,) and (WR; ZR).

Now, consider two 1D cells ¢ and ci+1, where approximate solutions W" and W/}, are
de ned. In order to detect whether W;" and W/}, de ne a steady state, we consider the
steady state detector evaluated at the interface between the cellsc; and ¢+ , i.e. the following
quantity:

rn

L
i+

(WS WL Zi Zisgs X))
0

B , i
= G+1 q g =
his1 |’T| + 2 hi2+1 hi2 (St |n+%

cfyn
x (S 1 X
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where (S ; = S'(h"; b q"i b5 ZiiZisas x) and (S, = ST(hYhy gl X).
We also de ne the following steady state detector, which determlnes whether a steady state
is present between the three statesw," ;, W," and W/, , i.e. if both pairs (W;" ;, W") and (W",

W/}, ) de ne a steady state:
v n
i

= 00 (4.25)

N
I 2

N[

It is clear that W," |, W," and W/}, de ne a steady state as soon as' | vanishes.

From the steady state detector (4.25), we can derive a suitable convex combination process.
This convex combination shall rely on a parameter favoring the well-balanced scheme when
a steady state is reached. Indeed, the well-balanced scheme is exact for steady states, and it
should be used whenever the solution is close to de ning a steady state. As a consequence,
we de ne a parameter [, which lives in [0;1]. We wish ' to vanish if the equilibrium error
' ' is small enough, i.e. if W ;, W" and W/},; are close to de ning a steady state. Moreover,
we want {' to be equal to 1 if these vectors are far from de ning a steady state, i.e. if ' [ is
large enough. Therefore, we elect to de ne [ as follows:

EO if'MP<m x
X . , .
! Em ifm x M (4.26)
1 if'">M x

with M m 0. 1fM =0,then " =1 and the high-order scheme is used. If M = m, then

"=0or '=1.The process we usedtodene [ is highlighted on Figure 4.2.

either | j

Figure 4.2 — Graph of [ with respectto ' [, according to (4.26).

4.2.2.2 The two-dimensional convex combination

Equipped with the parameter [ given by (4.26), we now use it to de ne a suitable convex
combination process ensuring that the high-order scheme (4.16) is well-balanced. This convex
combination is done between the high-order scheme (4.16) and the two-step well-balanced
scheme (4.8) — (4.13).

Since the parameter [' has been de ned for the 1D shallow-water equations, we have
to extend it to two space dimensions. We consider {} = "(( )i} ( y)i’?j ), where ( x)jj is
obtained by evaluating (4.26) in the x-direction, and ( y);?j results from the evaluation of
(4.26) in the y-direction. Therefore, after De nition 4.2, the parameter ( X)ir;‘j detects steady
states in the x-direction, while ( y)ir;‘j detects steady states in they-direction. To de ne ( X)i’}j

and ( y)ir.‘j , we have to introduce four additional constants, my, My, my and My, to mimic the
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role of m and M in (4.26). As a consequence( X){?j is de ned as follows:

8
EO if (! X)i’?j <my X

no_ x) mx X . , .

(x)ij = 3 M, "X —~ ifme x (¥ Mx X (4.27)
' if ( x)ir;]j >Mx X
while ( y)j; is given by:
8 0 n
% if ( y)i;j <my Yy,
Cyi myy

n - b i L : 4.28

"1 if (' y)ir?j >My vy

In (4.27), we have de ned the steady state detector in the x-direction (" X)i’?j as follows:

( x)ir?j

l!'] +ln
| 1+

\ [

71 %J
= (W lj1W VZio1isZipy X)+ " (W

ij HE |+1JvZI]:ZI+l]1 X):

Similarly, the steady state detector in the y-direction (' y)'

i used in (4.28), is given by:

2

(W oW

' n _n N
C )iy = ij 1T el

|Jvzi;j 1yZ|,j; )+ (W|Jv |J+1 leuz|j+11 Y)

We are now able to state the convex combination. The rst step, devoted to the ux and
the topography source term, reads:

n+ 1 n Ut Ne
Wi;j ‘= er} ( X)i;j 7)( r FI+%]I’ F in %JJ';T
r=1
1 (0 — F W5iWhy F oW g Wi
n t %G n n
( )I] 7y . r I;j + 1 G %;r (429)

L -y GW

n  .\n/n
i I]+1 G Wi;j 1’Wi;j

!
0

5 oSkt 1§ (Swe)i
where the high-order numerical topography source term (St O) is given by (4.21), and
where the well-balanced numerical topography source term (S}, ),;J is de ned by (4.9). The
expression (4.29) of the scheme is nothing but a convex combination by direction of the rst
step (4.8) of the well-balanced scheme and the ux and topography contributions of the high-
order scheme (4.16).

1
Concerning the updated water heights, we take h{;‘j"l = hiT 2 since the second step is
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devoted to the friction source term and therefore does not impact the water height. Following
(4.13), Iet(qv\,B)i’?j+1 be the vector containing the discharge obtained after the second step of

the rst-order scheme: we set ]
(@)™
(awe)}™ = N (4.30)

Q)i
We also de ne (qo)fj™

as follows:

as the discharge obtained using the high-order friction source term,

+1

(@Ho)i™ = gy 2+ t(Sho)h (4.31)
The second step of the high-order well-balanced scheme consists in the following convex
combination of the discharge (4.30) of the well-balanced scheme with the discharge (4.31) of
the high-order scheme:

ai’t = b (o)t 1 (awe)™: (4.32)
The two-step scheme (4.29) — (4.32) allows to use the high-order scheme or the rst-order
well-balanced one, or even a scheme that is a combination of these two schemes. Indeed, if
i’;‘j = 1, then the high-order scheme is used, while the rst-order well-balanced scheme is
used if |”J = 0. The well-balance property satis ed by this scheme is summarized in the
following result.

Lemma 4.4. The high-order two-step scheme (4.29) — (4.32) is well-balanced by direction.

Proof. The goal of this proof is to show that, if a steady state in the x-direction or the y-
direction is considered, then the scheme (4.29) — (4.32) yieldglvif}Jrl = Wi{} forall (i;j) 2 Z.

Assume that (Wif} )(ij )2z2 de nes a steady state in the x-direction, as prescribed by De -
nition 4.2. In this case, by construction, we have ( X)ir;‘j =0 and( y){?j = 0. As a consequence,
each of the steps (4.29) — (4.32) of the two-step high-order scheme degenerates into the steps
(4.8) — (4.13) of the well-balanced scheme. Recall from Theorem 4.3 that this scheme is well-
balanced by direction. Therefore, if (Wif} )(ij )2z2 de nes a steady state in the x-direction, then
Wi = wi forall (i;j) 2 Z.

The same chain of arguments can be applied to show that, if (Wif} )(ij y2z2 de nes a steady
state in the y-direction, then W{}*l = Wif} forall (i;j) 2 Z. The proof of Lemma 4.4 is thus
completed. O

4.2.3 The MOOD method

The high-order procedure described in Section 4.2.1, in addition to inducing a loss of the
well-balance property, produces spurious oscillations and a loss of robustness. In addition,
since the high-order scheme is no longer semi-implicit, the friction contribution is treated ex-
plicitly, and the stiffness of the friction source term near wet/dry interfaces will also cause
spurious oscillations if the time step is not modi ed. The well-balance has been recovered in
Section 4.2.2. To address the issue of the oscillations, we elect to use a MOOD method, pre-
sented in the general case in Section 2.4.3. It consists in lowering the degree of the polynomial
reconstruction in speci c cells if the approximate solution does not satisfy certain criteria. The
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?

approximate solution, called the candidate solution and denoted by Wi, is tested against sev-
eral detection criteria. These criteria have been introduced in Section 2.4.3, and we state them
below in the context of the shallow-water equations.

The Physical Admissibility Detector (PAD)

The PAD determines whether the approximate solution is out of the admissible states
space . Inthe case of the shallow-water equations, the PAD checks whether the water height
is non-negative. Thus, the PAD criterion fails within the cell ¢;; if

hi <O (4.33)

We emphasize that the PAD ensures that the high-order scheme is non-negativity preserving,
since this property is satis ed by the rst-order scheme.

The Discrete Maximum Principle detector (DMP)

The DMP criterion (2.78) checks for oscillations. Let j; be the set of cells connected toc;;
with an edge or a vertex. The DMP criterion fails if one of the following three checks fail:
min(h +Z)  "u hi + Z7 min (hy + Z)) + "w;
i ij
min((d)  "m (a0 min ((6))+ "m:
B] iij
?

Tin(@)) (@) i (@) + "

n ?

where "y =min( x; )3

The u2 criterion

The goal of the u2 criterion is to ensure that the DMP does not eliminate physical oscilla-
tions. This criterion is made of three detectors, already de ned in Section 2.4.3:

* the plateau detector (2.79);
« the oscillation detector (2.80);
* the smoothness detector (2.81).

If the plateau or the smoothness detectors are activated, then the DMP criterion was a false
positive, and the u2 criterion succeeds. However, if the oscillation detector is activated, then
the u2 criterion fails.

The detector loop

Equipped with the three detectors, the loop is similar to the one de ned in Section 2.4.3.
The only difference is that, in the present case, the Cell Polynomial Degree (CPD) goes from
dto Oin the rstiteration of the MOOD method, instead of gradually decreasing from  dto O.
This behavior has been chosen to be consistent with the well-balance recovery presented in
Section 4.2.2. Indeed, this procedure involves a convex combination between the high-order
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scheme and the rst-order well-balanced scheme. As a consequence, here, it does not make
sense to gradually decrease the degree of the polynomial reconstruction when applying the
MOOQOD technique; rather, we brutally decrease the degree from dto 0. In this context, the
cascade of detectors is displayed on Figure 4.3.

Figure 4.3 — The MOOD detector chain.

4.2.4 Combining the well-balance recovery with MOOD

In the two previous sections, we have suggested two methods to restore, for the high-order
scheme, the properties satis ed by the rst-order scheme. First, the well-balance property
is recovered using the convex combination technique presented in Section 4.2.2. Then, the
oscillations induced by the high-order scheme are eliminated thanks to the MOOD process
introduced in Section 4.2.3. The goal is now to combine these two procedures and to add the
MOOQOD technique to the high-order well-balanced scheme (4.29) - (4.32).

