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Résumé

Cette thése est faite de deux parties. La premiére partie est un article rédigé conjoin-
tement avec Martin Puchol et Jialin Zhu. La deuxiéme partie est une série de résultats
obtenus par moi-méme liés au théoréme de Riemann-Roch-Grothendieck pour les fibrés
vectoriels plats.

Nous spécifions les contenus des deux parties. Dans la premiére partie, nous donnons
une preuve analytique d’un résultat décrivant le comportement de la torsion analytique
en théorie de de Rham lorsque la variété considérée est séparée en deux par une hyper-
surface. Plus précisément, nous donnons une formule liant la torsion analytique de la
variété entiére aux torsions analytiques associées aux variétés a bord avec des conditions
limites relative ou absolue le long de I’hypersurface. Ce résultat peut étre vu comme
une conséquence du théoréme de Cheeger-Miiller liant la torsion analytique et la torsion
combinatoire. Toutefois, le but de notre résultat est d’en avoir une preuve directe en
introduisant un cylindre transverse a 'hypersurface dont la longueur tend vers l'infini.
La matrice de diffusion introduite par Miiller dans ce contexte géométrique joue un role
important dans la preuve du résultat final.

Dans la deuxiéme partie de cette thése, nous raffinons les résultats de Bismut-Lott
pour les images directes des fibrés vectoriels plats au cas ot le fibré vectoriel plat en ques-
tion est lui-méme la cohomologie holomorphe d’un fibré vectoriel le long d’une fibration
plate & fibres complexes. Dans ce contexte, nous donnons une formule de Riemann-
Roch-Grothendieck dans laquelle la classe de Todd du fibré tangent relatif apparait
explicitement. En remplacant les classes de cohomologie par des formes explicites qui
les représentent en théorie de Chern-Weil, nous généralisons ainsi des constructions de
Bismut-Lott. Plus précisément, si X est une variété réelle compacte, et si p : NV — X
est une fibration plate sur X dont le fibre N est une variété complexes compacte, nous
discutions des propriétés du bicomplexe de différentielle dyx + dn, et nous construisons
les formes de torsion analytique associées. Nous démontrons également des propriétés
fonctorielles de ces formes.



Abstract

This thesis consists of two parts. The first part is an article written jointly with
Martin Puchol and Jialin Zhu, the second part is a series of results obtained by myself in
connection with the Riemann-Roch-Grothendieck theorem for flat vector bundles.

Let us be more specific on the content of these two parts. In the first part, we give an
analytic approach to the behavior of classical Ray-Singer analytic torsion in de Rham the-
ory when a manifold is separated along a hypersurface. More precisely, we give a formula
relating the analytic torsion of the full manifold, and the analytic torsion associated with
relative or absolute boundary conditions along the hypersurface. This result can also be
viewed as a consequence of the Cheeger-Miiller theorem that relates analytic torsion to
combinatorial torsion. However, the point of our proof is to obtain a direct proof of this
result, by introducing a cylinder transversal to the hypersurface whose length is made to
tend to +o00. The scattering matrix introduced by Miiller in this geometric context plays
an important role in establishing the final result.

In the second part of this thesis, we refine the results of Bismut-Lott on direct images
of flat vector bundles to the case where the considered flat vector bundle is itself the
fiberwise holomorphic cohomology of a vector bundle along a flat fibration by complex
manifolds. In this context, we give a formula of Riemann-Roch-Grothendieck in which the
Todd class of the relative holomorphic tangent bundle appears explicitly. By replacing
cohomology classes by explicit differential forms in Chern-Weil theory, we extend the
constructions of Bismut-Lott in this context. More precisely, if X is a compact real
manifold, and if p : NN — X is a flat fibration over X whose fiber N is a compact
complex manifold, we discuss the properties of the bicomplex with chain map dx + Jx.
In this context, we construct explicit analytic torsion forms which transgress the equality
of cohomology classes at the level of differential forms, and we establish corresponding
functorial properties of these new analytic torsion forms.



LIMITES ADIABATIQUES, FIBRATIONS HOLOMORPHES PLATES

ET THEOREME DE R.R.G.

CONTENTS
1. Scattering matrix and analytic torsion
1.0. Introduction
1.1.  Cohomologies for manifolds with boundary
1.2. Hodge-de Rham operators on manifolds with cylindrical ends
1.3.  Asymptotic properties of the spectrum
1.4.  Asymptotic properties of the spectrum : boundary case
1.5.  Asymptotics of the (weighted) zeta determinants
1.6. Asymptotics of the L2-metrics on Mayer-Vietoris exact sequence
1.7.  Gluing formula for the analytic torsion
1.8.  Appendix : Matrix valued holomorphic functions
2. Riemann-Roch-Grothendieck and flat complex fibrations
2.0.  Introduction
2.1.  Preliminaries
2.2. The Chern-Weil theory of a flat fibration
2.3. A Riemann-Roch-Grothendieck formula
2.4. The analytic torsion forms of a bicomplex
2.5. Proofs of Theorem 2.4.8 and Theorem 2.4.9
References

Index

10
16
31
35
42
23
26
29
29
65
71
79
96
108
128
131






LIMITES ADIABATIQUES ET FIBRATIONS HOLOMORPHES PLATES 1

1. SCATTERING MATRIX AND ANALYTIC TORSION

1.0. Introduction.

By a non-compact Riemannian manifold with cylindrical ends, we mean a Riemannian
manifold having an open subset isometric to an infinite cylinder such that the complement
is compact. Such a manifold could be associated with a scattering matrix, which encodes
how an incoming wave on the cylinder is scattered by the compact part. In [M94], Miiller
studied the n-invariants of non-compact Riemannian manifolds with cylindrical ends using
the scattering matrix.

Now we consider a compact Riemannian manifold containing an open subset isometric
to a finite cylinder. We deform the metric in such a way that the length of the cylinder
tends to infinity. This process is referred to as taking the adiabatic limit (see [BC89, BF'86]
for another kind of adiabatic limit). It first appeared in Douglas-Wojciechowski’s work
[DW91]| on n-invariants. Cappell-Lee-Miller [CLM96| studied the asymptotic behavior of
Laplacians under the adiabatic limit. They showed that an eigenvalue of the Laplacian
either tends to zero (small eigenvalue) or remains uniformly away from zero (large eigen-
value). Park-Wojciechowski [PWO06] showed that the asymptotic behavior of certain small
eigenvalues is determined by the scattering matrices obtained as follows : the manifold in
question converges to the disjoint union of two non-compact Riemannian manifolds with
cylindrical ends, each of which gives us a scattering matrix.

In this paper, we concentrate on the asymptotic behavior of Hodge-de Rham operators,
a special kind of Dirac operator, under the adiabatic limit. The scattering matrix plays
a key role in our research.

One of our main results is an asymptotic estimate of the spectrum of Hodge-de Rham
operator under the adiabatic limit. As a consequence, we get an asymptotic gluing
formula for the (-determinant of the Hodge-Laplacian (square of the Hodge-de Rham
operator).

Another main result is an asymptotic estimate of the L?-metric on the de Rham coho-
mology group in the adiabatic limit. As a consequence, we get the adiabatic limit of the
torsion associated with the Mayer-Vietoris exact sequence.

Applying the results mentioned above, we obtain an analytic proof of the gluing formula
for analytic torsion.

Let us explain the analytic torsion in more detail. For a flat complex vector bun-
dle F' equipped with a Hermitian metric over a compact Riemannian manifold Z, its
Ray-Singer analytic torsion [RS71| is a (weighted) product of the determinants of the
Hodge-Laplacian twisted by F. The Ray-Singer metric on det H*(Z, F') is the product
of its L2-metric and the Ray-Singer analytic torsion. The Ray-Singer metric has a topo-
logical counterpart, known as the Reidemeister metric [Rei35]. Ray and Singer [RST1]
conjectured that the two metrics coincide. For unitarily flat vector bundles, this con-
jecture was proved independently by Cheeger [Che79] and Miiller [M78]. Bismut-Zhang
|BZ92| and Miiller [M93] simultaneously considered generalizations of this result. Miiller
[M93| extended this result to the case where the dimension of the manifold is odd and
only the metric induced on det F' is required to be flat. Bismut-Zhang [BZ92| generalized
this result to arbitrary flat vector bundles with arbitrary Hermitian metrics. There are
also various extensions to the equivariant case [LoR91, Liic93, BZ94].

Assume that there is a hypersurface Y C Z cutting Z into two submanifolds 7, Zs C
Z, it is natural to expect an additive formula linking the analytic torsions associated
with Z;, Zy and Z. This problem was first formulated by Ray-Singer [RS71] as a possible
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approach to Ray-Singer conjecture. It was proved for unitarily flat vector bundles with
product structure metrics near Y by Liick [Liic93|, Vishik [V95], and proved in full
generality by Briining-Ma [BM13]. There are also related works of [H98] and [L13].

The family version of the analytic torsion was constructed by Bismut-Lott [BL95]
(BL-torsion). Under the hypothesis that there exists a fiberwise Morse function, Bismut-
Goette |[BGol| obtained a family version of the Bismut-Zhang theorem, i.e., a formula
linking BIL-torsion to higher Reidemeister torsion ([102, DWWO03, BDKW11], see also
[Goe09] for a survey). It is conjectured (conference on the higher torsion invariants,
Gottingen, September 2003) that there should exist a gluing formula for BL-torsion.
This conjecture may serve as an intermediate step in establishing the relation between
the BL-torsion and the higher Reidemeister torsion in full generality, conjectured by
Igusa [108]. Zhu [Zhul5] established the desired formula under the same hypothesis as
Bismut-Goette’s [BGol|.

Our proof of the gluing formula is analytic. It could be generalized for BL-torsion. Our
strategy was applied by Zhu |[Zhu| to prove the gluing formula for BL-torsion under the
hypothesis H*(Y, F') = 0. We remark that H*(Y, F') = 0 implies the absence of s-values
(cf. §1.0.2) and the splitting of the Mayer-Vietoris exact sequence.

Let us now give more detail about the matter of this paper.

1.0.1. Manifolds with cylindrical ends and scattering matrices.

Let X be a compact manifold with boundary 0X =Y. We fix U =] —1,0] x Y a collar
neighborhood of 0X. Let my :] — 1,0] x Y — Y be the natural projection. Let F' be
a flat complex vector bundle over X with flat connection V. Using parallel transport
along u €] — 1,0], (F|y, VF|p) is identified with 7% (F|y, VE|y) (cf. (1.2.7)).

We equip X with a Riemannian metric ¢’* and F' with a Hermitian metric h¥". Let
g™ be the metric on Y induced by g*. We suppose that (cf. [BM13, (2.1) and (2.3)])

(1.0.1) gTX‘U:dlﬂ—l—gTY , hF|U:7r;§ (hF’Y) :

For 0 < R<oo,set Xp=XUy[0,R]xY. Wecall U :=UUI0,R| xY =] -1, R xY
the cylindrical part of Xg. Let my ;] — 1, R] Xx Y — Y be the natural projection. Then
F extends to Xy in the natural way : (F), VF)‘UR =y (F|,, VF’Y). We extend equally
g™* and h' to Xy in such a way that (1.0.1) holds with U replaced by Ug.

Let Q°(Xg, F') be the vector space of differential forms on Xy with values in F. Let
df : Q*(Xp, F) = Q*F1(Xg, F) be the de Rham operator induced by V¥, let d* be its
formal adjoint (with respect to L2-metric). The Hodge-de Rham operator is defined by

(1.0.2) D%, =d" +d"*.

Its square Df;i is the Hodge-Laplacian.

For R = oo, the spectrum of Df(i has an absolutely continuous part (cf. [RS80, §7.2]).

Let 27°(Y,F) C Q°*(Y,F) be the kernel of DI the Hodge-de Rham operator on
Q(Y,F). Set (Y, Fldu]) = 5°(Y,F) & A°(Y,F)du. We fix dy > 0 such that
] — 0y, dy[NSp(DE) C {0}. The scattering matrix (cf. [K65, Theorem 1], [M94, §4])

(1.0.3) C(\) € End(s2°(Y, Fldu])) , A €]—0dy,dv[,

is characterized by the following property : for w a generalized eigensection (cf. §1.2.3)
of DX_ with eigenvalue X €] — 8y, dy |, there exist ¢ € #*(Y, F[du]) and

(1.0.4) 6 € €([0,00[, (Y, Fldu)))
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which is L*integrable, such that (cf. (1.2.31))

(1.0.5) W, =e Mo+ MO+ 6.
1.0.2. Asymptotics of the spectrum of Hodge-Laplacian.

Let (Z,97%) be a closed Riemannian manifold. Let Y C Z be a hypersurface cutting
Z into two pieces, say Z; and Zy. Then 07, = 07, =Y and Z = Z, Uy Z,. Let (F,VT)
be a flat complex vector bundle over Z. Its restriction to Z; or Z, is still denoted by F'.
Let A% be a Hermitian metric on F. We suppose that ¢4 and h'" have product structure
near Y, in the sense of (1.0.1).

Proceeding in the same way as §1.0.1, we construct the Riemannian manifold Z;
(j = 1,2), which is Z; with a cylinder of length R attached. For R € [0, 00[, set Zr =
Z1r Uy Zo g. Then (F, V¥, h") extends to Zg in the sense of (1.0.1) and (1.2.7) .

ZLR aZl,R = T = aZZ,R Z27R
S~ s
Zl Z2
ZR
FIGURE 1

In the whole paper, we will always put the relative boundary condition on
Z1,r and put the absolute boundary condition on Z,z (cf. (1.1.5)). Let D be
the Hodge-de Rham operator (cf. (1.0.2)) acting on Q°*(Zg, F'). We define equally DZR
(7 = 1,2), the Hodge-de Rham operator acting on Qf 4(Z; g, F') (cf. (1.1.5)).

The eigenvalues of D§R are classified by Cappell-Lee-Miller [CLM96, Theorem A| ac-
cording to their asymptotic behaviors as R — oo :

- large eigenvalue (l-value), which remains uniformly away from 0;

- polynomially small eigenvalue (s-value), which tends to zero with speed slower
than R=17¢ for any € > 0;

- exponentially small eigenvalue (e-value), which lies in [—e % e
c>0.

Moreover, there are only finitely many exponentially small eigenvalues. Park-Wojciechowski
[PW06, Theorem 3.5] gave an estimate of the the s-values lying in [-R™°, R™¢] in term of
the scattering matrix. They also showed that the e-values are identically zero if VERT = 0
[PW06, Proposition 3.9].

In this paper, we show that (see Theorem 1.3.18) : for a Hodge-de Rham operator,
there exists § > 0, such that the estimate (1.3.142) holds for s-values lying in [—§, d],
furthermore, all the e-values are identically zero. We also extend our results to manifolds
with boundaries equipped with relative /absolute boundary condition (see Theorem 1.4.7).
As a consequence, we get an asymptotic gluing formula for the (-determinants under the
adiabatic limit, stated in the sequel.

~<R] for certain
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Let N be the number operator on Q°*(Zg, F'), i.e., for w € QP(Zg, F), Nw = pw. Let
P :Q%Zgr, F) — ker (ng) be the orthogonal project with respect to the L2-metric.

The (-function associated with D?RQ is defined, for s € {(C : Re(s) > 5 dim Z}, by

(1.0.6) Cr(s) = —Tr [(—I)NN (ng)*s (1- P)] .

Then (r admits a meromorphic extension to the whole complex plane C, which is regular

at 0 € C. Tet Ch(s) be (1.0.6) with D7 replaced by D% == D72|, /. Then
dim Z

(1.0.7) exp (C&'(0)) = [ (exp (¢R(0)))"
p=1

i.e., it is a weighted product of the (-determinants of Dg;f’(p). We call exp (Cg'(0)) the
(weighted) (-determinant of D;}f In the same way, we define (; g(s), the (-function
associated with D§J2R

Let C;(\) € End(2*(Y, Fldu])) (j = 1,2, X € R) be the scattering matrix associated
with Q*(Z; o, F). For p=0,--- ,dim Z, we denote

(1.0.8) Cio = (Cy'Cy) (0), Oy = 012|W(Y7F)Mp_1 VP
Set
dim Z
X' (Cr2) = Z p(—1)? dimker (C7, — 1) ,
p=0
dim Z

=3 p<—1)p{ dim H?(Z, F)

(1.0.9)
— dim H?4(Zy, F) — dim HE y(Zs, F)} ,
dimY
(Y, F) = 3 (<17 dim HP(Y, F)
p=0

where Hpy(+, F') is defined by (1.0.24).
For a Hermitian matrix A, we denote by det*(A) be the product of its non zero eigen-
values.

Theorem 1.0.1. For any € > 0, as R — 400, we have

Cr'(0) — (1,8 (0) — G2,7'(0)
= 2y'log R + (X(Y, F)+ X,(Clg)) log 2
(1.0.10) amz 2 Cn(Cn)
P w2~ Lig— (Uyg —1te
+ ;0 £(=1)"log det ( . >+ﬁ(R +e

We remark that the asymptotic gluing formulas for the (-determinants in different
contexts were studied by Miiller-Miiller [MMO06] and Park-Wojciechowski [PW06].
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1.0.3. Analytic torsion and Mayer-Vietoris exact sequence.

For a complex line A, let A% = \* be its dual. For F a finite dimensional complex
vector space, its determinant line is defined by det £ = A™**E. More generally, for a
Z-graded finite dimensional vector space E* = @) _, E*, we define

n

(1.0.11) det E* = ) (det B5) "
k=0
For
(1.0.12) (Ve,0): 0V V... 5 V" =0

an exact sequence of finite dimensional complex vector spaces, there is a canonical section
o € detV* : let m; = dimim (8"”), we choose (s;)1<k<m, in V7 such that they project
to a basis of V7/9VI~!, then with Ags;j := sj1 A+ A 8jm,, We define

n _1j

-1)
(1.0.13) 0= @ ((Aedsj1) A (Mksie)) € detV®.

=0

Let ¢ be a Hermitian metric on V*. Let 0* be the adjoint of 8. Then (9 + 9%)? =
0* + 0*0 preserves each V7. The torsion (cf. [BGS88a, Definition 1.4]) associated with
(V*,0) is defined by
(1.0.14) F(v*,0) = [ [det (0 +0)?[,,)] """ e R, .

J

Let || - ||qet ve be the metric on det V* induced by ¢"°. We have (cf. [BGS88a, Proposition
1.5])
(1.0.15) T (V*,0) = |lollaet ve -

We recall that Zy g, Zy g, Zr and I are defined in §1.0.2. We consider the following
Mayer-Vietoris exact sequence
(1.0.16) o> H y(Zy g, F) = HY(Zg, F) — HYy(Zog, F) — -+,
which is equipped with L2-metrics. We denote by Z5 its torsion.

Theorem 1.0.2. As R — oo, we have
dim Z 9 _ Cp
(1.0.17) T = 2R T det*( 12

p=0

— P y~—1 %(_1)17 ’
1 (Clz) ) 4 ﬁ(Rx —1) )

Viewing the Mayer-Vietoris exact sequence (1.0.16) with R = 0 as an acyclic complex
and applying (1.0.13), we get the canonical section

(1.0.18) o€ NF) = (det H*(Z, F)) © det He y(Z1, F) @ det Hey(Zs, F) .

We use the conventions that Zy = Z and Hpy(Zy, F) = H*(Z,F). Let (;(s) (j =
0,1,2) be the (-functions (cf. (1.0.6)) associated with the Hodge-Laplacian DZ_Q. Let
| - HdetH. () De the L?-metric on det Hy4(Z;, F).

The Ray Smger metric on det Hpy(Z;, F) (j = 0,1,2) is defined by

1
(10.19) 1 0 = 1 Wm0 (3600
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Let || - ||§\{(SF) be the product norm on A(F') induced by || - ||§eStH];d(Z7'7F)' The following
theorem is first proved by Briining-Ma [BM13, Theorem 0.3].

Theorem 1.0.3. If g7 and h* have product structures near Y (cf. (1.0.1)), then

(1.0.20) lollGr) = 272X
Let 7 = . Then (1.0.20) can be reformulated as follows.
1 1 1 1
(1.0.21) 5{"(0) - 5('1’(0) — §C2/(O) —log T = §X(Y’ F)log?2.

In this paper, we give a direct proof of (1.0.21) : by Theorem 1.0.1, 1.0.2, we know that
tr = 5CR(0) = 5¢i z(0) — 3¢ £(0) —log T tends to 3 x (Y, F)log 2 as R — oo, meanwhile,
using the anomaly formula for the analytic torsion [BZ92, Theorem 0.1], we know that
tr is independent of R. This proves (1.0.21).

This paper is organized as follows. In §1.1, we review some results concerning the
absolute /relative cohomology of manifolds with boundaries and the Mayer-Vietoris exact
sequence. In §1.2, we review some results concerning the spectrum of the Hodge-Laplacian
on a manifold with cylindrical ends and introduce the scattering matrix. In §1.3, we study
the spectrum of the Hodge-Laplacian on the stretched manifold Zg, and link it to the
scattering theory. In §1.4, we prove similar results for manifolds with boundary. In §1.5,
we prove Theorem 1.0.1. In §1.6, we prove Theorem 1.0.2. In §1.7, we give our new proof
of Theorem 1.0.3.

1.0.4. Notations.

Hereby, we summarize some frequently used notations in this paper.

A manifold (with or without boundary) is usually denoted by X, Y or Z. We denote
by ¢7* a Riemannian metric on X. We always consider a manifold equipped with a flat
complex vector bundle F, a flat connection V¥ and a Hermitian metric hf.

By Q°*(X, F'), we mean the vector space of differential forms on X with values in F.
We denote by Q2 (X, F') the subspace of differential forms that are compactly supported.

By || |lx, we mean the L?-metric on Q°*(X, F'). More precisely, let (-,-)pe(rx)or be
the scalar product on A*(7T*X) ® F induced by g7 and k. Let dvx be the Riemannian
volume form on X, then, for w € Q°*(X, F'), we have

(1.0.22) wll% = / (Was We) po (7 x)@rdvx () -
X

The scalar product associated with || - || x is denoted by (-,-)x. By || - |0 x, we mean the
% -norm on Q°*(X, F). More precisely,

(1.0.23) w20 = sup {(wx,wx>A.(T*X)®F Lz € X} .

By d¥', we mean the de Rham operator acting on Q°*(X, F') induced by V. By d**, we
mean the formal adjoint of d. The Hodge-de Rham operator is defined by D§ = d* +d**.
We denote

(1.0.24) He, (X,F) = H*(X,0X,F) .

We write Hp4(X, F) for short if the choice of abs/rel is clear.

By the L%metric on Hpy(X, F), we mean the metric induced by |- ||x via Hodge
theorem (cf. Theorem 1.1.1).

If Ais a self-adjoint operator, we denote by Sp(A) its spectrum.

(X,F)=H*(X,F), H

rel
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For a Hermitian matrix A, we note

(1.0.25) det*(A)= ] X
AESP(A)\{0}
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1.1. Cohomologies for manifolds with boundary.

In this section, we review some basic constructions/results concerning the cohomology
of a compact manifold with boundary.

In §1.1.1, using the language of simplical complex, we define the absolute/relative
cohomology of a compact manifold with boundary with values in a flat vector bundle.
In §1.1.2, we state the Hodge theorem for the absolute/relative cohomology. In §1.1.3,
we state the classical Mayer-Vietoris exact sequence in the language of the simplicial
cohomology together with its interpretation in the language of the de Rham cohomology
and the Hodge theory.

1.1.1. Absolute/Relative cohomology.

Let X be a compact € *°-manifold with boundary 0X = Y. Let FF — X be a flat
complex vector bundle equipped with a flat connection V. Let F* be the dual vector
bundle of F'.

Let Kx be a smooth triangulation of X, such that Ky = Kx NY gives a triangulation
of Y. For 0 < p < dim X, let K% C Kx be the set of cells in Kx of dimension < p.
Let B be the set of barycenters of the simplexes in Kx. Let b: Kx — B be the obvious
one-to-one map. If a € Kx, let [a] be the real line generated by a. Let (Co(Kx, F*),0)
be the complex of simplical chains in Kx with values in F*. We have

(1.1.1) Co(Kx, F )= P ol Fy -
ac KR \KY !

The chain map 0 maps C,,(Kx, F™*) to Cp—1(Kx, F*). Then (Co(Ky, F*),0) is a subcom-
plex of (Co(Kx, F*),0). We define the quotient complex

(1.1.2) Ou(Kx /Ky, F*) = Cy(Kx, F*)/Cy(Ky, F*) .

For a € Kx, let [a]* be the real line dual to [a]. Let (C*(Kx, F'),0) be the complex dual
to (Co(Kx, F*),0), more precisely,

(1.1.3) CP(Ex,F)= @ [0 ®= Fyw ~ (Cp(Kx, )",
ac KR \K% !

and 0 is dual to . Let CP(Kx /Ky, F) be the maximal subset of C?(Kx, F), whose pair-
ing with C,,(Ky, F*) is zero. Then (C*(Kx /Ky, F),0) is a sub complex of (C*(Kx, F'), 0).
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We define

H*(X,F) = H* (C‘(KX, F),5) :
(1.1.4) ~
H*(X,0X,F) = H* (C‘(KX/Ky, F), a) .

1.1.2. Hodge Theorem.

Let g% be a Riemannian metric on X. Let h¥ be a Hermitian metric on F. We
identify a neighborhood of 90X to | — 1,0] x Y. Let (u,y) (u €] — 1,0}, y € Y) be its
coordinates. We suppose that (1.0.1) holds.

We equip 0X with the absolute/relative boundary condition :

Q.

abs

(X, F) = {w €eQX,F) :iow=0o0n Y} ,
(1.1.5) o
Q.

rel

(X, F) = {wéQ’(X,F) . duAw=0on Y}.

We write Qp 4(X, F) for short if the choice of abs/rel is clear.
Let d©* be the formal adjoint of the de Rham operator d¥ with respect to the L2-metric
(,)x (cf. §1.0.4). The Hodge-de Rham operator acting on Qf 4(X, F') is defined by

(1.1.6) D% =df +ad".
Set
ws.p2 (X, F) = {w EV(X,F) :iow=0,i0d"w=0o0n Y} ,

ou ou

(1.1.7)
v p2 (X, F) = {w cQX,F) : duhw=0, duhd™w=0on Y} .

We write Q3 4 52 (X, F) for short if the choice of abs/rel is clear.
Let DY? act on Qpa.p2 (X, F).
Let Q9.(X, F') be the completion of Q°*(X, F') with respect to (-,-)x.
We define the de Rham map P : Q*(X, F) — C*(Kx, F) by

(1.1.8) Po(0)(ja] @ v) = /(a,v) ,

where a € Kx, v € Fy,), 0 € Q(Z, F).
The following Hodge theorem is proved in [RS71, Prposition 4.2, Corollary 5.7| in the

case VIhT = 0. The fact that the same proof works in the general case is noticed in
[BM13, Theorem 1.1].

Theorem 1.1.1. We have
(1.1.9) ker (D¥?) = ker (D¥) = ker (d") Nker (") N Qpq(X, F) .

The vector space ker (Df() s finite dimensional.
The following orthogonal decompositions hold,

O (X, F) =ker (DY) @ d" Q0o (X, F) @ d™ Q00 (X, F)

(1.1.10)
O, (X, F) = ker (DY) @ d" Q)30 (X, F) @ dF+Qp L e (X, F)

where - denotes the L?-closure.
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For the absolute (resp. relative) boundary condition, the inclusion ker (Df() — ker (dF)ﬂ

O 4(X, F) composed with the de Rham map P, maps into the vector space of cocycles in
C*(Kx,F) (resp. C*(Kx /Ky, F)). We obtain an isomorphism

(1.1.11) Py tker (DY?) — Hyg(X, F) .
We define

ker (d) N 4(X, F
(1.1.12) H? (O 4(X, F),d") = e{f )N F)
A Qg (X, F) N Q4 (X, F)

By Theorem 1.1.1, P, induces the following isomorphisms
H? (Q0,(X, F),d") ~ HY (X, F),

abs
H? (e (X, F),d") ~ HE (X, F) .

rel

(1.1.13)

1.1.3. Mayer-Vietoris exact sequence.

Let Z be a closed ¥*°-manifold. Let i : Y < Z be a compact hypersurface cutting 7
into two pieces, denoted by Z; and Zy. Then Z = Z; Uy Z5. Let F' — Z be a complex
vector bundle equipped with a flat connection V. We equip 07, (resp. 0Z) with
relative (resp. absolute) boundary condition. All the notations and results developed in
the previous subsections can be applied to (Z1, Flz,,VF|z) and (Zs, F|z,, V| z,).

Let Kz, , Kz, be smooth triangulations of Z;, Z5. Let Ky be a smooth triangulation of
Y, such that Ky = Kz, NY = Kz, NY. Set

(1.1.14) Ky = (Kz\Ky) U (Kz\Ky) UKy

which is a smooth triangulation of Z.
We have the following short exact sequence,
(1.1.15)

0—> (C*(Ky /Ky, F),0) —= (C*(Kz, F),0) —> (C*(Kz,, F),0) —=0 .

It induces a long exact sequence
Qp ﬁp 51’
(1.1.16) oo — HY (21, F) — HY(Z,F) — H{ ((Z5, F) — - - - .

If we equip Z with a Riemannian metric g7# and F with a Hermitian metric h¥". By
(1.1.13) and (1.1.16), we get a long exact sequence
(1.1.17)
Bp s

= HP (Q;)d<Zl7F)vdF) iﬂp (Q.(Z’ F)7dF) — H” (Qﬁd(Z%F%dF) —

Proposition 1.1.2. The maps oy, B, and 6, in (1.1.17) are as follows.
[

- Let [o] € H? (N 4(Z1, F),d"). There exists o € [o] which vanishes on a neighbor-
hood of Y. Extending o' by zero, we get " € QP(Z, F'). We have a,([o]) = [0”].

- Let [0] € HP (Q°(Z,F),d"). There exists o' € [o] such that 0" := a"ZQ €
MW a(Zs, F). We have B,([o]) = [0"].

- Let [0] € H? (O3 4(Zo, F),d"). There ezists o' € Q*(Z, F) such that J’|22 € [o].
Set 0" = d¥o’ We have 6,([o]) = [0"].

X
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Let D be the Hodge-de Rham operator on Q°(Z, F). Let D} (j = 1,2) be the
Hodge-de Rham operator on 0} 4(Z;, F'). Set

(1.1.18) HZ,F)=ker Dy,  Hy(Z;, F) =kerDy , forj=12.
Applying Theorem 1.1.1, (1.1.16) induces the following long exact sequence,

ap » 5p
(1.1.19) (2, F) e (2, F) e A7 (2, F) s

We recall that (-, ). is defined in §1.0.4.
The following proposition is a consequence of Theorem 1.1.1 and Proposition 1.1.2.

Proposition 1.1.3. For w € J45(Z1, F) and p € HP(Z, F), we have

(1.1.20) (ap(w),p), = <w,u>zl :
Forw e A#P(Z,F) and p € 565 2Zs, F), we have

(1.1.21) (Bow) 1), = (wip) . -
For w € A7y, F) and p € S5 (Z1 g, F), we have
(1.1.22) <(5p(w),u>zl = <w,z‘%u>y :

1.2. Hodge-de Rham operators on manifolds with cylindrical ends.

Let Z, be a Riemannian manifold with cylindrical ends, i.e., there exist a closed
Riemannian manifold Y and an isometric inclusion R, xY C Z, such that ZOO\(R+X Y)
is compact. In this section, we review some properties of the Hodge Laplacian on Z..

In §1.2.1, we consider the Hodge-de Rham operator acting on a closed manifold together
with an additional odd Grassmannian variable du. In later subsections, u will serve as the
coordinate on R, . In §1.2.2, we study the eigensections of the Hodge-de Rham operator
acting on [ X Y, where [ is a bounded open interval. In §1.2.3, we study the generalized
eigensections of the Hodge-de Rham operator acting on Z,. In particular, (following
[M94]) we define the scattering matrix and link it to the generalized eigensections. In
§1.2.4, we study the generalized eigensections associated with the eigenvalue 0.

1.2.1. Hodge-de Rham operator with an additional odd Grassmannian variable.

Let Y be a closed ¢ *°-manifold. Let (F, V') be a flat complex vector bundle over Y.
Let g™¥ be a Riemannian metric on Y. Let h'" be a Hermitian metric on F. Let DI be
the Hodge-de Rham operator (cf. §1.0.4) acting on Q°*(Y, F)).

Set

(1.2.1) H(Y,F) =ker Dy .

For u € R, let &,(Y, F) be the eigenspace of DY associated with the eigenvalue .

Let du be an additional odd Grassmannian variable, such that (du)? = 0. Let Q*(Y, F'[du])
be the algebra generated by Q°*(Y, F') and du, i.e.,
(1.2.2) Q*(Y, Fldu]) = Q*(Y, F) & Q*(Y, F)du .

We equip Q°*(Y, F[du]) with a grading : the degree p component is QP(Y, F)@&QP~ (Y, F)du.
The L%norm | ||y and its associated scalar product (-,-)y on Q*(Y,F) (cf. §1.0.4)
extend to Q*(Y, F[du]): for any 79,71 € Q°(Y, F),

(1.2.3) 170 + du A 7lls = [Imoll5 + lImlls -
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We define the actions du/\, i o and c(2) on Q°*(Y, F[du]) as follows, for 79, 7 € Q°(Y, F),
(1.2.4) duA (10 +du ) :du/\TO, Z%(TU*FdU/\Tl) =7, c@) =duN—ia .
The action of DI on Q°*(Y, F) extends to Q°(Y, F[du]) as follows,
(1.2.5) DE(dunT)=—dunDir, forT € QY F).

Let 22*(Y, F[du]) be the kernel of the extended action. Let &,(Y, F[du]) be the eigenspace
of the extended action associated with the eigenvalue p. We have

Y, Fldu]) = #°(Y,F) ® #°(Y, F)du
EY, Fldu]) = £,(Y, F) ® &_,(Y, F)du .
We remark that c(2) exchanges &4, (Y, F[du]).

(1.2.6)

1.2.2. Hodge-de Rham operator on a cylinder.

Set I =]a,b[C R. We consider the cylinder I x Y. Let (u,y) (u € I,y € Y) be the
coordinates. Let my : I X Y — Y be the natural projection. We equip I x Y with the
product metric (cf. (1.0.1)).

The pull back of F' by 7y is a flat vector bundle over I x Y, which is still denoted by
F. Its flat connection is defined by

0
F F
(1.2.7) Vi =dun=-+V -

The pull back metric on F is still denoted ht".
We have the canonical identification

(1.2.8) QI XY, F)=€>(1,Q(Y, Fldu])) .

For w e Q*(I x Y, F), u € I, let w, € Q*(Y, F[du]) be the value of the corresponding
function at w. For 7 € Q*(Y, Fdu]), let 37 € Q*(I x Y, F) be the differential form
corresponding to the constant function 7 on I. For any w,w’ € Q*(I x Y, F), we have

(129) <wawl>IxY = /(wu,w{)ydu :
I
Let DY, be the Hodge-de Rham operator acting on Q°(I x Y, F'). We have

(1.2.10) DI, = ()82 + DI

By the Green Formula, for wy,ws € Q*(1 X Y, F'), we have
(1.2.11) <nyw1,w2>lxy — (w1, nyw2>lxy = (e(@)wip, W)y — (Wi, Waa)y -
Set
(1.2.12) Sy = min{|p| : p € Sp(D{)\{0}} .
Let w € Q*(I x Y, F) such that DI,w = Aw with || < §y. A direct calculation yields
w= e gy —ic(@)oy) + e (o7 +icl)of)
22 = A B
+;{ Vi (g u—\/:AQ(aiW)

2 2 _A
+ eV (g 4 \/%C@W:)} ,

(1.2.13)
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where 1 € Sp(DY), ¢y € H*(Y,F), ¢ € &2(Y, Fldu]) (as convention, ¢+ = 0 for
p & Sp(Dy)). Set

(1.2.14) W™ E = T (G Lic(@)gy) , W™ =W ™

The w” is called the zeromode of w. Set

- A
Wit = TV HI-A%u ( ff + —M2 v c(ai)qblf) , wWr=whT ot
(l/[/ —_—

(1.2.15)
wt = Zw’“"i , WP =w 4wt
u#0
We have the following decomposition
(1216) W= W M = " Z(Wﬂv"r + wlL,—) )
p#0

Furthermore, the above decomposition is fiberwise orthogonal, i.e., for v € I, and p' # p,
we have

(1.2.17) (Wi wht Ty =0, (Wit T o ) =0,
For a < u < v < b, a simple estimate yields

(1218) oyl <eCVI R urlly s flwllly < eCTIVE Rty
By (1.2.4) and (1.2.14), ||w?™||y does not depend on u € I. We denote

(1.2.19) lw™ |y = ™[Iy -

Lemma 1.2.1. For eigensections wy,wy € Q°*(I X Y, F) with eigenvalue \ €] — dy, dy|,
we have

nz nz 1 2 1
(1.2.20) R (1 - ewzy—x«ba)) T Ierllewn - llezllawr

1
(W™ wi™y < §Hw1\|a(1xy) Nlwsllagzxyy -

Proof. The first inequality in (1.2.20) comes from (1.2.9), (1.2.12), (1.2.15), (1.2.17) and
Cauchy-Schwarz inequality. The second inequality in (1.2.20) comes from (1.2.19). O

1.2.3. Spectrum of Hodge-de Rham operators on manifolds with cylindrical ends.

Let (Zuo, g7%><) be a non-compact complet manifold with cylindrical end Y, i.e., there
exists a subset U C Z,, isometric to Ry x Y such that Z,,\U is compact.

