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Résumé

Cette thèse est faite de deux parties. La première partie est un article rédigé conjoin-
tement avec Martin Puchol et Jialin Zhu. La deuxième partie est une série de résultats
obtenus par moi-même liés au théorème de Riemann-Roch-Grothendieck pour les �brés
vectoriels plats.
Nous spéci�ons les contenus des deux parties. Dans la première partie, nous donnons

une preuve analytique d'un résultat décrivant le comportement de la torsion analytique
en théorie de de Rham lorsque la variété considérée est séparée en deux par une hyper-
surface. Plus précisément, nous donnons une formule liant la torsion analytique de la
variété entière aux torsions analytiques associées aux variétés à bord avec des conditions
limites relative ou absolue le long de l'hypersurface. Ce résultat peut être vu comme
une conséquence du théorème de Cheeger-Müller liant la torsion analytique et la torsion
combinatoire. Toutefois, le but de notre résultat est d'en avoir une preuve directe en
introduisant un cylindre transverse à l'hypersurface dont la longueur tend vers l'in�ni.
La matrice de di�usion introduite par Müller dans ce contexte géométrique joue un rôle
important dans la preuve du résultat �nal.
Dans la deuxième partie de cette thèse, nous ra�nons les résultats de Bismut-Lott

pour les images directes des �brés vectoriels plats au cas où le �bré vectoriel plat en ques-
tion est lui-même la cohomologie holomorphe d'un �bré vectoriel le long d'une �bration
plate à �bres complexes. Dans ce contexte, nous donnons une formule de Riemann-
Roch-Grothendieck dans laquelle la classe de Todd du �bré tangent relatif apparaît
explicitement. En remplaçant les classes de cohomologie par des formes explicites qui
les représentent en théorie de Chern-Weil, nous généralisons ainsi des constructions de
Bismut-Lott. Plus précisément, si X est une variété réelle compacte, et si p : N → X
est une �bration plate sur X dont le �bre N est une variété complexes compacte, nous
discutions des propriétés du bicomplexe de di�érentielle dX + ∂N , et nous construisons
les formes de torsion analytique associées. Nous démontrons également des propriétés
fonctorielles de ces formes.



Abstract

This thesis consists of two parts. The �rst part is an article written jointly with
Martin Puchol and Jialin Zhu, the second part is a series of results obtained by myself in
connection with the Riemann-Roch-Grothendieck theorem for �at vector bundles.
Let us be more speci�c on the content of these two parts. In the �rst part, we give an

analytic approach to the behavior of classical Ray-Singer analytic torsion in de Rham the-
ory when a manifold is separated along a hypersurface. More precisely, we give a formula
relating the analytic torsion of the full manifold, and the analytic torsion associated with
relative or absolute boundary conditions along the hypersurface. This result can also be
viewed as a consequence of the Cheeger-Müller theorem that relates analytic torsion to
combinatorial torsion. However, the point of our proof is to obtain a direct proof of this
result, by introducing a cylinder transversal to the hypersurface whose length is made to
tend to +∞. The scattering matrix introduced by Müller in this geometric context plays
an important role in establishing the �nal result.
In the second part of this thesis, we re�ne the results of Bismut-Lott on direct images

of �at vector bundles to the case where the considered �at vector bundle is itself the
�berwise holomorphic cohomology of a vector bundle along a �at �bration by complex
manifolds. In this context, we give a formula of Riemann-Roch-Grothendieck in which the
Todd class of the relative holomorphic tangent bundle appears explicitly. By replacing
cohomology classes by explicit di�erential forms in Chern-Weil theory, we extend the
constructions of Bismut-Lott in this context. More precisely, if X is a compact real
manifold, and if p : N → X is a �at �bration over X whose �ber N is a compact
complex manifold, we discuss the properties of the bicomplex with chain map dX + ∂N .
In this context, we construct explicit analytic torsion forms which transgress the equality
of cohomology classes at the level of di�erential forms, and we establish corresponding
functorial properties of these new analytic torsion forms.
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1. Scattering matrix and analytic torsion

1.0. Introduction.
By a non-compact Riemannian manifold with cylindrical ends, we mean a Riemannian

manifold having an open subset isometric to an in�nite cylinder such that the complement
is compact. Such a manifold could be associated with a scattering matrix, which encodes
how an incoming wave on the cylinder is scattered by the compact part. In [M94], Müller
studied the η-invariants of non-compact Riemannian manifolds with cylindrical ends using
the scattering matrix.
Now we consider a compact Riemannian manifold containing an open subset isometric

to a �nite cylinder. We deform the metric in such a way that the length of the cylinder
tends to in�nity. This process is referred to as taking the adiabatic limit (see [BC89, BF86]
for another kind of adiabatic limit). It �rst appeared in Douglas-Wojciechowski's work
[DW91] on η-invariants. Cappell-Lee-Miller [CLM96] studied the asymptotic behavior of
Laplacians under the adiabatic limit. They showed that an eigenvalue of the Laplacian
either tends to zero (small eigenvalue) or remains uniformly away from zero (large eigen-
value). Park-Wojciechowski [PW06] showed that the asymptotic behavior of certain small
eigenvalues is determined by the scattering matrices obtained as follows : the manifold in
question converges to the disjoint union of two non-compact Riemannian manifolds with
cylindrical ends, each of which gives us a scattering matrix.
In this paper, we concentrate on the asymptotic behavior of Hodge-de Rham operators,

a special kind of Dirac operator, under the adiabatic limit. The scattering matrix plays
a key role in our research.
One of our main results is an asymptotic estimate of the spectrum of Hodge-de Rham

operator under the adiabatic limit. As a consequence, we get an asymptotic gluing
formula for the ζ-determinant of the Hodge-Laplacian (square of the Hodge-de Rham
operator).
Another main result is an asymptotic estimate of the L2-metric on the de Rham coho-

mology group in the adiabatic limit. As a consequence, we get the adiabatic limit of the
torsion associated with the Mayer-Vietoris exact sequence.
Applying the results mentioned above, we obtain an analytic proof of the gluing formula

for analytic torsion.
Let us explain the analytic torsion in more detail. For a �at complex vector bun-

dle F equipped with a Hermitian metric over a compact Riemannian manifold Z, its
Ray-Singer analytic torsion [RS71] is a (weighted) product of the determinants of the
Hodge-Laplacian twisted by F . The Ray-Singer metric on detH•(Z, F ) is the product
of its L2-metric and the Ray-Singer analytic torsion. The Ray-Singer metric has a topo-
logical counterpart, known as the Reidemeister metric [Rei35]. Ray and Singer [RS71]
conjectured that the two metrics coincide. For unitarily �at vector bundles, this con-
jecture was proved independently by Cheeger [Che79] and Müller [M78]. Bismut-Zhang
[BZ92] and Müller [M93] simultaneously considered generalizations of this result. Müller
[M93] extended this result to the case where the dimension of the manifold is odd and
only the metric induced on detF is required to be �at. Bismut-Zhang [BZ92] generalized
this result to arbitrary �at vector bundles with arbitrary Hermitian metrics. There are
also various extensions to the equivariant case [LoR91, Lüc93, BZ94].
Assume that there is a hypersurface Y ⊆ Z cutting Z into two submanifolds Z1, Z2 ⊆

Z, it is natural to expect an additive formula linking the analytic torsions associated
with Z1, Z2 and Z. This problem was �rst formulated by Ray-Singer [RS71] as a possible
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approach to Ray-Singer conjecture. It was proved for unitarily �at vector bundles with
product structure metrics near Y by Lück [Lüc93], Vishik [V95], and proved in full
generality by Brüning-Ma [BM13]. There are also related works of [H98] and [L13].
The family version of the analytic torsion was constructed by Bismut-Lott [BL95]

(BL-torsion). Under the hypothesis that there exists a �berwise Morse function, Bismut-
Goette [BGo1] obtained a family version of the Bismut-Zhang theorem, i.e., a formula
linking BL-torsion to higher Reidemeister torsion ([I02, DWW03, BDKW11], see also
[Goe09] for a survey). It is conjectured (conference on the higher torsion invariants,
Göttingen, September 2003) that there should exist a gluing formula for BL-torsion.
This conjecture may serve as an intermediate step in establishing the relation between
the BL-torsion and the higher Reidemeister torsion in full generality, conjectured by
Igusa [I08]. Zhu [Zhu15] established the desired formula under the same hypothesis as
Bismut-Goette's [BGo1].
Our proof of the gluing formula is analytic. It could be generalized for BL-torsion. Our

strategy was applied by Zhu [Zhu] to prove the gluing formula for BL-torsion under the
hypothesis H•(Y, F ) = 0. We remark that H•(Y, F ) = 0 implies the absence of s-values
(cf. �1.0.2) and the splitting of the Mayer-Vietoris exact sequence.
Let us now give more detail about the matter of this paper.

1.0.1. Manifolds with cylindrical ends and scattering matrices.
Let X be a compact manifold with boundary ∂X = Y . We �x U = ]−1, 0]×Y a collar

neighborhood of ∂X. Let πY : ] − 1, 0] × Y → Y be the natural projection. Let F be
a �at complex vector bundle over X with �at connection ∇F . Using parallel transport
along u ∈ ]− 1, 0], (F |U ,∇F |U) is identi�ed with π∗Y (F |Y ,∇F |U) (cf. (1.2.7)).
We equip X with a Riemannian metric gTX and F with a Hermitian metric hF . Let

gTY be the metric on Y induced by gTX . We suppose that (cf. [BM13, (2.1) and (2.3)])

(1.0.1) gTX
∣∣
U

= du2 + gTY , hF
∣∣
U

= π∗Y
(
hF
∣∣
Y

)
.

For 0 6 R 6∞, set XR = X ∪Y [0, R]×Y . We call UR := U ∪ [0, R]×Y =]−1, R]×Y
the cylindrical part of XR. Let πY :] − 1, R] × Y → Y be the natural projection. Then
F extends to XR in the natural way : (F,∇F )

∣∣
UR

= π∗Y
(
F
∣∣
Y
,∇F

∣∣
Y

)
. We extend equally

gTX and hF to XR in such a way that (1.0.1) holds with U replaced by UR.
Let Ω•(XR, F ) be the vector space of di�erential forms on XR with values in F . Let

dF : Ω•(XR, F )→ Ω•+1(XR, F ) be the de Rham operator induced by ∇F , let dF,∗ be its
formal adjoint (with respect to L2-metric). The Hodge-de Rham operator is de�ned by

(1.0.2) DF
XR

= dF + dF,∗ .

Its square DF,2
XR

is the Hodge-Laplacian.

For R =∞, the spectrum of DF,2
X∞

has an absolutely continuous part (cf. [RS80, �7.2]).
Let H •(Y, F ) ⊆ Ω•(Y, F ) be the kernel of DF

Y , the Hodge-de Rham operator on
Ω•(Y, F ). Set H •(Y, F [du]) = H •(Y, F ) ⊕ H •(Y, F )du. We �x δY > 0 such that
]− δY , δY [∩ Sp(DF

Y ) ⊆ {0}. The scattering matrix (cf. [K65, Theorem 1], [M94, �4])

(1.0.3) C(λ) ∈ End
(
H •(Y, F [du])

)
, λ ∈ ]− δY , δY [ ,

is characterized by the following property : for ω a generalized eigensection (cf. �1.2.3)
of DF

X∞ with eigenvalue λ ∈ ]− δY , δY [, there exist φ ∈H •(Y, F [du]) and

(1.0.4) θ ∈ C∞
(
[0,∞[ ,Ω•(Y, F [du])

)
,
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which is L2-integrable, such that (cf. (1.2.31))

(1.0.5) ω
∣∣
U∞

= e−iλuφ+ eiλuC(λ)φ+ θ .

1.0.2. Asymptotics of the spectrum of Hodge-Laplacian.
Let (Z, gTZ) be a closed Riemannian manifold. Let Y ⊆ Z be a hypersurface cutting

Z into two pieces, say Z1 and Z2. Then ∂Z1 = ∂Z2 = Y and Z = Z1 ∪Y Z2. Let (F,∇F )
be a �at complex vector bundle over Z. Its restriction to Z1 or Z2 is still denoted by F .
Let hF be a Hermitian metric on F . We suppose that gTZ and hF have product structure
near Y , in the sense of (1.0.1).
Proceeding in the same way as �1.0.1, we construct the Riemannian manifold Zj,R

(j = 1, 2), which is Zj with a cylinder of length R attached. For R ∈ [0,∞[, set ZR =
Z1,R ∪Y Z2,R. Then (F,∇F , hF ) extends to ZR in the sense of (1.0.1) and (1.2.7) .

� -� -

?

R R

Z1 Z2

︷ ︸︸ ︷Z1,R ︷ ︸︸ ︷Z2,R

︸ ︷︷ ︸
ZR

∂Z1,R = Y = ∂Z2,R

Figure 1

In the whole paper, we will always put the relative boundary condition on
Z1,R and put the absolute boundary condition on Z2,R (cf. (1.1.5)). Let DF

ZR
be

the Hodge-de Rham operator (cf. (1.0.2)) acting on Ω•(ZR, F ). We de�ne equally DF
Zj,R

(j = 1, 2), the Hodge-de Rham operator acting on Ω•bd(Zj,R, F ) (cf. (1.1.5)).
The eigenvalues of DF

ZR
are classi�ed by Cappell-Lee-Miller [CLM96, Theorem A] ac-

cording to their asymptotic behaviors as R→∞ :

- large eigenvalue (l-value), which remains uniformly away from 0;
- polynomially small eigenvalue (s-value), which tends to zero with speed slower
than R−1−ε for any ε > 0;

- exponentially small eigenvalue (e-value), which lies in [−e−cR, e−cR] for certain
c > 0.

Moreover, there are only �nitely many exponentially small eigenvalues. Park-Wojciechowski
[PW06, Theorem 3.5] gave an estimate of the the s-values lying in [−R−ε, R−ε] in term of
the scattering matrix. They also showed that the e-values are identically zero if∇FhF = 0
[PW06, Proposition 3.9].
In this paper, we show that (see Theorem 1.3.18) : for a Hodge-de Rham operator,

there exists δ > 0, such that the estimate (1.3.142) holds for s-values lying in [−δ, δ],
furthermore, all the e-values are identically zero. We also extend our results to manifolds
with boundaries equipped with relative/absolute boundary condition (see Theorem 1.4.7).
As a consequence, we get an asymptotic gluing formula for the ζ-determinants under the
adiabatic limit, stated in the sequel.
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Let N be the number operator on Ω•(ZR, F ), i.e., for ω ∈ Ωp(ZR, F ), Nω = pω. Let

P : Ω•(ZR, F ) → ker
(
DF,2
ZR

)
be the orthogonal project with respect to the L2-metric.

The ζ-function associated with DF,2
ZR

is de�ned, for s ∈
{
C : Re(s) > 1

2
dimZ

}
, by

(1.0.6) ζR(s) = −Tr

[
(−1)NN

(
DF,2
ZR

)−s
(1− P )

]
.

Then ζR admits a meromorphic extension to the whole complex plane C, which is regular
at 0 ∈ C. Let ζpR(s) be (1.0.6) with DF,2

ZR
replaced by DF,2,(p)

ZR
:= DF,2

ZR

∣∣
Ωp(ZR,F )

. Then

(1.0.7) exp (ζR
′(0)) =

dimZ∏
p=1

(
exp (ζpR

′(0))
)p
,

i.e., it is a weighted product of the ζ-determinants of DF,2,(p)
ZR

. We call exp (ζR
′(0)) the

(weighted) ζ-determinant of DF,2
ZR

. In the same way, we de�ne ζj,R(s), the ζ-function

associated with DF,2
Zj,R

.

Let Cj(λ) ∈ End
(
H •(Y, F [du])

)
(j = 1, 2, λ ∈ R) be the scattering matrix associated

with Ω•(Zj,∞, F ). For p = 0, · · · , dimZ, we denote

(1.0.8) C12 =
(
C−1

2 C1

)
(0) , Cp

12 = C12

∣∣
H p(Y,F )⊕H p−1(Y,F )du

.

Set

χ′(C12) =
dimZ∑
p=0

p(−1)p dim ker (Cp
12 − 1) ,

χ′ =
dimZ∑
p=0

p(−1)p
{

dimHp(Z, F )

− dimHp
bd(Z1, F )− dimHp

bd(Z2, F )
}
,

χ(Y, F ) =
dimY∑
p=0

(−1)p dimHp(Y, F ) ,

(1.0.9)

where H•bd(·, F ) is de�ned by (1.0.24).
For a Hermitian matrix A, we denote by det∗(A) be the product of its non zero eigen-

values.

Theorem 1.0.1. For any ε > 0, as R→ +∞, we have

ζR
′(0)− ζ1,R

′(0)− ζ2,R
′(0)

= 2χ′ logR +
(
χ(Y, F ) + χ′(C12)

)
log 2

+
dimZ∑
p=0

p

2
(−1)p log det∗

(2− Cp
12 − (Cp

12)−1

4

)
+ O(R−1+ε) .

(1.0.10)

We remark that the asymptotic gluing formulas for the ζ-determinants in di�erent
contexts were studied by Müller-Müller [MM06] and Park-Wojciechowski [PW06].
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1.0.3. Analytic torsion and Mayer-Vietoris exact sequence.
For a complex line λ, let λ−1 = λ∗ be its dual. For E a �nite dimensional complex

vector space, its determinant line is de�ned by detE = ΛmaxE. More generally, for a
Z-graded �nite dimensional vector space E• =

⊕n
k=0 E

k, we de�ne

(1.0.11) detE• =
n⊗
k=0

(
detEk

)(−1)k

.

For

(1.0.12) (V •, ∂) : 0→ V 0 → V 1 → · · · → V n → 0

an exact sequence of �nite dimensional complex vector spaces, there is a canonical section
% ∈ detV • : let mj = dim im

(
∂
∣∣
V j

)
, we choose (sj,k)16k6mj in V

j such that they project
to a basis of V j/∂V j−1, then with ∧ksj,k := sj,1 ∧ · · · ∧ sj,mj , we de�ne

(1.0.13) % =
n⊗
j=0

(
(∧k∂sj−1,k) ∧ (∧ksj,k)

)(−1)j

∈ detV • .

Let gV
•
be a Hermitian metric on V •. Let ∂∗ be the adjoint of ∂. Then (∂ + ∂∗)2 =

∂∂∗ + ∂∗∂ preserves each V j. The torsion (cf. [BGS88a, De�nition 1.4]) associated with
(V •, ∂) is de�ned by

(1.0.14) T (V •, ∂) =
∏
j

[
det
(
(∂ + ∂∗)2

∣∣
V j

)](−1)jj/2 ∈ R+ .

Let ‖ · ‖detV • be the metric on detV • induced by gV
•
. We have (cf. [BGS88a, Proposition

1.5])

(1.0.15) T (V •, ∂) = ‖%‖detV • .

We recall that Z1,R, Z2,R, ZR and F are de�ned in �1.0.2. We consider the following
Mayer-Vietoris exact sequence

(1.0.16) · · · → Hp
bd(Z1,R, F )→ Hp(ZR, F )→ Hp

bd(Z2,R, F )→ · · · ,
which is equipped with L2-metrics. We denote by TR its torsion.

Theorem 1.0.2. As R→∞, we have

(1.0.17) TR = 2χ
′(C12)/2Rχ′

dimZ∏
p=0

det∗
(2− Cp

12 − (Cp
12)−1

4

) p
4

(−1)p

+ O(Rχ′−1) .

Viewing the Mayer-Vietoris exact sequence (1.0.16) with R = 0 as an acyclic complex
and applying (1.0.13), we get the canonical section

(1.0.18) % ∈ λ(F ) :=
(

detH•(Z, F )
)−1

⊗ detH•bd(Z1, F )⊗ detH•bd(Z2, F ) .

We use the conventions that Z0 = Z and H•bd(Z0, F ) = H•(Z, F ). Let ζj(s) (j =

0, 1, 2) be the ζ-functions (cf. (1.0.6)) associated with the Hodge-Laplacian DF,2
Zj

. Let

‖ · ‖L2

detH•bd(Zj ,F ) be the L
2-metric on detH•bd(Zj, F ).

The Ray-Singer metric on detH•bd(Zj, F ) (j = 0, 1, 2) is de�ned by

(1.0.19) ‖ · ‖RS
detH•bd(Zj ,F ) = ‖ · ‖L2

detH•bd(Zj ,F ) exp

(
1

2
ζj
′(0)

)
.
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Let ‖ · ‖RS
λ(F ) be the product norm on λ(F ) induced by ‖ · ‖RS

detH•bd(Zj ,F ). The following
theorem is �rst proved by Brüning-Ma [BM13, Theorem 0.3].

Theorem 1.0.3. If gTZ and hF have product structures near Y (cf. (1.0.1)), then

(1.0.20) ‖%‖RS
λ(F ) = 2−

1
2
χ(Y,F ) .

Let T = T0. Then (1.0.20) can be reformulated as follows.

(1.0.21)
1

2
ζ ′(0)− 1

2
ζ1
′(0)− 1

2
ζ2
′(0)− log T =

1

2
χ(Y, F ) log 2 .

In this paper, we give a direct proof of (1.0.21) : by Theorem 1.0.1, 1.0.2, we know that
tR := 1

2
ζ ′R(0)− 1

2
ζ ′1,R(0)− 1

2
ζ ′2,R(0)− log TR tends to 1

2
χ(Y, F ) log 2 as R→∞, meanwhile,

using the anomaly formula for the analytic torsion [BZ92, Theorem 0.1], we know that
tR is independent of R. This proves (1.0.21).
This paper is organized as follows. In �1.1, we review some results concerning the

absolute/relative cohomology of manifolds with boundaries and the Mayer-Vietoris exact
sequence. In �1.2, we review some results concerning the spectrum of the Hodge-Laplacian
on a manifold with cylindrical ends and introduce the scattering matrix. In �1.3, we study
the spectrum of the Hodge-Laplacian on the stretched manifold ZR, and link it to the
scattering theory. In �1.4, we prove similar results for manifolds with boundary. In �1.5,
we prove Theorem 1.0.1. In �1.6, we prove Theorem 1.0.2. In �1.7, we give our new proof
of Theorem 1.0.3.

1.0.4. Notations.
Hereby, we summarize some frequently used notations in this paper.
A manifold (with or without boundary) is usually denoted by X, Y or Z. We denote

by gTX a Riemannian metric on X. We always consider a manifold equipped with a �at
complex vector bundle F , a �at connection ∇F and a Hermitian metric hF .
By Ω•(X,F ), we mean the vector space of di�erential forms on X with values in F .

We denote by Ω•c(X,F ) the subspace of di�erential forms that are compactly supported.
By ‖ · ‖X , we mean the L2-metric on Ω•(X,F ). More precisely, let 〈·, ·〉Λ•(T ∗X)⊗F be

the scalar product on Λ•(T ∗X)⊗F induced by gTX and hF . Let dvX be the Riemannian
volume form on X, then, for ω ∈ Ω•(X,F ), we have

(1.0.22) ‖ω‖2
X =

∫
X

〈ωx, ωx〉Λ•(T ∗X)⊗FdvX(x) .

The scalar product associated with ‖ · ‖X is denoted by 〈·, ·〉X . By ‖ · ‖C 0,X , we mean the
C 0-norm on Ω•(X,F ). More precisely,

(1.0.23) ‖ω‖2
C 0,X = sup

{
〈ωx, ωx〉Λ•(T ∗X)⊗F : x ∈ X

}
.

By dF , we mean the de Rham operator acting on Ω•(X,F ) induced by ∇F . By dF,∗, we
mean the formal adjoint of dF . The Hodge-de Rham operator is de�ned byDF

X = dF+dF,∗.
We denote

(1.0.24) H•abs(X,F ) = H•(X,F ) , H•rel(X,F ) = H•(X, ∂X, F ) .

We write H•bd(X,F ) for short if the choice of abs/rel is clear.
By the L2-metric on H•bd(X,F ), we mean the metric induced by ‖ · ‖X via Hodge

theorem (cf. Theorem 1.1.1).
If A is a self-adjoint operator, we denote by Sp(A) its spectrum.
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For a Hermitian matrix A, we note

(1.0.25) det∗(A) =
∏

λ∈Sp(A)\{0}

λ .
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1.1. Cohomologies for manifolds with boundary.
In this section, we review some basic constructions/results concerning the cohomology

of a compact manifold with boundary.
In �1.1.1, using the language of simplical complex, we de�ne the absolute/relative

cohomology of a compact manifold with boundary with values in a �at vector bundle.
In �1.1.2, we state the Hodge theorem for the absolute/relative cohomology. In �1.1.3,
we state the classical Mayer-Vietoris exact sequence in the language of the simplicial
cohomology together with its interpretation in the language of the de Rham cohomology
and the Hodge theory.

1.1.1. Absolute/Relative cohomology.
Let X be a compact C∞-manifold with boundary ∂X = Y . Let F → X be a �at

complex vector bundle equipped with a �at connection ∇F . Let F ∗ be the dual vector
bundle of F .
Let KX be a smooth triangulation of X, such that KY = KX ∩Y gives a triangulation

of Y . For 0 6 p 6 dimX, let Kp
X ⊆ KX be the set of cells in KX of dimension 6 p.

Let B be the set of barycenters of the simplexes in KX . Let b : KX → B be the obvious
one-to-one map. If a ∈ KX , let [a] be the real line generated by a. Let (C•(KX , F

∗), ∂)
be the complex of simplical chains in KX with values in F ∗. We have

(1.1.1) Cp(KX , F
∗) =

⊕
a∈Kp

X\K
p−1
X

[a]⊗R F
∗
b(a) .

The chain map ∂ maps Cp(KX , F
∗) to Cp−1(KX , F

∗). Then (C•(KY , F
∗), ∂) is a subcom-

plex of (C•(KX , F
∗), ∂). We de�ne the quotient complex

(1.1.2) C•(KX/KY , F
∗) = C•(KX , F

∗)/C•(KY , F
∗) .

For a ∈ KX , let [a]∗ be the real line dual to [a]. Let (C•(KX , F ), ∂̃) be the complex dual
to (C•(KX , F

∗), ∂), more precisely,

(1.1.3) Cp(KX , F ) =
⊕

a∈Kp
X\K

p−1
X

[a]∗ ⊗R Fb(a) '
(
Cp(KX , F

∗)
)∗
,

and ∂̃ is dual to ∂. Let Cp(KX/KY , F ) be the maximal subset of Cp(KX , F ), whose pair-
ing with Cp(KY , F

∗) is zero. Then (C•(KX/KY , F ), ∂̃) is a sub complex of (C•(KX , F ), ∂̃).
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We de�ne

H•(X,F ) = H•
(
C•(KX , F ), ∂̃

)
,

H•(X, ∂X, F ) = H•
(
C•(KX/KY , F ), ∂̃

)
.

(1.1.4)

1.1.2. Hodge Theorem.
Let gTX be a Riemannian metric on X. Let hF be a Hermitian metric on F . We

identify a neighborhood of ∂X to ] − 1, 0] × Y . Let (u, y) (u ∈] − 1, 0], y ∈ Y ) be its
coordinates. We suppose that (1.0.1) holds.
We equip ∂X with the absolute/relative boundary condition :

Ω•abs(X,F ) :=
{
ω ∈ Ω•(X,F ) : i ∂

∂u
ω = 0 on Y

}
,

Ω•rel(X,F ) :=
{
ω ∈ Ω•(X,F ) : du ∧ ω = 0 on Y

}
.

(1.1.5)

We write Ω•bd(X,F ) for short if the choice of abs/rel is clear.
Let dF,∗ be the formal adjoint of the de Rham operator dF with respect to the L2-metric
〈·, ·〉X (cf. �1.0.4). The Hodge-de Rham operator acting on Ω•bd(X,F ) is de�ned by

(1.1.6) DF
X = dF + dF,∗ .

Set

Ω•abs,D2(X,F ) :=
{
ω ∈ Ω•(X,F ) : i ∂

∂u
ω = 0 , i ∂

∂u
dFω = 0 on Y

}
,

Ω•rel,D2(X,F ) :=
{
ω ∈ Ω•(X,F ) : du ∧ ω = 0 , du ∧ dF,∗ω = 0 on Y

}
.

(1.1.7)

We write Ω•bd,D2(X,F ) for short if the choice of abs/rel is clear.

Let DF,2
X act on Ω•bd,D2(X,F ).

Let Ω•L2(X,F ) be the completion of Ω•(X,F ) with respect to 〈·, ·〉X .
We de�ne the de Rham map P∞ : Ω•(X,F )→ C•(KX , F ) by

(1.1.8) P∞(σ)([a]⊗ v) =

∫
a

(σ, v) ,

where a ∈ KX , v ∈ F ∗b(a), σ ∈ Ω•(Z, F ).
The following Hodge theorem is proved in [RS71, Prposition 4.2, Corollary 5.7] in the

case ∇FhF = 0. The fact that the same proof works in the general case is noticed in
[BM13, Theorem 1.1].

Theorem 1.1.1. We have

(1.1.9) ker
(
DF,2
X

)
= ker

(
DF
X

)
= ker

(
dF
)
∩ ker

(
dF,∗
)
∩ Ω•bd(X,F ) .

The vector space ker
(
DF
X

)
is �nite dimensional.

The following orthogonal decompositions hold,

Ωp
bd(X,F ) = ker

(
DF
X

)
⊕ dFΩp−1

bd,D2(X,F )⊕ dF,∗Ωp+1
bd,D2(X,F ) ,

Ωp
L2(X,F ) = ker

(
DF
X

)
⊕ dFΩp−1

bd,D2(X,F )⊕ dF,∗Ωp+1
bd,D2(X,F ) ,

(1.1.10)

where · denotes the L2-closure.
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For the absolute (resp. relative) boundary condition, the inclusion ker
(
DF
X

)
↪→ ker

(
dF
)
∩

Ω•bd(X,F ) composed with the de Rham map P∞ maps into the vector space of cocycles in
C•(KX , F ) (resp. C•(KX/KY , F )). We obtain an isomorphism

(1.1.11) P∞ : ker
(
DF,2
X

)
→ H•bd(X,F ) .

We de�ne

(1.1.12) Hp
(
Ω•bd(X,F ), dF

)
=

ker
(
dF
)
∩ Ωp

bd(X,F )

dFΩp−1
bd (X,F ) ∩ Ωp

bd(X,F )
.

By Theorem 1.1.1, P∞ induces the following isomorphisms

Hp
(
Ω•abs(X,F ), dF

)
' Hp

abs(X,F ) ,

Hp
(
Ω•rel(X,F ), dF

)
' Hp

rel(X,F ) .
(1.1.13)

1.1.3. Mayer-Vietoris exact sequence.
Let Z be a closed C∞-manifold. Let i : Y ↪→ Z be a compact hypersurface cutting Z

into two pieces, denoted by Z1 and Z2. Then Z = Z1 ∪Y Z2. Let F → Z be a complex
vector bundle equipped with a �at connection ∇F . We equip ∂Z1 (resp. ∂Z2) with
relative (resp. absolute) boundary condition. All the notations and results developed in
the previous subsections can be applied to (Z1, F |Z1 ,∇F |Z1) and (Z2, F |Z2 ,∇F |Z2).
Let KZ1 , KZ2 be smooth triangulations of Z1, Z2. Let KY be a smooth triangulation of

Y , such that KY = KZ1 ∩ Y = KZ2 ∩ Y . Set

(1.1.14) KZ = (KZ1\KY ) ∪ (KZ2\KY ) ∪KY ,

which is a smooth triangulation of Z.
We have the following short exact sequence,

(1.1.15)

0 // (C•(KZ1/KY , F ), ∂̃) // (C•(KZ , F ), ∂̃) // (C•(KZ2 , F ), ∂̃) // 0 .

It induces a long exact sequence

(1.1.16) · · · // Hp
bd(Z1, F )

αp // Hp(Z, F )
βp // Hp

bd(Z2, F )
δp // · · · .

If we equip Z with a Riemannian metric gTZ and F with a Hermitian metric hF . By
(1.1.13) and (1.1.16), we get a long exact sequence
(1.1.17)

· · · // Hp
(
Ω•bd(Z1, F ), dF

) αp // Hp
(
Ω•(Z, F ), dF

) βp // Hp
(
Ω•bd(Z2, F ), dF

) δp // · · · .

Proposition 1.1.2. The maps αp, βp and δp in (1.1.17) are as follows.

- Let [σ] ∈ Hp
(
Ω•bd(Z1, F ), dF

)
. There exists σ′ ∈ [σ] which vanishes on a neighbor-

hood of Y . Extending σ′ by zero, we get σ′′ ∈ Ωp(Z, F ). We have αp([σ]) = [σ′′].
- Let [σ] ∈ Hp

(
Ω•(Z, F ), dF

)
. There exists σ′ ∈ [σ] such that σ′′ := σ′

∣∣
Z2
∈

Ω•bd(Z2, F ). We have βp([σ]) = [σ′′].
- Let [σ] ∈ Hp

(
Ω•bd(Z2, F ), dF

)
. There exists σ′ ∈ Ω•(Z, F ) such that σ′

∣∣
Z2
∈ [σ].

Set σ′′ = dFσ′
∣∣
Z1
. We have δp([σ]) = [σ′′].
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Let DF
Z be the Hodge-de Rham operator on Ω•(Z, F ). Let DF

Zj
(j = 1, 2) be the

Hodge-de Rham operator on Ω•bd(Zj, F ). Set

(1.1.18) H •(Z, F ) = kerDF
Z , H •

bd(Zj, F ) = kerDF
Zj
, for j = 1, 2 .

Applying Theorem 1.1.1, (1.1.16) induces the following long exact sequence,

(1.1.19) // H p
bd(Z1, F )

αp // H p(Z, F )
βp // H p

bd(Z2, F )
δp // .

We recall that 〈·, ·〉· is de�ned in �1.0.4.
The following proposition is a consequence of Theorem 1.1.1 and Proposition 1.1.2.

Proposition 1.1.3. For ω ∈H p
bd(Z1, F ) and µ ∈H p(Z, F ), we have

(1.1.20)
〈
αp(ω), µ

〉
Z

=
〈
ω, µ

〉
Z1
.

For ω ∈H p(Z, F ) and µ ∈H p
bd(Z2, F ), we have

(1.1.21)
〈
βp(ω), µ

〉
Z2

=
〈
ω, µ

〉
Z2
.

For ω ∈H p
bd(Z2, F ) and µ ∈H p+1

bd (Z1,R, F ), we have

(1.1.22)
〈
δp(ω), µ

〉
Z1

=
〈
ω, i ∂

∂u
µ
〉
Y
.

1.2. Hodge-de Rham operators on manifolds with cylindrical ends.
Let Z∞ be a Riemannian manifold with cylindrical ends, i.e., there exist a closed

Riemannian manifold Y and an isometric inclusion R+×Y ⊆ Z∞ such that Z∞\
(
R+×Y

)
is compact. In this section, we review some properties of the Hodge Laplacian on Z∞.
In �1.2.1, we consider the Hodge-de Rham operator acting on a closed manifold together

with an additional odd Grassmannian variable du. In later subsections, u will serve as the
coordinate on R+. In �1.2.2, we study the eigensections of the Hodge-de Rham operator
acting on I × Y , where I is a bounded open interval. In �1.2.3, we study the generalized
eigensections of the Hodge-de Rham operator acting on Z∞. In particular, (following
[M94]) we de�ne the scattering matrix and link it to the generalized eigensections. In
�1.2.4, we study the generalized eigensections associated with the eigenvalue 0.

1.2.1. Hodge-de Rham operator with an additional odd Grassmannian variable.
Let Y be a closed C∞-manifold. Let (F,∇F ) be a �at complex vector bundle over Y .

Let gTY be a Riemannian metric on Y . Let hF be a Hermitian metric on F . Let DF
Y be

the Hodge-de Rham operator (cf. �1.0.4) acting on Ω•(Y, F ).
Set

(1.2.1) H •(Y, F ) = kerDF,2
Y .

For µ ∈ R, let Eµ(Y, F ) be the eigenspace of DF
Y associated with the eigenvalue µ.

Let du be an additional odd Grassmannian variable, such that (du)2 = 0. Let Ω•(Y, F [du])
be the algebra generated by Ω•(Y, F ) and du, i.e.,

(1.2.2) Ω•(Y, F [du]) = Ω•(Y, F )⊕ Ω•(Y, F )du .

We equip Ω•(Y, F [du]) with a grading : the degree p component is Ωp(Y, F )⊕Ωp−1(Y, F )du.
The L2-norm ‖ · ‖Y and its associated scalar product 〈·, ·〉Y on Ω•(Y, F ) (cf. �1.0.4)

extend to Ω•(Y, F [du]): for any τ0, τ1 ∈ Ω•(Y, F ),

(1.2.3) ‖τ0 + du ∧ τ1‖2
Y = ‖τ0‖2

Y + ‖τ1‖2
Y .



LIMITES ADIABATIQUES ET FIBRATIONS HOLOMORPHES PLATES 11

We de�ne the actions du∧, i ∂
∂u

and c( ∂
∂u

) on Ω•(Y, F [du]) as follows, for τ0, τ1 ∈ Ω•(Y, F ),

(1.2.4) du ∧ (τ0 + du ∧ τ1) = du ∧ τ0 , i ∂
∂u

(τ0 + du ∧ τ1) = τ1 , c( ∂
∂u

) = du ∧ −i ∂
∂u
.

The action of DF
Y on Ω•(Y, F ) extends to Ω•(Y, F [du]) as follows,

(1.2.5) DF
Y (du ∧ τ) = −du ∧DF

Y τ , for τ ∈ Ω•(Y, F ) .

Let H •(Y, F [du]) be the kernel of the extended action. Let Eµ(Y, F [du]) be the eigenspace
of the extended action associated with the eigenvalue µ. We have

H •(Y, F [du]) = H •(Y, F )⊕H •(Y, F )du ,

Eµ(Y, F [du]) = Eµ(Y, F )⊕ E−µ(Y, F )du .
(1.2.6)

We remark that c( ∂
∂u

) exchanges E±µ(Y, F [du]).

1.2.2. Hodge-de Rham operator on a cylinder.
Set I = ]a, b[⊆ R. We consider the cylinder I × Y . Let (u, y) (u ∈ I, y ∈ Y ) be the

coordinates. Let πY : I × Y → Y be the natural projection. We equip I × Y with the
product metric (cf. (1.0.1)).
The pull back of F by πY is a �at vector bundle over I × Y , which is still denoted by

F . Its �at connection is de�ned by

(1.2.7) ∇F = du ∧ ∂

∂u
+∇F

∣∣
Y
.

The pull back metric on F is still denoted hF .
We have the canonical identi�cation

(1.2.8) Ω•(I × Y, F ) ' C∞
(
I,Ω•(Y, F [du])

)
.

For ω ∈ Ω•(I × Y, F ), u ∈ I, let ωu ∈ Ω•(Y, F [du]) be the value of the corresponding
function at u. For τ ∈ Ω•(Y, F [du]), let π∗Y τ ∈ Ω•(I × Y, F ) be the di�erential form
corresponding to the constant function τ on I. For any ω, ω′ ∈ Ω•(I × Y, F ), we have

(1.2.9) 〈ω, ω′〉I×Y =

∫
I

〈ωu, ω′u〉Y du .

Let DF
IY be the Hodge-de Rham operator acting on Ω•(I × Y, F ). We have

(1.2.10) DF
IY = c( ∂

∂u
)
∂

∂u
+DF

Y .

By the Green Formula, for ω1, ω2 ∈ Ω•(I × Y, F ), we have

(1.2.11)
〈
DF
IY ω1, ω2

〉
I×Y −

〈
ω1, D

F
IY ω2

〉
I×Y =

〈
c( ∂
∂u

)ω1,b, ω2,b

〉
Y
−
〈
c( ∂
∂u

)ω1,a, ω2,a

〉
Y
.

Set

(1.2.12) δY = min
{
|µ| : µ ∈ Sp(DF

Y )\{0}
}
.

Let ω ∈ Ω•(I × Y, F ) such that DF
IY ω = λω with |λ| < δY . A direct calculation yields

ω = e−iuλ
(
φ−0 − ic( ∂∂u)φ−0

)
+ eiuλ

(
φ+

0 + ic( ∂
∂u

)φ+
0

)
+
∑
µ6=0

{
e−
√
µ2−λ2u

(
φ−µ −

µ− λ√
µ2 − λ2

c( ∂
∂u

)φ−µ
)

+ e
√
µ2−λ2u

(
φ+
µ +

µ− λ√
µ2 − λ2

c( ∂
∂u

)φ+
µ

)}
,

(1.2.13)
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where µ ∈ Sp(DF
Y ), φ±0 ∈ H •(Y, F ), φ±µ ∈ E •µ (Y, F [du]) (as convention, φ±µ = 0 for

µ /∈ Sp(DF
Y )). Set

(1.2.14) ωzm,± = e±iuλ
(
φ±0 ± ic( ∂∂u)φ±0

)
, ωzm = ωzm,− + ωzm,+ .

The ωzm is called the zeromode of ω. Set

ωµ,± = e±
√
µ2−λ2u

(
φ±µ ±

µ− λ√
µ2 − λ2

c( ∂
∂u

)φ±µ

)
, ωµ = ωµ,− + ωµ,+ ,

ω± =
∑
µ6=0

ωµ,± , ωnz = ω− + ω+ .

(1.2.15)

We have the following decomposition

(1.2.16) ω = ωzm + ωnz = ωzm +
∑
µ6=0

(ωµ,+ + ωµ,−) .

Furthermore, the above decomposition is �berwise orthogonal, i.e., for u ∈ I, and µ′ 6= µ,
we have

(1.2.17)
〈
ωzm
u , ωµ,+u + ωµ,−u

〉
Y

= 0 ,
〈
ωµ,+u + ωµ,−u , ωµ

′,+
u + ωµ

′,−
u

〉
Y

= 0 .

For a < u < v < b, a simple estimate yields

(1.2.18) ‖ω−v ‖Y 6 e−(v−u)
√
δ2
Y −λ2‖ω−u ‖Y , ‖ω+

u ‖Y 6 e−(v−u)
√
δ2
Y −λ2‖ω+

v ‖Y .
By (1.2.4) and (1.2.14), ‖ωzm

u ‖Y does not depend on u ∈ I. We denote

(1.2.19) ‖ωzm‖Y = ‖ωzm
u ‖Y .

Lemma 1.2.1. For eigensections ω1, ω2 ∈ Ω•(I × Y, F ) with eigenvalue λ ∈] − δY , δY [,
we have

〈ωnz
1 , ω

nz
2 〉I×Y 6

( 1

1− e−
√
δ2
Y −λ2(b−a)

)2

· 1√
δ2
Y − λ2

· ‖ω1‖∂(I×Y ) · ‖ω2‖∂(I×Y ) ,

〈ωzm
1 , ωzm

2 〉Y 6
1

2
‖ω1‖∂(I×Y ) · ‖ω2‖∂(I×Y ) .

(1.2.20)

Proof. The �rst inequality in (1.2.20) comes from (1.2.9), (1.2.12), (1.2.15), (1.2.17) and
Cauchy-Schwarz inequality. The second inequality in (1.2.20) comes from (1.2.19). �

1.2.3. Spectrum of Hodge-de Rham operators on manifolds with cylindrical ends.
Let (Z∞, g

TZ∞) be a non-compact complet manifold with cylindrical end Y , i.e., there
exists a subset U ⊆ Z∞ isometric to R+× Y such that Z∞\U is compact.
Let (F,∇F ) be a �at complex vector bundle over Z∞. Using parallel transport along ∂

∂u
,

(F |U ,∇F |U) is identi�ed with π∗Y (F |Y ,∇F |U), i.e., (1.2.7) holds. Let hF be a Hermitian
metric on F . We suppose that (F |U , hF |U) satis�es (1.0.1).
Let DF

Z∞ be the Hodge-de Rham operator acting on Ω•c(Z∞, F ). By [M94, Theorem
3.2], DF

Z∞ is essentially self-adjoint. Its self-adjoint extension is still denoted by DF
Z∞ .

Let Ω•L2(Z∞, F ) be L2-completion of Ω•c(Z∞, F ), then

(1.2.21) Ω•L2(Z∞, F ) = E •pp(Z∞, F )⊕ E •sc(Z∞, F )⊕ E •ac(Z∞, F ) ,

where the vector spaces on the right hand side are, sequentially, associated with purely
point (p.p.) spectrum, singularly continuous (s.c.) spectrum and absolutely continuous
(a.c.) spectrum of DF

Z∞ (cf. [RS80, chapter 7.2]). Let DF
Z∞,pp, D

F
Z∞,sc and D

F
Z∞,ac be the

restriction of DF
Z∞ to the corresponding vector subspaces.
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For λ ∈ R, let Eλ ⊆ Ω•(Z∞, F ) be the vector subspace of generalized eigensections
of DF

Z∞ associated with λ (cf. [Bere68, Chapter 5]). In this paper, it is su�cient to
understand

(
Eλ
)
λ∈R as a family of vector subspaces of Ω•(Z∞, F ) satisfying :

- for ωλ ∈ Eλ, we have DF
Z∞ωλ = λωλ ;

- for ω ∈ E •ac(Z∞, F ) ∩ Ω•(Z∞, F ), there exists a smooth family ωλ ∈ Eλ, such that
ω =

∫
R ωλdλ.

By de�nition, we have Eλ∩Ω•L2(Z∞, F ) = 0. As a consequence, a generalized eigensection
is determined by its restriction to the cylinder.
On the cylinder, all the analysis done in �1.2.2 are still valid. We will continue to use

the terminologies 'zeromode', 'non-zeromode', etc.
Before describing these Eλ in more detail, we need a model operator. We recall that

Ω•(Y, F [du]), H •(Y, F ) and Eµ(Y, F ) are de�ned in �1.2.1. Let

(1.2.22) Π : Ω•(Y, F [du])→H •(Y, F )du⊕
⊕
µ>0

(
(1− du)Eµ(Y, F )⊕ (1 + du)E−µ(Y, F )

)
be the orthogonal projection. We de�ne the APS boundary condition ([APS75])

(1.2.23) Ω•Π(R+× Y, F ) =
{
ω ∈ Ω•(R+× Y, F ) : ω0 ∈ ker(Π)

}
,

where ω0 = ωu
∣∣
u=0
∈ Ω•(Y, F [du]) is de�ned in �1.2.2. Let DF

R+Y
be the Hodge-de Rham

operator on R+× Y with domain Ω•Π(R+ × Y, F ). Then DF
R+Y

only has a.c. spectrum.
Let j : R+× Y ↪→ Z∞ be the canonical inclusion. Then j induces the inclusion

(1.2.24) J : Ω•L2(R+× Y, F ) ↪→ Ω•L2(Z∞, F ) .

We de�ne the wave operators

(1.2.25) W±
(
DF
Z∞ , D

F
R+Y

)
= lim

t→±∞
eitD

F
Z∞Je

−itDFR+Y .

By [M94, Proposition 4.9], W±
(
DF
Z∞ , D

F
R+Y

)
are well-de�ned.

The following theorem is established by Müller [M94, Theorem 4.1, Theorem 4.10].

Theorem 1.2.2. The operator DF
Z∞ has no singularly continuous spectrum.

For t > 0, the operator exp
(
−tDF,2

Z∞,pp

)
is of trace class.

The wave operator W±
(
DF
Z∞ , D

F
R+Y

)
gives a unitary equivalence between DF

R+Y
and

DF
Z∞,ac, i.e., W±

(
DF
Z∞ , D

F
R+Y

)
: Ω•L2(R+ × Y, F ) → E •ac(Z∞, F ) is unitary, and the fol-

lowing diagram commutes,

(1.2.26) Ω•L2(R+ × Y, F )

W±

(
DFZ∞ ,D

F
R+Y

)
��

DFR+Y // Ω•L2(R+ × Y, F )

W±

(
DFZ∞ ,D

F
R+Y

)
��

E •ac(Z∞, F )
DFZ∞ // E •ac(Z∞, F ) .

Set

(1.2.27) C
(
DF
Z∞ , D

F
R+Y

)
= W ∗

+

(
DF
Z∞ , D

F
R+Y

)
W−

(
DF
Z∞ , D

F
R+Y

)
,

which acts on Ω•L2(R+ × Y, F ). Then C
(
DF
Z∞ , D

F
R+Y

)
commutes with DF

R+Y
.
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We remark that any generalized eigensection of DF
R+Y

associated with λ ∈] − δY , δY [
takes the following form,

(1.2.28) E0(φ, λ) = e−iλu(φ− ic( ∂
∂u

)φ) + eiλu(φ+ ic( ∂
∂u

)φ) ,

where φ ∈H •(Y, F ). Since C
(
DF
Z∞ , D

F
R+Y

)
commutes with DF

R+Y
, C
(
DF
Z∞ , D

F
R+Y

)
sends

E0(φ, λ) to E0(φ′, λ) for certain φ′ ∈H •(Y, F ).

