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Context and content of the manuscript

Context and summary

Granular materials such as the sand, for instance, are intriguing by nature: they can behave as solids when the particles are under compression or as liquids or gases when they flow or when submitted to external vibrations [START_REF] Jaeger | The physics of granular materials[END_REF][START_REF] Forterre | Flows of dense granular media[END_REF]. The acoustic waves which propagates via the contact networks between grains, along force chains, can serve to probe non-intrusively these materials [START_REF] Liu | Sound in sand[END_REF][START_REF] Liu | Sound in a granular material: Disorder and nonlinearity[END_REF][START_REF] Liu | Spatial patterns of sound propagation in sand[END_REF][START_REF] Jia | Ultrasound propagation in externally stressed granular media[END_REF]. In contrast with continuous media, in which the wave speed depends on the intrinsic elasticity and the density of the material, the wave speed in granular media depends on the contact stiffness between particles, on their mass, on the number of contact per grain (the coordination number), on their compacity and on the static compression applied on the sample [START_REF] Mavko | The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media[END_REF][START_REF] Makse | Granular packings: Nonlinear elasticity, sound propagation, and collective relaxation dynamics[END_REF][START_REF] Domenico | Elastic properties of unconsolidated porous sand reservoirs[END_REF]. In wet sand, for instance when a fluid settles in between grains thanks to capillary forces, the acoustic properties (wave speed, attenuation) can be dramatically and non-trivially affected. The effect of an interstitial fluid has been shown in experiment concerning wave propagation in the dry and wet granular media [START_REF] Brunet | Etude de milieux granulaires secs et mouillés a l'aide des ondes ultrasonores[END_REF], where the authors observed two antagonist effects. On one hand, by considering fluids with different surface tensions but same viscosity, it was observed a decrease of the wave speed in respect to the dry case. This observation was related to a decrease of the coordination number. On the other hand, considering fluids with same surface tension but different viscosities allowed to evidence an increase of the wave speed, attributed to an increase of the contact stiffness related to an increase of the contact area between rough particles, when lubrication occurs. One possible strategy to dissociate both these effects consists in considering a granular medium whose coordination number is known and constant [START_REF] Job | Nonlinear waves in dry and wet hertzian granular chains[END_REF]: this is the case for one-dimensional (1D) granular media, in which each particle is in contact with two neighbors. This is the approach which we adopted in this work: we consider alignments of spherical particles, as the analogs of the force chains in three-dimensional (3D) granular media, in order to focus our attention on the dynamics of the interaction between the interstitial fluid and the particles.

Since a decade, the 1D granular media bring the attention of many research groups [START_REF] Job | How hertzian solitary waves interact with boundaries in a 1D granular medium[END_REF][START_REF] Melo | Experimental evidence of shock mitigation in a hertzian tapered chain[END_REF][START_REF] Daraio | Energy trapping and shock disintegration in a composite granular medium[END_REF][START_REF] Job | Wave localization in strongly nonlinear hertzian chains with mass defect[END_REF][START_REF] Boechler | Discrete breathers in one-dimensional diatomic granular crystals[END_REF][START_REF] Theocharis | Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals[END_REF][START_REF] Li | Visualization of solitary waves via laser doppler vibrometry for heavy impurity identification in a granular chain[END_REF][START_REF] Yang | Attenuation of solitary waves and localization of breathers in 1d granular crystals visualized via high speed photography[END_REF][START_REF] Boechler | Bifurcation-based acoustic switching and rectification[END_REF][START_REF] Donahue | Experimental realization of a nonlinear acoustic lens with a tunable focus[END_REF][START_REF] Boechler | Interaction of a contact resonance of microspheres with surface acoustic waves[END_REF][START_REF] Hiraiwa | Complex contact-based dynamics of microsphere monolayers revealed by resonant attenuation of surface acoustic waves[END_REF][START_REF] Eliason | Resonant attenuation of surface acoustic waves by a microgranular metamaterial[END_REF] due to very rich nonlinear features and a broad range of potential applications they allow one to envisage. Motivated by these facts, we examine in this thesis, the details of the dynamics of dry and wet alignments of particles. On purpose, we first probe the reference case of dry chains of particles. Here we observe that the elasto-frictional coupling between the grains and a substrate (the supports on which stand the particles) induces an on-site potential, which in turn, induces a zero frequency band gap: the transmission of low frequency vibrations is impeded. Next, we probe the propagation of waves in wet granular chains. In this case, we show that an elastohydrodynamic model combined with Hertz potential accurately describes all our experimental observations. Finally, we extrapolate these observations to 3D granular packing. We here show that the effective medium theory combined with an elastohydrodynamic description fairly reproduces the features of the transmitted waves. Our experimental findings likely contribute to a better understanding of wave propagation in real wet granular media. In the following, we present a detailed summary of the PhD thesis.

In the chapter two, we present the main characteristics and the different mechanisms at play in granular media. In particular, we focus specifically on the description of dry and wet contact dynamics. Then, we expose some preliminary experimental observations concerning the propagation of waves in dry and wet granular media. At the end of the chapter, we detail the challenges of an accurate description of wave propagation in wet granular media.

In the chapter three, we perform a detailed experimental study on dry granular chains.

Firstly, from ultrasonic experiments, we measure the intrinsic bulk characteristic of our spheres (Young modulus, Poisson's coefficient and density). Then, we measure the transfer function of waves transmitted through an alignment of particles. These measures show the existence of a cutoff frequency below which waves propagate and above which waves are evanescent. An alignment of spheres indeed corresponds to a phononic crystal and the observation of the cutoff frequency relies with the existence of forbidden band for wavelengths shorter than the particles size. Our measures also reveal two phenomena which are however not predicted. The first one concerns resonance peaks at low frequency and the second one deals with the occurrence of a band gap at low frequency. Our analysis and additional measurements allows identifying that the peaks at low frequency are caused by the presence of bending modes of the supports. Next, the quantification of the behavior of the low frequency cutoff as a function of the axial static load and for different combinations of spheres and supports materials, allows to infer that the band gap at low frequency relies on the occurrence of an elastic on-site potential between the spheres and the supports: the low frequency cutoff ω 0 is related to a local stiffness k 0 .

In the chapter four, we focus on the experimental determination of the dispersion relation in dry media and on its analysis. A model including on on-site elastic potential, via a tangential deformation of the spheres on their supports, recovers the trend of both In the chapter five, we focus on wave propagation in wet granular alignments; we here set a small drop of viscous fluid between each spheres; the spheres are made of polyacetal and they are supported by four steel rods. We perform experiments over a wide range of static loads, viscosities and frequencies. In each case, we quantify both the group velocity and the attenuation. Our results show that the dynamics of our samples depends on the interplay between the elastic particles via the viscous fluid.

We model the mechanical impedance between two particles as the contribution of two effects. The first one comes from an elastic term described by the Hertz potential, which relies on the behavior of the central part of the contacts under static load. The stiffness related to the region has the form k H ∝ ER(P/E) 1/3 , where R is the radius of the spheres, E is their Young modulus and P is the confinement pressure. The second effect comes from the contribution of the viscous fluid at the periphery of the elastic contact. A careful analysis of the wave speed shows that this contribution induces an additional mechanical impedance of the form κ w ∝ ER (ωµ/E) 1/3 , where µ is the fluid's viscosity and ω is the angular frequency. This expression render an elastohydrodynamic behavior, well described in the literature [START_REF] Leroy | Les forces de surface dynamiques pour l'investigation mécanique des surfaces molles[END_REF][START_REF] Leroy | Hydrodynamic interactions for the measurement of thin film elastic properties[END_REF][START_REF] Leroy | Hydrodynamic interaction between a spherical particle and an elastic surface: A gentle probe for soft thin films[END_REF][START_REF] Villey | Nanorhéologie des liquides confinés : application á la nanomécanique des couches minces[END_REF][START_REF] Villey | Nanorhéologie des liquides confinés : application á la nanomécanique des couches minces[END_REF], in which the fluid deforms the solid owing to the extreme shear rates, viscous stresses and consequently hydrodynamic pressure generated near the geometrical singularity of the elastic contact. The model we propose qualitatively and quantitatively explains our measurement of the wave speed;

the agreement for the loss factor is qualitative and predicts a fair and satisfactory order of magnitude of the dissipation.

In the sixth and last chapter, we focus on longitudinal ultrasonic waves transmission through dry and wet 3D granular media. Our samples are made of few layers of millimetric particles. These experiments are performed with polyacetal spheres, under a page 20

5 kPa confinement pressure and with a fluid with viscosity equal to 5 Pa. We analyze the propagation of waves in the low frequency region, in the long wavelength approximation and at different driving magnitude. The speed of longitudinal waves measured in the dry configuration is fairly predicted by the effective medium theory [START_REF] Makse | Granular packings: Nonlinear elasticity, sound propagation, and collective relaxation dynamics[END_REF][START_REF] Domenico | Elastic properties of unconsolidated porous sand reservoirs[END_REF]. The wet configuration is obtained by mixing a small quantity of fluid with the particles. In this case, our measurements and our analysis show that a correction of the effective medium theory that take into account for the elastohydrodynamic behavior of the wet contacts, such as deduced from the measurements in 1D media, fairly reproduces both the measured wave speed and the attenuation at low frequencies. We also present experiments at higher frequencies; here, the wavelength tends to the size of the particles and the attenuation due to multiple scattering of the waves becomes dominant.
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CHAPTER 1. CONTEXT AND CONTENT OF THE MANUSCRIPT

Contexte et résumé

Les matériaux granulaires, comme par exemple le sable, sont intriguant par nature: ils peuvent se comporter comme des solides lorsque le paquet de grains est sous pression ou se comportent comme des liquides ou des gaz lorsqu'on les fait couler ou lorsqu'ils sont vibrés [START_REF] Jaeger | The physics of granular materials[END_REF][START_REF] Forterre | Flows of dense granular media[END_REF]. Les ondes acoustiques qui se propagent via les contacts entre grains dans les milieux granulaires, le long des chaînes de force, peuvent servir à sonder de manière non-intrusive ces matériaux [START_REF] Liu | Sound in sand[END_REF][START_REF] Liu | Sound in a granular material: Disorder and nonlinearity[END_REF][START_REF] Liu | Spatial patterns of sound propagation in sand[END_REF][START_REF] Jia | Ultrasound propagation in externally stressed granular media[END_REF]. 

GRANULAR MEDIA: FROM PHONONIC CRYSTALS TO METAMATERIALS

In this introductory chapter we present at first the main characteristic of a granular media. In the next sections we focus on the contact dynamics between dry and wet grains. Finally we treat existing experimental and analytic study on wave propagation in dry and wet granular media.

Granular media: from phononic crystals to metamaterials

Photonic crystals, phononic crystals and metamaterials are composite structures which tailor wave dispersion as to achieve given spectral and phase properties [START_REF] Deymier | Acoustic Metamaterials and Phononic Crystals[END_REF]. Owing to Bragg's scattering in the case of photonic and phononic crystals and to local resonances in the case of metamaterials, these composite materials produce so called band gap in transmitted spectra, where the wave propagation is strongly attenuated.

A photonic crystal is a periodic structure which affects and control electromagnetic wave. The band gap in this type of material can inhibit spontaneous emission [START_REF] Yablonovitch | Inhibited spontaneous emission in solid-state physics and electronics[END_REF][START_REF] Quang | Coherent control of spontaneous emission near a photonic band edge: A single-atom optical memory device[END_REF] which plays a crucial role in limiting the performance of semiconductor laser junctions, bipolar transistors and solar cells. It is worth mentioning that photonic crystals can also facilitate the localization of light [START_REF] John | Electromagnetic absorption in a disordered medium near a photon mobility edge[END_REF][START_REF] John | Strong localization of photons in certain disordered dielectric superlattices[END_REF]. These materials are also important for quantum

Optics and few specific systems or devices, including the black body radiation and single mode light emitting diode [START_REF] Lin | A three-dimensional photonic crystal operating at infrared wavelengths[END_REF]. When one increases the wavelength, up to the range of elastic waves, one deals with phononic crystals, which affect the propagation of vibrational waves. The first onedimensional phononic crystal able to tailor elastic wave propagation was reported in 1979 by Narayanamurti [START_REF] Narayanamurti | Selective transmission of high-frequency phonons by a superlattice: The dielectric phonon filter[END_REF]. In the following decade, Sigalas showed the existence of band gaps in two-dimensional phononic structures [START_REF] Sigalas | Band structure of elastic waves in two-dimensional systems[END_REF] and in three-dimensional phononic crystals [START_REF] Martinez-Sala | Sound attenuation by sculpture[END_REF][START_REF] Sigalas | Elastic and acoustic wave band structure[END_REF]. These materials attenuate ultrasonic frequencies [START_REF] Montero De Espinosa | Ultrasonic band gap in a periodic two-dimensional composite[END_REF], surface acoustic waves [START_REF] Benchabane | Evidence for complete surface wave band gap in a piezoelectric phononic crysta[END_REF] and act as filters [START_REF] Khelif | Two-dimensional phononic crystal with tunable narrow pass band: Application to a waveguide with selective frequency[END_REF]. The band gaps in photonic and phononic crystal relies on the Bragg scattering, when the periodicity of the crystal is comparable with the wavelength.

A third type of structures able to tailor wave dispersion are the metamaterials [START_REF] Liu | Locally resonant sonic materials[END_REF].

Here, the band gaps stem from locally resonant structures. In contradiction to phononic and photonic crystals, the band gaps are here created at wavelengths which may be few orders of magnitude larger than the characteristic periodicity of the crystal. Upon specific and intriguing features, this kind of materials can be designed to exhibit negative elastic modulus for instance.

Ordered granular media are one of these materials: they are periodic and have been shown to behave as phononic crystals. These specific assemblies of particles brought the attention of many scientific groups, both from their inherently rich and intriguing Physics and from the industrial applications they imply. Among potential applications, they have been proved reliable to absorb shocks [START_REF] Job | How hertzian solitary waves interact with boundaries in a 1D granular medium[END_REF][START_REF] Melo | Experimental evidence of shock mitigation in a hertzian tapered chain[END_REF][START_REF] Daraio | Energy trapping and shock disintegration in a composite granular medium[END_REF], to localize and trap waves [START_REF] Job | Wave localization in strongly nonlinear hertzian chains with mass defect[END_REF][START_REF] Boechler | Discrete breathers in one-dimensional diatomic granular crystals[END_REF][START_REF] Theocharis | Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals[END_REF][START_REF] Li | Visualization of solitary waves via laser doppler vibrometry for heavy impurity identification in a granular chain[END_REF][START_REF] Yang | Attenuation of solitary waves and localization of breathers in 1d granular crystals visualized via high speed photography[END_REF], or to design acoustic diodes [START_REF] Boechler | Bifurcation-based acoustic switching and rectification[END_REF] and acoustic lenses [START_REF] Donahue | Experimental realization of a nonlinear acoustic lens with a tunable focus[END_REF], from very low vibrational frequencies to the MHz frequency range when using micrometric particles [START_REF] Boechler | Interaction of a contact resonance of microspheres with surface acoustic waves[END_REF][START_REF] Hiraiwa | Complex contact-based dynamics of microsphere monolayers revealed by resonant attenuation of surface acoustic waves[END_REF][START_REF] Eliason | Resonant attenuation of surface acoustic waves by a microgranular metamaterial[END_REF].

The complexity of granular media

A granular material is an assembly of individual macroscopic and heterogeneous solid particles [START_REF] Nedderman | Statics and Kinematic of Granular materials[END_REF][START_REF] Jaeger | Sand, jams and jets[END_REF]. They are omnipresent in nature as the sand in deserts, seeds, pile of rocks and even rings on Saturn. Granular materials are the second-most used material in industry after water [START_REF] Duran | Sables, poudres et grains[END_REF][START_REF] Richard | Slow relaxation and compaction of granular systems[END_REF]. Grains are found in mining activity while extracting minerals, in civil engineering and in pharmaceutical industry for the manipulation of pills [START_REF] Andreotti | Les milieux granulaires[END_REF]. Granular media are also very important in geophysics to understand the mechanisms of avalanches, earthquakes, sediments transport and erosion of rocks [START_REF] Mavko | The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media[END_REF].

Grains thus exist in nature at very different sizes, from dust to rocks. One distinguishes typical sizes depending on the relative contribution of the thermal energy, the van der Waals electrostatic attractive forces and the gravitational potential energy M gd (where M ∼ ρd 3 is the mass of a grain, d its diameter, ρ its density and g the gravity).

For grains larger than d (k B T /ρg) Despite industrial applications and a long history of theoretical research pioneered by Coulomb, Reynolds and Faraday [START_REF] Jaeger | The physics of granular materials[END_REF], the Physics of granular media is not yet fully described [START_REF] Andreotti | Les milieux granulaires[END_REF]. At present, a theory quantifying all the phenomena in granular media is lacking [START_REF] Andreotti | Les milieux granulaires[END_REF], even in the ideal case where granular media are constituted by identical spherical particles interacting only through elastic contacts [START_REF] Andreotti | Les milieux granulaires[END_REF].

Despite their complexity and specific nature, heterogeneous granular media possess the features of the continuous matter like fluids, solids and gases. One can take water as an example [START_REF] Mester | The new physical-mechanical theory of granular materials[END_REF]: water at ambient temperature is liquid. When the temperature rises, it turns into a gas, and when the temperature decreases, the water freezes and becomes a solid. Each of these states has specific features. In the liquid state, the water has no definite shape, but has definite volume; additionally, liquids as opposed to solids present no resistance to shear. In the solid state, it has definite shape and volume. Finally in the gaseous state, the water has neither definite shape nor definite volume. The experiment of Forterre [START_REF] Forterre | Flows of dense granular media[END_REF], as shown in Fig. 2.2, illustrates the three states of matter [START_REF] Mester | The new physical-mechanical theory of granular materials[END_REF] in granular media, by simply pouring grains on a inclined plane. One can clearly distinguish three regions: a solid state where grains do not move, a liquid state where grains flow and a gaseous state where grains bounce in every directions.

There are few noticeable exceptions compared to the mechanical phases in continuous matter. In a granular solid there is no attractive force between the particles. In a granular liquid the grains interact via frictional contact. Finally in a granular gas the grains interact mainly via inelastic collision: granular media are athermal and the only source of fluctuations is external, for instance if one inclines or vibrates a pile of grains.

Figure 2.2: The tree states of granular media: gas, liquid and solid obtained by pouring granular material on an inclined plane [START_REF] Forterre | Flows of dense granular media[END_REF]. • Granular media generally contains large numbers of particles which are beyond simulations limits. For example, a spoon of sugar of 1 cm 3 , with sugar grains of approximately 100 µm in diameter, contains a million of particles. In this case the aim of any theoretical description is to provide average quantities modeling the set of particles rather than following the dynamics of every particles in a pile.

• The separation between the microscopic and macroscopic scales is vague in granular media. For example, the flow shown in Fig. 2.2 is few grains deep only. This raises an issue, concerning the validity of a continuous description and the definition of elementary volumes.

• The interactions between grains are complex: typical mechanisms in dry media include for instance nonlinear contact dynamics, solid friction and inelastic collisions.

• When grains are immersed in fluid, hydrodynamics and adhesive forces have to be taken into account.

In the following sections we aim at providing all the details of the interactions occurring in dry and wet granular media. These are the elementary mechanisms that will serve throughout the manuscript to describe and analyze our findings.

Microscopic scale: dry contact mechanics

In the first place, we focus on the microscopic scale, at the level of the contacts between dry particles. The elastic energy of interaction between two bodies pressed against each other is quantified by their contact stiffness k H , U el = k H δ 2 0 /2 where δ 0 is the overlap deformation. Here, we aim at deriving an expression for the stiffness k H between two elastic spheres, first from a geometrical approximation, then from the exact derivation of the equations of elasticity. We then recall the features of the onset of plastic deformation in a third section, as the limit above which the linear Hookean elasticity does not hold anymore. Further, we consider the solid friction between bodies, which introduces shear deformations of the grains that can be accounted by the so-called Hertz-Mindlin model.

Finally, we provide some details on the estimation of the adhesive force, related to the surface energy, between dry particles.

Hertz contact between two spheres: geometrical derivation

We consider two identical spheres with radius R 0 and Young's modulus E 0 compressed one against the other, as seen in Fig. 2.3. When the normal force F 0 increases, the overlap δ 0 increases: the distance between the centers decreases from 2R 0 to 2R 0 -δ 0 .

As a consequence, the spheres flatten, creating a disk of contact with radius a. page 30
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The deformation of the contact induces a deformation inside the spheres, near the contact; the typical depth of the deformation matches approximately the radius a of the disc of contact [START_REF] Landau | Theorie de l'elasticite[END_REF]. The relation between a and δ 0 is given by the law of Pythagoras,

R 2 0 = R 0 - δ 0 2 2 + a 2 . (2.1)
Within small deformation, δ 0 R 0 , one obtains the approximation,

a R 0 δ 0 . (2.2)
Figure 2.3: Two spheres with radius R 0 compressed with a static force F 0 .

In the following, we then consider a Hookean solid; for sake of simplicity, we assume a zero Poisson ratio, ν 0 = 0,

σ = E 0 , (2.3)
where σ is the stress,

σ F 0 πa 2 , (2.4)
and is the strain, δ 0 a .

(2.5) By combining Eq. 2.2, Eq. 2.4 and Eq. 2.5 in Eq. 2.3, one obtains a relation between the applied static force F 0 and the overlap distance δ 0 ,

F 0 ∝ E 0 R 2 0 δ 0 R 0 3/2 . (2.6)
The contact stiffness is the derivative of the force with the deformation,

k H = ∂F 0 /∂δ 0 , k H ∝ E 0 R 0 δ 0 R 0 1/2 ∝ E 0 R 0 F 0 E 0 R 2 0 1/3 . (2.7)
The stiffness thus increases nonlinearly with the overlap or the static force; this is consistent with the fact that the contact region between solids widens when the overlap page 31
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Hertz contact between two spheres: exact derivation

The rigorous and exact derivation of Hertz contact is detailed in most of the reliable textbooks [START_REF] Landau | Theorie de l'elasticite[END_REF][START_REF] Johnson | Contact Mechanics[END_REF][START_REF] Poppov | Contact Mechanics and Friction[END_REF]. Here, we summarize the calculations derived by Popov [START_REF] Poppov | Contact Mechanics and Friction[END_REF].

In this approach, one considers an elastic medium that fills an infinitely large halfspace. Under the influence of force F 0 , the medium is deformed. This deformation acts in the xy plane, as shown in Fig. 2.4(a). From a force acting at the origin in the positive z-direction, one obtains the displacement u z in the form [START_REF] Landau | Theorie de l'elasticite[END_REF],

u z = 1 πE p(x , y ) dx dy r , ( 2.8) 
where r is the radial coordinate, r = (x -x

) 2 + (y -y ) 2 , E = E 0 /(1 -ν 2 0
) with ν 0 the Poisson ratio, and p stands for the continuous distribution of normal pressure. Here, p is the Hertz pressure distribution,

p = p 0 1 - r 2 a 2 1/2 , ( 2.9) 
where p 0 is the maximum pressure at the center of contact and a is the radius of the contact disc. One estimates the static force from Eq. 2.9 as

F 0 = a 0 p(r)2πrdr = 2 3 p 0 πa 2 .
(2.10) Inserting Eq. 2.9 into Eq. 2.8 gives the displacement of the surface r a,

u z = πp 0 4Ea (2a 2 -r 2 ). (2.11)
In parallel, if one regards the indentation of the sphere (with radius R) in the plane, as shown in Fig. 2.4(b), the displacement u z of the surface can be set in the following page 32
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form

u z = δ 0 -r 2 /2R. (2.
12)

The comparison of Eq. 2.11 and Eq. 2.12 yields

πp 0 4Ea 2a 2 -r 2 = δ 0 -r 2 /2R, ( 2.13) 
from which one identifies a and δ 0 as,

a = πp 0 R 2E , ( 2.14 
)

δ 0 = πap 0 2E . (2.15)
The substitution of Eq. 2.14 into Eq. 2.15 gives the maximum pressure,

p 0 = 2 π E δ 0 R 1/2 , ( 2.16) 
and the radius of the contact disc, a = Rδ 0 .

(2.17)

The relation between δ 0 and F 0 is obtained by inserting Eq. 2.16 and Eq. 2.17 into Eq. 2.10,

F 0 = 4 3 ER 2 δ 0 R 3/2 , ( 2.18) 
from which one obtains

a = 3F R 4E 1/3 . (2.19)
The contact stiffness, k H = ∂F 0 /∂δ 0 , finally becomes

k H = ER 4δ 0 R 1/2 = ER 6F 0 ER 2 1/3 . (2.20)
It is worth mentioning that the contact stiffness between two spheres (radius R 1 and R 2 , Young's moduli E 1 and E 2 and Poisson ratio ν 1 and ν 2 ) is obtained by replacing in Eqs. 2.8-2.20 the radius R by the effective radius,

R = 1/(1/R 1 + 1/R 2 ), (2.21) 
and by replacing the elastic modulus E by the effective value,

E = 1/[(1 -ν 2 1 )/E 1 + (1 -ν 2 2 )/E 2 ]. (2.22)
In Eq. 2.20, as in Eq. 2.7, the contact stiffness depends on bulk characteristics of the spheres and increases with the static force. In fact, the geometrical derivation Eq. 2.7 page 33
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Onset of plastic deformation

The combination of Eq. 2.16 and Eq. 2.18 provides a relation between the force and maximum pressure,

p 0 = 6F 0 E 2 π 3 R 2 1/3 . (2.23)
Eq. 2.23 serves for the estimation of the onset of plastic deformation, according to von Miss criteria [START_REF] Johnson | Contact Mechanics[END_REF],

σ Y = 1.6p 0 , (2.24)
where σ Y is the yield strength characteristic for each material, indicating the maximal compression force F Y at which a plastic deformation occurs inside the contact area,

F Y = πR 3 6E 2 (1.6σ Y ) 3 .
(2.25)

Hertz-Mindlin contact between two spheres

As in subsections 2.3.1-2.3.2, here we consider two identical spheres with radius R 0 , Young's modulus E 0 and Poisson ratio ν 0 compressed one against the other with F 0 , as seen in Fig. 2.5. In this case, in addition to F 0 , one exerts a tangential force F t [START_REF] Johnson | Contact Mechanics[END_REF] producing a tangential deformation δ y in the y-axis direction. Depending on the magnitude of F t in respect to the friction force threshold µ s F 0 , where µ s is the friction coefficient, one distinguishes two cases. If the tangential force page 34
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exceeds the friction threshold F t > µ s F 0 , micro slips occur and the sphere slides onto the other. In the opposite, if F t < µ s F 0 , the spheres stick and shear deformations occurs. In the stick regime, the shear displacement δ y reads [START_REF] Mavko | The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media[END_REF][START_REF] Makse | Granular packings: Nonlinear elasticity, sound propagation, and collective relaxation dynamics[END_REF] 

δ y = F t 8a 2 -ν 0 G 0 , (2.26)
where a is the radius of the disc of contact defined by Eq. 2.19 and G 0 is elastic shear

modulus, G 0 = E 0 /2(1 + ν 0 ).
The transverse contact stiffness k t is the derivative of the tangential force with the tangential deformation, k t = ∂F t /∂δ y , 

k t = 8aG 0 2 -ν 0 . ( 2 
k t = 4a G 1 2 -ν 1 + G 2 2 -ν 2 .
(2.28)

Similarly to the normal stiffness given in Eq. 2.20, the transverse stiffness k t increases nonlinearly with the overlap or the static force: the tangential stiffness depends on the radius of the contact disc and the bulk characteristic of the spheres.

Contact between a sphere and a cylinder

Here, we consider a sphere with Young's modulus E 0 , Poisson ratio ν 0 and shear modulus

G 0 = E 0 /2(1 + ν 0 ) compressed with static force F 0 against a straight cylinder with radius R c , Young's modulus E c , Poisson ratio ν c and shear modulus G c = E c /2(1 + ν c ).
The cylinder corresponds to one of the supporting rod used to align the spheres in our setup, as detailed in the next chapter. The curvature of the two bodies makes the rigorous treatment difficult to derive. However, such a configuration is equivalent in first approximation to the contact between a plane and a curved cylinder, which has been derived by Popov [START_REF] Poppov | Contact Mechanics and Friction[END_REF]. In the presence of a tangential force F t , the tangential contact stiffness k 0 reads [START_REF] Poppov | Contact Mechanics and Friction[END_REF] 

k 0 = 2G r a, (2.29)
where G r is the reduced shear modulus 

G r = 1/[(2 -ν 0 )/4G 0 + (2 -ν c )/4G c ], a = √ R r δ 0 and R r is the effective radius given by R r = R 0 R c . ( 2 
E r = 1/[(1 -ν 2 0 )/E 0 + (1 -ν 2 c )/E c ]. (2.31)
It is worth mentioning that k 0 depends on the contact radius, giving the same nonlinear dependency with the normal static force as in Eq 2.28.

