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ḣ, vz Fluid’s axial velocity [m.s−1]
vr Fluid’s radial velocity [m.s−1]
aw Typical extent of fluid’s hydrodynamic field [m]
Sw Typical area of a wet contact [m2]
γ̇s Shear rate [s−1]
τ Shear stress [Pa]

κw, kw, Zω(D) Mechanical impedance [N.m−1]
h0A Amplitude of a sphere oscillation [m]
f Frequency [Hz]
ω Angular frequency [rad.s−1]
u Deflection [m]
Dc Critical distance [m]
k Stiffness [N.m−1]
λ Damping [N.m−1.s−1]
< Real part
= Imaginary part
yn Relative displacement [m]

page 15



LIST OF SYMBOLS

ωcut Angular cutoff frequency [rad.s−1]
q, qth, qw, qd, q0 Wave number [rad.m−1]

λ, λd, λw Wave length [m]
cg, cΦ Group and phase velocity [m.s−1]
cd, cw Dry and wet wave velocity [m.s−1]
c, c0 Wave speed [m.s−1]
la Attenuation length [m]
P Confinement pressure [Pa]
Fm Amplitude of a dynamic force [N]
Vp EMT’s longitudinal wave speed [m.s−1]
Vs EMT’s shear wave speed [m.s−1]

Ke,Kew EMT’s Effective bulk modulus [Pa]
µe, µew EMT’s Effective shear modulus [Pa]
ρe EMT’s Effective density [kg.m−3]
φ Volume fraction
Z Coordination number
e Thickness of a sample [m]
uin Reference signal [V]
uout Signal measured with sample [V]
ωc Angular central frequency [rad.s−1]

H,Hth Transfer function
Φ Phase of a transfer function [rad]
cL Longitudinal wave speed [m.s−1]
cS Shear wave speed [m.s−1]
δ Loss angle [rad]
un Displacement [m]
Ci Fourier transform of an input signal
C0 Fourier transform of an output signal
C∗i Complex conjugate of a Ci
C∗0 Complex conjugate of a C0

Cii, C00 Auto-correlation of Ci and C0

Ci0 Cross-correlation between C0 and Ci
coh Coherence between input and output signal
Fr Radial component of a static force [N]
Up Potential energy [J]
Uk Kinetic energy [J]
|F̃ (n)| Amplitude of a dynamic perturbations [N]
lf Attenuation length due to a friction [m]

Fin, F (x = 0, t) Input force [N]
Fout, F (x = L, t) Output force [N]

t, t0 time [s]
γ Acceleration [m.s−2]

page 16



LIST OF SYMBOLS

zb Displacement [m]
I Second moment of a inertia [m4]
qb Wave number of a bending mode [rad.m−1]
cb Wave speed of a bending mode [m.s−1]
ωn Resonance angular frequency [rad.s−1]
γr Radial acceleration of a support [m.s−2]
ω0 Low cutoff angular frequency [rad.−1]
fmin Minimal frequency [Hz]
fmax Maximal frequency [Hz]
Fy Component in y-axis of a static force [N]
∆ Clearance [m]

η, ηd, ηw Loss factor
τa Relaxation time [s]
ηf Loss factor due to friction

Fpulse(x, t) Wave packet
F envpulse Envelope of a wave packet
FTt Fourier transform over time
FTx Fourier transform over space
FTxt Fourier transform over space and time
τg Group delay [s]

H(x, ω) Transfer function measured as a function of space and angular frequency
K(<(q), ω) Dispersion relation

ad Typical extent of a dry contact [m]
κt Mechanical impedance [N.m−1]
Vp Theoretical wave speed in dry case [m.s−1]
Vw Theoretical wave speed in wet case [m.s−1]
σT Scattering cross section [m2]
n Number of a scatterers

ls, l
th
s Attenuation length due to scattering [m]

lH , l
th
H Attenuation length in the dry case [m]

lEHD, l
th
EHD Attenuation length in the wet case [m]

ld, l
th
d Total attenuation length in the dry case [m]

lw, l
th
w Total attenuation length in the wet case [m]

Ds Diameter of a sphere [m]
Rc Radius of a container [m]
ϕ Volume fraction

page 17



Chapter 1

Context and content of the
manuscript

Context and summary

Granular materials such as the sand, for instance, are intriguing by nature: they can
behave as solids when the particles are under compression or as liquids or gases when
they flow or when submitted to external vibrations [1, 2]. The acoustic waves which
propagates via the contact networks between grains, along force chains, can serve to
probe non-intrusively these materials [3–6]. In contrast with continuous media, in which
the wave speed depends on the intrinsic elasticity and the density of the material, the
wave speed in granular media depends on the contact stiffness between particles, on their
mass, on the number of contact per grain (the coordination number), on their compacity
and on the static compression applied on the sample [7–9]. In wet sand, for instance
when a fluid settles in between grains thanks to capillary forces, the acoustic properties
(wave speed, attenuation) can be dramatically and non-trivially affected. The effect of
an interstitial fluid has been shown in experiment concerning wave propagation in the
dry and wet granular media [10], where the authors observed two antagonist effects. On
one hand, by considering fluids with different surface tensions but same viscosity, it was
observed a decrease of the wave speed in respect to the dry case. This observation was
related to a decrease of the coordination number. On the other hand, considering fluids
with same surface tension but different viscosities allowed to evidence an increase of
the wave speed, attributed to an increase of the contact stiffness related to an increase
of the contact area between rough particles, when lubrication occurs. One possible
strategy to dissociate both these effects consists in considering a granular medium whose
coordination number is known and constant [11]: this is the case for one-dimensional
(1D) granular media, in which each particle is in contact with two neighbors. This is the
approach which we adopted in this work: we consider alignments of spherical particles,
as the analogs of the force chains in three-dimensional (3D) granular media, in order to
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focus our attention on the dynamics of the interaction between the interstitial fluid and
the particles.