Since the well-balance correction is ana priori procedure, it makes sense to checka priori
for the physical admissibility of the reconstruction, in addition to using the PAD detector.
The reconstruction will be considered physically admissible in a cell ¢;; if we have ﬁ{}j >
0 at all edge and cell Gauss points  and X 4. The admissibility of the reconstruction is
checked twice, once when computing the reconstructed heights at the edge Gauss points
to determine the high-order uxes, and once when computing the numerical approximation
of the mean of the friction source term, using the evaluation of ﬁ{}j at the cell Gauss points
X g

Algorithm 4.5. For a single iteration in time of the SSPRK time integrator, the MOOD loop reads as
follows.
(1) Foreach cetl; , initialize CPD(i;j ) = d.
(2) For each ceth; , compute the pair of correction parametefs. If ( )i = ( y)i; =0, i.eif
Qj = 0, then a steady state is considered within the Ge¢ll In this case, set CP;j ) =0 to
ensure that the well-balanced scheme is used to exactly preserve this steady state solution.

(3) Compute the reconstruction within each agjl, to be evaluated at the edge and cell Gauss points
r andX 4, and test its physical admissibility, as follows:

(3a) ifﬁ{}j ( r) < Ofor some edge Gauss point, then the reconstruction is rejected @y ,
and CPL(i;j ) is set to zero;

(3b) ifﬁ{}j (X g) < 0for some cell Gauss poiMt 4, then the reconstruction is rejected ay ,
and CPL(i;j ) is set to zero.
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(4) Equipped with the new CPD map, compute the candidate solMidh using the high-order
well-balanced scheme (4.29) — (4.32).

(5) Apply the detection process displayed on Figure 4.3 to compute a potentially new CPD map and
to decide whether to accept the candidate solution. If the candidate solution is rejected, go to step
(4). Otherwise, go to step (6).

(6) The candidate solution is accepted:Wett = W?,
Equipped with Algorithm 4.5, the following result holds.
Theorem 4.6. Algorithm 4.5 yields a scheme that is robust and well-balanced by direction.

Proof. The MOOD procedure includes the PAD detection criterion (4.33), which ensures that
the updated water height is non-negative. Indeed, at worst, it is computed with the rst-order
scheme, which is positivity-preserving. In addition, the well-balance property is ensured by
Lemma 4.4. Therefore, the scheme de ned by Algorithm 4.5 is robust and well-balanced by
direction, which concludes the proof of Theorem 4.6. O

4.3 Implementation in Fortran

The scheme proposed in Algorithm 4.5 was implemented in Fortran from scratch. It was
also equipped with an OpenMP parallelization (see [38, 40] for instance). This section de-
scribes this process.

First, we implemented both 1D schemes, the explicit scheme (3.9) — (3.81) and the semi-
implicit one (3.88) — (3.91) — (3.101). This implementation was straightforward, and no dif -
culties were encountered. Since the proposed 1D numerical experiments did not take a long
CPU time, the code was not parallelized at this stage. Thanks to preprocessor directives, both
the explicit and the semi-implicit scheme were implemented in the same code; when compil-
ing the code, the user chooses either the explicit scheme or the semi-implicit scheme.

Then, regarding the 2D scheme, we rst had to create a mesh. Since we focused on a
Cartesian mesh, this step did not require the use of additional software. The mesh was created
within the Fortran code using several customized types.

Afterwards, we computed the matrix X, given by (2.65) and used in the polynomial re-
construction. Noting that all the cells are rectangles of length  x and width vy, we remarked
that this matrix does not actually depend on the cell ¢, and that a single matrix ¥ had to
be computed. Equipped with X, the next step was the computation of the pseudoinverse
(&T %) 1LRT. Tothat end, we elected to use two LAPACK routines, DGETRRo compute the
LU factorization of X %; and DGETRIto actually compute the inverse matrix from the LU
factorization. Thanks to the rescaling (2.65) which lowers its condition number, inverting the
matrix X" ®; was not problematic. Without the rescaling, the condition number became very
high, especially when dealing with large polynomial degrees, which introduced potentially
damaging errors.

Then, we followed Algorithm 4.5 to implement the high-order well-balanced scheme. We
were able to provide a straightforward OpenMP parallelization of all the loops. For instance,
in order to compute the maximum of the characteristic velocities, we added a REDUCTION
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clause to the OpenMP DOloop. The steps from Algorithm 4.5 were nally supplemented
with the SSPRK technique, in order to ensure the high order accuracy in time as well as in
space.

In order to test the parallelization, we used a machine equipped with two Intel Xeon X5650
processors, each with 12 cores at2:66 GHz, 6 physical and 6 logical. The code was compiled
with GNU Fortran version 4.9.2, using the -O3 optimization ag. In order to handle the
dependencies between the numerous modules, the program makedepf90 was used. The
speedup and the ef ciency of the parallelization were tested. The speedup is de ned as the
time gained by using the parallelization. With ty the time taken using N cores, the speedup

S is de ned by:
t1

tn
The optimal speedup is equal to the number of cores N . The ef ciency E of the parallelization
is closely related to the speedup: indeed, it is a percentage de ned as the speedup divided by
the number of cores, as follows:

S =

S
E= 1OOW.
Since the optimal speedup is equal to N, the optimal ef ciency is 100% The results of the test
are displayed on Figure 4.4; they show a good speedup and ef ciency of the parallelization.

Figure 4.4 — SpeedupS and ef ciency E for the OpenMP parallelization. Left panel: speedup;
right panel: ef ciency.

Finally, the output of the code consists either in ASCIl .vtk les or in plain text .csv
les. These les are to be read by Paraview. In addition, all the 2D gures and some 1D
gures were made with Paraview version 5.0.1; the rest of the 1D gures were made with
PGFPLOTSVersion 1.13. The few 3D gures are also made with Paraview from .csv les,
using the “Table to Points” and the “Delaunay 2D” lters.

4.4 Numerical experiments

This last section is devoted to numerical experiments, designed to highlight some essen-
tial properties of the scheme. We rst introduce the following notations, used to concisely
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represent the schemes that will be tested.

* The scheme that uses a polynomial reconstruction of degree d, i.e. whose order of ac-
curacy is (d + 1), is denoted by P4. This notation includes the rst-order well-balanced
scheme, which is thus denoted by Py. Note that, since the well-balance correction is not
active for the P4 scheme, we haveMy = My =0.

« For d 1, the P4 scheme equipped with the well-balance correction, i.e. with My > 0
and/or My > 0, will be denoted by PYE.

For the Py scheme, Algorithm 4.5 is applied without the well-balanced correction, while the
PI/B uses the full loop present in Algorithm 4.5.

In addition, in order to assess the well-balance and the high-order accuracy of the scheme,
we need to compute errors between the exact solution W ¢*(t; x; y) and the approximate solu-
tion. Consider a uniform Cartesian mesh made of N = Ny Ny cells. We denote by W3 the
average of the exact solution over the cell ¢;; attime t, as follows:

Z

Wi (t) = ]cl | W(t; x;y) dxdy: (4.34)

byl G

Equipped with this notation, we compute the errorsin LY, L2and L' norms following (2.36),
with Wi{} the approximate solution at time t":

1 Xx Ry
L error: N Wi WE ") ; (4.353)
i=1 j=1
v
P 1 X Ry 2
L2 error: N Wh O WE(t) (4.35b)
i=1 j=1
L error:  max Wil W) (4.35¢)
1§ Ny

In order to compute the errors, we have to compute Wi?jx(t), given by the integral from (4.34),
for all cells cj . Such a computation is achieved by using a relevant quadrature rule, of the
same order as the scheme, for instance the quadrature rule on a cell given by (2.73) and de-
scribed in Appendix B. To assess the well-balance and the accuracy of the scheme, we will
usually evaluate these errors at the nal physical time teng.

Let us recall here that, given x and vy, the time step tis given by the CFL-like condi-

tion (2.77), as follows:
max( d; 3)
3

t

> ;
where =min( x; y)andwhere isthe maximum of the absolute values of all the charac-
teristic velocities at each interface between cells.

In this section, we determine whether the two-dimensional scheme satis es the required
properties. Namely, we start by proving that the scheme is well-balanced by direction. First,
a 2D steady state at rest with a wet/dry transition is considered. Such a steady state should
be preserved by the scheme, since it falls within the scope of De nition 4.2. Second, we focus
on a perturbed moving steady state with topography and Manning friction inthe  x-direction.
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This experiment is similar to the one presented for the 1D scheme in Section 3.3.1.4. The 2D
scheme should also exactly capture such a steady state since it satis es De nition 4.2.

Then, we focus on the order of accuracy of the scheme. To that end, we consider two spe-
ci ¢ exact solutions of the 2D shallow-water model with topography and/or friction. Both of
these exact solutions are 2D steady state solutions which do not fall within the framework of
De nition 4.2, and therefore are not exactly preserved by the 2D scheme. As a consequence,
they are good candidates to test the order of accuracy of the 2D scheme. The rst exact so-
lution we consider is a steady state obtained with just the topography source term, and the
second one is obtained with both the topography and the friction.

Afterwards, validation experiments are performed. First, we consider a 1D dry dam-
break, to evaluate the impact of the convex combination process present in the 2D scheme.
In this experiment, several regions coexist: a steady state at rest, an unsteady ow, and a
dry area. The goal of this experiment is to study the behavior of the convex combination
parameter in such a situation. Second, an experiment analogous to the one presented in Sec-
tion 3.3.2.6 is considered. The topography for this experiment is a truly 2D function, which
also possesses two bumps. Last, we consider a partial dam-break experiment, whose main
goal is to study the role of the friction source term.

Finally, we carry out two real-world simulations. The rst one is the simulation of the
2011 Japan tsunami. The simulated data is compared to real data, captured by several buoys
equipped with tide sensors. The second one concerns a tsunami on an urban topography.
It depicts the buildings within a city begin ooded by a tsunami wave, and how the water
behaves around the buildings.

4.4.1 Well-balance assessment

In this section, we perform numerical experiments to assess the well-balance of the PY'B
scheme. Note that, if the PY'B scheme is well-balanced, then all P}® schemes with d < 5 are
also well-balanced. The rst experiment concerns the preservation of a lake at rest steady
state with a dry area, while the second one focuses on capturing a one-dimensional moving
steady state with friction and topography that has been perturbed. Both of these experiments
feature steady state solutions by direction; after Theorem 4.6, these steady states should be
exactly captured by the PY'B scheme.