Figure 2.6: The contact between a sphere and a cylinder is equivalent to a contact between a plane and a curved cylinder.

Adhesive contact models between dry surfaces

Next, we consider the contact between two compressed bodies, where the surface tension γ s is taken into account. Due to the presence of γ s , one has an adhesive contribution F adh [START_REF] Andreotti | Les milieux granulaires[END_REF] to the net force. In this subsection we derive an expression for F adh , first in a qualitative way then from an exact derivation of adhesive contact model.

In both cases, the surface tension γ s is defined [START_REF] Andreotti | Les milieux granulaires[END_REF][START_REF] Poppov | Contact Mechanics and Friction[END_REF] as the work per unit area done by an external force to pull two bodies apart and create two surfaces. Half of the energy required to create one surface is the surface tension γ s .

Qualitative derivation

When two spheres with radius R 0 are pulled one from the other, the overlap distance δ 0 and so the radius a of the contact region changes as a function of time, which in turn provokes the change of contact area A,

dA = d(πa 2 ), (2.32) 
and consequently, the variation of the surface energy is

dU surf = 2γ s d(πa 2 ), (2.33) 
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and is equal to the work done by the force of adhesion,

2F adh dδ 0 = dU surf . (2.34)
Combining a = √ 2δ 0 R 0 with Eq. 2.33 and Eq. 2.34, the force of adhesion reads

F adh ∝ γ s R 0 . (2.35)
The adhesive force does not depend on the compression nor on the elastic characteristics of the spheres.

Exact model

There exists two main adhesive contact models. The first one is the JKR model [START_REF] Johnson | Surface energy and the contact of elastic solids[END_REF],

which considers the pressure distribution and the adhesion inside the contact region. The second one is the DMT [START_REF] Derjaguin | Effect of contact deformations on the adhesion of particles[END_REF] model, which considers a Herztian contact with additional adhesive part outside the contact region.

Both these models are valid but within different conditions [START_REF] Tabor | Surface forces and surface interactions[END_REF]. The JKR model is used for spheres with small Young's modulus and high surface energy. The DMT is more suited for rigid spheres with low surface energy.

In this subsection, we remind the detailed and rigorous derivation of F adh in the frame of the JKR model as presented in [START_REF] Poppov | Contact Mechanics and Friction[END_REF]. Here, we attempt to derive an expression for the force of adhesion between a sphere (with Young's modulus E and radius R) and a plane: the displacement u z of the surface is calculated [START_REF] Poppov | Contact Mechanics and Friction[END_REF] in the half-space (as in Fig. 2.4 and reads

u z = 1 πE p(x , y ) dx dy r , ( 2.36) 
where

r = (x -x ) 2 + (y -y ) 2 and E = E0 1-ν 2 0 .
The expression for the displacement is the same as for the Hertz model derivation, Eq 2.8. However in the JKR model [START_REF] Poppov | Contact Mechanics and Friction[END_REF], the pressure distribution p is equal to

p = p 0 1 -r 2 /a 2 -1/2 + p 1 1 -r 2 /a 2 1/2 . (2.37)
By inserting Eq. 2.37 in Eq. 2.36, one obtains the displacement in the form

u z = πa E p 0 + 1 2 p 1 1 - r 2 2a 2 . (2.38)
In parallel, the displacement u z of the surface is

u z = δ 0 -r 2 /2R, (2.39)
where δ 0 is the overlap deformation. By comparing Eq. 2.38 and Eq. 2.39, one obtains, 

p 1 = 2Ea πR , ( 2 
p 0 = E π δ 0 a - a R , ( 2.41) 
and so far, one has three unknowns p 0 , p 1 and a (for the given penetration depth δ 0 ) and two equations, Eq. 2.40 and Eq. 2.41. A third constrain is thus required [START_REF] Poppov | Contact Mechanics and Friction[END_REF], which states that the total energy U tot of the system should be minimum at equilibrium a,

∂U tot ∂a = 0. (2.42)
The total energy comes from both the elastic deformation and the adhesion,

U tot = U el -γ s πa 2 , (2.43)
where the elastic part of the total energy is defined as

U el = 1 2 p(x,y)u z (x,y)dxdy. (2.44)
The substitution of Eq. 2.37 and Eq. 2.39 into Eq. 2.44 gives

U el = E δ 2 0 a - 2 3 
δ 0 a 3 R + a 5 5R 2 , ( 2.45) 
and the total energy Eq. 2.43 becomes

U tot = E δ 2 0 a - 2 3 
δ 0 a 3 R + a 5 5R 2 -γ s πa 2 . (2.46)
Next, by combining Eq. 2.42 and Eq. 2.46, one obtains the overlap deformation,

δ 0 = a 2 R ± 2γ s πa E . (2.47)
The force acting on the sphere is the derivative of U tot with respect to δ 0 ,

F = - ∂U tot ∂δ 0 = E 2δ 0 a - 2 3 
a 3 R , ( 2.48) 
then inserting Eq. 2.47 into Eq. 2.48 one has

F = E 4 3 a 3 R - 8γ s πa 3 E 1/2 , ( 2.49) 
the maximum negative value of Eq. 2.49 is reached when

a = a crit = 9 8 γ s πR 2 E 1/3 , (2.50) page 38 
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and is equal to the adhesive force,

F JKR adh = - 3 2 πγ s R, ( 2.51) 
where F JKR adh denote the adhesive force estimated by JKR model. It is worth mentioning that in the DMT model, the pressure distribution in Eq. 2.37 corresponds to the Hertz potential given by Eq. 2.9 but with an additional attractive contribution exerted at the periphery of the solid contact,

F DM T adh = -4πγ s R.
(2.52)

When one considers the contact between two spheres (with radius R 1 and R 2 ), the radius of curvature should be replaced in Eq. 2.51 and in Eq. 2.52 by the effective radius,

R = 1/[1/R 1 + 1/R 2 ]. (2.53)
In accordance with Eq. 2.35, the adhesive force does not depend on the compression nor on elastic characteristics of the sphere (E, ν 0 ), but instead increases linearly with the radius of the spheres. We will se in the next chapters that this type of adhesion remains negligible and does not show up in our experiments: dry spheres are non-cohesive.

Microscopic scale: wet contact mechanics

In this section, we consider the contact dynamics between wet bodies: thanks to capillary forces, the presence of a small quantity of fluid forms a liquid meniscus near the singular point of contact between bodies. Here, we aim at deriving the mechanical impedance κ ω (the mechanical impedance is the ratio between the force and the deformation) between two spheres with an interstitial fluid. First of all, we briefly remind the description of capillary forces (the Laplace force) that give birth to an interstitial meniscus of fluid in between non-conformal solids. Then, we point out few aspects of a seminal theoretical and numerical work concerning the normal collision of a sphere on a thin layer of viscous fluid. Next, in the third section, we provide details on the hydrodynamic field generated in a viscous fluid collided by a perfectly rigid sphere: this is a classical limit of the lubrication theory. In the fourth part, we remind the exact derivation of κ ω obtained from an elastohydrodynamic description at very small fluid thickness. Finally, in the last part we mention a more qualitative derivation of κ ω at rather large fluid thicknesses, which asymptotically matches the lubrication limit.

Capillary forces in liquid bridges

Here, we derive qualitatively the expression for the capillary force F cap between a sphere with radius R and a plane, see the Fig. (2.54)

The height h of the capillary bridge is given by

h r 2 2R . (2.55)
For a given radius of curvature r 0 h and under the condition r 0 r, Eq 2.54 becomes

∆p = - 4γ f R r 2 , (2.56)
and the capillary force finally takes the form

F cap = A∆p = -4πγ f R, (2.57)
where A = πr 2 is the area of the capillary bridge.

Figure 2.7: Capillary bridge formed at the contact between a sphere and a plane [START_REF] Poppov | Contact Mechanics and Friction[END_REF].

As for the force of adhesion between dry spheres (see Eq. 2.35, Eq. 2.51 and Eq. 2.52), the capillary force depends on the radius of curvature of the solid and is independent on the compression. If one regards the contact between two spheres with radius R 1 and R 2 the radius R should be replaced by its effective value

R = 1/(1/R 1 + 1/R 2 ).

A seminal work on the collision between wet spheres

The dynamics of collisions between wet bodies has attracted some attention since a decades. It is essential to understand the behavior of fluid coated spheres [START_REF] Barnocky | Elastohydrodynamic collision and rebound of spheres: Experimental verification[END_REF][START_REF] Davis | Elastohydrodynamic rebound of spheres from coated surfaces[END_REF] and immersed collisions [START_REF] Ardekani | Particle-wall collision in a viscoelastic fluid[END_REF][START_REF] Joseph | Oblique particle-wall collisions in a liquid[END_REF][START_REF] Yang | Dynamics of particle-particle collisions in a viscous liquid[END_REF][START_REF] Donahue | Stokes cradle: Newton cradle with liquid coating[END_REF][START_REF] Donahue | Stokes cradle: normal three-body collisions between wetted particles[END_REF][START_REF] Donahue | Stokes cradle: Normal three-body collisions between wetted particles[END_REF][START_REF] Marshall | Viscous damping force during head-on collision of two spherical particles[END_REF][START_REF] Uddin | Squeeze flow of a carreau fluid during sphere impact[END_REF] for instance. In contrast to a dry collision where particles page 40
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inertia dominates, the kinetic energy in liquid is dissipated by viscous stresses, in addition to inelasticity of the solids. When an elastic body collides a wet surface, the dissipation of energy can be quantified through the restitution coefficient e, which is the ratio of rebound velocity V out to the incident velocity V in , e = V out /V in . In a seminal publication, Davis, Serayssol and Hinch [START_REF] Davis | The elastohydrodynamic collision of two spheres[END_REF] identified two important parameters in this type of experiments. The first one is the Stokes number, which measures the inertia of the particles relatively to the viscous forces, St ∝ (ρdV in )/µ, where d is the sphere diameter, ρ is the sphere density and µ is the fluid viscosity. The second one is the elasticity parameter ∝ µV in R 3/2 /Eh 5/2 0 , where h 0 is the minimal separation distance and E is the Young's modulus. The parameter indicates the tendency of the solid to deform elastically. For large values of , a significant deformation occurs during the collision.

In contrast, rigid spheres provides small and no significant deformations of the elastic bodies occur. Davis et al. [START_REF] Davis | The elastohydrodynamic collision of two spheres[END_REF] analyzed in details the correlations of the two parameters St and with the restitution coefficient e of a sphere bouncing on a thin film of viscous fluid.

Through the careful analysis of the restitution coefficient of a sphere bouncing on a film of fluid, they reported that part of the kinetic energy is converted into elastic strain, enabling the spheres to rebound. This mechanism relies on the Stokes number: at low stokes number, the viscous dissipation is predominant and no rebound occurs. At large stokes number, the inertia contribution is predominant and enables the rebound of the sphere. As the viscosity of the fluid increases, the critical Stokes number above which the rebound is possible, decreases. According to [START_REF] Davis | The elastohydrodynamic collision of two spheres[END_REF] and [START_REF] Barnocky | Elastohydrodynamic collision and rebound of spheres: Experimental verification[END_REF], the experimental critical Stokes number St c can be fitted by

St c 0.54ln (1/ ) -1.25.
(2.58)

Above St c , the spheres are deformed elastically due to the hydrodynamic pressure exerted by the viscous fluid and a rebound is observed. The ansatz shows for instance that soft spheres (i.e. large ) requires smaller Stokes number (i.e. smaller impact velocity) than hard spheres to rebound.

The interplay between elastic and viscous contributions is quantified in the elastohydrodynamic (EHD) model presented in more details in the following sections.

Reynolds force between a rigid sphere and a rigid plane

At first we consider the classical case of a rigid sphere impacting a flat rigid wall, as shown in Fig. 2.8: here, no elastic deformation occurs during the collision. The two bodies are separated by a layer of an incompressible fluid with thickness h and viscosity µ [START_REF] Job | Nonlinear waves in dry and wet hertzian granular chains[END_REF]. When the sphere with radius R is displaced against the wall with relative velocity v z < 0 in the normal (axial) direction, the fluid is thinned, ḣ = v z < 0, and squeezed out at velocity v r > 0 in the radial direction. In this condition, the viscosity of the fluid induces a hydrodynamic pressure opposed to the displacement, which may induce in turn page 41

CHAPTER 2. THE PHYSICS OF GRANULAR MEDIA: STATE OF THE ART the deformation of the bead [START_REF] Hamrock | Fundamentals of Fluid Film Lubrification[END_REF] if the elasticity would be taken into account. Within the assumption of the absence of elastic deformation, the pressure is given by the Reynolds equation [START_REF] Hamrock | Fundamentals of Fluid Film Lubrification[END_REF],

∂ ∂r rh 3 (r, t) 12µ ∂p(r, t) ∂r = r ḣ(r, t) = -rv z (t), (2.59) 
where the fluid thickness is h(r, t)

= h 0 (t) + r 2 /2R = h 0 1 + r 2 /2Rh 0 = h 0 1 + r 2 /a 2 w .
Here, a w = √ 2Rh 0 is a characteristic extent of the hydrodynamic field and h 0 (t) is the separation distance between the sphere and the plane. The integration of Eq. 2.59 gives the hydrodynamic pressure in the form

p(r, t) = 3µRv z (t) h 2 (r, t) , ( 2.60) 
thus by integration of Eq. 2.60, one obtains the Reynolds force (i.e. the repulsive lubrication force),

F (t) = 6πµR 2 v z (t) h 0 (t) . (2.61)
By combining Eq. 2.60 and Eq. 2.61, one finds a typical area S w ,

S w = |F (t)/p(0, t)| 2πRh 0 πa 2 w , (2.62) 
which confirms that the typical extent of the hydrodynamic field is about a w = √ 2Rh 0 . In turn, the Stokes equation allows relating the pressure distribution p(r, t), see Eq. 2.60, with the radial velocity v r or the shear rate γs = ∂v r /∂z in the fluid,

∂p ∂r = µ ∂ 2 v r ∂z 2 = µ ∂ γs ∂z , ( 2.63) 
such that with no slip conditions at the interfaces between the solids and the fluid,

page 42 2.4. MICROSCOPIC SCALE: WET CONTACT MECHANICS v r (r, z = 0, t) = v r (r, z = h, t) = 0, v r (r, z, t) = 3rv z h z h 1 - z h , ( 2.64) 
and

γs (r, z) = 3rv z h 2 1 - 2z h . (2.65)
We plot in Fig. 2.9 the radial velocity, the shear rate and the hydrodynamic pressure distributions as a function of the radial coordinate. One clearly observes that both the radial velocity v r (r, z = h 0 /2) and the shear rate γs (r, z = 0) of the fluid are zero at r = 0, for symmetry reasons: the fluid does not flows near the central part of the contact. In addition, both these quantities are maximal near r = a w , see Fig. 2.9(a) and (b). In particular, the shear stress τ = µ γs (r = a w , z = 0) is maximal in a ring of radius a w centered on r = 0, which impedes the flow accordingly. As far as the bodies get close to contact, at small fluid thickness h 0 → 0, the fluid's shear rate and stress diverge and the fluid may ultimately gets clamped by its viscosity. In turn, the hydrodynamic pressure is maximal at the center r = 0 and has a typical extent of the order of a w , see Fig. 2.9(c): the stress is thus mostly transmitted through the central part of the fluid, where it essentially does not flow. We will see in the sections that all these features are crucial and reminiscent of the specific behavior of a more complex elastohydrodynamic description.

Indeed, when the fluid thickness h 0 tends to zero, the hydrodynamic pressure diverges and will likely deform the elastic solids. However, the hydrodynamic pressure distribution given by Eq. 2.60 significantly differs from the Hertzian distribution in a dry contact, see for instance Eq. 2.9. In such a harsh condition, the relation between the repulsive force and the relative displacement of the bodies must significantly differs from the Hertz potential Eq. 2.18 and from the classical result Eq. 2.61 obtained in lubrication limit.

This latter finally results in a rather complex elastohydrodynamic mechanism: we provide a detailed analysis and description of such an interplay in the following sections.

Mechanical impedance of a wet contact at small fluid thickness

Here, we aim at presenting the description of the elastohydrodynamic (EHD) interplay that occurs when two elastic bodies interact via a thin layer of viscous fluid. The EHD mechanism is observed at very different scales [START_REF] Davis | Elastohydrodynamic rebound of spheres from coated surfaces[END_REF][START_REF] Mani | How things get stuck: Kinetics, elastohydrodynamics, and soft adhesion[END_REF][START_REF] Landman | Atomic-scale issues in tribology: Interfacial junctions and nano-elastohydrodynamics[END_REF][START_REF] Fillot | The full-system approach for elastohydrodynamic lubrication[END_REF][START_REF] Skotheim | Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts[END_REF][START_REF] Barnocky | The influence of pressure-dependent density and viscosity on the elastohydrodynamic collision and rebound of two spheres[END_REF], from nano object [START_REF] Vinogradova | Interaction of elastic bodies via surface forces. 1. power-law attraction[END_REF], through lubricated solids [START_REF] Jacobson | Rheology and Elastohydrodynamic Lubrications[END_REF] and up to geophysical faults [START_REF] Brodsky | Elastohydrodynamic lubrication of faults[END_REF]. Here, h 0 is the minimal distance between the sphere and the plane and R is the radius of the sphere. the next section, we mainly summarize the work done by Leroy and Charlaix [START_REF] Leroy | Hydrodynamic interactions for the measurement of thin film elastic properties[END_REF] and by Villey et al. [START_REF] Villey | Effect of surface elasticity on the rheology of nanometric liquids[END_REF]. In both these studies, a spherical probe oscillates in a viscous fluid at frequency ω near an elastic substrate. The sphere has a radius R about few millimeters and the fluid thickness D lies in between few nanometers to few micrometers. A typical setup is shown in Fig. 2.10 and constitutes a dynamic surface force apparatus [START_REF] Villey | Capacitive detection of buried interfaces by a dynamic surface force apparatus[END_REF]. In these publications, the derivations provide an expression of the mechanical impedance κ ω (D) (the ratio between the force and the deformation) which directly quantifies the rheology of the wet contact as a function of the relevant parameters.

As shown in Fig. 2.10, the separation distance D(t) between the sphere and the substrate is given by

D(t) = D + h 0A cos(ωt), (2.66)
where h 0A is the amplitude of oscillation and D is average distance between sphere and page 44 According to [START_REF] Leroy | Hydrodynamic interactions for the measurement of thin film elastic properties[END_REF], the mechanical impedance κ ω (D) is defined as the ratio of the complex amplitude F ω of the dynamic force F (t) = [F ω e iωt ], acting on the plane at the excitation frequency ω, to the amplitude h 0A of the sphere oscillations h 0A cos(ωt),

κ ω (D) = F ω h 0A . ( 2.67) 
As to obtain the mechanical impedance in the lubrication regime D << R, one considers at first the Reynolds equation, which describes the drainage of the fluid between the sphere and the plane [START_REF] Hamrock | Fundamentals of Fluid Film Lubrification[END_REF],

∂ ∂t [h(r, t)] = 1 12µr ∂ ∂r rh 3 (r, t) ∂p(r, t) ∂r ,
(2.68)

where r is the radial coordinate, p(r, t) is the hydrodynamic pressure and h(r, t) is the fluid thickness. Taking into account the deflection of the elastic plane u(r, t), the fluid thickness is

h(r, t) = D + h 0A cos(ωt) + r 2 2R + u(r, t). (2.69)
In the linear regime, h 0A << D, the time-dependent quantities are harmonic functions of the time at the driving frequency. In this case, the relation between the deflection u(r, t) = [u(r)e iωt ] and the pressure p(r, t) = P 0 + [δpe iωt ] is obtained by linearizing the Eq. 2.68 at first order in h 0A , u and δp,

iωr[h 0A + u(r)] = ∂ ∂r r 12µ D + r 2 2R 3 ∂δp(r) ∂r ,
(2.70)

where P 0 is the atmospheric pressure, u(r) and δp(r) are complex amplitudes.

Within mathematical manipulations [START_REF] Leroy | Hydrodynamic interactions for the measurement of thin film elastic properties[END_REF], one can derive the mechanical impedance in the form (2.72) is a critical distance above which the elasticity of the sphere is involved (see below in Sec. 2.4.5) and g k (D/D c ) is a non dimensional function estimated semi-analytically [START_REF] Leroy | Hydrodynamic interactions for the measurement of thin film elastic properties[END_REF].

κ ω (D) = 6πµR 2 ω D c g k (D/D c ), ( 2 
In the regime where the separation is larger than the critical distance, D >> D c , the Eq 2.71 takes the form When the distance between bodies is smaller than the critical distance, D D c , both the out-of-phase damping contribution (the imaginary part) and the in-phase contribution (the real part) in Eq. 2.71 saturate toward constant values; in this case Eq. 2.71 becomes [START_REF] Leroy | Hydrodynamic interactions for the measurement of thin film elastic properties[END_REF] 

κ ω (D) = 6πµR 2 ω D c 9π 2 512 D c D 5/2 + i D c D . ( 2 
κ ω 1.163( √ 3 + i) 6πµR 2 ω D c . ( 2.74) 
The asymptotic limits, Eqs. 2.73 and 2.74, have been verified experimentally [START_REF] Villey | Effect of surface elasticity on the rheology of nanometric liquids[END_REF].

The results are summarized in Fig. 2.11: the mechanical impedance describing the elastohydrodynamic interaction depends on the interplay between the elastic characteristics of the sphere (E, R) and the viscosity of the fluid µ.

It is worth mentioning that the mechanical impedance given by Eq. 2.71 can be generalized straightforwardly to the interaction between two spheres (radius R 1 and R 2 , Young's moduli E 1 and E 2 and Poisson ratio ν 1 and ν 2 ), by simply replacing the radius R by its effective value

R = 1/(1/R 1 + 1/R 2 ), (2.75) 
and the elastic modulus E by

E = 1/[(1 -ν 2 1 )/E 1 + (1 -ν 2 2 )/E 2 ].
(2.76)

Mechanical impedance of a wet contact at large fluid thickness

In this subsection we present a more qualitative derivation of the mechanical impedance κ ω between the sphere and the substrate, as detailed in [START_REF] Leroy | Hydrodynamic interactions for the measurement of thin film elastic properties[END_REF]. Here, when the fluid's thickness is larger than the critical value, D D c , the hydrodynamic pressure, see Eq. and consequently the elastic deformation can be assumed low enough to decouple the hydrodynamic problem from the elastic problem. For sake of simplicity, one can additionally assume the mechanical response of the substrate as the one of a flat punch [START_REF] Leroy | Hydrodynamic interactions for the measurement of thin film elastic properties[END_REF] of radius a w = √ 2RD, see for instance Eqs. 2.60 and 2.62. Within these frames, the force exerted by the fluid on the plane being F = 6πµωh 0 R 2 /D in this viscous regime, see Eqs. 2.61, the resulting indentation δ 0 becomes,

F πa 2 w ∝ E δ 0 a w → δ 0 ∝ F E √ RD . (2.77)
One can thus model κ ω as a spring and dashpot in series to account for the presence of the layer of viscous fluid on top of the elastic substrate,

κ ω ∝ 1 k + 1 iωλ -1 , (2.78)
where k is a stiffness,

k ∝ F δ 0 ∝ E √ RD, (2.79)
and the strength of the dashpot λ is

λ ∝ F h 0 ω ∝ µR 2 D .
(2.80)

It clearly appears from Eq. 2.78 that a crossover occurs as long as the deformation of the fluid equals the elastic deformation of the solid. This crossover happens at (ωλ/k) ∝ In the viscous regime, for which (ωλ/k) 1, the Eq 2.78 becomes

(δ 0 /h 0 ) ∝ (D c /D) 3/2 = 1 where D c ∝ R(µω/E)
κ ω (D D c ) ∝ iωλ 1 -i iωλ k ∝ µωR 2 D i + D c D 3/2 .
(2.81) which qualitatively matches the asymptotic limit given by Eq. 2.73 or given by the classical expression of the Reynolds force without elasticity Eq. 2.61, that is

κ ω ∝ iµωR 2 D . (2.82)
It is worth mentioning that in agreement with the initial assumption, the elastic deformation remains negligible compared to the imposed motion in the viscous regime,

at D D c : (δ 0 /h 0 ) ∝ (ωλ/k) 1.
On the opposite, when the thickness is well below the critical value, D D c , the mechanical impedance is such that the ratio of its real an imaginary parts tends to a constant, see Eq. 2.74,

(κ ω )/ (κ ω ) = √ 3, (2.83) 
and so is the ratio between the elastic deformation δ 0 to the imposed motion h 0 : (δ 0 /h 0 ) ∝ (ωλ/k) ∼ 1. Interestingly, this last result demonstrates that the imposed motion is totally accommodated by the elastic deformation of the sphere and the substrate and, consequently, the fluid does not deform anymore. In the regime of very small fluid thickness, the fluid is clamped by its viscosity due to the intense shear rate and shear stress, see Eq. 2.65; this ultimately leads to an elastic confinement of the fluid [START_REF] Villey | Effect of surface elasticity on the rheology of nanometric liquids[END_REF].

Macroscopic scale: waves in dry and wet granular media

After having analyzed the contact dynamic between dry and wet grains at the microscopic scale, we now focus our attention on the description of the macroscopic scale, well above the size of the particles. Our aim being the description of wave propagation in granular media, the natural macroscopic scale is the wavelength; most of the descriptions given in this section refer to the long wavelength approximation. In this section, we first present a set of experiments which prove that in compressed media, the static force is distributed along heterogeneous paths, the so-called force chains. The waves mainly propagate along these paths. Next, we report on wave propagation in dry granular media, from both the theoretical and the experimental point of view. In particular, we show the ability of waves to probe the microscopic scale of the contact between grains. Lastly, we report on recent experiments concerning wave propagation in wet granular media. page 48
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Force distribution in granular media

The first set of experiment concerns three-dimensional granular media. As shown in Fig. 2.12, Mueth [START_REF] Mueth | Force distribution in a granular medium[END_REF] measured the normal force distribution in a granular packing under static compression. In this experiment, the static uni-axial force is exerted on random packing of monodisperse glass spheres enclosed in a cylinder. At the bottom of the cylinder the beads under compression leave marks on a carbon paper, whose darkness and area is proportional to the exerted force. Mueth thus demonstrated experimentally that the force acts locally, as shown in Fig. 2.12(a): the marks on the carbon paper are distributed heterogeneously. The statistical analysis shows that the force distribution is nearly uniform for forces below the average force, while it follows an exponential decay for forces larger than the mean, see Fig. 2.12(b). According to their data, such a distribution depends neither on the boundary condition nor on the preparation history of the samples. The photoelastic technique [START_REF] Heywood | Designing by Photoelasticity[END_REF][START_REF] Holt | Lecture notes[END_REF] is also a powerful tool to reveal the intimate nature of the force distribution in two-dimensional granular media. Photoelasticity is based on the property of birefringence [START_REF] Giancoli | Physique générale: Ondes, optique et physique moderne[END_REF] and results from refractive indexes that depend on the local mechanical stress. When the light passes through a birefringent photoelastic material, it experiences two refractive indexes, along each of the principal stress directions. This leads to a phase delay between the component of light in these directions and the lag is directly proportional to the stress difference. The phase lag thus affects the page 49 CHAPTER 2. THE PHYSICS OF GRANULAR MEDIA: STATE OF THE ART polarization of light. When a photoelastic sample is placed between two perpendicular light polarizers, the whole system is opaque if no stress is applied on the sample. On the opposite, light is transmitted locally, where a stress exists: the map of transmitted light thus reveals the stress distribution in the sample.