Since a decade, the 1D granular media bring the attention of many research groups [12–
24] due to very rich nonlinear features and a broad range of potential applications they
allow one to envisage. Motivated by these facts, we examine in this thesis, the details of
the dynamics of dry and wet alignments of particles. On purpose, we first probe the ref-
erence case of dry chains of particles. Here we observe that the elasto-frictional coupling
between the grains and a substrate (the supports on which stand the particles) induces
an on-site potential, which in turn, induces a zero frequency band gap: the transmission
of low frequency vibrations is impeded. Next, we probe the propagation of waves in
wet granular chains. In this case, we show that an elastohydrodynamic model combined
with Hertz potential accurately describes all our experimental observations. Finally, we
extrapolate these observations to 3D granular packing. We here show that the effective
medium theory combined with an elastohydrodynamic description fairly reproduces the
features of the transmitted waves. Our experimental findings likely contribute to a bet-
ter understanding of wave propagation in real wet granular media. In the following, we
present a detailed summary of the PhD thesis.

In the chapter two, we present the main characteristics and the different mechanisms
at play in granular media. In particular, we focus specifically on the description of dry
and wet contact dynamics. Then, we expose some preliminary experimental observations
concerning the propagation of waves in dry and wet granular media. At the end of the
chapter, we detail the challenges of an accurate description of wave propagation in wet
granular media.

In the chapter three, we perform a detailed experimental study on dry granular chains.
Firstly, from ultrasonic experiments, we measure the intrinsic bulk characteristic of our
spheres (Young modulus, Poisson’s coefficient and density). Then, we measure the trans-
fer function of waves transmitted through an alignment of particles. These measures show
the existence of a cutoff frequency below which waves propagate and above which waves
are evanescent. An alignment of spheres indeed corresponds to a phononic crystal and
the observation of the cutoff frequency relies with the existence of forbidden band for
wavelengths shorter than the particles size. Our measures also reveal two phenomena
which are however not predicted. The first one concerns resonance peaks at low frequency
and the second one deals with the occurrence of a band gap at low frequency. Our anal-
ysis and additional measurements allows identifying that the peaks at low frequency are
caused by the presence of bending modes of the supports. Next, the quantification of
the behavior of the low frequency cutoff as a function of the axial static load and for
different combinations of spheres and supports materials, allows to infer that the band
gap at low frequency relies on the occurrence of an elastic on-site potential between the
spheres and the supports: the low frequency cutoff ω0 is related to a local stiffness k0.

In the chapter four, we focus on the experimental determination of the dispersion
relation in dry media and on its analysis. A model including on on-site elastic potential,
via a tangential deformation of the spheres on their supports, recovers the trend of both
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the low and the high cutoff frequency as a function of relevant parameters. At the
stage of the study, we quantify the characteristics of waves, such as the phase and the
group velocity and the associated attenuation lengths inside the propagative band of the
phononic crystal. On this purpose, we use a non-intrusive sensor embedded in a sphere
to access and track the evolution of acoustic perturbations as they propagate through the
alignment of particles; the protocol allows reconstructing the full dispersion relation of
any sample. The experiment is performed in an alignment of polyacetal spheres clamped
between steel cylindrical supports and submitted to a static load of either 20 N or 40 N.
The experimental results clearly show the generation of two forbidden bands, at low
and high frequency, separated by a propagative band; our measures additionally reveal a
trace of the dispersion relation of bending waves that propagates inside the supports. At
20 N, the low and the high cutoff frequency are about 1450 Hz and 4100 Hz, respectively,
whereas the theoretical estimation provided 1440 Hz and 4120 Hz, respectively. At 40 N
static load, we find 1800 Hz and 4700 Hz in experiments and 1620 Hz and 4620 Hz
in theory. Qualitatively and quantitatively, the measured dispersion relation matches
the theoretical description within a fair accuracy. The results presented in this chapter
constitute a robust framework and the description of dry media serves as a reliable
reference for the rest of the study.

In the chapter five, we focus on wave propagation in wet granular alignments; we
here set a small drop of viscous fluid between each spheres; the spheres are made of
polyacetal and they are supported by four steel rods. We perform experiments over a
wide range of static loads, viscosities and frequencies. In each case, we quantify both
the group velocity and the attenuation. Our results show that the dynamics of our
samples depends on the interplay between the elastic particles via the viscous fluid.
We model the mechanical impedance between two particles as the contribution of two
effects. The first one comes from an elastic term described by the Hertz potential, which
relies on the behavior of the central part of the contacts under static load. The stiffness
related to the region has the form kH ∝ ER(P/E)1/3, where R is the radius of the
spheres, E is their Young modulus and P is the confinement pressure. The second
effect comes from the contribution of the viscous fluid at the periphery of the elastic
contact. A careful analysis of the wave speed shows that this contribution induces an
additional mechanical impedance of the form κw ∝ ER (ωµ/E)1/3, where µ is the fluid’s
viscosity and ω is the angular frequency. This expression render an elastohydrodynamic
behavior, well described in the literature [25–28, 28], in which the fluid deforms the
solid owing to the extreme shear rates, viscous stresses and consequently hydrodynamic
pressure generated near the geometrical singularity of the elastic contact. The model we
propose qualitatively and quantitatively explains our measurement of the wave speed;
the agreement for the loss factor is qualitative and predicts a fair and satisfactory order
of magnitude of the dissipation.