Let (F, VT) be a flat complex vector bundle over Z,,. Using parallel transport along %,
(Fly, V) is identified with 73 (F|y, V), i.e., (1.2.7) holds. Let h' be a Hermitian
metric on F. We suppose that (F|y, h'|y) satisfies (1.0.1).

Let D} _ be the Hodge-de Rham operator acting on Qf(Z., F). By [M94, Theorem
3.2], D?Do is essentially self-adjoint. Its self-adjoint extension is still denoted by ng.
Let Q%,(Zoo, F') be L2-completion of Q2(Zw, F'), then

(1.2.21) 2 (Zoo, F) = E(Zoos F) @ E(Zoor F) & E(Zo, F) |

where the vector spaces on the right hand side are, sequentially, associated with purely
point (p.p.) spectrum, singularly continuous (s.c.) spectrum and absolutely continuous

(a.c.) spectrum of D (cf. [RS80, chapter 7.2]). Let DF . D . and Dy . be the

restriction of Dgoo to the corresponding vector subspaces.
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For A € R, let & C Q°(Z, F) be the vector subspace of generalized eigensections
of D}, associated with A (cf. [Bere68, Chapter 5]). In this paper, it is sufficient to

understand (é&)/\eR as a family of vector subspaces of Q°*(Z, F') satisfying :

- for wy € &\, we have Df_wy = Awy ;
- for w € &8 (Zoo, F) N Q*(Z, F'), there exists a smooth family wy € &, such that
w = [pwrdA.
By definition, we have & NQY,(Z., F') = 0. As a consequence, a generalized eigensection
is determined by its restriction to the cylinder.
On the cylinder, all the analysis done in §1.2.2 are still valid. We will continue to use
the terminologies 'zeromode’, 'non-zeromode’, etc.

Before describing these &), in more detail, we need a model operator. We recall that
Q(Y, Fldu)), 7°(Y, F) and &,(Y, F') are defined in §1.2.1. Let

(1.2.22) T1: Q*(Y, Fldu]) — (Y, F)du® @D ((1 —du)&,(Y, F) & (1+du)&_ (Y, F))

be the orthogonal projection. We define the APS boundary condition ([APS75])
(1.2.23) (R, x Y, F) = {w EQRy XY, F) : wye ker(H)} ,

where wy = wy |, _, € Q*(Y, Fldu]) is defined in §1.2.2. Let Dg,y be the Hodge-de Rham

u=

operator on R, X Y with domain Qf (R, x Y, F'). Then D§+Y only has a.c. spectrum.
Let j: Ry x Y < Z, be the canonical inclusion. Then j induces the inclusion

(1.2.24) J:QLRXY,F)— Q2(Z, F) .
We define the wave operators

. itDE —itD¥
(1.2.25) Wy (Dy.. . D, y) = tgrinooetDZoo Je TRy

By [M94, Proposition 4.9], Wy (D7_, D, y) are well-defined.
The following theorem is established by Miiller [M94, Theorem 4.1, Theorem 4.10].

Theorem 1.2.2. The operator Dgoo has no singularly continuous spectrum.

For t > 0, the operator exp <—tD§i’pp) s of trace class.

The wave operator Wy (Dgoo,DH@Y) gwes a unitary equivalence between DH@Y and
D% ie., Wy (Dgoo,D]fi;Y) Q. (Ry X Y, F) = &8(Zs, F) is unitary, and the fol-

o0,ac’

lowing diagram commutes,

(1.2.26) Q3,(R, x Y, F) i*i Q3, (R, x Y, F)
Wi (Dgoo ,D§+Y)l i lWi (Dgoo ,D§+Y)
E4(Zoor F) ——> E2(Zoc, F) .
Set
(1.2.27) C(Dg.,Dg.y) =Wi(Dy. . Diy)W-(Dy . Di.y) ,

which acts on Q3,(Ry x Y, F). Then C' (D%_, Di ) commutes with Df .
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We remark that any generalized eigensection of DI@Y associated with A\ €] — dy, dy|
takes the following form,

(1.2.28) Eg(¢,\) = e (¢ —ic(2)9) + (¢ + ic(@)o) |
where ¢ € #°*(Y, F). Since C (D}, D§ ) commutes with Df ., C (D%_, Df ) sends
Eo(¢p, \) to Eo(¢', \) for certain ¢/ € A#7°(Y, F).

Definition 1.2.3. For A\ €] — dy, 0y [, let C(\) € End(2*(Y, F')) such that

We extend the action of C(\) to s7°(Y, F|du]) by demanding
(1.2.30) C(N)e(2) = —c(@)C(A) .

We call C'(\) the scattering matrix associated with D .
The following property is stated in [M94, §4].

Proposition 1.2.4. Each generalized eigensection of D}, . associated with A €] =0y, oy |
takes the following form over Ry xY ~U C Z, :

(1.2.31) E(p, ) = (¢ — ic(2)¢) + e C(A) (¢ —ic(2)p) + 0(¢, N)
where ¢ € (Y, F) and (g, \) € Q3. (Ry x Y, F). Furthermore, for u € Ry,
(1.2.32) 0 (6, ) L (Y, Fldu]) .

Conversely, for ¢ € F°(Y,F) and X\ €] — by, dy|, there exists a unique generalized
eigensection E(¢, \) of D}, satisfying (1.2.31).

We remark that E(¢, \) depends linearly on ¢ and analytically on A (cf. [M94, §4|).
Since (Y, F) is finite dimensional, there exists C' > 0 such that, for any ¢ € J°(Y, F)
and A €| — 0y /2,0y /2[, we have

(12.33) 1B, M 700 < Cll]ly -
We list below several properties of C'(\) (cf. [M94, §4]).

Proposition 1.2.5. The following properties hold
- C(N) depends analytically on X ;
- C(N\) € End(s2°(Y, F[dul)) is unitary ;
- C(N) preserves P(Y, F) and 7€P(Y, F)du for any p ;

- C(N)C(=X) = 1, in particular, C(0)?> =1 .
1.2.4. Egtended L*-solutions.
Set
(1.2.34) %(Zoo, F) = Q32(Zoo, F) Nker (D) |

The elements of #7%(Zx, F) are called L*-solutions of D?jw = 0.
We recall that the decomposition w = w™ +w™ = W™ +w~ +w™ is given in (1.2.16).

Definition 1.2.6. Set
(1.2.35) H*(Zoo, F) = {(w,&)) € ker (D5?) @ s*(Y, Fldu)) : w* =0 ,w™ = w;a}} ,

The elements of J#*(Z,, F') are called extended L?-solutions of Dgiw = 0.
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Remark 1.2.7. In fact, 5€°(Z, F') is the vector subspace spanned by J¢%(Z, F) and
generalized eigensections of Dgoo associated with 0, i.e.,

(1.2.36) AN Lo, F) = A2, F) @ {E(6,0) : ¢ € H*(Y,F)},
where FE(¢,0) = E(¢ )\)‘/\:0 is given by (1.2.31).
Proposition 1.2.8. For (w,w) € H*(Z, F'), we have

(1.2.37) dfw=d"w=0.
Proof. By (1.2.13), both d¥w and d***w are L?-sections, which are orthogonal with respect
to the L:-metric. Then dw + d"*w = D¥w = 0 implies (1.2.37). O

Comparing (1.2.13) and Proposition 1.2.8, we get the following decomposition of (w,w) €
H*(Zs, F) on the cylinder U,

(1.2.38) wy=mo+ Y e (T —duAT),
1>0 , peSp(DE)

where 7,1 € Q*(Y, F), 7,2 € Q* (Y, F), and

(1.2.39) dFTu,l = dF7*TM72 =0, dF’*Tml = UTu2 , dFng = UTp1 -
Definition 1.2.9. We define

Rar + H*(Zoo, F) = QR x Y, F)
Rgp = H(Zoo, F) = QTHRL X Y, F) |
such that, for any (w,®) € H#*(Z, F'), whose expansion is given by (1.2.38), we have
(1.2.41) Rar (W, 0) = Z le’““m,g v Ryre(w,0) = Z le”“‘alu ATpt -

>0 p>0 K
Proposition 1.2.10. The following identities hold :
A" Bayr (w,0) = Wg,xy — Ty@, A" RBgr(w, @) =0,
A" Byro (0, 0) = Wlroxy — T30, d" Bare(w,0) = 0.
Proof. These are direct consequences of (1.2.38), (1.2.39) and (1.2.41). O
Definition 1.2.11. Set
(1.2.43) Z* = {d} € A°(Y, Fldu]) : there exists w such that (w,®) € %”’(ZOO,F)} ,

(1.2.40)

(1.2.42)

called the set of limiting values of J*(Z, F').

The scattering matrix associated with D} is still denoted by C(X). Set C' = C(0).
By (1.2.31), Proposition 1.2.5 and the fact that L =P L7, we get

(1.2.44) Z*=im(C+1) =ker(C—1).
Let Py : (Y, Fldu]) — Z° be the orthogonal projection. We have
(1.2.45) C=2Py—1.

We recall that the operator i, acting on (Y, Fdu]) is defined by (1.2.4). As con-

sequences of (1.2.30), (1.2. 44) and Proposition 1.2.5, there exist L8 C HP(Y,F) and
LP C H#PHY, F)du such that

rel =

(1.2.46) PP =L L L= 2 L0

abs rel ? abs rel
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where #h C #P(Y, F) is the orthogonal complement of .Z% . We call .3 el the

absolute /relative component of .Z°.
We have the obvious short exact sequence

(1.2.47) 0 — %L, F) — H(Zoo, F) — L°* — 0.
We denote
(1:2.48) ajna(Zoos F) = {(0,0) € (7o, F) + & € Lipua}

We get the following short exact sequence
(1249) 0— L.2(ZOO7 F) — a?)s/rel(ZOO? F) — ga.bs/rel — 0.
1.3. Asymptotic properties of the spectrum.

We recall that Zr, F' and D?R are defined in §1.0.2. In this section, we study the
asymptotic behavior of Sp (D%, ) as R — oco.

In §1.3.1, we construct Zz. In §1.3.2, we construct a model space of the eigensections
of DgR. In §1.3.3, we estimate the kernel of Dg}f In §1.3.4, we estimate the small

eigenvalues of D7 .

1.3.1. Gluing of two manifolds with the same boundary.

Let Z be a closed manifold. Let ¢ : Y — Z be a compact hypersurface such that
Z\Y = Zl U Z2 and aZl = 822 =Y. Then Z = Zl Uy ZQ.

Let U; C Z; (j = 1,2) be a collar neighborhood of 0Z; ~ Y. More precisely, we fix the
diffeomorphisms
(1.3.1) i = L0 xY 5 U, iy [0,1[xY = Uy,
such that 4;({0} xY) =0Z; (j = 1,2). Set U = Uy Uy Uy C Z. Then 4; and i, induce
the identification
(1.3.2) i]-11xY >UCZ.

Let (F,VY) be a flat vector bundle over Z.

Let ¢4 be a Riemannian metric on Z. Let h' be a Hermitian metric on F. We
suppose that (1.0.1) holds.

Set
Zip=21Uy [0,RI XY, Zop=2ZsUy|[-RO0xY, for0<R<oo,
Zl,oo = Zl Uy [O, OO[XY R ZQ,OO = ZQUy] — O0,0] XY ,
where the gluing identifies 0Z; ~Y (j = 1,2) to {0} x Y. For 0 < R < oo, we define

fr:[0,2R] XY — [-2R,0] X Y

(1.3.3)

1.3.4

34 () > (0= 2R,).
Set

(1.3.5) Zr = Z19r Upp Zoor = Z1 R Uy Zog .

Then (F, VF) extends to a flat vector bundle over Zg such that (1.2.7) holds. Moreover,
g7 and h* extend to Zg such that (1.0.1) holds.

In the sequel, all the canonical projections from [—R,0] x Y, [0, R] xY and [-R, R x Y
(0 < R < o) onto Y will simply be denoted by my if there is no confusion.

In the sequel, for 0 < R < oo, [0,R] XY C Zy g (resp. [-R,0] xY C Zyp), the
cylindrical part of Z; g (resp. Zy g), will be refered to as I gY (resp. Iy rY); if R < o0,
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the cylindrical part of Zg, i.e., the gluing of I; rY and I rY, will be refered to as /Y.
On I, rY, we use the coordinates (uy,y) with u; € [0, R], y € Y; on I, grY, we use the
coordinates (uq,y) with us € [—R,0], y € Y; on IgY, we use the coordinates (u,y) with
u € [-R,R], y € Y. Under the identifications I} ,gY ~ I 5gY ~ IrY induced by (1.3.5),
the transformation of the coordinates is given by

(1.3.6) u=u —R=uy+R.

For A C R, set

LirY (A) ={(uj,y) € [rY : u; € A}, forj=12,
IRY (A) = {(u,y) € IgY : ue A} .

We will always use the following identifications : for R’ < R,

(1.3.7)

(138) Zj,R’ - Zj,R s for j = ]., 2 3
which is the unique isometric inclusion fixing Z,, ; for R’ < 2R,
(139) Zj,R/ g Zj,QR g ZR s for j = ]_,2 s

where the second inclusion is induced by (1.3.5).
Let D7 be the Hodge-de Rham operator acting on Q°(Zg, F) (see §1.0.4).

1.3.2. Models of eigenspaces associated to small eigenvalues.

Let J%(Zj, F) and J°(Zj o, F) (j = 1,2) be as (1.2.34) and (1.2.35) with Z
replaced by Z; . and u replaced by u; (cf. (1.3.1)). It is important to notice that %
points to the inner side of Z5. This is different from the choice in (1.2.35). Set

H(Z1g,00, F) = {(wl,m,a) L (w1, @) € AN (Zioo, F)
(1.3.10)
(wa, ) € ,;f'(zm,p)} .

Let £ C J°(Y, Fldu]) (j = 1,2) be the set of limiting values of J#*(Z;, F) (cf.

(1.2.43)). There is a natural injection
(1.3.11) 72(Z1,00, F) © 2 (Zo,00, F) = H*(Z12,00, F)
- (wlaWQ) — (Wl,CUQ,O) .

There is a natural surjection

I (71900, F) = LN LY
(1.3.12) raoe, F) = L1024
(wl,wg,w) = W .

We have the following short exact sequence,

(1.3.13) 0 _> L.Q(Zl,OCM F) @ L.Q(Z2,007 F) _> %.(212’007 F) % gl. ﬂ 32. _> 0 .
Recall that the L2-norm | - ||. is defined in §1.0.4. For (wy,wq, @) € H#*(Z12,00, F), set

(1.3.14) l(wrs w2, @) pn (215,011 = i, + w2l , -

We will drop the subscript R, if R = 0. By (1.2.20) and (1.2.35), there exists C' > 0,
such that, for any (wy,ws, w) € (212,00, F),

112 )
(1.3.15) H(wl,wQ,w)H%.(meFLR < (1 + C’R) H(wl,wQ,w)H%.(meF) .

In the rest of this section, J*(Z12 «, F') will serve as the model space of ker (ng)
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Recall that 0y was defined in (1.2.12). For A € | — dy,0[ U |0,y [, 7 = 1,2, set
(1.3.16)
ENZjoo, F) = {(w, w™) 1w € Q*(Zj 0, F) is a generalized eigensection of ng,oo

associated with A ,w™ € Q°([; Y, F') is the zeromode of w} :

Recall that fg is defined in (1.3.4). For R > 0, set

g)\,R(ZIQ,oan) - {(Wluw%maw%w;m) : (wj7 7 ) € @(g)\( ]OO:F> ) for .] - ]-72 )

(1.3.17)

Wi |11,OOY([0,2R]) = fr(w |Iz,ooY([—2R70]))} '
Let C;(\) € End(s2°(Y, F[du])) (j = 1,2) be the scattering matrices associated with

ngm' For convenience, we take the following definition of scattering matrix : C;(\) is

the unique matrix such that (1.2.31) holds with u replaced by u; (cf. (1.3.1)). Since %

points to the inner side of Zy, Cy(\) is the inverse of the scattering matrix in the sense
of Definition 1.2.3. Set

(1.3.18) Cia(A) = CoH(N)CL(N) € End(22°(Y, F[dul)) .
For R > 0, set
(1.3.19) Ap={N€R : det (¢ FC1(N)| oy~ 1) =0}

(counting multiplicity). By (1.2.31), (1.3.4) and (1.3.16), we have

(1.3.20) {)\ ER : Ep(Ziseo, F) % {0}} -
For A g ] — 5y,0[ U ]0,(5)/[ set
(1.3.21) Exr(Z12.00 F) = P Evn(Z12.00, F
A€EA

For (wy, wi™, wo,wi™) € Ear(Z12,00, F), set

(1.322) ons ™ wn, B, ey = Nl + el

In the rest of this section, &4 r(Z12,00, F') Will serve as the model space of the eigenspace
of D} with eigenvalues in A.

1.3.3. Approximating the kernels.

Let v € ¢>°(R) such that v > 0, supp(y) C [—3, 3] and f_%% v(s)ds = 1. We define
X21 € €%([-1,1]) by
(13.23) X21(u):{021 if —1<u<0,

e ’ T (s)ds f0<u<1.

Then xo,1(u) =1 for u > 2. For j = 1,2, we define x;z € €([—R, R]) by

(1.3.24) Xjr(u) = X2,1((—1)j“/R) :
We may view x; g as a function on IgY, i.e., for (u,y) € IRY, x;r(u,y) = x;.r(w).
We recall that the following maps are defined in Definition 1.2.9,

(1.3.25) R, Ryre : H*(Zj o, F) = (LY, F), forj=1,2.
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Composing the identification IgY =~ I;5rY (j = 1,2) induced by (1.3.9) and the
injection I;orY C I, Y induced by (1.3.8), we get IrY — I; Y, which induces

(1.3.26) O (L0Y, F) = Q*(IRY, F) .
Composing (1.3.25) and (1.3.26), we get
(1.3.27) Ryr Ry HZjoor F) = Q(IRY, F), forj=1,2.
Definition 1.3.1. We define
(1.3.28) Fy,, Gz, + H*(Z1300, F) = Q% (Zg, F)
as follows: for (wy,ws,w) € (219,00, F),
FZR(wl,wg,d)Mij = Gz, (w1, w2, w)

2
Fz(wi, wa, @) = Tyw + dF(X‘,Rz% F(wa@)) ;
(1.3.29) ? o = 7 2" (i

j=1
2
GZR (wl, wWa, @)‘IRY = 7'[‘;(/(2) + Z dF’* (XLR e%dF,*,j (w]—, @)) .
j=1
By (1.2.42), Fy, and Gy, are well-defined. Furthermore, we have
(1.3.30) d¥ Fy, (w1, wa, @) = d™* Gz, (wr, we, @) = 0 .

Remark 1.3.2. This gluing technique was initiated by Atiyah-Patodi-Singer [APS75].
They glued w; and wy directly using partitions of unity. The difference between the
standard Atiyah-Patodi-Singer gluing and ours is &(e~°%)-small as R — occ.

We recall that U; C Z; (j = 1,2) is a neighborhood of Y = 0Z;. Gluing the identifica-
tions Uy =] —1,0] x Y, IgY = [-R, R| x Y, Uy = [0, 1| XY by shifting the coordinates, we
get the identification Uy UIgY UU; =|—R—1, R+1[xY. Let ¢p :]—R—1, R+1[—|—1,1]
be a smooth function such that
(1.3.31)  ¢(—u) = —¢(u) ,¢'(u) >0, ¢p(u) =u+R forue[-R—1,—-R—1/2].
We define a diffeomorphism ¢r : Zgr — Z as follows:

SDR‘Zi\Ui = Ide\Uj ) for ] - ]-7 2 )

1.3.32
( ) vr(u,y) = (pr(u),y) e Uy UU, C Z  for (u,y) € Uy UIRY UU, C Zg .

Then ¢g induces the canonical isomorphism H*(Zg,Y) ~ H*(Z, F).
Proposition 1.3.3. For R' > R > 1, (w1, ws,w) € F*(Z12.00, F) with w € 7°(Y, F),
(1333) [FZR(wl, Wa, (.21)} = [FZR’ (wl, w2, OAJ)] S H.<Z, F) .

Proof. By inserting enough numbers between R and R/, we may assume that &'/R < 7/6.
We define ¢pp : [~ R, R] — [~R', R'] by

u—R +R if ue[-R, -
~ ) u— (R = R)xams(u) ifue (—5 R, 0],
(1.3.34) Orr(W) =93 4 (- R)Xo.nys(u) ifue|
[

v+ R —R if u e



20 YEPING ZHANG

We construct a diffeomorphism ¢r p 1 Zgp — Zp as follows: the restriction of ¢r r to
ZLOUZQ’O ~ ZR\IRY >~ ZR/\]R/Y is the identity map, for any (u, y) c IRY7 SBR,R’ (u, y) =
(gZ;Rﬂ/(u),y) € Ip’Y. Then ¢p g is homotopic to cp;z,l o PR.

Let u € Q*(Zg, F') such that

2
(1.3.35) Wiy =0 H iy = D (e = Xor) Rar (w0, @) -

j=1

By (1.3.29), (1.3.34) and (1.3.35), we have

(1.3.36) Frp(wi,wo, @) — G g Fz,, (wi,we, @) = d .

Taking the cohomology class of (1.3.36), we terminate the proof. U
We recall that || - ||. is defined by (1.0.22) and || - |[ze(z,5...,F),r is defined by (1.3.14).

Proposition 1.3.4. There exist ¢ > 0, Ry > 0, such that, for R > Ry, (wi,ws,w) €
HO* (219,00, F), we have

HFZR(WDW%(D)HZR

(1.3.37) 1—e g . <1l+e .
||<w17W27w)||;f-(zl2m,p),}z

Proof. 1t is sufficient to show that

(1.3.38) | Egwr,we, @) = wyll, < e Fllonllzy, ,  forj=1,2.

We will only show the case 7 = 1.
By our construction, Fyz,(wy,ws,w) — w; vanishes on Z; o. By (1.2.42), we have

(FZR(CUl, w2, dj) - UJ1) |I1,RY

(1.3.39) = dF (x1,p RBar 1 (w1, D)) + T3 — wy
) A 3
- (%XLR) du N RHygr 1 (W1, @) + (X1, — 1) (W1 — Ty@) .

By the definition of x g, %XI,R is bounded by 1 and with support in IRY([—%R, —1R));

1
X1,z — 1 is bounded by 1 and with support in IRY([—%R, 0]). Then

| Fz (w1, w2, @) — Wl”zLR
(1.3.40) . P
< Hf@dF,l(wlvW)HIRy([_%R_%R]) + [lwr — WYWHIRY([—%R,O}) :
By Definition 1.2.9, we have

(1.3.41) | Zgr 1 (w1, )

2 _9 _1
Levan-imy SO 2 el -

By Lemma 1.2.1, (1.2.18) and (1.2.19), we have

1

~ 112 — ~

lor = Tyl v (s may S (m) 0yt flwn — W?Cd“%zl,mwazw
(1.3.42)

1 2 —1,-16vR 2
o Coes T RE U T
Comparing (1.3.40)-(1.3.42), it only rests to show that
(1'3'43) ||w1||<9Z1,0 < C”wl”ZLo .
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Let ||-|l1,2,, be the H'-norm on €*(Z, F). We fix ¢ > 0. By the ellipticity of the
Hodge-de Rham operator, we may suppose that, for any w € Q°*(Z; ., F),

(1.3.44) lwll? 2., < lwlZ,, + 11Dz, w7, -
In particular,

(1.3.45) lonllf 2, < llonllZ, . -

By the trace theorem, there exists Cy > 0, such that, for any w;, we have
(1.3.46) lwill3z, , < Collwnll? 2, -
By (1.3.15), (1.3.45) and (1.3.46), we get (1.3.43). O

For going further, we need a uniform Sobolev inequality on Zp for R > 0. Let m € N
such that m > £ dim Zg. We recall that || [|l40. is defined by (1.0.23).

Proposition 1.3.5. There exists C > 0 such that, for R > 0, w € Q*(Zg, F), we have

(1.3.47) [l < € (1ol + 10575, ) -
Proof. By repeating the proof of the classical Sobolev inequality on each Zg, we find that
the constant C, which, a priori, depends on R, is uniformly bounded for R > 0. U

Let PX"(07p) : Q*(Zg, F) — ker <D§j> be the orthogonal projection.
Definition 1.3.6. Set
F,2 F,2
(1.3.48) Ty, = PP o F, | @, = PP oGy,

Proposition 1.3.7. There exist ¢ > 0, Ry > 0 such that, for R > Ry, (w,wq,w) €
HO*(Z19,00, F), we have

(1.3.49) |(Fzp — Z2,) (Wi, w2, @) < e |(wr, wa, @)

H(KO,ZR %'(ZlgooF) ’

As a consequence Fz,, : H*(Z12,00, F) — ker <D§Rz> 15 injective for R large enough.
Proof. By (1.2.42) and (1.3.29), supp ((Fz, — Gz,)(wi,ws,&)) C IgY, and

(FZR — GZR)(W17W2>@)|[RY

1.3.50
. =2 <%XJ,R) (du A e (03, 0) - R (5. 2))

j=1
More generally, by (1.1.6), (1.2.42) and (1.3.50), for any m € N,

ngm (Fzp, — Gzp) (w1, w2, @) IRy

(1.3.51) e [ 0Pt o .
=(-1) Z (WX] R) (du N Rr ;(wj, W) + Z%%dn*,j(wj,w» :
j=1
Set
am
1.3.52 Q= Su — U
( ) ue[—Il)l] 8UmX2’1< )
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Since supp(a%XLR) - [—%R, —iR} and supp(a%xzﬂ) C [}LR, %R], we get

2

’Dg;fm (FZR - GZR) (whw?v(z})

ZR

2 —4m—2 ~
< a5 R H«%dF,l(wl, w)

2
}IRY([—%R,—iR})

(1.3.53) + a3, R H%dFQ(va w)

2
|1RY([iR§RD

2 —4m—2 ~

2
|IRY([7%R,7iR])

+ a3, R H%’dn*g(wg, w)

2
v iram) -
By Definition 1.2.9, we have

H%dFJ(Wla@)

) + H%dF,*’l(wl, C:J)

2 2
‘IRY([—%R—&R] |]RY([—%R,—iR})
-2 _—15vR 2
135 A <2l
H'%dF,Q(WQaW)

) _I_ H‘%dFv*‘Q(wQ? (,:J)

2
|ty r.2R)

< 207272 B3, .

2
‘IR,Y([%R,%R]

By (1.3.53) and (1.3.54), we have

HD?}?W (FZR - GZR) (w17w2a (IJ)

2
(1.3.55) 2 2 p—4m—2 18y R ‘ZQR 2
< a2m+15Y R " e 2% (||w1||82170 + ||w2||822yo) .
Proceeding in the same way as (1.3.43), we have
lrllaz, o + llw2ll3z,,
(1.3.56) ) 9 N
< C(HWIHZLO + ||w2||Z2,0) = OH<WI7w27w)||jf'(Z12’OO,F) :

By (1.3.15), (1.3.55) and (1.3.56), for any m € N, there exist ¢,, > 0, R,, > 0 such
that, for any R > R,,, any (w1, ws,w) € JH*(Z12,5, F'), we have

(1357 | DE (= Ga)(wrw0,@)| | < e Rl (wn,wn, @)l s -
R

Set
po = Fzp(wi,w2,0) — Yz, (w1, ws2,0) ,
(1.3.58) 1 = Fzp(wi,wa, 0) — Fz, (w1, w2,w)
M2 = GZR(WMW%CD) - gZR(whwz,@) )
then
(1.3.59) (Fz, — Gz,) (wi, w2, @) = pig + p1 — pia -
By Theorem 1.1.1 and (1.3.30), we have

(1.3.60) o € ker (D;}f) .oy €im(dY) ) pp € im(dF) .
For m > 0, by (1.1.6), Dngm commutes with df” and d**, thus

(1.3.61) D"y € im(d") ,  Dy¥"puy € im(d™) .
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As a consequence, Dgﬁmuo, D?jmul and Dgﬁm,ug are mutually orhogonal. For m € N,
by (1.3.59) and (1.3.61), we get,

)’Dgﬁm(FZR - ﬂZR)(wthvw)‘ P = "Dgimﬂl‘
(1.3.62) . 7 ?
< HDZ;acm(FZR - GZR)(WMWQ’@) Zn
By (1.3.57) and (1.3.62), we get
(1363) || D5 (Fay — Fa) e )| < w0 guizy,
By (1.3.63) and Proposition 1.3.5, we get (1.3.49).
The injectivity of %, follows from (1.3.37) and (1.3.49). O

Remark 1.3.8. The Hodge decomposition is used in an essential way in (1.3.60). The
proof of Proposition 1.3.7 cannot be applied to general Dirac operators.

Proposition 1.3.9. For e > 0, there exists Ry > 0 such that, for R > Ry, any eigensec-
tion of Dy associated with X €] — R™'7°, R™'7¢[ is contained in the image of Fy,.

Proof. Suppose the contrary, i.e., there exist R, — +oo, w; € Q%(Zg,, F) and \; €
] — R;'7%, R71¢[, such that
(1364) Wi 7é 0 s DgRiwi = )\iwi N
(1.3.65) w; Lim(Fz, ) .
By Lemma 1.2.1, we may multiply a suitable constant, such that
(1.3.66) el iy = el + ltlZ, = 1
By Lemma 1.2.1 and (1.3.64), there exists C' > 0 such that, for T € Nand R; > T,
(1.3.67) lwillZ,, <1T+CT .

Thus, for any T € N fixed, the series (w;|z, ), is L*-bounded.

Since \; are bounded, using Rellich’s lemma, we may suppose, by extracting a subse-
quence, that (wi|zl,T)i converges with respect to the k-th Sobolev norm for all £ € N. By
the Sobolev imbedding theorem, (wi’ZI,T>Z’ converges with respect to the €'-norm. Using
a diagonal argument (involving ¢ and T'), we get wy o € 2°(Z1 0, F') such that, for any
T €N, (wilz,,), converges to w1 oo|z, , (With respect to the €*-norm). Taking the limit
of (1.3.64), we get D} _wi o = 0. Taking the limit of (1.3.67), we get

(1.3.68) lwrcollz,, <14+CT,  for TeN.

By (1.2.13) and (1.3.68), w; « is an extended L*-solution, i.e., there exists w; such that
(W1 .00, @1) € H*(Z1 00, F). In particular,

(1.3.69) — W, as i — 00 .

zm
Wi ‘azw

Applying the same argument to wi|z, ., we find (Wye0, W2) € H*(Z2 00, F') satistying
the same properties. In particular,

(1.3.70) wim

; — Wy, as 1 — 00 .

aZQ’O
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By (1.2.14), we have

zm,+ 42/ —1R;\;, zm,t
(1.3.71) w; ‘822,0 =e Wi oz -

Since R;\; — 0, by (1.3.69)-(1.3.71), we get

(1.3.72) Wy = ws .
Then (Wi o0, Wa,00, W1) € F*(Z12,00, F).
Set
(1.3.73) @i = F 75 (W1,00, W2,00, W1) -
Case 1, w; # 0 : We want to show that (w;, ;) — 00 as i — oo, which contradicts
(1.3.65).
We have
(1.3.74) (Wi, i) = (Wi, @i) zp NI,y + (W07 OV gy + (W, O ) v -

By Lemma 1.2.1 and Proposition 1.3.7, (w;, @)z, \1, v and (w?z,d)?z)[Riy are bounded,
when i — oo. It is sufficient to show that (wy™, &™), y — 00 as i — oo.
We have

(1.3.75) (W™ O ) 1y = (W)™ Ty W1 1y (W, 07 — 01 1,y -
By Definition 1.2.9, 1.3.1, we have
(]_376) W;(j)l = (FZRi (Wl,ooa W2, 00, "‘Ajl)’]Riy> :

Then, by Proposition 1.3.7,

(1.3.77) (W™ @™ — Ty W),y — 0, as i — 00

By (1.2.14) and the fact that R;\; — 0, the restriction of w?™ to Ig,Y (u) (u € [—R;, R;])
converges uniformly to the same limit. Then, by (1.3.69), they all converge to w;. Thus,

R;
(1378) <wfm,7r§5c&1>1Riy = / <W,L~Zm’[Riy(u),d11>ydU — +00 , as 71— 00 .
—-R;

This ends the first case.
Case 2, w; = 0 : We want to show that

(1.3.79) (Wi, @i) = Wil o+ lw2iellZ, . >0, asi— o0,

which contradicts (1.3.65).
For any T'> 0, R; > T, we have
(1.3.80)

(Wi, W) = (Wi, Wi) 2 70zZo 0 + (W7 W) 1y (= Rir R —1]) (W7 ) 1 v (= R4 T R TY)
By Definition 1.3.1 and Proposition 1.3.7,

(1.3.81) (Wi, @) 2, 70z 0 = 0100l 2y + lwacollZ, , 5 as @ — 00
By Lemma 1.2.1, if R; > 0y" and \; < 20y (which hold for i large enough),

(W}, @) b, v (- ReA T, Re-T) |

(1.3.82) - ) )
< 8(SY (”WiHBZl,T + HwiHBZzT)(HwiHaZLT + HwiHl?ZQ,T) .
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Furthermore, as 1 — oo,

(lwilloz, » + llwilloz, »)(lilloz, + + llwilloz, )

(1.3.83)
— (HwLooHazl,T + ||w2,00H3Z2,T)2 )
and
(1.3.84) (lwrcolloz, » + lwzcollozs )* < €72 (lwrsollozy o + lwzollozs0)

Since w; = 0, proceeding in same way as (1.3.77), we get
(1.3.85) (w-zm,cD-Zm>1Riy([fR,.+T,RFT]) — 0, as 1 — o0 .

K3 (2

By (1.3.80)-(1.3.85), we get

lim sup |(w;, @) — [|[wicoll% .. — [lwa.0oll?
s nsup [(wi, ) — [t el = letooll,
< 853_/16_26YT(HW1700H321,0 + HwQ,OOHGZQ,o)2 .
Taking 7' — oo in (1.3.86), we get (1.3.79). O

Theorem 1.3.10. There exists Ry > 0 such that, for R > Ry, the map Fz, : 7°(Z19,00, F') —
o\ . .. .
ker(D,”) is bijective. Moreover,

(1.3.87) Sp(D7,) €] — o0, =R [U{0}U]R™"°, +oo .
Proof. These are direct consequences of Proposition 1.3.7, Proposition 1.3.9. U

1.3.4. Approximating the small eigenvalues.
For j = 1,2, let ngoo,pp be the restriction of ngoo to its p.p. spectrum (cf. §1.2.3).

We fix 0z, > 0 such that Sp (D?jmpp) N[=dz,,0z,] C {0}. Put 6 = 3min{dy,dz,,0z,}

We recall that &4 r(Z12,0, F') was defined in (1.3.21), I; gY, I gY, IrY were defined at
the end of §1.3.1 and X; was defined at the beginning of §1.3.3.

Definition 1.3.11. We define
(1.3.88) Ja,zs + Ear(Z12,00, F) = Q°(ZR, F) ,
such that for any (wy,w™, we,ws™) € &4 r(Z12.00, F),
JA,ZR(whwfm,WQ,WSm”Zm =w;, forj=1,2,
(1.3.89) Ta,zq (w1, wi™, wa, w5™)| 1 = X1, W1 !ILQRY T X2.R wz\b,my
+ (1= x1,8— XQ,R)wfm}ILQRY :

Here we identify [;opY (j = 1,2) to IgY. Then wj|; v (j = 1,2) and wi™

75

are
I1 2rY

viewed as sections on IpY.

Let &5(Zg, F) C Q*(Zg, F) be the eigenspace of D associated with the eigenvalues
in B. Let P7 : Q*(Zp, F) = &3(Zg, F) be the orthogonal projection.

Definition 1.3.12. Set
(1390) jA,B,ZR = PZBR o JA,ZR : £A7R(212700,F) — (gaB(ZR,F) .
For A, B C R and o > 0, we denote A C, B, if ]z — a,x + o[ C B for any x € A.



26 YEPING ZHANG

Proposition 1.3.13. There exist Ry > 0, ¢ > 0 such that for R > Ry, A C.—.r B C
| —0,0[U]0, 9] and (w1, w™, wa,wi™) € Ear(Z12.00, F'), we have

| (Fa.20 — Jazg) (w1, wi™, wa, wi™)

—cR zm zm
<6 H<w17w1 y W2, Wy )HéaAR

(KO,ZR

(1.3.91)
(Z12,00,F) °

As a consequence, Za .z, 15 injective for R large enough.

Proof. 1t suffices to consider the case (wy,w{™, wy, ws™) € &y p(Z12,00, ) With Ag € A.
Proceeding in the same way as (1.3.57), for any m € N, there exist R,, > 0, ¢, > 0
such that for R > R,,,

2
| D5 (D5, = Ao) Tz, ™, 0, )

(1.3.92) Zn
< 6—3CmR || (wh (A)%m’ Ws, w;m) ||25A,R(2127007F) .