For instance, the photoelastic experiments done by Howell [START_REF] Howell | Stress fluctuations in a 2D granular couette experiment: A continuous transition[END_REF] in two-dimensional granular media, made of a pile of photoelastic disc, directly shows that the force is distributed along heterogeneous paths, see Fig. 2.13. These force chains are also revealed from the numerical simulations performed by Radjai [START_REF] Radjai | Force distributions in dense twodimensional granular systems[END_REF], as shown in Fig. 2.13(c).

These quasi one-dimensional alignments of most compressed and most stiff particles are privileged paths for the propagation of mechanical waves. 

Waves as a non intrusive probe of the microscopic scale

As for waves in continuous media, where the wave speed for instance closely relies on the elasticity and the density of the matter, the waves propagating in granular media and through force chains can serve as a non invasive probe of the features at the scale of the grains. Analyzing how waves propagate in a granular medium would likely give an insight into the contact dynamics between grains, revealing the intimate nature of the microscopic scale.

In the seminal works of Liu et al. [START_REF] Liu | Sound in sand[END_REF][START_REF] Liu | Sound in a granular material: Disorder and nonlinearity[END_REF][START_REF] Liu | Spatial patterns of sound propagation in sand[END_REF] and Jia et al. [START_REF] Jia | Ultrasound propagation in externally stressed granular media[END_REF], authors probed the wave propagation in granular media. In Fig. 2.14, we show the experimental setup of Liu [START_REF] Liu | Sound in sand[END_REF][START_REF] Liu | Sound in a granular material: Disorder and nonlinearity[END_REF][START_REF] Liu | Spatial patterns of sound propagation in sand[END_REF] where a loudspeaker source (S) and an accelerometer detector (D) are placed in a granular medium. One observes that, as the distance increases, the first peak (presumably the ballistic wave that propagates straight from the source to the detector) arrives with a delay and is attenuated. As long as the magnitude of this wave sufficiently decreases, it reveals the presence of late signals. A close inspection demonstrated that reflections on the sides of the container are not responsible for this coda: according to Liu [START_REF] Liu | Sound in sand[END_REF][START_REF] Liu | Sound in a granular material: Disorder and nonlinearity[END_REF][START_REF] Liu | Spatial patterns of sound propagation in sand[END_REF] the late signal relies on the different paths the sound travels through. The proof comes from page 50
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one of their experiment [START_REF] Liu | Sound in sand[END_REF], see Fig. 2.14: a heater, which raises the local temperature by only 0.8 K, is embedded in the granular media. The heater dilates when its temperature is increased; it thus exerts local stress and strain in the sample which in turn provokes an abrupt change in the amplitude received on the detector A d . This observation thus demonstrated that local rearrangements of the grains influence the sound propagation [START_REF] Liu | Sound in sand[END_REF].

This interpretation, as well as other results presented in this subsection, is consistent with the fact that wave is carried out along specific paths, the so-called force chains, in granular media [START_REF] Liu | Sound in sand[END_REF][START_REF] Liu | Sound in a granular material: Disorder and nonlinearity[END_REF][START_REF] Liu | Spatial patterns of sound propagation in sand[END_REF]. A compact heater H is placed inside the granular media [START_REF] Liu | Sound in sand[END_REF], in between the source and the detector: it expands when its temperature is increased. The magnitude A d of the transmitted acceleration is closely related to the cycles of temperature of the heater: the dilation of the heater generates additional force chains and consequently, a stronger coupling between the source and the detector.

The experimental study of Jia et al. [START_REF] Jia | Ultrasound propagation in externally stressed granular media[END_REF] sheds additional light on the intimate nature of wave propagation in granular packing. In [START_REF] Jia | Ultrasound propagation in externally stressed granular media[END_REF], Jia et al probed experimentally the wave propagation in glass beads. They observed that the received signal is composed of two distinct parts, see Fig. 2.15. First is a well-defined short pulse E which corresponds to the ballistic pulse. This part is the coherent and reproducible contribution of the signal. It weakly depends on the local arrangements of the grains and in average, it propagates straight from the source to the detector, as through a continuous medium.

The ballistic contribution is followed by an incoherent speckle (a coda) which spreads over a long interval of late time; according to Jia. [START_REF] Jia | Ultrasound propagation in externally stressed granular media[END_REF], this contribution comes from the multiple scattering of waves, on every particle. The incoherent contribution becomes significant when the wavelength of the incident pulse becomes comparable with the size of the scatterers. This part of the signal is strongly affected by the arrangements of the particles and by the configurations of the force chains. 

Wave propagation in dry granular media

In this subsection, we report on theoretical and experimental analysis of wave propagation in dry granular media, with the aim to verify how waves are related to the contact dynamics between particles. We start from one-dimensional granular media and we then switch to the case of three-dimensional granular packing.

Waves in one-dimensional dry granular media

Here at first, we consider a one-dimensional chain of spheres under static compression.

Under the action of a static force F 0 , the spheres deform and approach one to the other by a distance δ 0 . The overlap δ 0 between two spheres is strongly confined in a narrow region near the point of contact. This allows to model the system as an alignment of point masses M ∝ ρR 3 0 connected by springs whose stiffness

k H ∝ [E 0 /(1 -ν 0 )]R 0 (δ 0 /R 0 ) 1/
2 is given by Hertz potential. Here, ρ is the density, R 0 is the radius, E 0 is the elastic modulus and ν 0 is the Poisson ratio of the spheres. The propagation of a longitudinal plane wave in the chain causes the n th particle to translate by a distance y n from its equilibrium position. By applying Newton's second law of motion to each of the spheres and by taking into account for a nonlinear Hertz potential interaction between closest neighbors, one obtains [START_REF] Nesterenko | Dynamics of Heterogenous Materials[END_REF] 

M ÿn = κ (δ 0 + y n-1 -y n ) 3/2 -κ (δ 0 + y n -y n+1 ) 3/
κ = E 0 (2R 0 ) 1/2 /[3(1 -ν 2 0 )
] and ẏn denotes the derivative in time. In the linear regime, where the dynamic perturbation is smaller than the static overlap,

y n-1 -y n δ 0 1, (2.85) 
the Taylor expansion of Eq. 2.84 gives Looking for a harmonic wave solution y n (t) = e j(ωt-qx) of Eq. 2.87, where q = ω/c φ is the wavenumber and c φ is the phase velocity, one finds the dispersion relation in the long wave length approximations,

M ÿn (3/2)κδ 1/2 0 (y n+1 + y n-1 -2y n ). ( 2 
c φ (2R 0 ) k H M 1/2 ∝ E 0 ρ 1/2 F 0 E 0 R 2 0 1/6 ∝ c 0 P E 0 1/6 . (2.88)
As observed in Eq. 2.88, the wave speed c φ nonlinearly depends on the confinement

pressure P = F 0 /πR 2 0 ∝ E 0 (δ 0 /R) 3/2
and on the characteristics of the material of the spheres, c 0 (E 0 /ρ) 1/2 , where c 0 stands for the longitudinal wave speed in the bulk material of the spheres. The equation 2.88 clearly shows that the wave speed provides a direct information on the contact dynamics between the grains, quantified by the Hertz stiffness k H . Measuring the wave speed thus provides a measure of the interaction potential between particles.

The nonlinear power law dependence of the wave speed versus the confinement pressure, Eq. 2.88, has been experimentally probed by Coste et al. [START_REF] Coste | On the validity of hertz contact law for granular material acoustics[END_REF], where they measured the wave speed as a function of the static force applied in one-dimensional alignments of spheres. As to verify the validity of the Hertz prediction, Eq. 2.88, over a large range of page 53

CHAPTER 2. THE PHYSICS OF GRANULAR MEDIA: STATE OF THE ART parameters, they considered several elastic, elasto-plastic or brittle materials with very different surface roughness. In addition to the Hertz potential, their measurements thus allowed the close check of assumptions devoted to explain the few discrepancies observed with waves in real sand; for instance, the incremental bulk modulus of a pile of sand increases as a power law of the confinement pressure, but with a slightly different exponent [START_REF] Domenico | Elastic properties of unconsolidated porous sand reservoirs[END_REF]. The first extension of the Hertz model is due to De Gennes, who proposed two different approaches. The first one accounts for a soft external layer, that may be due to an oxidation of the surface and which may affect Hertz potential [START_REF] De Gennes | Static compression of a granular medium: the soft shell model[END_REF]. In turn, Goddard intended to account for the effect of the surface roughness as an assembly of microscopic cones [START_REF] Goddard | Nonlinear elasticity and pressure-dependent wave speeds in granular media[END_REF]; the indentation of a cone significantly differing from the indentation of a sphere. The second extension of De Gennes deals with local plastic deformations at microscopic contacts [START_REF] De Gennes | Lectures of the college de france held at ecole centrale de lyon 1997[END_REF]; a non-Hookean behavior may lead to a different rheology of the contact. However, the main conclusion of Coste et al. is that the Hertz potential fairly predicts the acoustic behavior given by Eq. 2.88 in one-dimensional media, for most materials and independently of the surface roughness of the spheres. Coste et al.

found a noticeable exception with brass beads: at large static compression, the wave speed increases faster than the prediction, c φ ∝ (P/E 0 ) 1/4.5 . The latter reveals the onset of permanent plastic deformation of the contacts, according to the assumption of De Gennes [START_REF] De Gennes | Lectures of the college de france held at ecole centrale de lyon 1997[END_REF].

Coste et al. also probed the dynamical response of one-dimensional alignments in the nonlinear regime [START_REF] Coste | On the validity of hertz contact law for granular material acoustics[END_REF][START_REF] Coste | Solitary waves in a chain of beads under hertz contact[END_REF], without restriction imposed by Eq. 2.85. In this case, the particles are barely touching one to the other, without any static compression. In this regime, the linear wave speed tends to zero: this corresponds to a sonic vacuum [START_REF] Nesterenko | Dynamics of Heterogenous Materials[END_REF], in which any perturbation only propagates via nonlinearity. As predicted by Nesterenko [START_REF] Nesterenko | Dynamics of Heterogenous Materials[END_REF], nonlinear solitary waves can propagate in such a system. The relation between the wave speed c and the amplitude of the dynamic force F m of these specific waves follows the Hertz potential prediction, c ∝ F

1/6
m [START_REF] Nesterenko | Dynamics of Heterogenous Materials[END_REF]. The experimental observations conducted in [START_REF] Coste | On the validity of hertz contact law for granular material acoustics[END_REF][START_REF] Coste | Solitary waves in a chain of beads under hertz contact[END_REF] at low static compression and high dynamic amplitude provided the same trends as in the linear regime: below the onset of plastic deformation, no significant discrepancies is observable from the prediction given by Hertz potential.

At this point, one can complete the description of wave propagation in dry alignments of particles by addressing the effect of dispersion at high frequency, when the wavelength tends to the size of the particles. The dispersion relation can be found by considering a harmonic plane wave,

y n (t) = y(x = 2nR 0 , t) = exp [i(ωt -qx)],
(2.89)

where ω = 2πf is the angular frequency, q = ω/c φ -i/l att is the wavenumber, c φ is the phase velocity and l att is the attenuation length. Introducing Eq. 2.89 in Eq. 2.86 gives

-M ω 2 2k H [cos (2qR 0 ) -1], (2.90) 
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such that the dispersion relation finally reads

q(ω) = 1 R 0 asin ω ω cut , ( 2.91) 
where

ω cut = 2 k H /M = c φ (ω = 0)/R 0 ∝ c 0 /R 0 (P/E) 1/6 , ( 2.92) 
is a cutoff frequency. The wave number given by Eq. 2.91 is thus purely real below the cutoff frequency, ω ≤ ω cut , and so are the phase velocity c φ = ω/ (q) and the group velocity c g = ∂ω/∂ (q): elastic waves propagate and the dispersion relation indeed

shows that c φ (ω) = c g (ω). However, waves are not dispersive in the asymptotic limit ω ω cut , for which the Eq. 2.91 indicates c φ (ω = 0) = c g (ω = 0) = R 0 ω cut . The latter exactly matches the result given by Eq. 2.88 and corresponds to the long wavelength approximation: λ = 2π/ (q) R 0 (ω cut /ω) R 0 . In turn, the higher frequency region ω ≥ ω cut corresponds to a forbidden band, in which the wavenumber becomes purely imaginary, q = -i/l att . In the forbidden band, elastic waves do not propagate and any dynamic perturbation generates an evanescent wave.

Waves in three-dimensional dry granular media

From now on, we focus on three-dimensional granular packing. The theory concerning wave propagation in three-dimensional granular media is based on an effective medium in the long wavelength approximation. The effective medium theory (EMT) [START_REF] Duffy | Stress-strain relations and vibrations of a granular medium[END_REF][START_REF] Digby | The effective elastic moduli of porous granular rocks[END_REF][START_REF] Walton | The effective elastic moduli of a random packing of spheres[END_REF][START_REF] Norris | Nonlinear elasticity of granular media[END_REF][START_REF] Winkler | Contact stiffness in granular porous materials: Comparison between theory and experiment[END_REF] relies on the Hertz-Mindlin [START_REF] Johnson | Contact Mechanics[END_REF] contact dynamics. The contact model takes into account for the Hertz potential in the normal direction, via the normal stiffness k H , and for the tangential stiffness k t given in Eq. 2.27. The passage from the microscopic scale, at the level of the contacts, to the macroscopic scale, in the long wavelength approximation, provides an estimate of both the longitudinal speed V p and the shear wave speed V s from an effective bulk modulus K e , an effective shear modulus µ e and an effective density ρ e . Under the long wavelength approximation, the longitudinal and shear wave speeds are [START_REF] Mavko | The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media[END_REF][START_REF] Makse | Granular packings: Nonlinear elasticity, sound propagation, and collective relaxation dynamics[END_REF][START_REF] Domenico | Elastic properties of unconsolidated porous sand reservoirs[END_REF],

V p = K e + 4/3µ e ρ e , (2.93 
)

V s = µ e ρ e , (2.94) 
where ρ e is defined as ρ e = ρ × Φ, here ρ is the density of the material of the grains and Φ is the compacity, defined as the ratio of volume occupied by the grains to the total volume of the sample. In turn, the effective moduli K e and µ e are closely related to the normal and the tangential contact stiffness between spheres, k H and k t , on the compacity Φ and on the coordination number Z, which characterizes the average number page 55
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K e = ZΦ 12πR 0 k H , (2.95)
while the shear modulus is

µ e = ZΦ 20πR 0 (k H + 3/2k t ).
(2.96)

In the case of frictionless spheres, the tangential stiffness is zero, k t = 0. The fact that µ e is non zero with frictionless particles results from the geometrical arrangement of the grains: the normal repulsion between grains indeed induces by itself a shear resistance in a granular sample. Still, it is worth mentioning that the relation between the static force F 0 between grains and the confinement pressure is given by

F 0 = 4πR 2 0 P ZΦ , ( 2.97) 
and the radius of the contact disc a between two spheres is [START_REF] Mavko | The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media[END_REF], in terms of the effective parameters,

a = R 0 3π(1 -ν 0 ) 2ZΦG 0 P 1/3 , ( 2.98) 
where R 0 is radius of the spheres, ν 0 the Poisson ratio and G 0 the shear modulus, G 0 = E 0 /2(1+ν 0 ). As in one-dimensional alignments of spheres, the EMT predicts a nonlinear power law between the confinement pressure P and the wave speed , V p,s ∝ P 1/6 , and the wave speed is proportional to the longitudinal wave speed c 0 in the bulk material of the spheres,

V p,s ∝ Φ 1/3 Z 1/6 × c 0 P E 1/6
.

(2.99)

Not surprisingly, the expression given in Eq. 2.99 matches the result obtained in the one-dimensional case, see Eq. 2.88, corrected by the effective values of the compacity Φ and the coordination number Z.

Up to certain extent, the EMT satisfactorily describes the experimental observations under the long wavelength approximation. Makse et al. [START_REF] Makse | Granular packings: Nonlinear elasticity, sound propagation, and collective relaxation dynamics[END_REF] indeed measured both the longitudinal and the shear wave speed in granular packing as a function of the confinement pressure; the knowledge of V p and V s provides a measure of the bulk and the shear moduli. They also performed direct molecular dynamics simulations of these moduli. The confrontation of these measurements, see for instance the Fig. 2.17(a), and the simulations to the EMT show that the prediction given by Eq. 2.93 and Eq. 2.94 reliably renders a nonlinear scaling of the longitudinal and shear velocities as a function of the confinement pressure, K e = A K P n K and µ e A µ P nµ . A close inspection of these results demonstrates that both the magnitude A K and the exponent n K 1/3 are closely predicted by Eq. 2.95 at low confinement pressure. At larger pressure, weak but noticeable discrepancies arise:

the order magnitude of the bulk modulus matches but increases slightly faster that EMT page 56 

Wave propagation in wet granular media

There Here and contrarily to [START_REF] Brunet | Etude de milieux granulaires secs et mouillés a l'aide des ondes ultrasonores[END_REF][START_REF] Griffiths | Ultrasound propagation in wet and airless non-consolidated granular materials[END_REF], the increase of the wave speed is solely related to a modification of the contact dynamics between particles. One of the reason invoked to explain such a noticeable increase is related to the occurrence of an elastohydrodynamic interaction [START_REF] Davis | The elastohydrodynamic collision of two spheres[END_REF] between grains, as described in Sec. 2.4. Among other features, this assumption in particular, that we aim to probe in this manuscript.

In any of these cases, the effect of adhesion due to the Laplace force in liquid bridges is not responsible for an overall increase of the confinement pressure at the level of the contacts. Denoting the adhesive force contribution as F A , see Eq. 2.57, the experiments of Job et al. [START_REF] Job | Nonlinear waves in dry and wet hertzian granular chains[END_REF] have been conducted with fluids with a surface tension at about γ f ∼ 20 mN.m -1 and spheres with radius 13 mm: the adhesive contribution, 

F A = 4πγ f R 0.0015 N (R is

PRESENTATION OF THE EXPERIMENTAL SETUP

In this chapter, we focus on the design and the calibration of the experimental setup.

Here, the granular medium consists in a one-dimensional chain of spheres under compression; the alignment is constrained within four rods. The chapter is divided in five parts. In first place, we present our experimental setup. Then, we detail the careful characterization of the elastic properties of the spheres from ultrasonic measurements.

Next, we focus on the apparatus used to apply the static compression, in order to check its reliability and stability. Later, we present a set of preliminary experimental results, which reveal the main features of the wave propagation in one-dimensional granular media. Finally, we analyze the experimental frequency response of granular chain, paying a special attention to the limits and the possible pitfalls of our setup.

Presentation of the experimental setup

The one-dimensional granular media under study consist in alignments of spheres made of either polyacetal or steel, see Fig. 

Estimation of the characteristics of the spheres

Elastic properties of the spheres

As predicted by Eq. The estimation of Poisson ratio ν 0 of the spheres is thus obtained as,

ν 0 = c 2 L -2c 2 S 2(c 2 L -c 2 S ) , ( 3.2) 
and the Young's modulus E 0 is estimated from the expression of the longitudinal wave speed,

E 0 = c 2 L ρ(1 + ν 0 )(1 -2ν 0 ) 1 -ν 0 . ( 3 
c L = E ρ E 0 ρ (1 + iδ/2) c L (1 + iδ/2). ( 3.4) 
According to Eq. 3.4, the longitudinal wavenumber q = ω/c L becomes

q = ω c L (1 -i δ 2 ), (3.5) 
which, inserted into the expression of a harmonic plane wave for the displacement,

u(x, t) = exp[i(ωt -qx)],
gives

u n (t, x) = exp iω t - x c L × exp - ωδ 2c L x . (3.6)
The modulus of the transfer function being

|H| = u n (x = e) u n (x = 0) , ( 3.7) 
the loss angle thus becomes, from Eq. 3.6 and Eq. 3.7,

δ = -ln(|H|) 2c L ωe . (3.8)
We estimate δ as the mean value of Eq. 3.8 over the central frequency of transducer, see Fig. 3.5: we find δ = 0.053 ± 0.02 rad for polyacetal and δ = 0.023 ± 0.0074 rad for steel.

The estimation of the transfer function H between an input signal u in and an output signal u out is performed as follows. First we estimate the Fourier transform of the signals page 64
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over the time t, C i = FT t (u in ) and C o = FT t (u out ). Then, the transfer function is estimated as the ratio of the average (over multiple repetitions) cross correlation C io =<

C * i C o > and the average auto correlation C ii =< C * i C i > C oo =< C * o C o >, where C * i denotes the complex conjugate of C i . Thus H read H = C io C ii . (3.9)
and the coherence [START_REF] Bendat | Random Data[END_REF] is defined as,

coh = |C io | 2 C ii C oo . (3.10)
The coherence shows the similitude between two signals in the frequency domain.

When signals are not correlated, for instance if the signal to noise ratio is low, then the coherence falls; in the opposite, the coherence between signals well correlated is close to one. The coherence is used to determine the region of frequency where the measurement of the transfer function is reliable and accurate.

Effect of the solid friction on wave attenuation

In addition to the dissipation of energy due to the deformation of the contacts, see Sec. 3.2.1, the solid Coulombic friction of the particles on their support may participate to the overall attenuation of dynamic perturbation propagating along the alignment.

Here, we intend to provide an order of magnitude of the dissipation due to the solid friction. We consider a chain of particles with mass M and radius R 0 interacting via an elastic potential, with stiffness k H . Every particles slide on a ground surface an we define a solid friction coefficient µ s . We assume that a radial force F R is exerted between the particles page 65 CHAPTER 3. ONE-DIMENSIONAL EXPERIMENTAL SETUP and the ground (for instance due to the weight of the particles, or due to the buckling of the alignment when the particles are compressed in the axial direction, see below). Now let's assume that a perturbation comes from the left side in Fig. 3.6: the dynamic force

at contact n is F (n) = k H (y n -y n+1 ), the potential energy is U P (n) = k H (y n -y n+1 ) 2 /2
and the kinetic energy of particle n is U K (n) = M ẏ2 n /2. Since the interaction potential between particles is elastic, then the total energy is

U tot (n) = U P (n)+U K (n) = 2U P (n) | F (n)| 2 /k H , where | F (n)|
is the magnitude of the force. As long as the magnitude of the dynamic force is smaller than the Coulomb's force of friction, | F (n)| ≤ µ s F R , then the particle n sticks to the ground. As soon as the perturbation exceeds the frictional force | F (n)| > µ s F R , then the particle n slips and loose part of the incident energy and momentum. In the latter case, for a perturbation going from left to right in Fig. 3.6, the decay of the total energy from sites n -1 to n is equal to the work done by the frictional force at particle n,

U tot (n) -U tot (n -1) = -µ s F R y n , ( 3.11) 
or else, from the difference between three particles,

U tot (n + 1) + U tot (n -1) -2U tot (n) = µ s F R (y n -y n+1 ), (3.12) 
which can be rewritten in term of the magnitude of the traveling force,

| F (n + 1)| 2 + | F (n -1)| 2 -2| F (n)| 2 µ s F R | F (n)|. (3.13) 
Introducing an attenuation length l f such that | F (n + 1)|/| F (n)| = e -2R0/l f , then the Eq. 3.13 gives

e -4R0/l f + e +4R0/l f -2 = 2 sinh 2 2R 0 l f µ s F R | F (n)| , ( 3.14) 
which, assuming weak frictional dissipation l f 2R 0 , finally gives As to measure the dynamic force that propagates inside our alignments of spheres, we specially designed a non-intrusive instrumented particle. This particle consists in a 2 mm thin and 12.5 mm in diameter piezoelectric annular patch glued in between two caps cut from an original sphere, as shown in Fig. 3.7. The electrical charge generated by the piezoelectric patch is proportional to the dynamic force exerted on the direction perpendicular to the patch and the signal is conditioned by a separate charge amplifier and then amplified. The total mass of the device matches the mass of an original sphere up to a good precision. In addition, the contact mechanics is preserved: the thinnest cap is few millimeter thick, well larger than the penetration depth of the deformation near a contact between particles, see Sec. 2.3. Both the inertia and the elasticity of the instrumented particle thus reliably match the features of an original sphere.

l f 2R 0 2| F (n)| µ s F R . ( 3 
The sensor is calibrated as follows. We place the embedded sensor in direct contact either with the dynamic force sensor glued on the piezoelectric actuator, or with the dynamic force sensor on the output extremity of the alignment. The alignment is made of 40 polyacetal particles under moderate compression. In both cases, we excite the system with a chirp between 50 Hz and 4 Hz and we estimate the transfer function between the embedded sensor voltage (via the charge amplifier) and the reference sensor. This provides a measurement of the sensitivity of the embedded sensor. The ratio H(ω) = |H|e jφ between the dynamic force measured by the embedded sensor to the dynamic force measured by the reference sensors is presented in Fig. 3.8 as a function of frequency.

These results demonstrate the reliability and the robustness of the embedded sensor: it provides a fairly constant sensitivity and no phase shift over the whole frequency range of interest. 

Characterization of the static loading apparatus

Here, we describe in details the apparatus used to apply a static load F 0 on the alignment.

In particular we will analyze its accuracy, reliability and mechanical stability. Due to the friction between the spheres and their supports (the aligning rods), one can infer that the static force F 0 is not homogeneously distributed along the chain. For instance, the beads near the extremity, where the static force is applied, may be more compressed than the spheres in the central part or at the other side of the alignment. The latter depends on the way the static force is prescribed and issues can be bypassed by first applying a value that exceeds a given set point, before slowly decreasing it until reaching a final desired value. In all cases, the stabilization of the static force depends on a relaxation time related to micro slips of the grains on their supports.

As to quantify these influences, we perform two sets of experiments. For these exper- In addition, these two protocols are done via two different variants, in order to probe the occurrence of micro slips of the grains on their support. Following the protocol of Espindola [START_REF] Espindola | Ultrasound induces aging in granular materials[END_REF], we set the dynamic actuator either on or off while loading and unloading the chain. In the protocol (1), one does not send any dynamic signal in the alignment.

In the protocol (2), a chirp of 1 s duration is sent every 5 s by the actuator. The chirp signal has a large frequency range (100 Hz to 6 kHz) and has a rather large magnitude.

Experimental results for both protocoles (1) and ( 2) are traced in Fig. 3.9 and in Fig. 3.10, in which both protocols (A) and (B) reveal the temporal evolution of the static force. The results from the protocols (1A) and (1B) are traced on the Fig. 3.9.

Here at time t = 0, the compression is concentrated at the beginning of the chain, where one applies and measures the static force. At longer time, the static force starts to redistribute along the chain, due to micro slips at the level of the contact [START_REF] Jia | Elastic weakening of a dense granular pack by acoustic fluidization: Slipping, compaction, and aging[END_REF][START_REF] Espindola | Ultrasound induces aging in granular materials[END_REF].

This homogenization of the compression results in the decay (in A) or an increase (in B) of the force measured at the extremity as a function of time t. Comparing protocols (1A) and (1B), one observes that the relative evolution of the static force are comparable, dF 0 /F 0 ∼ 3 -5%, within the same duration. The latter suggests that the relaxation time is controlled by the same process, no matter the static load is increased or decreased.

In the protocols (2A) and (2B) in which one sends intermittent chirps, the temporal evolution of the force is more pronounced, see Fig. 3.10(a). One expects here to reach a homogeneous compression more quickly: applying a dynamic perturbations facilitates micro slips of the beads at the level of asperities [START_REF] Jia | Elastic weakening of a dense granular pack by acoustic fluidization: Slipping, compaction, and aging[END_REF][START_REF] Espindola | Ultrasound induces aging in granular materials[END_REF], which in turn boosts the homogenization of the force. In the protocol (2) and experiment (b), one observes that the dynamic solicitation of the system has almost no impact on the convergence of the force, compare for instance the results shown in Fig. 3.9(b) and in Fig. 3.10(b). Indeed, if the static force is increased up to 40 N, as in the previous case, F 0 is concentrated in the region at the beginning of the chain. Along the chain, the force is smaller than the compression applied at the extremity. However, there exists regions (maybe even the whole chain), where the static force is yet above 20 N. Decreasing then the set point down to 20 N at the extremity, from this higher state, let the chain in a more stable arrangement: the applied static force is homogeneously distributed along the chain. So far, the solicitation of the signal does not change further the configuration of the particles on their support. This differs from the cases shown in Fig. 3.9(a) and Fig. 3.10(a), where the beads are in metastable positions and where the dynamic signal alters these configurations.