De�nition 1.2.3. For λ ∈]− δY , δY [, let C(λ) ∈ End(H •(Y, F )) such that

(1.2.29) C
(
DF
Z∞ , D

F
R+Y

)
E0(φ, λ) = E0(C(λ)φ, λ) .

We extend the action of C(λ) to H •(Y, F [du]) by demanding

(1.2.30) C(λ)c( ∂
∂u

) = −c( ∂
∂u

)C(λ) .

We call C(λ) the scattering matrix associated with DF
Z∞ .

The following property is stated in [M94, �4].

Proposition 1.2.4. Each generalized eigensection of DF
Z∞,ac associated with λ ∈]−δY , δY [

takes the following form over R+× Y ' U ⊆ Z∞ :

(1.2.31) E(φ, λ) = e−iλu(φ− ic( ∂
∂u

)φ) + eiλuC(λ)(φ− ic( ∂
∂u

)φ) + θ(φ, λ) ,

where φ ∈H •(Y, F ) and θ(φ, λ) ∈ Ω•L2(R+ × Y, F ). Furthermore, for u ∈ R+,

(1.2.32) θu(φ, λ) ⊥H •(Y, F [du]) .

Conversely, for φ ∈ H •(Y, F ) and λ ∈ ] − δY , δY [, there exists a unique generalized
eigensection E(φ, λ) of DF

Z∞,ac satisfying (1.2.31).

We remark that E(φ, λ) depends linearly on φ and analytically on λ (cf. [M94, �4]).
Since H •(Y, F ) is �nite dimensional, there exists C > 0 such that, for any φ ∈H •(Y, F )
and λ ∈ ]− δY /2, δY /2[, we have

(1.2.33)
∥∥E(φ, λ)

∥∥
Z∞\U

6 C
∥∥φ∥∥

Y
.

We list below several properties of C(λ) (cf. [M94, �4]).

Proposition 1.2.5. The following properties hold

- C(λ) depends analytically on λ ;
- C(λ) ∈ End(H •(Y, F [du])) is unitary ;
- C(λ) preserves H p(Y, F ) and H p(Y, F )du for any p ;
- C(λ)C(−λ) = 1, in particular, C(0)2 = 1 .

1.2.4. Extended L2-solutions.
Set

(1.2.34) H •
L2(Z∞, F ) = Ω•L2(Z∞, F ) ∩ ker

(
DF,2
Z∞

)
,

The elements of H •
L2(Z∞, F ) are called L2-solutions of DF,2

Z∞
ω = 0.

We recall that the decomposition ω = ωzm + ωzn = ωzm + ω− + ω+ is given in (1.2.16).

De�nition 1.2.6. Set

(1.2.35) H •(Z∞, F ) =
{

(ω, ω̂) ∈ ker
(
DF,2
Z∞

)
⊕H •(Y, F [du]) : ω+ = 0 , ωzm = π∗Y ω̂

}
,

The elements of H •(Z∞, F ) are called extended L2-solutions of DF,2
Z∞
ω = 0.
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Remark 1.2.7. In fact, H •(Z∞, F ) is the vector subspace spanned by H •
L2(Z∞, F ) and

generalized eigensections of DF
Z∞ associated with 0, i.e.,

(1.2.36) H •(Z∞, F ) = H •
L2(Z∞, F )⊕

{
E(φ, 0) : φ ∈H •(Y, F )

}
,

where E(φ, 0) = E(φ, λ)
∣∣
λ=0

is given by (1.2.31).

Proposition 1.2.8. For (ω, ω̂) ∈H •(Z∞, F ), we have

(1.2.37) dFω = dF,∗ω = 0 .

Proof. By (1.2.13), both dFω and dF,∗ω are L2-sections, which are orthogonal with respect
to the L2-metric. Then dFω + dF,∗ω = DFω = 0 implies (1.2.37). �

Comparing (1.2.13) and Proposition 1.2.8, we get the following decomposition of (ω, ω̂) ∈
H •(Z∞, F ) on the cylinder U ,

(1.2.38) ω
∣∣
U

= π∗Y ω̂ +
∑

µ>0 , µ∈Sp(DFY )

e−µu
(
τµ,1 − du ∧ τµ,2

)
,

where τµ,1 ∈ Ω•(Y, F ), τµ,2 ∈ Ω•−1(Y, F ), and

(1.2.39) dF τµ,1 = dF,∗τµ,2 = 0 , dF,∗τµ,1 = µτµ,2 , dF τµ,2 = µτµ,1 .

De�nition 1.2.9. We de�ne
RdF : H •(Z∞, F )→ Ω•−1(R+× Y, F ) ,

RdF,∗ : H •(Z∞, F )→ Ω•+1(R+× Y, F ) ,
(1.2.40)

such that, for any (ω, ω̂) ∈H •(Z∞, F ), whose expansion is given by (1.2.38), we have

(1.2.41) RdF (ω, ω̂) =
∑
µ>0

1

µ
e−µuτµ,2 , RdF,∗(ω, ω̂) =

∑
µ>0

1

µ
e−µudu ∧ τµ,1 .

Proposition 1.2.10. The following identities hold :

dFRdF (ω, ω̂) = ω|R+×Y − π∗Y ω̂ , dF,∗RdF (ω, ω̂) = 0 ,

dF,∗RdF,∗(ω, ω̂) = ω|R+×Y − π∗Y ω̂ , dFRdF,∗(ω, ω̂) = 0 .
(1.2.42)

Proof. These are direct consequences of (1.2.38), (1.2.39) and (1.2.41). �

De�nition 1.2.11. Set

(1.2.43) L • =
{
ω̂ ∈H •(Y, F [du]) : there exists ω such that (ω, ω̂) ∈H •(Z∞, F )

}
,

called the set of limiting values of H •(Z∞, F ).

The scattering matrix associated with DF
Z∞ is still denoted by C(λ). Set C = C(0).

By (1.2.31), Proposition 1.2.5 and the fact that L • =
⊕

L p, we get

(1.2.44) L • = im(C + 1) = ker(C − 1) .

Let PL : H •(Y, F [du])→ L • be the orthogonal projection. We have

(1.2.45) C = 2PL − 1 .

We recall that the operator i ∂
∂u

acting on H •(Y, F [du]) is de�ned by (1.2.4). As con-
sequences of (1.2.30), (1.2.44) and Proposition 1.2.5, there exist L p

abs ⊆ H p(Y, F ) and
L p

rel ⊆H p−1(Y, F )du such that

(1.2.46) L p = L p
abs ⊕L p

rel , L p,⊥
abs = i ∂

∂u
L p+1

rel ,



16 YEPING ZHANG

where L p,⊥
abs ⊆ H p(Y, F ) is the orthogonal complement of L p

abs. We call L •
abs/rel the

absolute/relative component of L •.
We have the obvious short exact sequence

(1.2.47) 0 −→H •
L2(Z∞, F ) −→H •(Z∞, F ) −→ L • −→ 0 .

We denote

(1.2.48) H •
abs/rel(Z∞, F ) =

{
(ω, ω̂) ∈H •(Z∞, F ) : ω̂ ∈ L •

abs/rel

}
.

We get the following short exact sequence

(1.2.49) 0 −→H •
L2(Z∞, F ) −→H •

abs/rel(Z∞, F ) −→ L •
abs/rel −→ 0 .

1.3. Asymptotic properties of the spectrum.
We recall that ZR, F and DF

ZR
are de�ned in �1.0.2. In this section, we study the

asymptotic behavior of Sp
(
DF
ZR

)
as R→∞.

In �1.3.1, we construct ZR. In �1.3.2, we construct a model space of the eigensections
of DF

ZR
. In �1.3.3, we estimate the kernel of DF,2

ZR
. In �1.3.4, we estimate the small

eigenvalues of DF
ZR
.

1.3.1. Gluing of two manifolds with the same boundary.
Let Z be a closed manifold. Let i : Y ↪→ Z be a compact hypersurface such that

Z\Y = Z1 ∪ Z2 and ∂Z1 = ∂Z2 = Y . Then Z = Z1 ∪Y Z2.
Let Uj ⊆ Zj (j = 1, 2) be a collar neighborhood of ∂Zj ' Y . More precisely, we �x the

di�eomorphisms

(1.3.1) i1 : ]− 1, 0]× Y → U1 , i2 : [0, 1[× Y → U2 ,

such that ij({0} × Y ) = ∂Zj (j = 1, 2). Set U = U1 ∪Y U2 ⊆ Z. Then i1 and i2 induce
the identi�cation

(1.3.2) i : ]− 1, 1[× Y → U ⊆ Z .

Let (F,∇F ) be a �at vector bundle over Z.
Let gTZ be a Riemannian metric on Z. Let hF be a Hermitian metric on F . We

suppose that (1.0.1) holds.
Set

Z1,R = Z1 ∪Y [0, R]× Y , Z2,R = Z2 ∪Y [−R, 0]× Y , for 0 6 R 6∞ ,

Z1,∞ = Z1 ∪Y [0,∞[×Y , Z2,∞ = Z2∪Y ]−∞, 0]× Y ,
(1.3.3)

where the gluing identi�es ∂Zj ' Y (j = 1, 2) to {0} × Y . For 0 6 R <∞, we de�ne

fR : [0, 2R]× Y → [−2R, 0]× Y
(u, y) 7→ (u− 2R, y) .

(1.3.4)

Set

(1.3.5) ZR = Z1,2R ∪fR Z2,2R = Z1,R ∪Y Z2.R .

Then (F,∇F ) extends to a �at vector bundle over ZR such that (1.2.7) holds. Moreover,
gTZ and hF extend to ZR such that (1.0.1) holds.
In the sequel, all the canonical projections from [−R, 0]×Y , [0, R]×Y and [−R,R]×Y

(0 6 R 6∞) onto Y will simply be denoted by πY if there is no confusion.
In the sequel, for 0 6 R 6 ∞, [0, R] × Y ⊆ Z1,R (resp. [−R, 0] × Y ⊆ Z2,R), the

cylindrical part of Z1,R (resp. Z2,R), will be refered to as I1,RY (resp. I2,RY ); if R <∞,
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the cylindrical part of ZR, i.e., the gluing of I1,RY and I2,RY , will be refered to as IRY .
On I1,RY , we use the coordinates (u1, y) with u1 ∈ [0, R], y ∈ Y ; on I2,RY , we use the
coordinates (u2, y) with u2 ∈ [−R, 0], y ∈ Y ; on IRY , we use the coordinates (u, y) with
u ∈ [−R,R], y ∈ Y . Under the identi�cations I1,2RY ' I2,2RY ' IRY induced by (1.3.5),
the transformation of the coordinates is given by

u = u1 −R = u2 +R .(1.3.6)

For A ⊆ R, set
Ij,RY (A) =

{
(uj, y) ∈ Ij,RY : uj ∈ A

}
, for j = 1, 2 ,

IRY (A) =
{

(u, y) ∈ IRY : u ∈ A
}
.

(1.3.7)

We will always use the following identi�cations : for R′ 6 R,

(1.3.8) Zj,R′ ⊆ Zj,R , for j = 1, 2 ,

which is the unique isometric inclusion �xing Zj,0 ; for R′ 6 2R,

(1.3.9) Zj,R′ ⊆ Zj,2R ⊆ ZR , for j = 1, 2 ,

where the second inclusion is induced by (1.3.5).
Let DF

ZR
be the Hodge-de Rham operator acting on Ω•(ZR, F ) (see �1.0.4).

1.3.2. Models of eigenspaces associated to small eigenvalues.
Let H •

L2(Zj,∞, F ) and H •(Zj,∞, F ) (j = 1, 2) be as (1.2.34) and (1.2.35) with Z∞
replaced by Zj,∞ and u replaced by uj (cf. (1.3.1)). It is important to notice that ∂

∂u2

points to the inner side of Z2. This is di�erent from the choice in (1.2.35). Set

H •(Z12,∞, F ) =
{

(ω1, ω2, ω̂) : (ω1, ω̂) ∈H •(Z1,∞, F ) ,

(ω2, ω̂) ∈H •(Z2,∞, F )
}
.

(1.3.10)

Let L •
j ⊆ H •(Y, F [du]) (j = 1, 2) be the set of limiting values of H •(Zj,∞, F ) (cf.

(1.2.43)). There is a natural injection

H •
L2(Z1,∞, F )⊕H •

L2(Z2,∞, F )→H •(Z12,∞, F )

(ω1, ω2) 7→ (ω1, ω2, 0) .
(1.3.11)

There is a natural surjection

H •(Z12,∞, F )→ L •
1 ∩L •

2

(ω1, ω2, ω̂) 7→ ω̂ .
(1.3.12)

We have the following short exact sequence,

(1.3.13) 0→H •
L2(Z1,∞, F )⊕H •

L2(Z2,∞, F )→H •(Z12,∞, F )→ L •
1 ∩L •

2 → 0 .

Recall that the L2-norm ‖ · ‖· is de�ned in �1.0.4. For (ω1, ω2, ω̂) ∈H •(Z12,∞, F ), set

(1.3.14) ‖(ω1, ω2, ω̂)‖2
H •(Z12,∞,F ),R = ‖ω1‖2

Z1,R
+ ‖ω2‖2

Z2,R
.

We will drop the subscript R, if R = 0. By (1.2.20) and (1.2.35), there exists C > 0,
such that, for any (ω1, ω2, ω̂) ∈H •(Z12,∞, F ),

(1.3.15) ‖(ω1, ω2, ω̂)‖2
H •(Z12,∞,F ),R 6

(
1 + CR

)
‖(ω1, ω2, ω̂)‖2

H •(Z12,∞,F ) .

In the rest of this section, H •(Z12,∞, F ) will serve as the model space of ker
(
DF,2
ZR

)
.
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Recall that δY was de�ned in (1.2.12). For λ ∈ ]− δY , 0[ ∪ ]0, δY [, j = 1, 2, set

Eλ(Zj,∞, F ) =
{

(ω, ωzm) : ω ∈ Ω•(Zj,∞, F ) is a generalized eigensection of DF
Zj,∞

associated with λ , ωzm ∈ Ω•(Ij,∞Y, F ) is the zeromode of ω
}
.

(1.3.16)

Recall that fR is de�ned in (1.3.4). For R > 0, set

Eλ,R(Z12,∞, F ) =
{

(ω1, ω
zm
1 , ω2, ω

zm
2 ) : (ωj, ω

zm
j ) ∈ Eλ(Zj,∞, F ) , for j = 1, 2 ,

ωzm
1

∣∣
I1,∞Y ([0,2R])

= f ∗R
(
ωzm

2

∣∣
I2,∞Y ([−2R,0])

)}
.

(1.3.17)

Let Cj(λ) ∈ End(H •(Y, F [du])) (j = 1, 2) be the scattering matrices associated with
DF
Zj,∞

. For convenience, we take the following de�nition of scattering matrix : Cj(λ) is
the unique matrix such that (1.2.31) holds with u replaced by uj (cf. (1.3.1)). Since ∂

∂u2

points to the inner side of Z2, C2(λ) is the inverse of the scattering matrix in the sense
of De�nition 1.2.3. Set

(1.3.18) C12(λ) = C−1
2 (λ)C1(λ) ∈ End(H •(Y, F [du])) .

For R > 0, set

(1.3.19) ΛR =
{
λ ∈ R : det

(
e4iλRC12(λ)

∣∣
H •(Y,F )

− 1
)

= 0
}

(counting multiplicity). By (1.2.31), (1.3.4) and (1.3.16), we have

(1.3.20)
{
λ ∈ R : Eλ,R(Z12,∞, F ) 6= {0}

}
= ΛR .

For A ⊆ ]− δY , 0[ ∪ ]0, δY [, set

(1.3.21) EA,R(Z12,∞, F ) =
⊕
λ∈A

Eλ,R(Z12,∞, F ) .

For (ω1, ω
zm
1 , ω2, ω

zm
2 ) ∈ EA,R(Z12,∞, F ), set

(1.3.22)
∥∥(ω1, ω

zm
1 , ω2, ω

zm
2 )
∥∥2

EA,R(Z12,∞,F )
=
∥∥ω1

∥∥2

Z1,0
+
∥∥ω2

∥∥2

Z2,0
.

In the rest of this section, EA,R(Z12,∞, F ) will serve as the model space of the eigenspace
of DF

ZR
with eigenvalues in A.

1.3.3. Approximating the kernels.

Let γ ∈ C∞c (R) such that γ > 0, supp(γ) ⊆ [−1
2
, 1

2
] and

∫ 1
2

− 1
2

γ(s)ds = 1. We de�ne

χ2,1 ∈ C∞([−1, 1]) by

(1.3.23) χ2,1(u) =

{
0 if − 1 6 u < 0 ,∫ 2u−1

−1
γ(s)ds if 0 6 u 6 1 .

Then χ2,1(u) = 1 for u > 3
4
. For j = 1, 2, we de�ne χj,R ∈ C∞([−R,R]) by

(1.3.24) χj,R(u) = χ2,1

(
(−1)ju/R

)
.

We may view χj,R as a function on IRY , i.e., for (u, y) ∈ IRY , χj,R(u, y) = χj,R(u).
We recall that the following maps are de�ned in De�nition 1.2.9,

(1.3.25) RdF ,RdF,∗ : H •(Zj,∞, F )→ Ω•(Ij,∞Y, F ) , for j = 1, 2 .
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Composing the identi�cation IRY ' Ij,2RY (j = 1, 2) induced by (1.3.9) and the
injection Ij,2RY ⊆ Ij,∞Y induced by (1.3.8), we get IRY ↪→ Ij,∞Y , which induces

(1.3.26) Ω•(Ij,∞Y, F )→ Ω•(IRY, F ) .

Composing (1.3.25) and (1.3.26), we get

(1.3.27) RdF ,j ,RdF,∗,j : H •(Zj,∞, F )→ Ω•(IRY, F ) , for j = 1, 2 .

De�nition 1.3.1. We de�ne

(1.3.28) FZR , GZR : H •(Z12,∞, F )→ Ω•(ZR, F )

as follows: for (ω1, ω2, ω̂) ∈H •(Z12,∞, F ),

FZR(ω1, ω2, ω̂)
∣∣
Zj,0

= GZR(ω1, ω2, ω̂)
∣∣
Zj,0

= ωj , for j = 1, 2 ,

FZR(ω1, ω2, ω̂)
∣∣
IRY

= π∗Y ω̂ +
2∑
j=1

dF
(
χj,R RdF ,j(ωj, ω̂)

)
,

GZR(ω1, ω2, ω̂)
∣∣
IRY

= π∗Y ω̂ +
2∑
j=1

dF,∗
(
χj,R RdF,∗,j(ωj, ω̂)

)
.

(1.3.29)

By (1.2.42), FZR and GZR are well-de�ned. Furthermore, we have

(1.3.30) dFFZR(ω1, ω2, ω̂) = dF,∗GZR(ω1, ω2, ω̂) = 0 .

Remark 1.3.2. This gluing technique was initiated by Atiyah-Patodi-Singer [APS75].
They glued ω1 and ω2 directly using partitions of unity. The di�erence between the
standard Atiyah-Patodi-Singer gluing and ours is O(e−cR)-small as R→∞.

We recall that Uj ⊆ Zj (j = 1, 2) is a neighborhood of Y = ∂Zj. Gluing the identi�ca-
tions U1 =]−1, 0]×Y , IRY = [−R,R]×Y , U2 = [0, 1[×Y by shifting the coordinates, we
get the identi�cation U1∪IRY ∪U2 =]−R−1, R+1[×Y . Let φR : ]−R−1, R+1[→ ]−1, 1[
be a smooth function such that

(1.3.31) φ(−u) = −φ(u) , φ′(u) > 0 , φR(u) = u+R for u ∈ [−R− 1,−R− 1/2] .

We de�ne a di�eomorphism ϕR : ZR → Z as follows:

ϕR
∣∣
Zj\Uj

= IdZj\Uj , for j = 1, 2 ,

ϕR(u, y) = (φR(u), y) ∈ U1 ∪ U2 ⊆ Z for (u, y) ∈ U1 ∪ IRY ∪ U2 ⊆ ZR .
(1.3.32)

Then ϕR induces the canonical isomorphism H•(ZR, Y ) ' H•(Z, F ).

Proposition 1.3.3. For R′ > R > 1, (ω1, ω2, ω̂) ∈H •(Z12,∞, F ) with ω̂ ∈H •(Y, F ),

(1.3.33) [FZR(ω1, ω2, ω̂)] =
[
FZR′ (ω1, ω2, ω̂)

]
∈ H•(Z, F ) .

Proof. By inserting enough numbers between R and R′, we may assume that R′/R 6 7/6.
We de�ne φ̃R,R′ : [−R,R]→ [−R′, R′] by

(1.3.34) φ̃R,R′(u) =


u−R′ +R if u ∈ [−R,−1

8
R] ,

u− (R′ −R)χ1,R/8(u) if u ∈ [−1
8
R, 0] ,

u+ (R′ −R)χ2,R/8(u) if u ∈ [0, 1
8
R] ,

u+R′ −R if u ∈ [1
8
R,R] .
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We construct a di�eomorphism ϕ̃R,R′ : ZR → ZR′ as follows: the restriction of ϕ̃R,R′ to
Z1,0∪Z2,0 ' ZR\IRY ' ZR′\IR′Y is the identity map, for any (u, y) ∈ IRY , ϕ̃R,R′(u, y) =

(φ̃R,R′(u), y) ∈ IR′Y . Then ϕ̃R,R′ is homotopic to ϕ−1
R′ ◦ ϕR.

Let µ ∈ Ω•(ZR, F ) such that

(1.3.35) µ
∣∣
ZR\IRY

= 0 , µ
∣∣
IRY

=
2∑
j=1

(χj,R − χj,R′) RdF ,j(ωj, ω̂) .

By (1.3.29), (1.3.34) and (1.3.35), we have

(1.3.36) FZR(ω1, ω2, ω̂)− ϕ̃∗R,R′FZR′ (ω1, ω2, ω̂) = dFµ .

Taking the cohomology class of (1.3.36), we terminate the proof. �

We recall that ‖ · ‖· is de�ned by (1.0.22) and ‖ · ‖H •(Z12,∞,F ),R is de�ned by (1.3.14).

Proposition 1.3.4. There exist c > 0, R0 > 0, such that, for R > R0, (ω1, ω2, ω̂) ∈
H •(Z12,∞, F ), we have

(1.3.37) 1− e−cR 6
‖FZR(ω1, ω2, ω̂)‖ZR

‖(ω1, ω2, ω̂)‖H •(Z12,∞,F ),R

6 1 + e−cR .

Proof. It is su�cient to show that

(1.3.38) ‖FZR(ω1, ω2, ω̂)− ωj‖Zj,R 6 e−cR‖ω1‖Zj,0 , for j = 1, 2 .

We will only show the case j = 1.
By our construction, FZR(ω1, ω2, ω̂)− ω1 vanishes on Z1,0. By (1.2.42), we have(

FZR(ω1, ω2, ω̂)− ω1

)∣∣
I1,RY

= dF
(
χ1,R RdF ,1(ω1, ω̂)

)
+ π∗Y ω̂ − ω1

=

(
∂

∂u
χ1,R

)
du ∧RdF ,1(ω1, ω̂) + (χ1,R − 1) (ω1 − π∗Y ω̂) .

(1.3.39)

By the de�nition of χ1,R, ∂
∂u
χ1,R is bounded by 1 and with support in IRY ([−3

4
R,−1

4
R]);

χ1,R − 1 is bounded by 1 and with support in IRY ([−3
4
R, 0]). Then

‖FZR(ω1, ω2, ω̂)− ω1‖Z1,R

6
∥∥RdF ,1(ω1, ω̂)

∥∥
IRY ([− 3

4
R,− 1

4
R])

+ ‖ω1 − π∗Y ω̂‖IRY ([− 3
4
R,0]) .

(1.3.40)

By De�nition 1.2.9, we have

(1.3.41)
∥∥RdF ,1(ω1, ω̂)

∥∥2

IRY ([− 3
4
R,− 1

4
R])
6 δ−2

Y e−
1
2
δY R‖ω1‖2

∂Z1,0
.

By Lemma 1.2.1, (1.2.18) and (1.2.19), we have

‖ω1 − π∗Y ω̂‖
2
IRY ([− 3

4
R,0]) 6

( 1

1− e− 3
4
δY R

)2

· δ−1
Y · ‖ω1 − π∗Y ω̂‖2

∂Z1,R/4 ∪ ∂Z1,R

6
( 1

1− e− 3
4
δY R

)2

· 2δ−1
Y e−

1
2
δY R‖ω1‖2

∂Z1,0
.

(1.3.42)

Comparing (1.3.40)-(1.3.42), it only rests to show that

(1.3.43) ‖ω1‖∂Z1,0 6 C‖ω1‖Z1,0 .
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Let ‖·‖1,Z1,0 be the H1-norm on C∞(Z1,0, F ). We �x ε > 0. By the ellipticity of the
Hodge-de Rham operator, we may suppose that, for any ω ∈ Ω•(Z1,∞, F ),

(1.3.44) ‖ω‖2
1,Z1,0

6 ‖ω‖2
Z1,ε

+ ‖DF
Z1,∞ω‖

2
Z1,ε

.

In particular,

(1.3.45) ‖ω1‖2
1,Z1,0

6 ‖ω1‖2
Z1,ε

.

By the trace theorem, there exists C2 > 0, such that, for any ω1, we have

(1.3.46) ‖ω1‖2
∂Z1,0

6 C2‖ω1‖2
1,Z1,0

.

By (1.3.15), (1.3.45) and (1.3.46), we get (1.3.43). �

For going further, we need a uniform Sobolev inequality on ZR for R > 0. Let m ∈ N
such that m > 1

2
dimZR. We recall that ‖ · ‖C 0,· is de�ned by (1.0.23).

Proposition 1.3.5. There exists C > 0 such that, for R > 0, ω ∈ Ω•(ZR, F ), we have

(1.3.47)
∥∥ω∥∥

C 0,ZR
6 C

(∥∥ω∥∥
ZR

+
∥∥DF,m

ZR
ω
∥∥
ZR

)
.

Proof. By repeating the proof of the classical Sobolev inequality on each ZR, we �nd that
the constant C, which, a priori, depends on R, is uniformly bounded for R > 0. �

Let P ker(DF,2ZR
)

: Ω•(ZR, F )→ ker
(
DF,2
ZR

)
be the orthogonal projection.

De�nition 1.3.6. Set

(1.3.48) FZR = P
ker(DF,2ZR

) ◦ FZR , GZR = P
ker(DF,2ZR

) ◦GZR .

Proposition 1.3.7. There exist c > 0, R0 > 0 such that, for R > R0, (ω1, ω2, ω̂) ∈
H •(Z12,∞, F ), we have

(1.3.49)
∥∥(FZR −FZR)(ω1, ω2, ω̂)

∥∥
C 0,ZR

6 e−cR
∥∥(ω1, ω2, ω̂)

∥∥
H •(Z12,∞,F )

.

As a consequence FZR : H •(Z12,∞, F )→ ker
(
DF,2
ZR

)
is injective for R large enough.

Proof. By (1.2.42) and (1.3.29), supp
((
FZR −GZR

)
(ω1, ω2, ω̂)

)
⊆ IRY , and(

FZR −GZR

)
(ω1, ω2, ω̂)

∣∣
IRY

=
2∑
j=1

( ∂
∂u
χj,R

)(
du ∧RdF ,j(ωj, ω̂) + i ∂

∂u
RdF,∗,j(ωj, ω̂)

)
.

(1.3.50)

More generally, by (1.1.6), (1.2.42) and (1.3.50), for any m ∈ N,

DF,2m
ZR

(
FZR −GZR

)
(ω1, ω2, ω̂)

∣∣
IRY

= (−1)m
2∑
j=1

(
∂2m+1

∂u2m+1
χj,R

)(
du ∧RdF ,j(ωj, ω̂) + i ∂

∂u
RdF,∗,j(ωj, ω̂)

)
.

(1.3.51)

Set

(1.3.52) αm = sup
u∈[−1,1]

∣∣∣∣ ∂m∂umχ2,1(u)

∣∣∣∣ .
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Since supp
(
∂
∂u
χ1,R

)
⊆ [−3

4
R,−1

4
R] and supp

(
∂
∂u
χ2,R

)
⊆ [1

4
R, 3

4
R], we get∥∥∥DF,2m

ZR
(FZR −GZR) (ω1, ω2, ω̂)

∥∥∥2

ZR

6 α2
2m+1R

−4m−2
∥∥RdF ,1(ω1, ω̂)

∥∥2

IRY ([− 3
4
R,− 1

4
R])

+ α2
2m+1R

−4m−2
∥∥RdF ,2(ω2, ω̂)

∥∥2

IRY ([ 1
4
R, 3

4
R])

+ α2
2m+1R

−4m−2
∥∥RdF,∗,1(ω1, ω̂)

∥∥2

IRY ([− 3
4
R,− 1

4
R])

+ α2
2m+1R

−4m−2
∥∥RdF,∗,2(ω2, ω̂)

∥∥2

IRY ([ 1
4
R, 3

4
R])

.

(1.3.53)

By De�nition 1.2.9, we have∥∥RdF ,1(ω1, ω̂)
∥∥2

IRY ([− 3
4
R,− 1

4
R])

+
∥∥RdF,∗,1(ω1, ω̂)

∥∥2

IRY ([− 3
4
R,− 1

4
R])

6 2δ−2
Y e−

1
2
δY R‖ω1‖2

∂Z1,0
,∥∥RdF ,2(ω2, ω̂)

∥∥2

IRY ([ 1
4
R, 3

4
R])

+
∥∥RdF,∗,2(ω2, ω̂)

∥∥2

IRY ([ 1
4
R, 3

4
R])

6 2δ−2
Y e−

1
2
δY R‖ω2‖2

∂Z2,0
.

(1.3.54)

By (1.3.53) and (1.3.54), we have∥∥DF,2m
ZR

(FZR −GZR) (ω1, ω2, ω̂)
∥∥2

ZR

6 α2
2m+1δ

−2
Y R−4m−2e−

1
2
δY R
(
‖ω1‖2

∂Z1,0
+ ‖ω2‖2

∂Z2,0

)
.

(1.3.55)

Proceeding in the same way as (1.3.43), we have

‖ω1‖2
∂Z1,0

+ ‖ω2‖2
∂Z2,0

6 C
(
‖ω1‖2

Z1,0
+ ‖ω2‖2

Z2,0

)
= C

∥∥(ω1, ω2, ω̂)
∥∥2

H •(Z12,∞,F )
.

(1.3.56)

By (1.3.15), (1.3.55) and (1.3.56), for any m ∈ N, there exist cm > 0, Rm > 0 such
that, for any R > Rm, any (ω1, ω2, ω̂) ∈H •(Z12,∞, F ), we have

(1.3.57)
∥∥∥DF,2m

ZR

(
FZR −GZR

)
(ω1, ω2, ω̂)

∥∥∥
ZR
6 e−cmR‖(ω1, ω2, ω̂)‖H •(Z12,∞,F ) .

Set
µ0 = FZR(ω1, ω2, ω̂)− GZR(ω1, ω2, ω̂) ,

µ1 = FZR(ω1, ω2, ω̂)−FZR(ω1, ω2, ω̂) ,

µ2 = GZR(ω1, ω2, ω̂)− GZR(ω1, ω2, ω̂) ,

(1.3.58)

then

(1.3.59)
(
FZR −GZR

)
(ω1, ω2, ω̂) = µ0 + µ1 − µ2 .

By Theorem 1.1.1 and (1.3.30), we have

(1.3.60) µ0 ∈ ker
(
DF,2
ZR

)
, µ1 ∈ im(dF ) , µ2 ∈ im(dF,∗) .

For m > 0, by (1.1.6), DF,2m
ZR

commutes with dF and dF,∗, thus

(1.3.61) DF,2m
ZR

µ1 ∈ im(dF ) , DF,2m
ZR

µ2 ∈ im(dF,∗) .
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As a consequence, DF,2m
ZR

µ0, D
F,2m
ZR

µ1 and DF,2m
ZR

µ2 are mutually orhogonal. For m ∈ N,
by (1.3.59) and (1.3.61), we get∥∥∥DF,2m

ZR
(FZR −FZR)(ω1, ω2, ω̂)

∥∥∥
ZR

=
∥∥∥DF,2m

ZR
µ1

∥∥∥
ZR

6
∥∥∥DF,2m

ZR
(FZR −GZR)(ω1, ω2, ω̂)

∥∥∥
ZR

.
(1.3.62)

By (1.3.57) and (1.3.62), we get

(1.3.63)
∥∥∥DF,2m

ZR
(FZR −FZR)(ω1, ω2, ω̂)

∥∥∥
ZR
6 e−cR

∥∥(ω1, ω2, ω̂)
∥∥

H •(Z12,∞,F )
.

By (1.3.63) and Proposition 1.3.5, we get (1.3.49).
The injectivity of FZR follows from (1.3.37) and (1.3.49). �

Remark 1.3.8. The Hodge decomposition is used in an essential way in (1.3.60). The
proof of Proposition 1.3.7 cannot be applied to general Dirac operators.

Proposition 1.3.9. For ε > 0, there exists R0 > 0 such that, for R > R0, any eigensec-
tion of DF

ZR
associated with λ ∈ ]−R−1−ε, R−1−ε[ is contained in the image of FZR.

Proof. Suppose the contrary, i.e., there exist Ri → +∞, ωi ∈ Ω•(ZRi , F ) and λi ∈
]−R−1−ε

i , R−1−ε
i [, such that

ωi 6= 0 , DF
ZRi

ωi = λiωi ,(1.3.64)

ωi ⊥ im(FZRi
) .(1.3.65)

By Lemma 1.2.1, we may multiply a suitable constant, such that

(1.3.66) ‖ωi‖2
ZRi\IRiY

= ‖ωi‖2
Z1,0

+ ‖ωi‖2
Z2,0

= 1 .

By Lemma 1.2.1 and (1.3.64), there exists C > 0 such that, for T ∈ N and Ri > T ,

(1.3.67) ‖ωi‖2
Z1,T
6 1 + CT .

Thus, for any T ∈ N �xed, the series
(
ωi|Z1,T

)
i
is L2-bounded.

Since λi are bounded, using Rellich's lemma, we may suppose, by extracting a subse-
quence, that

(
ωi|Z1,T

)
i
converges with respect to the k-th Sobolev norm for all k ∈ N. By

the Sobolev imbedding theorem,
(
ωi|Z1,T

)
i
converges with respect to the C 1-norm. Using

a diagonal argument (involving i and T ), we get ω1,∞ ∈ Ω•(Z1,∞, F ) such that, for any
T ∈ N,

(
ωi|Z1,T

)
i
converges to ω1,∞|Z1,T

(with respect to the C 1-norm). Taking the limit
of (1.3.64), we get DF

Z1,∞
ω1,∞ = 0. Taking the limit of (1.3.67), we get

(1.3.68) ‖ω1,∞‖2
Z1,T
6 1 + CT , for T ∈ N .

By (1.2.13) and (1.3.68), ω1,∞ is an extended L2-solution, i.e., there exists ω̂1 such that
(ω1,∞, ω̂1) ∈H •(Z1,∞, F ). In particular,

(1.3.69) ωzm
i

∣∣
∂Z1,0

→ ω̂1 , as i→∞ .

Applying the same argument to ωi|Z2,T
, we �nd (ω2,∞, ω̂2) ∈ H •(Z2,∞, F ) satisfying

the same properties. In particular,

(1.3.70) ωzm
i

∣∣
∂Z2,0

→ ω̂2 , as i→∞ .
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By (1.2.14), we have

(1.3.71) ωzm,±
i

∣∣
∂Z2,0

= e±2
√
−1Riλiωzm,±

i

∣∣
∂Z1,0

.

Since Riλi → 0, by (1.3.69)-(1.3.71), we get

(1.3.72) ω̂1 = ω̂2 .

Then (ω1,∞, ω2,∞, ω̂1) ∈H •(Z12,∞, F ).
Set

(1.3.73) ω̃i = FZRi
(ω1,∞, ω2,∞, ω̂1) .

Case 1, ω̂1 6= 0 : We want to show that 〈ωi, ω̃i〉 → ∞ as i → ∞, which contradicts
(1.3.65).
We have

(1.3.74) 〈ωi, ω̃i〉 = 〈ωi, ω̃i〉ZRi\IRiY + 〈ωnz
i , ω̃

nz
i 〉IRiY + 〈ωzm

i , ω̃zm
i 〉IRiY .

By Lemma 1.2.1 and Proposition 1.3.7, 〈ωi, ω̃i〉ZRi\IRiY and 〈ωnz
i , ω̃

nz
i 〉IRiY are bounded,

when i→∞. It is su�cient to show that 〈ωzm
i , ω̃zm

i 〉IRiY →∞ as i→∞.
We have

(1.3.75) 〈ωzm
i , ω̃zm

i 〉IRiY = 〈ωzm
i , π∗Y ω̂1〉IRiY + 〈ωzm

i , ω̃zm
i − π∗Y ω̂1〉IRiY .

By De�nition 1.2.9, 1.3.1, we have

(1.3.76) π∗Y ω̂1 =
(
FZRi (ω1,∞, ω2,∞, ω̂1)

∣∣
IRiY

)zm

.

Then, by Proposition 1.3.7,

(1.3.77) 〈ωzm
i , ω̃zm

i − π∗Y ω̂1〉IRiY → 0, as i→∞ .

By (1.2.14) and the fact that Riλi → 0, the restriction of ωzm
i to IRiY (u) (u ∈ [−Ri, Ri])

converges uniformly to the same limit. Then, by (1.3.69), they all converge to ω̂1. Thus,

(1.3.78) 〈ωzm
i , π∗Y ω̂1〉IRiY =

∫ Ri

−Ri
〈ωzm

i |IRiY (u), ω̂1〉Y du→ +∞ , as i→∞ .

This ends the �rst case.
Case 2, ω̂1 = 0 : We want to show that

(1.3.79) 〈ωi, ω̃i〉 → ‖ω1,∞‖2
Z1,∞ + ‖ω2,∞‖2

Z2,∞ > 0 , as i→∞ ,

which contradicts (1.3.65).
For any T > 0, Ri > T , we have

(1.3.80)
〈ωi, ω̃i〉 = 〈ωi, ω̃i〉Z1,T∪Z2,T

+ 〈ωnz
i , ω̃

nz
i 〉IRiY ([−Ri+T,Ri−T ]) + 〈ωzm

i , ω̃zm
i 〉IRiY ([−Ri+T,Ri−T ]) .

By De�nition 1.3.1 and Proposition 1.3.7,

(1.3.81) 〈ωi, ω̃i〉Z1,T∪Z2,T
→ ‖ω1,∞‖2

Z1,T
+ ‖ω2,∞‖2

Z2,T
, as i→∞ .

By Lemma 1.2.1, if Ri > δ−1
Y and λi < 1

2
δY (which hold for i large enough),∣∣〈ωnz

i , ω̃
nz
i 〉IRiY ([−Ri+T,Ri−T ])

∣∣
6 8δ−1

Y (‖ωi‖∂Z1,T
+ ‖ωi‖∂Z2,T

)(‖ω̃i‖∂Z1,T
+ ‖ω̃i‖∂Z2,T

) .
(1.3.82)
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Furthermore, as i→∞,

(‖ωi‖∂Z1,T
+ ‖ωi‖∂Z2,T

)(‖ω̃i‖∂Z1,T
+ ‖ω̃i‖∂Z2,T

)

→ (‖ω1,∞‖∂Z1,T
+ ‖ω2,∞‖∂Z2,T

)2 ,
(1.3.83)

and

(1.3.84) (‖ω1,∞‖∂Z1,T
+ ‖ω2,∞‖∂Z2,T

)2 6 e−2δY T (‖ω1,∞‖∂Z1,0 + ‖ω2,∞‖∂Z2,0)2 .

Since ω̂1 = 0, proceeding in same way as (1.3.77), we get

(1.3.85) 〈ωzm
i , ω̃zm

i 〉IRiY ([−Ri+T,Ri−T ]) → 0, as i→∞ .

By (1.3.80)-(1.3.85), we get

lim sup
i→∞

∣∣∣〈ωi, ω̃i〉 − ‖ω1,∞‖2
Z1,T
− ‖ω2,∞‖2

Z2,T

∣∣∣
6 8δ−1

Y e−2δY T (‖ω1,∞‖∂Z1,0 + ‖ω2,∞‖∂Z2,0)2 .
(1.3.86)

Taking T →∞ in (1.3.86), we get (1.3.79). �

Theorem 1.3.10. There exists R0 > 0 such that, for R > R0, the map FZR : H •(Z12,∞, F )→
ker(DF,2

ZR
) is bijective. Moreover,

(1.3.87) Sp(DF
ZR

) ⊆ ]−∞,−R−1−ε[∪{0}∪ ]R−1−ε,+∞[ .

Proof. These are direct consequences of Proposition 1.3.7, Proposition 1.3.9. �

1.3.4. Approximating the small eigenvalues.
For j = 1, 2, let DF

Zj,∞,pp be the restriction of DF
Zj,∞

to its p.p. spectrum (cf. �1.2.3).

We �x δZj > 0 such that Sp
(
DF
Zj,∞,pp

)
∩ [−δZj , δZj ] ⊆ {0}. Put δ = 1

2
min{δY , δZ1 , δZ2}.

We recall that EA,R(Z12,∞, F ) was de�ned in (1.3.21), I1,RY, I2,RY, IRY were de�ned at
the end of �1.3.1 and χ±R was de�ned at the beginning of �1.3.3.

De�nition 1.3.11. We de�ne

(1.3.88) JA,ZR : EA,R(Z12,∞, F )→ Ω•(ZR, F ) ,

such that for any (ω1, ω
zm
1 , ω2, ω

zm
2 ) ∈ EA,R(Z12,∞, F ),

JA,ZR(ω1, ω
zm
1 , ω2, ω

zm
2 )
∣∣
Zj,0

= ωj , for j = 1, 2 ,

JA,ZR(ω1, ω
zm
1 , ω2, ω

zm
2 )
∣∣
IRY

= χ1,R ω1

∣∣
I1,2RY

+ χ2,R ω2

∣∣
I2,2RY

+
(
1− χ1,R − χ2,R

)
ωzm

1

∣∣
I1,2RY

.

(1.3.89)

Here we identify Ij,2RY (j = 1, 2) to IRY . Then ωj|Ij,2RY (j = 1, 2) and ωzm
1

∣∣
I1,2RY

are
viewed as sections on IRY .

Let EB(ZR, F ) ⊆ Ω•(ZR, F ) be the eigenspace of DF
ZR

associated with the eigenvalues
in B. Let PB

ZR
: Ω•(ZR, F )→ EB(ZR, F ) be the orthogonal projection.

De�nition 1.3.12. Set

(1.3.90) JA,B,ZR = PB
ZR
◦ JA,ZR : EA,R(Z12,∞, F )→ EB(ZR, F ) .

For A,B ⊆ R and α > 0, we denote A ⊆α B, if ]x− α, x+ α[⊆ B for any x ∈ A.
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Proposition 1.3.13. There exist R0 > 0, c > 0 such that for R > R0, A ⊆e−cR B ⊆
]− δ, 0[∪ ]0, δ[ and (ω1, ω

zm
1 , ω2, ω

zm
2 ) ∈ EA,R(Z12,∞, F ), we have∥∥(JA,B,ZR − JA,ZR

)
(ω1, ω

zm
1 , ω2, ω

zm
2 )
∥∥

C 0,ZR

6 e−cR
∥∥(ω1, ω

zm
1 , ω2, ω

zm
2 )
∥∥

EA,R(Z12,∞,F )
.

(1.3.91)

As a consequence, JA,B,ZR is injective for R large enough.

Proof. It su�ces to consider the case (ω1, ω
zm
1 , ω2, ω

zm
2 ) ∈ E •λ0,R

(Z12,∞, F ) with λ0 ∈ A.
Proceeding in the same way as (1.3.57), for any m ∈ N, there exist Rm > 0, cm > 0

such that for R > Rm,∥∥∥DF,m
ZR

(DF
ZR
− λ0)JA,ZR(ω1, ω

zm
1 , ω2, ω

zm
2 )
∥∥∥2

ZR

6 e−3cmR ‖(ω1, ω
zm
1 , ω2, ω

zm
2 )‖2

EA,R(Z12,∞,F ) .
(1.3.92)

We have the decomposition

(1.3.93) JA,ZR(ω1, ω
zm
1 , ω2, ω

zm
2 ) =

∑
λ

µλ

with DF
ZR
µλ = λµλ. In particuler, these µλ are mutually orthogonal. Then

(1.3.94) JA,B,ZR(ω1, ω
zm
1 , ω2, ω

zm
2 ) =

∑
λ∈B

µλ .

By (1.3.92) and (1.3.93), we have

(1.3.95)
∑

|λ−λ0|>e−cmR

∥∥∥DF,m
ZR

µλ

∥∥∥2

ZR
6 e−2cmR

∥∥(ω1, ω
zm
1 , ω2, ω

zm
2 )
∥∥2

EA,R(Z12,∞,F )
.

By Proposition 1.3.5 and (1.3.93)-(1.3.95), we get (1.3.91). �

Lemma 1.3.14. For ε > 0, there exist R0 > 0, C > 0 such that for any R > R0,
ω ∈ Ω•(ZR, F ) an eigensection associated with λ ∈]− δ + ε, 0[ ∪ ]0, δ − ε[, we have

(1.3.96) ‖ωzm,+‖2
Y + ‖ωzm,−‖2

Y > C‖ω‖2
Z1,0∪Z2,0

.

In particular, ωzm is non zero.

Proof. Suppose the contrary, i.e., there exist Ri → +∞, ωi ∈ Ω•(ZRi , F ) and λi ∈
]− δ + ε, 0[ ∪ ]0, δ − ε[, such that

(1.3.97) DF
ZRi

ωi = λiωi ,

and

(1.3.98)
‖ωzm,+

i ‖2
Y + ‖ωzm,−

i ‖2
Y

‖ωi‖2
Z1,0∪Z2,0

→ 0 , as i→∞ .

By extracting a subsequence, we may assume that λi → λ∞. By Lemma 1.2.1, ‖ωi‖2
Z1,0∪Z2,0

6=
0, we may multiply suitable constants such that

(1.3.99) ‖ωi‖2
Z1,0∪Z2,0

= 1 .

By (1.3.98) and (1.3.99), we have

(1.3.100) ‖ωzm,+
i ‖2

Y + ‖ωzm,−
i ‖2

Y → 0 , as i→∞.
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Proceeding in the same way as in the proof of Proposition 1.3.9, by extracting a subse-
quence, we may assume that there exist ω1,∞ ∈ Ω•(Z1,∞, F ), ω2,∞ ∈ Ω•(Z2,∞, F ) such that
for any T ∈ N,

(
ωi
∣∣
Zj,T

)
i
converges to ωj,∞

∣∣
Zj,T

(j = 1, 2) with respect to the C 1-norm.

Taking the limit of (1.3.97) and (1.3.100), we get

(1.3.101) DF
Zj,∞

ωj,∞ = λ∞ωj,∞ , ωzm,±
j,∞ = 0 , for j = 1, 2 .

Taking the limit of (1.3.99), we get

(1.3.102) ‖ω1,∞‖2
Z1,0

+ ‖ω2,∞‖2
Z2,0

= 1 .

Thus one of ω1,∞, ω2,∞ is non zero. We may assume that ω1,∞ is non zero. By (1.3.101),

ω1,∞ is zeromode free, thus, a L2-eigensection (by Lemma 1.2.1). We get λ∞ ∈ Sp
(
DF
Z1,∞,pp

)
.

But |λ∞| < δ 6 δZ1 , by the de�nition of δZ1 , we must have λ∞ = 0. Thus ω1,∞ ∈
H •

L2(Z1,∞, F ).
Recall that FZRi

(·, ·, ·) was de�ned in (1.3.48). Proceeding in the same way as (1.3.79),
we get

(1.3.103)
〈
ωi,FZRi

(ω1,∞, 0, 0)
〉
→ ‖ω1,∞‖2 > 0 , as i→∞.

But, by (1.3.97), λi 6= 0 and FZRi
(ω1,∞, 0, 0) ∈ ker

(
DF,2
ZRi

)
, we have ωi ⊥ FZRi

(ω1,∞, 0, 0).

This contradicts (1.3.103). �

Lemma 1.3.15. For ε > 0, there exist R0 > 0, c > 0 such that for R > R0 and
ω ∈ Ω•(ZR, F ) an eigensection of DF

ZR
associated with λ ∈]− δ+ε, 0[ ∪ ]0, δ−ε[, we have∥∥Cj(λ)ωzm,−∣∣

∂Zj,0
− ωzm,+

∣∣
∂Zj,0

∥∥
Y
6 e−cR‖ω‖Z1,0∪Z2,0 , for j = 1, 2 .(1.3.104)

In particular,

(1.3.105)
∥∥ (e4iλRC12(λ)− 1

)
ωzm,−∣∣

∂Z1,0

∥∥
Y
6 e−cR‖ω‖Z1,0∪Z2,0 .

