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Introduction

Version française

Leséquations de Saint-Venants'obtiennent à partir des équations de Navier-Stokes, en sup-

posant que la dimension verticale est beaucoup plus petite que la dimension horizontale, et

que la longueur d'onde des phénomènes modélisés est beaucoup plus grande que la pro-

fondeur de l'eau. Elles sont utilisées dans de nombreux domaines, comme la géophysique,

l'océanographie ou l'évaluation des risques. Par exemple, le modèle de Saint-Venant est uti-

lisé pour la simulation de ruptures de barrage, comme celle du barrage de Malpasset (voir

[153]), qui s'est rompu en 1959dans le Var, au sud de la France. A�n de mieux comprendre

les conséquences d'une hypothétique rupture de barrage, le comportement de l'eau après la

rupture doit être modélisé.

Une autre application directe des équations de Saint-Venant est l'étude de tsunamisou d' i-

nondations, comme par exemple à Madère (Portugal) ou à La Faute sur Mer (France) en 2010.

D'autres travaux concernant la simulation et la prévention de tsunamis utilisent également les

équations de Saint-Venant (voir [129, 9, 50]). Des glissements de terrain furent aussi modélisés

en utilisant un modèle inspiré des équations de Saint-Venant (voir [104] par exemple).

Les équations de Saint-Venant en une dimension d'espace, munies des termes source de

topographieet de friction de Manning, sont gouvernées par le système suivant (voir par exemple

[122, 57]) : 8
><

>:

@t h + @xq = 0 ;

@t q + @x

�
q2

h
+

1
2

gh2
�

= � gh@xZ � kqjqjh� � ;
(F1)

Dans (F1), h(t; x ), la hauteur d'eau, est positive ou nulle et q(t; x ), le débit de l'eau, a été

moyenné sur la profondeur. De plus, g est la constante de gravité, Z (x) est la fonction re-

présentant la topographie, k est le coef�cient de friction de Manning, et � est un paramètre,

égal à 7� 3. Remarquons que, lorsque Z = cst , la topographie est plate et le terme source de

topographie s'annule, tandis que, lorsque k = 0 , le terme source de friction devient nul.

Le but de ce manuscrit est de construire un schéma numérique adapté aux équations de

Saint-Venant avec topographie et friction (F1). Notons que, lors de la simulation numérique

de tsunamis, la préservation exacte d'un certain type de solutions est d'une importance cru-

ciale. En effet, loin du tsunami, l'eau est au repos et sa surface ne doit pas être perturbée. La

nécessité de cette propriété est particulièrement visible près de la côte, où, l'eau étant peu

profonde, de petites perturbations de la hauteur d'eau deviennent relativement plus impor-

tantes, et viennent polluer l'approximation de la vitesse de pénétration du tsunami.
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Par conséquent, un schéma numérique devrait assurer la préservation de solutions au re-

pos, qui sont des cas particuliers de solutions stationnaires. Ces dernières sont obtenues lorsque

h et q ne dépendent pas du temps, ce qui donne le système suivant :

8
><

>:

@xq = 0 ;

@x

�
q2

h
+

1
2

gh2
�

= � gh@xZ � kqjqjh� � :
(F2)

La première équation de (F2) impose immédiatement un débit uniforme q. Comme les états

stationnaires avec friction sont inconnus, une première partie de ce travail est d'étudier en

détail la seconde équation, surtout dans le cas d'une topographie plate. Le but de cette étude

est de comprendre au mieux les solutions stationnaires, a�n d'aider à construire un schéma

numérique capable de toutes les préserver.

La préservation numérique des états stationnaires des équations de Saint-Venant a été

un important sujet de recherche au cours des deux dernières décennies. Nous devons à Ber-

mudez et Vazquez [11], ainsi qu'à Greenberg et Leroux [87], les travaux pionniers dans ce

domaine. Ces travaux portent sur la préservation des états stationnaires au repos. Dans ce

deuxième article est introduite la propriété de well-balanced'un schéma, dé�nie à l'origine

pour quali�er un schéma capable de préserver ou capturer exactement les états stationnaires

au repos. De tels schémas sont quali�és de schémas équilibre. Ensuite, Gosse [82] étendit cette

approche pour obtenir un schéma numérique pour les équations de Saint-Venant capable de

préserver tous les états stationnaires, y compris ceux en mouvement, au prix d'une résolu-

tion approchée de l'équation non-linéaire les gouvernant. Ce travail fut ensuite simpli�é par

Audusse et al. [5], qui proposèrent la méthode de reconstruction hydrostatique, permettant

de préserver les états stationnaires au repos sans avoir besoin de résoudre d'équation non-

linéaire.

L'objectif principal de ce travail est de construire un schéma équilibre pour les équations

(F1). Ce schéma doit être capable de capturer toutes les solutions stationnaires données par

(F2). Le schéma numérique doit donc satisfaire les propriétés suivantes :

• préservation des états stationnaires donnés par (F2), y compris ceux où le débit est non nul ;

• préservation de la positivité de la hauteur d'eau ;

• capacité à approcher des transitions entres zones mouillées (h 6= 0 ) et sèches (h = 0 ).

De plus, la préservation des états stationnaires doit être réalisée sans résoudre d'équation

non-linéaire, contrairement au schéma proposé par Gosse dans [82].

Un autre objectif de ce travail est de fournir deux extensions du schéma mentionné ci-

dessus. La première extension concerne des géométries bidimensionnelles, primordiales pour

pouvoir simuler des situations réelles, comme par exemple des inondations, des tsunamis ou

des ruptures de barrage. La deuxième extension consiste à augmenter la précision du schéma,

autrement dit à monter en ordre. La principale dif�culté dans les deux cas est de recouvrer

la propriété de préservation des états stationnaires véri�ée par le schéma unidimensionnel

d'ordre un.
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Plan du manuscrit

Premier chapitre : Les équations de Saint-Venant avec topographie et friction de Manning

Le premier chapitre de cette thèse est dédié à l'étude des équations de Saint-Venant et

de ses termes sources de topographie et de friction de Manning. Ce système est gouverné

par (F1). Ce chapitre contient à la fois des résultats connus (voir par exemple [80, 112]) et de

nouveaux développements, qui portent surtout le terme de friction de Manning. Ces résultats

seront largement utilisés lors de la dérivation d'un schéma numérique permettant une bonne

approximation des solutions des équations de Saint-Venant.

Nous nous intéressons tout d'abord au système de Saint-Venant homogène, et nous rap-

pelons plusieurs résultats connus, qui seront utiles pour étudier les effets des termes source.

En particulier, nous exhibons les propriétés algébriques de ce système. Nous montrons que

c'est un système hyperbolique de lois de conservation, et ce pour tout h � 0 et pour tout q.

De plus, nous prouvons qu'il possède deux champs caractéristiques vraiment non-linéaires.

Lors de l'étude d'un problème de Riemann pour les équations de Saint-Venant, chacun de

ces champs caractéristiques est associé soit à uneonde de choc, discontinue, soit à une onde de

détente, continue. Nous exhibons plusieurs contraintes sur la solution exacte du problème de

Riemann à la traversée de ces ondes. Dans le cas d'une onde de choc, la solution satisfait les

relations de Rankine-Hugoniot, tandis que des quantités appelées invariants de Riemann sont

constants à l'intérieur de l'éventail de l'onde de détente. Grâce à ces informations, nous ob-

tenons ensuite la solution exacte du problème de Riemann. Plusieurs exemples de solutions

exactes de problèmes de Riemann sont présentées, a�n de mettre en lumière les propriétés du

système de Saint-Venant homogène.

Par la suite, nous ajoutons les deux termes source au système de Saint-Venant. Nous pré-

sentons une nouvelle étude algébrique du système, qui prouve que l'hyperbolicité du système

n'est pas perdue en présence des termes source, pourvu qu'une certaine condition soit sa-

tisfaite. Nous montrons aussi l'existence des deux mêmes champs caractéristiques vraiment

non-linéaires. De plus, les termes source engendrent un champ caractéristique supplémen-

taire. Ce champ stationnaire est linéairement dégénéré, et il est associé à uneonde stationnaire,

c'est-à-dire une onde dont la vitesse caractéristique est nulle. Cette onde stationnaire est une

discontinuité de contact, à la traversée de laquelle les invariants de Riemann sont constants.

Cependant, cette onde stationnaire due aux termes source constitue une obstruction au calcul

d'une solution exacte explicite du problème de Riemann.

En présence des termes source, nous avons donc une connaissance partielle de la structure

du problème de Riemann. Nous essayons à présent d'exhiber les solutions stationnaires du

système de Saint-Venant équipé de ses termes source. De telles solutions ne dépendent que

de la variable d'espace, et satisfont donc un système d'équations différentielles ordinaires.

Dans un souci de complétude et a�n d'introduire plusieurs concepts essentiels par la suite,

nous commençons par étudier les solutions stationnaires associées au seul terme source de

topographie (voir [44]). Nous nous ramenons alors à étudier les zéros d'une fonction. Si une

solution à ce problème existe, alors soit elle est unique, soit il y en a exactement deux. Dans

ce deuxième cas, une des solutions estsubcritique, tandis que la deuxième est supercritique.

Ensuite, nous étudions les solutions stationnaires régulières associées au seul terme source
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de friction. Le problème de l'existence et de l'unicité de ces solutions se ramène encore à

l'étude des zéros d'une fonction. En particulier, trois cas se présentent : soit il n'y a pas de

solution, soit la solution est unique, soit deux solutions, l'une subcritique et l'autre supercri-

tique, cohabitent. De plus, la hauteur d'eau critique, associée à la solution unique, est la même

pour les deux termes source. Nous nous intéressons aussi à des solutions stationnaires discon-

tinues, c'est-à-dire présentant des discontinuités admissibles. Les hauteurs d'eau de chaque

côté d'une telle discontinuité doivent satisfaire à la fois les relations de Rankine-Hugoniot

et une inégalité d'entropie. Nous donnons en�n quelques notions concernant les solutions

stationnaires en présence des deux termes source de topographie et de friction.

Deuxième chapitre : Méthode des volumes �nis

L'objectif du deuxième chapitre est d'introduire certaines notions essentielles à l'approxi-

mation numérique des équations de Saint-Venant, et plus largement de n'importe quel sys-

tème hyperbolique de lois de conservation. Ces résultats sont bien connus, il n'y a pas de

nouveauté dans ce chapitre. En revanche, il nous permet d'introduire des concepts et des

notations qui seront utiles dans la suite du manuscrit.

Nous commençons par nous intéresser à la dérivation de schémas aux volumes �nis en

une dimension d'espace. De tels schémas sont utilisés pour approcher les solutions faibles

de systèmes hyperboliques de lois de conservation. Après avoir introduit la discrétisation

de l'espace en cellules et la discrétisation constante par morceaux de la solution du système,

nous intégrons la loi de conservation a�n d'exhiber le �ux numérique, qui permet d'appro-

cher l'intégrale en temps du �ux physique. Plusieurs propriétés cruciales sont introduites :

consistance, conservation et robustesse. Nous dérivons ensuite un schéma numérique aux

volumes �nis bien connu, le schéma de Godunov, introduit par Godunov en 1959 dans [81]. Ce

schéma utilise la connaissance de la solution exacte du problème de Riemann associé à la loi

de conservation a�n d'obtenir un �ux numérique. Cependant, connaître cette solution exacte

est ardu, voire impossible, dans beaucoup de cas. Nous introduisons donc une autre tech-

nique, qui consiste à remplacer cette solution exacte par une solution approchée, obtenue par

un solveur de Riemann approché. Cette méthode permet de dé�nir les schémas de type Godu-

nov, introduits au début des années 1980 par Roe (voir [135]) et Harten, Lax et van Leer (voir

[90]). Un tel schéma numérique sera utilisé dans la suite du manuscrit a�n d'approcher les

solutions des équations de Saint-Venant, tout en respectant certaines propriétés essentielles.

Les schémas mentionnés ci-dessus sont d'ordre un en espace et en temps. A�n de les

rendre plus précis et d'obtenir un ordre deux de convergence en espace, la méthode MUSCL

a été proposée par van Leer dans [154]. Cette technique consiste à remplacer, dans chaque cel-

lule, l'approximation constante par morceaux par une approximation linéaire par morceaux.

Cette méthode peut être étendue pour obtenir un ordre supérieur à deux, en utilisant des

reconstructions polynomiales de degré plus élevé. Cependant, cette technique introduit des

instabilités, qui peuvent être corrigées par l'emploi d'un limiteur de pente.

Après avoir traité le cas d'une dimension d'espace, nous nous intéressons à des lois de

conservation en deux dimensionsd'espace. De la même façon que précédemment, l'espace est

découpé en cellules, où la solution approchée est constante par morceaux. Le système de lois
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de conservation est ensuite intégré sur les cellules a�n d'obtenir un schéma aux volumes �nis

en deux dimensions d'espace. En particulier, ce schéma fait intervenir le �ux numérique à

chaque interface entre cellules. Nous démontrons aussi un résultat selon lequel ce schéma 2D

peut s'écrire comme combinaison convexe de schémas 1D. Ce résultat permet de connaître

aisément certaines propriétés du schéma 2D, pourvu qu'elles soient véri�ées par les schémas

1D.

En�n, nous introduisons un terme source dans la loi de conservation 2D, et nous dérivons

un schéma numérique d' ordre élevé(c'est-à-dire d'ordre strictement supérieur à deux), qui se

base sur une technique de reconstruction polynomiale introduite par Clain, Diot et Loubère

(voir [46, 63, 65]). L'ordre élevé en temps est obtenu par l'utilisation de méthodes de type

SSPRK (voir [84]). Comme dans le cas 1D, nous observons que cette reconstruction engendre

des oscillations. A�n de s'en affranchir, nous suggérons d'utiliser la méthode MOOD. Cette

méthode a elle aussi été introduite par Clain, Diot et Loubère ; elle consiste à baisser graduel-

lement le degré de la reconstruction polynomiale dans les cellules où cela s'impose, jusqu'à

ce que les oscillations disparaissent, et que les propriétés de robustesse du schéma 2D d'ordre

un soient recouvrées.

Troisième chapitre : Un schéma équilibre pour les équations de Saint-Venant

Ce troisième chapitre est dédié à l'étude numérique des équations de Saint-Venant, dans

le but de dériver un schéma numérique possédant certaines propriétés essentielles. Il doit être

consistant, robuste, doit permettre d'approcher les interfaces entre zones mouillées et sèches,

et il doit exactement préserver tous les états stationnaires des équations de Saint-Venant avec

topographie et/ou friction de Manning.

A�n de s'assurer de la préservation des états stationnaires, on utilise un schéma de type

Godunov, qui s'appuie sur la présence de l'onde stationnaire créée par les termes source,

ainsi que sur une discrétisation pertinente de ceux-ci. Ce schéma est tout d'abord dérivé pour

un terme source générique sur l'équation de conservation du débit, que l'on approche par

une moyenne. Cette approximation est ensuite calculée pour les termes source individuels

de topographie et de friction. Cependant, lorsque les deux termes source sont présents, la

même méthode ne peut pas être appliquée puisque les états stationnaires sont gouvernés par

une équation différentielle et ne peuvent pas être vus comme les zéros d'une certaine fonc-

tion. Par conséquent, tous les états stationnaires avec topographie et friction ne peuvent pas

être préservés exactement ; seuls ceux provenant d'une certaine discrétisation de l'équation

différentielle peuvent l'être. Nous donnons aussi une technique permettant d'assurer la ro-

bustesse du schéma, quel que soit le terme source (voir [7]). En�n, nous étendons ce schéma

pour prendre en compte des hauteurs d'eau nulles.

En revanche, le schéma que nous avons suggéré ne permet pas de donner une bonne

approximation des transitions entre zones mouillées et zones sèches. En effet, le terme source

de friction devient raide lorsque la hauteur d'eau diminue. A�n de remédier à ce problème

sans modi�er le pas de temps du schéma, nous proposons une méthode semi-implicite, qui

consiste à traiter les parties �ux et topographie de façon explicite, puis la partie friction de

façon implicite. La propriété de préservation des états stationnaires est maintenue grâce à
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une discrétisation pertinente de la hauteur d'eau.

La dernière étape de ce chapitre consiste à proposer des tests numériques permettant de

valider les propriétés du schéma. Notons que, puisque nous avons dérivé un schéma équi-

libre, nous ne pouvons pas le valider avec les cas-tests usuels basés sur des solutions station-

naires ; en effet, de telles solutions sont exactement préservées. Nous effectuons tout d'abord

des tests visant à véri�er que différents types de solutions stationnaires sont exactement pré-

servées par le schéma : des solutions au repos, ainsi que des solutions stationnaires génériques

pour les termes sources de topographie et/ou de friction, dont certains cas-tests bien connus

venant de [86]. Des cas-tests de validation du schéma sont ensuite proposés. Ils permettent de

véri�er les propriétés de consistance et de robustesse du schéma, ainsi que sa capacité à ap-

procher les transitions entre zones mouillées et zones sèches. Nous proposons deux cas-tests

tirés de [44], ainsi que plusieurs cas-tests de rupture de barrage, sur fond mouillé ou sec. En

particulier, une rupture de barrage sur fond sec avec une topographie non plate permet de

véri�er toutes les propriétés du schéma, y compris la préservation des solutions stationnaires

au repos.

Quatrième chapitre : Extensions à deux dimension d'espace et à l'ordre élevé

Dans le chapitre précédent, nous avons dérivé un schéma numérique préservant tous les

états stationnaires des équations de Saint-Venant munies des termes source de topographie

et de friction de Manning. Le but de ce quatrième et dernier chapitre est d'étendre ce schéma

pour prendre en compte des géométries bidimensionnelles et d'obtenir un ordre élevé d'ap-

proximation.

Tout d'abord, l'extension à deux dimensionsd'espace est effectuée dans l'esprit de la com-

binaison convexe évoquée dans le deuxième chapitre. Certaines propriétés du schéma 1D

sont ainsi conservées, comme la robustesse et le traitement semi-implicite de la friction. Ce-

pendant, la préservation des états stationnaires ne s'étend pas complètement en deux dimen-

sions. En effet, les états stationnaires vraiment 2D sont régis par une équation aux dérivées

partielles, et seuls les états stationnaires 1D par direction sont préservés.

La deuxième partie de ce chapitre concerne l'obtention d'un schéma d' ordre élevéà partir

du schéma 2D proposé dans la première partie. Ce schéma est obtenu en suivant les idées

énoncées dans le deuxième chapitre. La méthode MOOD est utilisée a�n d'éliminer les oscil-

lations induites par la reconstruction polynomiale. Cependant, la reconstruction modi�e aussi

les valeurs approchées aux interfaces, ce qui entraîne la perte de la propriété de préservation

des états stationnaires. A�n de recouvrer cette propriété, nous suggérons une combinaison

convexeentre le schéma d'ordre un et le schéma d'ordre élevé. Ce dernier est utilisé loin d'une

solution stationnaire, tandis que le schéma d'ordre un est utilisé lorsque la solution approchée

est assez proche d'une solution stationnaire. Par conséquent, le schéma obtenu est au moins

d'ordre élevé, puisque le schéma d'ordre un est utilisé dans les zones stationnaires, où il est

en fait exact (c'est-à-dire d'ordre in�ni).

Ensuite, nous évoquons l'implémentation de ce schéma. Nous choisissons de développer

un code en Fortran, muni d'une parallélisation en OpenMP. Plusieurs fonctions de la biblio-

thèque LAPACK sont utilisées dans ce code, et ses �chiers de sortie sont au format vtk . Nous
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étudions aussi l'ef�cacité de la parallélisation.

En�n, nous proposons plusieurs cas-tests destinés à tester les propriétés du schéma bidi-

mensionnel d'ordre élevé. Nous véri�ons tout d'abord qu'il préserve bien les états station-

naires 1D par direction, et en particulier les états stationnaires au repos. Ensuite, nous propo-

sons deux cas-tests destinés à véri�er l'ordre du schéma. S'ensuivent plusieurs simulations de

validation numérique du schéma. Ces cas-tests sont des ruptures de barrage, sur fond mouillé

ou sur fond sec. Ils permettent de mettre en évidence la contribution du terme source de fric-

tion, ainsi que la pertinence de la combinaison convexe. Finalement, deux simulations réelles

sont proposées : celle du tsunami qui a frappé le Japon en 2011, et celle d'un tsunami sur une

topographie urbaine.
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English version

The shallow-water equationsare derived from the Navier-Stokes equations, with the as-

sumption that the vertical dimension is much smaller than the horizontal one, and that the

wavelength of the phenomenon is much larger than the depth of the water. They are widely

used in many �elds, such as geophysics, oceanography or risk assessment. For instance, the

shallow-water model is used in the simulation of dam-breaks, such as the Malpasset dam-

break (see [153]), which took place in southern France in 1959. To better understand the

consequences of a hypothetical dam failure, one has to model the behavior of water after the

dam has failed.

Another direct application of the shallow-water equations is the study of �oodsor tsunamis.

For instance, we mention the �oods in La Faute sur Mer, in France, in 2010, and Madeira, in

Portugal, also in 2010. Other work related to tsunami prevention and simulation also use the

shallow-water equations (see [129, 9, 50]). A model inspired from the shallow-water equations

was also used to perform landslide simulations (see [104] for instance).

The shallow-water equations in one space dimension with the topographyand the Manning

friction source terms read as follows (see [122, 57] for instance):

8
><

>:

@t h + @xq = 0 ;

@t q + @x

�
q2

h
+

1
2

gh2
�

= � gh@xZ � kqjqjh� � :
(E1)

In (E1), h(t; x ) is the nonnegative water height, q(t; x ) is the depth-averaged discharge of the

water, g is the gravity constant, Z (x) is the topography function representing the shape of

the bottom, k is the Manning friction coef�cient, and � is a parameter, equal to 7� 3. One can

easily see that, whenZ = cst , the topography is �at and the topography source term vanishes,

while, when k = 0 , the friction source term vanishes.

The goal of this manuscript is to derive a numerical scheme suited to the shallow-water

equations with topography and friction (E1). Let us remark that, in numerical simulations,

for instance those involving tsunamis, the preservation a certain class of solutions is of prime

importance. Indeed, away from the tsunami, the water is at rest and its surface should not be

perturbed. This property is especially relevant next to the shore, since small perturbations in

the water height are more detrimental to the solution in this area, and the approximation of

the velocity of the tip of the tsunami is polluted by such perturbations.

As a consequence, a numerical scheme should ensure that the solutions at rest, which are

noting but speci�c cases of steady state solutions, are exactly preserved. The steady state solu-

tions are obtained by making the time derivatives in (E1) vanish, thus yielding the following

system: 8
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>:

@xq = 0 ;

@x

�
q2

h
+
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2

gh2
�

= � gh@xZ � kqjqjh� � :
(E2)

The �rst equation immediately imposes a uniform discharge q. Since the steady states with

friction are unknown, the �rst part of the present work is to perform an in-depth study of

the second equation, especially in the case of a �at topography. The goal of this study is to
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understand the steady state solutions as best as possible, in order to help build a relevant

numerical scheme, able to preserve these steady states.

The numerical preservation of steady states for the shallow-water equations has been of

prime importance during the last two decades. This work was pioneered by Bermudez and

Vazquez [11] as well as Greenberg and Leroux [87], who tackled the preservation of steady

states at rest. This second paper introduced thewell-balanceproperty of a scheme, originally

de�ned as the ability of a scheme to exactly preserve and capture the steady states at rest.

Next, Gosse [82] extended this approach to yield a well-balanced scheme for the shallow-

water equations able to preserve all the steady states, including the moving ones, with the ad-

ditional requirement of approximately solving the governing nonlinear equation. This work

was later simpli�ed by Audusse et al. [5], who proposed the so-called hydrostatic reconstruc-

tion, which allows the preservation of the steady states at rest without needing to solve a

nonlinear equation.

As a consequence, the main objective of this work is to build a well-balanced scheme

for the equations (E1). Here, the expression well-balanceddescribes a scheme that is able to

exactly capture all the steady states (E2). Therefore, the numerical scheme needs to satisfy the

following properties:

• well-balance, i.e. preservation of the steady states (E2), even the moving ones;

• robustness, i.e. preservation of the non-negativity of the water height;

• ability to approximate transitions between wet ( h 6= 0 ) and dry ( h = 0 ) areas.

In addition, the well-balance property must be satis�ed without having to solve a nonlinear

equation, unlike the scheme suggested by Gosse in [82].

Another objective of this work is the extension of the above scheme to two-dimensional

geometries. Indeed, such an extension is primordial in order to consider real-life simulations,

such as simulations of catastrophic events (for instance �oods, tsunamis, dam-breaks). In

addition, a high-order extension of the scheme must be considered. The main challenge of

these two extensions is the recovery of the well-balance property.

Outline of the manuscript

Chapter 1: The shallow-water equations with topography and Manning friction

The �rst chapter is devoted to the study of the shallow-water system, supplemented with

the source terms of topography and Manning friction, and governed by (E1). This chapter

contains both known results (see for example [80, 112]) and new developments, especially

concerning the Manning friction source term. These results will be heavily used when de-

riving a suitable numerical scheme to provide approximate solutions to the shallow-water

equations.

We �rst consider the homogeneous shallow-water system, and we recall some well-known

results, which will be instrumental when studying the effects of the source terms. In particu-

lar, we exhibit the algebraic properties of this system. It is shown to be a hyperbolic system of

conservation laws for all h � 0 and all q. In addition, we prove that it possesses two genuinely

nonlinear characteristic �elds. When considering a Riemann problem for the shallow-water

equations, each one of the characteristic �elds is associated either to a discontinuous shock
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waveor to a continuous rarefaction wave. Across these waves, several constraints are exhibited

for the exact Riemann solution. Namely, the Rankine-Hugoniot relations are satis�ed in the

case of a shock wave, while the Riemann invariants are constant within the fan of a rarefac-

tion wave. Equipped with the knowledge of these relations, the exact solution of the Riemann

problem is derived. Several examples of Riemann problems, together with their exact solu-

tions, are given to highlight the properties of the homogeneous shallow-water system.

Afterwards, we add both source terms to the shallow-water system. Another algebraic

study of the system is then performed, which proves that it is still hyperbolic even in the

presence of the source terms, under a speci�c condition. The same two genuinely nonlinear

�elds are also uncovered. Moreover, there is now an additional characteristic �eld, which cor-

responds to the source term. This stationary characteristic �eld is linearly degenerate and it is

associated to astationary wave, i.e. a wave with a zero characteristic velocity. This stationary

wave is a contact discontinuity, through which the Riemann invariants are constant. How-

ever, the presence of the source terms, and thus that of this wave, does not allow computing

an explicit solution to the Riemann problem anymore.

Equipped with some knowledge of the structure of the Riemann problem, we then turn

to exhibiting several steady state solutions of the shallow-water system endowed with the

source terms. Such solutions only depend on the space variable, and they satisfy a system

of ordinary differential equations. For the sake of completeness and in order to introduce

several key concepts, we �rst study the steady state solutions associated to the topography

source term only (see [44]). We then show that this is equivalent to studying the zeros of a

function. If a solution to this problem exists, then either it is unique or there are exactly two

solutions. If two solutions exist, then one of them is subcriticaland the other one is supercritical.

Subsequently, we study the smooth steady state solutions associated to the friction source

term only. Studying the existence and the uniqueness of these solutions is again equivalent

to �nding the zeros of a function. In particular, there may be no solution, or there may be

a unique solution, or there may be two solutions, a subcritical one and a supercritical one.

In addition, the critical water height, associated to the unique solution, is the same for both

source terms. We also study discontinuous steady states, i.e. steady states presenting admis-

sible discontinuities. The water heights on each side of such discontinuities must satisfy both

the Rankine-Hugoniot relations and an entropy inequality. Namely, their existence is tied to

the direction of the steady water �ow. We �nally give a few words about the steady state

solutions with both source terms of topography and friction.

Chapter 2: Finite volume methods

The objective of the second chapter of this manuscript is to introduce several essential

notions related to the numerical approximation of the shallow-water equations, and more

widely of any hyperbolic system of conservation laws. These notions are well-known, and

there are no new results in this chapter. However, in the remainder of the manuscript, the

concepts and notations introduced in this chapter will be heavily used.

We begin with the derivation of �nite volume schemes in one space dimension. Such

schemes are used to approximate weak solutions of hyperbolic systems of conservation laws.
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After having introduced the discretization of the space domain in cells and the piecewise

constant approximation of the solution, the conservation law is integrated in order to exhibit

the numerical �ux, which provides an approximation of the time integral of the physical

�ux. Several essential properties are introduced; namely, the consistency, the conservation

and the robustness. We then derive a well-known �nite volume scheme, Godunov's scheme,

introduced by Godunov in 1959 in [81]. This scheme uses the knowledge of the exact solution

to the Riemann problem associated to the conservation law in order to propose a numerical

�ux. However, knowing this exact solution is no easy task in the general case; it may even

be impossible. We therefore introduce another method, which consists in replacing the exact

Riemann solution with an approximate one, obtained thanks to an approximate Riemann

solver. This technique allows de�ning the Godunov-type schemes, introduced at the beginning

of the 1980s by Roe (see [135]) and Harten, Lax and van Leer (see [90]). Such a scheme will be

used later in the manuscript in order to provide approximate solutions of the shallow-water

equations, while retaining several essential properties.

The schemes mentioned above are �rst-order accurate in space and time. In order to im-

prove the accuracy of such schemes and to obtain a second order of accuracy in space, we

choose the MUSCL method, suggested by van Leer in [154]. This technique consists in replac-

ing, in each cell, the piecewise constant approximation with a piecewise linear approxima-

tion. This method can also be extended to get a better order of convergence, by using a higher

reconstruction degree. However, this technique also introduces instabilities, which may be

corrected thanks to slope limiters.

After having tackled the case of one space dimension, we focus on conservation laws in

two space dimensions. Similarly to the 1D case, the space domain is discretized with cells, and

the approximate solution is assumed to be piecewise constant. The system of conservation

laws is then integrated over the cells in order to obtain a �nite volume scheme in two space

dimensions. In particular, the numerical �ux is used at each interface between cells. We also

prove a result stating that this 2D scheme may be rewritten as a convex combination of 1D

schemes. This result allows to immediately establish several properties of the 2D scheme,

provided they are satis�ed by the 1D scheme.

Finally, we add a source term to the 2D conservation law, and we derive a high-order accu-

ratenumerical scheme, i.e. a scheme of order strictly superior to two, based on a polynomial

reconstruction technique introduced by Clain, Diot and Loubère (see [46, 63, 65]). The high

order accuracy in time is obtained by using SSPRK methods (see [84]). As in the 1D case, we

observe that this reconstruction procedure induces spurious oscillations. In order to ensure

that such oscillations do not appear, we suggest using the MOOD method. This technique

was also introduced by Clain, Diot and Loubère; it consists in gradually lowering the degree

of the polynomial reconstruction in cells where this is needed, until the oscillations disappear,

and until the robustness properties of the 2D schemes are recovered.

Chapter 3: A well-balanced scheme for the shallow-water equations

In this third chapter, we begin the numerical study of the shallow-water equations in order

to derive a numerical scheme, which must satisfy several essential properties. It must be
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consistent, robust, able to approximate the interfaces between wet and dry areas, and it must

be well-balanced, i.e. it must exactly preserve all the steady state solutions of the shallow-

water equations with topography and/or Manning friction.

In order to ensure the preservation of the steady states, we use a Godunov-type scheme,

based on the stationary wave created by the source terms, and on a relevant discretization

of the source terms. This scheme is �rst derived for a generic source term on the discharge

equation, by introducing an approximation of the average of this source term. This approxi-

mation is then computed for the individual source terms of topography and friction. To that

end, we rely on the fact that the steady states associated to the individual source terms can

be seen as the zeros of a nonlinear function, and solving the nonlinear equations arising in

this case is not necessary. However, when both source terms are present, the same method

cannot be applied since the steady state solutions are now governed by a differential equation

and cannot be seen as the zeros of a function. As a consequence, all the steady state solutions

with topography and friction cannot be exactly preserved; the scheme is able to preserve only

those obtained from a speci�c discretization of the differential equation. We also suggest a

technique ensuring the robustness of the scheme, for any source term (see [7]). Finally, we

extend this scheme to take vanishing water heights into account.

However, this scheme does not give a good approximation of the transitions between wet

and dry areas. Indeed, the friction source term becomes stiff when the water height tends to

zero. To address such an issue without modifying the time step of the scheme, we suggest a

semi-implicit method. This technique consists in providing an explicit treatment of the �ux

and the topography, and an implicit treatment of the friction. The well-balance property is

satis�ed thanks to a relevant discretization of the water height.

The last part of this chapter consists in performing several numerical experiments, whose

goal is to assess the properties of the scheme. Note that, since the scheme is well-balanced,

we cannot perform the usual validation experiments involving steady state solutions; indeed,

such solutions are exactly preserved. We �rst check the well-balance of the scheme. To that

end, we try to preserve several types of steady state solutions: steady states at rest and moving

steady states for the topography and/or the friction, including several well-known test cases

from [86]. Several validation test cases are then carried out. They allow the veri�cation of

the consistency and robustness properties, as well as the ability of the scheme to approximate

the transitions between wet and dry areas. We suggest two experiments from [44], as well

as several dam-break simulations, either on a wet bed or on a dry bed. In particular, a dry

dam-break problem with a non-�at topography allows assessing of all the properties satis�ed

by the scheme, including the well-balance.

Chapter 4: Two-dimensional and high-order extensions

In the previous chapter, we have derived a numerical scheme that preserves all the steady

states of the shallow-water equations endowed with the topography and Manning friction

source terms. The goal of this fourth and last chapter is to provide two-dimensional and

high-order extensions of this scheme.

First, the extension in two space dimensionsis carried out in the spirit of the convex com-
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bination introduced in the second chapter. Several properties of the 1D scheme are thus con-

served, such as the robustness and the semi-implicit treatment of the friction. However, the

well-balance property is not fully extended to two dimensions. Indeed, the truly 2D steady

states are governed by a partial differential equation, and only the 1D steady states are pre-

served: the scheme is said to be well-balanced by direction.

The second part of this chapter consists in providing a high-orderextension of the 2D

scheme. This extension is obtained by following the ideas presented in the second chapter.

The MOOD method is used in order to eliminate the oscillations induced by the polynomial

reconstruction. However, the reconstruction procedure also modi�es the approximate solu-

tion at the interfaces, which leads to a loss of the well-balance property. In order to recover

this property, we suggest a convex combinationbetween the �rst-order well-balanced scheme

and the high-order scheme. The former is used when the approximate solution is close to

being a steady state, while the latter is favored when the approximate solution is far from a

steady state. As a consequence, the scheme is at least high-order accurate, since the �rst-order

scheme is used in areas where the solution is steady, that is to say where it is exact (i.e. where

its order of accuracy is in�nite).

Then, we discuss the implementation of this scheme. We elect to develop a Fortran code,

which is supplemented with an OpenMP parallelization. Within this code, several routines

from the LAPACK library are used; in addition, its output consists in .vtk �les. The ef�ciency

of the parallelization is also discussed.

Finally, we carry out several numerical experiments, whose purpose is to assess the prop-

erties of the 2D high-order well-balanced scheme. We �rst check the well-balance of the

scheme on 1D steady states, and on a truly 2D steady state at rest. Then, two assessments

of the high order of accuracy are performed. Afterwards, several dam-break validation test

cases are carried out. Their purpose is to highlight the contribution of the friction source term,

as well as the relevance of the convex combination procedure suggested to restore the well-

balance property of the high-order scheme. Finally, two real-world simulations are suggested:

the 2011 Great East Japan tsunami, in T̄ohoku, Japan, and a tsunami on an urban topography.



24 INTRODUCTION

Publication list

Published

V. Michel-Dansac, C. Berthon, S. Clain, and F. Foucher. A well-balanced scheme for the

shallow-water equations with topography. Comput. Math. Appl., 72(3):568-–593, 2016.

Preprint

V. Michel-Dansac, C. Berthon, S. Clain, and F. Foucher. A well-balanced scheme for the

shallow-water equations with topography and Manning friction. preprint available on HAL

(HAL id: hal-01247813), December 2015.

In progress

V. Michel-Dansac, C. Berthon, S. Clain, and F. Foucher. A two-dimensional high-order well-

balanced scheme for the shallow-water equations with topography and Manning friction.

Conference proceedings

C. Berthon, M. de Leffe, and V. Michel-Dansac. A conservative well-balanced hybrid SPH

scheme for the shallow-water model. In Finite volumes for complex applications. VII. Ellip-

tic, parabolic and hyperbolic problems, volume 78 of Springer Proc. Math. Stat., pages 817–825.

Springer, Cham, 2014.

Communication list

Talks

3. SHARK-FV 3, São Félix, Portugal, May 2016

2. 8th ICIAM, Beijing, China, August 2015

1. 3rd summer school of the GDR EGRIN, Piriac-sur-Mer, France, June 2015

Posters

3. HYP2016, Aachen, Germany, August 2016

2. 2nd summer school of the GDR EGRIN, Domaine de Chalès, France, July 2014

1. Finite Volumes for Complex Applications - FVCA VII, Berlin, Germany, June 2014



CHAPTER 1. THE SHALLOW-WATER EQUATIONS 25

1
The shallow-water equations with

topography and Manning friction

This chapter is dedicated to an introduction of the shallow-water system with topography

and Manning friction. The shallow-water system has been introduced in 1871 by de Saint-

Venant (see [10]) and is obtained by depth-integrating the Navier-Stokes equations, in the

case where the wavelength of the modeled phenomena is much larger than the depth of the

�uid. For instance, tsunami propagation in an ocean falls within this framework. In one space

dimension, the shallow-water system with topography and Manning friction is given by:

8
><

>:

@t h + @x (hu) = 0 ;

@t (hu) + @x

�
hu2 +

1
2

gh2
�

= � gh@xZ � kqjqjh� � ;
(1.1)

where h(t; x ) � 0 is the water height, u(t; x ) is the water velocity, and g = 9 :81 m.s� 2 is the

gravity constant. Both the height and the velocity depend on the time variable t and the space

variable x. The topography source term� gh@xZ takes into account the geometry of the channel

in which the water is �owing, thanks to the function Z : R ! R, which models the shape

of the channel bottom, as displayed on Figure 1.1. The topography function is assumed to

be smooth. The Manning friction model, introduced by Manning in [122], provides the source

term � kqjqjh� � , where q = hu is the discharge. This source term models the friction of the

channel bottom. The Manning coef�cient k is used to determine the intensity of the friction:

the higher k is, the more friction is exerted by the bottom on the water. The quantity � is a

parameter, taken equal to 7� 3 in Manning's model.

The system (1.1) can be rewritten under the following condensed form:

@t W + @xF (W ) = s(W );
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Figure 1.1 – The 1D shallow-water equations with a non-�at bottom. The gray area is the
topography.

where we have set:

W =

 
h

hu

!

; F (W ) =

0

@
hu

hu2 +
1
2

gh2

1

A ; s(W ) =

 
0

� gh@xZ � kqjqjh� �

!

; (1.2)

where W lives in the admissible states space
 , to be de�ned later.

Note that the case h = 0 corresponds to a dry area. Such areas naturally appear, for

instance while considering the penetration of a wave on a beach or the breaking of a dam.

We here make the important remark that the shallow-water system (1.1) can be extended for

vanishing water heights. Since the velocity is given by q = hu, a de�nition of the velocity has

to be provided for vanishing water heights. To address this issue, the following assumption

is made.

Assumption. The velocity vanishes as soon as the water height does.

This assumption makes physical sense: if there is no water, then the water does not move. We

remark that the friction source term � kqjqjh� � also requires a special treatment when h tends

to zero. Throughout the manuscript, the following assumption is made.

Assumption. The friction source term vanishes as soon as the water height does.

This assumption is motivated by the fact that a vanishing water height means that the bottom

is no longer able to exert a friction force on the water. Therefore, the admissible states space


 is de�ned as follows for the shallow-water equations (1.1):


 =
�

W = t (h; q) 2 R2 ; h � 0; q 2 R
	

: (1.3)

In addition, the homogeneous shallow-water equations, obtained by making the source

terms vanish in (1.1), admit an entropy pair(see [112, 5] for instance). The notion of entropy

(see for instance [107, 80, 108]) is used to determine the physical admissibility of a weak so-

lution of the system (1.1), i.e. a solution which satis�es (1.1) in the space of distributions. An

entropy pair is made of a convex function s 2 C2(
) , the entropy, and a function G 2 C2(
) ,



1.1. PROPERTIES OF THE SHALLOW-WATER EQUATIONS 27

the entropy �ux, such that the following identity holds:

r W F (W )r W s(W ) = r W G(W ):

In the context of the homogeneous shallow-water equations, the entropy pair is given by:

s(W ) =
1
2

hu2 +
1
2

gh2 and G(W ) = hu
�

u2

2
+ gh

�
: (1.4)

A weak solution W of the homogeneous shallow-water system is called entropy-satisfyingif it

satis�es the following entropy inequality:

@t s(W ) + @xG(W ) � 0: (1.5)

Regarding the inhomogeneous shallow-water system (1.1), an entropy inequality is also

exhibited (see for instance [5, 12]). With the same entropy pair (1.4), the following entropy

inequality holds for a weak entropy-satisfying solution of (1.1):

@t s(W ) + @xG(W ) � � ghu@xZ � kq2jqjh� � � 1: (1.6)

Since the topography is a smooth function, the entropy inequality (1.6) can be rewritten as

follows:

@t ~s(W; Z ) + @x eG(W; Z ) � � kq2jqjh� � � 1; (1.7)

where the entropy pair (~s; eG) is given by:

~s(W; Z ) = s(W ) + hgZ and eG(W; Z ) = G(W ) + hugZ: (1.8)

Equipped with these general properties of the shallow-water equations, the goal of this

chapter is to provide some particular solutions of the shallow-water equations with topogra-

phy and Manning friction (1.1).

Namely, the structure of the solutions of a Riemann problem is studied in Section 1.1.

First, the Riemann problem for the homogeneous shallow-water equations is discussed and

several examples are given. Afterwards, we determine the structure of the Riemann solution

for the inhomogeneous shallow-water system (1.1).

Then, the steady state solutions are exhibited in Section 1.2. The steady states are a spe-

ci�c class of solutions for which the time derivative vanishes. These solutions are non-trivial

because of the presence of the source terms. First, steady state solutions for the source term

of topography only are highlighted. Then, we exhibit steady state solutions for the Manning

friction source term only. Finally, a few words are given on the steady state solutions associ-

ated to both source terms of topography and friction.

1.1 Properties of the shallow-water equations

This section is devoted to highlighting some essential properties of the shallow-water

equations in one space dimension; it is organized as follows.
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First, we consider in Section 1.1.1 the homogeneous system, obtained by making the

source terms vanish in (1.1). We exhibit the eigenvalues of the Jacobian matrix of its �ux

function. These eigenvalues are associated to waves that appear when considering a Rie-

mann problem. The nature of these waves is then discussed by focusing on the characteristic

�elds.

Equipped with this algebraic study of the shallow-water system, Section 1.1.2 is then de-

voted to exhibiting the solution of the Riemann problem for the homogeneous shallow-water

equations. This process has been described in [112] (see also [150] for the case of a generic sys-

tem of conservation laws, and see [98] for the Euler equations with two different equations of

state). First, the general form of the solution is established. Then, examples are provided.

Finally, the source terms of topography and Manning friction are added to the system in

Section 1.1.3. The equations (1.1) are studied in the presence of these source terms, and a

stationary wave is exhibited.

1.1.1 The homogeneous system

The goal of this section is to show that the homogeneous shallow-water system is hyper-

bolic, and to provide some insight on the characteristic �elds that this system induces. We

consider a smooth solution of the following homogeneous system, obtained from (1.1):

8
><

>:

@t h + @x (hu) = 0 ;

@t (hu) + @x

�
hu2 +

1
2

gh2
�

= 0 :
(1.9)

In addition, we assume that h > 0. All the computations in this section will be made with

respect to the primitive variables U = t (h; u). This choice is made for the sake of simplicity,

since the properties of the system are independent of the choice of the variables. As a con-

sequence, in this section, the primitive variables U lie in the following restricted admissible

states space:


 U =
�

U = t (h; u) 2 R2 ; h > 0; u 2 R
	

:

The primitive variables

We begin by rewriting the shallow-water system (1.9) with the primitive variables U =
t (h; u). The goal here is to exhibit the eigenvectors of the Jacobian matrix of the �ux function.

For a smooth solution, the system (1.9) reads:

(
@t h + u@xh + h@xu = 0 ;

@t u + g@xh + u@xu = 0 ;

We can therefore cast the shallow-water system into the following nonconservative form:

@t U + A(U)@xU = 0 ; (1.10)
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where A(U) represents a matrix similar to the Jacobian matrix of the physical �ux function.

The matrix A(U) is given by:

A(U) =

 
u h

g u

!

:

Hyperbolicity of the system

The next step in the study of the shallow-water system consists in computing the eigen-

values of the matrix A(U). If A(U) is diagonalizable in R, then the shallow-water system is

hyperbolic. After straightforward computations, we get the following expressions for the two

eigenvalues of the matrix A(U):

� � (U) = u � c and � + (U) = u + c; (1.11)

where we have introduced the sound speed c, de�ned by

c =
p

gh: (1.12)

Sinceh > 0, we have � � (U) 2 R and � + (U) 2 R. In addition, the eigenvalues of A(U) satisfy

� � (U) < � + (U). Therefore, for h > 0, the shallow-water system is strictly hyperbolic, since

its eigenvalues are real and distinct.

Nature of the characteristic �elds

Next, the nature of the characteristic �elds associated to the hyperbolic problem (1.10)

is studied. This study involves the computation of the eigenvectors R� (U) and R+ (U) of

the Jacobian matrix A(U). The nature of the characteristic �elds is given by the following

de�nition.

De�nition 1.1. Let C� (U) := r U � � (U) � R� (U). The following three cases arise:

1. if C� (U) 6= 0 for all U 2 
 U , then the characteristic �eld associated to the eigenvalue

� � (U) is Genuinely NonLinear(GNL);

2. if C� (U) = 0 for all U 2 
 U , then the characteristic �eld associated to � � (U) is Linearly

Degenerate(LD);

3. otherwise, we cannot conclude on the nature of the characteristic �eld.

We now determine the nature of the characteristic �elds of the shallow-water equations.

The eigenvectors associated to� � (U) are given by:

R� (U) =

 
� h

p
gh

!

:

As a consequence, the quantityC� (U) satis�es:

C� (U) =
3
2

p
gh:

Sinceh > 0, we have proven that C� (U) 6= 0 for all U 2 
 U , and that both �elds are GNL.
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Riemann invariants

To conclude the study of the algebraic properties of the homogeneous shallow-water equa-

tions, we turn to computing the Riemann invariants. These quantities are constant in speci�c

cases, described in the next section. They are functions�( U), governed by the following

equation:

r U �( U) � R(U) = 0 : (1.13)

In the present context, since both components of the eigenvectors are nonzero, (1.13) can be

rewritten as follows:
dU1

R1
� (U)

=
dU2

R2
� (U)

; (1.14)

where R1
� (U) 6= 0 and R2

� (U) 6= 0 are the two components of the eigenvector R� (U), and

where U1 and U2 are the two components of the vector U of the primitive variables. The

above equation is therefore equivalent to:

dh
� h

=
du

p
gh

;

which yields, after straightforward computations, the following Riemann invariant for the

�eld associated to � � (U):

u � 2
p

gh: (1.15)

1.1.2 Riemann problem

Now, we consider a Riemann problem for the shallow-water equations. It is a Cauchy

problem with discontinuous initial data, as follows:

8
>><

>>:

@t W + @xF (W ) = 0 ;

W (0; x) =

(
WL if x < 0;

WR if x > 0;

(1.16)

where W 2 
 and F (W ) are given by (1.2). The initial data is made of two constant states

WL and WR , respectively de�ned by WL = t (hL ; qL ) and WR = t (hR ; qR ). We assume that

hL 6= hR , or qL 6= qR , or both hL 6= hR and qL 6= qR . Otherwise, the initial condition is

constant, and it stays solution to (1.16) for all t > 0. Introducing the left and right velocities

uL and uR , the dischargesqL and qR satisfy qL = hL uL and qR = hRuR .

The con�guration of the exact solution of the Riemann problem is displayed on (1.2). In

particular, this Riemann solution is self-similar, i.e. it only depends on x=t instead of the

individual variables x and t.

We know that the shallow-water system is hyperbolic and admits two GNL characteristic

�elds. Therefore, the exact solution to the Riemann problem (1.16) possesses two waves, the

�rst one associated to the eigenvalue � � , and the second one associated to� + . These two

waves will henceforth be referred to as the 1-waveand the 2-wave. Since both �elds are GNL,

each of these two waves may either be ashock waveor a rarefaction wave. On the one hand, a

shock wave connects two constant states with a single jump discontinuity, and the Rankine-
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Figure 1.2 – Riemann problem con�guration. The gray area represents the area where the
solution of the Riemann problem (2.19) lies.

Hugoniot relations are satis�ed (see [79, 150] for instance). These relations are proven in

Appendix A in a more general setting, and they are given by

� (WR � WL ) = F (WR ) � F (WL ); (1.17)

where � is the velocity of the discontinuity. In the context of the shallow-water equations, the

Rankine-Hugoniot relations read (see [112] for instance):

8
><

>:

� [h] = [ q];

� [q] =
�

q2

h
+

1
2

gh2
�
;

(1.18)

where [X ] = X R � X L represents the jump of the quantity X across the discontinuity. On the

other hand, a rarefaction wave connects the two constant states with a continuous function.

Within a rarefaction wave, the Riemann invariants (1.15) are constant. Between these two

waves, the Riemann solution is constant, and is denoted W� . The structure of such a solution

is displayed on Figure 1.3.

Figure 1.3 – Riemann problem for the shallow-water equations, in the case where the 1-wave
is a rarefaction wave and the 2-wave is a shock wave.

The goal of the present section is to provide the solution to the Riemann problem (1.16)

with respect to the values of WL and WR . The following lemmas state suf�cient conditions for
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the 1-wave or the 2-wave to be either rarefaction waves or entropy-satisfying shock waves.

The entropy condition we impose on the shock wave is a suf�cient condition for the entropy

inequality (1.5) to be satis�ed (see [107, 79] for instance).

Lemma 1.2. The 1-wave of the Riemann problem (1.16) is ararefaction wave if the Riemann invari-

ants (1.15) are constant across the wave and if the eigenvalues are ordered, as follows:

(
� � (UL ) � � � (U� );

uL + 2
p

ghL = u� + 2
p

gh� :

Similarly, the 2-wave is a rarefaction wave if:

(
� + (U� ) � � + (UR );

u� � 2
p

gh� = uR � 2
p

ghR :

Lemma 1.3. The 1-wave of the Riemann problem (1.16) is anentropy-satisfying shock wave with

velocity� if it satis�es the Lax entropy condition and the Rankine-Hugoniot relations (1.18). Namely,

the following relations have to be satis�ed:

8
>>><

>>>:

� (U� ) � � � � (UL );

� (h� � hL ) = h� u� � hL uL ;

� (h� u� � hL uL ) = h� u2
� +

1
2

gh2
� � hL u2

L �
1
2

gh2
L :

Similarly, the 2-wave is an entropy-satisfying shock wave if:

8
>>><

>>>:

� (UR ) � � � � (U� );

� (hR � h� ) = hRuR � h� u� ;

� (hRuR � h� u� ) = hRu2
R +

1
2

gh2
R � h� u2

� �
1
2

gh2
� :

Thanks to these lemmas, the following result holds.

Proposition 1.4. The natures of the waves of the Riemann problem (1.16) are given as follows.

• The 1-wave is:

– a rarefaction wave ifh� � hL , u� � uL andu� = uL � 2
p

g
� p

h� �
p

hL
�
;

– a shock wave ifh� � hL , u� � uL andu� = uL �

s
g
2

�
1

hL
+

1
h�

�
(h� � hL ).

• The 2-wave is:

– a rarefaction wave ifh� � hR , u� � uR andu� = uR � 2
p

g
� p

hR �
p

h�
�
;

– a shock wave ifh� � hR , u� � uR andu� = uR �

s
g
2

�
1
h�

+
1

hR

�
(hR � h� ).

Proof. The proof of this result relies on using Lemma 1.2 and Lemma 1.3 to determine the

necessary conditions for the nature of each wave. The computations involved are straight-

forward but quite tedious, and we do not write them here; the reader is referred to [112] for

instance.
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The unknown intermediate state W� = t (h� ; h� u� ) can now be computed by arguing

Proposition 1.4 to exhibit the two relevant relations linking W� to the known states WL and

WR . However, this computation cannot be done analytically in the general case, and a root-

�nding algorithm, such as Newton's method, is required. In addition, the knowledge of this

value does not provide enough information to get the full Riemann problem solution. Indeed,

the velocities of the shock wave and the rarefaction wave still have to be determined. We also

need to provide a value of both h and u within the fan of a rarefaction wave.

The velocity of the shock wave is given by the Rankine-Hugoniot conditions (1.18). There-

fore, if the 1-wave is a shock wave, then its velocity � 1 is given as follows:

� 1 =
q� � qL

h� � hL
: (1.19)

Similarly, if the 2-wave is a shock wave, then its velocity � 2 is given by:

� 2 =
qR � q�

hR � h�
: (1.20)

Regarding the rarefaction waves, we introduce the notion of headand tail of the wave.

The head of a rarefaction wave is the part of the fan that travels the fastest, while its tail is

the part that travels the slowest. If the 1-wave is a rarefaction wave, recall from Lemma 1.2

that � � (UL ) � � � (U� ). In this case, the head of the wave travels at the velocity � � (UL )

and its tail travels at � � (U� ). Similarly, if the 2-wave is a rarefaction wave, then we have

� + (U� ) � � + (UR ): the head of the wave travels at � + (UR ), while its tail travels at � + (U� ). See

Figure 1.4 for a Riemann problem where the 1-wave is a rarefaction wave and the 2-wave is a

shock wave.

Figure 1.4 – Riemann problem for the shallow-water equations, in the case where the 1-wave
is a rarefaction wave and the 2-wave is a shock wave. The wave speeds are displayed.

To achieve the full determination of the Riemann problem solution, we conclude by com-

puting the value of the solution within the fan formed by the rarefaction wave. This solution is

self-similar, i.e. it only depends on � := x=t. Note that, in the fan, the information U = t (h; u)

travels with the speed � � (U) for a 1-wave and � + (U) for a 2-wave. Therefore, within the fan,

we have � = x=t = � � (U). In addition, recall that the Riemann invariants (1.15) are constant
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in this fan. The combination of these two statements allow to uniquely determine the value of

U within the fan. If the 1-wave is a rarefaction wave, the value of U(� ) within the fan, denoted

by U1 = t (h1; u1), reads as follows:

8
><

>:

h1(� ) =
1
9g

�
uL + 2

p
ghL � �

� 2
;

u1(� ) = � +
p

gh1(� ):
(1.21)

Similarly, for a 2-wave, the value of U2(� ) is de�ned by:

8
><

>:

h2(� ) =
1
9g

�
uR � 2

p
ghR � �

� 2
;

u2(� ) = � �
p

gh2(� ):
(1.22)

We conclude this section by presenting four examples of exact Riemann solutions. The �rst

solution is made of two rarefaction waves, i.e. both the 1-wave and the 2-wave are rarefaction

waves. The second one is made of two shock waves, while the third one is a dam-break

solution, with the 1-wave being a rarefaction wave and the 2-wave being a shock wave. The

fourth and last one deals with the degenerate case of a dry dam-break, where the water height

of either the left or right state is zero.

Two-rarefaction case

The initial data of the �rst example is given as follows:

UL =

 
hL

uL

!

=

 
1

� 3

!

and UR =

 
hR

uR

!

=

 
1

3

!

: (1.23)

Physically speaking, this initial condition represents a body of water with uniform height,

but with two streams of water moving away from one another. Hence, the exact solution

consists in two rarefaction waves, linking the left and right states to an intermediate state

(computed using Proposition 1.4). Note that, in this speci�c case of two rarefaction waves,

the intermediate state U� can be computed exactly, to get:

8
><

>:

h� =
1

16g

�
uL � uR + 2

� p
ghL +

p
ghR

�� 2
;

u� =
1
2

(uL + uR ) �
p

g
� p

hR �
p

hL

�
:

Equipped with this intermediate state, the exact solution of the Riemann problem (1.16) with

the initial condition (1.23) is given as follows, with � = x=t:

UR (� ; UL ; UR ) =

8
>>>>>>>><

>>>>>>>>:

UL if � < � � (UL );

U1(� ) if � � (UL ) < � < � � (U� );

U� if � � (U� ) < � < � + (U� );

U2(� ) if � + (U� ) < � < � + (UR );

UR if � > � + (UR );

(1.24)
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where U1(� ) and U2(� ) are respectively given by (1.21) and (1.22), and the eigenvalues� � (U)

are de�ned by (1.11). The exact height and velocity are displayed on Figure 1.5 for t = 0 :1s

and x 2 [� 1; 1]. In addition, we display the water height and the velocity in the (x; t )-plane

for t 2 [0; 0:1] and x 2 [� 1; 1] on Figure 1.6 and Figure 1.7, respectively.

Figure 1.5 – Exact solution (1.24) of the Riemann problem (1.16) – (1.23) at timet = 0 :1s. This
solution is made of two rarefaction waves.

Figure 1.6 – Exact solution (1.24) of the dam-break problem (1.16) – (1.23). Representation of
the water height in two space dimensions, in the (x; t )-plane for t 2 [0; 0:1] and x 2 [� 1; 1].
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Figure 1.7 – Exact solution (1.24) of the dam-break problem (1.16) – (1.23). Representation of
the velocity in two space dimensions, in the (x; t )-plane for t 2 [0; 0:1] and x 2 [� 1; 1].

Two-shock case

Concerning the second example, we take the following initial data:

UL =

 
hL

uL

!

=

 
1

2

!

and UR =

 
hR

uR

!

=

 
1

� 2

!

: (1.25)

Such initial data produces two discontinuities, since the two streams of water are coming into

contact with each other. The exact solution hence involves two shock waves, linking the left

state and the right state to the intermediate state U� , whose computation uses Proposition 1.4.

This exact solution is hence given by:

UR (� ; UL ; UR ) =

8
>><

>>:

UL if � < � 1;

U� if � 1 < � < � 2;

UR if � > � 2;

(1.26)

where � 1 and � 2 are respectively given by (1.19) and (1.20). This exact solution is displayed

on Figure 1.8 for t = 0 :1s and x 2 [� 1; 1]. The exact solution in the (x; t )-plane, for t 2 [0; 0:1]

and x 2 [� 1; 1], is depicted on Figure 1.9 (water height) and on Figure 1.10 (velocity).