When it comes to the stability and the convergence of the applied static force, the best way to perform experiments is thus to protocol (1B), by overloading the set point and without dynamical solicitation; the latter having no significant effect on the practical point of view. However the method (B) has a pitfall at the highest static loads, since the onset of plastic deformation may easily be reached while preparing the system. In order to bypass this limit, we tested a third protocol (C) which consists in applying a set point at the desired value of the static force and then in facilitating the homogenization by accommodating the micro displacements of the beads by hand at random locations.

As for the protocols (A) and (B), the stability of the static force is tested by following the temporal evolution of the static force at 20 N for 5 minutes, while driving or not a dynamic solicitation. The experimental results are traced in Fig. 3.11. With this method one obtains a relative decay which is comparable but slightly more regular and more repeatable than the original protocol (A) and (B). Taking into account that the page 70 protocol (C) helps avoiding any onset of plastic deformation at large static force as in the protocol (B), we chose to retain it as the conventional way to set our alignments of spheres under compression, without any dynamical solicitation.

Preliminary results: observation of a band structure

After having evaluated the elastic properties of the sphere and quantified the stability and the homogeneity of the static compression, we here perform our first experiments concerning wave propagation in one-dimensional chains. For this, we excite the medium with the piezoelectric actuator on one of its extremity and we measure the output signal at the other side. The transfer function and the coherence between the input and the output is estimated according the method described in Eq. 3.9 and Eq. 3. [START_REF] Brunet | Etude de milieux granulaires secs et mouillés a l'aide des ondes ultrasonores[END_REF].

In what follows, we use two different types of signals to excite the system: long duration chirps or short duration, time resolved, gaussian pulses. On one hand, owing to their high energetic content, the broad band chirp signals allow probing efficiently the frequency response of the system with a very good signal to noise ratio. However, their long duration does not allow discriminating the incident waves from their reflections.

On the other hand, owing to their short duration, gaussian pulses centered at particular It is worth mentioning that the maximum value of F 0 remains below the onset of plasticity; according to von Mises criterium [START_REF] Johnson | Contact Mechanics[END_REF], the onset of plastic deformation is F p ∼ 45 N for 25 mm in diameter polyacetal spheres and F p ∼ 350 N for steel spheres with same radius. Additionally, as to fulfill the condition of a linear regime, see Eq. 2.85, the amplitude of the chirp signal is chosen so that it does not exceed 1 N, well below the imposed static force.

In a first attempt, we acquire the transfer function between the force at the beginning F in (t) and at the end F out (t) of the chain. The experimental results are traced on Fig. 3.12. In Fig. 3.12, the modulus of the transfer function |F out /F in | shows that above a cutoff frequency f cut , in between 3 kHz and 4.5 kHz, the transmission is strongly attenuated: one observes a pass band at low frequency and a forbidden band above the cutoff frequency. Additionally, one sees that the cutoff frequency increases with the static compression. These results appear in qualitative agreement with the theoretical description given in Eq. 2.91 and Eq. 2.92. In all the configurations presented in Fig. 3.13, one clearly observes the low cutoff frequency f 0 below which an attenuation is more pronounced. For the configurations presented in Fig. 3.13(a) and (b), f 0 depends on the static compression F 0 , while it appears almost constant in the configuration shown in Fig. 3.13(c). On one hand, the low frequency cutoff thus depends on the specific materials of the sphere and of the rods.

In another hand, f 0 depends on the combination of materials; it thus stands to reason that the underlying mechanism may rely on an interaction between the two.

As to gain further information on these observations, we performed additional experiments, which are summarized in Fig. 3.14. Here, the static force is applied in a cyclic way, first by increasing F 0 by steps of 5 N, from 5 N to 40 N, and then by decreasing it, down to 5 N. The procedure is then repeated twice to check the reproducibility. For each value of the static force, one estimates the transfer function and the low cutoff frequency f 0 , measured at -20 dB below the average level of the propagative band. As shown in Fig. 3.14, the cutoff f 0 increases with the static force F 0 and experiences a slight but noticeable non-repeatability if not a hysteresis. The latter is compatible with the occurrence of solid friction between the spheres and their supports, which may likely introduce a hysteretical response depending on stick/slip regimes for instance. At this point, one can derive an assumption on the mechanism leading to the occurrence of the low cutoff frequency and of a low frequency region of noticeable attenuation. If the solid friction is involved, the spheres can stick to the rods, and as long as the low frequency cutoff f 0 depends on the elastic properties of both materials in contact, then the low frequency cutoff may results from an on-site elastic interaction between the two. As we will see in the next third chapter, including such a local elastic interaction in a lattice indeed induces a forbidden band gap at zero frequency, in agreement with our observations. 

Analysis of the resonant peaks at very low frequency: spurious resonances and bending waves in the support

Having quantified the interaction between the spheres and their supports, here we focus on the peaks of transmissions observed in the transfer function at very low frequency, between 100 Hz to 500 Hz, see Fig. 3.12 and Fig. The transfer functions between the acceleration and the force sensor of the impact hammer are presented in Fig. 3.15 all three configurations. In any of the configuration, no clear peaks of resonance appear in the frequency range of interest, 0.1-0.5 kHz. As a consequence, one can conclude that the table is not responsible for the peaks observed in the response of the media at very low frequency.

Next, we probe the mechanical response of the device used to apply the static force.

Possible artifacts may result from the fact that this apparatus is made from the assembly of a fairly rigid dynamic sensor screwed on a rather soft static force sensor. The assembly would therefore likely present one resonant peak. In addition, the whole apparatus is placed on a heavy, 5 kg or so, translation tray: thanks to inertia, the extremity does not recoil when reached by a high frequency dynamic perturbation. The mechanical response of this subsystem is probed by gluing an accelerometer in front of the dynamic sensor and by kicking the subsystem with the impact hammer. The results are presented in Fig. 3.16.

Firstly, we focus on the frequency range below 500 Hz, where we observe a peak at about 280-470 Hz, see the black circle in Fig. 3.16. The comparison between the transfer functions of the static force apparatus in Fig. 3.16 and the transfer function of an alignment in Fig. 3.17 -another realization similar to Fig. 3.12 and Fig. The stiffness k E is thus compared to the Hertzian stiffness k H between contacts given by Eq. 2.20,

k H = ER 6F 0 ER 2 1/3 . (3.17)
The experimental measurements of k E is compared to the estimations of k H in Fig. 3.18. One sees that above few hundreds hertz, the effective stiffness k E at the extremity, where the static force apparatus stands, is few order of magnitude larger than the stiffness k H between the spheres. The static force apparatus would thus not deform or displace: it should not affect the characterization of the media in the frequency region of interest. However, k E falls below k H at extremely low frequencies, below 200 Hz for steel spheres and below 30 Hz for polyacetal spheres. The latter relies on the inertia of the static force apparatus, which is not sufficiently large at very low frequency to prevent the recoil of the static force apparatus. Below these frequencies, the estimation of the transfer function of the samples should be considered with care, since they may not be page 78 fully reliable.

PRELIMINARY ANALYSIS OF THE RESPONSE OF GRANULAR CHAINS

In a very final attempt, we focus our attention on the behavior of the elastic rods supporting the granular chain. These rods are very stiff in traction and compression:

the only reasonable deformation may rely on bending. Here, we aim at verifying if the bending of the cylindrical rods may participate to the low frequency region of the transfer function.

We start from the equation of propagation of bending waves in a cylindrical beam. The transverse displacement z b (x, t) satisfies the equation [START_REF] Fahy | Sound and Structural Vibration: Radiation, Transmission and Response[END_REF],

ρ s A s zb (x, t) + E s I s ∂ 4 ∂x 4 z b (x, t) = 0, (3.18) 
where A s = πR 2 s is the cross section of the supporting beam with radius R s , ρ s is the density, E s is the Young's modulus and I s = πR 4 s /2 is the second moment of inertia. Looking for the dispersion relation of a harmonic bending wave z b (x, t) = e i(ωt-q b x) , where q b = ω/c b is the bending wavenumber and c b is the bending wave speed, the Eq. 3.18 gives

q b = ρ s A s ω 2 E s I s 1/4 ∝ ω c L R s 1/2 , ( 3.19) 
where c L stands for the longitudinal wave speed in the rod, c L ∝ E s /ρ s . The wave speed c b = ω/q b of the bending mode is thus peaks observed below the cutoff frequency f 0 in the transfer functions of the alignments essentially relies on the bending deformation of the supporting cylinders. These peaks are most favorably detected below the cutoff frequency f 0 , where the longitudinal waves are strongly attenuated. Above the low frequency cutoff of the samples, where longitudinal waves propagate through the sample, the bending modes likely exist but contribute to a lesser extent. In addition, the bending modes frequency being inharmonic, see Eq. 3.21, the density of these modes rapidly decreases with the frequency.

c b = E s I s ω 2 ρ s A s 1/4 ∝ (ωc L R s ) 1/2 . ( 3 

Conclusions

In this chapter we have focused our attention on the careful presentation and calibration of the experimental setup. Firstly, we characterized the bulk elastic properties of our spheres from ultrasonic experiments. Then, we derived a reliable and repeatable method to set our alignments of spheres under static compression; as far as one can do, we aimed at ensuring that the static compression is homogeneously distributed along the alignment. Next, we carefully ruled out any observable artifacts from the experimental setup, in order to ensure the accuracy of further estimations of the transfer function of one-dimensional granular media. Then, we unraveled a low frequency region with a significant attenuation due to frictional and elastic interactions between the grains and 

Wave propagation in 1D alignments of spheres

In the previous chapter, we related the occurrence of a low cutoff frequency f 0 observed in Fig. 3.12 and in Fig. 3.13 to the existence of an elastic on-site potential between every particle and their supports. Here and in the following, we will denote the stiffness of this potential as k 0 . In the first section of this chapter, we derive a theoretical expression for k 0 as a function of the elastic and geometrical properties of both the spheres and the cylindrical supports. We then find the dispersion relation in an alignment of particles that account for such a local potential at every bead. Then in the next three sections, we describe the experimental procedures as to estimate the phase velocity, the group velocity and the attenuation in these media. Lastly we compare our observations to the analytic estimations. Firstly, we focus on the theoretical derivation of k 0 and f 0 . For this purpose, we model the granular medium as an alignment of compressed spheres, with mass M , interacting via the Hertz potential k H given by Eq. 2.20. In addition, every particles interact with the ground via an elastic potential with stiffness k 0 . As for the alignment described in Sec. 2.5, see Eq. 2.84, one uses the Newtonian's second law of motion,

Zero frequency band gap and cutoff frequencies

M ÿn = κ (δ 0 + y n-1 -y n ) 3/2 -κ (δ 0 + y n -y n+1 ) 3/2 + k 0 y n , ( 4.1) 
where

κ = √ 2R 0 E 0 /[3(1 -ν 2 0 )].
In the linear regime, see Eq. 2.85, Eq. 4.1 becomes,

M ÿn k H (y n+1 + y n-1 -2y n ) + k 0 y n , ( 4.2) 
with k H = (3/2)κδ 1/2 0 . By looking for a harmonic plane wave solution y n (t) = y(x = page 84
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2nR 0 , t) = e j(ωt-qx) one finds the dispersion relation,

ω 2 = ω 2 cut sin 2 (qR 0 ) + ω 2 0 , ( 4.3) 
where ω 0 stands for the low cutoff frequency,

ω 0 = k 0 M , (4.4)
and ω cut is

ω cut = 2 k H M . (4.5)
According to the dispersion relation Eq. 4.3, the wavenumber q is purely imaginary below the low cutoff frequency, ω < ω min , and above the high cutoff frequency, ω > ω max , with ω min = ω 0 , (4. 6)

ω max = ω 2 cut + ω 2 0 . (4.7)
In between, for ω min < ω < ω max , the wavenumber is real: waves propagate. The alignment schematized in Fig. 4.1 is thus characterized by a band gap at zero frequency, a forbidden band at high frequency and a propagative band in between. Theoretically, we model k 0 as twice the tangential component of the stiffness between a sphere and a cylinder, see Eq. 2.29,

k 0 = 2 × 2G r 3F R R r 4E 1/3 , (4.8)
where R r , G r and E stand for the effective radius, Shear and Young's modulus, see from Eq. 2.29 to Eq. 2.31, and F R is the magnitude of the radial force that compresses a sphere on one cylinder. The stiffness is counted twice in Eq. 4.8 since every sphere is in contact with two cylinders. The radial component F R comes from the buckling of the 

F R ∆F 0 4R 0 if F R M g, (4.9)
or the projection of the weight M g of a sphere

F R M g √ 2 if F R M g, (4.10)
where g is the gravity. Here in Eq. 4.9, the radial force is

F R = F 2 x + F 2 y √ 2F y , see Fig. 4.2, if one assumes F x = F y with F y (F 0 /2)(∆/ √ 2)/(2R 0 ).
According to Eq. 4.4 and Eq. 4.8, the lower cutoff frequency f 0 depends on the characteristics of the spheres and the supporting cylinders. If the beads are not too heavy (this is the case for polyacetal spheres, as shown below) in respect to the radial force F R , then the lower cutoff frequency may depend on the static force F 0 maintained in the axial direction of the alignment, see Eq. 4.9. Otherwise, f 0 does not depend on F 0 if the spheres are heavy enough, as it is the case with steel beads, as shown below.

Next, we confront the theoretical expression given by Eq. 4. The mass of one steel bead is M 63.8 g and the mass of one polyacetal bead is M 10.9 g. In the case of steel beads with steel supports one has 0.1 × M g < ∆F 0 /4R 0 < 0.6 × M g: we thus retain the approximation given in Eq. 4.10 to estimate the radial force F R . In this case, the lower cutoff frequency does not depend on the static load F 0 , f 0 = const in first approximation. For polyacetal spheres, one finds 0.5 × M g < ∆F 0 /4R 0 < 3.8 × M g: the weight of a polyacetal sphere is marginal in the range of moderate to large axial static forces and we thus retain the approximation given in Eq. 4.9 to estimate the radial force F R . For polyacetal, the lower cutoff frequency depends on the axial static force, f 0 ∝ F 1/6 0 in first approximation.

All these results are consistent with the observations given in Sec. 3.6. A close comparison between these data and the theoretical estimation of f 0 , given by Eq. 4. In this section, we derived an expression for the lower and the upper cutoff frequency, f min and f max , which reliably describe the experimental data. We thus showed that the elastic coupling between the spheres and the cylindrical supports, via shear deformations due to sticky frictional contacts between the two, introduces a zero frequency band gap in the dispersion relation of an alignment of particles. The precise knowledge of the dispersion relation, see Eq. 4.

3, now allows one to determine all the features of the waves that propagate in these media. In the next sections we aim at probing how fast they propagate and attenuate.

Theoretical dispersion relation with on-site potential

In this section, we focus on the theoretical estimation of the dispersion relation, in order to get information on the wave speed and the loss factor. The dispersion relation is, from Eq. 4.3,

q = (q) + i (q) = 1 R 0 asin ω 2 -ω 2 0 ω cut , ( 4.11) 
From Eq. 4.11, one can estimate the phase velocity c φ , the group velocity c g and the attenuation length l a ,

c φ = ω (q) , ( 4.12 
)

c g = ∂ω ∂ (q) , ( 4.13 
)

l a = -1 (q) . ( 4.14) 
As an example, we represent in Fig. 4.4 the dispersion relation given by Eq. 4.11 both in magnitude and in phase, for an alignment of polyacetal spheres supported by cylindrical rods made of materials with very different elasticity. Here, the dissipation is taken into accounts via the loss angle measured in polyacetal in Sec. 3.2.1. In Fig. 4.4(b), we show the magnitude of the transfer function H = exp (-i (q)L) in dB. One can observe clear forbidden bands, at zero frequency and above a high cutoff frequency. In the propagative band, the waves are dispersive: the phase velocity and the group velocity differ and both depends on the frequency.

As to quantify and measure the dispersion relation given by Eq. 4.11 in the following, we rewrite the wave number in a more convenient way,

q = ω c φ - i l a = (ω/c φ ) × (1 -iη), (4.15) 
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where η is the loss factor: the loss factor is defined as the ratio of the energy dissipated per cycle of oscillation to the energy stored during one cycle,

η = 1 ωτ a = c φ ωl a = 1 (q)l a = λ 2πl a , ( 4.16) 
where τ a = l a /c φ is a relaxation time related to the dissipation. 

Long wavelength speed and attenuation estimations

Here, for sake of clarity and simplification, we consider the long wavelength approximation of Eq. 4.11. On purpose, we consider an arbitrary medium where the stiffness of the on-site potential is weak compared to the contact stiffness between spheres, i.e. ω max ω min see Eq. 4.6 and Eq. 4.7. We analyze this medium in an intermediate frequency range ω (ω max + ω min )/2, such that the angular frequency is high enough to neglect the effect of the on-site potential and is low enough to linearize the Eq. 4.11,

q ω R 0 ω cut , ( 4.17) 
where ω cut is given by Eq. 4.5. In the intermediate frequency range, see Fig. 4.4, the wave number is such that (q)R 0 π/4 ∼ 1: the wavelength λ = c φ /f = 2π/ (q) is few particles wide, λ/2R 0 ∼ 4.

We then account for the attenuation of waves from the dissipation involved by the deformation of the contacts between the particles. This dissipation is rendered by the complex elastic modulus E = E 0 e iδ introduced in Sec. H ∝ E 1/2 , see Eq. 2.20 and Eq. 4.5, then one finds,

c φ c g ∝ c 0 (P/E 0 ) 1/6 , (4.18) η tan(δ/2), (4.19) 
where c 0 = (E 0 /ρ) 1/2 is proportional to the speed of longitudinal waves in the bulk material of the spheres and P = F 0 /πR 2 0 is the confinement pressure. In Eq. 4.19, η stands for a rough estimation of the attenuation in the dry case. In turn, the friction of the beads on the supports may also affects the attenuation of the waves. In this case, the loss factor may account for such a contribution,

η tan(δ/2) + η f , ( 4.20) 
where η f = 1/ (q)l f and where l f is the frictional attenuation length defined in Eq. 3.16.

According to the order of magnitude indicated in Eq. 3.16, l f /2R 0 ∼ 10, the frictional loss factor would lies around η f ∼ 0.05 in the intermediate range (q)R 0 ∼ 1. It thus turns out that the contribution of the friction to the attenuation of the waves, when friction is involved between the particles and their supports, has likely the same strength as the dissipation in the contact between particles, tan(δ/2) ∼ 0.025, with polyacetal spheres and steel supports,

η f ∼ tan(δ/2). (4.21) 

Measurement method of the wave speed and the loss factor

In this subsection, we provide the details of the protocol derived to obtain reliable measurement of both the wave speed and the attenuation in alignments of particles. Owing to the experimental protocol described in Sec. 3.5 and in Sec. 3.6, we quantified the transfer function between the input dynamic force measured at one extremity of the alignment, F in = F (x = 0, t), and the output F out = F (x = L, t) at the other end, where L is the total length of the chain. Considering a harmonic plane wave F (x, t) = e i(ωt-qx) , such that the Fourier transform over time is FT t [F (x, t)], the transfer function is

H(L, ω) = FT t [F (x = L, t)] FT t [F (x = 0, t)] = e -iqL . (4.22)
where q is the complex wave number. Note that in practice, the sample is excited by a broad frequency range chirp signal and we measure the average transfer function over a large number of acquisitions from the method detailed in Eq. 3.9, from which one also estimates the coherence from Eq. 3.10.

According to Eq. 4.22, the phase and the magnitude of the transfer function provides estimations of the phase velocity c φ and the attenuation length l a , see Eq. 4.15,

φ(ω) = -(q)L = -ωL/c φ (ω). (4.23) page 90 4.1. WAVE PROPAGATION IN 1D ALIGNMENTS OF SPHERES |H(L, ω)| = exp [-(q)L] = exp [-L/l a (ω)]. (4.24) 
However, issues with this this approach is twofold. Owing to the strong attenuation near the cutoff frequency and inside the low and the high forbidden bands, see Fig. 3.13

for instance, the signal to noise ratio of the transmitted wave is thus degraded. This leads to the determination of the transfer function with a very poor coherence between the input and the output of our samples near edges of pass band. This first limit is illustrated in Fig. 4.5, where we show both the normalized phase and the coherence of H as a function of frequency. The phase and consequently, the phase velocity is poorly determined in frequency bands where the attenuation is strong, i.e. where the coherence between input and output signals is weak. The second limit is related to the fact that the phase of the transfer function turns very quickly as a function of frequency.

Indeed, assuming a phase velocity at about c φ ∼ 250 m/s (see below), the phase is about φ/2π ∼ 20 at the upper frequency 5 kHz and for L = 1 m. Issues arise when attempting to unwrap the phase, not mentioning the fact that the low frequency reference phase is not reliable to modulo 2π. The third limit relies on the existence of additional modes, see for the bending waves that may propagates in our supports described in Sec. 3.6.2. These spurious contributions may affect the reliability of our characterization: identifying all the contributions is in fact not an easy task. This third limit is tackled in the following Sec. 4.2. Here, we present a protocol to tackle the issues found from the ambiguity of the phase shifting. Instead of the phase velocity, we aim at estimating the group velocity from the group delay. The method consists in the deconvolution of the transfer function acquired with a chirp excitation, Eq. 4.22, by a well defined analytic incident wavepacket F pulse (x = 0, t), defined as a gaussian pulse centered on any specific frequency f c and with a narrow frequency bandwidth. 
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The transmitted wavepacket is thus

F pulse (x = L, t) = FT -1 t {H(L, ω) × FT t [F pulse (x = 0, t)]}, (4.25) 
and one can extract its envelope as the absolute value of the Hilbert transform,

F env pulse (x = L, t) = |FT -1 t [F pulse (x = L, t)]|. (4.26)
The estimation of the magnitude and the arrival time of the maximum of the envelope then provides information on the dissipation and the group delay τ g (the time of flight of the maximum of a wavepacket), i.e. on the attenuation length and on the group velocity c g = L/τ g . The protocol defined in Eq. 4.25-4.26 is illustrated in Fig. 4.6. As a crude check of reliability of the method, we compare in Fig. 4.7 a transmitted gaussian F g out pulse measured in an alignment of spheres to the deconvolution of the acquired incident pulse F pulse (x = L, t) with the transfer function obtained from a chirp excitation. The transmitted and the deconvolved pulses fairly match one to the other: the method defined in Eqs. 4.23-4.24 and the method described in Eqs. 4.25-4.26 thus provide similar features and shapes. Any nonlinearity may have introduced some bias, which are not observable here. Finally, from the practical point of view, it is worth mentioning that acquiring a transfer function with a chirp excitation, at once, and then deconvolving as many gaussian pulses at any frequency, instead of exciting the sample with many pulses, significantly saves time when performing experiments.

Experimental values of the wave speed and the loss factor

Having validated the experimental method, we now present the experimental estimations of the group velocity c g and the loss factor η = c φ /ωl a , obtained from the protocol defined in Eqs. 4.25-4.26. Since the phase velocity is poorly determined, we assume that c φ c g in first approximation in the middle of the pass band, such that the loss factor is determined as η c g /l a ω. The attenuation length l a is estimated from the maximum of input envelope, F envm pulse (x = 0, t), and output envelope of wave packet, F envm pulse (x = L, t), l a = -L/ln(F envm pulse (x = L, t)/F envm pulse (x = 0, t)) (where ln is the natural logarithm). Here, the granular sample is an alignment of 40 polyacetal spheres supported by four cylindrical rods in steel. We deconvolve the transfer function acquired from a chirp excitation, see Eq. 4.22, to obtain a gaussian pulse centered in the middle of the pass band, In turn, the loss factor is directly estimated from the amplitude ratio between the maximum of the input and output of wave packet's envelopes, and from the approximate knowledge of the phase velocity, c φ c g , see Eq. 4.16. The result are presented in Fig. 4.9. Here, we compare the observations to the theoretical dissipation coming from the viscoelastic behavior of the particles only, see Eq. 4.19. One observes that the prediction provides the correct order of magnitude. The slight overestimation of the prediction is in fact due to the underestimation of the phase velocity by the group velocity, while estimating the loss factor η = c φ /ωl a c g /ωl a , as demonstrated in Sec. 4.2.2.

at f c = (f min (F 0 ) + f max (F 0 ))/2 (where f min (F 0 ), f max (F 0 )

Full dispersion relation with an on-site potential

In the Sec. 4.1, we demonstrated that the model given in Eq. 4.11 fairly describes the existence of a pass band between a low and a high cutoff frequency, see Eq. 4.6 and Eq. 4.7.

The low frequency cutoff is related to an on-site potential; below this frequency stands a band gap at zero frequency. As mentioned in Sec. 3.6.2, this elastic potential also possibly introduces a coupling with bending waves in the support. These spurious contributions may constitute a limit of the interpretation if they are not correctly identified, see the comments in Sec. 

Experimental method and protocol

Here, we use the embedded sensor presented in Sec. 3.3 in order to get a deeper inspection of the features of waves as they propagate inside an alignment of n particles. Here, the embedded sensor probes the dynamic force near a contact, see the picture in Fig. 3.7, as a function of time t and at any position x = 2nR 0 in the chain,

F emb (0 < x ≤ L -2R 0 , t), (4.27) 
where in our protocol, the sample is driven in x = 0 by a 10 s chirp excitation whose frequency ranges from 10 Hz to 7.5 kHz; all acquisitions are repeated 8 times in order to get rid of the noise as much as possible.

From the whole measurement, one can first estimate the Fourier transform over time, similarly to Eq. 4.22,

H(x, ω) = FT t [F emb (x, t)]. ( 4.28) 
A plot of the magnitude of H(x, ω) may for instance provide a closer view on how the energy decays in space, as a function of frequency. From now, one can also extract page 95
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the Fourier transform over the propagated distance,

K( (q), ω) = FT x [H(x, ω)], (4.29) 
in order to get a direct access to the dispersion relation, (q) = 2π/λ, including all the modes involved from one extremity of the sample to the other. It is worth mentioning that the function K( (q), ω) obtained from Eq. 4.28 and Eq. 4.29 can be estimated indifferently as

K( (q), ω) = FT xt [F emb (x, t)], (4.30) 
where FT xt is the bi-dimensional Fourier transform over time and space coordinates.

As a crude check of the method, before any measurement, we set the analytic transfer function H th = e -iq th x of a finite chain of N = 40 particles in Eq. 4.30, where q th is given by Eq.4.11 and accounts for 20 N static load. It is worth mentioning that H th does not account for wave reflection at the extremities of the sample; these reflections should likely excite resonance modes in the axial direction of the alignment. F in (t) = F (x = 0, t), at its end F out (t) = F (x = L, t) and at one particular location with the dynamic embedded force sensor F emb (x, t). We then displace the embedded sensor at every positions in the alignment and redo the acquisition. The information gathered by the embedded sensor serves for the estimation of the transfer function H(x, ω) and the function K( (q), ω), see Eq. 4.28 and Eq. 4.29. In turn, the forces acquired at x = 0 and x = L serve for the estimation of the transfer function defined in Eq. 4.22. (black vertical lines). We find that the pass band extend from 1450 Hz to 4100 Hz under 20 N. The theoretical estimation given by Eq. 2.20 and Eq. 4.4 to Eq. 4.9 indicates a frequency range spanning from 1440 Hz to 4120 Hz. For a chain under 40 N we find 1800 Hz and 4700 Hz, and the theory gives 1620 Hz and 4620 Hz. One observes that the model and the measurements are in excellent agreement. In addition, we also superimpose the theoretical dispersion relation of the bending waves traveling in the cylindrical rods, from the knowledge of the bending wave velocity defined in Eq. 3.20. The latter provides a reliable demonstration that the short propagative band below 1 kHz, i.e. inside the zero frequency band gap, comes from the coupling between the chain of spheres and their support.

Experimental results

Firstly in

Finally, we depict in Fig. 4.13 the evolution of the analytic gaussian pulse, deconvolved from the experimental transfer function H(x, ω) with a method similar to the Eq. 4.25 and Eq. 4.26, as it propagates inside the alignment, According to our expectations, the phase velocity is larger than the group velocity inside the propagative band, see for instance the Fig. 4.4 where the ratio ω/ (q) is larger than the slope ∂ω/∂ (q). In addition, the latter provides an indication on the accuracy of the approximation retained in Sec. 4.1.5 to estimate the loss factor η = c φ /ωl a c g /ωl a ; within this approximation, the experimental value of η is likely underestimated by 30%.