We have the decomposition

(1393) JA,ZR<W17w%m7w27w§m) = Z:u)\

A
with DgRu,\ = Auy. In particuler, these u) are mutually orthogonal. Then
(1394) jA7B,ZR(w17w%mvw27w§m) = ZMA )

XeB

By (1.3.92) and (1.3.93), we have

2
Fm —2cm R zm zm) || 2
(1395) Z HDZR ,LL)\HZR < € H(thl y W2, Wy )HgA,R(ZU,oo,F) .
[A=Xg|>e—cmR
By Proposition 1.3.5 and (1.3.93)-(1.3.95), we get (1.3.91). O

Lemma 1.3.14. For ¢ > 0, there exist Ry > 0, C' > 0 such that for any R > Ry,
w € N (Zg, F) an eigensection associated with A €] — 6 +¢,0[ U ]0,d — €[, we have

(1.3.96) ™™ ¥ 15 + ™15 > CllwllZ, suzs, -
In particular, W™ 1is non zero.

Proof. Suppose the contrary, i.e., there exist R; — +oo, w; € Q%(Zg,, F) and \; €
] —0+¢,00U]0,6 — €[, such that

(1397) DIZTRAwi = )\Zw,- s
and

leof™ 115 + llew?™ 115

(1.3.98) —0, asi— 0.

||wi”2Z170UZ2,0

By extracting a subsequence, we may assume that \; — Ao By Lemma 1.2.1, [|w;||%, WUZao T
0, we may multiply suitable constants such that

(1.3.99) willZ, ooz = 1 -
By (1.3.98) and (1.3.99), we have

(1.3.100) ™2 + lw™ 7|2 =0, asi— oo.
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Proceeding in the same way as in the proof of Proposition 1.3.9, by extracting a subse-
quence, we may assume that there exist wy o € Q*(Z1.00, F), W00 € Q°(Z2.00, F') such that
for any T € N, (wi‘Z,T)i converges to wjpo}Z_T (j = 1,2) with respect to the ¢'-norm.

7 7y
Taking the limit of (1.3.97) and (1.3.100), we get

(1.3.101) D} Wiso = AocWjoo » Wi =0, forj=1,2.

7,00
Taking the limit of (1.3.99), we get
(13102) HWLOOHQZLO _'_ ”wZOOHQZQ’Q = 1 :

Thus one of W o, wa oo is non zero. We may assume that wy o, is non zero. By (1.3.101),
W1 o 18 zeromode free, thus, a L*-eigensection (by Lemma 1.2.1). We get Ao, € Sp (Dg1 wpp).

But |[Ao| < 0 < dz, by the definition of 7, we must have A\, = 0. Thus wy o €
L.Z(ZLoovF)'
Recall that Zz, (-, -, ) was defined in (1.3.48). Proceeding in the same way as (1.3.79),
we get

(1.3.103) (Wi, F 2 (W1,00,0,0)) = [lwioel® >0, as i — oo.
But, by (1.3.97), \; # 0 and F,, (w1, 0,0) € ker (Df;j;j_), we have w; L Fy,, (w100, 0,0).
This contradicts (1.3.103). O

Lemma 1.3.15. For ¢ > 0, there exist Ry > 0, ¢ > 0 such that for R > Ry and
w € QO (Zg, F) an eigensection of D} associated with X €] —d4¢,0[ U 0,0 —e[, we have

(13108) O™,y =™ |,y <Rz, fori=12.

In particular,

(1.3.105) H (64i/\RC12()\) - 1) wZHL_}azLOHY < G_CRHWHZLOUZM .

Proof. We follow the argument in [M94, PWO06].

We will only establish (1.3.104) for j = 1.

Let w € Q°*(Zg, F) be an eigensection of D} associated with A\ €] —d+¢,0[U 0,6 —¢].
By (1.2.13), there exist ¢, ¢ € #°*(Y, F) such that

(1.3.106) Wiy = €N () — ic(@)d) + N (¢ + i) + ™
By Proposition 1.2.4, there exists (0, 0™) € &% (Z1,«, F') satisfying
(1.3.107) G = e N (¢ — ic(2)p) + e Cr(N) (¢ — ic(2)e) .

Set

(1.3.108) p=w—we€Q(ZipF).

Then g is also an eigensection of DgR associated with A. Thus

(13109) <D§RM7 :U’>Z1,R - <M7 DgR/OZl,R = <)‘/JJ7 IU‘>ZI,R - </JJ7 >‘IU’>Z17R =0.
On the other hand, by (1.2.11) and (1.3.106)-(1.3.108), we have

<D§RM7 ,U>Zl,R - <:u7 DgRM>Z1,R

(1.3.110) o ) T
= (@ oz, = =20 [|¢" = Cr(N)Slly + (cEIH™ 1)o7, 5 -
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By (1.3.106) and (1.3.108)—(1.3.110)7 we get

zm,— zm 2
||01 ()‘)w ’ ‘321,0 —w ’+\821,o Hy

= — i@, 1oz, < 11715z, 5 < W™z, 5 + 15152, , -

By (1.2.18), we have

(1.3.111)

(13112) HwnZngl’R g eiERHwH%ZLO U8Z270 ? H{'DHZH%ZLR g eiERH(DH%ZLO *

By (1.3.56), there exists C > 0 depending on Z;, Z,, F' such that

(13113) HWH%ZL() UBZQ,U < C]-HWH2Z1,0 UZQ,[) ’ HC&H%ZI,O < Cl”(jj”zZLo .
By (1.2.33) and (1.3.106), we have
(1.3.114) I©11Z, , < Callé —ic@)olly < Callwllbz, , -
Combining (1.3.111)-(1.3.114), the proof is terminated. O

Lemma 1.3.16. For ¢ > 0, there exist Ry > 0, ¢ > 0 such that for any R > Ry,
w € Q*(Zg, F) an eigensection associated with Ay €] — 0 + ¢,0[U]0,0 — €[, there exists

W € im (/})\O,e—cR’/\0+e—cR[,],(y’o[u]o’g[’zR) satisfying
(1'3'115) ||wzm - (DzmHIRY < e_CRHwHZLo UZapo *

Proof. We claim that there exist ¢ > 0, C' > 0, Ry > 0 such that for any R > Ry,
w € Q*(Zg, F) an eigensection associated with Ay €] — 0 +¢,0[ U |0,6 — €], there exists
€ im(Jjng—e—ck rg+e—eR[,z), SUch that

(1'3'116) ”wzm - szHIRY < e_CRHw”ZLO UZao > ||M||Z1,0u2270 < OHwHZl,O UZapo -

Once (1.3.116) is proved, (1.3.115) follows : for R large enough, by Theorem 1.3.10,
we have

(1.3.117) Ao — e B Ng + e [ C,er] — 6,0[U]0, 6] .
Let (w1, wi™, wa, ws™) € Erg—ecr rg+e—<r[,R(Z12,00, I), such that
(1.3.118) = Jing—e—cB pgpe—eR] zp (W1, W, We, w5 )

By Definition 1.3.11, we have

(13119) ||’LL||ZLOUZ270 = H<w17wfm’wQ’wgm)"g])\()—e*CR,/\()‘FefcR[,R(ZlQ,oo7F) ’
Set
(1.3.120) w = /]Ao_efch)\o_,_e—cR[7]_570[U}075[7ZR(UJ1,w%m,w%wgm) .

by Proposition 1.3.13, (1.3.116), (1.3.117) and (1.3.119), we get (1.3.115).
Now we prove (1.3.116).
Since w is an eigensection of D} associated with Ao, we have

(1.3.121) W™ = "M (W gz, ) A+ €U (W 7, )
By Lemma 1.3.15, we have

(13122) ||Cl()\0)wzm7_|azl,o - wzm’+|aZ1,OHY < e—CR”wHZl,oUZz,O ’

[€4%RCaa(Aad™ iz = ™ lozeoly < iz e -
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We proceed in the same way as (1.3.56): using Trace Theorem and elliptic estimate, we
get

(1'3'123) ”wzm’_bzl,oHY < ||w|321,0HY < C”WHZl,oUZzo .
By (1.3.96) and (1.3.122), we have
(1‘3‘124) HWHZLOUZQ,O < C’|wzm7_‘8z1,0”Y :

By Proposition 1.8.2, (1.3.122), (1.3.123) and (1.3.124), there exist ¢; € J*(Y, Fdul),
A € Rand ¢; € s°(Y, Fldu]) (j = 1,--- ,dim s2°(Y, F|du])) such that the following
orthogonal decomposition holds,

dim #* (Y, F[du))

(13125) wzm,f‘8Zl70 _ Z qu :
j=1

and

(1.3.126) [Aj = Aol < e, le; — dilly < e Bllwllz 0uza0 »

M Ca(N) s = @5 -
By (1.3.17) and (1.3.21), we can find (wy, wi™, we, wi™) € &4 r(Z12.00, F') satistying

dim s2* (Y, F'|du])

(1.3.127) Wit = (e Mg+ MM (N)gy)
j=1

Put

(1.3.128) = Jazp(wi, Wi, wo, w3™)

Then, under the identification IrY =~ I, oY C I} Y, we have

(1.3.129) P = Wit

We prove the first inequality in (1.3.116). By (1.3.121), (1.3.127) and (1.3.129), it
suffices to show that, for u; € [0,2R],

(1.3.130) He’“o’“ <wzm’7’821’0> + eftom <wzm’+|821’0>
dim 7#* (Y, Fldu])

- Y (g ema)e) || < e P lwllziwz,
j=1

which is a consequence of (1.3.122), (1.3.125) and (1.3.126).
We prove the second inequality in (1.3.116). By Definition 1.3.11, (1.2.33), (1.3.127)
and (1.3.128), it suffices to show that

dim 2 (Y, F[du])

(1'3'131) Z ”ij”Y < CHWHZLOUZZO )
j=1
which follows from (1.3.123), (1.3.125) and (1.3.126). O

Proposition 1.3.17. For € > 0, there exist Ry > 0, ¢ > 0 such that for R > Ry and
BCocr AC]—0+¢€,00U]0,0 —¢[, Zap,z, is surjective.
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Proof. Suppose the contrary, i.e., there exist R; — +oo, w; € Q%(Zg,, F) and \; € B
satisfying

(1.3.132) Dz, wi=Aw; . wi Lim( Zapzp,) -
By Definition 1.3.12, we have

(1.3.133) im (/A,]—é,O[U}O,&[,ZRi> = im (/A,B,ZRi) @ im </A,]—6,0[u]0,5[\B,ZRi> :

Furthermore, fA,]—é,O[U]O,(S[\B,ZRi is spanned by the eigensections associated with those
A €] —0,0[U]0,0[\B. By (1.3.132), we have

(1.3.134) w; L im(/A,]—&,O[U}O,(S[,ZRi) .
By multiplying suitable constants, we may assume that

(1.3.135) |will zio U oo = 1.

Then, by Proposition 1.3.14, we have

(1.3.136) ™ I3 + lw™ I3 > ¢ > 0.

By Lemma 1.3.16, there exists w; € im(/A,]fé,O[U}O,é[,ZRi) such that

(1.3.137) |lw?™ — 2|1y — 0, as i — 0o .
By (1.3.136), (1.3.137), we have
(1.3.138) (WM, O™ — 00, as i — 00 .
By Lemma 1.2.1 and (1.3.135), there exists C' > 0, such that
(1.3.139) [(wi, @) — (W™ 0™ < C.
Then, by (1.3.138), (w;, ;) tends to co. This contradicts (1.3.132). O
Theorem 1.3.18. For e > 0, there exists Ry > 0 such that for R > Ry, we have
(1.3.140) Sp (D7) C |—oo,—R'*[ U {0} U JR™"*,00] .
Furthermore, if we denote
(1.3.141)

AR\{O}:{)\k : keZ\{O}}, with -+ <A <0< \ <A <o

Sp(DgR)\{O}: {pk : /{:GZ\{O}} ;o owith - <p 1 <0<pr<pp<oen
there exist v, ¢ > 0 such that for R > Ry and |\| < v,
(1.3.142) Ak — pr| <e .

Proof. The first part is equivalent to Theorem 1.3.10. We prove the second part.
We fix €, ¢ and R such that Theorem 1.3.10, Proposition 1.3.13 and Proposition 1.3.17
hold. We enlarge R, such that, for R > Ry,

(1.3.143) e>R1E > ek
By Theorem 1.8.1, we have

m

(1.3.144) Ap=J{NeR : 4RA+0,()\) € 27Z}
k=1
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where 61(\), -+ ,0,,(\) are analytic functions on A such that {e®W ... ¢fnV} =
Sp (Clg ) By enlarging Ry, we can show that for R > Ry,
(1.3.145) Ar C|—o0,—R "[U{0}U]R %, o0 .
For k > 0, if A\, < § — e, we apply Proposition 1.3.17 with
(1.3.146) A=10,\[, B=]R' N\ —ef[.

(By (1.3.143) and (1.3.145), we have B C.-cr A.) Then fZ4p 7, is surjective. As a
consequence, D§R has at most k£ — 1 eigenvalues lying in B. Further, by Theorem 1.3.10,
we have p; > R717°. Then we must have p, > A\, — e %, A similar argument using

Proposition 1.3.13 shows that p, < A\, + e . For k < 0, we have parallel arguments.
Set v = § — ¢, then (1.3.142) holds. O

For 0 < p < dim Z, we set

sz()\) = 012()‘) ‘.yfp(Y,F)@,yfp—l(Y,F)du ’

1.3.147 .
( ) AP, — {A >0 ¢ det (“MOT(N) — 1) = o} .

Let D;ﬁ’(m be the restriction of ng on QP(Zg, F).
Theorem 1.3.19. If we denote

A%:{Ak : k:1,2,-~-}, with 0 < M\ <Ay < -+
(1.3.148)
Sp( F2p)>\{0}—{ :1,2,-~}, with 0 < p; < pa < -0,
there exist v, c > 0 such that for R > Ry and A\, < 7,
(1.3.149) A2 — pp| et

Proof. If A,B C R are symmetric (i.e., A € A implies —\ € A), then &4 g(Z12,00, F)
and &p(D7 ) are homogeneous. Let &% (Z12,00, F) and &5(D,) be their degree p com-

ponents. Noticing that £4 gz, preserves the degree, we denote by /ABZ be the
restriction of /A B,z 1O (’?A r(Z12,00, F'). Then Proposition 1.3.13 and Proposition 1.3.17

hold for A B 7, Noticing the fact that

(1.3.150) {)\ >0 ¢ sy w(Zine, F) # o} —

the rest of the proof follows the same argument as the proof of Theorem 1.3.18. U

1.4. Asymptotic properties of the spectrum : boundary case.

We use the notations in §1.3.1. We recall that the Riemannian manifolds Z;r =
Z; Uy [0,R] xY (j = 1,2, 0 < R < oo) were defined in §1.0.2, and F is a flat vector
bundle on Z; . As stated in §1.0.2, we use the relative boundary condition on 07, p and
the absolute boundary condition on 075 g, which are defined by (1.1.5). We recall that

D7 . (j = 1,2) are Hodge-de Rham operators acting Qp4(Zj g, F'). Let Sp (DZ’R> be

the spectrum of ng .- In this section, we give parallel results as in §1.3 for Sp <D§j R).
In §1.4.1, we establish results parallel to §1.3.3 and §1.3.4.
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1.4.1. Approxzimating the kernel and small eigenvalues.

We recall that J%(Zj o0, F) and H3 ) (Zj00, F') © H*(Zj 0, F) (j = 1,2) are defined
by (1.2.35) and (1.2.48). We use the convention e (21 00, F') = Ho(Z1 0, F) and
Hpa(Za.00, ') = K3 (L300, F).

We recall that I; Y C Z; g (j = 1,2) are the cylindrical parts of Z; g, defined in §1.3.1.
We recall that the following maps are defined in Definition 1.2.9,

(1.4.1) R+ (L0, F) = QU (LY, F), forj=12.
The inclusion [; gY C I, .Y induces

(1.4.2) N (LY, F) = Q(;rY, F) .
Composing (1.4.1) and (1.4.2), we get

(1.4.3) Ry H(Z;0, F) = QLY. F), forj=12.

We recall that x; g (j = 1,2) are defined by (1.3.24), which are smooth functions on
IrY . By restricting to I; gY C IgY (j = 1,2), we may view x; g as smooth functions on
I; Y.

Parallel to Definition 1.3.1, we have the following definition.

Definition 1.4.1. We define

(144) FZj,R : ‘%;d(Zj,OO? F) — Q;)d<Zij, F)
as follows: for (w, &) € H4m(Zj 0, F),

(1.4.5) FZLR(w,d)

w, Fz ,(w) Ly = dr (Xj,R %dpﬁ-(w,d))) + W .

J

By (1.2.42), Fy, , is well-defined. Furthermore, we have

)‘Zj,o =

(1.4.6) d"Fyz, p(w,w)=0.
We recall that ¢ : Zr — Z is defined by (1.3.32). Put
(1.4.7) PiR = @R‘Zjﬂ  Zjr = Zj -

Then ¢; g (j = 1,2) induce the canonical isomorphisms Hpy(Z; g, Y) ~ Hog(Z;, F).
Proposition 1.4.2. For R > R’ > 0 and wy € J%(Z1,00, F), we have

(1.4.8) [Fz, 5 (w1,0)] = [Fz, ., (w1,0)] € Hoq(Z1, F) .
For R> R >0 and (wy,w) € I (Z2.00, F), we have
(1.4.9) [Fzy (w2, 0)] = [Fz, (w2, 0)] € Hpg(Za, F) .

We will prove Proposition 1.4.2 as a consequence of Proposition 1.3.3. We need the
following constructions.

Let Zjr (j = 1,2) be another copy of Z; . Set Z%, = Z; g Uy Z; g, which is a closed
manifold. Then Z{% is equipped with a natural Zs-action exchanging Z;r and Z; p.
Gluing the flat vector bundle F' on Z; r and its copy on 7]-7}3, we get a flat vector bundle
on Z{% which is still denoted by F. The Z,-action lifts to F in the natural way. Let ¢
be the generator of this Zs-action. Gluing h* and A, we get a Hermitian metric on F'
over ZJ‘%%, which is still denoted by h. Let DIZT;”?z be the Hodge-de Rham operator acting

on Q*(Z{%, F). Then D},

Zan 18 Zg-equivariant.
7R
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Let ¢* be the action on Q*(Z%, F) or H*(Z%, F) induced by ¢. Let (f)‘(ZJ‘.ifl’%,F))jE

and (]—I‘(Z;-i%,F))i be its eigenspaces associated with 41. The injection Z;p < Zip
induces the following isomorphism

o (_l)j [
(1.4.10) (Q(Z%F) " = Na(Zin, F) .
Passing to cohomology, we get the isomorphism
° —1)7 °
(1.4.11) (H* (2%, F) ™ = By (Zn, F) .
Proof of Proposition 1.4.2. Let s*(Z{%,, F) be the #*(Z12 o, F) defined in §1.3.2 with

Z1,00 and Zy o replaced by Z; . and 73‘,00. More precisely,
(7 F) = {(wl,wg,d)) L (w1, &) € A (Zjno, F)

7,007

(1.4.12) B
(wa, @) € H*(Z; 00, F)} .

By Definition 1.3.1, we have
(1.4.13) Fya HN(ZRF) = QN(Z0, F)

7,007

Let N9 be the number operator on 5#*(Y, F[du]) associated to the variable du, i.e.,
its restriction to °(Y, F') is zero, its restriction to .77*(Y, F')du is the identity map. We
define an involution

L ANZ L F) = AT F)

(1.4.14) .
(w1, ws,w) (W2,w17(—1)N w) .

The following diagram commutes

(1.4.15) AT, F) L (220, F)

O (Zih, F) —— Q*(Z%, F)
Let (%'(Z;{'go)i be the eigenspace of +” associated with +1. We have
) o(r7db + o(r7db +
(1.4.16) Fya (H°(Z2,, F)) — (250, F)) .

7,007

We also have the following isomorphisms

[ ] [ ] 71 J
Ao Zsoor F) = (°(285,, F)) Y

1.4.17
( ) (w,Q) = (w, (=1)w,d) .

The following diagram commutes

Fan
j © 2z

(e (z8h,, F) Y 2L (02, F))

]7007
F l

(1.4.18) l
. ZiR [
jfbd(Zj,OWF) de(Zj,RvF> )

where the vertical map on the left is defined by (1.4.17), the vertical map on the right is
induced by the injection Z; p <— Z{%.
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By (1.4.11) and (1.4.18), the present proposition follows from Proposition 1.3.3 with
Zp replaced by Z%. O

In the rest of this section, we will state several results parallel to those in §1.3.3 and
§1.3.4. Their proofs follow the same strategy as in the proof of Proposition 1.4.2 : on
Zﬁ%, the constructions in §1.3 commute with the action of ¢, and the objects concerned
associated with Z; p (eigenspace of Hodge-de Rham operator, cohomology, etc.) are
canonically isomorphic to the eigenspaces of ¢ associated with (—1)7 in the corresponding
objects associated with Z{b,.

Recall that the L*-norm || - ||. is defined in §1.0.4. For (w,w) € H4e(Zj.00, F), put

T 2
(1.4.19) N, )z, o = Il -
By passing to Zﬁ% and applying Proposition 1.3.4, we get the following proposition.

Proposition 1.4.3. There exist ¢ > 0, Ry > 0 such that for any R > Ry, (w,w) €
I Zi oo, F) (j =1,2), we have

(1.4.20) l—e B g 12, (w0, @) \Zj,R <1l+e .
H(%W)H,;fl;d(zjmf)ﬂ
Let
1.4.21 P L) L (7 0 F) = ker (DE?
(1.4.21) i a(Zim, F) = ker ( Dy,

be the orthogonal projections.

Definition 1.4.4. For j = 1,2, set
ker(D?’_2 )

(1.4.22) Ty o= P50 o Fy A (Z e, F) — Ker (DF’2 ) .

Z]yR
By passing to Zﬁ% and applying Proposition 1.3.7, we get the following proposition.

Proposition 1.4.5. There exist ¢ > 0, Ry > 0 such that for any R > Ry, (w,w) €
I Zj oo, F) (7 =1,2), we have

(1423) H (FijR - 923',12)(("}7 (’:}> Hch,ijR < e*CRH (w7 CD) H%b.d(zj,oo:F) :
By passing to Z{% and applying Theorem 1.3.10, we get the following theorem.

Theorem 1.4.6. There exists Ry > 0 such that for R > Ry, the maps Fz, , (j = 1,2)
15 bigective. Moreover,

(1.4.24) Sp (DIZJJ_,R> Cl—o00,—R " [U{0}U]R™%, 4o .
Set
(1.4.25) CipaN) = (=1Y (GO ey = GO i)

For R > 0, set
(1.4.26)  Ajp= {)\ ER., det (eWch,bd(A)@,(Y’F) - 1) _ o} Cforj=1,2.
By passing to Zﬁ% and applying Theorem 1.3.18, we get the following theorem.

Theorem 1.4.7. Theorem 1.3.18 holds for (Sp (ngR> ,ALR), where j =1, 2.
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For 0 < p < dim Z, set

Cﬁbd()‘) = Cjba for j=1,2,

() ‘%P(Y,F)Gajfp—l(Y,F)du )

(1.4.27) -
M= {h B det () oy 1) =0}

By passing to Z{'% and applying Theorem 1.3.19, we get the following theorem.

Theorem 1.4.8. Theorem 1.3.19 holds for (Sp (Dgf;jp)) ,A§,R), where j = 1,2.

1.5. Asymptotics of the (weighted) zeta determinants.

The purpose of this section is to prove Theorem 1.0.1.

In this section, we use notations in §1.3.1. For convenience, we use the following
convention : Zyr = Zg, Co.r = Cr, and so forth, i.e., we add a sub-index 0 to the objects
associated with Zr. We use the following definition of (-functions (; r(s) (j = 0,1,2),
which is equivalent to (1.0.6).

__ 1 = e N F2 ker(D3? )

(1.5.1)  (r(s) = —=— t°"Tr [(=1)"Nexp (—tDy, 1-P iR )| dt .
7 I'(s) Jo P

Let € €]0,1[. Let (Sxr(s) (resp. (/r(s)) be the contribution of fORzia (resp. [ps.) to

¢jr(s) in (1.5.1). Then

(1.5.2) Gr=Cint+Gn-

In §1.5.1, we define model operators which will serve as the limit (as R — o0) of the
Hodge-de Rham operators concerned. In §1.5.2, we treat the contributions of fR. In

§1.5.3, we treat the contributions of J.I:R.

1.5.1. Model operators.

Set I1 g = [-R,0], Lr = [0,R] and I = [-R, R]. Let u be the coordinate. We
sometimes add a sub-index 0 to the objects associated with Iy p := Ig.

We recall that s2°(Y, F) and J2°(Y, F[du]) are defined by (1.2.1) and (1.2.6). Let
Q°* (I, 7°(Y, F)) be the vector space of differential forms on I with values in (Y, F).
We define the total degree of w € QP (Ig, #9(Y, F')) to be p+ q. We have the canonical
identification

(1.5.3) OF (In, (Y, F)) = € (I, 2°(Y, Fldu))) .

For w € Q*(Ig, #°(Y, F)), let u s w, € #*(Y, F|du]) be the corresponding function.

We recall that the operator ¢(2) acting on J#°(Y, F[du]) is defined by (1.2.4) and that
L C (Y, Fldu]) (j = 1,2) are defined at the begining of §1.3.2. We define the model
operator Dy, by

(1.5.4) Dy, = c(@) -
with

(1.5.5) Dom (Dy,) = {w € O (I, #*(Y,F)) : wp€ L*, wpe z;} .
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We define equally Dy, , and Dy, , with
Dom (Dy, ) = {w € QO (LLp, (Y, F)) : wpe L,
wy € (Y, F)du} :
(1.5.6)
Dom (Dy, ) = {w € O (Lop, (Y, F)) : wpe 25,

wOE%'(Y,F)}.

We remark that D? = (j = 0,1,2) preserve the total degree. Let D?’_(p) be its restriction
IR JR

to total degree p.
Let .Z° be absolute/relative part of £, which is defined by (1.2.46). We use the

j,abs/rel
convention Z7q = £, and Ly = Lo e By (1.5.4), (1.5.5) and (1.5.6), we have
(1.5.7) ker (Di’%(p)) ='NL,  ker (Di’_(g)) =LV, forj=12,

where the vectors in Z'N.Z) (resp. £} 4) are viewed as constant functions on I (resp.

Ij,R)-
We define the composition map

(1.5.8) Gfp’g . glzjrel — 9%11?1”61 m ng — Dglp m gzp 5

,rel

where the first map is the orthogonal projection, and the second one is the natural
injection. We also define

(159) Bp,iﬁ : "S/ﬂlp N 3210 — "E/ﬂlzjabs N "zﬂ;jabs - $2p,abs )
which is still the composition of an orthogonal projection and an injection. And

. D p+1,1 p+1 p+1,1 p+1
(1.5.10) Op.: .,i’g’abs — .i”lrel — .L”Lrel N .i@w — &

1,rel

where the first map is the duA operation (cf. (1.2.4)), the second one is the orthogonal
projection and the last one is the natural injection. We get the following exact sequence

, B, b,
(1.5.11) e P g g

The exactness of (1.5.11) is justified by the following identities

im(ap,-zj) = ker(ﬁniﬂ) = "glz?rel N "%2p,rel )
(1512) lm(ﬁp7g> = ker(5p7$) = "g’ﬂlzjabs A "%QI:abs )

im(0y,¢) = ker(apy1,9) = LI N L

We may view (1.5.11) as the Mayer-Vietoris exact sequence associated with our model.

Recall that C;(\) € End(22°(Y, Fldu])) (j = 1,2) are the scattering matrices associ-
ated with ng’oo (cf. §1.3.2) and that the operators Ci2(A) and C;pa(A) are introduced
in (1.3.18) and (1.4.25). We denote C12 = C12(0) (resp. Cjpa = Cjpa(0)). Let CT,
(resp.C%y,4) be its restriction to #P(Y, F) @ 7Y, F)du.
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By (1.2.45) and (1.2.46), we have
ker (Cf,bd - 1) = -iﬂf?rel ©® ia%fﬁ;% )
ker (C;bd - ]') = "%;abs D du A g;;bls ’

ker (Cf, — 1) = (L' N.LY) @ia (L N L)

@ du (LP 020

(1.5.13)

For C' = Cyy or Cjpa (j = 1,2), set
(1.5.14) X'(C) =Y (-1)Ppdimker (C” - 1) .

P
We recall that x’ is defined in (1.0.9).

Lemma 1.5.1. We have

(1.5.15) X'(C12) = X'(Cipa) — X' (Copa) = 2X.
Proof. We denote
dim ff be = Tp, dim $£ abs = Up »
(1.5.16) dim (LY N L) =y, dim( L N L) =,

dim #7(Y, F) = h, .
Then, by (1.2.46), we have
dim L5 =h,—x,, dim L =h,—y,,
dim(Z7f N XQP:;D =, .
Since HP(Y, F) = (L] s + Lo aps) @ ("%11?7;1;5 A g;;)i_)s)J we get
(1.5.18) hy =xp 4+ yp —up + v, .
By (1.5.13), (1.5.14), (1.5.17) and (1.5.18), we have

X' (Ci2) = X'(Cipa) — X' (Copa) = Z 2(=1)"(yp — up) ,

P
dim £7 N 25 — dim £}y 4 — dim £, 4 = Z(—l)p(yp —Up) .

p

(1.5.17)

(1.5.19)

By (1.0.9) and (1.5.19), it rests to show that
dim £7 N 25 — dim £F 4 — dim £ 4
= dim H?(Z, F) — dim H? ((Z,, F) — dim H? y(Zs, F) .
By Theorem 1.1.1, Theorem 1.3.10 and Theorem 1.4.6, (1.5.20) is equivalent to
dim £ N 2 — dim £F 4 — dim £, 4

(1.5.20)

(1.5.21)

This follows from (1.2.49) and (1.3.13).
We denote

(1.5.22) a, = dimim(oy, ¢), b, =dimim(f, ), d, =dimim(, ¢) .

= dim %p(Zlgjoo, F) — dim %pd(zl,om F) — dim %pd(ZQ’OO, F) .

37
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Lemma 1.5.2. We have
(1.5.23) X' =) (=1Pdy,  X'(Ci2) =) (—1)P(ap —bp) .

p p

Proof. Proceeding in the same way as in the proof of Lemma 1.5.1, all the terms involved
can be expressed by x,, yp, up, v,. Then (1.5.23) follows from a direct calculation. O

We turn to study the spectra and (-functions associated with our model.
For R > 0, set

A = {00 det (¢t 1) =0
(1.5.24) |
N ={A>0 ¢ det (€T ~1) =0}, forj=1,2.

Proposition 1.5.3. We have
(1.5.25) Sp (D?;F?) \{0} = {AQ A€ Aj;g} C forj=012.

Proof. First we consider the case j = 0.

By shifting the coordinate, we identify I g to [0, R]. We define I o = [0, 00[. Let Dy,
be the operator defined by (1.5.4) with the same boundary condition (only at v = 0) as
Dy, , for R < oo. Here, Dy, _ is exactly the D} constructed in §1.2.3 with Z, replaced
by I1 .~ and F replaced by s°(Y, F'). Using (1.2.45) and (1.2.46), a direct calculation
shows that a generalized eigensection of Dy,  with eigenvalue A # 0 takes the following
form

(1.5.26) e (1 —ic(2)p + MO (1 —ic(2))p, &€ (Y, F).

Comparing to (1.2.31), we see that there are only zeromodes (cf. (1.2.14), (1.2.15)).
Furthermore, the scattering matrix of Dy, _ is C1, which does not depend on A.

We construct equally Dy, . Its scattering matrix is Cs.

With the above constructions, we are in a special case of the problem addressed in
§1.3. The only difference is that Iz is not a closed manifold. Checking all the arguments
in §1.3, we see that they still work for Dy,. Now, applying Theorem 1.3.19, we see that

Sp (Di’a(p)> \{0} is approximated by A" in the sense of (1.3.149). Notice that the error

terms in the whole argument leading to Theorem 1.3.19 come from non zeromodes. Here,
since there are only zeromodes, the approximation is replaced by equality. This proves
(1.5.25).

For j =1, 2, replacing Theorem 1.3.19 by Theorem 1.4.7, the same argument works. [

Let (. jr(s) be the (-functions of D%ij defined in the same way as (1.5.1) .
Proposition 1.5.4. We have
G (0) = X'(C12) log(2R) — x (Y, F) log 2
N 2—Cfp = (Ch)™

(1.5.27) + ) g(—l)p log det* ( - ) 7

Gk (0) = X'(Cjpa)log R — x(Y, F)log2, forj=1,2.
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Proof. Applying (1.0.6) and (1.5.25), both identities are consequences of Appendix (1.8.16).
The first identity is the weighted sum of (1.8.16) with V' replaced by J7(Y,F) &
AP (Y, F)du and C replaced by Cf,. For the second identity, we replace C' by C% 4

and replace R by R/2. Since Sp(Cﬁbd) C { -1, 1}, the log det™ term vanishes. O

1.5.2. Small time contribution.
We denote

[\

On(t) = > (~1)0 DT [(—)V N exp (~tD? )]
(1.5.28) .
On(t) = 3 (~)U VUM |(—1)VNexp (-0} )] -

J=0

We define Cf;LR (7 =0,1,2) in the same way as C}Z/L.
By (1.5.1) and (1.5.15), we have

Z(_l)(j—l)(j—2)/2 (CﬁR(s) - f:j,R(S)>
(1.5.29) jzo
1

_ _Ts)/o £ (O(t) — O3 (1)) dt .

Theorem 1.5.5. There exist ¢ > 0 such that as R — o0,
2

(1.5.30) 3 (~1)uhu-) (CfR’(O) _ Cf,j,R’(O)) — (e

=0

Proof. Let f € €°(R) be an even function such that f(u) = 1 for |u| < 1/2 and f(u) =0
for |u| > 1. We proceed in the same way as in [BL.91, §13(b)|. For ¢,¢ > 0 and z € C, set

T L2 dv

Fio(z) = eiV20z o 5v f(\/&v) 7
(1.5.31) /_;, N .

Gl = /_ MR (L= [ (V) o=
Then
(1.5.32) Foo(Vi2) + Gig(2) = exp (— 122) .
Let
(1.5.33) Fus (ﬁng,R> (@, ), Gig <DZR> (x,y)

€ (A(T"Zjr) @ F), @ (A(T"Zjr) @ F),
be the smooth kernel of operators Fj . (ﬂngR) and Gy <D§jR> with respect to the

volume form induced by the Riemannian metric on Z; .
By the construction of Gy((z), for any k£ € N, there exists ¢,C' > 0 such that for any
t>0and 0 <¢ <1, we have (cf. [MaMar07, (1.6.16)|)

(1.5.34) sup | 2" Gy (2)] < Ce /st
zeC
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As a consequence, for any k, k' € N, there exists ¢, C > 0 such that for 0 < t < R?>7¢,
0<¢< R2/2and j =0,1,2, we have

_ R€/2
< Cte™* ,

Fk F Fk!
(1535) HDZjﬂRGtS (DZj,R) DZJ}R 0,0

where || -|jo0 is the operator norm induced by the L:norm. By Proposition 1.3.5 and
(1.5.35), there exists ¢,C’ > 0 such that for 0 <t < R*=, 0 < ¢ < R2¥/2 j =0,1,2
and z,y € Z; g, we have

(1.5.36) ‘Gtg (DZ R) (z, y)‘ Cte—<R .

By the finite propagation speed principal (cf. |[T11, §2.6, Theorem 6.1, [MaMar07, Ap-
pendix D.2]), if the distance between x and y is greater than ¢=/2, F, . <\/¥D§j R) (x,y) =

0. In the rest of the proof, we take ¢ = R~27/3 and suppose that R is large enough. For
v € Zippe C Zjr C Zr (j =1,2), we have

(1.5.37) F. (x/ipg“m> (z,2) = Fy. (\/ED§R> (,7) .

We view the middle of the cylinder | — R/2, R/2[xY as a subset of R x Y. Let DE, be
the Hodge-de Rham operator acting on Q°*(R x Y, F'). Let ¢ be the involution on R x Y’
sending (u,y) to (—u,y). For z € (] — R/2, R/2[><Y) NZ;r (j =1,2), we have

(VIDE,) (2:2)

— (Vi DRY> +(=1)Fe (VEDE ) (1)

As a consequence, for v €| — R/2, R/2[xY N Z; r =] — R/2,0] x Y, we have
Fi . (\/%DIZ:LR> (z,2) + " F), <\/ED§2,R> (1z, 1)

(1.5.39) =F,. <\/¥D§R> (x,2) + " Fic (ﬂD§R> (1, 1z)
€ End (A*(T"Z;jr) © F)

By (1.5.32), ©g(t) can be decomposed to the contributions of F; . and G,. By (1.5.37)
and (1.5.39), the contribution of Fi. to (1.5.29) vanishes identically. By (1.5.36), the

contribution of Gy to (1.5.29) together with its derivative at s = 0 are & (e~%"*)-small.
For ©%(t), the same argument works. This terminates the proof of (1.5.30). O

Fi.
(1.5.38)

1.5.3. Large time contribution and proof of Theorem 1.0.1.
By (1.5.1) and (1.5.15), we have

S (DI (¢(s) = ¢ (o))
(1.5.40) §=0
_ _ﬁ / 1 (On(t) — (1)) dt .

R2—¢

Let r €]e, 1. Let OL(t) (resp. OL(¢)) be the contribution to ©g(t) by the eigenvalues
of DF2 (j = 0,1,2) less than (resp. greater than or equal to) R=2**. We define ©%'(t)

and @* H( t) in the same way.
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Proposition 1.5.6. As R — oo, we have

(1.5.41) /OO @g()i’f ﬁ( IR“_E),

R2—¢

N on (1) % —0 (ﬁR“‘E) .