Wet dam-break

The third example is a wet dam-break. Initially, a large quantity of water is held by a dam

to form an arti�cial lake. At t = 0s, the dam breaks, thus liberating the water and making

it �ow downstream, where a smaller (but nonzero) quantity of water is present. Before the

dam breaks, the water is at rest; it starts moving as soon as the dam breaks. Therefore, the
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Figure 1.8 – Exact solution (1.26) of the Riemann problem (1.16) – (1.25) at timet = 0 :1s. This
solution is made of two shock waves.

Figure 1.9 – Exact solution (1.26) of the dam-break problem (1.16) – (1.25). Representation of
the water height in two space dimensions, in the (x; t )-plane for t 2 [0; 0:1] and x 2 [� 1; 1].

following initial data corresponds to a wet dam-break situation:

UL =

 
hL

uL

!

=

 
5

0

!

and UR =

 
hR

uR

!

=

 
1

0

!

: (1.27)

Applying Proposition 1.4, we show that the solution of the Riemann problem (1.16) with the

initial data (1.27) is made of a rarefaction wave traveling left and a shock wave traveling right,
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Figure 1.10 – Exact solution (1.26) of the dam-break problem (1.16) – (1.25). Representation of
the velocity in two space dimensions, in the (x; t )-plane for t 2 [0; 0:1] and x 2 [� 1; 1].

as follows:

UR (� ; UL ; UR ) =

8
>>>>><

>>>>>:

UL if � < � � (UL );

U1(� ) if � � (UL ) < � < � � (U� );

U� if � � (U� ) < � < � 2;

UR if � > � 2:

(1.28)

This structure corresponds to the ones sketched on Figure 1.3 and Figure 1.4. The exact so-

lution is displayed on Figure 1.11 for t = 0 :1s and x 2 [� 1; 1]. In addition, Figure 1.12 and

Figure 1.13 respectively display the exact height and the exact velocity in the (x; t )-plane for

t 2 [0; 0:1] and x 2 [� 1; 1]. This �gure may be compared to Figure 1.3 and Figure 1.4.

Figure 1.11 – Exact solution (1.28) of the dam-break problem (1.16) – (1.27) at timet = 0 :1s.
This 1-wave is a rarefaction wave and the 2-wave is a shock wave.
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Figure 1.12 – Exact solution (1.28) of the dam-break problem (1.16) – (1.27). Representation of
the water height in two space dimensions, in the (x; t )-plane for t 2 [0; 0:1] and x 2 [� 1; 1].

Figure 1.13 – Exact solution (1.28) of the dam-break problem (1.16) – (1.27). Representation of
the velocity in two space dimensions, in the (x; t )-plane for t 2 [0; 0:1] and x 2 [� 1; 1].

Dry dam-break

For the fourth and last experiment, we turn to a dry dam-break. This experiment consists in

considering the degenerate case of a vanishing water height. To achieve a dry dam-break, we

take the following initial conditions for the Riemann problem (1.16):

UL =

 
hL

uL

!

=

 
1:5

0

!

and UR =

 
hR

uR

!

=

 
0

0

!

: (1.29)

Such a Riemann problem is solved by taking the limit of the solution to the wet dam-break

(i.e. the previous example) when hR tends to 0. This process is explained in [57], where the

authors exhibit Ritter's solution [134]. From [57], the exact solution of the Riemann problem
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(1.16) with the initial data (1.29) reads as follows:

UR (� ; UL ; UR ) =

8
>><

>>:

UL if � < �
p

ghL ;

bU(� ) if �
p

ghL < � < 2
p

ghL ;

UR if � > 2
p

ghL ;

(1.30)

where the intermediate state bU is given by:

bU(� ) =

0

B
B
B
@

4
9g

� p
ghL �

�
2

� 2

2
3

� p
ghL + �

�

1

C
C
C
A

:

In this case, the 1-wave is a rarefaction wave and the 2-wave is a shock wave. In addition,

h� vanishes, while u� 6= 0 . Sinceh� = hR = 0 , the intermediate water height and the right wa-

ter height are identical. Hence, for the water height, the 2-wave is a shock wave between the

same water heights, and is therefore not visible. On the contrary, u� 6= uR , so both a rarefac-

tion wave and a shock wave are visible on the water velocity. Finally, one can show that the

shock wave travels at the same velocity as the tail of the rarefaction wave. As a consequence,

the constant intermediate state U� is never actually used, as shown by the expression (1.30) of

the exact solution.

The exact solution is displayed on Figure 1.14. We also display the exact solution in the

(x; t )-plane, on Figure 1.15 and on Figure 1.16, fort 2 [0; 0:1] and x 2 [� 1; 1]. To compute the

velocity in dry areas, we have assumed that it vanished as soon as the water height vanished.

Figure 1.14 – Exact water height (left panel) and exact velocity (right panel) (1.30) of the dam-
break problem (1.16) – (1.29) at timet = 0 :1s. The 1-wave is a rarefaction wave and the 2-wave
is a shock wave (not visible for the water height).

1.1.3 Algebraic study of the inhomogeneous system

We now turn to studying the shallow-water model equipped with two source terms, the

topography source term and the Manning friction source term. The system is governed by
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Figure 1.15 – Exact solution (1.30) of the dam-break problem (1.16) – (1.29). Representation of
the water height in two space dimensions, in the (x; t )-plane for t 2 [0; 0:1] and x 2 [� 1; 1].

Figure 1.16 – Exact solution (1.30) of the dam-break problem (1.16) – (1.29). Representation of
the velocity in two space dimensions, in the (x; t )-plane for t 2 [0; 0:1] and x 2 [� 1; 1].

the equations (1.1), as follows:

8
><

>:

@t h + @x (hu) = 0 ;

@t (hu) + @x

�
hu2 +

1
2

gh2
�

= � gh@xZ � kujujh2� � :
(1.31)

We recall that the smooth function Z represents the shape of the bottom topography and

depends only on the space variable x.

Now, we exhibit the eigenvalues of the Jacobian matrix of the system and the nature of

the characteristic �elds, to determine the consequences of the source terms presence in the

equations (see [109, 110, 12] for instance).
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A change of variables

To perform the algebraic study of the system, we introduce the function Y such that

Y (x) := x. Therefore, the function Y satis�es:

@xY = 1 and @t Y = 0 :

Regarding the topography function, we also note that

@t Z = 0 :

As a consequence, the shallow-water system with source terms (1.31) rewrites as follows:

8
>>>>>><

>>>>>>:

@t h + @x (hu) = 0 ;

@t (hu) + @x

�
hu2 +

1
2

gh2
�

= � gh@xZ � kujujh2� � @xY;

@t Z = 0 ;

@t Y = 0 :

(1.32)

For smooth solutions and positive water heights (i.e. h > 0), the system (1.32) reads:

8
>>>>><

>>>>>:

@t h + u@xh + h@xu = 0 ;

@t u + g@xh + u@xu + g@xZ + kujujh1� � @xY = 0 ;

@t Z = 0 ;

@t Y = 0 :

(1.33)

Hence, the shallow-water equations (1.31) rewrite under the condensed form

@t U + A(U)@xU = 0 ;

where U and A(U) are given by:

U =

0

B
B
B
B
@

h

u

Z

Y

1

C
C
C
C
A

and A(U) =

0

B
B
B
B
@

u h 0 0

g u g kujujh1� �

0 0 0 0

0 0 0 0

1

C
C
C
C
A

:

Hyperbolicity of the system

Straightforward computations show that the matrix A(U) possesses the following eigen-

values:

� � (U) = u �
p

gh ; � t (U) = 0 ; � f (U) = 0 ; � + (U) = u +
p

gh: (1.34)

Note that 0 is a double eigenvalue and that all four eigenvalues lie in R. To conclude on

the hyperbolicity of the system (1.33), we compute the eigenvectors of A(U). The eigenvec-

tors associated to the eigenvalues� � (U) are denoted by R� (U). There are two additional
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eigenvectors associated to� t (U) and � f (U). They are denoted by Rt (U) and Rf (U), and they

respectively correspond to the contributions of the topography and the friction. The eigen-

vectors are given by:

R� (U) =

0

B
B
B
B
@

� h
p

gh

0

0

1

C
C
C
C
A

, Rt (U) =

0

B
B
B
B
@

� gh

gu

gh � u2

0

1

C
C
C
C
A

and Rf (U) =

0

B
B
B
B
@

� kujujh2� �

ku2jujh1� �

0

gh � u2

1

C
C
C
C
A

: (1.35)

These eigenvectors form a basis ofR4 if u 6= �
p

gh. Hence, the Jacobian matrixA(U) is diag-

onalizable in R if u 6= �
p

gh. Therefore, under this condition, the system (1.33) is hyperbolic.

Nature of the characteristic �elds

Equipped with the hyperbolicity of the system, the next step in the study of its algebraic

properties is the determination of the nature of its characteristic �elds.

The eigenvectorsR� (U) associated to the eigenvalues� � (U) are de�ned by (1.35). Using

De�nition 1.1, the nature of the �eld associated to � � (U) is given by:

8U 2 
 U ; r U � � (U) � R� (U) =
3
2

p
gh 6= 0 :

Therefore, the characteristic �elds associated to � � (U) are GNL. As a consequence, the waves

associated to these �elds will either be rarefaction waves or shock waves.

For the eigenvalues � t (U) and � f (U), note that r U � t (U) = 0 and r U � f (U) = 0 . Hence,

from De�nition 1.1, the characteristic �elds associated to these eigenvalues are Linearly De-

generate (LD). A linearly degenerate �eld connects the left and right states with a contact dis-

continuity. This type of discontinuity is governed by the Rankine-Hugoniot conditions, like

a shock wave. In addition, Riemann invariants also apply to contact discontinuities: these

quantities are studied in the next paragraph.

Riemann invariants

From now on, the waves associated to the eigenvalues� � (U) and � + (U) will respectively

be labeled the 1-waveand the 2-wave. In addition, the waves associated to � t (U) and � f (U)

will be respectively called the t-waveand the f-wave. The goal of this paragraph is to study the

invariant quantities across the four waves.

First, we study Riemann invariants associated to � � (U). To ensure that these waves do

not have a vanishing velocity and that the system is hyperbolic, we assume that u 6= �
p

gh.

The following result states these Riemann invariants.

Lemma 1.5. The Riemann invariants for the 1-wave are:

u + 2
p

gh ; Z ; Y:
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In addition, the Riemann invariants for the 2-wave are:

u � 2
p

gh ; Z ; Y:

Proof. Recall the expression (1.35) of the associated eigenvectors. Since the third and fourth

components of R� (U) are zero, the de�nition (1.13) of the Riemann invariants ensures that

both quantities Z and Y are Riemann invariants for the 1-wave and the 2-wave. Then, the

third Riemann invariant is governed by (1.14). Straightforward computations prove that this

third Riemann invariant is u + 2
p

gh for the 1-wave and u � 2
p

gh for the 2-wave. The proof

is thus achieved.

Second, we turn to the t-wave, associated to the eigenvalue � t (U) = 0 . For this wave, the

Riemann invariants are given by the following result.

Lemma 1.6. The Riemann invariants for the t-wave, i.e. the wave associated to the topography source

term, are given by:

hu ;
u2

2
+ g(h + Z ) ; Y: (1.36)

Proof. Recall the expression (1.35) of the eigenvectorRt (U) associated to� t (U). Note that the

fourth component R4
t (U) of this eigenvector is zero. Therefore, after (1.13),Y is a Riemann

invariant for this wave. Now, we determine the other two Riemann invariants. They satisfy:

dU1

R1
t (U)

=
dU2

R2
t (U)

=
dU3

R3
t (U)

;

or, equivalently,
dh

� gh
=

du
gu

=
dZ

gh � u2 : (1.37)

The �rst equality of (1.37) rewrites as follows:

d(hu) = 0 :

Hence, the dischargeq = hu is a Riemann invariant for t-wave.

A third Riemann invariant is now determined. The second equality of (1.37) rewrites:

�
g �

q2

h3

�
dh + gdZ = 0 :

Using the constant discharge, we show that the following quantity is a Riemann invariant for

the t-wave:
u2

2
+ g(h + Z ):

All three Riemann invariants have been determined, and the proof is achieved.

Third, we focus on the f-wave, associated to � f (U). The following result gives the Rie-

mann invariants for this wave.
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Lemma 1.7. The Riemann invariants for the f-wave, i.e. the wave associated to the friction source

term, are given by:

q ; g
h� +2

� + 2
� q2 h� � 1

� � 1
+ kqjqjY ; Z: (1.38)

Proof. The eigenvector Rf (U), associated to the f-wave, is given by (1.35). Note that its third

component R3
f (U) is zero. As a consequence, arguing (1.13) yields thatZ is a Riemann invari-

ant for the f-wave. The other Riemann invariants satisfy:

dU1

R1
f (U)

=
dU2

R2
f (U)

=
dU4

R4
f (U)

:

The above equalities rewrite as follows:

dh
� h

=
du
u

=
kujujh1� �

gh � u2 dY: (1.39)

The �rst equality of (1.39) yields

d(hu) = 0 :

Therefore, a Riemann invariant for the f-wave is the discharge q = hu.

Using this Riemann invariant, the second equality of (1.39) rewrites as follows:

(gh� +1 � q2h� � 2)dh + kqjqjdY = 0 :

Hence, the last Riemann invariant for this wave is the following:

g
h� +2

� + 2
� q2 h� � 1

� � 1
+ kqjqjY:

The three Riemann invariants for the f-wave have thus been determined, which completes

the proof.

As a consequence of Lemma 1.6 and Lemma 1.7, we notice that the discharge is constant

across the stationary contact discontinuity associated to the double eigenvalue 0, since it is a

Riemann invariant for both the t-wave and the f-wave.

1.2 Steady state solutions

In the previous section, we have exhibited the algebraic properties of the inhomogeneous

shallow-water equations. Now, in this section, we study the steady state solutions, which

are speci�c solutions of the shallow-water system with the source terms of topography and

Manning friction whose time derivative is zero.

Recall that the inhomogeneous shallow-water system is governed by (1.1). As a conse-

quence, a solution W = t (h; q) of the shallow-water equations with both topography and
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Manning friction is a steady state solution if is satis�es the following identities:

8
><

>:

@xq = 0 ;

@x

�
q2

h
+

1
2

gh2
�

= � gh@xZ � kqjqjh� � :
(1.40)

The �rst equation of (1.40) immediately yields that q = cst . This constant value is denoted,

throughout the whole manuscript, by q0. This very important remark greatly simpli�es the

study of the steady states, since only the second equation of (1.40) is not trivial.

Therefore, to exhibit the steady states, the second equation of (1.40) is studied in the fol-

lowing three cases:

1. �rst, in Section 1.2.1, we consider a vanishing friction contribution, by taking k = 0 ;

2. second, in Section 1.2.2, we consider a vanishing topography contribution, by enforcing

a �at topography Z = cst , thus ensuring that @xZ = 0 ;

3. third, in Section 1.2.3, we give some comments on the steady state solutions with both

friction and topography.

1.2.1 Topography steady states

In this section, we focus on the well-known steady state solutions of the shallow-water

equations with topography only (see for instance [44]). Such steady states are obtained by

neglecting the friction contribution in (1.40), i.e. by taking k = 0 . As a consequence, these

solutions are governed by the following set of equations:

8
><

>:

@xq = 0 ;

@x

�
q2

h
+

1
2

gh2
�

= � gh@xZ:
(1.41)

Hence, as expected, the steady discharge is constant, and its value is denoted byq0. Therefore,

for q0 2 R, the topography steady states are completely described by the following equation,

which links the unknown water height h to the known topography Z :

@x

�
q2

0

h
+

1
2

gh2
�

+ gh@xZ = 0 : (1.42)

The focus of this section is the study of the equation (1.42). This study is well-known, but

it is recalled here to introduce several techniques which will be instrumental to the study of

the steady state solutions for the friction source term. We begin by deriving smooth steady

states for a nonzero water height. Afterwards, we give a word on smooth steady states with

a dry area, i.e. an area whereh = 0 . Finally, the case of a discontinuous steady state solution

is brie�y discussed.
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1.2.1.1 Smooth steady states

The smooth steady states with q0 = 0 consist in the lake at reststeady state, given by:

h + Z = cst : (1.43)

This steady state solution is well-known, and it has been widely studied (see for instance

[87, 26, 74, 19, 7]).

We now assume that q0 6= 0 and study the equation (1.42) in order to exhibit the moving

steady states. For smooth h > 0 and smooth Z , (1.42) rewrites as follows:

@x

�
q2

0

2h2 + g(h + Z )
�

= 0 ; (1.44)

which is nothing but a statement of Bernoulli's principle.

We make here an interesting remark. Note that q0 = hu, where both h and u depend on x.

As a consequence, the equation (1.44) rewrites:

u2

2
+ g(h + Z ) = cst :

This uniform quantity is usually called the total head(see [86] for instance); we denote it by

E. This equation describes the moving steady state solutions of the shallow-water equations

with topography. The same equation, as well as the uniformity of the discharge, described

the Riemann invariants (1.36) across the contact discontinuity associated to the topography

source term. As a consequence, Bernoulli's principle governs both the steady state solutions

and the Riemann invariants. We also remark that the total head E is closely related to the

entropy �ux eG de�ned by (1.8). Indeed, we have bG = qE.

We now study the equation (1.44) with respect to h in order to obtain a characterization

of the steady water height h associated to a uniform discharge q0 and a given topography

function Z . Such a study is present in [44] in the context of Riemann invariants, and in [123]

for steady states. Throughout the rest of this section, h is assumed to be a positive function of

x.

Let x0 2 R. We denote by h0 and Z0 the respective values h(x0) and Z (x0) of the water

height and the topography at the point x0. Integrating the equation (1.44) on [x0; x] immedi-

ately yields:
q2

0

2h2 + g(h + Z ) �
q2

0

2h2
0

� g(h0 + Z0) = 0 ; (1.45)

where h = h(x) and Z = Z (x). Recall that the smooth function Z is assumed to be known.

Hence, the knowledge of the water height h0 at the point x0 and of the uniform discharge

q0 is enough to determine the steady water height h at any point x, provided the equation

(1.45) admits at least one solution. Determining the existence and uniqueness of a solution to

(1.45), as well as the properties of such a solution, is therefore the focus of the remainder of

this section.

For the sake of simplicity in the notations, we now introduce the function � , de�ned as
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follows:

� (h; Z; q0; h0; Z0) :=
q2

0

2h2 + g(h + Z ) �
q2

0

2h2
0

� g(h0 + Z0); (1.46)

such that (1.45) rewrites

� (h; Z; q0; h0; Z0) = 0 : (1.47)

The function � thus depends on the unknown steady water height h at point x, as well as on

the parameters Z; q0; h0; Z0, which are assumed to be known.

The study of solutions to (1.47) is now performed. As a �rst step, we seek the variations

of the function h 7! � (h; Z; q0; h0; Z0). To that end, we differentiate � with respect to h, as

follows:
@�
@h

(h; Z; q0; h0; Z0) = �
q2

0

h3 + g: (1.48)

As a consequence, the derivative of � with respect to h vanishes for h = hc, with

hc =
�

q2
0

g

� 1� 3
: (1.49)

From (1.48), we deduce the following result.

Lemma 1.8. With hc de�ned by (1.49), the function� de�ned by (1.46) satis�es the following proper-

ties:

• h 7! � (h; Z; q0; h0; Z0) is a strictly decreasing function forh < h c;

• h 7! � (h; Z; q0; h0; Z0) is a strictly increasing function forh > h c.

The function� therefore admits a single extremum, located ath = hc. Moreover, this extremum is a

minimum.

Now, we determine the existence and uniqueness of solutions to the equation (1.47) (or,

equivalently, (1.45)). To that end, we study the sign of � . After straightforward computations,

the following result is proven.

Lemma 1.9. The function� de�ned by (1.46) admits the following limits:

• lim
h! 0+

� (h; Z; q0; h0; Z0) = + 1 ;

• lim
h! + 1

� (h; Z; q0; h0; Z0) = + 1 .

In addition, the following evaluation of� at hc (de�ned by (1.49)) is veri�ed:

� c(Z ) := � (hc; Z; q0; h0; Z0) =
q2

0

2

�
3
h2

c
�

1
h2

0

�
+ g(Z � Z0 � h0):

Before combining Lemma 1.8 and Lemma 1.9 to prove a result on the existence of roots of

the function � , we give examples of situations that may be encountered. For these examples,

the quantities take the following values:

• q0 =
p

g, so that hc = 1 ;

• h0 = hc = 1 ;

• Z0 = 0 :75.
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As a consequence, Lemma 1.9 yields, after straightforward computations:

� c(Z ) = g(Z � Z0):

From Lemma 1.8, the function � reaches its minimum for h = hc. The above equality shows

that � c(Z ) � 0 if and only if Z � Z0. Therefore, the number of zeros of the function � is tied

to the sign of � c(Z ). To highlight this property, we display on Figure 1.17 the function � for

Z 2 f 0:7; 0:75; 0:8g.

Figure 1.17 – Sketches of� (h; Z;
p

g;1; 0:75) for h 2 [0:75; 1:25] and for different values of Z .
Red curve: Z = 0 :8, no zero for � . Blue curve: Z = 0 :75, unique zero for � . Green curve:
Z = 0 :7, two distinct zeros for � .

Equipped with Lemma 1.8 and Lemma 1.9, the properties inferred from the example pre-

sented in Figure 1.17 are summarized in the following result.

Proposition 1.10. Assumeh > 0 and q0 6= 0 . Then,hc > 0 according to (1.49), and following

properties hold.

(i) If � c(Z ) > 0, then there is no solution to the equation (1.47).

(ii) If � c(Z ) = 0 , then the equation (1.47) admits a unique solution. This solution,h = hc, is a

double root of the functionh 7! � (h; Z; h0; q0; Z0).

(iii) If � c(Z ) < 0, then the equation (1.47) admits two distinct solutions,hsup 2 (0; hc) andhsub 2

(hc; + 1 ).

Proof. The proof of this result relies on using the properties of � we have obtained above.

From Lemma 1.8, the function � admits a unique minimum, reached for h = hc. Moreover,

from Lemma 1.9, the function � tends to in�nity as h tends to 0+ or in�nity. Therefore, the

number of zeros of � depends on the sign of its minimum value � c(Z ) = � (hc; Z; q0; h0; Z0).

Equipped with these results, the proofs of (i), (ii) and (iii) are obvious. The proof is thus

achieved.
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Note that the three assertions of Proposition 1.10 respectively correspond to the red, blue

and green curves of Figure 1.17.

In the third assertion of Proposition 1.10, we have labeled the two solutions as hsup and

hsub. These denominations are connected to the Froude number, de�ned below.

De�nition 1.11. The Froude numberis a dimensionless quantity de�ned by:

Fr =
juj
c

; (1.50)

where u is the velocity of the water and c =
p

gh is the sound speed. On the one hand, the

�ow is called supercritical(or torrential) if Fr > 1, which corresponds to a large water velocity

and/or a small water height. On the other hand, it is called subcritical(or �uvial ) if Fr < 1, i.e.

for a small water velocity and/or a large water height.

In the current context of a steady state solution, the Froude number reads:

Fr =
jq0j

p
gh3

=
�

hc

h

� 3� 2
: (1.51)

As a consequence,h < h c corresponds to a supercritical �ow, while h > h c corresponds to

a subcritical �ow. The quantity hc is hence called thecritical height. This remark is the basis

for the notations hsup and hsub introduced in Proposition 1.10 to label the two roots of the

function � , since hsup 2 (0; hc) is a supercritical solution and hsub 2 (hc; + 1 ) is a subcritical

solution.

Equipped with Proposition 1.10 and the above remark, we state the following corollary of

Proposition 1.10.

Corollary 1.12. Assumeh > 0 andq0 6= 0 . Thus,hc > 0 according to (1.49). LetZc be a critical

topography value, given by:

Zc = Z0 + h0 +
hc

2

�
h2

c

h2
0

� 3
�

:

The following properties, concerning the solutions of (1.47), hold.

(i) If Z > Z c, then there is no solution to the equation (1.47).

(ii) If Z = Zc, then the equation (1.47) admits a unique solution. This solution,h = hc, is a double

root of the functionh 7! � (h; Z; h0; q0; Z0).

(iii) If Z < Z c, then the equation (1.47) admits two distinct solutions,hsup 2 (0; hc) and hsub 2

(hc; + 1 ).

Proof. This result directly follows from noting that � c(Z ) > 0 if and only if Z > Z c. Thus, the

proof is achieved by invoking Proposition 1.10.

Remark 1.13. Assume that h > 0 and h 6= hc. From (1.42), the derivative of h with respect to

x reads

@xh =
h3@xZ
h3

c � h3 :

Therefore, if the solution is subcritical, i.e. h > h c, then the sign of @xh is the opposite of

the sign of @xZ , whereas the sign of @xh is that of @xZ if the solution is supercritical. These
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results are in accordance with the subcritical and supercritical experiments presented in [86]

for instance.

Both Proposition 1.10 and Corollary 1.12, as well as Remark 1.13, are illustrated with the

following example. This example consists in exhibiting a solution to (1.47) in the context of

Figure 1.17, i.e. with q0 =
p

g, h0 = 1 and Z (x0) = 0 :75. Note that, with this value of q0, we

have h0 = hc = 1 , and Corollary 1.12 yields Zc = Z0 = 0 :75. Hence, a steady state will exist

if and only if Z (x) � 0:75. In order to check this property, we take the following topography

function:

Z (x) =
1
4

+ cos2
�

� (x � x0) +
�
4

�
:

With x0 = 0 :75, this topography function satis�es the required property that Z (x0) = 0 :75.

Equipped with the topography function, we now solve (1.47), using Newton's method, for

x 2 [0:65; 1:35]. The results are displayed on Figure 1.18.

Figure 1.18 – Solutionsh(x) of (1.47) (where they exist). Full line: subcritical solution. Dotted
line: supercritical solution. Gray area: topography.

For x 2 [0:65; 0:75) [ (1:25; 1:35], we have Z (x) > Z c. Hence, after Proposition 1.10 and

Corollary 1.12, the equation (1.47) does not admit a solution on this domain. The results

presented on Figure 1.18 are in good agreement with this conclusion. In addition, the topog-

raphy is decreasing for x < 1, and increasing for x > 1. As expected, both the supercritical

and subcritical solutions exhibit the behavior predicted by Remark 1.13.

We have thus completed the study, for the topography source term only, of smooth steady

state solutions with positive water heights. More examples of steady state solutions will be

provided in Chapter 3.

1.2.1.2 Case of a dry area

To complete the determination of smooth steady state solutions for the topography source

terms, we now turn to the study of steady states involving dry areas, i.e. areas where the
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water height is zero. The following result characterizes a steady state solution where a dry

area is present.

Proposition 1.14. As soon as a dry area is involved, smooth steady states must be at rest.

Proof. We begin by de�ning the kinetic energy in a wet area where h > 0, as follows:

E =
1
2

q2

h
:

Since we inject a bounded quantity of energy at the initial time, the kinetic energy has to be

bounded, i.e.

kEk1 < + 1 :

The above formula yields

lim
h! 0

q2

h
= lim

h! 0
E < + 1 :

As a consequence, we necessarily haveq = O(
p

h) when h tends to 0+ . Thus, we immediately

obtain that, if there is some xD 2 R such that h(xD ) = 0 , then q(xD ) = 0 . Now, recall from

(1.41) that, for a steady state,@xq = 0 . Therefore, for all x 2 R, q(x) = q(xD ) = 0 , i.e. the water

is at rest. We conclude that, as soon as a smooth steady state solution involves a dry area, this

steady state must be at rest.

This situation of a steady state with a dry area is displayed on Figure 1.19.

Figure 1.19 – Steady state solution with a dry area. The gray area is the topography.

1.2.1.3 Discontinuous steady state solutions

Finally, we give a few words on discontinuous steady state solutions. Such solutions are

piecewise smooth functions W , whose smooth pieces verify the Bernoulli relation (1.44), and

whose discontinuities satisfy the Rankine-Hugoniot relations (see Appendix A), as well as en

entropy condition. We assume that the topography function Z is also piecewise smooth.

In the present context, the Rankine-Hugoniot relations (A.2) read:

8
><

>:

� [h] = [ q];

� [q] =
�

q2

h
+

1
2

gh2
�
:
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However, note that the discontinuities necessarily have to be stationary for a steady solu-

tion. Therefore, their velocity � , present in the Rankine-Hugoniot relations, vanishes. As a

consequence, the Rankine-Hugoniot relations rewrite as follows:

8
><

>:

[q] = 0 ;
�

q2

h
+

1
2

gh2
�

= 0 :

In particular, the discharge is constant across the discontinuity.

The entropy inequality, in the presence of the topography source term only, is given by

(1.7) (see [5, 12] for instance). In the current context of a steady state solution, the entropy

inequality (1.7) reads:

@x eG(W; Z ) � 0;

with eG(W; Z ) given by (1.8).

As a consequence, for a piecewise smooth topography function Z , a piecewise smooth

steady state solution W = t (h; q) satis�es the following properties (see [12]):

• the discharge q = q0 is uniform throughout the domain;

• if h and Z are smooth, then the Bernoulli relation @x

�
q2

0

2h2 + g(h + Z )
�

= 0 is veri�ed;

• across a discontinuity of h or Z , the water height satis�es the following two relations:

– the jump relation
�

q2
0

h
+

1
2

gh2
�

= 0 ;

– the discrete entropy inequality
�
q0

�
q2

0

2h2 + g(h + Z )
��

� 0.

Such an approach has been used in [86] for the shallow-water equations with topography, to

de�ne the transcritical �ow with shocksteady state solution.

1.2.2 Friction steady states

After having exhibited steady state solutions for the topography source term in the previ-

ous section, we now turn to steady state solutions for the Manning friction source term only.

To that end, we take k 6= 0 and a �at topography, i.e. @xZ = 0 . As a consequence, the steady

state solutions are governed by the following set of equations:

8
><

>:

@xq = 0 ;

@x

�
q2

h
+

1
2

gh2
�

= � kqjqjh� � :
(1.52)

From the �rst equation of (1.52), we recover that the discharge must be uniform, and we label

this uniform discharge q0, as usual. Equipped with this notation, only the second equation

governs the water height for steady state solutions, as follows:

@x

�
q2

0

h
+

1
2

gh2
�

= � kq0jq0jh� � : (1.53)



54 CHAPTER 1. THE SHALLOW-WATER EQUATIONS

Note that, if q0 = 0 , the friction source term vanishes, and (1.53) implies that h = cst . This

behavior is to be expected. Indeed, if the water is at rest, there is no bottom friction. Therefore,

from now on, we only consider steady states with q0 6= 0 , i.e. moving steady states. First,

smooth steady states are studied. Then, we suggest a way to de�ne steady states with a jump

discontinuity.

1.2.2.1 Study of smooth steady states

The goal of this section is to study the equation (1.53) with k 6= 0 , q0 6= 0 and assuming a

positive smooth water height h(x) > 0. In this case, the equation (1.53) rewrites as follows:

�
� q2

0h� � 2 + gh� +1 �
@xh + kq0jq0j = 0 ; (1.54)

which in turn yields:

@x

�
� q2

0
h� � 1

� � 1
+ g

h� +2

� + 2
+ kq0jq0jx

�
= 0 : (1.55)

Note that we once again recover the Riemann invariant given by (1.38). Now, we set x0 2 R,

and we introduce the notation h0 = h(x0). The relation (1.55) is then integrated on (x0; x), to

get:
� q2

0

� � 1

�
h� � 1 � h� � 1

0

�
+

g
� + 2

�
h� +2 � h� +2

0

�
+ kq0jq0j(x � x0) = 0 : (1.56)

The solutions h of (1.56) represent the water height for steady state solutions. To shorten the

notations, we de�ne

� (h; x; q0; x0; h0) :=
� q2

0

� � 1

�
h� � 1 � h� � 1

0

�
+

g
� + 2

�
h� +2 � h� +2

0

�
+ kq0jq0j(x � x0); (1.57)

such that (1.56) rewrites

� (h; x; q0; x0; h0) = 0 : (1.58)

The goal is now to �nd zeros of the function � (h; x; q0; x0; h0). First, we compute the

derivative of � with respect to h, as follows:

@�
@h

(h; x; q0; x0; h0) = � q2
0h� � 2 + gh� +1 :

Hence, sinceh > 0, the derivative of � with respect to h vanishes for h = hc, with hc de�ned

by (1.49). Note that the same critical height hc appears in the previous section, in the case

where only the topography source term was present. The following result therefore holds.

Lemma 1.15. With hc de�ned by (1.49), the function� de�ned by (1.57) satis�es the following prop-

erties:

• h 7! � (h; x; q0; x0; h0) is a strictly decreasing function forh < h c;

• h 7! � (h; x; q0; x0; h0) is a strictly increasing function forh > h c.

The function� therefore admits a single extremum, located ath = hc. Moreover, this extremum is a

minimum.
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Equipped with the variations of � , we now turn to determining the sign of this function

to give existence results for solutions to (1.58) (or, equivalently, to (1.56)). First, we note that

the following limit obviously holds:

lim
h! + 1

� (h; x; q0; x0; h0) = + 1 : (1.59)

Then, let � ` (x) denote the evaluation � (0; x; q0; x0; h0) of � for h = 0 . Concerning � ` (x), the

following sequence of equalities holds:

� ` (x) := � (0; x; q0; x0; h0) = h� � 1
0

�
q2

0

� � 1
�

gh3
0

� + 2

�
+ kq0jq0j(x � x0)

= gh� � 1
0

�
h3

c

� � 1
�

h3
0

� + 2

�
+ kq0jq0j(x � x0);

(1.60)

where hc is de�ned by (1.49). Finally, we denote by � c(x) the value of � for h = hc, to get:

� c(x) := � (hc; x; q0; x0; h0) = � ` (x) � h� � 1
c

�
q2

0

� � 1
�

gh3
c

� + 2

�

= � ` (x) � gh� � 1
c

�
h3

c

� � 1
�

h3
c

� + 2

�

= � ` (x) �
3gh� +2

c

(� � 1)(� + 2)
:

(1.61)

We remark that � c(x) < � ` (x). This was expected from Lemma 1.15, since� is a strictly

decreasing function on (0; hc). The following result summarizes the equations (1.59), (1.60)

and (1.61).

Lemma 1.16. With hc given by (1.49), the function� de�ned by (1.57) admits the following evalua-

tions:

• � ` (x) := � (0; x; q0; x0; h0) = gh� � 1
0

�
h3

c

� � 1
�

h3
0

� + 2

�
+ kq0jq0j(x � x0),

• � c(x) := � (hc; x; q0; x0; h0) = � ` (x) �
3gh� +2

c

(� � 1)(� + 2)
< � ` (x),

as well as the following limit

lim
h! + 1

� (h; x; q0; x0; h0) = + 1 :

To better understand Lemma 1.15 and Lemma 1.16, we now present sketches of the func-

tion � for a speci�c set of variables. We take the following values:

• q0 = �
p

g=8, so that hc = 0 :25;

• h0 = hc = 0 :25;

• x0 = 0 :75.

As a consequence, Lemma 1.16 yields:

� ` (x) =
3g

(� � 1)(� + 2)
(0:25)� +2 �

kg
64

(x � x0) and � c(x) = �
kg
64

(x � x0):
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Recall from Lemma 1.15 that the function � reaches its minimum for h = hc. The number of

zeros of he function � is therefore related to the signs of � ` and � c. This property is highlighted

by Figure 1.20, where � is displayed for x 2 f 0:7; 0:75; 0:8; 0:85g and k = 1 .

Figure 1.20 – Sketches of� (h; x; �
p

g=8; 0:75; 0:25) for h 2 [0; 0:41] and for different values of
x. Red curve: x = 0 :7, no zero for � . Blue curve: x = 0 :75, unique zero for � . Green curve:
x = 0 :8, two distinct zeros for � . Cyan curve: x = 0 :85, unique zero for � .

The next result summarizes the conditions for the function � to possess one or more zeros,

and thus for one or more solutions of (1.58) to exist.

Proposition 1.17. Assumeh > 0 andq0 6= 0 . Thus,hc > 0 according to (1.49), and the following

assertions hold.

(i) If � c(x) > 0, then there is no solution to the equation (1.58).

(ii) If � c(x) = 0 , then the equation (1.58) admits a unique solution. This solution,h = hc, is a

double root of the functionh 7! � (h; x; q0; x0; h0).

(iii) If � c(x) < 0 and � ` (x) > 0, then the equation (1.58) admits two distinct solutions,hsup 2

(0; hc) andhsub 2 (hc; + 1 ).

(iv) If � c(x) < 0 and� ` (x) � 0, then the equation (1.58) admits a unique solutionhsub 2 (hc; + 1 ).

Proof. The proof of this result relies on using Lemma 1.15 and Lemma 1.16.

From Lemma 1.15, the function � reaches its unique minimum � c for h = hc. The proofs

of (i) and (ii) are therefore immediate.

If � c < 0, there is at least one zero of� located in (hc; + 1 ). The number of zeros of � now

depends on the value of � ` (x) = � (0; x; q0; x0; h0), given by Lemma 1.16.

– On the one hand, if � ` > 0, then the function � admits another zero, located in (0; hc).

– On the other hand, if � ` < 0, then the function � does not admit another zero.
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– Finally, if � ` = 0 , then � (0; x; q0; x0; h0) = 0 , i.e. h = 0 is a solution to (1.58). However,

this solution is not admissible since we have assumed h 6= 0 in order to proceed with the

previous computations.

The assertions (iii) and (iv) are thus proven, which concludes the proof.

Note that the four assertions of Proposition 1.17 respectively correspond to the red, blue,

green and cyan curves of Figure 1.20.

The same remark as in the topography case can be made here. Indeed, the Froude num-

ber is still de�ned by (1.50) in the general case and by (1.51) in the current case of a steady

state solution. We have again labeled the two solutions of (1.58) as hsup and hsub, since they

respectively correspond to a supercritical �ow and a subcritical �ow.

We now determine conditions on x for the existence of solutions to (1.58) (or, equivalently,

of zeros of the function � ).

Corollary 1.18. Assumeh > 0 andq0 6= 0 . Thus,hc > 0 according to (1.49). We de�ne the following

limit value of the position:

xu = x0 +
h� � 1

0

k� 0

�
1

� + 2
h3

0

h3
c

�
1

� � 1

�
;

where� 0 = sgn(q0) denotes the sign ofq0, i.e. the direction of the steady water �ow. We also de�ne

the following critical position:

xc = x0 +
1

(� � 1)(� + 2)
1

k� 0

1
h3

c

�
(� � 1)h� +2

0 � (� + 2) h3
ch� � 1

0 + 3h� +2
c

�

= xu +
1

k� 0

3h� � 1
c

(� � 1)(� + 2)
:

Equipped withxu andxc, the following properties hold.

(i) If � 0x > � 0xc, then there is no solution to the equation (1.58).

(ii) If � 0x = � 0xc, then the equation (1.58) admits a unique solution. This solution,h = hc, is a

double root of the functionh 7! � (h; x; q0; x0; h0).

(iii) If � 0x < � 0xc and� 0x > � 0xu , then the equation (1.58) admits two distinct solutions,hsup 2

(0; hc) andhsub 2 (hc; + 1 ).

(iv) If � 0x < � 0xc and � 0x � � 0xu , then the equation (1.58) admits a unique solutionhsub 2

(hc; + 1 ).

Proof. This result is a direct consequence of Proposition 1.17. Indeed, note the following rela-

tions, which are obtained by performing straightforward but tedious computations:

• � c(x) > 0 if and only if � 0x > � 0xc;

• � ` (x) > 0 if and only if � 0x > � 0xu .

Arguing Proposition 1.17 then proves Corollary 1.18.

Remark 1.19. The identity (1.54), characterizing the smooth steady states, rewrites:

gh� � 2
�

�
q2

0

g
+ h3

�
@xh = � kq0jq0j:
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Now, recall the de�nition (1.49) of hc, and assume that h > 0 and h 6= hc. The above relation

rewrites as follows:

@xh =
q0

h3
c � h3

kjq0j
gh� � 2 :

Therefore, the sign of @xh is that of q0(hc � h). For instance, if q0 < 0, then the subcritical

solution ( h > h c) is increasing, while the supercritical solution ( h < h c) is decreasing. As a

consequence, since both subcritical solution and supercritical solution are strictly monotonic,

they are bijective on their respective domains.

We conclude this section on smooth steady states for the friction source term with an

example, to illustrate Proposition 1.17, Corollary 1.18 and Remark 1.19. For this example, we

follow the steady state presented on Figure 1.20 and we take q0 = �
p

g=8 < 0. Therefore, we

have hc = 0 :25 and we take h0 = hc = 0 :25. As a consequence,xc = x0 from Corollary 1.18,

and we set x0 = 0 :75. In addition, we have xu > x 0. The solutions h(x) of (1.58), obtained

with Newton's method, are displayed on Figure 1.21 for x 2 [0:7; 2xu � xc] and k = 1 .

Figure 1.21 – Solutionsh(x) of (1.58) (where they exist). Full line: subcritical solution. Dotted
line: supercritical solution.

We observe on Figure 1.21 that the solutions of the equation (1.58) indeed follow the pat-

tern of existence and uniqueness predicted by Proposition 1.17 and Corollary 1.18. In ad-

dition, the conclusions of Remark 1.19 are veri�ed: here, q0 < 0, and we observe that the

subcritical solution is indeed increasing, while the supercritical solution decreases. This ex-

ample concludes this section on friction-only smooth steady states.

1.2.2.2 Considerations on discontinuous steady states

We have obtained the general form of smooth steady states for the shallow-water equa-

tions with friction and �at topography, respectively given by the subcritical and supercritical
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solutions. Let us underline that there is no steady state solution as long as q0(x � x0) > 0.

However, there exists an in�nity of subcritical and supercritical smooth steady states that are

solution to (1.58), provided the initial conditions x0 and h0 are chosen differently. Now, we re-

mark that, from these smooth steady states, it is possible to de�ne discontinuous solutions of

(1.52). The remainder of this section is devoted to de�ning such non-smooth steady states. In

order to exhibit relevant discontinuous steady states, we need to �nd admissible discontinuities

connecting any two smooth solutions, i.e. discontinuities that verify the Rankine-Hugoniot

relations and the entropy inequality. The Rankine-Hugoniot conditions have been presented

in Appendix A, and the entropy inequality is given by (1.6).

We consider a steady state solution h, subcritical or supercritical, which we try to link to

another steady state solution ~h, obtained by solving (1.56) with a different initial condition.

In addition, we assume that ~h 6= h, to avoid the degenerate case of a discontinuity linking

the same two states. For the sake of simplicity in the forthcoming developments, we choose

that h(x0) = h0 = hc, i.e. h is solution to � (h; x; q0; x0; hc) = 0 , with � de�ned by (1.57). In

addition, we assume that ~h(~x0) = ~h0 = hc, i.e. ~h is solution to � (~h; x; q0; ~x0; hc) = 0 .

We consider an admissible stationary discontinuity. As a �rst step, we consider the condi-

tions imposed by the Rankine-Hugoniot relations (A.2) For a stationary discontinuity, we get

(see also Section 1.2.1.3):

8
<

:

[q] = 0 ; (1.62a)
�

q2

h
+

1
2

gh2
�

= 0 ; (1.62b)

where the notation [X ] denotes the jump of the quantity X across the discontinuity. Arguing

the Rankine-Hugoniot relations yields the following result.

Lemma 1.20. Consider two steady state solutionst (h; q0) and t (~h; q0), subcritical or supercritical.

Assume that these solutions are connected with an admissible discontinuity. As a consequence,~h may

be viewed as a function ofh, and the following relation holds:

~h(h) =
h
2

 r

1 + 8
h3

c

h3 � 1

!

: (1.63)

Proof. Since q is equal to the constant q0, the relation (1.62a) obviously holds. Concerning

(1.62b), we have �
q2

0
~h

+
1
2

g~h2
�

�
�

q2
0

h
+

1
2

gh2
�

= 0 ;

and we immediately obtain

1
2

g~h3 �
�

q2
0

h
+

1
2

gh2
�

~h + q2
0 = 0 :

Introducing a factorization by (~h � h) and arguing the de�nition (1.49) of hc, we get

(~h � h)

 

~h �
h
2

 r

1 + 8
h3

c

h3 � 1

!! 

~h +
h
2

 r

1 + 8
h3

c

h3 + 1

!!

= 0 :
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Since~h must be positive and ~h 6= h, it is clear that the admissible discontinuity connects h to

~h(h) =
h
2

 r

1 + 8
h3

c

h3 � 1

!

:

The proof is therefore completed.

As a second step, we focus on the entropy. The entropy inequality (1.6) rewrites as follows

for a �at topography:

@t s(W ) + @xG(W ) � � kq2jqjh� � � 1;

with s and G given by (1.4). In the current context of a steady state solution involving a

stationary discontinuity, this entropy inequality reads:

@xG(W ) � � kq2
0jq0jh� � � 1:

Note that, since we have assumed a nonzero steady dischargeq0, we have � kq2
0jq0jh� � � 1 < 0.

As a consequence, to recover the above entropy inequality, it is suf�cient to take h and ~h such

that the jump of G between these two states is negative, as follows:

[G] < 0:

As a consequence, arguing the de�nition (1.4) of the entropy �ux G, we get that h and ~h are

connected with an admissible discontinuity if and only if

q0

�
q2

0

2h2 + gh
�

< 0: (1.64)

The study of this equation allows the statement of the following result.

Lemma 1.21. Consider two steady state solutionst (h; q0) and t (~h; q0), subcritical or supercritical.

Assume that these solutions are connected with an admissible discontinuity. We de�ne the following

quantity:

ĥ+ =
h3

c

4h2

 

1 +

s

1 + 8
h3

h3
c

!

: (1.65)

The following two assertions hold:

(i) if q0 > 0, then~h 2 (min( h; ĥ+ ); max(h; ĥ+ )) ;

(ii) if q0 < 0, then~h =2 (min( h; ĥ+ ); max(h; ĥ+ )) .

Proof. We start by proving (i). As a consequence, we assumeq0 > 0. In this case, the discrete

entropy inequality [G] < 0, or equivalently (1.64), reads:

q2
0

2~h2
+ g~h <

q2
0

2h2 + gh: (1.66)
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Introducing a factorization by (~h � h), the above inequality rewrites as follows:

(~h � h)

 

�
h3

c

2

~h + h
~h2h2

+ 1

!

> 0:

Since~h2h2 > 0, the above estimation reads:

(~h � h)(2h2~h2 � h3
c
~h � h3

ch) < 0:

As a consequence, we have[G] < 0 if and only if:

(~h � h)(~h � ĥ� )(~h � ĥ+ ) < 0;

where we have set

ĥ� =
h3

c

4h2

 

1 �

s

1 + 8
h3

h3
c

!

:

We immediately note that ĥ� < 0. Therefore, ~h � ĥ� is always negative, and the discontinuity

satis�es the entropy inequality if and only if:

(~h � h)(~h � ĥ+ ) < 0: (1.67)

As a consequence, we have~h 2 (min( h; ĥ+ ); max(h; ĥ+ )) , which achieves the proof of (i).

Regarding the proof of (ii), we assume that q0 < 0. The inequality (1.66) now reads:

q2
0

2~h2
+ g~h >

q2
0

2h2 + gh:

We note that the direction of the inequality has been reversed. As a consequence, for q0 < 0,

the relation (1.67) rewrites:

(~h � h)(~h � ĥ+ ) > 0:

Therefore, the assertion ~h =2 (min( h; ĥ+ ); max(h; ĥ+ )) is established. The proof of (ii) is thus

concluded, which completes the proof of Lemma 1.21.

We have therefore uncovered several relations de�ning an admissible discontinuity link-

ing h to ~h. Namely, Lemma 1.20 states the condition obtained from the Rankine-Hugoniot

relations, which gives an expression of ~h with respect to h. Lemma 1.21 states the necessary

location of ~h with respect to h and ĥ+ , de�ned by (1.65), to satisfy the entropy conditions.

Note that Lemma 1.21 involves a comparison between ~h and ĥ+ . The expression (1.63) allows

us to state the following result.

Lemma 1.22. De�ne ~h andĥ+ by (1.63) and (1.65), as follows:

~h =
h
2

 r

1 + 8
h3

c

h3 � 1

!

and ĥ+ =
h3

c

4h2

 

1 +

s

1 + 8
h3

h3
c

!

: (1.68)
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For all h 2 R�
+ n f hcg, we have:

~h < ĥ+ :

Proof. Let us prove that ~h < ĥ+ , with ~h and ĥ+ de�ned by (1.68). As a consequence, we have

to show that
hc

h

 
h2

c

h2 +

r
h4

c

h4 + 8
hc

h

!

� 2

 r

1 + 8
h3

c

h3 � 1

!

> 0:

Introducing � = hc=h, the above inequality holds if and only if f (� ) > 0, where the function

f is de�ned by:

f (� ) = �
�

� 2 +
p

� 4 + 8 �
�

� 2
� p

1 + 8� 3 � 1
�

:

We now study the sign of the function f for � 2 (0; + 1 ). We remark that f (� ) may be

rewritten as follows, after straightforward computations:

f (� ) =
� 3

p
1 + 8� 3 + 1

" 

1 +

r

1 +
8

� 3

!
�

1 +
p

1 + 8� 3
�

� 16

#

:

Let � (� ) := 1+
p

1 + 8� 3. Equipped with this notation, f (� ) > 0 is equivalent to the following

inequality:

�
�

1
�

�
� (� ) � 16 > 0: (1.69)

After straightforward computations, we get:

�
�

1
�

�
� (� ) = 1 +

p
1 + 8� 3 +

r

1 +
8

� 3 +

s

65 + 8
�

� 3 +
1

� 3

�
: (1.70)

In order to study a lower bound of the above expression, we introduce two following two

notations:

� 1(� ) =
p

1 + 8� 3 +

r

1 +
8

� 3 and � 2(� ) =

s

65 + 8
�

� 3 +
1

� 3

�
:

Note that � (1=� )� (� ) = 1 + � 1(� ) + � 2(� ).

— We �rst study the variations of � 1. The following formula gives the derivative of � 1:

� 0
1(� ) =

12
� 4

�
� 6

p
1 + 8� 3

�
1

p
1 + 8� � 3

�
:

Straightforward computations show that � 0
1(� ) > 0 if and only if � > 1. As a consequence,

the function � 1 reaches its unique minimum for � = 1 , and we get � 1(� ) > � 1(1). Therefore,

we obtain the following lower bound for � 1:

8� 2 (0; + 1 ); � 1(� ) � 6: (1.71)

In (1.71), the equality case corresponds to� = 1 .
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— We then study the variations of the function � 2. Since the derivative of � 2 is given by

� 0
2(� ) =

24� � 4
p

65 + 8(� 3 + � � 3)

�
� 6 � 1

�
;

we immediately obtain that � 2 also reaches its unique minimum for � = 1 . The following

lower bound therefore holds:

8� 2 (0; + 1 ); � 2(� ) � 9: (1.72)

The equality case in (1.72) again corresponds to� = 1 .

As a consequence, from (1.70), we get that� (1=� )� (� ) � 16, with the equality case corre-

sponding to � = 1 . Therefore, (1.69) holds for all � 2 R�
+ n f 1g. Hence, we conclude that, for

all h 2 R�
+ n f hcg, we have ~h < ĥ+ . The proof is thus achieved.

Remark 1.23. The caseh = hc leads, by application of Lemma 1.20, to ~h = hc = h. As

a consequence, we do not consider this case, as it is the degenerate case of a discontinuity

connecting the same two states, and we takeh 2 R�
+ n f hcg. Lemma 1.22 therefore holds for

all values of h under consideration.

Equipped with Lemma 1.22, which introduces a comparison between ~h and ĥ+ , we can

eliminate several cases from Lemma 1.21. Indeed, we replace the estimations uncovered in

Lemma 1.21 by the following two assertions.

(1a) If q0 > 0, then ~h > h .

(1b) If q0 < 0, then ~h < h .

Now, remark that the expression of ~h from Lemma 1.20 immediately yields the following

estimations, with h linked to ~h through a discontinuity satisfying the Rankine-Hugoniot con-

ditions.

(2a) We have~h > h if and only if h < h c.

(2b) We have~h < h if and only if h > h c.

As a consequence, the following result holds.

Proposition 1.24. Let q0 2 R� , and de�nehc by (1.49). Leth 2 R�
+ n f hcg. We wish to build a

discontinuous steady state solution, i.e. we seek~h connected toh by an admissible discontinuity. The

quantity ~h is given by (1.63). The Rankine-Hugoniot conditions and the entropy inequality yield the

following assertions.

• If q0 > 0, then the only possible solution that can be connected to another one with an admissible

discontinuity is a supercritical solution, i.e.h < h c. In that case, we have~h > h .

• If q0 < 0, then the only possible solution that can be connected to another one with an admissible

discontinuity is a subcritical solution, i.e.h > h c. In that case, we have~h < h .

As a consequence, on the one hand, if we start with a subcritical solution (such that

h > h c), then the admissible discontinuity connects h to ~h < h . Therefore, the discontinu-

ity may connect the subcritical solution h to another subcritical solution with ~h < h , or to a
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supercritical solution. On the other hand, if we wish to link a supercritical solution (satisfy-

ing h < h c) to ~h, then we necessarily have ~h > h . Hence, this supercritical solution may be

connected to either another supercritical solution ~h > h , or to a subcritical solution.

1.2.3 Topography and friction steady states

In the previous sections, we have studied steady state solutions of the shallow-water equa-

tions endowed with either the topography source term or the Manning friction source term.

The goal of this section is to provide some insight on steady state solutions when both source

terms are present. Such solutions are governed by the following equations:

8
><

>:

@xq = 0 ;

@x

�
q2

h
+

1
2

gh2
�

= � gh@xZ � kqjqjh� � :

As expected, the discharge q is uniform for steady states. As usual, this uniform discharge

is denoted by q0. Then, equipped with q0, the steady water height h(x) is a solution of the

following ordinary differential equation:

@x

�
q2

0

h
+

1
2

gh2
�

= � gh@xZ � kq0jq0jh� � : (1.73)

We now exhibit several steady state solutions obtained in speci�c cases. Namely, we ex-

hibit two speci�c solutions of (1.73), with h = cst and h + Z = cst . Then, we give a word on

the solutions of (1.73) in the general case.

Uniform water height

First, with q0 6= 0 , we consider a uniform water height h(x) = h0 6= 0 . This case has been

studied in [42], where the authors propose a scheme able to capture this steady state. With

h(x) = h0, (1.73) becomes

gh0@xZ + kq0jq0jh� �
0 = 0 :

Recall the notation � 0 = sgn(q0). For the steady state with h = h0, we therefore get:

@xZ = �
kq0jq0j

gh� +1
0

: (1.74)

As a consequence, the topography function has to be af�ne, of slope given by (1.74).

Uniform free surface

Second, we no longer assume that the water height is constant. Instead, we take steady

state solution with a constant free surface H0, i.e. a steady solution such that h(x)+ Z (x) = H0.

Using Z (x) = H0 � h(x), (1.73) becomes

@x

�
q2

0

h
+

1
2

gh2
�

= gh@xh � kq0jq0jh� � :
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Now, we assume that the solution h of the above equation is a smooth function. Therefore, it

satis�es:
q2

0

h2 @xh = kq0jq0jh� � :

Using � 0 = sgn(q0) yields:

h� � 2@xh = k� 0:

Let x0 2 R. We assume that the water height h0 = h(t; x 0) at x0 is known. The above identity

is then integrated over [x0; x], to get:

h� � 1 = h� � 1
0 + ( � � 1)k� 0(x � x0): (1.75)

The water height h must be nonnegative. As a consequence, there is no solution if the right-

hand side of (1.75) is negative. Hence, we assume that this right-hand side is positive, i.e.

that

h� � 1
0 + ( � � 1)k� 0(x � x0) > 0: (1.76)

Therefore, recalling that Z (x) = H0 � h(x), the water height and topography are given by:

h(x) =
�

h� � 1
0 + ( � � 1)k� 0(x � x0)

� 1
� � 1 ;

Z (x) = H0 �
�

h� � 1
0 + ( � � 1)k� 0(x � x0)

� 1
� � 1 :

(1.77)

The general case

Third, we turn to the general case, where the steady states are solutions of (1.73) without

simpli�cations. We make the very important remark that (1.73) cannot be rewritten under

the algebraic form � (h) = 0 , contrary to the individual cases of the topography and friction,

where the steady states were respectively governed by (1.47) and (1.58). Therefore, an anal-

ogous study cannot be applied in the case where both source terms are present. In order to

exhibit solutions to (1.73), numerical methods have to be used. Namely, a discretization of

this equation has to be provided.
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2
Finite volume methods

The goal of this chapter is to present a state of the art regarding �nite volume methods ap-

plied to hyperbolic conservation laws and balance laws, in one or two space dimensions. The

techniques discussed in this chapter are all well-known, but we recall them here since they

will be widely used in the remainder of this manuscript. For more information on systems of

conservation laws, the reader is referred to [79, 141, 142] for instance, but this reference list is

not exhaustive. This chapter provides a general setting for the numerical approximation of

the shallow-water system (1.1).

Systems of conservation laws are governed, in one space dimension, by the following

initial value problem: (
@t W (t; x ) + @xF (W (t; x )) = 0 ;

W (0; x) = W0(x):
(2.1)

In (2.1), W : R+ � R ! 
 is the vector of conserved variables, whose values lie within the

admissible states space
 � RN , supposed to be convex. In addition, we assume that the space


 is invariant, i.e.

if, 8x 2 R, W0(x) 2 
 , then 8(t; x ) 2 R�
+ � R, W (t; x ) 2 
 : (2.2)

The variable t represents the time, while x is the space variable. The function F : 
 ! RN is

called the physical �ux function, and is assumed to be smooth. We assume that the system (2.1)

is hyperbolic. The initial condition W0 is a potentially discontinuous function of x.

It is a well-known fact that, even with smooth initial data, solutions of (2.1) may present

discontinuitiesin �nite time if the �ux function is nonlinear. To address this issue, from now

on, we focus on weak solutions of the problem. In addition, it has been proven that, if a

weak solution admits a discontinuity, then this discontinuity satis�es the Rankine-Hugoniot

conditions (1.17) (see Appendix A for a proof of this result in a more general setting).