F pulse (x, t) = FT -1 t {H(x, ω) × FT t [F pulse (x = 0, t)]}, ( 4 
Taking into account for the phase velocity instead of the group velocity would have led to a better agreement for the attenuation. 

Conclusions

In this chapter, through theoretical and experimental studies, we quantified wave propagation in one-dimensional chains of spherical particles. In particular, we showed that interactions of every sphere with its support induces a low cutoff frequency. We described the coupling between elastic bodies by mean of a tangential component of the stiffness between plane and cylinder, which provides a quantitative prediction of the cutoff frequencies of various combinations of spheres and supports, as a function of either the weight of the spheres or the static load applied on the sample. Next, we quantified a global group velocity and the loss factor in the pass band; our description of the system matches the experimental observations. Finally we unraveled the full dispersion relation of the system thanks to an embedded force sensor that allows measuring perturbations as they propagates inside the chain; the experimental dispersion relation is in close agreement with the prediction and our measurements allows identifying the spurious propagation of bending waves in the supports at very low frequency. In this chapter, we probe wave propagation in wet granular chain. This chapter is divided in three sections. The first section concerns the experimental study of wave propagation in wet chain over a broad range of static compressions and viscosities of fluids. In the second section, we derive appropriate contact model between wet spheres, which qualitatively and quantitatively describes our experimental observations. In the third section, we present additional experimental results concerning wave propagation in wet chain.

Raw experimental data

As in chapter 3, we probe dynamics of compressed granular chain made of polyacetal spheres supported by steel rods. We create wet granular media by adding small amount (less then 1 mm 3 ) of viscous fluid at each contact between spheres, see Fig. If we focus on low and height cutoff frequency (below/above 2 kHz) one observes that in low frequency region, which quantifies interaction between the sphere and support (section 4.1.1) is not significantly changed in the wet chain when compared to the dry case.

We remark also that the high frequency region (above 2 kHz) changes with static force. For high compression, see Fig. Finally, we focus on group velocity and loss factor for all viscosities η and static force F 0 . On Fig. 5.5 we show c g and η in function of viscosity and static force applied, where central frequency of pulse is f c . As observed on Fig. 5.5(a) group velocity increase in the wet case up to 50% for the high viscosity when compared to dry case. From Fig. 5. 5(a) we remark that for the lowest viscosity group velocity depends nonlinearly to static force applied, while for higher values group velocity is independent to compression. Loss factor in wet case Fig. 5.5(b) for the lowest compression is three times bigger when compared to the dry case, while the difference between loss factor in the dry and wet media decrease in function of the static force F 0 .

Contact model between loaded wet spheres

In the first section we experimentally estimated the group velocity and the loss factor of wet granular media. Here we aim at deriving an expression for the mechanical impedance which quantifies the potential interaction between wet spheres, in order to provide a page 103 

Identification of the mechanical impedance between wet contacts

Here, we intend to provide a framework to describe our results. We follow the strategy derived in see Sec. 4.1.1. In the long wavelength approximation, the dispersion relation in a wet chain of spheres with radius R 0 , Young's modulus E 0 and mass M is

M ω 2 k w q 2 w (2R 0 ) 2 + k 2 0 , ( 5.1) 
where q w is the wet wave number, k 0 is the on-site stiffness and k w is the mechanical impedance, i.e. the stiffness, between two wet particles. In turn, the dispersion relation in the dry alignments

M ω 2 k H q 2 d (2R 0 ) 2 + k 2 0 , ( 5.2) 
where q d is the wet wave number and k H ER(F 0 /ER 2 ) 1/3 is the hertzian stiffness between two dry spheres, see Eq. 2.20.

In the following, we will assume that the mechanical impedance in the wet case, k w , has two origins, as depicted in the sketch shown in Fig. 5.6: (i) an elastic contribution k H that comes from the central region of the contact between particles under static load and (ii) an additional term κ w due to the presence of the fluid at the periphery and which remains to be identified. In this case Eq. 5.1 becomes

M ω 2 (k H + κ w )(2R 0 ) 2 q 2 w + k 2 0 , ( 5.3) 
Similarly to the expression given in Eq. 4.15, we introduce a complex wave number page 107 Here, a d is the extent of the dry contact while a w indicates the extent of the hydrodynamic field in the fluid. Such a framework is compatible with the one given by Marshall [START_REF] Marshall | Viscous damping force during head-on collision of two spherical particles[END_REF].

q d = (ω/c d )×(1-iη d )
in the dry case and a complex wave number q w = (ω/c w )×(1-iη w ) in the wet case, where c d,w stand for group velocities and η d,w are loss factors in dry and wet case. Subtracting Eq. 5.2 from Eq. 5.3, one simply obtains,

(k H + κ w )q 2 w k H q 2 d , (5.4) 
which equivalently provides a relation between c d , c w , η d , η w , k H and κ w ,

c w c d (1 -iη d ) (1 -iη w ) 2 1 + κ w k H . (5.5)
Within the assumption of weak dissipation η d,w 1, Eq. 5.5 becomes

(c w /c d ) 2 [1 + 2i(η w -η d )] 1 + κ w /k H . (5.6)
Identifying the real and the imaginary parts of Eq. 5.6, one finally obtains

(c w /c d ) 2 1 + (κ w /k H ), (5.7) 
(η w -η d ) (κ w /k H ) 2 [1 + (κ w /k H )] . ( 5.8) 
As a crude attempt to verify if the framework given by Eq. 5.7 and Eq. 5.8 is reliable, we plot the non-dimensional ratio of group velocities (c w /c d ) 2 -1 as a function of the main characteristics of a sample. The response of the system depending on the confinement pressure P = F 0 /πR 2 0 , on the viscosity of the fluid µ and on the angular frequency ω, see Fig. 

Estimation of the mechanical impedance between wet contact

Here we aim at deriving an estimation of the mechanical impedance between loaded wet contacts, based on the description given in Sec. 2.3.2 and in Sec. 2.4.4. The analysis derived in Sec.5.2.1 shown that κ w depends on properties of the fluid and elasticity of spheres. These findings are compatible with the elastohydrodynamic description provided by the group of Charlaix, see for instance [START_REF] Leroy | Hydrodynamic interactions for the measurement of thin film elastic properties[END_REF][START_REF] Villey | Effect of surface elasticity on the rheology of nanometric liquids[END_REF].

One has to mention that our experimental conditions differ from the conditions described in [START_REF] Leroy | Hydrodynamic interactions for the measurement of thin film elastic properties[END_REF][START_REF] Villey | Effect of surface elasticity on the rheology of nanometric liquids[END_REF]. In our configuration, the particles are in direct contact and submitted to a static load in the normal direction. The latter has to be taken into account in the description.

On purpose, we consider an elastic sphere with effective values of radius R and Young's modulus E pressed against another sphere, with a static force F 0 . A small drop of liquid i.e. one still has an arbitrarily thin layer of fluid between the solids. In any cases, owing to the strong confinement, the fluid trapped in the central region of the contact between the particles does not flow, the interaction potential between particles thus results in a stiffness given by Eq. 2.20

k H = ER 6F 0 ER 2 1/3 , ( 5.9) 
over a radial extent a d = √ Rδ 0 , where δ 0 is the overlap distance.

In turn, at the periphery of this central region, an annular capillary bridge of fluid surrounds the solid contact. Such a framework is compatible with the description given by Marshall [START_REF] Marshall | Viscous damping force during head-on collision of two spherical particles[END_REF]. When submitted to a perturbation in the normal direction, the peripheral fluid is squeezed out in the radial direction. As in Sec. 2.4.3, we start from the Reynolds equation [START_REF] Hamrock | Fundamentals of Fluid Film Lubrification[END_REF], see for instance the Eq. 2.59,

∂ ∂r rh 3 12µ ∂p ∂r = r ḣ (5.10)
where r is radial coordinate, h is the fluid thickness, ḣ is the normal velocity and p is the hydrodynamic pressure.

The fluid standing at the periphery of the solid contact, r ≥ a d , its thickness can be defined as

h(r ≥ a d ) D + r 2 -a 2 d 2R , ( 5.11) 
where D is the arbitrarily thin thickness of the fluid trapped in the central region r ≤ a d .

Thus, the integration of Eq. 5.10 gives

rh 3 12µ ∂p ∂r = r 2 ḣ 2 + const, (5.12) 
where the integration constant can be found from the Stokes equation ∂ r p = µ∂ 2 zz v r ∝ -µv r /h 2 , where v r is the radial velocity of the squeezed fluid. At the edge of the capillary bridge, the radial velocity of the fluid is zero, i.e. ∂ r p(r = a d ) = 0, such that const = -a The second term in the right hand side of Eq. 5.14 is an approximation found by assuming D as arbitrarily small, D → 0, and by considering h(r) δ 0 , i.e. r ≥ 3a d , such that h(r) r 2 /2R in first approximation. Finally, the integration of the pressure page 110
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given by Eq. 5.14 provides the viscous repulsive force exerted by the peripheral fluid, .15) This force is similar to the one found in Eq. 2.61, but minored by the term in parenthesis: the fluid here extends over a smaller region than in Sec. 2.4.3. In turn, the mechanical impedance κ w = F w /h of the peripheral fluid thus becomes

F w 6πµR 2 ḣ D 1 - a 2 d 6RD . ( 5 
κ w (h) 6πµR 2 ω D 1 - a 2 d 6RD , ( 5.16) 
and one recovers a result which is compatible with the description given by Marshall [START_REF] Marshall | Viscous damping force during head-on collision of two spherical particles[END_REF].

At arbitrarily small thickness D the elastic confinement of the fluid clamped at the periphery of the solid contact occurs, see Sec. According to the description given in Sec. 2.4, when the thickness D tends to the crossover thickness D c = 8R(µω/E) 2/3 , see Eq. 2.72, the elastohydrodynamic interaction between the fluid and the elastic solids implies that the mechanical impedance given by Eq. 5.16 tends to

κ w 1.163 √ 3 + i 6πµR 2 ω D c 1 - 1 3 
a d a w 2 , ( 5.17) 
where a w = √ 2RD c is the typical extent of the fluid's flow, see for instance Eq. 2.62.

From now on, adding the elastic repulsion coming from the central region of solid contact, see Eq. 5.9, to the viscous repulsion of the peripheral fluid given by Eq. 5.17, and assuming that the fluid extends significantly above the region of solid contact, a w a d , one finds the overall mechanical impedance of a wet contact between two statically loaded spheres, k w = k H + κ w , such that

k w ER 6F 0 ER 2 1/3 + 1.163 √ 3 + i 6πµR 2 ω D c . ( 5.18) 
It turns out that, according to Eq. 5.7 and Eq. 5.8, the ratio of wet to dry group velocity and the difference of the loss factors become

(c w /c d ) 2 1 + α(µω/P ) 1/3 , (5.19) (η w -η d ) β(µω/P ) 1/3 1 + α(µω/P ) 1/3 , ( 5.20) 
where P = F 0 /πR 2 0 is the confinement pressure and α and β are constants of the order of unity, α ∼ β ∼ 1. These results are consistent with the trend of the experimental data demonstrated in Fig. 5.7.

It is worth mentioning that strictly speaking, the square bracketed correction term in in Eq. 5.17 can be safely neglected if (a w /a d ) ≥ 10/3 1.8. Within our experimental page 111 conditions, this assumption is fulfilled at low confinement pressure or high fluid viscosity only, since (a w /a d ) ∝ (µω/P ) 1/3 . At large pressure or low viscosity, the correction term should be taken into account, though we do not do it in practice. The limit of arbitrarily high pressures or arbitrarily small viscosity indeed corresponds asymptotically to the behavior of a dry contact: the description given in Eq. 5.18 actually matches this limit, though our model remains beyond the required precision to account for a reliable crossover between dry and wet regimes. In practice, the typical extent of the dry solid contact a d lies in between 200 µm and 400 µm at lowest and highest confinement pressures, respectively. In turn, the characteristic extent of the the fluid's flow is a w is 200 µm at the lowest viscosity µ = 0.1 Pa.s: in this case, a w < a d < 2a w and the assumption is not fully valid. However, at the the highest viscosity µ = 10 Pa.s, the typical extent of the fluid's flow is a w 1 mm such that 2.5 < a w /a d < 5, in agreement with the assumption leading to Eq. 5.18.

Experimental validation

Group velocity and loss factor

In this part we confront the descriptions given in Sec. 5.2 with our experimental results.

The full comparison between all the experimental data shown in Fig. 5.5 and the theoretical expressions given by Eq. 5.19 and by Eq. 5.20 is presented in Fig. 5.8 as a function of the non-dimensional parameter µω/P . One observes that the theoretical description is in fair agreement with the experimental observations, for both the group velocity and page 112
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the loss factors. In Fig. 5.8(a), the estimations given by Eq. 5.18 provides qualitatively and quantitatively the master curve found in Fig. 5.8. In addition, we observe that the description also provides the correct order of magnitude and the correct trend for the difference of the loss factors, see Fig. 5.8(b), though the data are more scattered. According to Eq. 5.19 and Eq. 5.20, both the relative difference of group velocity and the difference of the loss factors increases as a power law of the non-dimensional parameter µω/P .

Dispersion relation

Having validated experimentally the theoretical description, we present additional experiments and comparisons between the dynamics of dry and wet chains. Using our embedded sensor, we record the dynamic force as a function of time and position inside an alignment of 40 wet polyacetal spheres supported by steel rods. As in previous Sec. 4.2.2, we excite the medium with a chirp. The force is registered at the beginning of the chain F in (t) = F (x = 0, t), at the end F out (t) = F (x = L, t) and by the embedded sensor F emb (x, t) at any position x = 2nR with 1 ≤ n ≤ 40. This experiment is performed with the three highest fluid viscosity, µ = 1 Pas, µ = 5 Pas and µ = 10 Pas.

For the two last fluids, we record the force at the first 10 particles only. In all cases, the static compression is 20 N.

At first, one analyzes the results obtained with an interstitial fluid with a viscosity equal to 1 Pas. In Fig. 5.9(a) and in Fig. 5.9(b), we show the dispersion relation K( (q), ω) = FT tx [F emb (x, t)], estimated according to the method described in Sec. 4.2.1, for dry and wet configurations respectively. Here the fluid viscosity is µ = 1 Pa.s. In Fig. 5.9(c) and in Fig. 5.9(d), we plot the modulus of the transfer function, H(x, ω) = FT t [F emb (x, t)], as a function of the position x and frequency ω, see Sec. 4.2.1, for dry and wet chains respectively. One can see that the wet medium is more dissipated than the dry medium: the decay as a function of the position is faster and more pronounced; in addition, the decay is faster at higher frequencies. As observed on the dispersion relations shown in Fig. 5.9(a,b), the low frequency region remains almost unaffected by the presence of fluid, in agreement with the fact that the mechanical impedance of the wet contact tends to the stiffness of a dry contact at low frequency, see Eq. 5.18. On the opposite, the overall slope of the dispersion relation is larger with fluid than in the dry case: this suggests that the fluid stiffens the contact and significantly increases the group velocity. Finally, on can still observe the spurious bending mode of the supports in the low frequency region of the dispersion relation of bending modes, as in the dry case detailed in Fig. 4.12.

Then, as a crude probe of the attenuation of waves, as they propagate inside the alignments, we deconvolve the measured transfer function H(x, ω), obtained from the chirp excitation, with the Fourier transform of an analytic incident gaussian pulse F pulse (x = 0, t) centered in the middle of the propagative band in order to obtain a time resolved propagated pulse F pulse (x, t), see the details of the method in Sec. One observes in Fig. 5.11 that the magnitude of the pulse decreases as a function of the propagated distance of the chain and attenuation measured at the end of chain gives the conform results. The extrapolation from the measurements at both extremities, see Eq. 5.21, demonstrates in all cases a fairly well defined exponential decay which matches the experimental data, our description, in term of an attenuation length is thus confirmed.

It turns out that friction for instance would have led here to a non-exponential decay, which is not observed here.

Conclusions

In this chapter, we characterized wave propagation in wet alignments of spheres via careful measurements of the experimental transfer function H. From the knowledge of H, we measured the group velocity and the loss factor over a vast range of static forces, frequencies and fluid viscosities. By comparing the group velocity and the loss factor measured in wet and dry chains, we inferred a model of contact dynamics between wet load particles.

Our model shows that Hertz contact dynamics, which describes the propagation of waves in dry chains of spheres, commonly used in the literature, must be corrected by an elastohydrodynamic contribution [START_REF] Villey | Effect of surface elasticity on the rheology of nanometric liquids[END_REF] in the presence of a very small amount of interstitial fluid. Our interpretations and estimations are both in qualitative and quantitative agreement for the group velocity and a qualitative agreement for the loss factor.
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Chapter 6

Waves in 3D granular packing In this chapter, we present a preliminary experimental study on ultrasonic wave propagation in three-dimensional dry and wet granular media, in a setup shown in Fig. 6.1.

In particular, we focus on the characterization of the wave speed c and the attenuation length l a . This chapter is divided in three sections. In the first section, we expose a theoretical framework for the description of both the wave speed and the attenuation length in dry and wet case. In the second part, we present the experimental protocols and the results acquired at low or high frequencies and at low or high driving amplitudes.

Finally, we compare the experimental results with the theoretical estimations derived in the first section.

6.1 Wave speed and attenuation in 3D granular media

Effective medium theory in dry and wet granular media

Firstly, we remind the model concerning wave propagation in three-dimensional dry granular media based on the effective medium theory (EMT) [START_REF] Duffy | Stress-strain relations and vibrations of a granular medium[END_REF][START_REF] Digby | The effective elastic moduli of porous granular rocks[END_REF][START_REF] Walton | The effective elastic moduli of a random packing of spheres[END_REF][START_REF] Norris | Nonlinear elasticity of granular media[END_REF][START_REF] Winkler | Contact stiffness in granular porous materials: Comparison between theory and experiment[END_REF]. In EMT, the contact dynamics between grains is described by Hertz-Mindlin interaction [START_REF] Johnson | Contact Mechanics[END_REF]. In the presence of a normal confining pressure P , one has to consider not only the hertzian normal stiffness k H but also a tangential stiffness k t resulting from shear deformation of the contacts. The passage from the microscopic scale, at the level of the contact, to the macroscopic scale, in the long wavelength approximation, is provided by an effective bulk modulus K e , an effective shear modulus µ e and an effective density ρ e = ρΦ, where Φ is the compaction of the packing of grains, ρ is the density of the material of the sphere, see Eq. 2.95 and Eq. 2.96. The longitudinal wave speed V p is given by [START_REF] Mavko | The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media[END_REF][START_REF] Domenico | Elastic properties of unconsolidated porous sand reservoirs[END_REF], see Eq. 2.93

V p = K e + 4/3µ e ρ e , (6.1) 
where the effective moduli are

K e = ZΦ 12πR 0 k H , ( 6.2 
)

µ e = ZΦ 20πR 0 (k H + 3/2k t ). (6.3)
Here, R 0 is the radius of the spheres and Z is the coordination number. In the case of frictionless spheres, one has k t = 0. The normal and transverse contact stiffnesses are [START_REF] Mavko | The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media[END_REF][START_REF] Domenico | Elastic properties of unconsolidated porous sand reservoirs[END_REF] k H = 4aG 0 1 -ν 0 , (6.4) 

k t = 8aG 0 2 -ν 0 , ( 6 
G 0 = E 0 2(1 + ν 0 ) . (6.6)
The radius a of the contact disc is [START_REF] Mavko | The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media[END_REF] 

a = R 0 3π(1 -ν 0 ) 2ZΦG 0 P 1/3 , ( 6.7) 
where ν 0 is the Poisson ratio of the spheres. Under a confinement pressure P , the static force F 0 between grains is estimated at

F 0 = 4πR 2 0 P ZΦ . ( 6.8) 
Starting from the EMT, which describes wave propagation in dry media, we attempt to extend the derivation to the wet configuration and find an expression for the longitudinal velocity in the presence of an interstitial fluid. On this purpose, one introduces the mechanical impedance between wet grains k w , where k w is the combination of Hertz stiffness k H and the mechanical impedance κ w estimated from the EHD theory [START_REF] Leroy | Hydrodynamic interactions for the measurement of thin film elastic properties[END_REF],

k w = k H + κ w , (6.9) 
where according to Eq. 5.17, κ w is

κ w = 1.163 √ 3 + i 6πµR 2 ω D c 1 - a 2 d 3a 2 
w . (6.10)

Here, D c = 8R(µω/E) 2/3 is the critical distance, with effective values of sphere radius R and Young's modulus E. In this case we assume that a w > a d (where a w is the characteristic extent of the fluid and a d is the characteristic extent of the dry contact)

for ultrasonic frequency f > 20 kHz, for a fluid viscosity µ = 5 Pas and for a confinement pressure P 5 kPa, such that Eq. 6.10 becomes

κ w = 1.163 √ 3 + i 6πµR 2 ω D c . ( 6 

.11)

In analogy with the EMT, see Eq. 6.2 and Eq. 6.3, and assuming that the tangential stiffness is zero in presence of the lubricant, one finds the effective moduli K ew and µ ew as 

K ew = ΦZ 12πR 0 k w , ( 6 

Multiple scattering and attenuation in 3D samples

Here, we deal with the attenuation in three-dimensional dry granular media. In onedimensional dry granular media, the attenuation of waves is mostly given by a loss angle of the bulk material of the spheres; in the wet case the dissipation mainly results from the elastohydrodynamic interaction. In three-dimensional configuration, an additional mechanism of attenuation is due to the scattering of waves on every grain. In this section, we derive an estimation of the attenuation length l s which accounts for wave scattering; this will serve for the estimation of total attenuation length in both dry l d and wet l w three-dimensional granular media.

Let's consider an incident plane pressure wave p i (ω, q 0 ), where q 0 is the incident wave number, scattered by a spherical obstacle with radius R 0 , see Fig. 6.2. The magnitude of the scattered wave p s [ω, q(θ)] ∝ f (θ) depends on the angular coordinate θ. The scattering cross section is an effective area which can be compared to the real area of the spherical scatterer, 4πR 2 0 , and which provide a measure of its capacity to scatter an incident wave: the scattered energy is proportional to the scattering cross section σ T . As a consequence, σ T thus also provides a measure of the amount of energy the incident coherent wave lost to generate a scattered field in all directions [START_REF] Sheng | Wave Scattering, Localization, and Mesoscopic Phenomena[END_REF]. In the independent scattering approximation [START_REF] Lagendijka | Resonant multiple scattering of light[END_REF], which assumes that each obstacle scatters independently the incident wave p i (ω, q 0 ), one defines a characteristic decay length of the intensity of the coherent wave. This distance corresponds to the attenuation length page 121 CHAPTER 6. WAVES IN 3D GRANULAR PACKING l s . It is related to the total scattering cross section: the larger is the scattering cross section, the larger is the attenuation, i.e. the shorter is the attenuation length l s . These quantity are formally related as [START_REF] Tourin | Diffusion multiple et renversement du temps des ondes ultrasonores[END_REF] 

l s = 1 nσ T , ( 6.16) 
where n is the number of scatterers per unit volume. The compacity being Φ = 0.64 2/3 for a random loose packing of sphere and the volume of a sphere being V s = (4/3)πR 3 0 , the density n is thus

n 1 2πR 3 0 .
(6.17)

It is worth mentioning that the independent scattering approximation holds for weak concentrations of scatterers only, n 1. Up to a certain extent, it is not fully applicable in the case of dense granular media. However, we retain this approximation as a lowest order estimation. In any case, the presence a very small volume fraction of an interstitial fluid does not affect the multiple scattering: analyzing the difference of attenuation between the wet and the dry configurations cancels out the effect of wave scattering.

In the long wavelength approximation limit, λ R 0 , which corresponds to the Rayleigh scattering regime [START_REF] Sheng | Wave Scattering, Localization, and Mesoscopic Phenomena[END_REF], the cross section is such that

σ T πR 2 0 7 9 (q 0 R 0 ) 4 . (6.18)
The regime at which the wavelength is smaller than the radius of the scatterers, λ R 0 , corresponds to the geometrical limit [START_REF] Sheng | Wave Scattering, Localization, and Mesoscopic Phenomena[END_REF], in which the cross section tends to

σ T πR 2 0 2. ( 6.19) 
By combining Eq. 6.16, Eq. 6.17 and Eq. 6.18, one obtains the attenuation length in the Rayleigh limit,

l s = 18 7q 4 0 R 3 0 , ( 6.20) 
and by combing Eq. 6.16, Eq. 6.17 and Eq. 6.19, one obtains l s in the geometrical limit,

l s = R 0 . (6.21)
Finally one can estimate the total attenuation length l d in dry media as

1 l d = 1 l s + 1 l H , ( 6.22) 
where l H stands for the attenuation length due to the dissipation in the contacts, 1/l H = -(q) (ω/R 0 ω cut ), where ω cut = 2 k H /M . page 122
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In wet media, the total attenuation length l w is .23) where l ehd is the attenuation length in the wet case, 1/l ehd = -(q) (ω/R 0 ω w ),

1 l w = 1 l s + 1 l H + 1 l ehd . ( 6 
where ω w = 2 k w /M .

In turns out that the difference of attenuation between the dry and the wet configurations simply gives , where m is the mass of the upper cylinder and M is the mass of an additional weight. We placed an ultrasonic emitter on the bottom part and an ultrasonic receiver on the upper part. Transducers are not in direct contact with granular media: a 0.25 mm thick steel sheet protects the transducers. This sheet is thin enough to be acoustically transparent.

1 l w - 1 l d = 1 l ehd . ( 6 

Probing granular media at low frequency

In the first experimental study, we probe the sample by sending a short impulsion produced by an pulser-receiver (Sofranel 5072PR) to the emitting transducer, see Fig. 6.3.

Waves propagating through the granular medium are then received by a receiving transducer. This signal is amplified by a conditioner (Sofranel 5072PR) and transmitted to an oscilloscope (Teledyne Lecroy HD0 4024). We use two indentical plane wave and broadband receiving and emitting transducers (Olympus V101) centered on frequency f = 0.5 MHz.

Here, we probe wave propagation in the dry and wet granular media. We create a wet granular media by adding a very small amount of fluid with viscosity of µ = 5 Pas between grains. The volume fraction of the liquid corresponds to a dozen of drops and is about ϕ 0.05%. By carefully mixing the spheres, we ensure that the fluid is equally distributed in the sample.

In the main part of the experiment one pours from one to six layers of polyacetal spheres inside the cylindrical container. For each sample thickness, we compress and decompress by putting and removing the top cylinder on the granular sample, as to obtain At first, we probe our granular media with low amplitude impulsions, in order to ensure the linearity of the response: the magnitude of the pressure wave must remain well below the confinement pressure. The experimental results for the wave speed are presented in Fig. 6.6 while in Fig. 6.7, we show the results for the attenuation length. By estimating the slope of the curves in Fig. 6.6, one obtains a wave speed c d 180 ms -1 in the dry case. In wet granular media, the experimental wave speed is c w 344 ms -1 .

From the slope of the curve shown in Fig. 6.7, we measure the attenuation length l a .

Unfortunately, the results shown in Fig. 6.7 are too noisy, especially for the 5 and 6 layers. Thus as to increase the quality of the signal, we increased the amplitude by a factor five.

Next, we present experimental observations with impulsions at larger amplitudes.

The results for the wave speed are presented in Fig. 6.8 while in Fig. 6.9 we show the results for the attenuation length. Here, we obtain wave speeds at about c d 435 ms 

Probing granular media at high frequency

As to obtain an information on the attenuation length at higher frequencies, λ ≤ R 0 , we perform additional experiments. This second experimental procedure is such that the signal generated by an arbitrary wave generator (Agilent 33500B), is amplified by a high frequency power amplifier (VectaWave VBA230-35) and is finally transmitted to the emitting transducer, see the sketch in Fig. 6. As in the original protocol, one pours particles of polyacetal (here from two to three layers) in the cylindrical container. We then compress/decompress the sample by putting/removing the top cylinder. This procedure is repeated several times until reaching the maximal achievable compacity. We then place the 2 kg mass on the top cylinder, in order to generate a confinement pressure of about P 5 kPa. The experimental protocol for the acquisition also remain unchanged: we acquire 8 realizations, which we then average. These acquisition (V n ) are then cross correlated with the reference signal V ref (t) provided by the arbitrary wave generator. According to the post-processing defied in Eq. 6.25, one finds

x out n (t) =< V n (t) > ⊗V ref (-t), (6.26) where < • • • > denotes the average of the 8 realizations and n is the number of layers, i.e. the thickness of the sample.