In the sixth and last chapter, we focus on longitudinal ultrasonic waves transmis-
sion through dry and wet 3D granular media. Our samples are made of few layers of
millimetric particles. These experiments are performed with polyacetal spheres, under a
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5 kPa confinement pressure and with a fluid with viscosity equal to 5 Pa. We analyze the
propagation of waves in the low frequency region, in the long wavelength approximation
and at different driving magnitude. The speed of longitudinal waves measured in the dry
configuration is fairly predicted by the effective medium theory [8,9]. The wet configura-
tion is obtained by mixing a small quantity of fluid with the particles. In this case, our
measurements and our analysis show that a correction of the effective medium theory
that take into account for the elastohydrodynamic behavior of the wet contacts, such as
deduced from the measurements in 1D media, fairly reproduces both the measured wave
speed and the attenuation at low frequencies. We also present experiments at higher
frequencies; here, the wavelength tends to the size of the particles and the attenuation
due to multiple scattering of the waves becomes dominant.
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Contexte et résumé

Les matériaux granulaires, comme par exemple le sable, sont intriguant par nature: ils
peuvent se comporter comme des solides lorsque le paquet de grains est sous pression ou
se comportent comme des liquides ou des gaz lorsqu’on les fait couler ou lorsqu’ils sont
vibrés [1, 2]. Les ondes acoustiques qui se propagent via les contacts entre grains dans
les milieux granulaires, le long des chaînes de force, peuvent servir à sonder de manière
non-intrusive ces matériaux [3–6]. Contrairement aux milieux continus, où la vitesse
des ondes dépend de l’élasticité et de la densité intrinsèque du matériau, la vitesse des
ondes dans les milieux granulaires dépend de la raideur des contact entre grains, de leur
masse, mais également du nombre de contacts par grain (le nombre de coordinance),
de leur compacité et de la précontrainte statique qui leur est appliquée [7–9]. Dans le
sable humide, par exemple lorsque du fluide s’immisce entre les grains grâce aux forces
capillaires, les propriétés acoustiques (vitesse, atténuation) peuvent être influencées de
manière spectaculaire et non triviale. L’effet d’un fluide interstitiel a été montrée par
des expériences concernant la propagation d’ondes dans les milieux granulaires secs et
humides [10], où les auteurs ont observé deux effets antagonistes. D’une part, en utilisant
des fluides de tension de surfaces différentes et de même viscosité, il a été observé une
diminution de la vitesse de l’onde par rapport au sec. Ce fait est associé à une diminution
du nombre de coordinance. D’autre part, l’utilisation du fluide de même tension de
surface et de viscosités différentes, a permis de mettre en évidence une augmentation de
la vitesse de propagation, attribuée à une augmentation de la raideur de contact due
à une augmentation de la surface de contact entre particules rugueuses, lorsque celles-
ci sont lubrifiées. Une stratégie pour dissocier ces deux effets antagoniste consiste à
étudier un milieu granulaire dont le nombre de coordinance est parfaitement connu et
constant [11] : c’est le cas des milieux granulaires unidimensionnels (1D), où chaque
particule est en contact avec deux voisines. C’est l’approche que nous adoptons dans
ce travail : nous considérons des alignements de sphères, comme analogue des chaînes
de force dans les milieux granulaires tridimensionnels (3D), pour nous focaliser notre
attention sur la dynamique de l’interaction entre le fluide et les particules.

Depuis une dizaine d’année, les milieux granulaires 1D suscitent l’intérêt de nombreux
groupes de recherche [12–24] par la richesse des propriétés non-linéaires qui les régissent
et par les applications potentielles qu’ils permettent d’envisager. Motivé par ces faits,
nous avons examiné en détail, dans cette thèse, la dynamique d’alignements de partic-
ules sèches et humides. Pour cela, nous sondons tout d’abord le cas de référence, des
chaînes de sphères sèches. Ici, nous observons que le couplage élasto-frictionnel entre les
grains et un substrat (les supports sur lesquels sont posés les grains) induit un potentiel
local, qui à son tour provoque une bande interdite à fréquence nulle: la transmission
des vibrations à basses fréquences sont filtrées. Ensuite nous sondons la propagation
d’ondes dans des alignements granulaires humides. Dans ce cas, nous montrons qu’une
description élastohydrodynamique combinée au potentiel de Hertz décrit avec précision
toutes nos observations expérimentales. In fine, nous extrapolons ces observations à des
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milieux granulaires 3D. Nous montrons ici que la théorie du milieu effectif combinée à
la description élasto-hydrodynamique du contact entre grains reproduit fidèlement les
caractéristiques des ondes transmises. Nos résultats contribuent donc à une meilleure
compréhension de la propagation des ondes dans les milieux granulaires humides réels.
Nous présentons dans la suite un résumé détaillé de la thèse de doctorat.

Dans le chapitre deux, nous présentons les principales caractéristiques et les différents
mécanismes qui régissent les milieux granulaires. Nous nous attachons en particulier à
décrire la dynamique des contacts entre grains secs et humides. Ensuite, nous exposons
des résultats expérimentaux préliminaires concernant la propagation des ondes dans les
milieux granulaires secs et humides. A la fin du chapitre, nous exposons les défis que
soulève la description fine de la propagation des ondes dans un milieu granulaire humide.

Dans le chapitre trois, nous menons une étude expérimentale détaillée dans des chaînes
granulaires de sphères sèches. Premièrement, à partir de mesures ultrasonores, nous
mesurons les caractéristiques intrinsèques des matériaux dont sont constituées nos sphères
(module d’Young, coefficient de Poisson et densité). Ensuite, nous effectuons une mesure
de la fonction de transfert en transmission au travers d’un alignement de particules.
Ces mesures montrent la présence d’une fréquence de coupure en dessous de laquelle
des ondes se propagent et au-dessus de laquelle ne subsistent que des ondes évanescentes.
L’alignement de sphères correspond en effet à un cristal phononique et l’observation de la
fréquence de coupure est compatible avec l’existence d’une bande interdite aux longueurs
d’ondes inférieures à la taille de la maille élémentaire du réseau. Nos mesures mettent
également en évidence deux phénomènes qui ne sont en revanche pas prédits. Le premier
concerne des pics de résonance à basses fréquences et le deuxième montre l’existence
d’une bande interdite à basse fréquence. Notre analyse et des mesures complémentaires
permettent d’identifier que les pics à basse fréquence sont provoqués par la présence d’un
mode de flexion des supports. Ensuite, la quantification de l’évolution de la fréquence
de coupure basse en fonction de la charge statique appliquée sur l’alignement et pour
différentes combinaisons de sphères et de supports, permet de déduire que la bande
interdite à fréquence nulle repose sur l’existence d’un potentiel élastique locale (on-site
potential) entre les sphères et les supports : la fréquence de coupure basse ω0 est liée à
une raideur k0 locale.