4.4.1.1 Steady state at rest

We begin the well-balance numerical experiments with the preservation of a lake at rest
steady state. This experiment involves a nonzero Manning coef cient k = 10, a non- at
topography and a dry area. On the space domain [0; 1] [O; 1], the topography is given by:

p -
Z(xy)= x2+y2

To ensure that h stays non-negative, the water height and the discharge of this steady state at
rest are de ned as follows:

h(txy) =1 Z(xYy)). and q(t;x;y) = 0:
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Both initial and boundary conditions consist in the exact solution. A three-dimensional view
of the exact height and the topography is displayed on Figure 4.5. Note that this steady state
at rest involves a dry area.

Figure 4.5 — Topography and exact water height for the lake at rest experiment with 250000
(500 500 cells. The gray surface represents the topography.

In order to highlight the relevance of the well-balance correction, the simulation is carried
outusing the rst-order Py scheme and the sixth-order P‘éVB and Ps schemes, with and without
correction. The results of the experiment are presented in Table 4.1, for 10000 {00 100 cells
and at time tgng = 0:1s. For this simulation, we set C = + 1 . Moreover, for the P‘éVB scheme,
wesetmy = my =10 2, and My = My =10 1,

On Table 4.1, we observe that the rst-order well-balanced scheme, labeled Py, indeed
preserves the lake at rest. However, the sixth-order Ps scheme, as expected, does not preserve
the lake at rest but instead approximates this steady state. The relevance of the proposed
well-balance correction is thus highlighted here. Indeed, the sixth-order scheme equipped
with the correction, labeled PY'B, preserves the lake at rest up to the machine precision.
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| h+ 2z | kqk
oLt L2 Lr | Lt L2 L

Po | 5.50e-18 2.51e-17 2.22e-166.90e-17 1.24e-16 7.68e-16
Ps | 1.70e-05 5.81e-05 8.41e-042.11e-05 8.86e-05 3.95e-03
P‘é"B 1.81e-17 5.58e-17 7.77e-163.16e-16 4.57e-16 3.06e-15

Table 4.1 — Free surface and discharge norm errors for the lake at rest experiment.

4.4.1.2 Moving steady state with topography and friction

We propose another experiment, whose 1D counterpart was presented in Section 3.3.1.4,
to assess the well-balance of the scheme. For this experiment, we consider a moving ow
of water (i.e. o 6 0), involving both source terms of topography and friction. This moving
ow de nes a one-dimensional steady state, as per (3.67). The current experiment is set up
similarly to the one presented in Section 3.3.1.4. Indeed, we introduce a perturbation of the
moving steady state, we take this perturbation as the initial solution, and we carry out the
simulation of the dissipation of the perturbation. The schemes converge to the original un-
perturbed steady state, which should be exactly captured by the well-balanced schemes Py
and PY'B, and approximated by the high-order Ps scheme without well-balance correction.

This experiment is intended to assess the relevance of the convex combination technique
in order to recover the well-balance by direction of the rst-order scheme. The experiment
presented in the previous section proved that steady states at rest were indeed preserved by
the PYB scheme, and the purpose of the current experiment is to tackle the case of a moving
steady state for the topography and friction source terms. We here present the experiment in
the x-direction. The same conclusions can be drawn from the experiment in the y-direction,
and we do not present this second experiment here.

To set up this experiment, we follow Section 3.3.1.4. First, we look for an approximate
solution of the equation (3.67) on the domain [0; 1]. To address this issue, we setk = 0:01and
we take the 1D topography function given by (3.103), as follows:

1 ecos(4x ) e 1
2N = 3 et
The exact discharge is given by ox(t; x;y) = ¢p =1 and qy(t;x;y) = 0. Then, to determine the
corresponding steady state, we approximately solve (3.67) using Newton's method, in order
to nd the water height hst¢ad(x) of the steady state. Here, the water height hs2% depends
on X, but not on t and y, since we seek a steady state solution in thex-direction. The exact
solution t(hstad; q.; q,) = '(hS'®ad; gy; 0) indeed de nes a steady state in the x-direction after
De nition 4.2.

Equipped with the steady state height hsta% and discharge ¢y, we now introduce a per-
turbation on the domain [
P =

~lw
A
~N| a1

~NEN
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The perturbed initial water height is de ned as follows:

( hsteadY(x) +0:05 ifx2P;
h(0; x;y) =
hsteady(x) otherwise,

while the perturbed initial discharge in the x-direction is given by:

( Pp+05 ifx2P;
ok (0;x;y) = ,
(0 otherwise.
The discharge in the y-direction, ¢y, is left unperturbed and equal to zero. The initial free
surface is displayed on Figure 4.6.

Figure 4.6 — Three-dimensional view of the initial condition for the topography and friction
steady state, with 100000 = 1000 100cells. The gray surface is the topography. The pertur-
bations are clearly visible on the free surface.

In order to set up the experiment, we set the exact unperturbed solution as the initial
and boundary conditions. We take a uniform Cartesian mesh, composed of 300 (100 3)
cells, of the domain [0; 1. The simulation is once again carried out with the Py, Ps and PY/B
schemes. In addition, we chooseC = + 1 for all schemes, and we takemy = 0:01, My =1,
and my = My = 0 for the P¥'B scheme. The results of this simulation are presented at time
tend = 2, once the perturbation is fully dissipated, on Table 4.2. Note that, if plotted for a
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xed y coordinate, the free surface over time would be given by Figure 3.18, which has been
obtained in the 1D case.

| h | kak
Lt L2 L* | Lt L2 Lt
Po | 1.22e-15 1.71e-15 6.27e-152.34e-15 3.02e-15 9.10e-15

Ps | 5.01e-05 1.47e-04 1.16e-032.32e-04 2.63e-04 1.18e-03
PYB | 8.50e-14 1.05e-13 3.35e-132.82e-13 3.37e-13 6.76e-13

Table 4.2 — Height and discharge norm errors for the topography and friction steady state
along the x axis.

Once again, this experiment emphasizes the relevance of the well-balance correction. In-
deed, the Ps scheme does not exactly capture the unperturbed steady state, while the PY/®
scheme captures it exactly, like the Pg scheme.

We also make the important remark that this well-balance correction also reduces the CPU
time, which decreases from 1463 with the Ps scheme to707s with the PY'B scheme. Indeed,
by downgrading to the rst-order scheme when the approximate solution is close to a steady
state, the P‘g"B scheme manages to be both faster and more accurate than the uncorrectedPs
scheme.

4.4.2 Order of accuracy assessment

We now turn to verifying the order of accuracy of the high-order scheme. As previously
mentioned, this check is done using truly 2D steady state solutions, which are not steady
states by direction and thus do not fall within the scope of De nition 4.2. This choice is
made to ensure that an exact solution is known. Indeed, we can derive truly 2D steady state
solutions by choosing a discharge eld that satis es (4.2), i.e. whose divergence vanishes.

In order to compute the order of accuracy, we consider the results from two simulations,
one carried out on a mesh composed of N discretization cells, and the other one with N 0> N
cells. The errors are then computed according to (4.35). Letey be the value of error, in any of
the three norms, for a mesh with N cells. The order of accuracyp is then de ned as follows:

In(en) In(eno)

: 4.36
In' N In NO ( )

In order to have a relevant computation of the order of accuracy, we take N°= 4N in (4.36).
Thus, the de nition of the order of accuracy used in this section is the following:

_ In(en) In(esn ):

i (4.37)

In this section, we suggest two different 2D steady state solutions. The rst one is obtained
by assuming a vanishing friction contribution, while the second one is computed with both
source terms. For both of these solutions, we compute the order of accuracy of the schemes
according to (4.37).
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4.4.2.1 Steady vortex experiment

The rst experiment we consider involves a steady state solution with a vanishing friction
contribution (i.e. k = 0), the steady vortexsee [47]). We setr = !(x;y) and we take a radial
topography, given by Z(x;y) = 0:2e%5k k) Then, the water height is de ned as follows:

h(t;x;y) =1 4262(1“"2) Z(xy);

and the x- and y-velocities are given by:

1k rk2

ut;xy) = ye 1k rk?.

and v(t;x;y)= xe
For such initial data, the discharge g = '(hu; hv) indeed satis es (4.2), but it is not a constant.
This steady state is depicted on Figure 4.7 on the space domain[ 3; 3]2.

Figure 4.7 — Steady vortex. Left panel: free surface. Right panel: velocity norm (the vortex
ows clockwise).

The simulations are carried out with the PY'®, P)® and PY'B schemes, until a nal physical
time teng = 1s. In addition, we take C =+ 1 and my = My = my = My =+ 1 for the three
schemes. The results of the simulations are presented in:

* Table 4.3 and Table 4.4 ford = 3;
* Table 4.5 and Table 4.6 ford = 4;
* Table 4.7 and Table 4.8 ford=5.

These results show good agreement with the theory. Indeed, in all cases, the order of
accuracy is roughly equal to d + 1, as expected. This order of accuracy is maintained thanks
to the u2 detection criteria. Indeed, on such smooth solutions, the DMP criterion (2.78) is not
suf cient, for it would wrongly lower the CPD in some cells. Here, the smoothness detector
(2.81) is used to prevent over-detection from the DMP criterion. The reader is referred to [47]
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N

h; L?

h; L2 h; L?

900

3600
14400 | 1.90e-07
57600 | 1.16e-08

5.90e-05

3.32e-06 4.15 5.12e-06

5.94e-04 —

2.92e-05 4.35
1.44e-06 4.34
1.35e-07 3.41

1.06e-04 —
4.3
4.1

4.0

4.12) 2.80e-07
4.04 1.75e-08

Table 4.3 — Height error for the steady vortex experiment using the PY® scheme.

N

kak; Lt

kgk; L? kak; Lt

900 3.34e-04
3600 | 2.08e-05
14400| 1.21e-06
57600 | 7.38e-08

3.18e-03 —

2.15e-04 3.89
8.82e-06 4.61
5.07e-07 4.12

6.25e-04
4.01 3.68e-05
4.10 2.01le-06
4.04 1.18e-07

4.0
4.2
4.0

Table 4.4 — Discharge norm error for the steady vortex experiment using the PY'B scheme.