In Fig. 6.11, we plot the signals x out 2 (t) and x out 3 (t) as a function of time. One observes several additional pulses following the first pulse: these are due to multiple reflections at page 129 In Fig. 6.12, we plot the Fourier transform of x out 2 (t) and x out 3 (t): we observe that the transmitted signals are centered around 0.5 MHz, in agreement with our requirement.

Next, we analyze the wave transmitted through the wet granular medium. The results are plotted in Fig. 6.13 and in Fig. As observed in this case, we estimate the wave speed to be c w 275 ms -1 , while the attenuation length is found at l a 2.6 mm. Applying the same gaussian filter to the dry case, we obtain c d 250 ms -1 and l a 1.8 mm.

Analysis of the experimental results

Analysis of low frequency experiments

First, we comment the experimental velocity at low frequency and low amplitude. The measured wave speed is c d 180 ms -1 in the dry case and is compatible with the estimation of EMT, V p 200 ms -1 , see the black line in Fig. 6.6, obtained from Eq. 6.1

with Z = 6, Φ = 0.64, P = 5 kPa, f = 30 kHz and with the characteristics of polyacetal spheres. Additionally, the measured wave speed is c w 344 ms -1 in the wet case, which also fairly agrees with the EMT estimation V w 340 ms -1 , see Eq. 6.14. As for the dry case, we use Z = 6, Φ = 0.64, P = 5 kPa, f = 30 kHz and µ = 5 Pa.s.

It is worth mentioning that our estimations also fairly describe the experimental result obtained by Brunet [START_REF] Brunet | Etude de milieux granulaires secs et mouillés a l'aide des ondes ultrasonores[END_REF] and Griffiths [START_REF] Griffiths | Ultrasound propagation in wet and airless non-consolidated granular materials[END_REF]. There the relative difference between wet and dry speed is about 10%, in both cases, for fluid with viscosity 20 mPas and confinement pressure P 350 kPa [START_REF] Brunet | Etude de milieux granulaires secs et mouillés a l'aide des ondes ultrasonores[END_REF] and for fluid with viscosity 10 Pas and P 1 MPa [START_REF] Griffiths | Ultrasound propagation in wet and airless non-consolidated granular materials[END_REF]. In theirs experimental studies, Brunet and Griffiths used glass beads with Young's modulus E g = 70 GPa, Poisson ratio ν g = 0.25 and density ρ g = 2450 kg/m 3 . Our estimation of the wave speed at frequency f = 100 kHz and with sphere radius R 0 400 µm, in the dry case, see Eq. 6.1, and in the wet case, see Eq. 6.14, indicates that the relative difference would be 10% when using the parameters indicated by Brunet [START_REF] Brunet | Etude de milieux granulaires secs et mouillés a l'aide des ondes ultrasonores[END_REF], while it would by 12% in the configuration probed by Griffiths [START_REF] Griffiths | Ultrasound propagation in wet and airless non-consolidated granular materials[END_REF].

Next, we focus on the experimental velocity obtained at low frequency and high amplitude. In this case, the measured wave speed c d 435 ms -1 in the dry case does not provide a satisfactory agreement with the EMT estimation V p 200 ms -1 : the measurement is more than twice the prediction. However, the curve of the time of flight versus thickness looks somehow awkward since it seems to tend to a plateau at large thickness: the data may lack precision and consistency here. Possible reasons may result from various nonlinearity at high amplitude and spurious contributions. The agreement is slightly better in the wet case, where the magnitude of the wave is lowered by the larger dissipation: we obtain c w 305 ms -1 experimentally while it is V w 340 ms -1 in theory.

Finally, we consider the estimations and the measurements of the attenuation length.

At low frequency, the wavelength λ = c/f is theoretically λ d 6. Both the theoretical and the experimental data shows that the attenuation length is smaller in the wet case than in the dry case: this is consistent with an increase of the attenuation. In addition, the experimental data, l d 4.76 mm and l w 2.33 mm, have same order of magnitude as the estimations given by Eq. 6.30 and Eq. 6.31. Finally, by subtracting the attenuation of the dry configuration from attenuation of the wet case, see Eq. 6.24, one obtains l ehd = 1/(1/l w -1/l d ) 4.56 mm: the theoretical estimation, Eq. 6.29, underestimates the measured attenuation by a approximately a factor two.

Analysis of high frequency experiments

In the high frequency regime, around f = 0.5 MHz, the theoretical wavelength is λ d ∼ 0.4 mm in the dry case and λ w ∼ 0.7 mm in the wet case: in both configurations, the wavelength is smaller than the size of the particles, λ < R 0 . As a consequence, the long wavelength approximation is not fulfilled and the EMT is not reliable: the comparison with experimental velocity is pointless. However, extending the long wavelength estimations, V p 200 ms -1 and V w 340 ms -1 , we find again a fair agreement in the dry case, c d 250 ms -1 , and a more cautious one in the wet case, c w 275 ms -1 .

Concerning the attenuation lengths, we find theoretically where l th s is estimated from the geometrical limit of the scattering given by Eq. 6.21, according to the short wavelength approximation. From Eq. 6.22 and Eq. 6. In this frequency range, the attenuation due to the scattering becomes important: l th d and l th w have similar magnitudes. In contrary to the low frequency case, the estimations given by Eq. 6.35 and Eq. 6.36 here overestimates the experimental data, which are about l d 1.8 mm and l w 2.6 mm. However, the order of magnitude is correctly estimated.

Conclusions

In this chapter we presented a preliminary experimental study concerning ultrasonic wave propagation in dry and wet three-dimensional granular media. We measured both the wave speed and the attenuation length at low and high frequencies and at low and high amplitudes. Up to a certain extent, all our measurement provides somehow correct order of magnitudes but still lack precision and consistency in some cases.

In the dry case, the measured wave speed at low amplitude provides a satisfactory agreement with the theoretical estimation from the effective medium theory. In the wet case, the effective medium theory combined with an elastohydrodynamic description of the contact dynamics fairly reproduces the measured wave speed. As observed with signals at high amplitudes, the attenuation length provides a correct order of magnitude between theory and experiment.

We analyzed also the attenuation length for signals in a high frequency band, where the wavelength is equal to, if not smaller than, the size of the particles. Here, the theoretical estimations provide also a correct order of magnitude between theory and experiment. Our observations suggest that the attenuation at high frequency is dominated by the scattering. page 136

Chapter 7

General conclusion and perpectives

This thesis dealt with wave propagation in dry and wet granular media, with the aim of relating the features at the microscopic scale of the grains and at the macroscopic scale of the acoustic wavelength. In a first place, we presented an experimental study devoted to probe how elastic waves propagate in laboratory scaled one-dimensional dry granular media. These media stand for an equivalent of the force chains, which are the quasi one-dimensional paths of strongest contacts in three-dimensional granular packing, along which elastic waves are known to propagate. Practically, our samples are alignments of centimetric spherical particles aligned on a support; these alignments were set under static compression. Our measurements and our analysis, based on the microscopic description of the dynamics of the grains, revealed the effect of an elastic coupling between the particles and an elasto-frictional on-site potential between the particles and the supports. The on-site potential induces a zero frequency band gap in the transfer function of the medium: the transmission of vibrations at low frequency is impeded. The model of such a local interplay via a tangential stiffness between the spheres and the cylindrical supports renders all the details of the measured dispersion relation.

In a second place, we dealt with wave propagation in wet one-dimensional granular media. Wet media were obtained by adding a small drop of viscous fluid at the contacts between every particle. Our observations demonstrated that wet particles interact via a complex elastohydrodynamic (EHD) mechanism, which relies on the ability of the interstitial fluid to elastically deform the particles. The EHD interplay confers remarkable and non-trivial features upon waves, such as a significant increase of the propagation speed compared to the dry case. We derived a model that quantitatively matches our observations on the wave speed, while the agreement of the attenuation was only qualitative.

In a third place, we checked the reliability of our analysis to depict wave propagation in real granular media, such as the wet sand. We performed preliminary ultrasonic wave Université Paris-Saclay Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France Title : Waves in granular media: from microscopic scale to macroscopic scale Keywords : Granular media, acoustic waves, fluid, rheology, contact dynamics Abstract: This thesis deals with the study of mechanical wave propagation in dry or wet granular media, with the aim of relating the phenomena at the microscopic scale (particles dynamics, interaction potentials between grains, rheology of the interstitial fluid) to the features at the macroscopic scale (dispersion relation, wave speed and attenuation in the long wavelength approximation). The systems under study are either large one-dimensional granular media, as the analogs of the paths of the most compressed grains (the force chains) in real granular packings, or the real granular media themselves. In a first place, we study experimentally the wave transmission through alignments of dry centimetric spheres, which we model via the Hertz potential. We show that the elasto-frictional coupling between the grains and a substrate (the spheres' support) induces an on-site elastic potential, which in turn induces a band gap at zero frequency in the transfer function. In a second place, we show that the presence of an infinitesimal amount of viscous fluid at the contact between every particle induces an elasto-hydrodynamic (EHD) interaction. The later affects the attenuation of waves in addition to a significant increase of the wave speed, which in this case both non-trivially depend on the elasticity of the particles, on the viscosity of the fluid and on the frequency. In a third place, we check the reliability of our analysis to describe ultrasonic wave propagation in real granular materials such as dry or wet sand; our particles are here millimetric spheres. In the dry configuration, our results are consistent with an effective medium theory (EMT) which relies on the Hertz-Mindlin interaction in the long wavelength approximation. In the wet configuration, the EMT model combined with an EHD mechanism fairly reproduces our preliminary observations. Titre : Ondes dans les milieux granulaires : de l'échelle microscopique à l'échelle macroscopique Mots clés : Milieux granulaires, ondes acoustiques, fluide, rhéologie, dynamique du contact Résumé : Cette thèse porte sur l'étude de la propagation d'ondes mécaniques dans des milieux granulaires secs ou mouillés, avec pour objectif de relier les phénomènes de l'échelle microscopique (dynamique des grains, potentiels d'interactions entre particules, rhéologie du fluide interstitiel) aux propriétés de l'échelle macroscopique (relation de dispersion, vitesse et atténuation des ondes dans l'approximation des grandes longueurs d'ondes). Les systèmes étudiés sont soit des milieux granulaires unidimensionnels de grande taille, analogues des chemins de plus forts contacts entre particules (les chaînes de force) dans les empilements de grains réels, soit les milieux granulaires réels eux-mêmes. Dans un premier temps, nous étudions expérimentalement la transmission d'ondes au travers d'un alignement de sphères centimétriques sèches, que nous modélisons via le potentiel de Hertz. Nous montrons que le couplage élastofrictionnel entre les grains et un substrat (le support des sphères) engendre un potentiel élastique local, qui induit à son tour une bande interdite a fréquence nulle dans la fonction de transfert. Dans un deuxième temps, nous montrons que la présence d'une quantité infime de fluide visqueux au contact entre chaque particule induit une interaction élasto-hydrodynamique (EHD). Ce dernier induit une modification de l'atténuation des ondes et une augmentation très significative de la vitesse de propagation, qui dans ce cas dépendent de manière non-triviale de l'élasticité des particules, de la viscosité du fluide et de la fréquence. Dans un troisième temps, nous vérifions la fiabilité de notre analyse pour décrire la propagation d'ondes ultrasonores dans des milieux granulaires réels, tel que le sable mouillé ou non ; les particules sont ici des sphères millimétriques. Dans le cas sec, nos résultats sont en accord avec un modèle connu de milieux effectifs (EMT) qui relève de l'interaction de Hertz-Mindlin dans l'approximation des grandes longueurs d'ondes. Dans le cas mouille, le modèle EMT combiné à un mécanisme EHD reproduit de manière acceptable nos observations préliminaires.

2. 1

 1 Left: (a) Phononic crystal made of steel tubes [35]. (b) Sound attenuation as a function of frequency, the arrow in the inset represents the direction of wave propagation. Right: [36] (A) elementary cell of metamaterial presented in (B). Transmission in (C) and dispersion relation (D) as a function of frequency, where circles are measured data and lines represent the theoretical estimations. . . . . . . . . . . . . . . . . . . . . . . . . . .
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 9 (a) Normalized radial velocity, (b) normalized shear rate and (c) normalized hydrodynamic pressure distribution as a function of the normalized radial coordinate r/ √ 2Rh 0 . Here, h 0 is the minimal distance between the sphere and the plane and R is the radius of the sphere. . . . . . . . . . . . 2.10 Elastic sphere oscillating in front of an elastic substrate, both are separated by an interstitial viscous fluid [26]. . . . . . . . . . . . . . . . . . . . . . . 2.11 Normalized mechanical impedance Z (κ ω in our notations) as a function of the normalized separation distance D. The elastic part is shown in blue and the viscous part is shown in red [81]. D c is the critical distance, ω is the angular frequency, R is the radius of sphere and η is the viscosity. . . LIST OF FIGURES 2.12 (a) The experimental setup where a granular medium is enclosed in a cylinder and compressed by an upper piston. By analyzing the marks on a carbon paper, one can determines the force distribution. By placing a double stick tape on the upper piston and by estimating the net weight supported by the tow walls, (b) one measures the force distribution P (f ) in the lower piston, upper piston and in the wall of the cylinder [83]; here f is the normalized force. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.13 Photoelastic pictures of the heterogeneous force chains which support most of the load in compressed granular media. (a) The media is either submitted to a point force [89] or (b) under shear stress [87]. (c) Numerical simulations showing the network of normal forces in polydisperes granular media [88]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.14 (top-left) Experimental setup used to study wave propagation in granular media where S is the source (a loudspeaker), D is the detector (an accelerometer) and L d is the distance between S and D [3-5]. (right) Response of the samples as a function of time τ for different distance L d
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 63173837423232323 the transmitted acceleration is closely related to the cycles of temperature of the heater: the dilation of the heater generates additional force chains and consequently, a stronger coupling between the source and the detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.15 Inset (a), an experimental setup [6] for probing wave propagation in granular media made of glass beads. (a,b) The detected signals where one sees the coherent part E and the multiply scattered part S of the signal. Results for glass bead packing with diameter d = 0.2 -0.3 mm (a) and with diameter d = 0.4 -0.5 mm (b), R is the reflected signal and A is the amplitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.16 One-dimensional force chain of spheres with radius R 0 connected by springs k H under static compression F 0 . . . . . . . . . . . . . . . . . . . . . . . . 2.17 (a) Evolution of the longitudinal wave speed V p speed as a function of the confinement pressure P . (b) The relaxation of the shear stress σ 12 : the path from points A to B indicates an affine motion while the relaxation takes place B to C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.18 (a) Wave speed as a function of confinement pressure: in purple is the Hertz-Mindlin model, in red • a dry configuration, in blue ♦ with water, in green with an oil with viscosity 50 mPas and in red with a fluid with viscosity 10 Pas [107]. (b) Averaged intensity I in dry and wet granular packings: the solid lines stands for fitted models [108]. . . . . . . . . . . . page Experimental setup, here consisting of 32 identical polyacetal spheres aligned on four plexiglas rods. . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Experimental setup: at the left end of the chain, the piezoelectric actuator sends dynamic perturbations which are sensed by a specially designed light force sensor glued in front of it. At the right end of the chain, one sees the dynamic force sensor screwed in front of the static force sensor and the translatable tray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Ultrasonic measurements in a slabs of material cut from an original polyacetal sphere placed between two longitudinal transducers (left) or between two shear transducers (right). Both experiments are performed in transmission mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Phase delay Φ of the transfer function as a function of frequency for longitudinal waves centered at 1 MHz (blue), 2.25 MHz (red) and 5 MHz (green). The black curve is a guide line showing the linear regression Φ = ωe/c L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Natural logarithm of the modulus of the transfer function versus frequency. The loss angle estimated from Eq. 3.8 near the central frequency (here around 2.25 MHz) of the transducer is shown in red. . . . . . . . . . . . . 3.6 An alignment of particles with mass M and radius R 0 interacting via an elastic potential with stiffness k H . The particles are pressed against the ground with a force F R , for instance the weight of each particle, and interact with the ground via a Coulomb's coefficient of friction µ s . . . . . 3.7 Experimental setup. (left) Embedded dynamic force sensor: a piezoelectric ceramic is glued between two caps cut from a 25 mm in diameter polyacetal sphere. (right) The sphere with embedded sensor can replace any particle in an alignment and allows precise measurement of the dynamic force as a function of time and position in the chain. . . . . . . . . . . . . . . . . . 3.8 Transfer function H(ω) = F emb /F ref between the signals acquired by the embedded sensor and the reference dynamic force sensor F ref , where F ref = F in is the dynamic force sensor in front of the piezoelectric actuator (the blue curve) and F ref = F out is the dynamic force sensor on the output side (the red curve). Results are shown in modulus (a) and in phase (b) as a function of frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9 Relative decay of the static force F 0 measured as a function of time t. (a) Protocol 1A: temporal evolution of the static force from set points 10 N, 20 N, 30 N and 40 N in red, green, blue and dark respectively. (b) Protocol 1B: temporal evolution of the static force at 20 N after having waited 1 min, 2 min, 3 min 4 min and 5 min in red, green, blue, dark and magenta respectively at the static force of 40 N. Here, the system is not excited by a dynamic signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 10 Relative decay of the static force F 0 measured as a function of time t. (a) Protocol 2A: temporal evolution of the static force from set points 10 N, 20 N, 30 N and 40 N in red, green, blue and dark respectively. (b) Protocol 2B: temporal evolution of the static force at 20 N after having waited 1 min, 2 min, 3 min 4 min and 5 min in red, green, blue, dark and magenta respectively at the static force of 40 N. Here, the system is intermittently excited by a broad frequency range chirp with a rather large amplitude. . 3.11 Relative decay of the static force as a function of time t with experimental protocol C, for a 20 N static force and during 5 min. In red, the response without solicitation (protocol 1C), in blue the response with solicitation (protocol 2C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.12 Modulus of the transfer function between the force measured at the beginning F in and at the end F out of the chain as a function of frequency. Different colors correspond to different applied static forces F 0 . Here, the spheres are in polyacetal and the rods are in plexiglas. . . . . . . . . . . . 3.13 Modulus of the transfer function, for dry chain between the output signal F out and input signal F in as a function of frequency; different colors show different static force applied F 0 ranging from 5 N to 40 N every 5 N. (a) The results for configuration with polyacetal spheres and plexiglas supports, (b) polyacetal spheres and steel supports and (c) steel spheres and steel supports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.14 Low cutoff frequency f 0 estimated at -20 dB below the average value of the propagative band (see Fig. 3.13). (a) Polyacetal spheres with plexiglas supports, (b) polyacetal spheres with steel supports and (c) steel spheres with steel supports. The red curves correspond to the first increase of the static force, from 5 N to 40 N, the blue curves to the first decrease, from 40 N to 5 N, the green curves to the second increase and the black curves to the second decrease. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.15 (a) Power spectral density of the force measured with an impact hammer while kicking the table on which stands the setup. (b) Acceleration γ measured by an accelerometer glued on a side of the table. (b) The different colors show different experimental conditions: in blue the hammer kicks the table as is, in red a 40 kg mass is set on top of the table and in yellow the table is firmly constrained against a wall. The inset shows a sketch of the experiment (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.16 Modulus of the transfer function between the acceleration γ captured by an accelerometer glued on the static force sensor and the force F recorded by an impact hammer. One can observe resonances near 280 Hz and 470 Hz and anti-resonance near 380 Hz (see inside the black circle). Inside the red circle, resonances are observed in the 1-5 kHz frequency region. In inset, a sketch showing the experimental configuration. . . . . . . . . . . . page 17 Modulus of the transfer function between the signal measured at the beginning F in and at the end F out of the chain as a function of frequency, under 20 N static compression. Here, the configuration is an alignment of polyacetal spheres on steel rods. Red lines indicate the values of the resonant frequencies measured in Fig. 3.16 . . . . . . . . . . . . . . . . . . 3.18 Effective stiffness k E of the end extremity, as the ratio between the force F measured by the impact hammer and the displacement δ 0 measured from the accelerometer. The red line (resp. the green line) indicates the typical stiffness k H between two steel spheres (resp. between two polyacetal spheres). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.19 Modulus of the transfer function between the input force F in and the output force F out measured for 20 N (blue) and for 40 N (red) static compression. The green curve represents the transfer function between the radial acceleration γ r of a supporting cylinder and the axial input force F in . The black vertical lines indicate the resonant frequencies found experimentally at about 22.5, 42.8, 69, 128.6, 184.8 and 246.4 Hz. . . . . . 3.20 Modulus of the transfer function between the input force F in and the output force F out measured for 20 N (blue) and for 40 N (red) static compression. The green curve represents the transfer function between the radial acceleration γ r of a supporting cylinder and the axial force F in . Here, the black vertical lines show the resonant frequencies estimated theoretically by a simple model at 14.6, 58.6, 132.1, 234.7 and 366.8 Hz, from Eq. 3.21. These frequencies correspond to the mode number n= 1, 2, 3, 4, 5, 6, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 One-dimensional chain of spheres with mass M under static compression F 0 interacting via a Hertzian contact stiffness k H , with an additional stiffness k 0 which quantifies the interaction of the spheres with the support. . 4.2 (a) Spheres with radius R 0 , weight M g and clearance ∆ under compression F 0 . (b) Axial view, where F y is the projection of F 0 and F r is the radial force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Lower and upper cutoff frequencies, f min and f max , as a function of the static force in the axial direction. (a) Configuration with polyacetal spheres and plexiglas supports, (b) polyacetal spheres with steel supports and (c) steel spheres with steel supports. Blue lines represent Eq. 4.6 and Eq. 4.7 and red dots are the experimental data extracted from Fig. 3.13 and shown in Fig. 3.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . a) Theoretical dispersion relation, where (q) is the real part of the wave number and R 0 is the sphere radius, (b) modulus of the transfer function. Here the results are estimated for polyacetal spheres under a 20 N static compression. The spheres are supported by four 1 m long rods with Young's Modulus of E s 0.1 GPa (red curves) and with E s 200 GPa (blue curves). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 (a) Measured dispersion relation for polyacetal spheres with steel support and F 0 = 20 N, in response to chirp excitation. (q) is the real part of the wave number and R 0 is the radius of the spheres. (b) Coherency between the output and input signals. . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 Example of the experimental method. (a) Magnitude |H| of the experimental transfer function H(ω) = F out /F in versus frequency, is shown in blue; the black curve represents the Fourier transform of the analytic input wavepacket (b) convolved by the experimental transfer function. Temporal representation of (b) the analytic input wavepacket and (c) output force convolved by the experimental transfer function. All data are shown for an F 0 = 5 N static force. Here, the analytic wavepacket is a gaussian pulse centered at f c = 2.2 kHz with bandwidth 0.2. The red stars indicate the maximum of the envelopes. . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7 (a) Input signal measured at the beginning of the chain F in (t) = F pulse (x = 0, t). (b) Output signal measured as the response of gaussian pulse excitation F g out (t) (black curve) and as the convolution of the input (a) with the experimental transfer function measured from the response of broadband chirp excitation F out (t) = F pulse (x = L, t) (red curve, see the details of the method in Sec. 4.1.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8 (a) Theoretical dispersion relation for polyacetal spheres with steel support under F 0 = 20 N static force. From (a), one estimate the theoretical group velocity as the average slope over the frequency range indicated in red. (b) Experimental (blue dots) group velocity, c g , at central frequency f c = (f max (F 0 ) + f min (F 0 ))/2. . . . . . . . . . . . . . . . . . . . . . . . . 4.9 Experimental loss factor η (blue dots) versus estimation from Eq. 4.19 (red line) as a function of the static force. . . . . . . . . . . . . . . . . . . . . . 4.10 Dispersion relation K th , the dashed line is Eq. 4.11. Here the simulations and the analytic estimation are performed for polyacetal spheres with steel rods under F 0 = 20 N static compression. . . . . . . . . . . . . . . . . . . 4.11 (a,c) 40 realizations of the transfer function H(ω) = F out /F in between the signals measured at the beginning F in and at the end F out of the alignment, as a function of frequency; (a) is at 20 N static compression and (c) at 40 N. (b,d) Average magnitude |H| over the 40 realizations at 20 N and 40 N, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . page 10 LIST OF FIGURES 4.12 (a,c) Modulus of the transfer function measured by the embedded sensor for 20 N and 40 N respectively. (b,d) Dispersion relation reconstructed from the embedded sensor for 20 N and 40 N, respectively. The black vertical lines in (a) and (c) shows the minimal f min and maximal frequency f max , which stems from the fit of the dispersion relation, see the black lines in (b) and (d). Red lines in (b) and (d) stands for the dispersion relation of bending waves. Here, (q) is the real part of the wavenumber and R 0 is the radius of the spheres. . . . . . . . . . . . . . . . . . . . . . . . . . . 4.13 (a) Output signal F pulse (x, t) deconvolved from the transfer function measured at each position inside the alignment and as a function of time. (b) Envelope of the pulse F env pulse (x, t) as a function of time and position. Both results obtained by the method given by Eq. 4.31 and Eq. 4.32 while considering an input wavepacket centered at 3.25 kHz and bandwidth 0.3, at F 0 = 40 N static force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 (a) Small quantity of viscous fluid (Rhodorsil 47V) is poured between each sphere in contact. (b) A viscous meniscus of fluid shown between two polyacetal spheres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Magnitude |H| of the transfer function H = F out /F in versus frequency. (a) In the dry case for different static force F 0 . (b) In the wet case as a function of F 0 for viscosity µ = 10 Pas.(c) In the wet case at F 0 = 5 N, but for viscosity of 0.1, 0.2, 0.5, 1, 5 and 10 Pas, shown respectively in green, blue, magenta, red, light blue and cyan curves. . . . . . . . . . . . 5.3 (a) Output deconvolved wavepacket F pulse (x = L, t) in the dry media. In (b), (c), (d), (e), (f) and (g): output signals for wet media for viscosity of µ = 0.1, 0.2, 0.5, 1, 5 and 10 Pas; Here the static force is F 0 = 5 N. The wavepackets are centered at f c = 2.2 kHz. . . . . . . . . . . . . . . . . . . 5.4 (a) Output deconvolved wavepacket F pulse (x = L, t) in the dry media. In (b), (c), (d), (e), (f) and (g): output signals for wet media for viscosity of µ = 0.1, 0.2, 0.5, 1, 5 and 10 Pas; Here the static force is F 0 = 40 N. The wavepackets are centered at f c = 3.2 kHz. . . . . . . . . . . . . . . . . . . 5.5 (a) Group velocity c g and (b) loss factor η = c g /ωl a at central frequency f c . The dry case is shown in black squares, the wet cases with viscosity of 0.1, 0.2, 0.5, 1, 5 and 10 Pa.s are traced respectively in green •, blue +, magenta * , red , light blue and cyan . . . . . . . . . . . . . . . . . . 5.6 Sketch of the contact region between two compressed wet spheres. Here, a d is the extent of the dry contact while a w indicates the extent of the hydrodynamic field in the fluid. Such a framework is compatible with the one given by Marshall [63]. . . . . . . . . . . . . . . . . . . . . . . . . . . Ratio between the group velocity in the wet case c w and the dry case c d traced as a function of the viscosity µ, angular frequency ω and confinement pressure P = F 0 /πR 2 0 . The experimental data are traced for all static forces F 0 , viscosity µ and central frequencies f c , f c1 and f c2 . The black line is a guide line indicating a power law with and exponent 1/3. . 5.8 (a) Ratio between the group velocity in the wet case c w and in the dry case c d ; the experimental data are traced in blue dots. (b) Difference between loss factor in the wet case η w and in the dry case η d ; the experimental data are traced in red dots. In both cases, the data are represented as a function of viscosity µ, angular frequency ω and confinement pressure P = F 0 /πR 2 0 . Experimental data are traced for all static forces F 0 , viscosity µ and central frequencies f c , f c1 and f c2 . The black line represents the theoretical estimations from Eq. 5.19 and Eq. 5.20. . . . . . . . . . . . . . 5.9 (a,b) Dispersion relation unraveled by the use of the embedded sensor in the dry and the wet cases, respectively. Here, the fluid viscosity is µ = 1 Pa.s. (c,d) Modulus of the transfer function measured by the embedded sensor in the dry and the wet cases, respectively. Here, the static compression is 20 N and (q) is the real part of the wave number and R 0 is the radius of the spheres. . . . . . . . . . . . . . . . . . . . . . . 5.10 Envelope of the wavepacket deconvolved from the response to a chirp excitation, as a function of position of the embedded sensor and time: (a) in a dry chain and (b) with an interstitial fluid with 1 Pas viscosity. Here, the alignments are both under a 20 N compression. . . . . . . . . . . . . . 5.11 Evolution of the attenuation max[F e p (x, t)]/ max[F e p (x = 0, t)] as a function of the position x = 2nR inside the chain; experimental results are shown in red dots and the the black line stands for the Eq. 5.21. (a) Dry chain of spheres and in (b,c,d) wet chains of spheres with interstitial fluid with viscosity of 1 Pas, 5 Pas and 10 Pas, respectively. Here, the alignments are both under a 20 N compression. . . . . . . . . . . . . . . . 6.1 A five layers thick three-dimensional granular medium filled with 2 mm in diameter polyacetal spheres. A plane wave ultrasonic emitter is placed on the bottom of the sample and the receiver is fixed on the upper movable cap. The confinement pressure is exerted by placing different mass on the upper cylindrical part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 A plane wave scattered by a sphere. . . . . . . . . . . . . . . . . . . . . . 6.3 Sketch of the two experimental setups used to characterize ultrasonic wave propagation in granular media.(a) The emitter is connected to a pulser which drives the sample with a short broadband impulsion. (b) The emitter is connected to an arbitrary wave generator and an amplifier, which drive the medium with a long duration chirp. . . . . . . . . . . . . . . . . Example of signals propagating through (a) three and (b) five layers of polyacetal spheres. Black stars show the maximum of the envelope. . . . . 6.5 Example of Fourier transform of signals propagating through three (red curve) and five (blue curve) layers of polyacetal spheres. . . . . . . . . . . 6.6 Time of flight (Tof) of the maximum of the envelope of transmitted pulses as a function of the sample thickness e (number of layers). Red circles are experimental results in the dry case and blue squares are experimental results in the wet case. The black line indicates the wave speed given by the EMT theory, see Eq. 6.1. Here, the input signal has a low amplitude. 6.7 Maximum of the envelope of the transmitted pulses A max as a function of the sample thickness e (number of layers). Red circles are experimental results in the dry case and blue squares are experimental results in the wet case. Here, the input signal has a low amplitude. The red and blue straight lines are best fits in the wet and dry cases, respectively. . . . . . . 6.8 Time of flight (Tof) of the maximum of the envelope of transmitted pulses as a function of the sample thickness e (number of layers). Red circles are experimental results in the dry case and blue squares are experimental results in the wet case. Here, the input signal has a high amplitude. . . . 6.9 Maximum of the envelope of transmitted pulses A max as a function of the sample thickness e (number of layers). The red circles are experimental results in the dry case and the blue squares are experimental results in the wet case. Here, the input signal has a high amplitude. . . . . . . . . . . . 6.10 (a) Temporal representation of a signal generated by the arbitrary wave generator V ref (Agilent 33500B). (b) Modulus of the Fourier transform of (a). (c) Cross-correlation x out (t) between the reference signal V ref (-t) and the signal transmitted through the sample V acq (t). . . . . . . . . . . 6.11 (a,b) Signals propagating through two x out 2 and three x out 3 layers of dry granular media, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 6.12 Fourier transform of the signals propagating through two x out 2 and three x out 3 layers of dry granular media, in red and in blue respectively. . . . . . 6.13 (a,b) Signals propagating through two x out layers of wet granular media, respectively. The signals are not filtered. . . . . . . . . . 6.14 Fourier transform of the signals propagating through two x out of wet granular media, in red and blue respectively. The signals are not filtered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.15 (a,b) Signals propagating through two x out layers of wet granular media, respectively. The signals are here filtered with a gaussian filter centered at 0.5 Mhz and with bandwidth equal to 0.15. . . . . . . . 6.16 Fourier transform of the signals propagating through two x out of wet granular media, in red and blue respectively. The signals are here filtered with a gaussian filter centered at 0.5 Mhz and with a bandwidth equal to 0.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mass of a sphere [kg] g Gravity [m.s -2 ] d Diameter of a sphere [m]
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 191 CONTEXT AND CONTENT OF THE MANUSCRIPT the low and the high cutoff frequency as a function of relevant parameters. At the stage of the study, we quantify the characteristics of waves, such as the phase and the group velocity and the associated attenuation lengths inside the propagative band of the phononic crystal. On this purpose, we use a non-intrusive sensor embedded in a sphere to access and track the evolution of acoustic perturbations as they propagate through the alignment of particles; the protocol allows reconstructing the full dispersion relation of any sample. The experiment is performed in an alignment of polyacetal spheres clamped between steel cylindrical supports and submitted to a static load of either 20 N or 40 N. The experimental results clearly show the generation of two forbidden bands, at low and high frequency, separated by a propagative band; our measures additionally reveal a trace of the dispersion relation of bending waves that propagates inside the supports. At 20 N, the low and the high cutoff frequency are about 1450 Hz and 4100 Hz, respectively, whereas the theoretical estimation provided 1440 Hz and 4120 Hz, respectively. At 40 N static load, we find 1800 Hz and 4700 Hz in experiments and 1620 Hz and 4620 Hz in theory. Qualitatively and quantitatively, the measured dispersion relation matches the theoretical description within a fair accuracy. The results presented in this chapter constitute a robust framework and the description of dry media serves as a reliable reference for the rest of the study.