Proof. We follow the argument in [M94, PW06].
We will only establish (1.3.104) for j = 1.
Let ω ∈ Ω•(ZR, F ) be an eigensection of DF

ZR
associated with λ ∈]−δ+ε, 0[ ∪ ]0, δ−ε[.

By (1.2.13), there exist φ, φ′ ∈H •(Y, F ) such that

(1.3.106) ω|I1,RY = e−iλu1(φ− ic( ∂
∂u

)φ) + eiλu1(φ′ + ic( ∂
∂u

)φ′) + ωnz .

By Proposition 1.2.4, there exists (ω̃, ω̃zm) ∈ E •λ (Z1,∞, F ) satisfying

(1.3.107) ω̃zm = e−iλu1(φ− ic( ∂
∂u

)φ) + eiλu1C1(λ)(φ− ic( ∂
∂u

)φ) .

Set

(1.3.108) µ = ω − ω̃ ∈ Ω•(Z1,R, F ) .

Then µ is also an eigensection of DF
ZR

associated with λ. Thus

(1.3.109) 〈DF
ZR
µ, µ〉Z1,R

− 〈µ,DF
ZR
µ〉Z1,R

= 〈λµ, µ〉Z1,R
− 〈µ, λµ〉Z1,R

= 0 .

On the other hand, by (1.2.11) and (1.3.106)-(1.3.108), we have

〈DF
ZR
µ, µ〉Z1,R

− 〈µ,DF
ZR
µ〉Z1,R

= 〈c( ∂
∂u

)µ, µ〉∂Z1,R
= −2i ‖φ′ − C1(λ)φ‖2

Y + 〈c( ∂
∂u

)µnz, µnz〉∂Z1,R
.

(1.3.110)
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By (1.3.106) and (1.3.108)-(1.3.110), we get∥∥C1(λ)ωzm,−|∂Z1,0 − ωzm,+|∂Z1,0

∥∥2

Y

= − i〈c( ∂
∂u

)µnz, µnz〉∂Z1,R
6 ‖µnz‖2

∂Z1,R
6 ‖ωnz‖2

∂Z1,R
+ ‖ω̃nz‖2

∂Z1,R
.

(1.3.111)

By (1.2.18), we have

(1.3.112) ‖ωnz‖2
∂Z1,R

6 e−εR‖ω‖2
∂Z1,0 ∪ ∂Z2,0

, ‖ω̃nz‖2
∂Z1,R

6 e−εR‖ω̃‖2
∂Z1,0

.

By (1.3.56), there exists C1 > 0 depending on Z1, Z2, F such that

(1.3.113) ‖ω‖2
∂Z1,0 ∪ ∂Z2,0

6 C1‖ω‖2
Z1,0 ∪ Z2,0

, ‖ω̃‖2
∂Z1,0

6 C1‖ω̃‖2
Z1,0

.

By (1.2.33) and (1.3.106), we have

(1.3.114) ‖ω̃‖2
Z1,0
6 C2‖φ− ic( ∂∂u)φ‖2

Y 6 C2‖ω‖2
∂Z1,0

.

Combining (1.3.111)-(1.3.114), the proof is terminated. �

Lemma 1.3.16. For ε > 0, there exist R0 > 0, c > 0 such that for any R > R0,
ω ∈ Ω•(ZR, F ) an eigensection associated with λ0 ∈] − δ + ε, 0[∪ ]0, δ − ε[, there exists
ω̃ ∈ im

(
J]λ0−e−cR,λ0+e−cR[ , ]−δ,0[∪ ]0,δ[,ZR

)
satisfying

(1.3.115) ‖ωzm − ω̃zm‖IRY 6 e−cR‖ω‖Z1,0 ∪ Z2,0 .

Proof. We claim that there exist c > 0, C > 0, R0 > 0 such that for any R > R0,
ω ∈ Ω•(ZR, F ) an eigensection associated with λ0 ∈] − δ + ε, 0[ ∪ ]0, δ − ε[, there exists
µ ∈ im(J]λ0−e−cR,λ0+e−cR[,ZR), such that

(1.3.116) ‖ωzm − µzm‖IRY 6 e−cR‖ω‖Z1,0 ∪ Z2,0 , ‖µ‖Z1,0∪Z2,0
6 C‖ω‖Z1,0 ∪ Z2,0 .

Once (1.3.116) is proved, (1.3.115) follows : for R large enough, by Theorem 1.3.10,
we have

(1.3.117) ]λ0 − e−cR, λ0 + e−cR[ ⊆e−cR ]− δ, 0[∪ ]0, δ[ .

Let (ω1, ω
zm
1 , ω2, ω

zm
2 ) ∈ E]λ0−e−cR,λ0+e−cR[ ,R(Z12,∞, F ), such that

(1.3.118) µ = J]λ0−e−cR,λ0+e−cR[ ,ZR(ω1, ω
zm
1 , ω2, ω

zm
2 ) .

By De�nition 1.3.11, we have

(1.3.119) ‖µ‖Z1,0∪Z2,0 =
∥∥(ω1, ω

zm
1 , ω2, ω

zm
2 )
∥∥

E
]λ0−e−cR,λ0+e−cR[,R

(Z12,∞,F )
.

Set

(1.3.120) ω̃ = J]λ0−e−cR,λ0+e−cR[ , ]−δ,0[∪]0,δ[,ZR(ω1, ω
zm
1 , ω2, ω

zm
2 ) .

by Proposition 1.3.13, (1.3.116), (1.3.117) and (1.3.119), we get (1.3.115).
Now we prove (1.3.116).
Since ω is an eigensection of DF

ZR
associated with λ0, we have

(1.3.121) ωzm = e−iλ0u1(ωzm,−|∂Z1,0) + eiλ0u1(ωzm,+|∂Z1,0) .

By Lemma 1.3.15, we have∥∥C1(λ0)ωzm,−|∂Z1,0 − ωzm,+|∂Z1,0

∥∥
Y
6 e−cR‖ω‖Z1,0∪Z2,0 ,∥∥e4iλ0RC12(λ0)ωzm,−|∂Z1,0 − ωzm,−|∂Z1,0

∥∥
Y
6 e−cR‖ω‖Z1,0∪Z2,0 .

(1.3.122)
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We proceed in the same way as (1.3.56): using Trace Theorem and elliptic estimate, we
get

(1.3.123) ‖ωzm,−|∂Z1,0‖Y 6 ‖ω|∂Z1,0‖Y 6 C‖ω‖Z1,0∪Z2,0 .

By (1.3.96) and (1.3.122), we have

(1.3.124) ‖ω‖Z1,0∪Z2,0 6 C‖ωzm,−|∂Z1,0‖Y .

By Proposition 1.8.2, (1.3.122), (1.3.123) and (1.3.124), there exist φj ∈H •(Y, F [du]),
λj ∈ R and ϕj ∈ H •(Y, F [du]) (j = 1, · · · , dim H •(Y, F [du])) such that the following
orthogonal decomposition holds,

(1.3.125) ωzm,−∣∣
∂Z1,0

=

dim H •(Y,F [du])∑
j=1

φj ,

and

|λj − λ0| < e−cR , ‖ϕj − φj‖Y < e−cR‖ω‖Z1,0∪Z2,0 ,

e4iRλjC12(λj)ϕj = ϕj .
(1.3.126)

By (1.3.17) and (1.3.21), we can �nd (ω1, ω
zm
1 , ω2, ω

zm
2 ) ∈ EA,R(Z12,∞, F ) satisfying

(1.3.127) ωzm
1 =

dim H •(Y,F [du])∑
j=1

(
e−iλju1ϕj + eiλju1C1(λj)ϕj

)
.

Put

(1.3.128) µ = JA,ZR(ω1, ω
zm
1 , ω2, ω

zm
2 ) .

Then, under the identi�cation IRY ' I1,2RY ⊆ I1,∞Y , we have

(1.3.129) µzm = ωzm
1 .

We prove the �rst inequality in (1.3.116). By (1.3.121), (1.3.127) and (1.3.129), it
su�ces to show that, for u1 ∈ [0, 2R],

(1.3.130)
∥∥∥e−iλ0u1

(
ωzm,−∣∣

∂Z1,0

)
+ eiλ0u1

(
ωzm,+

∣∣
∂Z1,0

)
−

dim H •(Y,F [du])∑
j=1

(
e−iλju1ϕj + eiλju1C1(λj)ϕj

) ∥∥∥
Y
6 e−cR‖ω‖Z1,0∪Z2,0 ,

which is a consequence of (1.3.122), (1.3.125) and (1.3.126).
We prove the second inequality in (1.3.116). By De�nition 1.3.11, (1.2.33), (1.3.127)

and (1.3.128), it su�ces to show that

(1.3.131)
dim H •(Y,F [du])∑

j=1

‖ϕj‖Y 6 C‖ω‖Z1,0 ∪ Z2,0 ,

which follows from (1.3.123), (1.3.125) and (1.3.126). �

Proposition 1.3.17. For ε > 0, there exist R0 > 0, c > 0 such that for R > R0 and
B ⊆e−cR A ⊆]− δ + ε, 0[ ∪ ]0, δ − ε[, JA,B,ZR is surjective.
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Proof. Suppose the contrary, i.e., there exist Ri → +∞, ωi ∈ Ω•(ZRi , F ) and λi ∈ B
satisfying

(1.3.132) DF
ZRi

ωi = λiωi , ωi ⊥ im(JA,B,ZRi
) .

By De�nition 1.3.12, we have

(1.3.133) im
(
JA,]−δ,0[ ∪ ]0,δ[,ZRi

)
= im

(
JA,B,ZRi

)
⊕ im

(
JA,]−δ,0[ ∪ ]0,δ[\B,ZRi

)
.

Furthermore, JA,]−δ,0[ ∪ ]0,δ[\B,ZRi is spanned by the eigensections associated with those
λ ∈]− δ, 0[ ∪ ]0, δ[\B. By (1.3.132), we have

(1.3.134) ωi ⊥ im(JA,]−δ,0[ ∪ ]0,δ[,ZRi
) .

By multiplying suitable constants, we may assume that

(1.3.135) ‖ωi‖Z1,0 ∪ Z2,0 = 1 .

Then, by Proposition 1.3.14, we have

(1.3.136) ‖ωzm,+
i ‖2

Y + ‖ωzm,−
i ‖2

Y > c > 0 .

By Lemma 1.3.16, there exists ω̃i ∈ im(JA,]−δ,0[ ∪ ]0,δ[,ZRi
) such that

(1.3.137) ‖ωzm
i − ω̃zm

i ‖IRiY → 0 , as i→∞ .

By (1.3.136), (1.3.137), we have

(1.3.138) 〈ωzm
i , ω̃zm

i 〉 → ∞ , as i→∞ .

By Lemma 1.2.1 and (1.3.135), there exists C > 0, such that

(1.3.139)
∣∣〈ωi, ω̃i〉 − 〈ωzm

i , ω̃zm
i 〉
∣∣ 6 C .

Then, by (1.3.138), 〈ωi, ω̃i〉 tends to ∞. This contradicts (1.3.132). �

Theorem 1.3.18. For ε > 0, there exists R0 > 0 such that for R > R0, we have

(1.3.140) Sp
(
DF
ZR

)
⊆
]
−∞,−R−1−ε[ ∪ {0} ∪ ]R−1−ε,∞

[
.

Furthermore, if we denote

ΛR\{0} =
{
λk : k ∈ Z\{0}

}
, with · · · 6 λ−1 < 0 < λ1 6 λ2 6 · · · ,

Sp
(
DF
ZR

)
\{0} =

{
ρk : k ∈ Z\{0}

}
, with · · · 6 ρ−1 < 0 < ρ1 6 ρ2 6 · · · ,

(1.3.141)

there exist γ, c > 0 such that for R > R0 and |λk| < γ,

(1.3.142) |λk − ρk| 6 e−cR .

Proof. The �rst part is equivalent to Theorem 1.3.10. We prove the second part.
We �x ε, c and R0 such that Theorem 1.3.10, Proposition 1.3.13 and Proposition 1.3.17

hold. We enlarge R0 such that, for R > R0,

(1.3.143) ε > R−1−ε > e−cR

By Theorem 1.8.1, we have

(1.3.144) ΛR =
m⋃
k=1

{
λ ∈ R : 4Rλ+ θk(λ) ∈ 2πZ

}
,
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where θ1(λ), · · · , θm(λ) are analytic functions on λ such that
{
eiθ1(λ), · · · , eiθm(λ)

}
=

Sp
(
C12(λ)

)
. By enlarging R0, we can show that for R > R0,

(1.3.145) ΛR ⊆ ]−∞,−R−1−ε[∪{0}∪ ]R−1−ε,∞[ .

For k > 0, if λk < δ − ε, we apply Proposition 1.3.17 with

(1.3.146) A = ]0, λk[ , B = ]R−1−ε, λk − e−cR[ .

(By (1.3.143) and (1.3.145), we have B ⊆e−cR A.) Then JA,B,ZR is surjective. As a
consequence, DF

ZR
has at most k− 1 eigenvalues lying in B. Further, by Theorem 1.3.10,

we have ρ1 > R−1−ε. Then we must have ρk > λk − e−cR. A similar argument using
Proposition 1.3.13 shows that ρk 6 λk + e−cR. For k < 0, we have parallel arguments.
Set γ = δ − ε, then (1.3.142) holds. �

For 0 6 p 6 dimZ, we set

Cp
12(λ) = C12(λ)

∣∣
H p(Y,F )⊕H p−1(Y,F )du

,

Λp
R =

{
λ > 0 : det

(
e4iλRCp

12(λ)− 1
)

= 0
}
.

(1.3.147)

Let DF,2,(p)
ZR

be the restriction of DF,2
ZR

on Ωp(ZR, F ).

Theorem 1.3.19. If we denote

Λp
R =

{
λk : k = 1, 2, · · ·

}
, with 0 < λ1 6 λ2 6 · · · ,

Sp
(
D
F,2,(p)
ZR

)
\{0} =

{
ρk : k = 1, 2, · · ·

}
, with 0 < ρ1 6 ρ2 6 · · · ,

(1.3.148)

there exist γ, c > 0 such that for R > R0 and λk < γ,

(1.3.149) |λ2
k − ρk| 6 e−cR .

Proof. If A,B ⊆ R are symmetric (i.e., λ ∈ A implies −λ ∈ A), then EA,R(Z12,∞, F )
and EB(DF

ZR
) are homogeneous. Let E p

A,R(Z12,∞, F ) and E p
B(DF

ZR
) be their degree p com-

ponents. Noticing that JA,B,ZR preserves the degree, we denote by J (p)
A,B,ZR

be the
restriction of JA,B,ZR to E p

A,R(Z12,∞, F ). Then Proposition 1.3.13 and Proposition 1.3.17

hold for J (p)
A,B,ZR

. Noticing the fact that

(1.3.150)
{
λ > 0 : E p

{λ,−λ},R(Z12,∞, F ) 6= 0
}

= Λp
R

the rest of the proof follows the same argument as the proof of Theorem 1.3.18. �

1.4. Asymptotic properties of the spectrum : boundary case.
We use the notations in �1.3.1. We recall that the Riemannian manifolds Zj,R =

Zj ∪Y [0, R] × Y (j = 1, 2, 0 6 R < ∞) were de�ned in �1.0.2, and F is a �at vector
bundle on Zj,R. As stated in �1.0.2, we use the relative boundary condition on ∂Z1,R and
the absolute boundary condition on ∂Z2,R, which are de�ned by (1.1.5). We recall that

DF
Zj,R

(j = 1, 2) are Hodge-de Rham operators acting Ω•bd(Zj,R, F ). Let Sp
(
DF
Zj,R

)
be

the spectrum of DF
Zj,R

. In this section, we give parallel results as in �1.3 for Sp
(
DF
Zj,R

)
.

In �1.4.1, we establish results parallel to �1.3.3 and �1.3.4.
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1.4.1. Approximating the kernel and small eigenvalues.
We recall that H •(Zj,∞, F ) and H •

abs/rel(Zj,∞, F ) ⊆H •(Zj,∞, F ) (j = 1, 2) are de�ned
by (1.2.35) and (1.2.48). We use the convention H •

bd(Z1,∞, F ) = H •
rel(Z1,∞, F ) and

H •
bd(Z2,∞, F ) = H •

abs(Z2,∞, F ).
We recall that Ij,RY ⊆ Zj,R (j = 1, 2) are the cylindrical parts of Zj,R, de�ned in �1.3.1.

We recall that the following maps are de�ned in De�nition 1.2.9,

(1.4.1) RdF : H •(Zj,∞, F )→ Ω•(Ij,∞Y, F ) , for j = 1, 2 .

The inclusion Ij,RY ⊆ Ij,∞Y induces

(1.4.2) Ω•(Ij,∞Y, F )→ Ω•(Ij,RY, F ) .

Composing (1.4.1) and (1.4.2), we get

(1.4.3) RdF ,j : H •(Zj,∞, F )→ Ω•(Ij,RY, F ) , for j = 1, 2 .

We recall that χj,R (j = 1, 2) are de�ned by (1.3.24), which are smooth functions on
IRY . By restricting to Ij,RY ⊆ IRY (j = 1, 2), we may view χj,R as smooth functions on
Ij,RY .
Parallel to De�nition 1.3.1, we have the following de�nition.

De�nition 1.4.1. We de�ne

(1.4.4) FZj,R : H •
bd(Zj,∞, F )→ Ω•bd(Zj,R, F )

as follows: for (ω, ω̂) ∈H •
bd(Zj,∞, F ),

(1.4.5) FZj,R(ω, ω̂)
∣∣
Zj,0

= ω , FZj,R(ω, ω̂)
∣∣
Ij,RY

= dF
(
χj,R RdF ,j(ω, ω̂)

)
+ π∗Y ω̂ .

By (1.2.42), FZj,R is well-de�ned. Furthermore, we have

(1.4.6) dFFZj,R(ω, ω̂) = 0 .

We recall that ϕR : ZR → Z is de�ned by (1.3.32). Put

(1.4.7) ϕj,R = ϕR
∣∣
Zj,R

: Zj,R → Zj .

Then ϕj,R (j = 1, 2) induce the canonical isomorphisms H•bd(Zj,R, Y ) ' H•bd(Zj, F ).

Proposition 1.4.2. For R > R′ > 0 and ω1 ∈H •
L2(Z1,∞, F ), we have

(1.4.8)
[
FZ1,R

(ω1, 0)
]

=
[
FZ1,R′

(ω1, 0)
]
∈ H•bd(Z1, F ) .

For R > R′ > 0 and (ω2, ω̂) ∈H •
bd(Z2,∞, F ), we have

(1.4.9)
[
FZ2,R

(ω2, ω̂)
]

=
[
FZ2,R′

(ω2, ω̂)
]
∈ H•bd(Z2, F ) .

We will prove Proposition 1.4.2 as a consequence of Proposition 1.3.3. We need the
following constructions.
Let Zj,R (j = 1, 2) be another copy of Zj,R. Set Zdb

j,R = Zj,R ∪Y Zj,R, which is a closed
manifold. Then Zdb

j,R is equipped with a natural Z2-action exchanging Zj,R and Zj,R.
Gluing the �at vector bundle F on Zj,R and its copy on Zj,R, we get a �at vector bundle
on Zdb

j,R, which is still denoted by F . The Z2-action lifts to F in the natural way. Let ι
be the generator of this Z2-action. Gluing hF and ι∗hF , we get a Hermitian metric on F
over Zdb

j,R, which is still denoted by hF . Let DF
Zdb
j,R

be the Hodge-de Rham operator acting

on Ω•(Zdb
j,R, F ). Then DF

Zdb
j,R

is Z2-equivariant.



LIMITES ADIABATIQUES ET FIBRATIONS HOLOMORPHES PLATES 33

Let ι∗ be the action on Ω•(Zdb
j,R, F ) or H•(Zdb

j,R, F ) induced by ι. Let
(
Ω•(Zdb

j,R, F )
)±

and
(
H•(Zdb

j,R, F )
)±

be its eigenspaces associated with ±1. The injection Zj,R ↪→ Zdb
j,R

induces the following isomorphism

(1.4.10)
(
Ω•(Zdb

j,R, F )
)(−1)j → Ω•bd(Zj,R, F ) .

Passing to cohomology, we get the isomorphism

(1.4.11)
(
H•(Zdb

j,R, F )
)(−1)j → H•bd(Zj,R, F ) .

Proof of Proposition 1.4.2. Let H •(Zdb
j,∞, F ) be the H •(Z12,∞, F ) de�ned in �1.3.2 with

Z1,∞ and Z2,∞ replaced by Zj,∞ and Zj,∞. More precisely,

H •(Zdb
j,∞, F ) =

{
(ω1, ω2, ω̂) : (ω1, ω̂) ∈H •(Zj,∞, F ) ,

(ω2, ω̂) ∈H •(Zj,∞, F )
}
.

(1.4.12)

By De�nition 1.3.1, we have

(1.4.13) FZdb
j,R

: H •(Zdb
j,∞, F )→ Ω•(Zdb

j,R, F ) .

Let Ndu be the number operator on H •(Y, F [du]) associated to the variable du, i.e.,
its restriction to H •(Y, F ) is zero, its restriction to H •(Y, F )du is the identity map. We
de�ne an involution

ιH : H •(Zdb
j,∞, F )→H •(Zdb

j,∞, F )

(ω1, ω2, ω̂) 7→ (ω2, ω1, (−1)N
du

ω̂) .
(1.4.14)

The following diagram commutes

(1.4.15) H •(Zdb
j,∞, F )

F
Zdb
j,R

��

ιH // H •(Zdb
j,∞, F )

F
Zdb
j,R

��

Ω•(Zdb
j,R, F )

ι∗ // Ω•(Zdb
j,R, F ) .

Let
(
H •(Zdb

j,∞
)±

be the eigenspace of ιH associated with ±1. We have

(1.4.16) FZdb
j,R

:
(
H •(Zdb

j,∞, F )
)± → (

Ω•(Zdb
j,R, F )

)±
.

We also have the following isomorphisms

H •
bd(Zj,∞, F )→

(
H •(Zdb

j,∞, F )
)(−1)j

(ω, ω̂) 7→ (ω, (−1)jω, ω̂) .
(1.4.17)

The following diagram commutes(
H •(Zdb

j,∞, F )
)(−1)j

��

F
Zdb
j,R //
(
Ω•(Zdb

j,R, F )
)(−1)j

��
H •

bd(Zj,∞, F )
FZj,R // Ω•bd(Zj,R, F ) ,

(1.4.18)

where the vertical map on the left is de�ned by (1.4.17), the vertical map on the right is
induced by the injection Zj,R ↪→ Zdb

j,R.
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By (1.4.11) and (1.4.18), the present proposition follows from Proposition 1.3.3 with
ZR replaced by Zdb

j,R. �

In the rest of this section, we will state several results parallel to those in �1.3.3 and
�1.3.4. Their proofs follow the same strategy as in the proof of Proposition 1.4.2 : on
Zdb
j,R, the constructions in �1.3 commute with the action of ι, and the objects concerned

associated with Zj,R (eigenspace of Hodge-de Rham operator, cohomology, etc.) are
canonically isomorphic to the eigenspaces of ι associated with (−1)j in the corresponding
objects associated with Zdb

j,R.
Recall that the L2-norm ‖ · ‖· is de�ned in �1.0.4. For (ω, ω̂) ∈H •

bd(Zj,∞, F ), put

(1.4.19) ‖(ω, ω̂)‖2
H •

bd(Zj,∞,F ),R = ‖ω‖2
Zj,R

.

By passing to Zdb
j,R and applying Proposition 1.3.4, we get the following proposition.

Proposition 1.4.3. There exist c > 0, R0 > 0 such that for any R > R0, (ω, ω̂) ∈
H •

bd(Zj,∞, F ) (j = 1, 2), we have

(1.4.20) 1− e−cR 6

∥∥FZj,R(ω, ω̂)
∥∥
Zj,R

‖(ω, ω̂)‖H •
bd(Zj,∞,F ),R

6 1 + e−cR .

Let

(1.4.21) P
ker(DF,2Zj,R

)
: Ω•bd(Zj,R, F )→ ker

(
DF,2
Zj,R

)
be the orthogonal projections.

De�nition 1.4.4. For j = 1, 2, set

(1.4.22) FZj,R = P
ker(DF,2Zj,R

) ◦ FZj,R : H •
bd(Zj,∞, F )→ ker

(
DF,2
Zj,R

)
.

By passing to Zdb
j,R and applying Proposition 1.3.7, we get the following proposition.

Proposition 1.4.5. There exist c > 0, R0 > 0 such that for any R > R0, (ω, ω̂) ∈
H •

bd(Zj,∞, F ) (j = 1, 2), we have

(1.4.23)
∥∥(FZj,R −FZj,R)(ω, ω̂)

∥∥
C 0,Zj,R

6 e−cR‖(ω, ω̂)‖H •
bd(Zj,∞,F ) .

By passing to Zdb
j,R and applying Theorem 1.3.10, we get the following theorem.

Theorem 1.4.6. There exists R0 > 0 such that for R > R0, the maps FZj,R (j = 1, 2)
is bijective. Moreover,

(1.4.24) Sp
(
DF
Zj,R

)
⊆ ]−∞,−R−1−ε[∪{0}∪ ]R−1−ε,+∞[ .

Set

(1.4.25) Cj,bd(λ) = (−1)j
(
Cj(λ)

∣∣
H •(Y,F )

− Cj(λ)
∣∣
H •(Y,F )du

)
.

For R > 0, set

(1.4.26) Λj,R =
{
λ ∈ R , det

(
e2iλRCj,bd(λ)

∣∣
H •(Y,F )

− 1
)

= 0
}
, for j = 1, 2 .

By passing to Zdb
j,R and applying Theorem 1.3.18, we get the following theorem.

Theorem 1.4.7. Theorem 1.3.18 holds for
(

Sp
(
DF
Zj,R

)
,Λj,R

)
, where j = 1, 2.
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For 0 6 p 6 dimZ, set

Cp
j,bd(λ) = Cj,bd(λ)

∣∣
H p(Y,F )⊕H p−1(Y,F )du

, for j = 1, 2 ,

Λp
j,R =

{
λ ∈ R , det

(
e2iλRCp

j,bd(λ)
∣∣
H p(Y,F )

− 1
)

= 0
}
.

(1.4.27)

By passing to Zdb
j,R and applying Theorem 1.3.19, we get the following theorem.

Theorem 1.4.8. Theorem 1.3.19 holds for
(

Sp
(
D
F,2,(p)
Zj,R

)
,Λp

j,R

)
, where j = 1, 2.

1.5. Asymptotics of the (weighted) zeta determinants.
The purpose of this section is to prove Theorem 1.0.1.
In this section, we use notations in �1.3.1. For convenience, we use the following

convention : Z0,R = ZR, ζ0,R = ζR, and so forth, i.e., we add a sub-index 0 to the objects
associated with ZR. We use the following de�nition of ζ-functions ζj,R(s) (j = 0, 1, 2),
which is equivalent to (1.0.6).

(1.5.1) ζj,R(s) = − 1

Γ(s)

∫ ∞
0

ts−1 Tr

[
(−1)NN exp

(
−tDF,2

Zj,R

)(
1− P ker(DF,2Zj,R

)
)]

dt .

Let ε ∈ ]0, 1[. Let ζSj,R(s) (resp. ζLj,R(s)) be the contribution of
∫ R2−ε

0
(resp.

∫∞
R2−ε) to

ζj,R(s) in (1.5.1). Then

(1.5.2) ζj,R = ζSj,R + ζLj,R .

In �1.5.1, we de�ne model operators which will serve as the limit (as R → ∞) of the
Hodge-de Rham operators concerned. In �1.5.2, we treat the contributions of ζSj,R. In
�1.5.3, we treat the contributions of ζLj,R.

1.5.1. Model operators.
Set I1,R = [−R, 0], I2,R = [0, R] and IR = [−R,R]. Let u be the coordinate. We

sometimes add a sub-index 0 to the objects associated with I0,R := IR.
We recall that H •(Y, F ) and H •(Y, F [du]) are de�ned by (1.2.1) and (1.2.6). Let

Ω•
(
IR,H •(Y, F )

)
be the vector space of di�erential forms on IR with values in H •(Y, F ).

We de�ne the total degree of ω ∈ Ωp(IR,H q(Y, F )) to be p + q. We have the canonical
identi�cation

(1.5.3) Ω•
(
IR,H

•(Y, F )
)
' C∞

(
IR,H

•(Y, F [du])
)
.

For ω ∈ Ω•
(
IR,H •(Y, F )

)
, let u 7→ ωu ∈H •(Y, F [du]) be the corresponding function.

We recall that the operator c( ∂
∂u

) acting on H •(Y, F [du]) is de�ned by (1.2.4) and that
L •
j ⊆H •(Y, F [du]) (j = 1, 2) are de�ned at the begining of �1.3.2. We de�ne the model

operator DIR by

(1.5.4) DIR = c( ∂
∂u

)
∂

∂u
,

with

(1.5.5) Dom (DIR) =
{
ω ∈ Ω•(IR,H

•(Y, F )) : ω−R ∈ L •
1 , ωR ∈ L •

2

}
.
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We de�ne equally DI1,R and DI2,R with

Dom
(
DI1,R

)
=
{
ω ∈ Ω•(I1,R,H

•(Y, F )) : ω−R ∈ L •
1 ,

ω0 ∈H •(Y, F )du
}
,

Dom
(
DI2,R

)
=
{
ω ∈ Ω•(I2,R,H

•(Y, F )) : ωR ∈ L •
2 ,

ω0 ∈H •(Y, F )
}
.

(1.5.6)

We remark that D2
Ij,R

(j = 0, 1, 2) preserve the total degree. Let D2,(p)
Ij,R

be its restriction
to total degree p.
Let L •

j,abs/rel be absolute/relative part of L •
j , which is de�ned by (1.2.46). We use the

convention L •
1,bd = L •

1,rel and L •
2,bd = L •

2,abs. By (1.5.4), (1.5.5) and (1.5.6), we have

(1.5.7) ker
(
D

2,(p)
IR

)
= L p

1 ∩L p
2 , ker

(
D

2,(p)
Ij,R

)
= L p

j,bd , for j = 1, 2 ,

where the vectors in L p
1 ∩L p

2 (resp. L p
j,bd) are viewed as constant functions on IR (resp.

Ij,R).
We de�ne the composition map

(1.5.8) αp,L : L p
1,rel → L p

1,rel ∩L p
2,rel → L p

1 ∩L p
2 ,

where the �rst map is the orthogonal projection, and the second one is the natural
injection. We also de�ne

(1.5.9) βp,L : L p
1 ∩L p

2 → L p
1,abs ∩L p

2,abs → L p
2,abs ,

which is still the composition of an orthogonal projection and an injection. And

(1.5.10) δp,L : L p
2,abs → L p+1,⊥

2,rel → L p+1
1,rel ∩L p+1,⊥

2,rel → L p+1
1,rel ,

where the �rst map is the du∧ operation (cf. (1.2.4)), the second one is the orthogonal
projection and the last one is the natural injection. We get the following exact sequence

(1.5.11) · · · // L p
1,bd

αp,L // L p
1 ∩L p

2

βp,L // L p
2,bd

δp,L // · · · .

The exactness of (1.5.11) is justi�ed by the following identities

im(αp,L ) = ker(βp,L ) = L p
1,rel ∩L p

2,rel ,

im(βp,L ) = ker(δp,L ) = L p
1,abs ∩L p

2,abs ,

im(δp,L ) = ker(αp+1,L ) = L p+1
1,rel ∩L p+1,⊥

2,rel .

(1.5.12)

We may view (1.5.11) as the Mayer-Vietoris exact sequence associated with our model.
Recall that Cj(λ) ∈ End

(
H •(Y, F [du])

)
(j = 1, 2) are the scattering matrices associ-

ated with DF
Zj,∞

(cf. �1.3.2) and that the operators C12(λ) and Cj,bd(λ) are introduced
in (1.3.18) and (1.4.25). We denote C12 = C12(0) (resp. Cj,bd = Cj,bd(0)). Let Cp

12

(resp.Cp
j,bd) be its restriction to H p(Y, F )⊕H p−1(Y, F )du.
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By (1.2.45) and (1.2.46), we have

ker
(
Cp

1,bd − 1
)

= L p
1,rel ⊕ i ∂

∂u
L p+1

1,rel ,

ker
(
Cp

2,bd − 1
)

= L p
2,abs ⊕ du ∧L p−1

2,abs ,

ker
(
Cp

12 − 1
)

=
(
L p

1 ∩L p
2

)
⊕ i ∂

∂u

(
L p+1

1,rel ∩L p+1
2,rel

)
⊕ du ∧

(
L p−1

1,abs ∩L p−1
2,abs

)
.

(1.5.13)

For C = C12 or Cj,bd (j = 1, 2), set

(1.5.14) χ′(C) =
∑
p

(−1)pp dim ker
(
Cp − 1

)
.

We recall that χ′ is de�ned in (1.0.9).

Lemma 1.5.1. We have

(1.5.15) χ′(C12)− χ′(C1,bd)− χ′(C2,bd) = 2χ′.

Proof. We denote

dim L p
1,abs = xp , dim L p

2,abs = yp ,

dim(L p
1,abs ∩L p

2,abs) = up , dim(L p,⊥
1,abs ∩L p,⊥

2,abs) = vp ,

dim H p(Y, F ) = hp .

(1.5.16)

Then, by (1.2.46), we have

dim L p+1
1,rel = hp − xp , dim L p+1

2,rel = hp − yp ,
dim(L p+1

1,rel ∩L p+1
2,rel ) = vp .

(1.5.17)

Since H p(Y, F ) = (L p
1,abs + L p

2,abs)⊕ (L p,⊥
1,abs ∩L p,⊥

2,abs), we get

(1.5.18) hp = xp + yp − up + vp .

By (1.5.13), (1.5.14), (1.5.17) and (1.5.18), we have

χ′(C12)− χ′(C1,bd)− χ′(C2,bd) =
∑
p

2(−1)p(yp − up) ,

dim L p
1 ∩L p

2 − dim L p
1,bd − dim L p

2,bd =
∑
p

(−1)p(yp − up) .
(1.5.19)

By (1.0.9) and (1.5.19), it rests to show that

dim L p
1 ∩L p

2 − dim L p
1,bd − dim L p

2,bd

= dimHp(Z, F )− dimHp
bd(Z1, F )− dimHp

bd(Z2, F ) .
(1.5.20)

By Theorem 1.1.1, Theorem 1.3.10 and Theorem 1.4.6, (1.5.20) is equivalent to

dim L p
1 ∩L p

2 − dim L p
1,bd − dim L p

2,bd

= dim H p(Z12,∞, F )− dim H p
bd(Z1,∞, F )− dim H p

bd(Z2,∞, F ) .
(1.5.21)

This follows from (1.2.49) and (1.3.13). �

We denote

(1.5.22) ap = dim im(αp,L ) , bp = dim im(βp,L ) , dp = dim im(δp,L ) .
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Lemma 1.5.2. We have

(1.5.23) χ′ =
∑
p

(−1)pdp , χ′(C12) =
∑
p

(−1)p(ap − bp) .

Proof. Proceeding in the same way as in the proof of Lemma 1.5.1, all the terms involved
can be expressed by xp, yp, up, vp. Then (1.5.23) follows from a direct calculation. �

We turn to study the spectra and ζ-functions associated with our model.
For R > 0, set

Λ∗,pR =
{
λ > 0 : det

(
e4iλRCp

12 − 1
)

= 0
}
,

Λ∗,pj,R =
{
λ > 0 : det

(
e2iλRCp

j,bd − 1
)

= 0
}
, for j = 1, 2 .

(1.5.24)

Proposition 1.5.3. We have

(1.5.25) Sp
(
D

2,(p)
Ij,R

)∖
{0} =

{
λ2 : λ ∈ Λ∗,pj,R

}
, for j = 0, 1, 2 .

Proof. First we consider the case j = 0.
By shifting the coordinate, we identify I1,R to [0, R]. We de�ne I1,∞ = [0,∞[. Let DI1,∞

be the operator de�ned by (1.5.4) with the same boundary condition (only at u = 0) as
DI1,R for R <∞. Here, DI1,∞ is exactly the DF

Z∞ constructed in �1.2.3 with Z∞ replaced
by I1,∞ and F replaced by H •(Y, F ). Using (1.2.45) and (1.2.46), a direct calculation
shows that a generalized eigensection of DI1,∞ with eigenvalue λ 6= 0 takes the following
form

(1.5.26) e−iλu(1− ic( ∂
∂u

))φ+ eiλuC1(1− ic( ∂
∂u

))φ , φ ∈H •(Y, F ) .

Comparing to (1.2.31), we see that there are only zeromodes (cf. (1.2.14), (1.2.15)).
Furthermore, the scattering matrix of DI1,∞ is C1, which does not depend on λ.
We construct equally DI2,∞ . Its scattering matrix is C2.
With the above constructions, we are in a special case of the problem addressed in

�1.3. The only di�erence is that IR is not a closed manifold. Checking all the arguments
in �1.3, we see that they still work for DIR . Now, applying Theorem 1.3.19, we see that

Sp
(
D

2,(p)
IR

)∖
{0} is approximated by Λ∗,pR in the sense of (1.3.149). Notice that the error

terms in the whole argument leading to Theorem 1.3.19 come from non zeromodes. Here,
since there are only zeromodes, the approximation is replaced by equality. This proves
(1.5.25).
For j = 1, 2, replacing Theorem 1.3.19 by Theorem 1.4.7, the same argument works. �

Let ζ∗,j,R(s) be the ζ-functions of D2
Ij,R

de�ned in the same way as (1.5.1) .

Proposition 1.5.4. We have

ζ∗,R
′(0) = χ′(C12) log(2R)− χ(Y, F ) log 2

+
dimY∑
p=0

p

2
(−1)p log det∗

(
2− Cp

12 − (Cp
12)−1

4

)
,

ζ∗,j,R
′(0) = χ′(Cj,bd) logR− χ(Y, F ) log 2 , for j = 1, 2 .

(1.5.27)
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Proof. Applying (1.0.6) and (1.5.25), both identities are consequences of Appendix (1.8.16).
The �rst identity is the weighted sum of (1.8.16) with V replaced by H p(Y, F ) ⊕
H p−1(Y, F )du and C replaced by Cp

12. For the second identity, we replace C by Cp
j,bd

and replace R by R/2. Since Sp
(
Cp
j,bd

)
⊆
{
− 1, 1

}
, the log det∗ term vanishes. �

1.5.2. Small time contribution.
We denote

ΘR(t) =
2∑
j=0

(−1)(j−1)(j−2)/2 Tr
[
(−1)NN exp

(
−tDF,2

Zj,R

)]
,

Θ∗R(t) =
2∑
j=0

(−1)(j−1)(j−2)/2 Tr
[
(−1)NN exp

(
−tD2

Ij,R

)]
.

(1.5.28)

We de�ne ζS/L∗,j,R (j = 0, 1, 2) in the same way as ζS/LR .
By (1.5.1) and (1.5.15), we have

2∑
j=0

(−1)(j−1)(j−2)/2
(
ζSj,R(s)− ζS∗,j,R(s)

)
= − 1

Γ(s)

∫ R2−ε

0

ts−1
(
ΘR(t)−Θ∗R(t)

)
dt .

(1.5.29)

Theorem 1.5.5. There exist c > 0 such that as R→∞,

(1.5.30)
2∑
j=0

(−1)(j−1)(j−2)/2
(
ζSj,R

′(0)− ζS∗,j,R′(0)
)

= O
(
e−cR

ε/2)
.

Proof. Let f ∈ C∞(R) be an even function such that f(u) = 1 for |u| 6 1/2 and f(u) = 0
for |u| > 1. We proceed in the same way as in [BL91, �13(b)]. For t, ς > 0 and z ∈ C, set

Ft,ς(z) =

∫ ∞
−∞

ei
√

2vze−
1
2
v2

f
(√

ςtv
) dv√

2π
,

Gt,ς(z) =

∫ ∞
−∞

ei
√

2vze−
1
2
v2/t
(
1− f

(√
ςv
)) dv√

2πt
.

(1.5.31)

Then

(1.5.32) Ft,ς
(√

tz
)

+Gt,ς

(
z
)

= exp
(
− tz2

)
.

Let

Ft,ς

(√
tDF

Zj,R

)
(x, y) , Gt,ς

(
DF
Zj,R

)
(x, y)

∈
(
Λ•
(
T ∗Zj,R

)
⊗ F

)
x
⊗
(
Λ•
(
T ∗Zj,R

)
⊗ F

)∗
y

(1.5.33)

be the smooth kernel of operators Ft,ς
(√

tDF
Zj,R

)
and Gt,ς

(
DF
Zj,R

)
with respect to the

volume form induced by the Riemannian metric on Zj,R.
By the construction of Gt,ς(z), for any k ∈ N, there exists c, C > 0 such that for any

t > 0 and 0 < ς < 1, we have (cf. [MaMar07, (1.6.16)])

(1.5.34) sup
z∈C

∣∣zkGt,ς(z)
∣∣ 6 Ce−c/ςt .
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As a consequence, for any k, k′ ∈ N, there exists c, C > 0 such that for 0 < t < R2−ε,
0 < ς < R−2+ε/2 and j = 0, 1, 2, we have

(1.5.35)
∥∥∥DF,k

Zj,R
Gt,ς

(
DF
Zj,R

)
DF,k′

Zj,R

∥∥∥
0,0
6 Cte−cR

ε/2

,

where ‖ · ‖0,0 is the operator norm induced by the L2-norm. By Proposition 1.3.5 and
(1.5.35), there exists c, C > 0 such that for 0 < t < R2−ε, 0 < ς < R−2+ε/2, j = 0, 1, 2
and x, y ∈ Zj,R, we have

(1.5.36)
∣∣∣Gt,ς

(
DF
Zj,R

)
(x, y)

∣∣∣ 6 Cte−cR
ε/2

.

By the �nite propagation speed principal (cf. [T11, �2.6, Theorem 6.1], [MaMar07, Ap-

pendix D.2]), if the distance between x and y is greater than ς−1/2, Ft,ς
(√

tDF
Zj,R

)
(x, y) =

0. In the rest of the proof, we take ς = R−2+ε/3 and suppose that R is large enough. For
x ∈ Zj,R/2 ⊆ Zj,R ⊆ ZR (j = 1, 2), we have

(1.5.37) Ft,ς

(√
tDF

Zj,R

)
(x, x) = Ft,ς

(√
tDF

ZR

)
(x, x) .

We view the middle of the cylinder ]− R/2, R/2[×Y as a subset of R× Y . Let DF
RY be

the Hodge-de Rham operator acting on Ω•(R× Y, F ). Let ι be the involution on R× Y
sending (u, y) to (−u, y). For x ∈

(
]−R/2, R/2[×Y

)
∩ Zj,R (j = 1, 2), we have

Ft,ς

(√
tDF

Zj,R

)
(x, x)

= Ft,ς

(√
tDF

RY

)
(x, x) + (−1)jFt,ς

(√
tDF

RY

)
(x, ιx) .

(1.5.38)

As a consequence, for x ∈ ]−R/2, R/2[×Y ∩ Z1,R =]−R/2, 0]× Y , we have

Ft,ς

(√
tDF

Z1,R

)
(x, x) + ι∗Ft,ς

(√
tDF

Z2,R

)
(ιx, ιx)

= Ft,ς

(√
tDF

ZR

)
(x, x) + ι∗Ft,ς

(√
tDF

ZR

)
(ιx, ιx)

∈ End
(
Λ•
(
T ∗Zj,R

)
⊗ F

)
x
.

(1.5.39)

By (1.5.32), ΘR(t) can be decomposed to the contributions of Ft,ς and Gt,ς . By (1.5.37)
and (1.5.39), the contribution of Ft,ς to (1.5.29) vanishes identically. By (1.5.36), the
contribution of Gt,ς to (1.5.29) together with its derivative at s = 0 are O

(
e−R

ε/2)
-small.

For Θ∗R(t), the same argument works. This terminates the proof of (1.5.30). �

1.5.3. Large time contribution and proof of Theorem 1.0.1.
By (1.5.1) and (1.5.15), we have

2∑
j=0

(−1)(j−1)(j−2)/2
(
ζLj,R(s)− ζL∗,j,R(s)

)
= − 1

Γ(s)

∫ ∞
R2−ε

ts−1
(
ΘR(t)−Θ∗R(t)

)
dt .

(1.5.40)

Let κ ∈]ε, 1[. Let ΘI
R(t) (resp. ΘII

R(t)) be the contribution to ΘR(t) by the eigenvalues
of DF,2

Zj,R
(j = 0, 1, 2) less than (resp. greater than or equal to) R−2+κ. We de�ne Θ∗,IR (t)

and Θ∗,IIR (t) in the same way.
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Proposition 1.5.6. As R→∞, we have

(1.5.41)
∫ ∞
R2−ε

ΘII
R(t)

dt

t
= O

(
e−

1
2
Rκ−ε

)
,

∫ ∞
R2−ε

Θ∗,IIR (t)
dt

t
= O

(
e−

1
2
Rκ−ε

)
.

Proof. Let {λk}k be the set of eigenvalues of DF,2
Zj,R

(j = 0, 1, 2) such that λk > R−2+κ.
Let n = dimZ. Then for R large and t > R2−ε, we have∣∣ΘII

R(t)
∣∣ 6 n

∑
k

e−tλk 6 ne−(t−1)R−2+κ
∑
k

e−λk

6 ne−(t−1)R−2+κ
2∑
j=0

Tr
[
exp

(
−DF,2

Zj,R

)]
.

(1.5.42)

Let exp
(
−DF,2

Zj,R

)
(x, y) (x, y ∈ Zj,R) be the smooth kernel of the operator exp

(
−DF,2

Zj,R

)
with respect to the volume form induced by the Riemannian metric on Zj,R. Proceeding
in the same way as (1.5.36), there exists C > 0 such that for any x, y ∈ Zj,R,

(1.5.43)
∣∣∣exp

(
−DF,2

Zj,R

)
(x, y)

∣∣∣ 6 C .

As a consequence, there exist a, b > 0, such that

(1.5.44) Tr
[
exp

(
−DF,2

Zj,R

)]
6 aVol(Zj,R) 6 bR , for j = 0, 1, 2 .

By (1.5.42) and (1.5.44), we get the �rst estimate in (1.5.41). The second one can be
established in the same way. �

Proposition 1.5.7. As R→∞, we have

(1.5.45)
∫ ∞
R2−ε

(
ΘI
R(t)−Θ∗,IR (t)

) dt
t

= O
(
Rκ−1

)
Proof. For λ > 0, we denote

(1.5.46) eR(λ) =

∫ ∞
R2−ε

e−tλ
dt

t
=

∫ ∞
R2−ελ

e−t
dt

t
.

By splitting the integral to
∫∞

1
+
∫ 1

R2−ελ
(if R2−ελ 6 1), we have

(1.5.47)
∣∣eR(λ)

∣∣ 6 1 + max
{
− log

(
R2−ελ

)
, 0
}
,

∣∣eR′(λ)
∣∣ 6 λ−1 .

For a �nite set (with multiplicity) Λ ⊆ R, set

(1.5.48) eR[Λ] =
∑
λ∈Λ

eR(λ) .

Then ∫ ∞
R2−ε

(
ΘI
R(t)−Θ∗,IR (t)

) dt
t

=
2∑
j=0

∑
p

(−1)(j−1)(j−2)/2+pp
{
eR

[
Sp
(
D
F,2,(p)
Zj,R

)
∩ ]0, Rκ−2[

]
− eR

[
Sp
(
D

2,(p)
Ij,R

)
∩ ]0, Rκ−2[

]}
.

(1.5.49)
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We will show that

(1.5.50) eR

[
Sp
(
D
F,2,(p)
ZR

)
∩ ]0, Rκ−2[

]
− eR

[
Sp
(
D

2,(p)
IR

)
∩ ]0, Rκ−2[

]
= O(Rκ−1) .

The other terms can be estimated in the same way, and (1.5.45) follows.
Recall that Λp

R is de�ned in (1.3.147). By Theorem 1.3.19, we have

(1.5.51) eR

[
Sp
(
D
F,2,(p)
ZR

)
∩ ]0, Rκ−2[

]
=

∑
ρ∈ΛpR , 0<|ρ|<Rκ/2−1

eR(ρ2) + O(e−cR) .

Recall that Λ∗,pR is de�ned in (1.5.24). By (1.5.25), we have

(1.5.52) eR

[
Sp
(
D

2,(p)
IR

)
∩ ]0, Rκ−2[

]
=

∑
λ∈Λ∗,pR , 0<|λ|<Rκ/2−1

eR(λ2) .

By Appendix Proposition 1.8.3 and (1.5.47), we have

(1.5.53)
∑

ρ∈ΛpR , 0<|ρ|<R−1+κ/2

eR(ρ2)−
∑

λ∈Λ∗,pR , 0<|λ|<R−1+κ/2

eR(λ2) = O(Rκ−1) .