From the numerical point of view, it is crucial that the properties satis�ed by the equations
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also be satis�ed by the numerical scheme, in order to provide a good approximation of the

solutions to (2.1). In particular, a scheme is called robust if the invariance of the admissible

states space (2.2) is preserved at the discrete level. More detail on these discrete properties

will be given in the next section, in the context of a �nite volume scheme.

Over the course of this chapter, Riemann problemswill naturally appear while dealing with

the numerical approximation of (2.1). A Riemann problem is a Cauchy problem with discon-

tinuous initial data, see (1.16). More details on Riemann problems are present in [80, 79] for

instance. Since the conservation law @t W + @xF (W ) = 0 is hyperbolic, the exact solution

of the Riemann problem (1.16) is made of waves, traveling at �nite velocities and separating

constant intermediate states. The nature of these waves is linked to the nature of the charac-

teristic �elds associated to the eigenvalues of the Jacobian matrix of F (see De�nition 1.1). We

assume that each �eld is either linearly degenerate or genuinely nonlinear.

This framework �ts the shallow-water equations (1.1) (see Chapter 1). This system can be

cast under the general form of a balance law, as follows:

(
@t W + @xF (W ) = s(W );

W (0; x) = W0(x);
(2.3)

where s(W ) is a source term and the homogeneous system obtained from making the source

term vanish in (2.3) is hyperbolic. In the context of the shallow-water equations with topog-

raphy and Manning friction, s(W ) is made of the two source terms. The presence of the LD

�elds causes the Riemann problem for the shallow-water equations with source terms to be

much harder to solve explicitly than in the homogeneous case. As a consequence, numerical

methods have to be applied.

For the balance law (2.3), thesteady state solutions(or steady states) are de�ned by making

the time derivative @t W vanish, as follows:

@xF (W ) = s(W ): (2.4)

In the context of the shallow-water equations, the steady state solutions have been studied

in Section 1.2. Examples of steady state solutions have been exhibited in the cases of the

topography and the friction source terms. However, since they are governed by very nonlin-

ear equations, usual numerical schemes do not exactly preserve such solutions, and special

treatments have to be introduced. From the numerical point of view, a scheme will be called

well-balancedif it exactly preserves all the steady states at the discrete level.

Well-balanced schemes have been extensively studied in the last two decades. First, in

[11], Bermudez and Vazquez introduced the C-property to describe schemes preserving the

steady states at rest of the shallow-water equations. The term of well-balanced scheme was

then coined by Greenberg and LeRoux in their seminal work [87], where the authors de�ned

a well-balanced scheme as able to exactly preserve solutions at rest. Afterwards, Goutal and

Maurel proposed a review [86] of several steady state solutions for the shallow-water water

equations with topography, and of several schemes to approximate such steady states. Then,

still within the framework of the shallow-water equations with topography, Gosse proposed a

scheme in [82], based on an approximate resolution of Bernoulli's equation, to exactly capture
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all the steady states of the equations. His approach was later simpli�ed by Audusse et al. in

[5], who focused on the steady states at rest (i.e. where the velocity vanishes) to propose the

well-known hydrostatic reconstruction.

A lot of other �rst-order schemes were derived to preserve the steady state solutions of the

shallow-water water equations with the topography source term. In particular, we mention

work dealing with robust schemes that preserve the steady states at rest, see for instance

[100, 133, 26, 44, 105, 28, 19, 23, 7] for 1D meshes, and see for instance [6, 29, 69, 166] for

unstructured 2D geometries. Several schemes that also preserve the moving steady states,

but are not robust, have then been derived (see for instance [33, 72]). Later on, in [12, 13],

the authors suggest a robust and entropy-satisfying scheme that preserves the moving steady

states. The advantages of schemes that preserve all the steady states, including the moving

ones, have been highlighted in [160]. Finally, we mention schemes preserving the steady

states associated to the friction source term in speci�c cases (see [115, 42]), and the Coriolis

force source term (see [119, 43]).

Some work involving high-order techniques to capture the steady states exactly or with

a high order of approximation has also been proposed. For instance, in [127, 128, 158], the

authors suggest a WENO approach, while the authors of [161, 157] focus on discontinuous

Galerkin methods (see also the review article [159]). Other high-order methods, using the

steady state solutions, have been developed in [32, 74, 136, 35]. In addition, in [47], a scheme

that preserves the lake at rest on unstructured meshes has been derived.

We also present a non-exhaustive list of well-balanced schemes for other systems. For

instance, we mention well-balanced scheme for the Euler equations with gravity (see [37, 163,

60, 101, 39, 61, 41]), the equations of chemotaxis (see [125, 15]), a two-layer shallow-water

model (see [106, 67]), the Ripa model (see [152, 62], the equations of hemodynamics (see [56]),

and the shallow-water equations with pollutant transport (see [70]).

The goal of this manuscript is to provide a numerical scheme that is consistent and robust.

In addition, it has to be well-balanced, i.e. able to preserveand capturethe steady state solutions

exhibited in Section 1.2. These two terms of preservation and capture are de�ned as follows.

• Let W0 be an initial condition at rest, i.e. satisfying (2.4). A numerical scheme is said to

preserve the steady states if the approximate solution obtained from W0 stays stationary,

i.e. satis�es (2.4).

• Let W0 be an unstationary initial condition, i.e. that does not satisfy (2.4). Assume that,

in �nite time, the solution W (t; x ) of (2.3) becomes stationary, i.e. satis�es (2.4), after a

transient state. A numerical scheme is said to capture the steady states if the approximate

solution obtained from W0 also becomes stationary.

As a consequence, this chapter is dedicated to providing some numerical methods that

will be the basis of the work presented later in this manuscript. The numerical methods are

here presented in the general setting of a system of conservation laws, and will be applied to

the shallow-water system later on. The chapter is organized as follows.

Section 2.1 focuses on the �rst-order �nite volume approximation of one-dimensional (1D)

hyperbolic conservation laws. To that end, we begin by providing a �nite volume discretiza-

tion of the equations. After discretizing the space domain into cells, the conservation law is in-
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tegrated over some cell, in order to exhibit the main ingredients of any �nite volume method.

Namely, the approximated solution is piecewise constant on the cells, and the interactions

between cells are represented by a numerical �ux function. Then, we introduce Godunov's

method. This method uses the exact solution of a Riemann problem for the conservation law

to approximate the result of the interaction between two contiguous cells. Afterwards, we

present Godunov-type methods, an extension of Godunov's method. Godunov-type methods

do not require the exact solution of a Riemann problem. Instead, they use an approximation

of this solution. Thanks to this approximation, these methods are more versatile, as they can

be applied to systems for which the exact Riemann solution is not known. The derivation of

the HLL scheme, a notable Godunov-type scheme whose approximate Riemann solution is

heavily used later in this manuscript, is also presented.

The second section of this chapter, Section 2.2, presents second-order spatial accuracy tech-

niques in one space dimension. Such techniques are used to improve the spatial accuracy of

the scheme for smooth and non-smooth solutions. Namely, we introduce the MUSCL tech-

nique, which consists in providing a piecewise linear approximation of the solution in each

cell, instead of piecewise constant. However, robustness properties satis�ed by the �rst-order

scheme can be lost because of the linear reconstruction, and oscillations may appear in the ap-

proximate solution. In order to recover such properties and eliminate the oscillations, slope

limiters are designed to make sure the slope of the reconstruction is small enough.

The remainder of the chapter is devoted to the approximation of conservation laws and

balance laws in two space dimensions. We begin this study in Section 2.3 by deriving two-

dimensional (2D) �rst-order �nite volume schemes for 2D conservation laws. As before, we

�rst provide a �nite volume discretization of the space domain and of the equations. To that

end, we introduce a polygonal mesh of the 2D domain, and we integrate the equations over

this mesh. Then, we prove that this 2D scheme can be rewritten as a convex combination

of 1D schemes. Thanks to this convex combination, the 2D scheme is immediately shown to

satisfy some robustness properties veri�ed by the 1D scheme.

Finally, Section 2.4 deals with high-order schemes in two space dimensions. High-order

schemes are based on suitable polynomial reconstructions (for instance, the MUSCL tech-

nique is based on a linear reconstruction). We begin by de�ning such a reconstruction. Af-

terwards, the polynomial reconstruction is used to derive a high-order �nite volume scheme

for a 2D balance law. First, we present a scheme that is high-order accurate in space. Second,

a high-order time discretization is provided in. Third, the Multidimensional Optimal Or-

der Detection (MOOD) method is presented. The MOOD method consists in enforcing some

properties by choosing to lower the degree of the reconstruction in areas where the properties

are not satis�ed.

2.1 One-dimensional �rst-order �nite volume schemes for hyper-

bolic problems

We turn to the numerical approximation of the solutions of hyperbolic systems of con-

servation laws (2.1). Several challenges arise, such as the ability to approximate discontin-
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uous solutions. To address this issue and to provide a suitable numerical approximation,

we introduce the framework of �nite volume schemes. First, in Section 2.1.1, we focus on the

discretization of the equations and of the space domain. Then, in Section 2.1.2, we present

Godunov's scheme. This scheme involves the exact solution of a Riemann problem. Finally,

in Section 2.1.3, extensions of Godunov's scheme, the Godunov-type schemes, are discussed.

These schemes use an approximation of the Riemann solution instead of the exact solution.

For the remainder of the section, the reader is referred to [92, 93, 111, 150] for instance, but

this list in non-exhaustive.

2.1.1 Finite volume discretization

The �rst step of providing a �nite volume discretization of the equation (2.1) consists in

discretizing the space domain R. Let us consider a discretization made of cellsci . For the

sake of simplicity, we assume that all cells have the same length � x. We denote by x i the

x-coordinate of the center of the cell ci . In addition, we denote by x i + 1
2

the x-coordinate of the

interface between cellsci and ci +1 . These notations are displayed on Figure 2.1.

Figure 2.1 – Discretization of the one-dimensional space domain R.

We adopt a straightforward time discretization. To discretize the time domain R+ , we set

tn+1 = tn + � tn , with t0 = 0 . Note that the time step � tn depends on the current time tn . For

the sake of simplicity in the notations, we do not explicitly write this dependence. Instead,

the time step is labeled by � t.

Equipped with the time and space discretization, we turn to discretizing the solution of

(2.1). Forx 2 ci and t 2 [tn ; tn+1 ), we choose to approximate the exact solution W (t; x ) of (2.1)

by a constant value W n
i . Actually, this value corresponds to the average of the exact solution

W (t; x ) at time tn over the cell ci , as follows:

W n
i '

1
� x

Z

ci

W (tn ; x) dx: (2.5)

This approximation is initialized by taking the average of the initial condition over each cell:

8i 2 Z; W 0
i =

1
� x

Z

ci

W0(x)dx:

The goal of a numerical scheme is, knowing W n
i for all i 2 Z, to give a value to the updated

approximation W n+1
i for all i 2 Z. In order to provide such an approximation, let us write the

average of the conservation law (2.1) over the rectangle formed by the cell ci = ( x i � 1
2
; x i + 1

2
)
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and the time interval [tn ; tn+1 ):

1
� x

1
� t

Z x i + 1
2

x i � 1
2

Z tn +1

tn
@t W (t; x ) dt dx +

1
� x

1
� t

Z tn +1

tn

Z x i + 1
2

x i � 1
2

@xF (W (t; x )) dx dt = 0 :

Using (2.5) and performing straightforward computations in the above identity yields:

W n+1
i = W n

i �
� t
� x

 
1

� t

Z tn +1

tn
F (W (t; x i + 1

2
)) dt �

1
� t

Z tn +1

tn
F (W (t; x i � 1

2
)) dt

!

: (2.6)

The main issue with the expression (2.6) of the updated state W n+1
i is that the time inte-

grals of the physical �ux function are dif�cult to evaluate in practice. Indeed, the �ux function

F may be strongly nonlinear (in the case of the shallow-water equations or the Euler equations

for instance). To address this issue, we introduce the numerical �ux. It is an approximation of

the time integral of the physical �ux, as follows:

F n
i + 1

2
'

1
� t

Z tn +1

tn
F (W (t; x i + 1

2
)) dt:

The value of this numerical �ux depends on the value of the physical �ux F at the inter-

face x i + 1
2

between the cells ci and ci +1 , which respectively contain the constant values W n
i

and W n
i +1 . Therefore, the numerical �ux can be viewed as a function F such that F n

i + 1
2

=

F (W n
i ; W n

i +1 ). Examples of such functions will be provided in the next two subsections, de-

voted respectively to Godunov's scheme and to Godunov-type schemes. Equipped with the

numerical �ux function F , we state the �nal expression of the 1D �rst-order �nite volume

scheme:

W n+1
i = W n

i �
� t
� x

�
F n

i + 1
2

� F n
i � 1

2

�
: (2.7)

Such a scheme is easily shown to satisfy an essential property, the conservation property.

Indeed, the scheme is said to beconservativeif the following equality holds:

8n 2 N;
X

i 2 Z

W n+1
i � x =

X

i 2 Z

W n
i � x: (2.8)

The scheme (2.7) indeed satis�es this property, since the sum over Z of the difference F n
i + 1

2
�

F n
i � 1

2
vanishes for all n 2 N. This property is required for the scheme to capture the correct

shock waves.

Another property that we require the scheme to satisfy is the consistency property. The

numerical �ux function, and therefore the scheme, is said to be consistentwith (2.1) if it satis-

�es

8W 2 
 ; F (W; W ) = F (W ): (2.9)

An important ingredient in designing a numerical �ux is to make sure that this property is

veri�ed. Otherwise, the scheme approximates the wrong equations.

A third important property is the robustness. The scheme (2.7) is robustif we have, for all
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n 2 N, the following discrete analogue of (2.2):

if, 8i 2 Z, W n
i 2 
 , then 8i 2 Z, W n+1

i 2 
 :

This property ensures that the physical admissibility of the initial condition is preserved by

the scheme. A non-robust scheme may therefore yield an approximate solution that is not

physically admissible. This property is another important ingredient in the design of a nu-

merical �ux.

Equipped with the �nite volume scheme (2.7), we now introduce Godunov's method and

Godunov-type methods. These methods offer a way of de�ning the numerical �ux function.

2.1.2 Godunov's scheme

Let us recall that the approximate solution at time tn is made of piecewise constant values

W n
i on each cellci . Therefore, in a neighborhood of each interface x i + 1

2
, the conservation law

(2.1) reads as follows: 8
>>><

>>>:

@t W + @xF (W ) = 0 ;

W (tn ; x) =

8
<

:

W n
i if x < x i + 1

2
;

W n
i +1 if x > x i + 1

2
:

(2.10)

The initial value problem (2.10) is nothing but a Riemann problem (2.19). We suppose that the

exact solution WR of the Riemann problem (2.10) is known (see [81, 150] for instance). This

solution is self-similar and depends on W n
i and W n

i +1 . For t 2 (0; � t) and x 2 [x i ; x i +1 ], we

adopt the following notation for the exact Riemann solution:

W
i + 1

2
R

� x � x i + 1
2

t

�
= WR

� x � x i + 1
2

t
; W n

i ; W n
i +1

�
:

Since the system is hyperbolic, the velocity of the waves originating from the Riemann

problem is �nite. Let us denote by � �
i + 1

2
< � +

i + 1
2

the smallest and greatest wave velocities,

respectively. Within the fan formed by the extremal wave speeds � �
i + 1

2
and � +

i + 1
2

lies the exact

solution of the Riemann problem (2.10). This situation is illustrated by Figure 2.2.

Figure 2.2 – Riemann problem con�guration. The gray area represents the area where the
solution of the Riemann problem (2.10) lies.
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As mentioned above, since the equation (2.1) is hyperbolic, the information propagated

by the equation travels at �nite speed. Let us therefore emphasize that that the consecutive

Riemann problem solutions do not interact as long as t is small enough. We can thus give a

suf�cient condition on the time step � t to ensure that it is small enough to prevent interac-

tions between the waves from two consecutive Riemann problems. An illustration of such a

suf�cient condition is presented on Figure 2.3.

Figure 2.3 – Wave interaction to be prevented by the CFL condition (in red). The time step � t
is chosen so as to prevent the interaction.

From Figure 2.3, we deduce the following suf�cient condition on � t to prevent the inter-

actions between waves:
� t
� x

max
i 2 Z

� �
�
�
� �

�
i + 1

2

�
�
�
� ;

�
�
�
� �

+
i + 1

2

�
�
�
�

�
�

1
2

: (2.11)

This condition is called the Courant-Friedrichs-Lewy(CFL) condition (see [55]). For all i 2 Z,

it ensures that the waves from the Riemann problem located at x i + 1
2

do not penetrate within

the cell (x i � 1; x i ) or the cell (x i +1 ; x i +2 ), thus preventing them from interacting with waves

coming from neighboring Riemann problems.

The �nal ingredient we need to introduce Godunov's scheme is the following function

W � , which contains the juxtaposition of all the exact Riemann solutions:

8t 2 (0; � t] ; 8x 2 [x i ; x i +1 ) ; W � (tn + t; x ) = W
i + 1

2
R

� x � x i + 1
2

t

�
: (2.12)

This function corresponds to the exact Riemann solution over the whole space domain, ob-

tained from the initial condition W � (tn ; x) = W n
i 1ci (x). This juxtaposition function is dis-

played on Figure 2.4.

The main idea behind Godunov's scheme consists in noting that, for t < � t, two con-

secutive Riemann solutions will not interact. Therefore, the exact solution of the Riemann

problem (2.10) can be used in order to build a numerical �ux (see [81]). The exact Riemann

solution W � (tn+1 ; x) allows to de�ne an updated approximate solution W n+1
i within the cell

ci . However, in order to apply the same procedure at time tn+1 , the updated solution W n+1
i

must be constant in each cellci . Therefore, Godunov suggested to de�ne W n+1
i as the average

of the juxtaposition W � (tn+1 ; x) of the exact Riemann problem solutions within the cell ci , as
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Figure 2.4 – Juxtaposition of exact Riemann solutions.

follows:

W n+1
i =

1
� x

Z x i + 1
2

x i � 1
2

W � (tn+1 ; x) dx: (2.13)

Note that a wave with velocity � travels a distance � � t in a time � t. Therefore, following Fig-

ure 2.4, the formula (2.13) for the updated approximated solution can be rewritten as follows:

W n+1
i =

1
� x

Z x i � 1
2

+ � +
i � 1

2
� t

x i � 1
2

W
i � 1

2
R

� x � x i � 1
2

tn+1 � tn

�
dx

+
1

� x

Z x i + 1
2

+ � �
i + 1

2
� t

x i � 1
2

+ � +
i � 1

2
� t

W n
i dx

+
1

� x

Z x i + 1
2

x i + 1
2

+ � �
i + 1

2
� t

W
i + 1

2
R

� x � x i + 1
2

tn+1 � tn

�
dx:

(2.14)

In order to �nalize this subsection devoted to Godunov's scheme, let us show that Go-

dunov's scheme is conservative and consistent. To address this issue, we exhibit the numer-

ical �ux function associated to this scheme by computing the integrals of the exact Riemann

solution present in (2.14). Arguing that the exact Riemann solution W
i � 1

2
R is a solution of the

conservation law (2.1) and integrating (2.1) over the rectangle [tn ; tn+1 ]� [x i � 1
2
; x i � 1

2
+ � +

i � 1
2
� t ]

yields:
Z x i � 1

2
+ � +

i � 1
2

� t

x i � 1
2

�
W

i � 1
2

R

� x � x i � 1
2

tn+1 � tn

�
� W n

i

�
dx

+
Z tn +1

tn

"

F

 

W
i � 1

2
R

 � +
i � 1

2
� t

t

!!

� F
�

W
i � 1

2
R (0)

� #

dt = 0

Note from Figure 2.3 that, for all t 2 [0; � t] and for x = x i � 1
2

+ � +
i � 1

2
� t , the exact solution

of the Riemann problem is constant and equal to W n
i . As a consequence, the �rst integral of

(2.14) reads:

1
� x

Z x i � 1
2

+ � +
i � 1

2
� t

x i � 1
2

W
i � 1

2
R

� x � x i � 1
2

� t

�
dx =

1
� x

Z x i � 1
2

+ � +
i � 1

2
� t

x i � 1
2

W n
i dx

�
� t
� x

�
F (W n

i )) � F
�

W
i � 1

2
R (0)

��
:

(2.15)
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Similarly, the third integral of (2.13) is evaluated as follows:

1
� x

Z x i + 1
2

x i + 1
2

+ � �
i + 1

2
� t

W
i + 1

2
R

� x � x i + 1
2

� t

�
dx =

1
� x

Z x i + 1
2

x i + 1
2

+ � �
i + 1

2
� t

W n
i dx

�
� t
� x

�
F

�
W

i + 1
2

R (0)
�

� F (W n
i ))

�
:

(2.16)

Plugging (2.15) and (2.16) into (2.14) yields:

W n+1
i = W n

i �
� t
� x

�
F

�
W

i + 1
2

R (0)
�

� F
�

W
i � 1

2
R (0)

��
:

We have thus cast Godunov's scheme (2.14) into the conservative form (2.7), with the numer-

ical �ux function for Godunov's scheme being given by:

F n
i + 1

2
= F

�
W

i + 1
2

R (0)
�

:

Therefore, Godunov's scheme is conservative, i.e. the property (2.8) is veri�ed. Note that the

scheme is also consistent, i.e. it satis�es (2.9). Indeed, we haveF (W; W ) = F (WR (0; W; W ))

for all W 2 
 , with the quantity WR (0; W; W ) representing the exact Riemann solution with a

uniform initial condition equal to W . This exact Riemann solution is thus nothing but the uni-

form initial condition W . Hence, we have F (W; W ) = F (W ), which proves the consistency

property.

To summarize, Godunov's scheme can be written as a two-step procedure. The �rst step,

the evolutionstep, consists in computing the exact solution of the Riemann problem at each

interface. The second step, theprojectionstep, consists in the averaging process (2.13) to de�ne

the updated numerical approximation.

We have thus completed the introduction of Godunov's scheme. It is the most natural

conservative and consistent �nite volume scheme to approximate solutions of the hyperbolic

problem (2.1). As previously mentioned, the most important ingredient in the de�nition of

Godunov's scheme is the knowledge of the exact solution of the Riemann problem (2.10). Un-

fortunately, computing this solution at each interface and for each time step is usually too

costly, or even outright impossible since the exact Riemann solution is unknown for many

systems. Furthermore, even if the exact solution is used, the projection step (2.13) only allows

a �rst-order approximation of the solution. In light of such dif�culties, a natural idea, intro-

duced at the beginning of the 1980s by Roe in [135] and Harten, Lax and van Leer in [90], is

to replace the exact solution of the Riemann problem with an approximate solution. Such an

approach, leading to Godunov-type schemes, is described in the next subsection.

2.1.3 Godunov-type schemes

The main ingredient of Godunov-type schemes is the use of an approximate solution of

the Riemann problem (2.10), instead of the exact one. Thus, Godunov-type schemes consist

in replacing the exact Riemann solverwith an approximate Riemann solver. We �rst discuss the

construction of such a solver, and its associated Godunov-type scheme. Then, an example of
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a Godunov-type scheme is presented.

The �rst issue in the derivation of the approximate Riemann solver is that the minimal

and maximal exact wave speeds, � �
i + 1

2
and � +

i + 1
2
, are not known anymore. Therefore, we use

approximate wave speeds � L
i + 1

2
and � R

i + 1
2

as an approximation of the minimal and maximal

exact wave speeds, respectively. They are chosen so as to ensure that no information is lost.

Thus, the fan formed by the exact wave speeds must be included within the one formed by

the approximate wave speeds, which yields the following required conditions on the approx-

imate wave speeds, illustrated on Figure 2.5:

� L
i + 1

2
< � �

i + 1
2

and � R
i + 1

2
> � +

i + 1
2
:

Figure 2.5 – Wave fans of the exact and approximate Riemann solvers.

We introduce the juxtaposition function for the approximate Riemann solver as follows:

8t 2 (0; � t] ; 8x 2 [x i ; x i +1 ) ; W � (tn + t; x ) = fW
� x � x i + 1

2

t
; W n

i ; W n
i +1

�
: (2.17)

In (2.17), fW represents the approximate Riemann solver. Note that, if the approximate Rie-

mann solution is equal to the exact Riemann solution WR , then the juxtaposition function of

Godunov's scheme (2.12) is recovered. Here, the approximate Riemann solver fW provides

an approximation of the exact solution WR of the Riemann problem, and this juxtaposition

function contains the approximate Riemann solution at each interface between cells.

We then de�ne the approximate Riemann solver fW as the following self-similar function:

fW
� x

t
; WL ; WR

�
=

8
>>><

>>>:

WL if x=t � � L ;

fW
� x

t
; WL ; WR

�
if � L < x=t < � R ;

WR if x=t � � R :

(2.18)

Within the fan, i.e. for � L < x=t < � R , we take fW made of (n + 1) intermediate states,

separated by n discontinuities. We assume that all the intermediate states are constant; this

choice is made in accordance with the approximate Riemann solvers suggested by Harten,

Lax and van Leer in [90].
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The goal is now to provide several properties that the approximate Riemann solver has to

satisfy. To that end, we consider the following Riemann problem:

8
>><

>>:

@t W + @xF (W ) = 0 ;

W (0; x) =

(
WL if x < 0;

WR if x > 0:

(2.19)

Note that this is the same Riemann problem as (2.10), rewritten with simpler notations and

using the change of variables x 7! x � x i + 1
2
. The statesWL and WR are constant. We denote

by � L < � R the smallest and greatest approximate wave velocities, respectively. The approx-

imate Riemann solution is made of at least two waves, the extremal waves � L and � R . This

situation is illustrated by Figure 2.6.

Figure 2.6 – Structure of the approximate solution of the Riemann problem (2.19). Speci�c
case with six waves.

An approximate Riemann solver should satisfy two essential consistency properties. The

�rst one states that fW (x=t; W; W ) = W for all W 2 
 . This property is veri�ed by the exact

Riemann solver, and has to be also satis�ed by the approximate Riemann solver.

In addition, in [89, 90], Harten and Lax introduced a property of integral consistencywith

the exact solution of the Riemann problem. This property reads as follows:

1
� x

Z � x=2

� � x=2

fW
� x

� t
; WL ; WR

�
dx =

1
� x

Z � x=2

� � x=2
WR

� x
� t

; WL ; WR

�
dx: (2.20)

We now consider an approximate Riemann solver satisfying this property. We can prove that

the integral of the exact Riemann solution only depends on the left and right states. Indeed,

arguing that the self-similar exact solution of (2.19) satis�es (2.1), we integrate (2.1) over the

rectangle [� � x=2; � x=2] � [0; � t], to get:

Z � x=2

� � x=2
WR

� x
� t

; WL ; WR

�
dx =

Z � x=2

� � x=2
W (0; x) dx

�
Z � t

0
F

�
WR

�
� x
2t

; WL ; WR

��
dt

+
Z � t

0
F

�
WR

�
�

� x
2t

; WL ; WR

��
dt:

(2.21)
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The initial condition of the Riemann problem (2.19) immediately yields

Z � x=2

� � x=2
W (0; x) dx =

� x
2

(WL + WR ): (2.22)

In order to compute the �ux integrals, we require the knowledge of the value of the exact

Riemann solution along the x = � � x=2 lines, for all t 2 [0; � t]. A suf�cient CFL condition on

� t, which ensures that the exact Riemann solution is uniform along these lines, is exhibited

on Figure 2.7.

Figure 2.7 – CFL condition for Godunov-type schemes. The time step � t is chosen to ensure
that the exact Riemann solution is uniform along the x = � � x=2 lines.

From Figure 2.7, the CFL condition on the time step � t reads as follows:

� t
� x

max(j� L j; j� R j) �
1
2

: (2.23)

Note that this condition is analogous to the CFL condition (2.11) exhibited for Godunov's

scheme. This CFL condition has been chosen such that, for allt 2 (0; � t],

WR

�
�

� x
2t

; WL ; WR

�
= WL and WR

�
� x
2t

; WL ; WR

�
= WR : (2.24)

Plugging (2.22) and (2.24) into (2.21) yields the following expression of the average of the

solution to the Riemann problem (2.19):

1
� x

Z � x=2

� � x=2
WR

� x
� t

; WL ; WR

�
dx =

WL + WR

2
�

� t
� x

(F (WR ) � F (WL )) :

Therefore, the integral consistency condition (2.20) rewrites as follows:

1
� x

Z � x=2

� � x=2

fW
� x

� t
; WL ; WR

�
dx =

WL + WR

2
�

� t
� x

(F (WR ) � F (WL )) : (2.25)

Equipped with a approximate Riemann solver fW satisfying the integral consistency, we

are able to de�ne the Godunov-type scheme. Recall that, for a �nite volume scheme, a Rie-

mann problem occurs at each interface between cells. For a Godunov-type scheme, this Rie-
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mann problem is approximately solved using the approximate Riemann solver fW . To that

end, we use the juxtaposition function W � introduced by (2.17). The Godunov-type scheme

is then de�ned by averaging W � over the cell ci and at time tn + � t, as follows:

W n+1
i =

1
� x

Z x i + 1
2

x i � 1
2

W � (tn+1 ; x) dx: (2.26)

Note that this expression is similar to (2.13), but with the juxtaposition function W � corre-

sponding to the approximate Riemann solver fW , which is made of constant states separated

by waves whose velocities are known. Therefore, the update formula (2.26) involves an inte-

gral that can always be computed explicitly, given an approximate Riemann solver.

We end this presentation of Godunov-type schemes by proving that the scheme (2.26) can

be written under a conservative form. By de�nition (2.17) of the juxtaposition function W � ,

the expression (2.26) rewrites as follows:

W n+1
i =

1
� x

Z x i

x i � 1
2

fW
� x � x i � 1

2

� t
; W n

i � 1; W n
i

�
dx

+
1

� x

Z x i + 1
2

x i

fW
� x � x i + 1

2

� t
; W n

i ; W n
i +1

�
dx:

(2.27)

After using the additivity property of integrals on the second integral and arguing the changes

of variables x 7! x � x i � 1
2

and x 7! x � x i + 1
2
, the expression (2.27) is rewritten as:

W n+1
i =

1
� x

Z � x=2

0

fW
� x

� t
; W n

i � 1; W n
i

�
dx

+
1

� x

Z � x=2

� � x=2

fW
� x

� t
; W n

i ; W n
i +1

�
dx

�
1

� x

Z � x=2

0

fW
� x

� t
; W n

i ; W n
i +1

�
dx:

Recall that the approximate Riemann solver fW satis�es the integral consistency condition

(2.25). Therefore, the updated stateW n+1
i is given by:

W n+1
i =

W n
i + W n

i +1

2
�

� t
� x

�
F (W n

i +1 ) � F (W n
i )

�

�
1

� x

Z � x=2

0

fW
� x

� t
; W n

i � 1; W n
i

�
dx +

1
� x

Z � x=2

0

fW
� x

� t
; W n

i ; W n
i +1

�
dx:

(2.28)

Straightforward computations within (2.28) lead to the following conservative form of the

updated approximation:

W n+1
i = W n

i �
� t
� x

�
F

�
W n

i ; W n
i +1

�
� F

�
W n

i � 1; W n
i

��
; (2.29)

where the numerical �ux function F is given by:

F (WL ; WR ) = F (WR ) �
� x
2� t

WR +
1

� t

Z � x=2

0

fW
� x

� t
; WL ; WR

�
dx: (2.30)



2.1. 1D FIRST-ORDER FINITE VOLUME SCHEMES 81

Note that, if we had transformed the �rst integral instead of the second one in (2.27), the com-

putations would have yielded the following equivalent form of the numerical �ux function:

F (WL ; WR ) = F (WL ) +
� x
2� t

WL �
1

� t

Z 0

� � x=2

fW
� x

� t
; WL ; WR

�
dx: (2.31)

We remark that, as soon as the integral consistency condition is satis�ed by the approximate

Riemann solver fW , the equality F (WL ; WR ) = F (WL ; WR ) holds. Since fW (x=t; W; W ) = W ,

both forms of the numerical �ux function satisfy the consistency property, i.e. F (W; W ) =

F (W ) and F (W; W ) = F (W ). Therefore, the Godunov-type schemes are conservative and

consistent provided the approximate Riemann solver they are based on satis�es both the in-

tegral consistency property and fW (x=t; W; W ) = W .

To conclude this section on Godunov-type schemes, we derive the HLL scheme, based on

an approximate Riemann solver with one intermediate state. This scheme has been suggested

by Harten, Lax and van Leer in 1983 (see [90]). In the current framework of one constant

intermediate state, the approximate Riemann solver (2.18) rewrites as follows:

fW
� x

t
; WL ; WR

�
=

8
>><

>>:

WL if x=t � � L ;

WHLL if � L < x=t < � R ;

WR if x=t � � R ;

(2.32)

where WHLL denotes the value of the constant intermediate state. This approximate Riemann

solver is displayed on Figure 2.8.

Figure 2.8 – Structure of the approximate Riemann solver (2.32).

The intermediate state WHLL is determined in order for the approximate Riemann solver

to satisfy the integral consistency property (2.25). We �rst consider the speci�c case where

� L < 0 < � R . From (2.32), the average of fW over [� � x=2; � x=2] satis�es the following

sequence of equalities:

1
� x

Z � x=2

� � x=2

fW
� x

� t
; WL ; WR

�
dx =

1
� x

 Z � L � t

� � x=2
WL dx +

Z � R � t

� L � t
WHLL dx +

Z � x=2

� R � t
WR dx

!

=
WL + WR

2
+

� t
� x

(� L WL � � RWR + ( � R � � L )WHLL ):

Using both the above equality and the integral consistency (2.25) immediately yields the fol-
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lowing expression of WHLL :

WHLL =
� RWR � � L WL

� R � � L
�

F (WR ) � F (WL )
� R � � L

: (2.33)

Equipped with the expression of WHLL , we can now compute the numerical �ux function

associated to the HLL scheme. Let us denote this function, which depends on WL and WR ,

by FHLL . Its expression is given by (2.30) (or, equivalently, (2.31)). We also denoteF (WL ) by

WL and F (WR ) by WR . Since the approximate Riemann solver is here de�ned by (2.32), the

numerical �ux FHLL reads as follows:

FHLL (WL ; WR ) = FR �
� x
2� t

WR + � RWHLL +
�

� x
2� t

� � R

�
WR : (2.34)

Plugging the expression (2.33) ofWHLL into (2.34) yields, after straightforward computations:

FHLL (WL ; WR ) =
� RFL � � L FR

� R � � L
+

� R � L (WR � WL )
� R � � L

:

Recall that we have determined FHLL in the speci�c case where � L < 0 < � R . On the one

hand, in the case where � L > 0, since fW (x=� t; WL ; WR ) = WL for x=� t < 0, using the form

(2.31) of the numerical �ux immediately yields FHLL (WL ; WR ) = FL . On the other hand, if

� R < 0, using the form (2.30) yields FHLL (WL ; WR ) = FR . Therefore, the numerical �ux of

the HLL scheme is given as follows:

FHLL (WL ; WR ) =

8
>>>><

>>>>:

FL if � L � 0;

� RFL � � L FR

� R � � L
+

� R � L (WR � WL )
� R � � L

if � L < 0 < � R ;

FR if � R � 0:

(2.35)

The goal of this manuscript is to derive a consistent, robust and well-balanced scheme

for the shallow-water equations. Since the shallow-water system is hyperbolic, using a �-

nite volume scheme based on an approximate Riemann solver is a suitable choice. However,

the approximate Riemann solver we use cannot possess only one state. Indeed, for a one-

state Riemann solver, merely arguing the consistency property yields the HLL scheme. As

a consequence, we choose a two-state approximate Riemann solver to introduce more un-

known intermediate states and recover the well-balance property. In addition, the two-state

structure is in good agreement with the exact Riemann solution, discussed in Section 1.1.3,

which possesses two intermediate states separated by a stationary contact discontinuity. This

approximate Riemann solver will be derived in Chapter 3. However, other ingredients are

required to enhance the scheme. These ingredients are discussed in the remainder of this

chapter.

2.2 Second-order space accuracy in one dimension

After having derived �rst-order �nite volume schemes in the previous section, we now

turn to providing a second-order extension of these schemes. The purpose of such an exten-
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sion is to improve the spatial order of accuracy of a scheme. The order of accuracy measures

the rate at which the numerical approximation converges towards the exact solution as � x

diminishes. We de�ne the average of the exact solution on a cell ci as follows:

(Wex)n
i :=

1
� x

Z

ci

Wex(tn ; x)dx;

where Wex(t; x ) is the exact solution of the initial value problem (2.1). The errors between the

approximate solution (W n
i ) i 2 Z and the average of the exact solution ((Wex)n

i ) i 2 Z are de�ned

as follows:

L 1-norm: e1(� x) =
X

i 2 Z

� x
�
�W n

i � (Wex)n
i

�
� ; (2.36a)

L 2-norm: e2(� x) =

 

� x
X

i 2 Z

�
�W n

i � (Wex)n
i

�
�2

! 1� 2

; (2.36b)

L 1 -norm: e1 (� x) = max
i 2 Z

�
�W n

i � (Wex)n
i

�
� : (2.36c)

Let e 2 f e1; e2; e1 g be the error in any norm. For a smooth exact solution, it is a well-known

fact that, in any norm, the error between the approximate solution and the exact solution

satis�es the following property when � x tends to 0:

e(� x) =
� x ! 0

O(� xp);

where e(� x) > 0 is the error for the considered space step � x and p is the order of accuracy.

We have presented �rst-order schemes (i.e. where p = 1 ) in the previous section. The goal is

now to present second-order techniques, whose aim is ensuring that p = 2 .

One class of second-order techniques (and high-order ones) is suited to the framework

of Godunov-type schemes. They consist in replacing the piecewise constant approximation

W n
i in each cell with a piecewise linear approximation cW n

i (x) (or piecewise polynomial in the

case of higher-order schemes). This piecewise linear approximation cW n
i (x) is called the recon-

struction. An example of such a reconstruction, the MUSCL technique (see [112] for instance),

is discussed later in this section.

We �rst introduce the following notations, that represent the values of the reconstruction

at the inner interfaces of each cell:

W �
i = cW n

i (x i � 1
2
) and W +

i = cW n
i (x i + 1

2
):

These values at the inner interfaces are then used in the numerical �ux function F of the

Godunov-type scheme. Instead of (2.29), the updated stateW n+1
i of the second-order scheme

is given as follows:

W n+1
i = W n

i �
� t
� x

�
F

�
W +

i ; W �
i +1

�
� F

�
W +

i � 1; W �
i

��
:

The reconstruction and the interface values are presented in Figure 2.9. In this �gure, '

represents one component of the vector W , which thus lies in a subset of R.
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Figure 2.9 – Reconstruction within the cell ci . The constant state' n
i (dashed line) is recon-

structed as the linear function b' n
i (x) (solid line). The values of b' n

i (x) at the inner interfaces
are denoted by ' �

i and ' +
i .

Many reconstruction procedures have been developed over the years. We mention the

MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) reconstruction, pro-

posed by van Leer in [154] (see also [131, 132, 112] for instance). Another procedure, the

MOOD reconstruction, provides a high-order polynomial approximation (see [46, 63, 65, 71]).

We also mention the ENO (Essentially Non-Oscillatory) schemes (see [88]) and their exten-

sion, the WENO (Weighted ENO) schemes (see for instance [116, 99, 143]). Finally, the DG

(Discontinuous Galerkin) method is mentioned as a high-order extension of �nite volume

schemes (see for instance [53, 52, 51]).

We conclude this section with a presentation of the MUSCL procedure. We assume known

an approximation of the solution at time tn , denoted by (W n
i ) i 2 Z , constant in each cell ci .

The goal of the MUSCL reconstruction is to provide a linear reconstruction cW n
i (x) of this

piecewise constant approximation. For each cell ci , this reconstruction is given by:

cW n
i (x) = W n

i + � n
i (x � x i );

where � n
i is the slopeof the reconstruction. We immediately remark that cW n

i (x i ) = W n
i , i.e.

the piecewise constant approximation is recovered at the center of each cell. In addition, the

values of the reconstruction at the inner interfaces satisfy:

W �
i = W n

i �
� x
2

� n
i :

Now, the last ingredient we need to determine cW n
i (x) is the slope � n

i . We choose� n
i under

the following form:

� n
i := L

�
W n

i � W n
i � 1

� x
;
W n

i +1 � W n
i

� x

�
;

where L : Rn � Rn ! Rn is a function whose arguments are the slopes between the constant

states on each side of both interfaces. Such a reconstruction is presented on Figure 2.10 for a

component ' of the vector W .

In order to achieve the determination of the MUSCL reconstruction, we need to provide
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Figure 2.10 – The MUSCL reconstruction procedure. The constant states' n
i (dashed lines) are

reconstructed to form the piecewise linear functions b' n
i (x) (solid lines).

an expression of L as a function of two slopes � L and � R . The most natural choice for L is the

average of the slopes, as follows:

L (� L ; � R ) =
� L + � R

2
:

However, it is well-known that such a choice induces spurious oscillations. Therefore, the use

of a slope limiteris usually suggested. The purpose of a slope limiter is to make sure that the

slope � n
i is not too large, in order to reduce or nullify the amplitude of the oscillations. We

here give a few examples of usual slope limiters:

• the minmod limiter: L (� L ; � R ) = minmod (� L ; � R ), where

minmod (� L ; � R ) =

8
>><

>>:

min( � L ; � R ) if � L > 0 and � R > 0;

max(� L ; � R ) if � L < 0 and � R < 0;

0 otherwise;

• the superbee limiter: L (� L ; � R ) = maxmod(minmod (2� L ; � R ); minmod (� L ; 2� R )) , where

maxmod(� L ; � R ) =

8
>><

>>:

max(� L ; � R ) if � L > 0 and � R > 0;

min( � L ; � R ) if � L < 0 and � R < 0;

0 otherwise;

• the Monotonized Central-Difference (MC) limiter: L (� L ; � R ) = MC(� L ; � R ), where

MC(� L ; � R ) =

8
>>>>>><

>>>>>>:

min
�

2� L ; 2� R ;
� L + � R

2

�
if � L > 0 and � R > 0;

max
�

2� L ; 2� R ;
� L + � R

2

�
if � L < 0 and � R < 0;

0 otherwise.
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2.3 Two-dimensional �rst-order �nite volume schemes for hyper-

bolic problems

After having tackled the issues of �rst-order schemes for one-dimensional problems in

Section 2.1 and second-order one-dimensional schemes in Section 2.2, we now turn to the

approximation of two-dimensional hyperbolic systems of conservation laws. We consider the

following initial value problem:

(
@t W + r � F (W ) = 0 ;

W (0; x ) = W0(x ):
(2.37)

Now, the space variable x lies within R2 instead of R. Therefore, the physical �ux F is now

a function of W with values within M N;2(R). The vector of conserved variables W lives

in the admissible states space
 � RN , supposed to be convex and invariant. For more

information on such systems and the approximation of their solutions, the reader is referred

to [103, 112, 150] for instance.

Now, we focus on approximating solutions of such 2D systems of conservation laws. Once

again, we elect to use �nite volume schemes. Therefore, we start by presenting the �nite

volume discretization of the space domain and of the equations, to derive a 2D �nite volume

scheme. Then, we show that this scheme can actually be rewritten as a convex combination

of 1D schemes, which ensures that some properties veri�ed at the 1D level are still satis�ed

by the 2D scheme.

2.3.1 Finite volume discretization of the equations

In order to propose a numerical scheme for the 2D equations (2.37), we �rst need a dis-

cretization of the space domain R2. We elect to discretize this domain with polygonal cells ci

of center x i . Consider two neighboring cells ci and cj , i.e. two cells that possess a common

edge. This edge is denoted byeij and the unit normal vector pointing from ci to cj is denoted

by n ij . The area of the cell ci will be denoted by jci j, and the length of the edge eij will be

denoted by jeij j. The perimeter of the cell ci is denoted by jPi j. The notation � i represents the

set of cells that share an edge with the cell ci . These notations are illustrated on Figure 2.11

for a triangle mesh and on Figure 2.12 for a uniform Cartesian mesh.

Figure 2.11 – 2D mesh made of triangles.
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Figure 2.12 – Uniform 2D Cartesian mesh, made of squares.

Equipped with the mesh, we now derive a 2D �nite volume scheme. First, we set the time

step � t. We assume that it is small; a more precise bound of the time step will be given later

on. Then, the governing equations (2.37) are averaged over the cuboid[tn ; tn+1 ] � ci , to get:

1
� t

1
jci j

Z

ci

Z tn +1

tn
@t W dt dx +

1
jci j

1
� t

Z tn +1

tn

Z

ci

r � F (W ) dx dt = 0 : (2.38)

The �rst integral of (2.38) satis�es the following equality:

1
� t

1
jci j

Z

ci

Z tn +1

tn
@t W dt dx =

1
� t

1
jci j

Z

ci

W (tn+1 ; x ) dx �
1

� t
1

jci j

Z

ci

W (tn ; x ) dx : (2.39)

Now, we de�ne the numerical approximation of the solution of (2.37) as piecewise constant

on each cell. Within the cell ci and at time tn , this approximation is denoted by W n
i , and it

satis�es:

W n
i '

1
jci j

Z

ci

W (tn ; x ) dx :

As a consequence, (2.39) becomes:

1
� t

1
jci j

Z

ci

Z tn +1

tn
@t W dt dx '

1
� t

�
W n+1

i � W n
i

�
: (2.40)

We now turn to the second integral of (2.38). Arguing the divergence theorem, we have

Z

ci

r � F (W ) dx =
Z

@ci
F (W ) � n d� ; (2.41)

where @ci is the boundary of the cell ci , n is the unit outer-pointing normal vector, and d� is

an element of length of @ci . Note that the boundary of ci satis�es the following relation:

@ci =
[

j 2 � i

eij : (2.42)
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Using (2.42) within the integral in (2.41), we obtain:

Z

ci

r � F (W ) dx =
X

j 2 � i

Z

eij

F (W ) � n ij d� : (2.43)

Substituting (2.43) into the second term of (2.38) yields:

1
jci j

1
� t

Z tn +1

tn

Z

ci

r � F (W ) dx dt =
1

jci j

X

j 2 � i

Z

eij

"
1

� t

Z tn +1

tn
F (W ) � n ij dt

#

d� : (2.44)

We remark that the integral within the brackets is nothing but the average of the physical �ux

function on the edge eij over time. Therefore, following the 1D case, we approximate this

average with a numerical �ux function F , as follows:

F n
ij := F (W n

i ; W n
j ; n ij ) '

1
� t

Z tn +1

tn
F (W ) � n ij dt: (2.45)

Note that the function F approximates the physical �ux in the direction orthogonal to the

edgeeij . Thus, it can be viewed as a 1D numerical �ux function, in the direction given by n ij .

The numerical �ux F n
ij is then injected into (2.44), noting that F n

ij does not depend on � , to

get:
1

jci j
1

� t

Z tn +1

tn

Z

ci

r � F (W ) dx dt '
X

j 2 � i

jeij j
jci j

F n
ij : (2.46)

Combining both equations (2.40) and (2.46) yields the following 2D �rst-order �nite vol-

ume numerical scheme:

W n+1
i = W n

i � � t
X

j 2 � i

jeij j
jci j

F n
ij : (2.47)

We now de�ne the conservation, consistency and robustness properties. First, the robust-

ness of the 2D scheme (2.47) is de�ned the same way as the robustness of the 1D scheme (2.7).

Indeed, the 2D scheme is said to be robust if the following property holds:

if, 8i 2 Z, W n
i 2 
 , then 8i 2 Z, W n+1

i 2 
 :

Second, the 2D numerical �ux F is said to be consistent if it satis�es the following 2D analogue

of (2.9):

8W 2 
 ; 8n 2 R2; F (W; W ; n ) = F (W ) � n : (2.48)

Third, the discrete conservation property reads:

X

i 2 Z

jci jW n+1
i =

X

i 2 Z

jci jW n
i : (2.49)

We now exhibit a suf�cient condition on the numerical �ux function F for this property to be

satis�ed. Plugging the value (2.47) of W n+1
i within (2.49) immediately yields:

X

i 2 Z

X

j 2 � i

jeij jF n
ij = 0 : (2.50)
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Let us perform a reindexation within the expression (2.50). Consider an interface k separating

two cells ci k and cj k . We therefore have jek j = jei k ;j k j = jej k ;i k j. The expression (2.50) then

rewrites as follows: X

k2 Z

jek j
�
F n

i k ;j k
+ F n

j k ;i k

�
= 0 : (2.51)

A suf�cient condition for (2.51) to be valid is that F n
i k ;j k

= �F n
j k ;i k

, for all k 2 Z. Performing

the reverse reindexation, arguing the de�nition (2.45) of F and noting that n ij = � n ji proves

that this suf�cient condition reads:

8i 2 Z; 8j 2 � i ; F
�
W n

i ; W n
j ; n ij

�
= �F

�
W n

j ; W n
i ; � n ij

�
:

This condition ensures that the numerical �ux entering a cell through an edge is the opposite

of the numerical �ux leaving the cell though this edge. Therefore, it indeed corresponds to

the conservation property.

2.3.2 2D schemes as convex combinations of 1D schemes

We have thus obtained the general form (2.47) of a �nite volume scheme for a 2D conser-

vation law. Following [132] (see also [19, 22, 17, 21]), we rewrite the 2D scheme (2.47) as a

convex combination of 1D schemes. Such a process allows to easily check if properties that

are valid in 1D are still satis�ed in 2D. The following result states this convex combination.

Proposition 2.1. Let jPi j be the perimeter of the celljci j. Assume that the numerical �ux of the 2D

scheme (2.47) is consistent. Then, (2.47) rewrites under the following form:

W n+1
i =

X

j 2 � i

jeij j
jPi j

W n+1
ij ; (2.52)

whereW n+1
ij is a 1D scheme in the direction given byn ij , given by:

W n+1
ij = W n

i � � t
jPi j
jci j

�
F (W n

i ; W n
j ; n ij ) � F (W n

i ; W n
i ; n ij )

�
: (2.53)

Proving Proposition 2.1 means showing that the convex combination process (2.52) - (2.53)

indeed yields the scheme (2.47). Let us start by noting that, by de�nition of the perimeter jPi j,

the following identity is satis�ed:

jPi j =
X

j 2 � i

jeij j: (2.54)

Therefore, the combination (2.52) is indeed a convex combination, since all its coef�cients are

positive and their sum is equal to one. In addition, combining (2.52) and (2.53) yields:

W n+1
i =

X

j 2 � i

jeij j
jPi j

�
W n

i � � t
jPi j
jci j

�
F (W n

i ; W n
j ; n ij ) � F (W n

i ; W n
i ; n ij )

�
�

: (2.55)

The goal is now to prove that (2.55) holds. If that is the case, then Proposition 2.1 obviously

also holds.



90 CHAPTER 2. FINITE VOLUME METHODS

Proof of Proposition 2.1.The goal of this proof is to show (2.55). This equality rewrites as fol-

lows:

W n+1
i =

X

j 2 � i

jeij j
jPi j

W n
i

� � t
X

j 2 � i

jeij j
jPi j

jPi j
jci j

F (W n
i ; W n

j ; n ij )

+ � t
X

j 2 � i

jeij j
jPi j

jPi j
jci j

F (W n
i ; W n

i ; n ij ):

(2.56)

Using (2.54), the �rst sum in (2.56) rewrites:

X

j 2 � i

jeij j
jPi j

W n
i = W n

i

P
j 2 � i

jeij j

jPi j
= W n

i : (2.57)

Recall the de�nition (2.45) of the 2D numerical �ux. Then, the second sum in (2.56) reads:

� � t
X

j 2 � i

jeij j
jPi j

jPi j
jci j

F (W n
i ; W n

j ; n ij ) = � � t
X

j 2 � i

jeij j
jci j

F n
ij : (2.58)

Arguing the de�nition (2.45) of the 2D numerical �ux and the consistency property (2.48),

the third sum in (2.56) satis�es the following identity:

� t
X

j 2 � i

jeij j
jPi j

jPi j
jci j

F (W n
i ; W n

i ; n ij ) =
� t
jci j

X

j 2 � i

jeij jF (W n
i ) � n ij :

Now, we argue the divergence theorem. Since F (W n
i ) is a constant, we have the following

sequence of equalities:

X

j 2 � i

jeij jF (W n
i ) � n ij =

X

j 2 � i

Z

eij

F (W n
i ) � n ij d�

=
Z

@ci
F (W n

i ) � n d�

=
Z

ci

r � F (W n
i ) dx :

Sincer � F (W n
i ) = 0 , the third sum in (2.56) vanishes, as follows:

� t
X

j 2 � i

jeij j
jci j

F (W n
i ; W n

i ; n ij ) = 0 : (2.59)

Combining the three evaluations (2.57) – (2.58) – (2.59) yields:

X

j 2 � i

jeij j
jPi j

�
W n

i � � t
jPi j
jci j

[F (W n
i ; W n

j ; n ij ) � F (W n
i ; W n

i ; n ij )]
�

= W n
i � � t

X

j 2 � i

jeij j
jci j

F n
ij :

Arguing (2.47), the right-hand side of the above expression is equal to W n+1
i .

As a consequence, (2.55) holds and the convex combination (2.52) – (2.53) indeed allows

the recovery of the 2D scheme (2.47). The proof is thus concluded.
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Corollary 2.2. The convex combination process from Proposition 2.1 allows giving an upper bound

for the time step� t. It is constrained by the following CFL condition:

� t max
i 2 Z

�
jPi j
jci j

max
j 2 � i

�
j� �

ij j; j� +
ij j

� �
�

1
2

; (2.60)

where� �
ij and� +

ij respectively represent the minimum and maximum approximate wave speeds at the

interface between the cellsci andcj . These two quantities depend onW n
i andW n

j .

Proof. The proof of this result relies on noticing that the time step of the 1D scheme (2.53) has

to be constrained with a CFL-like condition. This CFL condition is nothing but the equation

(2.60), which is the analogue of the 1D CFL condition (2.11). Thus, the proof is achieved.

The main interest of such a convex combination process is to easily prove some properties

on the 2D scheme with the mere knowledge of the 1D numerical �ux function. Indeed, for

instance, recall that the admissible states space
 is assumed to be convex. Therefore, if the

1D scheme is robust, then the 2D scheme is also robust.

2.4 Two-dimensional high-order �nite volume schemes

We now discuss the high-order extension of the �rst-order 2D scheme (2.47). Recall the

de�nition (2.2) of the order of accuracy. Classical MUSCL techniques (see Section 2.2) may

be applied to obtain a second-order space accuracy, i.e. p = 2 . However, we focus here on

high-order schemes, i.e. schemes with orderp � 3. The MUSCL scheme used a piecewise lin-

ear reconstruction; high-order schemes require a piecewise polynomial reconstruction. Such

schemes produce a better approximation of the exact solution, but also induce spurious oscil-

lations, similarly to the 1D MUSCL case. As a consequence, speci�c techniques are required

to prevent these oscillations. This section is dedicated to deriving a high-order �nite vol-

ume scheme, and to presenting an oscillation prevention technique, the MOOD method (see

[46, 63, 65]).

We begin by presenting the polynomial reconstruction procedure. Then, we derive a �-

nite volume scheme that is high-order accurate in both space and time. Finally, we mention

the MOOD method, which is a procedure to choose the optimal degree of the polynomial

reconstruction, and ensure that some robustness properties are satis�ed.

2.4.1 The polynomial reconstruction

In this subsection, we follow [46, 63, 65] to present a high-order polynomial reconstruction.

Consider a component ' of the vector W . At this level, in each cell ci of the mesh, we know

constant values ' n
i , which represent approximations of ' in the cell ci and at time tn . Within

each cell ci and at time tn , we seek an expression'̂ n
i (x ; d) that is a polynomial of degree

d, and that correctly approximates the solution of (2.37) within the cell ci . A polynomial

reconstruction of degree d will allow a spatial accuracy of order d + 1 (recall the second-order

MUSCL technique, where a linear reconstruction was applied).
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We begin by requiring that the polynomial '̂ n
i (x ; d) satis�es the following essential con-

servation property:
1

jci j

Z

ci

'̂ n
i (x ; d) dx = ' n

i : (2.61)

Therefore, we elect to use the following form for the polynomial reconstruction:

'̂ n
i (x ; d) = ' n

i +
X

j � j2 J1;dK

R�
i ((x � x i ) � � M �

i ); (2.62)

where we have de�ned:

• � 2 N2, a multi-index whose length is denoted by j� j = � 1 + � 2;

• the usual notation x � = x � 1
1 x � 1

2 ;

• Ri = ( R�
i ) j � j2 J1;dK, the unknown coef�cients of the polynomial;

• M �
i such that M �

i =
1

jci j

Z

ci

(x � x i ) � dx .

Thanks to the presence ofM �
i , the expression (2.62) is immediately proven to satisfy the con-

servation property (2.61). In addition, it is worth noting that the de�nition (2.62) of '̂ n
i (x ; d)

does not ensure that '̂ n
i (x i ; d) = ' n

i , unlike in the 1D MUSCL case.

The last step in the full determination of the polynomial reconstruction is �nding a value

for the polynomial coef�cients Ri . We begin by taking a stencil sd
i , formed of Nd cells around

each cell ci , and which does not contain the cell ci . The determination of the optimal stencil

for a given mesh is still an open problem; therefore, for the moment, we do not explicitly give

the stencil sd
i of a given cell ci . A lower bound of its size Nd will be provided shortly. The

goal of this stencil is to provide a set in which the cells are considered close enough to the

cell ci to be used in the polynomial approximation of the solution in ci . Following [46, 63, 65],

we compute the polynomial coef�cients Ri such that they minimize the least squares error

between the reconstruction and the values ' n
j of the piecewise constant approximation in

the stencil cells cj 2 sd
i . This condition is nothing but the minimization of the following

functional:

E i (Ri ) =
1
2

X

j 2 sd
i

"
1

jcj j

Z

cj

'̂ n
i (x ; d) dx � ' n

j

#2

:

Let us note that arguing the de�nition (2.62) of '̂ n
i yields:

1
jcj j

Z

cj

'̂ n
i (x ; d) dx = ' n

i +
X

j � j2 J1;dK

R�
i

 
1

jcj j

Z

cj

(x � x i ) � dx � M �
i

!

:

Therefore, the functional E i rewrites as follows:

E i (Ri ) =
1
2

X

j 2 sd
i

2

4
X

j � j2 J1;dK

R�
i

 
1

jcj j

Z

cj

(x � x i ) � dx � M �
i

!