R2—¢

Proof. Let {Ac}x be the set of eigenvalues of Dy’ e - (= 0,1,2) such that A\, > R
Let n = dim Z. Then for R large and t > R*™¢ We have

O% ()| <n Z e~ L pem(EDRTER Z e
!

k

2
< ne (DR Z Ir [exp <_D§J2R)] .

=0

(1.5.42)

Let exp <—D§;2R) (z,y) (z,y € Z; r) be the smooth kernel of the operator exp (—D;;?R)

with respect to the volume form induced by the Riemannian metric on Z; r. Proceeding
in the same way as (1.5.36), there exists C' > 0 such that for any =,y € Z; g,

(1.5.43) ‘exp (—D;JQR) (x,y)) <C.
As a consequence, there exist a,b > 0, such that
(1.5.44) Tv [exp (-Dngﬂ <aVol(Zp) <DR, forj=0,1,2.

By (1.5.42) and (1.5.44), we get the first estimate in (1.5.41). The second one can be
established in the same way. U

Proposition 1.5.7. As R — oo, we have

o . dt .
(1.5.45) /R (0h(r) -~ 03'(1) & = 0 ()
Proof. For A > 0, we denote
o dt o dt
(1.5.46) er(N) = / e = = / et — .
R2-¢ t R2—¢€)\ t
By splitting the integral to [~ + f;p,s/\ (if R*7°X < 1), we have
(1.5.47) ler(V)] <1+ max{ —log (R*°A), 0}, |er’(N)| <A™,
For a finite set (with multiplicity) A C R, set
(1.5.48) er[A] = en()).
AEA
Then
o o dt
/ Ok -3 ®) T
R2—¢
2
(1.5.49) Z 1)=DG=2/2+p { [Sp ( pE2 <p>) 1o, RH[}
j=0 p

—en|Sp (D7) o, R |
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We will show that
(1.5.50) e [sp (ng@) 1o, RH[] —er [sp (DQ’(”)) n1o, RH[} — O(R"Y) .

Ig

The other terms can be estimated in the same way, and (1.5.45) follows.
Recall that A%, is defined in (1.3.147). By Theorem 1.3.19, we have

(1.5.51) eR [Sp (ng’(”)) 1o, R”‘ﬂ - 3 er(p?) + O(e=R) |

pEAT, , 0<|p|<Rr/271

Recall that A7P is defined in (1.5.24). By (1.5.25), we have

(1.5.52) er [Sp (Di;@) n1o, RH[} - 3 er(A\2) .

AEALT , O<|A|<Rr/2-1

By Appendix Proposition 1.8.3 and (1.5.47), we have

(1.5.53) > er(p?) — > er(\?) = O(R*Y).

peAL, 0<|p|<R~1++r/2 AEALP , O<|A|<R—1++/2
By (1.5.51), (1.5.52) and (1.5.53), we get (1.5.50). U

Theorem 1.5.8. As R — oo, we have

2

(1.5.54) D (—1)uneme (c;-,R’<0> - cf,j,R’w)) =0(R™).

=0
Proof. We combine Proposition 1.5.6, 1.5.7.

Proof of Theorem 1.0.1 : We combine Proposition 1.5.4 and Theorem 1.5.5, 1.5.8.

1.6. Asymptotics of the L?-metrics on Mayer-Vietoris exact sequence.

In this section, we prove Theorem 1.0.2.

We use the notations and assumptions in §1.3.1 and §1.3.2.

In §1.6.1, we contruct a filtration of the Mayer-Vietoris exact sequence. More precisely,
we extend the Mayer-Vietoris exact sequence to a commutative diagram with exact rows
and columns. Moreover, we construct another commutative diagram (1.6.16), which is
isomorphic to the original one. In §1.6.2, every object in diagram (1.6.16) is equipped
with a metric (depending on R). We study the asymptotics of these metrics as R — 0.
In §1.6.3, we study the asymptotics of the maps in diagram (1.6.16) as R — oco. In §1.6.4,
with the help of diagram (1.6.16), we prove Theorem 1.0.2.

1.6.1. A filtration of the Mayer-Vietoris exact sequence.

Recall that (F, V) is a flat vector bundle over Z, Y C Z is a hypersurface cutting Z
into Zy, Zy. For R > 0, we constructed Z;  (j = 1,2) (resp. Zg) by attaching a cylinder
of length R (resp. 2R) to Z; (resp. Z). Then F extends to a flat vector bundle over Zp.

The maps ¢;r: Zjr — Z; (j = 1,2) defined in (1.4.7) and g : Zr — Z defined in
(1.3.32) are diffeomorphisms, which induce the following identifications

(].6].) PR« - Ht:d<Zj,RvF) — Hl:d(Z]’F) , PR+ - H.(ZR,F) — H.(Z, F) .
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Since these diffeomorphisms commute with the injections Z; — Z and Z;p — Zg, we
get an isomorphism of long exact sequence

T Hgd(ZI,Rv F) - HP(ZRa F) - Hﬁd(ZZ,RvF) -

(1.6.2) l% l% l%
e Hy (20, F) = HP(Z,F) — s HD (2, F) > -

where each row is the classical Mayer-Vietoris exact sequence (1.0.16).
We recall that ngR (j = 1,2) (resp. D7 ) is the Hodge-de Rham operator (cf.

Js

(1.0.2)) acting on Qp 4(Z; g, F') (vesp. Q°(Zg, F)). Its kernel is denoted by 5 (Z; g, F)
(resp. H*(Zg, F)). We recall that 5% (Z; o, F) (j = 1,2) is defined by (1.2.48) and
S (Z12.0, F) is defined by (1.3.10). We constructed in Definition 1.3.6, 1.4.4 the bijec-
tions

ij,R : %.d(zj,om F) - %.d(zj,}%F) )

1.6.
( 63) yZRZ%.(Zlgpo,F)—)%.(ZR,F).

By Theorem 1.1.1, Fz, . and %2, may be viewed as maps

(1 6 4) ﬁZj,R :%.d(ZjDO?F) — Hl.)d(ZJ}RvF) ’
e gZR :%.(212,007}7) - H.<ZR’F) :

Now we define the composition map
(165 F 20 = 9000 Fay s HgaZyoor F) = Hia(Z3,F)
- T = opeo Fy  H(Zisoe, F) — H(Z,F) .

We remark that these maps depend on R.

Recall that the inclusion 7% (Z; o, F) C H0q(Zj 00, F') (j = 1,2) is defined in (1.2.49),
and the inclusion % (21 00, F) ® H%(Zooo, F) C H*(Z12,00, F) is defined in (1.3.13).
For simplicity, we denote J,%(Z1,00, F') ® 7% (Zo00, F) = H7%(Z12,00, F).

For R large enough, set

K} = 77,0 (#:(Zi00, F)) C Hia(Z;, ), for j=1,2,
KI.Q = %R(%ﬁ(Zlg’w,F)) g Ho(27 F) '

By Proposition 1.3.3 and Proposition 1.4.2, K7, K3 and K7, are independent of R. We
define the following commutative diagram with exact rows

(1.6.6)

0—— %ﬂLpa(Zl,oo, F) - %1)2(212,007 F) - <%ﬂLp2(Z2,ooa F) —0
(1.6.7) l”@iZl’R 19:23 ljzz,}z

0 Kl — oo - Kl - - K3 0

where the first row consists of canonical injection /projection maps. By Proposition 1.3.3
and Proposition 1.4.2, diagram (1.6.7) is independent of R.
Set

(1.6.8) L;‘,bd = Ht.,d(ZjaF)/K; ) LIQ = H.(Zv F)/KI.Q :
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Proposition 1.6.1. We have the following commutative diagram with exact rows and

columns
0 0 0
KY KTy Ky
(1.6.9) e HP(Z0, F) 22 HP(2, F) 2 12 (25, F) s
———— - >L€)bd__fp__>L11)2___B£_>Lgbd_ un =
0 0 0

where the maps K — KV, and K¥, — K% are defined by (1.6.7), the map K7 — K™
is zero, the second row is the classical Mayer-Vietoris exact sequence (1.0.16), and the
vertical maps are canonical injection/projection maps.

Proof. We show that the upper left square commutes. It is equivalent to show that for
any w € S5 (21 0, F), we have

(1.6.10) o ([Z2,(w,0)]) = [F2,(w,0,0)] € H(Z, F) .
By (1.3.29) and (1.4.5), we have
(1.6.11) Fz,(w,0,0)|, = Fz,5(w,0),  Fzy(w,0,0)[, =0.

By (1.3.48) and (1.4.22), we have

(7 2,0(w,0)] = [Fz, 2 (w,0)] € H34(Z1, F)

[(Z2,(,0,0)] = [Fz,(w,0,0)] € H?(Z, F) .
By Proposition 1.1.2 and (1.6.11), we have

(1.6.13) oy ([Fz, 1w, 0)]) = [Fz,(w,0,0)] € H*(Z,F) .

Then (1.6.10) follows from (1.6.12) and (1.6.13).

Proceeding in the same way, we can show that the upper right square commutes and
dp (Kg ) = (0. We get the commutativity between the first and second rows.

The rests can be done by direct diagram chasing arguments. U

Let £ (j = 1,2) be the set of limiting values (cf. (1.2.43)) of J#*(Zj, F). Let

L2 bsjr D€ the absolute/relative component (cf. (1.2.46)) of Z7. We still use the

We define, for j = 1,2, the following commutative diagram with exact rows

0 —— A2 (Zjoo, F) — H54(Zjoo, ) —> L g —> 0

(1.6.14) ljzj,R l'g}zj,R 172,k
\
0 K7 H€d<Zj7F)—>L§,bd—>0

(1.6.12)
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where the first row is defined by (1.2.49), the second row consists of canonical injec-
tion /projection maps. We define the following commutative diagram with exact rows

0> A Zigpos F) —> A (Lo, F) —> LP OV LF— 0
|
(1.6.15) ljZR ljz”” 2

Y
0 K?, HP(Z,F) LY, 0

where the first row is defined by (1.3.13), the second row consists of canonical injec-
tion /projection maps.

By (1.6.9), (1.6.14) and (1.6.15), we get the following commutative diagram with exact
rows and columns, which is the analytic counterpart of (1.6.9),

0 0 0

= A (Droor I) —— Ao (L1200, F) ——= H 2 (Zooo, ) — -+

ap(R) By (R) 5p(R)
(1.6.16) -+ ——> AP (Lo, F) —— AP (L1900, F) = AP (L, F) —— - -
ap(R Bp(R 5p(R
"—>$11jbd (£) ffﬂ%p B (R) gzljbd4>...
0 0 0

where the first row consists of canonical injection/projection maps, the columns are de-
fined by (1.2.49) and (1.3.13), and

—~ —1 —~ S
ap(R) = <gZR> © ap O‘QZLR ) a;D(R) = (ﬁZR)
(1‘6‘17) 6p(R) = (c%gﬁ)_l © ﬁp © %R ) Bp(R) = (§Z2,R)71 OBp o §ZR J

—~ -1 — _ - _ _ —
5P(R) = (‘gZZLR> © 510 °© LgaZz,R ) 5P(R) = (ngl,R) ' © 5? © LgJZQ,R :

= o X
0qp0 S 7,5

1.6.2. Asymptotics of the L*-metrics.
We begin by equipping the spaces in the second row of diagram (1.6.16) with metrics.
We recall that the metric || - || ze(2,5.,7),r 0D H*(Z12,00, F) is defined by (1.3.14). Let
F;. (|- llge(zgr)) be another metric on S#*(Z1200, F), which is the pull-back of the
L*-metric (defined in §1.0.4) || - || e ZR F) on H*(Zg, F) via Fz, (cf. Definition 1.3.6).
We recall that the metric |- |[ze (2,000 (5 = 1,2) on H434(Zj, F) is defined by
(1.4.19). Let .7, (|- llag ZJRF) be another metric on 4% (Zj ., F'), which is the
pull-back of the L2 metric || - 2, mF) ON HY 4 (Zj g, F) via F 5, (cf. Definition 1.4.4).

Proposition 1.6.2. There exists ¢ > 0 such that as R — +00, we have

(1.6.18) )
%R (H |

He ZRR) = H%-(zu,w,F),R + ﬁ( .
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Proof. The first identitiy is a direct consequence of Propostion 1.4.3, 1.4.5. The second
identity is a direct consequence of Proposition 1.3.4, 1.3.7. U

Now we equip the spaces in the third row of diagram (1.6.16) with metrics.

Let || - [|.zenzs.r be the quotient metric on £ N .23 induced by || - [[ze(z10.0.5),r
via the vertical map J°*(Z19,0c, F') — £ N £y in diagram (1.6.16). Let || - || zengs be
another metric on £ N %y, which is induced by the L*-metric |- ||y on s2°(Y, F|du])
via the inclusion £ N %y C (Y, Fdu]) (cf. (1.2.43)).

Proceeding in the same way, we define metrics || - |[zs, g and || - [[zs, on 2.

Proposition 1.6.3. As R — +oo, we have

° 2 = . 2(. -
(1.6.19) I Wee r =B e, + 00, Jorj=1,2,
|- Worngsn = 2R || - |2mngs + O(1) .

Proof. We only prove the first one for j = 2. The others can be proved in the same way.
We recall that 7% (Z2 00, F') is defined by (1.2.48). By the definition of quotient metric,
for any w € £, 4, we have

1.6.20 0% = inf G
(1.6.20) 91030 = il )

2
A2 (Z,00,F),R

We recall that I, .Y C Z;. is its cylinder part, defined in §1.3.1. On I, Y, let
w = W™ 4+ w" be the decomposition of w into zero-mode and non zero-mode parts,
defined in (1.2.16). Recall that my : I, Y — Y is the natural projection. We have
myw = w”™. As a consequence, we have

(1.6.21) ™ 17, oy = RIS = R @l -
where I, Y C Z, i is the cylinder part of Zs g, also defined in §1.3.1. Thus
= ||wliZ, , — ™17, v

= [[wllZ,, + W™ 7, oy -

1w, ) s, (Zoorry i — BNz,

(1.6.22)

In particular, we have

(1.6.23) . )P, o = R 121

By (1.6.20), (1.6.22) and (1.6.23), it is sufficient to show that there exists C' > 0 such
that for any w € £ 4, there exists (w,w) € 454 (Za,00, F) such that for any R > 0,

(1.6.24) lwllZ, , + ™7, v < C ll&

2
Zypa
In the rest of the proof, we choose w a generalized eigensection of DZ _ associated with

A = 0 such that (w,0) € I (2200, F'). The existence and uniqueness of w comes from
Remark 1.2.7. By (1.2.33), there exists C; > 0 such that for any w and its associated
generalized eigensection w, we have

(1.6.25) lwllZ,, < Cill@ll} = CilloliZ,

2.bd

Applying Lemma 1.2.1 and (1.3.43) with Z) o replaced by Z,, there exists Cy > 0 such
that for any generalized eigensection w associated with A = 0, we have

LU w I2,RY X w IQ,OOY AN 2 w Z2,0 .
(1.6.26) ™17, py < N7, v < Callwl

By (1.6.25)-(1.6.26), we get (1.6.24). O
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1.6.3. Asymptotics of the horizontal maps.
First we consider the second row of diagram (1.6.16).
We recall that the operators duA, i and c(2) on Q*(Y, Fldu]) or s2°(Y, F[du]) are

defined in (1.2.4).

In the sequel, by ¢ (e*f), we mean a number bounded by Ce " with ¢,C > 0
uniquely determined by 7, Z,, F. We will use the notations & (R™'), & (R™?), etc., in
the same way.

Proposition 1.6.4. For (w,w) € JG5( 21 00, F) and (p, pio, i) € HP(Z12.00, F'), we have
(B ), (1120 o 1

= <w”u1>Z1,R +0 (€7CR) ”(Waw)uyfgd(zlm,}?) “(M17M27ﬂ)H,ny(Zlg,oc,F) :

For (wy,we,w) € HP(Z12.00, F) and (p, 1) € Ho4(Z2,00, F), we have

(1.6.27)

<Bp( W17w27 ) /1’7 >%P Z20<> F) R
= (W2, ) g, + O () Nwr, w2, )Lz ooy 10 D er (20 ) -
For (w, ) € 2 Zao, F) and (p, 1) € (21 00, F), we have
<5P(R) (wv OAJ)? (:ua I[/\L)>=;fp+l(zl’oo,F)7R

~ . ~ —cR ~ ~
= (@yig i) +0 () 1.0 g za o 100 g 1y

(1.6.28)

(1.6.29)

Proof. Once again, we recall that % (Z;«,F) (j = 1,2) is defined by (1.2.48) and
FO*(Z12,00, F) is defined by (1.3.10).
For (w,w) € 44 (21,00, F), we denote

(1.6.30) ap(R)(w, @) = (wy,ws, &) € HP(Z12.00, F) .
By (1.6.17) and (1.6.30), we have
(1.6.31) o, ([Fz,0(w,0)]) = [Fz,(wi,wh,&)] € HY(Z,F) .

Then, by Proposition 1.1.3, for (u1, pio, ft) € HP(Z12,00, F'), we have

(1.6.32) (F 7, (W, wh, &), Frp (i, pio, fi >Z (F 7, oW, @), Frp, (b1, pio, 1 >Z1R :
By Proposition 1.6.2, we have

<(W17W2> "), (1, o, o >;{/p (Z12.00,F),R

_ <:/’ZR(W1aW2, ) JZR(L“’M??/L»ZR (1 + Vi (efcR)) .
By Proposition 1.3.4, 1.3.7, 1.4.3, 1.4.5, we have

(1.6.33)

<§Z (wad})ag\z <M17M27ﬂ)>
(1.6.34) o : “1.n

= (o) 0+ O (@) 1@ iy W01 12 1y -

By (1.6.30) and (1.6.32)-(1.6.34), we get (1.6.27).
The second and third identities can be proved following in the same way. U

Now we consider the third row of diagram (1.6.16). We remark that the exact sequence
(1.5.11) involves the same vector spaces appearing in the third row of diagram (1.6.16).
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Proposition 1.6.5. As R — oo, we have

a,(R) = 2,y + 0 (R

2
(1.6.35) By(R) =Bz + 0 (R
0,(R) = R, o+ 0 (R?) .

Proof. We only prove the first one. The rests can be proved in the same way.
By Remark 1.2.7, for w € £}, 4, there exists (w,w) € IG5 (Z1 00, F) such that w is a
generalized eigensection. We denote

(1.6.36) ap(R)(w, @) = (wy,ws, &) € HP(Z12.00, F) .
Then, by (1.6.17),
(1.6.37) a,(R)(w) =" .
We need to show that
L1 & oy s
(1.6.38) o — Eap’g(w) =0 (R7?) [Tl
LNy
By Proposition 1.6.3, it is sufficient to show that
L1 NE N
(1.6.39) o — §ap"$(w) =0 (R @l -
LPnLE R

By Remark 1.2.7, there exists (w{,w},&") € HP(Z13,F) such that w{ and wj are
generalized eigensections and

1
(1.6.40) & = S (@)

Since || - Hglpm%pﬂ is the quotient metric induced by || - || ,»(z,, . p) > for proving (1.6.39),
it is sufficient to show that

(1.6.41) @) = (5 ) oy = € (BT 03

By Riesz representation theorem, it is equivalent to show that for any (i, e, /i) €

FOP(Z12,00, F'), we have

<(C«)1,Wé,d/) — (w’llju)g,(;)”), (MI’MQ’II)>'.%0P(212,OO,F),R

= O (R2) [|@]] [ (s, 2, 1)

By Proposition 1.6.4 and (1.6.36), we have
<(W£7Wégd},)7 ('LLI’MQ’/:L)>%”P(Z12,OO,F),R

— <w7”1>zm + O (e—CR) ||(w,<1))

Since w is a generalized eigensection, by (1.2.33), we have

(1'6'44) H(W7dj)||jf:d(ZI,OO7F) = ||w||Zl,0 = ﬁ(” H(D”Y .

By (1.6.43) and (1.6.44), we get

<(W17 CU;, (;j/), (Mlv K2, /l)>jfp(212,oo7F),R

= <w’M1>ZI,R +0 (G_CR) ||('DHYH(N1’MQ’ﬂ)H%P(le,oo,F) '

(1.6.42)

‘%F(Zlgym,F),R :

(1.6.43)

:}iﬂbpd(zl,OO7F) H (,ula Ha, ﬂ) Hj{/P(le,OO,F) :

(1.6.45)
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The following identity is just the definition of (-,+) iz, _ g g (cf. (1.3.14)),
(1646) <(w/1/7 W;/a dj”)a (,ula M2, /:L)>L}fp(2127007F)7R = <w/1,7 /~L1>Zl,R + <(Ug, N2>Z27R .
Comparing (1.3.15), (1.6.42), (1.6.45) and (1.6.46), it remains to show that
<CL) /’L1>Z1 R - <w1/7/’61>Z1 R - <w;/7/’t2>2273

= ﬁ( 1/2) HWHY | (e g2, )H,;fp(zlg,oc,F),R :

Since W, w§ and w are generalized eigensections, by using Lemma 1.2.1 and (1.2.33) in
the same way as in the proof of Proposition 1.6.3, we get

(1.6.47)

= R{&", A)y + (1) |l@lly lilly

= R(@", )y + 0 (R™'7?) H@”YH(/“’MQ’ﬂ)”,yfp(212,oo,F),R , forj=1.2,
<W7N1>ZLR

= R(@, i)y + O (1)l [l tlly

= R(&, fi)yy + 0 (R/?) ||@||YH(M17M2aﬂ)||jfp(zmm7p)ﬂ :

By (1.5.8) and (1.6.40), we have

(1.6.48)

R 1 1
(1.6.49) (@, iy = 5{ap.2(@), 1)y = 5@ M)y
By (1.6.48) and (1.6.49), we obtain (1.6.47). This finishes the proof of the first equation.

O
Remark 1.6.6. A special case of the problem addressed in this subsection was considered
by Miiller-Strohmaier [MS10]. Considering the following Mayer-Vietoris exact sequence

ap By 5
(Zyr,C) —> H?, (Z r,C) —= H?(Y,C) —> - - - |

abs

(1.6.50) e P

rel
they gave an asymptotic estimate of the sesquilinear form

(1.6.51) HP(Y,C) x H?(Y,C) — C; = (0,0, 0p0)
as R — oo (|MS10, Theorem 3.3]), where (-, -) is the L*metric on H,

rel

(Z1.r,C).

1.6.4. Torsion of the Mayer-Vietoris exact sequence : proof of Theorem 1.0.2.

First we state a technical lemma.

For A:V — W a linear map between Hermitian vector spaces of the same dimension,
we denote by det(A) the determinant of the matrix of A under any orthogonal bases,
which is well-defined up to U(1) := {2 € C : |z| = 1}.

We recall that det*(-) is defined by (1.0.25).

Lemma 1.6.7. Let V' be a Hermitian vector space, Hy, Hy C V' two vector subspaces.
Let P; be the orthogonal projection to H; for j =1,2. We have

‘det(P1|1m(P2P1))‘ = ‘det(P2‘Im(P1P2))|

(1.6.52) 1
=det*(Id — P, — P+ PP, + P,P,)*
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Proof. We claim that there exists an orthogonal decomposition V' = €, Vi such that
dimV, < 2 and H; = @, (Vx, N H;) for j = 1,2. Once the claim is proved, we may
suppose that dimV < 2. Then the only non trivial case is dimV = 2 and dim H, =
dim H, = 1. We may suppose that

(1.6.53) V=C*, H; =C(1,0), Hy;=C(cost,sinf), with0<6<

| X

We have !det(P1|1m(p2pl))‘ = ‘det(Pghm(plpz))} = cosf, and

1 0 cos?f  cosfsind
(1.6.54) P = ( 00 ) , = ( cosfsin @ sin’ @ ) ‘
Then (1.6.52) follows from a direct calculation.

Now we prove the claim. The operator Py P, P, (resp. P, P, P;) acting on H; (resp. Hj)
is self-adjoint, let

(1.6.55) H=@ H, H= 1
0<A<1 0<A<1

be the associated spectral deompositions, i.e.,

(1.6.56) PiPyPy|y = Ad PPy = Ald.
We have
(1.6.57) H'=Hy=HNHy,, H'=HNH, H)=H,NH.

We get the orthogonal decomposition
(1.658) V = (H, + Hy)* & (HiNHy) & (H N Hy) & (HyNnHY) & @D (HY + H)
0<A<1

which is invariant under the actions of P, and P,. The problem decomposes to each
block. In Hy N Hs, the vector spaces in question are both the whole space. We take (e;);
an orthogonal basis of H; N Hy and choose V; = Ce;. For similar reasons, the claim is
true for (Hy + Ho)*, Hy N Hy- and Hy N Hi-. For H} + Hy with 0 < A < 1, let (vj)1<j<r
be an orthogonal basis of Hy, let V; be the vector subspace spanned by {v;, Pyv;}. These
V; satisfy the desired condition. O

We briefly recall some properties of torsion (cf. [BGS88a, §lal), which are of constant
use in this subsection. For a finite acyclic complex (V*,9) of Hermitian vector spaces,
we denote by 7 (V'*,0) its torsion (cf. (1.0.15)).

- Let (V*[n],0) be the n-th right-shift of (V*,9), i.e., V¥[n] = V¥~ then
(1.6.59) T (V*[n],0) = (F(V*,8) "

- If (V*,0) is the direct sum of two complexes (V}*,0;) and (V3, 03), then
(1.6.60) TV*0)=TV,00)-T(Vy,0s) .

- For a short acyclic complex
(1.6.61) (V*,0): 0=V - V2 =0,

let A be the matrix of @ : V! — V? with respect to any orthogonal bases, then

(1.6.62) T (V*,0) = |det(A)| .
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Let T'¢ be the torsion of the exact sequence (1.5.11) equipped with metrics || - || e

J7,bd
(j=1,2) and || - | zen.gzs. We calculate Ty in the follows.
We recall that 27,0 € (Y, F) (j = 1,2) is the absolute component of £ C

(Y, Fldu)), defined by (1.2.46). Let Z*+ C #*(Y, F) be its orthogonal complement

j,abs
with respect to the L?-metric on J#*(Y, F). We define S¥ € End (27 (Y, F)) as follows
(1.6.63) S =Tdgy, —Tdym: .

By identifying 77 (Y, F) to #7(Y, F)du via du/ (cf. (1.2.4)), S¥ also acts on A7 (Y, F)du.

We recall that C;(A) € End(#7°(Y, F[du])) (j = 1,2) is the scattering matrix associ-
ated with Q°*(Z; «, I) (cf. §1.3.2). We recall that C; = C;(0) and C7 is its restriction to
HP(Y,F) @ AP 1Y, F)du. By (1.2.45) and (1.2.46), we have

S 0
(1.6.64) C; = ( J . ) .
i\ 0 -

Proposition 1.6.8. The following identities hold
dim Z

Ty = H det*<2 e Si — S50 S]f)}l(_l)p
p=0

(1.6.65)

dim Z _ P
H det*(2 —Ch — (Chy) 1)411(_1) P
1 .

Proof. The exact sequence (1.5.11) is the orthogonal sum of the following two exact
sequences
(1.6.66)

Sy

5 P P 5 P P 5 P p 5
o gl,rel N "%Z,rel "g’ﬂl N "%2 Zl,abs N gZ,abs B

L Oz

o 11?rel N ("%p n gZérel)l 0 ’g;abs n ("‘lejabs N ZQIiabs) : o

1,rel

The 6, « in the first line is zero. The other maps in the line are canonical injec-
tion/projection maps. By (1.6.60) and (1.6.62), the fist line in (1.6.66) does not contribute
to T'¢. The second line in (1.6.66) splits into the short exact sequences

Op. +1 +1 +1
(1667) 0 gﬁabs N (glljabs n ’?;abs)J_ gﬁrel N (gﬁrel N ’%Z?rel )J_ 0.
By (1.2.46), the map io HP(Y, F)du — #P(Y, F) sends le;j N (.i”lpjell N ,%pjell)l to
L N (L NLP ) We define the following commutative diagram with exact rows
and isometric vertical maps

1L +1
0 % 21?abs N ("fl}?abs N4, 2%abs> < lprel N (Z 1]?

5

(1.6.68) lld llaau

1 L L L
0 "?;abs N (gfabs N "g/ﬂ;abs) - "g/plziabs N ("gll?abs N "%ﬁabs) 0.

+1 p+1y |
rel N "%,rel) 0

By (1.5.10), the map in the second row in (1.6.68) is the orthogonal projection. Since
the vertical maps are isometric, the torsions of the first and second rows coincide.
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Let P, (resp. Qp) be the orthogonal projection from J#7(Y, F) (resp. sP(Y, F')) onto
"E/ﬂ2 ,abs (resp "g/ﬂlpabs) Then

1 N
"%QZ?abs N ("glzjabs N "g;abs) = 1m(PPQP) )
7J— 7J— 7J— 1 1
glp,abs n ("%lzjabs N $2p,abs) - Hn(QpPp) :
We have the obvious identities

(1.6.70) P, = %(1 LS, Q= (1 5.

By Lemma 1.6.7, (1.6.62) and (1.6.68)-(1.6.70), the torsion of (1.6.67) is given by

! 2— S0 Sh— SV oStN\i

(1L671)  det™(1= B, = Qp+ BQy + QpP)t = det” (——2 E— )’
By (1.6.59) and (1.6.60), T’y is the alternative product of the torsions of (1.6.67) for
each p. Thus (1.6.71) implies the first equality in (1.6.65). We turn to prove the second

one.
We denote

(1.6.69)

Y

2—SfoS§—S§oSf>i
4
(Cf2)1)}1

[p7abs = det*<

2—-CF —
Ip:det*< 124

(1.6.72)

It is sufficient to show that
(1.6.73) HIIE D Hﬂ b?

By (1.6.64), we have
(1674) Ip = Ip,abs : ]p+1,abs .
By (1.6.74), we have

1)Pp (=1)P=*(p—1)
p abs abs p abs
(=1)"p 7(=1Pp
p abs p+1 abs — p )
p

which gives exactly (1.6.73). The proof of Pr0p0s1tion 1.6.8 is completed. O

(1.6.75)

Proof of Theorem 1.0.2. We equip all the objects in (1.6.16) with metrics. All the metrics
mentioned bellow are defined /recalled in §1.6.2.

- %.(Zlgpo, F) is equipped with the metric || - || ze(z,5 ..,F)R ;

- 5 (212,00, F) C I (Z12,00, F) is equipped with the restricted metric ;

- %’d( io0os ) (j = 1,2) is equipped with the metric || - |72 (2; 00, F).R 5

- I (Zjoor F) C Ioe(Z) 00, F') is equipped with the restricted metric ;

- 2N .23 is equipped with the metric || - ||.zengp ;

- ZLpa (7 =1,2) is equipped with the metric |- [|zs |

Let Th; (7 = 1,2,3) be the torsion of the j-th row, 7y, (j = 1,---,3n + 3) be the

torsion of the j-th column. By Proposition 1.6.2, we have

(1.6.76) TIn=1+0 (")) Thz .
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By [BGS88a, Theorem 1.20], we have
3n+3 i
(1.6.77) T Tia Ths = [[ TV
k=1
By Proposition 1.6.3, (1.6.59), (1.6.60) and (1.6.62), we have

(
Tyapin (1+ﬁ (R 1)>Rad‘m$1bd,
(1+ﬁ R 1)) dim,s,ﬂ{’mf;”
)

> dlmf2bd .

(1678) v3p+

T 3p13 = (1 + ﬁ(
By (1.6.59), (1.6.60), (1.6.62) and the fact that the first row in (1.6.16) consists of
canonical injection/projection maps, we have
(1.6.79) Thi=1.

We recall that a,, b, and d, are defined in (1.5.22). By Proposition 1.6.5, (1.6.59),
(1.6.60) and (1.6.62), we have

(1.6.80) Ths = (1 +6 (R ) <ﬁ 2<1>”%> <f[ R<1>pdp> Ty .

p=1
By the exactness of (1.5.11), we have

n

(1.6.81) S (1) ((dim g — dim ZF 0L + dim L) =0,
p=1
(1.6.82) dim &' N .4 = dimker(8, ) + dimim(f5, ¢) = a, + b,

By (1.6.76) - (1.6.82), we get

(1.6.83) Tn = (1 +0 (R ) <ﬁ2 1) (ap—by) ) (H RV, >

By Lemma 1.5.2, Proposition 1.6.8 and (1.6.83), the proof of Theorem 1.0.2 is completed.
U

1.7. Gluing formula for the analytic torsion.

In this section, we prove Theorem 1.0.3.

In §1.7.1, we review the Ray-Singer metric and the anomaly formula. In §1.7.2, applying
Theorem 1.0.1, 1.0.2, we prove Theorem 1.0.3.

1.7.1. Ray-Singer metric and Anomaly formula.

Let X be a compact manifold (with or without boundary). Let (F,V!) be a flat
complex vector bundle over X.

We equip X with a Riemannian metric g7%. We equip F with a Hermitian metric h®".
We suppose that ¢g”# and k' have a product structure near X (cf. (1.0.1)).

We put absolute/relative boundary condition on 0X. We recall that Hp 4 (X, F) is de-
fined by (1.1.4), and det Hp 4(X, F) is the determinant of Hp4(X, F'), defined by (1.0.11).

We recall that Qp4(X, F) is defined by (1.1.5). Let D% ,4 be the Hodge-de Rham
operator acting on Qp (X, F), defined by (1.0.2). Let |- [lact s, (x,) be the L*-metric
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on det Hp (X, F) induced by Hodge Theorem (cf. Theorem 1.1.1). Let ((s) be the
¢-function of D%, defined by (1.0.6).

Definition 1.7.1. The Ray-Singer metric on det Hp4(X, F') is defined as follows,

1
(1.7.1) |- HdetH J(X,F) = [ laet rrg, (x,F) €xP (QC/(())) :

Let ¢’ be another Riemannian metric on X. We suppose that g7~ and ¢7*" coincide
on a neighborhood of 0X. Let || - HdRS:’H. (x.r) be the Ray-Singer metric associated with
TX F
g™ and h'. Before stating the anomaly formula calculating the ratio of || - |38 HE (X.F)
and | - |5 ns (x.r)> We define the Euler form and its Chern-Simons form.
Let o(T'X ) be the orientation bundle of TX. Let VT be the Levi-Civita connection

on TX. Let RTX = (VTX)2 be its curvature. We define its Euler form (cf. [BZ92, (4.9)])

RTX

(1.7.2) e(TX, VX)) = Pf[ 5 } € QIMX(X, o(TX)) .

™

Let (gsTX)se[o,l]

gTX = ¢gTX'. Moreover, we suppose that all the g7 coincide on a neighborhood of 9X.
Let VI be the Levi-Civita connection associated with gZ~. Set

(1.7.3)

7 (TX, (1), o)
_ o TX b d TX TX Tx\—1 0 TX
N /0 {%’bzop {2# (V ) o <%vs [V ( ) &gs })} } ds .

By [BZ92, (4.10)], we have
(1.7.4) e ( (VI 0”) = o(TX,VTX') - (T X, VTX) .

be a smooth family of Riemannian metrics on T'X such that g/ % = g7

We are in a special case of [BM06, Theorem 1.9] : since g7 coincide near 90X, the
boundary term ¢, in [BMO06, (1.45)] vanishes, then the image of E(TX, (VEX)S,G[O 1]> in

(1.7.5) QdimX_l(X,o(TX))/{doz ta € QMY T(X o(TX)) , supp(a) NOX = @} :

denoted by €<TX, AVARS VTX/>, is independent of the path (VI¥)

identified with the secondary Euler class in [BM06, Theorem 1.9].
We define

(1.7.6) O(F,hF) = Tr [(hF)‘1 thF} e QY(X),
which is closed (cf. [BZ92, Proposition 4.6]).
The following theorem is a consequence of the anomaly formula for manifolds with

boundary [BMO06, Theorem 0.1], which extends the anomaly formula for closed manifolds
|[BZ92, Theorem 0.1].

Theorem 1.7.2. We have

sef01]’ which may be

2
(IR
(1.7.7) log<| det Hia (1) :_/ O(F, n")e(T X, v, vy |
X

|- ||detHbd (X,F)
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1.7.2. Gluing formula : proof of Theorem 1.0.3.
We use the notations and assumptions in §1.3.1. We recall that o € A(F) is defined by
(1.0.18). In the same way, we define

(1.7.8)  op € \g(F) = (det H*(Zg, F)) ® det Hey(Zyp, F) @ det Hoy(Zo.p, F) .

The commutative diagram (1.6.2) induces an isomorphism g, : Agr(F) — A(F). By
the functoriality of the construction of o, we have

(1.7.9) YR«OR =0 -

Let || - ||detH.(ZRF be the Ray-Singer metric on det H*(Zg, F). Let IE ||detH. (Z; . F)
j = 1,2) be the Ray-Singer metric on det Hyy(Z, r, F). Let || be the mduced
bd \4j, RF)
metric on Ag(F).

Lemma 1.7.3. For R > 0, we have
(1.7.10) lorllNs r) = llollXtr -

Proof. We use the convention Zy = Z and Zyp = Zg. We identify Hoy(Z;r, F) (j =
0,1,2) to Hoy(Z;, F') via ¢pr.. By (1.7.8) and (1.7.9), it is equivalent to show that, for
R >R>0,

Z L [ A2
(1.7.11) Z(_l)(J—l)(]—Q)/Q log ( det HY 4(Z;,F),R > 0.