By (1.5.51), (1.5.52) and (1.5.53), we get (1.5.50). �

Theorem 1.5.8. As R→∞, we have

(1.5.54)
2∑
j=0

(−1)(j−1)(j−2)/2
(
ζLj,R

′(0)− ζL∗,j,R′(0)
)

= O(Rκ−1) .

Proof. We combine Proposition 1.5.6, 1.5.7. �

Proof of Theorem 1.0.1 : We combine Proposition 1.5.4 and Theorem 1.5.5, 1.5.8. �

1.6. Asymptotics of the L2-metrics on Mayer-Vietoris exact sequence.
In this section, we prove Theorem 1.0.2.
We use the notations and assumptions in �1.3.1 and �1.3.2.
In �1.6.1, we contruct a �ltration of the Mayer-Vietoris exact sequence. More precisely,

we extend the Mayer-Vietoris exact sequence to a commutative diagram with exact rows
and columns. Moreover, we construct another commutative diagram (1.6.16), which is
isomorphic to the original one. In �1.6.2, every object in diagram (1.6.16) is equipped
with a metric (depending on R). We study the asymptotics of these metrics as R→∞.
In �1.6.3, we study the asymptotics of the maps in diagram (1.6.16) as R→∞. In �1.6.4,
with the help of diagram (1.6.16), we prove Theorem 1.0.2.

1.6.1. A �ltration of the Mayer-Vietoris exact sequence.
Recall that (F,∇F ) is a �at vector bundle over Z, Y ⊆ Z is a hypersurface cutting Z

into Z1, Z2. For R > 0, we constructed Zj,R (j = 1, 2) (resp. ZR) by attaching a cylinder
of length R (resp. 2R) to Zj (resp. Z). Then F extends to a �at vector bundle over ZR.
The maps ϕj,R : Zj,R → Zj (j = 1, 2) de�ned in (1.4.7) and ϕR : ZR → Z de�ned in

(1.3.32) are di�eomorphisms, which induce the following identi�cations

(1.6.1) ϕR ∗ : H•bd(Zj,R, F )→ H•bd(Zj, F ) , ϕR ∗ : H•(ZR, F )→ H•(Z, F ) .
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Since these di�eomorphisms commute with the injections Zj ↪→ Z and Zj,R ↪→ ZR, we
get an isomorphism of long exact sequence

· · · // Hp
bd(Z1,R, F ) //

ϕR ∗
��

Hp(ZR, F ) //

ϕR ∗
��

Hp
bd(Z2,R, F ) //

ϕR ∗
��

· · ·

· · · // Hp
bd(Z1, F )

αp // Hp(Z, F )
βp // Hp

bd(Z2, F )
δp // · · · ,

(1.6.2)

where each row is the classical Mayer-Vietoris exact sequence (1.0.16).
We recall that DF

Zj,R
(j = 1, 2) (resp. DF

ZR
) is the Hodge-de Rham operator (cf.

(1.0.2)) acting on Ω•bd(Zj,R, F ) (resp. Ω•(ZR, F )). Its kernel is denoted by H •
bd(Zj,R, F )

(resp. H •(ZR, F )). We recall that H •
bd(Zj,∞, F ) (j = 1, 2) is de�ned by (1.2.48) and

H •(Z12,∞, F ) is de�ned by (1.3.10). We constructed in De�nition 1.3.6, 1.4.4 the bijec-
tions

FZj,R : H •
bd(Zj,∞, F )→H •

bd(Zj,R, F ) ,

FZR : H •(Z12,∞, F )→H •(ZR, F ) .
(1.6.3)

By Theorem 1.1.1, FZj,R and FZR may be viewed as maps

FZj,R : H •
bd(Zj,∞, F )→ H•bd(Zj,R, F ) ,

FZR : H •(Z12,∞, F )→ H•(ZR, F ) .
(1.6.4)

Now we de�ne the composition map

F̃Zj,R = ϕR ∗ ◦FZj,R : H •
bd(Zj,∞, F )→ H•bd(Zj, F ) ,

F̃ZR = ϕR ∗ ◦FZR : H •(Z12,∞, F )→ H•(Z, F ) .
(1.6.5)

We remark that these maps depend on R.
Recall that the inclusion H •

L2(Zj,∞, F ) ⊆H •
bd(Zj,∞, F ) (j = 1, 2) is de�ned in (1.2.49),

and the inclusion H •
L2(Z1,∞, F ) ⊕H •

L2(Z2,∞, F ) ⊆ H •(Z12,∞, F ) is de�ned in (1.3.13).
For simplicity, we denote H •

L2(Z1,∞, F )⊕H •
L2(Z2,∞, F ) = H •

L2(Z12,∞, F ).
For R large enough, set

K•j = F̃Zj,R

(
H •

L2(Zj,∞, F )
)
⊆ H•bd(Zj, F ) , for j = 1, 2 ,

K•12 = F̃ZR

(
H •

L2(Z12,∞, F )
)
⊆ H•(Z, F ) .

(1.6.6)

By Proposition 1.3.3 and Proposition 1.4.2, K•1 , K
•
2 and K•12 are independent of R. We

de�ne the following commutative diagram with exact rows

0 // H p
L2(Z1,∞, F ) //

F̃Z1,R
��

H p
L2(Z12,∞, F ) //

F̃ZR
��

H p
L2(Z2,∞, F ) //

F̃Z2,R
��

0

0 // Kp
1

// Kp
12

// Kp
2

// 0

(1.6.7)

where the �rst row consists of canonical injection/projection maps. By Proposition 1.3.3
and Proposition 1.4.2, diagram (1.6.7) is independent of R.
Set

(1.6.8) L•j,bd = H•bd(Zj, F )/K•j , L•12 = H•(Z, F )/K•12 .



44 YEPING ZHANG

Proposition 1.6.1. We have the following commutative diagram with exact rows and
columns

0

��

0

��

0

��
· · · // Kp

1
//

��

Kp
12

//

��

Kp
2

//

��

· · ·

· · · // Hp
bd(Z1, F )

αp //

��

Hp(Z, F )
βp //

��

Hp
bd(Z2, F )

δp //

��

· · ·

· · · // Lp1,bd
ᾱp //

��

Lp12

β̄p //

��

Lp2,bd
δ̄p //

��

· · ·

0 0 0

(1.6.9)

where the maps Kp
1 → Kp

12 and Kp
12 → Kp

2 are de�ned by (1.6.7), the map Kp
2 → Kp+1

1

is zero, the second row is the classical Mayer-Vietoris exact sequence (1.0.16), and the
vertical maps are canonical injection/projection maps.

Proof. We show that the upper left square commutes. It is equivalent to show that for
any ω ∈H p

L2(Z1,∞, F ), we have

(1.6.10) αp
([

FZ1,R
(ω, 0)

])
= [FZR(ω, 0, 0)] ∈ Hp(Z, F ) .

By (1.3.29) and (1.4.5), we have

(1.6.11) FZR(ω, 0, 0)
∣∣
Z1,R

= FZ1,R
(ω, 0) , FZR(ω, 0, 0)

∣∣
Z2,R

= 0 .

By (1.3.48) and (1.4.22), we have[
FZ1,R

(ω, 0)
]

=
[
FZ1,R

(ω, 0)
]
∈ Hp

bd(Z1, F ) ,

[FZR(ω, 0, 0)] = [FZR(ω, 0, 0)] ∈ Hp(Z, F ) .
(1.6.12)

By Proposition 1.1.2 and (1.6.11), we have

(1.6.13) αp
([
FZ1,R

(ω, 0)
])

= [FZR(ω, 0, 0)] ∈ Hp(Z, F ) .

Then (1.6.10) follows from (1.6.12) and (1.6.13).
Proceeding in the same way, we can show that the upper right square commutes and

δp
(
Kp

2

)
= 0. We get the commutativity between the �rst and second rows.

The rests can be done by direct diagram chasing arguments. �

Let L •
j (j = 1, 2) be the set of limiting values (cf. (1.2.43)) of H •(Zj,∞, F ). Let

L •
j,abs/rel be the absolute/relative component (cf. (1.2.46)) of L •

j . We still use the
convention L •

1,bd = L •
1,rel and L •

2,bd = L •
1,abs

We de�ne, for j = 1, 2, the following commutative diagram with exact rows

0 // H p
L2(Zj,∞, F ) //

F̃Zj,R

��

H p
bd(Zj,∞, F ) //

F̃Zj,R

��

L p
j,bd

//

FZj,R

��

0

0 // Kp
j

// Hp
bd(Zj, F ) // Lpj,bd

// 0

(1.6.14)
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where the �rst row is de�ned by (1.2.49), the second row consists of canonical injec-
tion/projection maps. We de�ne the following commutative diagram with exact rows

0 // H p
L2(Z12,∞, F ) //

F̃ZR
��

H p(Z12,∞, F ) //

F̃ZR
��

L p
1 ∩L p

2
//

FZR
��

0

0 // Kp
12

// Hp(Z, F ) // Lp12
// 0

(1.6.15)

where the �rst row is de�ned by (1.3.13), the second row consists of canonical injec-
tion/projection maps.
By (1.6.9), (1.6.14) and (1.6.15), we get the following commutative diagram with exact

rows and columns, which is the analytic counterpart of (1.6.9),

0

��

0

��

0

��
· · · // H p

L2(Z1,∞, F ) //

��

H p
L2(Z12,∞, F ) //

��

H p
L2(Z2,∞, F ) //

��

· · ·

· · · // H p
bd(Z1,∞, F )

αp(R)
//

��

H p(Z12,∞, F )
βp(R)

//

��

H p
bd(Z2,∞, F )

δp(R)
//

��

· · ·

· · · // L p
1,bd

ᾱp(R)
//

��

L p
1 ∩L p

2

β̄p(R)
//

��

L p
2,bd

δ̄p(R)
//

��

· · ·

0 0 0

(1.6.16)

where the �rst row consists of canonical injection/projection maps, the columns are de-
�ned by (1.2.49) and (1.3.13), and

αp(R) =
(
F̃ZR

)−1

◦ αp ◦ F̃Z1,R
, αp(R) =

(
FZR

)−1 ◦ αp ◦FZ1,R
,

βp(R) =
(
F̃Z2,R

)−1

◦ βp ◦ F̃ZR , βp(R) =
(
FZ2,R

)−1 ◦ βp ◦FZR ,

δp(R) =
(
F̃Z1,R

)−1

◦ δp ◦ F̃Z2,R
, δp(R) =

(
FZ1,R

)−1 ◦ δp ◦FZ2,R
.

(1.6.17)

1.6.2. Asymptotics of the L2-metrics.
We begin by equipping the spaces in the second row of diagram (1.6.16) with metrics.
We recall that the metric ‖ · ‖H •(Z12,∞,F ),R on H •(Z12,∞, F ) is de�ned by (1.3.14). Let

F ∗
ZR

(
‖ · ‖H•(ZR,F )

)
be another metric on H •(Z12,∞, F ), which is the pull-back of the

L2-metric (de�ned in �1.0.4) ‖ · ‖H•(ZR,F ) on H•(ZR, F ) via FZR (cf. De�nition 1.3.6).
We recall that the metric ‖ · ‖H •

bd(Zj,∞,F ),R (j = 1, 2) on H •
bd(Zj,∞, F ) is de�ned by

(1.4.19). Let F ∗
Zj,R

(
‖ · ‖H•bd(Zj,R,F )

)
be another metric on H •

bd(Zj,∞, F ), which is the
pull-back of the L2-metric ‖ · ‖H•bd(Zj,R,F ) on H•bd(Zj,R, F ) via FZj,R (cf. De�nition 1.4.4).

Proposition 1.6.2. There exists c > 0 such that as R→ +∞, we have

F ∗
Zj,R

(
‖ · ‖H•bd(Zj,R,F )

)
= ‖ · ‖H •

bd(Zj,∞,F ),R + O(e−cR) , for j = 1, 2 ,

F ∗
ZR

(
‖ · ‖H•(ZR,R)

)
= ‖ · ‖H •(Z12,∞,F ),R + O(e−cR) .

(1.6.18)
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Proof. The �rst identitiy is a direct consequence of Propostion 1.4.3, 1.4.5. The second
identity is a direct consequence of Proposition 1.3.4, 1.3.7. �

Now we equip the spaces in the third row of diagram (1.6.16) with metrics.
Let ‖ · ‖L •1 ∩L •2 ,R

be the quotient metric on L •
1 ∩ L •

2 induced by ‖ · ‖H •(Z12,∞,F ),R

via the vertical map H •(Z12,∞, F ) → L •
1 ∩L •

2 in diagram (1.6.16). Let ‖ · ‖L •1 ∩L •2
be

another metric on L •
1 ∩L •

2 , which is induced by the L2-metric ‖ · ‖Y on H •(Y, F [du])
via the inclusion L •

1 ∩L •
2 ⊆H •(Y, F [du]) (cf. (1.2.43)).

Proceeding in the same way, we de�ne metrics ‖ · ‖L •j,bd,R
and ‖ · ‖L •j,bd

on L •
j,bd.

Proposition 1.6.3. As R→ +∞, we have

‖ · ‖2
L •j,bd,R

= R ‖ · ‖2
L •j,bd

+ O(1) , for j = 1, 2 ,

‖ · ‖2
L •1 ∩L •2 ,R

= 2R ‖ · ‖2
L •1 ∩L •2

+ O(1) .
(1.6.19)

Proof. We only prove the �rst one for j = 2. The others can be proved in the same way.
We recall that H •

bd(Z2,∞, F ) is de�ned by (1.2.48). By the de�nition of quotient metric,
for any ω̂ ∈ L •

2,bd, we have

(1.6.20) ‖ω̂‖2
L •2,bd,R

= inf
(ω,ω̂)∈H •

bd(Z2,∞,F )
‖(ω, ω̂)‖2

H •
bd(Z2,∞,F ),R .

We recall that I2,∞Y ⊆ Z2,∞ is its cylinder part, de�ned in �1.3.1. On I2,∞Y , let
ω = ωzm + ωnz be the decomposition of ω into zero-mode and non zero-mode parts,
de�ned in (1.2.16). Recall that πY : I2,∞Y → Y is the natural projection. We have
π∗Y ω̂ = ωzm. As a consequence, we have

(1.6.21) ‖ωzm‖2
I2,RY

= R ‖ω̂‖2
Y = R ‖ω̂‖2

L •2,bd
,

where I2,RY ⊆ Z2,R is the cylinder part of Z2,R, also de�ned in �1.3.1. Thus

‖(ω, ω̂)‖2
H •

bd(Z2,∞,F ),R −R ‖ω̂‖2
L •2,bd

= ‖ω‖2
Z2,R
− ‖ωzm‖2

I2,RY

= ‖ω‖2
Z2,0

+ ‖ωnz‖2
I2,RY

.
(1.6.22)

In particular, we have

(1.6.23) ‖(ω, ω̂)‖2
H •

bd(Z2,∞,F ),R > R ‖ω̂‖2
L •2,bd

.

By (1.6.20), (1.6.22) and (1.6.23), it is su�cient to show that there exists C > 0 such
that for any ω̂ ∈ L •

2,bd, there exists (ω, ω̂) ∈H •
bd(Z2,∞, F ) such that for any R > 0,

(1.6.24) ‖ω‖2
Z2,0

+ ‖ωnz‖2
I2,RY

6 C ‖ω̂‖2
L •2,bd

.

In the rest of the proof, we choose ω a generalized eigensection of DF
Z2,∞

associated with
λ = 0 such that (ω, ω̂) ∈ H •

bd(Z2,∞, F ). The existence and uniqueness of ω comes from
Remark 1.2.7. By (1.2.33), there exists C1 > 0 such that for any ω̂ and its associated
generalized eigensection ω, we have

(1.6.25) ‖ω‖2
Z2,0
6 C1‖ω̂‖2

Y = C1‖ω̂‖2
L •2,bd

.

Applying Lemma 1.2.1 and (1.3.43) with Z1,0 replaced by Z2,0, there exists C2 > 0 such
that for any generalized eigensection ω associated with λ = 0, we have

(1.6.26) ‖ωnz‖2
I2,RY

6 ‖ωnz‖2
I2,∞Y 6 C2‖ω‖2

Z2,0
.

By (1.6.25)-(1.6.26), we get (1.6.24). �
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1.6.3. Asymptotics of the horizontal maps.
First we consider the second row of diagram (1.6.16).
We recall that the operators du∧, i ∂

∂u
and c( ∂

∂u
) on Ω•(Y, F [du]) or H •(Y, F [du]) are

de�ned in (1.2.4).
In the sequel, by O

(
e−cR

)
, we mean a number bounded by Ce−cR with c, C > 0

uniquely determined by Z1, Z2, F . We will use the notations O (R−1), O (R−2), etc., in
the same way.

Proposition 1.6.4. For (ω, ω̂) ∈H p
bd(Z1,∞, F ) and (µ1, µ2, µ̂) ∈H p(Z12,∞, F ), we have〈

αp(R)(ω, ω̂), (µ1, µ2, µ̂)
〉

H p(Z12,∞,F ),R

= 〈ω, µ1〉Z1,R
+ O

(
e−cR

)
‖(ω, ω̂)‖H p

bd(Z1,∞,F ) ‖(µ1, µ2, µ̂)‖H p(Z12,∞,F ) .
(1.6.27)

For (ω1, ω2, ω̂) ∈H p(Z12,∞, F ) and (µ, µ̂) ∈H p
bd(Z2,∞, F ), we have〈

βp(R)(ω1, ω2, ω̂), (µ, µ̂)
〉

H p
bd(Z2,∞,F ),R

= 〈ω2, µ〉Z2,R
+ O

(
e−cR

)
‖(ω1, ω2, ω̂)‖H p(Z12,∞,F ) ‖(µ, µ̂)‖H p

bd(Z2,∞,F ) .
(1.6.28)

For (ω, ω̂) ∈H p
bd(Z2,∞, F ) and (µ, µ̂) ∈H p+1

bd (Z1,∞, F ), we have〈
δp(R)(ω, ω̂), (µ, µ̂)

〉
H p+1(Z1,∞,F ),R

=
〈
ω̂, i ∂

∂u
µ̂
〉
Y

+ O
(
e−cR

)
‖(ω, ω̂)‖H p

bd(Z2,∞,F ) ‖(µ, µ̂)‖H p+1
bd (Z1,∞,F ) .

(1.6.29)

Proof. Once again, we recall that H •
bd(Zj,∞, F ) (j = 1, 2) is de�ned by (1.2.48) and

H •(Z12,∞, F ) is de�ned by (1.3.10).
For (ω, ω̂) ∈H p

bd(Z1,∞, F ), we denote

(1.6.30) αp(R)(ω, ω̂) = (ω′1, ω
′
2, ω̂

′) ∈H p(Z12,∞, F ) .

By (1.6.17) and (1.6.30), we have

(1.6.31) αp
([

FZ1,R
(ω, ω̂)

])
=
[
FZR(ω′1, ω

′
2, ω̂

′)
]
∈ Hp(Z, F ) .

Then, by Proposition 1.1.3, for (µ1, µ2, µ̂) ∈H p(Z12,∞, F ), we have

(1.6.32)
〈
FZR(ω′1, ω

′
2, ω̂

′),FZR(µ1, µ2, µ̂)
〉
ZR

=
〈
FZ1,R

(ω, ω̂),FZR(µ1, µ2, µ̂)
〉
Z1,R

.

By Proposition 1.6.2, we have〈
(ω′1, ω

′
2, ω̂

′), (µ1, µ2, µ̂)
〉

H p(Z12,∞,F ),R

=
〈
FZR(ω′1, ω

′
2, ω̂

′),FZR(µ1, µ2, µ̂)
〉
ZR

(
1 + O

(
e−cR

))
.

(1.6.33)

By Proposition 1.3.4, 1.3.7, 1.4.3, 1.4.5, we have〈
FZ1,R

(ω, ω̂),FZR(µ1, µ2, µ̂)
〉
Z1,R

= 〈ω, µ1〉Z1,R
+ O

(
e−cR

)
‖(ω, ω̂)‖H p

bd(Z1,∞,F ) ‖(µ1, µ2, µ̂)‖H p(Z12,∞,F ) .
(1.6.34)

By (1.6.30) and (1.6.32)-(1.6.34), we get (1.6.27).
The second and third identities can be proved following in the same way. �

Now we consider the third row of diagram (1.6.16). We remark that the exact sequence
(1.5.11) involves the same vector spaces appearing in the third row of diagram (1.6.16).
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Proposition 1.6.5. As R→∞, we have

ᾱp(R) =
1

2
αp,L + O

(
R−1

)
,

β̄p(R) = βp,L + O
(
R−1

)
,

δ̄p(R) = R−1δp,L + O
(
R−2

)
.

(1.6.35)

Proof. We only prove the �rst one. The rests can be proved in the same way.
By Remark 1.2.7, for ω̂ ∈ L p

1,bd, there exists (ω, ω̂) ∈ H p
bd(Z1,∞, F ) such that ω is a

generalized eigensection. We denote

(1.6.36) αp(R)(ω, ω̂) = (ω′1, ω
′
2, ω̂

′) ∈H p(Z12,∞, F ) .

Then, by (1.6.17),

(1.6.37) ᾱp(R)(ω̂) = ω̂′ .

We need to show that

(1.6.38)

∥∥∥∥ω̂′ − 1

2
αp,L (ω̂)

∥∥∥∥2

L p
1 ∩L p

2

= O
(
R−2

)
‖ω̂‖2

Y .

By Proposition 1.6.3, it is su�cient to show that

(1.6.39)

∥∥∥∥ω̂′ − 1

2
αp,L (ω̂)

∥∥∥∥2

L p
1 ∩L p

2 ,R

= O
(
R−1

)
‖ω̂‖2

Y .

By Remark 1.2.7, there exists (ω′′1 , ω
′′
2 , ω̂

′′) ∈ H p(Z12,∞, F ) such that ω′′1 and ω′′2 are
generalized eigensections and

(1.6.40) ω̂′′ =
1

2
αp,L (ω̂) .

Since ‖ · ‖L p
1 ∩L p

2 ,R
is the quotient metric induced by ‖ · ‖H p(Z12,∞,F ),R, for proving (1.6.39),

it is su�cient to show that

(1.6.41)
∥∥(ω′1, ω

′
2, ω̂

′)− (ω′′1 , ω
′′
2 , ω̂

′′)
∥∥2

H p(Z12,∞,F ),R
= O

(
R−1

)
‖ω̂‖2

Y .

By Riesz representation theorem, it is equivalent to show that for any (µ1, µ2, µ̂) ∈
H p(Z12,∞, F ), we have〈

(ω′1, ω
′
2, ω̂

′)− (ω′′1 , ω
′′
2 , ω̂

′′), (µ1, µ2, µ̂)
〉

H p(Z12,∞,F ),R

= O
(
R−1/2

) ∥∥ω̂∥∥
Y

∥∥(µ1, µ2, µ̂)
∥∥

H p(Z12,∞,F ),R
.

(1.6.42)

By Proposition 1.6.4 and (1.6.36), we have〈
(ω′1, ω

′
2, ω̂

′), (µ1, µ2, µ̂)
〉

H p(Z12,∞,F ),R

= 〈ω, µ1〉Z1,R
+ O

(
e−cR

) ∥∥(ω, ω̂)
∥∥

H p
bd(Z1,∞,F )

∥∥(µ1, µ2, µ̂)
∥∥

H p(Z12,∞,F )
.

(1.6.43)

Since ω is a generalized eigensection, by (1.2.33), we have

(1.6.44)
∥∥(ω, ω̂)

∥∥
H p

bd(Z1,∞,F )
= ‖ω‖Z1,0 = O (1) ‖ω̂‖Y .

By (1.6.43) and (1.6.44), we get〈
(ω′1, ω

′
2, ω̂

′), (µ1, µ2, µ̂)
〉

H p(Z12,∞,F ),R

= 〈ω, µ1〉Z1,R
+ O

(
e−cR

) ∥∥ω̂∥∥
Y

∥∥(µ1, µ2, µ̂)
∥∥

H p(Z12,∞,F )
.

(1.6.45)
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The following identity is just the de�nition of 〈·, ·〉H p(Z12,∞,F ),R (cf. (1.3.14)),

(1.6.46)
〈
(ω′′1 , ω

′′
2 , ω̂

′′), (µ1, µ2, µ̂)
〉

H p(Z12,∞,F ),R
= 〈ω′′1 , µ1〉Z1,R

+ 〈ω′′2 , µ2〉Z2,R
.

Comparing (1.3.15), (1.6.42), (1.6.45) and (1.6.46), it remains to show that

〈ω, µ1〉Z1,R
− 〈ω′′1 , µ1〉Z1,R

− 〈ω′′2 , µ2〉Z2,R

= O
(
R−1/2

)
‖ω̂‖Y ‖(µ1, µ2, µ̂)‖H p(Z12,∞,F ),R .

(1.6.47)

Since ω′′1 , ω
′′
2 and ω are generalized eigensections, by using Lemma 1.2.1 and (1.2.33) in

the same way as in the proof of Proposition 1.6.3, we get〈
ω′′j , µj

〉
Zj,R

= R〈ω̂′′, µ̂〉Y + O
(
1
)
‖ω̂‖Y ‖µ̂‖Y

= R〈ω̂′′, µ̂〉Y + O
(
R−1/2

)
‖ω̂‖Y

∥∥(µ1, µ2, µ̂)
∥∥

H p(Z12,∞,F ),R
, for j = 1, 2 ,

〈ω, µ1〉Z1,R

= R〈ω̂, µ̂〉Y + O
(
1
)
‖ω̂‖Y ‖µ̂‖Y

= R〈ω̂, µ̂〉Y + O
(
R−1/2

)
‖ω̂‖Y

∥∥(µ1, µ2, µ̂)
∥∥

H p(Z12,∞,F ),R
.

(1.6.48)

By (1.5.8) and (1.6.40), we have

(1.6.49) 〈ω̂′′, µ̂〉Y =
1

2

〈
αp,L (ω̂), µ̂

〉
Y

=
1

2
〈ω̂, µ̂〉Y .

By (1.6.48) and (1.6.49), we obtain (1.6.47). This �nishes the proof of the �rst equation.
�

Remark 1.6.6. A special case of the problem addressed in this subsection was considered
by Müller-Strohmaier [MS10]. Considering the following Mayer-Vietoris exact sequence

(1.6.50) · · · // Hp
rel(Z1,R,C)

αp // Hp
abs(Z1,R,C)

βp // Hp(Y,C)
δp // · · · ,

they gave an asymptotic estimate of the sesquilinear form

(1.6.51) Hp(Y,C)×Hp(Y,C)→ C ; (φ, ϕ) 7→
〈
δpφ, δpϕ

〉
,

as R→∞ ([MS10, Theorem 3.3]), where
〈
·, ·〉 is the L2-metric on H•rel(Z1,R,C).

1.6.4. Torsion of the Mayer-Vietoris exact sequence : proof of Theorem 1.0.2.
First we state a technical lemma.
For A : V → W a linear map between Hermitian vector spaces of the same dimension,

we denote by det(A) the determinant of the matrix of A under any orthogonal bases,
which is well-de�ned up to U(1) :=

{
z ∈ C : |z| = 1

}
.

We recall that det∗(·) is de�ned by (1.0.25).

Lemma 1.6.7. Let V be a Hermitian vector space, H1, H2 ⊆ V two vector subspaces.
Let Pj be the orthogonal projection to Hj for j = 1, 2. We have∣∣det(P1|Im(P2P1))

∣∣ =
∣∣det(P2|Im(P1P2))

∣∣
= det∗

(
Id− P1 − P2 + P1P2 + P2P1

) 1
4 .

(1.6.52)
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Proof. We claim that there exists an orthogonal decomposition V =
⊕

k Vk such that
dimVk 6 2 and Hj =

⊕
k (Vk ∩Hj) for j = 1, 2. Once the claim is proved, we may

suppose that dimV 6 2. Then the only non trivial case is dimV = 2 and dimH1 =
dimH2 = 1. We may suppose that

(1.6.53) V = C2 , H1 = C(1, 0) , H2 = C(cos θ, sin θ) , with 0 6 θ 6
π

2
.

We have
∣∣det(P1|Im(P2P1))

∣∣ =
∣∣det(P2|Im(P1P2))

∣∣ = cos θ, and

(1.6.54) P1 =

(
1 0
0 0

)
, P2 =

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
.

Then (1.6.52) follows from a direct calculation.
Now we prove the claim. The operator P1P2P1 (resp. P2P1P2) acting on H1 (resp. H2)

is self-adjoint, let

(1.6.55) H1 =
⊕

06λ61

Hλ
1 , H2 =

⊕
06λ61

Hλ
2

be the associated spectral deompositions, i.e.,

(1.6.56) P1P2P1

∣∣
Hλ

1
= λId , P2P1P2

∣∣
Hλ

2
= λId .

We have

(1.6.57) H1
1 = H1

2 = H1 ∩H2 , H0
1 = H1 ∩H⊥2 , H0

2 = H2 ∩H⊥1 .

We get the orthogonal decomposition

(1.6.58) V = (H1 +H2)⊥ ⊕ (H1 ∩H2)⊕ (H1 ∩H⊥2 )⊕ (H2 ∩H⊥1 )⊕
⊕

0<λ<1

(Hλ
1 +Hλ

2 ) ,

which is invariant under the actions of P1 and P2. The problem decomposes to each
block. In H1 ∩H2, the vector spaces in question are both the whole space. We take (ej)j
an orthogonal basis of H1 ∩ H2 and choose Vj = Cej. For similar reasons, the claim is
true for (H1 +H2)⊥, H1 ∩H⊥2 and H2 ∩H⊥1 . For Hλ

1 +Hλ
2 with 0 < λ < 1, let (vj)16j6r

be an orthogonal basis of Hλ
1 , let Vj be the vector subspace spanned by {vj, P2vj}. These

Vj satisfy the desired condition. �

We brie�y recall some properties of torsion (cf. [BGS88a, �1a]), which are of constant
use in this subsection. For a �nite acyclic complex (V •, ∂) of Hermitian vector spaces,
we denote by T (V •, ∂) its torsion (cf. (1.0.15)).

- Let (V •[n], ∂) be the n-th right-shift of (V •, ∂), i.e., V k[n] = V k−n, then

(1.6.59) T (V •[n], ∂) = (T (V •, ∂))(−1)n .

- If (V •, ∂) is the direct sum of two complexes (V •1 , ∂1) and (V •2 , ∂2), then

(1.6.60) T (V •, ∂) = T (V •1 , ∂1)·T (V •2 , ∂2) .

- For a short acyclic complex

(1.6.61) (V •, ∂) : 0→ V 1 → V 2 → 0 ,

let A be the matrix of ∂ : V 1 → V 2 with respect to any orthogonal bases, then

(1.6.62) T (V •, ∂) = |det(A)| .
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Let TL be the torsion of the exact sequence (1.5.11) equipped with metrics ‖ · ‖L •j,bd

(j = 1, 2) and ‖ · ‖L •1 ∩L •2
. We calculate TL in the follows.

We recall that L •
j,abs ⊆ H •(Y, F ) (j = 1, 2) is the absolute component of L •

j ⊆
H •(Y, F [du]), de�ned by (1.2.46). Let L •,⊥

j,abs ⊆H •(Y, F ) be its orthogonal complement
with respect to the L2-metric on H •(Y, F ). We de�ne Spj ∈ End

(
H p(Y, F )

)
as follows

(1.6.63) Spj = IdL p
j,abs
− IdL p,⊥

j,abs
.

By identifying H p(Y, F ) to H p(Y, F )du via du∧ (cf. (1.2.4)), Spj also acts on H p(Y, F )du.
We recall that Cj(λ) ∈ End

(
H •(Y, F [du])

)
(j = 1, 2) is the scattering matrix associ-

ated with Ω•(Zj,∞, F ) (cf. �1.3.2). We recall that Cj = Cj(0) and Cp
j is its restriction to

H p(Y, F )⊕H p−1(Y, F )du. By (1.2.45) and (1.2.46), we have

Cj =

(
Spj 0

0 −Sp−1
j

)
.(1.6.64)

Proposition 1.6.8. The following identities hold

TL =
dimZ∏
p=0

det∗
(2− Sp1 ◦ S

p
2 − S

p
2 ◦ S

p
1

4

) 1
4

(−1)p

=
dimZ∏
p=0

det∗
(2− Cp

12 − (Cp
12)−1

4

) 1
4

(−1)pp

.

(1.6.65)

Proof. The exact sequence (1.5.11) is the orthogonal sum of the following two exact
sequences

· · · // L p
1,rel ∩L p

2,rel
// L p

1 ∩L p
2

// L p
1,abs ∩L p

2,abs

δp,L // · · · ,

· · · // L p
1,rel ∩ (L p

1,rel ∩L p
2,rel)

⊥ // 0 // L p
2,abs ∩ (L p

1,abs ∩L p
2,abs)

⊥ δp,L // · · · .

(1.6.66)

The δp,L in the �rst line is zero. The other maps in the line are canonical injec-
tion/projection maps. By (1.6.60) and (1.6.62), the �st line in (1.6.66) does not contribute
to TL . The second line in (1.6.66) splits into the short exact sequences

(1.6.67) 0 // L p
2,abs ∩ (L p

1,abs ∩L p
2,abs)

⊥ δp,L // L p+1
1,rel ∩ (L p+1

1,rel ∩L p+1
2,rel )

⊥ // 0 .

By (1.2.46), the map i ∂
∂u

: H p(Y, F )du → H p(Y, F ) sends L p+1
1,rel ∩ (L p+1

1,rel ∩L p+1
2,rel )

⊥ to

L p,⊥
1,abs∩ (L p,⊥

1,abs∩L p,⊥
2,abs)

⊥. We de�ne the following commutative diagram with exact rows
and isometric vertical maps

0 // L p
2,abs ∩ (L p

1,abs ∩L p
2,abs)

⊥ //

Id

��

L p+1
1,rel ∩ (L p+1

1,rel ∩L p+1
2,rel )

⊥ //

i ∂
∂u
��

0

0 // L p
2,abs ∩ (L p

1,abs ∩L p
2,abs)

⊥ // L p,⊥
1,abs ∩ (L p,⊥

1,abs ∩L p,⊥
2,abs)

⊥ // 0 .

(1.6.68)

By (1.5.10), the map in the second row in (1.6.68) is the orthogonal projection. Since
the vertical maps are isometric, the torsions of the �rst and second rows coincide.
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Let Pp (resp. Qp) be the orthogonal projection from H p(Y, F ) (resp. H p(Y, F )) onto
L p

2,abs (resp. L p,⊥
1,abs). Then

L p
2,abs ∩ (L p

1,abs ∩L p
2,abs)

⊥ = im(PpQp) ,

L p,⊥
1,abs ∩ (L p,⊥

1,abs ∩L p,⊥
2,abs)

⊥ = im(QpPp) .
(1.6.69)

We have the obvious identities

(1.6.70) Pp =
1

2
(1 + Sp2) , Qp =

1

2
(1− Sp1) .

By Lemma 1.6.7, (1.6.62) and (1.6.68)-(1.6.70), the torsion of (1.6.67) is given by

(1.6.71) det∗(1− Pp −Qp + PpQp +QpPp)
1
4 = det∗

(2− Sp1 ◦ S
p
2 − S

p
2 ◦ S

p
1

4

) 1
4
.

By (1.6.59) and (1.6.60), TL is the alternative product of the torsions of (1.6.67) for
each p. Thus (1.6.71) implies the �rst equality in (1.6.65). We turn to prove the second
one.
We denote

Ip,abs = det∗
(2− Sp1 ◦ S

p
2 − S

p
2 ◦ S

p
1

4

) 1
4
,

Ip = det∗
(2− Cp

12 − (Cp
12)−1

4

) 1
4
.

(1.6.72)

It is su�cient to show that

(1.6.73)
∏
p

I
(−1)p

p,abs =
∏
p

I(−1)pp
p .

By (1.6.64), we have

(1.6.74) Ip = Ip,abs · Ip+1,abs .

By (1.6.74), we have∏
p

I
(−1)p

p,abs =
∏
p

I
(−1)pp
p,abs

∏
p

I
(−1)p−1(p−1)
p,abs

=
∏
p

I
(−1)pp
p,abs

∏
p

I
(−1)pp
p+1,abs =

∏
p

I(−1)pp
p ,

(1.6.75)

which gives exactly (1.6.73). The proof of Proposition 1.6.8 is completed. �

Proof of Theorem 1.0.2. We equip all the objects in (1.6.16) with metrics. All the metrics
mentioned bellow are de�ned/recalled in �1.6.2.

- H •(Z12,∞, F ) is equipped with the metric ‖ · ‖H •(Z12,∞,F ),R ;
- H •

L2(Z12,∞, F ) ⊆H •(Z12,∞, F ) is equipped with the restricted metric ;
- H •

bd(Zj,∞, F ) (j = 1, 2) is equipped with the metric ‖ · ‖H •
bd(Zj,∞,F ),R ;

- H •
L2(Zj,∞, F ) ⊆H •

bd(Zj,∞, F ) is equipped with the restricted metric ;
- L •

1 ∩L •
2 is equipped with the metric ‖ · ‖L •1 ∩L •2

;
- L •

j,bd (j = 1, 2) is equipped with the metric ‖ · ‖L •j,bd
.

Let Th,j (j = 1, 2, 3) be the torsion of the j-th row, Tv,j (j = 1, · · · , 3n + 3) be the
torsion of the j-th column. By Proposition 1.6.2, we have

(1.6.76) TR =
(
1 + O

(
e−cR

))
Th,2 .
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By [BGS88a, Theorem 1.20], we have

(1.6.77) Th,1 T
−1
h,2 Th,3 =

3n+3∏
k=1

T
(−1)k+1

v,k .

By Proposition 1.6.3, (1.6.59), (1.6.60) and (1.6.62), we have

Tv,3p+1 =
(

1 + O
(
R−1

) )
R

1
2

dim L p
1,bd ,

Tv,3p+2 =
(

1 + O
(
R−1

) )
(2R)

1
2

dim L p
1 ∩L p

2 ,

Tv,3p+3 =
(

1 + O
(
R−1

) )
R

1
2

dim L p
2,bd .

(1.6.78)

By (1.6.59), (1.6.60), (1.6.62) and the fact that the �rst row in (1.6.16) consists of
canonical injection/projection maps, we have

(1.6.79) Th,1 = 1 .

We recall that ap, bp and dp are de�ned in (1.5.22). By Proposition 1.6.5, (1.6.59),
(1.6.60) and (1.6.62), we have

(1.6.80) Th,3 =
(

1 + O
(
R−1

) )( n∏
p=1

2(−1)pap

)(
n∏
p=1

R(−1)pdp

)
TL .

By the exactness of (1.5.11), we have

(1.6.81)
n∑
p=1

(−1)p
(

dim L p
1,bd − dim L p

1 ∩L p
2 + dim L p

2,bd

)
= 0 ,

(1.6.82) dim L p
1 ∩L p

2 = dim ker(βp,L ) + dim im(βp,L ) = ap + bp .

By (1.6.76) - (1.6.82), we get

(1.6.83) TR =
(

1 + O
(
R−1

) )( n∏
p=1

2(−1)p(ap−bp)/2

)(
n∏
p=1

R(−1)pdp

)
TL .

By Lemma 1.5.2, Proposition 1.6.8 and (1.6.83), the proof of Theorem 1.0.2 is completed.
�

1.7. Gluing formula for the analytic torsion.
In this section, we prove Theorem 1.0.3.
In �1.7.1, we review the Ray-Singer metric and the anomaly formula. In �1.7.2, applying

Theorem 1.0.1, 1.0.2, we prove Theorem 1.0.3.

1.7.1. Ray-Singer metric and Anomaly formula.
Let X be a compact manifold (with or without boundary). Let (F,∇F ) be a �at

complex vector bundle over X.
We equip X with a Riemannian metric gTX . We equip F with a Hermitian metric hF .

We suppose that gTZ and hF have a product structure near ∂X (cf. (1.0.1)).
We put absolute/relative boundary condition on ∂X. We recall that H•bd(X,F ) is de-

�ned by (1.1.4), and detH•bd(X,F ) is the determinant of H•bd(X,F ), de�ned by (1.0.11).
We recall that Ω•bd(X,F ) is de�ned by (1.1.5). Let DF

X,bd be the Hodge-de Rham
operator acting on Ω•bd(X,F ), de�ned by (1.0.2). Let ‖ · ‖detH•bd(X,F ) be the L2-metric
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on detH•bd(X,F ) induced by Hodge Theorem (cf. Theorem 1.1.1). Let ζ(s) be the
ζ-function of DF,2

X , de�ned by (1.0.6).

De�nition 1.7.1. The Ray-Singer metric on detH•bd(X,F ) is de�ned as follows,

(1.7.1) ‖ · ‖RS
detH•bd(X,F ) = ‖ · ‖detH•bd(X,F ) exp

(
1

2
ζ ′(0)

)
.

Let gTX ′ be another Riemannian metric on X. We suppose that gTX and gTX ′ coincide
on a neighborhood of ∂X. Let ‖ · ‖RS′

detH•bd(X,F ) be the Ray-Singer metric associated with

gTX
′ and hF . Before stating the anomaly formula calculating the ratio of ‖ · ‖RS

detH•bd(X,F )

and ‖ · ‖RS′
detH•bd(X,F ), we de�ne the Euler form and its Chern-Simons form.

Let o(TX) be the orientation bundle of TX. Let ∇TX be the Levi-Civita connection
on TX. Let RTX =

(
∇TX

)2
be its curvature. We de�ne its Euler form (cf. [BZ92, (4.9)])

(1.7.2) e(TX,∇TX) = Pf

[
RTX

2π

]
∈ ΩdimX

(
X, o(TX)

)
.

Let
(
gTXs

)
s∈[0,1]

be a smooth family of Riemannian metrics on TX such that gTX0 = gTX ,

gTX1 = gTX
′. Moreover, we suppose that all the gTXs coincide on a neighborhood of ∂X.

Let ∇TX
s be the Levi-Civita connection associated with gTXs . Set

ẽ
(
TX,

(
∇TX
s

)
s∈[0,1]

)
=

∫ 1

0

{
∂

∂b

∣∣∣
b=0

Pf

[
1

2π

(
∇TX
s

)2
+

b

2π

(
∂

∂s
∇TX
s − 1

2

[
∇TX
s ,

(
gTXs

)−1 ∂

∂s
gTXs

])]}
ds .

(1.7.3)

By [BZ92, (4.10)], we have

(1.7.4) d ẽ
(
TX,

(
∇TX
s

)
s∈[0,1]

)
= e(TX,∇TX ′)− e(TX,∇TX) .

We are in a special case of [BM06, Theorem 1.9] : since gTXs coincide near ∂X, the

boundary term ẽb in [BM06, (1.45)] vanishes, then the image of ẽ
(
TX,

(
∇TX
s′

)
s′∈[0,1]

)
in

(1.7.5) ΩdimX−1
(
X, o(TX)

)/{
dα : α ∈ ΩdimX−2

(
X, o(TX)

)
, supp(α) ∩ ∂X = ∅

}
,

denoted by ẽ
(
TX,∇TX ,∇TX ′

)
, is independent of the path

(
∇TX
s

)
s∈[0,1]

, which may be

identi�ed with the secondary Euler class in [BM06, Theorem 1.9].
We de�ne

(1.7.6) θ(F, hF ) = Tr
[(
hF
)−1∇FhF

]
∈ Ω1(X) ,

which is closed (cf. [BZ92, Proposition 4.6]).
The following theorem is a consequence of the anomaly formula for manifolds with

boundary [BM06, Theorem 0.1], which extends the anomaly formula for closed manifolds
[BZ92, Theorem 0.1].

Theorem 1.7.2. We have

(1.7.7) log

(
‖ · ‖RS′

detH•bd(X,F )

‖ · ‖RS
detH•bd(X,F )

)2

= −
∫
X

θ(F, hF ) ẽ(TX,∇TX ,∇TX ′) .
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1.7.2. Gluing formula : proof of Theorem 1.0.3.
We use the notations and assumptions in �1.3.1. We recall that % ∈ λ(F ) is de�ned by

(1.0.18). In the same way, we de�ne

(1.7.8) %R ∈ λR(F ) :=
(

detH•(ZR, F )
)−1

⊗ detH•bd(Z1,R, F )⊗ detH•bd(Z2,R, F ) .

The commutative diagram (1.6.2) induces an isomorphism ϕR ∗ : λR(F ) → λ(F ). By
the functoriality of the construction of %, we have

(1.7.9) ϕR ∗%R = % .

Let ‖ · ‖RS
detH•(ZR,F ) be the Ray-Singer metric on detH•(ZR, F ). Let ‖·‖RS

detH•bd(Zj,R,F )

(j = 1, 2) be the Ray-Singer metric on detH•bd(Zj,R, F ). Let ‖ · ‖RS
λR(F ) be the induced

metric on λR(F ).

Lemma 1.7.3. For R > 0, we have

(1.7.10) ‖%R‖RS
λR(F ) = ‖%‖RS

λ(F ) .

Proof. We use the convention Z0 = Z and Z0,R = ZR. We identify H•bd(Zj,R, F ) (j =
0, 1, 2) to H•bd(Zj, F ) via ϕR ∗. By (1.7.8) and (1.7.9), it is equivalent to show that, for
R′ > R > 0,

(1.7.11)
2∑
j=0

(−1)(j−1)(j−2)/2 log

(
‖ · ‖RS

detH•bd(Zj ,F ),R′

‖ · ‖RS
detH•bd(Zj ,F ),R

)2

= 0 .

Let ∇TZj,R (j = 1, 2) be the Levi-Civita connections on TZj,R. We recall that the
di�eormorphism ϕ̃R,R′ : ZR → ZR′ is constructed in the proof of Proposition 1.3.3. By
restricting to Zj,R, ϕ̃R,R′ induces an di�eormphism ϕ̃R,R′ : Zj,R → Zj,R′ (j = 1, 2). We
choose gTZRs = (1 − s)gTZR + sϕ̃∗R,R′g

TZR′ . Let gTZj,Rs (j = 1, 2) be the restricted metric

on Zj,R. Let ∇TZj,R
s (j = 0, 1, 2) be the associated Levi-Civita connections. By (1.7.3),

for j = 1, 2,

(1.7.12) ẽ
(
TZR,

(
∇TZR
s

)
s∈[0,1]

) ∣∣∣
Zj,R

= ẽ
(
TZj,R,

(
∇TZj,R
s

)
s∈[0,1]

)
.

Since ϕ̃R,R′ preserves the metric near the boundary, by (1.7.7), we get, for j = 0, 1, 2,

(1.7.13) log

(
‖ · ‖RS

detH•bd(Zj ,F ),R′

‖ · ‖RS
detH•bd(Zj ,F ),R

)2

= −
∫
Zj,R

θ(F, hF ) ẽ
(
TZj,R,

(
∇TZj,R
s

)
s∈[0,1]

)
.

By (1.7.12) and (1.7.13), we get (1.7.11). �

Proof of Theorem 1.0.3. Recall that ζ1,R(s), ζ2,R(s) and ζR(s) are de�ned in �1.0.2, and
TR is de�ned in �1.0.3. By (1.7.1), it is su�cient to show that

(1.7.14) TR exp

(
1

2
ζ ′1,R(0) +

1

2
ζ ′2,R(0)− 1

2
ζ ′R(0)

)
= 2−

1
2
χ(Y,F ) .

By Theorem 1.0.1, 1.0.2, the left hand side of (1.7.14) tends to 2−
1
2
χ(Y,F ) as R → ∞.

Meanwhile, by Lemma 1.7.3, the left hand side of (1.7.14) is independent of R. This
proves (1.7.14). �
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1.8. Appendix : Matrix valued holomorphic functions.
Let (V, 〈·, ·〉) be a Hermitian vector space of dimensionm. Let ‖ · ‖ be the norm induced

by 〈·, ·〉. LetD ⊆ C be an open disc centered at 0. Let C : D → End(V ) be a holomorphic
function such that, for any z ∈ D ∩ R, C(z) is a unitary matrix.
The following theorem is proved in [K95, �2.6, Theorem 6.1].

Theorem 1.8.1. There exist real holomorphic functions, i.e., their expansions at 0 are
of real coe�cients, θ1(z), · · · , θm(z) in the neighborhood of 0 such that eiθ1(z), · · · , eiθm(z)

give all the eigenvalues of C(z).
Furthermore, there exist P1(z), · · · , Pm(z) ∈ End(V ), which are de�ned for z in the

neighborhood of 0 and holomorphic on z such that Pj(z) is the orthogonal projection to
the eigenspace associated with θj(z), i.e.,

1 = P1(z) + · · ·+ Pm(z) ,

Pj(z)Pk(z) = 0 , for 1 6 j, k 6 m , j 6= k ,

C(z) = eiθ1(z)P1(z) + · · ·+ eiθm(z)Pm(z) .