Dans le chapitre quatre, nous nous concentrons sur la mesure de la relation de dis-
persion expérimentale dans des chaines granulaires secs et sur son analyse détaillée. Un
modèle incluant un potentiel élastique local, par l’intermédiaire d’une déformation en
cisaillement des sphères sur leurs supports, décrit fidèlement à la fois de la basse et
la haute fréquence de coupure en fonction des paramètres du modèle. A ce stade de
l’étude, nous mesurons alors les caractéristiques des ondes, telles que la vitesse de phase,
la vitesse de groupe et les longueurs d’atténuation associées au sein de la bande pas-
sante du réseau phononique. Pour cela, nous utilisons un capteur non intrusif embarqué
dans une bille pour accéder à l’évolution de perturbations acoustiques qui se propage le
long d’un alignement de particules; ce protocole nous permet de reconstruire l’intégralité
de la relation de dispersion dans la bande passante. L’expérience est réalisée dans un
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alignement de sphères en polyacétal posées sur des supports en acier et soumis à une
charge statique de 20 N ou de 40 N. Les résultats expérimentaux montrent clairement
la génération de deux bandes interdites, à basse et haute fréquences, séparées par une
bande passante; ces mesures révèlent également une trace de la relation de dispersion des
ondes de flexion qui se propagent dans les supports. A 20 N, les fréquences de coupure
haute et basse sont d’environ 1450 Hz et 4100 Hz, respectivement, alors que l’estimation
théorique indique des valeurs de 1440 Hz et 4120 Hz, respectivement. A 40 N, nous trou-
vons des fréquences de coupure de 1800 Hz et 4700 Hz expérimentalement et de 1620 Hz
et 4620 Hz en théorie. Qualitativement et quantitativement, la relation de dispersion
mesurée correspond donc bien à la description théorique, avec une grande précision. Les
résultats présentés dans ce chapitre constituent donc un cadre solide et la description des
milieux secs sert de référence fiable pour le reste de l’étude.

Dans le chapitre cinq, nous nous intéressons à la propagation des ondes dans un milieu
granulaire 1D mouillé; on place une goutte de fluide visqueux entre chaque sphère; les
sphères sont en polyacétal et elles sont disposée entre quatre tiges d’acier. Nous effectuons
des expériences pour une large gamme de charge statique, de viscosité et de fréquence.
Dans chaque cas, nous quantifions à la fois la vitesse de groupe et l’atténuation. Nos résul-
tats montrent que le comportement dynamique de nos échantillons dépend de l’interaction
entre les particules élastiques via le fluide visqueux. Nous modélisons l’impédance mé-
canique entre deux particules comme la contribution de deux effets. Le premier vient
d’une contribution élastique décrit par le potentiel de Hertz qui provient de la partie cen-
trale des contacts sous précontrainte statique. La rigidité de cette région est de la forme
kH ∝ ER(P/E)1/3, où R est le rayon des sphères, E est le module d’Young et P est la
pression de confinement. Le deuxième effet provient de la contribution du fluide visqueux
à la périphérie du contact élastique. Une analyse attentive de la vitesse des ondes montre
que cette contribution additionnelle engendre une impédance mécanique supplémentaire
de la forme κw ∝ ER (ωµ/E)1/3, où µ est la viscosité du fluide et ω est la fréquence
angulaire. Cette expression rend compte d’un comportement élasto-hydrodynamique,
bien décrit dans la littérature [25–28,28], dans lequel le fluide déforme le solide en raison
de taux de cisaillement, de contraintes visqueuses et donc de pression hydrodynamique
extrêmes générés à proximité de la singularité géométrique de la zone de contact. Le
modèle que nous proposons explique qualitativement et quantitativement nos mesures
de vitesse de propagation; l’accord sur le facteur de perte reste qualitatif et le modèle
prévoit un ordre de grandeur satisfaisant de la dissipation.

Dans le sixième et dernier chapitre, nous nous intéressons à la transmission d’ondes ul-
trasonores longitudinales au travers d’empilements 3D aléatoires compacts secs ou mouil-
lés. Nos échantillons sont composés de quelques couches de particules millimétriques. Ces
expériences préliminaires sont réalisées avec des particules en polyacétal, sous une pres-
sion de confinement de 5 kPa et avec un fluide de viscosité 5 Pa.s. Nous analysons
la propagation d’ondes dans la gamme des basses fréquences, dans l’approximation des
grandes longueurs d’ondes, et pour différentes amplitudes d’excitation. La vitesse de
propagation des ondes de compression que nous mesurons dans le cas sec est en accord
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avec les prédictions données par le modèle de milieu effectif [8,9]. La configuration mouil-
lée est obtenue en mélangeant une petite quantité de fluide aux grains. Dans ce cas, nos
mesures et notre analyse montre qu’une correction du modèle de milieu effectif prenant
en compte le comportement élasto-hydrodynamique des contacts mouillés, tel que déduit
des mesures dans un milieu granulaire 1D, reproduit fidèlement à la fois la vitesse de
l’onde mesurée et l’atténuation à basses fréquences. Nous présentons également des ex-
périences à plus hautes fréquences; ici la longueur d’onde atteint la taille des particules
et l’atténuation due à la diffusion multiple des ondes devient dominant.
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Chapter 2

The Physics of granular media:
state of the art
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2.1. GRANULAR MEDIA: FROM PHONONIC CRYSTALS TO METAMATERIALS

In this introductory chapter we present at first the main characteristic of a granular
media. In the next sections we focus on the contact dynamics between dry and wet
grains. Finally we treat existing experimental and analytic study on wave propagation
in dry and wet granular media.