N

h; L1

h; L? h; L1

900 8.87e-05
3600 | 3.96e-06
14400 | 1.44e-07
57600 | 5.62e-09

4.3
4.8
4.7

1.65e-03 —

90.32e-05 4.14
2.94e-06 4.98
7.97e-08 5.21

1.85e-04
4.49 8.99e-06
4.78 3.20e-07
4.68 1.16e-08

Table 4.5 — Height error for the steady vortex experiment using the P}'B scheme.

N

kgk; Lt

kgk; L? kak; L1

900 5.94e-04
3600 | 2.52e-05
14400 | 8.54e-07
57600 | 2.87e-08

5.83e-03 —

4.03e-04 3.86
1.48e-05 4.76
4.98e-07 4.90

1.12e-03
4.56 5.41e-05
4.88 1.86e-06
4.89 5.99e-08

4.3
4.8
4.9

Table 4.6 — Discharge norm error for the steady vortex experiment using the P}'® scheme.

N

h; L1

h; L2 h; L1

900 2.04e-05
3600 | 3.07e-07
14400 3.93e-09
57600 | 5.74e-11

7.84e-04 —

9.94e-06 6.30
5.53e-08 7.49
3.30e-10 7.39

6.2
6.8
6.3

5.22e-05
6.05 6.88e-07
6.29 5.82e-09
6.10 7.27e-11

Table 4.7 — Height error for the steady vortex experiment using the PY'B scheme.

N

kak; Lt

kgk; L? kgk; Lt

900
3600

1.37e-04
1.90e-06 6.17| 5.27e-06
14400| 2.33e-08 6.35 5.33e-08
57600 | 3.08e-10 6.24 5.76e-10

2.90e-03 —

5.10e-05 5.83
4.98e-07 6.68
4.42e-09 6.82

3.46e-04 —
6.0
6.6

6.5

Table 4.8 — Discharge norm error for the steady vortex experiment using the PY'B scheme.
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for a comparison of the order with and without the u2 criterion. In [47], the authors show
that it is necessary to use the u2 criterion for this experiment in order to recover the expected
order of accuracy.

Error graphs in L2-norm are provided on Figure 4.8 for the PY® and the PY'B schemes.
We can clearly observe on this gure that the PY'® scheme is roughly of order 4 and the PY'B
scheme is roughly of order 6. Indeed, in logarithmic scale, the slope of the error with respect
to the number of discretization cells corresponds to the order of the scheme.

Figure 4.8 — Error plots for the steady vortex experiment, in L2-norm, for the PY® and PY'B
schemes. Left panel: water height errors; right panel: discharge errors.

4.4.2.2 2D steady state with topography and friction

We now turn to another 2D steady state solution. This new steady state is obtained by
considering both contributions of topography and friction (i.e. k 6 0). For this solution, we
assume thatkr k 6 0, and we take the following topography function:

2kkrk 1

In addition, the exact water height and discharge are given by:

r
h(t;xy)=1 and atxy) = iz

Note that such a de nition of the discharge ensures that (4.2) is satised, i.e. that r g=0.0On
the space domain|[ 0:3;0:3] [0:4;1]and for k = 10, the topography is depicted on Figure 4.9,
while Figure 4.10 shows the discharge eld in both directions.

In order to highlight the high-order accuracy of the schemes, this experiment is carried
out with the PY® and PY'B schemes. The nal physical time is teng = 0:1s, and we take once
againC =+1 and my = My = my = My =+ 1 . We again take the exact solution as initial
and boundary conditions. The results of the simulations are presented in:

* Table 4.9, Table 4.10, and Table 4.11 ford = 3;
* Table 4.12, Table 4.13, and Table 4.14 fod = 5.
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N h Ok %Y

900 |5.00e-07 — |1.95e-06 — |2.00e-06 —
3600 | 3.12e-08 4.00 1.22e-07 4.00 1.24e-07 4.00
14400| 1.91e-09 4.03 7.54e-09 4.02 7.64e-09 4.02
57600| 1.17e-10 4.03 4.65e-10 4.02 4.70e-10 4.02

Table 4.9 —L ! errors for the friction and topography 2D steady state using the P¥'B scheme.

N | h Ok Oy

900 7.59e-07 — | 2.94e-06 — | 2.61e-06 —
3600 | 4.54e-08 4.06 1.75e-07 4.07) 1.61e-07 4.02
14400| 2.60e-09 4.13 1.05e-08 4.06 9.82e-09 4.04
57600 | 1.48e-10 4.13 6.37e-10 4.04 6.01e-10 4.03

Table 4.10 —L2 errors for the friction and topography 2D steady state using the P%'B scheme.

N h Ox A

900 5.63e-06 — | 1.06e-05 — | 1.07e-05 —
3600 | 4.42e-07 3.67| 6.39e-07 4.05 7.44e-07 3.85
14400| 3.15e-08 3.81 3.68e-08 4.12 4.45e-08 4.06
57600 | 2.12e-09 3.89 2.14e-09 4.10 2.64e-09 4.07

Table 4.11 L1 errors for the friction and topography 2D steady state using the P¥'B scheme.

N h Ok %Y

900 |2.37e-08 — |8.00e-08 — |1.12e-07 —
3600 | 3.77e-10 5.98 1.28e-09 5.96 1.82e-09 5.94
14400| 5.89e-12  6.00 1.99e-11 6.01 2.91e-11 5.96
57600 | 1.24e-14 8.89 2.06e-13 6.60 1.20e-13 7.92

Table 4.12 —L ! errors for the friction and topography 2D steady state using the PY'B scheme.

N o h Ok oy

900 |3.20e-08 — |1.30e-07 —|148e07 —
3600 | 5.07e-10 5.98 2.05e-09 5.98 2.40e-09 5.94
14400| 7.98e-12 599 3.17e-11 6.02 3.84e-11 5.97
57600 | 5.3le-14 7.23 5.08e-13 5.96 3.67e-13 6.71

Table 4.13 —L2 errors for the friction and topography 2D steady state using the PY'B scheme.

N h Ox d

900 1.04e-07 — | 5.20e-07 — | 5.57e-07 —
3600 | 1.80e-09 5.86 8.15e-09 6.00 1.02e-08 5.77
14400| 3.38e-11 5.73 1.25e-10 6.02 1.71e-10 5.89
57600 | 8.33e-13 5.34 2.26e-12 5.79 2.59e-12 6.05

Table 4.14 L1 errors for the friction and topography 2D steady state using the PYB scheme.
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Figure 4.9 — Topography for the 2D steady state with topography and friction.

Figure 4.10 — Discharge for the 2D steady state with topography and friction. Left panel:
discharge in the x-direction. Right panel: discharge in the y-direction.

Once again, we recover the expected order of accuracy, roughly equal to d + 1. Similarly
to the previous experiment, this order of accuracy is recovered only thanks to the use of the
u2 criterion in addition to the DMP criterion. We also present the following error graphs:

« the error for the water height in all norms is depicted on Figure 4.11;
« the error for the discharge in both directions, inthe L 2-norm, is displayed on Figure 4.12.

On these gures, the orders of accuracy of the schemes are clearly visible. For h, gx and g,
the PY'® scheme is of order 4, and the PY® scheme is of order 6.
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Figure 4.11 — Water height error plots for the steady vortex experiment, for the P¥B and PY'B
schemes. Left panel: errors in the L?-norm; right panel: errors inthe L*-and L' -norms.

Figure 4.12 — Steady vortex experiment: error plots, in L2-norm, for the x-discharge and for
the y-discharge. Left panel: errors for the x-discharge; right panel: errors for the y-discharge.

4.4.3 Validation experiments

After having presented the well-balance property and the high-order accuracy satis ed by
the suggested scheme, we now turn to its numerical validation, by focusing on more complex
experiments. First, we present the simulation of a dam-break over a dry bottom in one space
direction. This simulation also highlights the relevance of the well-balance correction and
of the MOOD procedure. Next, we present a two-dimensional dam-break simulation, on a
topography involving two bumps. Afterwards, we present a two-dimensional partial dam-
break.

4.4.3.1 Drydam-break

This subsection focuses on a double dam-break over a dry sinusoidal bottom. The space
domainis [0;1] [0;0:1], and the topography is chosen as follows:

Z(xy) = %cosz(Z X ):
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The initial free surface consists in a double dam-break; it is given by:

8

<2 ifx2D;
h(G;xy)+ Z(xy) = .

© Z(x;y) otherwise,

where the domain D is de ned by:

In addition, the initial discharge is zero: q(0;x;y) = 0. Note that such a free surface corre-
sponds to a steady state at rest onD  [0;0:1]. In (f1=3g [0;0:1])[ (f2=3g [O; 0:1]), the
free surface is discontinuous, thus producing the initial dam-break conditions. The domain
([0;1]n D) [0;0:1] is dry. As a consequence, this experiment will highlight three crucial
parts of the scheme: the well-balance property, the ability to handle dry/wet and wet/dry
transitions, and the consistency with the 2D shallow-water equations. This experiment is pre-
sented in the x-direction for simplicity, but can be carried out in the y-direction or even in a
transverse direction, yielding the same conclusions.

For this experiment, the Manning coef cient k is set to 10and the boundaries are assumed
to be solid walls, i.e. we set o (t;0;y) = ao(t;1;y) = 0 and qy(t;x; 0) = qy(t;x; 0:1) = 0
for all t, x and y. The experiment is carried out with the Py and P¥'B schemes, to compare
the rst-order scheme with the high-order well-balanced scheme. The nal physical time is
tend = 0:03s, and we setC = 7:5, my = my = 10 10 and My = My = 0:5. The results are
presented on Figure 4.13 and on Figure 4.14.

« Figure 4.13 displays a comparison between the results obtained with the Py scheme
and those obtained with the PY'® scheme, with 200 = 100 2 cells in each case. We
also display a reference solution, obtained using the Py scheme with 8000 = 4000 2
discretization cells.

* On Figure 4.14, CPD(i;j ) and ( x){j are depicted, as well as the free surface and the
topography, for t = teng=10and t = teng, with the PY'B scheme.