+ ' n
i � ' n

j

3

5

2

:
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Minimizing E i is therefore equivalent to minimizing the following L 2-norm:

E i (Ri ) =
1
2

kX i Ri � � i k2
2; (2.63)

where we have set:

• X i the matrix de�ned by X i =

"
1

jcj j

Z

cj

(x � x i ) � dx � M �
i

#

j 2 sd
i ; j� j2 J1;dK

, and

• � i the vector de�ned by � i =
�

' n
j � ' n

i

�

j 2 sd
i

.

In order to ensure that there is at least one solution to the minimization problem (2.63), we

exhibit a condition on the stencil size Nd. Indeed, we need more information from the stencil

than we have polynomial coef�cients. Therefore, we need # sd
i > # f � 2 N2 ; j� j 2 J1; dKg.

After straightforward computations, we have the following lower bound on the size of the

stencil:

Nd = # sd
i >

(d + 1)( d + 2)
2

� 1:

To solve the minimization problem (2.63), we use the normal equation approach. We know

that Ri is a minimum of E i (Ri ) if and only if Ri is a solution of the following equation, called

the normal equation associated to the least squares problem (2.63):

X T
i X i Ri = X T

i � i ;

where X T
i is the transpose of the matrix X i . Now, assume that the matrix X T

i X i is invertible.

Since the matrix X i only depends on the geometry, this invertibility property only depends

on the stencil sd
i . Therefore, an important ingredient in the choice of the stencil is to make sure

that it leads to the matrix X T
i X i being invertible. Equipped with this invertibility condition,

the polynomial coef�cients Ri satisfy:

Ri = ( X T
i X i ) � 1X T

i � i : (2.64)

The matrix (X T
i X i ) � 1X T

i is called the Moore-Penrose pseudoinverse of X i ; more details can

be found in [147]. The expression (2.64) makes the determination of the polynomial coef�-

cients a lot easier. Indeed, since the matrix X i only depends on the geometry of the mesh,

which does not change over time, it is suf�cient to compute the pseudoinverse (X T
i X i ) � 1X T

i

once for each cellci , at the very beginning of the time iterations of the scheme. Thus, solving

the minimization problem only consists in performing the matrix-vector product (2.64) for

each cellci and at each time step.

The procedure discussed above fully characterizes the polynomial coef�cients Ri . How-

ever, the condition number of the matrix X i may be very large, especially when dealing with

a high polynomial degree. Therefore, after [1, 73], we suggest a rescaling of the matrix X i to

relax the dependence of the condition number on the geometry and the polynomial degree.

The matrix X i is rescaled as follows:

eX i =

"
1

jci j
j � j� 2

 
1

jcj j

Z

cj

(x � x i ) � dx � M �
i

!#

j 2 sd
i ; j� j2 J1;dK

: (2.65)



94 CHAPTER 2. FINITE VOLUME METHODS

The equation (2.64) is then solved with the new matrix eX i , to yield the rescaled polynomial

coef�cients eRi , as follows:
eRi = ( eX T

i
eX i ) � 1 eX T

i � i :

Finally, the actual polynomial coef�cients Ri to be used within (2.62) are obtained from the

rescaled coef�cients eRi by setting:

Ri =

 
eR�

i

jci j
j � j� 2

!

j � j2 J1;dK

: (2.66)

2.4.2 Derivation of high-order two-dimensional schemes for balance laws

We now focus on approximating solutions of 2D systems of balance laws with a high-order

accuracy. Such systems are governed by the following initial value problem:

(
@t W + r � F (W ) = s(W );

W (0; x ) = W0(x ):
(2.67)

In (2.67), as in (2.3), the quantitys(W ) represents a source term.

In order to provide a high-order approximation of solutions to the system (2.67), we �rst

use the polynomial reconstruction (2.62) to derive a scheme that is high-order in space. Then,

we use Runge-Kutta-type methods to provide a high-order time accuracy. This approach is

detailed in the next two sections.

2.4.2.1 High-order space accuracy

This section is dedicated to proposing a high-order �nite volume discretization of the 2D

balance law (2.67). As usual, this discretization is obtained by averaging the balance law

(2.67) on the cuboid [tn ; tn+1 ] � ci . The main reason this high-order discretization is different

from the �rst-order one presented in Section 2.3.1 is that the polynomial reconstruction (2.62)

is used. Therefore, the approximate solution is no longer piecewise constant in each cell, but

piecewise polynomial, as follows:

8i 2 Z; 8x 2 ci ; cW n
i (x ; d) ' W (tn ; x ); (2.68)

where cW n
i (x ; d) is the vector containing all the components '̂ n

i (x ; d) given by (2.62).

Equipped with the polynomial approximation (2.68), we can proceed to determine a high-

order �nite volume discretization of the 2D balance law (2.67). To determine the high-order

�nite volume scheme, the system (2.67) is averaged over [tn ; tn+1 ] � ci , as follows:

1
� t

1
jci j

Z

ci

Z tn +1

tn
@t W dt dx +

1
� t

1
jci j

Z tn +1

tn

Z

ci

r � F (W ) dx dt

=
1

� t
1

jci j

Z

ci

Z tn +1

tn
s(W ) dt dx :

(2.69)

The goal is now to provide an approximate value of the three integrals in (2.69), while keeping
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the required order of accuracy.

The �rst integral of (2.69) satis�es:

1
� t

1
jci j

Z

ci

Z tn +1

tn
@t W dt dx =

1
� t

�
1

jci j

Z

ci

W (tn+1 ; x ) dx �
1

jci j

Z

ci

W (tn ; x ) dx
�

'
1

� t

�
1

jci j

Z

ci

cW n+1
i (x ; d) dx �

1
jci j

Z

ci

cW n
i (x ; d) dx

�
:

Arguing the conservation property (2.61) of the polynomial reconstruction cW n
i , we have, for

the �rst integral of (2.69):

1
� t

1
jci j

Z

ci

Z tn +1

tn
@t W dt dx '

W n+1
i � W n

i

� t
: (2.70)

The second integral of (2.69) concerns the physical �ux. Therefore, its approximation will

involve the numerical �ux function F . Arguing the divergence theorem yields, for this second

integral, an expression similar to the one encountered in (2.44):

1
� t

1
jci j

Z tn +1

tn

Z

ci

r � F (W ) dx dt =
1

jci j

X

j 2 � i

Z

eij

 
1

� t

Z tn +1

tn
F (W (t; � )) � n ij dt

!

d�

'
1

jci j

X

j 2 � i

Z

eij

F
�

cW n
i (� ; d); cW n

j (� ; d); n ij

�
d� ;

where we have used the following approximation of the physical �ux:

F
�

cW n
i (� ; d); cW n

j (� ; d); n ij

�
'

1
� t

Z tn +1

tn
F (W (t; � )) � n ij dt:

We now introduce a quadrature formula on the edge eij . With � 2 eij , the quadrature is given

as follows, for any function � : eij ! R:

1
jeij j

Z

eij

� (� ) d� '
RX

r =1

� r � (� r ): (2.71)

Appendix B (see also [2]) give the quadrature weights � r and the quadrature points � r , as well

as their number R, so as to ensure a global accuracy of order(d+1) . Now, we approximate the

integral of the numerical �ux on the edge eij using the quadrature formula (2.71), as follows:

Z

eij

F
�

cW n
i (� ; d); cW n

j (� ; d); n ij

�
d� ' j eij j

RX

r =1

� r F
�

cW n
i (� r ; d); cW n

j (� r ; d); n ij

�
:

To shorten the notations, we set:

F n
ij;r := F

�
cW n

i (� r ; d); cW n
j (� r ; d); n ij

�
:

As a consequence, using the previous expressions, the second integral of (2.69) is approxi-
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mated as follows:

1
� t

1
jci j

Z tn +1

tn

Z

ci

r � F (W ) dx dt '
X

j 2 � i

jeij j
jci j

RX

r =1

� r F n
ij;r : (2.72)

The third integral of (2.69) concerns the source term. We suggest the following approxi-

mation:
1

� t
1

jci j

Z

ci

Z tn +1

tn
s(W ) dt dx =

1
jci j

Z

ci

 
1

� t

Z tn +1

tn
s(W (t; x )) dt

!

dx

'
1

jci j

Z

ci

s
�

cW n
i (x ; d)

�
dx :

To deal with the integral in the above formula, we introduce a quadrature formula on the cell

ci . It is given as follows, for x 2 ci and  : ci ! R:

1
jci j

Z

ci

 (x ) dx '
QX

q=1

� q (X q); (2.73)

where the weights � q and the points X q, as well as the number Q of quadrature points, are

given by [2] (see also Appendix B). Using this quadrature formula (2.73) yields:

1
jci j

Z

ci

s
�

cW n
i (x ; d)

�
dx '

QX

q=1

� q s
�

cW n
i (X q; d)

�
:

We introduce the following shorter notation:

Sn
i;q := s

�
cW n

i (X q; d)
�

:

As a consequence, the approximation of the third integral of (2.69) reads:

1
� t

1
jci j

Z

ci

Z tn +1

tn
s(W ) dt dx '

QX

q=1

� qSn
i;q : (2.74)

We can �nally derive the high-order �nite volume numerical scheme for the 2D balance

law (2.67). Combining the three approximations (2.70) – (2.72) – (2.74) and plugging them into

the average (2.69) of the balance law (2.67) yields the following high-order numerical scheme:

W n+1
i = W n

i � � t
X

j 2 � i

jeij j
jci j

RX

r =1

� r F n
ij;r + � t

QX

q=1

� qSn
i;q : (2.75)

Concerning the initial condition, we average the function W0 on each cellci , as follows:

W 0
i =

1
jci j

Z

ci

W0(x ) dx :
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Using the quadrature formula on a cell (2.73) then yields the following initial condition:

W 0
i =

QX

q=1

� qW0(X q):

Note that this expression ensures that the initial condition is approximated with the required

order of accuracy.

2.4.2.2 High-order time accuracy

The scheme (2.75) is high-order accurate in space. However, it is only �rst-order accurate

in time: therefore, it is globally �rst-order accurate. In this section, we suggest an extension of

the scheme (2.75) to ensure a high-order time accuracy. There are several ways of providing

a high-order time accuracy; one of them is the ADER approach (see [149, 150] for more in-

formation). However, here, we elect to use Strong Stability-Preserving Runge-Kutta (SSPRK)

methods, as introduced in [84, 85]. The goal of such time integrators is to provide a high-

order time accuracy while retaining some robustness property of the original scheme (2.75).

In order to achieve such a time discretization, we use the second-order method SSPRK(2,2)

when d = 1 , the third-order method SSPRK(3,3) when d = 2 , and the fourth-order method

SSPRK(5,4) whend � 3. These techniques are described in [84, 137] (the reader is also referred

to [144, 85, 138, 146, 139, 83, 102]). For a SSPRK(m,p) method, the number m represents the

number of steps in the Runge-Kutta method, and the number p is the order of approximation

of the time integrator. Note that the SSPRK(2,2) method is nothing but Heun's method.

We now brie�y describe the high-order time integrators mentioned above. Let us rewrite

the scheme (2.75) under the following condensed form:

W n+1 = H(W n );

where W n is the vector containing all the constant values W n
i , i.e. W n = ( W n

i ) i 2 Z . After [144],

the general form of Runge-Kutta methods reads as follows:

8
>>>>><

>>>>>:

W (0) = W n ;

8l 2 J1; mK; W (l ) =
l � 1X

k=0

h
(� lk � � lk )W (k) + � lk H(W (k) )

i
;

W n+1 = W (m) :

(2.76)

Note that, in [144], the scheme was written under the form W n+1 = W n + � tL (W n ), thus

resulting in a slightly different expression of the Runge-Kutta method. The expression (2.76)

is easily derived from the one present in [144]. In (2.76), the coef�cients � lk and � lk depend

on the required order of the time discretization. The values of � lk and � lk are given for each

SSPRK method in Appendix C.

For the sake of completeness, we mention the formulas for the SSPRK(2,2) method and

the SSPRK(3,3) method. They are obtained by evaluating the general Runge-Kutta expression

(2.76) with the relevant values of � lk and � lk given in Appendix C. As a consequence, the
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SSPRK(2,2) method (i.e. Heun's method) reads:

8
>>>>>><

>>>>>>:

W (0) = W n ;

W (1) = H(W (0) );

W (2) =
1
2

W (0) +
1
2

H(W (1) );

W n+1 = W (2) ;

while the SSPRK(3,3) method is given as follows:

8
>>>>>>>>>><

>>>>>>>>>>:

W (0) = W n ;

W (1) = H(W (0) );

W (2) =
3
4

W (0) +
1
4

H(W (1) );

W (3) =
1
3

W (0) +
2
3

H(W (2) );

W n+1 = W (3) :

We end this section by noting that the largest order of accuracy of the proposed Runge-

Kutta schemes is 4 for the �ve-step SSPRK(5,4) scheme. Therefore, since the spatial order of

accuracy isp = d+ 1 , the global order of accuracy will be held back by the time order if d � 4.

The time step � t is still constrained with the classical CFL condition (2.60). In order to ensure

an arbitrarily high order of time accuracy, the time step is modi�ed as follows, with f� t to be

used instead of � t in the scheme:
f� t � � t

max( d; 3)
3 : (2.77)

2.4.3 The MOOD method

Thanks to the polynomial reconstruction, the integration of the 2D balance law and the

relevant SSPRK time discretization, we have designed the scheme (2.75) – (2.76) to be high-

order accurate in both space and time. However, this high-order accuracy comes with the

loss of the robustness property, and the numerical solutions obtained with this scheme may

present unwanted oscillations around the discontinuities (see [154, 111] for instance). Note

that such issues were already present in the 1D second-order case. In the context of the 1D

MUSCL reconstruction, slope limiters were used to prevent these non-physical oscillations

and ensure the robustness of the scheme (see Section 2.2).

To address these issues in the context of a 2D high-order scheme, we use a MOOD tech-

nique. An overview of this method is presented in [46, 63, 65]. Several applications have also

been suggested in recent years, for instance the recovery of the entropy preservation in [16],

a coupling with the ADER technique in [117, 25], an application to the shallow-water equa-

tions in [71, 47, 50], and applications to some other systems in [49, 54, 64]. These applications

are summarized in [48]. Following the MOOD paradigm, a subcell limiter technique for the

discontinuous Galerkin method has been proposed in [68].

The goal of the MOOD procedure is to recover essential properties of a �rst-order scheme,

for instance its robustness, by detecting whether these properties are veri�ed by the high-
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order approximation. This detection process is performed by several detection criteria, which

check whether the properties are satis�ed in each cell. If this veri�cation fails in some cell, the

degree of the approximation is lowered in this cell, until the properties are satis�ed.

First, we present some detection criteria that are commonly used within the MOOD pro-

cedure. Their purpose is to preserve the robustness and control the spurious oscillations. For

a more exhaustive description of these criteria, the reader is referred to [47, 71]. In this sec-

tion, we use the notation W ? for the candidate solution, i.e. the solution obtained from W n

using the high-order scheme (2.75) – (2.76) presented in the previous subsection. This candi-

date solution is then tested against the detection criteria, to determine the cells where it is not

acceptable. In such cells, computing a new candidate solution is required. Second, we state

the detector chain, i.e. the order in which the detectors are used, as well as the MOOD loop.

The Physical Admissibility Detector (PAD)

The PAD determines whether the approximate solution lies within the admissible states

space 
 . Thus, the PAD criterion fails within the cell ci if W ?
i =2 
 : Let us underline that,

equipped with the PAD, the high-order scheme is robust.

The Discrete Maximum Principle detector (DMP)

Although the PAD ensures that the robustness is preserved, it does not prevent spurious

oscillations from appearing in the vicinity of discontinuities. To address this issue, we use the

DMP criterion to check for oscillations. The DMP criterion fails if, for some component ' of

W , we have:

min
j 2 � i

(' j ) � "M � (' )?
i � min

j 2 � i
(' j ) + "M ; (2.78)

where "M is a constant used to reduce the risk of falsely detecting an oscillation that could be

due to a �oating point error. In practice, we usually take "M = � 3, where

� =
jci j
jPi j

:

Detecting physical oscillations: the u2 criterion

Unfortunately, the DMP criterion (2.78) is too restrictive. It will sometimes detect and

eliminate physical oscillations, thus resulting in a false positive that reduces the accuracy of

the scheme. Therefore, we need another criterion to detect whether an oscillation is physically

admissible. To that end, we introduce the u2 criterion, which uses the constant second deriva-

tive of the second-degree polynomial reconstruction '̂ n
i (x ; 2). With x = t (x; y), we de�ne the

following curvatures on the cell ci :

X min
i = min

�
@xx '̂ n

i ; min
j 2 � i

�
@xx '̂ n

j

�
�

; X max
i = max

�
@xx '̂ n

i ; max
j 2 � i

�
@xx '̂ n

j

�
�

;

Ymin
i = min

�
@yy '̂ n

i ; min
j 2 � i

�
@yy '̂ n

j

�
�

; Ymax
i = max

�
@yy '̂ n

i ; max
j 2 � i

�
@yy '̂ n

j

�
�

:

Equipped with the curvatures, we state three criteria, which will be combined to form the
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u2 criterion (see [71, 47]). First, the plateau detector is de�ned as follows:

max
� �

�
�X min

i

�
�
� ; jX max

i j;
�
�
�Ymin

i

�
�
� ; jY max

i j
�

� �: (2.79)

This criterion detects whether the local curvatures are small enough to consider the approx-

imation locally linear. In this case, the reconstruction should not be limited, and the plateau

detector is hence activated. Next, the oscillation detector is given by:

X min
i X max

i � � � and Ymin
i Ymax

i � � �: (2.80)

This oscillation detector is activated if the local curvatures undergo a change of sign in the

vicinity of the cell. This behavior of the curvatures indicated that an oscillation is present, and

therefore that the reconstruction should be limited in the cell. The third criterion involves a

local smoothness detector, given as follows:

1
2

�
min

� �
�X min

i

�
� ; jX max

i j
�

max
� �
�X min

i

�
� ; jX max

i j
� � 1 and

1
2

�
min

� �
�Ymin

i

�
� ; jY max

i j
�

max
� �
�Ymin

i

�
� ; jY max

i j
� � 1: (2.81)

According to this detector, the solution is considered as locally smooth if the minimum and

maximum curvatures are close enough. If the solution is determined to be locally smooth, the

reconstruction should not be limited.

The u2 criterion is �nally de�ned as a combination of these three detectors. Indeed, if a

plateau is detected by (2.79) or if the solution is considered locally smooth by (2.81), then the

DMP criterion becomes irrelevant and the u2 criterion succeeds, thus leading to a non-limited

reconstruction. On the contrary, if a local oscillation is detected by (2.80), then the u2 criterion

fails, and the polynomial degree is lowered in the cell.

The detector chain

Equipped with these detectors, we state the order in which they are checked. To address

this issue, we introduce the Cell Polynomial Degree(CPD). The CPD is an integer, associated

to a cell ci , such that CPD(i ) 2 J0; dK. If CPD(i ) = p, then the polynomial reconstruction

used in the cell ci is of degree p. Figure 2.13 displays the detector chain for a cell where

CPD(i ) = p > 0, and the effect of each detector on the CPD.

Figure 2.13 – The MOOD detector chain within a single cell. At the beginning of the chain,
CPD(i ) = p.

At the beginning of the chain, we consider a candidate solution W �
i computed in the cell

ci with a polynomial reconstruction of degree p (i.e. CPD(i ) = p). At the end of the chain, if
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no criterion failed, then the candidate solution is declared suitable, and it is accepted as the

updated approximate solution W n+1 . If one of the criteria did fail, then CPD (i ) is set to p � 1

and the candidate solution is not accepted. If that is the case, a new candidate solution is

computed, using a polynomial reconstruction whose degree in the cell ci is equal to CPD(i ).

We remark that, if a cell ci and its neighborsare declared suitable, there is no need to compute a

new candidate solution in this cell ci . This remark help signi�cantly reduce the computational

cost the MOOD method by computing a new candidate solution only in the cells where it is

required.

Note that this detector chain may be supplemented with additional detectors, to enforce

other properties to be satis�ed by the scheme. One such detector concerns the entropy preser-

vation (see [16]). A MOOD-like method could also be used to recover the well-balance prop-

erty of a scheme. Since the reconstruction procedure does not ensure that the well-balance

property is satis�ed by the high-order scheme, it is relevant to introduce a well-balance de-

tection criteria to the detector chain. Such a criterion is suggested in Chapter 4.

The full MOOD loop

From the previous paragraphs, we know the MOOD detectors and the order in which

they are applied. We now state the full MOOD loop for a desired reconstruction of degree d,

i.e. a scheme of order(d + 1) . For a single iteration in time of the SSPRK time discretization,

the MOOD loop reads as follows.

1. In each cellci , initialize CPD (i ) = d.

2. Compute the candidate solution W ? using the scheme (2.75) – (2.76) and the current CPD

map.

3. Apply the detection process displayed Figure 2.13 to compute a potentially new CPD map

and to decide whether to accept the candidate solution. If the candidate solution is rejected,

go to step 2. Otherwise, go to step 4.

4. The candidate solution is accepted, and we setW n+1 = W ?.

Note that this loop, at worst, makes the CPD of every cell equal to 1. This situation cor-

responds to using the �rst-order scheme (2.47), which is robust and non-oscillatory. Hence,

it satis�es all the MOOD criteria. Therefore, the MOOD loop cannot be endless (see also [46]

for a more formal proof). In practice, it is highly unlikely that such a situation happens.
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3
A well-balanced scheme for the

shallow-water equations

The shallow-water equations equipped with the topography and Manning friction source

terms have been presented in Chapter 1. In addition, �nite volume techniques have been

discussed in Chapter 2. Equipped with these studies, the goal of this chapter is to derive a

one-dimensional scheme that possesses the following properties:

• consistency: the scheme is consistent with the shallow-water equations with topography

and Manning friction (1.31);

• well-balance: the scheme preserves the steady states for the shallow-water equations with

topography and Manning friction, given in Section 1.2;

• robustness: the scheme ensures the non-negativity of the water height;

• capture of wet/dry transitions: the scheme is able to correctly model transitions between

wet areas (where h 6= 0 ) and dry areas (where h = 0 ).

In order to obtain such properties, we elect to use a Godunov-type scheme (see Sec-

tion 2.1.3 for more information). This scheme will be based on a two-state approximate

Riemann solver. One of the most famous two-state approximate Riemann solvers is the

HLLC Riemann solver, developed for the Euler system of �uid dynamics by Toro, Spruce

and Speares in [151]. The HLLC (HLL – Contact) solver is based on the HLL solver. The goal

of the HLLC scheme is to provide a good approximation of the contact discontinuity present

in the Euler system of �uid dynamics. Compared to the HLL solver, it contains an additional

wave, which corresponds to the contact wave in the Riemann problem. Note that adding a

wave also adds unknowns to be determined. Additional relations may be imposed on these

unknowns to satisfy several required properties. For instance, [76] deals with positive and

entropy-satisfying approximate Riemann solvers applied to several systems. We also men-

tion work on several other systems: a radiative transfer model in [14], a sediment transport

model in [34], the Ripa model in [140], and the equations of chemotaxis in [15].
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Several approximate Riemann solvers have also been developed in the framework of the

shallow-water equations. For instance, we mention [75], where the author derives a general

framework for positive and entropy-satisfying numerical approximate Riemann solvers. We

also mention [7], where a two-state approximate Riemann solver is designed to be positive

and to preserve the lake at rest steady state. Finally, in [12], the authors derive a positive and

entropy-satisfying approximate Riemann solver that allows the preservation of all the steady

state solutions of the shallow-water equations with just the topography. In both [7] and [12],

the two states are separated by a wave whose velocity is zero. This choice is motivated by the

presence of the stationary wave exhibited in Section 1.1.3 and created by the source terms.

This approach is used in this manuscript to derive an approximate Riemann solver that

takes into account a generic source term on the discharge equation. The derivation of this

scheme is presented in Section 3.1. Firstly, we derive a well-balanced approximate Riemann

solver for a generic source term on the discharge equation, which may consist in the topog-

raphy, the friction, or yet another source term. A correction is introduced to ensure the ro-

bustness of the scheme. Secondly, the scheme is applied to a speci�c class of source terms, to

which the topography and the Manning friction source terms belong. For these two source

terms, explicit expressions are given for the intermediate states of the approximate Riemann

solver. A special treatment is made to consider vanishing water heights.

The scheme suggested in Section 3.1 is well-balanced and robust. However, the friction

source term becomes stiff when a wet/dry transition is considered. Therefore, in order to cor-

rectly model the wet/dry transitions, we introduce in Section 3.2 a semi-implicitation of the

scheme via a splitting technique. The scheme is �rst rewritten to exhibit the numerical �ux

function as well as the numerical source terms approximation. Then, a semi-implicitation

technique is proposed for the Manning friction source term, in order to recover a good ap-

proximation of wet/dry fronts.

Finally, equipped with the well-balanced scheme, the last section of this chapter, Sec-

tion 3.3, is dedicated to numerical experiments. First, the well-balance property is tested in

the situations described in Section 1.2. The simulations of different lake at rest con�gurations,

as well as several moving steady states for the source terms of topography and/or friction,

are carried out. Second, validation experiments are performed. Namely, we present several

dam-break experiments.

3.1 Well-balanced scheme for a generic source term on the discharge

equation

In this section, we consider the shallow-water system endowed with a generic source term

on the discharge equation. This system is governed by the following set of equations:

8
><

>:

@t h + @xq = 0 ;

@t q + @x

�
q2

h
+

1
2

gh2
�

= S(W );
(3.1)
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where W = t (h; q), and where S(W ) denotes a generic source term, which can be the topog-

raphy, the friction, or another source term. Note that S(W ) may depend on other quantities

than W , for example the topography function Z in the case of the topography source term.

However, for the sake of simplicity in the notations, this dependence is not explicitly written.

The equations (3.1) are rewritten under the following condensed form of a 1D balance law:

@t W + @xF (W ) = s(W ); (3.2)

where

W =

 
h

q

!

; F (W ) =

0

@
q

q2

h
+

1
2

gh2

1

A ; s(W ) =

 
0

S(W )

!

: (3.3)

In order to provide approximate solutions to this set of equations, we choose a Godunov-

type scheme (see Section 2.1.3) equipped with an approximate Riemann solver made of two

constant intermediate states. Recall from Section 2.1 that the �nite volume schemes we use

are based on a relevant discretization of the space domain R. We brie�y recall this procedure

here. The space domainR is discretized in cells (x i � 1
2
; x i + 1

2
), of length � x (see Figure 2.1).

Then, the approximate solution W n
i at time tn is assumed to be piecewise constant in each

cell (x i � 1
2
; x i + 1

2
). The goal of a Godunov-type scheme is to provide an approximation W n+1

i

of the solution at time tn+1 , knowing the approximate solution within every cell at time tn .

This discretization leads to approximately solving the following Riemann problem at each

interface between cells: 8
>><

>>:

@t W + @xF (W ) = s(W );

W (0; x) = W0(x) =

(
WL if x < 0;

WR if x > 0:

(3.4)

Here, the solution of this Riemann problem is approximated with the aforementioned two-

state approximate Riemann solver. This approximate solver is de�ned as follows:

fW
� x

t
; WL ; WR

�
=

8
>>>>><

>>>>>:

WL if x=t � � L ;

W �
L if � L < x=t < 0;

W �
R if 0 < x=t < � R ;

WR if x=t � � R ;

(3.5)

where W �
L and W �

R are the unknown intermediate states, to be determined in order to ensure

that the required properties are satis�ed. In addition, recall that the characteristic velocities

for the Riemann problem (3.4) are given by (1.34). As a consequence, we de�ne the approxi-

mate characteristic velocities � L and � R as follows:

� L = min( �j uL j � cL ; �j uR j � cR ; � " � );

� R = max( juL j + cL ; juR j + cR ; " � );
(3.6)

where u is the velocity of the water, c is the sound speed, de�ned by (1.12), and " � > 0 is

a small constant to be �xed in the numerical applications. The constant " � is introduced in

order to add some numerical viscosity to the scheme. The de�nition (3.6) of the characteristic



106 CHAPTER 3. WELL-BALANCED SCHEME

velocities ensures the following crucial relation:

� L < 0 < � R : (3.7)

Indeed, a stationary wave with velocity 0 is present in the approximate Riemann solver (3.5).

The condition (3.7) ensures that the three waves with velocities � L , 0 and � R do not cross. The

structure of the approximate Riemann solver (3.5) is displayed on Figure 3.1.

Figure 3.1 – Structure of the chosen approximate Riemann solver.

Equipped with fW , the goal is now to provide an expression for the updated state W n+1
i .

First, we take a time step constrained by the CFL condition (2.11), as follows:

� t
� x

max
i 2 Z

� �
�
�
� �

�
i + 1

2

�
�
�
� ;

�
�
�
� �

+
i + 1

2

�
�
�
�

�
�

1
2

;

where � �
i + 1

2
and � +

i + 1
2

are the approximate characteristic speeds for the Riemann problem

located at the interface x i + 1
2
. Then, we de�ne the juxtaposition function W � as follows:

8t 2 (0; � t] ; 8x 2 [x i ; x i +1 ); W � (tn + t; x ) = fW
� x � x i + 1

2

t
; W n

i ; W n
i +1

�
;

where fW
�

(x � x i + 1
2
)=t; W n

i ; W n
i +1

�
is the approximate Riemann solver (3.5), given for x 2

[x i ; x i +1 ) and for t 2 (0; � t] by

fW
� x � x i + 1

2

t
; W n

i ; W n
i +1

�
=

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

W n
i if

x � x i + 1
2

t
� � L

i + 1
2
;

W L; �
i + 1

2
if � L

i + 1
2

<
x � x i + 1

2

t
< 0;

W R;�
i + 1

2
if 0 <

x � x i + 1
2

t
< � R

i + 1
2
;

W n
i +1 if

x � x i + 1
2

t
� � R

i + 1
2
;

(3.8)

where W L; �
i + 1

2
and W R;�

i + 1
2

are the intermediate states of the approximate solution to the Riemann

problem located at the interface x i + 1
2
. This juxtaposition function, as well as the approximate

Riemann solver, are displayed on Figure 3.2.

Finally, the updated solution W n+1
i is obtained by integrating the juxtaposition function

W � on the cell (x i � 1
2
; x i + 1

2
). In the current context of a two-state approximate Riemann solver,
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Figure 3.2 – The full Godunov-type scheme using the prescribed approximate Riemann solver.

the following sequence of equalities hold:

W n+1
i =

1
� x

Z x i + 1
2

x i � 1
2

W � (tn+1 ; x) dx

= � R
i � 1

2

� t
� x

W R;�
i � 1

2
+

� x i + 1
2

� x
+ � L

i + 1
2

� t
� x

�
x i � 1

2

� x
� � R

i � 1
2

� t
� x

�
W n

i � � L
i + 1

2

� t
� x

W L; �
i + 1

2
:

As a consequence, the updated stateW n+1
i is given by:

W n+1
i = W n

i �
� t
� x

�
� L

i + 1
2

�
W L; �

i + 1
2

� W n
i

�
� � R

i � 1
2

�
W R;�

i � 1
2

� W n
i

��
: (3.9)

It is clear from (3.9) that the updated state W n+1
i is fully determined as soon as an expression is

given to the intermediate states W L; �
i + 1

2
and W R;�

i + 1
2
, for all i 2 Z. Determining these intermediate

states, �rst for a generic source term and then in the speci�c cases of the topography and the

friction, is the focus of the remainder of this section.

3.1.1 Derivation of the intermediate states

Now, our goal is to propose a suitable approximation of the Riemann problem (3.4). To

that end, we use the two-state approximate Riemann solver fW , de�ned by (3.5). It is made of

four constant states separated by three discontinuities. Two of these states,WL and WR , are

the known initial data of the Riemann problem. The other two, W �
L and W �

R , are unknown.

The intermediate states W �
L and W �

R are each made of two unknowns, as follows:

W �
L =

 
h�

L

q�
L

!

and W �
R =

 
h�

R

q�
R

!

:

Note that, as soon as W �
L = WL and W �

R = WR , the scheme (3.9) obviously becomes

stationary, i.e. W n+1
i = W n

i . As a consequence, the intermediate states must satisfyW �
L = WL

and W �
R = WR as soon as a steady state solution is considered. If this property is satis�ed, then

the scheme will be naturally well-balanced. Several other constraints have to be imposed on

the intermediate states: namely, consistency and robustness. The consistency will be imposed

by arguing the integral consistency property (2.20). Regarding the robustness, note that the
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updated water height given by the scheme (3.9) rewrites as follows:

hn+1
i = hn

i

�
1 + � L

i + 1
2

� t
� x

� � R
i � 1

2

� t
� x

�
+ hR;�

i � 1
2

�
� R

i � 1
2

� t
� x

�
� hL; �

i + 1
2

�
� L

i + 1
2

� t
� x

�
:

We assume that hn
i � 0. Recall that � L

i + 1
2

< 0 and � R
i � 1

2
> 0 after (3.7), and recall the CFL

condition (3.1), which constrains the time step � t. As a consequence, we have

� t �
1
2

� x�
� � L

i + 1
2

�
� and � t �

1
2

� x
� R

i � 1
2

:

Therefore, the following inequality holds:

1 + � L
i + 1

2

� t
� x

� � R
i � 1

2

� t
� x

� 0:

Furthermore, since � L
i + 1

2
< 0 and � R

i � 1
2

> 0, we get the following suf�cient condition for hn+1
i

to be non-negative:

if hR;�
i � 1

2
� 0 and hL; �

i + 1
2

� 0, then hn+1
i � 0:

Therefore, the scheme is robust as soon as the intermediate water heights are non-negative.

The properties that the intermediate states W �
L and W �

R are required to satisfy are thus sum-

marized as follows:

• integral consistency (2.20);

• robustness: h�
L � 0 and h�

R � 0;

• well-balance: W �
L = WL and W �

R = WR as soon as a steady state is reached, i.e. as soon

as the steady relation @xF (W ) = s(W ) is satis�ed in a discrete sense to be determined

later.

In this section, we �rst brie�y study the Riemann problem (3.4). Then, we determine the

intermediate states W �
L and W �

R such that the required properties of consistency, well-balance

and robustness are satis�ed.

3.1.1.1 Properties of the Riemann problem

We now study the properties of the Riemann problem (3.4) for the shallow-water equa-

tions with a generic source term on the discharge equation. In Section 1.1.3, the shallow-water

system has been studied in the case of the topography and the Manning friction source terms.

The study with a generic source term is presented here in order to exhibit the wave struc-

ture and the Riemann invariants for the Riemann problem (3.4). These informations will be

instrumental in the derivation of the intermediate states W �
L and W �

R .

The system under consideration reads as follows:

8
>>>><

>>>>:

@t h + @xq = 0 ;

@t q + @x

�
q2

h
+

1
2

gh2
�

� S(W )@xY = 0 ;

@t Y = 0 ;
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where the quantity Y satis�es Y (t; x ) = x (and consequently @xY = 1). We now assume that

h 6= 0 . We also assume thath and q are smooth functions. Using the velocity u = q=h, the

above system reads: 8
>><

>>:

@t h + u@xh + h@xu = 0 ;

@t u + g@xh + u@xu � Sh� 1@xY = 0 ;

@t Y = 0 ;

where the dependence of S in W has been temporarily dropped for the sake of simplicity in

the notations. Therefore, the shallow-water system with a generic source term can be cast

under the following non-conservative form:

@t U + A(U)@xU = 0 ;

where the vector U and the matrix A(U) are given by:

U =

0

B
@

h

u

Y

1

C
A and A(U) =

0

B
@

u h 0

g u � Sh� 1

0 0 0

1

C
A :

The eigenvalues of this matrix are � � (U) = u �
p

gh and � 0(U) = 0 . Concerning � � (U),

these characteristic velocities are both associated to GNL �elds, through which the quantity

Y is preserved (see Section 1.1.3 for the speci�c case whereS is made of the topography

and the Manning friction source terms). Regarding � 0(U), the eigenvector associated to this

eigenvalue is given by:

R0(U) =

0

B
@

Sh

� Su

gh2 � hu2

1

C
A :

Since� 0(U) = 0 , the associated characteristic �eld is obviously linearly degenerate, and it will

therefore produce a contact discontinuity. Recall that, across a contact discontinuity, the Rie-

mann invariants are constant quantities. They are functions �( U) given by (1.13), as follows:

r U �( U) � R0(U) = 0 : (3.10)

Note that, for S = 0 (i.e. a vanishing source term contribution), the quantities h and u are

Riemann invariants. This behavior is to be expected since the stationary wave is created by

the source term. Hence, without source term, there is no stationary wave. We now assume

that S 6= 0 . In this case, (3.10) rewrites:

dh
Sh

=
du

� Su
=

dY
gh2 � hu2 : (3.11)

The �rst equality of the relations (3.11) yields:

d(hu) = 0 :

As a consequence, we recover, as expected, that the dischargeq = hu is constant across the
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stationary wave. Equipped with this constant discharge, the second equality of the relations

(3.11) yields: �
q2

h2 � gh
�

dh + SdY = 0 :

As a consequence, the Riemann invariants across the stationary wave are governed by the

following two relations: 8
><

>:

dq = 0 ;

d
�

q2

h
+

1
2

gh2
�

= SdY:
(3.12)

The equations (3.12) cannot be simpli�ed further in the case of a generic source term S. In the

speci�c cases of the topography and the Manning friction, the expressions from Section 1.1.3

are obtained.

3.1.1.2 Consistency

Using the algebraic properties of the shallow-water equations with a generic source term

(3.1), we now derive suitable intermediate states for the approximate Riemann solver (3.5).

We �rst determine a necessary condition on the intermediate states to ensure the consistency

of the scheme. Recall from Section 2.1.3 that the following integral consistencycondition (2.20)

has to be prescribed on the intermediate states:

1
� x

Z � x=2

� � x=2

fW
� x

� t
; WL ; WR

�
dx =

1
� x

Z � x=2

� � x=2
WR

� x
� t

; WL ; WR

�
dx: (3.13)

In Section 2.1.3, the above integrals have been computed in the case of a hyperbolic conserva-

tion law, i.e. without source terms, to yield (2.25). We now perform these computations in the

case of the shallow-water equations with a generic source term, given under the form (3.2),

and for the approximate Riemann solver (3.5).

The average of the exact Riemann solution WR rewrites as follows, by integrating (3.2)

over the rectangle [� � x=2; � x=2] � [0; � t], with the initial condition W0 given by (3.4):

Z � x=2

� � x=2
WR

� x
� t

; WL ; WR

�
dx =

Z � x=2

� � x=2
W0(x) dx

�
Z � t

0
F

�
WR

�
�

� x
2t

; WL ; WR

��
dt

+
Z � t

0
F

�
WR

�
� x
2t

; WL ; WR

��
dt

+
Z � t

0

Z � x=2

� � x=2
s
�

WR

� x
t

; WL ; WR

��
dx dt:

(3.14)

Note that, due to the presence of the source term, uniform in space initial data is no longer

solution to the balance law (3.2). Indeed, for a function W (t) uniform in space, (3.2) rewrites

as@t W = S(W ), and W has to depend on the time to be a solution of this equation. However,

in (3.14), we have made the approximation that the constant initial data is a solution. There-

fore, the integral of the initial condition W0(x) does not depend on time. As a consequence,
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performing straightforward computations and arguing the CFL condition (2.23) lead to the

following expression of the average of the exact Riemann solution:

1
� x

Z � x=2

� � x=2
WR

� x
� t

; WL ; WR

�
dx =

WL + WR

2
�

� t
� x

(F (WR ) � F (WL ))

+
1

� x

Z � t

0

Z � x=2

� � x=2
s
�

WR

� x
t

; WL ; WR

��
dx dt:

(3.15)

Note that this expression is very similar to (2.25), which had been obtained in the case without

source terms. Indeed, only the average of the source terms contribution has been added to

(2.25).

Now, using the expression (3.5) of fW , the integral of the approximate Riemann solver

rewrites as follows:

Z � x=2

� � x=2

fW
� x

� t
; WL ; WR

�
dx =

�
� L � t +

� x
2

�
WL + (0 � � L � t)W �

L

+ ( � R � t � 0)W �
R +

�
� x
2

� � R � t
�

WR :

Therefore, the average of fW is given by:

1
� x

Z � x=2

� � x=2

fW
� x

� t
; WL ; WR

�
dx =

WL + WR

2
� � R

� t
� x

(WR � W �
R )+ � L

� t
� x

(WL � W �
L ): (3.16)

The integral consistency condition is then obtained by plugging (3.15) and (3.16) into

(3.13), to get the following necessary condition on the intermediate states:

� RW �
R � � L W �

L = � RWR � � L WL � (F (WR ) � F (WL ))

+
1

� t

Z � t

0

Z � x=2

� � x=2
s
�

WR

� x
t

; WL ; WR

��
dx dt:

(3.17)

Now, recall that the sole intermediate state of the HLL approximate Riemann solver is given

in [90] by (2.33), as follows:

WHLL =
� RWR � � L WL � (FR � FL )

� R � � L
: (3.18)

As a consequence, using (3.18), (3.17) reads:

� RW �
R � � L W �

L = ( � R � � L )WHLL +
1

� t

Z � t

0

Z � x=2

� � x=2
s
�

WR

� x
t

; WL ; WR

��
dx dt:

In the context of the shallow-water equations with a source term on the discharge equation

(3.2), we haveW = t (h; q) and s(W ) = t (0; S(W )) . Therefore, the above identity reads:

� Rh�
R � � L h�

L = ( � R � � L )hHLL ; (3.19a)

� Rq�
R � � L q�

L = ( � R � � L )qHLL +
1

� t

Z � t

0

Z � x=2

� � x=2
S

�
WR

� x
t

; WL ; WR

��
dx dt; (3.19b)
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where hHLL and qHLL are given, after (3.18), by:

(� R � � L )hHLL = � RhR � � L hL � [q]; (3.20a)

(� R � � L )qHLL = � RqR � � L qL �
�

q2

h
+

1
2

gh2
�
: (3.20b)

With (3.19), we have obtained two equations linking the four unknowns h�
L , h�

R , q�
L and q�

R .

We still need to exhibit two additional relations to uniquely determine these four unknowns.

In addition, the average of the source term present in (3.19b) needs to be dealt with. Both

these issues are addressed in the next section.

3.1.1.3 Well-balance parametrization

In order to deal with the source term average in (3.19b), we introduce a parameter S whose

purpose is to approximate the source term average, as follows:

S '
1

� t
1

� x

Z � t

0

Z � x=2

� � x=2
S

�
WR

� x
t

; WL ; WR

��
dx dt: (3.21)

The parameter S depends on WL and WR . It may also depend on other quantities, for instance

the topography function Z in the case where S represents the topography source term. For

the sake of simplicity, these dependencies are not explicitly written.

This parameter will be de�ned in the next section for the speci�c cases of the topography

and the Manning friction. For the moment, we assume that such an approximation of the

source term average is known, and that it is consistent. A more precise de�nition of the

consistency of S will be given in the next section.

Equipped with S, we impose that the intermediate states satisfy, instead of (3.19), the

following equations, made by combining (3.19) with (3.21):

� Rh�
R � � L h�

L = ( � R � � L )hHLL ; (3.22a)

� Rq�
R � � L q�

L = ( � R � � L )qHLL + S� x: (3.22b)

Now, let us introduce the steady state solutions of the balance law (3.2). The time deriva-

tive of such solutions vanishes. As a consequence, they are governed by the following equa-

tion:

@xF (W ) = s(W ): (3.23)

Arguing the de�nitions (3.3) of F and s allows rewriting (3.23) as follows:

8
><

>:

@xq = 0 ;

@x

�
q2

h
+

1
2

gh2
�

= S(W ):
(3.24)

Therefore, the steady state solutions satisfy q = cst . As usual, we denote this uniform value

of the discharge by q0.

We go back to the discrete level with the Riemann problem (3.4). We assume that hL > 0
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and hR > 0. We elect to consider that the initial data of the Riemann problem (3.4) de�nes a

steady state if the following equations hold:

8
><

>:

qR � qL = 0 ;
�

q2
R

hR
+

1
2

gh2
R

�
�

�
q2

L

hL
+

1
2

gh2
L

�
= S� x:

(3.25)

The discrete steady relations (3.25) are nothing but a discrete version of the steady relations at

the continuous level (3.24), with the source term S(W ) being approximated by S. Using the

usual jump notation [X ] = X R � X L , the discrete steady state solutions are therefore de�ned

as follows.

De�nition 3.1. Two states WL = t (hL ; qL ) and WR = t (hR ; qR ), with hL > 0 and hR > 0, are

said to de�ne a steady stateif the following relations hold:

8
><

>:

qL = qR = q0;

q2
0

�
1
h

�
+

g
2

�
h2�

= S� x:
(3.26)

Let us emphasize that S must be a consistent approximation of S, as evidenced by (3.21).

As a consequence, the relations (3.26) impose that a suitable expression ofS be derived. This

expression must allow both consistency with S and recovery of the discrete steady state rela-

tions (3.26). This derivation is done in the next section, in the speci�c cases of the topography

and the Manning friction source terms. At this level, we assume that such an expression is

known.

Equipped with the discrete steady states (3.26), we can now propose a more precise de�-

nition of the well-balance property we seek. Indeed, we wish for intermediate states W �
L and

W �
R which ensure that W �

L = WL and W �
R = WR as soon as a steady state is reached, i.e. as

soon asWL and WR satisfy the discrete steady state relations (3.26). Note that the relations

(3.24) coincide with the Riemann invariants (3.12) (since Y(t; x ) = x). As a consequence, the

de�nitions of the intermediate states are also based on the Riemann invariants.

Recall from Section 3.1.1.1 that the source term induces a stationary contact discontinuity,

i.e. a contact discontinuity of velocity 0. Across this wave, the Riemann invariants (3.12)

are constant. The approximate Riemann solver we are building involves three waves (see

Figure 3.1), of respective velocities � L < 0 < � R . Hence, using the Riemann invariants for

the stationary wave, as well as the source term approximation S given by (3.21), leads to

imposing the following relations on the intermediate states W �
L and W �

R :

q�
R � q�

L = 0 (3.27a)
 

(q�
R )2

h�
R

+
g
2

(h�
R )2

!

�

 
(q�

L )2

h�
L

+
g
2

(h�
L )2

!

= S� x: (3.27b)

As a consequence, (3.27a) imposes thatq�
L and q�

R be taken equal. We takeq�
L = q�

R , and we
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denote this value by q� . Equipped with q� , the consistency relation (3.22b) rewrites as follows:

q� = qHLL +
S� x

� R � � L
: (3.28)

Therefore, sinceS is assumed to be known, the above formula uniquely determines q� .

Using that q�
L = q�

R = q� , we compute a relation between h�
L and h�

R . The equation (3.27b)

provides such a relation. However, this formula is nonlinear, and the formulas of h�
L and h�

R

cannot be explicit. Note that (3.27b) rewrites as follows:

 

�
(q� )2

h�
L h�

R
+

g
2

(h�
L + h�

R )

!

(h�
R � h�

L ) = S� x: (3.29)

In order to give explicit values to h�
L and h�

R , we consider the following linearization of (3.29):

 

�
(q� )2

hL hR
+

g
2

(hL + hR )

!

(h�
R � h�

L ) = S� x: (3.30)

As a consequence, from the consistency relation (3.22a) and the linearized Riemann invariant

(3.30), we obtain that h�
L and h�

R are solutions of the following linear system:

(
� Rh�

R � � L h�
L = ( � R � � L )hHLL ;

� (h�
R � h�

L ) = S� x;
(3.31)

where the quantity � is de�ned by:

� = �
(q� )2

hL hR
+

g
2

(hL + hR ): (3.32)

Solving (3.31) for h�
L and h�

R , we get:

h�
L = hHLL �

� RS� x
� (� R � � L )

; (3.33a)

h�
R = hHLL �

� L S� x
� (� R � � L )

: (3.33b)

Remark 3.2. Note that the expressions (3.28) of q� and (3.33) of h�
L and h�

R ensure that we

have q� = qHLL and h�
L = h�

R = hHLL as soon asS = 0 . Therefore, if the approximate

source term vanishes, then the suggested approximate Riemann solver degenerates into the

HLL approximate Riemann solver, whose intermediate states are given by (3.18). Since the

Godunov-type scheme associated to the HLL solver is entropy-satisfying, the stability of the

current scheme is improved by having it degenerate to the HLL scheme in the absence of a

source term.

The intermediate states W �
L = t (h�

L ; q�
L ) and W �

R = t (h�
R ; q�

R ) are thus completely and

explicitly determined by q�
L = q�

R = q� and the relations (3.28) – (3.33). Note that these

intermediate states are de�ned only for hL > 0 and hR > 0. Indeed, the quantity � is not

de�ned as soon as hL = 0 or hR = 0 , and the source term approximation S may also be
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unde�ned when dealing with vanishing water heights.

SincehL > 0 and hR > 0 for now, we focus on a weaker notion of robustness, the posi-

tivity preservation. The scheme will be positivity-preserving if positive water heights at time

tn imply positive water heights at time tn+1 . From the expression (3.9) of the scheme, the

positivity of h�
L and h�

R is a suf�cient condition for the positivity of the scheme. However, we

remark that the expressions (3.33) may lead to non-positive h�
L or h�

R , even if hL and hR are

positive. Hence, the intermediate states (3.33) fail to ensure the positivity preservation of the

scheme. A procedure to recover the positivity of the intermediate heights is presented in the

next section.

3.1.1.4 Positivity

In this section, we suggest a modi�cation of the intermediate water heights (3.33) to ensure

the robustness of the scheme (3.9) while retaining the well-balance property. To address such

an issue, we follow the procedure proposed in [7] (see also [15]). It consists in enforcing the

positivity of h�
L and h�

R , while still ensuring that they satisfy the consistency relation (3.22a).

Sinceh�
L and h�

R depend on hHLL , we �rst state the following result, which concerns the sign

of hHLL .

Lemma 3.3. With � L and � R de�ned by (3.6) and assuming thathL andhR are positive, the inter-

mediate height of the HLL solver, de�ned by (3.20a) and labeledhHLL , is necessarily positive.

Proof. From (3.20a), we rewrite hHLL as follows:

hHLL = hR
� R � uR

� R � � L
+ hL

uL � � L

� R � � L
: (3.34)

Now, recall the de�nitions (3.6) of � L and � R . From these de�nitions, we immediately get:

� R � j uR j + cR ;

� L � �j uL j � cL ;

where cL and cR are the left and right sound speeds, de�ned by cL =
p

ghL and cR =
p

ghR .

Therefore, (3.34) yields the following estimations of hHLL :

hHLL � hR
juR j � uR + cR

� R � � L
+ hL

juL j + uL + cL

� R � � L

�
hRcR

� R � � L
+

hL cL

� R � � L

SincehL > 0 and hR > 0, we have cL > 0 and cR > 0. As a consequence, we immediately get

hHLL > 0, which concludes the proof.

In order to introduce the positivity preservation process, we de�ne a small parameter " .

This parameter satis�es:

0 < " � min(hL ; hR ; hHLL ): (3.35)

Equipped with the assumption that hL > 0 and hR > 0, as well as Lemma 3.3, the positivity
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of " is ensured, since it is lesser than the minimum of positive quantities. We now present the

positivity preservation procedure.

(1) If h�
L < " , we take h�

L = ", and h�
R is chosen according to (3.22a), to get:

� Rh�
R = � L " + ( � R � � L )hHLL ;

which guarantees that h�
R > 0 (see Figure 3.3).

(2) If h�
R < " , we take h�

R = ", and h�
L is chosen according to (3.22a), to get:

� L h�
L = � R " � (� R � � L )hHLL ;

which guarantees that h�
L > 0, since� L < 0 (see Figure 3.3).

(3) Otherwise, we have h�
L � " and h�

R � " : there is no need for the positivity procedure.

After the correction procedure, we have h�
L � " and h�

R � " . As a consequence, we have

recovered the positivity of the intermediate water heights.

Figure 3.3 – Correction procedure to ensure positive and consistent intermediate water
heights. The line represents the consistency equation (3.22a). If the point (h�

L ; h�
R ) belongs

to the domain 1 , then h�
L and h�

R are not modi�ed. However, if (h�
L ; h�

R ) corresponds to a
point within the domain 2 , we replace (h�

L ; h�
R ) with ("; (1 � � L

� R
)hHLL + � L

� R
" ), according to

(3.22a).

We now combine the equations (3.28) – (3.33) with the positivity correction, to de�ne the

intermediate states W �
L and W �

R as follows:

W �
L =

 
h�

L

q�
L

!

and W �
R =

 
h�

R

q�
R

!

; (3.36)
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where the intermediate discharge and water heights are given by:

q�
L = q�

R = q� = qHLL +
S� x

� R � � L
; (3.37a)

h�
L = min

�
max

�
hHLL �

� RS� x
� (� R � � L )

; "
�

;
�

1 �
� R

� L

�
hHLL +

� R

� L
"
�

; (3.37b)

h�
R = min

�
max

�
hHLL �

� L S� x
� (� R � � L )

; "
�

;
�

1 �
� L

� R

�
hHLL +

� L

� R
"
�

; (3.37c)

where � has been de�ned by (3.32), as follows:

� = �
(q� )2

hL hR
+

g
2

(hL + hR ); (3.38)

and where the quantities hHLL and qHLL are de�ned by (3.20). The next section exhibits and

proves the properties of the intermediate states we have derived.

3.1.1.5 Properties of the intermediate states

The following statement, regarding the properties of the intermediate states (3.36), holds.

Lemma 3.4. AssumehL andhR to be positive. Then, the intermediate statesW �
L andW �

R given by

(3.36) satisfy the following properties:

(i) consistency: the quantitiesh�
L , h�

R , q�
L andq�

R satisfy the equations (3.22);

(ii) positivity preservation:h�
L � " andh�

R � " ;

(iii) well-balance: ifWL and WR de�ne a steady state, i.e. if (3.26) holds, thenW �
L = WL and

W �
R = WR .

Proof. Since" is constrained by the estimations (3.35), we obviously get the required property

(ii). Indeed, after (3.37b) and (3.37c),h�
L and h�

R stand for the minimum of quantities that are

greater than or equal to " . Hence, (ii) holds.

Next, let us set

fh�
L = hHLL �

� RS� x
� (� R � � L )

and fh�
R = hHLL �

� L S� x
� (� R � � L )

:

We immediately get the following identity:

� R fh�
R � � L fh�

L = ( � R � � L )hHLL ; (3.39)

which means that the heights fh�
L and fh�

R satisfy the consistency relation (3.22a). Since (3.22b)

is obviously veri�ed by q� , the property (i) is established as soon ash�
L and h�

R are proven to

satisfy (3.22a). Recall from Lemma 3.3 thathHLL > 0. We have the following three con�gura-

tions for the intermediate heights.

• If fh�
L � " and fh�

R � " , then the relations (3.37) yield h�
L = fh�

L and h�
R = fh�

R .

• If fh�
L < " , then from (3.37) we get h�

L = " and h�
R =

�
1 �

� L

� R

�
hHLL +

� L

� R
" .
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• Similarly, if fh�
R < " , then we have h�

R = " and h�
L =

�
1 �

� R

� L

�
hHLL +

� R

� L
" .

We note that, in all three cases, the following identity systematically holds:

� Rh�
R � � L h�

L = ( � R � � L )hHLL :

This identity turns out to be the consistency relation (3.22a). As a consequence, the property

(i) is proven.

Finally, we have to check that the well-balance property is satis�ed even in presence of the

positivity correction. In order to prove the well-balance, we assume that WL and WR de�ne

a steady state, i.e. that (3.26) holds. Our goal is to show that, in this case,W �
L = WL and

W �
R = WR .

We begin by proving that q�
L = q�

R = q0. From the de�nition (3.37a) of q� and the steady

relations (3.26) satis�ed by WL and WR , we deduce that q� satis�es the following sequence of

equalities:

q� =
� Rq0 � � L q0

� R � � L
�

1
� R � � L

�
q2

0

h
+

1
2

gh2
�

+
S� x

� R � � L

= q0 �
1

� R � � L

�
q2

0

�
1
h

�
+

g
2

�
h2�

� q2
0

�
1
h

�
�

g
2

�
h2�

�

= q0:

As a consequence, we haveq�
L = qL = q0 and q�

R = qR = q0.

We now prove that h�
L = hL and h�

R = hR . First, let us compute S� x=� at the equilibrium

using (3.26) and (3.38). We get the following equalities:

S� x
�

=
q2

0

�
1
h

�
+

g
2

�
h2

�

� q2
0

hL hR
+

g
2

(hL + hR )
= [ h]:

We then compute fh�
L at the equilibrium. According to (3.37b), we have:

fh�
L =

� RhR � � L hL

� R � � L
�

[q]
� R � � L

�
� RS� x

� (� R � � L )

=
� RhR � � L hL � � RhR + � RhL

� R � � L

= hL :

Similarly, (3.37c) yields:

fh�
R =

� RhR � � L hL

� R � � L
�

[q]
� R � � L

�
� L S� x

� (� R � � L )

=
� RhR � � L hL � � L hR + � L hL

� R � � L

= hR :
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Moreover, from the de�nition (3.35) of " , we have hL � " and hR � " . Therefore fh�
L � " and

fh�
R � " . By construction of the positivity procedure, since fh�

L and fh�
R satisfy the consistency

condition (3.39), we have h�
L = fh�

L and h�
R = fh�

R in this speci�c case of a discrete steady state

governed by (3.26). As a consequence,h�
L = hL and h�

R = hR .

Therefore, we have established thatW �
L = WL and W �

R = WR as soon asWL and WR de�ne

a steady state. This concludes the proof of the well-balance property (iii), and Lemma 3.4 is

thus proven.

3.1.1.6 Properties of the scheme

Equipped with the intermediate states (3.36) and their properties given by Lemma 3.4, we

can state the following result concerning the full scheme (3.9).

Theorem 3.5. ConsiderW n
i 2 
 � for all i 2 Z, where
 � is the following restricted admissible states

space:


 � =
�

W = t (h; q) 2 R2 ; h > 0; q 2 R
	

:

Assume that the intermediate statesW L; �
i + 1

2
andW R;�

i + 1
2

are given, for alli 2 Z, by

W L; �
i + 1

2
=

 
h�

L (W n
i ; W n

i +1 )

q�
L (W n

i ; W n
i +1 )

!

and W R;�
i + 1

2
=

 
h�

R (W n
i ; W n

i +1 )

q�
R (W n

i ; W n
i +1 )

!

;

whereq�
L andq�

R are de�ned by (3.37a), whileh�
L andh�

R are respectively given by (3.37b) and (3.37c).