2.1 Granular media: from phononic crystals to meta-
materials

Photonic crystals, phononic crystals and metamaterials are composite structures which
tailor wave dispersion as to achieve given spectral and phase properties [29]. Owing to
Bragg’s scattering in the case of photonic and phononic crystals and to local resonances
in the case of metamaterials, these composite materials produce so called band gap in
transmitted spectra, where the wave propagation is strongly attenuated.

A photonic crystal is a periodic structure which affects and control electromagnetic
wave. The band gap in this type of material can inhibit spontaneous emission [30, 31]
which plays a crucial role in limiting the performance of semiconductor laser junctions,
bipolar transistors and solar cells. It is worth mentioning that photonic crystals can also
facilitate the localization of light [32,33]. These materials are also important for quantum
Optics and few specific systems or devices, including the black body radiation and single
mode light emitting diode [34].

Figure 2.1: Left: (a) Phononic crystal made of steel tubes [35]. (b) Sound attenuation as a
function of frequency, the arrow in the inset represents the direction of wave propagation.
Right: [36] (A) elementary cell of metamaterial presented in (B). Transmission in (C) and
dispersion relation (D) as a function of frequency, where circles are measured data and
lines represent the theoretical estimations.
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When one increases the wavelength, up to the range of elastic waves, one deals with
phononic crystals, which affect the propagation of vibrational waves. The first one-
dimensional phononic crystal able to tailor elastic wave propagation was reported in
1979 by Narayanamurti [37]. In the following decade, Sigalas showed the existence of
band gaps in two-dimensional phononic structures [38] and in three-dimensional phononic
crystals [35, 39]. These materials attenuate ultrasonic frequencies [40], surface acoustic
waves [41] and act as filters [42]. The band gaps in photonic and phononic crystal relies
on the Bragg scattering, when the periodicity of the crystal is comparable with the
wavelength.

A third type of structures able to tailor wave dispersion are the metamaterials [36].
Here, the band gaps stem from locally resonant structures. In contradiction to phononic
and photonic crystals, the band gaps are here created at wavelengths which may be
few orders of magnitude larger than the characteristic periodicity of the crystal. Upon
specific and intriguing features, this kind of materials can be designed to exhibit negative
elastic modulus for instance.

Ordered granular media are one of these materials: they are periodic and have been
shown to behave as phononic crystals. These specific assemblies of particles brought the
attention of many scientific groups, both from their inherently rich and intriguing Physics
and from the industrial applications they imply. Among potential applications, they have
been proved reliable to absorb shocks [12–14], to localize and trap waves [15–19], or to
design acoustic diodes [20] and acoustic lenses [21], from very low vibrational frequencies
to the MHz frequency range when using micrometric particles [22–24].

2.2 The complexity of granular media

A granular material is an assembly of individual macroscopic and heterogeneous solid
particles [43, 44]. They are omnipresent in nature as the sand in deserts, seeds, pile of
rocks and even rings on Saturn. Granular materials are the second-most used material
in industry after water [45, 46]. Grains are found in mining activity while extracting
minerals, in civil engineering and in pharmaceutical industry for the manipulation of
pills [47]. Granular media are also very important in geophysics to understand the
mechanisms of avalanches, earthquakes, sediments transport and erosion of rocks [7].

Grains thus exist in nature at very different sizes, from dust to rocks. One distin-
guishes typical sizes depending on the relative contribution of the thermal energy, the
van der Waals electrostatic attractive forces and the gravitational potential energy Mgd

(where M ∼ ρd3 is the mass of a grain, d its diameter, ρ its density and g the gravity).
For grains larger than d � (kBT/ρg)1/4 ∼ 1 µm (where kB is the Boltzman constant
and T is temperature), the thermal energy kBT is negligible compared to the potential
energy: in this limit, granular media consist in athermal systems. For grains larger than
d � (Ah/r0Aρg)1/3 ∼ 100 µm [47] (where Ah ∼ 10−19 J is the Hamaker coefficient
and r0A ∼ 10−10 m is the typical distance between molecules), the van der Waals in-
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teractions become negligible compared to the gravitational energy: the grains are non
cohesive. Typically, grains in granular media are larger then 100 µm [43,44].

Despite industrial applications and a long history of theoretical research pioneered
by Coulomb, Reynolds and Faraday [1], the Physics of granular media is not yet fully
described [47]. At present, a theory quantifying all the phenomena in granular media
is lacking [47], even in the ideal case where granular media are constituted by identical
spherical particles interacting only through elastic contacts [47].

Despite their complexity and specific nature, heterogeneous granular media possess
the features of the continuous matter like fluids, solids and gases. One can take water as
an example [48]: water at ambient temperature is liquid. When the temperature rises,
it turns into a gas, and when the temperature decreases, the water freezes and becomes
a solid. Each of these states has specific features. In the liquid state, the water has no
definite shape, but has definite volume; additionally, liquids as opposed to solids present
no resistance to shear. In the solid state, it has definite shape and volume. Finally in the
gaseous state, the water has neither definite shape nor definite volume. The experiment
of Forterre [2], as shown in Fig. 2.2, illustrates the three states of matter [48] in granular
media, by simply pouring grains on a inclined plane. One can clearly distinguish three
regions: a solid state where grains do not move, a liquid state where grains flow and a
gaseous state where grains bounce in every directions.

There are few noticeable exceptions compared to the mechanical phases in continuous
matter. In a granular solid there is no attractive force between the particles. In a
granular liquid the grains interact via frictional contact. Finally in a granular gas the
grains interact mainly via inelastic collision: granular media are athermal and the only
source of fluctuations is external, for instance if one inclines or vibrates a pile of grains.