(1.8.1)

In the sequel, by shrinking D to a smaller disc if necessary, we suppose that θj and Pj
(j = 1, · · · ,m) are all-well de�ned in the neighborhood of D.
For R > 0, we consider the equation

(1.8.2) e4iRzC(z)v = v ,

where z ∈ D, v ∈ V . By Theorem 1.8.1, for R and z �xed, (1.8.2) as an equation of v
has non trivial solution if and only if one of 4Rz + θ1(z), · · · , 4Rz + θm(z) lies in 2πZ.

Proposition 1.8.2. There exist R0 > 0, ε > 0 such that for R > R0, z0 ∈]−ε, ε[, v ∈ V ,
if

(1.8.3)
∥∥e4iRz0C(z0)v − v

∥∥ < ‖v‖ ,
then there exist z1, · · · , zm ∈ R, w1, · · · , wm ∈ V satisfying

|zj − z0|2 < ‖v‖−1 ·
∥∥e4iRzC(z0)v − v

∥∥ ,

‖Pj(z0)v − wj‖2 < ‖v‖ ·
∥∥e4iRzC(z0)v − v

∥∥ ,

e4iRzjC(zj)wj − wj = 0 ,

(1.8.4)

for j = 1, · · · ,m.

Proof. We equip End(V ) with the operator norm.
We �x B1, B2 > 0 such that for any s, t ∈ D and j = 1, · · · ,m,

(1.8.5) |θj(s)− θj(t)| < B1 |s− t| , ‖Pj(s)− Pj(t)‖ < B2 |s− t| .
We choose ε > 0, R0 > 0 such that]

−ε− 2π

4R0 −B1

, ε+
2π

4R0 −B1

[
⊆ D ,

0 <
2

4R0 −B1

< 1 , 0 <
2B2

4R0 −B1

< 1 .

(1.8.6)

Set vj = Pj(z0)v. By (1.8.1), for R > R0, we have

(1.8.7) e4iRz0C(z0)v − v =
m∑
j=1

(
e4iRz0+iθj(z0) − 1

)
vj ,
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Since these vj are mutually orthogonal, we have

(1.8.8)
∣∣e4iRz0+iθj(z0) − 1

∣∣ · ‖vj‖ 6 ∥∥e4iRz0C(z0)v − v
∥∥ .

If ‖vj‖2 < ‖v‖ ·
∥∥e4iRzC(z0)v − v

∥∥, set wj = 0, zj = z0. Then (1.8.4) holds trivially.
Otherwise, by (1.8.3) and (1.8.8), we have

(1.8.9)
∣∣e4iRz0+iθj(z0) − 1

∣∣2 6 ‖v‖−1 ·
∥∥e4iRz0C(z0)v − v

∥∥ < 1 .

Then there exists kj ∈ Z such that

(1.8.10) |4Rz0 + θj(z0)− 2kjπ|2 6 4 ‖v‖−1 ·
∥∥e4iRz0C(z0)v − v

∥∥ .

For R > R0, by (1.8.5) and (1.8.6), 4Rz + θj(z)− 2kjπ as a function of z ∈ R is strictly
increasing. Moreover, its derivative is greater than 4R − B1. Let zj ∈ R be the unique
real number satisfying 4Rzj + θj(zj)− 2kjπ = 0, then

(1.8.11) |zj − z|2 <
(

2

4R−B1

)2

‖v‖−1 ·
∥∥e4iRz0C(z0)v − v

∥∥ .

By (1.8.6) and (1.8.11), the �rst equation in (1.8.4) holds. Set wj = P (zj)v, then the
third equation in (1.8.4) holds trivially. Furthermore, by the choice of B2, we have

‖Pj(z0)v − wj‖ =
∥∥(Pj(z0)− Pj(zj)

)
v
∥∥

6 ‖Pj(z0)− Pj(zj)‖ · ‖v‖ 6 B2 |z0 − zj| · ‖v‖ .
(1.8.12)

By (1.8.6), (1.8.11) and (1.8.12), the second equation in (1.8.4) holds. �

For R > 0, set

ΛR(C) =
{
ρ > 0 : det

(
e4iRρC(ρ)− 1

)
= 0
}
,

Λ∗R(C) =
{
λ > 0 : det

(
e4iRλC(0)− 1

)
= 0
}
.

(1.8.13)

We �x κ > 0.

Proposition 1.8.3. There exist a > 0, R0 > 0 such that for any R > R0, R
−1+κ 6 γ 6 1

and f ∈ C 1(R), we have

(1.8.14)

∣∣∣∣∣∣
∑

ρ∈ΛR(C) , |ρ|<γ

f(ρ)−
∑

λ∈Λ∗R(C) , |λ|<γ

f(λ)

∣∣∣∣∣∣ 6 aγ2 sup
|x|6γ
|f ′(x)|+ aγ sup

|x|6γ
|f(x)| .

Proof. By Theorem 1.8.1, we may suppose that C(ρ) = eiθ(ρ), where θ is an analytic
function. The rest of the proof is a direct estimate, and we leave it to readers. �

Set

(1.8.15) ζC,R(s) = −
∑

λ∈Λ∗R(C)

(
λ2
)−s

.

We recall that m = dimV . Set r = dim ker
(
C(0)− 1

)
.

Proposition 1.8.4. If Sp
(
C(0)

)
= Sp

(
C(0)

)
, then

(1.8.16) ζC,R
′(0) = r log(2R) +m log 2 +

1

2
log det∗

(
2− C(0)− C(0)−1

4

)
.
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Proof. As special cases of the Hurwitz ζ-functions (cf. [W99, �7]), we have

(1.8.17) − ∂

∂s

∣∣∣
s=0

∞∑
k=1

(
2πk − θ

4R

)−2s

=

{
log(4R) for θ = 0 ,

1
2

log(2− 2 cos θ) for 0 < θ 6 π .

Since C(0) is diagonalizable, it su�ces to consider the consider the following cases.
Case 1. m = 1, r = 1, C = 1, then (1.8.16) is equivalent to (1.8.17) with θ = 0.
Case 2. m = 1, r = 0, C = −1, then (1.8.16) is equivalent to (1.8.17) with θ = π.
Case 3. m = 2, r = 0, SpC =

{
eiα, e−iα

}
with α ∈ ]0, π[, then (1.8.16) is equivalent to

(1.8.17) with θ = α. �
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2. Riemann-Roch-Grothendieck and flat complex fibrations

2.0. Introduction.
The real and complex analytic torsions were introduced by Ray-Singer [RS71, RS73].

For a compact real (resp. complex) manifold equipped with a Riemannian (resp. Her-
mitian) metric and a �at (resp. holomorphic) Hermitian vector bundle, its real (resp.
complex) analytic torsion is a spectral invariant of the Laplacian.
Cheeger [Che79] and Müller [M78] proved independently that the real analytic torsion

is a topological invariant for unitarily �at vector bundles. Müller [M93] also extended
their result to unimodular �at vector bundles. In the general case, the dependence of the
real analytic torsion on the metrics was calculated by Bismut-Zhang [BZ92], who also
established an extension of the Cheeger-Müller theorem in the general case.
For a real smooth �bration π : M → S with compact �ber X, and a �at complex vec-

tor bundle F over M , Bismut and Lott [BL95] gave a R.R.G. formula for the odd Chern
classes of the direct image R·π∗F , which is a �at vector bundle over S, in terms of the
Euler class of the relative tangent bundle TX and the corresponding odd Chern classes
of F . When equipping the considered vector bundles with metrics, these classes can be
represented by explicit di�erential forms. By transgressing the equality of cohomology
classes at the level of di�erential forms, they also obtained even analytic torsion forms on
S, whose coboundary is equal to the di�erence between the di�erential forms appearing
on the left and right hand side of the R.R.G. formula. The parallel work for holomor-
phic �brations extending the complex analytic torsion was done by Bismut-Gillet-Soulé
[BGS88b] and Bismut-Köhler [BK92].
In this article, we consider a �at �bration q : N → M with complex �ber N and a

complex vector bundle E over N which is holomorphic along N and �at along horizontal
directions in N . First, we give a R.R.G. formula for the odd Chern classes of R·π∗F in
terms of the Todd class of the relative tangent bundle and of the Chern classes of F . By
equipping the various vector bundles with Hermitian metrics, we construct even analytic
torsion forms onM which transgress the equality of the corresponding cohomology classes.
In a second part, we combine the techniques of Bismut-Lott [BL95] and of the �rst

part. We consider the projection r : N → S with �ber Y , and the corresponding family of
bicomplexes equipped with the chain map dX+∂N . When introducing suitable Hermitian
metrics, we construct analytic torsion forms on S associated with this bicomplex.
We also consider the case where L is a line bundle, equipped with a Hermitian metric

gL such that the curvature of the corresponding �berwise Chern connection rL is positive
along the �bers. We introduce a suitable nondegeneracy assumption on the metric gL

from Bismut-Ma-Zhang [BMaZ11, BMaZ15] that guarantees that for p ∈ N large enough,
the de Rham cohomology of q∗(E ⊗ Lp) along the �bers X vanishes identically. In this
case, we construct even analytic torsion forms on the S that are associated with the above
bicomplex.
In a last step, we give a formula relating the analytic torsion forms of the above

bicomplex to the analytic torsion forms of Bismut-Lott for q∗(E ⊗ Lp) and the analytic
torsion forms of the �rst part of the article.
Let us now give more detail on the content of the present article.

2.0.1. Chern-Weil theory and its extensions.
Let M be a smooth manifold. Given a complex vector bundle E of rank r over M ,

a connection ∇E on E and an invariant polynomial P on gl(r,C), Chern-Weil theory
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assigns a closed di�erential form of even degree

(2.0.1) P (E,∇E) ∈ Ωeven(M) ,

whose cohomology class
[
P (E,∇E)

]
∈ Heven(M) does not depend on ∇E, and will be

denoted by P (E). This theory will be referred to as the even Chern-Weil theory.
If ∇E is a �at connection, i.e., ∇E,2 = 0, P (E,∇E) is a constant function.
A Chern-Weil theory for �at vector bundles was developed by Bismut-Lott [BL95, �1].

Given a �at complex vector bundle (E,∇E) over M , a Hermitian metric gE on E and an
odd polynomial f , we assign a closed di�erential form of odd degree

(2.0.2) f(E,∇E, gE) ∈ Ωodd(M) ,

whose cohomology class
[
f(E,∇E, gE)

]
∈ Hodd(M) is independent of gE, and will be

denoted by f(E,∇E). This theory will be referred to as the odd Chern-Weil theory.
In this article , we will construct characteristic classes for �at �brations with complex

�bers. Our construction is a mixture of the even and odd Chern-Weil theory.
Let G be a Lie group. Let p : PG → M be a �at G-principal bundle. Let N be a

compact complex manifold. We assume that G acts holomorphically on N . Set

(2.0.3) N = PG ×G N .

Let

(2.0.4) q : N →M

be the canonical projection. Then q induces a �at �bration with canonical �ber N .
Let E0 be a holomorphic vector bundle over N . We assume that the action of G lifts

holomorphically to E0. Set

(2.0.5) E = PG ×G E0 .

Then E is a complex vector bundle over N .
In �2.2, for such a vector bundle E and a Hermitian metric gE on E, we assign odd

di�erential forms as follows. Set

Ω·(M) = C∞
(
M,Λ·(T ∗M)

)
,

Ω·(N , E) = C∞
(
N ,Λ·(T ∗N )⊗ E

)
.

(2.0.6)

Let dM be the de Rham operator on Ω·(M). Let dEM be the lift of dM to Ω·(N , E). Set

(2.0.7) ωE =
(
gE
)−1

dEM gE ∈ Ω1(N ,End(E)) .

Let ∇E
N be the �berwise Chern connection on (E, gE). Let AE be the unitary connection

on E de�ned by

(2.0.8) AE = ∇E
N + dEM +

1

2
ωE .

Let r be the rank of r. Let gl(r,C) be the Lie algebra of GL(r,C). Let NΛ·(T ∗N ) be the
number operator on Λ·(T ∗N ), i.e., for α ∈ Λk(T ∗N ), NΛ·(T ∗N )α = kα. For an invariant
polynomial P on gl(r,C) (under the conjugate action of GL(r,C)), put

P (E, gE) = (2πi)−
1
2
NΛ·(T∗N )

P (−AE,2) ∈ Ωeven(N ) ,

P̃ (E, gE) = (2πi)
1
2
− 1

2
NΛ·(T∗N )

〈
P ′(−AE,2),

ωE

2

〉
∈ Ωodd(N ) .

(2.0.9)
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Theorem 2.0.1. The di�erential form

(2.0.10) q∗
[
P (E, gE)

]
∈ Ωeven(M)

is a constant function.
The di�erential form

(2.0.11) q∗
[
P̃ (E, gE)

]
∈ Ωodd(M)

is closed. Its cohomology class

(2.0.12)
[
q∗
[
P̃ (E, gE)

]]
∈ Hodd(M)

is independent of gE.

In the sequel, we use the notation

(2.0.13) q∗
[
P̃ (E)

]
=
[
q∗
[
P̃ (E, gE)

]]
∈ Hodd(M) .

Let F be another vector bundle (of rank r′) over N satisfying the same properties as
E. Let gF be a Hermitian metric on F . Let Q be an invariant polynomial on gl(r′,C).
The natural product on the forms P̃ (E, gE) and Q̃(F, gF ) is given by

(2.0.14) P̃ (E, gE) ∗ Q̃(F, gF ) = P̃ (E, gE)Q(F, gF ) + P (E, gE)Q̃(F, gF ) .

2.0.2. A R.R.G. theorem for �at �brations with complex �bers.
In the sequel, we suppose that N is a Kähler manifold.
Let H ·(N,E) be the �berwise Dolbeault cohomology group of E along N . Then

H ·(N,E) is a graded �at vector bundle over M . Let ∇H·(N,E) be its �at connection.
Let f(x) = x exp(x2).
Let

(2.0.15) f
(
H ·(N,E),∇H·(N,E)

)
∈ Hodd(M,R)

be the Bismut-Lott odd characteristic class [BL95, �1].
We establish the following Riemann-Roch-Grothendieck formula.

Theorem 2.0.2. We have

(2.0.16) f
(
H ·(N,E),∇H·(N,E)

)
= q∗

[
T̃d(TN) ∗ c̃h(E)

]
∈ Hodd(M,R) .

Here T̃d(TN) ∗ c̃h(E) is de�ned by (2.0.9) and (2.0.14).
Now we explain the idea of the proof. We use the superconnection formalism [BL95,

�2].
Put

(2.0.17) E = C∞(N,Λ·(T ∗N)⊗ E) .

Then E is an in�nite dimensional �at vector bundle overM . Let dE
M be its �at connection.

Let ∂
E

N be the Dolbeault operator acting on E . Set

(2.0.18) AE = ∂
E

N + dE
M .

Then AE acts on Ω·(M,E ). Also AE is a �at superconnection on E in the sense of
Bismut-Lott [BL95, De�nition 1.1].
Let gTN be a �berwise Kähler metric on TN . Let gE be a Hermitian metric on E. Let

gE be the induced L2-metric on E . Let AE ,∗ be the adjoint superconnection of AE in the
sense of Bismut-Lott [BL95, De�nition 1.6].
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Let NΛ·(T ∗M) be the number operator of Λ·(T ∗M). Set

(2.0.19) DE = 2−N
Λ·(T∗M)(

AE ,∗ − AE
)
2N

Λ·(T∗M) ∈ Ω·(M,End(E )) .

For t > 0, let DE
t be the DE associated with the metrics 1

t
gTN and gE. Following Bismut-

Lott [BL95, (2.22),(2,23)], we de�ne

αt = (2πi)
1
2
− 1

2
NΛ·(T∗M)

Trs

[
DE
t exp(DE ,2

t )
]
,

βt = (2πi)−
1
2
NΛ·(T∗M)

Trs

[NΛ·(T ∗N)

2
(1 + 2DE ,2

t ) exp(DE ,2
t )
]
,

(2.0.20)

and we show that

(2.0.21) dMαt = 0 ,
∂

∂t
αt =

1

t
dMβt .

Let gH
·(N,E) be the metric on H ·(N,E) induced by the L2-metric on E via the Hodge

theorem. Let

(2.0.22) f
(
H ·(N,E),∇H·(N,E), gH

·(N,E)
)
∈ Ωodd(M)

be the Bismut-Lott odd characteristic form [BL95, De�nition 1.7].
Theorem 2.0.2 is a consequence of the following theorem.

Theorem 2.0.3. We have

αt = f
(
H ·(N,E),∇H·(N,E), gH

·(N,E)
)

+ O
( 1√

t

)
, as t→∞ ,

αt = q∗
[
T̃d(TN, gTN) ∗ c̃h(E, gE)

]
+

a �xed exact form

t
+ O

(√
t
)
, as t→ 0 .

(2.0.23)

2.0.3. An analytic torsion form for �at �bration with complex �bers.
As a consequence of Theorem 2.0.3, we obtain an analytic torsion form, which gener-

alizes the Ray-Singer analytic torsion for complex manifolds [RS73].
In the same way as in (2.0.23), we also obtain an asymptotic estimate for βt as t→∞

and t→ 0. With the help of this estimate, we construct explicitly a di�erential form

(2.0.24) T (gTN , gE) ∈ Ωeven(M) ,

which is de�ned by subtracting the singularities of the following integral

(2.0.25) −
∫ ∞

0

βt
dt

t
.

Moreover, by the asymptotic estimate for βt, the singularities of the integral consist of
closed forms. Now, applying (2.0.21) and (2.0.23), we get

dMT (gTN , gE)

= q∗
[
T̃d(TN, gTN) ∗ c̃h(E, gE)

]
− f

(
H ·(N,E),∇H·(N,E), gH

·(N,E)
)
.

(2.0.26)

Moreover, we show that the degree zero component of T (gTN , gE) is the Ray-Singer
holomorphic torsion associated with (N, gTN , E, gE).
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2.0.4. The analytic torsion forms of Bismut-Lott and their extension.
The Bismut-Lott analytic torsion forms [BL95, De�nition 3.22] extends the Ray-Singer

analytic torsion for real manifolds [RS71]. We brie�y summarize the results of [BL95].
Let π : M → S be a real smooth �bration with compact �ber X. Let THM ⊆ TM

be a lift of TS, i.e., the restriction of the map TM → π∗TS to THM is an isomorphism.
Let TX be a Riemannian metric on TX. Let ∇TX be the Levi-Civita connection on TX
(cf. �2.1.4).
Let (F,∇F ) be a �at complex vector bundle over M . Let gF be a Hermitian metric

on F . Let H ·(X,F ) be the �berwise de Rham cohomology group of F , which is a vector
bundle over S equipped with the Gauÿ-Manin �at connection ∇H·(X,F ). Let gH

·(X,F ) be
the metric on H ·(X,F ) induced by the L2-metric on Ω·(X,F ) via the Hodge theorem.
As in �2.0.2, we denote by

f
(
F,∇F , gF

)
∈ Ωodd(M) ,

f
(
H ·(X,F ),∇H·(X,F ), gH

·(X,F )
)
∈ Ωodd(S)

(2.0.27)

the Bismut-Lott odd characteristic forms associated with f(x) = x exp(x2). Let

f
(
F,∇F

)
∈ Hodd(M,R) ,

f
(
H ·(X,F ),∇H·(X,F )

)
∈ Hodd(S,R)

(2.0.28)

be their cohomology classes.
Let e(TX) denote the Euler class of TX. In [BL95, �3], the authors prove the following

Riemann-Roch-Grothendieck formula

(2.0.29) f
(
H ·(X,F ),∇H·(X,F )

)
= π∗

[
e(TX)f

(
F,∇F

)]
∈ Hodd(S,R) .

They also construct an analytic torsion form

(2.0.30) T (THM, gTX , gF ) ∈ Ωeven(S)

satisfying

dST (THM, gTX , gF )

= π∗
[
e(TX,∇TX)f

(
F,∇F , gF

)]
− f

(
H ·(X,F ),∇H·(X,F ), gH

·(X,F )
)
.

(2.0.31)

Moreover, they show that the degree zero component of T (THM, gTX , gF ) is the Ray-
Singer analytic torsion [RS71] associated with (X, gTX , F, gF ).
In this article, we extend these constructions to the following setting. Recalling that

the �at �bration q : N → M is de�ned in �2.0.2, we have the following commutative
diagram

(2.0.32) N
q
��

r

!!
M π

// S .

Let Y be the �ber of r : N → S. Put

(2.0.33) F = Ω·(X,E ) .

Let dE
X be the lift of the de Rham operator on Ω·(X) to F . We will extend Bismut-Lott's

constructions to the family of de Rham Dolbeault complexes
(
F , ∂

E

N + dE
X

)
over S.
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For certain reasons, we make the following simpli�cations. Let L be a complex line
bundle over N constructed in the same way as E. Let gL be a Hermitian metric on L.
We assume that

(2.0.34) c1(L, gL)
∣∣
N
∈ Ω1,1(N) := C∞(N, T ∗N ⊗ T ∗N)

is positive. Put

(2.0.35) Ep = E ⊗ Lp .

We replace E by Ep with p large enough. By Kodaira's vanishing theorem, we have
H>0(N,Ep) = 0. Put

(2.0.36) Hp = H0(N,Ep) ,

which is a �at vector bundle over M . Let Ep (resp. Fp) be E (resp. F ) with E replaced
by Ep. An argument using the Leray spectral sequence yields

(2.0.37) H ·
(
Fp, ∂

E

N + dE
X

)
= H ·(X,Hp) .

We also assume that

(2.0.38)
(
gL
)−1

dXg
L ∈ C∞(N , T ∗X)

is nowhere-zero. This assumption implies that for p� 1,

(2.0.39) H ·
(
Fp, ∂

Ep
N + d

Ep
X

)
= H ·(X,Hp) = 0 .

Applying (2.0.29) with F replaced by Hp and comparing with (2.0.39), we get

(2.0.40) π∗
[
e(TX)f

(
Hp,∇Hp

)]
= 0 ∈ Hodd(S,R) .

Let αp,t ∈ Ωodd(M) be the αt de�ned by (2.0.20) with E replaced by Ep. By (2.0.23) and
(2.0.40), the di�erential form

(2.0.41) π∗
[
e(TX,∇TX)αp,t

]
∈ Ωodd(S)

is exact. Following the same procedure in �2.0.3, we construct an analytic torsion form

(2.0.42) Ttot,t

(
THM, gTN , gTX , gEp

)
∈ Ωeven(S)

satisfying

(2.0.43) dSTtot,t

(
THM, gTN , gTX , gEp

)
= π∗

[
e(TX,∇TX)αp,t

]
.

Let

(2.0.44) T (gTN , gEp) ∈ Ωeven(M)

be the analytic torsion form de�ned in �2.0.3 with E replaced by Ep.
Let gHp be the metric on Hp induced by the L2-metric on Ep via the Hodge theorem.

Let

(2.0.45) T
(
THM, gTX , gHp

)
∈ Ωeven(S)

be the Bismut-Lott analytic torsion form with (F, gF ) replaced by
(
Hp, g

Hp
)
.
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Theorem 2.0.4. For p large enough, we have

lim
t→∞

Ttot,t

(
THM, gTN , gTX , gEp

)
= T

(
THM, gTX , gHp

)
.

(2.0.46)

For p large enough, modulo exact forms, we have

lim
t→0

Ttot,t

(
THM, gTN , gTX , gEp

)
= T

(
THM, gTX , gHp

)
+ π∗

[
e(TX,∇TX)T (gTN , gEp)

]
.

(2.0.47)

Moreover, if dimX is odd, for t > 0, we have the identity modulo exact forms

(2.0.48) Ttot,t

(
THM, gTN , gTX , gEp

)
= T

(
THM, gTX , gHp

)
.

This article is organized as follows.
In �2.1, we recall some standard constructions and known results. Most of them can

be found in [BerGV04] and [BL95, �1].
In �2.2, we construct characteristic classes for �at �brations and prove Theorem 2.0.1.
In �2.3, we prove Theorem 2.0.3. As a consequence, we establish Theorem 2.0.2. We

also construct the analytic torsion form T (gTN , gE).
In �2.4, we construct the analytic torsion form Ttot,t

(
THM, gTN , gTX , gEp

)
. We also

state several intermediate theorems and show that these theorems imply Theorem 2.0.4.
In �2.5, we prove the intermediate theorems stated in �2.4.
The results in �2.2 and �2.3 were announced in [Zh16].
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2.1. Preliminaries.
The results in this section can be found in [B86, �1], [BL95, �1], [BerGV04, �1].

2.1.1. Superalgebras.
In the sequel, the algebras will be over R or C.

De�nition 2.1.1. A superalgebra is an algebra A equipped with a Z2-grading A =
A+ ⊕ A−, such that

(2.1.1) A+A± ⊆ A± , A−A± ⊆ A∓ .

Let A be a superalgebra. An element a ∈ A is said to be homogeneous if a ∈ A±. We
denote deg a = 0 (resp. deg a = 1) if a ∈ A+ (resp. a ∈ A−).
The supercommutator of two homogeneous elements a, b ∈ A is de�ned by

(2.1.2) [a, b] = ab− (−1)deg a deg bba .

Also [·, ·] extends by linearity to the whole algebra A.
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De�nition 2.1.2. Let A and B be two superalgebras. The Z2-graded tensor product
A⊗̂B is identi�ed with A⊗B as vector spaces, and the multiplication is given by

(2.1.3) (a1 ⊗ b2) · (a2 ⊗ b2) = (−1)deg a2 deg b1a1a2 ⊗ b1b2 ,

where a1, a2 ∈ A and b1, b2 ∈ B are homogeneous elements.

De�nition 2.1.3. Let A be a superalgebra. A super A-module is a Z2-graded vector
space V = V + ⊕ V − equipped with an action of A, such that

(2.1.4) A+V ± ⊆ A± , A−V ± ⊆ A∓ .

Let V = V + ⊕ V − be a Z2-graded vector space. Set

(2.1.5) τ = idV + − idV − ∈ End(V ) ,

and

(2.1.6) End±(V ) =
{
a ∈ End(V ) : τa = ±aτ

}
.

Then End(V ) = End+(V )⊕End−(V ) is a superalgebra, and V is a super End(V )-module.
For a ∈ End(V ), its supertrace is de�ned by

(2.1.7) Trs

[
a
]

= Tr
[
τa
]
.

For any a, b ∈ End(V ), we have

(2.1.8) Trs

[
[a, b]

]
= 0 .

In the whole article, we apply the superalgebra language to the following geometric
settings.
Let M be a C∞-manifold. We denote by Ω·(M) be the algebra of di�erential forms on

M . We always equip Ω·(M) with the Z2-grading Ω·(M) = Ωeven(M) ⊕ Ωodd(M). Then
Ω·(M) is a supercommutative superalgebra, i.e., [α1, α2] = 0 for α1, α2 ∈ Ω·(M).
Let F be a complex vector bundle over M . We denote by Ω·(M,F ) the vector space

of di�erential forms on M with values in F . We equip Ω·(M,F ) with the Z2-grading
Ωeven/odd(M,F ). Then Ω·(M,F ) is a super Ω·(M)-module.

2.1.2. Cli�ord algebras and their representations.
Let V be a real vector space. Let gV be an Euclidean metric on V . Let

(2.1.9)
⊗

V :=
∞⊕
j=0

V ⊗j

be the tensor algebra of V .

De�nition 2.1.4. Let I ⊆
⊗

V be a bi-ideal generated by

(2.1.10) u⊗ v + v ⊗ u+ 2gV (u, v) , u, v ∈ V .

Set

(2.1.11) C(V, gV ) =
(⊗

V
)
/I ,

called the Cli�ord algebra associated with (V, gV ).
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We could also de�ne the following algebra

(2.1.12) Ĉ(V, gV ) = C(V,−gV ) .

Let

(2.1.13) c : V → C(V, gV ) , ĉ : V → Ĉ(V, gV )

be the maps induced by the canonical injection V →
⊗

V . For u, v ∈ V , we have

c(u)c(v) + c(v)c(u) = −2gV (u, v) ,

ĉ(u)ĉ(v) + ĉ(v)ĉ(u) = 2gV (u, v) .
(2.1.14)

Let e1, · · · , en ∈ V be an orthogonal basis of V . Then

(2.1.15) c(ej1)c(ej2) · · · c(ejr) , 0 6 r 6 n , j1 < j2 < · · · < jr ,

is a basis of C(V, gV ),

(2.1.16) ĉ(ej1)ĉ(ej2) · · · ĉ(ejr) , 0 6 r 6 n , j1 < j2 < · · · < jr ,

is a basis of Ĉ(V, gV ).
The algebras C(V, gV ) Ĉ(V, gV ) are superalgebras with C±(V, gV ), Ĉ±(V, gV ) generated

by the terms in (2.1.15), (2.1.16) with r even/odd.
For v ∈ V , let v∗ ∈ V ∗ be its dual (with respect to gV ). Let v∗∧ be the operator on

Λ·V ∗ sending α to v∗ ∧ α. Let iv be the operator on Λ·V ∗ sending α(· · · ) to α(v, · · · ).
Set

c : V → End(Λ·V ∗)

v 7→ v∗∧ −iv .
(2.1.17)

For u, v ∈ V , we have
(2.1.18) c(u)c(v) + c(v)c(u) + 2gV (u, v) = 0 .

Thus c extends to a representation

(2.1.19) c : C(V, gV )→ End
(
Λ·V ∗

)
.

This representation will be referred to as the real representation of the Cli�ord algebra.
In the same spirit, we can construct

ĉ : V → End(Λ·V ∗)

v 7→ v∗∧+iv ,
(2.1.20)

which extends to a representation

(2.1.21) ĉ : Ĉ(V, gV )→ End
(
Λ·V ∗

)
.

Now we suppose that V is equipped with a complex structure J ∈ End(V ) and that
gV is J-invariant, i.e.,

(2.1.22) gV (·, ·) = gV (J ·, J ·) .
Set

(2.1.23) VC = V ⊗R C .

The action of J extends C-linearly to VC. The Euclidean metric gV extends to a C-bilinear
form on VC.
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Set

V 1,0
C =

{
v ∈ VC : Jv = iv

}
,

V 0,1
C =

{
v ∈ VC : Jv = −iv

}
.

(2.1.24)

We have

(2.1.25) VC = V 1,0
C ⊕ V 0,1

C .

For v ∈ VC, let v(1,0) (resp. v(0,1)) be its component in V 1,0
C (resp. V 0,1

C ).
Let V ∗C be the vector space of R-linear forms on VC. For v ∈ VC, let v∗ ∈ V ∗C be its dual

(with respect to gV ).
Set

V ∗,1,0C =
{
f ∈ V ∗C : f ◦ J = if

}
,

V ∗,0,1C =
{
f ∈ V ∗C : f ◦ J = −if

}
.

(2.1.26)

For v ∈ V 1,0
C (resp. v ∈ V 0,1

C ), we have v∗ ∈ V ∗,0,1C (resp. v∗ ∈ V ∗,1,0C ).
Set

c : V → End
(
Λ·(V ∗,0,1C )

)
v 7→ v(1,0),∗∧ −iv(0,1) .

(2.1.27)

For u, v ∈ V , we have
(2.1.28) c(u)c(v) + c(v)c(u) + gV (u, v) = 0 .

Thus c extends to a representation

(2.1.29) c : C
(
V,

1

2
gV
)
→ End

(
Λ·(V ∗,0,1C )

)
.

This representation will be referred to as the complex representation.

2.1.3. Even/odd characteristic classes.
Let M be a C∞-manifold. Let F be a complex vector bundle over M of rank r.
Let ∇F be a connection on F . Then ∇F induces a di�erential operator

(2.1.30) ∇F : Ω·(M,F )→ Ω·+1(M,F ) .

Let

(2.1.31) ∇F,2 ∈ Ω2(M,End(F ))

be the curvature of ∇F .
For ω ∈ Ωk(M), put

(2.1.32) ϕω = (2πi)−k/2ω .

Let Tr
[
·
]

: End(F )→ C be the trace map, which extends to

(2.1.33) Tr
[
·
]

: Ω·(M,End(F ))→ Ω·(M)

such that for α ∈ Ω·(M), A ∈ C∞(M,End(F )),

(2.1.34) Tr
[
ωA
]

= ωTr
[
A
]
.

Let f ∈ C[Z] be a polynomial.
The following theorem plays a central role in the classical Chern-Weil theory.
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Theorem 2.1.5 (Chern-Weil). The di�erential form

(2.1.35) ϕTr
[
f(−∇F,2)

]
∈ Ωeven(M)

is real and closed. The cohomology class

(2.1.36) f(F ) :=
[
ϕTr

[
f(−∇F,2)

]]
∈ Heven(M)

does not depend on the choice of ∇F .

Now we assume that ∇F is a �at connection, i.e.,

(2.1.37) ∇F,2 = 0 .

Then

(2.1.38) ϕTr
[
f(−∇F,2)

]
= f(0)r .

For �at vector bundles, there are non trivial characteristic classes of odd degree. We
will follow the construction of Bismut-Lott [BL95, �1].
Let gF be a Hermitian metric on F . Let ∇F,∗ be the adjoint connection, i.e., for

σ1, σ2 ∈ C∞(M,F ) and U ∈ C∞(M,TM), we have

(2.1.39) gF (∇F
Uσ1, σ2) + gF (σ1,∇F,∗

U σ2) = UgF (σ1, σ2) .

Then

(2.1.40) ∇F,∗,2 = 0 ,

i.e., ∇F,∗ is also a �at connection.
Set

(2.1.41) ωF = ∇F,∗ −∇F ∈ Ω1(M,End(F )) .

Let f ∈ C[Z] be an odd polynomial.
Set

(2.1.42) f(F,∇F , gF ) =
√

2πiϕTr
[
f(ωF/2)

]
∈ Ωodd(M) .

The following theorem is established by Bismut-Lott [BL95, Theorem 1.8].

Theorem 2.1.6. The di�erential form

(2.1.43) f(F,∇F , gF ) ∈ Ωodd(M)

is real and closed. The cohomology class

(2.1.44) f(F,∇F ) :=
[
f(F,∇F , gF )

]
∈ Hodd(M)

does not depend on the choice of gF .

Remark 2.1.7. If f ∈ C[Z] is an even polynomial, by [BL95, Proposition 1.3], we have

(2.1.45) Tr
[
f(ωF )

]
= f(0)r .
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2.1.4. Fibrations equipped with a connection and a �berwise metric.
Let π : M → S be a smooth �bration with compact �ber X.
Let TX be the relative tangent bundle of the �bration. We equip the �bration with a

connection. Namely let

(2.1.46) TM = THM ⊕ TX

be a smooth splitting of TM . Then THM ' π∗TS. Let

(2.1.47) P TX : TM → TX , P THM : TM → THM

be the projections with respect to (2.1.46). For U ∈ TS, let UH ∈ THM be the lift of U ,
so that π∗UH = U .
If U, V are vector �elds on S, set

(2.1.48) T (U, V ) = [U, V ]H − [UH , V H ] .

We have T ∈ Ω2(S,C∞(X,TX)). We call T the curvature of the �bration.
We equip TX, TS with metrics gTX , gTS. Let π∗gTS be the induced metric on THM .

Set

(2.1.49) gTM = π∗gTS ⊕ gTX ,

which is a Riemannian metric on gTM . Let 〈·, ·〉 denote the corresponding scalar product.
Let ∇TM be the Levi-Civita connection on TM associated with THM and gTM .

De�nition 2.1.8. Let ∇TX be the connection on TX,

(2.1.50) ∇TX = P TX∇TMP TX .

Then ∇TX does not depend on gTS (cf. [B86, �1(c)]).
Now we give an explicit formula for ∇TX . Let L· be the Lie derivative. For U a vector

�eld on S, set

(2.1.51) ωTX(U) = (gTX)−1LUHg
TX ∈ C∞(M,End(TX)) .

If V ∈ TX, then ∇TX
V coincides with the usual Levi-Civita connection along the �ber X.

If U ∈ TS, then (cf. [B86, �1(c)])

(2.1.52) ∇TX
UH = LUH +

1

2
ωTX(U) .

Put

(2.1.53) ∇TM,⊕ = P TX∇TMP TX ⊕ P THM∇TMP THM .

De�nition 2.1.9. For U ∈ TM , set

(2.1.54) STX(U) = ∇TM
U −∇TM,⊕

U ∈ C∞(M,End(TM)) .

Then
〈
STX (·) ·, ·

〉
does not depend on gTS (cf. [B86, �1(c)]).
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2.2. The Chern-Weil theory of a �at �bration.
The purpose of this section is to construct certain characteristic classes and character-

istic forms on the total space of a �at �bration with compact complex �bers.
This section is organized as follows. In �2.2.1, we state a consequence of the Chern-Weil

theory, which will be of constant use in the rest of this section.
In �2.2.2, we de�ne a �at �bration q : N → M whose �ber N is a compact complex

manifold.
In �2.2.3, we consider a complex vector bundle E over N , which is holomorphic along

N and �at along M .
In �2.2.4, we consider certain connections on E. In particular, given a Hermitian metric

on E, we construct a unitary connection on E, and we prove that the integral along the
�ber of the usual Chern-Weil forms associated with this connection vanish in positive
degree.
In �2.2.5, we construct odd characteristic forms for E. These characteristic forms will

appear on the right-hand side of the Riemann-Roch-Grothendieck formula, which will be
proved in �2.3.
In �2.2.6, we construct a natural multiplication of the odd characteristic forms de�ned

in �2.2.5.

2.2.1. A consequence of Chern-Weil theory.
Let N be a smooth compact oriented manifold. Let

(
Ω·(N), dN

)
be the de Rham

complex of smooth di�erential forms on N , whose cohomology is denoted by H ·(N).
Let V be a �nite dimensional real vector space.
We will replace the de Rham complex

(
Ω·(N), dN

)
by the twisted de Rham complex(

Ω·(N,Λ·(V ∗)), dN
)
, whose cohomology is equal to H ·(N)⊗̂Λ·(V ∗).

Let
(
Ω·(N × V ), dN×V

)
be the de Rham complex of N × V . Then

(
Ω·(N,Λ·(V ∗)), dN

)
can be identi�ed with the subcomplex of

(
Ω·(N ×V ), dN×V

)
that consists of forms which

are constant along V .
Let p : N × V → N and q : N × V → V be the natural projections. Let q∗ denote

integration along the oriented �ber N . If α ∈ Ω·(V ), β ∈ Ω·(N), then

(2.2.1) q∗[α ∧ β] = α

∫
N

β ,

By restricting q∗ to forms which are constant along V , we get a map

(2.2.2) q∗ : Ω·(N,Λ·(V ∗))→ Λ·(V ∗) .

Let E be a complex vector bundle of rank r on N and ∇E be a connection on E. Its
curvature∇E,2 is a smooth section of Λ2(T ∗N)⊗End(E). The vector bundle E lifts to the
vector bundle p∗E on N × V , and ∇E lifts to a connection on p∗E, which is still denoted
by ∇E. Let S be a smooth section on N of V ∗ ⊗End(E). We can view S as a section of
V ∗ ⊗ End(E) on N × V , which is constant along V . Then ∇E + S is also a connection

on p∗E. Its curvature (∇E +S)2 is a smooth section of
(

Λ·(T ∗N)⊗̂Λ·(V ∗)
)even

⊗End(E)

over N × V , which is constant along V .
The following proposition is a direct consequence of Chern-Weil theory.

Proposition 2.2.1. For any invariant complex polynomial P on gl(r,C),

(2.2.3) P
(
− (∇E + S)2

)
∈ Ω·(N,Λ·(V ∗))
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is closed. Its cohomology class

(2.2.4)
[
P
(
− (∇E + S)2

)]
∈ H ·(N)⊗̂Λ·(V ∗)

does not depend on ∇E or on S. In particular,

(2.2.5)
[
P
(
− (∇E + S)2

)]
∈ H ·(N) ⊆ H ·(N)⊗̂Λ·(V ∗) .

2.2.2. A �at complex �bration.
Let G be a Lie group. Let N be a compact complex manifold of dimension n. We

assume that G acts holomorphically on N .
Let M be a real manifold. Let p : PG → M be a principal G-bundle equipped with a

connection.
Set

(2.2.6) N = PG ×G N .

Let q : N →M be the natural projection, which induces a �bration with canonical �ber
N .
Let TRN be the real tangent bundle of N . Set TCN = TCN ⊗R C.
The connection over the principal bundle PG induces a connection over the �bration

q : N →M , i.e., a splitting

(2.2.7) TN = TRN ⊕ THN ,

with THN ' q∗TM .
The splitting (2.2.7) induces the following identi�cation

(2.2.8) Λ·(T ∗CN ) = Λ·(T ∗CN)⊗̂q∗Λ·(T ∗CM) .

Let TN be the holomorphic tangent bundle of N . Using the splitting TCN = TN ⊕ TN ,
we get a further splitting

(2.2.9) Λ·(T ∗CN ) = Λ·(T ∗N)⊗̂Λ·(T ∗N)⊗̂q∗Λ·(T ∗CM) .

Put

(2.2.10) Ω(p,q,r)(N ) = C∞
(
N ,Λp(T ∗N)⊗̂Λq(T ∗N)⊗̂q∗Λr(T ∗CM)

)
.

Then

(2.2.11) Ωk(N ) =
∑

p+q+r=k

Ω(p,q,r)(N ) .

In the sequel, we assume that the connection on PG is �at. Then q : N → M is a �at
�bration, i.e., T = 0 (cf. (2.1.48)).
Let dN be the de Rham operator on Ω·(N). Let dM be the de Rham operator on

Ω·(M), which lifts to Ω·(N ) in the following sense : let (fα) be a basis of TM , let (fα)
be the dual basis of T ∗M . then

(2.2.12) dM =
∑
α

(q∗fα) ∧ LfHα .

Let dN be the de Rham operator on N . Since T = 0, by [BL95, Proposition 3.4], we have
we get

(2.2.13) dN = dN + dM .
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Let ∂N (resp. ∂N) be the holomorphic (resp. anti-holomorphic) Dolbeault operator on
N . We have

(2.2.14) dN = ∂N + ∂N .

By (2.2.13) and (2.2.14), we get

(2.2.15) dN = ∂N + ∂N + dM .

We have the following obvious relations

d2
M = d2

N = ∂2
N = ∂

2

N = 0 ,[
dM , dN

]
=
[
dM , ∂N

]
=
[
dM , ∂N

]
=
[
dN , ∂N

]
=
[
dN , ∂N

]
=
[
∂N , ∂N

]
= 0 .

(2.2.16)

2.2.3. A �berwise holomorphic vector bundle.
Let E0 be a holomorphic vector bundle over N of rank r. We assume that the action

of G on N lifts to a holomorphic action on E0.
Set

(2.2.17) E = PG ×G E0 ,

which is a complex vector bundle over N . Furthermore, E is holomorphic along N .
Let ∂

E

N be the �berwise holomorphic structure of E. Let dEM be the lift of the de Rham
operator on M to Ω·(N , E). We have

(2.2.18) ∂
E,2

N = dE,2M =
[
∂
E

N , d
E
M

]
= 0 .

As before, the operator dEM can be viewed as a �at connection on Ω· (N,E).

2.2.4. Connections.
Set

(2.2.19) AE
′′

= ∂
E

N + dEM

acting on Ω·(N , E).
Then, by (2.2.18), we have

(2.2.20)
(
AE
′′)2

= 0 .

Let E
∗
be the anti-dual vector bundle to E. When replacing the complex structure of

N by the conjugate complex structure, E
∗
enjoys exactly the same properties as E.

We construct ∂E
∗

N dE
∗

M and AE
∗ ′
in the same way as ∂

E

N , d
E
M and AE ′′. In particular,

(2.2.21) AE
∗ ′

= ∂E
∗

N + dE
∗

M .

As in (2.2.20), we have

(2.2.22)
(
AE

∗ ′)2
= 0 .

Moreover, as in (2.2.18), we have

(2.2.23) ∂E
∗
,2

N = dE
∗
,2

M =
[
∂
E
∗

N , dE
∗

M

]
= 0 .

Let gE be a Hermitian metric on E. Then gE de�nes an isomorphism gE : E → E
∗
.

Set

(2.2.24) ∂EN = (gE)−1∂E
∗

N gE , dE,∗M = (gE)−1dE
∗

M gE ,
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which are operators acting on Ω·(N , E). By (2.2.23), we have

(2.2.25) ∂E,2N = dE,∗,2M =
[
∂
E

N , d
E,∗
M

]
= 0 .

Set

(2.2.26) AE
′
= (gE)−1AE

∗ ′
gE = ∂EN + dE,∗M .

Then, by (2.2.25), we have

(2.2.27)
(
AE
′)2

= 0 .

Let NΛ·(T ∗M) be the number operator of Λ·(T ∗M).

De�nition 2.2.2. Set

AE = 2−N
Λ·(T∗M)(

AE
′
+ AE

′′)
2N

Λ·(T∗M)

,

BE = 2−N
Λ·(T∗M)(

AE
′ − AE ′′

)
2N

Λ·(T∗M)

.
(2.2.28)

By (2.2.20) and (2.2.27), we have

(2.2.29) AE,2 = 2−N
Λ·(T∗M)[

AE
′
, AE

′′]
2N

Λ·(T∗M)

= −BE,2 .

Set

(2.2.30) dEN = ∂EN + ∂
E

N , dE,uM =
1

2

(
dEM + dE,∗M

)
.

Then

(2.2.31) AE = dEN + dE,uM ,

which shows that AE a Hermitian connection on E over N .
Set

(2.2.32) ωE = dE,∗M − dEM =
(
gE
)−1

dEMg
E ∈ C∞

(
N , T ∗M ⊗R End(E)

)
.

Then

(2.2.33) BE = ∂EN − ∂
E

N +
1

2
ωE ,

which shows that BE ∈ Ω·
(
M,End(Ω·(N,E))

)
.

Proposition 2.2.3. For any invariant polynomial P on gl(r,C), we have

(2.2.34)
(
∂N − ∂N

)
P
(
− AE,2

)
= 0 .

Also

(2.2.35) P
(
− AE,2

)
− P

(
− dE,2N

)
∈ im

(
∂N − ∂N

)
.

We have the identity

(2.2.36) q∗
[
P
(
− AE,2

)]
= q∗

[
P
(
− dE,2N

)]
,

and this is a locally constant function on M .
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Proof. Let NΛ·(T ∗N) be the number operator of Λ·(T ∗N) and let U = (−1)N
Λ·(T∗N)

.
To establish the �rst two equations in our proposition, we only need to show that

(2.2.37) dNUP
(
− AE,2

)
= 0 ,

and

(2.2.38) UP
(
− AE,2

)
− UP

(
− dE,2N

)
∈ im

(
dN
)
.

By (2.2.33), we have

(2.2.39) U−1BEU = dEN +
1

2
ωE .

Then, by (2.2.29), we have

(2.2.40) U−1AE,2U = −U−1BE,2U = −
(
dEN +

1

2
ωE
)2
.

We may and we will assume that P is homogeneous. By (2.2.40), we have

(2.2.41) UP
(
− AE,2

)
= (−1)degPP

(
−
(
dEN +

1

2
ωE
)2
)
.

Applying Proposition 2.2.1 to the right-hand side of (2.2.41), the form on the right-hand
side is dEN closed. This completes the proof of the �rst two equations of our proposition.
The last identity is a consequence of the �rst two. �

For any t ∈ R, set
(2.2.42) AEt = dEN + tdEM + (1− t)dE,∗M .

In particular,

(2.2.43) AE1/2 = AE .

Set

(2.2.44) Vt = (2− 2t)N
Λ·(T∗N)

(2t)N
Λ·(T∗N)

.

Lemma 2.2.4. For t 6= 0, 1, we have

(2.2.45) AE,2t = 4t(1− t)V −1
t AE,2Vt .

Proof. By (2.2.19) and (2.2.26), we have

2tV −1
t 2−N

Λ·(T∗M)

AE
′′
2N

Λ·(T∗M)

Vt = ∂
E

N + tdEM ,

(2− 2t)V −1
t 2−N

Λ·(T∗M)

AE
′
2N

Λ·(T∗M)

Vt = ∂EN + (1− t)dE,∗M .
(2.2.46)

By (2.2.18), (2.2.25), (2.2.29) and (2.2.46), we have

4t(1− t)V −1
t AE,2Vt

=
[
(2− 2t)V −1

t 2−N
Λ·(T∗M)

AE
′
2N

Λ·(T∗M)

Vt , 2tV −1
t 2−N

Λ·(T∗M)

AE
′′
2N

Λ·(T∗M)

Vt

]
=
[
∂EN + (1− t)dE,∗M , ∂

E

N + tdEM

]
=
(
∂EN + (1− t)dE,∗M + ∂

E

N + tdEM

)2

= AE,2t .

(2.2.47)

�

Now we will extend Proposition 2.2.3 by also considering the extra parameter t.
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Theorem 2.2.5. For any invariant polynomial P on gl(r,C) and t ∈ R, we have

(2.2.48) q∗
[
P
(
− AE,2t

)]
= q∗

[
P
(
− dE,2N

)]
,

and this is a constant function.