Also, assume that the source term approximationS is consistent with the source termS according to

(3.21). Finally, assume that, as soon as(W n
i ) i 2 Z de�nes a steady state, the approximationS veri�es

(3.26). Then, under the CFL restriction (3.1), the Godunov-type scheme (3.9) satis�es the following

properties:

(i) consistency with the shallow-water system (3.1);

(ii) positivity preservation: for alli 2 Z, W n+1
i 2 
 � ;

(iii) well-balance: if(W n
i ) i 2 Z de�nes a steady state, i.e. if for alli 2 Z, W n

i andW n
i +1 de�ne a steady

state, then for alli 2 Z, W n+1
i = W n

i .

Proof. After [90], the consistency property (i) holds as soon as the approximate Riemann

solver satis�es the integral consistency condition (3.13). After Lemma 3.4, the intermediate

states (3.36) ensure that this integral consistency property is satis�ed. As a consequence, (i)

holds true.

We turn to proving the positivity preservation property (ii). By de�nition of 
 � , this is

equivalent to showing that, for all i 2 Z, hn+1
i > 0 as soon ashn

i > 0. We set"n
i > 0 constrained

by (3.35), i.e. such that"n
i � min(hn

i ; hn
i +1 ; hHLL

i + 1
2

), where hHLL
i + 1

2
is given by evaluating (3.20a)

between the statesW n
i and W n

i +1 . The second item of Lemma 3.4 ensures thathL; �
i + 1

2
� "n

i and

hR;�
i + 1

2
� "n

i as soon ashn
i > 0 and hn

i +1 > 0. Since the scheme under consideration is given by

(3.9),hn+1
i turns out to be the sum of positive quantities, and (ii) is proven.

We �nally need to prove the well-balance of the scheme (iii). Once again, this property

comes from Lemma 3.4. Indeed, let us consider that (W n
i ) i 2 Z de�nes a steady state. Therefore,
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for all i 2 Z, W n
i and W n

i +1 de�ne a steady state. As a consequence, from Lemma 3.4, we get

for all i 2 Z that W L; �
i + 1

2
= W n

i and W R;�
i + 1

2
= W n

i +1 . Hence, arguing the expression (3.9) of the

scheme, we haveW n+1
i = W n

i for all i 2 Z, and the property (iii) holds. This concludes the

proof of Theorem 3.5.

Remark 3.6. Because of the arbitrary small parameter " > 0, introduced in (3.36) to enforce

the positivity of the intermediate water heights, the updated water height never vanishes.

In the next section, we will present an extension of the scheme to deal with dry areas in the

case where the expression of the source term is known and consists in the topography or the

Manning friction. At this level, we reject vanishing water heights because of the unknown

de�nitions of S and S=� , involved within the expressions (3.36) of the intermediate states.

As soon as the full characterization of S is established, the scheme will be extended to allow

" = 0 in the de�nition (3.36).

3.1.2 Application to a speci�c class of source terms

With the intermediate states (3.36), Theorem 3.5 holds as soon as a suitable de�nition of the

parameter S is provided. This section focuses on a speci�c class of source terms, to which the

topography and the Manning friction source terms belong. We now assume that the generic

source term S is given by:

S(W ) = h� f (q) @x �: (3.40)

From now on, the topography source term will be labeled St , as follows:

St (W ) = � gh@xZ: (3.41)

Note that St falls under the framework (3.40) if we set:

� = 1 ; f (q) = 1 ; @x � = � g@xZ: (3.42)

In addition, the Manning friction source term is now denoted by Sf , to get:

Sf (W ) = � kqjqjh� � : (3.43)

The source term Sf can be written under the form (3.40) by taking:

� = � � ; f (q) = qjqj ; @x � = � k: (3.44)

By adopting the source term given by (3.40), the smooth steady state solutions are gov-

erned by (3.24), as follows:

8
><

>:

@xq = 0 ;

@x

�
q2

h
+

1
2

gh2
�

= h� f (q) @x �:
(3.45)

The �rst equation of (3.45) obviously yields that the discharge q = q0 is uniform. For smooth
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steady states, the second equation reads as follows, after a division by h� :

�
� q2

0h� 2� � + gh1� �
�

@xh = f (q0)@x �:

As a consequence, the following identity governs the steady state solutions:

q2
0

1 + �
@x

�
h� 1� �

�
+

g
2 � �

@x

�
h2� �

�
� f (q0)@x � = 0 :

Hence, at the discrete level, the following algebraic relation describes the smoothsteady

state solutions for nonzero water heights:

q2
0

1 + �

h
h� 1� �

i
+

g
2 � �

h
h2� �

i
� f (q0)[� ] = 0 : (3.46)

Therefore, the discrete smooth steady states are governed byqL = qR = q0, as well as the

following relations, made by combining (3.26) and (3.46):

8
>><

>>:

q2
0

�
1
h

�
+

g
2

�
h2�

= S� x;

q2
0

1 + �

h
h� 1� �

i
+

g
2 � �

h
h2� �

i
� f (q0)[� ] = 0 :

(3.47)

The system (3.47) is a nonlinear system of two equations, whose two unknowns are S and q0.

To solve this system, we note that the only unknown present in the second equation of (3.47)

is q0. As a consequence, this nonlinear equation may be solved to obtained the value of q0.

Then, the �rst equation yields an expression of S when WL and WR de�ne a steady state. This

expression depends only on WL , WR , � L and � R , and it can be used even when WL and WR

do not de�ne a steady state.

However, solving the system (3.47) for S is not possible in the general case, wheref (q0) is

an unknown. In the next sections, we solve this system in the speci�c cases of the topography

source term or the Manning friction source term. Comments are then given on combining

both source terms and on vanishing water heights.

3.1.2.1 Approximate topography source term

In this section, we consider the topography source term St , given by (3.41). The goal of

this section is to compute a suitable parameter S to approximate St . In this speci�c case of

the topography source term, we shall denote this parameter by St . We still, for the moment,

assume thathL > 0 and hR > 0.

According to (3.42), the steady relations (3.47) rewrite as follows in the present case:

q2
0

�
1
h

�
+

g
2

�
h2�

= St � x; (3.48a)

q2
0

2

�
1
h2

�
+ g[h] + g[Z ] = 0 : (3.48b)

We now exhibit the expression of St from the above identities. First, from (3.48b), we extract
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the following expression of q2
0:

q2
0 = 2g[h + Z ]

h2
L h2

R

h2
R � h2

L
;

which is plugged into (3.48a) to get the following de�nition of St :

St � x =
g
2

�
h2�

� g[h + Z ]
2hL hR

hL + hR
:

The above expression can be rewritten as follows, after straightforward computations:

St � x = � g[Z ]
2hL hR

hL + hR
+

g
2

[h]3

hL + hR
: (3.49)

Let us emphasize that such a de�nition of the approximate topography source term can be

found in the literature. For instance, the reader is referred to [12, 13] (see also [128] for related

expressions). When the water height and the topography are smooth functions, this expres-

sion of the approximate source term is consistent with the source term at the continuous level.

This result is proven below.

Lemma 3.7. If the water height is a smooth function, then the expression ofSt given by (3.49) is

consistent withSt .

Proof. With a smooth water height and a smooth topography function, we take hL = h(x)

and hR = h(x + O(� x)) , as well as ZL = Z (x) and ZR = Z (x + O(� x)) , in (3.49). Taylor's

formula applied to the quantities hR and ZR yields:

hR = h + � x@xh + O(� x2) and ZR = Z + � x@xZ + O(� x2):

As a consequence, we get:

hL + hR = 2h + O(� x): (3.50)

In addition, we immediately have [h]3 = O(� x3), and we get, for the second term in the

expression (3.49) ofSt :

g
2� x

[h]3c
hL + hR

=
O(� x2)

2h + O(� x)
= O(� x2): (3.51)

Moreover, for the �rst term of St , we have:

[Z ]
� x

=
Z + � x@xZ + O(� x2) � Z

� x
= @xZ + O(� x): (3.52)

In addition, with (3.50), we get:

2hL hR

hL + hR
=

2h(h + � x@xZ + O(� x2))
2h + O(� x)

= h + O(� x): (3.53)

Combining the equations (3.51), (3.52) and (3.53) �nally yields St = � gh@xZ + O(� x), which

concludes the proof.
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An important ingredient in the consistency of the scheme is that the source term approx-

imation S has to be consistent with the source term S. In the present case,St has to be con-

sistent with the actual source term � gh@xZ , assuming positive water heights. For instance,

when the topography is �at, i.e. [Z ] = 0 , the actual topography source term vanishes. There-

fore, in order for St to be consistent with the actual source term, we need St = O(� x) as

soon as the topography is �at. However, as underlined in [12, 13, 123, 128], St is no longer

consistent with zero when the topography is �at and the water height is not smooth. Indeed,

in this case, we have

St =
g

2(hL + hR )
[h]3

� x
6= O(� x):

In order to recover the required consistency, i.e. St = O(� x) for a �at topography, we

adopt the strategy proposed in [12, 13, 123]. We modify St as follows:

St � x = � g[Z ]
2hL hR

hL + hR
+

g
2

[h]3c
hL + hR

: (3.54)

In (3.54), [h]c is a cutoff of [h] = hR � hL , de�ned as follows:

[h]c =

(
hR � hL if jhR � hL j � C� x;

sgn(hR � hL ) C� x otherwise;
(3.55)

with C a positive constant that does not depend on � x. This new expression of St is consistent

with the topography source term St . Indeed, for a �at topography, (3.54) becomes:

St =
g

2(hL + hR )
[h]3c
� x

: (3.56)

Note that the cutoff procedure enforces j[h]cj � C� x. Therefore, according to (3.56), we have

St = O(� x2) as soon as the topography is �at. However, the source term approximation St

does not vanish when the topography is �at, and therefore the scheme does not reduce to a

conservative scheme in that case.

Remark 3.8. For a smooth water height h, the relation hR � hL = O(� x) obviously holds,

and there exists K 2 R�
+ such that jhR � hL j � K � x. As a consequence, for a smooth water

height, there exists C such that [h]c = [ h], with [h]c given by (3.55). Indeed, taking C < K

suf�ces. In this case, St is given by (3.49). Thus, the relation (3.48a) holds by construction, and

Theorem 3.5 ensures that the suggested intermediate states (3.37) are well-balanced. Hence,

the cutoff procedure does not interfere with the well-balance property of the intermediate

states.

Lemma 3.9. The expression ofSt given by (3.54) is consistent withSt .

Proof. From Lemma 3.7, we know that the �rst term of St is consistent with � gh@xZ . Now,

note that, from the cutoff procedure (3.55), we have j[h]cj � C� x. Therefore, [h]3c = O(� x3),

and St is necessarily consistent with � gh@xZ for any hL and hR , which concludes the proof.
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3.1.2.2 Approximate friction source term

We now turn to the friction source term Sf , given by (3.43). In this section, we derive a

suitable approximation Sf of Sf , to be plugged into the intermediate states (3.37). We still

assume that hL > 0 and hR > 0. SinceSf is given by (3.44), the steady relations (3.47) now

read:

q2
0

�
1
h

�
+

g
2

�
h2�

= Sf � x; (3.57a)

�
q2

0

� � 1

�
h� � 1�

+
g

� + 2

�
h� +2 �

+ kq0jq0j� x = 0 : (3.57b)

From (3.57b), we get the following expression of q2
0 for a steady state solution:

q2
0 =

g
[h� +2 ]
� + 2

[h� � 1]
� � 1

� k� 0 � x
; (3.58)

where � 0 = sgn(q0) denotes the direction of the steady water �ow. Now, to obtain a suitable

expression of Sf , we take:

Sf = � kqjqjh� � ; (3.59)

where the parameter q is consistent with q, and the parameter h� � is consistent with h� � . We

emphasize that �nding Sf now amounts to determining suitable parameters q and h� � . As

a consequence, as soon as a steady state is considered, the quantityq has to be equal to q0.

Therefore, the steady relation (3.57a) becomes:

q2
0

�
1
h

�
+

g
2

�
h2�

= � kq2
0� 0h� � � x:

Equipped with the formula (3.58), which gives the value of q2
0 when a steady state is consid-

ered, the above equation yields the following formula for h� � :

h� � =
[h2]
2

� + 2
[h� +2 ]

�
� 0

k � x

��
1
h

�
+

[h2]
2

[h� � 1]
� � 1

� + 2
[h� +2 ]

�
: (3.60)

Concerning q, we choose the following average:

8
><

>:

q =
2jqL jjqR j

jqL j + jqR j
sgn(qL + qR ) if qL 6= 0 and qR 6= 0;

q = 0 if qL = 0 ; qR = 0 or k = 0 :
(3.61)

This average indeed ensures that, if qL = qR , then q = qL = qR . In particular, if a steady state

is considered, we have qL = qR = q0; hence,q = q0 in this case. In addition, q is consistent

with q.

Now, note that the expression (3.60) of h� � contains � 0. This quantity depends on the

steady state; it would have to be determined for non-steady states. To address such an issue,
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we suggest the expression

h� � := h� � (hL ; hR ) =
[h2]
2

� + 2
[h� +2 ]

�
�

k � x

��
1
h

�
+

[h2]
2

[h� � 1]
� � 1

� + 2
[h� +2 ]

�
; (3.62)

where � is the sign of the quantity q given by (3.61).

Lemma 3.10. The expression ofh� � given by (3.62) is consistent withh� � .

Proof. With smooth water heights, we �x, in (3.62), hL = h(x) and hR = h(x + O(� x)) .

Taylor's formula applied to hR yields hR = h + � x@xh + O(� x2). In order to evaluate the

Taylor expansions of [h2], [h� � 1], [h� +2 ] and [h� 1], we now compute a Taylor expansion, for

some  2 R, of the jump [h ]:

[h ] = h
R � h

L =
�
h + @xh� x + O(� x2)

� 
� h

= h �
1 + h � 1@xh� x + O(� x2)

�
� h

= h  � 1@xh� x + O(� x2):

Using the above evaluation, we have, for the �rst part of the expression of h� � :

[h2]
2

� + 2
[h� +2 ]

=
h@xh� x + O(� x2)

h� +1 @xh� x + O(� x2)
= h� � + O(� x): (3.63)

Moreover, we have the following Taylor expansion:

�
1
h

�
= � h� 2@xh� x + O(� x2): (3.64)

In addition, we get the following sequence of equalities:

[h2]
2

[h� � 1]
� � 1

� + 2
[h� +2 ]

=
(h@xh� x + O(� x2))( h� � 2@xh� x + O(� x2))

h� +1 @xh� x + O(� x2)

= h� 2@xh� x + O(� x2):

(3.65)

Combining both equations (3.64) and (3.65) immediately yields the Taylor expansion of the

second part of the expression (3.62) ofh� � :

�
�

k � x

��
1
h

�
+

[h2]
2

[h� � 1]
� � 1

� + 2
[h� +2 ]

�
= �

�
k � x

O(� x2) = O(� x): (3.66)

Sinceh� � is given by (3.62), using both relations (3.63) and (3.66) givesh� � = h� � + O(� x),

which concludes the proof.

Equipped with the respective expressions (3.61) and (3.62) of q and h� � , we have fully

determined the approximate friction source term Sf , given by (3.59). After Lemma 3.10 and

the expression of q, this approximate source term is consistent with Sf . In addition, by con-

struction, Sf satis�es the discrete steady state relation (3.57a) as soon asWL and WR de�ne a

steady state.
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3.1.2.3 The case of both topography and friction source terms

Equipped with the approximations St of St and Sf of Sf , respectively given by (3.54) and

(3.59), we now turn to the approximation of the source term made of both contributions of

topography and friction. As a consequence, we consider the following source term in (3.1):

S(W ) = St (W ) + Sf (W ) = � gh@xZ � kqjqjh� � :

The steady state solutions of the shallow-water system endowed with this source term are

given by (3.24), as follows:

8
><

>:

@xq = 0 ;

@x

�
q2

h
+

1
2

gh2
�

= St (W ) + Sf (W ):
(3.67)

Because of the presence of both source terms, the second equation of (3.67) cannot be put

under an algebraic form similar to (3.46). Therefore, we cannot derive an approximation of

the source term S = St + Sf the same way we derived the approximations St and Sf . Instead,

we elect to discretize the second equation of (3.67) usingSt and Sf , as follows:

�
q2

h
+

1
2

gh2
�

= St � x + Sf � x: (3.68)

This discretization has been obtained by taking S = St + Sf in (3.26). As a consequence, after

(3.37), we de�ne the following intermediate discharges and heights:

q�
L = q�

R = q� = qHLL +
St � x

� R � � L
+

Sf � x
� R � � L

; (3.69a)

h�
L = min

�
max

�
hHLL �

� R St � x
� (� R � � L )

�
� R Sf � x

� (� R � � L )
; "

�
;
�

1 �
� R

� L

�
hHLL +

� R

� L
"
�

; (3.69b)

h�
R = min

�
max

�
hHLL �

� L St � x
� (� R � � L )

�
� L Sf � x

� (� R � � L )
; "

�
;
�

1 �
� L

� R

�
hHLL +

� L

� R
"
�

; (3.69c)

where the quantity � is given by (3.38).

3.1.2.4 Extension of the approximate source terms for vanishing water heights

The intermediate states (3.69) have been derived for nonzero water heights. We now sug-

gest an extension of (3.69) to deal with vanishing water heights. To that end, we recall the

assumption made earlier.

Assumption. When the water height vanishes, so does the velocity.

Now, we need to provide expressions of St and Sf when hL or hR vanishes, and when both

hL and hR vanish. In addition, since � has been de�ned by (3.38) for positive water heights,

the expressions St =� and Sf =� also need to be extended in order to take vanishing water

heights into account.
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Extension of St for vanishing water heights

We �rst determine a new expression of St for vanishing hL and/or hR . Since the expres-

sion (3.54) relied on the assumption that both hL and hR were positive, we cannot use this

expression in the present case. We momentarily assume that the friction contribution van-

ishes, in order to derive an expression for the approximate topography source term St .

In order to obtain a new formula for St , we begin by assuming that WL and WR de�ne a

steady state with vanishing hL or hR , but not both hL and hR . From Proposition 1.14, we have

q0 = 0 as soon asWL and WR de�ne a steady state. The steady state under consideration

is therefore a lake at rest steady state governed by (1.43), that is to say a steady state with

[h + Z ] = 0 . Note that (3.48a) can be rewritten as follows:

[hu2] +
g
2

�
h2�

= St � x (3.70)

The above assumption ensures thatuL = uR = 0 . As a consequence, (3.70) reads:

g[h]
hR + hL

2
= St � x:

Now, plugging [h] = � [Z ] into this equality, we get the new expression of St � x, to be substi-

tuted to (3.54) as soon as eitherhL or hR vanishes:

St � x = � g(ZR � ZL )
hR + hL

2
: (3.71)

The expression (3.71) ofSt is obviously consistent with the actual source term St given by

(3.41).

Then, note that the lake at rest condition [h + Z ] = 0 , which comes from studying the

smooth steady states, does not cover two cases of a physical lake at rest with a dry area and

a discontinuous topography. Namely, the cases displayed on Figure 3.4 are physical steady

states at rest which do not satisfy [h + Z ] = 0 .

Figure 3.4 – Physical lake at rest con�gurations not governed by [h + Z ] = 0 . Left panel: lake
at rest with hR = 0 and hL + ZL � ZR . Right panel: lake at rest with hL = 0 and hR + ZR � ZL .

Therefore, according to Figure 3.4, the states given by

8
>><

>>:

q0 = 0 ;

hR = 0 ;

hL + ZL � ZR ;

or

8
>><

>>:

q0 = 0 ;

hL = 0 ;

hR + ZR � ZL ;

(3.72)
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do not satisfy [h + Z ] = 0 but are steady states at rest. Such steady state solutions are not

included in (3.71), and considering only this expression will not allow their preservation. As

a consequence, in the cases described by (3.72), we modify the expression ofSt . Still with

uL = uR = 0 , the equation (3.70) yields:

St � x =

8
>><

>>:

g
h2

R

2
if qL = qR = 0 , hL = 0 and hR + ZR � ZL ;

� g
h2

L

2
if qL = qR = 0 , hR = 0 and hL + ZL � ZR :

Note that hL = 0 implies qL = 0 , and that hR = 0 implies qR = 0 . Therefore, the above

expressions read:

St � x =

8
>><

>>:

g
h2

R

2
if qR = 0 , hL = 0 and hR + ZR � ZL ;

� g
h2

L

2
if qL = 0 , hR = 0 and hL + ZL � ZR :

(3.73)

Finally, we handle the case where both hL and hR vanish (and thus qL = qR = 0 ), i.e.

the case where there is no water. Note that, in this case, we haveqHLL = 0 after (3.20b). In

order for the discharge to stay equal to zero, we have to make sure that q� = 0 . To meet this

requirement, we enforce

St � x = 0 : (3.74)

as soon as bothhL and hR are zero. This expression makes sense since the actual source term

St also vanishes in the absence of water.

We now regroup the four cases (3.54), (3.71), (3.73) and (3.74), to get the following �nal

expression of St :

St � x := St (hL ; hR ; qL ; qR ; ZL ; ZR ; � x)� x

=

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

0 if hL = 0 and hR = 0 ;

g
h2

R

2
if qR = 0 , hL = 0 and hR + ZR � ZL ;

� g
h2

L

2
if qL = 0 , hR = 0 and hL + ZL � ZR ;

� g[Z ]
hR + hL

2
if hL = 0 or hR = 0 ;

� g[Z ]
2hL hR

hL + hR
+

g
2

[h]3c
hL + hR

otherwise,

(3.75)

with [h]c given by (3.55).

Equipped with the expression (3.75) of St , we now turn to providing a suitable expression

of St =� . Recall that � has �rst been introduced to replace the leftmost term of (3.30). Note

that this term is ill-de�ned for hL = 0 or hR = 0 . In order to determine a suitable expression

of � for hL = 0 or hR = 0 , recall that, after Proposition 1.14, we have q� = q0 = 0 as soon as

WL and WR de�ne a steady state with a vanishing water height. Therefore, uL = uR = 0 and,
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as soon ashL = 0 or hR = 0 , � is de�ned as follows:

� =
g
2

(hL + hR ): (3.76)

Then, we consider hL = hR = 0 . As a consequence of such a dry area, we haveqL = qR =

0. In this case, after (3.20a), we havehHLL = 0 . For this area to stay dry, we need to ensure

that h�
L = h�

R = 0 . This requirement is met by enforcing, as soon as both hL and hR are zero,

the following value of St � x=� :
St � x

�
= 0 : (3.77)

Finally, we de�ne St � x=� as follows, using (3.38), (3.71), (3.76) and (3.77):

St � x
�

=

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

0 if hL = 0 and hR = 0 ;

hR if qR = 0 , hL = 0 and hR + ZR � ZL ;

� hL if qL = 0 , hR = 0 and hL + ZL � ZR ;

� [Z ] if hL = 0 or hR = 0 ;

St � x

� (q� )2

hL hR
+ g

2(hL + hR )
otherwise.

(3.78)

Extension of Sf for vanishing water heights

Then, to extend the approximate friction source term Sf , we recall the following assump-

tion made on the friction source term in the presence of vanishing water heights.

Assumption. The friction source term vanishes as soon as the water height does.

In order for both quantities Sf and Sf =� to satisfy this assumption, we have to impose that

they vanish when hL and/or hR vanishes.

As a consequence, after (3.59) and the above assumption,Sf is given by:

Sf � x := Sf (hL ; hR ; qL ; qR ; � x)� x

=

(
0 if hL = 0 and/or hR = 0 ;

� kqjqjh� � otherwise,

(3.79)

where q is given by (3.61) and h� � is de�ned by (3.62). In addition, the quantity Sf =� is given

by:

Sf � x
�

=

8
>>><

>>>:

0 if hL = 0 and/or hR = 0 ;

� kqjqjh� �

� (q� )2

hL hR
+ g

2(hL + hR )
otherwise.

(3.80)
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3.1.2.5 Properties of the scheme with both source terms

Equipped with the expressions (3.75), (3.78), (3.79) and (3.80) of the approximate topog-

raphy and friction source terms, we can now extend the formulas (3.69) of the intermediate

states in order to take vanishing water heights into account. Recall that the parameter " > 0

prevented the intermediate heights from vanishing. To allow vanishing intermediate heights,

we take " = 0 in (3.69), to get the following intermediate states:

q�
L = q�

R = q� = qHLL +
St � x

� R � � L
+

Sf � x
� R � � L

; (3.81a)

h�
L = min

��
hHLL �

� R St � x
� (� R � � L )

�
� R Sf � x

� (� R � � L )

�

+
;
�

1 �
� R

� L

�
hHLL

�
; (3.81b)

h�
R = min

��
hHLL �

� L St � x
� (� R � � L )

�
� L Sf � x

� (� R � � L )

�

+
;
�

1 �
� L

� R

�
hHLL

�
; (3.81c)

where (X )+ = max( X; 0) denotes the positive part of a quantity X . The intermediate states

(3.81) allow us to state the following extension of Lemma 3.4 for non-negative water heights.

Lemma 3.11. AssumehL � 0 and hR � 0. Then, the intermediate statesW �
L and W �

R given by

(3.81) satisfy the following properties:

(i) consistency: the quantitiesh�
L , h�

R , q�
L andq�

R satisfy the equations (3.22), whereS = St + Sf ;

(ii) non-negativity preservation:h�
L � 0 andh�

R � 0;

(iii) well-balance: ifWL and WR de�ne a steady state, i.e. if (3.26) holds, thenW �
L = WL and

W �
R = WR .

Proof. Concerning (i), q�
L and q�

R given by (3.81) are immediately shown to satisfy the consis-

tency equations (3.22b) with S = St + Sf . Let us introduce the following notations:

fh�
L = hHLL �

� R St � x
� (� R � � L )

�
� R Sf � x

� (� R � � L )
and fh�

R = hHLL �
� L St � x

� (� R � � L )
�

� L Sf � x
� (� R � � L )

:

The quantities fh�
L and fh�

R immediately satisfy the required consistency property (3.22a). Re-

garding h�
L and h�

R , the following three cases arise.

• If fh�
L � 0 and fh�

R � 0, then the relations (3.81) yield h�
L = fh�

L and h�
R = fh�

R .

• If fh�
L < 0, then from (3.37) we get h�

L = 0 and h�
R =

�
1 �

� L

� R

�
hHLL .

• Similarly, if fh�
R < 0, then we have h�

R = 0 and h�
L =

�
1 �

� R

� L

�
hHLL .

In all three cases, the consistency relation (3.22a) holds. As a consequence, (3.22) is satis�ed,

and (i) holds.

The expressions (3.81b) and (3.81c) obviously yield that h�
L � 0 and h�

R � 0 Indeed,

these intermediate heights are the minima of non-negative quantities, since hHLL > 0 after

Lemma 3.3. Therefore, (ii) is satis�ed.

From Lemma 3.4, we know that the well-balance property (iii) is established as soon as the

approximate source term S satis�es (3.26) when WL and WR de�ne a steady state. After (3.48),
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the approximate topography source term St satis�es this relation by construction. Similarly,

the approximate friction source term Sf has been derived from (3.57), and thus the relation

(3.26) holds. As a consequence, for the individual contributions of the topography and the

friction, the property (iii) is veri�ed. In addition, for both contributions, the steady relation

we have elected to satisfy is (3.68). Therefore, (3.26) holds forS = St + Sf . The proof of (iii)

is thus achieved, which concludes the proof of Lemma 3.11.

Remark 3.12. We note that using the de�nitions (3.81) and making the friction source term

vanish allows the recovery of the intermediate states for topography only. Similarly, if the

topography source term vanishes, we recover the intermediate states for friction only. As a

consequence, (3.81) yields intermediate states that are well-balanced for the individual source

terms of topography or friction. Let us recall that the steady states relation for the shallow-

water system with both topography and friction source terms (3.67) cannot be written under

the form of an algebraic relation for all Z . Therefore, we only manage to preserve the steady

states up to the chosen discretization (3.68) of the steady relation (3.67) (for a similar approach,

see [162] for the shallow-water equations with topography and [163, 120, 60, 101] for the Euler

equations with gravity).

Lemma 3.11 allows us to state the following result, which is an extension of Theorem 3.5

to consider non-negative water heights.

Theorem 3.13. ConsiderW n
i 2 
 for all i 2 Z, where
 is the admissible states space de�ned by

(1.3). Assume that the intermediate statesW L; �
i + 1

2
andW R;�

i + 1
2

are given, for alli 2 Z, by

W L; �
i + 1

2
=

 
h�

L (W n
i ; W n

i +1 )

q�
L (W n

i ; W n
i +1 )

!

and W R;�
i + 1

2
=

 
h�

R (W n
i ; W n

i +1 )

q�
R (W n

i ; W n
i +1 )

!

; (3.82)

whereq�
L andq�

R are de�ned by (3.81a), whileh�
L andh�

R are respectively given by (3.81b) and (3.81c).

Then, under the CFL restriction (3.1), the Godunov-type scheme (3.9) satis�es the following properties:

(i) consistency with the shallow-water system (1.1);

(ii) robustness: for alli 2 Z, W n+1
i 2 
 ;

(iii) well-balance: if(W n
i ) i 2 Z de�nes a steady state, then for alli 2 Z, W n+1

i = W n
i .

Proof. After [90], if the approximate Riemann solver satis�es the integral consistency condi-

tion (3.13), then the consistency property (i) holds. This integral consistency property is satis-

�ed: indeed, Lemma 3.11 ensures that the intermediate states (3.81) are consistent. Therefore,

(i) holds.

By de�nition of 
 , proving the robustness property (ii) is equivalent to showing that for

all i 2 Z, hn+1
i > 0 as soon ashn

i > 0. The second item of Lemma 3.4 ensures thathL; �
i + 1

2
� 0

and hR;�
i + 1

2
� 0 as soon ashn

i � 0 and hn
i +1 � 0. As a consequence, after the expression (3.9) of

the scheme,hn+1
i is the sum of non-negative quantities, which proves (ii).

The well-balance property (iii) is then directly inferred from Lemma 3.11. Indeed, as-

sume that (W n
i ) i 2 Z de�nes a steady state, i.e. that W n

i and W n
i +1 de�ne a steady state for

all i 2 Z. Therefore, Lemma 3.11 yields that W L; �
i + 1

2
= W n

i and W R;�
i + 1

2
= W n

i +1 for all i 2 Z.
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Hence, W n+1
i = W n

i for all i 2 Z, and the property (iii) holds, which concludes the proof of

Theorem 3.13.

3.2 Semi-implicitation of the scheme

The scheme (3.9) – (3.82) allows the simulation of wet/dry transitions. However, note that

the friction source term becomes stiff (i.e. its value becomes arbitrarily large) in the vicinity

of wet/dry transitions. As a consequence of this stiffness, spurious oscillations appear in the

numerical approximation. In order to get rid of the oscillations, implicit schemes are usually

needed to compute the numerical contribution of stiff source terms. The splitting method(see

[26, 150] for instance) is used to avoid a fully implicit scheme, and rather suggests a semi-

implicitation of the scheme, where only the stiff source terms are treated in an implicit way.

The splitting method has been successfully applied to balance laws, especially in the presence

of stiff source terms (see [113, 124] for instance).

To introduce such a semi-implicitation, we �rst rewrite the scheme (3.9) – (3.82) in order

to exhibit the numerical �ux function and the source terms contribution. Then, we adopt an

explicit scheme for the �ux and the topography, and an implicit scheme for the friction.

3.2.1 Rewriting the scheme

In this section, we exhibit the numerical �ux function and the numerical source terms. The

following result states a rewriting of the scheme (3.9) – (3.82) using these two functions (see

for instance [90]).

Proposition 3.14. The scheme (3.9) – (3.82) can be rewritten under the following form:

W n+1
i = W n

i �
� t
� x

�
F n

i + 1
2

� F n
i � 1

2

�
+

� t
2

�
Sn

i + 1
2

+ Sn
i � 1

2

�
; (3.83)

whereF n
i + 1

2
= F (W n

i ; W n
i +1 ; Z n

i ; Z n
i +1 ) is the numerical �ux function evaluated at the interfacex i + 1

2
,

andSn
i + 1

2
= S(W n

i ; W n
i +1 ; Z n

i ; Z n
i +1 ) is the numerical source term at the interfacex i + 1

2
. The numerical

�ux function is de�ned as follows:

F n
i + 1

2
=

1
2

�
F (W n

i ) + F (W n
i +1 )

�
+

� L
i + 1

2

2

�
W L; �

i + 1
2

� W n
i

�
+

� R
i + 1

2

2

�
W R;�

i + 1
2

� W n
i +1

�
; (3.84)

while the numerical source term is given by:

Sn
i + 1

2
=

 
0

(St )n
i + 1

2
+ ( Sf )n

i + 1
2

!

; (3.85)

where the quantities(St )n
i + 1

2
and(Sf )n

i + 1
2

are approximations of the topography and the friction source

terms, respectively. Adopting extended notations, they are given by:

(St )n
i + 1

2
= St � hn

i ; hn
i +1 ; qn

i ; qn
i +1 ; Z i ; Z i +1 ; � x

�
; (3.86a)

(Sf )n
i + 1

2
= Sf �

hn
i ; hn

i +1 ; qn
i ; qn

i +1 ; � x
�
; (3.86b)
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whereSt andSf are the approximate source terms already de�ned by (3.75) and (3.79).

Proof. After (3.84), the quantity F n
i + 1

2
� F n

i � 1
2
, present in (3.83), rewrites as follows:

F n
i + 1

2
� F n

i � 1
2

= � L
i + 1

2

�
W L; �

i + 1
2

� W n
i

�
� � R

i � 1
2

�
W R;�

i � 1
2

� W n
i

�
+

1
2

�
Fn

i + 1
2

+ Fn
i � 1

2

�
; (3.87)

where Fn
i + 1

2
= F(W n

i ; W n
i +1 ; Z i ; Z i +1 ), with the function F de�ned by:

F(WL ; WR ; ZL ; ZR ) = F (WR ) � F (WL ) + � R (W �
R � WR ) � � L (W �

L � WL ):

According to the above identity, the function F satis�es the following sequence of equalities:

F(WL ; WR ; ZL ; ZR ) = � RW �
R � � L W �

L �
�
� RWR � � L WL �

�
F (WR ) � F (WL )

��

= � RW �
R � � L W �

L � (� R � � L )WHLL ;

where WHLL is the intermediate state of the HLL solver, de�ned by (3.18). Now, recall from

Lemma 3.11 that the intermediate states (3.81) satisfy the integral consistency property, which

is equivalent to the equations (3.22). SinceS = St + Sf in the present context, arguing (3.22)

yields:

F(WL ; WR ; ZL ; ZR ) =

 
0

St (hL ; hR ; qL ; qR ; ZL ; ZR ; � x)� x + Sf (hL ; hR ; qL ; qR ; � x)� x

!

:

As a consequence, recalling the de�nition (3.85) – (3.86) of the numerical source term, we get:

�
� t
� x

�
F n

i + 1
2
�F n

i � 1
2

�
+

� t
2

�
Sn

i + 1
2

+ Sn
i � 1

2

�
= �

� t
� x

�
� L

i + 1
2

�
W L; �

i + 1
2

� W n
i

�
� � R

i � 1
2

�
W R;�

i � 1
2

� W n
i

��
:

Arguing the de�nition (3.9) of the suggested numerical scheme, we get:

W n
i �

� t
� x

�
F n

i + 1
2

� F n
i � 1

2

�
+

� t
2

�
Sn

i + 1
2

+ Sn
i � 1

2

�
= W n+1

i ;

which is nothing but the rewritten scheme (3.83). The proof is thus completed.

3.2.2 Application to the topography and friction source terms

We now introduce a semi-implicit version of the Godunov-type scheme (3.83). The main

idea of this section is to use a splitting method to reduce the impact of the aforementioned

instabilities. The splitting strategy we use here is to �rst consider an explicit treatment of the

�ux and the topography source term, then an implicit treatment of the friction source term.

As a consequence, the �rst step, devoted to approximating solutions of the partial differ-

ential equation @t W + @xF (W ) = St (W ) containing the �ux and the topography source term,

reads as follows:
0

@h
n+ 1

2
i

q
n+ 1

2
i

1

A =

 
hn

i

qn
i

!

�
� t
� x

�
F n

i + 1
2

� F n
i � 1

2

�
+

� t
2

 
0

(St )n
i + 1

2
+ ( St )n

i � 1
2

!

: (3.88)
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The second and last step concerns the friction and consists in solving the following system

of ordinary differential equations:

8
><

>:

dh
dt

= 0 ;

dq
dt

= � kqjqjh� � ;
with initial data

8
<

:

h(0) = h
n+ 1

2
i ;

q(0) = q
n+ 1

2
i :

This system can be solved to obtain an analytic expression of the solution. For t 2 [0; � t], the

exact solution of the above system reads as follows:

8
><

>:

h(t) = h(0);

q(t) =
h(0) � q(0)

h(0) � + k t jq(0)j
:

(3.89)

Note that the analytic expression (3.89) guarantees that, for all t 2 [0; � t], the sign of q(t)

stays the same as the sign ofq(0), and that jq(t)j < jq(0)j. This was to be expected, sinceq

is governed by the damping equation (3.2.2). This behavior is consistent with the fact that

friction should only slow down the movement of the �uid, rather than changing its direction.

Then, evaluating (3.89) at t = � t and plugging the initial data yields the following up-

dated state W n+1
i = t (hn+1

i ; qn+1
i ):

8
>>><

>>>:

hn+1
i = h

n+ 1
2

i ; (3.90a)

qn+1
i =

�
hn+1

i

� �
q

n+ 1
2

i
�
hn+1

i

� �
+ k � t

�
�q

n+ 1
2

i

�
�
: (3.90b)

Let us note that the well-balance property is lost for the discharge. Indeed, if W n
i � 1, W n

i and

W n
i +1 de�ne a steady state, we do not necessarily recover qn+1

i = qn
i , but we have hn+1

i = hn
i

since the semi-implicitation procedure does not change the evaluation of the water height. As

a consequence, we decide to consider an approximation (h� )n+1
i of

�
hn+1

i

� �
in the discharge

update equation (3.90b), thus replacing the update step (3.90) with the following expressions:

8
>>><

>>>:

hn+1
i = h

n+ 1
2

i ; (3.91a)

qn+1
i =

(h� )n+1
i q

n+ 1
2

i

(h� )n+1
i + k � t

�
�q

n+ 1
2

i

�
�
: (3.91b)

The approximation (h� )n+1
i is now determined in order to ensure that the scheme satis�es

the required well-balance property. In order to obtain such an expression of (h� )n+1
i , we

momentarily suppose that W n
i � 1, W n

i and W n
i +1 de�ne a steady state. In this case, we need to

ensure that qn+1
i = qn

i . Therefore, (3.91b) reads:

(h� )n+1
i q

n+ 1
2

i = ( h� )n+1
i qn

i + k � t
�
�q

n+ 1
2

i

�
�qn

i : (3.92)
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Now, note that the explicit scheme (3.83) can be rewritten as follows:

hn+1
i = hn

i �
� t
� x

�
(F h)n

i + 1
2

� (F h)n
i � 1

2

�
; (3.93a)

qn+1
i = qn

i �
� t
� x

�
(F q)n

i + 1
2

� (F q)n
i � 1

2

�
+ � t(St )n

i + � t(Sf )n
i ; (3.93b)

where we have set:

F =

 
F h

F q

!

; (St )n
i =

1
2

�
(St )n

i + 1
2

+ ( St )n
i � 1

2

�
; (Sf )n

i =
1
2

�
(Sf )n

i + 1
2

+ ( Sf )n
i � 1

2

�
: (3.94)

Since the scheme (3.83) is well-balanced and we are considering steady states, the equation

(3.93b) yields qn+1
i = qn

i , and it can be rewritten as:

(Sf )n
i =

1
� x

�
(F q)n

i + 1
2

� (F q)n
i � 1

2

�
� (St )n

i : (3.95)

Since the evaluation of q
n+ 1

2
i is obtained from (3.88), we get:

q
n+ 1

2
i = qn

i �
� t
� x

�
(F q)n

i + 1
2

� (F q)n
i � 1

2

�
+ � t(St )n

i : (3.96)

From (3.95) and (3.96), we immediately obtain

q
n+ 1

2
i = qn

i � � t(Sf )n
i : (3.97)

Thus, we are now able to determine the expression of (h� )n+1
i that ensures the well-balance

of the scheme. With �
n+ 1

2
i = sgn q

n+ 1
2

i , plugging the expression (3.97) of q
n+ 1

2
i into (3.92) yields:

(h� )n+1
i qn

i � (h� )n+1
i � t(Sf )n

i = ( h� )n+1
i qn

i + k � t �
n+ 1

2
i (qn

i )2 � k � t2 �
n+ 1

2
i qn

i (Sf )n
i :

Hence, (h� )n+1
i is immediately proven to satisfy:

(h� )n+1
i =

� k(qn
i )2�

n+ 1
2

i

(Sf )n
i

+ k � t �
n+ 1

2
i qn

i : (3.98)

Now, recall that the numerical source term (Sf )n
i is de�ned by (3.94), and we get:

(Sf )n
i =

1
2

�
� kqn

i � 1
2
jqn

i � 1
2
j(h� � )n

i � 1
2

� kqn
i + 1

2
jqn

i + 1
2
j(h� � )n

i + 1
2

�
;

where the averages qn
i � 1

2
and (h� � )n

i � 1
2

are given with clear notations by (3.61) and (3.62),

respectively. However, recall that the only requirement to choose the average q was that it be

equal to q0 as soon as a steady state was reached. In the current context,W n
i � 1, W n

i and W n
i +1

de�ne a steady state; hence, we haveqn
i � 1 = qn

i = qn
i +1 = q0. A relevant choice is therefore to

take qn
i � 1

2
= qn

i , which yields the following formula:

(Sf )n
i =

1
2

�
� kqn

i jqn
i j

�
h� �

� n+1

i � 1
2

� kqn
i jqn

i j
�

h� �
� n+1

i + 1
2

�
: (3.99)
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In (3.99), we have substituted (h� � )n
i � 1

2
with (h� � )n+1

i � 1
2
. This substitution has no effect on the

well-balance property, and it makes the scheme more implicit by considering the updated

water height.

With this simpli�cation in the source term approximation, we get the following expression

for (h� )n+1
i , from (3.98) and (3.99):

(h� )n+1
i =

2�
n+ 1

2
i � n

i�
h� �

� n+1

i � 1
2

+
�

h� �
� n+1

i + 1
2

+ k � t �
n+ 1

2
i qn

i : (3.100)

Arguing the expressions of (h� � )n+1
i � 1

2
and (h� � )n+1

i + 1
2
, the above equation can then be rewritten

as

(h� )n+1
i =

2k�
n+ 1

2
i � x

k� n
i � x

�
� n+1

i � 1
2

+ � n+1
i + 1

2

�
�

�
 n+1

i � 1
2

+  n+1
i + 1

2

� + k � t �
n+ 1

2
i qn

i ; (3.101)

where we have set

� n+1
i + 1

2
=

� + 2
2

�
hn+1

i +1

� 2
�

�
hn+1

i

� 2

�
hn+1

i +1

� � +2
�

�
hn+1

i

� � +2 , and

 n+1
i + 1

2
=

1

hn+1
i +1

�
1

hn+1
i

+ � n+1
i + 1

2

�
hn+1

i +1

� � � 1
�

�
hn+1

i

� � � 1

� � 1
:

(3.102)

Computations within the expression of (h� )n+1
i show that it tends to 0 as soon ashn+1

i � 1 , hn+1
i

or hn+1
i +1 tends to 0, which is a good behavior when dealing with wet/dry transitions. We have

therefore devised a way to consider the friction contribution in an implicit way, while still

retaining the well-balance property of the scheme. We can thus state the following result.

Theorem 3.15. Assume that for alli 2 Z, W n
i 2 
 , with 
 the admissible states space de�ned by

(1.3). The semi-implicit scheme (3.88) – (3.91) – (3.101) satis�es the following properties:

(i) consistency with the shallow-water system (1.1);

(ii) robustness: for alli 2 Z, W n+1
i 2 
 ;

(iii) well-balance: if(W n
i ) i 2 Z de�nes a steady state, then for alli 2 Z, W n+1

i = W n
i . Here,(W n

i ) i 2 Z

is said to de�ne a steady state if any of the three following cases arise:

• topography steady state: for alli 2 Z, W n
i andW n

i +1 satisfy (3.26), withS = St ;

• friction steady state: for alli 2 Z, W n
i andW n

i +1 satisfy (3.26), withS = Sf ;

• topography and friction steady state: for alli 2 Z, W n
i and W n

i +1 satisfy (3.26), withS =

St + Sf .

Proof. We begin by proving the consistency property (i). Arguing Lemma 3.10, we get that

(h� � )n+1
i � 1

2
and (h� � )n+1

i + 1
2

are consistent approximations of h� � . Therefore, we clearly observe

from (3.100) that (h� )n+1
i is a consistent approximation of h� . As a consequence, (3.91b) yields

that qn+1
i is indeed consistent with q. Finally, arguing Theorem 3.13 ensures that the expres-

sions h
n+ 1

2
i and q

n+ 1
2

i , given by (3.88), are respectively consistent with h and q. Therefore, the

consistency property (i) holds.



3.3. NUMERICAL EXPERIMENTS 137

Concerning the robustness, note that hn+1
i = h

n+ 1
2

i from (3.91a), with h
n+ 1

2
i de�ned by

(3.88). After Theorem 3.13, the scheme (3.88) is robust: therefore, the robustness property

(ii) holds. We make the additional remark that, with (h� )n+1
i given by (3.101), the expression

(3.91b) of qn+1
i ensures that this updated discharge vanishes as soon as a dry area is consid-

ered, which is a good behavior when considering transitions between wet and dry areas.

Now, to prove the well-balance, assume that W n
i � 1, W n

i and W n
i +1 de�ne a steady state,

according to (3.26) with S = St , S = St or S = St + Sf . From Theorem 3.13, the scheme (3.88)

is well-balanced. Therefore, since hn+1
i = h

n+ 1
2

i , we immediately recover that hn+1
i = hn

i . To

complete the proof, we now have to show that qn+1
i = qn

i . The updated discharge qn+1
i is given

by (3.90), with q
n+ 1

2
i de�ned by (3.88). Since (h� )n+1

i is given by (3.101) and has been chosen

to ensure that qn+1
i = qn

i as soon as a steady state is reached, the proof of the well-balance

property (iii) is concluded. Hence, the proof of Theorem 3.15 is achieved.

3.3 Numerical experiments

Numerical simulations are carried out to test the scheme derived in the previous sections.

We start by recalling the two schemes we shall test:

• the explicit scheme (3.9) – (3.81);

• the implicit scheme (3.88) – (3.91) – (3.101).

In order to determine the properties of these schemes, we present two sets of numerical ex-

periments.

The �rst set assesses the well-balance of the scheme, by considering steady states at rest

and moving steady states with topography and/or friction. Namely, the steady state solutions

exhibited in Section 1.2 are simulated. In addition, we consider the steady solutions reviewed

by Goutal and Maurel in [86].

The second set consists in a numerical validation of the proposed explicit and implicit

schemes. First, two experiments from [77] are presented, namely the drain on a non-�at bot-

tom and a vacuum occurrence by double rarefaction. Then, the simulations of several dam-

break situations are carried out. A wet dam-break and two dry dam-breaks are presented.

We also compare the proposed schemes with two classical schemes: theHLL scheme(2.35)

(see [90]) and thehydrostatic reconstruction(HR) scheme(see [5]) applied to the HLL �ux (2.35).

Indeed, the HLL scheme is not well-balanced, while the HR scheme preserves the steady

states at rest with a non-�at topography, but not the moving steady states.

Since the HLL scheme is designed for conservative systems, we take the topography and

friction contributions into account by using a splitting method. The purpose of carrying out

simulations with the HLL scheme is to highlight that the well-balance is an important prop-

erty for a scheme to possess. In addition, the choice of the HLL scheme for comparisons is

relevant since the construction of our scheme is based on a HLL-like construction.

Moreover, the friction is also introduced into the HR scheme through a splitting method.

Since the expression used for the updated discharge in the splitting method is similar to (3.89),

the friction contribution will be zero as soon as a solution at rest ( q = 0 ) is considered. As a
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consequence, even in the presence of the friction source term, the HR scheme still preserves

the steady states at rest, for all k.

In order to assess the numerical accuracy of all the schemes, we compare the approximate

solution with the exact solution. To that end, we compare the error estimates in L 1, L 2 and

L 1 norms and de�ned by (2.36).

Finally, we recall that the CFL condition (3.1) gives the time step � t for each iteration, as

follows:

� t �
� x
2�

, where � = max
i 2 Z

�
� � L

i + 1
2
; � R

i + 1
2

�
:

For the numerical experiments involving friction, a suitable value of the Manning coef�-

cient k has to be chosen. For instance, the reader is referred to [45], where multiple values of k

are given for different types of channel beds. Here, instead of following [45], we deliberately

impose stronger Manning coef�cients than in reality (up to 10 times). This choice is made to

ensure that the friction source term is preponderant compared to the topography source term,

in order to study the effects of the friction. The other constants are chosen as follows:

• in (1.1), g = 9 :81m.s� 2;

• in (3.6), " � = 10 � 10 m.s� 1.

An important step in these numerical experiments in the choice of the parameter C, intro-

duced in (3.55) to ensure the consistency of the approximate topography source term. In this

manuscript, this parameter is chosen heuristically, and we give its value for each experiment.

A better study of the stability of the scheme could provide several bounds for this parameter.

3.3.1 Well-balance assessment

In this �rst set of experiments, we assess the well-balance of the scheme, i.e. its ability to

exactly preserve and capture steady state solutions. Recall that steady states are given by the

equation (1.73), which prescribes a uniform discharge over the space domain, denoted by q0.

First, we consider steady states at rest, i.e.q0 = 0 . Several different topography functions,

continuous and discontinuous, are studied. In addition, the simulations of steady state so-

lutions with dry areas are carried out. We also perform the simulation of a �ow at rest with

emerging bottom, proposed in [77].

Then, we consider moving steady states with a vanishing friction contribution, i.e. k = 0 ,

and a non-�at topography. Such steady state solutions have been exhibited in Section 1.2.1,

and examples of subcritical and supercritical steady states have been provided. The simula-

tions of both kinds of steady states are therefore carried out.

Afterwards, steady state solutions for the friction source term only are studied, that is to

say we impose q0 6= 0 , @xZ = 0 and k 6= 0 . In Section 1.2.2, we have studied such steady

states, and exhibited two speci�c examples, a subcritical solution and a supercritical solution.

We perform the simulations of both these examples.

Subsequently, we consider steady states for both friction and topography, which are ei-

ther analytic solutions in speci�c cases or steady states obtained by approximately solving

(1.73). Section 1.2.3 provides two analytic steady state solutions, which we use to test the

well-balance of the scheme. Afterwards, the equation (1.73) is approximately solved to ex-

hibit a steady state solution, the simulation of which is carried out.
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Finally, we perform the simulations of three well-known moving steady state solutions

with a vanishing friction contribution and a non-�at topography, presented in [86]. Namely,

the simulations of the subcritical �ow, transcritical �ow and transcritical �ow with shockare car-

ried out.

3.3.1.1 Steady states at rest

In this section, we consider steady state solutions at rest. We recall that these solutions all

satisfy q(t; x ) = 0 for all t and all x, i.e. q0 = 0 . After (1.43), the smooth steady state solutions

are governed by @x (h + Z ) = 0 , which corresponds to a lake at rest con�guration. This

condition can be extended to non-smooth (and even discontinuous) steady state solutions, to

get h + Z = cst . As a consequence, at the discrete level, the approximate solution(W n
i ) i 2 Z is

said to de�ne a steady state at rest if the following relations hold:

8i 2 Z;

(
qn

i = 0 ;

hn
i + Z n

i = hn
i +1 + Z n

i +1 :

We also recall that several physical steady state solutions at rest, given by (3.72), are not gov-

erned by h + Z = cst (see Figure 3.4). We �nally recall that, according to Proposition 1.14, a

smooth steady state with a dry/wet transition is necessarily at rest. The goal of this section is

therefore to perform simulations of all these cases.

Continuous topography

We begin with continuous steady states at rest, to assess the well-balance of the explicit

and implicit schemes. In the two cases we consider, we have q0 = 0 and k = 10. The two

experiments are performed with 200 discretization cells, over the domain [0; 1] and until a

�nal time tend = 1s. The initial conditions are q(0; x) = 0 and h(0; x) = (2 � Z i (x))+ , with

topographies (Z i ) i 2f 1;2g given by:

Z1(x) = (1 � j 4x � 2j)+ ;

Z2(x) = (4 x � 1)+ :

These initial free surfaces are depicted on Figure 3.5. Note that the experiment where Z2 is

used involves a dry/wet transition. The exact solution at rest is imposed at the boundaries,

in order to ensure that the boundary conditions do not interfere with the well-balance assess-

ment. We used C = + 1 in (3.55). Numerically, we set C as the upper bound of the double

precision �oating point numbers. The results of the simulations are presented in Table 3.1 and

Table 3.2.

We observe on Table 3.1 and Table 3.2 that the HR, explicit and implicit schemes indeed

preserve such lake at rest con�gurations, even in the case of a transition between a wet area

and a dry area. In particular, we note, as expected, that the presence of the friction contri-

bution in the HR scheme does not alter the preservation of this steady state at rest. We also

remark that, for such steady states at rest, the implicit scheme degenerates into the explicit
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Figure 3.5 – From left to right: free surfaces for the lake at rest experiments with topographies
given by Z1 and Z2.

h + Z1 q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 1.21e-04 8.78e-04 1.02e-021.90e-02 2.70e-02 4.41e-02
HR 0 0 0 3.37e-16 4.18e-16 1.58e-15
explicit 1.18e-15 1.30e-15 2.66e-151.76e-14 1.80e-14 2.36e-14
implicit 1.18e-15 1.30e-15 2.66e-151.76e-14 1.80e-14 2.36e-14

Table 3.1 – Free surface and discharge errors for the steady state at rest experiment with to-
pography given by Z1.

h + Z2 q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 1.43e-02 5.50e-02 3.20e-011.48e-02 2.21e-02 4.41e-02
HR 1.44e-17 9.55e-17 1.11e-152.72e-16 3.21e-16 1.58e-15
explicit 1.75e-16 3.05e-16 8.88e-168.27e-16 1.10e-15 3.65e-15
implicit 1.75e-16 3.05e-16 8.88e-168.27e-16 1.10e-15 3.65e-15

Table 3.2 – Free surface and discharge errors for the steady state at rest experiment with to-
pography given by Z2.

scheme. Thus, both schemes give the same results. However, concerning the HLL scheme, it

provides an approximation of the steady state.

Discontinuous topography

We now turn to two experiments involving a discontinuous topography, and therefore a

discontinuous water height, since the relation h + Z = cst holds. For these two experiments,

we take q0 = 0 and k = 10. The simulations are carried out over the domain [0; 1], discretized

with 200cells. The �nal physical time is tend = 1s. As initial conditions, we take the following

steady state at rest: q(0; x) = 0 and h(0; x) = (2 � Z i (x))+ , where the topography functions
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(Z i ) i 2f 3;4g are de�ned as follows:

Z3(x) = 1[ 1
2 ;1](x);

Z4(x) = (4 x � 1)1[ 1
2 ;1](x):

These exact topography function and free surfaces are displayed on Figure 3.6. A transition

between a wet area and a dry area is present when the topography is given by Z4. At the

boundaries, we choose to impose the exact solution. We also takeC = + 1 for these experi-

ments. In Table 3.3 and Table 3.4, we present the results of the simulations.

Figure 3.6 – From left to right: free surfaces for the lake at rest experiments with topographies
given by Z3 and Z4.

h + Z3 q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 6.25e-03 2.63e-02 2.65e-012.18e-02 9.81e-02 1.04e+00
HR 0 0 0 0 0 0
explicit 0 0 0 0 0 0
implicit 0 0 0 0 0 0

Table 3.3 – Free surface and discharge errors for the steady state at rest experiment with to-
pography given by Z3.

h + Z4 q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 1.89e-02 6.09e-02 3.20e-011.57e-02 1.00e-01 1.05e+00
HR 1.44e-17 9.55e-17 1.11e-152.27e-16 2.28e-16 4.86e-16
explicit 5.55e-18 5.21e-17 6.66e-162.26e-16 2.28e-16 5.34e-16
implicit 5.55e-18 5.21e-17 6.66e-162.26e-16 2.28e-16 5.34e-16

Table 3.4 – Free surface and discharge errors for the steady state at rest experiment with to-
pography given by Z4.

Table 3.3 and Table 3.4 present the results of the four schemes at timetend = 1s. The

HR, explicit and implicit schemes exactly preserve the lake at rest steady state, even for such
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discontinuous topography functions. On the contrary, the HLL scheme only provides an

approximation of this lake at rest steady state.

Emerged discontinuous topography

This third set of experiments focuses on steady state solutions at rest governed by the

equations (3.72) instead of h + Z = cst . As a consequence, we consider the following two

topography functions on the space domain [0; 1]:

Z5(x) = 3 1[ 1
2 ;1](x);

Z6(x) = 3 1[0; 1
2 ](x):

Then, the initial condition for the experiment is given by q(0; x) = 0 and h(0; x) = (2 � Z (x))+ ,

as displayed on Figure 3.7. Since this experiment consists in a solution at rest, the height and

discharge stay constant over time. Note that the topography source term discretization (3.75)

has been derived in order to able to preserve such steady states.

Figure 3.7 – From left to right: free surfaces for the lake at rest experiments with topographies
given by Z5 and Z6.

For the numerical experiments, we take k = 10 and we discretize the domain [0; 1] with

200 cells. The simulations are carried out until the �nal physical time tend = 1s, and we

set C = + 1 . The exact solution is prescribed as both initial and boundary conditions. The

results are displayed in Table 3.5 and Table 3.6. Thanks to these tables, we observe that the

HR scheme exactly preserves this steady state solution, which does not satisfy h + Z = cst .

In addition, the speci�c cases introduced in the expression (3.75) of St allow the explicit and

implicit schemes to preserve this steady state solution at rest. We also note that, as expected,

the HLL scheme does not preserve this lake at rest.