Figure 2.2: The tree states of granular media: gas, liquid and solid obtained by pouring
granular material on an inclined plane [2].
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Andreotti et al. [47] listed all the obstacles imparting the description of the Physics
of granular media:

• Granular media generally contains large numbers of particles which are beyond
simulations limits. For example, a spoon of sugar of 1 cm3, with sugar grains of
approximately 100 µm in diameter, contains a million of particles. In this case the
aim of any theoretical description is to provide average quantities modeling the set
of particles rather than following the dynamics of every particles in a pile.

• The separation between the microscopic and macroscopic scales is vague in granular
media. For example, the flow shown in Fig. 2.2 is few grains deep only. This raises
an issue, concerning the validity of a continuous description and the definition of
elementary volumes.

• The interactions between grains are complex: typical mechanisms in dry media in-
clude for instance nonlinear contact dynamics, solid friction and inelastic collisions.

• When grains are immersed in fluid, hydrodynamics and adhesive forces have to be
taken into account.

In the following sections we aim at providing all the details of the interactions oc-
curring in dry and wet granular media. These are the elementary mechanisms that will
serve throughout the manuscript to describe and analyze our findings.

2.3 Microscopic scale: dry contact mechanics

In the first place, we focus on the microscopic scale, at the level of the contacts between
dry particles. The elastic energy of interaction between two bodies pressed against each
other is quantified by their contact stiffness kH , Uel = kHδ

2
0/2 where δ0 is the overlap

deformation. Here, we aim at deriving an expression for the stiffness kH between two
elastic spheres, first from a geometrical approximation, then from the exact derivation of
the equations of elasticity. We then recall the features of the onset of plastic deformation
in a third section, as the limit above which the linear Hookean elasticity does not hold
anymore. Further, we consider the solid friction between bodies, which introduces shear
deformations of the grains that can be accounted by the so-called Hertz-Mindlin model.
Finally, we provide some details on the estimation of the adhesive force, related to the
surface energy, between dry particles.

2.3.1 Hertz contact between two spheres: geometrical derivation

We consider two identical spheres with radius R0 and Young’s modulus E0 compressed
one against the other, as seen in Fig. 2.3. When the normal force F0 increases, the
overlap δ0 increases: the distance between the centers decreases from 2R0 to 2R0 − δ0.
As a consequence, the spheres flatten, creating a disk of contact with radius a.
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The deformation of the contact induces a deformation inside the spheres, near the
contact; the typical depth of the deformation matches approximately the radius a of the
disc of contact [49]. The relation between a and δ0 is given by the law of Pythagoras,

R2
0 =

(
R0 −

δ0
2

)2
+ a2. (2.1)

Within small deformation, δ0 � R0, one obtains the approximation,

a '
√
R0δ0. (2.2)

Figure 2.3: Two spheres with radius R0 compressed with a static force F0.

In the following, we then consider a Hookean solid; for sake of simplicity, we assume
a zero Poisson ratio, ν0 = 0,

σ = E0ε, (2.3)

where σ is the stress,
σ ' F0

πa2 , (2.4)

and ε is the strain,
ε ' δ0

a
. (2.5)

By combining Eq. 2.2, Eq. 2.4 and Eq. 2.5 in Eq. 2.3, one obtains a relation between
the applied static force F0 and the overlap distance δ0,

F0 ∝ E0R
2
0

(
δ0
R0

)3/2
. (2.6)

The contact stiffness is the derivative of the force with the deformation, kH =
∂F0/∂δ0,

kH ∝ E0R0

(
δ0
R0

)1/2
∝ E0R0

(
F0

E0R2
0

)1/3
. (2.7)

The stiffness thus increases nonlinearly with the overlap or the static force; this is
consistent with the fact that the contact region between solids widens when the overlap
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increases, see Eq. 2.2.

2.3.2 Hertz contact between two spheres: exact derivation

The rigorous and exact derivation of Hertz contact is detailed in most of the reliable
textbooks [49–51]. Here, we summarize the calculations derived by Popov [51].

In this approach, one considers an elastic medium that fills an infinitely large half-
space. Under the influence of force F0, the medium is deformed. This deformation acts
in the xy plane, as shown in Fig. 2.4(a). From a force acting at the origin in the positive
z-direction, one obtains the displacement uz in the form [49],

uz = 1
πE

∫ ∫
p(x′, y′)dx

′dy′

r
, (2.8)

where r is the radial coordinate, r =
√

(x− x′)2 + (y − y′)2, E = E0/(1 − ν2
0) with ν0

the Poisson ratio, and p stands for the continuous distribution of normal pressure. Here,
p is the Hertz pressure distribution,

p = p0

(
1− r2

a2

)1/2

, (2.9)

where p0 is the maximum pressure at the center of contact and a is the radius of the
contact disc. One estimates the static force from Eq. 2.9 as

F0 =
∫ a

0
p(r)2πrdr = 2

3p0πa
2. (2.10)

Figure 2.4: (a) Static force F0 applied on an elastic half space, (b) rigid sphere pushed
against an elastic half space [51].

Inserting Eq. 2.9 into Eq. 2.8 gives the displacement of the surface r 6 a,

uz = πp0

4Ea (2a2 − r2). (2.11)

In parallel, if one regards the indentation of the sphere (with radius R) in the plane,
as shown in Fig. 2.4(b), the displacement uz of the surface can be set in the following
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form
uz = δ0 − r2/2R. (2.12)

The comparison of Eq. 2.11 and Eq. 2.12 yields

πp0

4Ea
(
2a2 − r2) = δ0 − r2/2R, (2.13)

from which one identifies a and δ0 as,

a = πp0R

2E , (2.14)

δ0 = πap0

2E . (2.15)

The substitution of Eq. 2.14 into Eq. 2.15 gives the maximum pressure,

p0 = 2
π
E

(
δ0
R

)1/2
, (2.16)

and the radius of the contact disc,

a =
√
Rδ0. (2.17)