Figure 4.13 highlights the relevance of using a high-order well-balanced scheme for such
an experiment. First, the results from the PY'B scheme are visibly closer to the reference solu-
tion than those of the Py scheme. Moreover, the approximations of the interfaces between dry
and wet areas are in good agreement with the reference solution. In addition, note that the
free surface should be unperturbed close to the edges of the domain. Indeed, the waves from
the dam-break have not yet reached the edges of the domain att = tenq, and the water close
enough to the edges is in a lake at rest con guration. This essential property exactly holds for
the Pg scheme. It also holds for the P‘5’VB scheme thanks to the well-balance correction, which
forces the well-balanced scheme to be used in lake at rest-type situations. Figure 4.14 displays
more details on the role played by the well-balance convex combination.

On the left panel of Figure 4.14, we observe that ( X){}j is zero in areas that have not yet
been impacted by the waves, i.e. in the areas where a lake at rest con guration is found.
As a consequence, in these areas (namely the center of the domain and close to its edges),
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Figure 4.13 — Free surface for the dam-break over a dry sinusoidal bottom: reference solution
and results of the Py and PY'® schemes. The gray area represents the topography.

Figure 4.14 — Free surface, CPD map and convex combination coef cient  for the the dam-
break over a dry sinusoidal bottom with the PY'B scheme. The gray area represents the topog-
raphy. Left panel: t = 3:10 3s. Right panel: t = 3:10 2s.

the CPD is equal to 0 and the well-balanced scheme is used. We also notice that the CPD
is zero in two cells within each wave. Indeed, in those cells, the DMP detector (2.78) has
been triggered. Similar conclusions can be drawn from the right panel of Figure 4.14. The
center of the domain is still considered to be at rest, and the convex combination parameter
is very close to zero on the edges of the domain, where the water is almost at rest. We do not
have ( x){j =0 inthose cells because the numerical diffusion created by the waves has been
introducing small perturbations that travel faster than the actual waves. The amplitude of
these perturbations is high enough to cause the steady state error (4.27) to be greater than O.
However, since ( x){;‘j < 1, the steady state error is still lower than My near the edges of the
domain.
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4.4.3.2 2D dam-break with two bumps

The second 2D experiment is a dry dam-break with a topography presenting two bumps.
It is heavily inspired from an experiment presented in [19], which did not include the friction
source term. The Manning coef cientis k = 0:1, and the topography function is given by

(63}
N

+2 1 25 (x 4%+ y

+ +

1
Z(x;y)= - 1 2 =
xy)=3 1 25 x 3
The space domain is[0;5] [0; 1]. The initial discharge is zero in both directions, i.e. we take
q(0; x;y) = 0, and the initial water height is given by

( 6 ifx< 07
h(0; x;y) =
0 otherwise:

The simulation runs until a physical time  teng = 1:35s with the P}'B scheme, usingC =1,
mxy = my = 10 ®and My = M, = 25. We take 288000discretization cells (1200in the x
direction and 240in the y direction). In addition, we prescribe wall boundary conditions. The
results are presented on Figure 4.15, Figure 4.16, Figure 4.17, and Figure 4.18.

This experiment has been carried out to make sure that the numerical scheme still behaves
correctly in a truly 2D setting and in the presence of dry/ wet transition. We recover a nu-
merical solution involving the friction source term, which can be compared to the numerical
solution without friction presented in [19]. In addition, this 2D experiment is similar to the 1D
double bump experiment we presented in Section 3.3.2.6. Indeed, the behavior of the water
before it comes into contact with the rst bump is the same in both experiments.

4.4.3.3 Partial dam-break

The last dam-break experiment is a two-dimensional partial dam-break (see [126, 47]). An
extensive study of this experiment, focused on the differences between various reconstruction
degrees and MOOD criteria, has been presented in [47]. However, in [47], the friction source
term was not present, and the authors studied the effects of the topography only. Thus, our
study is mainly focused on the effects of the friction source term. To that end, we carry out
the simulation with three different Manning coef cients.

For this experiment, the space domainis|[ 100 100] [ 210G 100] and we take the follow-
ing topography function:

%1 if X 5;
Z(xy) = s
§0:1(5 x) if 5<x< 5and 40<y< 40
" 12 if 5<x< 5andy?2][ 10G 40][ [40; 100}

Hence, it represents al1l2 meters high, 10 meters wide broken dam. Initially, the reservoir (to
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Figure 4.15 — Left panel: initial condition of the 2D dam-break over a double bump experi-
ment. Note that the same color scale for the water height is used for Figure 4.15, Figure 4.16,
Figure 4.17, and Figure 4.18, and that the solid gray color represents the topography. Right
panel: approximate solution at t = 0:15s, just before the water hits the rst bump. Note the
shape of the front of the water, due to the nonzero bottom friction.

Figure 4.16 — Approximate solution of the 2D dam-break over a double bump experiment,
displayed at times t = 0:3s (left panel) and t = 0:45s (right panel).
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Figure 4.17 — Approximate solution of the 2D dam-break over a double bump experiment,
displayed at times t = 0:75s (left panel) and t = 0:9s (right panel).

Figure 4.18 — Approximate solution of the 2D dam-break over a double bump experiment,
displayed at times t = 1:05s (left panel) and t = 1:35s (right panel).

the left) is lled, as follows:

%10 Z(x;y) ifx 5;
h(0: x:y) = Z(x;y) ifx 5
§5 Z(x;y) if 5<x< 5and 40<y< 40
0 if 5<x< Sandy2[ 100 40][ [40;100}

The water is initially at rest, i.e. q(0;x;y) = 0. In addition, we use homogeneous Neumann
boundary conditions, and we take the nal physical time teng =75

In order for the simulation to be relevant, we elected to set CPD (i;j ) = O for cells where the
topography gradient is too large. In order to conserve the high-order behavior of the scheme,
we only set CPD(i;j ) = O for cells possessing at least one vertex that belongs to the dam,
where Z(x;y) = 12. Indeed, in such cells, the high-order approximation of the topography
source term (4.20a) becomes too large, leading to spurious oscillations in their vicinity.

In uence of the friction coef cient

We now compare the results from the P, PYB and PY'B schemes with various Manning
coef cients, namely k =0, k = 0:25and k = 2. All of these comparisons have been carried
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outusing 40000 = 200 200discretization cells. In addition, weset C =0:5,my = my =10 10
and My = My = 0:5. The results of the simulations are displayed on the following gures,
with the same color scale:

» Figure 4.19 for the Po, P}'B and PY'B schemes withk = 0;
« Figure 4.20 for the Po, P}'® and PY'B schemes with k = 0:25;
» Figure 4.21 for the Po, P}'B and PY'B schemes withk = 2.

Figure 4.19 — Free surface for the partial dam-break simulation with k = 0. From left to right:
results of the P, PY'B and PY'B schemes.

Figure 4.20 — Free surface for the partial dam-break simulation with k = 0:25. From left to
right: results of the Po, PYB and PY'® schemes.

On all three gures, we observe important differences between the results of the three
schemes. Indeed, for instance on Figure 4.19 and Figure 4.20, we observe that the shock
wave to the right of the dam and the rarefaction wave to the left of the dam are visibly more
smeared when using the Py scheme instead of the PY'B or the PY'B scheme. In addition, the
structure at the center of the water ow is not visible with the Py scheme. It becomes visible,
although smeared, with the P}'B scheme, and itis very well-de ned with the PY'® scheme. For
Figure 4.21, the conclusions are similar. The smearing of the shock wave and the rarefaction
wave is still present unless a high-order scheme is used, but the presence of an important
friction has caused the central structure to nearly disappear.

An important remark we make here concerns the vortices present at the edges of the dam
in Figure 4.19 and Figure 4.20. First, note that the presence of the friction source term dampens



4.4. NUMERICAL EXPERIMENTS 213

Figure 4.21 — Free surface for the partial dam-break simulation with k = 2. From left to right:
results of the Po, PYB and PY'B schemes.

the depth, as well as the size, of these vortices. This behavior is highlighted in Table 4.15, in
which the approximate size and the depth of a vortex are collected. For this table, we focused
on the top vortex, whose characteristics are similar to the bottom one since the experiment is
symmetric with respect to the y =0 line.

Manning coef cient Vortex size Water depth

k=0 84m? 4:28m
k=0:25 17m?2 5:45m
k=2 Om? 7:23m

Table 4.15 — Water and approximate size for the deepest vortex, for the PY'® scheme. For the
case wherek = 2, there is no vortex, and the table displays the free surface at the point where
the vortex would be located if the Manning coef cient were lower.

The last part of the study of this experiment is the analysis, over the y = 0 line, of the
left rarefaction wave and the right shock wave. Some relevant quantities are the position of
the head of the rarefaction wave, the width of its fan, and its amplitude. Those quantities are
displayed in Table 4.16, where we chose to compute the amplitude of the rarefaction wave
by subtracting the water height at the tail from the water height at the head. Concerning
the shock wave, we are interested in its position and its amplitude, which are displayed in
Table 4.17. Similarly, the amplitude of the shock wave is obtained by computing the difference
between the water height to the left of the wave and the water height to its right. Note that,
since those computations are performed on the numerical results of the PY'® scheme, the shock
wave takes only a couple of cells, and the evaluation of its position is fairly accurate. We
observe that the amplitude of the shock presented for k = 0 in Table 4.17 is very similar to the
results obtained in [47], although the authors do not use the same scheme.

From Table 4.16 and Table 4.17, we observe that the friction produces the expected effects.
Indeed, it dampens the amplitude of both the rarefaction wave and the shock wave. More-
over, anincrease in friction is accompanied by a diminution of the size of the rarefaction wave,
and a decrease in the distance traveled by the shock wave. This behavior is expected, as an
increase in friction leads to a decrease in discharge, as evidenced by the expressions (3.89) in
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Manning coef cient  Fanwidth  Amplitude Head position

k=0 39m 2:68m X = 74m
k=0:25 38n 2:28m X= 74m
k=2 31m 1:29m X = 74m

Table 4.16 — Left rarefaction wave: approximate width of the fan, water height amplitude and
position of the head, with respect to the Manning coef cient.

Manning coef cient Shock position Amplitude

k=0 X =60m 2:28m
k=0:25 X =58m 1:96m
k=2 X =53m 0:98m

Table 4.17 — Right shock wave: approximate position and water height amplitude, with re-
spect to the Manning coef cient.

1D and (4.11) in 2D. Thus, this decrease in discharge leads to a slower travel time of the shock
wave, which directly means that the wave will travel less distance.