Flow at rest with emerging bottom

This last experiment at rest involves an emerging bottom (see [77]). The space domain

is [0; 25], and the topography is given by Z7(x) =
�
0:2 � 0:05(x � 10)2

�
+ . We take h(0; x) =

(0:15 � Z7(x))+ and q(0; x) = 0 as initial data. We present a graph of the free surface and the

topography in Figure 3.8.
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h + Z5 q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 6.28e-03 5.95e-02 8.06e-011.85e-02 1.89e-01 2.54e+00
HR 1.11e-16 1.57e-16 2.22e-162.22e-16 2.22e-16 2.22e-16
explicit 2.20e-16 2.42e-16 4.44e-167.33e-16 1.11e-15 3.61e-15
implicit 2.20e-16 2.42e-16 4.44e-167.33e-16 1.11e-15 3.61e-15

Table 3.5 – Free surface and discharge errors for the steady state at rest experiment with to-
pography given by Z5.

h + Z6 q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 6.28e-03 5.95e-02 8.06e-011.85e-02 1.89e-01 2.54e+00
HR 1.10e-16 1.56e-16 2.22e-162.22e-16 2.22e-16 2.22e-16
explicit 1.10e-16 1.56e-16 2.22e-161.22e-16 1.99e-16 1.55e-15
implicit 1.10e-16 1.56e-16 2.22e-161.22e-16 1.99e-16 1.55e-15

Table 3.6 – Free surface and discharge errors for the steady state at rest experiment with to-
pography given by Z6.

Figure 3.8 – Free surface and topography for the �ow at rest with emerging bottom. The gray
area represents the topography given by Z7.

For this experiment, we set C = + 1 and we use homogeneous Neumann boundary con-

ditions. The simulation is carried out until the physical time tend = 100s, using 200discretiza-

tion cells. In addition, we take a Manning coef�cient k = 10. Such a nonzero friction is not

present in the original experiment introduced in [77]. However, it does not change the steady

state, since the friction contribution vanishes as soon as the discharge vanishes. The results

of the four schemes are displayed in Table 3.7. This last experiment con�rms once again the

relevance of using a well-balanced scheme for the simulation of steady states at rest. Indeed,

after Table 3.7, the HLL scheme only provides a �rst-order approximation of the steady state,

while the HR, explicit and implicit schemes provide an exact preservation of this lake at rest.
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h + Z7 q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 1.54e-02 2.89e-02 9.98e-025.12e-04 1.50e-03 7.69e-03
HR 2.83e-17 1.41e-16 1.42e-152.25e-16 2.26e-16 5.04e-16
explicit 4.64e-17 1.48e-16 1.08e-152.22e-16 2.22e-16 2.29e-16
implicit 4.64e-17 1.48e-16 1.08e-152.22e-16 2.22e-16 2.29e-16

Table 3.7 – Free surface and discharge errors for the �ow at rest with emerging bottom.

3.3.1.2 Moving steady states for the topography source term

After steady states at rest, we now focus on the preservation of moving steady state solu-

tions, with q0 6= 0 . More precisely, we start with smooth moving steady states for the topog-

raphy source term only, i.e. we take k = 0 . Such solutions have been studied in Section 1.2.1;

they are governed by (1.44). We here remark that, since thek = 0 and only the topography is

considered, the implicit scheme degenerates into the explicit scheme.

In this section, we study the numerical preservation of the subcritical and supercritical

steady solutions, exhibited as examples in Section 1.2.1. The topography function is de�ned

as follows for this whole section:

Z (x) =
1
4

+ cos2
�

� (x � x0) +
�
4

�
:

For the numerical experiments, we consider the space domain [0:75; 1:25]with 200discretiza-

tion cells. We consider an approximate solution of (1.45) on this space domain, obtained by

using Newton's method with x0 = 0 :75 � � x, q0 =
p

g, and h(x0) = hc = 1 . First, we focus

on the subcritical solution, and then on the supercritical solution.

Subcritical topography steady state

We �rst consider the subcritical topography steady state. The water height for this steady

state satis�es h(t; x ) = h(x) > h c. We take, as initial conditions, the subcritical solution

hsub(x) obtained by using Newton's method to get an approximate solution of (1.45). As

a consequence, we takeq(0; x) = q0 and h(0; x) = hsub(x). The boundary conditions are

inhomogeneous Dirichlet boundary conditions, taken as the exact solution at points 0:75� � x

and 1:25 + � x.

The �rst experiment consists in the preservation of the subcritical steady state. The sim-

ulations are carried out until the physical time tend = 1 , and C = + 1 , and their results are

presented on Figure 3.9 and Table 3.8. On Figure 3.9, we note that the explicit and implicit

schemes indeed preserve the subcritical topography steady state up to the machine precision.

This observation is con�rmed by Table 3.8, which highlights the fact that both the explicit and

the implicit schemes exactly preserve this steady state, while the HLL and HR schemes only

provide an approximation.

Now, we introduce a preservation of this subcritical steady state solution. We take the
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Figure 3.9 – Left panel: initial free surface for the subcritical topography steady state. Right
panel: free surface (solid line) and discharge (dashed line) errors to the steady state after 1s,
with the explicit scheme.

h + Z q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 1.17e-02 1.83e-02 1.44e-019.80e-03 1.09e-02 2.75e-02
HR 7.13e-03 1.53e-02 1.44e-015.37e-03 6.45e-03 2.40e-02
explicit 1.61e-16 2.40e-16 6.66e-169.79e-16 1.32e-15 4.00e-15
implicit 1.61e-16 2.40e-16 6.66e-169.79e-16 1.32e-15 4.00e-15

Table 3.8 – Free surface and discharge errors for the subcritical topography steady state.

following perturbed initial height:

h(0; x) =

8
><

>:

hsub(x) � 0:5 if
x � 0:75

1:25� 0:75
2

�
3
7

;
4
7

�
;

hsub(x) otherwise.

The initial discharge is still given by q(0; x) = q0. The same boundary conditions as in the

previous experiment are chosen.

After some time has elapsed, the approximate solution should converge to the original,

unperturbed solution. Figure 3.10 shows the convergence to this solution, and Table 3.9 dis-

plays the error to the original solution after the time tend = 3s. On Figure 3.10 and Table 3.9,

we remark that the original steady state solution is indeed recovered. The convergence is ob-

tained up to the machine precision for the explicit and implicit schemes, while the HLL and

HR schemes only provide a �rst-order approximation of the steady state solution.

Supercritical topography steady state

We now consider the supercritical steady state solution hsup(x), which satis�es hsup(x) <

hc. The initial conditions are h(0; x) = hsup(x) and q(0; x) = q0. As boundary conditions, we

take inhomogeneous Dirichlet boundary conditions, consisting in the steady state solution

taken at 0:75 � � x and 1:25 + � x. For the preservation of this steady solution, the �nal

physical time is tend = 1s, and we take C = + 1 . The results of the simulations are presented
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Figure 3.10 – Results of the explicit scheme for the perturbed subcritical topography steady
state. Left panel: free surface att = 0s. Right panel: free surface att = 3s.

h + Z q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 1.17e-02 1.83e-02 1.44e-019.80e-03 1.09e-02 2.75e-02
HR 7.13e-03 1.53e-02 1.44e-015.37e-03 6.45e-03 2.40e-02
explicit 6.68e-15 8.12e-15 1.51e-141.23e-14 1.57e-14 2.93e-14
implicit 6.68e-15 8.12e-15 1.51e-141.23e-14 1.57e-14 2.93e-14

Table 3.9 – Free surface and discharge errors for the perturbed subcritical topography steady
state.

on Figure 3.11 and in Table 3.10.

Figure 3.11 – Left panel: initial free surface for the supercritical topography steady state. Right
panel: free surface (solid line) and discharge (dashed line) errors to the steady state after 1s,
with the explicit scheme.

On the right panel of Figure 3.11, we check that the explicit scheme indeed preserves the

steady state up to the machine precision. This observation is con�rmed by Table 3.10, where

the explicit and the implicit schemes are shown to exactly preserve the supercritical steady

state. We also check that both HLL and HR schemes do not exactly preserve this moving

steady state, as expected.

We know focus on a perturbation of this supercritical steady state solution. On the space
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h + Z q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 9.21e-01 9.79e-01 1.25e+002.94e-02 3.36e-02 8.30e-02
HR 9.45e-01 9.93e-01 1.26e+003.07e-03 4.77e-03 3.71e-02
explicit 4.97e-16 6.39e-16 1.67e-151.41e-15 1.77e-15 4.88e-15
implicit 4.97e-16 6.39e-16 1.67e-151.41e-15 1.77e-15 4.88e-15

Table 3.10 – Free surface and discharge errors for the supercritical topography steady state.

domain [0:75; 1:25], we take the following initial water height, which involves a perturbation:

h(0; x) =

8
><

>:

hsup(x) � 0:5 if
x � 0:75

1:25� 0:75
2

�
3
7

;
4
7

�
;

hsup(x) otherwise.

The discharge is still initialized to q0, and we take the same boundary conditions as in the

unperturbed case. For a large enough physical time, we should observe a convergence to the

original, unperturbed supercritical steady state solution. To that end, we take tend = 3s. The

results of this simulation are displayed on Figure 3.12 and Table 3.11.

Figure 3.12 – Results of the explicit scheme. Left panel: free surface att = 0s. Right panel:
free surface at t = 3s.

h + Z q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 9.21e-01 9.78e-01 1.25e+003.03e-02 3.45e-02 9.23e-02
HR 9.44e-01 9.93e-01 1.26e+003.00e-03 4.71e-03 3.92e-02
explicit 8.93e-16 1.23e-15 3.44e-151.40e-15 1.88e-15 5.33e-15
implicit 8.93e-16 1.23e-15 3.44e-151.40e-15 1.88e-15 5.33e-15

Table 3.11 – Free surface and discharge errors for the perturbed supercritical topography
steady state.

On Figure 3.12 and Table 3.11, we note that both the explicit and implicit schemes converge

to the unperturbed supercritical steady state up to the machine precision. However, the HLL

and HR schemes provide a �rst-order approximation of this supercritical steady state.
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3.3.1.3 Moving steady states for the friction source term

We now focus on the preservation of the friction-only steady states, by assuming q0 6= 0

and a �at topography, i.e. @xZ = 0 . The smooth steady states are then given in Section 1.2.2.1,

according to (1.53), or equivalently to (1.55).

In Section 1.2.2.1, the water height for a smooth friction steady state was obtained by con-

sidering a zero h of the nonlinear function � de�ned by (1.57). Depending on the value of

the difference between h and the critical height hc > 0, de�ned by (1.49), we obtained either

a subcritical solution (where h > h c) or a supercritical solution (where 0 < h < h c). Exam-

ples of such solutions have been presented on Figure 1.21, and we once again consider these

examples as the bases of the well-balance assessment of the proposed explicit and implicit

schemes.

Subcritical friction steady state

For this experiment, the space domain is [0:75; 0:9]. We consider the subcritical solution of

the steady state obtained by setting q0 = �
p

g=8, x0 = 0 :75 � � x and h0 = hc = 0 :25. The

Manning coef�cient k is chosen equal to1.

The �rst experiment concerns the preservation of this steady state. We take q(0; x) =

q0 and the exact height hsub(x), obtained with Newton's method, as initial conditions. In

addition, we impose the exact solution at the points 0:75� � x and 0:9+� x as inhomogeneous

Dirichlet boundary conditions. Moreover, we set C = 10 � 3, and we use a mesh made of200

cells to compute the approximate solution until the �nal time tend = 1s. The numerical results

are presented on Figure 3.13, and the errors to the steady state are displayed in Table 3.12.

Figure 3.13 – Left panel: initial height for the subcritical friction steady state. Right panel:
height (solid line) and discharge (dashed line) errors to the steady state after 1s, with the
explicit scheme.

From Figure 3.13 and Table 3.12, we observe that this friction-only steady state is indeed

preserved up to the machine precision by the explicit and implicit schemes, which now pro-

vide different numerical results because of the implicitation of the friction source term. How-

ever, the HLL and HR schemes do not preserve this steady state solution. It is worth noting

that, here, the results from the HLL and the HR schemes are identical. Indeed, the topography

is �at, the HR scheme is based on an HLL �ux, and the treatment of the friction is identical
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h q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 1.21e-04 1.86e-04 5.51e-044.57e-05 7.27e-05 3.81e-04
HR 1.21e-04 1.86e-04 5.51e-044.57e-05 7.27e-05 3.81e-04
explicit 3.28e-16 8.00e-16 6.33e-159.47e-16 1.06e-15 1.67e-15
implicit 2.44e-16 7.33e-16 6.16e-153.72e-16 4.30e-16 7.77e-16

Table 3.12 – Height and discharge errors for the subcritical friction steady state.

for both schemes. As a consequence, the HR and the HLL schemes provide identical results

in this case of a �at topography.

The second experiment introduces a perturbation of the subcritical steady state, as shown

in Figure 3.14. With hsub the exact height, this perturbation is de�ned by choosing the initial

water height as follows:

h(0; x) =

8
><

>:

hsub(x) + 0 :05 if
x � 0:75

0:9 � 0:75
2

�
3
7

;
4
7

�
;

hsub(x) otherwise.

The initial discharge is unperturbed, and taken equal to q0 = �
p

g=8 throughout the domain.

The boundary conditions consist in the unperturbed exact solution. We use 100discretization

cells for the numerical simulation. Moreover, we take C = 10 � 3. The computations are car-

ried out until the �nal time tend = 5s. Indeed, such a �nal time allows the perturbation to be

dissipated and a steady state to be reached. In fact, this steady state turns our to be the origi-

nal, unperturbed steady state. The results of the explicit scheme are presented in Figure 3.14

and an error comparison with the unperturbed steady state is provided in Table 3.13.

Figure 3.14 – Results of the explicit scheme for the perturbed subcritical friction steady state.
Left panel: water height at t = 0s. Right panel: water height at t = 5s.

Figure 3.14 shows that the perturbation is eventually dissipated and that we recover the

unperturbed steady state. This assertion is con�rmed by the error analysis presented in Ta-

ble 3.13, which shows that the explicit and implicit schemes recover the unperturbed steady

state up to the machine precision. The HLL and HR schemes still provide an approximation

of this steady state, and their results are identical.
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h q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 2.45e-04 2.72e-04 5.85e-048.86e-05 1.15e-04 4.70e-04
HR 2.45e-04 2.72e-04 5.85e-048.86e-05 1.15e-04 4.70e-04
explicit 1.87e-15 2.03e-15 7.33e-151.19e-15 1.33e-15 2.61e-15
implicit 4.24e-15 4.29e-15 8.27e-152.52e-15 2.90e-15 4.83e-15

Table 3.13 – Height and discharge errors for the perturbed subcritical friction steady state.

Supercritical friction steady state

We now consider the space domain [0:75; 0:8], and we take k = 1 . We focus on the

supercritical branch of the previous steady state, obtained by assuming that q0 = �
p

g=8,

x0 = 0 :75� � x and h0 = hc = 0 :25.

The �rst experiment deals with the preservation of this supercritical steady state solution.

The initial conditions of this experiment are q(0; x) = q0 and h(0; x) = hsup(x), where hsup(x)

is the supercritical water height obtained by approximately solving (1.53). The inhomoge-

neous Dirichlet boundary conditions consist in the initial condition at the points 0:75 � � x

and 0:8 + � x. The simulation is carried out until the �nal time tend = 1s, on a mesh made

of 200 discretization cells. In addition, we again take C = 10 � 3. The results from the ex-

plicit scheme are depicted on Figure 3.15, and the errors to the steady state are presented in

Table 3.14.

Figure 3.15 – Left panel: initial height for the supercritical friction steady state. Right panel:
height (solid line) and discharge (dashed line) errors to the steady state after 1s, with the
explicit scheme.

h q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 3.62e-04 5.14e-04 2.45e-035.30e-08 7.94e-08 2.50e-07
HR 3.62e-04 5.14e-04 2.45e-035.30e-08 7.94e-08 2.50e-07
explicit 5.29e-15 6.03e-15 1.35e-143.15e-15 4.50e-15 1.38e-14
implicit 5.21e-15 5.91e-15 1.28e-143.11e-15 4.18e-15 1.23e-14

Table 3.14 – Height and discharge errors for the supercritical friction steady state.
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We observe on Figure 3.15 and Table 3.14 that the explicit and implicit schemes exactly

preserve this supercritical steady state solution. However, the HLL and HR provide a �rst-

order approximation of this steady state.

We now study a perturbation of the aforementioned supercritical steady state, as shown in

Figure 3.16. This perturbation is introduced by taking the following the initial water height:

h(0; x) =

8
><

>:

hsup(x) + 0 :05 if
x � 0:75

0:9 � 0:75
2

�
3
7

;
4
7

�
;

hsup(x) otherwise,

where hsup is the supercritical water height.

We set the initial discharge as q(0; x) = q0 on the whole space domain, and the boundary

conditions still consist in the unperturbed supercritical solution. The numerical simulation

uses 100 cells and we set C = 10 � 3. The simulation is carried out until tend = 5s, time

at which the perturbed supercritical steady state has converged to the original supercritical

steady state. Figure 3.16 depicts the results of the explicit scheme. Table 3.15 provides an error

comparison between the HLL, HR, explicit and implicit schemes.

Figure 3.16 – Results of the explicit scheme for the perturbed supercritical friction steady state.
Left panel: water height at t = 0s. Right panel: water height at t = 5s.

h q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 3.62e-04 5.14e-04 2.45e-031.08e-07 1.62e-07 5.09e-07
HR 3.62e-04 5.14e-04 2.45e-031.08e-07 1.62e-07 5.09e-07
explicit 1.07e-14 1.40e-14 3.37e-142.11e-15 2.96e-15 6.44e-15
implicit 1.09e-14 1.43e-14 3.54e-142.07e-15 2.85e-15 5.88e-15

Table 3.15 – Height and discharge errors for the perturbed supercritical friction steady state.

From Figure 3.16, we note that the perturbed steady state indeed converges towards the

unperturbed one. Table 3.15 shows that this convergence is valid up to the machine precision

for the explicit and implicit schemes, and that the HLL and HR schemes provide an approxi-

mation of this steady state.
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3.3.1.4 Moving steady states with both topography and friction source terms

We continue the veri�cation of the well-balance property with numerical experiments con-

sisting in the preservation of moving steady states involving both topography and friction.

Thus, we set k 6= 0 , @xZ 6= 0 , and q0 6= 0 : the steady states are therefore given by the full

equation (1.73). Recall that this equation cannot be rewritten under an algebraic form. Thus,

to �nd a steady state solution, we have to either numerically solve the equation (1.73) in the

general case, or exactly solve it in speci�c cases.

Uniform water height

We begin by considering the speci�c case where the height is uniform throughout the

space domain. In that case, the derivative of the topography function is given in Section 1.2.3

by (1.74) (see also [42]). This speci�c case is tested numerically by taking h0 = q0 = 1 , k =

10, Z (0) = 0 and the slope of Z given by (1.74). As a consequence, we have the following

topography function:

Z (x) = �
kx
g

:

The space domain is [0; 1] and is discretized using 100cells. The initial and boundary condi-

tions are the exact solution. The computations are carried out with all four schemes, and we

take tend = 1s as well asC = + 1 . The results are presented in Table 3.16.

h q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 3.05e-01 3.69e-01 7.05e-018.64e-01 8.65e-01 9.41e-01
HR 3.07e-01 3.71e-01 7.08e-018.64e-01 8.65e-01 9.42e-01
explicit 1.24e-16 1.54e-16 2.22e-169.77e-17 1.59e-16 6.66e-16
implicit 2.22e-17 5.21e-17 2.22e-169.99e-17 1.84e-16 6.66e-16

Table 3.16 – Height and discharge errors for the topography and friction steady state with
constant height.

Table 3.16 shows that this topography and friction steady state with constant height is

indeed exactly preserved the explicit scheme and the implicit scheme. However, the HLL and

HR only provide a �rst-order approximation of this steady state solution.

Uniform free surface

To build another exact solution of (1.73), we assume h + Z = H0. We therefore have a

constant free surfaceH0 over the whole space domain [0; 1]. The exact height and topography

functions for a steady state solution have been exhibited in Section 1.2.3. They are given by

(1.77), under the existence condition (1.76). We choose the constantsk, q0 and h0 such that h

is positive over the whole domain [0; 1], i.e. such that the condition (1.76) is satis�ed. In the

simulation, we set x0 = 0 and q0 = h0 = H0 = 1 . As a consequence, the exact height and
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topography functions are given by:

h(t; x ) = (1 + ( � � 1)kx)
1

� � 1 ;

Z (x) = 1 � (1 + ( � � 1)kx)
1

� � 1 :

We discretize the space domain with 100 cells and carry out the simulation until the time

tend = 1s. We takeC = + 1 . An error comparison is displayed in Table 3.17.

h + Z q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 1.36e-03 1.37e-03 1.59e-038.76e-04 8.80e-04 9.59e-04
HR 4.00e-04 4.00e-04 4.66e-041.63e-03 1.63e-03 1.89e-03
explicit 1.66e-15 1.74e-15 2.66e-153.05e-14 3.06e-14 3.63e-14
implicit 5.00e-15 5.38e-15 6.88e-152.00e-14 2.01e-14 2.29e-14

Table 3.17 – Free surface and discharge errors for the topography and friction steady state
with constant free surface.

The results presented in Table 3.17 show that the steady state is preserved up to the ma-

chine precision by the explicit and implicit schemes, while the HLL and HR approximate this

steady state.

The general case

Finally, we derive a steady state for the shallow-water equations with topography and

friction, without considering a constant height or free surface. Therefore, we approximately

solve the discretization (3.68) of the full steady relation (1.73). First, we set k = 0 :01 and we

choose[0; 1] to be the space domain. We take the following topography function:

Z (x) =
1
2

ecos(4�x ) � e� 1

e1 � e� 1 : (3.103)

We set q(0; x) = q0 = 1 throughout the domain. The equation (3.68) is then approximately

solved using Newton's method, imposing h(0; 0) = 0 :3, to get the steady water height hex(x).

This procedure allows us to de�ne the water height over the whole domain. This steady state
t (hex; q0) is then chosen as the initial and boundary conditions for this experiment. We take

100discretization cells and C = + 1 ; the numerical simulation runs until a �nal physical time

tend = 1s. The results of the explicit scheme are presented on Figure 3.17 and the errors to the

steady state are displayed in Table 3.18.

Figure 3.17 shows that the explicit scheme exactly preserves this topography and friction

steady state. Moreover, Table 3.18 shows the implicit scheme also exactly preserve such a

steady state. On the contrary, the HLL and HR schemes produce an approximation of this

solution.

Then, we focus on a perturbation of the above steady state. We denote by hex(x) the water

height of the previous topography and friction steady state. The initial water height of this
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Figure 3.17 – Left panel: initial height for the topography and friction steady state. Right
panel: height (solid line) and discharge (dashed line) errors to the steady state with the explicit
scheme.

h + Z q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 1.84e-03 3.01e-03 1.20e-023.26e-09 3.64e-09 5.55e-09
HR 5.29e-02 1.43e-01 6.23e-014.63e-02 9.73e-02 2.94e-01
explicit 8.29e-16 1.36e-15 5.33e-151.07e-15 1.33e-15 3.33e-15
implicit 6.23e-16 9.68e-16 2.72e-152.45e-15 2.87e-15 5.11e-15

Table 3.18 – Free surface and discharge errors for the topography and friction steady state.

last experiment is de�ned by

h(0; x) =

8
><

>:

hex(x) + 0 :05 if x 2
�

2
7

;
3
7

� [ �
4
7

;
5
7

�
;

hex(x) otherwise;

and the initial discharge is de�ned by

q(0; x) =

8
><

>:

q0 +
1
2

if x 2
�

2
7

;
3
7

� [ �
4
7

;
5
7

�
;

q0 otherwise:

The unperturbed steady state is prescribed as the boundary conditions. For this numerical

experiment, the domain [0; 1] is discretized with 100cells, and the simulation runs until the

perturbation has been dissipated and the unperturbed steady state has been recovered. The

�nal physical time we choose for these conditions to be met is tend = 2s. In addition, we

set C = + 1 . The evolution of the perturbation with the explicit scheme is depicted on Fig-

ure 3.18. Then, in Table 3.19, we present the errors to the original unperturbed steady state

when the physical time has elapsed.

Figure 3.18 and Table 3.19 show that the schemes indeed allow to recover the original

unperturbed steady state. This experiment emphasizes the ability of the explicit and implicit

schemes to exactly capture a topography and friction steady state, even after a perturbation.
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The HLL and HR schemes do not possess such an ability.

Figure 3.18 – Perturbed topography and friction steady state. From left to right: water height
for t = 0s, t = 0 :015s and t = 2s, with the explicit scheme.

h + Z q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 1.84e-03 3.01e-03 1.20e-029.20e-10 1.03e-09 1.56e-09
HR 3.18e-01 4.95e-01 9.22e-012.61e-02 3.36e-02 1.30e-01
explicit 5.71e-16 1.02e-15 4.16e-157.36e-16 1.08e-15 5.44e-15
implicit 1.47e-15 2.00e-15 5.72e-157.16e-16 9.17e-16 2.89e-15

Table 3.19 – Free surface and discharge errors for the perturbed topography and friction
steady state.

3.3.1.5 Goutal and Maurel's steady �ows

We �nally carry out three experiments from Goutal and Maurel's test cases [86]. These

benchmarks have been derived by considering the Bernoulli equation (1.44) that governs the

steady state solutions of the shallow-water equations with non-�at topography and a vanish-

ing friction contribution, i.e. k = 0 . As a consequence, the implicit scheme and the explicit

scheme will yield identical results.

Note that we have already assessed the preservation of moving steady state solutions in

Section 3.3.1.2. However, the experiments presented in [86] are obtained after a transient state,

i.e. from initial conditions which do not de�ne a steady state. The goal of presenting these

experiments is to assess the ability of the suggested scheme to capture steady state solutions,

in addition to preserving them.

The experiments from [86] are called the subcritical �ow, the transcritical �ow without shock

and the transcritical �ow with shock. In this manuscript, they will be respectively labeled GM1,

GM2 and GM3. The space domain is 0 < x < 25and the topography function is given by:

Z (x) =
�
0:2 � 0:05(x � 10)2

�
+ :

The boundary conditions are given hereafter, in function of two quantities q0 and h0, whose

values depend on the experiment studied:

• on the left boundary, the water height satis�es a homogeneous Neumann condition and

the discharge is set to someq0;
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• on the right boundary, the water height is set to h0 when the �ow is subcritical (and a ho-

mogeneous Neumann boundary condition is prescribed otherwise), and the discharge

follows a homogeneous Neumann boundary condition.

In addition, the initial conditions are h(0; x) + Z (x) = h0 and q(0; x) = 0 throughout the

domain. The values of q0 and h0 are:

• for GM1: q0 = 4 :42m3/s and h0 = 2m;

• for GM2: q0 = 1 :53m3/s and h0 = 0 :66m;

• for GM3: q0 = 0 :18m3/s and h0 = 0 :33m.

Such initial and boundary conditions yield a transient state followed by a steady state, with

uniform discharge q0. For GM1 and GM2, this steady state is continuous, and it should thus

be exactly obtained by the well-balanced scheme. However, the steady state in GM3 involves

a stationary shock, which the well-balanced scheme is not able to capture exactly. After Sec-

tion 1.2.1.3, this stationary shock is governed by the Rankine-Hugoniot relations and the dis-

crete entropy inequality.

On the one hand, for the converged steady states associated to GM1 and GM2, note that

q = q0 and that the steady state equation (1.44) is veri�ed. This equation is nothing but a

statement of Bernoulli's principle, and it can be rewritten as follows:

q2
0

2h2 + g(h + Z ) = E;

where E is a uniform quantity, the total head (see [86] for instance). As a consequence, to eval-

uate the well-balance of the scheme on GM1 and GM2, we compute the error to the uniform

discharge q0 and the error to the uniform total head E.

On the other hand, since GM3 presents a stationary shock, the discharge is constant but

the total head is not. Indeed, it presents a discontinuity where the shock is located. Therefore,

only the error to the uniform discharge q0 is computed for this last experiment.

The �nal physical time tend and the constant C are chosen as follows for each experiment:

– for GM1: tend = 500s and C = + 1 ;

– for GM2: tend = 125s and C = 2 :5;

– for GM3: tend = 1000s and C = 1 :1.

Subcritical �ow

We display on Figure 3.19 the results of the explicit scheme for the GM1 benchmark. Then,

we compare in Table 3.20 the two well-balanced schemes with the HR scheme and the HLL

scheme. These experiments are performed using a mesh of200 cells. Table 3.20 shows that

both HLL and HR schemes provide a �rst-order approximation of the moving steady state

con�guration GM1, while the proposed explicit and implicit schemes exactly preserve (i.e.

up to the machine precision) such moving steady states. This result is also observed on Fig-

ure 3.19. Moreover, these schemes recover this steady state after a transient state, even though

the steady state is not prescribed as initial condition.
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Figure 3.19 – Left panel: free surface and topography for the GM1 subcritical �ow test case.
Right panel: errors for the subcritical �ow using the explicit scheme; the solid line is the total
head error and the dashed line is the discharge error.

E q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 8.24e-03 1.19e-02 7.41e-024.31e-03 1.22e-02 5.19e-02
HR 1.32e-02 1.97e-02 7.48e-022.37e-03 6.74e-03 2.74e-02
explicit 1.18e-13 1.25e-13 1.53e-136.65e-14 6.99e-14 8.26e-14
implicit 1.18e-13 1.25e-13 1.53e-136.65e-14 6.99e-14 8.26e-14

Table 3.20 – Total head and discharge errors for the GM1 subcritical �ow experiment.

Transcritical �ow

The results of the explicit scheme for the GM2 experiment are depicted on Figure 3.20.

Then, we present in Table 3.21 the comparison between the well-balanced schemes and the

non well-balanced schemes. We chose a mesh made of200 discretization cells to carry out

these experiments. From Figure 3.20 and Table 3.21, we get similar conclusions than the case

of the GM1 experiment. Indeed, the HLL and HR approximate the steady state, while the

suggested schemes exactly capture the steady state, even after a transient state.

Figure 3.20 – Left panel: free surface and topography for the GM2 transcritical �ow test case.
Right panel: errors for the transcritical �ow using the explicit scheme; the solid line is the
total head error and the dashed line is the discharge error.



158 CHAPTER 3. WELL-BALANCED SCHEME

E q

L 1 L 2 L 1 L 1 L 2 L 1

HLL 2.72e-02 3.50e-02 7.45e-021.54e-03 6.16e-03 3.70e-02
HR 4.79e-02 6.07e-02 8.12e-028.28e-04 3.30e-03 1.82e-02
explicit 1.67e-14 2.13e-14 4.26e-141.47e-14 1.58e-14 2.04e-14
implicit 1.67e-14 2.13e-14 4.26e-141.47e-14 1.58e-14 2.04e-14

Table 3.21 – Total head and discharge errors for the GM2 transcritical �ow experiment.

Transcritical �ow with shock

Finally, we turn to the GM3 test case. Since it contains a stationary shock, it is not ex-

actly captured by the suggested explicit and implicit schemes, which are designed to capture

smooth steady states. The results of the explicit scheme are displayed on Figure 3.21. Com-

parisons with respect to � x and to the scheme used are presented on Figure 3.22, and com-

parisons with the HR and HLL schemes are presented in Table 3.22. The experiment is �rst

carried out with 1000discretization cells, and then with 4000discretization cells.

Figure 3.21 – Transcritical �ow with shock experiment (GM3), with the explicit scheme. The
topography is the gray area. Left panel: free surface and topography with 1000discretization
cells. Right panel: free surface and topography with 4000discretization cells.

q

L 1 L 2 L 1

HLL 2.99e-04 1.84e-03 3.89e-02
HR 1.54e-04 1.53e-03 4.00e-02
explicit 2.54e-04 2.99e-03 5.01e-02
implicit 2.54e-04 2.99e-03 5.01e-02

Table 3.22 – Discharge errors for the experiment of the transcritical �ow with shock (GM3) for
1000discretization cells.

From Figure 3.21, we observe, as expected, that the GM3 experiment is not exactly cap-

tured by the explicit scheme. Note the presence of a small inconsistent discontinuity on the

free surface in the vicinity of the top of the bump. The amplitude of this discontinuity de-
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Figure 3.22 – Transcritical �ow with shock (GM3) experiment: discharge error in logarithmic
scale with the explicit scheme, with respect to the number of cells.

pends heavily on the value of the constant C. Moreover, this amplitude is reduced when

� x is reduced, which means that the explicit scheme indeed converges towards the required

steady state when � x tends to 0.

Table 3.22 gives the errors to the steady dischargeq0. We note that they are of the same

order of magnitude with the four schemes under consideration.

On Figure 3.22, we observe the expected behavior of the discharge error. Although we

do not exactly recover the exact solution, the shock becomes narrower as the number of cells

increases.

Note that the proposed well-balanced schemes can also be compared to several other well-

balanced schemes that preserve moving steady states. For instance, in [128, 157], error tables

are provided, to show that the presented schemes indeed exactly preserve the studied mov-

ing steady states. However, it is worth noting that there is no evidence that these schemes are

able to capture the steady states obtained after a transient state, contrary to the explicit and

implicit schemes. We also mention the generalized hydrostatic reconstruction suggested in

[33], which results in a scheme able to capture the moving steady states obtained after a tran-

sient state. However, this scheme is not robust when in the presence of large discontinuities

in the topography function.

3.3.2 Validation experiments

In the previous section, we have assessed the well-balance of the suggested explicit and

implicit schemes. We now turn to the other properties of the scheme: namely, the consistency

and the robustness.

In this section, we perform several numerical experiments, whose goals are to show that

the proposed schemes approximate the correct solutions when considering unsteady �ows.

We �rst present two experiments showing the in�uence of the parameter C present in the

approximate topography source term St and used in (3.55). Then, we focus on the topogra-

phy source term, and we take a vanishing friction contribution. To that end, we carry out
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two experiments from [77]; both experiments present dry areas. Finally, several dam-break

experiments are presented. The purpose of these experiments is to highlight the impact of the

friction contribution on the solutions. The well-balance property is also shown to be impor-

tant for these simulations.

3.3.2.1 In�uence of the parameter C

Recall that the approximate source term St , de�ned by (3.75), depends on C. Namely,

this parameter is used to ensure the consistency of the approximate source term St with the

actual source term St , by ensuring that the absolute value of the water height jump [h] is no

larger than C� x. The purpose of the �rst set of experiments is to highlight the in�uence of

this parameter C.

Shock waves over a �at topography

The �rst experiment we suggest concerns the propagation of shock waves over a �at to-

pography. To that end, we consider the domain [0; 1] with a �at topography (i.e. Z � 0),

homogeneous Neumann boundary conditions, and we take the following Riemann problem

initial data:

h(0; x) = 1 and q(0; x) =

(
7:5 if x < 0:5;

� 7 if x � 0:5:

According to Section 1.1.2, such a Riemann problem corresponds to the two-shock case, and

will thus produce two shock waves separating a constant intermediate state, the �rst one

travelling towards the left of the initial discontinuity, and the second one towards its right.

The exact solution of this Riemann problem can be computed using according to Section 1.1.2.

Recall that the cutoff involving C had been introduced to ensure the consistency of St ,

especially for �at topographies. As a consequence, for this experiment, the value of C should

be instrumental in getting the correct shocks waves and an accurate approximation of the

intermediate state.

To carry out this experiment, we set a vanishing friction contribution (i.e. k = 0 ), we use

250discretization cells, and we take the �nal time tend = 0 :1s. This experiment is performed

with values of the parameter C ranging from 10 to 1000, i.e. for C� x ranging from 0:04 to 4.

The results of the explicit scheme are presented on Figure 3.23, where we display the exact

solution as well as the numerical approximation obtained with the explicit scheme for C = 10

and C = 1000. The left panel shows that, for both values of C, the approximate shock waves

are located at a consistent position and seem to have the correct amplitude. However, on the

right panel, we note, on the one hand, that the intermediate state obtained with C = 1000

presents spurious oscillations, whose amplitude does not decrease when � x increases. On

the other hand, with C = 10, the explicit scheme provides a good approximation of the inter-

mediate state.

In order to quantify the loss of accuracy, we compute the errors, in L 1 and L 2 norms,

between the approximate water height and the exact water height. These errors are presented

with respect to the parameter C, for values of C ranging from 10 to 1000, on Figure 3.24. In

both norms, the error increases as C increases. We also note that, forC < 20 in L 1-norm
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Figure 3.23 – Dam-break creating two shock waves over a �at bottom. Left panel: whole
domain depicted at t = 0 :1s. Right panel: zoom on the intermediate state of the dam-break
problem.

and for C < 75 in L 2-norm, the error stays the same. Similarly, for C > 600in L 1-norm and

for C > 500 in L 2-norm, the error is constant. As a consequence, this experiment is a good

illustration of the fact that the cutoff (3.55) allows the recovery of a consistent scheme.

Figure 3.24 – Height error in L 1-norm (left panel) and L 2-norm (right panel) with respect to
the parameter C.

Incident wave on an emerging bottom

The second experiment we perform in order to study the in�uence of the parameter C

consists in an incident wave on an emerging bottom. To that end, we modify the �ow at rest

with emerging bottom experiment from [77], to add a wave perturbing the water at rest. On

the space domain [0; 15], we consider the topography function Z (x) =
�
0:2 � 0:05(x � 10)2

�
+

and the following initial conditions:

h(0; x) + Z (x) =

(
0:2 if x < 5;

0:15 if x � 5;
and q(0; x) = 0 :

Homogeneous Neumann boundary conditions are prescribed, and 4000discretization cells

are considered. We once again take a vanishing friction contribution, i.e. k = 0 . The initial

condition, as well as the reference solution, computed with the HR scheme at tend = 5s, are
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displayed on Figure 3.25.

Figure 3.25 – Incident wave on an emerging bottom. Left panel: Initial free surface. Right
panel: Reference free surface obtained with the HR scheme. On both panels, the gray area is
the topography.

In order to study the in�uence of the parameter C, we consider the explicit scheme, and

we carry out the simulation with C = 1 and C = 10. The results are displayed on Figure 3.26,

where we once again observe that the consistency is ensured by the cutoff procedure. Indeed,

with C = 10, large spurious oscillations appear, a wave is re�ected to the left of the domain,

and an inconsistent dry area appears on the bump. However, with C = 1 , we only get small

oscillations near x = 9 :75; the amplitude of these oscillations decreases as� x decreases.

Figure 3.26 – Incident wave on an emerging bottom: zoomed comparison between the HR
scheme, the explicit scheme with C = 1 , and the explicit scheme with C = 10. The gray area
is still the topography.



3.3. NUMERICAL EXPERIMENTS 163

3.3.2.2 Drain on a non-�at bottom

The next validation experiment we propose is the drain on a non-�at bottom (see [77]).

The topography is given on the space domain [0; 25]by

Z (x) =
�
0:2 � 0:05(x � 10)2

�
+ :

We take initial data at rest, as follows: h(0; x) = 0 :5 � Z (x) and q(0; x) = 0 .

Concerning the boundary conditions, we assume that the left boundary is a solid wall and

that the drain is done by the right boundary, where we impose an outlet condition on a dry

bed (see [66, 30, 77] for more details on this boundary condition). These boundary conditions

are given as follows. Let us denote by hL and qL the left boundary conditions, and by hR and

qR the right boundary conditions. Let us assume that (W n
i ) i 2 J1;N K is the vector containing the

approximate solution at time tn . Then, the left boundary condition, which represents a solid

wall, is taken as follows:

hL = hn
1 and qL = 0 :

Concerning the right boundary condition, the process to obtain an outlet over a dry bed is

detailed in [66, 30]. It consists in choosing the following values at the boundary:

hR = min
�

1
9g

�
un

N + 2
p

ghn
N

� 2
; hn

N

�
and qR =

hR

3

�
un

N + 2
p

ghn
N

�
:

Note that the outlet on a dry bed boundary condition also requires that the numerical �ux at

the right boundary be the exact physical �ux applied to t (hR ; qR ). This boundary condition

enables the draining of the water through the right boundary.

The simulation is carried out with the implicit scheme, using a discretization of 200cells,

and until the �nal physical time tend = 1000s. Note that, since the friction contribution is zero,

the explicit scheme (3.9) – (3.81) and the implicit scheme (3.88) – (3.91) – (3.101) coincide. In

addition, we take C = 0 :65. The results are presented on Figure 3.27, where we observe that

the implicit scheme provides results close to the ones from other schemes, given in [77, 20,

161, 18] for instance.

Figure 3.27 – Drain on a non-�at bottom. Left panel: free surface and topography (in gray).
Right panel: discharge.
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Note that this experiment converges to a steady state at rest (i.e. q(t; x ) = 0 over the whole

domain), with the free surface equal to 0:2m at the left of the bump, and with a dry state at its

right. Table 3.23 shows the convergence over time of the implicit scheme towards this steady

state.

h q

L 1 L 2 L 1 L 1 L 2 L 1

150s 3.73e-03 4.27e-03 7.23e-036.79e-04 7.05e-04 3.50e-03
600s 4.13e-04 7.95e-04 1.55e-034.64e-05 4.94e-05 8.93e-05
2400s 9.59e-05 2.83e-04 3.57e-041.45e-06 2.26e-06 4.67e-06
19200s 2.11e-05 4.09e-05 8.50e-059.21e-08 3.47e-07 5.56e-07

Table 3.23 – Water height and discharge errors over time for the drain on a non-�at bottom.

3.3.2.3 Vacuum occurrence by a double rarefaction wave over a step

We then turn to another validation experiment, a vacuum occurrence deriving from a

double rarefaction wave over a step, presented in [77]. We consider the space domain [0; 25],

with a topography given by

Z (x) =

8
>><

>>:

1 if x 2
�

25
3

;
25
2

�
;

0 if x 2
�

0;
25
3

� [ �
25
2

; 25
�

:

The discontinuous initial data is given as follows:

h(0; x) = 10 and q(0; x) =

8
><

>:

� 350 if x <
50
3

;

350 otherwise.

We prescribe homogeneous Neumann boundary conditions. The mesh consists in 200

discretization cells, and the simulation is carried out with the implicit scheme until a �nal

physical time tend = 0 :65s. We once again note that the explicit scheme and the implicit one

coincide for a vanishing friction source term. We set C = 1 . The results are displayed on

Figure 3.28, where we observe that the implicit scheme provides an approximation that is in

good accordance with the ones obtained by several other schemes, given in [77, 20, 24, 158]

for instance.

Note that, if the physical time t is large enough, the space domain should be completely

drained of water, i.e. h � 0 and q � 0. We now analyze whether the four schemes at our

disposal tend to that limit behavior. We introduce the time t1 , such that for all x 2 [0; 25],

q(t1 ; x) < " machine , where "machine ' 2:22� 10� 16 is the lower bound of the double precision

�oating point numbers. The results are presented in Table 3.24, where we note that the HLL

scheme, the explicit scheme and the implicit scheme all allow the space domain to be com-

pletely devoid of water for t � t1 . However, with the HR scheme, even in presence of a very
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Figure 3.28 – Vacuum occurrence by a double rarefaction wave over a step. The gray area
represents the topography. Left panel: free surface and topography. Right panel: discharge.

large physical time, there is always some water at rest remaining to the right of the bump,

even if the discharge has reached"machine .

h q

t1 L 1 L 2 L 1 L 1 L 2 L 1

HLL 2.45s 4.05e-16 2.39e-15 3.37e-143.00e-16 3.20e-16 5.60e-16
HR > 104s 7.02e-06 9.93e-06 1.40e-052.22e-16 2.22e-16 2.22e-16
explicit 1.78s 2.28e-16 2.29e-16 3.78e-162.40e-16 2.50e-16 6.33e-16
implicit 1.78s 2.28e-16 2.29e-16 3.78e-162.40e-16 2.50e-16 6.33e-16

Table 3.24 – Vacuum occurrence by a double rarefaction wave over a step experiment. Time
t1 at which the water has come to a stop.

3.3.2.4 Wet dam-break

We now turn to dam-break experiments. The �rst dam-break experiments under consid-

eration are wet dam-breaks. We introduce the following topography function:

Zdam (x) =
1
2

cos2(�x ): (3.104)

We study the following four wet dam-break cases to highlight the behavior of both source

terms:

DAM1: Z (x) = 0 and k = 0 ;

DAM2: Z (x) = 0 and k = 5 ;

DAM3: Z (x) = Zdam (x) and k = 0 ;

DAM4: Z (x) = Zdam (x) and k = 5 .

The space domain is [� 1; 1], and we choose the same initial data for the four experiments, as

follows:

h(0; x) + Z (x) =

(
5 if x < 0;

1 if x � 0;
and q(0; x) = 0 :
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With this initial data, note that the �rst wet dam-break experiment corresponds to the Rie-

mann problem studied in Section 1.1.2. In particular, we know the exact solution for this

experiment.

For the numerical simulations, we prescribe homogeneous Neumann boundary condi-

tions at both boundaries. The results are presented at the �nal time tend = 0 :1s. We use200

discretization cells for the implicit scheme, and present a reference solution computed using

the HLL scheme with 2000cells. Finally, we set C = 10.

Flat topography

The results of the wet dam-break experiments with �at topography are displayed on Fig-

ure 3.29. The implicit scheme yields a correct approximation of the reference solution. The

action of the friction is clearly visible.

Figure 3.29 – Wet dam-break on a �at topography: free surface observed at the �nal physical
time with the implicit scheme. Left panel: k = 0 ; right panel: k = 5 .

Non-�at topography

Figure 3.30 depicts the results of the wet dam-break experiments with the topography

function (3.104). Once again, we note that the approximate solution provided by the implicit

scheme is in good agreement with the reference solution.

Note that there is a lake at rest con�guration in the regions untouched by the waves.

Indeed, the free surface untouched by the rarefaction wave or the shock wave should remain

unperturbed. This means that h(t; x ) + Z (x) = 2 and q(t; x ) = 0 for all x inferior to the

position of the head of the rarefaction wave, and h(t; x ) + Z (x) = 1 and q(t; x ) = 0 for all x

superior to the position of the shock wave. This lake at rest behavior is exactly preserved by

the explicit and implicit schemes. Therefore, this experiment highlights the interest of a using

a well-balanced scheme for such simulations, even if the whole domain does not involve a

steady state solution.

3.3.2.5 Dry dam-break

We then focus on dry dam-break experiments. We study four experiments, with the same

topography functions and values of the Manning coef�cient as in the wet dam-breaks DAM1,
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Figure 3.30 – Wet dam-break on a non-�at topography: free surface observed at the �nal
physical time with the implicit scheme. Left panel: k = 0 ; right panel: k = 5 .

DAM2, DAM3 and DAM4, but whose initial data is now given on [� 1; 1] by:

h(0; x) =

(
1:5 � Z (x) if x < 0;

0 if x � 0;
and q(0; x) = 0 :

Note that the initial water height vanishes for x � 0. As a consequence, a dry area is present

to the right of the dam. We remark that, in the �rst case, where Z (x) = 0 and k = 0 , we

recover the Riemann problem with a dry area presented in Section 1.1.2.

In the numerical simulations, both boundaries are endowed with homogeneous Neumann

boundary conditions. The �nal physical time is tend = 0 :1s. The simulation is carried out with

200cells for the implicit scheme, and with 2000cells for the reference HLL solution. We still

set C = 10.

Flat topography

Figure 3.31 displays the results of the dry dam-break simulations with a �at topography.

We note that the implicit scheme provides an approximation that is in good agreement with

the reference solution. In addition, we here remark the effects of the friction, especially in the

shape of the wet/dry front. This font has also been slowed down by the friction.

Non-�at topography

On Figure 3.32, the results of the dry dam-break experiments with a non-�at topography

function are depicted. As in the case of a �at topography, the implicit scheme shows good

agreement with the reference solution, and the slowing effects of the friction are noted.

3.3.2.6 Dry dam-break with two bumps

This next dry dam-break experiment presents a more complicated topography, which con-

sists in two bumps. The space domain is [0; 5] and we choose to use104 discretization cells

with the implicit scheme to have a relevant simulation. The two boundaries at x = 0m and
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Figure 3.31 – Dry dam-break on a �at topography: free surface observed at the �nal physical
time with the implicit scheme. Left panel: k = 0 ; right panel: k = 5 .

Figure 3.32 – Dry dam-break on a non-�at topography: free surface observed at the �nal
physical time with the implicit scheme. Left panel: k = 0 ; right panel: k = 5 .

x = 5m are solid walls. The topography is de�ned by

Z (x) =
1
2

�
1 �

(x � 5=2)2

1=25

�

+
+ 2

�
1 �

(x � 4)2

1=25

�

+
;

and indeed consists in two quadratic bumps, a smaller one followed by a larger one. The dam

is located at xD = 0 :7m, breaks at t = 0s, and contains an initial water height hL = 6m. The

domain x > x D contains no water, i.e. hR = 0 . We choose a Manning coef�cient k equal to 1.

The left panel of Figure 3.33 shows that the initial water height is signi�cantly larger than the

bumps. Indeed, we elected to have a larger mass of water whose energy is important enough

not to be completely dissipated by the bottom friction. We choose C = 0 :1, and we depict the

results of the implicit scheme on Figure 3.33 and Figure 3.34.

On Figure 3.33, we observe several waves and re�ections created by the two bumps. In

particular, on the right panel, we remark the characteristic pro�le of the dry dam-break so-

lution with friction. In addition, the �rst bump has created a re�ection, which is seen on the

left panel of Figure 3.34 to be propagating to the left of the domain. Note, on the left panel

of Figure 3.34, that a wave re�ected from the right bump has appeared and is traveling to

the left, while some water has also leaked above this right bump. Finally, on the right panel
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Figure 3.33 – Free surface for the double bump test case at different times. The gray area is
the topography. Left panel: solution at t = 0s; right panel: solution at t = 0 :38s.

Figure 3.34 – Free surface for the double bump test case at different times. The gray area is
the topography. Left panel: solution at t = 0 :74s; right panel: solution at t = 1 :70s.

of Figure 3.34, the water level is starting to converge towards a steady state at rest to the left

of the right bump. Several waves are still present, interacting among themselves, with the

bumps and with the solid walls. The small quantity of water that had leaked is still traveling

to the right of the domain.

3.3.2.7 Dry dam-break on a sloping channel: asymptotic solution

The last dam-break experiment we consider comes from [96, 97] and consists in a dry

dam-break on a sloping channel. In [96, 97], the author suggests an asymptotic approxima-

tion of the water height, valid far enough away from the dam. The goal of this numerical

experiment is to compare the implicit scheme with Hunt's asymptotic approximation and

with experimental data.

Let us �rst mention that, in [96, 97], the author does not use Manning's friction law (3.43).

Instead, the Darcy-Weisbach friction law is used (see for instance [145, 57] and references

therein), and the friction source term Sf (W ) is given by:

Sf (W ) = �
f
8

qjqj
h2 ;

where f is the Darcy-Weisbach friction coef�cient. Note that this friction source term can be

rewritten under the more general form Sf (W ) = � kqjqjh� � , with k = f=8 and � = 2 . As

a consequence, we are able to adapt the implicit scheme to this new source term simply by
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taking Manning's coef�cient k equal to f=8 and by setting � = 2 instead of � = 7� 3.

The initial data of the experiment is presented on Figure 3.35. On an in�nitely long sloping

channel, a reservoir of length L holds water, up to a dam of height H , which breaks at time

t = 0 . Note that the slope of the channel is H=L : therefore, the topography function is given

by

Z (x) = �
H
L

x:

As a consequence, the initial data is given as follows:

h(0; x) =

(
max(0; � Z (x)) if x < L;

0 if x � L;
and q(0; x) = 0 ;

where the x-axis, as displayed on Figure 3.35, follows the slope of the channel.

Figure 3.35 – Initial water height for the dry dam-break on a sloping channel.

Then, following Hunt [96, 97], we introduce the uniform �ow velocity at a normal depth

of H , denoted by U. After having introduced the dimensionless variables u� = u=U and

h� = h=H, Hunt suggests using the kinematic-wave approximation, i.e. u2
� = h� , where a sharp

shock is observed at the wet/dry front. Under this approximation, Hunt derives the following

two quantities:

• the shock amplitude hs(t) = H
�

L
Ut

� 2� 3
;

• the shock position xs(t) =
3L
2

�
Ut
L

� 2� 3
.

In addition, under this kinematic-wave approximation, the shallow-water system can be

solved, to yield the following outer solution:

ho(t; x ) = H
�

2
3

x
Ut

� 2

:

This formula is valid far from the dam: Hunt suggests using it for x=L > 5.

Afterwards, Hunt derives the inner solution, valid near the wet/dry front. To that end, he

introduces the actual position of the wet/dry front, given by:

x0(t) = L

 
3
2

�
Ut
L

� 2� 3
+

1
2

�
L
Ut

� 2� 3
!

:

Then, the inner solution hi is given as the unique solution within [0; hs(t)) of the following



3.3. NUMERICAL EXPERIMENTS 171

nonlinear equation:

hi (t; x )
hs(t)

+ ln
�

1 �
hi (t; x )
hs(t)

�
+

1
2

+
xs(t) � x

L
H

hs(t)
= 0 :

Finally, Hunt combines the outer solution and the inner solution to get the composite solu-

tion, as follows:

hc(t; x ) =

8
>><

>>:

ho(t; x ) + hi (t; x ) � hs(t) if 0 � x � xs(t);

hi (t; x ) if xs(t) � x � x0(t);

0 if x > x 0(t):

This composite solution, according to Hunt, is valid for x=L > 5.

Our goal is now to compare the results of the implicit scheme with Hunt's composite

solution. To that end, we propose two checks: the water height with respect to the time at

a �xed position, far enough away from the dam, and the water height with respect to the

position at a �xed time. In both cases, we take homogeneous Neumann boundary conditions

and we use 400 discretization cells for the implicit scheme. In addition, the constants are

chosen according to Table 3.25, where we note that the slope of the channelH=L is very mild

(about 2:5°). For both schemes, the cutoff constantC is taken equal to 1.

H A U f

0:04m 0:932m 1:195m.s� 1 0:0932

Table 3.25 – Values of the constants for the dry dam-break on a sloping channel.

Water height with respect to the time at a �xed position

We �rst follow Hunt [96, 97] and we set x=L = 5 :7 to observe the time evolution of the

solution over the time domain [0; 14]. Experimental values for the water height are given

in [96]. Note that the position x=L = 5 :7 is well within the domain of validity of Hunt's

asymptotic approximation.

The result of the implicit scheme, as well as the experimental points and Hunt's solution,

are displayed on Figure 3.36, where we note that both the implicit scheme and Hunt's ap-

proximation have a correct shape compared to the experimental points. In addition, for both

approximate solutions, the water arrives at the position x=L = 5 :7 at roughly the same time,

which corresponds to the experimental result. We also note that the implicit scheme provides

a correct approximation of the maximum experimental water height, while Hunt's solution

presents an overshoot. This overshoot behavior was already documented in [97]

Water height with respect to the position at a �xed time

We then compare Hunt's composite solution with the implicit scheme at the �xed time

t = 6 over the space domain [0; 7]. Hunt's solution should be valid for x=L > 5, i.e. x > 4:66m.
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The water height produced by the implicit scheme and Hunt's composite solution are

presented on Figure 3.37. On this �gure, we �rst note that the wet/dry front is located at

roughly the same position for both approximations. This position is given by x0(6) ' 5:57. We

remark that x0(6) > 4:66, and therefore that the wet/dry front is located within the domain

of validity of Hunt's approximation. We also note that the maximum of Hunt's composite

solution is once again higher than the maximum of the water height approximated by the

implicit scheme.
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Figure 3.36 – Water height with respect to the time at the position x=L = 5 :7 for the dry dam-
break on a sloping channel. Comparison between the experimental data (crosses), Hunt's
composite solution (dashed line), and the result of the implicit scheme (solid line).

Figure 3.37 – Water height with respect to the position at the time t = 6s for the dry dam-break
on a sloping channel. Comparison between Hunt's composite solution (dashed line) and the
result of the implicit scheme (solid line).
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4
Two-dimensional and high-order

extensions

In the previous chapter, we have suggested a well-balanced scheme for the shallow-water

equations with topography and Manning friction (1.1) in one space dimension. This scheme

is based on a suitable approximate Riemann solver and a semi-implicitation of the friction

contribution. In addition, it has been built to be consistent, non-negativity preserving, and

able to deal with interfaces between wet and dry areas. The goal of this chapter is to propose

two extensions of this scheme, a �rst one to consider two-dimensional geometries, and a

second one to provide a high-order accuracy. A requirement for these extensions is to recover

as many properties of the one-dimensional �rst-order scheme as possible.

We begin with a brief presentation of the shallow-water equations in two space dimen-

sions. The homogeneous 2D shallow-water equations have been extensively studied (see

[3, 4, 156, 112, 36, 58] for instance). With the source terms, the balance law is governed by the

following equations:

8
>><

>>:

@t h + r � q = 0 ;

@t q + r �
�

q 
 q
h

+
1
2

gh2I2

�
= � ghr Z � kqkqkh� � ;

(4.1)

where I2 represents the identity matrix of M 2;2(R) and the notation k:k stands for the eu-

clidean norm of a vector, de�ned for X = t (X 1; X 2) 2 R2 by kX k =
p

X 2
1 + X 2

2 . Lastly, the

symbol 
 represents the tensor product of two vectors, which is a matrix de�ned as follows:

8 X = t (X 1; X 2) 2 R2; 8 Y = t (Y1; Y2) 2 R2; X 
 Y =

 
X 1Y1 X 1Y2

X 2Y1 X 2Y2

!

:

The equations (4.1) can be rewritten under the following condensed form (2.67) of a 2D bal-
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ance law:

@t W + r � F (W ) = s(W );

where we have set q = t (qx ; qy), and:

W =

0

B
@

h

qx

qy

1

C
A ; F (W ) =

0

B
B
B
B
B
B
B
B
@

qx qy

q2
x

h
+

1
2

gh2 qxqy

h

qxqy

h

q2
y

h
+

1
2

gh2

1

C
C
C
C
C
C
C
C
A

; s(W ) =

0

B
B
B
B
B
B
B
B
@

0

� gh@xZ �
kqxkqk

h�

� gh@yZ �
kqykqk

h�

1

C
C
C
C
C
C
C
C
A

:

The vector W must be taken in the following 2D admissible states space:


 =
�

W = t (h; qx ; qy) 2 R3 ; h � 0; qx 2 R; qy 2 R
	

:

Finally, we turn to describing some steady state solutions for the 2D shallow-water model

with topography and/or friction. The steady state solutions are as usual de�ned by making

the time derivatives vanish, as follows:

8
>><

>>:

r � q = 0 ;

r �
�

q 
 q
h

+
1
2

gh2I2

�
+ ghr Z + kqkqkh� � = 0:

We therefore no longer have a uniform discharge as soon as a steady state is involved. Instead,

the discharge �eld is divergence free, i.e. the divergence of the discharge vanishes, as follows:

r � q = 0 : (4.2)

Hence, studying the steady state solutions of the shallow-water equations in two dimensions

is much harder than in one dimension.