I HdetHbd(Z F),R

J=0

Let VIZ4ir (j = 1,2) be the Levi-Civita connections on TZ; r. We recall that the
diffeormorphism ¢p p : Zr — Zp is constructed in the proof of Proposition 1.3.3. By
restricting to Z; g, ¢r r induces an diffeormphism ¢pp : Z;p = Zjr (j = 1,2). We
choose gl 77 = (1 — s)g"7" + 5% pg" 7. Let gL on ( = 1,2) be the restricted metric
on Zjp. Let AR (7 = 0,1,2) be the associated Levi-Civita connections. By (1.7.3),
for j =1, 2,

(1.7.12) E(TZR, (VsTZR)se[o,u) ‘ E<TZJ‘:R’ (V£Zj’R)se[o,1}> '

Since Qg g preserves the metric near the boundary, by (1.7.7), we get, for j = 0,1, 2,

118 ez ) o
(1.7.13) log( baf = _/sze(F’h )€<TZJ',R7 (Vs ”’R)se[o,u) :

| - |detH’ (Z;,F),R

Zjr

By (1.7.12) and (1.7.13), we get (1.7.11). O
Proof of Theorem 1.0.3. Recall that (i r(s), (2.r(s) and (g(s) are defined in §1.0.2, and
Tr is defined in §1.0.3. By (1.7.1), it is sufficient to show that

1 1 1
(17.14) Trexp (56Lal0)+ 5Gal0) = 56H(0)) =2 PO,

By Theorem 1.0.1, 1.0.2, the left hand side of (1.7.14) tends to 27 2XF) as R — oo.
Meanwhile, by Lemma 1.7.3, the left hand side of (1.7.14) is independent of R. This
proves (1.7.14). O
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1.8. Appendix : Matrix valued holomorphic functions.

Let (V, (-, -)) be a Hermitian vector space of dimension m. Let || - || be the norm induced
by (-, ). Let D C C be an open disc centered at 0. Let C': D — End (V') be a holomorphic
function such that, for any z € DN R, C(2) is a unitary matrix.

The following theorem is proved in [K95, §2.6, Theorem 6.1].

Theorem 1.8.1. There exist real holomorphic functions, i.e., their expansions at 0 are
of real coefficients, 01(2),- -+ ,0,,(2) in the neighborhood of 0 such that 1) ...  ¢im(2)
give all the eigenvalues of C(z).

Furthermore, there exist Pi(z), -+, Pn(z) € End(V), which are defined for z in the
neighborhood of 0 and holomorphic on z such that Pj(z) is the orthogonal projection to
the eigenspace associated with 6,(2), i.e.,

1=P(z)+--+ Pn(2),
(1.8.1) Pi(z)Py(2) =0, for1<jk<m, j#k,
C(z) = eigl(z)Pl(z) 4+ 4 eiem(z)Pm(z) )

In the sequel, by shrinking D to a smaller disc if necessary, we suppose that 6; and P;
(j =1,---,m) are all-well defined in the neighborhood of D.

For R > 0, we consider the equation
(1.8.2) HMEC (2w =0,

where z € D, v € V. By Theorem 1.8.1, for R and z fixed, (1.8.2) as an equation of v
has non trivial solution if and only if one of 4Rz + 0,(2),--- ,4Rz + 0,,(2) lies in 27Z.

Proposition 1.8.2. There exist Ry > 0, € > 0 such that for R > Ry, zy €] —¢,e[, v €V,

if
(1.8.3) |e* 0 C(z0)v — v| < [Jv]| ,
then there exist z1,- -+ ,2m € R, wy, -+ ,wy, € V satisfying

|2 = 20” < [loll ™" - [|e**Cz0)v o]
(1.8.4) 1P;(20)v — w;||* < ||v]| - e C(z0)v — 0|
= Oz )w; —w; =0,
forj=1,-- m.

Proof. We equip End(V') with the operator norm.
We fix By, By > 0 such that for any s,t € D and j=1,--- ,m,

(185 10,() = 601 < Buls—t . [Ps(s) = POl < Bals — 1] .
We choose € > 0, Ry > 0 such that
2 27 [
—€ — L€+ CcD,
(1.8.6) 4Ry — By 4Ry — By
0c—2 o1, 0<2P
4Ry — By ’ 4Ry — By '
Set v; = Pj(2)v. By (1.8.1), for R > Ry, we have
(1.8.7) M0 (200 —v = Z (e4iRzO+iej(Z0) — 1) (I

Jj=1
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Since these v; are mutually orthogonal, we have
(1.8.8) ‘e“RZOHG]’(ZO) — 1| - Jo; || < ||e*C(z0)v — 0| -

If [|v;||* < [jo] - |[e¥F*C (20)v — v]|, set w; = 0, z; = zp. Then (1.8.4) holds trivially.
Otherwise, by (1.8.3) and (1.8.8), we have

(1.8.9) |etifizotifs(z0) 1‘2 <ol 7t ||t C(z0)v — v < 1.
Then there exists k; € Z such that
(1.8.10) [4Rzy + 0;(20) — 2k;m|> < 4ol |e* "0 C (z0)v — v]| -

For R > Ry, by (1.8.5) and (1.8.6), 4Rz + 0;(z) — 2k;m as a function of z € R is strictly
increasing. Moreover, its derivative is greater than 4R — B;. Let z; € R be the unique
real number satisfying 4Rz; + 6,(z;) — 2k;m = 0, then

2 ? - 1Rz
(1811) |Zj — Z|2 < (ZLR——Bl) HU” L H€4R OC(ZQ)U—UH .

By (1.8.6) and (1.8.11), the first equation in (1.8.4) holds. Set w; = P(z;)v, then the
third equation in (1.8.4) holds trivially. Furthermore, by the choice of By, we have

1P (z0)0 = wjl = [|(P5(z0) = Pi(z;)) |

1) <1 (z0) ~ ()l ol < Balzo — 351 ol
By (1.8.6), (1.8.11) and (1.8.12), the second equation in (1.8.4) holds. O
For R > 0, set
Ar(C) = {p >0 : det (e"*C(p) — 1) = 0} :
(1:819) AL(C) = {A >0 ¢ det (4C(0) — 1) = o} .
We fix k > 0.

Proposition 1.8.3. There exist a > 0, Ry > 0 such that for any R > Ry, R~ <y <1
and f € €*(R), we have

(1.8.14) o o= Y fW| < ar®sup | (@)] + ay sup | f(2)] -

< <
PEAR(C) , lpl<y AEAL(C) , A<y |z|<y 2| <y

Proof. By Theorem 1.8.1, we may suppose that C(p) = ) where 6 is an analytic

function. The rest of the proof is a direct estimate, and we leave it to readers. U
Set
(1.8.15) Cor(s) = — Z (3.
AEAL(C)

We recall that m = dim V. Set = dimker (C(0) — 1).

Proposition 1.8.4. If Sp(C(0)) = Sp(C(0)), then

-1
(1.8.16) Co.r'(0) = rlog(2R) +mlog2 + %log det* (2 — 0(0)4_ ¢(0) ) ,
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Proof. As special cases of the Hurwitz (-functions (cf. [W99, §7]), we have

B, = [ 2wk— 0\ log(4R) for § =0,

(1.8.17) " Os SO;( AR ) _{ %10g(2—20039) for0<f <.
Since C(0) is diagonalizable, it suffices to consider the consider the following cases.
Case 1. m=1,r=1, C =1, then (1.8.16) is equivalent to (1.8.17) with 6 = 0.
Case 2. m=1,r =0, C' = —1, then (1.8.16) is equivalent to (1.8.17) with 6 = .

Case 3. m=2,r =0, SpC = {¢'®, e~} with a €]0, [, then (1.8.16) is equivalent to
(1.8.17) with 6 = . O
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2. RIEMANN-ROCH-GROTHENDIECK AND FLAT COMPLEX FIBRATIONS

2.0. Introduction.

The real and complex analytic torsions were introduced by Ray-Singer [RS71, RS73|.
For a compact real (resp. complex) manifold equipped with a Riemannian (resp. Her-
mitian) metric and a flat (resp. holomorphic) Hermitian vector bundle, its real (resp.
complex) analytic torsion is a spectral invariant of the Laplacian.

Cheeger [Che79] and Miiller [M 78] proved independently that the real analytic torsion
is a topological invariant for unitarily flat vector bundles. Miiller [M93| also extended
their result to unimodular flat vector bundles. In the general case, the dependence of the
real analytic torsion on the metrics was calculated by Bismut-Zhang [BZ92], who also
established an extension of the Cheeger-Miiller theorem in the general case.

For a real smooth fibration 7 : M — S with compact fiber X, and a flat complex vec-
tor bundle F over M, Bismut and Lott [BL95| gave a R.R.G. formula for the odd Chern
classes of the direct image R, F, which is a flat vector bundle over S, in terms of the
Euler class of the relative tangent bundle 7'X and the corresponding odd Chern classes
of F. When equipping the considered vector bundles with metrics, these classes can be
represented by explicit differential forms. By transgressing the equality of cohomology
classes at the level of differential forms, they also obtained even analytic torsion forms on
S, whose coboundary is equal to the difference between the differential forms appearing
on the left and right hand side of the R.R.G. formula. The parallel work for holomor-
phic fibrations extending the complex analytic torsion was done by Bismut-Gillet-Soulé
[BGS88b]| and Bismut-Kohler [BK92].

In this article, we consider a flat fibration ¢ : N' — M with complex fiber N and a
complex vector bundle FE over A/ which is holomorphic along N and flat along horizontal
directions in N. First, we give a R.R.G. formula for the odd Chern classes of R, F in
terms of the Todd class of the relative tangent bundle and of the Chern classes of F. By
equipping the various vector bundles with Hermitian metrics, we construct even analytic
torsion forms on M which transgress the equality of the corresponding cohomology classes.

In a second part, we combine the techniques of Bismut-Lott [BL95| and of the first
part. We consider the projection 7 : N’ — S with fiber Y, and the corresponding family of
bicomplexes equipped with the chain map dx+0y. When introducing suitable Hermitian
metrics, we construct analytic torsion forms on S associated with this bicomplex.

We also consider the case where L is a line bundle, equipped with a Hermitian metric
g* such that the curvature of the corresponding fiberwise Chern connection r* is positive
along the fibers. We introduce a suitable nondegeneracy assumption on the metric g~
from Bismut-Ma-Zhang [BMaZ11, BMaZ15] that guarantees that for p € N large enough,
the de Rham cohomology of ¢.(E ® LP) along the fibers X vanishes identically. In this
case, we construct even analytic torsion forms on the S that are associated with the above
bicomplex.

In a last step, we give a formula relating the analytic torsion forms of the above
bicomplex to the analytic torsion forms of Bismut-Lott for ¢.(F ® LP) and the analytic
torsion forms of the first part of the article.

Let us now give more detail on the content of the present article.

2.0.1. Chern-Weil theory and its extensions.
Let M be a smooth manifold. Given a complex vector bundle E of rank r over M,
a connection VZ on E and an invariant polynomial P on gl(r,C), Chern-Weil theory
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assigns a closed differential form of even degree
(2.0.1) P(E,VF) € Q™(M) ,

whose cohomology class [P(E,V¥)] € H®(M) does not depend on V¥, and will be
denoted by P(FE). This theory will be referred to as the even Chern-Weil theory.

If V¥ is a flat connection, i.e., V¥? =0, P(E, V) is a constant function.

A Chern-Weil theory for flat vector bundles was developed by Bismut-Lott [B1.95, §1].
Given a flat complex vector bundle (E, VF) over M, a Hermitian metric g¥ on E and an
odd polynomial f, we assign a closed differential form of odd degree

(2.0.2) F(B, YV, ¢%) e odd(M)

whose cohomology class [f(E, V¥, ¢¥)] € H*(M) is independent of ¢¥, and will be
denoted by f(FE,V¥). This theory will be referred to as the odd Chern-Weil theory.

In this article , we will construct characteristic classes for flat fibrations with complex
fibers. Our construction is a mixture of the even and odd Chern-Weil theory.

Let G be a Lie group. Let p : P — M be a flat G-principal bundle. Let N be a
compact complex manifold. We assume that G acts holomorphically on N. Set

(203) N:PG XgN.
Let
(2.0.4) qg:N—>M

be the canonical projection. Then ¢ induces a flat fibration with canonical fiber N.
Let Ey be a holomorphic vector bundle over N. We assume that the action of G lifts
holomorphically to Fy. Set

(205) E= PG XaG EO .

Then F is a complex vector bundle over N.
In §2.2, for such a vector bundle E and a Hermitian metric ¢¥ on E, we assign odd
differential forms as follows. Set

Q(M) =€ (M,N(T*M)) ,
ON,E) =€ (N, AN (T°N)® E) |
Let djs be the de Rham operator on Q' (M). Let d%; be the lift of dy; to Q' (N, E). Set
(2.0.7) WP = (¢")7'd, g% € Q' (W, End(E)) .

Let V& be the fiberwise Chern connection on (F, g¥). Let A” be the unitary connection
on E defined by

(2.0.6)

1
(2.0.8) AP =V + dy, + 2wE
Let 7 be the rank of r. Let gl(r, C) be the Lie algebra of GL(r,C). Let NAT"N) be the
number operator on A'(T*N), i.e., for « € A¥(T*N), NYT"Nq = ka. For an invariant
polynomial P on gl(r,C) (under the conjugate action of GL(r,C)), put
P( AE 2) c Qeven(N)

L A (T*N)

P(E,g") = (2mi)~>
(2.0.9) -~ o
P(E’gE) — (271-@')5_5]\/ ( N)<P/(_AE2 7%> e Qodd N)
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Theorem 2.0.1. The differential form
(2.0.10) ¢ [P(E,g")] € Q™ (M)

1S a constant function.

The differential form

(2.0.11) ¢.[P(E,g")] € Q24 (M)
18 closed. Its cohomology class
(2.0.12) [q* [P(E, gE)” e HoW(M)

is independent of g”.

In the sequel, we use the notation
(2.0.13) 0.[P(E)] = [.[P(E,¢")]| € Ho¥(01)
Let F be another vector bundle (of rank ) over AN satisfying the same properties as

E. Let g' be a Hermitian metric on F. Let @) be an invariant polynomial on gl(r’, C).
The natural product on the forms P(F, g¥) and Q(F, g") is given by

(2.0.14) P(E,g")« Q(F,g") = P(E,¢")Q(F, g") + P(E, g")Q(F. ") .

2.0.2. A R.R.G. theorem for flat fibrations with complex fibers.

In the sequel, we suppose that N is a Kdhler manifold.

Let H (N, E) be the fiberwise Dolbeault cohomology group of E along N. Then
H'(N,E) is a graded flat vector bundle over M. Let V# (V:E) be its flat connection.

Let f(x) = z exp(a?).

Let
(2.0.15) f(H (N, E), VT NE) e HOY(M,R)

be the Bismut-Lott odd characteristic class [BL95, §1].
We establish the following Riemann-Roch-Grothendieck formula.

Theorem 2.0.2. We have
(2.0.16) f(H (N, E), VT WE) = ¢ [TA(TN) * ch(E)] € H*Y(M,R) .

Here Td(T'N) % ch(E) is defined by (2.0.9) and (2.0.14).
Now we explain the idea of the proof. We use the superconnection formalism [BL95,

§2].
Put
(2.0.17) E=C°(N,N(IT*N)® E) .
Then & is an infinite dimensional flat vector bundle over M. Let d, be its flat connection.
Let gi be the Dolbeault operator acting on &. Set
(2.0.18) AS =Ty +dS, .
Then A acts on Q' (M,&). Also A is a flat superconnection on & in the sense of
Bismut-Lott [BL95, Definition 1.1].
Let g™V be a fiberwise Kéhler metric on TN. Let ¢” be a Hermitian metric on E. Let

g% be the induced L?>-metric on &. Let A%* be the adjoint superconnection of A¢ in the
sense of Bismut-Lott [BL95, Definition 1.6].



62 YEPING ZHANG
Let NA(T"M) he the number operator of A'(T*M). Set
(2.0.19) DE = 27NN (48 A9V T (M, End(&)) .

For t > 0, let DY be the D¢ associated with the metrics %gTN and ¢¥. Following Bismut-
Lott [BL95, (2.22),(2,23)], we define

ap = (27ri)%—%NA'(T*M) Tr, [Df exp(Df’Z) ,
2.0.2 P
(2.0.20) v NA TN - .
B = (2mi)2 T [T(l +2D; %) exp(Dy” )] ,
and we show that
0 1
(2021) d]\/]Oét =0 s g(}t = %dMﬁt .

Let g VE) be the metric on H'(N, E) induced by the L?-metric on & via the Hodge
theorem. Let

(2.0.22) f(H (N, E), VT E) g INEY) e qodd(ar)

be the Bismut-Lott odd characteristic form [BL95, Definition 1.7].
Theorem 2.0.2 is a consequence of the following theorem.

Theorem 2.0.3. We have

(2.0.23)
a, = f(H (N, E), VI ®E g OE) 4 ﬁ(i) ,
Vit
—~ TNy X B a fized exact form
oy = ¢.|[Td(TN, g"™) = ch(E, ¢")] + ; +ﬁ(ﬁ), ast—0.
2.0.3. An analytic torsion form for flat fibration with complex fibers.
As a consequence of Theorem 2.0.3, we obtain an analytic torsion form, which gener-
alizes the Ray-Singer analytic torsion for complex manifolds [RS73].
In the same way as in (2.0.23), we also obtain an asymptotic estimate for 5, as t — oo
and t — 0. With the help of this estimate, we construct explicitly a differential form

(2.0.24) T (g™, g") € QM) ,

ast — oo,

which is defined by subtracting the singularities of the following integral
oo dt
(2.0.25) —/ 5,2
0 t

Moreover, by the asymptotic estimate for (3;, the singularities of the integral consist of

closed forms. Now, applying (2.0.21) and (2.0.23), we get
(2.0.26) du T (g™, g")
- = ¢.[TA(TN, g™) x ch(E, ¢")] — f(H (N, E), VT VD g (WE))

Moreover, we show that the degree zero component of .7 (g™%, g%)

holomorphic torsion associated with (N, g™V, E, g¥).

is the Ray-Singer
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2.0.4. The analytic torsion forms of Bismut-Lott and their extension.

The Bismut-Lott analytic torsion forms [BL95, Definition 3.22| extends the Ray-Singer
analytic torsion for real manifolds [RS71]. We briefly summarize the results of [BL95].

Let 7 : M — S be a real smooth fibration with compact fiber X. Let THM C TM
be a lift of T'S, i.e., the restriction of the map TM — 7*T'S to T" M is an isomorphism.
Let TX be a Riemannian metric on 7X. Let VI¥X be the Levi-Civita connection on T'X
(cf. §2.1.4).

Let (F, V") be a flat complex vector bundle over M. Let g’ be a Hermitian metric
on F. Let H' (X, F) be the fiberwise de Rham cohomology group of F', which is a vector
bundle over S equipped with the Gauk-Manin flat connection V# (X:F) | Let g () be
the metric on H (X, F) induced by the L?-metric on €' (X, F)) via the Hodge theorem.

As in §2.0.2, we denote by
(2027 fFFVT, ") e Qod(M)
f(H(X, F)7VH'(X,F)’9H‘(X,F)) c QOdd(S)

the Bismut-Lott odd characteristic forms associated with f(z) = x exp(2?). Let

f(F, V) e H*Y(M, R),

(2.0.28) (.V7) . E(F ) y
fH (X, F), VIXD) e godd(5 R)

be their cohomology classes.
Let e(T'X) denote the Euler class of TX. In [BL95, §3], the authors prove the following
Riemann-Roch-Grothendieck formula

(2.0.29) FH (X, F),VTED) = 7 [e(TX) f(F,VF)] € H(S,R) .
They also construct an analytic torsion form

(2.0.30) T(THM, g™ ¢") € Qv (S)

satisfying

0051 dsT (T"M, g™, g")
( U ) -, [G(TX,VTX)f(F, VF,gF)] _f(H(X’F)’VH(X,F)79H(X,F)) )

Moreover, they show that the degree zero component of 7 (TH M, g*™ g*) is the Ray-
Singer analytic torsion [RS71] associated with (X, g~ F, g*').

In this article, we extend these constructions to the following setting. Recalling that
the flat fibration ¢ : NV — M 1is defined in §2.0.2, we have the following commutative
diagram

(2.0.32) N
N
M—>§.
Let Y be the fiber of r : N'— S. Put
(2.0.33) F=Q(X,8&).

Let d% be the lift of the de Rham operator on Q' (X) to .#. We will extend Bismut-Lott’s
constructions to the family of de Rham Dolbeault complexes (ﬁ ,5? + df() over S.
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For certain reasons, we make the following simplifications. Let L be a complex line
bundle over A/ constructed in the same way as E. Let g be a Hermitian metric on L.
We assume that

(2.0.34) a(L,g")|y € QY(N) == €=(N, T*N @ T*N)
is positive. Put
(2.0.35) E,=E®LP.

We replace I/ by E, with p large enough. By Kodaira’s vanishing theorem, we have
H>°(N,E,) = 0. Put

(2.0.36) H,= H°(N,E,),

which is a flat vector bundle over M. Let &, (resp. .%,) be & (resp. .#) with E replaced
by E,. An argument using the Leray spectral sequence yields

(2.0.37) H (%, 05 +d%) = H(X, H,) .
We also assume that
(2.0.38) (¢") dxg" € €N, T*X)
is nowhere-zero. This assumption implies that for p > 1,
(2.0.39) H(F,, 00 +d%) = H'(X, H,) = 0.
Applying (2.0.29) with F' replaced by H, and comparing with (2.0.39), we get
(2.0.40) T [e(TX)f(Hy V)] =0 € H*(S,R) .

Let a,; € Q°4(M) be the oy defined by (2.0.20) with E replaced by E,. By (2.0.23) and
(2.0.40), the differential form

(2.0.41) T [e(TX, V), € Q°1(S)
is exact. Following the same procedure in §2.0.3, we construct an analytic torsion form
(2.0.42) Teora (T M, g™, g™, ™) € Q(9)
satisfying
(2.0.43) ds Trons (TH M, g™, "%, g") = m [e(TX, V)]
Let
(2.0.44) T (g™, g") € Q" (M)

be the analytic torsion form defined in §2.0.3 with E replaced by E,.
Let g®» be the metric on H, induced by the L?-metric on &, via the Hodge theorem.
Let

(2.0.45) T(THM, g™, g"'r) € Q(S)

be the Bismut-Lott analytic torsion form with (F, g©') replaced by (Hp, gHP).
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Theorem 2.0.4. For p large enough, we have
lim ot (TM, g™, g™, g™)

(2.0.46)
— y(THM gTX Hp) ]

For p large enough, modulo exact forms, we have

hm zott(T M, QTN TXang)

(2.0.47)
= 7 (THM, g% g + 1, [e(TX, VTX)ﬁ(gTN,ng)} .

Moreover, if dim X is odd, for t > 0, we have the identity modulo exact forms
(2.0.48) Frort (T M, g™, g™, g"r) = T (T"M, g™, ¢"'r) .

This article is organized as follows.

In §2.1, we recall some standard constructions and known results. Most of them can
be found in [BerGV04] and [BL95, §1].

In §2.2, we construct characteristic classes for flat fibrations and prove Theorem 2.0.1.

In §2.3, we prove Theorem 2.0.3. As a consequence, we establish Theorem 2.0.2. We
also construct the analytic torsion form 7 (g™, g%).

In §2.4, we construct the analytic torsion form Fio (T M, g™, g™~ g%). We also
state several intermediate theorems and show that these theorems imply Theorem 2.0.4.

In §2.5, we prove the intermediate theorems stated in §2.4.

The results in §2.2 and §2.3 were announced in [Zh16].
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2.1. Preliminaries.
The results in this section can be found in [B86, §1], [BL95, §1], [BerGV04, §1].

2.1.1. Superalgebras.
In the sequel, the algebras will be over R or C.

Definition 2.1.1. A superalgebra is an algebra A equipped with a Zs-grading A =
At @ A~, such that

(2.1.1) ATAEC A, ATAT C AT

Let A be a superalgebra. An element a € A is said to be homogeneous if a € A*. We
denote dega = 0 (resp. dega =1) if a € AT (resp. a € A7).
The supercommutator of two homogeneous elements a,b € A is defined by

2.1.2 a,b] = ab — (—1)desadeebyy
(2.1.2) [a, 0] (-1)

Also [+, -] extends by linearity to the whole algebra A.
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Definition 2.1.2. Let A and B be two superalgebras. The Zs-graded tensor product
A®B is identified with A ® B as vector spaces, and the multiplication is given by

(213) (CLl X bg) . (CL2 X bg) = (_1)degag degblalag & blbg s
where a1,a9 € A and by, by € B are homogeneous elements.

Definition 2.1.3. Let A be a superalgebra. A super A-module is a Zs-graded vector
space V = VT @& V™ equipped with an action of A, such that

(2.1.4) ATVEC AT, ATVEC AT
Let V. =V* @&V~ be a Zy-graded vector space. Set
(2.1.5) 7 =idy+ —idy- € End(V) ,
and
(2.1.6) End®(V) = {a € End(V) : Ta = :I:aT} .

Then End(V) = End*(V)®End™ (V) is a superalgebra, and V is a super End(V)-module.
For a € End(V), its supertrace is defined by

(2.1.7) Tr, [a] = Tr [ra] .
For any a,b € End(V), we have
(2.1.8) Tr [[a,b]] = 0.

In the whole article, we apply the superalgebra language to the following geometric
settings.

Let M be a €*-manifold. We denote by (M) be the algebra of differential forms on
M. We always equip Q' (M) with the Zy-grading Q' (M) = Q°?(M) & Q°4(M). Then
(M) is a supercommutative superalgebra, i.e.; [ay, as] = 0 for ay, ay € Q' (M).

Let F be a complex vector bundle over M. We denote by Q'(M, F') the vector space
of differential forms on M with values in F. We equip Q' (M, F') with the Zs-grading
Qeven/edd (N F). Then Q' (M, F) is a super € (M)-module.

2.1.2. Clifford algebras and their representations.
Let V be a real vector space. Let ¢" be an Euclidean metric on V. Let

(2.1.9) RV = é\/@j

be the tensor algebra of V.

Definition 2.1.4. Let I C @V be a bi-ideal generated by
(2.1.10) u@v+vu+29 (u,v), uveV.
Set

(2.1.11) C(V.g")=(QV)/I,

called the Clifford algebra associated with (V, g").
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We could also define the following algebra

(2.1.12) C(V,g") =C(V,—¢").
Let
(2.1.13) c:V—=C(Vg')y, é:V—C(V,g")

be the maps induced by the canonical injection V' — @ V. For u,v € V', we have
c(u)e(v) + c(v)e(u) = —2¢" (u,v)

(2.1.14) P
é(u)é(v) + é(v)é(u) = 2¢Y (u,v) .
Let eq,--- ,e, € V be an orthogonal basis of V. Then
(2.1.15) clej)clej,)-clej,), O0<r<n,ji<ja<--<jr,
is a basis of C(V, g"),
(2.1.16) élej)i(ey,)--éles,), 0<r<n,ji<ja<--<j,

is a basis of C(V, g").
The algebras C(V, ") 6(\/, g"") are superalgebras with C*(V, g"), 6*(‘/, g") generated
by the terms in (2.1.15), (2.1.16) with r even/odd.
For v € V, let v* € V* be its dual (with respect to g"). Let v*A be the operator on
A'V* sending « to v* A a. Let i, be the operator on A'V* sending «(---) to a(v,--+).
Set
¢ V—EndAV")

(2.1.17) v VA =i,

For u,v € V, we have

(2.1.18) c(u)e(v) + c(v)e(u) + 29" (u,v) =0 .
Thus ¢ extends to a representation

(2.1.19) c: C(V,g") = End(AV¥) .

This representation will be referred to as the real representation of the Clifford algebra.
In the same spirit, we can construct

¢V —EndAVY)
(2.1.20) « .
V= UNA A+,

which extends to a representation
(2.1.21) ¢ O(V,g") = End(AV?)

Now we suppose that V' is equipped with a complex structure J € End(V) and that
g" is J-invariant, i.e.,

Set
(2.1.23) Ve=V&grC.

The action of J extends C-linearly to V¢. The Euclidean metric ¢" extends to a C-bilinear
form on V.
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Set
vcl’oz{vevc : Jv:z'v},
(2.1.24)
V(g’l = {v eVe : Jv= —iv} )
We have
(2.1.25) Ve=V"a Vgt

For v € Vg, let v (resp. v(®Y) be its component in V2 (resp. V).

Let V& be the vector space of R-linear forms on V. For v € V¢, let v* € V& be its dual
(with respect to g¥).

Set

vt ={reve s fos=if},
et ={reve : fod=—if}.

For v € Vg (resp. v € V£'), we have v* € V™! (resp. v* € V7).
Set

(2.1.26)

c:V — End(A (V30!
(2.1.27) : (w0e™)
v s ol ’0)’*/\ —0y(0,1) -

For u,v € V, we have
(2.1.28) c(u)e(v) + c(v)e(u) + g% (u,v) = 0.
Thus ¢ extends to a representation
1
(2.1.29) c: OV, 5gV) — End (A (VZh) .
This representation will be referred to as the complex representation.

2.1.3. Fven/odd characteristic classes.
Let M be a ¥*°-manifold. Let I’ be a complex vector bundle over M of rank r.
Let VI be a connection on F. Then V¥ induces a differential operator

(2.1.30) VE QM F) = QY M, F) .
Let
(2.1.31) V2 € O*(M,End(F))

be the curvature of V¥.
For w € QF(M), put

(2.1.32) ow = (2mi) 2w .

Let Tr [ -] : End(F) — C be the trace map, which extends to
(2.1.33) Tr[-]:Q(M,End(F)) = Q(M)
such that for o € Q' (M), A € €°°(M,End(F)),

(2.1.34) Tr [wA] = wTr [A].

Let f € C[Z] be a polynomial.
The following theorem plays a central role in the classical Chern-Weil theory.
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Theorem 2.1.5 (Chern-Weil). The differential form
(2.1.35) eTr [f(—=VF?)] € Q(M)
15 real and closed. The cohomology class
(2.1.36) f(F) = [pTr [f(=V"?)]] € H¥(M)
does not depend on the choice of V.

Now we assume that V¥ is a flat connection, i.e.,

(2.1.37) Vi =0.
Then
(2.1.38) eTr [f(=V")] = F(O)r.

For flat vector bundles, there are non trivial characteristic classes of odd degree. We
will follow the construction of Bismut-Lott [BL95, §1].

Let ¢ be a Hermitian metric on F. Let V* be the adjoint connection, i.e., for
01,090 € €°(M, F) and U € €°(M,TM), we have

(2.1.39) g (VEar,02) + g5 (01, Vi o0) = Ug (01, 09) .
Then
(2.1.40) viet =,
i.e., VF* is also a flat connection.
Set
(2.1.41) Wi = v - vF e QY (M, End(F)) .
Let f € C[Z] be an odd polynomial.
Set
(2.1.42) FF,VE, g = VeripTr [ f(WF/2)] € QY (M) .

The following theorem is established by Bismut-Lott [BL95, Theorem 1.8].
Theorem 2.1.6. The differential form
(2.1.43) f(F, YV g € QM)
15 real and closed. The cohomology class
(2.1.44) FIENT) = [f(F,VF, ¢")] € HY(M)
does not depend on the choice of g*.

Remark 2.1.7. If f € C[Z] is an even polynomial, by |BL95, Proposition 1.3], we have
(2.1.45) Tr [f(w™)] = f(O)r.
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2.1.4. Fibrations equipped with a connection and a fiberwise metric.

Let 7 : M — S be a smooth fibration with compact fiber X.

Let T'X be the relative tangent bundle of the fibration. We equip the fibration with a
connection. Namely let

(2.1.46) T™M =T'M & TX
be a smooth splitting of TM. Then T"M ~ 7*TS. Let
(2.1.47) P™X .M —-TX, P""M.TM—>THM

be the projections with respect to (2.1.46). For U € T'S, let U € TH M be the lift of U,
so that m, U7 =U.
If U,V are vector fields on 9, set

(2.1.48) T(U,V)=[U V" —[U" V],

We have T' € Q2(S,¢>°(X,TX)). We call T the curvature of the fibration.
We equip TX, TS with metrics ¢g”%, 7. Let g™ be the induced metric on T7 M.
Set

(2.1.49) gM=mg" @ g"x

which is a Riemannian metric on g™, Let (-,-) denote the corresponding scalar product.
Let V™™ be the Levi-Civita connection on T'M associated with 7% M and g™,

Definition 2.1.8. Let V7¥ be the connection on T'X,
(2.1.50) VX = prayT™ pTx,

Then V¥ does not depend on g™ (cf. [B86, §1(c)|).
Now we give an explicit formula for VX, Let L. be the Lie derivative. For U a vector
field on S, set

(2.1.51) Ww(U) = (") Lyu g™ € €°°(M,End(TX)) .

If V e TX, then VI coincides with the usual Levi-Civita connection along the fiber X.
If U € TS, then (cf. [B86, §1(c)|)

1
(2.1.52) V% — Lyn + §CL)TX(U) _
Put
(2.1.53) vIMe — pTXyyTM pTX o pT"MxyTM pT"M

Definition 2.1.9. For U € T'M, set
(2.1.54) STX(U) = VIM —V[M® € (M, End(TM)) .

Then (ST* (-)-,-) does not depend on ¢g”* (cf. |B86, §1(c)]).
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2.2. The Chern-Weil theory of a flat fibration.

The purpose of this section is to construct certain characteristic classes and character-
istic forms on the total space of a flat fibration with compact complex fibers.

This section is organized as follows. In §2.2.1, we state a consequence of the Chern-Weil
theory, which will be of constant use in the rest of this section.

In §2.2.2, we define a flat fibration ¢ : N’ — M whose fiber N is a compact complex
manifold.

In §2.2.3, we consider a complex vector bundle E over N, which is holomorphic along
N and flat along M.

In §2.2.4, we consider certain connections on F. In particular, given a Hermitian metric
on E, we construct a unitary connection on F, and we prove that the integral along the
fiber of the usual Chern-Weil forms associated with this connection vanish in positive
degree.

In §2.2.5, we construct odd characteristic forms for E. These characteristic forms will
appear on the right-hand side of the Riemann-Roch-Grothendieck formula, which will be
proved in §2.3.

In §2.2.6, we construct a natural multiplication of the odd characteristic forms defined
in §2.2.5.

2.2.1. A consequence of Chern-Weil theory.

Let N be a smooth compact oriented manifold. Let (€(N),dy) be the de Rham
complex of smooth differential forms on N, whose cohomology is denoted by H (N).

Let V be a finite dimensional real vector space.

We will replace the de Rham complex (Q'(N), dN) by the twisted de Rham complex
((N,A(V*)),dy), whose cohomology is equal to H'(N)@A (V*).

Let (Q(N x V), dnxv) be the de Rham complex of N x V. Then (Q'(N,A(V*)),dy)
can be identified with the subcomplex of (€(N x V), dyxy) that consists of forms which
are constant along V.

Let p: NxV — N and q: N xV — V be the natural projections. Let g, denote
integration along the oriented fiber N. If o € Q' (V), 5 € Q' (IV), then

(2.2.1) g« A ] —a/ﬁ
By restricting ¢. to forms which are constant along V', we get a map
(2.2.2) G V(N A (V) = A (V).

Let E be a complex vector bundle of rank » on N and V¥ be a connection on E. Its
curvature V2 is a smooth section of A?(T*N)®End(E). The vector bundle F lifts to the
vector bundle p*E on N x V, and V¥ lifts to a connection on p*E, which is still denoted
by VE. Let S be a smooth section on N of V* ® End(E). We can view S as a section of
V*® End(F) on N x V, which is constant along V. Then VZ + S is also a connection
on p*E. Tts curvature (V¥ 4 5)? is a smooth section of (A' (T*N)@A'(V*)) ®End(F)

over N x V', which is constant along V.
The following proposition is a direct consequence of Chern-Weil theory.

Proposition 2.2.1. For any invariant complex polynomial P on gl(r,C),

(2.2.3) P(— (VP +5)%) € Q(N,A(VY))
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15 closed. Its cohomology class

(2.2.4) [P(— (VP +5)%)] € H(N)®A (V)

does not depend on V¥ or on S. In particular,

(2.2.5) [P(—(VE+89)Y)] € H(N)C H(N)®A (V7).

2.2.2. A flat complex fibration.

Let G be a Lie group. Let N be a compact complex manifold of dimension n. We
assume that G acts holomorphically on N.

Let M be a real manifold. Let p : P — M be a principal G-bundle equipped with a
connection.

Set

(2.2.6) N =Pz xgN.

Let ¢ : N'— M be the natural projection, which induces a fibration with canonical fiber
N.

Let Tg N be the real tangent bundle of N. Set Te N = TN ®g C.

The connection over the principal bundle Pg; induces a connection over the fibration
q: N — M, ie., asplitting

(2.2.7) TN =TgN @ TN,

with THN ~ ¢*T M.
The splitting (2.2.7) induces the following identification

(2.2.8) AN (TEN) = A (TEN)QG*A (TEM)

Let TN be the holomorphic tangent bundle of N. Using the splitting 7c N = TN @ TN,
we get a further splitting

(2.2.9) N (TEN) = A (T*N)SA (T*N)&q* N (TEM)
Put
(2.2.10) QP (N) = €°(N, AP(T*N)@A T N)@q" A" (TEM))
Then
(2.2.11) AWy = D QPN

ptg+r=k

In the sequel, we assume that the connection on Pg is flat. Then ¢ : N — M is a flat
fibration, i.e., T =0 (cf. (2.1.48)).