Proof. Since q∗
[
P
(
−AE,2t

)]
is polynomial on t, it is su�cient to consider the case t 6= 0, 1.

We may suppose that P is homogeneous.
By (2.2.45), we have the identity of smooth forms on S

(2.2.49) q∗
[
P
(
− AE,2t

)]
=
(
4t(1− t)

)degP
q∗
[
V −1
t P

(
− AE,2

)]
.

Applying Proposition 2.2.3 to the right-hand side of (2.2.49), we get

(2.2.50) q∗
[
P
(
− AE,2t

)]
=
(
4t(1− t)

)degP
q∗
[
V −1
t P

(
− dE,2N

)]
.

Since P
(
− dE,2N

)
is a (degP, degP )-form on N , we have

(2.2.51) V −1
t P

(
− dE,2N

)
=
(
4t(1− t)

)− degP
P
(
− dE,2N

)
.

By (2.2.50) and (2.2.51), we get (2.2.48).
By Chern-Weil theory, q∗

[
P
(
− dE,2N

)]
is locally constant along M . �

2.2.5. The odd characteristic forms.

In the sequel, we denote ϕ = (2πi)−
1
2
NΛ·(T∗N )

.
Let P be an invariant polynomial on gl(r,C).

De�nition 2.2.6. For any t ∈ R, set

(2.2.52) P̃t
(
E, gE

)
=
√

2πiϕ

〈
P ′
(
− AE,2t

)
,
ωE

2

〉
.

Proposition 2.2.7. For any t ∈ R, q∗
[
P̃t
(
E, gE

)]
is a closed odd di�erential form on

M . The cohomology class
[
q∗
[
P̃t
(
E, gE

)]]
∈ H ·(M) does not depend on gE.

Proof. Since P̃t
(
E, gE

)
is odd and dimRN = 2n is even, q∗

[
P̃t
(
E, gE

)]
is odd.

We will now prove that the above forms are closed.
We have (cf. [BerGV04, �1.4])

√
2πiϕ

∂

∂t
P
(
− AE,2t

)
= −

√
2πiϕ

〈
P ′
(
− AE,2t

)
,
[
AEt ,

∂

∂t
AEt
]〉

= −
√

2πiϕ dN

〈
P ′
(
− AE,2t

)
,
∂

∂t
AEt

〉
= − dNϕ

〈
P ′
(
− AE,2t

)
,
∂

∂t
AEt

〉
.

(2.2.53)

Since

(2.2.54)
∂

∂t
AEt = dEM − d

E,∗
M = −ωE ,

we have

(2.2.55)
√

2πiϕ
∂

∂t
P
(
− AE,2t

)
= 2dN P̃t

(
E, gE

)
.



LIMITES ADIABATIQUES ET FIBRATIONS HOLOMORPHES PLATES 77

By Proposition 2.2.5, we get

(2.2.56)
∂

∂t
q∗
[
P
(
− AE,2t

)]
= 0 .

By (2.2.55) and (2.2.56), we get

(2.2.57) dMq∗
[
P̃t
(
E, gE

)]
= q∗

[
dN P̃t

(
E, gE

)]
= 0 .

Thus q∗
[
P̃t
(
E, gE

)]
is closed.

The fact that
[
q∗
[
P̃t
(
E, gE

)]]
∈ H ·(M) is independent of gE comes from the functori-

ality of our construction (cf. [BerGV04, �1.5]). �

Now we study the dependence of P̃t
(
E, gE

)
on t.

Recall that Vt was de�ned in (2.2.44).

Proposition 2.2.8. If P is homogeneous, for any t ∈ R, we have

(2.2.58) P̃t
(
E, gE

)
=
(
4t(1− t)

)degP−1
V −1
t P̃ 1

2

(
E, gE

)
.

In particular,

(2.2.59) q∗
[
P̃t
(
E, gE

)]
=
(
4t(1− t)

)degP−n−1
q∗
[
P̃ 1

2

(
E, gE

)]
.

Proof. Since (2.2.58) is a rational function of t, it is su�cient to consider the case t 6= 0, 1.
By (2.2.45), we have〈

P ′
(
− AE,2t

)
,
ωE

2

〉
=

〈
P ′
(
− 4t(1− t)V −1

t AE,21
2

Vt
)
,
ωE

2

〉
=
(
4t(1− t)

)degP ′
V −1
t

〈
P ′
(
− AE,21

2

)
,
ωE

2

〉
=
(
4t(1− t)

)degP−1
V −1
t

〈
P ′
(
− AE,21

2

)
,
ωE

2

〉
,

(2.2.60)

which is equivalent to (2.2.58). �

In the sequel, we use the convention

(2.2.61) P̃
(
E, gE

)
= P̃ 1

2

(
E, gE

)
.

The following proposition is a re�nement of Proposition 2.2.7 at the level of di�erential
forms.

Proposition 2.2.9. We have

dN P̃
(
E, gE

)
=

√
2πi

2
ϕ
( ∂
∂t
V −1
t

)
t= 1

2

(
∂N − ∂N

) ∫ 1

0

〈
P ′
((
∂EN − ∂

E

N +
sωE

2

)2
)
,
ωE

2

〉
ds .

(2.2.62)

In particular, for p = 0, · · · , n, we have

(2.2.63)
{
dN P̃

(
E, gE

)}(p,p,·)
= 0 .
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Proof. By (2.2.45), we have

∂

∂t

{√
2πiϕ P

(
− AE,2t

)}
t= 1

2

=
∂

∂t

{√
2πiϕ

(
4t(1− t)

)degP
V −1
t P

(
− AE,2

)}
t= 1

2

.

(2.2.64)

By (2.2.51) and (2.2.64), we have

∂

∂t

{√
2πiϕ P

(
− AE,2t

)}
t= 1

2

=
∂

∂t

{√
2πiϕ

(
4t(1− t)

)degP
V −1
t

(
P
(
− AE,2

)
− P

(
− dE,2N

))}
t= 1

2

(2.2.65)

By (2.2.40), we have

P
(
− AE,2

)
− P

(
− dE,2N

)
= U

(
P
((
dEN +

ωE

2

)2
)
− P

(
dE,2N

))
.

(2.2.66)

As a consequence of Proposition 2.2.1 (cf. [BerGV04, �1.5]). , we get

P
((
dEN +

ωE

2

)2
)
− P

(
dE,2N

)
= dN

∫ 1

0

〈
P ′
((
dEN +

sωE

2

)2
)
,
ωE

2

〉
ds .

(2.2.67)

Then

U

(
P
((
dEN +

ωE

2

)2
)
− P

(
dE,2N

))
=
(
∂N − ∂N

) ∫ 1

0

〈
P ′
((
∂EN − ∂

E

N +
sωE

2

)2
)
,
ωE

2

〉
ds .

(2.2.68)

By (2.2.55), (2.2.65), (2.2.66) and (2.2.68), we get (2.2.62).
For p = 0, 1, · · · , n, we have

(2.2.69) V −1
t |Ω(p,p,·) = (4t(1− t))−p ,

whose derivative at t = 1
2
is zero. This proves (2.2.63). �

2.2.6. Multiplication of odd characteristic forms.
Put

(2.2.70) P
(
E, gE

)
= ϕP

(
− AE,21

2

)
.

Proposition 2.2.10. Let P,Q be two invariant polynomials. The following identity holds

P̃Q
(
E, gE

)
= P̃

(
E, gE

)
∧Q

(
E, gE

)
+ P

(
E, gE

)
∧ Q̃

(
E, gE

)
.

(2.2.71)
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Proof. We have〈
(PQ)′

(
− AE,2

)
,
ωE

2

〉
=

〈
P ′
(
− AE,2

)
,
ωE

2

〉
∧Q

(
− AE,2

)
+ P

(
− AE,2

)
∧
〈
Q′
(
− AE,2

)
,
ωE

2

〉
,

(2.2.72)

which implies (2.2.71). �

We equip Ωeven(N ) × Ωodd(N ) with the structure of commutative ring. The addition
is the usual one. If (α, α̃), (β, β̃) ∈ Ωeven(N )× Ωodd(N ), put

(2.2.73) (α, α̃) · (β, β̃) = (α ∧ β, α̃ ∧ β + α ∧ β̃) ,

Let
(
C
[
gl(r,C)

])GL(r,C)
be the ring of invariant polynomials on gl(r,C).

Proposition 2.2.11. The following map is a ring homomorphism.(
C
[
gl(r,C)

])GL(r,C) → Ωeven(N )× Ωodd(N )

P 7→
(
P
(
E, gE

)
, P̃
(
E, gE

))
.

(2.2.74)

Proof. This is a direct consequence of Proposition 2.2.10. �

Let F be another complex vector bundle over N satisfying the same properties as E.
Let r′ be the rank of F . Let gF be a Hermitian metric on F .
Let Q be an invariant polynomial on gl(r′,C).
Motivated by Proposition 2.2.11, we make the following de�nition.

De�nition 2.2.12. We de�ne

(2.2.75) P̃
(
E, gE

)
∗ Q̃
(
F, gF

)
= P̃

(
E, gE

)
Q
(
F, gF

)
+ P

(
E, gE

)
Q̃
(
F, gF

)
.

Proposition 2.2.13.

(2.2.76) q∗
[
P̃
(
E, gE

)
∗ Q̃
(
F, gF

)]
∈ Ωodd(M)

is a closed form whose cohomology is independent of gE and gF .

Proof. The same strategy in the proof of Proposition 2.2.7 still works. The key step is
the following identity

(2.2.77) 2dN P̃
(
E, gE

)
∗ Q̃
(
F, gF

)
=
√

2πiϕ
∂

∂t

(
P (−AE,2t )Q(−AF,2t )

)
t=1/2

.

�

2.3. A Riemann-Roch-Grothendieck formula.
In this section we will obtain a Riemann-Roch-Grothendieck formula, that the express

the odd Chern classes associated with the �at vector bundle H · (N,E) in terms of the
exotic Chern classes for TN,E that were de�ned in �2.2.5.
This section is organized as follows.
In �2.3.1, we introduce the �at in�nite dimensional vector bundle E = Ω(0,·)(N,E).
In �2.3.2, we equip TN with a �berwise Kähler metric, E with a Hermitian metric.
In �2.3.3, we introduce the Levi-Civita superconnection on E .
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In �2.3.4, we de�ne the index bundle, which is the �berwise Dolbeault cohomology
group of E. We also show that the even characteristic form of the index bundle is a
locally constant function on M .
In �2.3.5, we construct di�erential forms αt, βt in the same way as [BL95, �3(h)].

We state explicit formulas calculating the asymptotics of αt, βt as t → ∞ and t → 0.
We prove a Riemann-Roch-Grothendieck formula as a consequence of these asymptotic
estimates.
In �2.3.6, we prove the theorem stated in �2.3.5. The techniques applied in the proof

were initiated by Bismut-Gillet-Soulé [BGS88c, �1(h)] and Bismut-Köhler [BK92]. The
key idea is a Lichnerowicz formula involving additional Grassmannian variables da, dā.
The introduction of these extra variables will allow us to obtain the our R.R.G. formula.
Finally, in �2.3.7, following [BL95, �3(j)], we construct analytic torsion forms on M ,

that transgress the R.R.G. formula at the level of di�erential forms.

2.3.1. A �at superconnection and its dual.
Set

(2.3.1) E q = C∞(N,Λq(T ∗N)⊗ E) , E =
⊕
q

E q .

Then E is an in�nite dimensional �at vector bundle over M . By (2.2.10), we have the
identi�cation

(2.3.2) Ω·(M,E ) = Ω(0,·,·)(N , E) .

Let ∇E be the restriction of dEM to Ω·(M,E ). Then ∇E is the canonical �at connection
on E .
Set

(2.3.3) AE = ∂
E

N +∇E .

Then AE is a superconnection on E .
We recall that the operator AE ′′ acting on Ω·(N , E) is de�ned by (2.2.19). We have

(2.3.4) AE = AE
′′∣∣

Ω(0,·,·)(N ,E)
.

Then, by (2.2.20), we have

(2.3.5) AE ,2 = 0 ,

i.e., AE is a �at superconnection. Equivalently, we have

(2.3.6) ∂
E,2

N = ∇E ,2 =
[
∂
E

N ,∇E
]

= 0 .

Set

(2.3.7) E
∗

= C∞(N,Λ·(T ∗N)⊗ Λn(T ∗N)⊗ E∗) .

Then E
∗
is an in�nite dimensional �at vector bundle over M . We have the identi�cation

(2.3.8) Ω·(M,E
∗
) = Ω(·,n,·)(N , E∗) .

Let ∇E
∗
be the restriction of dE

∗

M to Ω·(M,E
∗
). Then ∇E

∗
is the �at connection on E

∗
.

Set

(2.3.9) AE
∗

= ∂E
∗

N +∇E
∗
,

which acts on Ω·(M,E
∗
). Then AE

∗
is a superconnection on E

∗
.
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We recall that the operator AE
∗ ′
acting on Ω·(N , E∗) is de�ned by (2.2.21). We have

(2.3.10) AE
∗

= AE
∗ ′∣∣

Ω(·,n,·)(N ,E∗) .

Then, by (2.2.22), we have

(2.3.11) AE
∗
,2 = 0 ,

i.e., AE
∗
is a �at superconnection.

Let

(2.3.12) (·, ·)E : E
∗ × E → C

be the canonical sesquilinear form, which extends to

(2.3.13) (·, ·)E :
(
Λp(T ∗N)⊗Λn(T ∗N)⊗E∗

)
×
(
Λq(T ∗N)⊗E

)
→ Λp+q(T ∗N)⊗Λn(T ∗N) .

We de�ne

(·, ·)E : E
∗ × E → C

(α, β) 7→
∫
N

(α, β)E .(2.3.14)

Thus E
∗
is formally the anti-dual of E . For any α ∈ Ω·(M,E

∗
) and β ∈ Ω·(M,E ), the

following relations hold

(∂E
∗

N α, β)E + (−1)degα(α, ∂
E

Nβ)E = 0 ,

(∇E
∗
α, β)E + (−1)degα(α,∇Eβ)E = dM(α, β)E .

(2.3.15)

By (2.3.3), (2.3.9) and (2.3.15), we get

(2.3.16) (AE
∗
α, β)E + (−1)degα(α,AEβ)E = dM(α, β)E ,

i.e., AE
∗
is the dual superconnection of AE in the sense of [BL95, De�nition 1.5].

2.3.2. Hermitian metrics and connections on TN, E.
From now on, we will assume that N is a Kähler manifold.
Let J : TRN → TRN be the complex structure of N .

Proposition 2.3.1. There exists a �berwise Kähler metric gTN on TN , i.e., a Hermitian
metric on TN whose restriction to each �ber is a Kähler metric.

Proof. Let (Ui) be a locally �nite open cover of M by open balls. Let (fi : Ui → R) be
an associated partition of unity.
For each Ui, we have the trivialization ϕi : q−1(Ui) → N × Ui as �at �brations. Let

πN,i : N × Ui → N , πUi : N × Ui → Ui be the canonical projections.
Let gTN0 be a Kähler metric on TN0.
Set

(2.3.17) gTN =
∑
i

ϕ∗i
(
(π∗Uifi)(π

∗
N,ig

TN
0 )

)
.

Then gTN satis�es the required conditions. �
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Let gTN be a �berwise Kähler metric on TN . Let

(2.3.18) ω ∈ C∞
(
N , T ∗N ⊗ T ∗N

)
be the associated �berwise Kähler form. Let

(2.3.19) dvN =
ωn

n!
∈ C∞

(
N ,Λ2n(T ∗RN)

)
be the induced �berwise volume form.
Let gTN , gΛ·(T ∗N) be the Hermitian metrics on TN , Λ·(T ∗N) induced by gTN .
Let gTRN be the Riemannian metric on TRN induced by gTN .
Let ∇TRN be the conection on TRN associated with the metric gTRN and with the

horizontal vector bundle THN that was de�ned in �2.1.4. We recall that the connection
ATN on TN is de�ned by (2.2.28). In the sequel, we change the notation as follows

(2.3.20) ∇TN = ATN .

Since the metric gTN is �berwise Kähler, the connection on TRN induced by ∇TN along
the �bre N coincides with ∇TRN . Moreover the complex structure of TRN is �at with
respect to the �at connection on N . By (2.1.52), (2.2.30), these two connections also
coincide in horizontal directions. The conclusion is that the connection ∇TRN preserves
the complex structure J , and induces the connection ∇TN on TN .
Let ∇TN , ∇Λ·(T ∗N) be the connections on TN , Λ·(T ∗N) induced by ∇TN .
Let gE be a Hermitian metric of E. Let ∇E be the connection on E de�ned by (2.2.28).
Let gΛ·(T ∗CN) be the C-bilinear form on Λ·(T ∗CN) induced by gTN . Let

(2.3.21) ∗ : Λ·(T ∗CN)→ Λ2n−·(T ∗CN)

be the usual Hodge operator acting on Λ·(T ∗CN), i.e., for α, β ∈ Λ·(T ∗CN),

gΛ·(T ∗CN)(α, β)dvN = α ∧ ∗β .
In particular, ∗ maps Λ·(T ∗N) to Λn(T ∗N)⊗ Λn−·(T ∗N).
The Hermitian metric gE gives a smooth identi�cation gE : E → E

∗
. The Hodge

operator ∗ extends to
(2.3.22) ∗E : Λ·(T ∗N)⊗ E → Λn(T ∗N)⊗ Λn−·(T ∗N)⊗ E∗ .
Let gE be a Hermitian metric on E , such that for α, β ∈ E ,

gE (α, β) =
1

(2π)n

∫
N

(gΛ·(T ∗N) ⊗ gE)(α, β)dvN

=
(−1)degα deg β

(2π)n
(∗Eα, β)E .

(2.3.23)

Set

(2.3.24) ωE =
(
gE
)−1∇E

∗
gE ∈ C∞(M,T ∗M ⊗ End(E ))

and

(2.3.25) kN =
(
dvN

)−1
dMdvN ∈ C∞(N , T ∗M) .

We de�ne ωTN as in (2.2.32). Let ωΛ·(T ∗N) be the action of ωTN on Λ·(T ∗N). Then

ωΛ·(T ∗N) is just the horizontal variation of the metric gΛ·(T ∗N) on Λ·
(
T ∗N

)
with respect

to the �at connection. We have

(2.3.26) ωE = ωΛ·(T ∗N) + ωE + kN .
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2.3.3. The Levi-Civita superconnection.

We recall that AE and AE
∗
are de�ned by (2.3.3) and (2.3.9).

De�nition 2.3.2. Set

(2.3.27) AE ,∗ = (∗E)−1AE
∗
∗E ,

which acts on Ω·(M,E ). Then AE ,∗ is the adjoint superconnection of AE (with respect
to gE ) in the sense of [BL95, De�nition 1.6].

By (2.3.11), we have

(2.3.28) AE ,∗,2 = 0 .

Set

CE = 2−N
Λ·(T∗M)(

AE ,∗ + AE
)
2N

Λ·(T∗M)

,

DE = 2−N
Λ·(T∗M)(

AE ,∗ − AE
)
2N

Λ·(T∗M)

.
(2.3.29)

By (2.3.5) and (2.3.28), we have

(2.3.30) CE ,2 = −DE ,2 = 2−N
Λ·(T∗M)[

AE , AE ,∗]2NΛ·(T∗M)

,
[
CE , DE

]
= 0 .

Let ∂
E,∗
N be the formal adjoint of ∂

E

N with respect to gE . Set

(2.3.31) DE
N = ∂

E

N + ∂
E,∗
N

acting on E . Then DE
N is the �berwise spinc-Dirac operator associated to gTN/2.

We recall that ∇E is de�ned in �2.3.1. Let ∇E ,∗ be the adjoint connection. Then

(2.3.32) ∇E ,∗ = ∇E + ωE .

Set

(2.3.33) ∇E ,u =
1

2

(
∇E ,∗ +∇E

)
= ∇E +

1

2
ωE ,

which is a unitary connection on E .
We have

(2.3.34) CE = DE
N +∇E ,u , DE = ∂

E,∗
N − ∂EN +

1

2
ωE .

Recall that the Levi-Civita superconnection was introduced in [B86].

Proposition 2.3.3. The superconnection CE is the Levi-Civita superconnection with re-
spect to THN , gTRN and gE.

Proof. Since the metric gTN is �brewise Kähler, up to the constant
√

2, the operator DE
N

is a standard Dirac operator along the �ber N . As we saw before, the connection ∇TRN

induced by ∇TN is exactly the connection that was considered in [B86]. Finally, since our
�bration is �at, the term in the Levi-Civita superconnection that contains the curvature
of our �bration vanishes identically. This completes the proof of our proposition. �

Given t > 0, let CE
t , D

E
t be the objects de�ned before which are associated with the

metrics gTN/t, gE. By (2.3.34), we have

(2.3.35) CE
t = t∂

E,∗
N + ∂

E

N +∇E ,u , DE
t = t∂

E,∗
N − ∂EN +

1

2
ωE .
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2.3.4. The index bundle and its characteristic classes.
Let H ·(N,E0) be the Dolbeault cohomology of E0. The action of G on E0 induces an

action of G on H ·(N,E0). Set

(2.3.36) H ·(N,E) = PG ×G H ·(N,E0) .

Let ∇H·(N,E) be the �at connection on H ·(N,E) induced by the �at connection on

PG. For s ∈ C∞(M,E ) satisfying ∂
E

Ns = 0, let [s] denote the corresponding �berwise
Dolbeault cohomology class. Then

(2.3.37) ∇H·(N,E)[s] = [∇E s] ∈ Ω1(M,H ·(N,E)) .

By Hodge theory, there is a natural identi�cation

(2.3.38) H ·(N,E) ' kerDE
N ⊆ E .

Let gH
·(N,E) be the metric on H ·(N,E) induced by gE via the above identi�cation.

Let ∇H·(N,E),∗ be the adjoint connection of ∇H·(N,E) with respect to gH
·(N,E). Set

∇H·(N,E),u =
1

2

(
∇H·(N,E),∗ +∇H·(N,E)

)
,

ωH
·(N,E) = ∇H·(N,E),∗ −∇H·(N,E) .

(2.3.39)

Then ∇H·(N,E),u is a unitary connection and ωH
·(N,E) ∈ C∞

(
M,End(H ·(N,E))

)
.

Put

(2.3.40) χ(N,E) =
∑
p

(−1)p dimHp(N,E) .

Proposition 2.3.4. For any t > 0, we have

(2.3.41) ϕTrs

[
exp(DE ,2

t )
]

= χ(N,E) .

Proof. By the local families index theorem [B86], as t→ 0,

(2.3.42) ϕTrs

[
exp(DE ,2

t )
]

= q∗
[
Td(TN,∇TN)ch(E,∇E)

]
+ O(

√
t) .

Furthermore,

∂

∂t
Trs

[
exp(DE ,2

t )
]

= Trs

[[
DE
t ,

∂

∂t
DE
t

]
exp(DE ,2

t )
]

= Trs

[[
DE
t , (

∂

∂t
DE
t ) exp(DE ,2

t )
]]

= 0 .

(2.3.43)

By Proposition 2.2.5 and by the Riemann-Roch-Hirzebruch formula, we have

(2.3.44) q∗
[
Td(TN,∇TN)ch(E,∇E)

]
= χ(N,E) .

Then (2.3.41) follows from (2.3.42)-(2.3.44). �

2.3.5. A Riemann-Roch-Grothendieck formula.
For t > 0, set

αt =
√

2πiϕTrs

[
DE
t exp(DE ,2

t )
]
,

βt = ϕTrs

[NΛ·(T ∗N)

2
(1 + 2DE ,2

t ) exp(DE ,2
t )
]
.

(2.3.45)

Proposition 2.3.5. For t > 0, αt is a closed odd real form on M , whose cohomology
class does not depend on the metrics gTN , gE or on t.
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Proof. By (2.3.30), we have

(2.3.46) dM
√

2πiϕTrs

[
DE
t exp(DE ,2

t )
]

= ϕTrs

[[
CE
t , D

E
t exp(DE ,2

t )
]]

= 0 ,

which proves the closeness.
Then, by the functoriality of our constructions, [αt] ∈ H ·(M) does not depend on the

metric. �

Proposition 2.3.6. For any t > 0, the following identity holds:

(2.3.47)
∂

∂t
αt =

1

t
dMβt .

Proof. Set

(2.3.48) N+ = N × R+ , M+ = M × R+ .

Let

(2.3.49) q+ = q ⊕ idR+ : N+ →M+

be the obvious projection. Let t be the coordinate on R+.
We equip TN with the metric 1

t
gTN . Let E+, ωE+ , CE+ , DE+ be the corresponding

objects associated to the new �bration. Then the following identities hold (cf. (2.3.24))

dM+ = dM + dt ∧ ∂

∂t
,

ωE+ = ωE +
1

t
dt ∧

(
NΛ·(T ∗N) − n

)
.

(2.3.50)

Then, by (2.3.34) and (2.3.35), we get

CE+ = CE
t + dt ∧ ∂

∂t
+

1

2t
dt ∧

(
NΛ·(T ∗N) − n

)
,

DE+ = DE
t +

1

2t
dt ∧

(
NΛ·(T ∗N) − n

)
.

(2.3.51)

Thus √
2πiϕTrs

[
DE+ exp(DE+,2)

]
=
√

2πiϕTrs

[
DE exp(DE ,2)

]
+

1

2t
dt ∧ ϕTrs

[(
NΛ·(T ∗N) − n

)
exp(DE ,2)

]
+
√

2πiϕTrs

[
DE exp

(
DE ,2 +

[
DE ,

1

2t
dt ∧NΛ·(T ∗N)

])]
= αt +

1

2t
dt ∧ ϕTrs

[
NΛ·(T ∗N) exp(DE ,2)

]
− χ(N,E)

n

2t
dt

+
√

2πiϕTrs

[
DE
[
DE , exp

(
DE ,2 +

1

2t
dt ∧NΛ·(T ∗N)

)]]
= αt +

1

2t
dt ∧ ϕTrs

[
NΛ·(T ∗N) exp(DE ,2)

]
− χ(N,E)

n

2t
dt

+
√

2πiϕTrs

[[
DE , DE

]
exp

(
DE ,2 +

1

2t
dt ∧NΛ·(T ∗N)

)]
= αt +

1

2t
dt ∧ βt − χ(N,E)

n

2t
dt ∈ Ω·(M+) .

(2.3.52)

By Proposition 2.3.5, we have

(2.3.53) dM+

√
2πiϕTrs

[
DE+ exp(DE+,2)

]
= 0 .
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By the �rst identity in (2.3.50), (2.3.52), (2.3.53), we get (2.3.47). �

Let f(x) = xex
2
.

Following [BL95, De�nition 1.7], we de�ne the odd real closed form on M given by

(2.3.54) f(H ·(N,E),∇H·(N,E), gH
·(N,E)) =

√
2πiϕTrs

[
f(ωH

·(N,E)/2)
]
.

Put

(2.3.55) χ′(N,E) =
∑
p

(−1)pp dimHp(N,E) .

Now we state the central result in this section. Its proof will be delayed to �2.3.6.

Theorem 2.3.7. As t→ +∞,

αt = f(H ·(N,E),∇H·(N,E), gH
·(N,E)) + O

( 1√
t

)
,

βt =
1

2
χ′(N,E) + O

( 1√
t

)
.

(2.3.56)

As t→ 0,

αt = q∗

[
T̃d(TN, gTN) ∗ c̃h(E, gE)

]
+

1

2t
dMq∗

[ ω
2π

Td(TN,∇TN)ch(E,∇E)
]

+ O
(√

t
)
,

βt = − 1

2
q∗

[
Td′(TN,∇TN)ch(E,∇E)

]
+
n

2
χ(N,E)

− 1

2t
q∗

[ ω
2π

Td(TN,∇TN)ch(E,∇E)
]

+ O
(√

t
)
.

(2.3.57)

Remark 2.3.8. By Proposition 2.2.3, we have

(2.3.58) q∗

[ ω
2π

Td(TN,∇TN)ch(E,∇E)
]
∈ C∞(M) .

Now we prove the following Riemann-Roch-Grothendieck formula.

Theorem 2.3.9. We have[
f(H ·(N,E),∇H·(N,E), gH

·(N,E))
]

=
[
q∗

[
T̃d(TN, gTN) ∗ c̃h(E, gE)

]]
∈ Hodd(M,R) .

(2.3.59)

Proof. We combine Proposition 2.3.5 and Theorem 2.3.7. �

2.3.6. Several intermediate results, Lichnerowicz formulas and the proof of Theorem 2.3.7.

We will now introduce various new odd Grassmann variables in order to be able to
compute exactly the asymptotics of certain superconnection forms as t→ 0, and also to
overcome the divergence of certain expressions. Our methods are closely related to the
methods of [BGS88b, BGS88c, BK92], where similar di�culties also appeared.
Let a be an additional complex coordinate, ε be an auxiliary odd Grassmann variable.
For

(2.3.60) u, v ∈
{

1 , da , dā , dadā , ε , εda , εdā , εdadā
}
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and σ ∈ Ω·(M), we denote

(v ∧ σ)u =

{
σ if u = v ,
0 else .

(2.3.61)

Lemma 2.3.10. The following identity holds

Trs

[
DE exp

(
DE ,2

)]
= Trs

[
exp

(
− CE ,2 − da 1

2

(
∂
E

N + ∂
E,∗
N

)
− dā

[
∂
E

N + ∂
E,∗
N ,

ε

2
ωE
]

+ dadā
ε

2
ωE
)]εdadā

+ dM Trs

[1

2
NΛ·(T ∗N) exp

(
DE ,2

)]
.

(2.3.62)

Proof. By (2.3.30) and (2.3.34), we have

[
NΛ·(T ∗N), CE ,2

]
= −

[
NΛ·(T ∗N), DE ,2

]
= −

[
NΛ·(T ∗N),

[
∂
E,∗
N − ∂EN ,

1

2
ωE
]]

=
[
∂
E

N + ∂
E,∗
N ,

1

2
ωE
]
,

(2.3.63)

which implies

Trs

[
exp

(
− CE ,2 − da 1

2

(
∂
E

N + ∂
E,∗
N

)
− dā

[
∂
E

N + ∂
E,∗
N ,

ε

2
ωE
])]εdadā

=
∂

∂b
Trs

[
− 1

2
(∂

E

N + ∂
E,∗
N ) exp

(
− CE ,2 + b

[
∂
E

N + ∂
E,∗
N ,

1

2
ωE
])]

b=0

=
∂

∂b
Trs

[
− 1

2
(∂

E

N + ∂
E,∗
N ) exp

(
− CE ,2 + b

[
NΛ·(T ∗N), CE ,2

])]
b=0

=
∂

∂b
Trs

[
− 1

2
(∂

E

N + ∂
E,∗
N )
[
NΛ·(T ∗N), exp

(
− CE ,2

)]]
= Trs

[
− 1

2

[
NΛ·(T ∗N), ∂

E

N + ∂
E,∗
N

]
exp

(
− CE ,2

)]
= Trs

[1

2

(
∂
E,∗
N − ∂EN

)
exp

(
DE ,2

)]
.

(2.3.64)
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Then

Trs

[
exp

(
− CE ,2 − da 1

2

(
∂
E

N + ∂
E,∗
N

)
− dā

[
∂
E

N + ∂
E,∗
N ,

ε

2
ωE
]

+ dadā
ε

2
ωE
)]εdadā

= Trs

[
exp

(
− CE ,2 − da 1

2

(
∂
E

N + ∂
E,∗
N

)
− dā

[
∂
E

N + ∂
E,∗
N ,

ε

2
ωE
])]εdadā

+ Trs

[1

2
ωE exp

(
DE ,2

)]
= Trs

[1

2

(
∂
E,∗
N − ∂EN + ωE

)
exp

(
DE ,2

)]
= Trs

[(
∂
E,∗
N − ∂EN +

1

2
ωE
)

exp
(
DE ,2

)]
− Trs

[1

2

(
∂
E,∗
N − ∂EN

)
exp

(
DE ,2

)]
= Trs

[
DE exp

(
DE ,2

)]
− Trs

[[
CE ,

1

2
NΛ·(T ∗N)

]
exp

(
DE ,2

)]
= Trs

[
DE exp

(
DE ,2

)]
− dM Trs

[1

2
NΛ·(T ∗N) exp

(
DE ,2

)]
.

(2.3.65)

The last equation is just what we needed to prove. This completes the proof of our
proposition. �

Let N+, M+, q+, E+, ωE+ , CE+ and DE+ be the same as in the proof of Proposition
2.3.6.

Lemma 2.3.11. Given t > 0, the following identity holds:

(
NΛ·(T ∗M) + 1 + t

∂

∂t

)
Trs

[1

2
NΛ·(T ∗N) exp

(
DE ,2
t

)]
= Trs

[
exp

(
− CE+,2 − da 1

2

(
∂
E

N + t∂
E,∗
N

)
− dā

[
∂
E

N + t∂
E,∗
N ,

εt

2
ωE+
]

+ dadā
εt

2
ωE+
)]εdadādt

+ closed form .

(2.3.66)

Proof. By (2.3.62), we get

Trs

[
DE+ exp

(
DE+,2

)]
= Trs

[
exp

(
− CE+,2 − da 1

2

(
∂
E

N + t∂
E,∗
N

)
− dā

[
∂
E

N + t∂
E,∗
N ,

ε

2
ωE+
]

+ dadā
ε

2
ωE+
)]εdadā

+ dM+ Trs

[1

2
NΛ·(T ∗N) exp

(
DE+,2

)]
.

(2.3.67)
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Taking the dt component, we get

Trs

[ 1

2t

(
NΛ·(T ∗N) − n

)
exp

(
DE ,2
t

)]
+ Trs

[
DE
t exp

((
DE
t + dt

1

2t
NΛ·(T ∗N) − dt n

2t

)2)]dt
= Trs

[
exp

(
− CE+,2 − da 1

2

(
∂
E

N + t∂
E,∗
N

)
− dā

[
∂
E

N + t∂
E,∗
N ,

ε

2
ωE+
]

+ dadā
ε

2
ωE+
)]εdadādt

− dM Trs

[1

2
NΛ·(T ∗N) exp

((
DE
t +

1

2
dtNΛ·(T ∗N)

)2)]dt
+
∂

∂t
Trs

[1

2
NΛ·(T ∗N) exp

(
DE ,2
t

)]
.

(2.3.68)

We multiply (2.3.68) by t and subtract the closed forms. Since dt supercommutes with
NΛ·(T ∗N) and DE

t , By Proposition 2.3.4, 2.3.5, we can delete the n
2t
, dt n

2t
on the left-hand

side of (2.3.68). We obtain

Trs

[1

2
NΛ·(T ∗N) exp

(
DE ,2
t

)]
+ Trs

[
DE
t exp

((
DE
t + dt

1

2
NΛ·(T ∗N)

)2)]dt
= Trs

[
exp

(
− CE+,2 − da 1

2

(
∂
E

N + t∂
E,∗
N

)
− dā

[
∂
E

N + t∂
E,∗
N ,

εt

2
ωE+
]

+ dadā
εt

2
ωE+
)]εdadādt

+ t
∂

∂t
Trs

[1

2
NΛ·(T ∗N) exp

(
DE ,2
t

)]
+ closed form .

(2.3.69)

We have

dM Trs

[
DE
t exp

((
DE
t + dt

1

2
NΛ·(T ∗N)

)2)]dt
= Trs

[[
CE
t , D

E
t exp

((
DE
t + dt

1

2
NΛ·(T ∗N)

)2)]]dt
= − Trs

[
DE
t exp

(
DE ,2
t +

[
CE
t ,
[
DE
t , dt

1

2
NΛ·(T ∗N)

]])]dt
= Trs

[
DE
t exp

(
DE ,2
t +

[
DE
t ,
[
CE
t , dt

1

2
NΛ·(T ∗N)

]])]dt
= Trs

[
DE
t

[
DE
t , exp

(
DE ,2
t +

[
CE
t , dt

1

2
NΛ·(T ∗N)

])]]dt
= Trs

[
2DE ,2

t exp
(
DE ,2
t +

[
CE
t , dt

1

2
NΛ·(T ∗N)

])]dt
=

(
dM Trs

[
2DE ,2

t exp
(
DE ,2
t + dt

1

2
NΛ·(T ∗N)

)])dt
.

(2.3.70)
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Thus

Trs

[
DE
t exp

((
DE
t + dt

1

2
NΛ·(T ∗N)

)2)]dt
= Trs

[
2DE ,2

t exp
(
DE ,2
t + dt

1

2
NΛ·(T ∗N)

)]dt
+ closed form

=
∂

∂b
Trs

[
NΛ·(T ∗N) exp

(
(1 + b)DE ,2

t

)]
b=0

+ closed form

=
∂

∂b
Trs

[
NΛ·(T ∗N) exp

(
(1 + b)

1
2
NΛ·(T∗M)

DE ,2
(1+b)t(1 + b)−

1
2
NΛ·(T∗M)

)]
b=0

+ closed form

=
∂

∂b
(1 + b)

1
2
NΛ·(T∗M)

Trs

[
NΛ·(T ∗N) exp

(
DE ,2

(1+b)t

)]
b=0

+ closed form

= t
∂

∂t
Trs

[
NΛ·(T ∗N) exp

(
DE ,2
t

)]
+

1

2
NΛ·(T ∗M) Trs

[
NΛ·(T ∗N) exp

(
DE ,2
t

)]
+ closed form .

(2.3.71)

By (2.3.69) and (2.3.71), we get (2.3.66). �

Let rN be the scalar curvature of (N, gTN). Let RE, RTN be the curvatures of ∇E,∇TN

on E, TN over N so that

(2.3.72) RE = ∇E,2 , RTN = ∇TN,2.

Then Tr
[
RTN

]
is just the curvature of the connection on Λn (TN) which is induced by

∇TN .
Let STRN be the analogue of the tensor STX in De�nition 2.1.9. Since our �bration is

�at, it follows from [B86, (1.28)], if U ∈ TRN and V,W ∈ THN , then

(2.3.73)
〈
STRN (U)V,W

〉
=
〈
U, T (V,W )

〉
= 0 .

Let ∇Λ·(T ∗N)⊗E be the connection on Λ·(T ∗N)⊗ E induced by ∇Λ·(T ∗N) and E.
We recall that ω is the �berwise Kähler form, ωTN , ωE are the variation of metrics on

TN,E. We also recall that c(·) is the Cli�ord action associated to gTN/2.
Let (ei)16i62n be an orthonormal basis of TRN , let (ei)16i62n be the corresponding dual

basis. Let (fα)16α6m a basis of TM . We identify the fα with their horizontal lifts in
THN . Let (fα)16α6m be the corresponding dual basis.
To interpret properly the formula that follows, we need to extend the basis ei to a

parallel basis of TRN near the point x which is considered. Moreover, we may suppose
that ∇TRN

· ei = 0 at the point x.
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Proposition 2.3.12. The following identity holds:

− CE ,2 − da 1

2
(∂

E

N + ∂
E,∗
N )− dā

[
∂
E

N + ∂
E,∗
N ,

ε

2
ωE
]

+ dadā
ε

2
ωE

=
1

2

(
∇Λ·(T ∗N)⊗E
ei

+ 〈STRN(ei)ej, fα〉c(ej)fα

− da 1

2
c(ei)− dāε

√
−1

2
(dMω)(ei, ej)c(ej)

)2

− dāε
[
∇Λ·(T ∗N)⊗E
ei

,
1

2
ωE − 1

8
(dMω

TN)(ej, Jej)
]
c(ei)

+ dadāε
(1

2
ωE − 1

8
(dMω)(ej, Jej)

)
− 1

2

(
RE +

1

2
Tr[RTN ]

)
(ei, ej)c(ei)c(ej)−

(
RE +

1

2
Tr[RTN ]

)
(ei, fα

)
c(ei)f

α

− 1

2

(
RE +

1

2
Tr[RTN ]

)
(fα, fβ)fαfβ − 1

8
rN .

(2.3.74)

Proof. Applying [B86, Theorem 3.5] with t = 1/
√

2 and (2.3.73), we have

− CE ,2

=
1

2

(
∇Λ·(T ∗N)⊗E
ei

+ 〈STRN(ei)ej, fα〉c(ej)fα
)2

− 1

2

(
RE +

1

2
Tr[RTN ]

)
(ei, ej)c(ei)c(ej)−

(
RE +

1

2
Tr[RTN ]

)
(ei, fα)c(ei)f

α

− 1

2

(
RE +

1

2
Tr[RTN ]

)
(fα, fβ)fαfβ − 1

8
rN .

(2.3.75)

Taking the degree 0 part of (2.3.75), we get

−
(
∂
E

N + ∂
E,∗
N

)2

=
1

2

(
∇Λ·(T ∗N)⊗E
ei

)2

− 1

2

(
RE +

1

2
Tr[RTN ]

)
(ei, ej)c(ei)c(ej)−

1

8
rN .

(2.3.76)

By [BGS88c, Proposition 1.19] and by (2.3.26), we get

(2.3.77) ωE = −
√
−1

2
(dMω)(ei, ej)c(ei)c(ej)−

1

4
(dMω)(ei, Jei) + ωE .

By dNω = 0 and [dN , dM ] = 0, we have dNdMω = 0. Therefore

[
∂
E

N + ∂
E,∗
N ,−ε

√
−1

4
(dMω)(ei, ej)c(ei)c(ej)

]
=
ε
√
−1

4

[
c(ek)∇Λ·(T ∗N)⊗E

ek
, (dMω)(ei, ej)c(ei)c(ej)

]
=
ε
√
−1

4

(
∇Λ·(T ∗N)⊗E
ei

(dMω)(ei, ej)c(ej) + (dMω)(ei, ej)c(ej)∇Λ·(T ∗N)⊗E
ei

)
.

(2.3.78)
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By (2.3.76), (2.3.77) and (2.3.78), we get

−
(
∂
E

N + ∂
E,∗
N

)2 − da 1

2

(
∂
E

N + ∂
E,∗
N

)
− dā

[
∂
E

N + ∂
E,∗
N ,

ε

2
ωE
]

+ dadā
ε

2
ωE

=
1

2

(
∇Λ·T ∗N⊗E
ei

− da 1

2
c(ei)− dāε

√
−1

2
(dMω)(ei, ej)c(ej)

)2

− dāε
[
∇Λ·(T ∗N)⊗E
ei

,
1

2
ωE − 1

8
(dMω

TN)(ej, Jej)
]
c(ei)

+ dadāε
(1

2
ωE − 1

8
(dMω)(ej, Jej)

)
− 1

2

(
RE +

1

2
Tr[RTN ]

)
(ei, ej)c(ei)c(ej)−

1

8
rN .

(2.3.79)

Comparing (2.3.75), (2.3.76), (2.3.79) with (2.3.74), it only remains to show that∑
i 6=j

〈STRN(ei)ej, fα〉fαc(ei)c(ej) = 0 ,

∑
i

∑
j 6=k

(dMω)(ei, ej)〈STRN(ei)ek, fα〉fαc(ej)c(ek) = 0 .
(2.3.80)

The �rst identity in (2.3.80) follows from the fact that (cf. [B86, �1(c)]) if U, V ∈ TN
STRN(U)V − STRN(V )U ∈ TRN , then

(2.3.81) 〈STRN(ei)ej, fα〉 = 〈STRN(ej)ei, fα〉 .

By (2.3.81), we get the �rst identity in (2.3.80).
Now, we prove the second identity in (2.3.80). By [B97, (1.5)], we have

(2.3.82) 〈STRN(ei)ek, fα〉 = −1

2

〈(
gTRN

)−1∇fαg
TRN(ei) , ek

〉
= −1

2
(∇fαω) (ei, Jek) .

Therefore the second identity in (2.3.80) is equivalent to the following one :

(2.3.83)
∑
i

∑
j 6=k

(∇fαω)(ei, ej)(∇fβω)(ei, Jek)f
αfβc(ej)c(ek) = 0 .

Since (Jei)16i6n is also an orthogonal basis of TRN , using the fact that ω and dMω are
J-invariant, we get

∑
i

∑
j 6=k

(∇fαω) (ei, ej)
(
∇fβω

)
(ei, Jek)f

αfβc(ej)c(ek)

=
1

2

∑
i

∑
j 6=k

(∇fαω) (ei, ej)
(
∇fβω

)
(ei, Jek)f

αfβc(ej)c(ek)

+
1

2

∑
i

∑
j 6=k

(∇fαω) (Jei, ej)
(
∇fβω

)
(Jei, Jek)f

αfβc(ej)c(ek)

=
1

2

∑
i

∑
j 6=k

(∇fαω) (ei, ej)
(
∇fβω

)
(ei, Jek)f

αfβc(ej)c(ek)

− 1

2

∑
i

∑
j 6=k

(∇fαω) (ei, Jej)
(
∇fβω

)
(ei, ek)f

αfβc(ej)c(ek) .

(2.3.84)
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By exchanging the roles of j, k and α, β, we obtain∑
i

∑
j 6=k

(∇fαω) (ei, Jej)
(
∇fβω

)
(ei, ek)f

αfβc(ej)c(ek)

=
∑
i

∑
j 6=k

(
∇fβω

)
(ei, Jek) (∇fαω) (ei, ej)f

βfαc(ek)c(ej)

=
∑
i

∑
j 6=k

(∇fαω) (ei, ej)
(
∇fβω

)
(ei, Jek)f

αfβc(ej)c(ek) .

(2.3.85)

By (2.3.84), (2.3.85), we get (2.3.83). �

Proof of Theorem 2.3.7. The proof of (2.3.56) follows the same argument as [BL95, The-
orem 3.16].
We turn to prove the �rst formula in (2.3.57).
By Lemma 2.3.10, it is su�cient to establish the asymptotic expansion of the following

two terms as t→ 0 :

Trs

[
exp

(
− CE ,2

t − da 1

2

(
∂
E

N + t∂
E,∗
N

)
− dā

[
∂
E

N + t∂
E,∗
N ,

ε

2
ωE
]

+ dadā
ε

2
ωE
)]εdadā

,

dM Trs

[1

2
NΛ·(T ∗N) exp

(
DE ,2
t

)]
.

(2.3.86)

As t → 0, we claim that we can use equation (2.3.74) exactly as in Bismut-Köhler
[BK92, Theorem 3.22]. The main di�erence is that in [BK92], the space of variations of
the metrics is 1-dimensional, while here it is the full basis M . By proceeding as in this
reference, we get

√
2πiϕTrs

[
exp

(
− CE ,2

t − da 1

2

(
∂
E

N + t∂
E,∗
N

)
− dā

[
∂
E

N + t∂
E,∗
N ,

ε

2
ωE
]

+ dadā
ε

2
ωE
)]εdadā

= q∗

[
T̃d(TN, gTN) ∗ c̃h(E, gE)

]
+ O(t) .

(2.3.87)

This gives the asymptotic expansion of the �rst term in (2.3.86).
We will study the second term in (2.3.86). As t → 0, by the local families index

theorem technique [B86], we get

ϕTrs

[
tNΛ·(T ∗N) exp

(
DE ,2
t

)]
= q∗

[ ω
2π

Td(TN,∇TN)ch(E,∇E)
]

+ O(
√
t) .

(2.3.88)

Furthermore, by [BGS88b, Theorems 2.11 and 2.16], the asymptotic expansion of

Trs

[
NΛ·(T ∗N) exp

(
DE ,2
t

)]
is a Laurent series on t. By (2.3.88), we get

(2.3.89) ϕTrs

[
NΛ·(T ∗N) exp

(
DE ,2
t

)]
= C−1t

−1 + C0 + O(t) ,

with

(2.3.90) C−1 = q∗

[ ω
2π

Td(TN,∇TN)ch(E,∇E)
]
.
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Let C(p)
−1 (resp. C(p)

0 ) be the component of degree p of C−1 (resp. C0). By Remark 2.3.8,

for p > 0, C(p)
−1 = 0. Then(

1 +NΛ·(T ∗M) + t
∂

∂t

)
Trs

[
NΛ·(T ∗N) exp

(
DE ,2
t

)]
=
∑
p

(
(p+ 1)C

(p)
0

)
+ O(t) .

(2.3.91)

Applying (2.3.87) with E replaced by E+ (see the proof of Proposition 2.3.6) and taking
the dt component, we get

ϕTrs

[
exp

(
− CE+,2 − da 1

2

(
∂
E

N + t∂
E,∗
N

)
− dā

[
∂
E

N + t∂
E,∗
N ,

εt

2
ωE+
]

+ dadā
εt

2
ωE+
)]εdadādt

= − 1

2
q∗

[
Td′(TN,∇TN)ch(E,∇E)

]
+ O(t) .

(2.3.92)

By Theorem 2.2.5, Lemma 2.3.11 and (2.3.92), we have

(2.3.93)
(
1 +NΛ·(T ∗M) + t

∂

∂t

)
Trs

[
NΛ·(T ∗N) exp

(
DE ,2
t

)]
= closed form + O(t) .