The relation between δ0 and F0 is obtained by inserting Eq. 2.16 and Eq. 2.17 into
Eq. 2.10,

F0 = 4
3ER

2
(
δ0
R

)3/2
, (2.18)

from which one obtains

a =
(

3FR
4E

)1/3
. (2.19)

The contact stiffness, kH = ∂F0/∂δ0, finally becomes

kH = ER

(
4δ0
R

)1/2
= ER

(
6F0

ER2

)1/3
. (2.20)

It is worth mentioning that the contact stiffness between two spheres (radius R1 and
R2, Young’s moduli E1 and E2 and Poisson ratio ν1 and ν2) is obtained by replacing in
Eqs. 2.8-2.20 the radius R by the effective radius,

R = 1/(1/R1 + 1/R2), (2.21)

and by replacing the elastic modulus E by the effective value,

E = 1/[(1− ν2
1)/E1 + (1− ν2

2)/E2]. (2.22)

In Eq. 2.20, as in Eq. 2.7, the contact stiffness depends on bulk characteristics of the
spheres and increases with the static force. In fact, the geometrical derivation Eq. 2.7
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yet provided a fair qualitative estimation of kH .

2.3.3 Onset of plastic deformation

The combination of Eq. 2.16 and Eq. 2.18 provides a relation between the force and
maximum pressure,

p0 =
(

6F0E
2

π3R2

)1/3

. (2.23)

Eq. 2.23 serves for the estimation of the onset of plastic deformation, according to
von Miss criteria [50],

σY = 1.6p0, (2.24)

where σY is the yield strength characteristic for each material, indicating the maximal
compression force FY at which a plastic deformation occurs inside the contact area,

FY = πR3

6E2(1.6σY )3 . (2.25)

2.3.4 Hertz-Mindlin contact between two spheres

As in subsections 2.3.1-2.3.2, here we consider two identical spheres with radius R0,
Young’s modulus E0 and Poisson ratio ν0 compressed one against the other with F0, as
seen in Fig. 2.5. In this case, in addition to F0, one exerts a tangential force Ft [50]
producing a tangential deformation δy in the y-axis direction.

Figure 2.5: Two spheres with radius R0 pushed against each other with a static force
F0; an additional tangential force Ft is applied causing micro displacement or shearing
in y-axis.

Depending on the magnitude of Ft in respect to the friction force threshold µsF0,
where µs is the friction coefficient, one distinguishes two cases. If the tangential force
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exceeds the friction threshold Ft > µsF0, micro slips occur and the sphere slides onto the
other. In the opposite, if Ft < µsF0, the spheres stick and shear deformations occurs. In
the stick regime, the shear displacement δy reads [7, 8]

δy = Ft
8a

(
2− ν0

G0

)
, (2.26)

where a is the radius of the disc of contact defined by Eq. 2.19 and G0 is elastic shear
modulus, G0 = E0/2(1 + ν0).

The transverse contact stiffness kt is the derivative of the tangential force with the
tangential deformation, kt = ∂Ft/∂δy,

kt = 8aG0

2− ν0
. (2.27)

If one estimates kt between spheres (radius R1 and R2, Young’s moduli E1 and E2,
Poisson ratio ν1 and ν2 and shear moduli G1 and G2), the equations Eq. 2.21 and Eq. 2.22
should be taken into account while estimating a by Eq. 2.19. Additionally Eq. 2.27 takes
the form

kt = 4a
(

G1

2− ν1
+ G2

2− ν2

)
. (2.28)

Similarly to the normal stiffness given in Eq. 2.20, the transverse stiffness kt increases
nonlinearly with the overlap or the static force: the tangential stiffness depends on the
radius of the contact disc and the bulk characteristic of the spheres.

2.3.5 Contact between a sphere and a cylinder

Here, we consider a sphere with Young’s modulus E0, Poisson ratio ν0 and shear modulus
G0 = E0/2(1 + ν0) compressed with static force F0 against a straight cylinder with
radius Rc, Young’s modulus Ec, Poisson ratio νc and shear modulus Gc = Ec/2(1 + νc).
The cylinder corresponds to one of the supporting rod used to align the spheres in our
setup, as detailed in the next chapter. The curvature of the two bodies makes the
rigorous treatment difficult to derive. However, such a configuration is equivalent in first
approximation to the contact between a plane and a curved cylinder, which has been
derived by Popov [51]. In the presence of a tangential force Ft, the tangential contact
stiffness k0 reads [51]

k0 = 2Gra, (2.29)

where Gr is the reduced shear modulus Gr = 1/[(2−ν0)/4G0 +(2−νc)/4Gc], a =
√
Rrδ0

and Rr is the effective radius given by

Rr =
√
R0Rc. (2.30)

While estimating the contact radius a by Eq. 2.19 one should take into account
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effective Young’s modulus defined by

Er = 1/[(1− ν2
0)/E0 + (1− ν2

c )/Ec]. (2.31)

It is worth mentioning that k0 depends on the contact radius, giving the same non-
linear dependency with the normal static force as in Eq 2.28.

Figure 2.6: The contact between a sphere and a cylinder is equivalent to a contact
between a plane and a curved cylinder.

2.3.6 Adhesive contact models between dry surfaces

Next, we consider the contact between two compressed bodies, where the surface tension
γs is taken into account. Due to the presence of γs, one has an adhesive contribution
Fadh [47] to the net force. In this subsection we derive an expression for Fadh, first in a
qualitative way then from an exact derivation of adhesive contact model.

In both cases, the surface tension γs is defined [47,51] as the work per unit area done
by an external force to pull two bodies apart and create two surfaces. Half of the energy
required to create one surface is the surface tension γs.