Let dy be the de Rham operator on Q' (N). Let dy; be the de Rham operator on
(M), which lifts to Q' (N) in the following sense : let (f,) be a basis of TM, let ()
be the dual basis of T*M. then

(2.2.12) dy =Y (¢"f*)N L .

«

Let dy be the de Rham operator on V. Since T' = 0, by [BL95, Proposition 3.4], we have
we get
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Let Oy (resp. On) be the holomorphic (resp. anti-holomorphic) Dolbeault operator on
N. We have

(2.2.14) dy = Oy + O .
By (2.2.13) and (2.2.14), we get
(2.2.15) dy = Oy + Oy +dys .

We have the following obvious relations
B, =d% = 0% =0y
[dar,dn] = [dur, On] = [dar, On] = [dn,On] = [dn,On] = [On,0n] =0

2.2.3. A fiberwise holomorphic vector bundle.

Let Ey be a holomorphic vector bundle over N of rank ». We assume that the action
of G on N lifts to a holomorphic action on Ej.

Set

(2217) E= PG XaG Eo ,

(2.2.16)

which is a complex vector bundle over A/. Furthermore, E is holomorphic along N.

Let gﬁ be the fiberwise holomorphic structure of E. Let d%; be the lift of the de Rham
operator on M to (N, E). We have

(2.2.18) Iy = dB? = [0y, d5%] =0
As before, the operator d¥, can be viewed as a flat connection on Q (N, E).

2.2.4. Connections.
Set,

(2.2.19) AE" =3y + dE,
acting on Q' (N, E).

Then, by (2.2.18), we have
(2.2.20) (AF")* =0,

Let E” be the anti-dual vector bundle to E. When replacing the complex structure of
N by the ConJugate complex structure E enjoys exactly the same properties as FE.

iz
We construct 02 dE; and AP in the same way as dx, d¥ and A", In particular,

(2.2.21) AP = 9 1 gF
As in (2.2.20), we have
(2.2.22) (AF)’ = 0.

Moreover, as in (2.2.18), we have

(2.2.23) OF 2 =db 2 = 0% dB] =0.

—%k

Let g be a Hermitian metric on E. Then ¢” defines an isomorphism ¢ : E — E".
Set

(2.2.24) of = (¢")710% gF,  diy = (g")'d g"
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which are operators acting on Q' (N, E). By (2.2.23), we have

(2.2.25) 082 — df? = [By,d5] =0 .
Set
(2.2.26) A = (gB)"1AE" gF = 9E 4 gBr

Then, by (2.2.25), we have
(2.2.27) (A¥)? =0.
Let N4 (™M) he the number operator of A (T*M).
Definition 2.2.2. Set
AP 2 g W 4B g

(2228) BE . 2_NA‘(T*]M) (AE/ _ AE//)QNA'(T*JW)

By (2.2.20) and (2.2.27), we have

E2 _ o-NNT"M)r gl R oNANT™M) g2
(2.2.29) AP? =9 (AP, AP"]2 _ _pBE2
Set
= 1
(2:2.30) af =0k + 0y, dyt =5 (df+df)
Then
(2.2.31) AF — dﬁ + d]\Eju 7

which shows that A¥ a Hermitian connection on E over N.
Set,

(2.2.32) WP = — k= (g) T dEg" € €(N, T*M @g End(E)) .
Then

5 1
(2.2.33) BY = 9% — 9, + Sw”,

which shows that BX € Q' (M, End(Q' (N, E))).

Proposition 2.2.3. For any invariant polynomial P on gl(r,C), we have

(2.2.34) (On —On)P(—AP?) =0.

Also

(2.2.35) P(— AP?) — P(—dy?) € im(Oy — On) -
We have the identity

(2:2.36) a.[P(= AR)] = @.[P(= dy”)] ,

and this is a locally constant function on M.
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T*N)

Proof. Let NY(T™N) be the number operator of A'(T*N) and let U = (—1)M""
To establish the first two equations in our proposition, we only need to show that

(2.2.37) dyUP(—AP?) =0,
and
(2.2.38) UP(— A% —UP(—dy?) €im(dy) .
By (2.2.33), we have
1
(2.2.39) U'BPU =df + §wE :
Then, by (2.2.29), we have
(2.2.40) U AP0 = —U'BP?U = —(dy + %wE)2 .

We may and we will assume that P is homogeneous. By (2.2.40), we have
1
(2.2.41) UP(— AP2) = (—1)degPP( — (dZ + 5wE)Q) .

Applying Proposition 2.2.1 to the right-hand side of (2.2.41), the form on the right-hand
side is d% closed. This completes the proof of the first two equations of our proposition.
The last identity is a consequence of the first two. U

For any t € R, set

(2:2.42) AP = g% tdf, + (1 —t)dy;* .
In particular,
(2.2.43) AP, = AP

Set
(2.2.44) Vo= (2= 2V N T
Lemma 2.2.4. Fort # 0,1, we have
(2.2.45) AP? — 411 — 1)V T AB2Y

Proof. By (2.2.19) and (2.2.26), we have
otV Lo~ NV AN M B L
(2 — 2)V, 1o NN T QBN T 9B L (1 )gl
By (2.2.18), (2.2.25), (2.2.29) and (2.2.46), we have
4t(1 — )V LAR2Y,
N [(2 — o)Vl N
- t

(2.2.46)

NA(T*M) NA(T*M) NA(T*M)

AF'9 Vi, 2tV Lo AE") w]

2.2.47 _
( ) [8}3 +(1—0)db, Oy + tdﬁ}

_ 2
- (a{% (1= t)d% + T+ tdﬁ) — AP?

Now we will extend Proposition 2.2.3 by also considering the extra parameter ¢.
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Theorem 2.2.5. For any invariant polynomial P on gl(r,C) and t € R, we have
(2.2.48) ¢.[P(—A7?)] = ¢.[P(—dy?)] .
and this is a constant function.

Proof. Since ¢, [P(—Af’z)] is polynomial on ¢, it is sufficient to consider the case t # 0, 1.
We may suppose that P is homogeneous.
By (2.2.45), we have the identity of smooth forms on S

(2.2.49) 0. [P(— AP?)] = (4t(1 — ) @[V P(— AP)] .
Applying Proposition 2.2.3 to the right-hand side of (2.2.49), we get
(2.2.50) ¢.[P(— AP = (4t(1 — ) g [V P(— di?)] .
Since P( — dﬁ’2) is a (deg P, deg P)-form on N, we have
(2.2.51) Vo P(—d5?) = (at(1 — )" P(—di?) .
By (2.2.50) and (2.2.51), we get (2.2.48).
By Chern-Weil theory, ¢, [P( — d§’2)] is locally constant along M. U

2.2.5. The odd characteristic forms.

In the sequel, we denote ¢ = (27i)
Let P be an invariant polynomial on gl(r, C).

—LNA (TN

Definition 2.2.6. For any ¢t € R, set

(2.2.52) P(E,g") = V2rip <P’( — AP, §> :

Proposition 2.2.7. For any t € R, ¢, [ﬁt(E,gEﬂ 1s a closed odd differential form on
M. The cohomology class [q* [ID; (E,gE)H € H (M) does not depend on g*.

Proof. Since ﬁt(E,gE) is odd and dimg N = 2n is even, ¢, [ﬁt(E,gEﬂ is odd.
We will now prove that the above forms are closed.
We have (cf. [BerGV04, §1.4])

Varig D P(~ AF?) = — Varig <p'( AP (a7, DA >
(2.2.53) = —V2mipdy <P’( — AP?), %Af>
— _d PI(_AE,Q) QAE
NSO t ) 8t t .
Since
(2.2.54) %AE = db —dlt = P
we have

(2.2.55) V2mip %P( — AP?) = 2d\ P, (E, ¢7) .
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By Proposition 2.2.5, we get

0

2.2. —
(2.2.56) p

¢.[P(— A7) =0.
By (2.2.55) and (2.2.56), we get
(2.2.57) dua.[P.(E,g")] = ¢.[dvP.(E,g")] = 0.

Thus g, [}th(E, g¥)] is closed.
The fact that [q* [ﬁt(E, gE)H € H (M) is independent of g¥ comes from the functori-
ality of our construction (cf. [BerGV04, §1.5|). O

Now we study the dependence of P, (E, gE) on t.
Recall that V; was defined in (2.2.44).

Proposition 2.2.8. If P is homogeneous, for any t € R, we have

(2.2.58) B(E,g") = (4¢(1 —))**"

V1P (B, g7
In particular,
(2.2.59) 0.[Pi(E.g")] = (401 =) 4. [Py (B, 97)] -

Proof. Since (2.2.58) is a rational function of ¢, it is sufficient to consider the case ¢ # 0, 1.
By (2.2.45), we have

wE CL)E
(P(-azz), ) = (P a0 - ovat2) )

, E
(2.2.60) — (4t(1—t))* v <P’( — AP?) “’7>
E
deg P—1y, 1 / B2\ Y
= (4t(1 — P(—AD —
(- 0) v (- ag), 2
which is equivalent to (2.2.58). O

In the sequel, we use the convention
> E\ _ D E
(2.2.61) P(E,g") = Pi(E,g") .

The following proposition is a refinement of Proposition 2.2.7 at the level of differential
forms.

Proposition 2.2.9. We have
dyP(E, g%)
(2.2.62) i o B 1 / L s E
g ¥ (a‘/; l)t:%(aN - aN)/o <P ((85 — Oy + T)2>’7>d8'

In particular, for p=0,--- ,n, we have

(2.2.63) {dNﬁ(E, ) }(,,,p,.> — 0
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Proof. By (2.2.45), we have
0 .
{vamio P(- aP?)}

= O {Vamip (11— )", P ( - 472))

_1

(2.2.64)

t=

=

By (2.2.51) and (2.2.64), we have

%{\/%go P(- AtE’Z)}

1
=3

(2.2.65) 3
= 5l V2 (41— 0) =V (P(= A%) - P(—d?) ) }

By (2.2.40), we have
P 4%%) — P~ &)
—u (P +5)) - P

As a consequence of Proposition 2.2.1 (cf. [BerGV04, §1.5]). , we get

(2.2.66)

- P +75)°) ~ P(ay?)
s /01 <P’<(d§—|— s(;)E)2>’w2E>d8
Then
U(P((d% whye — p(d?
(2.2.68) ( << ik )> ( )) E E

_ (9 — ) /0 <P’<(a{§ i %)2),“’7>d5.

By (2.2.55), (2.2.65), (2.2.66) and (2.2.68), we get (2.2.62).

For p=0,1,--- ,n, we have
(2.2.69) Vi awen = (4E(1 —1))7",
whose derivative at t =  is zero. This proves (2.2.63). O

2.2.6. Multiplication of odd characteristic forms.
Put

(2.2.70) P(B,g") = oP(— A7?).
2
Proposition 2.2.10. Let P, Q) be two invariant polynomials. The following identity holds

PQ(E,¢") = P(E,¢") AQ(E,g")

(2.2.71) -
+ P(E,gE) A Q(E,gE) .
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Proof. We have
(2.2.72)

which implies (2.2.71). O

We equip QV(N) x Q°(N) with the structure of commutative ring. The addition
is the usual one. If (o, @), (3, B) € Q" (N) x Q°4(N), put

(2.2.73) (a,d) - (8,8) = (aAB,aNB+aAp),
Let (C[gl(r, C)DGL "% be the ring of invariant polynomials on gl(r, C).
Proposition 2.2.11. The following map is a ring homomorphism.
(C[al(r, ©)]) " = Qover (W) x Q4N
P (P(E.9), P(E.g")) .

Proof. This is a direct consequence of Proposition 2.2.10. U

(2.2.74)

Let F be another complex vector bundle over N satisfying the same properties as .
Let 7’ be the rank of F. Let ¢/ be a Hermitian metric on F.

Let @ be an invariant polynomial on gl(r’, C).

Motivated by Proposition 2.2.11, we make the following definition.

Definition 2.2.12. We define

(2.2.75) ﬁ(E,gE) * @(F,gF) = ﬁ(E,gE)Q(F,gF) + P(E,gE)@(F,gF) )
Proposition 2.2.13.
(2.2.76) ¢.[P(E,¢") * Q(F,¢")] € Q¥ (M)

is a closed form whose cohomology is independent of g¥ and g*.

Proof. The same strategy in the proof of Proposition 2.2.7 still works. The key step is
the following identity

(2.2.77) 20y P(E, g%)  Q(F.g") = \/Q_MsD% (P(—AE’Q)Q(—A?Q))

t=1/2

0

2.3. A Riemann-Roch-Grothendieck formula.

In this section we will obtain a Riemann-Roch-Grothendieck formula, that the express
the odd Chern classes associated with the flat vector bundle H* (N, E) in terms of the
exotic Chern classes for TN, F that were defined in §2.2.5.

This section is organized as follows.

In §2.3.1, we introduce the flat infinite dimensional vector bundle & = Q)(N, E).

In §2.3.2, we equip T'N with a fiberwise Kéhler metric, £ with a Hermitian metric.

In §2.3.3, we introduce the Levi-Civita superconnection on &.



80 YEPING ZHANG

In §2.3.4, we define the index bundle, which is the fiberwise Dolbeault cohomology
group of /. We also show that the even characteristic form of the index bundle is a
locally constant function on M.

In §2.3.5, we construct differential forms oy, f3; in the same way as [BL95, §3(h)].
We state explicit formulas calculating the asymptotics of oy, 5; as ¢ — oo and ¢ — 0.
We prove a Riemann-Roch-Grothendieck formula as a consequence of these asymptotic
estimates.

In §2.3.6, we prove the theorem stated in §2.3.5. The techniques applied in the proof
were initiated by Bismut-Gillet-Soulé [BGS88c, §1(h)| and Bismut-Koéhler [BK92]. The
key idea is a Lichnerowicz formula involving additional Grassmannian variables da, da.
The introduction of these extra variables will allow us to obtain the our R.R.G. formula.

Finally, in §2.3.7, following [BL95, §3(j)|, we construct analytic torsion forms on M,
that transgress the R.R.G. formula at the level of differential forms.

2.3.1. A flat superconnection and its dual.
Set

(2.3.1) &' =¢*(N,N(T°"N)® E), &=Epe&”.
q

Then & is an infinite dimensional flat vector bundle over M. By (2.2.10), we have the
identification

(2.3.2) Q(M,&) = Q0N E) .

Let V¢ be the restriction of d¥; to Q' (M, &). Then V¢ is the canonical flat connection
on &.

Set
(2.3.3) A% =0y + V.

Then A¢ is a superconnection on &.
We recall that the operator A" acting on Q' (N, E) is defined by (2.2.19). We have

(2.3.4) AL = A" sy
Then, by (2.2.20), we have
(2.3.5) A% =0,
i.e., A is a flat superconnection. Equivalently, we have
(2.3.6) Oy’ =V = [0y, V] =0.
Set
(2.3.7) E =C<(N,N(T*N)@ A" (T*N)® E) .

Then & is an infinite dimensional flat vector bundle over M. We have the identification
(2.3.8) Q(M,E) =) (NE) .

Let V¢ be the restriction of dE to Q'(M,&"). Then V¥ is the flat connection on & .
Set

(2.3.9) AT =08 +v°

which acts on Q' (M, &"). Then A?" is a superconnection on & .
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We recall that the operator AF” acting on Q' (N, E") is defined by (2.2.21). We have

(2.3.10) AT = AF”

Q(-,n,-)(/\ff*) :

Then, by (2.2.22), we have

(2.3.11) A2 =0
ie., A% s a flat superconnection.
Let
(2.3.12) ()g:E xE—=C

be the canonical sesquilinear form, which extends to
(2.3.13) (-, )E: (AP(T*N)@)A"(T*N)@E*) X (Aq(T*N)®E) — APTYT*N)YQA"(T*N) .
We define
(,)e: & x&—C
(2314 @8)- [ (@0
N

Thus & is formally the anti-dual of &. For any «a € (M, ?*) and § € Q' (M, &), the
following relations hold

(8§*a7ﬁ)5’ + (_1)dego¢(a’5§/@)g =0 )

(V. B)e + ()™ (0, VEB)s = dur(a, B)s -
By (2.3.3), (2.3.9) and (2.3.15), we get

(2.3.16) (AE*OZ, B)e + (—1)dega(0@ Agﬁ)g = du(a,Be

i.e., A is the dual superconnection of A¢ in the sense of [BL95, Definition 1.5].

(2.3.15)

2.3.2. Hermitian metrics and connections on TN, FE.
From now on, we will assume that N is a Kdhler manifold.
Let J : Tk N — TrN be the complex structure of N.

Proposition 2.3.1. There exists a fiberwise Kihler metric g~ on TN, i.e., a Hermitian
metric on TN whose restriction to each fiber is a Kdihler metric.

Proof. Let (U;) be a locally finite open cover of M by open balls. Let (f; : U; — R) be
an associated partition of unity.

For each U;, we have the trivialization ¢; : ¢~'(U;) — N x U; as flat fibrations. Let
i N xU; = N, my, : N x U; — U; be the canonical projections.

Let g2 be a Kihler metric on T'N,.

Set

(2:317) g™ = 3 el (i gt ™))

Then g™ satisfies the required conditions. O
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Let g™V be a fiberwise Kéhler metric on TN. Let

(2.3.18) weECF(N, T*N @ T*N)
be the associated fiberwise Kahler form. Let
(2.3.19) duy = % € €% (N, A2 (TgN))

be the induced fiberwise volume form.

Let g™V, g~ T"N) be the Hermitian metrics on TN, A'(T*N) induced by ¢g™V.

Let g’#Y be the Riemannian metric on Tz N induced by g7*.

Let VT#Y be the conection on TgN associated with the metric ¢”®" and with the
horizontal vector bundle 77N that was defined in §2.1.4. We recall that the connection
ATN on TN is defined by (2.2.28). In the sequel, we change the notation as follows

(2.3.20) VIN = ATV

Since the metric g?% is fiberwise Kihler, the connection on TN induced by V¥ along
the fibre N coincides with VY. Moreover the complex structure of TgN is flat with
respect to the flat connection on A. By (2.1.52), (2.2.30), these two connections also
coincide in horizontal directions. The conclusion is that the connection V&V preserves
the complex structure J, and induces the connection VI on TN.

Let VIV, VAT"N) bhe the connections on TN, A'(T*N) induced by V7V,

Let g% be a Hermitian metric of E. Let V¥ be the connection on E defined by (2.2.28).

Let g» (*¢N) be the C-bilinear form on A'(T:N) induced by ¢g"V. Let

(2.3.21) x: N(TEN) — A*"(TEN)
be the usual Hodge operator acting on A (T¢N), i.e., for a, 5 € A (TEN),
GAMIEN) (o, B)doy = o A %P

In particular, * maps A" (T*N) to A"(T*N) @ A"~ (T*N).
The Hermitian metric ¢” gives a smooth identification ¢ : £ — E". The Hodge
operator *x extends to

(2.3.22) B NT*N)QE - A"(T"N)@ A" (T*N)Q E" .
Let ¢° be a Hermitian metric on &, such that for a, 3 € &,

0°(0.0) = Gz [ (6" T @ 07 Do
(2.3.23) (1) doss
= W(* a,f)e .
Set,
(2.3.24) W = (¢°)'VF g% € €°(M, T*M © End(&))
and
(2.3.25) kn = (doy) ™ dadoy € €N, T*M) .

We define w™™ as in (2.2.32). Let WV (TN) be the action of W™ on A (T*N). Then
WA (TN) i just the horizontal variation of the metric ¢* (T°%) on A (T*N) with respect
to the flat connection. We have

(2.3.26) W =N TN) L P 4y
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2.3.3. The Levi-Civita superconnection.
We recall that A and A¢ are defined by (2.3.3) and (2.3.9).

Definition 2.3.2. Set
(2.3.27) AS* = (+F)TTAT 4P

which acts on (M, &). Then A%* is the adjoint superconnection of A® (with respect
to g¢) in the sense of [BL95, Definition 1.6].

By (2.3.11), we have
(2.3.28) A2 =0
Set
e O P A
DF = g N (e g
By (2.3.5) and (2.3.28), we have
(2.3.30) C9% = —pP2 = g NN U8 qEx NN of pfl — ¢

(2.3.29)

Let 5?* be the formal adjoint of 55 with respect to g®. Set
—=F —=FE %
(2.3.31) Dy =0y + 0y

acting on &. Then DY is the fiberwise spin®-Dirac operator associated to gZ* /2.
We recall that V¢ is defined in §2.3.1. Let V¢ be the adjoint connection. Then

(2.3.32) Vi =V 4wl
Set
(2.3.33) Vot = %(v&* +V) =Vi+ %w@@ :
which is a unitary connection on &.
We have
(2.3.34) Cf =DE4+ Vo | DS =0y — 0y + %wf .

Recall that the Levi-Civita superconnection was introduced in [B86].

Proposition 2.3.3. The superconnection C¢ is the Levi-Civita superconnection with re-
spect to TEN, gT=N and gF.

Proof. Since the metric g7V is fibrewise Kihler, up to the constant /2, the operator D%
is a standard Dirac operator along the fiber N. As we saw before, the connection V&Y
induced by V¥ is exactly the connection that was considered in |B86|. Finally, since our
fibration is flat, the term in the Levi-Civita superconnection that contains the curvature
of our fibration vanishes identically. This completes the proof of our proposition. O

Given t > 0, let C¥, D¢ be the objects defined before which are associated with the
metrics g"V /t, g¥. By (2.3.34), we have

- —Ex  — . —_Ex = 1 .
(2.3.35) Cf =10y + O + VN | DE =10y — O + S’
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2.3.4. The index bundle and its characteristic classes.
Let H (N, Ey) be the Dolbeault cohomology of Ey. The action of G on Ej induces an
action of G on H (N, Ey). Set

(2.3.36) H(N,E) = Py x¢ H (N, Ep) .
Let V#'(VE) be the flat connection on H'(N, E) induced by the flat connection on

Pg. For s € € (M, &) satistying gﬁs = 0, let [s] denote the corresponding fiberwise
Dolbeault cohomology class. Then

(2.3.37) VHWNE ] = [V¥s] € QY(M,H (N, E)) .
By Hodge theory, there is a natural identification
(2.3.38) H(N,E)~kerD§ C & .

Let g7 (ME) be the metric on H'(N, E) induced by ¢¢ via the above identification.
Let VA (V.E)* he the adjoint connection of V' (NV-E) with respect to g7 ™V:F) . Set

VH‘(N,E),u — 1(vH‘(N,E),* 4 vH(N,E))
(2.3.39) 2 ’
W (NE) _ g H (N.E)x _ x7H (N.E)

Then VH (V-E)is o unitary connection and w” (NF) € € (M, End(H (N, E))).
Put
(2.3.40) X(N,E) =) (-1)’dim H*(N, E) .
p

Proposition 2.3.4. For any t > 0, we have

(2.3.41) ¢ Tr, [exp(D]?)] = x(N, E) .

Proof. By the local families index theorem [B86|, as ¢t — 0,

(2.3.42) ¢ Trg [exp(Dy )] = q.[TA(TN,V™™)ch(E, VE)] + 6(V1) .
Furthermore,

0 0 :
— Tr, [exp(Dfo’Q)} = Tr, [[Df, —Dﬂ exp(Df’z)}

(2.3.43) ot ag
— Tr, [[Df,(an)exp(sz)H =0.
By Proposition 2.2.5 and by the Riemann-Roch-Hirzebruch formula, we have
(2.3.44) ¢ [TA(TN, V™ )ch(E, V)] = x(N,E) .
Then (2.3.41) follows from (2.3.42)-(2.3.44). O
2.3.5. A Riemann-Roch-Grothendieck formula.
For t > 0, set

oy = V2mip Trg [Df eXp(Df’Z)} :
(2.3.45) AT
B = ¢ Trg [T

Proposition 2.3.5. Fort > 0, o is a closed odd real form on M, whose cohomology

class does not depend on the metrics g" N, g% or on t.

(1+2D7?) exp(Df’»Q)} .
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Proof. By (2.3.30), we have
(2.3.46) dprV 2mip Trg [Df exp(Dfo’Q)} = o Trg [[C’f, Df exp(Dfm’Q)H =0,

which proves the closeness.
Then, by the functoriality of our constructions, [a;] € H (M) does not depend on the
metric. U

Proposition 2.3.6. For any t > 0, the following identity holds:

(2.3.47) %at - %dMBt |

Proof. Set

(2.3.48) Ni=NxR,, M. =MxR,.
Let

(2.3.49) ¢+ = q®idp, : Ny — My

be the obvious projection. Let t be the coordinate on R,.
We equip TN with the metric 19"V, Let &, w’, C%, D% be the corresponding
objects associated to the new fibration. Then the following identities hold (cf. (2.3.24))

0
dy, =d dt N —
M+ M+ /\at7

(2.3.50) . o
wh = w4 dt A (N =)

Then, by (2.3.34) and (2.3.35), we get

1
C£+:Cf+dt/\2+—

A(T*N) _
Y 2LLdt A (N n) ,

(2.3.51) . o
Thus

V2mip Trg [D"@+ eXp(D&"Zﬂ

V 1 (T*N

+ V2mip Trg [D‘g exp (D@p’? + [D(§7 Q_tdt A NAT N)D]

1 (TN
= ap+ gt AT [N T exp(DF2)] = (N, B) Zdt

(2.3.52)

+ V2mip Trg [Dg [D"@, exp (D’fv2 + %dt A NA‘(W))]]

1 (T :
=a;+ 2—tdt A o Trg [N? ("N exp(D%?)] — x(N, E)%dt

+V2rip T, [[Df, D] exp (D 4 di A N7 N))]
|
= ag+ dt A B = x(N, E)%dt e (M) .

By Proposition 2.3.5, we have
(2.3.53) dar, V2mip Trg [D% exp(D?)] = 0.
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By the first identity in (2.3.50), (2.3.52), (2.3.53), we get (2.3.47). O

Let f(z) = ze*”.
Following [BL95, Definition 1.7|, we define the odd real closed form on M given by

(2.3.54) f(H (N, E), VT WE) g NEY = \/omio Tr, [ f(w™ ™5 /2)] .
Put
(2.3.55) X'(N,E)=> (~1)’pdim H*(N,E) .

Now we state the central result in this section. Its proof will be delayed to §2.3.6.

Theorem 2.3.7. Ast — +oo,

| | 1
a, = f(H (N, E), VTN gl (NE) 4 6(7) ,
(2.3.56) X , t
— ~V(N,E) + 0(=) .
ﬁt 2X ( ) ) + (\/g)
Ast — 0,
a = g [ﬁi(TN, g"™N) x ch(E, gE)]
1
+ S-dug. | = TA(TN, V"™)eh(B, V)| + (V) |
(2.3.57) o e .
fi= 50 [Td’(TN, VTN)ch(E,vE)} +SX(N, E)
1 w TN E
- 57t [%Td(TN,V )eh(E, V )} +6(VA) .
Remark 2.3.8. By Proposition 2.2.3, we have
(2.3.58) ¢ [%Td(TN, VIN)ch(E, VE)] e €= (M) .

Now we prove the following Riemann-Roch-Grothendieck formula.
Theorem 2.3.9. We have

F(H (N, B), VA0 gif (008))|
(2.3.59) N -
- [q* [Td(TN, g™) % c(E, gE)H e HoY(M,R).

Proof. We combine Proposition 2.3.5 and Theorem 2.3.7. Il

2.3.6. Several intermediate results, Lichnerowicz formulas and the proof of Theorem 2.3.7.

We will now introduce various new odd Grassmann variables in order to be able to
compute exactly the asymptotics of certain superconnection forms as ¢t — 0, and also to
overcome the divergence of certain expressions. Our methods are closely related to the
methods of [BGS88b, BGS88c, BK92|, where similar difficulties also appeared.

Let a be an additional complex coordinate, € be an auxiliary odd Grassmann variable.

For

(2.3.60) w,v € {1, da, da, dada , €, eda , eda edada}
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and o € (M), we denote

w_ Joo tu=wv,
(2.3.61) (vAo) —{ 0 else .

Lemma 2.3.10. The following identity holds

Tr [D”@ exp (D"@’Q)]

= Tr, [exp ( — 92— da%(éi + gi*)

(2.3.62) } edada

—da [Gy + 3y, 50 + dada 50°)

lNA-(W) exp (D‘”)} .

+ dM Tl"s [2

Proof. By (2.3.30) and (2.3.34), we have

[NA‘(W)70<§’,2] _ [NA'(W) D&,Q]
(7 —£E 1 5
(2.3.63) = - [NA TN [0y —aﬁ,éwﬂ]

which implies

T [exp (= %2 —da (B +0%") — da [ + ", 5]

0 T 1 -  —=Ex —E  —=Ex 1
= 55 s | = 5(0n + 0y Jexp (— C%? +b[Dy + Dy 75&])}
— 2 Trs [ — 1(5? +5§’*) exp ( o C@?‘,Z + b[NA(W),C"ﬂ’Z])]
(2.3.64) %b : %

=E —E,* TR N p

= %Trs - 5(81\7 + 0y )[NA (T N),exp ( _ Cé",2)]]
1 *

= o, [— S [VYTD, G0 4 B T exp (- 073)]

= T, [ (@~ 3%) exp (D7)

b=0

87
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Then
T [exp (= 02— da 5 (0 + 1)
8 ]
— Trs [exp(_CgQ—da%(a ) da [—N E* E g})]ﬁdadd
1 .
+ Tr, | =w® exp (D&Q)
(2.3.65) [2 ]

= Tr, % (Eﬁ* — gﬁ + w’g) exp (DFQ)}
= Try (Eﬁ* — gﬁ + %wg) exp (D‘m)} — Tr, [% (Eff* _ 5§> exp (Dé",2>:|

= T, [Df exp (D7) = T, [ [0, NN T exp (D))

lNA.(W) exp (D”@’Q)] .

= Tr, D{) exp (D{ﬂ)} — dpy Ty [2

The last equation is just what we needed to prove. This completes the proof of our
proposition. ]

Let Ny, My, qp, &, w®, C% and D be the same as in the proof of Proposition
2.3.6.

Lemma 2.3.11. Given t > 0, the following identity holds:

(NA~(T*M) 414 t%) %NA«(T*N) exp (Dtgz)}

= Trg [exp ( — %2 — dal(gE + th’*)

Tr, [

(2.3.66)

E* Gt £>+

cdadad
—da [8 + 10y W }—irdada%tw"@*)} t

+ closed form .

Proof. By (2.3.62), we get

Tr [Déa* exp (D"ﬂ’z)}
= Ty [exp ( i dal(gi + tgﬁ*)
2
(2.3.67) B B € €\ edada
—da [EN +toy , 5@0’*] + dada §w/+)}

lNA-(W) exp (D&’Z)} .

+ djwJr TI‘S [2
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Taking the dt component, we get

1 RN Ve
Tr [2_15 (NA (T"N) _ n) exp (D‘m)}

+ Ty [Df exp ((D‘p + dt —NA (T°N) _ gt 2_75) )} "
= Trg [exp (- C? —da 5(81\, + taN’ )
(2.3.68)

— —E.x ., edadadt
—da [Oy +tDy ", %wéﬂ + dada %cﬁ)}

s Tr, [N T e (D + e N T0)?)]
0

1 A
+ ETYS [§NA (T*N) exp (DFZ)} .

We multiply (2.3.68) by t and subtract the closed forms. Since dt supercommutes with
NATN) and D¢ By Proposition 2.3.4, 2.3.5, we can delete the 3, dt 5 on the left-hand
side of (2.3.68). We obtain

Trg [ENA'(T*N) exp (Dt‘m)}

2
T, [Df exp ((DF +dt g T |

dt

(2.3.69) = T, [exp (— 0%2 - da%@ﬁ NI

— _Ex €t o t edadadt
—da [Oy + 10y, %w"ﬂ + dada %w&r)}

1 -
* t% T [ NY TN exp (D(O 2)] + closed form .

We have

d Ty [Df exp ((Df + dt %NMT*NW)} )

= Tr, [[Cf,DfeXp((Dg+dt NAMTN }

. dt
= — Tr, [Dfexp (Df2 [Cf); [vadt 2NA N)H)}

SN

= Tr, -Df' [Df exp (D) ? + [CF, dt %NAA(T*N)])H‘#

(2.3.70) = Tr, | DY exp (Df’2 + [Df, [Cf, dt

= ™, [20f 2 exp (D + [0t NN T

1 j— dt
_ (dM Tr, [2Df Zexp (D + dt 5NA (T N>)D .
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Thus
& & LA @2y 1%
Try [Dt exp (D] + dt §N ) )}
- 1 RN dt
= Try [QDf’Z exp (ny’2 +dt §NA g N))} + closed form
a (T N
=20 Tr, [NA TN exp (1 + b)Df’Q)} + closed form
b=0
9 A (T*N LNA(T M) £ 9 _1NA(T* M)
2371) b VD exp (1) Dy (1 +0)72 )LZO
+ closed form
0 1 ATA (T* M) (TN v
= %(1 + b)2V Tr, [NA (T"N) exp (Dé’ib)t)} - + closed form
0 (RN y
= ta Trs [NA (T*N) exp (DfZ)]
1 - RN o
+ §NA (T"M) T, [NA (T"N) exp (sz)} + closed form .
By (2.3.69) and (2.3.71), we get (2.3.66). O

Let 7 be the scalar curvature of (N, g™"). Let R, RTY be the curvatures of V¥ VIV
on E, TN over N so that

(2.3.72) RE =vE2  RTN = yIN2

Then Tr [RTN ] is just the curvature of the connection on A™ (T'N) which is induced by
VTN,

Let ST#Y be the analogue of the tensor ST¥ in Definition 2.1.9. Since our fibration is
flat, it follows from [B86, (1.28)], if U € Tg N and V,W € THN/, then

(2.3.73) (SN (U)V,W) =(U,T(V,W))=0.

Let VAU™N)@E he the connection on A'(T*N) ® E induced by VA"V and E.

We recall that w is the fiberwise Kihler form, w?™, w¥ are the variation of metrics on
TN, E. We also recall that c(-) is the Clifford action associated to g”" /2.

Let (e;)1<i<2n be an orthonormal basis of Tk N, let (e')1<;<2, be the corresponding dual
basis. Let (fo)i<ca<m a basis of TM. We identify the f, with their horizontal lifts in
THN. Let (f*)1<a<m be the corresponding dual basis.

To interpret properly the formula that follows, we need to extend the basis e; to a
parallel basis of Tg N near the point x which is considered. Moreover, we may suppose
that V&Ve; = 0 at the point .
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Proposition 2.3.12. The following identity holds:

E*EK(’

1 5 —
—C"’m—da§(3§+8]\; —da [_N_|_8N @ }+dada—w

1 “(T* N a
= 5 (VATVOE 4 (SN (e0)es, fu)eles) f

1 _ V-1 2
— da 5e(e;) — dac (dpw)(ei, €j)0(€j))

(23.74)  —dae [V} TEE, %wE - §<deTN><ej, Jes)]eles)
+ dadac (3" — L(dww)(es, Jey))
1 1 1
= (RE +3 Tr[RTN]) (e, €5)c(es)cle;) — (RE +3 Tr[RTN]) ez, fo) cler) £
1 1 1
- 5(RE +5 Tr[RTN]> (fos B 77 = 57 .

Proof. Applying [B86, Theorem 3.5 with ¢ = 1/4/2 and (2.3.73), we have
. 05,2
1 N arevd 2
= S (TAENSE 4 (ST (e, fu)eles) )

(2‘3‘75) Log 1 TN g, 1 TN a
— (B + 5 T[RT]) (e, e5)clen)ele) — (R™ + 5 Te[RTY) (e fa)eles) f
— S (RE 4 SR (fu fo)ff* — o

Taking the degree 0 part of (2.3.75), we get

(2.3.76) - @+
e _lon@mer) _Lipe L Lo im0 N o ey LN
=3 (VEZ_ ) 5 (R + 5 Tr[R ])(ez, e;)c(e;)c(e;) 8r )

By [BGS88c¢, Proposition 1.19] and by (2.3.26), we get

(2.3.77) W’ = —g(de)(ei, ej)cle)c(e;) — i(de)(ei, Je;) +wf .