However, several speci�c steady states can still be recovered. For instance, if we take a

smooth steady state at rest (i.e. q = 0 ), then we once again get the lake at rest steady state,

de�ned as usual by h + Z = cst . In addition, the 1D moving steady states can obviously be

recovered, by taking, with q0 6= 0 , q = t (q0; 0) or q = t (0; q0), as well as a one-dimensional

water �ow. As a consequence, our goal is not to preserve all the steady state solutions of the

2D shallow-water equations, but rather to preserve the pseudo-1D steady states, i.e. those

along the x-axis and the y-axis, as well as the lake at rest in every direction. This restricted

well-balance property is called the well-balance by direction; a formal de�nition will be given

later. The two-dimensional extension of the 1D scheme developed in Chapter 3 is therefore the

focus of Section 4.1. A Cartesian mesh is considered in order to allow the scheme to be well-

balanced by direction. This 2D extension is performed by suggesting a convex combination

involving the 1D scheme derived in the previous chapter. We then state several properties

satis�ed by the 2D scheme.

This 2D scheme is then supplemented by a high-order extension in Section 4.2. This high-

order extension consists in providing a polynomial reconstruction of the variables in each cell.
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Afterwards, the high-order strategy from Section 2.4 is used to derive a �nite volume scheme

for a 2D balance law with a high order of spatial accuracy. The time accuracy of the scheme

is improved by Strong Stability-Preserving Runge-Kutta (SSPRK) methods. Then, we apply

the MOOD method to the current case, in order to recover the robustness of the scheme and

to eliminate non-physical oscillations. This MOOD method is supplemented by a procedure

to recover the well-balance of the scheme.

The Fortran implementation of this scheme is then discussed in Section 4.3. Namely,

speedup and ef�ciency graphs for the OpenMP parallelization are provided.

Finally, we propose in Section 4.4 several numerical experiments to assess the properties of

the scheme. First, the well-balance property is tested with the 2D �rst-order and high-order

schemes. Then, we check the order of accuracy of the scheme. Finally, several validation

experiments are suggested, and real-world simulations are presented.

4.1 Two-dimensional extension on a Cartesian grid

The goal of this section is to derive a two-dimensional scheme for the shallow-water equa-

tions on a Cartesian grid. This 2D scheme is based on the 1D scheme developed in the previ-

ous chapter. The choice of a Cartesian grid is motivated by the fact that we want the scheme

to be able to preserve steady state solutions along thex-axis and the y-axis.

We now introduce the discretization of the space domain R2, which consists in a Cartesian

mesh of uniform cells ci;j , de�ned by:

ci;j =
�

x i;j �
� x
2

; x i;j +
� x
2

�
�

�
yi;j �

� y
2

; yi;j +
� y
2

�
;

where (x i;j ; yi;j ) is the center of the cell ci;j . Thus, all cells are rectangles of length � x and

width � y. From now on, we denote by jci;j j = � x� y the area of the cell ci;j . The piecewise

constant approximate solution, within the cell ci;j and at time tn , will henceforth be denoted

by W n
i;j .

In order to propose a way to update the piecewise constant approximate solution in time,

we suggest a two-step scheme. In Section 4.1.1, we introduce the proposed discretization of

the equations, which consists in a two-step semi-implicit scheme. Its �rst step is devoted to

the �ux and the topography source term, and its second step uses a splitting method to take

the friction contribution into account. Then, in Section 4.1.2, we state the properties of this 2D

scheme. To that end, we rewrite the 2D scheme as a convex combination of 1D schemes in the

spirit of Section 2.3.2.

4.1.1 Derivation of a two-dimensional scheme

In order to derive a numerical scheme for the two-dimensional shallow-water equations

(4.1), we �rst cast this system into the following form:

@t W + @xF (W ) + @yG(W ) = St (W ) + Sf (W ); (4.3)
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where the �uxes F in the x-direction and G in the y-direction are de�ned by

F (W ) =

0

B
B
B
B
B
B
B
@

qx

q2
x

h
+

1
2

gh2

qxqy

h

1

C
C
C
C
C
C
C
A

and G(W ) =

0

B
B
B
B
B
B
B
@

qy

qxqy

h
q2

y

h
+

1
2

gh2

1

C
C
C
C
C
C
C
A

;

while the topography and friction source terms St and Sf are given by

St (W ) =

0

B
@

0

� gh@xZ

� gh@yZ

1

C
A and Sf (W ) =

0

B
@

0

� kqxkqkh� �

� kqykqkh� �

1

C
A : (4.4)

Following the 1D case, we suggest a two-step semi-implicit scheme to approximate solu-

tions of (4.3). The �rst step of the scheme is devoted to the �ux and the topography, while the

second step concerns the implicit treatment of the friction source term.

The �rst step requires an approximation of the following system:

@t W + @xF (W ) + @yG(W ) = St (W ): (4.5)

Following the 2D scheme (2.47), we introduce two numerical �ux functions. The numerical

�ux function in the x-direction, denoted by F , has already been introduced in the previous

chapter. It is given by (3.84) in one dimension. In the two-dimensional case, we set

F =

0

B
@

F h

F qx

F hvt
y

1

C
A ;

where the functions F h and F qx are de�ned as follows:

F h(WL ; WR ; ZL ; ZR ; � x) =
1
2

�
F h(WL ) + F h(WR )

�
+

� x
L

2
(h�

L � hL ) +
� x

R

2
(h�

R � hR );

F qx (WL ; WR ; ZL ; ZR ; � x) =
1
2

�
F qx (WL ) + F qx (WR )

�
+

� x
L

2
(q�

x � (qx )L ) +
� x

R

2
(q�

x � (qx )R );

where we have set F = t (F h ; F qx ; F qy ), and where the intermediate states are given by:

h�
L = h�

L (hL ; hR ; (qx )L ; (qx )R ; ZL ; ZR ; � x);

h�
R = h�

R (hL ; hR ; (qx )L ; (qx )R ; ZL ; ZR ; � x);

q�
x = q� (hL ; hR ; (qx )L ; (qx )R ; ZL ; ZR ; � x);

(4.6)

with h�
L , h�

R and q� given by (3.81). Moreover, the characteristic velocities are de�ned by (3.6),

as follows:
� x

L = min( �j (vn
x )L j � cL ; �j (vn

x )R j � cR ; � " � );

� x
R = max( j(vn

x )L j + cL ; j(vn
x )R j + cR ; " � );
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where (vn
x )L and (vn

x )R are the normal velocities, de�ned by vn
x = qx=h. In addition, the

tangential velocity vt
y satis�es

vt
y =

8
>>>>><

>>>>>:

(qy)L

hL
if F h > 0;

(qy)R

hR
if F h < 0;

0 otherwise.

Then, the numerical �ux F is extended to the y-direction, to get a new numerical �ux

function, denoted by G. This function is obtained by arguing rotational invariance properties

(see [80]). We setG = t (Gh ; Ghvt
x ; Gqy ), where Gh and Gqy are de�ned by:

Gh(WL ; WR ; ZL ; ZR ; � y) =
1
2

�
Gh(WL ) + Gh(WR )

�
+

� y
L

2
(h�

L � hL ) +
� y

R

2
(h�

R � hR );

Gqy (WL ; WR ; ZL ; ZR ; � y) =
1
2

�
Gqy (WL ) + Gqy (WR )

�
+

� y
L

2

�
q�

y � (qy)L
�

+
� y

R

2

�
q�

y � (qy)R
�
;

where G = t (Gh ; Gqx ; Gqy ), and where we de�ne the intermediate states as follows:

h�
L = h�

L (hL ; hR ; (qy)L ; (qy)R ; ZL ; ZR ; � y);

h�
R = h�

R (hL ; hR ; (qy)L ; (qy)R ; ZL ; ZR ; � y);

q�
y = q� (hL ; hR ; (qy)L ; (qy)R ; ZL ; ZR ; � y):

(4.7)

In addition, the characteristic velocities are de�ned by:

� y
L = min

�
�j (vn

y )L j � cL ; �j (vn
y )R j � cR ; � " �

�
;

� y
R = max

�
j(vn

y )L j + cL ; j(vn
y )R j + cR ; " �

�
;

where the normal velocity vn
y is given by vn

y = qy=h. Finally, we de�ne the tangential velocity

vt
x as follows:

vt
x =

8
>>>>><

>>>>>:

(qx )L

hL
if Gh > 0;

(qx )R

hR
if Gh < 0;

0 otherwise.

As a consequence, the �rst step of the 2D scheme, devoted to the approximation of (4.5),

reads as follows:

W
n+ 1

2
i;j = W n

i;j �
� t
� x

�
F n

i + 1
2 ;j � F n

i � 1
2 ;j

�
�

� t
� y

�
Gn

i;j + 1
2

� G n
i;j � 1

2

�
+ � t

 
0

(S t
WB)n

i;j

!

; (4.8)

where we have set the following shorter notations for the numerical �uxes:

F n
i + 1

2 ;j = F (W n
i;j ; W n

i +1 ;j ; Z i;j ; Z i +1 ;j ; � x) and Gn
i;j + 1

2
= G(W n

i;j ; W n
i;j +1 ; Z i;j ; Z i;j +1 ; � y):
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In addition, the numerical source term (S t
WB)n

i;j is de�ned by

(S t
WB)n

i;j =
1
2

0

@
(St

x )n
i � 1

2 ;j
+ ( St

x )n
i + 1

2 ;j

(St
y)n

i;j � 1
2

+ ( St
y)n

i;j + 1
2

1

A ; (4.9)

where the subscript helps identify the well-balanced scheme. In (4.9), the approximate topog-

raphy source terms St
x and St

y are given as follows:

(St
x )n

i + 1
2 ;j = St

�
hn

i;j ; hn
i +1 ;j ; (qx )n

i;j ; (qx )n
i +1 ;j ; Z i;j ; Z i +1 ;j ; � x

�
;

(St
y)n

i;j + 1
2

= St
�

hn
i;j ; hn

i;j +1 ; (qy)n
i;j ; (qy)n

i;j +1 ; Z i;j ; Z i;j +1 ; � y
�

;

where St is the approximate topography source term, given by (3.75).

Now, the second step of the two-step scheme is devoted to the contribution of the friction

source term. Hence, the following system of ordinary differential equations is considered:

@t W = Sf (W ):

As a consequence, the second step consists in solving the following initial value problem:

8
><

>:

dh
dt

= 0 ;

dq
dt

= � k qkqkh� � ;
with initial data

8
<

:

h(0) = h
n+ 1

2
i;j ;

q(0) = q
n+ 1

2
i;j :

(4.10)

Straightforward computations show that this initial value problem admits a unique analytical

solution. This solution is given for all t 2 [0; � t] by:

8
><

>:

h(t) = h(0);

q(t) =
h(0) � q(0)

h(0) � + k t kq(0)k
:

(4.11)

Therefore, the solution to the initial value problem (4.10) reads as follows:

8
>>>><

>>>>:

hn+1
i;j = h

n+ 1
2

i;j ;

qn+1
i;j =

�
hn+1

i;j

� �
q

n+ 1
2

i;j
�

hn+1
i;j

� �
+ k � t



 q

n+ 1
2

i;j





:
(4.12)

However, merely plugging this analytical solution as the second step of the scheme does

not allow the recovery of the well-balance property. According to the 1D case, we replace the

expression(hn+1
i;j ) � with an average in the formula (4.12) that yields qn+1

i;j . For the x-discharge,

we take

(qx )n+1
i;j =

(h�
x )n+1

i;j (qx )
n+ 1

2
i;j

(h�
x )n+1

i;j + k � t


 q

n+ 1
2

i;j





; (4.13a)

while we set, for the y-discharge:
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(qy)n+1
i;j =

(h�
y)n+1

i;j (qy)
n+ 1

2
i;j

(h�
y)n+1

i;j + k � t


 q

n+ 1
2

i;j





: (4.13b)

In (4.13), we have introduced two averages of (hn+1
i;j ) � . The average in the x-direction is de-

noted by (h�
x )n+1

i;j , while the average in the y-direction is denoted by (h�
y)n+1

i;j . These averages

are given by the 1D formula (3.101) evaluated in both space directions, as follows:

(h�
x )n+1

i;j =
2k(� x )

n+ 1
2

i;j � x

k(� x )n
i;j � x

�
� n+1

i � 1
2 ;j

+ � n+1
i + 1

2 ;j

�
�

�
 n+1

i � 1
2 ;j

+  n+1
i + 1

2 ;j

� + k � t (� x )
n+ 1

2
i;j (qx )n

i;j ;

(h�
y)n+1

i;j =
2k(� y)

n+ 1
2

i;j � y

k(� y)n
i;j � x

�
� n+1

i;j � 1
2

+ � n+1
i;j + 1

2

�
�

�
 n+1

i;j � 1
2

+  n+1
i;j + 1

2

� + k � t (� y)
n+ 1

2
i;j (qy)n

i;j ;

where t (� x ; � y) = t (sgn(qx ); sgn(qy)) , and where � n+1
i + 1

2 ;j
,  n+1

i + 1
2 ;j

, � n+1
i;j + 1

2
and  n+1

i;j + 1
2

are given with

clear notations by (3.102).

The full 2D scheme has thus been derived. It is a two-step scheme, given by (4.8) and

(4.13). The next section is devoted to exhibiting the properties satis�ed by this scheme.

4.1.2 Properties veri�ed by the scheme

In order to highlight the properties satis�ed by the 2D scheme (4.8) – (4.13), we �rst rewrite

its �rst step (4.8) under the form of a convex combination of one-dimensional schemes.

Proposition 4.1. The �rst step (4.8) of the two-step scheme can be rewritten as follows:

W
n+ 1

2
i;j =

1
4

�
W

n+ 1
2

i + 1
2 ;j

+ W
n+ 1

2

i � 1
2 ;j

+ W
n+ 1

2

i;j + 1
2

+ W
n+ 1

2

i;j � 1
2

�
; (4.14)

where we have set

W
n+ 1

2

i � 1
2 ;j

= W n
i;j �

4� t
� x

�
F

�
W n

i;j ; W n
i;j

�
� F

�
W n

i;j ; W n
i � 1;j

�
�

+ 2� t

0

B
B
@

0

(St
x )n

i � 1
2 ;j

+ ( St
x )n

i;j

0

1

C
C
A ;

W
n+ 1

2

i + 1
2 ;j

= W n
i;j �

4� t
� x

�
F

�
W n

i;j ; W n
i +1 ;j

�
� F

�
W n

i;j ; W n
i;j

�
�

+ 2� t

0

B
B
@

0

(St
x )n

i;j + ( St
x )n

i + 1
2 ;j

0

1

C
C
A ;

W
n+ 1

2

i;j � 1
2

= W n
i;j �

4� t
� y

�
G

�
W n

i;j ; W n
i;j

�
� G

�
W n

i;j ; W n
i;j � 1

�
�

+ 2� t

0

B
B
@

0

0

(St
y)n

i;j � 1
2

+ ( St
y)n

i;j

1

C
C
A ;

W
n+ 1

2

i;j + 1
2

= W n
i;j �

4� t
� y

�
G

�
W n

i;j ; W n
i;j +1

�
� G

�
W n

i;j ; W n
i;j

�
�

+ 2� t

0

B
B
@

0

0

(St
y)n

i;j + ( St
y)n

i;j + 1
2

1

C
C
A ;

(4.15)
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where the quantities(St
x )n

i;j and(St
y)n

i;j are de�ned by:

(St
x )n

i;j = St
�

hn
i;j ; hn

i;j ; (qx )n
i;j ; (qx )n

i;j ; Z i;j ; Z i;j ; � x
�

;

(St
y)n

i;j = St
�

hn
i;j ; hn

i;j ; (qy)n
i;j ; (qy)n

i;j ; Z i;j ; Z i;j ; � y
�

:

Proof. For the numerical �uxes, the proof of is contained within the proof of Proposition 2.1.

Concerning the approximate source terms, the expression (3.75) ofSt implies that (St
x )n

i;j and

(St
y)n

i;j vanish. As a consequence, (4.14) immediately yields the expression (4.8) of the �rst

step. The proof is thus achieved.

Note that (4.15) represents a collection of four one-dimensional schemes, and that (4.14) is

nothing but a convex combination of these schemes. These 1D schemes are written under the

form (3.83). As a consequence, each of these schemes enjoy the same properties as the actual

1D scheme (3.83), stated in Theorem 3.13. However, the scheme will not be able to preserve

all the 2D steady state solutions. In order to state the weaker well-balance property satis-

�ed by the 2D scheme, we introduce the property of well-balance by directionin the following

de�nition.

De�nition 4.2. The vector (W n
i;j )(i;j )2 Z2 is said to de�ne a steady state in the x-direction if:

• 8(i; j ) 2 Z2, W n
i;j +1 = W n

i;j ;

• 8(i; j ) 2 Z2, (qy)n
i;j = 0 ;

• 8(i; j ) 2 Z2, the pairs t (hn
i;j ; (qx )n

i;j ) and t (hn
i +1 ;j ; (qx )n

i +1 ;j ) satisfy (3.68).

Similarly, (W n
i;j )(i;j )2 Z2 is said to de�ne a steady state in the y-direction if:

• 8(i; j ) 2 Z2, W n
i +1 ;j = W n

i;j ;

• 8(i; j ) 2 Z2, (qx )n
i;j = 0 ;

• 8(i; j ) 2 Z2, the pairs t (hn
i;j ; (qy)n

i;j ) and t (hn
i;j +1 ; (qy)n

i;j +1 ) satisfy (3.68).

Equipped with Proposition 4.1 and De�nition 4.2, we can state the properties of the 2D

two-step scheme (4.8) – (4.13).

Theorem 4.3. Under the CFL condition (2.60), the following properties are satis�ed by the two-

dimensional two-step scheme (4.8) – (4.13).

(i) Robustness: ifW n
i;j 2 
 for all (i; j ) 2 Z2, thenW n+1

i;j 2 
 for all (i; j ) 2 Z2.

(ii) Well-balance by direction: if(W n
i;j )(i;j )2 Z2 de�nes a steady state in thex-direction or in the

y-direction, then for all(i; j ) 2 Z2, W n+1
i;j = W n

i;j .

(iii) Preservation of steady states at rest: if, for all(i; j ) 2 Z2, (qx )n
i;j = ( qy)n

i;j = 0 andhn
i;j + Z n

i;j =

cst, then for all(i; j ) 2 Z2, W n+1
i;j = W n

i;j .

Proof. We start by proving (i). Note that the second step (4.13) of the scheme does not intro-

duce a modi�cation of the updated height. As a consequence, the robustness of the scheme

relies only on the �rst step of the scheme. Recall Proposition 4.1, which states that the �rst

step (4.8) of the 2D scheme can be written as a convex combination of 1D schemes. Therefore,

the 2D scheme is robust if and only if the 1D schemes are robust. Each 1D scheme de�ned by
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(4.15) enjoys the same properties as the �rst step (3.88) of the truly 1D scheme. From Theo-

rem 3.15, the 1D schemes are robust. Hence, the robustness of the two-step scheme is proven,

and (i) holds.

In order to establish the well-balance property, assume that (W n
i;j )(i;j )2 Z2 de�nes a steady

state in the x-direction. Therefore, the sum of the vertical �uxes in (4.8) vanishes, as does

the y contribution of the topography. Thus, the �rst step (4.8) of the scheme becomes the

exact same as in the 1D case, and it is given by (3.88). Then, they contribution of the friction

source term vanishes, leaving only the x contribution to the second step (4.13). In the present

context, this second step is the same as in the 1D case; it is therefore given by (3.91). Therefore,

Theorem 3.15 applies, andW n+1
i;j = W n

i;j for all (i; j ) 2 Z2. A similar chain of arguments can

be applied to prove the preservation of the steady states in the y-direction, which completes

the proof of (ii).

Now, to prove (iii), we consider a steady state at rest. According to De�nition 4.2, the

relations de�ning a steady state at rest de�ne both a steady state in the x-direction and in the

y-direction. As a consequence, such data is exactly preserved by the scheme after (ii), and (iii)

holds as a speci�c case of (ii). The proof of Theorem 4.3 is thus achieved.

4.2 High-order extension

In the previous section, we have derived a 2D extension of the 1D well-balanced scheme.

The properties possessed by this 2D scheme have been stated in Theorem 4.3. We now focus

on a high-order extension of this 2D scheme, in order to improve the space and time accuracy.

The general idea of the high-order extension we suggest has been introduced in Section 2.4.

This section shows the application of such techniques to the present case, and the recovery of

several essential properties such as the robustness and the well-balance.

First, we apply in Section 4.2.1 the results from Section 2.4 to derive a high-order scheme.

Then, noting that the reconstruction procedure alters the steady state solutions, we remark

that the well-balance property is not satis�ed by the high-order scheme. In order to re-

cover this property, we introduce a convex combination between the �rst-order scheme and

the high-order scheme in Section 4.2.2. This convex combination procedure favors the well-

balanced scheme when a steady solution is present, i.e. where this scheme is exact. On the

contrary, for an unsteady solution, the high-order scheme is favored by the convex combina-

tion. In addition, as explained in Section 2.4, the derived scheme is not naturally robust, and

some additional treatment has to be applied. In Section 4.2.3, following Section 2.4.3, we elect

to apply a MOOD procedure to recover the robustness of the scheme, and eliminate spurious

oscillations. Finally, in Section 4.2.4, we discuss the full MOOD loop, including the standard

MOOD procedure and the convex combination with the well-balanced scheme.

4.2.1 Application of the high-order strategy to a Cartesian mesh

Recall from Section 2.4 that two ingredients are necessary to achieve high-order accuracy:

• a polynomial reconstruction, see Section 2.4.1;

• a scheme that possesses a high order of accuracy in space and time, see Section 2.4.2.
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The goal of the present section is to apply these ingredients to the current case of a Cartesian

mesh.

The polynomial reconstruction procedure consists in replacing, in each cell, the constant

quantity W n
i;j with a polynomial cW n

i;j (x ; d) of degree d, de�ned by (2.61). In the case of the

shallow-water equations, we elect to provide a reconstruction of the following variables:

h ; qx ; qy ; h + Z:

The coef�cients of this polynomial are given by (2.66). Note that computing these coef�cients

requires knowing the stencil sd
i , which, in the general case, depends on the cell and the poly-

nomial degree. However, for the particular case of a Cartesian mesh, we can choose the same

stencil sd for each cell. This stencil is taken as the smallest stencil leading to an invertible

matrix eX T
i

eX i , where eX i is given by (2.65) and is used to compute the coef�cients (2.66) of

the polynomial. With respect to the polynomial degree, the stencil is chosen according to

Figure 4.1.

Figure 4.1 – Representation of the stencil for d 2 J1; 5K. The lower order stencils are always
included in the higher order ones. For the sake of simplicity, we have taken � x = � y in this
�gure.

Equipped with the polynomial reconstruction, we are able to introduce the high-order

scheme. For the spatial high-order, the scheme has been derived in Section 2.4.2.1, to get the

expression (2.75). Since this expression has been obtained for a general mesh and for any

balance law, we here apply it to the case of the shallow-water equations with topography and
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Manning friction. The high-order scheme is therefore given by:

W n+1
i;j = W n

i;j �
NGX

r =1

� r

�
� t
� x

�
F n

i + 1
2 ;j;r � F n

i � 1
2 ;j;r

� �
�

NGX

r =1

� r

�
� t
� y

�
Gn

i;j + 1
2 ;r � G n

i;j � 1
2 ;r

� �

+ � t
QX

q=1

� q

�
(St )n

i;j;q + ( Sf )n
i;j;q

�
:

(4.16)

In Chapter 2, we introduced the quadrature formulas (2.71) and (2.73), respectively concern-

ing the approximation of the integral over an edge and a cell. These quadrature formulas

de�ne the coef�cients � r and � q, as well as points � r and X q within edges and cells. For a cell

ci;j , the quadrature points on the inner edges are denoted with clear notations by � r
i � 1

2 ;j
and

� r
i;j � 1

2
. Similarly, the quadrature points within the cell are denoted by X q

i;j . Equipped with

these quadrature formulas, the high-order numerical �uxes are de�ned as follows:

F n
i + 1

2 ;j;r = F
�

cW n
i;j (� r

i + 1
2 ;j ; d); cW n

i +1 ;j (� r
i + 1

2 ;j ; d)
�

;

Gn
i;j + 1

2 ;r = G
�

cW n
i;j (� r

i;j + 1
2
; d); cW n

i;j +1 (� r
i;j + 1

2
; d)

�
;

where cW n
i;j (x ; d) represents the polynomial reconstruction within the cell ci;j .

After (4.6) – (4.7), the intermediate states used in the numerical �uxes F and G involve

the approximate friction source term Sf , since they are given by (3.81). However, in order to

obtain a high-order scheme, the de�nition (3.79) of Sf has to be replaced. Within F , i.e. in the

x-direction, we suggest the following expression:

Sf � x := Sf (hL ; hR ; qL ; qR ; � x)� xd+1

=

(
0 if hL = 0 and/or hR = 0 ;

� kqjqjh� � � xd+1 otherwise,

(4.17)

where q is de�ned by (3.61) and h� � is given, instead of (3.62), by:

h� � =
[h2]
2

� + 2
[h� +2 ]

�
�

k � xd+1

��
1
h

�
+

[h2]
2

[h� � 1]
� � 1

� + 2
[h� +2 ]

�
: (4.18)

In the above expressions, the quantity � x present in the �rst-order case has been raised to the

power of (d + 1) . As a consequence, the expression ofSf =� is no longer given by (4.19), but

rather by:

Sf � x
�

=

8
>>><

>>>:

0 if hL = 0 and/or hR = 0 ;

� kqjqjh� � � xd+1

� (q� )2

hL hR
+ g

2(hL + hR )
otherwise.

(4.19)

Then, within the numerical �ux G in the y-direction, similar expressions are used with � y

instead of � x. Note that, if d = 0 , the expressions (4.17), (4.18) and (4.19) coincide with (3.79),

(3.62) and (3.80). Thus, ifd = 0 , the numerical �uxes are not modi�ed.

Then, the high-order numerical source terms (St )n
i;j;q and (Sf )n

i;j;q are de�ned by evaluat-
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ing the source terms (4.4) at the quadrature points, as follows:

(St )n
i;j;q = St

�
cW n

i;j (X q
i;j ; d)

�
and (Sf )n

i;j;q = Sf
�

cW n
i;j (X q

i;j ; d)
�

:

Hence, the numerical source terms are given by:

(St )n
i;j;q = � gĥn

i;j (X q
i;j ; d)

 
0

(r bZ )n
i;j (X q

i;j ; d)

!

; (4.20a)

(Sf )n
i;j;q = � kkq̂n

i;j (X q
i;j ; d)k(ĥn

i;j (X q
i;j ; d)) � �

 
0

q̂n
i;j (X q

i;j ; d)

!

: (4.20b)

Since the �rst components of these high-order numerical source terms are zero, we also intro-

duce their nonzero components (S t
HO )n

i;j and (S f
HO )n

i;j , de�ned as follows:

QX

q=1

� q(St )n
i;j;q =

 
0

(S t
HO )n

i;j

!

and
QX

q=1

� q(Sf )n
i;j;q =

 
0

(S f
HO )n

i;j

!

: (4.21)

Let us make the important remark that, from Chapter 2, the derivation of the high-order

accurate scheme involves the approximation of the integral of the source terms over a cell.

In order to preserve the high-order accuracy, these integrals need to be approximated with a

quadrature formula, and the high-order numerical source terms cannot involve the averages

St and Sf , de�ned by (3.75) and (3.79) to ensure the well-balance of the scheme. As a con-

sequence, there is no way for the high-order scheme (4.16) to be well-balanced without an

additional treatment.

The scheme (4.16) has a high-order spatial accuracy. However, its time accuracy is still

of order one. Hence, we use the SSPRK (Strong Stability-Preserving Runge-Kutta) methods

described in Section 2.4.2.2 to improve the time accuracy of the scheme. In order to set up

such techniques, we �rst rewrite the scheme (4.16) as W n+1 = H(W n ), where W n = ( W n
i ) i 2 Z .

The generic Runge-Kutta technique is then given by (2.76), where the coef�cients � lk and � lk

for the SSPRK method depend on its order, chosen by following Table C.1. These methods

require the use of the modi�cation (2.77) of the time step (2.60). Enhanced with a SSPRK time

integrator, the scheme (4.16) has a high order of space and time accuracy.

4.2.2 Recovery of the well-balance property

The high-order scheme (4.16) derived in the previous section is not well-balanced by di-

rection. Indeed, the reconstruction procedure modi�es the approximate solution at the inter-

faces, and the approximate source terms St and Sf are no longer present to allow an exact

preservation of the steady state solutions: as mentioned in Section 4.2.1, the scheme uses

quadrature formulas instead of St and Sf to approximate the contributions of the source

terms.

We now propose a way to restore this essential property, by introducing a convex combi-

nation between the high-order scheme and the �rst-order well-balanced scheme. A similar

technique has been used in [94, 164, 114], where the authors introduce a convex combination
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between two schemes to obtain a high-order positivity-preserving scheme. The goal of the

present convex combination is to use the high-order scheme when the solution is unsteady

and the �rst-order well-balanced scheme when the solution is steady. The �rst-order scheme

is exact, i.e. its order is in�nite, for steady state solutions. As a consequence, such a con-

vex combination would be carried out between a high-order accurate scheme and an exact

scheme. The resulting scheme should thus still be at least high-order accurate.

The convex combination is based on a steady state detector, which we �rst introduce.

Then, this detector is used to derive a convex combination favoring either the well-balanced

scheme or the high-order scheme.

4.2.2.1 A one-dimensional steady state detector

Since the two-step 2D scheme (4.8) – (4.13) is well-balanced by direction (see Theorem 4.3),

it makes sense to de�ne a steady state detector in each space dimension. Hence, we momen-

tarily consider the 1D shallow-water equations (1.1) and a 1D space discretization.

Recall that steady state solutions in one space dimension are given by (1.40), as follows:

8
><

>:

@xq = 0 ;

@x

�
q2

h
+

1
2

gh2
�

= � gh@xZ � kqjqjh� � :
(4.22)

From (3.68), two statesWL and WR are said to de�ne a steady state if the following discretiza-

tion of (4.22) is satis�ed: 8
><

>:

[q] = 0 ;
�

q2

h
+

1
2

gh2
�

= St � x + Sf � x;
(4.23)

with St given by (3.75) and Sf given by (3.79). As a consequence, it makes sense to consider

the following steady state detector:

' (WL ; WR ; ZL ; ZR ; � x) =








0

@
qR � qL

q2
R

hR
�

q2
L

hL
+

g
2

�
h2

R � h2
L

�
� (St )� x � (Sf )� x

1

A








2

: (4.24)

We immediately note that, if WL and WR de�ne a steady state according to (4.23), then the

quantity ' (WL ; WR ; ZL ; ZR ; � x) vanishes. Therefore, ' detects whether a steady state is de-

�ned by two pairs (WL ; ZL ) and (WR ; ZR ).

Now, consider two 1D cells ci and ci +1 , where approximate solutions W n
i and W n

i +1 are

de�ned. In order to detect whether W n
i and W n

i +1 de�ne a steady state, we consider the

steady state detector evaluated at the interface between the cellsci and ci +1 , i.e. the following

quantity:

' n
i + 1

2
:= ' (W n

i ; W n
i +1 ; Z i ; Z i +1 ; � x)

=









0

B
@

qn
i +1 � qn

i
q2

i +1

hi +1
�

q2
i

hi
+

g
2

�
h2

i +1 � h2
i

�
� (St )n

i + 1
2
� x � (Sf )n

i + 1
2
� x

1

C
A









2

;
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where (St )n
i + 1

2
= St (hn

i ; hn
i +1 ; qn

i ; qn
i +1 ; Z i ; Z i +1 ; � x) and (Sf )n

i + 1
2

= Sf (hn
i ; hn

i +1 ; qn
i ; qn

i +1 ; � x).

We also de�ne the following steady state detector, which determines whether a steady state

is present between the three statesW n
i � 1, W n

i and W n
i +1 , i.e. if both pairs (W n

i � 1, W n
i ) and (W n

i ,

W n
i +1 ) de�ne a steady state:

' n
i = ' n

i � 1
2

+ ' n
i + 1

2
: (4.25)

It is clear that W n
i � 1, W n

i and W n
i +1 de�ne a steady state as soon as' n

i vanishes.

From the steady state detector (4.25), we can derive a suitable convex combination process.

This convex combination shall rely on a parameter favoring the well-balanced scheme when

a steady state is reached. Indeed, the well-balanced scheme is exact for steady states, and it

should be used whenever the solution is close to de�ning a steady state. As a consequence,

we de�ne a parameter � n
i , which lives in [0; 1]. We wish � n

i to vanish if the equilibrium error

' n
i is small enough, i.e. if W n

i � 1, W n
i and W n

i +1 are close to de�ning a steady state. Moreover,

we want � n
i to be equal to 1 if these vectors are far from de�ning a steady state, i.e. if ' n

i is

large enough. Therefore, we elect to de�ne � n
i as follows:

� n
i =

8
>>>><

>>>>:

0 if ' n
i < m � x;

' n
i � m� x

M � x � m� x
if m � x � ' n

i � M � x;

1 if ' n
i > M � x;

(4.26)

with M � m � 0. If M = 0 , then � n
i = 1 and the high-order scheme is used. If M = m, then

either � n
i = 0 or � n

i = 1 . The process we used to de�ne � n
i is highlighted on Figure 4.2.

Figure 4.2 – Graph of � n
i with respect to ' n

i , according to (4.26).

4.2.2.2 The two-dimensional convex combination

Equipped with the parameter � n
i given by (4.26), we now use it to de�ne a suitable convex

combination process ensuring that the high-order scheme (4.16) is well-balanced. This convex

combination is done between the high-order scheme (4.16) and the two-step well-balanced

scheme (4.8) – (4.13).

Since the parameter � n
i has been de�ned for the 1D shallow-water equations, we have

to extend it to two space dimensions. We consider � n
i;j = t (( � x )n

i;j ; (� y)n
i;j ), where (� x )n

i;j is

obtained by evaluating (4.26) in the x-direction, and (� y)n
i;j results from the evaluation of

(4.26) in the y-direction. Therefore, after De�nition 4.2, the parameter (� x )n
i;j detects steady

states in the x-direction, while (� y)n
i;j detects steady states in they-direction. To de�ne (� x )n

i;j

and (� y)n
i;j , we have to introduce four additional constants, mx , M x , my and M y , to mimic the
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role of m and M in (4.26). As a consequence,(� x )n
i;j is de�ned as follows:

(� x )n
i;j =

8
>>>><

>>>>:

0 if (' x )n
i;j < m x � x;

(' x )n
i;j � mx � x

M x � x � mx � x
if mx � x � (' x )n

i;j � M x � x;

1 if (' x )n
i;j > M x � x;

(4.27)

while (� y)n
i;j is given by:

(� y)n
i;j =

8
>>>><

>>>>:

0 if (' y)n
i;j < m y � y;

(' y)n
i;j � my � y

M y � y � my � y
if my � y � (' y)n

i;j � M y � y;

1 if (' y)n
i;j > M y � y:

(4.28)

In (4.27), we have de�ned the steady state detector in the x-direction (' x )n
i;j as follows:

(' x )n
i;j = ' n

i � 1
2 ;j + ' n

i + 1
2 ;j

= ' (W n
i � 1;j ; W n

i;j ; Z i � 1;j ; Z i;j ; � x) + ' (W n
i;j ; W n

i +1 ;j ; Z i;j ; Z i +1 ;j ; � x):

Similarly, the steady state detector in the y-direction (' y)n
i;j , used in (4.28), is given by:

(' y)n
i;j = ' n

i;j � 1
2

+ ' n
i;j + 1

2

= ' (W n
i;j � 1; W n

i;j ; Z i;j � 1; Z i;j ; � y) + ' (W n
i;j ; W n

i;j +1 ; Z i;j ; Z i;j +1 ; � y):

We are now able to state the convex combination. The �rst step, devoted to the �ux and

the topography source term, reads:

W
n+ 1

2
i;j = W n

i;j � (� x )n
i;j

� t
� x

NGX

r =1

� r

�
F n

i + 1
2 ;j;r � F n

i � 1
2 ;j;r

�

�
�

1 � (� x )n
i;j

� � t
� x

�
F

�
W n

i;j ; W n
i +1 ;j

�
� F

�
W n

i � 1;j ; W n
i;j

��

� (� y)n
i;j

� t
� y

NGX

r =1

� r

�
Gn

i;j + 1
2 ;r � G n

i;j � 1
2 ;r

�

�
�

1 � (� y)n
i;j

� � t
� y

�
G

�
W n

i;j ; W n
i;j +1

�
� G

�
W n

i;j � 1; W n
i;j

��

+ � t

 
0

� n
i;j � (S t

HO )n
i;j +

�
1 � � n

i;j

�
� (S t

WB)n
i;j

!

;

(4.29)

where the high-order numerical topography source term (S t
HO )n

i;j is given by (4.21), and

where the well-balanced numerical topography source term (S t
WB)n

i;j is de�ned by (4.9). The

expression (4.29) of the scheme is nothing but a convex combination by direction of the �rst

step (4.8) of the well-balanced scheme and the �ux and topography contributions of the high-

order scheme (4.16).

Concerning the updated water heights, we take hn+1
i;j = h

n+ 1
2

i;j , since the second step is
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devoted to the friction source term and therefore does not impact the water height. Following

(4.13), let (qWB)n+1
i;j be the vector containing the discharge obtained after the second step of

the �rst-order scheme: we set

(qWB)n+1
i;j =

 
(qx )n+1

i;j

(qy)n+1
i;j

!

: (4.30)

We also de�ne (qHO )n+1
i;j as the discharge obtained using the high-order friction source term,

as follows:

(qHO )n+1
i;j = q

n+ 1
2

i;j + � t(S f
HO )n

i;j : (4.31)

The second step of the high-order well-balanced scheme consists in the following convex

combination of the discharge (4.30) of the well-balanced scheme with the discharge (4.31) of

the high-order scheme:

qn+1
i;j = � n

i;j � (qHO )n+1
i;j +

�
1 � � n

i;j

�
� (qWB)n+1

i;j : (4.32)

The two-step scheme (4.29) – (4.32) allows to use the high-order scheme or the �rst-order

well-balanced one, or even a scheme that is a combination of these two schemes. Indeed, if

� n
i;j = 1 , then the high-order scheme is used, while the �rst-order well-balanced scheme is

used if � n
i;j = 0 . The well-balance property satis�ed by this scheme is summarized in the

following result.

Lemma 4.4. The high-order two-step scheme (4.29) – (4.32) is well-balanced by direction.

Proof. The goal of this proof is to show that, if a steady state in the x-direction or the y-

direction is considered, then the scheme (4.29) – (4.32) yieldsW n+1
i;j = W n

i;j for all (i; j ) 2 Z.

Assume that (W n
i;j )(i;j )2 Z2 de�nes a steady state in the x-direction, as prescribed by De�-

nition 4.2. In this case, by construction, we have (� x )n
i;j = 0 and (� y)n

i;j = 0 . As a consequence,

each of the steps (4.29) – (4.32) of the two-step high-order scheme degenerates into the steps

(4.8) – (4.13) of the well-balanced scheme. Recall from Theorem 4.3 that this scheme is well-

balanced by direction. Therefore, if (W n
i;j )(i;j )2 Z2 de�nes a steady state in the x-direction, then

W n+1
i;j = W n

i;j for all (i; j ) 2 Z.

The same chain of arguments can be applied to show that, if (W n
i;j )(i;j )2 Z2 de�nes a steady

state in the y-direction, then W n+1
i;j = W n

i;j for all (i; j ) 2 Z. The proof of Lemma 4.4 is thus

completed.

4.2.3 The MOOD method

The high-order procedure described in Section 4.2.1, in addition to inducing a loss of the

well-balance property, produces spurious oscillations and a loss of robustness. In addition,

since the high-order scheme is no longer semi-implicit, the friction contribution is treated ex-

plicitly, and the stiffness of the friction source term near wet/dry interfaces will also cause

spurious oscillations if the time step is not modi�ed. The well-balance has been recovered in

Section 4.2.2. To address the issue of the oscillations, we elect to use a MOOD method, pre-

sented in the general case in Section 2.4.3. It consists in lowering the degree of the polynomial

reconstruction in speci�c cells if the approximate solution does not satisfy certain criteria. The
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approximate solution, called the candidate solution and denoted by W ?
i;j , is tested against sev-

eral detection criteria. These criteria have been introduced in Section 2.4.3, and we state them

below in the context of the shallow-water equations.

The Physical Admissibility Detector (PAD)

The PAD determines whether the approximate solution is out of the admissible states

space
 . In the case of the shallow-water equations, the PAD checks whether the water height

is non-negative. Thus, the PAD criterion fails within the cell ci;j if

h?
i;j < 0: (4.33)

We emphasize that the PAD ensures that the high-order scheme is non-negativity preserving,

since this property is satis�ed by the �rst-order scheme.

The Discrete Maximum Principle detector (DMP)

The DMP criterion (2.78) checks for oscillations. Let � i;j be the set of cells connected toci;j

with an edge or a vertex. The DMP criterion fails if one of the following three checks fail:

min
l2 � i;j

(hl + Z l ) � "M � h?
i;j + Z ?

i;j � min
l2 � i;j

(hl + Z l ) + "M ;

min
l2 � i;j

((qx ) l ) � "M � (qx )?
i;j � min

l2 � i;j
((qx ) l ) + "M ;

min
l2 � i;j

((qy) l ) � "M � (qy)?
i;j � min

l2 � i;j
((qy) l ) + "M ;

where "M = min(� x; � y)3.

The u2 criterion

The goal of the u2 criterion is to ensure that the DMP does not eliminate physical oscilla-

tions. This criterion is made of three detectors, already de�ned in Section 2.4.3:

• the plateau detector (2.79);

• the oscillation detector (2.80);

• the smoothness detector (2.81).

If the plateau or the smoothness detectors are activated, then the DMP criterion was a false

positive, and the u2 criterion succeeds. However, if the oscillation detector is activated, then

the u2 criterion fails.

The detector loop

Equipped with the three detectors, the loop is similar to the one de�ned in Section 2.4.3.

The only difference is that, in the present case, the Cell Polynomial Degree (CPD) goes from

d to 0 in the �rst iteration of the MOOD method, instead of gradually decreasing from d to 0.

This behavior has been chosen to be consistent with the well-balance recovery presented in

Section 4.2.2. Indeed, this procedure involves a convex combination between the high-order
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scheme and the �rst-order well-balanced scheme. As a consequence, here, it does not make

sense to gradually decrease the degree of the polynomial reconstruction when applying the

MOOD technique; rather, we brutally decrease the degree from d to 0. In this context, the

cascade of detectors is displayed on Figure 4.3.

Figure 4.3 – The MOOD detector chain.

4.2.4 Combining the well-balance recovery with MOOD

In the two previous sections, we have suggested two methods to restore, for the high-order

scheme, the properties satis�ed by the �rst-order scheme. First, the well-balance property

is recovered using the convex combination technique presented in Section 4.2.2. Then, the

oscillations induced by the high-order scheme are eliminated thanks to the MOOD process

introduced in Section 4.2.3. The goal is now to combine these two procedures and to add the

MOOD technique to the high-order well-balanced scheme (4.29) - (4.32).

Since the well-balance correction is an a priori procedure, it makes sense to checka priori

for the physical admissibility of the reconstruction, in addition to using the PAD detector.

The reconstruction will be considered physically admissible in a cell ci;j if we have ĥn
i;j >

0 at all edge and cell Gauss points � r and X q. The admissibility of the reconstruction is

checked twice, once when computing the reconstructed heights at the edge Gauss points � r

to determine the high-order �uxes, and once when computing the numerical approximation

of the mean of the friction source term, using the evaluation of ĥn
i;j at the cell Gauss points

X q.

Algorithm 4.5. For a single iteration in time of the SSPRK time integrator, the MOOD loop reads as

follows.

(1) For each cellci;j , initialize CPD(i; j ) = d.

(2) For each cellci;j , compute the pair of correction parameters� n
i;j . If (� x )n

i;j = ( � y)n
i;j = 0 , i.e if

� n
i;j = 0, then a steady state is considered within the cellci;j . In this case, set CPD(i; j ) = 0 to

ensure that the well-balanced scheme is used to exactly preserve this steady state solution.

(3) Compute the reconstruction within each cellci;j , to be evaluated at the edge and cell Gauss points

� r andX q, and test its physical admissibility, as follows:

(3a) if ĥn
i;j (� r ) < 0 for some edge Gauss point� r , then the reconstruction is rejected inci;j ,

and CPD(i; j ) is set to zero;

(3b) if ĥn
i;j (X q) < 0 for some cell Gauss pointX q, then the reconstruction is rejected inci;j ,

and CPD(i; j ) is set to zero.
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(4) Equipped with the new CPD map, compute the candidate solutionW ?, using the high-order

well-balanced scheme (4.29) – (4.32).

(5) Apply the detection process displayed on Figure 4.3 to compute a potentially new CPD map and

to decide whether to accept the candidate solution. If the candidate solution is rejected, go to step

(4). Otherwise, go to step (6).

(6) The candidate solution is accepted: setW n+1 = W ?.

Equipped with Algorithm 4.5, the following result holds.

Theorem 4.6. Algorithm 4.5 yields a scheme that is robust and well-balanced by direction.

Proof. The MOOD procedure includes the PAD detection criterion (4.33), which ensures that

the updated water height is non-negative. Indeed, at worst, it is computed with the �rst-order

scheme, which is positivity-preserving. In addition, the well-balance property is ensured by

Lemma 4.4. Therefore, the scheme de�ned by Algorithm 4.5 is robust and well-balanced by

direction, which concludes the proof of Theorem 4.6.

4.3 Implementation in Fortran

The scheme proposed in Algorithm 4.5 was implemented in Fortran from scratch. It was

also equipped with an OpenMP parallelization (see [38, 40] for instance). This section de-

scribes this process.

First, we implemented both 1D schemes, the explicit scheme (3.9) – (3.81) and the semi-

implicit one (3.88) – (3.91) – (3.101). This implementation was straightforward, and no dif�-

culties were encountered. Since the proposed 1D numerical experiments did not take a long

CPU time, the code was not parallelized at this stage. Thanks to preprocessor directives, both

the explicit and the semi-implicit scheme were implemented in the same code; when compil-

ing the code, the user chooses either the explicit scheme or the semi-implicit scheme.

Then, regarding the 2D scheme, we �rst had to create a mesh. Since we focused on a

Cartesian mesh, this step did not require the use of additional software. The mesh was created

within the Fortran code using several customized types.

Afterwards, we computed the matrix eX i , given by (2.65) and used in the polynomial re-

construction. Noting that all the cells are rectangles of length � x and width � y, we remarked

that this matrix does not actually depend on the cell ci , and that a single matrix eX had to

be computed. Equipped with eX , the next step was the computation of the pseudoinverse

( eX T
i

eX i ) � 1 eX T
i . To that end, we elected to use two LAPACK routines, DGETRFto compute the

LU factorization of eX T
i

eX i and DGETRI to actually compute the inverse matrix from the LU

factorization. Thanks to the rescaling (2.65) which lowers its condition number, inverting the

matrix eX T
i

eX i was not problematic. Without the rescaling, the condition number became very

high, especially when dealing with large polynomial degrees, which introduced potentially

damaging errors.

Then, we followed Algorithm 4.5 to implement the high-order well-balanced scheme. We

were able to provide a straightforward OpenMP parallelization of all the loops. For instance,

in order to compute the maximum of the characteristic velocities, we added a REDUCTION
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clause to the OpenMP DOloop. The steps from Algorithm 4.5 were �nally supplemented

with the SSPRK technique, in order to ensure the high order accuracy in time as well as in

space.

In order to test the parallelization, we used a machine equipped with two Intel Xeon X5650

processors, each with12 cores at2:66 GHz, 6 physical and 6 logical. The code was compiled

with GNU Fortran version 4.9.2, using the -O3 optimization �ag. In order to handle the

dependencies between the numerous modules, the program makedepf90 was used. The

speedup and the ef�ciency of the parallelization were tested. The speedup is de�ned as the

time gained by using the parallelization. With tN the time taken using N cores, the speedup

S is de�ned by:

S =
t1

tN
:

The optimal speedup is equal to the number of cores N . The ef�ciency E of the parallelization

is closely related to the speedup: indeed, it is a percentage de�ned as the speedup divided by

the number of cores, as follows:

E = 100
S
N

:

Since the optimal speedup is equal to N , the optimal ef�ciency is 100%. The results of the test

are displayed on Figure 4.4; they show a good speedup and ef�ciency of the parallelization.

Figure 4.4 – SpeedupS and ef�ciency E for the OpenMP parallelization. Left panel: speedup;
right panel: ef�ciency.

Finally, the output of the code consists either in ASCII .vtk �les or in plain text .csv

�les. These �les are to be read by Paraview. In addition, all the 2D �gures and some 1D

�gures were made with Paraview version 5.0.1; the rest of the 1D �gures were made with

PGFPLOTS version 1.13. The few 3D �gures are also made with Paraview from .csv �les,

using the “Table to Points” and the “Delaunay 2D” �lters.

4.4 Numerical experiments

This last section is devoted to numerical experiments, designed to highlight some essen-

tial properties of the scheme. We �rst introduce the following notations, used to concisely
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represent the schemes that will be tested.

• The scheme that uses a polynomial reconstruction of degree d, i.e. whose order of ac-

curacy is (d + 1 ), is denoted by Pd. This notation includes the �rst-order well-balanced

scheme, which is thus denoted by P0. Note that, since the well-balance correction is not

active for the Pd scheme, we haveM x = M y = 0 .

• For d � 1, the Pd scheme equipped with the well-balance correction, i.e. with M x > 0

and/or M y > 0, will be denoted by PWB
d .

For the Pd scheme, Algorithm 4.5 is applied without the well-balanced correction, while the

PWB
d uses the full loop present in Algorithm 4.5.

In addition, in order to assess the well-balance and the high-order accuracy of the scheme,

we need to compute errors between the exact solution W ex(t; x; y ) and the approximate solu-

tion. Consider a uniform Cartesian mesh made of N = Nx � Ny cells. We denote by W ex
i;j the

average of the exact solution over the cell ci;j at time t, as follows:

W ex
i;j (t) =

1
jci;j j

Z

ci;j

W ex(t; x; y ) dx dy: (4.34)

Equipped with this notation, we compute the errors in L 1, L 2 and L 1 norms following (2.36),

with W n
i;j the approximate solution at time tn :

L 1 error:
1
N

N xX

i =1

N yX

j =1

�
�W n

i;j � W ex
i;j (tn )

�
� ; (4.35a)

L 2 error:

vu
u
t 1

N

N xX

i =1

N yX

j =1

�
W n

i;j � W ex
i;j (tn )

� 2
; (4.35b)

L 1 error: max
1� i � N x
1� j � N y

�
�W n

i;j � W ex
i;j (tn )

�
� : (4.35c)

In order to compute the errors, we have to compute W ex
i;j (t), given by the integral from (4.34),

for all cells ci;j . Such a computation is achieved by using a relevant quadrature rule, of the

same order as the scheme, for instance the quadrature rule on a cell given by (2.73) and de-

scribed in Appendix B. To assess the well-balance and the accuracy of the scheme, we will

usually evaluate these errors at the �nal physical time tend.

Let us recall here that, given � x and � y, the time step � t is given by the CFL-like condi-

tion (2.77), as follows:

� t �
�

max( d; 3)
3

2�
;

where � = min(� x; � y) and where � is the maximum of the absolute values of all the charac-

teristic velocities at each interface between cells.

In this section, we determine whether the two-dimensional scheme satis�es the required

properties. Namely, we start by proving that the scheme is well-balanced by direction. First,

a 2D steady state at rest with a wet/dry transition is considered. Such a steady state should

be preserved by the scheme, since it falls within the scope of De�nition 4.2. Second, we focus

on a perturbed moving steady state with topography and Manning friction in the x-direction.
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This experiment is similar to the one presented for the 1D scheme in Section 3.3.1.4. The 2D

scheme should also exactly capture such a steady state since it satis�es De�nition 4.2.

Then, we focus on the order of accuracy of the scheme. To that end, we consider two spe-

ci�c exact solutions of the 2D shallow-water model with topography and/or friction. Both of

these exact solutions are 2D steady state solutions which do not fall within the framework of

De�nition 4.2, and therefore are not exactly preserved by the 2D scheme. As a consequence,

they are good candidates to test the order of accuracy of the 2D scheme. The �rst exact so-

lution we consider is a steady state obtained with just the topography source term, and the

second one is obtained with both the topography and the friction.

Afterwards, validation experiments are performed. First, we consider a 1D dry dam-

break, to evaluate the impact of the convex combination process present in the 2D scheme.

In this experiment, several regions coexist: a steady state at rest, an unsteady �ow, and a

dry area. The goal of this experiment is to study the behavior of the convex combination

parameter in such a situation. Second, an experiment analogous to the one presented in Sec-

tion 3.3.2.6 is considered. The topography for this experiment is a truly 2D function, which

also possesses two bumps. Last, we consider a partial dam-break experiment, whose main

goal is to study the role of the friction source term.

Finally, we carry out two real-world simulations. The �rst one is the simulation of the

2011 Japan tsunami. The simulated data is compared to real data, captured by several buoys

equipped with tide sensors. The second one concerns a tsunami on an urban topography.

It depicts the buildings within a city begin �ooded by a tsunami wave, and how the water

behaves around the buildings.

4.4.1 Well-balance assessment

In this section, we perform numerical experiments to assess the well-balance of the PWB
5

scheme. Note that, if the PWB
5 scheme is well-balanced, then all PWB

d schemes with d < 5 are

also well-balanced. The �rst experiment concerns the preservation of a lake at rest steady

state with a dry area, while the second one focuses on capturing a one-dimensional moving

steady state with friction and topography that has been perturbed. Both of these experiments

feature steady state solutions by direction; after Theorem 4.6, these steady states should be

exactly captured by the PWB
5 scheme.

4.4.1.1 Steady state at rest

We begin the well-balance numerical experiments with the preservation of a lake at rest

steady state. This experiment involves a nonzero Manning coef�cient k = 10, a non-�at

topography and a dry area. On the space domain [0; 1] � [0; 1], the topography is given by:

Z (x; y) =
p

x2 + y2:

To ensure that h stays non-negative, the water height and the discharge of this steady state at

rest are de�ned as follows:

h(t; x; y ) = (1 � Z (x; y))+ and q(t; x; y ) = 0:
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Both initial and boundary conditions consist in the exact solution. A three-dimensional view

of the exact height and the topography is displayed on Figure 4.5. Note that this steady state

at rest involves a dry area.

Figure 4.5 – Topography and exact water height for the lake at rest experiment with 250000
(500� 500) cells. The gray surface represents the topography.

In order to highlight the relevance of the well-balance correction, the simulation is carried

out using the �rst-order P0 scheme and the sixth-order PWB
5 and P5 schemes, with and without

correction. The results of the experiment are presented in Table 4.1, for 10000 (100� 100) cells

and at time tend = 0 :1s. For this simulation, we set C = + 1 . Moreover, for the PWB
5 scheme,

we set mx = my = 10 � 12, and M x = M y = 10 � 11.

On Table 4.1, we observe that the �rst-order well-balanced scheme, labeled P0, indeed

preserves the lake at rest. However, the sixth-order P5 scheme, as expected, does not preserve

the lake at rest but instead approximates this steady state. The relevance of the proposed

well-balance correction is thus highlighted here. Indeed, the sixth-order scheme equipped

with the correction, labeled PWB
5 , preserves the lake at rest up to the machine precision.



198 CHAPTER 4. TWO-DIMENSIONAL AND HIGH-ORDER EXTENSIONS

h + Z kqk

L 1 L 2 L 1 L 1 L 2 L 1

P0 5.50e-18 2.51e-17 2.22e-166.90e-17 1.24e-16 7.68e-16
P5 1.70e-05 5.81e-05 8.41e-042.11e-05 8.86e-05 3.95e-03

PWB
5 1.81e-17 5.58e-17 7.77e-163.16e-16 4.57e-16 3.06e-15

Table 4.1 – Free surface and discharge norm errors for the lake at rest experiment.

4.4.1.2 Moving steady state with topography and friction

We propose another experiment, whose 1D counterpart was presented in Section 3.3.1.4,

to assess the well-balance of the scheme. For this experiment, we consider a moving �ow

of water (i.e. q0 6= 0 ), involving both source terms of topography and friction. This moving

�ow de�nes a one-dimensional steady state, as per (3.67). The current experiment is set up

similarly to the one presented in Section 3.3.1.4. Indeed, we introduce a perturbation of the

moving steady state, we take this perturbation as the initial solution, and we carry out the

simulation of the dissipation of the perturbation. The schemes converge to the original un-

perturbed steady state, which should be exactly captured by the well-balanced schemes P0

and PWB
5 , and approximated by the high-order P5 scheme without well-balance correction.

This experiment is intended to assess the relevance of the convex combination technique

in order to recover the well-balance by direction of the �rst-order scheme. The experiment

presented in the previous section proved that steady states at rest were indeed preserved by

the PWB
5 scheme, and the purpose of the current experiment is to tackle the case of a moving

steady state for the topography and friction source terms. We here present the experiment in

the x-direction. The same conclusions can be drawn from the experiment in the y-direction,

and we do not present this second experiment here.

To set up this experiment, we follow Section 3.3.1.4. First, we look for an approximate

solution of the equation (3.67) on the domain [0; 1]. To address this issue, we setk = 0 :01 and

we take the 1D topography function given by (3.103), as follows:

Z (x; y) =
1
2

ecos(4�x ) � e� 1

e1 � e� 1 :

The exact discharge is given by qx (t; x; y ) = q0 = 1 and qy(t; x; y ) = 0 . Then, to determine the

corresponding steady state, we approximately solve (3.67) using Newton's method, in order

to �nd the water height hsteady(x) of the steady state. Here, the water height hsteady depends

on x, but not on t and y, since we seek a steady state solution in thex-direction. The exact

solution t (hsteady; qx ; qy) = t (hsteady; q0; 0) indeed de�nes a steady state in the x-direction after

De�nition 4.2.