Figure 2 . 1 :

 21 Figure 2.1: Left: (a) Phononic crystal made of steel tubes [35]. (b) Sound attenuation as a function of frequency, the arrow in the inset represents the direction of wave propagation. Right: [36] (A) elementary cell of metamaterial presented in (B). Transmission in (C) and dispersion relation (D) as a function of frequency, where circles are measured data and lines represent the theoretical estimations.
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 272 THE PHYSICS OF GRANULAR MEDIA: STATE OF THE ART
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 292 THE PHYSICS OF GRANULAR MEDIA: STATE OF THE ART Andreotti et al.[START_REF] Andreotti | Les milieux granulaires[END_REF] listed all the obstacles imparting the description of the Physics of granular media:

Figure 2 . 4 :

 24 Figure 2.4: (a) Static force F 0 applied on an elastic half space, (b) rigid sphere pushed against an elastic half space [51].

Figure 2 . 5 :

 25 Figure 2.5: Two spheres with radius R 0 pushed against each other with a static force F 0 ; an additional tangential force F t is applied causing micro displacement or shearing in y-axis.
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 27392 Due to the Laplace pressure ∆p, the liquid forms a capillary bridge[START_REF] Poppov | Contact Mechanics and Friction[END_REF]. The pressure difference ∆p depends on the surface tension page THE PHYSICS OF GRANULAR MEDIA: STATE OF THE ART of fluid γ f and on the radius of curvature of the capillary bridge r 0 , ∆p = -2γ f r 0 .

Figure 2 . 8 :

 28 Figure 2.8: A rigid sphere and a rigid plane separated by a viscous fluid. The fluid is squeezed out radially when the sphere approaches the plane.
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 432 Figure 2.9: (a) Normalized radial velocity, (b) normalized shear rate and (c) normalized hydrodynamic pressure distribution as a function of the normalized radial coordinate r/ √ 2Rh 0 .Here, h 0 is the minimal distance between the sphere and the plane and R is the radius of the sphere.
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 4 MICROSCOPIC SCALE: WET CONTACT MECHANICS the plane; the experiments and analysis have been performed in the linear regime of small deformation, h 0A << D.

Figure 2 . 10 :

 210 Figure 2.10: Elastic sphere oscillating in front of an elastic substrate, both are separated by an interstitial viscous fluid [26].
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 452 THE PHYSICS OF GRANULAR MEDIA: STATE OF THE ART where D c = 8R (µω/E) 2/3

  Figure 2.11: Normalized mechanical impedance Z (κ ω in our notations) as a function of the normalized separation distance D. The elastic part is shown in blue and the viscous part is shown in red [81]. D c is the critical distance, ω is the angular frequency, R is the radius of sphere and η is the viscosity.

  (a) Experimental setup (b) Force distribution

Figure 2 .

 2 Figure 2.12: (a) The experimental setup where a granular medium is enclosed in a cylinder and compressed by an upper piston. By analyzing the marks on a carbon paper, one can determines the force distribution. By placing a double stick tape on the upper piston and by estimating the net weight supported by the tow walls, (b) one measures the force distribution P (f ) in the lower piston, upper piston and in the wall of the cylinder [83]; here f is the normalized force.

Figure 2 . 13 :

 213 Figure 2.13: Photoelastic pictures of the heterogeneous force chains which support most of the load in compressed granular media. (a) The media is either submitted to a point force [89] or (b) under shear stress [87]. (c) Numerical simulations showing the network of normal forces in polydisperes granular media [88].

Figure 2 .

 2 Figure 2.14: (top-left) Experimental setup used to study wave propagation in granular media where S is the source (a loudspeaker), D is the detector (an accelerometer) and L d is the distance between S and D [3-5]. (right) Response of the samples as a function of time τ for different distance L d between the source and the detector [3]. (bottom-left)A compact heater H is placed inside the granular media[START_REF] Liu | Sound in sand[END_REF], in between the source and the detector: it expands when its temperature is increased. The magnitude A d of the transmitted acceleration is closely related to the cycles of temperature of the heater: the dilation of the heater generates additional force chains and consequently, a stronger coupling between the source and the detector.
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 512 THE PHYSICS OF GRANULAR MEDIA: STATE OF THE ARTThe analysis of the speckle coming from the multiple scattering of the wave on every grain provides a very rich information and allows reaching a deeper understanding of many mechanisms at the microscopic scale. The coda wave for instance gives information on the nonlinearity of granular media[START_REF] Tournat | Nonlinear effects for coda-type elastic waves in stressed granular media[END_REF] and reveals phenomena such as aging, compaction and even slipping of the microscopic asperities of the grains[START_REF] Jia | Elastic weakening of a dense granular pack by acoustic fluidization: Slipping, compaction, and aging[END_REF][START_REF] Kiesgen De Richter | Experimental evidence of ageing and slow restoration of the weakcontact configuration in tilted 3D granular packings[END_REF][START_REF] Espindola | Ultrasound induces aging in granular materials[END_REF][START_REF] Inserra | Characterization of granular compaction by nonlinear acoustic resonance method[END_REF].

Figure 2 .

 2 Figure 2.15: Inset (a), an experimental setup [6] for probing wave propagation in granular media made of glass beads. (a,b) The detected signals where one sees the coherent part E and the multiply scattered part S of the signal. Results for glass bead packing with diameter d = 0.2 -0.3 mm (a) and with diameter d = 0.4 -0.5 mm (b), R is the reflected signal and A is the amplitude.
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 86 Figure 2.16: One-dimensional force chain of spheres with radius R 0 connected by springs k H under static compression F 0 .
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 5 MACROSCOPIC SCALE: WAVES IN DRY AND WET GRANULAR MEDIAprediction with the confinement pressure, n K > 1/3. Makse related this discrepancy to an increase of the coordination number[START_REF] Makse | Granular packings: Nonlinear elasticity, sound propagation, and collective relaxation dynamics[END_REF], i.e. an increase of the overall number of contact, at strong confinement pressure. Things are different for the shear modulus: first, the EMT largely overestimates the magnitude A µ of the shear modulus and second, it significantly underestimate the exponent n µ : the shear modulus increases with the confinement pressure faster than predicted. For instance, molecular dynamic simulations shows that n µ 2/3 with frictionless particles at very low confinement pressure. The failure of the EMT relies on the nonaffine motion of the grains under shear, due to relaxation mechanisms related to structural disorder, see Fig.2.17(b). The breakdown becomes dramatic near the unjamming point[START_REF] O'hern | Jamming at zero temperature and zero applied stress: The epitome of disorder[END_REF], where a granular medium lose any rigidity and below which the sample would start to flow at infinitely small confinement pressure.

Figure 2 .

 2 Figure 2.17: (a) Evolution of the longitudinal wave speed V p speed as a function of the confinement pressure P . (b) The relaxation of the shear stress σ 12 : the path from points A to B indicates an affine motion while the relaxation takes place B to C.
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 572 are two type of experiments which quantifies experimentally the wave propagation in wet granular media. The first type of experiments is due to Brunet[START_REF] Brunet | Etude de milieux granulaires secs et mouillés a l'aide des ondes ultrasonores[END_REF] and later to Griffiths et al.[START_REF] Griffiths | Ultrasound propagation in wet and airless non-consolidated granular materials[END_REF]. They both focused on wave propagation in three-dimensional granular media made of polydisperse beads and they closely compared the wave speed measured in dry and wet configurations, as shown in Fig.2.18. Brunet observed two antagonist effects. One one hand, using fluids with same viscosity but different surface tensions, they observed a slower wave speed in presence of an interstitial fluid, compared to the dry case. This decrease is more pronounced with surfactant with higher surface tensions: they explained this observation by the decrease of the coordination number Z, induced by the capillary cohesion between the grains. On the other hand, using fluids with different viscosities, they observed that the waves in wet granular media are faster page THE PHYSICS OF GRANULAR MEDIA: STATE OF THE ART than in the dry configuration. One explanation given by Brunet relies with the increase of the contact stiffness: the presence of a fluid facilitates micro slips of the contacts, which in turn enables a better conformation of the surfaces in contact and an increase of the contact area between grains; the latter would thus increases the contact stiffness.

Figure 2 .

 2 Figure 2.18: (a) Wave speed as a function of confinement pressure: in purple is the Hertz-Mindlin model, in red • a dry configuration, in blue ♦ with water, in green with an oil with viscosity 50 mPas and in red with a fluid with viscosity 10 Pas [107]. (b) Averaged intensity I in dry and wet granular packings: the solid lines stands for fitted models [108].
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 585313233343536 effective radius), is negligible compared to the characteristic amplitude of the dynamic perturbations, F ex 10 N. In the experiment of Brunet[START_REF] Brunet | Etude de milieux granulaires secs et mouillés a l'aide des ondes ultrasonores[END_REF] the fluids with have a surface tension at about γ f ∼ 70 mN.m -1 and the mean radius of the spheres is R 0 350 µm. In this case, the force of adhesion is again negligible compared to the page MACROSCOPIC SCALE: WAVES IN DRY AND WET GRANULAR MEDIA static force supported by each bead, F 0 /F A ∼ 500. Presentation of the experimental setup . . . . . . . . . . . . Estimation of the characteristics of the spheres . . . . . . . 3.2.1 Elastic properties of the spheres . . . . . . . . . . . . . . . . 3.2.2 Effect of the solid friction on wave attenuation . . . . . . . . Characterization of the static loading apparatus . . . . . . . Preliminary results: observation of a band structure . . . . Preliminary analysis of the response of granular chains . . 3.6.1 Analysis of the low frequency attenuation: elasto-frictional coupling between the spheres and the supports . . . . . . . . 3.6.2 Analysis of the resonant peaks at very low frequency: spurious resonances and bending waves in the support . . . . . . . . . 3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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 31 Fig. 3.2(a). The second force sensor, on the output side, is a commercial sensor (Bruel & Kjaer 8230-001) placed in front of the static force apparatus and in contact with the last sphere, see Fig. 3.2(b). In addition, a static force sensor (TME F-442) is placed on the output side, in between the dynamic force sensor and the tray, see Fig. 3.2(b): it provides the direct reading of the static force applied on the chain.

Figure 3 . 1 : 61 CHAPTER 3 .Figure 3 . 2 :

 3161332 Figure 3.1: Experimental setup, here consisting of 32 identical polyacetal spheres aligned on four plexiglas rods.

Figure 3 . 3 : 62 3. 2 .Figure 3 . 4 :

 3362234 Figure 3.3: Ultrasonic measurements in a slabs of material cut from an original polyacetal sphere placed between two longitudinal transducers (left) or between two shear transducers (right). Both experiments are performed in transmission mode.
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 363335 Figure 3.5: Natural logarithm of the modulus of the transfer function versus frequency. The loss angle estimated from Eq. 3.8 near the central frequency (here around 2.25 MHz) of the transducer is shown in red.

Figure 3 . 6 :

 36 Figure 3.6: An alignment of particles with mass M and radius R 0 interacting via an elastic potential with stiffness k H . The particles are pressed against the ground with a force F R , for instance the weight of each particle, and interact with the ground via a Coulomb's coefficient of friction µ s .

. 15 ) 16 ) 66 3. 3 . 3 . 3 Figure 3 . 7 :

 15166633337 Figure 3.7: Experimental setup. (left) Embedded dynamic force sensor: a piezoelectric ceramic is glued between two caps cut from a 25 mm in diameter polyacetal sphere. (right) The sphere with embedded sensor can replace any particle in an alignment and allows precise measurement of the dynamic force as a function of time and position in the chain.
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 67338 Figure 3.8: Transfer function H(ω) = F emb /F ref between the signals acquired by the embedded sensor and the reference dynamic force sensor F ref , where F ref = F in is the dynamic force sensor in front of the piezoelectric actuator (the blue curve) and F ref = F out is the dynamic force sensor on the output side (the red curve). Results are shown in modulus (a) and in phase (b) as a function of frequency.
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 68439 Figure 3.9: Relative decay of the static force F 0 measured as a function of time t. (a) Protocol 1A: temporal evolution of the static force from set points 10 N, 20 N, 30 N and 40 N in red, green, blue and dark respectively. (b) Protocol 1B: temporal evolution of the static force at 20 N after having waited 1 min, 2 min, 3 min 4 min and 5 min in red, green, blue, dark and magenta respectively at the static force of 40 N. Here, the system is not excited by a dynamic signal.

page 69 CHAPTER 3 .Figure 3 . 10 :

 693310 Figure 3.10: Relative decay of the static force F 0 measured as a function of time t. (a) Protocol 2A: temporal evolution of the static force from set points 10 N, 20 N, 30 N and 40 N in red, green, blue and dark respectively. (b) Protocol 2B: temporal evolution of the static force at 20 N after having waited 1 min, 2 min, 3 min 4 min and 5 min in red, green, blue, dark and magenta respectively at the static force of 40 N. Here, the system is intermittently excited by a broad frequency range chirp with a rather large amplitude.
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 5311 Figure 3.11: Relative decay of the static force as a function of time t with experimental protocol C, for a 20 N static force and during 5 min. In red, the response without solicitation (protocol 1C), in blue the response with solicitation (protocol 2C).
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 713 Figure 3.12: Modulus of the transfer function between the force measured at the beginning F in and at the end F out of the chain as a function of frequency. Different colors correspond to different applied static forces F 0 . Here, the spheres are in polyacetal and the rods are in plexiglas.

Finally, by focusing 72 3. 6 . 3 . 6 Preliminary analysis of the response of granular chains 3 . 6 . 1

 72636361 on the low frequency region, around 1-2 kHz, one distinguishes a slight attenuation of the transmitted signal. At even lower frequency, around 0.1-0.5 kHz one also remarks peaks of transmission and possibly resonances. These two phenomena are not predicted by the model derived in Eq. 2.91. In the following sections and chapters, we focus our attention on the identification of the observations at low frequency, below 2 kHz.page PRELIMINARY ANALYSIS OF THE RESPONSE OF GRANULAR CHAINS Analysis of the low frequency attenuation: elasto-frictional coupling between the spheres and the supportsAt first, we focus on the source of attenuation encountered in the low frequency range between 1 kHz and 2 kHz, where a cutoff frequency appears in the transfer function. Here and in the following, we denote this low frequency cutoff as f 0 . Interestingly, f 0 depends on the static force F 0 . As to quantify this behavior in more details, we performed experiments within different configurations corresponding to different combinations of materials of the spheres (polyacetal or steel) and of the supporting rods (plexiglas or steel). Here, the frequency response of all alignments are achieved by using the same chirp signal and the same range of static forces as in Sec. 3.5.The results for each configurations are presented in Fig.3.13. The Fig.3.13(a) corresponds to the transfer functions at different static forces in an alignment of polyacetal spheres clamped between four plexiglas rods, the Fig.3.13(b) is for polyacetal spheres with steel rods and the Fig.3.13(c) stands for steel spheres with steel supports.
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 733313746314753 Figure 3.13: Modulus of the transfer function, for dry chain between the output signal F out and input signal F in as a function of frequency; different colors show different static force applied F 0 ranging from 5 N to 40 N every 5 N. (a) The results for configuration with polyacetal spheres and plexiglas supports, (b) polyacetal spheres and steel supports and (c) steel spheres and steel supports.
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 313 Possible sources of these observations may result from resonances of the experimental setup. As to identify these sources, we ruled out any possible contributions, starting from the resonances of the table on which stands the setup, resonances of individual mechanical parts of the setup (mainly the apparatus used to apply the static force) or resonances of the rods.

Figure 3 .

 3 Figure 3.15: (a) Power spectral density of the force measured with an impact hammer while kicking the table on which stands the setup. (b) Acceleration γ measured by an accelerometer glued on a side of the table. (b) The different colors show different experimental conditions: in blue the hammer kicks the table as is, in red a 40 kg mass is set on top of the table and in yellow the table is firmly constrained against a wall. The inset shows a sketch of the experiment (b).

Figure 3 . 16 :

 316 Figure 3.16: Modulus of the transfer function between the acceleration γ captured by an accelerometer glued on the static force sensor and the force F recorded by an impact hammer. One can observe resonances near 280 Hz and 470 Hz and anti-resonance near 380 Hz (see inside the black circle). Inside the red circle, resonances are observed in the 1-5 kHz frequency region. In inset, a sketch showing the experimental configuration.
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 773 Figure 3.17: Modulus of the transfer function between the signal measured at the beginning F in and at the end F out of the chain as a function of frequency, under 20 N static compression. Here, the configuration is an alignment of polyacetal spheres on steel rods. Red lines indicate the values of the resonant frequencies measured in Fig. 3.16
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 318 Figure 3.18: Effective stiffness k E of the end extremity, as the ratio between the force F measured by the impact hammer and the displacement δ 0 measured from the accelerometer. The red line (resp. the green line) indicates the typical stiffness k H between two steel spheres (resp. between two polyacetal spheres).
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 20793232180320 Figure 3.19: Modulus of the transfer function between the input force F in and the output force F out measured for 20 N (blue) and for 40 N (red) static compression. The green curve represents the transfer function between the radial acceleration γ r of a supporting cylinder and the axial input force F in . The black vertical lines indicate the resonant frequencies found experimentally at about 22.5, 42.8, 69, 128.6, 184.8 and 246.4 Hz.
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 8134142 ONE-DIMENSIONAL EXPERIMENTAL SETUP the aligning rods. These interactions likely induce an elastic on-site potential between the particles and their supports, as demonstrated in the next chapter. One of the pitfalls of the coupling between the particles and their supports is related to the fact that it generates transverse deformations of the rods that ultimately lead to the propagation of spurious bending waves along them. However, the strongest effects of the bending modes in the rods are mostly concentrated at low frequency. Having undertaken this study, one can now tackle a detailed experimental analysis on wave propagation in dry granular media, as presented in the next chapter. Wave propagation in 1D alignments of spheres . . . . . . . 4.1.1 Zero frequency band gap and cutoff frequencies . . . . . . . . 4.1.2 Theoretical dispersion relation with on-site potential . . . . . 4.1.3 Long wavelength speed and attenuation estimations . . . . . 4.1.4 Measurement method of the wave speed and the loss factor . 4.1.5 Experimental values of the wave speed and the loss factor . . Full dispersion relation with an on-site potential . . . . . . 4.2.1 Experimental method and protocol . . . . . . . . . . . . . . . 4.2.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4 . 1 :

 41 Figure 4.1: One-dimensional chain of spheres with mass M under static compression F 0 interacting via a Hertzian contact stiffness k H , with an additional stiffness k 0 which quantifies the interaction of the spheres with the support.

Figure 4 . 2 :

 42 Figure 4.2: (a) Spheres with radius R 0 , weight M g and clearance ∆ under compression F 0 . (b) Axial view, where F y is the projection of F 0 and F r is the radial force.
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 854 WAVES IN DRY 1D GRANULAR MEDIA alignment of spheres. Considering a clearance ∆ between the diameter of the spheres and the distance between two cylinders, see Fig.4.2, the alignment can indeed naturally buckles when it is set under static compression. The origin of the clearance comes from the machining of the spacers, made of plexiglas, that maintain the four cylinders in place, as shown in Fig.3.1 and in Fig.3.2. We checked that the clearance is about ∆ 0.5 mm at the most. From a geometrical consideration, see Fig.4.2, the radial force is either the projection of the static force F 0 exerted in the axial direction of the alignment,

  4 and Eq. 4.8 with the experimental observations shown in Sec. 3.6, see for instance the Fig. 3.14. As to estimate f 0 , we indeed used different combinations involving polyacetal or steel spheres and plexiglas or steel rods. For the estimations of f 0 , we consider a Young's modulus E c = 3.3 GPa, a Poisson ratio ν c = 0.3 and a radius R c = 5 mm for the plexiglas cylinders, while the Young's modulus of steel cylinders if assumed at E c = 190 GPa.
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 86143874 Figure 4.3: Lower and upper cutoff frequencies, f min and f max , as a function of the static force in the axial direction. (a) Configuration with polyacetal spheres and plexiglas supports, (b) polyacetal spheres with steel supports and (c) steel spheres with steel supports. Blue lines represent Eq. 4.6 and Eq. 4.7 and red dots are the experimental data extracted from Fig. 3.13 and shown in Fig. 3.14.
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 44 Figure 4.4: (a) Theoretical dispersion relation, where (q) is the real part of the wave number and R 0 is the sphere radius, (b) modulus of the transfer function. Here the results are estimated for polyacetal spheres under a 20 N static compression. The spheres are supported by four 1 m long rods with Young's Modulus of E s 0.1 GPa (red curves) and with E s 200 GPa (blue curves).

Figure 4 . 5 :

 45 Figure 4.5: (a) Measured dispersion relation for polyacetal spheres with steel support and F 0 = 20 N, in response to chirp excitation. (q) is the real part of the wave number and R 0 is the radius of the spheres. (b) Coherency between the output and input signals.

page 91 CHAPTER 4 .Figure 4 . 6 :

 91446 Figure 4.6: Example of the experimental method. (a) Magnitude |H| of the experimental transfer function H(ω) = F out /F in versus frequency, is shown in blue; the black curve represents the Fourier transform of the analytic input wavepacket (b) convolved by the experimental transfer function. Temporal representation of (b) the analytic input wavepacket and (c) output force convolved by the experimental transfer function. All data are shown for an F 0 = 5 N static force. Here, the analytic wavepacket is a gaussian pulse centered at f c = 2.2 kHz with bandwidth 0.2. The red stars indicate the maximum of the envelopes.

Figure 4 . 7 :

 47 Figure 4.7: (a) Input signal measured at the beginning of the chain F in (t) = F pulse (x = 0, t). (b) Output signal measured as the response of gaussian pulse excitation F g out (t) (black curve) and as the convolution of the input (a) with the experimental transfer function measured from the response of broadband chirp excitation F out (t) = F pulse (x = L, t) (red curve, see the details of the method in Sec. 4.1.4).
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 934 Figure 4.8: (a) Theoretical dispersion relation for polyacetal spheres with steel support under F 0 = 20 N static force. From (a), one estimate the theoretical group velocity as the average slope over the frequency range indicated in red. (b) Experimental (blue dots) group velocity, c g , at central frequency f c = (f max (F 0 ) + f min (F 0 ))/2.

Figure 4 . 9 : 94 4. 2 .

 49942 Figure 4.9: Experimental loss factor η (blue dots) versus estimation from Eq. 4.19 (red line) as a function of the static force.
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 414 Still, despite the satisfactory agreement found between the measured and the estimated group velocity and loss factor deep inside the pass band, as shown in Sec. 4.1.5, the details of the dispersion relation near the cutoff frequencies remains unclear. Here, we aim at providing a deeper inspection of the dispersion relation, by probing waves as they propagate inside our alignments or particles.
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 410962 Figure 4.10: Dispersion relation K th , the dashed line is Eq. 4.11. Here the simulations and the analytic estimation are performed for polyacetal spheres with steel rods under F 0 = 20 N static compression.

Figure 4 .