By (2.3.91) and (2.3.93), we have

dMC0 = 0 .(2.3.94)

By (2.3.89), (2.3.90), (2.3.94), as t→ 0, we have
√

2πiϕ dM Trs

[
NΛ·(T ∗N) exp

(
DE ,2
t

)]
= dMϕTrs

[
NΛ·(T ∗N) exp

(
DE ,2
t

)]
=

1

t
dMq∗

[ ω
2π

Td(TN,∇TN)ch(E,∇E)
]

+ O(
√
t) .

(2.3.95)

The �rst formula in (2.3.57) follows from Lemma 2.3.10, (2.3.87) and (2.3.95).
The second formula in (2.3.57) may be proved as a consequence of the �rst one by

applying the same technique as the proof of Proposition 2.3.6. �

2.3.7. Higher analytic torsion forms.
We choose g1, g2 ∈ C∞(R+,R) satisfying

(2.3.96) g1(t) = 1 + O
(
t
)
, g2(t) = 1 + O

(
t2
)
, as t→ 0 ,

(2.3.97) g1(t) = O
(
e−t
)
, g2(t) = O

(
e−t
)
, as t→ +∞ ,

and ∫ 1

0

g1(t)− 1

t
dt+

∫ +∞

1

g1(t)

t
= Γ′(1)− 2 ,∫ 1

0

g2(t)− 1

t2
dt+

∫ +∞

1

g2(t)

t2
= 1 .

(2.3.98)
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Using Mellin tranformation, (2.3.98) is reformulated as follows( d
ds

1

Γ(s)

∫ +∞

0

ts−1g1(t)dt
)
s=0

= − 2 ,( d
ds

1

Γ(s)

∫ +∞

0

ts−2g2(t)dt
)
s=0

= 0 .

(2.3.99)

De�nition 2.3.13. The analytic torsion forms T (gTN , gE) ∈ Ωeven(M) are de�ned by

T (gTN , gE) = −
∫ +∞

0

{
βt +

g1(t)− 1

2
χ′(N,E)− g1(t)

2
nχ(N,E)

+
g1(t)

2
q∗

[
Td′(TN,∇TN)ch(E,∇E)

]
+
g2(t)

2t
q∗

[ ω
2π

Td(TN,∇TN)ch(E,∇E)
]}dt

t
.

(2.3.100)

By Theorem 2.3.7, T (gTN , gE) is well-de�ned. Moreover, T (gTN , gE) is independent
of g1 and g2.

Proposition 2.3.14. We have

dMT (gTN , gE) = q∗

[
T̃d(TN, gTN) ∗ c̃h(E, gE)

]
− f(H ·(N,E),∇H·(N,E), gH

·(N,E)) .
(2.3.101)

Proof. By Theorem 2.2.5, q∗
[
Td′(TN,∇TN)ch(E,∇E)

]
is a constant function on M .

Then, by Proposition 2.3.6, we get

dMT (gTN , gE)

= −
∫ +∞

0

{
dMβt +

g2(t)

2t
dMq∗

[ ω
2π

Td(TN,∇TN)ch(E,∇E)
]}dt

t

= −
∫ +∞

0

{ ∂
∂t
αt +

g2(t)

2t2
dMq∗

[ ω
2π

Td(TN,∇TN)ch(E,∇E)
]}
dt .

(2.3.102)

By Theorem 2.3.7, the second identity in (2.3.98) and (2.3.102), we get (2.3.101). �

Proceeding in the same way as [BL95, Theorem 3.16], we get

(2.3.103) Trs

[
NΛ·(T ∗N) exp

(
− tDE,2

N

)]
= χ′(N,E) + O

(
t−1
)
, as t→ +∞ .

For s ∈ C with Re(s) > n, we de�ne

θ(s)

= − 1

Γ(s)

∫ +∞

0

ts−1
[
Trs

[
NΛ·(T ∗N) exp

(
− tDE,2

N

)]
− χ′(N,E)

]
dt .

(2.3.104)

By [See67], θ(s) admits a meromorphic extension to the whole complex plane, which is
regular at 0 ∈ C.
Let T [0](gTN , gE) be the component of T (gTN , gE) of degree zero.

Proposition 2.3.15. We have

(2.3.105) T [0](gTN , gE) =
1

2
θ′(0) .
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Proof. By (2.3.35) and (2.3.45), we get

β
[0]
t = Trs

[NΛ·(T ∗N)

2

(
1− 2tDE,2

N

)
exp

(
− tDE,2

N

)]
=

1

2

(
1 + 2t

∂

∂t

)
Trs

[
NΛ·(T ∗N) exp

(
− tDE,2

N

)]
.

(2.3.106)

By (2.3.89), as t→ 0, we have

(2.3.107) Trs

[
NΛ·(T ∗N) exp

(
− tDE,2

N

)]
= a−1t

−1 + a0 + O
(√

t
)
.

By (2.3.57), (2.3.106), (2.3.107), we get

(2.3.108) a0 = −q∗
[
Td′(TN,∇TN)ch(E,∇E)

]
+ nχ(N,E) .

By (2.3.104), (2.3.107), (2.3.108), we get

(2.3.109) θ(0) = q∗
[
Td′(TN,∇TN)ch(E,∇E)

]
− nχ(N,E) + χ′(N,E) .

By De�nition 2.3.13, (2.3.99), (2.3.104), (2.3.106), we have

T [0](gTN , gE)

= −
∫ +∞

0

{1

2

(
1 + 2t

∂

∂t

)
Trs

[
NΛ·(T ∗N) exp

(
− tDE,2

N

)]
− 1

2
χ′(N,E)

+
g1(t)

2

(
q∗

[
Td′(TN,∇TN)ch(E,∇E)

]
− nχ(N,E) + χ′(N,E)

)
+
g2(t)

2t
q∗

[ ω
2π

Td(TN,∇TN)ch(E,∇E)
]}dt

t

= − 1

2

d

ds

∣∣∣
s=0

1

Γ(s)

∫ +∞

0

ts−1
(

1 + 2t
∂

∂t

){
Trs

[
NΛ·(T ∗N) exp

(
− tDE,2

N

)]
− χ′(N,E)

}
dt

− 1

2

d

ds

∣∣∣
s=0

1

Γ(s)

∫ +∞

0

ts−1g1(t)dt
(
q∗

[
Td′(TN,∇TN)ch(E,∇E)

]
− nχ(N,E) + χ′(N,E)

)
− 1

2

d

ds

∣∣∣
s=0

1

Γ(s)

∫ +∞

0

ts−2g2(t)dt q∗

[ ω
2π

Td(TN,∇TN)ch(E,∇E)
]

=
d

ds

∣∣∣
s=0

1− 2s

2
θ(s) + q∗

[
Td′(TN,∇TN)ch(E,∇E)

]
− nχ(N,E) + χ′(N,E)

=
1

2
θ′(0)− θ(0) + q∗

[
Td′(TN,∇TN)ch(E,∇E)

]
− χ(N,E) + χ′(N,E) .

(2.3.110)

By (2.3.109) and (2.3.110), we obtain (2.3.105). �

2.4. The analytic torsion forms of a bicomplex.
In this subsection, we de�ne the analytic torsion forms over S of a bicomplex where

the di�erential is dM + ∂N . A �berwise positive line bundle L plays a critical role in our
constructions. To de�ne the analytic torsion forms, we use a nondegeneracy assumption
made in Bismut-Ma-Zhang [BMaZ15] that guarantees that the de Rham cohomogy of the
�bre X with coe�cients in the considered �at vector bundle on M vanishes identically.
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These analytic torsion forms can be thought as the analytic torsion forms of Bismut-Lott
[BL95] with coe�cients in an in�nite dimensional �at vector bundle.
Also we use an adiabatic limit technique to express these analytic torsion forms on S

in terms of the analytic torsion forms of Bismut-Lott [BL95] of the direct image, and of
the analytic torsion forms that we obtained in �2.3.7.
This section is organized as follows.
In �2.4.1, we construct the spectral sequence associated with the �bration q : N →M .
In �2.4.2, we construct a �at superconnection, which is a version of the construction of

Bismut-Lott [BL95], where the considered �at vector bundle is itself of in�nite dimension.
In �2.4.3, we equip TN , TX, E with metrics.
In �2.4.4, we construct a Levi-Civita superconnection, which is again an extension of

constructions of Bismut-Lott [BL95].
In �2.4.5, we introduce the Hermitian line bundle (L, gL) on N , on which we make the

nondegeneracy assumption of Bismut-Ma-Zhang [BMaZ15].
In �2.4.6, we recall some results of Bismut-Lott [BL95].
Finally, in �2.4.7, we state our main results. Their proofs are delayed to section 2.5.

2.4.1. A �ltered complex and its spectral sequence.
We recall that the �bration q : N → M and the (in�nite dimensional) �at vector

bundle (E ·,∇E ) over M are de�ned in �2.3.1.
For any p, q > 0, set

(2.4.1) Ωp,q(N , E) = C∞
(
N ,Λp(T ∗M)⊗ Λq(T ∗N)⊗ E

)
= Ωp (M,E q) .

Then
(

Ω·,·(N , E), ∂
E

N ,∇E
)
is a bicomplex.

For any k > 0, set

(2.4.2) Ωk(N , E) =
⊕
p+q=k

Ωp,q(N , E) .

Set

(2.4.3) D′′ = ∂
E

N +∇E .

Then, (Ω·(N , E), D′′) is a simple complex. LetH ·tot(N , E) be the cohomology of (Ω·(N , E), D′′).
We remark that (Ω·(N , E), D′′) is an elliptic complex, as a consequence, H ·tot(N , E) is
�nite dimensional if M is compact.
Let

Ω·(N , E) = F 0Ω·(N , E) ⊇ F 1Ω·(N , E) ⊇ · · ·
⊇ F dimM+1Ω·(N , E) = {0} .

(2.4.4)

be the a �ltration of Ω·(N , E), given by

(2.4.5) F pΩk(N , E) =
⊕
p′>p

p′+q′=k

Ωp′,q′(N , E) .

Then (Ω·(N , E), D′′, F ·) is a �ltered complex. Let

H ·tot(N , E) = F 0H ·tot(N , E) ⊇ F 1H ·tot(N , E) ⊇ · · ·
⊇ F dimM+1H ·tot(N , E) = {0} .

(2.4.6)

be the induced �ltration on H ·tot(N , E).
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For any p > 0, set

(2.4.7) GrpH ·tot(N , E) =
F pH ·tot(N , E)

F p+1H ·tot(N , E)
.

Let
(
Ep,q
r , dr : Ep,q

r → Ep−r,q+r+1
r

)
r>0

be the spectral sequence associated to the �ltra-
tion F · on the complex (Ω·(N , E), D′′).
We have

Ep,q
0 = Ωp (M,Ωq(N,E)) ,

(E0, d0) =
(

Ω· (M,Ω·(N,E)) , ∂
E

N

)
.

(2.4.8)

Recall that H ·(N,E) is the �berwise Dolbeault cohomology of the �bration q : N →M
with coe�cient in E, which is also a �at vector bundle over M with �at connection
∇H·(N,E). The de Rham operator acting on Ω· (M,H ·(N,E)) is also denoted by ∇H·(N,E).
We have

Ep,q
1 = Ωp (M,Hq(N,E)) ,

(E1, d1) =
(
Ω· (M,H ·(N,E)) ,∇H·(N,E)

)
.

(2.4.9)

For any q > 0, let H ·(M,Hq(N,E)) be the cohomology of M with coe�cients in the
�at vector bundle Hq(N,E). We have

(2.4.10) Ep,q
2 = Hp(M,Hq(N,E)) .

For r > min
{

dimM, dimN
}
, we have

Ep,q
r = GrpHp+q

tot (N , E) ,

(Er, dr) = (Gr·H ·tot(N , E), 0) .
(2.4.11)

Remark 2.4.1. If M is compact, Ep,q
2 = Hp(M,Hq(N,E)) is �nite dimensional. This

provides another proof that Hq
tot(N , E) is �nite dimensional for M compact.

Remark 2.4.2. If Hq(N,E) = 0 for q > 0, the spectral sequence (Er, dr)r>0 degenerates
at r = 2. Then, for r > min

{
dimM, dimN

}
, we have

(2.4.12) Hp(M,H0(N,E)) = Ep,·
2 = Ep,·

r = Hp
tot(N , E) .

2.4.2. A double �bration and a �at superconnection.
Let

(2.4.13) π : M → S

be a real smooth �bration with compact �bers. For s ∈ S, set Xs = π−1(s).
The composition map

(2.4.14) r = π ◦ q : N → S

is again a �bration. For s ∈ S, set Ys = r−1(s).
Let qs : Ys → Xs be the restriction of q.
The objects concerned above �t into the following commutative diagram.

(2.4.15) N q // M
π // S

Ys
qs //

?�

OO

Xs
//

?�

OO

{s}
?�

OO
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In the sequel, we will systematically omit the subscript s.
We recall that the �bration q : N →M is equipped with a �at connection, de�ned by

(2.2.7). By restricting (2.2.7) to Y , we get

(2.4.16) TY = TRN ⊕ THY , THY ' q∗TX .

We have the following identi�cation induced by (2.4.16)

(2.4.17) Ωp,q(Y,E) = Ωp(X,E q) ,

where Ωp,q(·, E) is de�ned by (2.4.1).
We equip the �bration π : M → S with a connection, i.e., with a smooth a splitting

(2.4.18) TM = TX ⊕ THM , THM ' π∗TS .

For U ∈ TS, we denote by UH ∈ THM the lifting of U in THM , i.e., the unique vector
satisfying π∗UH = U .
Set

(2.4.19) F p,q = Ωp,q(Y,E) , F =
⊕
p,q

F p,q ,

which are in�nite dimensional vector bundles over S. We have the following identi�cation
induced by (2.4.18)

(2.4.20) Ωp,q(N , E) =
⊕

p′+p′′=p

Ωp′(S,F p′′,q) .

The identi�cations introduced are summarized as follows.
Ωq(N,E) = E q ,

Ωp,q(Y,E) = Ωp(X,E q) = F p,q ,

Ωp,q(N , E) = Ωp(M,E q) =
⊕

p′+p′′=p

Ωp′(S,F p′′,q) .
(2.4.21)

We recall that operator AE acting on Ω·(M,E ) is de�ned by (2.3.3). Passing though
the identi�cation Ω·(M,E ) = Ω·(S,F ) (cf. (2.4.21)), AE de�nes an action on Ω·(S,F ),
denoted by AF .
We recall that ∂

E

N is the Dolbeault operator acting on E = C∞(N,Λ·(T ∗N) ⊗ E),
de�ned in �2.2.2. We recall that ∇F is the �at connection on E over M , de�ned in
�2.3.1. Passing though the identi�cations (2.4.21), both ∂

E

N and ∇E act on Ω·(S,F ).
Then, by (2.3.3), we have

(2.4.22) AF = ∂
E

N +∇E .

Let dX be the de Rham operator acting on Ω·(X). Its extension to Ω·(X,E ) is denote
by dE

X .
For V a vector �eld on M , let LV be the Lie derivative acting on Ω·(M). Its extension

to Ω·(M,E ) is still denoted by LV . For U ∈ TS and ξ ∈ C∞(S,F ) = C∞(S,Ω·(X,E )) ⊆
Ω·(M,E ), set

(2.4.23) ∇F
U ξ = LUHξ .

Then ∇F is a connection on the in�nite dimensional vector bundle F over S.
Let T ∈ Ω2(S,C∞(X,TX)) be the curvature of the �bration, de�ned in �2.1.4. Then

iT acts on Ω·(S,Ω·(X)). This action extends to Ω·(S,Ω·(X,E )) = Ω·(S,F ).
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Passing though the identi�cations (2.4.21), all the operators dE
X , ∇F and iT act on

Ω·(S,F ). By [BL95, Proposition 3.4], we have

(2.4.24) ∇E = dE
X +∇F + iT .

Then

(2.4.25) AF = ∂
E

N + dE
X +∇F + iT .

For k ∈ N, let AF ,[k] : Ω·(S,F )→ Ω·+k(S,F ) be the degree k component of AF , then

(2.4.26) AF = AF ,[0] + AF ,[1] + AF ,[2] ,

with

(2.4.27) AF ,[0] = ∂
E

N + dE
X , AF ,[1] = ∇F , AF ,[2] = iT .

Since AF ,[1] is a connection, AF is a superconnection on F over S. Moreover, by
(2.3.5), we have

(2.4.28) AF ,2 = 0 ,

i.e., AF is a �at superconnection.

2.4.3. Metrics on TN , TX and Cli�ord actions.
Set

(2.4.29) S = Λ·(T ∗X)⊗ Λ·(T ∗N) .

Still, let gTN be a �berwise Kähler metric on TN . Let gTX be a Riemannian metric on
TX. Then S is equipped with the actions of C(TRN,

1
2
gTRN), C(TX, gTX), Ĉ(TX, gTX),

de�ned in �2.1.2.
Let gS be the metric on S induced by gTX and gTN .
We recall that the connection ∇TRN on TRN is de�ned in �2.3.2. Let ∇TX be the

Levi-Civita connection on TX with respect to gTX . Let ∇TY be the connection on
TY = TRN ⊕ TX induced by ∇TRN and ∇TX . Let ∇S be the connection on S induced
by ∇TX and ∇TRN .
Still, we equip E with a Hermitian metric gE. We recall that the connection ∇E on E

is de�ned by (2.2.28).
Let gS⊗E be the metric on S ⊗ E induced by gS and gE.
Let ∇S⊗E be the connection on S ⊗ E induced by ∇S and ∇E.

2.4.4. Superconnections.
Let gF be the L2-metric on F = C∞(Y,S ⊗ E) induced by gTX , gTN and gE.
Let AF ,∗ be the adjoint superconnection of AF (cf. [BL95, �1]).
Let NΛ·(T ∗S) be the number operator on Λ·(T ∗S).
Set

(2.4.30) CF = 2−N
Λ·(T∗S) (

AF ,∗ + AF
)

2N
Λ·(T∗S)

.

Then CF is still a superconnection on F . We also de�ne an auxiliary operator

(2.4.31) DF = 2−N
Λ·(T∗S) (

AF ,∗ − AF
)

2N
Λ·(T∗S)

.

Then DF ∈ Ω·(S,End(F )). Moreover, we have

(2.4.32) CF ,2 = −DF ,2 .
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Let ∇F ,∗ be the adjoint connection with respect to gF . Set

∇F ,u =
1

2

(
∇F ,∗ +∇F

)
,

ωF = ∇F ,∗ −∇F =
(
gF
)−1∇FgF .

(2.4.33)

Then ∇F ,u is a unitary connection on F and ωF ∈ Ω1(S,End(F )).
By [BL95, Proposition 3.9], the following identities hold

CF = ∂
E,∗
N + ∂

E

N + dE ,∗
X + dE

X +∇F ,u − 1

4
c(T ) ,

DF = ∂
E,∗
N − ∂EN + dE ,∗

X − d
E
X +

1

2
ωF − 1

4
ĉ(T ) .

(2.4.34)

For t, u > 0, let CF
t,u (resp. DF

t,u) be C
F (resp. DF ) with gTN replaced by 1

t
gTN and

gTX replaced by 1
u
gTX .

For convenience, we introduce the following conjugated operators

CF
t,u = u

1
2
NΛ·(T∗M)

t
1
2
NΛ·(T∗N)

CF
t,ut
− 1

2
NΛ·(T∗N)

u−
1
2
NΛ·(T∗M)

,

DF
t,u = u

1
2
NΛ·(T∗M)

t
1
2
NΛ·(T∗N)

DF
t,ut
− 1

2
NΛ·(T∗N)

u−
1
2
NΛ·(T∗M)

.
(2.4.35)

Then

CF
t,u =

√
t
(
∂
E,∗
N + ∂

E

N

)
+
√
u
(
dE ,∗
X + dE

X

)
+∇F ,u − 1

4
√
u
c(T ) ,

DF
t,u =

√
t
(
∂
E,∗
N − ∂EN

)
+
√
u
(
dE ,∗
X − d

E
X

)
+

1

2
ωF − 1

4
√
u
ĉ(T ) .

(2.4.36)

Set

CF
v = ∂

E,∗
N + ∂

E

N , DF
v = ∂

E,∗
N − ∂EN ,

CF
h = dE ,∗

X + dE
X , DF

h = dE ,∗
X − d

E
X .

(2.4.37)

Then

CF
t,u =

√
tCF

v +
√
uCF

h +∇F ,u − 1

4
√
u
c(T ) ,

DF
t,u =

√
tDF

v +
√
uDF

h +
1

2
ωF − 1

4
√
u
ĉ(T ) .

(2.4.38)

Let CF ,[0]
t,u (resp. DF ,[0]

t,u ) be the degree zero component of CF
t,u (resp. D

F
t,u), i.e.,

C
F ,[0]
t,u =

√
tCF

v +
√
uCF

h ,

D
F ,[0]
t,u =

√
tDF

v +
√
uDF

h .
(2.4.39)

Then, CF ,[0]
t,u (resp. D

F ,[0]
t,u ) acting on F = C∞(Y,S ⊗ E) is self-adjoint (resp. skew-

adjoint).
Let (ei) be an orthonormal local basis of TRN , let (ei) be the dual basis; let (fα) be

an orthogonal local basis of TX, let (fα) be the dual basis; let (gα) be a basis of TS, let
(gα) be the dual basis.
In the follows, we calculate CF

v DF
v , CF

h , DF
h , ∇F ,u and ωF in local coordinates.
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Since CF
v is the classical spinc Dirac operator on E ⊗ Λ·(T ∗X) = C∞(N,S ⊗ E), we

have

(2.4.40) CF
v = c(ei)∇S⊗E

ei
, DF

v =
√
−1c(Jei)∇S⊗E

ei
.

By [BL95, (3.24), (3.31)], we have

(2.4.41) dE
X = fα ∧∇E

fα , dE ,∗
X = −ifα∇E

fα − ifαω
E (fα) .

Then

CF
h = c(fα)∇E

fα +
1

2
c(fα)ωE (fα)− 1

2
ĉ(fα)ωE (fα)

= c(fα)∇E ,u
fα
− 1

2
ĉ(fα)ωE (fα) ,

DF
h = − ĉ(fα)∇E

fα −
1

2
ĉ(fα)ωE (fα) +

1

2
c(fα)ωE (fα)

= − ĉ(fα)∇E ,u
fα

+
1

2
c(fα)ωE (fα) .

(2.4.42)

We recall that m = dimX. Let dvX ∈ Ωm(X) be the volume form on X induced by
gTX . For U a vector �eld on S, set

(2.4.43) kX(U) =
(
dvX

)−1
LUHdvX .

Then

(2.4.44) kX ∈ C∞(N , T ∗S) ⊆ Ω1(S,End(F )) .

Let ∇Λ·(T ∗X) be the connection on Λ·(T ∗X) induced by ∇TX .
Let ∇Λ·(T ∗X)⊗E be the connection on Λ·(T ∗X)⊗ E induced by ∇Λ·(T ∗X) and ∇E ,u.
For U a vector �eld on S, set

(2.4.45) ωΛ·(T ∗X)(U) =
(
gΛ·(T ∗X)

)−1
LUHg

Λ·(T ∗X) .

Then

(2.4.46) ωΛ·(T ∗X) ∈ C∞(N , T ∗S ⊗ End(Λ·(T ∗X))) ⊆ Ω1(S,End(F )) .

By [BL95, (3.37)], we have

∇F ,u = gα∇Λ·(T ∗X)⊗E
gα +

1

2
gαkX(gα) ,

ωF = gαωE (gα)⊗ IdΛ·(T ∗X) + gαIdE ⊗ ωΛ·(T ∗X)(gα) + gαkX(gα) .
(2.4.47)

2.4.5. A positive line bundle over N .
In the sequel, we suppose that N is equipped with a line bundle L0 and that the action

of G over N lifts to L0. Set

(2.4.48) L = P ×G L0 .

Let Lp be the p-th tensor power of L. For p ∈ N, set

(2.4.49) Ep = E ⊗ Lp .

We equip L with a Hermitian metric gL. Then (L, gL) satis�es the same properties as
(E, gE). We construct the connection ∇L on L in the same way as ∇E (cf. �2.2.4).
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Let RL = ∇L,2 be the curvature of ∇L. We suppose that
√
−1RL

∣∣
N

is a positive
(1, 1)-form on N . By Kodaira's vanishing theorem, this assumption implies

(2.4.50)
⊕
k>0

Hk(N,Ep) = 0

for p large enough.
We de�ne ωL in the same way as ωE, i.e.,

(2.4.51) ωL = (gL)−1dMg
L ∈ C∞

(
N , T ∗M

)
.

We make the fundamental assumption that ωL
∣∣
Y
∈ C∞

(
Y, T ∗X

)
is nowhere-zero.

By [BMaZ15, Proposition 9.15], the assumption implies

(2.4.52) χ(X) = 0 .

By [BMaZ15, Theorem 4.4], the assumption implies

(2.4.53) H ·(X,H0(N,Ep)) = 0

for p large enough. Then, by Remark 2.4.2 and (2.4.53), we get

(2.4.54) H ·tot(Y,Ep) = 0

for p large enough.
We remark that the proof for (2.4.52) and (2.4.53) given in [BMaZ15] involves Toeplitz

operators. We will give a more direct proof in �2.5.1.
Let gEp be the metric on Ep induced by gE and gL. Let ∇Ep be the connection on

Ep induced by ∇E and ∇L. All the previous results concerning (E, gE,∇E) hold for
(Ep, g

Ep ,∇Ep).
Let Ep be E with E replaced by Ep. Let Fp be F with E replaced by Ep.
Let CFp (resp. DFp) be the CF (resp. DF ) with E replaced by Ep. These operators

act on Ω·(S,Fp).

2.4.6. Index bundle and the associated odd characteristic forms.
We assume that p ∈ N is large enough such that (2.4.53) holds. Set

(2.4.55) Hp = q∗Ep = H0(N,Ep) ⊆ Ep ,

which is a �at vector bundle over M . Its �at connection ∇Hp is de�ned by (2.3.37).
Let gHp be the metric on Hp induced by gEp .
Set

(2.4.56) Hp = Ω·(X,Hp) ,

which is an in�nite dimensional vector bundle over S. Then ∇Hp is a superconnection on
Hp over S.
Here, we are with the same setting as [BL95, �3].
For u > 0, let CHp

u (resp. DHp
u ) be the C4u (resp. D4u) de�ned in [BL95, (3.50)] with

B replaced by S and W replaced by Hp. Then C
Hp
u is a superconnection on Hp over S.

and DHp
u ∈ Ω·(S,End(Hp)).

Let

(2.4.57) Pp : Ep → Hp

be the orthogonal projection.
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We have

(2.4.58) CHp
u = PpC

Fp
u Pp , DHp

u = PpD
Fp
u Pp , CHp,2

u = −DHp,2
u .

In the sequel, we denote ϕ = (2πi)−
1
2
NΛ·(T∗S)

.
We equip Hp = Ω·(X,Hp) with the Z2-grading Ωeven/odd(X,Hp).
Set

αHp,u =
√

2πi ϕTrs

[
DHp
u exp

(
DHp,2
u

)]
∈ Ω·(S) ,

βHp,u = ϕTrs

[
NΛ·(T ∗X)

2

(
1 + 2DHp,2

u

)
exp

(
DHp,2
u

)]
∈ Ω·(S) .

(2.4.59)

By [BL95, Theorem 1.8,1.9], we have

(2.4.60) αHp,u ∈ Ωodd(S) , βHp,u ∈ Ωeven(S) .

By[BL95, Theorem 1.8, 2.11], the following proposition holds.

Proposition 2.4.3. We have

(2.4.61) dSαHp,u = 0 ,
∂

∂u
αHp,u =

1

u
dSβHp,u .

Still, set f(x) = xex
2
.

By [BL95, Theorem 3.16,3.21], (2.4.52) and of (2.4.53), the following thearem holds.

Theorem 2.4.4. The following properties hold for p large enough.
As u→ +∞, we have

(2.4.62) αHp,u = O
(
1/
√
u
)
, βHp,u = O

(
1/
√
u
)
.

As u→ 0, we have

(2.4.63) αHp,u = π∗

[
e(TX,∇TX) f(Hp,∇Hp , gHp)

]
+ O

(√
u
)
, βHp,u = O

(√
u
)
.

Let T (THM, gTX , gHp) ∈ Ω·(S) be the real torsion form, de�ned by [BL95, De�nition
3.22], associated with π : M → S, THM , gTX , Hp, ∇Hp and gHp , i.e.,

(2.4.64) T (THM, gTX , gHp) = −
∫ ∞

0

βHp,u
du

u
.

Theorem 2.4.5 ([BL95, Theorem 3.23]). The torsion form T (THM, gTX , gHp) ∈ Ω·(S)
is even. Moreover,

(2.4.65) dST (THM, gTX , gHp) = π∗

[
e(TX,∇TX) f(Hp,∇Hp , gHp)

]
.

2.4.7. The even/odd characteristic forms and the analytic torsion form.
In the sequel, we suppose that S is compact.
Set

γtot,p,t,u = ϕTrs

[
exp

(
−CFp,2

t,u

)]
= ϕTrs

[
exp

(
D

Fp,2
t,u

)]
= ϕTrs

[
exp

(
−CFp,2

t,u

)]
= ϕTrs

[
exp

(
D

Fp,2
t,u

)]
∈ Ω·(S) .

(2.4.66)

Proposition 2.4.6. For any t, u > 0, we have

(2.4.67) γtot,p,t,u = 0 .
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Proof. The same argument as (2.3.43) implies

(2.4.68)
∂

∂t
γtot,p,t,u =

∂

∂u
γtot,p,t,u = 0 .

Then it is su�cient to show that

(2.4.69) lim
u→∞

γtot,p,u,u = 0 ,

i.e.,

(2.4.70) lim
u→∞

Trs

[
exp

(
− CFp,2

u,u

)]
= 0 .

For k ∈ N, let CFp,2,[k] : Ω·(S,F ) → Ω·+k(S,F ) be the degree k component of CFp,2.
Then

(2.4.71) CFp,2
u,u =

4∑
j=0

u1−j/2CFp,2,[j] .

By Hodge theory and (2.4.54), we have

(2.4.72) kerCFp,2,[0] ' H ·tot(Y,E) = 0 .

Then there exists c > 0 such that

(2.4.73) CFp,2,[0] > c .

It is standard that (2.4.71) and (2.4.73) imply (2.4.70). See, for example, [BerGV04,
�9]. �

Set

αtot,p,t,u =
√

2πi ϕTrs

[
D

Fp

t,u exp
(
D

Fp,2
t,u

)]
∈ Ω·(S) ,

βtot,p,t,u = ϕTrs

[
NΛ·(T ∗X)

2

(
1 + 2D

Fp,2
t,u

)
exp

(
D

Fp,2
t,u

)]
∈ Ω·(S) .

(2.4.74)

By [BL95, Theorem 1.8,1.9], we have

(2.4.75) αtot,p,t,u ∈ Ωodd(S) , βtot,p,t,u ∈ Ωeven(S) .

Proposition 2.4.7. We have

(2.4.76) dSαtot,p,t,u = 0 ,
∂

∂u
αtot,p,t,u =

1

u
dSβtot,p,t,u .

Proof. The proof is the same as Proposition 2.3.5, 2.3.6. �

We recall that αt, βt ∈ Ω·(M) are de�ned in �2.3. Let αp,t, βp,t ∈ Ω·(M) be the αt, βt
with E replaced by Ep.
We state two theorems whose proofs are delayed to �2.5.3- �2.5.5.

Theorem 2.4.8. For p ∈ N large enough, given t > 1, as u→ +∞,

(2.4.77) αtot,p,t,u = O
(
1/
√
u
)
, βtot,p,t,u = O

(
1/
√
u
)
.

Moreover (2.4.77) holds uniformly in t > 1.
There exists δ ∈

]
0, 1

2

]
such that given t > 1, as u→ 0, we have

(2.4.78) αtot,p,t,u = π∗

[
e(TX,∇TX)αp,t

]
+ O

(
uδ
)
, βtot,p,t,u = O

(
uδ
)
,

Moreover, (2.4.78) is uniform in t > 1.
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Theorem 2.4.9. For p ∈ N large enough, given u > 0, as t→ +∞, we have

(2.4.79) αtot,p,t,u = αHp,u + O
(
1/
√
t
)
, βtot,p,t,u = βHp,u + O

(
1/
√
t
)
.

In the sequel, we always suppose that p is large enough such that Theorem 2.4.8 and
Theorem 2.4.9 hold.

De�nition 2.4.10. For any t > 0, the analytic torsion form

(2.4.80) Ttot,t(T
HM, gTN , gTX , gEp) ∈ Ωeven(S)

is de�ned by

(2.4.81) Ttot,t(T
HM, gTN , gTX , gEp) = −

∫ ∞
0

βtot,p,t,u
du

u
.

Let QS be the vector space of real even di�erential forms on S. Let QS,0 ⊆ QS be
the vector subspace of exact real even di�erential forms on S, which is closed under the
C∞-topology. Let QS/QS,0 be the quotient space.
Let ZS be the vector space generated by the closed chains in S. By de Rham's theorem,

for any α ∈ QS, α ∈ QS,0 if and only if

(2.4.82)
∫
c

α = 0

for any c ∈ ZS. Thus there is a natural injection

(2.4.83) QS/QS,0 ↪→ ZS,∗ .

We equip QS/QS,0 with the topology such that αt ∈ QS/QS,0 converges to α0 if and only
if
∫
c
αt converges to

∫
c
α0 for any c ∈ ZS.

Theorem 2.4.11. The form Ttot,t(g
TN , gTX , gEp) ∈ Ω·(S) is even. Moreover

(2.4.84) dSTtot,t(T
HM, gTN , gTX , gEp) = π∗

[
e(TX,∇TX)αp,t

]
.

For t1, t2 > 0, the following identity holds in QS/QS,0,[
Ttot,t2(THM, gTN , gTX , gEp)−Ttot,t1(THM, gTN , gTX , gEp)

]
=

[
π∗

[
e(TX,∇TX)

(∫ t2

t1

βp,t
dt

t

)]]
.

(2.4.85)

The following identity holds in QS :

(2.4.86) lim
t→∞

Ttot,t(T
HM, gTN , gTX , gEp) = T (THM, gTX , gHp) .

The following identity holds in QS/QS,0 :

lim
t→0

[
Ttot,t(T

HM, gTN , gTX , gEp)

− 1

2t
π∗

[
e(TX,∇TX)q∗

[ ω
2π

Td(TN,∇TN)ch(Ep,∇Ep)
]]]

=
[
T (THM, gTX , gHp) + π∗

[
e(TX,∇TX)T (gTN , gEp)

]]
.

(2.4.87)
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Proof. By Proposition 2.4.7, Theorem 2.4.8 and De�nition 2.4.10, we get (2.4.84).
For proving (2.4.85), we apply the same transgression technique as the proof of Propo-

sition 2.3.6. Set

(2.4.88) N+ = N × R+ , M+ = M × R+ , S+ = S × R+ .

Let

(2.4.89) q+ : N+ →M+ , π+ : M+ → S+

be the natural extension of q : N → M and π : M → S. Let t be the coordinate on R+.
We equip TN with the metric 1

t
gTN . Applying (2.4.84) to the extended �bration in the

same way as the proof of Proposition 2.3.6, we get

(2.4.90)

[
∂

∂t
Ttot,t(g

TN , gTX , gEp)

]
=

[
1

t
π∗

[
e(TX,∇TX)βp,t

]]
∈ QS/QS,0 .

Integrating (2.4.90), we get (2.4.85).
By Theorem 2.4.8, Theorem 2.4.9 and the dominated convergence theorem, we get

(2.4.91) lim
t→∞

∫ ∞
0

βtot,p,t,u
du

u
=

∫ ∞
0

βHp,u
du

u
,

which is equivalent to (2.4.86).
We recall that g1, g2 ∈ C∞(R+,R) are de�ned in �2.3.7.
By Proposition 2.3.7, (2.3.96), (2.3.97) and the fact that χ′(N,Ep) = 0,∫ t2

t1

{
βp,t +

g1(t)

2

(
q∗

[
Td′(TN,∇TN)ch(Ep,∇Ep)

]
− nχ(N,Ep)

)
+
g2(t)

2t
q∗

[ ω
2π

Td(TN,∇TN)ch(Ep,∇Ep)
]}dt

t

(2.4.92)

converges as t1 → 0 and t2 →∞. Furthermore, by Proposition 2.2.3,

(2.4.93) q∗

[
Td′(TN,∇TN)ch(Ep,∇Ep)

]
∈ Ω·(M)

is a constant 0-form on M . Then, by (2.4.52), we get

π∗

[
e(TX,∇TX)q∗

[
Td′(TN,∇TN)ch(Ep,∇Ep)

]]
= χ(X)q∗

[
Td′(TN,∇TN)ch(Ep,∇Ep)

]
= 0 .

(2.4.94)

Thus

π∗

[
e(TX,∇TX)

(∫ t2

t1

βp,t
dt

t

)]
+ π∗

[
e(TX,∇TX)q∗

[ ω
2π

Td(TN,∇TN)ch(Ep,∇Ep)
]] ∫ t2

t1

g2(t)

2t2
dt

= π∗

[
e(TX,∇TX)

∫ t2

t1

{
βp,t +

g1(t)

2

(
q∗

[
Td′(TN,∇TN)ch(Ep,∇Ep)

]
− nχ(N,Ep)

)
+
g2(t)

2t
q∗

[ ω
2π

Td(TN,∇TN)ch(Ep,∇Ep)
]}dt

t

]
,

(2.4.95)
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which converges as t1 → 0 and t2 →∞. Taking the limit of (2.4.95) with t1 → 0, t2 →∞
and applying De�nition 2.3.13, (2.3.98) and (2.4.85), we get

lim
t→0

[
Ttot,t(T

HM, gTN , gTX , gEp)

− 1

2t
π∗

[
e(TX,∇TX)q∗

[ ω
2π

Td(TN,∇TN)ch(Ep,∇Ep)
]]]

= lim
t→∞

[
Ttot,t(T

HM, gTN , gTX , gEp)
]

+
[
π∗

[
e(TX,∇TX)T (gTN , gEp)

]]
∈ QS/QS,0 ,

(2.4.96)

which, together with (2.4.86), implies (2.4.87). �

Remark 2.4.12. If the Kähler class [ω] ∈ H1,1(N) is constant along M , by Proposition
2.2.3,

(2.4.97) q∗

[ ω
2π

Td(TN,∇TN)ch(Ep,∇Ep)
]

is a constant function on M . Then, same as (2.4.94), we have

(2.4.98) π∗

[
e(TX,∇TX)q∗

[ ω
2π

Td(TN,∇TN)ch(Ep,∇Ep)
]]

= 0 .

Thus (2.4.87) is simpli�ed as follows

lim
t→0

[
Ttot,t(g

TN , gTX , gEp)
]

=
[
T (gTX , gHp) + π∗

[
e(TX,∇TX)T (gTN , gEp)

]]
.

(2.4.99)

In particular, (2.4.99) holds with the following choice of the Kähler form on N ,

(2.4.100) ω =
√
−1RL

∣∣
N
.

Remark 2.4.13. If X is of odd dimension, we have

(2.4.101) e(TX,∇TX) = 0 .

By (2.4.85) and (2.4.86) and (2.4.101), the following identity holds for t > 0,

(2.4.102)
[
Ttot,t(T

HM, gTN , gTX , gEp)
]

=
[
T (THM, gTX , gHp)

]
∈ QS/QS,0 .

The next section is devoted to the proofs of Theorem 2.4.8 and Theorem 2.4.9.

2.5. Proofs of Theorem 2.4.8 and Theorem 2.4.9.
The purpose of this section is to establish the main results of �2.4.7.
This section is organized as follows. In �2.5.1, we study the positivity of (the degree

zero part of) the Levi-Civita superconnection. Some of these results were already proved
in [BMaZ15] using Toeplitz operators.
In �2.5.2, we establish a Lichnerowicz formula associated with the Levi-Civita super-

connection obtained in �2.4.4.
In �2.5.3, we prove Theorem 2.4.9.
In �2.5.4, we prove the u→∞ part of Theorem 2.4.8.
Finally, In �2.5.5, we establish the u→ 0 part of Theorem 2.4.8.
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2.5.1. Positivity of C
Fp,[0],2
t,u for p large enough.

In this whole subsection, we only consider a single �ber Y together with the action
of CFp,[0],2

t,u on Ω·,·(Y,Ep). Since S is compact (cf. �2.4.7), the estimates obtained in this
subsection are uniform for all �bers over S.
First, we prove a technical lemma.
We recall that Hp = H0(N,Ep) ⊆ Ep is the kernel of C

Fp
v (cf. (2.4.37)) and Pp : Ep →

Hp is the orthogonal projection (cf. (2.4.57)).
Let H⊥p ⊆ Ep be the orthogonal complement of Hp. Let

(2.5.1) P⊥p : Ep → H⊥p .

be the orthogonal projection.
Let

∥∥ · ∥∥ be the L2-norm on Ep. Let
∥∥ · ∥∥∞ be the induced operator norm on End

(
Ep
)
.

Lemma 2.5.1. For f ∈ C∞ (N,C), viewed as an operator acting on Ep by multiplication,
there exists p0, C > 0 such that, for any p > p0, we have

(2.5.2)
∥∥P⊥p fPp∥∥∞ 6 C

√
p
.

Proof. By the proof of Kodaira's vanishing theorem (cf. [MaMar07, Theorem 1.5.6]),
there exists c > 0 such that for any s ∈ H⊥p , we have

(2.5.3)
∥∥CFp

v s
∥∥2
> cp‖s‖2 .

For p > p0 and s ∈ Hp, we have

(2.5.4) CFp
v P⊥p fs = CFp

v fs = ∂
Ep
N fs = (∂Nf)s .

Let C be C 0-norm of ∂f . Then, by (2.5.4), we have

(2.5.5)
∥∥CFp

v P⊥p fs
∥∥ 6 C‖s‖ .

By (2.5.3) and (2.5.5), for s ∈ Hp, we have

(2.5.6)
∥∥P⊥p fs∥∥ 6 1

√
cp

∥∥CFp
v P⊥p fs

∥∥ 6 C
√
cp
‖s‖ .

This proves (2.5.2). �

By (2.4.39), we have

(2.5.7) C
Fp,[0],2
t,u = tCFp,2

v + uC
Fp,2
h +

√
tu
[
CFp

v , C
Fp

h

]
.

Since gTN is a �berwise Kähler metric and CFp
v is the �berwise spinc Dirac operator,

we have

CFp,2
v = − 1

2

(
∇S⊗Ep
ei

)2
+

1

8
rN +

1

2

(
REp +

1

2
RΛn(TN)

)
(ei, ej) c(ei)c(ej) ,(2.5.8)

By [BL95, Theorem 3.11], we have

C
Fp,2
h = −

(
∇Ep,u
fα

)2

+
1

4
rX +

1

8

〈
fγ, R

TX(fα, fβ)fδ
〉
c(fα)c(fβ)ĉ(fγ)ĉ(fδ)

+
1

4

(
ωEp(fα)

)2
+

1

8

(
ωEp
)2

(fα, fβ)
(
ĉ(fα)ĉ(fβ)− c(fα)c(fβ)

)
− 1

2

[
∇Ep
fα
, ωEp(fβ)

]
c(fα)ĉ(fβ) .

(2.5.9)
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Proposition 2.5.2. The following identity holds[
CFp

v , C
Fp

h

]
= − 1

2
∇S⊗Ep
ei

〈
STN(ei)ej, fα

〉 (
c(ej)c(fα)−

√
−1c(Jej)ĉ(fα)

)
− 1

2

〈
STN(ei)ej, fα

〉 (
c(ej)c(fα)−

√
−1c(Jej)ĉ(fα)

)
∇S⊗Ep
ei

+

(
REp +

1

2
RΛn(TN)

)
(ei, fα)

(
c(ei)c(fα)−

√
−1c(Jei)ĉ(fα)

)
.

(2.5.10)

Proof. Since gTX is constant along N , all the c(fα) and ĉ(fα) anti-commute with CFp
v .

Then, by (2.4.42), we have

(2.5.11)
[
CFp

v , C
Fp

h

]
= c(fα)

[
∇Ep,u
fα

, CFp
v

]
− 1

2
ĉ(fα)

[
ωEp(fα), CFp

v

]
.

By Proposition 2.3.3, CFp
v + fα∇Ep,u

fα
is the Levi-Civita superconnection of the in�nite

dimensional vector bundle Ep over X. Then
(
C

Fp
v + fα∇Ep,u

fα

)2

is given by (2.3.75).

Taking the degree 1 components in (2.3.75), we get

fα
[
∇Ep,u
fα

, CFp
v

]
= − 1

2
∇S⊗Ep
ei

〈
STN(ei)ej, fα

〉
c(ej)f

α − 1

2

〈
STN(ei)ej, fα

〉
c(ej)f

α∇S⊗Ep
ei

+

(
RE +

1

2
RΛn(TN)

)
(ei, fα)c(ei)f

α .

(2.5.12)

Replacing the fα in (2.5.12) by c(fα), we get

c(fα)
[
∇Ep,u
fα

, CFp
v

]
= − 1

2
∇S⊗Ep
ei

〈
STN(ei)ej, fα

〉
c(ej)c(fα)

− 1

2

〈
STN(ei)ej, fα

〉
c(ej)c(fα)∇S⊗Ep

ei

+

(
RE +

1

2
RΛn(TN)

)
(ei, fα)c(ei)c(fα) .

(2.5.13)

Since

(2.5.14)
[
∂
Ep
,∇Ep

fα

]
=
[
∂
Ep,∗

,∇Ep,∗
fα

]
= 0 ,

we have [
∇Ep,u
fα

, CFp
v

]
=

1

2

[
∇Ep,∗
fα

+∇Ep
fα
, ∂

Ep
+ ∂

Ep,∗
]

=
1

2

[
∇Ep,∗
fα

, ∂
Ep
]

+
1

2

[
∇Ep
fα
, ∂

Ep,∗
]
,

(2.5.15)

and
1

2

[
ωEp(fα), CFp

v

]
=

1

2

[
∇Ep,∗
fα
−∇Ep

fα
, ∂

Ep
+ ∂

Ep,∗
]

=
1

2

[
∇Ep,∗
fα

, ∂
Ep
]
− 1

2

[
∇Ep
fα
, ∂

Ep,∗
]
.

(2.5.16)

By (2.5.15) and (2.5.16), we get

(2.5.17)
1

2

[
ωEp(fα), CFp

v

]
= (−1)1/2−NΛ·(T∗N)/2

[
∇Ep,u
fα

, CFp
v

]
(−1)N

Λ·(T∗N)/2 .
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By replacing the fα in (2.5.12) by ĉ(fα) and applying (2.5.17), we get

1

2
ĉ(fα)

[
ω

Ep
fα
, CFp

v

]
=

√
−1

2
∇S⊗Ep
ei

〈
STN(ei)ej, fα

〉
c(Jej)ĉ(fα)

+

√
−1

2

〈
STN(ei)ej, fα

〉
c(Jej)ĉ(fα)∇S⊗Ep

ei

−
√
−1

(
RE +

1

2
RΛn(TN)

)
(ei, fα)c(Jei)ĉ(fα) .

(2.5.18)

By (2.5.11), (2.5.13) and (2.5.18), we get (2.5.10). �

Set

A1 = PpC
Fp,[0],2
t,u Pp , A2 = PpC

Fp,[0],2
t,u P⊥p ,

A3 = P⊥p C
Fp,[0],2
t,u Pp , A4 = P⊥p C

Fp,[0],2
t,u P⊥p .

(2.5.19)

Then

(2.5.20) C
Fp,[0],2
t,u =

(
A1 A2

A3 A4

)
.

Theorem 2.5.3. There exist c, C > 0 and p0 > 0 such that, for p > p0 and t, u > 0, we
have

(2.5.21) A1 > cup2 , A4 > cup2 + ctp ,

for s1 ∈ Ω·(M,Hp) and s2 ∈ Ω·(M,H⊥p ), we have∣∣〈s1, A2s2〉
∣∣ =

∣∣〈A3s1, s2〉
∣∣

6 C
√
up
√
〈A1s1, s1〉‖s2‖+ C(

√
tu+ u)p‖s1‖‖s2‖ .

(2.5.22)

Moreover, there exist c, p0 > 0 such that, for p > p0 and t, u > 0, we have

(2.5.23) C
Fp,[0],2
t,u > cup2 .

Proof. In the whole proof, c > 0 is a small enough constant, C > 0 is a large enough
constant, and p is always supposed to be large enough.
Step 1. We establish the positivity of tCFp,2

v and uCFp,2
h .

By (2.5.3), we get

(2.5.24) tP⊥p C
Fp,2
v P⊥p > ctp .