Equipped with the steady state height hsteady and discharge q0, we now introduce a per-

turbation on the domain

P =
�

2
7

;
3
7

� [ �
4
7

;
5
7

�
:
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The perturbed initial water height is de�ned as follows:

h(0; x; y) =

(
hsteady(x) + 0 :05 if x 2 P ;

hsteady(x) otherwise,

while the perturbed initial discharge in the x-direction is given by:

qx (0; x; y) =

(
q0 + 0 :5 if x 2 P ;

q0 otherwise.

The discharge in the y-direction, qy , is left unperturbed and equal to zero. The initial free

surface is displayed on Figure 4.6.

Figure 4.6 – Three-dimensional view of the initial condition for the topography and friction
steady state, with 100000 = 1000� 100cells. The gray surface is the topography. The pertur-
bations are clearly visible on the free surface.

In order to set up the experiment, we set the exact unperturbed solution as the initial

and boundary conditions. We take a uniform Cartesian mesh, composed of 300 (100 � 3)

cells, of the domain [0; 1]2. The simulation is once again carried out with the P0, P5 and PWB
5

schemes. In addition, we chooseC = + 1 for all schemes, and we take mx = 0 :01, M x = 1 ,

and my = M y = 0 for the PWB
5 scheme. The results of this simulation are presented at time

tend = 2s, once the perturbation is fully dissipated, on Table 4.2. Note that, if plotted for a
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�xed y coordinate, the free surface over time would be given by Figure 3.18, which has been

obtained in the 1D case.

h kqk

L 1 L 2 L 1 L 1 L 2 L 1

P0 1.22e-15 1.71e-15 6.27e-152.34e-15 3.02e-15 9.10e-15
P5 5.01e-05 1.47e-04 1.16e-032.32e-04 2.63e-04 1.18e-03

PWB
5 8.50e-14 1.05e-13 3.35e-132.82e-13 3.37e-13 6.76e-13

Table 4.2 – Height and discharge norm errors for the topography and friction steady state
along the x axis.

Once again, this experiment emphasizes the relevance of the well-balance correction. In-

deed, the P5 scheme does not exactly capture the unperturbed steady state, while the PWB
5

scheme captures it exactly, like the P0 scheme.

We also make the important remark that this well-balance correction also reduces the CPU

time, which decreases from 1463s with the P5 scheme to707s with the PW B
5 scheme. Indeed,

by downgrading to the �rst-order scheme when the approximate solution is close to a steady

state, thePW B
5 scheme manages to be both faster and more accurate than the uncorrectedP5

scheme.

4.4.2 Order of accuracy assessment

We now turn to verifying the order of accuracy of the high-order scheme. As previously

mentioned, this check is done using truly 2D steady state solutions, which are not steady

states by direction and thus do not fall within the scope of De�nition 4.2. This choice is

made to ensure that an exact solution is known. Indeed, we can derive truly 2D steady state

solutions by choosing a discharge �eld that satis�es (4.2), i.e. whose divergence vanishes.

In order to compute the order of accuracy, we consider the results from two simulations,

one carried out on a mesh composed of N discretization cells, and the other one with N 0 > N

cells. The errors are then computed according to (4.35). LeteN be the value of error, in any of

the three norms, for a mesh with N cells. The order of accuracyp is then de�ned as follows:

p = �
ln(eN ) � ln(eN 0)

ln
p

N � ln
p

N 0
: (4.36)

In order to have a relevant computation of the order of accuracy, we take N 0 = 4N in (4.36).

Thus, the de�nition of the order of accuracy used in this section is the following:

p =
ln(eN ) � ln(e4N )

ln 2
: (4.37)

In this section, we suggest two different 2D steady state solutions. The �rst one is obtained

by assuming a vanishing friction contribution, while the second one is computed with both

source terms. For both of these solutions, we compute the order of accuracy of the schemes

according to (4.37).
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4.4.2.1 Steady vortex experiment

The �rst experiment we consider involves a steady state solution with a vanishing friction

contribution (i.e. k = 0 ), the steady vortex(see [47]). We setr = t (x; y) and we take a radial

topography, given by Z (x; y) = 0 :2e0:5(1�k r k2 ) . Then, the water height is de�ned as follows:

h(t; x; y ) = 1 �
1
4g

e2(1�k r k2 ) � Z (x; y);

and the x- and y-velocities are given by:

u(t; x; y ) = y e1�k r k2
and v(t; x; y ) = � x e1�k r k2

:

For such initial data, the discharge q = t (hu; hv) indeed satis�es (4.2), but it is not a constant.

This steady state is depicted on Figure 4.7 on the space domain[� 3; 3]2.

Figure 4.7 – Steady vortex. Left panel: free surface. Right panel: velocity norm (the vortex
�ows clockwise).

The simulations are carried out with the PWB
3 , PWB

4 and PWB
5 schemes, until a �nal physical

time tend = 1s. In addition, we take C = + 1 and mx = M x = my = M y = + 1 for the three

schemes. The results of the simulations are presented in:

• Table 4.3 and Table 4.4 for d = 3 ;

• Table 4.5 and Table 4.6 for d = 4 ;

• Table 4.7 and Table 4.8 for d = 5 .

These results show good agreement with the theory. Indeed, in all cases, the order of

accuracy is roughly equal to d + 1 , as expected. This order of accuracy is maintained thanks

to the u2 detection criteria. Indeed, on such smooth solutions, the DMP criterion (2.78) is not

suf�cient, for it would wrongly lower the CPD in some cells. Here, the smoothness detector

(2.81) is used to prevent over-detection from the DMP criterion. The reader is referred to [47]
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N h; L 1 h; L 2 h; L 1

900 5.90e-05 — 1.06e-04 — 5.94e-04 —
3600 3.32e-06 4.15 5.12e-06 4.37 2.92e-05 4.35
14400 1.90e-07 4.12 2.80e-07 4.19 1.44e-06 4.34
57600 1.16e-08 4.04 1.75e-08 4.00 1.35e-07 3.41

Table 4.3 – Height error for the steady vortex experiment using the PWB
3 scheme.

N kqk; L 1 kqk; L 2 kqk; L 1

900 3.34e-04 — 6.25e-04 — 3.18e-03 —
3600 2.08e-05 4.01 3.68e-05 4.08 2.15e-04 3.89
14400 1.21e-06 4.10 2.01e-06 4.20 8.82e-06 4.61
57600 7.38e-08 4.04 1.18e-07 4.08 5.07e-07 4.12

Table 4.4 – Discharge norm error for the steady vortex experiment using the PWB
3 scheme.

N h; L 1 h; L 2 h; L 1

900 8.87e-05 — 1.85e-04 — 1.65e-03 —
3600 3.96e-06 4.49 8.99e-06 4.37 9.32e-05 4.14
14400 1.44e-07 4.78 3.20e-07 4.81 2.94e-06 4.98
57600 5.62e-09 4.68 1.16e-08 4.78 7.97e-08 5.21

Table 4.5 – Height error for the steady vortex experiment using the PWB
4 scheme.

N kqk; L 1 kqk; L 2 kqk; L 1

900 5.94e-04 — 1.12e-03 — 5.83e-03 —
3600 2.52e-05 4.56 5.41e-05 4.37 4.03e-04 3.86
14400 8.54e-07 4.88 1.86e-06 4.86 1.48e-05 4.76
57600 2.87e-08 4.89 5.99e-08 4.95 4.98e-07 4.90

Table 4.6 – Discharge norm error for the steady vortex experiment using the PWB
4 scheme.

N h; L 1 h; L 2 h; L 1

900 2.04e-05 — 5.22e-05 — 7.84e-04 —
3600 3.07e-07 6.05 6.88e-07 6.25 9.94e-06 6.30
14400 3.93e-09 6.29 5.82e-09 6.88 5.53e-08 7.49
57600 5.74e-11 6.10 7.27e-11 6.32 3.30e-10 7.39

Table 4.7 – Height error for the steady vortex experiment using the PWB
5 scheme.

N kqk; L 1 kqk; L 2 kqk; L 1

900 1.37e-04 — 3.46e-04 — 2.90e-03 —
3600 1.90e-06 6.17 5.27e-06 6.04 5.10e-05 5.83
14400 2.33e-08 6.35 5.33e-08 6.63 4.98e-07 6.68
57600 3.08e-10 6.24 5.76e-10 6.53 4.42e-09 6.82

Table 4.8 – Discharge norm error for the steady vortex experiment using the PWB
5 scheme.
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for a comparison of the order with and without the u2 criterion. In [47], the authors show

that it is necessary to use the u2 criterion for this experiment in order to recover the expected

order of accuracy.

Error graphs in L 2-norm are provided on Figure 4.8 for the PWB
3 and the PWB

5 schemes.

We can clearly observe on this �gure that the PWB
3 scheme is roughly of order 4 and the PWB

5

scheme is roughly of order 6. Indeed, in logarithmic scale, the slope of the error with respect

to the number of discretization cells corresponds to the order of the scheme.

Figure 4.8 – Error plots for the steady vortex experiment, in L 2-norm, for the PWB
3 and PWB

5
schemes. Left panel: water height errors; right panel: discharge errors.

4.4.2.2 2D steady state with topography and friction

We now turn to another 2D steady state solution. This new steady state is obtained by

considering both contributions of topography and friction (i.e. k 6= 0 ). For this solution, we

assume thatkr k 6= 0 , and we take the following topography function:

Z (x; y) =
2kkr k � 1

2gkr k2 :

In addition, the exact water height and discharge are given by:

h(t; x; y ) = 1 and q(t; x; y ) =
r

kr k2 :

Note that such a de�nition of the discharge ensures that (4.2) is satis�ed, i.e. that r �q = 0 . On

the space domain [� 0:3; 0:3]� [0:4; 1] and for k = 10, the topography is depicted on Figure 4.9,

while Figure 4.10 shows the discharge �eld in both directions.

In order to highlight the high-order accuracy of the schemes, this experiment is carried

out with the PWB
3 and PWB

5 schemes. The �nal physical time is tend = 0 :1s, and we take once

again C = + 1 and mx = M x = my = M y = + 1 . We again take the exact solution as initial

and boundary conditions. The results of the simulations are presented in:

• Table 4.9, Table 4.10, and Table 4.11 ford = 3 ;

• Table 4.12, Table 4.13, and Table 4.14 ford = 5 .
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N h qx qy

900 5.00e-07 — 1.95e-06 — 2.00e-06 —
3600 3.12e-08 4.00 1.22e-07 4.00 1.24e-07 4.00
14400 1.91e-09 4.03 7.54e-09 4.02 7.64e-09 4.02
57600 1.17e-10 4.03 4.65e-10 4.02 4.70e-10 4.02

Table 4.9 –L 1 errors for the friction and topography 2D steady state using the PWB
3 scheme.

N h qx qy

900 7.59e-07 — 2.94e-06 — 2.61e-06 —
3600 4.54e-08 4.06 1.75e-07 4.07 1.61e-07 4.02
14400 2.60e-09 4.13 1.05e-08 4.06 9.82e-09 4.04
57600 1.48e-10 4.13 6.37e-10 4.04 6.01e-10 4.03

Table 4.10 –L 2 errors for the friction and topography 2D steady state using the PWB
3 scheme.

N h qx qy

900 5.63e-06 — 1.06e-05 — 1.07e-05 —
3600 4.42e-07 3.67 6.39e-07 4.05 7.44e-07 3.85
14400 3.15e-08 3.81 3.68e-08 4.12 4.45e-08 4.06
57600 2.12e-09 3.89 2.14e-09 4.10 2.64e-09 4.07

Table 4.11 –L 1 errors for the friction and topography 2D steady state using the PWB
3 scheme.

N h qx qy

900 2.37e-08 — 8.00e-08 — 1.12e-07 —
3600 3.77e-10 5.98 1.28e-09 5.96 1.82e-09 5.94
14400 5.89e-12 6.00 1.99e-11 6.01 2.91e-11 5.96
57600 1.24e-14 8.89 2.06e-13 6.60 1.20e-13 7.92

Table 4.12 –L 1 errors for the friction and topography 2D steady state using the PWB
5 scheme.

N h qx qy

900 3.20e-08 — 1.30e-07 — 1.48e-07 —
3600 5.07e-10 5.98 2.05e-09 5.98 2.40e-09 5.94
14400 7.98e-12 5.99 3.17e-11 6.02 3.84e-11 5.97
57600 5.31e-14 7.23 5.08e-13 5.96 3.67e-13 6.71

Table 4.13 –L 2 errors for the friction and topography 2D steady state using the PWB
5 scheme.

N h qx qy

900 1.04e-07 — 5.20e-07 — 5.57e-07 —
3600 1.80e-09 5.86 8.15e-09 6.00 1.02e-08 5.77
14400 3.38e-11 5.73 1.25e-10 6.02 1.71e-10 5.89
57600 8.33e-13 5.34 2.26e-12 5.79 2.59e-12 6.05

Table 4.14 –L 1 errors for the friction and topography 2D steady state using the PWB
5 scheme.
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Figure 4.9 – Topography for the 2D steady state with topography and friction.

Figure 4.10 – Discharge for the 2D steady state with topography and friction. Left panel:
discharge in the x-direction. Right panel: discharge in the y-direction.

Once again, we recover the expected order of accuracy, roughly equal to d + 1 . Similarly

to the previous experiment, this order of accuracy is recovered only thanks to the use of the

u2 criterion in addition to the DMP criterion. We also present the following error graphs:

• the error for the water height in all norms is depicted on Figure 4.11;

• the error for the discharge in both directions, in the L 2-norm, is displayed on Figure 4.12.

On these �gures, the orders of accuracy of the schemes are clearly visible. For h, qx and qy ,

the PWB
3 scheme is of order 4, and thePWB

5 scheme is of order 6.
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Figure 4.11 – Water height error plots for the steady vortex experiment, for the PWB
3 and PWB

5
schemes. Left panel: errors in theL 2-norm; right panel: errors in the L 1- and L 1 -norms.

Figure 4.12 – Steady vortex experiment: error plots, in L 2-norm, for the x-discharge and for
the y-discharge. Left panel: errors for the x-discharge; right panel: errors for the y-discharge.

4.4.3 Validation experiments

After having presented the well-balance property and the high-order accuracy satis�ed by

the suggested scheme, we now turn to its numerical validation, by focusing on more complex

experiments. First, we present the simulation of a dam-break over a dry bottom in one space

direction. This simulation also highlights the relevance of the well-balance correction and

of the MOOD procedure. Next, we present a two-dimensional dam-break simulation, on a

topography involving two bumps. Afterwards, we present a two-dimensional partial dam-

break.

4.4.3.1 Dry dam-break

This subsection focuses on a double dam-break over a dry sinusoidal bottom. The space

domain is [0; 1] � [0; 0:1], and the topography is chosen as follows:

Z (x; y) =
1
2

cos2(2�x ):
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The initial free surface consists in a double dam-break; it is given by:

h(0; x; y) + Z (x; y) =

8
<

:

2 if x 2 D ;

Z (x; y) otherwise,

where the domain D is de�ned by:

D =
�
0;

1
3

� [ �
2
3

; 1
�
:

In addition, the initial discharge is zero: q(0; x; y) = 0. Note that such a free surface corre-

sponds to a steady state at rest onD � [0; 0:1]. In (f 1=3g � [0; 0:1]) [ (f 2=3g � [0; 0:1]), the

free surface is discontinuous, thus producing the initial dam-break conditions. The domain

([0; 1] n D) � [0; 0:1] is dry. As a consequence, this experiment will highlight three crucial

parts of the scheme: the well-balance property, the ability to handle dry/wet and wet/dry

transitions, and the consistency with the 2D shallow-water equations. This experiment is pre-

sented in the x-direction for simplicity, but can be carried out in the y-direction or even in a

transverse direction, yielding the same conclusions.

For this experiment, the Manning coef�cient k is set to 10and the boundaries are assumed

to be solid walls, i.e. we set qx (t; 0; y) = qx (t; 1; y) = 0 and qy(t; x; 0) = qy(t; x; 0:1) = 0

for all t, x and y. The experiment is carried out with the P0 and PWB
5 schemes, to compare

the �rst-order scheme with the high-order well-balanced scheme. The �nal physical time is

tend = 0 :03s, and we set C = 7 :5, mx = my = 10 � 10, and M x = M y = 0 :5. The results are

presented on Figure 4.13 and on Figure 4.14.

• Figure 4.13 displays a comparison between the results obtained with the P0 scheme

and those obtained with the PWB
5 scheme, with 200 = 100 � 2 cells in each case. We

also display a reference solution, obtained using the P0 scheme with 8000 = 4000� 2

discretization cells.

• On Figure 4.14, CPD(i; j ) and (� x )n
i;j are depicted, as well as the free surface and the

topography, for t = tend=10and t = tend, with the PWB
5 scheme.

Figure 4.13 highlights the relevance of using a high-order well-balanced scheme for such

an experiment. First, the results from the PWB
5 scheme are visibly closer to the reference solu-

tion than those of the P0 scheme. Moreover, the approximations of the interfaces between dry

and wet areas are in good agreement with the reference solution. In addition, note that the

free surface should be unperturbed close to the edges of the domain. Indeed, the waves from

the dam-break have not yet reached the edges of the domain at t = tend, and the water close

enough to the edges is in a lake at rest con�guration. This essential property exactly holds for

the P0 scheme. It also holds for the PWB
5 scheme thanks to the well-balance correction, which

forces the well-balanced scheme to be used in lake at rest-type situations. Figure 4.14 displays

more details on the role played by the well-balance convex combination.

On the left panel of Figure 4.14, we observe that (� x )n
i;j is zero in areas that have not yet

been impacted by the waves, i.e. in the areas where a lake at rest con�guration is found.

As a consequence, in these areas (namely the center of the domain and close to its edges),
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Figure 4.13 – Free surface for the dam-break over a dry sinusoidal bottom: reference solution
and results of the P0 and PWB

5 schemes. The gray area represents the topography.

Figure 4.14 – Free surface, CPD map and convex combination coef�cient � x for the the dam-
break over a dry sinusoidal bottom with the PWB

5 scheme. The gray area represents the topog-
raphy. Left panel: t = 3 :10� 3s. Right panel: t = 3 :10� 2s.

the CPD is equal to 0 and the well-balanced scheme is used. We also notice that the CPD

is zero in two cells within each wave. Indeed, in those cells, the DMP detector (2.78) has

been triggered. Similar conclusions can be drawn from the right panel of Figure 4.14. The

center of the domain is still considered to be at rest, and the convex combination parameter

is very close to zero on the edges of the domain, where the water is almost at rest. We do not

have (� x )n
i;j = 0 in those cells because the numerical diffusion created by the waves has been

introducing small perturbations that travel faster than the actual waves. The amplitude of

these perturbations is high enough to cause the steady state error (4.27) to be greater than 0.

However, since (� x )n
i;j < 1, the steady state error is still lower than M x near the edges of the

domain.
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4.4.3.2 2D dam-break with two bumps

The second 2D experiment is a dry dam-break with a topography presenting two bumps.

It is heavily inspired from an experiment presented in [19], which did not include the friction

source term. The Manning coef�cient is k = 0 :1, and the topography function is given by

Z (x; y) =
1
2

 

1 � 25

 �
x �

5
2

� 2

+
�

y �
1
2

� 2
!!

+

+ 2

 

1 � 25

 

(x � 4)2 +
�

y �
1
2

� 2
!!

+

:

The space domain is [0; 5] � [0; 1]. The initial discharge is zero in both directions, i.e. we take

q(0; x; y) = 0, and the initial water height is given by

h(0; x; y) =

(
6 if x < 0:7;

0 otherwise:

The simulation runs until a physical time tend = 1 :35s with the PWB
1 scheme, usingC = 1 ,

mx = my = 10 � 5 and M x = M y = 25. We take 288000discretization cells (1200 in the x

direction and 240in the y direction). In addition, we prescribe wall boundary conditions. The

results are presented on Figure 4.15, Figure 4.16, Figure 4.17, and Figure 4.18.

This experiment has been carried out to make sure that the numerical scheme still behaves

correctly in a truly 2D setting and in the presence of dry/ wet transition. We recover a nu-

merical solution involving the friction source term, which can be compared to the numerical

solution without friction presented in [19]. In addition, this 2D experiment is similar to the 1D

double bump experiment we presented in Section 3.3.2.6. Indeed, the behavior of the water

before it comes into contact with the �rst bump is the same in both experiments.

4.4.3.3 Partial dam-break

The last dam-break experiment is a two-dimensional partial dam-break (see [126, 47]). An

extensive study of this experiment, focused on the differences between various reconstruction

degrees and MOOD criteria, has been presented in [47]. However, in [47], the friction source

term was not present, and the authors studied the effects of the topography only. Thus, our

study is mainly focused on the effects of the friction source term. To that end, we carry out

the simulation with three different Manning coef�cients.

For this experiment, the space domain is [� 100; 100]� [� 100; 100], and we take the follow-

ing topography function:

Z (x; y) =

8
>>>>><

>>>>>:

1 if x � � 5;

0 if x � 5;

0:1(5 � x) if � 5 < x < 5 and � 40 < y < 40;

12 if � 5 < x < 5 and y 2 [� 100; � 40] [ [40; 100]:

Hence, it represents a12 meters high, 10 meters wide broken dam. Initially, the reservoir (to
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Figure 4.15 – Left panel: initial condition of the 2D dam-break over a double bump experi-
ment. Note that the same color scale for the water height is used for Figure 4.15, Figure 4.16,
Figure 4.17, and Figure 4.18, and that the solid gray color represents the topography. Right
panel: approximate solution at t = 0 :15s, just before the water hits the �rst bump. Note the
shape of the front of the water, due to the nonzero bottom friction.

Figure 4.16 – Approximate solution of the 2D dam-break over a double bump experiment,
displayed at times t = 0 :3s (left panel) and t = 0 :45s (right panel).
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Figure 4.17 – Approximate solution of the 2D dam-break over a double bump experiment,
displayed at times t = 0 :75s (left panel) and t = 0 :9s (right panel).

Figure 4.18 – Approximate solution of the 2D dam-break over a double bump experiment,
displayed at times t = 1 :05s (left panel) and t = 1 :35s (right panel).

the left) is �lled, as follows:

h(0; x; y) =

8
>>>>><

>>>>>:

10� Z (x; y) if x � � 5;

5 � Z (x; y) if x � 5;

5 � Z (x; y) if � 5 < x < 5 and � 40 < y < 40;

0 if � 5 < x < 5 and y 2 [� 100; � 40] [ [40; 100]:

The water is initially at rest, i.e. q(0; x; y) = 0. In addition, we use homogeneous Neumann

boundary conditions, and we take the �nal physical time tend = 7s

In order for the simulation to be relevant, we elected to set CPD (i; j ) = 0 for cells where the

topography gradient is too large. In order to conserve the high-order behavior of the scheme,

we only set CPD(i; j ) = 0 for cells possessing at least one vertex that belongs to the dam,

where Z (x; y) = 12 . Indeed, in such cells, the high-order approximation of the topography

source term (4.20a) becomes too large, leading to spurious oscillations in their vicinity.

In�uence of the friction coef�cient

We now compare the results from the P0, PWB
1 and PWB

5 schemes with various Manning

coef�cients, namely k = 0 , k = 0 :25 and k = 2 . All of these comparisons have been carried
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out using 40000 = 200� 200discretization cells. In addition, we set C = 0 :5, mx = my = 10 � 10,

and M x = M y = 0 :5. The results of the simulations are displayed on the following �gures,

with the same color scale:

• Figure 4.19 for the P0, PWB
1 and PWB

5 schemes with k = 0 ;

• Figure 4.20 for the P0, PWB
1 and PWB

5 schemes with k = 0 :25;

• Figure 4.21 for the P0, PWB
1 and PWB

5 schemes with k = 2 .

Figure 4.19 – Free surface for the partial dam-break simulation with k = 0 . From left to right:
results of the P0, PWB

1 and PWB
5 schemes.

Figure 4.20 – Free surface for the partial dam-break simulation with k = 0 :25. From left to
right: results of the P0, PWB

1 and PWB
5 schemes.

On all three �gures, we observe important differences between the results of the three

schemes. Indeed, for instance on Figure 4.19 and Figure 4.20, we observe that the shock

wave to the right of the dam and the rarefaction wave to the left of the dam are visibly more

smeared when using the P0 scheme instead of thePWB
1 or the PWB

5 scheme. In addition, the

structure at the center of the water �ow is not visible with the P0 scheme. It becomes visible,

although smeared, with the PWB
1 scheme, and it is very well-de�ned with the PWB

5 scheme. For

Figure 4.21, the conclusions are similar. The smearing of the shock wave and the rarefaction

wave is still present unless a high-order scheme is used, but the presence of an important

friction has caused the central structure to nearly disappear.

An important remark we make here concerns the vortices present at the edges of the dam

in Figure 4.19 and Figure 4.20. First, note that the presence of the friction source term dampens
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Figure 4.21 – Free surface for the partial dam-break simulation with k = 2 . From left to right:
results of the P0, PWB

1 and PWB
5 schemes.

the depth, as well as the size, of these vortices. This behavior is highlighted in Table 4.15, in

which the approximate size and the depth of a vortex are collected. For this table, we focused

on the top vortex, whose characteristics are similar to the bottom one since the experiment is

symmetric with respect to the y = 0 line.

Manning coef�cient Vortex size Water depth

k = 0 84m2 4:28m

k = 0 :25 17m2 5:45m

k = 2 0m2 7:23m

Table 4.15 – Water and approximate size for the deepest vortex, for the PWB
5 scheme. For the

case wherek = 2 , there is no vortex, and the table displays the free surface at the point where
the vortex would be located if the Manning coef�cient were lower.

The last part of the study of this experiment is the analysis, over the y = 0 line, of the

left rarefaction wave and the right shock wave. Some relevant quantities are the position of

the head of the rarefaction wave, the width of its fan, and its amplitude. Those quantities are

displayed in Table 4.16, where we chose to compute the amplitude of the rarefaction wave

by subtracting the water height at the tail from the water height at the head. Concerning

the shock wave, we are interested in its position and its amplitude, which are displayed in

Table 4.17. Similarly, the amplitude of the shock wave is obtained by computing the difference

between the water height to the left of the wave and the water height to its right. Note that,

since those computations are performed on the numerical results of the PWB
5 scheme, the shock

wave takes only a couple of cells, and the evaluation of its position is fairly accurate. We

observe that the amplitude of the shock presented for k = 0 in Table 4.17 is very similar to the

results obtained in [47], although the authors do not use the same scheme.

From Table 4.16 and Table 4.17, we observe that the friction produces the expected effects.

Indeed, it dampens the amplitude of both the rarefaction wave and the shock wave. More-

over, an increase in friction is accompanied by a diminution of the size of the rarefaction wave,

and a decrease in the distance traveled by the shock wave. This behavior is expected, as an

increase in friction leads to a decrease in discharge, as evidenced by the expressions (3.89) in
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Manning coef�cient Fan width Amplitude Head position

k = 0 39m 2:68m x = � 74m

k = 0 :25 38m 2:28m x = � 74m

k = 2 31m 1:29m x = � 74m

Table 4.16 – Left rarefaction wave: approximate width of the fan, water height amplitude and
position of the head, with respect to the Manning coef�cient.

Manning coef�cient Shock position Amplitude

k = 0 x = 60m 2:28m

k = 0 :25 x = 58m 1:96m

k = 2 x = 53m 0:98m

Table 4.17 – Right shock wave: approximate position and water height amplitude, with re-
spect to the Manning coef�cient.

1D and (4.11) in 2D. Thus, this decrease in discharge leads to a slower travel time of the shock

wave, which directly means that the wave will travel less distance.

Finally, we observe from Table 4.16 that the friction does not change the position of the

head of the rarefaction wave. This behavior is also expected. Indeed, recall the expression of

the friction source term given by (1.1) in 1D and (4.1) in 2D. Near the head of the rarefaction

wave, the water is almost at rest, since no wave has yet perturbed the initial condition at rest.

Hence, since only wet areas are considered, the impact of the friction source term is negligible,

and the head of the rarefaction wave travels at nearly the same speed for k = 0 , k = 0 :25 or

k = 2 . Therefore, the value of the Manning coef�cient does not alter the position of the head

of the rarefaction wave.

High-resolution simulations

We also include simulations performed using the PWB
5 scheme, with k = 0 , k = 0 :25

and k = 2 , on a much �ner discretization grid, made of one million ( 1000� 1000) cells. In

addition, the same values were taken for the parameters C, mx , my , M x and M y . Depending

on the value of the friction coef�cient, the simulations took between 5 hours for k = 2 and 6

hours for k = 0 , with an OpenMP parallelization on 24cores (12physical and 12 logical).

The results of this simulation are displayed on Figure 4.22 (free surface) and on Figure 4.23

(discharge). Note that the color scales are different for each �gure, in order to display all the

details of each experiment. As expected, we once again remark that the vortices are deeper

and that the shock wave travels further with less friction. In addition, on Figure 4.23, we again

note that the maximum discharge is considerably lower with a higher friction coef�cient.

4.4.4 Simulations on a real-world topography

We conclude the numerical experiments of the 2D high-order well-balanced scheme by

presenting two real-world simulations. The �rst one concerns the 2011 Great East Japan
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tsunami, in T ōhoku, Japan. The second one consists in an urban topography being �ooded

by a tsunami.

4.4.4.1 Simulation of the 2011 T ōhoku tsunami

This experiment concerns the simulation of the Great East Japan tsunami. This catas-

trophic event occurred on the 11th of March, 2011. The numerical simulation of such destruc-

tive phenomena is of prime importance for risk assessment and prevention. To address this

issue, we consider a Cartesian mesh of the topography of the area, made of around 13 million

cells. The emerged topography is displayed on Figure 4.24, and the submerged topography

(i.e. the bathymetry) is depicted on Figure 4.25. The water height data related to the initial

shape and the position of the tsunami is displayed on Figure 4.26. We also know the water

height data from three mareographs, i.e. buoys equipped with tide sensors. The goal of this

simulation is to compare the water height from the numerical scheme with the experimental

data.

In order to carry out this experiment, we use the P0 scheme. We take homogeneous Neu-

mann boundary conditions, and we set C = 100. The Manning coef�cient is chosen according

to [45] (page 109); we takek = 0 :025. The experimental data from the mareographs is avail-

able for one hour, and therefore the �nal time is tend = 3600s. The results of the simulation

are presented on Figure 4.27 and Figure 4.28. The simulated water height is close to the ex-

perimental one, even using the P0 scheme.

4.4.4.2 Urban topography

The last experiment is a simulation of a city being hit by a wave. We consider the space

domain [0; 1000]� [0; 1000]. The topography consists in a gentle upwards slope leading to a

�at surface, upon which buildings are placed. Disregarding the buildings, the bottom has the

following topography:

Z (x; y) =

(
x=50 if x < 500;

10 otherwise.

The 100meters high buildings occupy the �at part of the topography, i.e. buildings are only

present for x > 500. Figure 4.29 displays the shapes and the positions of the buildings, for a

uniform Cartesian mesh of 106 cells (1000in each direction).

The initial conditions are W (0; x; y) = 0 for all x and y in the space domain. Indeed,

the boundary conditions help create the �ood and the wave that hits the city. We prescribe

homogeneous Neumann boundary conditions for each boundary of the domain, except the

left boundary, where a time-dependent boundary condition the x-discharge qx is applied, as

follows: (
qx (t; 0; y) = 15 if t < 350;

@xqx (t; 0; y) = 0 otherwise.
(4.38)

Such a boundary condition creates water that �lls the sloping part of the topography and

creates a wave that hits the city. At time t = 300s, some time before the water stops being

injected, the free surface is displayed on Figure 4.29.



216 CHAPTER 4. TWO-DIMENSIONAL AND HIGH-ORDER EXTENSIONS

Figure 4.22 – Partial dam-break: free surface using thePWB
5 and 106 cells. From top to bottom:

k = 0 , k = 0 :25and k = 2 . Note that the color scale is different on each �gure.
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Figure 4.23 – Partial dam-break: discharge using the PWB
5 and 106 cells. From top to bottom:

k = 0 , k = 0 :25and k = 2 . Note that the color scale is different on each �gure.
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Figure 4.24 – Emerged topography for the Tōhoku tsunami simulation.
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Figure 4.25 – Submerged topography (bathymetry) for the T ōhoku tsunami simulation.
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Figure 4.26 – Initial free surface for the Tōhoku tsunami simulation.



4.4. NUMERICAL EXPERIMENTS 221

We consider a nonzero Manning coef�cient k = 1 and a �nal time tend = 850s. The

simulation is carried out using the PWB
1 scheme, and we takeC = 10 � 2, mx = my = 10 � 5 and

M x = M y = 1 . It took around 7:5 hours to complete with 24cores (12physical and 12 logical).

We display on Figure 4.30 the free surface and the discharge along the line x = 225m,

located between the second and third row of square buildings. On the left panel, at t =

300s, the Dirichlet boundary condition is active, and the discharge is equal to 15m2.s-1 on

the left boundary. On the right panel, at t = 355s, the boundary condition has become a

homogeneous Neumann one, and the discharge has started diminishing near the boundary.

On both graphs, note that the water front has the shape expected when dealing with the

Manning friction source term.

The results of the numerical simulation are displayed on Figure 4.31, Figure 4.32, Fig-

ure 4.33, Figure 4.34, and Figure 4.35.

The left panel of Figure 4.29 shows the wave created by the Dirichlet boundary condition

arriving on the city. Because of the friction, this wave presents a rather steep front. On the

left panel of Figure 4.31, the wave has hit the �rst buildings located at the south of the city.

Note that the space between the �rst two columns of buildings is still dry. Also note that,

as per (4.38), the boundary condition imposed on the x-discharge qx is now a homogeneous

Neumann boundary condition, and no more water is injected into the domain. The right

panel of Figure 4.31 displays the wave about to hit the square building located at the middle

of the city. As expected, between the southern buildings, the wave is slowed down.

On the left panel of Figure 4.32, the wave has re�ected on the southwestern side of the

square building, and it has thus moved faster towards the buildings to the south. On the

right panel of Figure 4.32, the waves re�ected from the square building are moving south and

north. Moreover, the back of the “S”-shaped building will soon be �ooded.

The �ooding of the back of the “S”-shaped building is happening on Figure 4.33, with

only a small area still dry on the right panel. In addition, on the right panel of Figure 4.33, the

wave has almost hit the small square building on the bottom right of the city.

Figure 4.34 and Figure 4.35 display the �nal phases of the �ooding of the city. Note that the

southern buildings are mostly uniformly �ooded and that the inner courtyard of the square

building is still dry. Moreover, the water at the back of the “S”-shaped building is less deep

than at other points of the same vertical line.
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Figure 4.27 – T̄ohoku tsunami simulation. From top to bottom: free surface at t = 0s, t = 1000s
and t = 1900s. The sensor data is displayed on the right.
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Figure 4.28 – T̄ohoku tsunami simulation. From top to bottom: free surface at t = 2750s,
t = 3200s and t = 3600s. The sensor data is displayed on the right.
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Figure 4.29 – Wave on an urban topography simulation. Left panel: topography of the city.
The buildings are actually 100meters high, and are represented in white in this �gure. One
can see the upwards slope on the left, leading to the city itself. Right panel: free surface at
t = 300s. The wave is present to the left of the �gure. Note that the same free surface color
scale will be used in the next �gures.

Figure 4.30 – Free surface and discharge along the linex = 225m for the urban topography
simulation, at t = 300s (left panel) and t = 355s (right panel).
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Figure 4.31 – Free surface for the urban topography simulation at t = 355s (left panel) and
t = 410s (right panel).

Figure 4.32 – Free surface for the urban topography simulation at t = 465s (left panel) and
t = 520s (right panel).
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Figure 4.33 – Free surface for the urban topography simulation at t = 575s (left panel) and
t = 630s (right panel).

Figure 4.34 – Free surface for the urban topography simulation at t = 685s (left panel) and
t = 740s (right panel).

Figure 4.35 – Free surface for the urban topography simulation at t = 795s (left panel) and
t = 850s (right panel).
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Conclusion & perspectives

Version française

Conclusion

Dans ce manuscrit, nous avons étudié, analytiquement et numériquement, le système de

Saint-Venant muni des termes source de topographie et de friction de Manning.

Dans un premier temps, nous avons étudié les effets du terme source de friction sur

les propriétés algébriques du système ainsi que sur ses solutions stationnaires. Nous avons

montré que, à l'instar du terme source de topographie, le terme source de friction ajoutait

un champ caractéristique stationnaire au système. Par conséquent, lorsque les deux termes

source sont présents, ce champ caractéristique est associé à la valeur propre double0. De

plus, dans un souci de complétude, les solutions stationnaires ont été rappelées pour le terme

de topographie, tandis qu'une étude complète des solutions stationnaires a été effectuée pour

le terme de friction. En particulier, pour les deux termes source, chercher les solutions station-

naires revient à chercher les zéros d'une fonction non-linéaire. Nous avons montré que, si ce

problème possède une solution, alors soit elle est unique, soit il y en a exactement deux. Si la

solution stationnaire est unique, sa hauteur d'eau, égale à une hauteur critique, est la même

pour les termes de topographie et de friction. Si deux solutions cohabitent, l'une d'entre elles

est subcritique (hauteur supérieure à la hauteur critique), tandis que l'autre est supercritique

(hauteur inférieure à la hauteur critique).

Nous avons ensuite dérivé un schéma équilibre robuste pour le système de Saint-Venant

avec topographie et friction de Manning. Ce schéma véri�e les propriétés suivantes :

(i) consistance avec les équations de Saint-Venant avec topographie et friction de Manning ;

(ii) préservation et capture exactes de toutes les solutions stationnaires (celles au repos et

les solutions à vitesse non nulle) des équations de Saint-Venant avec topographie ou

friction ;

(iii) robustesse, c'est-à-dire préservation de la positivité de la hauteur d'eau.

Ensuite, nous avons rendu ce schéma semi-implicite, a�n de s'assurer que les transitions entre

zones mouillées et zones sèches n'induisaient pas d'oscillations dues à la raideur du terme

de friction quand la hauteur d'eau devient petite. Cette semi-implicitation consiste en un

traitement explicite du �ux et de la topographie, et en un traitement implicite de la friction.

Des cas-tests numériques visant à véri�er la propriété de préservation des états stationnaires

et à valider numériquement le schéma ont ensuite été présentés.

Nous avons en�n étendu ce schéma pour prendre en compte des géométries bidimen-

sionnelles cartésiennes, et nous avons réalisé une montée en ordre. Pour l'extension à deux
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dimensions d'espace, nous avons effectué une combinaison convexe par direction du schéma

1D a�n d'en préserver les propriétés. Comme nous nous y attendions, il n'a pas été pos-

sible d'étendre complètement la propriété de préservation des états stationnaires. En effet, le

schéma 2D préserve les états stationnaires dans les directions des axesx et y, ainsi que tous

les états stationnaires au repos. Ensuite, nous avons réalisé une montée en ordre utilisant une

reconstruction polynomiale. Cependant, après cette procédure de reconstruction, le schéma

produisait des oscillations et ne préservait plus les états stationnaires. A�n de remédier à ces

problèmes, nous avons suggéré l'utilisation d'une méthode de type MOOD. En particulier,

la propriété de préservation des états stationnaires a été recouvrée en utilisant une combi-

naison convexe entre le schéma d'ordre élevé et le schéma d'ordre un. Cette combinaison

convexe favorise le schéma d'ordre un lorsque la solution approchée est proche d'une so-

lution stationnaire (lorsque le schéma d'ordre un est exact), ce qui résulte en un schéma au

moins d'ordre élevé. Nous avons ensuite réalisé un couplage entre cette combinaison convexe

et une méthode MOOD plus classique, dans le but d'obtenir un schéma d'ordre élevé, préser-

vant les solutions stationnaires, et ne produisant pas d'oscillations. Finalement, nous avons

déterminé les propriétés de ce schéma en codant un programme Fortran parallèle. Nous avons

fourni des précisions sur l'implémentation en Fortran ainsi que sur les bibliothèques externes

utilisées dans le programme. Nous avons ensuite proposé des cas-tests pour véri�er la préser-

vation des états stationnaires et l'ordre élevé du schéma, avant d'effectuer plusieurs cas-tests

de ruptures de barrage a�n de valider le schéma. En�n, nous avons proposé deux simula-

tions d'événements réels : celle du tsunami ayant frappé le Japon en 2011 et celle d'une vague

inondant une topographie urbaine.

Perspectives

Nous pouvons envisager plusieurs perspectives aux travaux contenus dans ce manuscrit.

Naturellement, nous pouvons penser à appliquer la méthode générique développée dans le

troisième chapitre à d'autres termes source. De plus, en notant que les états intermédiaires du

solveur de Riemann approché sont assez proches des états intermédiaires du solveur HLL,

nous pourrions étudier l'entropie du schéma proposé, par exemple en utilisant des résul-

tats connus sur le schéma HLL. En�n, nous pourrions travailler un peu plus sur l'extension

à l'ordre élevé, notamment en essayant de formuler une preuve rigoureuse de l'ordre du

schéma.

Application à d'autres termes source

Dans ce manuscrit, nous avons proposé un schéma numérique pour les équations de

Saint-Venant avec un terme source générique (3.1). Nous avons montré que ce schéma per-

mettait de préserver les solutions stationnaires dès qu'une moyenne pertinente S du terme

source était donnée. Si le terme source est donné sous la forme (3.40), les relations gouvernant

les états stationnaires incluent une relation algébrique. Dans ce cas, les relations gouvernant

les états stationnaires discrets, données par (3.47), permettent d'obtenirS. À présent, nous

nous intéressons plus particulièrement à deux exemples de termes source : la force de Corio-

lis et un terme source qui permet de prendre en compte la largeur du canal.
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Le terme source représentant la force de Coriolis est utilisé en océanographie, son utilité

première étant de simuler la préservation d'un équilibre (voir [121]). Par conséquent, dans ce

cas, il serait pertinent d'utiliser un schéma préservant les états stationnaires. Les équations

de Saint-Venant munies de ce terme source ont déjà été étudiées, analytiquement (voir [148,

165, 59, 118]) et numériquement (voir [27, 8, 91, 43]). Les auteurs de ces articles étudient le

modèle en 2D, où la rotation induite par la force de Coriolis est facilement modélisée par un

terme source. Cependant, il est possible de dériver un modèle unidimensionnel, en étudiant

les équations sous la forme suivante :

8
><

>:

@t h + @xq = 0 ;

@t q + @x

�
q2

h
+

1
2

gh2
�

= � fq;

où f 2 R représente le coef�cient de la force de Coriolis. Nous pouvons donc écrire le terme

source de Coriolis Sc(W ) = � fq sous la forme (3.40), en posant :

� = 0 ; f (q) = q; @x � = � f:

Par conséquent, les états stationnaires discrets sont gouvernés par (3.47), comme suit :
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+ q0f � x = 0 ;
(F3)

où Sc est une moyenne deSc. Ces relations sont valides pour hL et hR distincts et strictement

positifs. La seconde équation de (F3) permet d'obtenir une expression de q0 pour les états

stationnaires, qui fait intervenir, entre autres, la direction de l'écoulement. Cette expression

doit ensuite être injectée dans la première équation a�n d'obtenir une formule donnant Sc.

Après avoir introduit le terme source représentant la force de Coriolis, nous nous tournons

vers la prise en compte de la largeur du canal. Ce deuxième terme source fut introduit dans

[155] (voir aussi [95, 78]), pour donner le système suivant :
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>><

>>:

@t h + @xq = � q
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B

;

@t q + @x

�
q2
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+

1
2

gh2
�
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q2

h
@xB
B

;
(F4)

où la fonction B (x) représente la largeur du canal. Nous remarquons qu'un terme source est

présent sur l'équation de conservation de la hauteur d'eau ; ce cas n'est pas pris en compte

dans le schéma développé dans ce manuscrit. A�n de remédier à ce problème, nous introdui-

sons un nouveau jeu de variables (voir [130] par exemple) : H = hB et Q = qB. En utilisant

ces nouvelles variables et en supposant une solution régulière dont la hauteur est strictement
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positive, le système (F4) se réécrit comme suit :

8
><

>:

@t H + @xQ = 0 ;

@t Q + @x

�
Q2

H
+

g
2

H 2

B

�
=

g
2

H 2

B 2 @xB;

où la première équation ne contient plus de terme source. En revanche, le terme de pression

dans la dérivée spatiale du �ux a été modi�é. Le terme source représentant la largeur du canal

est donc dé�ni par :

Sb =
g
2

H 2

B 2 @xB:

De plus, nous pouvons montrer que les états stationnaires associés à cette équation sont gou-

vernés par : 8
><

>:

Q = cst = Q0;

@x

�
H
B

+
Q2

0

2gH2

�
= 0 :

Par conséquent, en notantSb une moyenne pertinente du terme source Sb, les relations dé�-

nissant un état stationnaire discret sont les suivantes :
8
>>><

>>>:
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(F5)

Comme précédemment, la seconde équation de (F5) fournit une expression deQ2
0 valide pour

un état stationnaire, qui est ensuite injectée dans la première équation a�n d'obtenir une for-

mule pour Sb. Notons que cette formule dépendra de la variable H = hB . Des manipulations

algébriques seront donc requises pour concilier ce terme source approché avec ceux obtenus

pour la topographie, la friction ou la force de Coriolis.

Stabilité du schéma

Dans ce manuscrit, nous ne nous sommes pas posé la question de la stabilité du schéma.

L'expression (3.6) des vitesses caractéristiques a été choisie pour s'assurer que� L < 0 < � R ,

ce qui augmente la diffusion numérique du schéma, et qui entraîne donc une augmentation

de sa stabilité. Ce choix de vitesses caractéristiques nous a donc permis de retarder l'étude de

la stabilité.

Nous pouvons aussi nous intéresser à l'entropie associée au schéma dérivé dans le troi-

sième chapitre. En effet, les états intermédiaires utilisés dans le solveur de Riemann approché

de ce schéma donc donnés par (3.81). Nous remarquons que ces états intermédiaires sont en

fait les états intermédiaires du solveur HLL, dé�nis par (3.20), auxquels un terme supplémen-

taire, dépendant linéairement du pas d'espace, a été rajouté. Ces états intermédiaires peuvent

donc être vus comme une perturbation des états intermédiaires du schéma HLL, qui est entro-

pique (voir [90]). Par conséquent, une étude précise de cette perturbation pourrait permettre

d'obtenir une inégalité d'entropie pour le schéma équilibre, et ce dans le cas des termes source
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individuels de topographie et de friction, ou même en présence des deux termes source. Les

vitesses caractéristiques� L et � R joueraient certainement un rôle dans cette inégalité. De plus,

la constante C, introduite dans (3.54) a�n de faire en sorte que le terme source approché de

topographie soit consistant, pourrait aussi jouer un rôle dans cette inégalité, dans le cas de la

topographie.

En supposant qu'une telle inégalité puisse être déterminée, un nouveau critère de dé-

tection pourrait s'ajouter aux critères déjà présents dans la méthode MOOD utilisée dans le

schéma d'ordre élevé. En effet, dans l'esprit de [16], nous pourrions utiliser l'inégalité d'entro-

pie a�n de diminuer le degré de la reconstruction polynomiale jusqu'à ce que cette inégalité

soit véri�ée.

Ordre élevé : résultats et améliorations

Le schéma proposé dans le quatrième chapitre est d'ordre élevé et permet de préserver les

solutions stationnaires, comme nous l'avons illustré grâce aux cas-tests présentés à la �n de

ce chapitre. Cependant, à cause de la procédure de combinaison convexe entre les schémas

d'ordre élevé et d'ordre un, ce dernier est utilisé lorsque la solution est proche d'une solution

stationnaire. Le schéma est donc, au �nal, au moins d'ordre élevé, puisque le schéma d'ordre

un n'est utilisé que lorsqu'il est exact (d'ordre in�ni). Une preuve rigoureuse de cet ordre

élevé pourrait cependant être étudiée.

De plus, dans [33, 31, 35], les auteurs ont proposé une reconstruction polynomiale basée

sur les états stationnaires à vitesse non nulle. Cette procédure permet d'obtenir un schéma

d'ordre élevé préservant naturellement les solutions stationnaires, sans avoir besoin d'intro-

duire de combinaison convexe. Par conséquent, la reconstruction polynomiale de [33, 31, 35]

pourrait être une extension intéressante du schéma proposé dans le quatrième chapitre. Ce-

pendant, a�n d'utiliser cette reconstruction, il faut résoudre approximativement les équations

non-linéaires gouvernant les solutions stationnaires à tout moment où la reconstruction doit

être calculée ; un des avantages du schéma présenté dans ce manuscrit est le fait que de telles

résolutions approchées d'équations non linéaires n'intervenaient pas dans sa dérivation.
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Conclusion

In this manuscript, we have studied, both numerically and analytically, the shallow-water

system equipped with the source terms of topography and Manning friction, governed by

(1.1).

First, we studied the effects of the Manning friction source term on the shallow-water sys-

tem, regarding either its algebraic properties or its steady state solutions. This friction source

term, as expected, was proven to add a stationary characteristic �eld, as does the topography

source term. As a consequence, when both source terms are present, the stationary character-

istic �eld is associated to the double eigenvalue 0. In addition, the steady state solutions have

been recalled, for the sake of completeness, in the case of the topography source term. In the

case of the friction source term, they have been studied in detail. In particular, in both cases,

we have shown that �nding a steady state was equivalent to �nding the zeros of a nonlinear

equation; this problem has zero, one or two solutions. When the solution is unique, the water

height of this steady state is equal to a critical water height, which has the same value for

both source terms. When two solutions exist, one is subcritical (strictly superior to the critical

height) and the other one is supercritical (strictly inferior to the critical height).

We then derived a suitable numerical scheme for the shallow-water equations with both

topography and friction. We derived a well-balanced and robust scheme, i.e. a scheme that:

(i) is consistent with the shallow-water equations with topography and friction;

(ii) exactly preserves and captures all the steady state solutions (the steady states at rest and

the moving steady states) of the shallow-water equations with topography or friction;

(iii) preserves the non-negativity of the water height.

In addition, a semi-implicit extension of the scheme was introduced to ensure that the tran-

sitions between wet and dry areas did not induce oscillations in the water height. This semi-

implicitation consists in an explicit discretization of the �ux and the topography and in an

implicit treatment of the friction, in order to account for the stiffness of the friction source

term near dry areas. Afterwards, numerical experiments were carried out in order to check

all the properties of the scheme. Namely, the well-balance of the scheme was assessed, and

several validation experiments were performed.

We �nally focused on an extension of the scheme to two-dimensional Cartesian geome-

tries, as well as the derivation of a high-order accurate scheme from the 2D �rst-order one.

First, the 2D extension was obtained using a convex combination technique in order to pre-

serve the properties satis�ed by the 1D scheme. As expected, the resulting 2D scheme turned

out to be well-balanced by direction, i.e. only the steady state solutions along the x-axis and

the y-axis were exactly preserved, in addition to all the steady states at rest. Then, a high-order

extension of this 2D scheme was proposed. However, due to the reconstruction procedure,

the scheme lost its well-balance property and produced oscillating solutions. A MOOD-like

method was suggested to deal with these shortcomings. Namely, the well-balance property

was recovered thanks to a convex combination between the �rst-order well-balanced scheme

and the high-order scheme. This convex combination favors the well-balanced scheme close

to steady state solutions, i.e. in areas where this scheme is exact, thus resulting in a scheme
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that is at least high-order accurate. The convex combination was then coupled to a more clas-

sical MOOD method to yield a non-oscillatory and well-balanced high-order 2D scheme. To

assess the properties of this scheme, several benchmark simulations were then carried out

using a parallel Fortran code, made from scratch. An explanation of the Fortran implemen-

tation and the external libraries used was provided. Regarding the numerical experiments,

the well-balance property and the high-order accuracy were �rst checked. Then, several val-

idation dam-breaks experiments were performed. Finally, two real-world simulations were

proposed: the 2011 T̄ohoku tsunami, and a wave impacting an urban topography.

Perspectives

Several perspectives of this work can be envisioned. Namely, the generic approach devel-

oped in Chapter 3 could be extended to take other source terms into account. Also, noting that

the expressions of the intermediate states of the suggested 1D scheme are quite close to those

of the intermediate states of the HLL scheme, the entropy stability of the proposed scheme

could be studied, by using existing results on the entropy stability of the HLL scheme. Other

perspectives concern the high-order well-balanced scheme: for instance, a rigorous proof of

the high-order accuracy could be studied, or an alternate polynomial reconstruction could be

considered.

Application to other source terms

Let us recall that the 1D well-balanced scheme for the shallow-water equations with a

generic source term (3.1) involves the intermediate states (3.37). Thanks to Theorem 3.5,

we know the approximate Riemann solver obtained with these intermediate states is well-

balanced as soon as a relevant averageS of the source term is provided. With a source term

given by (3.40), the steady state relations involve an algebraic equation. As a consequence,

the discrete steady state relations, needed to get a suitable averageS, are given by (3.47). We

now provide two examples of source terms the generic strategy could be applied to: a source

term representing the Coriolis force and another one taking into account the variations of the

channel breadth.

We �rst consider the Coriolis force source term; it is widely used in oceanography, mostly

to simulate the perturbation of an equilibrium (see [121]). Therefore, using a well-balanced

scheme would be particularly relevant in this context. The shallow-water equations equipped

with this source term have already been studied, both analytically (see for instance [148, 165,

59, 118]) and numerically (see for instance [27, 8, 91, 43]). In these articles, the model is studied

in two space dimensions, where the rotation induced by the Coriolis force makes more sense.

However, it is possible to derive a one-dimensional model of the Coriolis force. Equipped

with just the Coriolis force source term, the shallow-water equations are given as follows:

8
><

>:

@t h + @xq = 0 ;

@t q + @x

�
q2

h
+

1
2

gh2
�

= � fq;

where f 2 R is the coef�cient of the Coriolis force. We can therefore write the Coriolis force
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source term Sc(W ) = � fq under the form (3.40), by setting:

� = 0 ; f (q) = q ; @x � = � f:

As a consequence, (3.47) yields the following discrete steady relations, with Sc a suitable

average of Sc: 8
>><

>>:

q2
0

�
1
h

�
+

g
2

�
h2�

= Sc� x;

q2
0

�
1
h

�
+

g
2

�
h2�

+ q0f � x = 0 :
(E3)

These relations are valid for hL > 0 and hR > 0 such that hL 6= hR . The second equation of

(E3) provides a value of q0 depending on hL and hR . The sign of q0, i.e. the direction of the

steady water �ow has to be taken into account to solve this equation. Then, the expression of

q0 is plugged into the �rst equation, to �nally get the expression of Sc.

Having introduced the Coriolis force, we now turn to the breadth variation source term.

This source term has been introduced in [155] (see also [95, 78] for instance) to deal with the

variations of the channel breadth, to get the following shallow-water model:

8
>><

>>:

@t h + @xq = � q
@xB
B

;

@t q + @x

�
q2

h
+

1
2

gh2
�

= �
q2

h
@xB
B

;
(E4)

where the function B (x) > 0 represents the breadth of the channel. Note that a source term is

present on the height equation. This case is not taken into account by the scheme suggested

in Chapter 3. To address such an issue, we introduce the new set of variables H = hB and

Q = qB (see [130] for instance). UsingH and Q and assuming a smooth solution with h > 0,

the shallow-water model (E4) rewrites as follows:

8
><

>:

@t H + @xQ = 0 ;

@t Q + @x

�
Q2

H
+

g
2

H 2

B

�
=

g
2

H 2

B 2 @xB;

where we have successfully eliminated the source term on the height equation. However, the

pressure term in the spatial derivative now contains the breadth function B . According to the

above system, the breadth source term is thus de�ned by:

Sb =
g
2

H 2

B 2 @xB:

In addition, seeking smooth steady state solutions for this system leads, after straightforward

computations, to the following ordinary differential equation:

8
><

>:

Q = cst = Q0;

@x

�
H
B

+
Q2

0

2gH2

�
= 0 :
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Therefore, with Sb a suitable average of the breadth source term Sb, the discrete steady rela-

tions read, in this case: 8
>>><

>>>:

Q2
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�
1
H

�
+

g
2

�
H 2

B

�
= Sb� x;

Q2
0

2

�
1

H 2

�
+ g

�
H
B

�
= 0 :

(E5)

As usual, the second equation of (E5) yields an expression of Q2
0, to be plugged into the �rst

equation in order to get an formula for Sb. Note that this expression will depend on the

variable H = hB . Therefore, several algebraic manipulations will have to be made on the

equations in order to combine the approximation of this source term with the approximations

of the topography, friction and Coriolis force source terms.

Stability of the scheme

The question of the stability of the scheme is not raised in the present manuscript. The

choice (3.6) of the characteristic velocities ensures that� L < 0 < � R , which increases the

numerical diffusion of the scheme. As a consequence of this increased diffusion, the scheme

is more stable. Therefore, the choice of the characteristic velocities allowed us to postpone a

more precise study of the stability.

The question of the entropy preservation of the well-balanced scheme derived in Chap-

ter 3 could also be raised. Indeed, for any source term, the intermediate states (3.81) of this

well-balanced scheme are written as the intermediate states of the HLL scheme (3.20) with an

additional term. This term depends linearly on the space step. Thus, the well-balanced inter-

mediate states can be viewed as perturbations of the intermediate states of the HLL scheme.

Moreover, the HLL scheme is known to be entropy-preserving (see [90]). Therefore, quan-

tifying the extent of that perturbation could provide an adequate entropy inequality for the

well-balanced scheme, in order to determine whether this scheme is entropy-preserving for

the topography source term, the Manning friction source term, or even both source terms.

The characteristic velocities � L and � R would certainly play a role in this entropy inequality.

In addition, the value of the cutoff constant C present in (3.54), introduced in order to make

the approximate topography source term St consistent, could also be relevant to uncover the

entropy inequality.

Assuming the scheme was indeed entropy-preserving, another detector could then be

added to the MOOD method, following [16]. In [16], the authors suggest using the entropy

inequality to introduce a new MOOD criterion. If the entropy inequality is not satis�ed be-

cause of the reconstruction procedure, then the degree of the reconstruction is lowered until

the inequality is veri�ed. Such a criterion would supplement the PAD, DMP and u2 detection

criteria already present in the MOOD loop.

High-order accuracy: results and improvements

The scheme suggested in Chapter 4 is well-balanced and high-order accurate, as shown in

the numerical experiments proposed in Section 4.4.1 and Section 4.4.2. However, because of

the convex combination procedure introduced in Section 4.2.2, the �rst-order scheme is used
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