Finally, we observe from Table 4.16 that the friction does not change the position of the
head of the rarefaction wave. This behavior is also expected. Indeed, recall the expression of
the friction source term given by (1.1) in 1D and (4.1) in 2D. Near the head of the rarefaction
wave, the water is almost at rest, since no wave has yet perturbed the initial condition at rest.
Hence, since only wet areas are considered, the impact of the friction source term is negligible,
and the head of the rarefaction wave travels at nearly the same speed for k = 0, k = 0:250r
k = 2. Therefore, the value of the Manning coef cient does not alter the position of the head
of the rarefaction wave.

High-resolution simulations

We also include simulations performed using the PYEB scheme, with k = 0, k = 0:25
and k = 2, on a much ner discretization grid, made of one million ( 1000 1000 cells. In
addition, the same values were taken for the parameters C, my, my, My and My. Depending
on the value of the friction coef cient, the simulations took between 5 hours for k =2 and 6
hours for k = 0, with an OpenMP parallelization on 24 cores (12 physical and 12 logical).

The results of this simulation are displayed on Figure 4.22 (free surface) and on Figure 4.23
(discharge). Note that the color scales are different for each gure, in order to display all the
details of each experiment. As expected, we once again remark that the vortices are deeper
and that the shock wave travels further with less friction. In addition, on Figure 4.23, we again
note that the maximum discharge is considerably lower with a higher friction coef cient.

4.4.4 Simulations on a real-world topography

We conclude the numerical experiments of the 2D high-order well-balanced scheme by
presenting two real-world simulations. The rst one concerns the 2011 Great East Japan
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tsunami, in T ohoku, Japan. The second one consists in an urban topography being ooded
by a tsunami.

4.4.4.1 Simulation of the 2011 T ohoku tsunami

This experiment concerns the simulation of the Great East Japan tsunami. This catas-
trophic event occurred on the 11th of March, 2011. The numerical simulation of such destruc-
tive phenomena is of prime importance for risk assessment and prevention. To address this
issue, we consider a Cartesian mesh of the topography of the area, made of around 13 million
cells. The emerged topography is displayed on Figure 4.24, and the submerged topography
(i.e. the bathymetry) is depicted on Figure 4.25. The water height data related to the initial
shape and the position of the tsunami is displayed on Figure 4.26. We also know the water
height data from three mareographs, i.e. buoys equipped with tide sensors. The goal of this
simulation is to compare the water height from the numerical scheme with the experimental
data.

In order to carry out this experiment, we use the Py scheme. We take homogeneous Neu-
mann boundary conditions, and we set C = 100. The Manning coef cient is chosen according
to [45] (page 109); we takek = 0:025. The experimental data from the mareographs is avail-
able for one hour, and therefore the nal time is teng = 3600s. The results of the simulation
are presented on Figure 4.27 and Figure 4.28. The simulated water height is close to the ex-
perimental one, even using the Py scheme.

4.4.4.2 Urban topography

The last experiment is a simulation of a city being hit by a wave. We consider the space
domain [0; 1000] [0;1000] The topography consists in a gentle upwards slope leading to a
at surface, upon which buildings are placed. Disregarding the buildings, the bottom has the
following topography: (
x=50 if x < 500,
Z(x;y) = _
10 otherwise.

The 100 meters high buildings occupy the at part of the topography, i.e. buildings are only
present for x > 500. Figure 4.29 displays the shapes and the positions of the buildings, for a
uniform Cartesian mesh of 10° cells (1000in each direction).

The initial conditions are W(0;x;y) = 0 for all x and y in the space domain. Indeed,
the boundary conditions help create the ood and the wave that hits the city. We prescribe
homogeneous Neumann boundary conditions for each boundary of the domain, except the
left boundary, where a time-dependent boundary condition the x-discharge ¢ is applied, as
follows: (

(t;0;y)=15 ift< 350

(4.38)
@Quox(t; 0;y) =0 otherwise.

Such a boundary condition creates water that lls the sloping part of the topography and
creates a wave that hits the city. At time t = 300s, some time before the water stops being
injected, the free surface is displayed on Figure 4.29.
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Figure 4.22 — Partial dam-break: free surface using theP{'® and 1P cells. From top to bottom:
k =0,k =0:25and k = 2. Note that the color scale is different on each gure.
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Figure 4.23 — Partial dam-break: discharge using the PY'B and 10° cells. From top to bottom:
k =0,k =0:25and k = 2. Note that the color scale is different on each gure.
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Figure 4.24 — Emerged topography for the Tohoku tsunami simulation.
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Figure 4.25 — Submerged topography (bathymetry) for the T ohoku tsunami simulation.
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Figure 4.26 — Initial free surface for the Tohoku tsunami simulation.
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We consider a nonzero Manning coefcient k = 1 and a nal time tgng = 850s. The
simulation is carried out using the PY'B scheme, and we takeC =10 2, my = my =10 °and
My = My = 1. Ittook around 7:5hours to complete with 24 cores (12 physical and 12logical).

We display on Figure 4.30 the free surface and the discharge along the line x = 225m,
located between the second and third row of square buildings. On the left panel, at t =
300s, the Dirichlet boundary condition is active, and the discharge is equal to 15m2.s* on
the left boundary. On the right panel, at t = 355s, the boundary condition has become a
homogeneous Neumann one, and the discharge has started diminishing near the boundary.
On both graphs, note that the water front has the shape expected when dealing with the
Manning friction source term.

The results of the numerical simulation are displayed on Figure 4.31, Figure 4.32, Fig-
ure 4.33, Figure 4.34, and Figure 4.35.

The left panel of Figure 4.29 shows the wave created by the Dirichlet boundary condition
arriving on the city. Because of the friction, this wave presents a rather steep front. On the
left panel of Figure 4.31, the wave has hit the rst buildings located at the south of the city.
Note that the space between the rst two columns of buildings is still dry. Also note that,
as per (4.38), the boundary condition imposed on the x-discharge g« is now a homogeneous
Neumann boundary condition, and no more water is injected into the domain. The right
panel of Figure 4.31 displays the wave about to hit the square building located at the middle
of the city. As expected, between the southern buildings, the wave is slowed down.

On the left panel of Figure 4.32, the wave has re ected on the southwestern side of the
square building, and it has thus moved faster towards the buildings to the south. On the
right panel of Figure 4.32, the waves re ected from the square building are moving south and
north. Moreover, the back of the “S”-shaped building will soon be ooded.

The ooding of the back of the “S"-shaped building is happening on Figure 4.33, with
only a small area still dry on the right panel. In addition, on the right panel of Figure 4.33, the
wave has almost hit the small square building on the bottom right of the city.

Figure 4.34 and Figure 4.35 display the nal phases of the ooding of the city. Note that the
southern buildings are mostly uniformly ooded and that the inner courtyard of the square
building is still dry. Moreover, the water at the back of the “S”-shaped building is less deep
than at other points of the same vertical line.
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Figure 4.27 — Tohoku tsunami simulation. From top to bottom: free surfaceat t = 0s,t = 1000s
and t = 1900s. The sensor data is displayed on the right.
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Figure 4.28 — Tohoku tsunami simulation. From top to bottom: free surface at t = 2750s,
t =3200s andt = 3600s. The sensor data is displayed on the right.
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Figure 4.29 — Wave on an urban topography simulation. Left panel: topography of the city.
The buildings are actually 100meters high, and are represented in white in this gure. One
can see the upwards slope on the left, leading to the city itself. Right panel: free surface at
t = 300s. The wave is present to the left of the gure. Note that the same free surface color

scale will be used in the next gures.

Figure 4.30 — Free surface and discharge along the linex = 225m for the urban topography
simulation, at t = 300s (left panel) and t = 355s (right panel).
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Figure 4.31 — Free surface for the urban topography simulation at t = 355s (left panel) and
t = 410s (right panel).

Figure 4.32 — Free surface for the urban topography simulation at t = 465s (left panel) and
t = 520s (right panel).
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Figure 4.33 — Free surface for the urban topography simulation at t = 575s (left panel) and
t = 630s (right panel).

Figure 4.34 — Free surface for the urban topography simulation at t = 685s (left panel) and
t = 740s (right panel).

Figure 4.35 — Free surface for the urban topography simulation at t = 795s (left panel) and
t = 850s (right panel).
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Conclusion & perspectives

Version francgaise

Conclusion

Dans ce manuscrit, nous avons étudi€, analytiguement et numériqguement, le systéme de
Saint-Venant muni des termes source de topographie et de friction de Manning.

Dans un premier temps, nous avons étudié les effets du terme source de friction sur
les propriétés algébrigues du systéme ainsi que sur ses solutions stationnaires. Nous avons
montré que, a l'instar du terme source de topographie, le terme source de friction ajoutait
un champ caractéristique stationnaire au systéme. Par conséquent, lorsque les deux termes
source sont présents, ce champ caractéristique est associé a la valeur propre doubled. De
plus, dans un souci de complétude, les solutions stationnaires ont été rappelées pour le terme
de topographie, tandis qu'une étude compléte des solutions stationnaires a été effectuée pour
le terme de friction. En particulier, pour les deux termes source, chercher les solutions station-
naires revient a chercher les zéros d'une fonction non-linéaire. Nous avons montré que, si ce
probléme posséde une solution, alors soit elle est unique, soit il y en a exactement deux. Si la
solution stationnaire est unique, sa hauteur d'eau, égale a une hauteur critique, est la méme
pour les termes de topographie et de friction. Si deux solutions cohabitent, I'une d'entre elles
est subcritiqgue (hauteur supérieure a la hauteur critique), tandis que l'autre est supercritique
(hauteur inférieure a la hauteur critique).

Nous avons ensuite dérivé un schéma équilibre robuste pour le systéme de Saint-Venant
avec topographie et friction de Manning. Ce schéma véri e les propriétés suivantes :

(i) consistance avec les équations de Saint-Venant avec topographie et friction de Manning;;
(i) préservation et capture exactes de toutes les solutions stationnaires (celles au repos et
les solutions a vitesse non nulle) des équations de Saint-Venant avec topographie ou
friction;
(iii) robustesse, c'est-a-dire préservation de la positivité de la hauteur d'eau.
Ensuite, nous avons rendu ce schéma semi-implicite, a n de s'assurer que les transitions entre
zones mouillées et zones séches n'induisaient pas d'oscillations dues a la raideur du terme
de friction quand la hauteur d'eau devient petite. Cette semi-implicitation consiste en un
traitement explicite du ux et de la topographie, et en un traitement implicite de la friction.
Des cas-tests numériques visant a véri er la propriété de préservation des états stationnaires
et a valider numériquement le schéma ont ensuite été présentés.