By (2.5.9), CFp,2
h consists of a connection Laplacian and zero order terms, which are

polynomials on p. Furthermore, the only term of degree> 2 on p is

(2.5.25)
p2

4

(
ωL(fα)

)2
,

which comes from

(2.5.26)
1

4

(
ωEp(fα)

)2
=

1

4

(
ωE (fα) + pωL(fα)

)2
.

By the non degeneration of ωL (cf. �2.4.5), we have

(2.5.27)
p2

4

(
ωL(fα)

)2
> cp2 .
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Thus the zero order part of CFp,2
h is controlled from below by cp2. Hence,

(2.5.28) uC
Fp,2
h > cup2 .

As a consequence,

(2.5.29) uPpC
Fp,2
h Pp > cup2 , uP⊥p C

Fp,2
h P⊥p > cup2 .

Step 2. We establish a lower bound for
√
tu
[
C

Fp
v , C

Fp

h

]
.

By (2.5.10),
[
C

Fp
v , C

Fp

h

]
consists of the following �rst order terms

− 1

2
∇S⊗Ep
ei

〈
STN(ei)ej, fα

〉 (
c(ej)c(fα)−

√
−1c(Jej)ĉ(fα)

)
− 1

2

〈
STN(ei)ej, fα

〉 (
c(ej)c(fα)−

√
−1c(Jej)ĉ(fα)

)
∇S⊗Ep
ei

,

(2.5.30)

and zero order terms, which are polynomials on p of degree6 1.
The zero order terms are controlled from below by −Cp. It rests to control the �rst

order terms. Since
(
c(ej)c(fα)−

√
−1c(Jej)ĉ(fα)

)
is skew-adjoint, for any ε > 0,

(2.5.31) ∇S⊗Ep
· +

1

ε

〈
STN(·)ej, fα

〉 (
c(ej)c(fα)−

√
−1c(Jej)ĉ(fα)

)
is a unitary connection. Thus

(2.5.32) −ε
(
∇S⊗Ep
ei

+
1

ε

〈
STN(ei)ej, fα

〉 (
c(ej)c(fα)−

√
−1c(Jej)ĉ(fα)

))2

> 0 .

Comparing (2.5.30) and (2.5.32), we see that (2.5.30) is controlled from below by

(2.5.33) ε
(
∇S⊗Ep
ei

)2 − C

ε
.

Combing the lower bounds obtained for the zero order and �rst order parts of
[
C

Fp
v , C

Fp

h

]
,

we get

(2.5.34)
√
tu
[
CFp

v , C
Fp

h

]
> ε
√
tu
(
∇S⊗Ep
ei

)2 − C
√
tu

ε
− C
√
tup .

Replacing ε by ε
2

√
t/
√
u, we get

(2.5.35)
√
tu
[
CFp

v , C
Fp

h

]
>
εt

2

(
∇S⊗Ep
ei

)2 − Cu

ε
− C
√
tup .

Applying (2.5.8), we get

(2.5.36)
√
tu
[
CFp

v , C
Fp

h

]
> −εtCFp,2

v − εCtp− Cu

ε
− C
√
tup .

Step 3. We prove (2.5.21).
Since

(2.5.37) CFp
v Pp = PpC

Fp
v = 0 ,

we have

(2.5.38) A1 = Pp

(√
tCFp

v +
√
uC

Fp

h

)2

Pp = uPpC
Fp,2
h Pp .

The �rst inequality in (2.5.21) follows from (2.5.29) and (2.5.38).
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By (2.5.24), (2.5.29) and (2.5.36), we have

A4 = uP⊥p C
Fp,2
h P⊥p + (1− ε)tP⊥p CFp,2

v P⊥p

+ P⊥p

(
εtCFp,2

v +
√
tu
[
CFp

v , C
Fp

h

])
P⊥p

> cup2 + (1− ε)ctp− εCtp− Cu

ε
− C
√
tup .

(2.5.39)

By choosing ε small enough in (2.5.39) and applying the Cauchy-Schwarz inequality,
we get the second inequality in (2.5.21).
Step 4. We estimate

√
tuP⊥p C

Fp
v C

Fp

h Pp.
For s1 ∈ Ω·(X,Hp), we have

(2.5.40) P⊥p C
Fp
v C

Fp

h s1 = P⊥p
(
∂
Ep
N + ∂

Ep,∗
N

)(
d

Ep
X + d

Ep,∗
X

)
s1 .

We recall that dEp
X is the de Rham operator on Ω·(X,Ep), which preserves Hp = ker

(
∂
Ep
N +

∂
Ep,∗
N

)
, we have

(2.5.41)
(
∂
Ep
N + ∂

Ep,∗
N

)
d

Ep
X s1 = 0 .

Since dEp,∗
X s1 ∈ Ω·,0(Y,Ep) and ∂

Ep,∗
N : Ω·,·(Y,Ep)→ Ω·,·−1(Y,Ep), we have

(2.5.42) ∂
Ep,∗
N d

Ep,∗
X s1 = 0 .

By (2.5.40)-(2.5.42), we get

(2.5.43) P⊥p C
Fp
v C

Fp

h s1 = P⊥p ∂
Ep
N d

Ep,∗
X s1 .

By (2.4.41) and (2.5.43), we get

(2.5.44) P⊥p C
Fp
v C

Fp

h s1 = ifαP
⊥
p ∂

Ep
N ∇

Ep
fα
s1 + ifαP

⊥
p ∂

Ep
N ωEp(fα)s1 .

We recall that ∇Ep is the �at connection on Ep, which preserves Hp ⊆ ker ∂
Ep
N , we have

(2.5.45) ∂
Ep
N ∇

Ep
fα
s1 = 0 .

By (2.5.44) and (2.5.45), we get

P⊥p C
Fp
v C

Fp

h s1 = ifαP
⊥
p ∂

Ep
N ωEp(fα)s1

= ifαP
⊥
p ∂

Ep
N

(
ωE (fα) + pωL(fα)

)
s1

= ifαP
⊥
p

(
∂
E

Nω
E (fα) + p∂Nω

L(fα)
)
s1 .

(2.5.46)

Thus

(2.5.47)
∥∥∥√tuP⊥p CFp

v C
Fp

h s1

∥∥∥ 6 C
√
tup‖s1‖ .

Step 5. We estimate uP⊥p C
F ,2
h Pp.

By (2.3.33) and (2.5.9), we get

C
Fp,2
h = −

(
∇Ep
fα

+
1

2
ωEp(fα)

)2

+
1

4

(
ωEp(fα)

)2
+ Θ′

= −
(
∇Ep
fα

)2

− ωEp(fα)∇Ep
fα

+ Θ ,

(2.5.48)
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where Θ and Θ′ are zero order operators bounded by Cp. Since ∇Ep preserves Hp =
kerP⊥p , we get

P⊥p C
F ,2
h s1 = − P⊥p ωEp(fα)∇Ep

fα
s1 + P⊥p Θs1

= − pP⊥p ωL(fα)∇Ep
fα
s1 − P⊥p ωE (fα)∇Ep

fα
s1 + P⊥p Θs1 .

(2.5.49)

Applying Lemma 2.5.1 to P⊥p ω
L(fα)∇Ep

fα
s1 in (2.5.49), we get

(2.5.50)
∥∥∥P⊥p CF ,2

h s1

∥∥∥ 6 C
√
p
∥∥∥∇Ep

fα
s1

∥∥∥+ Cp‖s1‖ .

By the Cauchy-Schwarz inequality and (2.3.33), we get∥∥∥∇Ep
fα
s1

∥∥∥2

=

∥∥∥∥∇Ep,u
fα

s1 −
1

2
ωEp(fα)s1

∥∥∥∥2

6 2
∥∥∥∇Ep,u

fα
s1

∥∥∥2

+ 2

∥∥∥∥1

2
ωEp(fα)s1

∥∥∥∥2

= 2

〈
−
(
∇Ep,u
fα

)2

s1 +
1

4

(
ωEp(fα)

)2
s1, s1

〉
.

(2.5.51)

Comparing −
(
∇Ep,u
fα

)2

s1 + 1
4

(
ωEp(fα)

)2
with (2.5.9), we see that

(2.5.52) C
Fp,2
h = −

(
∇Ep,u
fα

)2

s1 +
1

4

(
ωEp(fα)

)2
+ Θ′ ,

with Θ′ a zero order operator bounded by Cp. Then the same argument as Step 1 yields

(2.5.53) −
(
∇Ep,u
fα

)2

s1 +
1

4

(
ωEp(fα)

)2
6 CC

Fp,2
h .

By (2.5.50), (2.5.51) and (2.5.53), we get

(2.5.54)
∥∥∥P⊥p CFp,2

h s1

∥∥∥ 6 C
√
p

√〈
C

Fp,2
h s1, s1

〉
+ Cp‖s1‖ .

Then, by (2.5.38), we get

(2.5.55)
∥∥∥uP⊥p CFp,2

h s1

∥∥∥ 6 C
√
up
√
〈A1s1, s1〉+ Cup‖s1‖ .

Step 6. We prove (2.5.22).
Since C

Fp,[0],2
t,u is self-adjoint, we get the equality in (2.5.22). We turn to prove the

inequality in (2.5.22).
By (2.5.37), we have

(2.5.56) A3s1 =
√
tuP⊥p C

Fp
v C

Fp

h s1 + uP⊥p C
F ,2
h s1 .

Then, by (2.5.47) and (2.5.55), we get the inequality in (2.5.22).
Step 7. We prove (2.5.23).
For s ∈ Fp, we have the decomposition

(2.5.57) s = s1 + s2 ,

with s1 ∈ Ω·(X,Hp) and s2 ∈ Ω·(X,H⊥p ). Then

(2.5.58)
〈
C

Fp,[0],2
t,u s, s

〉
=
〈
A1s1, s1

〉
+
〈
A4s2, s2

〉
+
〈
A2s2, s1

〉
+
〈
A3s1, s2

〉
.
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By the Cauchy-Schwarz inequality and (2.5.22), for any ε > 0, we have∣∣〈A2s2, s1

〉∣∣+
∣∣〈A3s1, s2

〉∣∣
6 C
√
up
√
〈A1s1, s1〉‖s2‖+ C

√
tup‖s1‖‖s2‖+ Cup‖s1‖‖s2‖

6
1

2

(〈
A1s1, s1

〉
+ C2up‖s2‖2

)
+
Cp

2

(u
ε
‖s1‖2 + εt‖s2‖2

)
+
Cup

2

(
‖s1‖2 + ‖s2‖2

)
.

(2.5.59)

By (2.5.21), (2.5.58) and (2.5.59), we get〈
C

Fp,[0],2
t,u s, s

〉
>
( c

2
p2 − C

2ε
p− C

2
p
)
u‖s1‖2 +

(
cp2 − C2

2
p− C

2
p
)
u‖s2‖2

+
(
cp− εC

2
p
)
t‖s2‖2 .

(2.5.60)

By choosing ε small enough, we get (2.5.23). �

Corollary 2.5.4. We have

(2.5.61) H ·(X,H0(N,Ep)) = H ·tot(Y,Ep) = 0 .

Proof. The �rst equality in (2.5.61) comes from Remark 2.4.2.
By Hodge theory and (2.5.23), we have

(2.5.62) H ·tot(Y,Ep) ' ker
(
C

Fp,[0],2
t,u

)
= 0 .

Thus we get the second equality in (2.5.61). �

Corollary 2.5.5. There exists p0 > 0 such that, for p > p0 and t, u > 0, we have

(2.5.63) C
Fp,[0],2
t,u >

t

2
CFp,2

v +
u

2
C

Fp,2
h , C

Fp,[0],2
t,u 6

3t

2
CFp,2

v +
3u

2
C

Fp,2
h

Proof. In the proof of Proposition 2.5.3, we showed that for p large enough,

(2.5.64) tCFp,2
v + uC

Fp,2
h +

√
tu
[
CFp

v , C
Fp

h

]
> cup2 .

In fact, the argument leading to Proposition 2.5.3 could be used to show a stronger
inequality: for a > 0, b ∈ R, there exist ca,b > 0, pa,b > 0 such that for p > pa,b, we have

(2.5.65) atCFp,2
v + auC

Fp,2
h + b

√
tu
[
CFp

v , C
Fp

h

]
> ca,bup

2 .

In particular, the following inequality holds for p large enough,

(2.5.66)
t

2
CFp,2

v +
u

2
C

Fp,2
h ±

√
tu
[
CFp

v , C
Fp

h

]
> 0 .

The '+' case is equivalent to the �rst inequality in (2.5.63). The '−' case is equivalent to
the second inequality in (2.5.63). �

We recall that CHp
u is de�ned in �2.4.6. Let CHp,[0] ∈ End(Hp) be the degree zero

component of CHp

1 . Then CHp,[0] is self-adjoint.
The following proposition is proved by Bismut-Ma-Zhang [BMaZ15, Theorem 4.4].

Hereby, we give a di�erent proof.

Proposition 2.5.6. There exist c > 0 and p0 > 0 such that, for p > p0, we have

(2.5.67) CHp,[0],2 > cp2 .
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Proof. For s ∈Hp = Ω·(X,Hp), by (2.4.39) and (2.4.58), we have

(2.5.68) CFp,[0]s− CHp,[0]s = P⊥p C
Fp,[0]s = P⊥p C

Fp

h s .

By Theorem 2.5.3, there exists c > 0 such that, for p large enough, we have

(2.5.69)
∥∥CFp,[0]s

∥∥ > cp
∥∥s∥∥ .

Since ∇Ep preserves Hp, by (2.4.42), we have

P⊥p C
Fp

h s =
1

2

(
c(fα)− ĉ(fα)

)
P⊥p ω

Ep(fα)s

=
1

2

(
c(fα)− ĉ(fα)

)
P⊥p
(
ωE (fα) + pωL(fα)

)
s .

(2.5.70)

By Lemma 2.5.1 and (2.5.70), there exists C > 0 such that, for p large enough, we have

(2.5.71)
∥∥∥P⊥p CFp

h s
∥∥∥ 6 C

√
p
∥∥s∥∥ .

By (2.5.68), (2.5.69) and (2.5.71), there exists c > 0 such that, for p large enough, we
have

(2.5.72)
∥∥CHp,[0]s

∥∥ > cp
∥∥s∥∥

This is equivalent to (2.5.67). �

2.5.2. A Lichnerowicz formula for D
Fp,2
t,u + zD

Fp

t,u .
Let z be an additional odd Grassmannian variable such that z2 = 0.
We recall that

〈
STX(·)·, ·

〉
is constructed in �2.1.4.

Theorem 2.5.7. The following identity holds

D
Fp,2
t,u + zD

Fp

t,u

=
(√

tDFp
v +

√
u

2
c(fα)ωEp(fα) +

1

2
gβωEp(gβ)

)2

+ z
(√

tDFp
v +

√
u

2
c(fα)ωEp(fα) +

1

2
gβωEp(gβ)

)
+ u

(
∇Ep,u
fα

+
1

2
√
u

〈
STX(fα)fβ, gγ

〉
c(fβ)gγ

+
1

4u

〈
STX(fα)gβ, gγ

〉
gβgγ − z

2
√
u
ĉ(fα)

)2

− u

8

〈
fγ, R

TX(fα, fβ)fδ
〉
ĉ(fγ)ĉ(fδ)c(fα)c(fβ)

−
√
u

4

〈
fγ, R

TX(fα, gβ)fδ
〉
ĉ(fγ)ĉ(fδ)c(fα)gβ

− 1

8

〈
fγ, R

TX(gα, gβ)fδ
〉
ĉ(fγ)ĉ(fδ)g

αgβ

− u

4
rX − u

8

(
ωEp
)2

(fα, fβ)ĉ(fα)ĉ(fβ) +
u

2

[
∇Ep,u
fα

, ωEp(fβ)
]
c(fα)ĉ(fβ)

+

√
u

2

[
∇Ep,u
gα , ωEp(fβ)

]
gαĉ(fβ)−

√
u ĉ(fα)

[
∇Ep,u
fα

,
√
tDFp

v

]
.

(2.5.73)
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Proof. Since

(2.5.74)
[
ĉ(T ), DFp

v

]
= 0 ,

by (2.4.38), we have

D
Fp,2
t,u + zD

Fp

t,u

= tDFp,2
v +

√
tu
[
D

Fp

h , DFp
v

]
+
√
t
[1

2
ωFp , DFp

v

]
+ z
√
tDFp

v

+
(√

uD
Fp

h +
1

2
ωFp − 1

4
√
u
ĉ(T )

)2

+ z
(√

uD
Fp

h +
1

2
ωFp − 1

4
√
u
ĉ(T )

)
.

(2.5.75)

By (2.4.42), we have

(2.5.76)
√
tu
[
D

Fp

h , DFp
v

]
=
[√u

2
c(fα)ωEp(fα),

√
tDFp

v

]
−
√
tu ĉ(fα)

[
∇Ep,u
fα

, DFp
v

]
.

By (2.4.47) and

(2.5.77)
[
ωΛ·(T ∗X), DFp

v

]
=
[
kX , D

Fp
v

]
= 0 ,

we have

(2.5.78)
√
t
[1

2
ωFp , DFp

v

]
=
[1

2
gαωEp(gα),

√
tDFp

v

]
.

By (2.5.76) and (2.5.78), we have

tDFp,2
v +

√
tu
[
D

Fp

h , DFp
v

]
+
√
u
[1

2
ωFp , DFp

v

]
=
(√

tDFp
v +

√
u

2
c(fα)ωEp(fα) +

1

2
gβωEp(gβ)

)2

+
u

4

(
ωEp(fα)

)2

− u

8

(
ωEp
)2

(fα, fβ)c(fα)c(fβ)−
√
u

4

(
ωEp
)2

(fα, gβ)c(fα)gβ

− 1

8

(
ωEp
)2

(gα, gβ)gαgβ −
√
tu ĉ(fα)

[
∇Ep,u
fα

, DFp
v

]
(2.5.79)
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Applying [BL95, Theorem 3.11] with F replaced by Ep, we get(√
uD

Fp

h +
1

2
ωFp − 1

4
√
u
ĉ(T )

)2

+ z
(√

uD
Fp

h +
1

2
ωFp − 1

4
√
u
ĉ(T )

)
= u

(
∇Ep
fα

+
1

2
√
u

〈
STX(fα)fβ, gγ

〉
c(fβ)gγ

+
1

4u

〈
STX(fα)gβ, gγ

〉
gβgγ − z

2
√
u
ĉ(fα)

)2

− u

4
rX

− u

8

(〈
fγ, R

TX(fα, fβ)fδ
〉
ĉ(fγ)ĉ(fδ)−

(
ωEp
)2

(fα, fβ)
)
c(fα)c(fβ)

−
√
u

4

(〈
fγ, R

TX(fα, gβ)fδ
〉
ĉ(fγ)ĉ(fδ)−

(
ωEp
)2

(fα, gβ)
)
c(fα)gβ

− 1

8

(〈
fγ, R

TX(gα, gβ)fδ
〉
ĉ(fγ)ĉ(fδ)−

(
ωEp
)2

(gα, gβ)
)
gαgβ

− u

4

(
ωEp(fα)

)2 − u

8

(
ωEp
)2

(fα, fβ)ĉ(fα)ĉ(fβ) +
u

2

[
∇Ep,u
fα

, ωEp(fβ)
]
c(fα)ĉ(fβ)

+

√
u

2

[
∇Ep,u
gα , ωEp(fβ)

]
gαĉ(fβ) +

√
uz

2
ωEp(fα)c(fα) +

z

2
ωEp(gα)gα .

(2.5.80)

By (2.5.75), (2.5.79) and (2.5.80), we get (2.5.73). �

2.5.3. Proof of (2.4.79).
If S is a point, (2.4.79) could be proved in the same way as [BeB94, �5]. This subsection

will follow the idea of [BeB94, �5] while keeping track of the contribution of Λ·(T ∗S).
In the sequel, p is �xed and always supposed to be large enough.
In this subsection, we work with a �xed u > 0.
We recall that Pp and P⊥p are de�ned in �2.5.1. Set

B1 = PpD
Fp,[0]
t,u Pp , B2 = PpD

Fp,[0]
t,u P⊥p ,

B3 = P⊥p D
Fp,[0]
t,u Pp , B4 = P⊥p D

Fp,[0]
t,u P⊥p .

(2.5.81)

Then

(2.5.82) D
Fp,[0]
t,u =

(
B1 B2

B3 B4

)
.

By (2.4.58), we have

(2.5.83) B1 = DHp,[0]
u , −B2

1 = CHp,[0],2
u .

For any operator A acting on a Hilbert space, its Schauder r-norm (r > 1) is de�ned
as follows

(2.5.84)
∥∥A∥∥

r
=
(

Tr
[
(A∗A)r/2

])1/r

.

These norms satisfy the Hölder's inequality : for r1, r2, r3 > 1 with 1/r1 + 1/r2 = 1/r3,
we have

(2.5.85)
∥∥A∥∥

r1

∥∥B∥∥
r2
>
∥∥AB∥∥

r3
.

Lemma 2.5.8. There exist a > 0, b > 0 such that, the following estimates hold for t > 1,

(2.5.86) −DFp,[0],2
t,u > a2 , −B2

1 > a2 ,
∥∥B2

∥∥
∞ =

∥∥B3

∥∥
∞ 6 b , −B2

4 > a2t .
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Proof. The �rst inequality in (2.5.86) follows from (2.5.23).
The second inequality in (2.5.86) follows from (2.5.67) and (2.5.83).
Since B3 = −B∗2 , we have

∥∥B2

∥∥
∞ =

∥∥B3

∥∥
∞.

Since DFp
v Pp = 0, by (2.4.38), we get

(2.5.87) B3 =
√
uP⊥p D

Fp

h Pp .

Since ∇Ep preserves Hp, by (2.4.42) and (2.5.87), we get

(2.5.88) B3 =
√
uP⊥p

(
−1

2
ĉ(fα)ωEp(fα) +

1

2
c(fα)ωEp(fα)

)
Pp ,

which is independent of t > 1. This proves the third inequality in (2.5.86).
We recall that A4 is de�ned by (2.5.19). By (2.4.32), we get

(2.5.89) A4 = −B2
4 −B3B2 .

By (2.5.21), (2.5.89) and the third inequality in (2.5.86), we get the fourth inequality in
(2.5.86). �

Set

(2.5.90) U =
{
λ ∈ C : |Im(λ)| > a

2
, |Re(λ)| < 1√

3
|Im(λ)|

}
.

For λ ∈ ∂U , put

E(λ) =

(
E1(λ) E2(λ)
E3(λ) E4(λ)

)
:=

(
λ−B1 −B2

−B3 λ−B4

)−1

−
(

(λ−B1)−1 0
0 0

)
=
(
λ−D

Fp,[0]
t,u

)−1

−
(
λ−DHp,[0]

u

)−1

,

(2.5.91)

By proceeding as in [BeB94, (5.85)], we have

E1(λ) =

((
1− (λ−B1)−1B2 (λ−B4)−1B3

)−1

− 1

)
(λ−B1)−1 ,

E2(λ) =
(

1− (λ−B1)−1B2 (λ−B4)−1B3

)−1

(λ−B1)−1B2 (λ−B4)−1 ,

E3(λ) = (λ−B4)−1B3

(
1− (λ−B1)−1B2 (λ−B4)−1B3

)−1

(λ−B1)−1 ,

E4(λ) =
(

1− (λ−B4)−1B3 (λ−B1)−1B2

)−1

(λ−B4)−1 .

(2.5.92)

We �x r > dimY + 1.

Lemma 2.5.9. There exists C > 0 such that, for λ ∈ U and t > 16b4/a4, we have

(2.5.93)
∥∥E(λ)

∥∥
∞ 6

C√
t
,

∥∥E(λ)
∥∥
r
6 C .
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Proof. By Lemma 2.5.8, for λ ∈ ∂U and t > 1, we have∥∥∥ (λ−B1)−1
∥∥∥
∞
6

2

a
,∥∥∥ (λ−B4)−1

∥∥∥
∞
6

2

a

1√
t
,∥∥∥ (λ−B1)−1B2 (λ−B4)−1B3

∥∥∥
∞
6

4b2

a2

1√
t
,∥∥∥ (λ−B4)−1B3 (λ−B1)−1B2

∥∥∥
∞
6

4b2

a2

1√
t
.

(2.5.94)

By (2.5.92), (2.5.94), we get the �rst inequality in (2.5.93).
Since D

Fp,[0]
t,u is a �rst order elliptic operator, by (2.4.32) and Corollary 2.5.5, there

exists C > 0 such that, for λ ∈ ∂U and t > 1, we have

(2.5.95)

∥∥∥∥(λ−D
Fp,[0]
t,u

)−1
∥∥∥∥
r

6 2

∥∥∥∥(DFp,[0]
t,u

)−1
∥∥∥∥
r

6 C .

By Lemma 2.5.8 and (2.5.95), there exists C > 0 such that, for t > 1, we have∥∥∥∥∥
(
λ−B1 0

0 λ−B4

)−1
∥∥∥∥∥
r

6

∥∥∥∥(λ−D
Fp,[0]
t,u

)−1
∥∥∥∥
r

∥∥∥∥( 1 −(λ−B1)−1B2

−(λ−B4)−1B3 1

)∥∥∥∥
∞
6 C .

(2.5.96)

As a consequence,

(2.5.97)
∥∥(λ−B1)−1

∥∥
r
6 C ,

∥∥(λ−B4)−1
∥∥
r
6 C .

By (2.5.92), (2.5.94), (2.5.97), we get the second inequality in (2.5.93). �

Let DFp,[>0]
t,u be the positive degree component of DFp

t,u , i.e.,

(2.5.98) D
Fp,[>0]
t,u =

1

2
ωFp − 1

4
√
u
ĉ(T ) .

We have (
λ−D

Fp

t,u

)−1

=

(
1−

(
λ−D

Fp,[0]
t,u

)−1

D
Fp,[>0]
t,u

)−1 (
λ−D

Fp,[0]
t,u

)−1

=

{
dimS∑
j=0

((
λ−D

Fp,[0]
t,u

)−1

D
Fp,[>0]
t,u

)j}(
λ−D

Fp,[0]
t,u

)−1

.

(2.5.99)

For
(
λ−D

Hp
u

)−1

, the same expansion holds, i.e., we replace D
Fp

t,u , D
Fp,[0]
t,u , DFp,[>0]

t,u by

D
Hp
u , DHp,[0]

u , DHp,[>0]
u in (2.5.99). Moreover, we have

(2.5.100) DHp,[>0]
u = PpD

Fp,[>0]
t,u Pp .

Proof of (2.4.79). Let f(λ) = λ exp(λ2). Let fr : C\R → C be the unique holomorphic
function such that

(2.5.101)
1

r!

dr

dλr
fr(λ) = f(λ) , lim

λ→+i∞
fr(λ) = lim

λ→−i∞
fr(λ) = 0 .
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There exists Cr > 0 such that for λ ∈ U , we have
(2.5.102)

∣∣fr(λ)
∣∣ 6 Cr exp

(
−
∣∣Im(λ)

∣∣) .
We have

f
(
D

Fp

t,u

)
=

1

2πi

∫
∂U

fr(λ)
(
λ−D

Fp

t,u

)−1−r
dλ ,

f
(
DHp
u

)
=

1

2πi

∫
∂U

fr(λ)
(
λ−DHp

u

)−1−r
dλ .

(2.5.103)

Using (2.5.91), (2.5.99), (2.5.100), we can express

(2.5.104)
(
λ−D

Fp

t,u

)−1−r
−
(
λ−DHp

u

)−1−r

in terms of the following operators

Ej(λ) , for j = 1, 2, 3, 4 ,(
λ−DHp

u

)−1−r
, QD

Fp,[>0]
t,u Q′ , for Q,Q′ ∈

{
Pp, P

⊥
p

}
.

(2.5.105)

Moreover, the operators in the second line of (2.5.105) are independent of t. Now, ap-
plying Lemma 2.5.9 and Hölder's inequality, we can show that

(2.5.106)

∥∥∥∥(λ−D
Fp

t,u

)−1−r
−
(
λ−DHp

u

)−1−r
∥∥∥∥

1

6
C√
t
.

By (2.4.59), (2.4.74), (2.5.103), (2.5.106), we get the �rst equation in (2.4.79).
The second equation in (2.4.79) follows from the �rst one by the same technique as

Proposition 2.3.6. �

2.5.4. Proof of (2.4.77).
By (2.4.32) and (2.5.23), there exists c > 0 such that, for t > 0 and u > 0, we have

(2.5.107) Sp
(
D

Fp,[0]
t,u

)
⊆ i
( ]
−∞,−c

√
u
]
∪
[
c
√
u,+∞

[ )
.

For δ > 0, set

(2.5.108) Uδ =
{
λ ∈ C : |Re(λ)| < 1 , |Im(λ)| > δ

}
.

By (2.5.107), for δ < c
√
u, we have

(2.5.109) Sp
(
D

Fp,[0]
t,u

)
⊆ Uδ .

We �x r > dimY + 1.

Lemma 2.5.10. For any ε > 0, there exists C > 0, such that, for t > 1, u > ε2 and
λ /∈ Ucε/2, the following estimates hold∥∥∥∥(λ−D

Fp,[0]
t,u

)−1
∥∥∥∥
r

6 C
(
1 +

∣∣λ∣∣) ,∥∥∥∥(λ−D
Fp,[0]
t,u

)−1
∥∥∥∥
∞
6 C

1 + |λ|√
u

,∥∥∥∥(λ−D
Fp,[0]
t,u

)−1

D
Fp,[>0]
t,u

∥∥∥∥
∞
6 C .

(2.5.110)
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Proof. For t > 1, u > ε2, µ ∈ Sp
(
D

Fp,[0]
t,u

)
and λ /∈ ∂Ucε/2, by (2.5.107), we have

(2.5.111)
∣∣λ− µ∣∣ > min

{
cε/2 , 1

}
.

By (2.5.111) and

(2.5.112)
∣∣λ− µ∣∣−1

=

∣∣∣∣ λ

λ− µ
− 1

∣∣∣∣ ∣∣µ∣∣−1
,

there exists C > 0 such that

(2.5.113)
∣∣λ− µ∣∣−1

6 C
(
1 +

∣∣λ∣∣)∣∣µ∣∣−1
.

Thus ∥∥∥∥(λ−D
Fp,[0]
t,u

)−1
∥∥∥∥
r

6 C
(
1 +

∣∣λ∣∣) ∥∥∥∥(DFp,[0]
t,u

)−1
∥∥∥∥
r

,∥∥∥∥(λ−D
Fp,[0]
t,u

)−1
∥∥∥∥
∞
6 C

(
1 +

∣∣λ∣∣) ∥∥∥∥(DFp,[0]
t,u

)−1
∥∥∥∥
∞
.

(2.5.114)

By (2.5.24), we have

(2.5.115)
t

2
CFp,2

v +
u

2
C

Fp,2
h > 0 .

Since t
2
C

Fp,2
v + u

2
C

Fp,2
h is a second order elliptic operator and r > dimY , we have

(2.5.116) bt,u :=

∥∥∥∥∥
(
t

2
CFp,2

v +
u

2
C

Fp,2
h

)−1/2
∥∥∥∥∥
r

<∞ .

By (2.4.32) and (2.5.63), we have

(2.5.117)

∥∥∥∥(DFp,[0]
t,u

)−1
∥∥∥∥
r

6 bt,u .

By the �rst inequality in (2.5.114) and (2.5.117), we get

(2.5.118)

∥∥∥∥(λ−D
Fp,[0]
t,u

)−1
∥∥∥∥
r

6 C
(
1 +

∣∣λ∣∣)bt,u .
Furthermore, since CFp,2

v , C
Fp,2
h > 0, bt,u is decreasing on t and u. This proves the �rst

inequality in (2.5.110).
By (2.5.107) and the second inequality in (2.5.114), we get the second inequality in

(2.5.110).
By (2.5.98),DFp,[>0]

t,u is a zero order di�erential operator whose coe�cients are uniformly
bounded for u > ε2. Moreover, by (2.5.111),

(2.5.119)

∥∥∥∥(λ−D
Fp,[0]
t,u

)−1
∥∥∥∥
∞

is also uniformly bounded for u > ε2. This proves the third inequality in (2.5.110). �

Proof of (2.4.77). Let f : C → C and fr : C\R → C be the holomorphic functions
de�ned by (2.5.101).
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For u > ε2, we have

(2.5.120) f
(
D

Fp

t,u

)
=

∫
∂Ucε/2

fr(λ)
(
λ−D

Fp

t,u

)−1−r
dλ .

By Lemma 2.5.10 and (2.5.99), for λ /∈ Ucε/2, we get∥∥∥∥(λ−D
Fp

t,u

)−1
∥∥∥∥
r

6 C
(
1 +

∣∣λ∣∣) ,∥∥∥∥(λ−D
Fp

t,u

)−1
∥∥∥∥
∞
6 C

1 +
∣∣λ∣∣
√
u

.

(2.5.121)

By Hölder's inequality and (2.5.121), we get∣∣∣∣Trs

[(
λ−D

Fp

t,u

)−1−r
]∣∣∣∣

6

∥∥∥∥(λ−D
Fp

t,u

)−1−r
∥∥∥∥

1

6

∥∥∥∥(λ−D
Fp

t,u

)−1
∥∥∥∥r
r

∥∥∥∥(λ−D
Fp

t,u

)−1
∥∥∥∥
∞
6 C

(
1 +

∣∣λ∣∣)r+1

√
u

.

(2.5.122)

By (2.4.74), (2.5.120) and (2.5.122) we obtain the �rst equation in (2.4.77).
The second equation in (2.4.77) follows from the �rst one by the same transgression

technique as Proposition 2.3.6. �

2.5.5. Proof of (2.4.78).
Following [BL95, �3], we introduce an auxiliary odd Grassmannian variable z such that

z2 = 0. For

(2.5.123) A ∈ End (Fp)⊗ Λ·(T ∗S)⊗ C[z] ,

we have

(2.5.124) A = A0 + zA1 , with A0, A1 ∈ End (Fp)⊗ Λ·(T ∗S) .

Put

(2.5.125) Trzs
[
A
]

= Trs

[
A1

]
∈ Λ·(T ∗S) .

The following identity holds

(2.5.126) Trs

[
D

Fp

t,u exp
(
D

Fp,2
t,u

)]
= Trzs

[
exp

(
D

Fp,2
t,u + zD

Fp

t,u

)]
The proof of (2.4.78) is closely related to the proof of corresponding results in [BeB94,

Theorem 4.13], [Ma99, Theorem 4.9], and [Ma02, Theorem 4.6].
Let a > 0 be the in�mum of the injectivity radius of the �bers X. Let α ∈ ]0, a/4].
Let ρ : R→ [0, 1] be a smooth even function such that

(2.5.127) ρ(x) = 1 for |x| 6 α/2 , ρ(x) = 0 for |x| > α .

For ς > 0 and z ∈ C, set

Fς(z) =

∫ +∞

−∞
exp

(√
2xz
)

exp

(
−x

2

2

)
ρ(
√

2ςx)
dx√
2π

,

Gς(z) =

∫ +∞

−∞
exp

(√
2xz
)

exp

(
−x

2

2

)(
1− ρ(

√
2ςx)

) dx√
2π

.

(2.5.128)
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Then

(2.5.129) Fς(z) +Gς(z) = exp
(
z2
)
.

Moreover, Fς(z) and Gς(z) take real values on iR. As functions of z ∈ iR, they lie in the
Schwartz space S(iR).
The functions Fς(z), Gς(z) are even holomorphic functions. Therefore there exist holo-

morphic functions F̃ς(z), G̃ς(z) such that

Fς(z) = F̃ς(z
2) , Gς(z) = G̃ς(z

2) .(2.5.130)

By (2.5.129), (2.5.130), we deduce that

(2.5.131) F̃ς(z) + G̃ς(z) = exp(z) .

Put

(2.5.132) L
Fp

t,u = D
Fp,2
t,u + zD

Fp

t,u .

By (2.5.131), we get

(2.5.133) F̃ς

(
L

Fp

t,u

)
+ G̃ς

(
L

Fp

t,u

)
= exp

(
L

Fp

t,u

)
.

By (2.5.126), (2.5.132), (2.5.133), we obtain

(2.5.134) Trs

[
D

Fp

t,u exp
(
D

Fp,2
t,u

)]
= Trzs

[
F̃ς

(
L

Fp

t,u

)]
+ Trzs

[
G̃ς

(
L

Fp

t,u

)]
.

Proposition 2.5.11. There exist c, C > 0 such that for t > 1, 0 < u 6 1, we have

(2.5.135)
∣∣∣Trzs

[
G̃u

(
L

Fp

t,u

)]∣∣∣ 6 C exp (−c/u) .

Proof. Due to the relation

(2.5.136)
∂m

∂xm
exp

(√
2xz
)

= 2m/2zm exp
(√

2xz
)
,

we can integrate by parts in the expression of zmGς(z) and obtain that for m ∈ N, there
exists Cm > 0 such that, for z ∈ C with |Re(z)| 6 1, we have

(2.5.137)
∣∣z∣∣m∣∣Gς(z)

∣∣ 6 Cm exp

(
−α

2

8ς

)
.

Set

(2.5.138) U =
{
z ∈ C : 4Re(z) + |Im(z)|2 < 4

}
.

We have

(2.5.139)
√
U :=

{
z ∈ C : z2 ∈ U

}
=
{
z ∈ C : |Re(z)| 6 1

}
.

By (2.5.130), (2.5.137), (2.5.139), for z ∈ U , we have

(2.5.140)
∣∣z∣∣m/2∣∣G̃ς(z)

∣∣ 6 Cm exp

(
−α

2

8ς

)
.

For r ∈ N, let G̃r,ς(z) be the unique holomorphic function satisfying

(2.5.141)
1

r!

dr

dzr
G̃r,ς(z) = G̃ς(z) , lim

z→−∞
G̃r,ς(z) = 0 .
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By (2.5.140), (2.5.141), for m > 2r, there exists Cm,r > 0 such that, for z ∈ U , we have

(2.5.142)
∣∣G̃r,ς(z)

∣∣ 6 Cm,r
∣∣z∣∣r−m/2 exp

(
−α

2

8ς

)
.

We �x r > (dimY + 1)/2.
We have

(2.5.143) G̃u

(
L

Fp

t,u

)
=

1

2πi

∫
∂U

G̃r,u(λ)
(
λ− L

Fp

t,u

)−r−1

dλ .

By (2.5.132), we have

(
λ− L

Fp

t,u

)−1

=
(
λ−D

Fp,2
t,u

)−1

+ zD
Fp

t,u

(
λ−D

Fp,2
t,u

)−2

=
(√

λ−D
Fp

t,u

)−1 (√
λ+ D

Fp

t,u

)−1
(

1 + zD
Fp

t,u

(
λ−D

Fp,2
t,u

)−1
)
.

(2.5.144)

For µ ∈ R and λ ∈ ∂U , we have

(2.5.145)
∣∣∣iµ(λ+ µ2

)−1
∣∣∣ 6 1 .

Thus

(2.5.146)

∥∥∥∥zDFp

t,u

(
λ−D

Fp,2
t,u

)−1
∥∥∥∥
∞
6 1 .

By (2.5.139), for λ ∈ ∂U , we have Re(
√
λ) = ±1. Then the same argument for (2.5.121)

show that there exists C > 0 such that, for t > 1, 0 < u 6 1 and λ ∈ ∂U , we have∥∥∥∥(√λ±D
Fp

t,u

)−1
∥∥∥∥

2r

6 C
1 +

√
|λ|

u
,∥∥∥∥(√λ±D

Fp

t,u

)−1
∥∥∥∥
∞
6 C .

(2.5.147)

Using (2.5.142), (2.5.144), (2.5.146), (2.5.147) to (2.5.143) in the same way as in the proof
of (2.4.77), we complete the proof. �

Let dt,u
(
·, ·
)
be the distance along the �ber Y associated with the metric 2gTRN/t ⊕

gTX/u. Using �nite propagation speed of solutions of hyperbolic equations (cf. [MaMar07,
�D.2]), we get

(2.5.148) F̃u

(
L

Fp

t,u

)
(y, y′) = 0 , for dt,u

(
y, y′

)
> α/

√
u .

Let dX
(
·, ·
)
be the distance on X associated with the metric gTX . Since

(2.5.149) dt,u
(
y, y′

)
> u−1/2dX

(
q(y), q(y′)

)
,

by (2.5.148), we get

(2.5.150) F̃u

(
L

Fp

t,u

)
(y, y′) = 0 , for dX

(
q(y), q(y′)

)
> α .

We will establish the following result, which combined with (2.5.134), (2.5.135) gives
the �rst equation in (2.4.78).
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Theorem 2.5.12. There exists δ ∈
]
0, 1

2

]
such that for t > 1, u ∈ ]0, 1],

(2.5.151)
√

2πiϕTrzs

[
F̃u

(
L

Fp

t,u

)]
= π∗

[
e
(
TX,∇TX

)
αp,t
]

+ O
(
uδ
)
.

Also the convergence in (2.5.151) is uniform for t > 1.

Proof. By (2.5.150), the proof of our theorem is local on the base X. We will proceed as
in [BeB94, �7] and in [Ma99, Theorem 4.9]. More precisely, we may as well replace the
base X by Tx0X.
Given x0 ∈ X, the exponential expx0

identi�es BTx0X
(0, α) and BX(x0, α).

Also, we will use the techniques of the local families index theorem of [B86], [Ma99,
�7], [Ma02, �7] to study the asymptotics of the operator LFp

u,T in the above trivialization.
First we make the change of variables on Tx0X given by Y →

√
uY . We introduce the

connection ∇Λ·(TX),u along the �bres X

∇Λ·(TX),u
· = ∇Λ·(TX)

· +
1

2
√
u

〈
STX(·)fβ, gγ

〉
c(fβ)gγ

+
1

4u

〈
STX(·)gβ, gγ

〉
gβgγ − z

2
√
u
ĉ(·) .

(2.5.152)

We trivialize the vector bundle Ep ⊗ Λ· (T ∗S) ⊗̂Λ· (T ∗X) ⊗̂C[z] along the geodesic s →
expx0

(sY ) using the connections ∇Ep,u and ∇Λ·(TX),u.

Our operator LFp

t,u will now be viewed as acting on

(2.5.153) C∞
(
BTx0X ,Ep ⊗ Λ· (T ∗S) ⊗̂Λ· (T ∗X) ⊗̂C[z]

)
.

Finally, we make the Getzler rescaling, which consists in replacing the Cli�ord variables
c (f) , f ∈ TX by f ∗/

√
u−
√
uif . As usual, the operators f ∗∧, if now act on a di�erent

copy of the exterior algebra Λ· (T ∗X). We denote by L
Fp

t,u,x0
the operator LFp

t,u in the above
trivialization.
Given t > 0, set

L
Fp

t,0,x0
=
(√

tDFp
v,x0

+
1

2
ωEp
x0

)2

+ z
(√

tDFp
v,x0

+
1

2
ωEp
x0

)
+
(
∂α +

1

4

〈
RTX
x0
Y, fα

〉 )2

− 1

4

〈
fγ, R

TX
x0
fδ
〉
ĉ(fγ)ĉ(fδ) .

(2.5.154)

Using the same arguments as in [Ma99, (7.23)], [Ma02, (7.21)], from (2.5.73), we deduce
that as u→ 0,

(2.5.155) L
Fp

t,u,x0
= L

Fp

t,0,x0
+ O

(√
u
)
.

The convergence above is a uniform convergence over compact sets of the coe�cients of
the considered di�erential operators on compact subsets together with their derivatives
of arbitrary order. Note that the coe�cients of the operator O (

√
u) are in general

unbounded.
To establish (2.5.151), we will brie�y show how to replace the �bration π : M → S by

a �bration by vector spaces. Let U be a small open set in S and let s0 ∈ U be such that
π−1U ' U ×Xs0 . Let x0 ∈ Xs0 . Then U ×{x0} is a section of M over U . Using geodesic
coordinates along the �bers X based at the section x0, we have identi�ed a neighborhood
V of U ×{x0} in M with a neighbourhood of the zero section in U ×Tx0X. Let gTx0X be
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the given metric on Tx0X. The �bres of V are now equipped with two distinct metrics:
one induced by the given metric gTX , and the other by the constant metric gTx0X . Set

(2.5.156) g̃TX = ρ (|Y | /2) gTX + (1− ρ (|Y | /2)) gTx0X .

In the same way, we can extend THM on a neighbourhood of the zero section of S×Tx0X
to a full horizontal vector bundle on S × Tx0X which will just TS for |Y | > α. Similarly,
the �at �bration q : N →M induces a corresponding �at �bration over U × Tx0X.

This way, we can construct an operator L
Fp

t,u over U × Tx0X which coincides with L
Fp

t,u

for |Y | 6 α. Because of this, if y ∈ N , q(y) = x0, we have the identity

(2.5.157) F̃u

(
L

Fp

t,u

)
(y, y) = F̃u

(
L

Fp

t,u

)
(y, y) .

The advantage of dealing with L
Fp

t,u is that the dilation Y →
√
uY can now be made on

the full vector space Tx0X.
We can now proceed exactly as in [BL91, �13] and in [BeB94, �9 d)�9 g)] to establish

(2.5.151) at least when t > 1 remains bounded.
We will now show how to obtain uniformity in (2.5.151) for t > 1. We will follow closely

the arguments in [BeB94, �9(b), 9(c)], which are inspired from [BL91, �13]. Recall that Pp
denotes the orthogonal projection from Ep on Hp. We still denote by Pp the corresponding
projection from Fp on Hp. As in �2.5.1, we will write the operator LFp

t,u as a (2, 2) matrix
with respect to the splitting Fp = Hp⊕H ⊥

p . With respect to this splitting, given u > 0,

as t→ +∞, LFp

t,u as the preferred matrix structure

(2.5.158) L
Fp

t,u =

[
O (1) O

(√
t
)

O
(√

t
)

O (t)

]
.

Given u > 0, we can proceed exactly as in [BeB94, �9] to give another proof of Theorem
2.4.9.
We will now show how to use the above techniques to obtain the required uniformity

in (2.5.151). The di�culty is to combine the local index theoretic techniques over X
that were described above with the splitting Ep = Hp ⊕ H⊥p . Let ∇Ep,u,s denote the
connection on Ep which is the orthogonal projection of ∇Ep,u with respect to the splitting
Ep = Hp ⊕ H⊥p . In the constructions that were given at the beginning of our proof, we
will instead trivialize Ep by parallel transport with respect to the connection ∇Ep,u,s. We
make exactly the same Getzler rescalings as before, while keeping track of the splitting of
Ex0 . The situation is indeed exactly the same as in [BeB94, �9]. Using the above splitting
ultimately guarantees that the resolvent of LFp

t,u,x0
can be uniformly controlled for t > 1

as u→ 0.
This completes the proof of our theorem. �

Proof of (2.4.78). The �rst equation in (2.4.78) follows from (2.5.134), (2.5.135), (2.5.151).
The second equation in (2.4.78) follows from the �rst one by the same transgression

technique as Proposition 2.3.6. �
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analytique d'un résultat décrivant le comportement de
la torsion analytique en théorie de de Rham lorsque
la variété considérée est séparée en deux par une hy-
persurface. Plus précisément, nous donnons une for-
mule liant la torsion analytique de la variété entière
aux torsions analytiques associées aux variétés à bord
avec des conditions limites relative ou absolue le long
de l'hypersurface.

Dans la deuxième partie de cette thèse, nous raf-
�nons les résultats de Bismut-Lott pour les images
directes des �brés vectoriels plats au cas où le �bré
vectoriel plat en question est lui-même la cohomologie
holomorphe d'un �bré vectoriel le long d'une �bra-
tion plate à �bres complexes. Dans ce contexte, nous
donnons une formule de Riemann-Roch-Grothendieck
dans laquelle la classe de Todd du �bré tangent relatif
apparaît explicitement. En remplaçant les classes de
cohomologie par des formes explicites qui les représen-
tent en théorie de Chern-Weil, nous généralisons ainsi
des constructions de Bismut-Lott.
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part is an article written jointly with Martin Puchol
and Jialin Zhu, the second part is a series of results
obtained by myself in connection with the Riemann-
Roch-Grothendieck theorem for �at vector bundles.
In the �rst part, we give an analytic approach to the

behavior of classical Ray-Singer analytic torsion in de
Rham theory when a manifold is separated along a
hypersurface. More precisely, we give a formula relat-
ing the analytic torsion of the full manifold, and the
analytic torsion associated with relative or absolute
boundary conditions along the hypersurface.

In the second part of this thesis, we re�ne the results
of Bismut-Lott on direct images of �at vector bundles
to the case where the considered �at vector bundle is
itself the �berwise holomorphic cohomology of a vec-
tor bundle along a �at �bration by complex manifolds.
In this context, we give a formula of Riemann-Roch-
Grothendieck in which the Todd class of the relative
holomorphic tangent bundle appears explicitly. By
replacing cohomology classes by explicit di�erential
forms in Chern-Weil theory, we extend the construc-
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