By dyw = 0 and [dy, dy| = 0, we have dydyw = 0. Therefore

[8 +5]€*’ _6\2__1(de)(€¢,ej)c(ei)C(ej)]
(23.718) = “/4__1 [c(ex) VAT NEE (410 (e, ¢5)c(ei)cle;)]
ey/—1

== (v/\ (T*N) ®E(de)(ei,ej)c(ej) + (de)(ei,ej)c(ej)vg'(m)@w) )

91



92 YEPING ZHANG

By (2.3.76), (2.3.77) and (2.3.78), we get

— On +0y")* = da % (On +0y") — da [0y + On", gw‘f’} + dada %w‘f
= (VAT da seler) — dae Yo (dw) ene)eley))
2379)  —dac [VTO, Lo (™) (e, Jey) el
+ dadae (%wE - é(de)(ej, Je;))
— S (BP 4 SR (en )eler)ele) — 177

Comparing (2.3.75), (2.3.76), (2.3.79) with (2.3.74), it only remains to show that

> (SN (e)es, fa) focles)ele;) =0,
(2.3.80) 7
D) (duw) (e e) (SN (ei)e, fa) fclej)eler) =0
itk
The first identity in (2.3.80) follows from the fact that (cf. [B86, §1(c)]) if U,V € TN
STeN (U)W — STeN(V)U € TaN, then
(2.3.81) (SN (e3)ey, fa) = (ST (e))es, fa) -

By (2.3.81), we get the first identity in (2.3.80).
Now, we prove the second identity in (2.3.80). By [B97, (1.5)], we have

1 - 1
(2382) (S (ex)er, fu) = =5 ((47Y) ViV (e) s en) = 5 (V) es, Jer)
Therefore the second identity in (2.3.80) is equivalent to the following one :
(2383) 303 (Vrw)len e (Vaw)en Jer) f feles)eler) = 0.

i j#k

Since (Je;)1<i<n is also an orthogonal basis of Tgx N, using the fact that w and dyw are
J-invariant, we get

Z ; (V5w) (eir €) (V) (ei, Jew) f S cle)eler)
= —Z% Viw) (eire;) (Vi,w) (e, Jer) f fPe(e;)eler)
(2.3.8) + % Z ; (V5aw) (Jei, €) (Vgw) (Jei, Jew) £ fPe(ej)ele)
= SIS (V) (e ) (T 1) e Jen) PPl )elen)

i j#k

- % DY (Viw) (er, Jeg) (V) (es, ex) £ fPe(es)eler) -

i gtk
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By exchanging the roles of j, k and «, 5, we obtain
DD (Viw) (e, Je;) (Vgaw) (eq, ex) [ fPele;)cler)

i gtk
(2.3.85) =D ) (Viw) (ei Jer) (Vi) (e, ¢5) f7 [ cler)c(es)

i Ak

= ZZ (V5w) (e, €5) (Vyw) (e, Jew) f@fPe(e;)c(er) .

i gk
By (2.3.84), (2.3.85), we get (2.3.83). O
Proof of Theorem 2.3.7. The proof of (2.3.56) follows the same argument as [BL.95, The-
orem 3.16].

We turn to prove the first formula in (2.3.57).

By Lemma 2.3.10, it is sufficient to establish the asymptotic expansion of the following
two terms as t — 0 :

Tr, [exp ( —CP? —da %(Eﬁ + tgff*)

9

, }edada

(2.3.86) —da [516 + tgﬁ’*, %wﬂ + dada %w(g)
]. (% N
dar Try bNA (T*N) exp (DfQ)] )

As t — 0, we claim that we can use equation (2.3.74) exactly as in Bismut-Kohler
[BK92, Theorem 3.22|. The main difference is that in [BK92|, the space of variations of
the metrics is 1-dimensional, while here it is the full basis M. By proceeding as in this
reference, we get

V27 Tre [exp (- Cf? —da L (5]% + téﬁ’*)

edada
(2.3.87) —da [_N + taN , E } + dada %wg)]

= ¢.[TATN, g™) 5 h(E, g")| + O() .

This gives the asymptotic expansion of the first term in (2.3.86).
We will study the second term in (2.3.86). As t — 0, by the local families index
theorem technique [B86]|, we get

© Trg [ tNA(TTN) exp (D[Q)}
(2.3.88)
_— [%Td(TN, VTN)ch(E, VE)] +OWT) .

Furthermore, by [BGS88b, Theorems 2.11 and 2.16], the asymptotic expansion of
Tr, [NY TN exp (DfQ)} is a Laurent series on t. By (2.3.88), we get
(2.3.89) ¢ Try [NA'(T*N) exp (D(p 2)} =Ct'+Co+0(),
with
(2.3.90) C_i=q [;Td(TN, VTV)ch(E, VE)] .
T
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Let C(_pl) (resp. Cép)) be the component of degree p of C_; (resp. Cp). By Remark 2.3.8,
for p > 0, C(f’l) = 0. Then

(1 + NATM) t%) Tr, [NAA(W) exp (DfQ)]

(23.91) =y ((p + 1)051’)) +O(t).

Applying (2.3.87) with & replaced by & (see the proof of Proposition 2.3.6) and taking
the dt component, we get

o Trg [exp (—C%? —da %(gf, + tgﬁ’*)

et edadadt

(2.3.92) — da [0 + 0", 5“’&] + dada %tw&)}
_ %q* Td(TN, V)b (E, V5] + 6(1)

By Theorem 2.2.5, Lemma 2.3.11 and (2.3.92), we have

(2.3.93) (1+ NATTM) 4 t%) Trg [NA‘(W) exp (sz)] = closed form + O(t) .

By (2.3.91) and (2.3.93), we have

(2.3.94) dyCo =0 .
By (2.3.89), (2.3.90), (2.3.94), as t — 0, we have

V2mip dyy Trg [NA‘(W) exp (DfQ)}
(2.3.95) = darp Tt [NA‘(W) exp (vaz)}
= %dMq* [%Td(TN, VIV)eh(E, VE)} +OWT) .

The first formula in (2.3.57) follows from Lemma 2.3.10, (2.3.87) and (2.3.95).
The second formula in (2.3.57) may be proved as a consequence of the first one by
applying the same technique as the proof of Proposition 2.3.6. U

2.3.7. Higher analytic torsion forms.
We choose ¢, g2 € € (R, R) satisfying

(2.3.96) gt)=1+0(t), ¢t)=1+0(*), ast—0,
(2.3.97) gt)=0("), gt)=0(e"), ast— +oo,
and

/1 a1, /%o 9 _ gy o,
(2.3.98) ° 92(;_ X e g;zt)

[ty [T



LIMITES ADIABATIQUES ET FIBRATIONS HOLOMORPHES PLATES 95

Using Mellin tranformation, (2.3.98) is reformulated as follows

d 1 +oo
- £ g (H)dt) = —2
(ds F(s)/o n(t) ) =0 ’
(it [ v e0) =
dsT'(s)
Definition 2.3.13. The analytic torsion forms .7 (g™, g¥) € Q2 (M) are defined by
)

T(g"™,9") = —/Om {Bt ()2 LV By - 2@

(2.3.100) - glét)q* [Td’(TN, V™N)ch(E, VE)]

(2.3.99)

nx(N, E)

+ 922<f)q* [;Td(TN VIV )ch(E, VE)] }Cff

By Theorem 2.3.7, 7 (g™, g¥) is well-defined. Moreover, 7 (¢7", ¢g¥) is independent
of g; and gs.

Proposition 2.3.14. We have
du 7 (9™, 9") = q. [T/de(TN, g"™) * ch(E, gE)}

(2.3.101) , 4
— f(H (N, E), VT (NE) gH(NE))

Proof. By Theorem 2.2.5, g, [Td’(TN, VTN)Ch(E,VE)] is a constant function on M.
Then, by Proposition 2.3.6, we get

dMg( TN E)

(2.3.102) = — /0+°° {dMﬁt—i— 2(t>dM *[ Td(TN, VTN)Ch(E VE)]}dtt

0 92(t) W TN E
_ _/0 {825 o+ 2 dvg ! TA(TN, V'Y )eh(E, ¥ )| Jar

By Theorem 2.3.7, the second identity in (2.3.98) and (2.3.102), we get (2.3.101). O
Proceeding in the same way as [BL95, Theorem 3.16|, we get

(2.3.103) i, [NA'(W> exp (— th;’Q)} =Y(N,E)+O0(t™"), ast— +oo.

For s € C with Re(s) > n, we define
0(s)
2.3.104 1 Feo (TN
( ) = — ) /o 51 [Trs [NA (T"N) exp (- th,’z)] —x'(N, E)} dt .

By [See67], 0(s) admits a meromorphic extension to the whole complex plane, which is
regular at 0 € C.
Let 7 (g™, ¢¥) be the component of .7 (g™, g) of degree zero.

Proposition 2.3.15. We have
1
(2.3.105) FO(gTN ¢F) = 59’(0) :
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Proof. By (2.3.35) and (2.3.45), we get

B = T, [M(l — 2D exp (— D)
(2.3.106) ' 28
_ = e A (T*N) . E2
2<1+2t8t) Try [N exp( tDy )} .
By (2.3.89), as t — 0, we have
(2.3.107) Try [NA‘(W) exp (— th,’Q)] —a_1t ™' 4+ ag+ ﬁ(\/%) :
By (2.3.57), (2.3.106), (2.3.107), we get
(2.3.108) ap = —q. [Td (TN, V"™)ch(E, V)] + nx(N,E) .
By (2.3.104), (2.3.107), (2.3.108), we get
(2.3.109) 0(0) = q. [Td' (TN, V"™ )ch(E, VF)] — nx(N, E) + X' (N, E) .
By Definition 2.3.13, (2.3.99), (2.3.104), (2.3.106), we have
T(g™ , g")
- - - (T*N) . E2 o
i {2<1 2tat) Tr [N exp( tDy )} 2x(N,E)
t / /
+ ngU <q* [Td (TN, V™N)ch(E, VE)] —nx(N, E) + X'(N, E))
92(t) w TN E ﬂ
+% q*[QWTd(TN,V )eh(E, V )}} t
1d 1 [t 0 —
= ———| — 71+ 20— )¢ Trg [NATTN) —tD%?
2ds s:OF(s)/O ( + 3t){ : [ ex N )}
(2.3.110) — Y(N, E)}dt
1 d 1 oo s—1 / TN E
—nx(N, E) + X' (N, E))
1d 1 e w
— = = 5 | =—Td(TN,VIN)ch(E, VE
T / £ ga(1)dt g. [ S TA(TN, VTN eh(, 97
d 1—2s / TN E /
= | —50() + ¢, [ Td (TN, V™)eh(E, VF)| = nx(N, E) + X' (N, E)

1
= 50/(0) = 00) + q. | Td'(TN, V"™ )ch(B, V)| = (N, E) + X'(N, E) .
By (2.3.109) and (2.3.110), we obtain (2.3.105). O

2.4. The analytic torsion forms of a bicomplex.

In this subsection, we define the analytic torsion forms over S of a bicomplex where
the differential is dj; + On. A fiberwise positive line bundle L plays a critical role in our
constructions. To define the analytic torsion forms, we use a nondegeneracy assumption
made in Bismut-Ma-Zhang [BMaZ15| that guarantees that the de Rham cohomogy of the
fibre X with coefficients in the considered flat vector bundle on M vanishes identically.
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These analytic torsion forms can be thought as the analytic torsion forms of Bismut-Lott
[BLO5] with coefficients in an infinite dimensional flat vector bundle.

Also we use an adiabatic limit technique to express these analytic torsion forms on S
in terms of the analytic torsion forms of Bismut-Lott [BL95| of the direct image, and of
the analytic torsion forms that we obtained in §2.3.7.

This section is organized as follows.

In §2.4.1, we construct the spectral sequence associated with the fibration ¢ : N' — M.

In §2.4.2, we construct a flat superconnection, which is a version of the construction of
Bismut-Lott [BL95|, where the considered flat vector bundle is itself of infinite dimension.

In §2.4.3, we equip T'N, T'X, E with metrics.

In §2.4.4, we construct a Levi-Civita superconnection, which is again an extension of
constructions of Bismut-Lott [BL95|.

In §2.4.5, we introduce the Hermitian line bundle (L, g*) on N, on which we make the
nondegeneracy assumption of Bismut-Ma-Zhang [BMaZ15|.

In §2.4.6, we recall some results of Bismut-Lott [BL95].

Finally, in §2.4.7, we state our main results. Their proofs are delayed to section 2.5.

2.4.1. A filtered complex and its spectral sequence.
We recall that the fibration ¢ : N' — M and the (infinite dimensional) flat vector

bundle (&, V¥) over M are defined in §2.3.1.
For any p,q = 0, set

(2.4.1) PN, E) =€ (N, \P(T*M) @ A(T"N) ® E) = Q9 (M, &) .

Then (Q(N, E),gf,, V"’m) is a bicomplex.
For any k£ > 0, set

(2.4.2) O'WN.E)= @ QN E).
pt+q=k
Set
(2.4.3) D' =0y +V’ .

Then, (' (N, E), D") is a simple complex. Let H, (N, E) be the cohomology of (' (N, E),
We remark that (' (N, E), D") is an elliptic complex, as a consequence, H, (N, E) is
finite dimensional if M is compact.

Let

QN,E)=F'QWN,E) D F'Q(N,E) D
D FAmMIQ (A Y = {0} .

be the a filtration of (N, E), given by

(2.4.5) FPOYN,E)= P 97N, E).

p'2p
p'+q'=k

Then (2 (N, E), D", F") is a filtered complex. Let

Hi;ot(Nu E) = FO t;ot(N E) 2 FlHt'ot(N7 E) 2
D FdlmM+1Ht0t<N7 E) = {0} .

be the induced filtration on H; (N, E).

(2.4.4)

(2.4.6)
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For any p > 0, set
FPH, (N, E)
24.7 GrPH, E) = fot ™ .
(24.7) Hi N E) FrlH (N, E)

Let (Ef’q, d, : EP? — E,f?_’""f””“l)r>0 be the spectral sequence associated to the filtra-
tion F" on the complex (' (N, E), D").
We have

EP = QP (M,Q4(N, E)) ,
(2.4.8) (Eo, do) = (Q (M, (N, E))ﬁﬁ) .

Recall that H (N, F) is the fiberwise Dolbeault cohomology of the fibration ¢ : N' — M
with coefficient in F, which is also a flat vector bundle over M with flat connection
VA (NE) The de Rham operator acting on Q' (M, H (N, E)) is also denoted by V7 (V-E),
We have

EYT=QP (M,HYN,FE)) ,
(Eh dl) = (Q (M7 H<N7 E)) ) VH(N7E)) .

For any ¢ > 0, let H' (M, H(N, E)) be the cohomology of M with coefficients in the
flat vector bundle H?(N, E). We have
(2.4.10) EPY = HP(M, HY(N, E)) .

For r > min{ dim M, dim N}, we have

BP9 = GV HEZU(N )
(Erv d?") = (Gr.Héot(Nﬂ E)v 0) :

Remark 2.4.1. If M is compact, EY? = HP(M, H1(N, E)) is finite dimensional. This
provides another proof that HZL (N, E) is finite dimensional for M compact.

(2.4.9)

(2.4.11)

Remark 2.4.2. If HY(N,E) = 0 for ¢ > 0, the spectral sequence (E,,d,),>o degenerates
at r = 2. Then, for r > min{ dim M, dim N}, we have

(2.4.12) HP(M,H°(N,E)) = E} = EP = HY (N, E) .
2.4.2. A double fibration and a flat superconnection.

Let
(2.4.13) T M—S

be a real smooth fibration with compact fibers. For s € S, set X, = 7 !(s).
The composition map

(2.4.14) r=moq: N — S

is again a fibration. For s € S, set Y, = r~!(s).
Let g, : Y, — X, be the restriction of q.
The objects concerned above fit into the following commutative diagram.

(2.4.15) N—L-M-—T"55

I

V, 2> X, — {s}
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In the sequel, we will systematically omit the subscript s.
We recall that the fibration ¢ : NV — M is equipped with a flat connection, defined by
(2.2.7). By restricting (2.2.7) to Y, we get

(2.4.16) TY =TgkN o THY , THY ~¢'TX .
We have the following identification induced by (2.4.16)
(2.4.17) OPUY,E) = QP (X, &9)

where QP4(. E) is defined by (2.4.1).
We equip the fibration 7 : M — S with a connection, i.e., with a smooth a splitting

(2.4.18) TM=TXoTiM, THM ~7*TS .
For U € TS, we denote by U € TH M the lifting of U in TH# M, i.e., the unique vector

satisfying m, Uf = U.
Set

(24.19) Fr=(Y,E), F=F,

which are infinite dimensional vector bundles over S. We have the following identification
induced by (2.4.18)

(2.4.20) WUNE)= P (s, 77
p'+p''=p
The identifications introduced are summarized as follows.
QUN,E) =81,
YUY E) = QP (X, 87) = FP1

WPIUN E)=P(M, & = f @&(s,.77
p'+p''=p

We recall that operator A% acting on Q' (M, &) is defined by (2.3.3). Passing though
the identification Q (M, &) = Q' (S,.F) (cf. (2.4.21)), A® defines an action on Q' (S, .7),
denoted by A7 .

We recall that 5% is the Dolbeault operator acting on & = €<(N,A(T*N) ® E),
defined in §2.2.2. We recall that V7 is the flat connection on & over M, defined in
§2.3.1. Passing though the identifications (2.4.21), both 5% and V¥ act on Q(S,.%).
Then, by (2.3.3), we have

(2.4.21)

/!

)

(2.4.22) A% =0y +V°
Let dx be the de Rham operator acting on ' (X). Its extension to (X, &) is denote
by d5-

For V' a vector field on M, let Ly be the Lie derivative acting on Q' (M). Its extension
to (M, &) is still denoted by Ly. For U € T'S and £ € €°(S,.F) = €°(S,Q (X, &)) C
Q (M, &), set

(2.4.23) V€= Lyn€.

Then V7 is a connection on the infinite dimensional vector bundle .# over S.
Let T € Q(S,¢°°(X,TX)) be the curvature of the fibration, defined in §2.1.4. Then
ir acts on (S, (X)). This action extends to Q' (S,Q(X,&)) = Q (S, 7).
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Passing though the identifications (2.4.21), all the operators d%, V7 and iy act on
(S, #). By |[BL95, Proposition 3.4], we have

(2.4.24) Ve =d% + V7 +ir.
Then
(2.4.25) A7 = On +d5 + V7 +ip .
For k € N, let A7 ¥ . (0 (S,.7) — Q+*(S,.%) be the degree k component of A7, then
(2.4.26) A7 = AT L A7 A7
with
(2.4.27) AT =30 4 dS, AT =vT | AT o

. I . . T . .
Since A7l is a connection, A7 is a superconnection on .# over S. Moreover, by
(2.3.5), we have

(2.4.28) A72 =0,
i.e., A7 is a flat superconnection.

2.4.3. Metrics on TN, TX and Clifford actions.
Set

(2.4.29) S =N(T*X)® AN(T*N) .

Still, let g"™ be a fiberwise Kahler metric on T'N. Let g"* be a Riemannian metric on
TX. Then .7 is equipped with the actions of C(TxN, 3g™V), C(TX, ¢'%), C(T X, g*),
defined in §2.1.2.

Let ¢ be the metric on .# induced by ¢7X and ¢™".

We recall that the connection V&V on Ty N is defined in §2.3.2. Let V¥ be the
Levi-Civita connection on TX with respect to ¢?X. Let V¥ be the connection on
TY = TgN ® TX induced by VT and VTX. Let V* be the connection on .# induced
by VIX and V&Y,

Still, we equip £ with a Hermitian metric g¥. We recall that the connection V¥ on
is defined by (2.2.28).

Let ¢”®F be the metric on .¥ ® E induced by ¢” and ¢F.

Let V7®F be the connection on . ® F induced by V" and VZ.

2.4.4. Superconnections.
Let g7 be the L2 -metric on .% = €=(Y,.¥ ® E) induced by ¢"%, ¢"" and gF.
Let A7 be the adjoint superconnection of A” (cf. [BL95, §1]).
Let NA(T"S) be the number operator on A (T*S).
Set

(2.4.30) OF — 9~ NNT"9) (Aﬁ,* n A7) GNA(T*S)

Then C7 is still a superconnection on .%. We also define an auxiliary operator
(2.4.31) D7 — 9-NATTS) (Asz* _ A‘g) GNA (T7S)

Then D7 € (S, End(.%)). Moreover, we have

(2.4.32) 72 _ _p72
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Let V7* be the adjoint connection with respect to g”. Set

Fu __ 1 F x F
(2.4.33) V= (VYT

L vE S v E (g,?)*l \vadid

Then V7" is a unitary connection on . and w?” € Q'(S, End(.%)).
By [BL95, Proposition 3.9], the following identities hold

T —E,* = F 1
C7 =0y + Oy +dy" +d% + V7 — —o(T)
(2.4.34) L X !
D7 =0y — Oy +d5 —ds + éw —Je(T) .
For t,u >0, let C7, (vesp. D) be C7 (resp. D7) with g™ replaced by 1" and

g™ replaced by 1 TX

For convemence, we introduce the following conjugated operators

tg; _ U%NA'(T*IM)t%NA'(W) CiitiéNA'(W)uiéNA'(T*hl) 7
(2'4'35) Z LA (T*M) L NA(T*N) g ,_LyA(TFN) _ 1A (T*M)
D;, = u? t2 Dy t2 u? :
Then
F aE* =F & * & Z.u 1
¢/, = Vt(Oy +9y) + Vu(dy" +d%) + V7" — o(T) ,
(2.4.36) i
o p —Bx =E & ; 1, 1 .
Set
F —F % —=F F —F % . —F
(2.4.37) OVT_ 81; TOn DVT - ag O
Cf =dy"+dy, D =dy" —d5 .
Then
; g ; 1
= VtCT + JuCl + V7 — 4\/_c(T) :
U
(2.4.38) 1 1
:\/%Df+\/aDi?+§W' N oT) -

Let Qtu[o] (resp. @’? [0]) be the degree zero component of €7, (resp. D7), i.c.,

¢ = VieT + vy
9[0 = ViD7 + JuD? .

Then, Qi’[o] (resp. @i’[o]) acting on F = €>°(Y,.¥ ® E) is self-adjoint (resp. skew-
adjoint).

Let (e;) be an orthonormal local basis of TN, let (¢') be the dual basis; let (f,) be
an orthogonal local basis of TX, let (f) be the dual basis; let (¢g,) be a basis of T'S, let
(g%) be the dual basis.

In the follows, we calculate C7 D7, C7, D7, VZ* and w” in local coordinates.

(2.4.39)
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Since C7 is the classical spin® Dirac operator on & @ A (T*X) = €°(N,.¥ @ E), we
have

(2.4.40) CT =c(e;)VI®F . D7 =/—1c(Je;) V¥ .
By [BL95, (3.24), (3.31)], we have
(2.4.41) d% = f*AVS, dY = —ip, Vi —ipw’(fa) -
Then
, | 1. :
O = c(fa)V, + §C(fa)w‘)”(fa) - §C(fa)w‘°”(fa)
W L
i = clfa) V3" = o) (fa)

DY = — (1) V5, — Sl (o) + gl ()

= LV el fal ()

We recall that m = dim X. Let dvx € Q™ (X) be the volume form on X induced by
g'X. For U a vector field on S, set

(2.4.43) kx(U) = (dvx) ™ Lyndoy .
Then
(2.4.44) kx € €N, T*S) C Q'(S,End(F)) .

Let VA (T"X) be the connection on A'(T*X) induced by V¥,
Let VA (T"X)2¢ he the connection on A (T*X) ® & induced by VA (T"X) and V&,
For U a vector field on S, set

(2.4.45) WA'(T*X)(U) - (gA.(T*X))_lLUHgA'(T*X) .
Then
(2.4.46) WNTX) € @°(N,T*S @ End(A(T*X))) C QY(S,End(F)) .

By [BL95, (3.37)], we have

ru e 1
VI = gov, 086 59 kx(9a) »

w” = 9w’ (ga) ® Idy 1+ x) + ¢*1ds @ ™ T (go) + " kix (9a) -

(2.4.47)

2.4.5. A positive line bundle over N.
In the sequel, we suppose that NV is equipped with a line bundle L, and that the action
of G over N lifts to Ly. Set

(2.4.48) L=Pxgly.
Let L” be the p-th tensor power of L. For p € N, set
(2.4.49) E,=E®L".

We equip L with a Hermitian metric g*. Then (L, g*) satisfies the same properties as
(E, g¥). We construct the connection V¥ on L in the same way as V¥ (cf. §2.2.4).
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Let R = V%2 be the curvature of V¥. We suppose that \/—1RL|N is a positive
(1,1)-form on N. By Kodaira’s vanishing theorem, this assumption implies

(2.4.50) B E*(N. E,) =0

for p large enough.
We define w’ in the same way as w”, i.e.,

(2.4.51) w' = (¢")dug" € € (N, T*M) .

We make the fundamental assumption that wL‘Y € 6> (Y, X ) is nowhere-zero.
By [BMaZ15, Proposition 9.15], the assumption implies

(2.4.52) X(X)=0.
By [BMaZ15, Theorem 4.4], the assumption implies
(2.4.53) H(X,H°(N,E,)) =0
for p large enough. Then, by Remark 2.4.2 and (2.4.53), we get
(2.4.54) H; (Y, E,) =0

for p large enough.

We remark that the proof for (2.4.52) and (2.4.53) given in [BMaZ15] involves Toeplitz
operators. We will give a more direct proof in §2.5.1.

Let g% be the metric on E, induced by ¢g¥ and g*. Let VE» be the connection on
E, induced by V¥ and V. All the previous results concerning (E, g%, V¥) hold for
(Eyp, g™, V7).

Let &, be & with E replaced by E,. Let .%, be .# with E replaced by E,.

Let C7» (resp. D77) be the C7 (resp. D7) with E replaced by E,. These operators
act on Q' (S,.%,).

2.4.6. Index bundle and the associated odd characteristic forms.
We assume that p € N is large enough such that (2.4.53) holds. Set
(2.4.55) H,=q.E,=H°(N,E,) C &,,

which is a flat vector bundle over M. Its flat connection V7 is defined by (2.3.37).
Let g be the metric on H, induced by ¢%.

Set
(2.4.56) 6, =0 (X, Hy) ,
which is an infinite dimensional vector bundle over S. Then V%7 is a superconnection on
JC, over S.

Here, we are with the same setting as |[BL95, §3].

For u > 0, let i (resp. Di/?) be the Cy, (resp. Dy,) defined in [BL95, (3.50)] with
B replaced by S and W replaced by .7Z,. Then O is a superconnection on JZ, over S.
and Dy € (S, End ().

Let
(2.4.57) P,: & — H,

be the orthogonal projection.
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We have
(2‘4‘58) Cj% = PpC’f”Pp ) Difp = PprpPp ) CuﬁﬂPQ = _Diﬁjg .

1 ATA (T*S
—inN ( ).

In the sequel, we denote ¢ = (271)
We equip %, = (X, H,) with the Z,-grading Qever/edd(X H ).

Set
ap,u = V2mipTrg [Diﬁ’ exp (D{;’Q)} e Q(9),
(2.4.59) NATX) , ,
Br,u = © T 5 (1 + 2D‘f’/f”2) exp (Di{”g) e Q(9).
By |[BL95, Theorem 1.8,1.9|, we have
(2.4.60) am, . € QYS),  Bu,. € QV(S) .

By[BL95, Theorem 1.8, 2.11|, the following proposition holds.

Proposition 2.4.3. We have

0 1
(2.4.61) dag,. =0, 5 Mt = 5B -
u u

Still, set f(x) = ze®.
By [BL95, Theorem 3.16,3.21], (2.4.52) and of (2.4.53), the following thearem holds.

Theorem 2.4.4. The following properties hold for p large enough.
As u — +o0, we have

(2.4.62) apg,u=01/Vu), Bu.=0(1/Vu).

As u — 0, we have
(24.63)  ap .=, [e(TX, vTX) f(H,, VT, ng)] +6(Va), Bu.=0(Vu).

Let 7 (THM, g™, g'») € ' (S) be the real torsion form, defined by [BL95, Definition
3.22|, associated with 7 : M — S, THM, g™, H,, VHr and ¢, ie.,

0 du
(2.4.64) T(T"M, g™, g"r) = —/ Py -
0

Theorem 2.4.5 (|[BL95, Theorem 3.23]). The torsion form T (THM, g** g"r) € Q0 (S)
18 even. Moreover,

(2.4.65) a5 7 (TM, g™, g™) = 7, [e(TX,V"X) f(H,, V", g")]

2.4.7. The even/odd characteristic forms and the analytic torsion form.
In the sequel, we suppose that S is compact.
Set

Vtot,ptu — o Trg [exp <—Cﬁ”2)} = Tr, [exp (Df‘:f?)}

Proposition 2.4.6. For any t,u > 0, we have
(2467) /ytot,pﬂf,u =0.

(2.4.66)
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Proof. The same argument as (2.3.43) implies
0 0

(2.4.68) afytot,p,t,u = %%ot,pﬂfvu =0.
Then it is sufficient to show that
(2.4.69) lim Yiotpuu = 0,
uU—r 00
ie.,
(2.4.70) lim Tr, [exp ( - Qf’g’zﬂ ~0.
U—>00 ’

For k € N, let C7»2l . (S, .F) — Q+*(S,.F) be the degree k component of C7»2.
Then

4
(2.4.71) ¢Fy? = S iR
’ J:O

By Hodge theory and (2.4.54), we have
(2.4.72) ker C7r20 ~ H: (Y, E)=0.
Then there exists ¢ > 0 such that
(2.4.73) 720 > ¢

It is standard that (2.4.71) and (2.4.73) imply (2.4.70). See, for example, [BerGV04,
59. O

Set

ot ptu = V2mi o Trg [Di{’ exp (Diﬁﬂ)] e Q(9),

(2.4.74) NA @ X) -y )
ﬁtot,p,t,u = @Trs |: (1 _I— 2Dt{57 ) €xXp (D;’lf’ >:| € Q<S) .
By [BL95, Theorem 1.8,1.9|, we have
(2475) Oétot,p,t,u € QOdd(S) y ﬂtot,p,t,u c Qeven(s> .

Proposition 2.4.7. We have

0 1
(2476) dSatot,p,t,u =0 s %atot,p,t,u = EdS’ﬁtot,p,t,u .
Proof. The proof is the same as Proposition 2.3.5, 2.3.6. O

We recall that oy, 5; € (M) are defined in §2.3. Let ay4, B, € Q' (M) be the a4, 5
with E replaced by E,.
We state two theorems whose proofs are delayed to §2.5.3- §2.5.5.

Theorem 2.4.8. For p € N large enough, givent > 1, as u — +0o0,

(2477) Qtot,p,t,u = ﬁ(l/\/ﬂ) ) ﬁtot,p,t,u - ﬁ(l/\/ﬂ) .
Moreover (2.4.77) holds uniformly in t > 1.
There exists 0 € ]O, %} such that given t > 1, as u — 0, we have

(2.4.78) Qtotptu = T [e(TX, v ap,t] +0W),  Brotpte = 0OW),

Moreover, (2.4.78) is uniform in t > 1.
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Theorem 2.4.9. For p € N large enough, given u > 0, as t — 400, we have
(2479) Qtot,pt,u — COHpu + ﬁ(l/\/g) s ﬁtot,p,t,u = ﬂHp,u + ﬁ<1/\/¥) .

In the sequel, we always suppose that p is large enough such that Theorem 2.4.8 and
Theorem 2.4.9 hold.

Definition 2.4.10. For any ¢ > 0, the analytic torsion form

(2480) zott(T M gTN TX Ep) Qeven(s)
is defined by
* du
(2481) lqtot t(T M gTN TXang) - _/ /Btot,p,t,u; .
0

Let Q° be the vector space of real even differential forms on S. Let Q%° C Q° be
the vector subspace of exact real even differential forms on S, which is closed under the
€ >-topology. Let Q°/Q°° be the quotient space.

Let Z° be the vector space generated by the closed chains in S. By de Rham’s theorem,
for any o € Q°, o € Q% if and only if

(2.4.82) /Ca =0

for any ¢ € Z°. Thus there is a natural injection
(2.4.83) Q% /Q% — Z5* .

We equip Q°/Q%° with the topology such that oy € Q°/Q%° converges to ay if and only
if [ oy converges to [ ag for any ¢ € Z°.

Theorem 2.4.11. The form Zioi ("N, g7, g%) € Q (S) is even. Moreover
(2.4.84) ds Frops(TH M, g™ | gTX_ gPr) = 1, [e(TX, VTX)ap,t] .
For t1,ty > 0, the following identity holds in Q°/Q%P,

|:1750tt2<T M QTN TX?.ng> - t%ottl(T M gTN TXang>i|

(2.4.85) _ [W* [6(TX’ v ( /t %%) H ‘

The following identity holds in Q° :
(2.4.86) tlglolo Frort(TIM, g™ g7 g"r) = T (T M, g™, ") .

The following identity holds in Q°/Q° :
hm [fgtott(T M gTN TX?.ng)
t—0

(2.4.87) 1 Tx\, [ Y TN Ep
Ztm[e(TX,V )q*[%Td(TN,v )eh(E,, V )H

= | 7M™ ™) 7 [ TX )T (7)) ]
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Proof. By Proposition 2.4.7, Theorem 2.4.8 and Definition 2.4.10, we get (2.4.84).
For proving (2.4.85), we apply the same transgression technique as the proof of Propo-
sition 2.3.6. Set

(2488) N+:NXR+, M+:MXR+, S+:SXR+.
Let
(2489) q+ :N_|_ — M+ s T4 M+ — S+

be the natural extension of ¢ : NV — M and 7 : M — S. Let ¢t be the coordinate on R,.
We equip T'N with the metric 19"V, Applying (2.4.84) to the extended fibration in the
same way as the proof of Proposition 2.3.6, we get

(2.4.90) [aatftott(g N gt gE”)] = [%W* [e(TX, VTX)Bp,tH € Q%/Q%°.

Integrating (2.4.90), we get (2.4.85).
By Theorem 2.4.8, Theorem 2.4.9 and the dominated convergence theorem, we get

(2.4.91) hm/ Btotpm / BHp :

t—o00

which is equivalent to (2.4.86).
We recall that g, g0 € € (R+,R) are defined in §2.3.7.
By Proposition 2.3.7, (2.3.96), (2.3.97) and the fact that x'(N, E,) =0,

(2.4.92) /: {Bhe+ glz(t) (a0 [ Ta(TN, "N )e(E,, VE) | = nx(N. B))

+g22(tt) o TATN, ™ )eh(E,, TP )]}Cfst

converges as t; — 0 and t; — co. Furthermore, by Proposition 2.2.3,
(2.4.93) ¢ [Td’(TN, VTN)ch(Ep,VEP)] e (M)
is a constant O-form on M. Then, by (2.4.52), we get

7. [e(TX, V™), [T (TN, V) (5, 75|
(2.4.94)
— (X)q, [Td’(TN, VTN)ch(E,, VEP)] ~0.

Thus
(2.4.95)

. [elrx om0 ( / )]

TA(TN, V7N)ch(E,, VEP)H / Col),

+ [e(TX, vT¥)q, [23

o L 2P
. [e(TX, vT¥) /t ;2{ 912“) (q* [Td’(TN, VTN)ch(Ep,VEP)] — nx(N, Ep))
+ 922(;)61* [%Td(TN, VTN)ch(E,, VEP)] }%} ,
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which converges as t; — 0 and ty — oco. Taking the limit of (2.4.95) with t; — 0, to — oo
and applying Definition 2.3.13, (2.3.98) and (2.4.85), we get

lim [ﬂott(T M, QTN TXang)
t—0

1 TX w TN E,
(2.4.96) 57 [G(TX, ViH)g. [%Td(TN,V Jch(Ep, V )H
= Jim [ Tooa (1M g™, 6", g")] + | [d(TX, V) 7 (4™, g7
€Q7/Q*,
which, together with (2.4.86), implies (2.4.87). O

Remark 2.4.12. If the Kéhler class [w] € H“'(N) is constant along M, by Proposition
2.2.3,

(2.4.97) & [;—WTd(TN, VTV)eh(E,, V)|

is a constant function on M. Then, same as (2.4.94), we have

(2.4.98) . [e(TX, vTX)q, [%Td(TN, VT¥)ch(E,, VEP)H —0.
Thus (2.4.87) is simplified as follows

lg% [‘%Ot,t<gTN7 gTX7 ng)}
(2.4.99)
= [ 76", g™) + 7 [e(0X, V)7 (g™, 7] ]

In particular, (2.4.99) holds with the following choice of the Kéhler form on N,

(2.4.100) w=+V—1R"|, .

Remark 2.4.13. If X is of odd dimension, we have

(2.4.101) e(TX, V) =0.

By (2.4.85) and (2.4.86) and (2.4.101), the following identity holds for ¢ > 0,
(24102) [T TIM, g™, g™, g%)| = [T(T7M, 6", ™) € Q%05

The next section is devoted to the proofs of Theorem 2.4.8 and Theorem 2.4.9.

2.5. Proofs of Theorem 2.4.8 and Theorem 2.4.9.

The purpose of this section is to establish the main results of §2.4.7.

This section is organized as follows. In §2.5.1, we study the positivity of (the degree
zero part of) the Levi-Civita superconnection. Some of these results were already proved
in [BMaZ15| using Toeplitz operators.

In §2.5.2, we establish a Lichnerowicz formula associated with the Levi-Civita super-
connection obtained in §2.4.4.

In §2.5.3, we prove Theorem 2.4.9.

In §2.5.4, we prove the u — oo part of Theorem 2.4.8.

Finally, In §2.5.5, we establish the u — 0 part of Theorem 2.4.8.
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2.5.1. Positwvity of €, ”[ for p large enough.

In this whole subsectlon we only consider a single fiber Y together with the action
of @;if’[o]’Q on Q7 (Y, E,). Since S is compact (cf. §2.4.7), the estimates obtained in this
subsection are uniform for all fibers over S.

First, we prove a technical lemma.

We recall that H, = H(N, E,) C &, is the kernel of C” (cf. (2.4.37)) and P, : &, —
H, is the orthogonal projection (cf. (2 4.57)).