Nous avons en n étendu ce schéma pour prendre en compte des géométries bidimen-

sionnelles cartésiennes, et nous avons réalisé une montée en ordre. Pour |'extension a deux
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dimensions d'espace, nous avons effectué une combinaison convexe par direction du schéma
1D an d'en préserver les propriétés. Comme nous nous y attendions, il n‘a pas été pos-
sible d'étendre complétement la propriété de préservation des états stationnaires. En effet, le
schéma 2D préserve les états stationnaires dans les directions des axex ety, ainsi que tous
les états stationnaires au repos. Ensuite, nous avons réalisé une montée en ordre utilisant une
reconstruction polynomiale. Cependant, aprés cette procédure de reconstruction, le schéma
produisait des oscillations et ne préservait plus les états stationnaires. A n de remédier a ces
problémes, nous avons suggeéré I'utilisation d'une méthode de type MOOD. En particulier,
la propriété de préservation des états stationnaires a été recouvrée en utilisant une combi-
naison convexe entre le schéma d'ordre élevé et le schéma d'ordre un. Cette combinaison
convexe favorise le schéma d'ordre un lorsque la solution approchée est proche d'une so-
lution stationnaire (lorsque le schéma d'ordre un est exact), ce qui résulte en un schéma au
moins d'ordre élevé. Nous avons ensduite réalisé un couplage entre cette combinaison convexe
et une méthode MOOD plus classique, dans le but d'obtenir un schéma d'ordre élevé, préser-
vant les solutions stationnaires, et ne produisant pas d'oscillations. Finalement, nous avons
déterminé les propriétés de ce schéma en codant un programme Fortran paralléle. Nous avons
fourni des précisions sur lI'implémentation en Fortran ainsi que sur les bibliothéques externes
utilisées dans le programme. Nous avons ensuite proposé des cas-tests pour véri er la préser-
vation des états stationnaires et I'ordre élevé du schéma, avant d'effectuer plusieurs cas-tests
de ruptures de barrage a n de valider le schéma. En n, nous avons proposé deux simula-
tions d'événements réels : celle du tsunami ayant frappé le Japon en 2011 et celle d'une vague
inondant une topographie urbaine.

Perspectives

Nous pouvons envisager plusieurs perspectives aux travaux contenus dans ce manuscrit.
Naturellement, nous pouvons penser a appliquer la méthode générique développée dans le
troisieme chapitre a d'autres termes source. De plus, en notant que les états intermédiaires du
solveur de Riemann approché sont assez proches des états intermédiaires du solveur HLL,
nous pourrions étudier I'entropie du schéma proposé, par exemple en utilisant des résul-
tats connus sur le schéma HLL. En n, nous pourrions travailler un peu plus sur I'extension
a l'ordre élevé, notamment en essayant de formuler une preuve rigoureuse de l'ordre du
schéma.

Application a d'autres termes source

Dans ce manuscrit, nous avons proposé un schéma numérique pour les équations de
Saint-Venant avec un terme source générique (3.1). Nous avons montré que ce schéma per-
mettait de préserver les solutions stationnaires dés qu'une moyenne pertinente S du terme
source était donnée. Si le terme source est donné sous la forme (3.40), les relations gouvernant
les états stationnaires incluent une relation algébrique. Dans ce cas, les relations gouvernant
les états stationnaires discrets, données par (3.47), permettent d'obtenirS. A présent, nous
nous intéressons plus particulierement a deux exemples de termes source : la force de Corio-
lis et un terme source qui permet de prendre en compte la largeur du canal.
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Le terme source représentant la force de Coriolis est utilisé en océanographie, son utilité
premiére étant de simuler la préservation d'un équilibre (voir [121]). Par conséquent, dans ce
cas, il serait pertinent d'utiliser un schéma préservant les états stationnaires. Les équations
de Saint-Venant munies de ce terme source ont déja été étudiées, analytiquement (voir [148,
165, 59, 118]) et numériquement (voir [27, 8, 91, 43]). Les auteurs de ces articles étudient le
modéle en 2D, ou la rotation induite par la force de Coriolis est facilement modélisée par un
terme source. Cependant, il est possible de dériver un modéle unidimensionnel, en étudiant
les équations sous la forme suivante :

8
2@h+ @q=0;
2
>@]+@ i+}gh2 = fq;
h 2
ouf 2 R représente le coef cient de la force de Coriolis. Nous pouvons donc écrire le terme

source de Coriolis S¢(W) = fqg sous la forme (3.40), en posant :
=0; f(d=q @ = *
Par conséquent, les états stationnaires discrets sont gouvernés par (3.47), comme sulit :

h? = 8¢ x;

8
2
s (F3)

Sk Tl
Nl NlQa

h? + gf x=0;

ou S° est une moyenne de S°. Ces relations sont valides pour h, et hr distincts et strictement
positifs. La seconde équation de (F3) permet d'obtenir une expression de gy pour les états
stationnaires, qui fait intervenir, entre autres, la direction de I'écoulement. Cette expression
doit ensuite étre injectée dans la premiére équation a n d'obtenir une formule donnant  S°.

Aprés avoir introduit le terme source représentant la force de Coriolis, nous nous tournons
vers la prise en compte de la largeur du canal. Ce deuxiéme terme source fut introduit dans
[155] (voir aussi [95, 78]), pour donner le systeme suivant :

8
3@nh+ @q= Q%;
2 2 (F4)
3 g, 1 ., _ @B,
T@g+ @ F"‘ égh = hB

ou la fonction B (x) représente la largeur du canal. Nous remarquons qu'un terme source est
présent sur I'équation de conservation de la hauteur d'eau; ce cas n'est pas pris en compte
dans le schéma développé dans ce manuscrit. A n de remédier a ce probléme, nous introdui-

sons un nouveau jeu de variables (voir [130] par exemple) : H = hB et Q = gB. En utilisant
ces nouvelles variables et en supposant une solution réguliere dont la hauteur est strictement
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positive, le systeme (F4) se réécrit comme suit :

8
2@H + @Q=0;
2 H 2 H 2
> + g + 97 = 97 B:
Ta@R+@ +55 552 @B:
ou la premiére équation ne contient plus de terme source. En revanche, le terme de pression
dans la dérivée spatiale du ux a été modi é. Le terme source représentant la largeur du canal

est donc dé ni par :

2
sb= 98 @s:
De plus, nous pouvons montrer que les états stationnaires associés a cette équation sont gou-
vernés par : 8
2 Q=cst= Qqo;
7@ H, Q0
B 2gH?

Par conséquent, en notantSP une moyenne pertinente du terme source SP, les relations dé -
nissant un état stationnaire discret sont les suivantes :

8
1 g H? _
2 £ 910 _
EQOH 2 B S° X
s H 2 4 (F5)
— + = — =0
B 2g H?

Comme précédemment, la seconde équation de (F5) fournit une expression deQ3 valide pour
un état stationnaire, qui est ensuite injectée dans la premiére équation a n d'obtenir une for-
mule pour SP. Notons que cette formule dépendra de la variable H = hB. Des manipulations
algébrigues seront donc requises pour concilier ce terme source approché avec ceux obtenus
pour la topographie, la friction ou la force de Coriolis.

Stabilité du schéma

Dans ce manuscrit, nous ne nous sommes pas posé la question de la stabilité du schéma.
L'expression (3.6) des vitesses caractéristiques a été choisie pour s'assurer que| < 0< g,
ce qui augmente la diffusion numérique du schéma, et qui entraine donc une augmentation
de sa stabilité. Ce choix de vitesses caracteéristiques nous a donc permis de retarder I'étude de
la stabilité.

Nous pouvons aussi nous intéresser a l'entropie associée au schéma dérivé dans le troi-
sieme chapitre. En effet, les états intermédiaires utilisés dans le solveur de Riemann approché
de ce schéma donc donnés par (3.81). Nous remarquons que ces états intermédiaires sont en
fait les états intermédiaires du solveur HLL, dé nis par (3.20), auxquels un terme supplémen-
taire, dépendant linéairement du pas d'espace, a été rajouté. Ces états intermédiaires peuvent
donc étre vus comme une perturbation des états intermédiaires du schéma HLL, qui est entro-
pigue (voir [90]). Par conséquent, une étude précise de cette perturbation pourrait permettre
d'obtenir une inégalité d'entropie pour le schéma équilibre, et ce dans le cas des termes source
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individuels de topographie et de friction, ou méme en présence des deux termes source. Les
vitesses caractéristiques | et g joueraient certainement un réle dans cette inégalité. De plus,
la constante C, introduite dans (3.54) a n de faire en sorte que le terme source approché de
topographie soit consistant, pourrait aussi jouer un role dans cette inégalité, dans le cas de la
topographie.

En supposant qu'une telle inégalité puisse étre déterminée, un nouveau critére de dé-
tection pourrait s'ajouter aux critéres déja présents dans la méthode MOOD utilisée dans le
schéma d'ordre élevé. En effet, dans I'esprit de [16], nous pourrions utiliser I'inégalité d'entro-
pie a n de diminuer le degré de la reconstruction polynomiale jusqu'a ce que cette inégalité
soit véri ée.

Ordre élevé : résultats et améliorations

Le schéma proposé dans le quatriéme chapitre est d'ordre élevé et permet de préserver les
solutions stationnaires, comme nous l'avons illustré grace aux cas-tests présentés a la n de
ce chapitre. Cependant, a cause de la procédure de combinaison convexe entre les schémas
d'ordre élevé et d'ordre un, ce dernier est utilisé lorsque la solution est proche d'une solution
stationnaire. Le schéma est donc, au nal, au moins d'ordre élevé, puisque le schéma d'ordre
un n'est utilisé que lorsqu'il est exact (d'ordre in ni). Une preuve rigoureuse de cet ordre
éleveé pourrait cependant étre étudiée.