 4 Figure 4.11: (a,c) 40 realizations of the transfer function H(ω) = F out /F in between the signals measured at the beginning F in and at the end F out of the alignment, as a function of frequency; (a) is at 20 N static compression and (c) at 40 N. (b,d) Average magnitude |H| over the 40 realizations at 20 N and 40 N, respectively.
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 4974982 Figure 4.12: (a,c) Modulus of the transfer function measured by the embedded sensor for 20 N and 40 N respectively. (b,d) Dispersion relation reconstructed from the embedded sensor for 20 N and 40 N, respectively. The black vertical lines in (a) and (c) shows the minimal f min and maximal frequency f max , which stems from the fit of the dispersion relation, see the black lines in (b) and (d). Red lines in (b) and (d) stands for the dispersion relation of bending waves. Here, (q) is the real part of the wavenumber and R 0 is the radius of the spheres.

  .31) F env pulse (x, t) = |FT -1 t [F pulse (x, t)]|. (4.32) Here, the central frequency of the incident pulse F pulse (0, t) matches the central frequency of the pass band, (f min + f max )/2 3.25 kHz. The Fig. 4.13(a) actually shows the dynamic force oscillations as a function of position and time: this type of plot provides a direct and non-biased observation of the phase velocity, from the slope of the red and the blue parallel beams that unravel the compression and the depletion phases of the wave, respectively. Instead, the plot of the envelop of the deconvolved pulse, see Eq. 4.26, provides a direct visualization of the group velocity as the speed of the maximum of the wavepacket, as shown in Fig. 4.13(b). A quick estimation indicates that the phase velocity is here about c φ 330 m/s while the group velocity is about c g 250 m/s.
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 994 Figure 4.13: (a) Output signal F pulse (x, t) deconvolved from the transfer function measured at each position inside the alignment and as a function of time. (b) Envelope of the pulse F env pulse (x, t) as a function of time and position. Both results obtained by the method given by Eq. 4.31 and Eq. 4.32 while considering an input wavepacket centered at 3.25 kHz and bandwidth 0.3, at F 0 = 40 N static force.
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  5.1(a). Due to capillary forces F cap , see Sec. 2.4.1, the fluid remains at the contact between spheres, see Fig. 5.1(b), as long as the weight of the droplet remains negligible, mg < F cap . Here, we use Rhodorsil fluid [111] with viscosity µ equals to 0.1, 0.2, 0.5, 1, 5 and 10 Pas.

Figure 5 . 1 : 102 5. 2 .

 511022 Figure 5.1: (a) Small quantity of viscous fluid (Rhodorsil 47V) is poured between each sphere in contact. (b) A viscous meniscus of fluid shown between two polyacetal spheres.

  5.2(b) wet system tends to present cutoff frequency characteristic for the dry chain, see Fig. 5.2(a), while for low static force applied H decreases with frequency. Next, we trace the temporal representations of a gaussian pulses F pulse (x = L, t) as a function of viscosity and for compression of 5 N in Fig. 5.3 while the compression is 40 N in Fig. 5.4. As comparison in Figs. 5.3(a),5.4(a) we trace F pulse (x = L, t) estimated in dry chain. Here one clearly see that wave propagates faster in wet case when compared to dry case Figs. 5.3(a),5.4(a), signals arrives faster. One observes in addition that c g increase with viscosity. Additionally signals in wet chain are more attenuated when compared to dry case.

Figure 5 . 2 :

 52 Figure 5.2: Magnitude |H| of the transfer function H = F out /F in versus frequency. (a) In the dry case for different static force F 0 . (b) In the wet case as a function of F 0 for viscosity µ = 10 Pas.(c) In the wet case at F 0 = 5 N, but for viscosity of 0.1, 0.2, 0.5, 1, 5 and 10 Pas, shown respectively in green, blue, magenta, red, light blue and cyan curves.

Figure 5 . 4 :

 54 Figure 5.4: (a) Output deconvolved wavepacket F pulse (x = L, t) in the dry media. In (b), (c), (d), (e), (f) and (g): output signals for wet media for viscosity of µ = 0.1, 0.2, 0.5, 1, 5 and 10 Pas; Here the static force is F 0 = 40 N. The wavepackets are centered at f c = 3.2 kHz.

CHAPTER 5 .Figure 5 . 6 :

 556 Figure 5.6: Sketch of the contact region between two compressed wet spheres. Here, a d is the extent of the dry contact while a w indicates the extent of the hydrodynamic field in the fluid. Such a framework is compatible with the one given by Marshall [63].

  5.5, one natural choice is to consider a non-dimensional parameter defined as µω/P as the control parameter. The plot is shown in Fig. 5.7. Not surprisingly, all the data shown in Fig. 5.5(a) appear to collapse in a single master curve. A deeper inspection shows that the group velocity ratio increases as a power law of the nonpage 108 5.2. CONTACT MODEL BETWEEN LOADED WET SPHERES dimensional parameter, [(c w /c d ) 2 -1] ∝ (µω/P ) 1/3 . Interestingly, the exponent 1/3 appears compatible with the models presented in Sec. 2.4.

Figure 5 . 7 :

 57 Figure 5.7: Ratio between the group velocity in the wet case c w and the dry case c d traced as a function of the viscosity µ, angular frequency ω and confinement pressure P = F 0 /πR 2 0 . The experimental data are traced for all static forces F 0 , viscosity µ and central frequencies f c , f c1 and f c2 . The black line is a guide line indicating a power law with and exponent 1/3.
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 1095 with viscosity µ stands right at the contact. Under the static compression, the fluid escapes the central region of the contact where the particles touches. This central region is a disk with radius a d , see the sketch shown in Fig.5.6. However, it stands to reason that some fluid may be trapped within the asperities and the roughness of the spheres, page WAVES IN WET 1D GRANULAR MEDIA

  2.4.4 and Sec. 2.4.5: both elastic solids deform upon the action of the hydrodynamic pressure generated by the very large viscous shear and stress near the geometrical singularity, at the edge of the disk of solid contact.
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 5 Figure 5.8: (a) Ratio between the group velocity in the wet case c w and in the dry case c d ; the experimental data are traced in blue dots. (b) Difference between loss factor in the wet case η w and in the dry case η d ; the experimental data are traced in red dots. In both cases, the data are represented as a function of viscosity µ, angular frequency ω and confinement pressure P = F 0 /πR 2 0 . Experimental data are traced for all static forces F 0 , viscosity µ and central frequencies f c , f c1 and f c2 . The black line represents the theoretical estimations from Eq. 5.19 and Eq. 5.20.
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 1135 Figure 5.9: (a,b) Dispersion relation unraveled by the use of the embedded sensor in the dry and the wet cases, respectively. Here, the fluid viscosity is µ = 1 Pa.s.(c,d) Modulus of the transfer function measured by the embedded sensor in the dry and the wet cases, respectively. Here, the static compression is 20 N and (q) is the real part of the wave number and R 0 is the radius of the spheres.

Figure 5 . 10 :

 510 Figure 5.10: Envelope of the wavepacket deconvolved from the response to a chirp excitation, as a function of position of the embedded sensor and time: (a) in a dry chain and (b) with an interstitial fluid with 1 Pas viscosity. Here, the alignments are both under a 20 N compression.

Figure 5 . 11 :

 511 Figure 5.11: Evolution of the attenuation max[F e p (x, t)]/ max[F e p (x = 0, t)] as a function of the position x = 2nR inside the chain; experimental results are shown in red dots and the the black line stands for the Eq. 5.21. (a) Dry chain of spheres and in (b,c,d) wet chains of spheres with interstitial fluid with viscosity of 1 Pas, 5 Pas and 10 Pas, respectively. Here, the alignments are both under a 20 N compression.
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 61611196 Figure 6.1: A five layers thick three-dimensional granular medium filled with 2 mm in diameter polyacetal spheres. A plane wave ultrasonic emitter is placed on the bottom of the sample and the receiver is fixed on the upper movable cap. The confinement pressure is exerted by placing different mass on the upper cylindrical part.

Figure 6 . 2 :

 62 Figure 6.2: A plane wave scattered by a sphere.
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 62 Experimental ultrasonic waves in 3D granular mediaAfter having tackled the theoretical descriptions, we here focus on the experimental setup. We probe wave propagation in three-dimensional granular media made of polyacetal spheres with Young's modulus E 0 = 4.25 GPa and Poisson coefficient ν 0 = 0.38. Here, the grains have a diameter D S = 2 mm and are enclosed in a cylindrical container with radius R c = 4 cm, see Fig. 6.3(a). The whole system is clamped between two steel cylinders; by placing different weight on the top cylinder cap, one changes the confinement pressure P = (m + M )g/πR 2 c

Figure 6 . 3 :

 63 Figure 6.3: Sketch of the two experimental setups used to characterize ultrasonic wave propagation in granular media.(a) The emitter is connected to a pulser which drives the sample with a short broadband impulsion. (b) The emitter is connected to an arbitrary wave generator and an amplifier, which drive the medium with a long duration chirp.

- 1 inFigure 6 . 4 :

 164 Figure 6.4: Example of signals propagating through (a) three and (b) five layers of polyacetal spheres. Black stars show the maximum of the envelope.

Figure 6 . 5 :Figure 6 . 6 :

 6566 Figure 6.5: Example of Fourier transform of signals propagating through three (red curve) and five (blue curve) layers of polyacetal spheres.

Figure 6 . 7 :Figure 6 . 8 :

 6768 Figure 6.7: Maximum of the envelope of the transmitted pulses A max as a function of the sample thickness e (number of layers). Red circles are experimental results in the dry case and blue squares are experimental results in the wet case. Here, the input signal has a low amplitude. The red and blue straight lines are best fits in the wet and dry cases, respectively.

Figure 6 . 9 :

 69 Figure 6.9: Maximum of the envelope of transmitted pulses A max as a function of the sample thickness e (number of layers). The red circles are experimental results in the dry case and the blue squares are experimental results in the wet case. Here, the input signal has a high amplitude.

  3(b). The wave propagated through the granular media is then sensed by the receiving transducer and then amplified by a conditioner (Sofranel 5072PR), before being fed to the oscilloscope (Teledyne Lecroy HD0 4024). With the arbitrary waveform generator, one can drive the system with any type of signals. For this particular study we use a very long, 1 ms in duration, chirp covering a broad frequency range around 0.5 MHz, from 0.1 MHz to 0.9 MHz, see Fig.6.10. The chirp is weighted by a hanning window. This very long signal is then post-processed as follows. One can estimate the cross correlation of the acquired voltage V acq (t) with the driving voltage reference V ref (t) sent by the arbitrary wave generator. This procedure provides a very short impulse response x out (t),x out (t) = V acq (t) ⊗ V ref (-t),(6.25)where ⊗ denotes the convolution product. The result of the cross correlation of the driving voltage acquired by the oscilloscope V acq (t) with the reference voltage V ref (t) is shown in Fig.6.10(c). The result of the cross correlation depends on the window used to weight the chirp, here a hanning window. Without windowing, Eq. 6.25 would have produced a delta Dirac function. When windowing the chirp, owing to the very long acquisition, one obtains a very well defined short pulse with a signal to noise ratio close to 100 dB. The hanning window is here used to adapt the spectrum of the driving voltage to the finite bandwidth of the frequency response of the transducers.
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 6 Figure 6.10: (a) Temporal representation of a signal generated by the arbitrary wave generator V ref (Agilent 33500B). (b) Modulus of the Fourier transform of (a). (c) Cross-correlation x out (t) between the reference signal V ref (-t) and the signal transmitted through the sample V acq (t).

  Figure 6.11: (a,b) Signals propagating through two x out 2 and three x out 3 layers of dry granular media, respectively.

Figure 6 . 12 :

 612 Figure 6.12: Fourier transform of the signals propagating through two x out

  Figure 6.13: (a,b) Signals propagating through two x out 2 and three x out 3 layers of wet granular media, respectively. The signals are not filtered.

Figure 6 . 14 : 2 and three x out 3 layers

 61423 Figure 6.14: Fourier transform of the signals propagating through two x out 2 and three x out 3 layers of wet granular media, in red and blue respectively. The signals are not filtered.

Figure 6 . 16 :

 616 Figure 6.16: Fourier transform of the signals propagating through two x out

  granular media, in red and blue respectively. The signals are here filtered with a gaussian filter centered at 0.5 Mhz and with a bandwidth equal to 0.15. page 133 CHAPTER 6. WAVES IN 3D GRANULAR PACKING The lower magnitude of the transmitted signals, due to the slightly larger attenuation, make the signals more affected by spurious contributions; for sake of clarity, we clean these data by filtering out the frequency content with a gaussian filter centered on f = 0.5 MHz and bandwidth bw = 0.15. The filtered data are shown in Fig. 6.15 and in Fig. 6.16.
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 6 23, the overall attenuation lengths in the dry case and in the wet cases are l th d = 0.8 mm, (6.35) WAVES IN 3D GRANULAR PACKING

  

  

  

  

  

  

  

  

  

  

  

  

  

  

page 25 Chapter 2 The Physics of granular media: state of the art Contents 2.1 Granular media: from phononic crystals to metamaterials . 2.2 The complexity of granular media . . . . . . . . . . . . . . . 2.3 Microscopic scale: dry contact mechanics . . . . . . . . . . .

  Contrairement aux milieux continus, où la vitesse des ondes dépend de l'élasticité et de la densité intrinsèque du matériau, la vitesse des ondes dans les milieux granulaires dépend de la raideur des contact entre grains, de leur masse, mais également du nombre de contacts par grain (le nombre de coordinance), de leur compacité et de la précontrainte statique qui leur est appliquée[START_REF] Mavko | The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media[END_REF][START_REF] Makse | Granular packings: Nonlinear elasticity, sound propagation, and collective relaxation dynamics[END_REF][START_REF] Domenico | Elastic properties of unconsolidated porous sand reservoirs[END_REF]. Dans le

	CHAPTER 1. CONTEXT AND CONTENT OF THE MANUSCRIPT
	milieux granulaires 3D. Nous montrons ici que la théorie du milieu effectif combinée à alignement de sphères en polyacétal posées sur des supports en acier et soumis à une avec les prédictions données par le modèle de milieu effectif [8,9]. La configuration mouil-
	la description élasto-hydrodynamique du contact entre grains reproduit fidèlement les charge statique de 20 N ou de 40 N. Les résultats expérimentaux montrent clairement lée est obtenue en mélangeant une petite quantité de fluide aux grains. Dans ce cas, nos
	caractéristiques des ondes transmises. Nos résultats contribuent donc à une meilleure la génération de deux bandes interdites, à basse et haute fréquences, séparées par une mesures et notre analyse montre qu'une correction du modèle de milieu effectif prenant
	compréhension de la propagation des ondes dans les milieux granulaires humides réels. bande passante; ces mesures révèlent également une trace de la relation de dispersion des en compte le comportement élasto-hydrodynamique des contacts mouillés, tel que déduit
	Nous présentons dans la suite un résumé détaillé de la thèse de doctorat. ondes de flexion qui se propagent dans les supports. A 20 N, les fréquences de coupure des mesures dans un milieu granulaire 1D, reproduit fidèlement à la fois la vitesse de
	Dans le chapitre deux, nous présentons les principales caractéristiques et les différents haute et basse sont d'environ 1450 Hz et 4100 Hz, respectivement, alors que l'estimation l'onde mesurée et l'atténuation à basses fréquences. Nous présentons également des ex-
	mécanismes qui régissent les milieux granulaires. Nous nous attachons en particulier à théorique indique des valeurs de 1440 Hz et 4120 Hz, respectivement. A 40 N, nous trou-périences à plus hautes fréquences; ici la longueur d'onde atteint la taille des particules
	décrire la dynamique des contacts entre grains secs et humides. Ensuite, nous exposons vons des fréquences de coupure de 1800 Hz et 4700 Hz expérimentalement et de 1620 Hz et l'atténuation due à la diffusion multiple des ondes devient dominant.
	des résultats expérimentaux préliminaires concernant la propagation des ondes dans les et 4620 Hz en théorie. Qualitativement et quantitativement, la relation de dispersion
	milieux granulaires secs et humides. A la fin du chapitre, nous exposons les défis que mesurée correspond donc bien à la description théorique, avec une grande précision. Les
	soulève la description fine de la propagation des ondes dans un milieu granulaire humide. résultats présentés dans ce chapitre constituent donc un cadre solide et la description des
	Dans le chapitre trois, nous menons une étude expérimentale détaillée dans des chaînes milieux secs sert de référence fiable pour le reste de l'étude.
	granulaires de sphères sèches. Premièrement, à partir de mesures ultrasonores, nous Dans le chapitre cinq, nous nous intéressons à la propagation des ondes dans un milieu
	mesurons les caractéristiques intrinsèques des matériaux dont sont constituées nos sphères granulaire 1D mouillé; on place une goutte de fluide visqueux entre chaque sphère; les
	(module d'Young, coefficient de Poisson et densité). Ensuite, nous effectuons une mesure sphères sont en polyacétal et elles sont disposée entre quatre tiges d'acier. Nous effectuons
	des expériences concernant la propagation d'ondes dans les milieux granulaires secs et de la fonction de transfert en transmission au travers d'un alignement de particules. des expériences pour une large gamme de charge statique, de viscosité et de fréquence.
	humides [10], où les auteurs ont observé deux effets antagonistes. D'une part, en utilisant Ces mesures montrent la présence d'une fréquence de coupure en dessous de laquelle Dans chaque cas, nous quantifions à la fois la vitesse de groupe et l'atténuation. Nos résul-
	des fluides de tension de surfaces différentes et de même viscosité, il a été observé une des ondes se propagent et au-dessus de laquelle ne subsistent que des ondes évanescentes. tats montrent que le comportement dynamique de nos échantillons dépend de l'interaction
	diminution de la vitesse de l'onde par rapport au sec. Ce fait est associé à une diminution L'alignement de sphères correspond en effet à un cristal phononique et l'observation de la entre les particules élastiques via le fluide visqueux. Nous modélisons l'impédance mé-
	du nombre de coordinance. D'autre part, l'utilisation du fluide de même tension de fréquence de coupure est compatible avec l'existence d'une bande interdite aux longueurs canique entre deux particules comme la contribution de deux effets. Le premier vient
	surface et de viscosités différentes, a permis de mettre en évidence une augmentation de d'ondes inférieures à la taille de la maille élémentaire du réseau. Nos mesures mettent d'une contribution élastique décrit par le potentiel de Hertz qui provient de la partie cen-2.3.1 Hertz contact between two spheres: geometrical derivation . .
	la vitesse de propagation, attribuée à une augmentation de la raideur de contact due également en évidence deux phénomènes qui ne sont en revanche pas prédits. Le premier trale des contacts sous précontrainte statique. La rigidité de cette région est de la forme 2.3.2 Hertz contact between two spheres: exact derivation . . . . .
	à une augmentation de la surface de contact entre particules rugueuses, lorsque celles-concerne des pics de résonance à basses fréquences et le deuxième montre l'existence k H ∝ ER(P/E) 1/3 , où R est le rayon des sphères, E est le module d'Young et P est la 2.3.3 Onset of plastic deformation . . . . . . . . . . . . . . . . . .
	ci sont lubrifiées. Une stratégie pour dissocier ces deux effets antagoniste consiste à d'une bande interdite à basse fréquence. Notre analyse et des mesures complémentaires pression de confinement. Le deuxième effet provient de la contribution du fluide visqueux 2.3.4 Hertz-Mindlin contact between two spheres . . . . . . . . . .
	étudier un milieu granulaire dont le nombre de coordinance est parfaitement connu et permettent d'identifier que les pics à basse fréquence sont provoqués par la présence d'un à la périphérie du contact élastique. Une analyse attentive de la vitesse des ondes montre 2.3.5 Contact between a sphere and a cylinder . . . . . . . . . . . .
	constant [11] : c'est le cas des milieux granulaires unidimensionnels (1D), où chaque mode de flexion des supports. Ensuite, la quantification de l'évolution de la fréquence que cette contribution additionnelle engendre une impédance mécanique supplémentaire 2.3.6 Adhesive contact models between dry surfaces . . . . . . . .
	particule est en contact avec deux voisines. C'est l'approche que nous adoptons dans de coupure basse en fonction de la charge statique appliquée sur l'alignement et pour de la forme κ w ∝ ER (ωµ/E) 1/3 , où µ est la viscosité du fluide et ω est la fréquence
	ce travail : nous considérons des alignements de sphères, comme analogue des chaînes différentes combinaisons de sphères et de supports, permet de déduire que la bande angulaire. Cette expression rend compte d'un comportement élasto-hydrodynamique,
	de force dans les milieux granulaires tridimensionnels (3D), pour nous focaliser notre interdite à fréquence nulle repose sur l'existence d'un potentiel élastique locale (on-site bien décrit dans la littérature [25-28, 28], dans lequel le fluide déforme le solide en raison
	attention sur la dynamique de l'interaction entre le fluide et les particules. potential) entre les sphères et les supports : la fréquence de coupure basse ω 0 est liée à de taux de cisaillement, de contraintes visqueuses et donc de pression hydrodynamique
	Depuis une dizaine d'année, les milieux granulaires 1D suscitent l'intérêt de nombreux une raideur k 0 locale. extrêmes générés à proximité de la singularité géométrique de la zone de contact. Le
	groupes de recherche [12-24] par la richesse des propriétés non-linéaires qui les régissent Dans le chapitre quatre, nous nous concentrons sur la mesure de la relation de dis-modèle que nous proposons explique qualitativement et quantitativement nos mesures
	et par les applications potentielles qu'ils permettent d'envisager. Motivé par ces faits, persion expérimentale dans des chaines granulaires secs et sur son analyse détaillée. Un de vitesse de propagation; l'accord sur le facteur de perte reste qualitatif et le modèle
	nous avons examiné en détail, dans cette thèse, la dynamique d'alignements de partic-modèle incluant un potentiel élastique local, par l'intermédiaire d'une déformation en prévoit un ordre de grandeur satisfaisant de la dissipation.
	ules sèches et humides. Pour cela, nous sondons tout d'abord le cas de référence, des cisaillement des sphères sur leurs supports, décrit fidèlement à la fois de la basse et Dans le sixième et dernier chapitre, nous nous intéressons à la transmission d'ondes ul-
	chaînes de sphères sèches. Ici, nous observons que le couplage élasto-frictionnel entre les la haute fréquence de coupure en fonction des paramètres du modèle. A ce stade de trasonores longitudinales au travers d'empilements 3D aléatoires compacts secs ou mouil-
	grains et un substrat (les supports sur lesquels sont posés les grains) induit un potentiel l'étude, nous mesurons alors les caractéristiques des ondes, telles que la vitesse de phase, lés. Nos échantillons sont composés de quelques couches de particules millimétriques. Ces
	local, qui à son tour provoque une bande interdite à fréquence nulle: la transmission la vitesse de groupe et les longueurs d'atténuation associées au sein de la bande pas-expériences préliminaires sont réalisées avec des particules en polyacétal, sous une pres-
	des vibrations à basses fréquences sont filtrées. Ensuite nous sondons la propagation sante du réseau phononique. Pour cela, nous utilisons un capteur non intrusif embarqué sion de confinement de 5 kPa et avec un fluide de viscosité 5 Pa.s. Nous analysons
	d'ondes dans des alignements granulaires humides. Dans ce cas, nous montrons qu'une dans une bille pour accéder à l'évolution de perturbations acoustiques qui se propage le la propagation d'ondes dans la gamme des basses fréquences, dans l'approximation des
	description élastohydrodynamique combinée au potentiel de Hertz décrit avec précision long d'un alignement de particules; ce protocole nous permet de reconstruire l'intégralité grandes longueurs d'ondes, et pour différentes amplitudes d'excitation. La vitesse de
	toutes nos observations expérimentales. In fine, nous extrapolons ces observations à des de la relation de dispersion dans la bande passante. L'expérience est réalisée dans un propagation des ondes de compression que nous mesurons dans le cas sec est en accord
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sable humide, par exemple lorsque du fluide s'immisce entre les grains grâce aux forces capillaires, les propriétés acoustiques (vitesse, atténuation) peuvent être influencées de manière spectaculaire et non triviale. L'effet d'un fluide interstitiel a été montrée par
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  0A ρg) 1/3 ∼ 100 µm[START_REF] Andreotti | Les milieux granulaires[END_REF] (where A h ∼ 10 -19 J is the Hamaker coefficient and r 0A ∼ 10 -10 m is the typical distance between molecules), the van der Waals in-

		2.2. THE COMPLEXITY OF GRANULAR MEDIA
		teractions become negligible compared to the gravitational energy: the grains are non
		cohesive. Typically, grains in granular media are larger then 100 µm [43, 44].
		1/4 ∼ 1 µm (where k B is the Boltzman constant
	and T is temperature), the thermal energy k B T is negligible compared to the potential
	energy: in this limit, granular media consist in athermal systems. For grains larger than
	d	(A h /r page 28

  .[START_REF] Jacobson | Rheology and Elastohydrodynamic Lubrications[END_REF] The comparison between the classical lubrication force, Eq. 2.61, and the expression of the mechanical impedance, Eq. 2.73, shows that including an elastic deformation in the Reynolds equation, see Eqs. 2.68 and 2.69, provides a non trivial and nonlinear contribution of the force which is in phase with the deformation, see the first term in brackets in Eq. 2.73. The second term in Eq. 2.73 stands for the classical limit given by Eq. 2.61, in which no elasticity is involved.

  CHAPTER 2. THE PHYSICS OF GRANULAR MEDIA: STATE OF THE ART D c thus separates a regime where the viscosity prevails, at D D c , and a regime where the elasticity is involved, at D D c .
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, see Eq. 2.72. The critical thickness page
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  WAVE SPEED AND ATTENUATION IN 3D GRANULAR MEDIAand the longitudinal wave speed V w in the wet granular media, see Eq. 6.1, finally becomes

	6.1. V w =	K ew + 4/3µ ew ρ e	.	(6.14)
				.12)
	µ ew =	ΦZ 20πR 0	k w ,	(6.13)
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  5 mm in the dry case and λ d 11.3 mm in the wet case: in all cases, the wavelength is larger than the size page 134 6.3. ANALYSIS OF THE EXPERIMENTAL RESULTS of the spheres. We thus estimate the scattering attenuation length l s from the Rayleigh approximation, see Eq. 6.20. In this case one obtains According to Eq. 6.22 and Eq. 6.23, the attenuation lengths in dry and wet cases are

	l th s	12.5 mm,	(6.27)
	l th H	64 mm,	(6.28)
	l th ehd	11 mm.	(6.29)
	l th d	= 10.5 mm,	(6.30)
	l th w	= 5.4 mm.	(6.31)

CHAPTER 7. GENERAL CONCLUSION AND PERPECTIVES

transmission experiments in dry and wet random close packing of millimetric particles.

In the dry case, our results agree with a well-known effective medium theory (EMT) in the long wavelength approximation. The EMT model combined with an EHD mechanism fairly reproduces most of our experimental observations concerning wave speed and attenuation in wet media. As a whole, our achievements likely contribute to a better understanding of the mechanisms relying on wave propagation in dry and wet granular media.

As a perspective, more experimental and analytic studies should be undertaken to improve the estimation and the understanding of the attenuation in both one-dimensional and three-dimensional granular media, especially in the dry case. In granular alignments, the attenuation was directly correlated to the loss angle, which in turn, was quantified by the knowledge of the complex Young's modulus of the spheres. By performing experimental manipulation on the chain composed of the spheres with different bulk characteristic, one would gain a better insight in this mechanism.

In turn, in three-dimensional configurations, an additional mechanism of attenuation is due to the scattering of waves on every particles, quantified here by an independent scattering approximation. The independent scattering approximation holds for weak concentrations of scatters only. In perspective one could consider a more appropriate model to describe our experimental configuration.

Concerning the preliminary experiments performed in three-dimensional granular media, we only probed one value of viscosity and one confinement pressure; our observations are promising and analyzing the response of wet granular packing within a broader range of parameters would be necessary. Still, additional protocols to quantify the influence of the coordination number and the compacity on the wave speed and attenuation, both in dry and wet configurations would be of interest. The later could be done for instance by considering fluids with different surface tensions and over a broader range of confinement pressure.

Finally in the three dimensional media, the very last experiment have been performed at high frequency from the comparison between signals transmitted through two and three layers of particles only; considering thicker samples may also help reaching a better accuracy of the measurements. In any case, this will likely require larger excitation to overcome the very strong dissipation observed in both dry and wet configurations.