Let HpL C &, be the orthogonal complement of H,. Let

(2.5.1) By & — Hy .
be the orthogonal projection.
Let H . || be the L?-norm on &,. Let H . HOO be the induced operator norm on End (@@p)

Lemma 2.5.1. For f € € (N, C), viewed as an operator acting on &, by multiplication,
there exists pg, C' > 0 such that, for any p > po, we have

C
(2.5.2) | fB|, < —

VP
Proof. By the proof of Kodaira’s vanishing theorem (cf. |[MaMar07, Theorem 1.5.6]),
there exists ¢ > 0 such that for any s € H'L we have

(2.5.3) [CZ%s||* = eplls)? -

For p > py and s € H,, we have
(2.5.4) CFrPlfs=CPrfs =Dy fs = (Onf)s
Let C be €°-norm of df. Then, by (2.5.4), we have
(2.5.5) |CZPhfs|| < Cflsll -

By (2.5.3) and (2.5.5), for s € H,, we have

1 7z C
€ Fp DL

(2.5.6) |2 fs|| < \/—C—pHCv/ Prfs|| < \/@HSH :
This proves (2.5.2). O

By (2.4.39), we have
(2.5.7) e/ =t 4 uC [+ Viw|oF 6]

Since ¢"" is a fiberwise Kihler metric and Cy” is the fiberwise spin® Dirac operator,
we have

(258) O = — 2 (V7) 4 érw +3 <REP 4 %RA"(TN)) (eire;) clen)cley)
By [BL95, Theorem 3.11], we have
7 = = (V") + 1 5 (e BT U fo) ) elf)eU)el o)
(2.5.9) + (wgp(fa))%ré( ) (o £3) (@) f5) — e(fa)e(f))
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Proposition 2.5.2. The following identity holds
1 .
(€70l ] = = SV (ST (e)es, fu) (elep)el fo) = V=TelTe))élfa))

- % <STN(6z‘)€j7 fa> (C(ej)c(fa) - \/:C(Jej)é(fa)>vij®Ep

+ (REP + %RA’“TN)) (63, fo) (el fu) = V=Te(Jeel )

(2.5.10)

Proof. Since g7¥ is constant along N, all the c(f,) and é(f,) anti-commute with clr.
Then, by (2.4.42), we have

(2.5.11) [CJ cﬂ _ c(fa)[ v cﬂ _ %a(fa)[w@“p(fa),cfv} .

By Proposition 2.3.3, ol + fO‘V}?Z’u is the Levi-Civita superconnection of the infinite

- 2
dimensional vector bundle &, over X. Then (C'fp +fanZ’u> is given by (2.3.75).
Taking the degree 1 components in (2.3.75), we get

plvz.co]
(25.12) = - %V‘Q/[@EP (ST (es)e, fa) cles) [ — % (ST (ei)ej, fo) cleg) F*VI O
(74 3RV e el
Replacing the f* in (2.5.12) by ¢(f.)
L) [VE"CFF| = = VL2 (5™ (e0)es, fu) cleg)el )
(2.5.13) SN (e, fu) eyl fa) V5

b (B2 R (e f)eleel ).

, we get

Since
(2.5.14) o v = a7 vt =0,
we have
Ept 1 Fp :l & abr | Hbpx
(2.5.15) i e %[Vf *:Zfa,al ij_EJ,*
=5 Vi) e glvia™.
e 1r » P Troe « & =Ep  =Epx
§[wp(fa),cvp} :§[va — V8" 49 }
(2.5.16) i Lty g
=5V 9] = 5 v e

By (2.5.15) and (2.5.16), we get
1 P CTEN > 4 - CTEN
(25.17) S (f). O | = (1) T e o | ()N TR
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By replacing the f* in (2.5.12) by ¢é(f,) and applying (2.5.17), we get

1, ép Z -1 ~
Selfa) [wif, OFr| = Som VS8 (S (e )es, fu) el Je; el fa)
V-1 . P
(2.5.18) + 5 (ST (ei)ey, fu) (T eg) e fa) VIO
1 _an
~ VAL (RE 4 R (e el )
By (2.5.11), (2.5.13) and (2.5.18), we get (2.5.10). OJ
Set
Ay = pe02p 4, = perl2pl
(2.5.19) 1 11 t,.ri [0],2 ’ . th’ F 0] 2p B
A3 =Pr& " F,, Ay= B & P
Then
Folol2 [ A1 A
(2.5.20) (g = ( A A, ) :
Theorem 2.5.3. There exist ¢c,C' > 0 and py > 0 such that, for p > py and t,u > 0, we
have
(2.5.21) Ay > cup®, Ay > cup® +ctp

for sy € (M, Hy) and s, € (M, H;), we have
’(31>A232>| = ’<A331,82>’
< CVupy/(Avsy, s1)l|sall + C(Viu + wlp||si|[1sa] -

Moreover, there exist c,pg > 0 such that, for p = py and t,u > 0, we have
(2.5.23) ¢/ > cup?

(2.5.22)

Proof. In the whole proof, ¢ > 0 is a small enough constant, C' > 0 is a large enough
constant, and p is always supposed to be large enough.

Step 1. We establish the positivity of tC7? and quz’g.

By (2.5.3), we get

(2.5.24) tPrCIP Pl > ctp .

By (2.5.9), Cf »? consists of a connection Laplacian and zero order terms, which are
polynomials on p. Furthermore, the only term of degree> 2 on p is

P2 L 2
(2.5.25) Z(w (fa))™

which comes from

1 2

(2.5.26) T (W) = i (@ (fa) + " (fa))” -

By the non degeneration of w’ (cf. §2.4.5), we have

pQ

(2.5.27) T (W (fa))" = ep? .
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Thus the zero order part of Cf} »? is controlled from below by cp?. Hence,

(2.5.28) qu”’Q > cup? .
As a consequence,
(2.5.29) uPpCfp’QPp > cup? | 71]%#6’54”2PpL > cup? .

Step 2. We establish a lower bound for v/tu [C’V‘%, Cfp].
By (2.5.10), [C’;,’OZ”, Cfp] consists of the following first order terms

B %VZ®EP <STN(ei)€j7 fo) (c(ej)c(fa) - \/—_1c(Jej)é(fa)>

— S (™ (e, fu) (cler)elfo) = VTl fa)) V79

and zero order terms, which are polynomials on p of degree< 1.
The zero order terms are controlled from below by —Cp. It rests to control the first

order terms. Since (c(ej)c(fa) — \/—1C(J€j)é<fa)> is skew-adjoint, for any € > 0,

(2.5.30)

(2.5.31) VIeE 4 % (S™(Vej, fa) (C(ej)C(fa) - \/—_10(J6j)é(fa)>

is a unitary connection. Thus

(25.32) —e (Vﬁf@’Ep + % (SN (e)es, fu) (c(ej)c(fa) - \/—_lc(Jej)é(fa)>)2 >0.

Comparing (2.5.30) and (2.5.32), we see that (2.5.30) is controlled from below by
2 C
-

(2.5.33) e (V@)

Combing the lower bounds obtained for the zero order and first order parts of [C’{?p, C’f”} ,

we get

(2.5.34) Viu [Cf Of"] > eviu (V7 9P)? - C‘e/ﬁ ~ CVtup .
Replacing € by g\/f N u, we get
(2.5.35) Viu [Cfcﬂ > %t (VZ9E)? — % — CVeup .
Applying (2.5.8), we get
(2.5.36) Viu [ijp, c ] > —etC77? — eCOtp — % — CVtup .
Step 3. We prove (2.5.21).
Since
(2.5.37) c>p,=PC =0,
we have
(2.5.38) Ay = P, (ﬂof% + ﬁcfp)z P, = uP,C"P, .

The first inequality in (2.5.21) follows from (2.5.29) and (2.5.38).
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By (2.5.24), (2.5.29) and (2.5.36), we have
Ay = uB}Cl P + (1 - e)tPrC7w2 P
(2.5.39) + By (Etcf”z +Vitu [Cf Cif}pD Py

C
> cup® + (1 —¢)etp — eCtp — ?u — CV'tup .

By choosing ¢ small enough in (2.5.39) and applying the Cauchy-Schwarz inequality,
we get the second inequality in (2.5.21).

Step 4. We estimate \/EP;C’;%C’]?"PP.
For s; € (X, H,), we have

(2.5.40) PrCIClr s = POy + 0y ") (d5 + d")s:

We recall that d}% is the de Rham operator on Q'(X, &,), which preserves H, = ker (5? +
5?’*), we have

(2.5.41) (On + 0y )des1 = 0.
Since d"s; € Q(Y, E,) and I L (Y, E ,) — Q7YY E,), we have
(2.5.42) I s = 0.
By (2.5.40)-(2.5.42), we get
(2.5.43) PO Ol s = POy dY" s
By (2.4.41) and (2.5.43), we get
(2.5.44) PrCIClr s, = i, PRON N T 1 + iy, PLON W% (fa)s1

We recall that V¢ is the flat connection on &,, which preserves H, C ker gf,p, we have
(2.5.45) IV Ts =0
By (2.5.44) and (2.5.45), we get
PpLCprf"sl = z'faPpLgﬁpwgp(fa)sl
(2:5.46) =i, B0y (W (o) + P (Ja)) 1
= g, By (O (o) + pOne" (fu))s1
Thus

(2.5.47) H\/EP;CJPOh s1|| < CVtupl|si| -

Step 5. We estimate uPpLC}‘f;’QPp.
By (2.3.33) and (2.5.9), we get

- 2 5
ot = — (v w o W (fa o'
(2.5.48) ( gl )) g Wrla)) =+

S (v“;ﬁ) — W (fIVE 4+ 0,
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where © and ©' are zero order operators bounded by Cp. Since V% preserves H, =
ker P, we get

PrCT?s1 = — Prw’( Jfa)vi"f’s1 + Plos,

(2.5.49) o
= — pPrw"(fa) V51 — Pfw’ (fa) Vi s1 + PrOs; .

Applying Lemma 2.5.1 to PprL(fa)VfZﬁ in (2.5.49), we get

(2.5.50)

G| < OBV s + Collsl

By the Cauchy-Schwarz inequality and (2.3.33), we get

2

/ 2 / 1 .
0 O N

1
2

(2.5.51)
<2|vits,

_wé"p (fa)sl

=2 (= (V5 st @) s )

2
Comparing — (ijiu> s1+ 4 (w (fa))2 with (2.5.9), we see that

(2.5.52) Crr? = — (ij’ ) 1+~ ( "(fa) 46,

with ©' a zero order operator bounded by Cp. Then the same argument as Step 1 yields
(2:5.53) (Vi) s @) < 00

By (2.5.50), (2.5.51) and (2.5.53), we get
(2.5.54) PLCTe%s H C\/p < 81,81> + Cpllsi]] -

Then, by (2.5.38), we get

(2.5.55) uP-Cys

< Oyupy/(Aisy, s1) + Cupllsi|| -

Step 6. We prove (2.5.22).

Since Ciﬁ”[o]’z is self-adjoint, we get the equality in (2.5.22). We turn to prove the
inequality in (2.5.22).
By (2.5.37), we have

(2.5.56) Azsy = \/EPPLC\‘,’@PC}‘?”& + uPpLsz’zsl

Then, by (2.5.47) and (2.5.55), we get the inequality in (2.5.22).
Step 7. We prove (2.5.23).
For s € .%,, we have the decomposition

(2.5.57) 5 =51+ 52,
with s; € Q(X, Hp) and s, € (X, H,"). Then

(2.5.58) <€if’[0]’23, s> = <A151, 81> + <A432, 32> + <A232, 31> + <A3$1, 52> .
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By the Cauchy-Schwarz inequality and (2.5.22), for any € > 0, we have
[(Aasz, s1)| + [(Azs1, 52)|
< Oy CArsssllsall + OVEaplsu szl + Cuplisa el
< 5 (s s+ Cuplsal?) + L2 (Llisal? + etll?)
+ S (il + lsal?)

By (2.5.21), (2.5.58) and (2.5.59), we get

Fp,[0],2 C C C 02 C
(€7%s.5) > (50° = 52— p)ulsill? + (ep* = —p = ) ullsa?

(2.5.59)

>
(2.5.60) 2 2 20 2
eC 9
+ <Cp - 7p>tH32H .
By choosing e small enough, we get (2.5.23). O
Corollary 2.5.4. We have
(2.5.61) H(X,H°(N,E,)) =H,,(Y,E,) =0.

Proof. The first equality in (2.5.61) comes from Remark 2.4.2.
By Hodge theory and (2.5.23), we have

(2.5.62) H;,,(Y,E,) ~ ker (Q‘:i’;’m’2> ~0.

Thus we get the second equality in (2.5.61). O
Corollary 2.5.5. There exists pg > 0 such that, for p > py and t,u > 0, we have
(2.5.63) ¢/l > %(Jf‘pv? + gcfp’z R %0;%’2 + 37“0?*2

Proof. In the proof of Proposition 2.5.3, we showed that for p large enough,

(2.5.64) tC7r2 4 uC 4 V| O, G| = et

In fact, the argument leading to Proposition 2.5.3 could be used to show a stronger
inequality: for a > 0, b € R, there exist ¢, > 0, p,p > 0 such that for p > p,;, we have

(2.5.65) atC7r? 4 auC’fp’2 + bVtu [C"v%, C’f”} > Copup® .
In particular, the following inequality holds for p large enough,

t 7 9 7 Z,
(2.5.66) SCF 4 ngP’Q + M[C;/P, C{P} >0.

The '+’ case is equivalent to the first inequality in (2.5.63). The '—’ case is equivalent to
the second inequality in (2.5.63). O

We recall that C. is defined in §2.4.6. Let ¢ € End(J%) be the degree zero

component of C;”. Then C”#1 is self-adjoint.
The following proposition is proved by Bismut-Ma-Zhang [BMaZ15, Theorem 4.4].
Hereby, we give a different proof.

Proposition 2.5.6. There exist ¢ > 0 and pg > 0 such that, for p > py, we have
(2.5.67) CHl012 > op?
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Proof. For s € s¢, = (X, Hp), by (2.4.39) and (2.4.58), we have
(2.5.68) 07rls — ¢l = pLoZrlls = pLoyrs .
By Theorem 2.5.3, there exists ¢ > 0 such that, for p large enough, we have
(2.5.69) HC"%’[O]SH > cp|s]| -

Since V% preserves H,, by (2.4.42), we have
7y 1 R :
PPLC; 5 = §(c(fa) — c(fa))P;wgP(fa)s
1 oy )
= §(C(fa> - C(fa))PpL(w/a(fa) +pr<foc))S .
By Lemma 2.5.1 and (2.5.70), there exists C' > 0 such that, for p large enough, we have

| <cvalls|

By (2.5.68), (2.5.69) and (2.5.71), there exists ¢ > 0 such that, for p large enough, we
have

(2.5.72) HC”%’[O}SH > cp|s]|
This is equivalent to (2.5.67). O

(2.5.70)

(2.5.71) HPPLCfpS

2.5.2. A Lichnerowicz formula for @,}752 + z@i‘f
Let z be an additional odd Grassmannian variable such that z% = 0.
We recall that (ST(-)-,-) is constructed in §2.1.4.

Theorem 2.5.7. The following identity holds
07?4 20"
= (VIDZr + e () + Lo w(95))
+2(VADZ + e f ) (f) + S7(a)
+ u(V‘fj’“ + ﬁ (S (fa) S5, 9v) cf5)9”
1 2 2
+ = (S"(fa)95.97) 979" — 5 =E(fa)
(2.5.73) . o 5 2 )
-3 (f3s BT (fas fo) f5) e(f)e(fs)e( fa)e(f5)

Y R (g ) U )

Bl % (f1s B (9as 98) f5) ¢(5)e(f5)9" 9"

= S = 2 (@) (s F)eS)el )+ 5 [V w0 (f)] el )l )

4 8
b LUV (1) %l 1) - Vel fo) [VE" VD]
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Proof. Since
(2.5.74) [é(T),Djfp] ~0,
by (2.4.38), we have

Fp,2 F
Dy + 29,

7 Z. a 1 g o >
(575 = tD7+ Vi Dl D]+ \/z‘tbw%, D7r| + 2viD7s
7 1 = L 2 7 1 2 .
+ (VADT 4 g7 = meD) 4 2(VADT 4 g0 = (D))

By (2.4.42), we have

(2.5.76)  Viu [Dfp,pf’p} - [46( F ) (£2), VEDZ | — Vi fa)[vfg“,pf"p} .

By (2.4.47) and

A (T*X) 1T _ Zp] _
“J. 9 - X - I
(2.5.77) [w D? } [k: D? ] 0
we have
L 7 n7 Lo s 7
(2.5.78) \/E[éw r. D] p} = [ig W (gg), VtD? p] :

By (2.5.76) and (2.5.78), we have

7 Z, T ]. T 7
tD7»? + \/E[D;‘p, D;’P} + \/abm, D;’P]

= (VEDZ + el fa) () + 57 (0) 4 2 (@5 (£)’

(@) Sl el ) — G () (o g)el )"

()" (90, 98)9°9" = Viue(fa) [V, D]

(2.5.79)
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Applying [BL95, Theorem 3.11] with F replaced by &,, we get

7, 1 7 L 2 Ip 1 Z, I
(\/&th + 50.)“ P — mC(T)) + z(ﬁDf + 5&] P— mC(T))
= “(pr + F (ST (fa) 5, 9v) c(fo)g”

u x

2
+ @ (S™(fa)98,9+) 99" — mdh)) -7

= (e B s £ ) 1)) = (0%)* (far fi)) elfaelf)

(U B () ) )l E) — () (Far5)) el Fo”

N % (<f”’ X(gas 98 fs) (1) fs) = (W)’ (ga,gﬁ)> 99"

— L@ )"~ 5 @) fa Sl + 5 [ V2" 0 ()| el fa)el )

+ Y ggn g”(fﬁ)]g“é(fﬁ)Jrgw‘%(fa) () + S (g)g"

By (2.5.75), (2.5.79) and (2.5.80), we get (2.5.73). O

2.5.3. Proof of (2.4.79).
If S'is a point, (2.4.79) could be proved in the same way as [BeB94, §5]. This subsection
will follow the idea of [BeB94, §5] while keeping track of the contribution of A*(7*5S).
In the sequel, p is fixed and always supposed to be large enough.

In this subsection, we work with a fixed u > 0.
We recall that P, and P~ are defined in §2.5.1. Set

(2.5.80)

B =po/7"p,, B,=po/ P

(2.5.81) u A
B3 = PpL:DZi’[O}Pp ’ B, = PpL:D{;fy[O]PpL )
Then
7pl0) _ [ B1 Bs
(2.5.82) o7 ( b ) '
By (2.4.58), we have
(2.5.83) B, = @ffm{O] , —B2= in’f}),[o]z

For any operator A acting on a Hilbert space, its Schauder r-norm (r > 1) is defined
as follows

(2.5.84) 4], = (T [(A*A)T/Q])l/r .

These norms satisfy the Holder’s inequality : for ry,ro, 73 > 1 with 1/r; + 1/ry = 1/r3,
we have

(2.5.85) 1l 181, = 145,
Lemma 2.5.8. There exist a > 0, b > 0 such that, the following estimates hold fort > 1,
(25.860) -~ >a? —B2>d?, ||Bf|_=|Bs|_<b, —BE>d%
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Proof. The first inequality in (2.5.86) follows from (2.5.23).
The second inequality in (2.5.86) follows from (2.5.67) and (2.5.83).
Since By = —Bj, we have ||Ba||__ = || Bs|| .

Since D;}%Pp =0, by (2.4.38), we get
(2.5.87) By = uPD]"P, .
Since V¢ preserves H,, by (2.4.42) and (2.5.87), we get
1 1
(2.5.88) Bs = vuly (—§c<fa>w0”f’<fa> + §c<fa>w‘fp<fa>) By,

which is independent of ¢ > 1. This proves the third inequality in (2.5.86).
We recall that A, is defined by (2.5.19). By (2.4.32), we get

(2.5.89) Ay = —Bi — BB, .
By (2.5.21), (2.5.89) and the third inequality in (2.5.86), we get the fourth inequality in
(2.5.86). 0
Set
a 1
2.5.90 U:{AGC:Im)\ > 2 IRe(A <—Im)\}.
( ) (Im(A)] > 5 [Re(A)] \/§| (A)]

For A € oU, put
_( E(N) Ex(N)
B = ( By(\) Ei(
—1 _
(2.5.91) _(X-B -B _((=B) 0
"By A—Bi 0 0
- —1 ~1
= (A-2721) = (-0

By proceeding as in [BeB94, (5.85)], we have
-1 -1 -1 -1
Ei(\) = ((1— (A= B1)"" By (A — By) Bg) - 1) A= B)™",

o (1= =B B =B) " Bs) (A= B) " B(A- By

BEs(\) = (A — By 33(1 CA=B) ' By(A— By Bg)_l A—B)™",
B\ = (1 —(A=B) 'Bs(A—B))"" BQ) To—Byt .
Wefixr >dimY + 1.

Lemma 2.5.9. There exists C > 0 such that, for A € U and t > 16b*/a*, we have

C

(2.5.93) [EW|, < 7

IEX], < C-
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Proof. By Lemma 2.5.8, for A € OU and t > 1, we have

)
A—B) M <=
H( 1) fo's) CL’
21
H ()‘ - B4)71 < 5% )
A—B)) 'By(A\—B,) 'B;y|| <——,
o= 80 0<%
4% 1
AN—B) 'Bs(\—B)) 'B < ——.
R

By (2.5.92), (2.5.94), we get the first inequality in (2.5.93).

Since @‘:ﬁf’[o} is a first order elliptic operator, by (2.4.32) and Corollary 2.5.5, there
exists C' > 0 such that, for A € OU and ¢t > 1, we have

—1 —1
(2.5.95) HA :9"“0 H H ’PO] H <C.

By Lemma 2.5.8 and (2.5.95), there exists C' > 0 such that, for ¢ > 1, we have

A—B, 0 -
0 A\—B,

(2.5.96) |

Fp,[0] —(A—B1)"'B,
(A_Qt:u ( (A — B4 -1, 1 _s¢
As a consequence,
(2.5.97) IA=B)7Y| <C, [6=B)7 <C
By (2.5.92), (2.5.94), (2.5.97), we get the second inequality in (2.5.93). O
Let @J” 0 he the positive degree component of @t o L€
1 5 1

2.5.98 o = WP (T
We have

N1 ) -1 -1 -1

(\-27) = <1 - (=22 @f};’b(’]) (r-27")
(2599) dim § 1 1
- {Z ((A—@fg[(’]) i M) } (A-27")
5=0

N\ —1
For </\ — @ﬂp> , the same expansion holds, i.e., we replace @tu, D,

I T I R (2.5.99). Moreover, we have
(2.5.100) /40 = porlp

Proof of (2.4.79). Let f(\) = Xexp(A\?). Let f. : C\R — C be the unique holomorphic
function such that

<7p (0] @fp ,[>0] by

LA e 0= 700y, dim f() = lim £,(0) =0

(25101) FW A—> 400 A——i00
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There exists C,. > 0 such that for A € U, we have
(2.5.102) | fr(A)] < Crexp (—[Im(N)]) -

We have
F(%) = 55 [ #O(r—2) an,

—1—r
” P dA .
FOF) = 5= [ H0(A-22)
Using (2.5.91), (2.5.99), (2.5.100), we can express
7 \ —1—-r ; —1-r

(2.5.104) ()\ - @fj) - (A - @;f”)
in terms of the following operators
E;(\), forj=1,234,

—1-r
(A—fo'”v) L Q7P o Q.Q € {PP,P;}.

Moreover, the operators in the second line of (2.5.105) are independent of . Now, ap-
plying Lemma 2.5.9 and Hélder’s inequality, we can show that

(r- @;ﬁf)” - (r- @f”)l <

By (2.4.59), (2.4.74), (2.5.103), (2.5.106), we get the first equation in (2.4.79).
The second equation in (2.4.79) follows from the first one by the same technique as
Proposition 2.3.6. U

(2.5.103)

(2.5.105)

(2.5.106) ¢

2.5.4. Proof of (2.4.77).
By (2.4.32) and (2.5.23), there exists ¢ > 0 such that, for ¢ > 0 and u > 0, we have

(2.5.107) Sp (@ﬁf’“’]) C z’(} — 00, —ey/a] U [ev/a, +oo[) .
For § > 0, set
(2.5.108) Us = {A eC : [Re(V)| <1, [Im(N\)| > 5} .

By (2.5.107), for 6 < ¢y/u, we have
(2.5.109) Sp (@f’g’”) CU; .
We fix r > dimY + 1.

Lemma 2.5.10. For any € > 0, there exists C > 0, such that, for t > 1, u > 2 and
¢ Uce /2, the following estimates hold

(A—@ffﬂ“”)l <C(1+A]),
(2.5.110) H(A—@ﬁf’m H it |A| 7
H (A-27) ol <o
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Proof. Fort > 1, u > €2, 1 € Sp (’Di’j’[o]> and A ¢ OU.. /s, by (2.5.107), we have

(2.5.111) A —p| > mm{ce/Q 1}
By (2.5.111) and

-1 A -1
25,11 = |

there exists C' > 0 such that

(2.5.113) N—p <@+ AT
Thus
H )\ e O] C(1+|A]) H 0 “”)
(2.5.114) "
|(-=2) IH G H
By (2.5.24), we have
(2.5.115) %C‘fm? + gcfp’2 >0

. Fp,2 Fp2 . . .
Since %CV 77+ 5077 is a second order elliptic operator and r > dim Y, we have

tcﬁ‘"pﬁ UCL%,,Q e
PR

By (2.4.32) and (2.5.63), we have

(2.5.116) bt = < 00 .

T

-1

(2.5.117) H i [0 < b -

By the first inequality in (2.5.114) and (2 5. 117) we get

< C(1+ |A)bra -

r

(2.5.118) H )\ 0 O]

Furthermore, since o Ch > 0, by, is decreasing on ¢ and w. This proves the first
inequality in (2.5.110).

By (2.5.107) and the second inequality in (2.5.114), we get the second inequality in
(2.5.110).

By (2.5.98), @9” >0 s a zero order differential operator whose coefficients are uniformly
bounded for u > 2. Moreover, by (2.5.111),

-1
(2.5.119) H >\ 0 O] H

[e.e]

is also uniformly bounded for u > £2. This proves the third inequality in (2.5.110). O

Proof of (2.4.77). Let f : C — C and f, : C\R — C be the holomorphic functions
defined by (2.5.101).
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For u > €2, we have
7 7z —1—r
(2.5.120) f (@{5) z/ fr(N) (A - @tyu) dA .
8Uc€/2

By Lemma 2.5.10 and (2.5.99), for \ ¢ UCE/Q, we get

H /\ @*P C(1+A]),
(2.5.121) g
H )\ @”P gclf/g’ .
By Holder’s inequality and (2.5.121), we get
Try [(A — @if)lr}
(2.5.122) H A 9/" o
1
7\ 7| AN (1+ )™
< H ()\ - @tj;;) ()\ _ @t’,’;;) <o

By (2.4.74), (2.5.120) and (2.5.122) we obtain the first equation in (2.4.77).
The second equation in (2.4.77) follows from the first one by the same transgression
technique as Proposition 2.3.6. Il

2.5.5. Proof of (2.4.78).
Following [BL95, §3], we introduce an auxiliary odd Grassmannian variable z such that
22 = 0. For

(2.5.123) A€ End (%) @ A(1T"S) @ C[7],

we have

(2.5.124) A=A+ zA;, with Ay, A € End(%,) @ A (T*S) .
Put

(2.5.125) Tr? [A] = Trg [Ai] € A(T™S) .

The following identity holds

(2.5.126) Trg [CD?{[ exp (@f%ﬁ] = TrZ [exp (@i’j’z + z@f{[)}

The proof of (2.4.78) is closely related to the proof of corresponding results in [BeB94,
Theorem 4.13|, [Ma99, Theorem 4.9|, and [Ma02, Theorem 4.6].

Let a > 0 be the infimum of the injectivity radius of the fibers X. Let a € ]0,a/4].

Let p: R — [0, 1] be a smooth even function such that

(2.5.127) p(r) =1 for |z|] < /2, plzr)=0 for |z|>«

For ¢ > 0 and z € C, set
+oo

(2.5128) Fi(z) = /—jooo exp (\@xz) exp (%2) (\/_x)\/_ﬂ,
G(z) = /_Oo exp <\/§:1:z> exp (—%) (1- ,()(\/Q_gx))\;l_;:_7T _
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Then
(2.5.129) F(z) + G(z) = exp (2°) .

Moreover, F.(z) and G.(z) take real values on iR. As functions of z € iR, they lie in the
Schwartz space S(iR).
The functions F(z), G¢(z) are even holomorphic functions. Therefore there exist holo-

morphic functions F(z), G.(z) such that

(2.5.130) F.(2) = F.(z%), G.(z)=G(2).
By (2.5.129), (2.5.130), we deduce that
(2.5.131) F.(2) + G(2) = exp(z) .
Put
(2.5.132) =070+ 20
By (2.5.131), we get
(2.5.133) F(elr) + G (en) —exp (272) -
By (2.5.126), (2.5.132), (2.5.133), we obtain
(2.5.134) Te, [ 977 exp (977%)] =Tz [F (2)] +mz [ G (272)] -

Proposition 2.5.11. There exist ¢,C > 0 such that fort > 1, 0 < u < 1, we have

(2.5.135) v [éu (2,?;)” < Cexp (—c/u) .
Proof. Due to the relation

8771

-~ _ om/2_m
(2.5.136) S ©XP (\/ixz) 22 2™ exp (\/§:Uz> ,

we can integrate by parts in the expression of 2™G(z) and obtain that for m € N, there
exists C,, > 0 such that, for z € C with |Re(2)| < 1, we have

2
(2.5.137) 12|"[G(2)] < Crexp (—g—g) .

Set

(2.5.138) U= {z € C : 4Re(z) + [Im(2)]? < 4} .

We have

(2.5.139) VU = {ZEC ; ZZEU}:{ZE(C : |Re(z)\<1}.

By (2.5.130), (2.5.137), (2.5.139), for z € U, we have
2

(2.5.140) ‘z}m/2|C~}’g(z)‘ < Cpexp (—g—g) :

For r € N, let ém(z) be the unique holomorphic function satisfying

1 dr ~ - -
d Gre(2) =G(2), lim G, (2)=0.

2.5.141 _—
( ) rldzr z2——00
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By (2.5.140), (2.5.141), for m > 2r, there exists C,,, > 0 such that, for z € U, we have

=~ r—m/2 CK2
(25142) ‘Gr,g(z)‘ < Cm,r‘z| exp (_8_§) .
We fix r > (dimY + 1)/2.
We have
~ 7\ _ 1 =~ 7,\ !
(25143) G (202) =55 | Gl (= 22) .

By (2.5.132), we have
(2.5.144)

(\-e7) = (v-2nf) el (-2
- (\/X_@fﬁf>_l (\/X+©§;)_ (1—1—7:@/? (\-277) 1) |
For p € R and A € OU, we have
(2.5.145) ‘iu()\ + M)‘l‘ <1.
Thus

(2.5.146)

ar g 71
D] </\ - @;f5’2> H <1,
By (2.5.139), for A € 9U, we have Re(v/\) = £1. Then the same argument for (2.5.121)
show that there exists C' > 0 such that, fort > 1, 0 <u < 1 and A € 9U, we have

-1 1 VAl
H (VA+9; ) s ‘
(2.5.147)
|(v32 H
Using (2.5.142), (2.5.144), (2.5.146), (2.5.147) to (2.5.143) in the same way as in the proof
of (2.4.77), we complete the proof O

Let dt,u(-, ) be the distance along the fiber Y associated with the metric 2¢7#Y /t @
g™ Ju. Using finite propagation speed of solutions of hyperbolic equations (cf. [MaMar07,
§D.2|), we get

(2.5.148) P, (2?) () =0, for du(y,y) = a/vu.
Let dX(-, ) be the distance on X associated with the metric g7X. Since
(2.5.149) diu(y,y') = uPdx (a(y), a(y)) |

by (2.5.148), we get

(2.5.150) E, <2“””> (y,y) =0, for dx(q(y).q(¥)) > .

We will establish the following result, which combined with (2.5.134), (2.5.135) gives
the first equation in (2.4.78).
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Theorem 2.5.12. There exists § € ]O, %} such that for t > 1,u € 10, 1],
(2.5.151) V2mip Tr? [ (2/,,)} =m [e (TX, V") ap.] + ﬁ’(u‘s).

Also the convergence in (2.5.151) is uniform fort > 1.

Proof. By (2.5.150), the proof of our theorem is local on the base X. We will proceed as
in [BeB94, §7| and in [Ma99, Theorem 4.9]. More precisely, we may as well replace the
base X by T,,X.

Given zy € X, the exponential exp,, identifies Br, x(0,) and Bx (v, ).

Also, we will use the techniques of the local families index theorem of [B86], [Ma99,
§7], [Ma02, §7] to study the asymptotics of the operator Ef’:’p in the above trivialization.
First we make the change of variables on T, X given by Y — /uY. We introduce the
connection VA TX)% along the fibres X

YA TX)u A TX) p

2\/— <STX fﬁ?g’7> fﬂ

+ 1 <STX )95+ 9+) 9°

(2.5.152) .

99— 5 &(-) -
We trivialize the vector bundle &, ® A" (T*S) @A (T*X) ®C[z] along the geodesic s —
exp,, (sY') using the connections V% and VA (7X)v,

Our operator Efz will now be viewed as acting on
(2.5.153) ¢ (B™X, 6@ A (T*S) &N (T*X) ®C[2]) .

Finally, we make the Getzler rescaling, which consists in replacing the Clifford variables
c(f),f €TX by f*/v/u—Juis. As usual, the operators f*A, if now act on a different

copy of the exterior algebra A" (7" X). We denote by e
trivialization.
Given t > 0, set

1 Z 1
Sfo 0 = (\/_ngo + ng) + z(\/z_fD;fgo + 5wfg>

(0t LRIV L) ) = (e REXT) ) Ss)

Using the same arguments as in [Ma99, (7.23)], [Ma02, (7.21)], from (2.5.73), we deduce
that as u — 0,

(2.5.155) Et s = Sl + O (V)

The convergence above is a uniform convergence over compact sets of the coefficients of
the considered differential operators on compact subsets together with their derivatives
of arbitrary order. Note that the coefficients of the operator & (y/u) are in general
unbounded.

To establish (2.5.151), we will briefly show how to replace the fibration 7 : M — S by
a fibration by vector spaces. Let U be a small open set in S and let sy € U be such that
71U = U x X,. Let 25 € X,,. Then U x {xq} is a section of M over U. Using geodesic
coordinates along the fibers X based at the section x(, we have identified a neighborhood
V of U x {x¢} in M with a neighbourhood of the zero section in U x T,,, X. Let g’ be

taz, € operator 2 . in the above

(2.5.154)
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the given metric on 7,,X. The fibres of V' are now equipped with two distinct metrics:
one induced by the given metric ¢, and the other by the constant metric g7=0X. Set

(2.5.156) 7 =p(Y1/2) g™ + Q= p([Y]/2) g"0".
In the same way, we can extend 7% M on a neighbourhood of the zero section of S x T, X

to a full horizontal vector bundle on S x T, X which will just T'S for |Y| > a. Similarly,
the flat fibration ¢ : ' — M induces a corresponding flat fibration over U x T, X.

This way, we can construct an operator £, ; over U x T,, X which coincides with Szf
for |Y| < a. Because of this, if y € N, ¢(y) = xo, we have the identity

(2.5.157) F, (&i) (y,9) = F. (33) (Y, y)-

The advantage of dealing with Eﬁf is that the dilation Y — \/uY can now be made on
the full vector space T, X.

We can now proceed exactly as in [BL91, §13] and in [BeB94, §9 d)-9 g)| to establish
(2.5.151) at least when ¢ > 1 remains bounded.

We will now show how to obtain uniformity in (2.5.151) for ¢ > 1. We will follow closely
the arguments in [BeB94, §9(b), 9(c)|, which are inspired from [BL91, §13|. Recall that P,
denotes the orthogonal projection from &, on H,. We still denote by P, the corresponding

projection from .%, on J,. Asin §2.5.1, we will write the operator Sif as a (2,2) matrix
with respect to the splitting .#, = 77, GB%’;L. With respect to this splitting, given u > 0,

as t — +o00, 2;’62 as the preferred matrix structure

s [O00) W
(2.5.158) Lia = {ﬁ (\/Z) o (1) ] .

Given u > 0, we can proceed exactly as in [BeB94, §9| to give another proof of Theorem
2.4.9.

We will now show how to use the above techniques to obtain the required uniformity
in (2.5.151). The difficulty is to combine the local index theoretic techniques over X
that were described above with the splitting £, = H, @& H,. Let V"* denote the
connection on &, which is the orthogonal projection of Vé* with respect to the splitting
& =H,d HpL. In the constructions that were given at the beginning of our proof, we
will instead trivialize &, by parallel transport with respect to the connection Vérts  We
make exactly the same Getzler rescalings as before, while keeping track of the splitting of
&, The situation is indeed exactly the same as in [BeB94, §9]. Using the above splitting
ultimately guarantees that the resolvent of S;iim
as u — 0.

This completes the proof of our theorem. O

Proof of (2.4.78). The first equation in (2.4.78) follows from (2.5.134), (2.5.135), (2.5.151).
The second equation in (2.4.78) follows from the first one by the same transgression
technique as Proposition 2.3.6. U

can be uniformly controlled for t > 1
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