De plus, dans [33, 31, 35], les auteurs ont proposé une reconstruction polynomiale basée
sur les états stationnaires a vitesse non nulle. Cette procédure permet d'obtenir un schéma
d'ordre élevé préservant naturellement les solutions stationnaires, sans avoir besoin d'intro-
duire de combinaison convexe. Par conséquent, la reconstruction polynomiale de [33, 31, 35]
pourrait étre une extension intéressante du schéma proposé dans le quatrieme chapitre. Ce-
pendant, a n d'utiliser cette reconstruction, il faut résoudre approximativement les équations
non-linéaires gouvernant les solutions stationnaires a tout moment ou la reconstruction doit
étre calculée; un des avantages du schéma présenté dans ce manuscrit est le fait que de telles
résolutions approchées d'équations non linéaires n'intervenaient pas dans sa dérivation.
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English version

Conclusion

In this manuscript, we have studied, both numerically and analytically, the shallow-water
system equipped with the source terms of topography and Manning friction, governed by
(1.12).

First, we studied the effects of the Manning friction source term on the shallow-water sys-
tem, regarding either its algebraic properties or its steady state solutions. This friction source
term, as expected, was proven to add a stationary characteristic eld, as does the topography
source term. As a consequence, when both source terms are present, the stationary character-
istic eld is associated to the double eigenvalue 0. In addition, the steady state solutions have
been recalled, for the sake of completeness, in the case of the topography source term. In the
case of the friction source term, they have been studied in detail. In particular, in both cases,
we have shown that nding a steady state was equivalent to nding the zeros of a nonlinear
equation; this problem has zero, one or two solutions. When the solution is unique, the water
height of this steady state is equal to a critical water height, which has the same value for
both source terms. When two solutions exist, one is subcritical (strictly superior to the critical
height) and the other one is supercritical (strictly inferior to the critical height).

We then derived a suitable numerical scheme for the shallow-water equations with both
topography and friction. We derived a well-balanced and robust scheme, i.e. a scheme that:

(i) is consistent with the shallow-water equations with topography and friction;
(i) exactly preserves and captures all the steady state solutions (the steady states at rest and
the moving steady states) of the shallow-water equations with topography or friction;

(iii) preserves the non-negativity of the water height.
In addition, a semi-implicit extension of the scheme was introduced to ensure that the tran-
sitions between wet and dry areas did not induce oscillations in the water height. This semi-
implicitation consists in an explicit discretization of the ux and the topography and in an
implicit treatment of the friction, in order to account for the stiffness of the friction source
term near dry areas. Afterwards, numerical experiments were carried out in order to check
all the properties of the scheme. Namely, the well-balance of the scheme was assessed, and
several validation experiments were performed.

We nally focused on an extension of the scheme to two-dimensional Cartesian geome-
tries, as well as the derivation of a high-order accurate scheme from the 2D rst-order one.
First, the 2D extension was obtained using a convex combination technique in order to pre-
serve the properties satis ed by the 1D scheme. As expected, the resulting 2D scheme turned
out to be well-balanced by direction, i.e. only the steady state solutions along the x-axis and
the y-axis were exactly preserved, in addition to all the steady states at rest. Then, a high-order
extension of this 2D scheme was proposed. However, due to the reconstruction procedure,
the scheme lost its well-balance property and produced oscillating solutions. A MOOD-like
method was suggested to deal with these shortcomings. Namely, the well-balance property
was recovered thanks to a convex combination between the rst-order well-balanced scheme
and the high-order scheme. This convex combination favors the well-balanced scheme close
to steady state solutions, i.e. in areas where this scheme is exact, thus resulting in a scheme
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that is at least high-order accurate. The convex combination was then coupled to a more clas-
sical MOOD method to yield a non-oscillatory and well-balanced high-order 2D scheme. To
assess the properties of this scheme, several benchmark simulations were then carried out
using a parallel Fortran code, made from scratch. An explanation of the Fortran implemen-
tation and the external libraries used was provided. Regarding the numerical experiments,
the well-balance property and the high-order accuracy were rst checked. Then, several val-
idation dam-breaks experiments were performed. Finally, two real-world simulations were
proposed: the 2011 Tohoku tsunami, and a wave impacting an urban topography.

Perspectives

Several perspectives of this work can be envisioned. Namely, the generic approach devel-
oped in Chapter 3 could be extended to take other source terms into account. Also, noting that
the expressions of the intermediate states of the suggested 1D scheme are quite close to those
of the intermediate states of the HLL scheme, the entropy stability of the proposed scheme
could be studied, by using existing results on the entropy stability of the HLL scheme. Other
perspectives concern the high-order well-balanced scheme: for instance, a rigorous proof of
the high-order accuracy could be studied, or an alternate polynomial reconstruction could be
considered.

Application to other source terms

Let us recall that the 1D well-balanced scheme for the shallow-water equations with a
generic source term (3.1) involves the intermediate states (3.37). Thanks to Theorem 3.5,
we know the approximate Riemann solver obtained with these intermediate states is well-
balanced as soon as a relevant averageS of the source term is provided. With a source term
given by (3.40), the steady state relations involve an algebraic equation. As a consequence,
the discrete steady state relations, needed to get a suitable averageS, are given by (3.47). We
now provide two examples of source terms the generic strategy could be applied to: a source
term representing the Coriolis force and another one taking into account the variations of the
channel breadth.

We rst consider the Coriolis force source term; it is widely used in oceanography, mostly
to simulate the perturbation of an equilibrium (see [121]). Therefore, using a well-balanced
scheme would be particularly relevant in this context. The shallow-water equations equipped
with this source term have already been studied, both analytically (see for instance [148, 165,
59, 118]) and numerically (see for instance [27, 8, 91, 43]). In these articles, the model is studied
in two space dimensions, where the rotation induced by the Coriolis force makes more sense.
However, it is possible to derive a one-dimensional model of the Coriolis force. Equipped
with just the Coriolis force source term, the shallow-water equations are given as follows:

8
2@h+ @Qq=0;

>aq+@ L+l

9. L2 - )
h+Zgh fq;

where f 2 R is the coef cient of the Coriolis force. We can therefore write the Coriolis force
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source term S¢(W) =  fq under the form (3.40), by setting:
=0 ; f(=qg ; @ =

As a consequence, (3.47) yields the following discrete steady relations, with S¢ a suitable
average of S

8 1

26 ¢ +gh2=§c X;

5 1 g (E3)
-cﬁﬁ +§h2+qof x=0:

These relations are valid for hy > 0and hg > 0 such that hy 6 hg. The second equation of
(E3) provides a value of gy depending on h. and hg. The sign of g, i.e. the direction of the
steady water ow has to be taken into account to solve this equation. Then, the expression of
p is plugged into the rst equation, to nally get the expression of ~ S°.

Having introduced the Coriolis force, we now turn to the breadth variation source term.
This source term has been introduced in [155] (see also [95, 78] for instance) to deal with the
variations of the channel breadth, to get the following shallow-water model:

8

@B
3 @h+ @Qq= q?;
2 2 (E4)

2 .1, . 9@B
where the function B (x) > O represents the breadth of the channel. Note that a source termis
present on the height equation. This case is not taken into account by the scheme suggested
in Chapter 3. To address such an issue, we introduce the new set of variablesH = hB and
Q = gB (see [130] for instance). UsingH and Q and assuming a smooth solution with h > 0,

the shallow-water model (E4) rewrites as follows:

8
2@H + @Q=0;
2 2 2
> + g + gi = gi B:
@Q+ @ g to8 Y @B;
where we have successfully eliminated the source term on the height equation. However, the
pressure term in the spatial derivative now contains the breadth function B. According to the

above system, the breadth source term is thus de ned by:

b_ gH?

= 2°_@B:
S°= 5g2@

In addition, seeking smooth steady state solutions for this system leads, after straightforward
computations, to the following ordinary differential equation:

8
2 Q=cst= Qo;

H Q3
> a, Yo
- @ B 2gH?
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Therefore, with SP a suitable average of the breadth source term SP the discrete steady rela-

tions read, in this case: 8

s QS i + g iz = gb X;
H 2 B

20Q5 1 H

=~V = 4+ g —
"2 H? gB

(ES)

0:

As usual, the second equation of (E5) yields an expression of Q3, to be plugged into the rst
equation in order to get an formula for SP. Note that this expression will depend on the
variable H = hB. Therefore, several algebraic manipulations will have to be made on the
equations in order to combine the approximation of this source term with the approximations
of the topography, friction and Coriolis force source terms.

Stability of the scheme

The question of the stability of the scheme is not raised in the present manuscript. The
choice (3.6) of the characteristic velocities ensures that | < 0 < g, which increases the
numerical diffusion of the scheme. As a consequence of this increased diffusion, the scheme
is more stable. Therefore, the choice of the characteristic velocities allowed us to postpone a
more precise study of the stability.

The question of the entropy preservation of the well-balanced scheme derived in Chap-
ter 3 could also be raised. Indeed, for any source term, the intermediate states (3.81) of this
well-balanced scheme are written as the intermediate states of the HLL scheme (3.20) with an
additional term. This term depends linearly on the space step. Thus, the well-balanced inter-
mediate states can be viewed as perturbations of the intermediate states of the HLL scheme.
Moreover, the HLL scheme is known to be entropy-preserving (see [90]). Therefore, quan-
tifying the extent of that perturbation could provide an adequate entropy inequality for the
well-balanced scheme, in order to determine whether this scheme is entropy-preserving for
the topography source term, the Manning friction source term, or even both source terms.
The characteristic velocities | and r would certainly play a role in this entropy inequality.

In addition, the value of the cutoff constant C present in (3.54), introduced in order to make
the approximate topography source term S! consistent, could also be relevant to uncover the
entropy inequality.

Assuming the scheme was indeed entropy-preserving, another detector could then be
added to the MOOD method, following [16]. In [16], the authors suggest using the entropy
inequality to introduce a new MOOD criterion. If the entropy inequality is not satis ed be-
cause of the reconstruction procedure, then the degree of the reconstruction is lowered until
the inequality is veri ed. Such a criterion would supplement the PAD, DMP and u2 detection
criteria already present in the MOOD loop.

High-order accuracy: results and improvements

The scheme suggested in Chapter 4 is well-balanced and high-order accurate, as shown in
the numerical experiments proposed in Section 4.4.1 and Section 4.4.2. However, because of
the convex combination procedure introduced in Section 4.2.2, the rst-order scheme is used
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