Qualitative derivation

When two spheres with radius R0 are pulled one from the other, the overlap distance δ0
and so the radius a of the contact region changes as a function of time, which in turn
provokes the change of contact area A,

dA = d(πa2), (2.32)

and consequently, the variation of the surface energy is

dUsurf = 2γsd(πa2), (2.33)
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and is equal to the work done by the force of adhesion,

2Fadhdδ0 = dUsurf . (2.34)

Combining a =
√

2δ0R0 with Eq. 2.33 and Eq. 2.34, the force of adhesion reads

Fadh ∝ γsR0. (2.35)

The adhesive force does not depend on the compression nor on the elastic character-
istics of the spheres.

Exact model

There exists two main adhesive contact models. The first one is the JKR model [52],
which considers the pressure distribution and the adhesion inside the contact region. The
second one is the DMT [53] model, which considers a Herztian contact with additional
adhesive part outside the contact region.

Both these models are valid but within different conditions [54]. The JKR model is
used for spheres with small Young’s modulus and high surface energy. The DMT is more
suited for rigid spheres with low surface energy.

In this subsection, we remind the detailed and rigorous derivation of Fadh in the frame
of the JKR model as presented in [51]. Here, we attempt to derive an expression for the
force of adhesion between a sphere (with Young’s modulus E and radius R) and a plane:
the displacement uz of the surface is calculated [51] in the half-space (as in Fig. 2.4 and
reads

uz = 1
πE

∫ ∫
p(x′, y′)dx

′dy′

r
, (2.36)

where r =
√

(x− x′)2 + (y − y′)2 and E = E0
1−ν2

0
.

The expression for the displacement is the same as for the Hertz model derivation,
Eq 2.8. However in the JKR model [51], the pressure distribution p is equal to

p = p0
(
1− r2/a2)−1/2 + p1

(
1− r2/a2)1/2 . (2.37)

By inserting Eq. 2.37 in Eq. 2.36, one obtains the displacement in the form

uz = πa

E

[
p0 + 1

2p1

(
1− r2

2a2

)]
. (2.38)

In parallel, the displacement uz of the surface is

uz = δ0 − r2/2R, (2.39)

where δ0 is the overlap deformation. By comparing Eq. 2.38 and Eq. 2.39, one obtains,

p1 = 2Ea
πR

, (2.40)
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p0 = E

π

(
δ0
a
− a

R

)
, (2.41)

and so far, one has three unknowns p0, p1 and a (for the given penetration depth δ0)
and two equations, Eq. 2.40 and Eq. 2.41. A third constrain is thus required [51], which
states that the total energy Utot of the system should be minimum at equilibrium a,

∂Utot
∂a

= 0. (2.42)

The total energy comes from both the elastic deformation and the adhesion,

Utot = Uel − γsπa2, (2.43)

where the elastic part of the total energy is defined as

Uel = 1
2

∫
p(x,y)uz(x,y)dxdy. (2.44)

The substitution of Eq. 2.37 and Eq. 2.39 into Eq. 2.44 gives

Uel = E

[
δ2
0a−

2
3
δ0a

3

R
+ a5

5R2

]
, (2.45)

and the total energy Eq. 2.43 becomes

Utot = E

[
δ2
0a−

2
3
δ0a

3

R
+ a5

5R2

]
− γsπa2. (2.46)

Next, by combining Eq. 2.42 and Eq. 2.46, one obtains the overlap deformation,

δ0 = a2

R
±
√

2γsπa
E

. (2.47)

The force acting on the sphere is the derivative of Utot with respect to δ0,

F = −∂Utot
∂δ0

= E

[
2δ0a−

2
3
a3

R

]
, (2.48)

then inserting Eq. 2.47 into Eq. 2.48 one has

F = E

[
4
3
a3

R
−
(

8γsπa3

E

)1/2]
, (2.49)

the maximum negative value of Eq. 2.49 is reached when

a = acrit =
(

9
8
γsπR

2

E

)1/3

, (2.50)
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and is equal to the adhesive force,

F JKRadh = −3
2πγsR, (2.51)

where F JKRadh denote the adhesive force estimated by JKR model.
It is worth mentioning that in the DMT model, the pressure distribution in Eq. 2.37

corresponds to the Hertz potential given by Eq. 2.9 but with an additional attractive
contribution exerted at the periphery of the solid contact,

FDMT
adh = −4πγsR. (2.52)

When one considers the contact between two spheres (with radius R1 and R2), the
radius of curvature should be replaced in Eq. 2.51 and in Eq. 2.52 by the effective radius,

R = 1/[1/R1 + 1/R2]. (2.53)

In accordance with Eq. 2.35, the adhesive force does not depend on the compression
nor on elastic characteristics of the sphere (E, ν0), but instead increases linearly with the
radius of the spheres. We will se in the next chapters that this type of adhesion remains
negligible and does not show up in our experiments: dry spheres are non-cohesive.

2.4 Microscopic scale: wet contact mechanics

In this section, we consider the contact dynamics between wet bodies: thanks to capillary
forces, the presence of a small quantity of fluid forms a liquid meniscus near the singular
point of contact between bodies. Here, we aim at deriving the mechanical impedance κω
(the mechanical impedance is the ratio between the force and the deformation) between
two spheres with an interstitial fluid. First of all, we briefly remind the description of
capillary forces (the Laplace force) that give birth to an interstitial meniscus of fluid in
between non-conformal solids. Then, we point out few aspects of a seminal theoretical
and numerical work concerning the normal collision of a sphere on a thin layer of viscous
fluid. Next, in the third section, we provide details on the hydrodynamic field generated
in a viscous fluid collided by a perfectly rigid sphere: this is a classical limit of the
lubrication theory. In the fourth part, we remind the exact derivation of κω obtained
from an elastohydrodynamic description at very small fluid thickness. Finally, in the last
part we mention a more qualitative derivation of κω at rather large fluid thicknesses,
which asymptotically matches the lubrication limit.

2.4.1 Capillary forces in liquid bridges

Here, we derive qualitatively the expression for the capillary force Fcap between a sphere
with radius R and a plane, see the Fig. 2.7. Due to the Laplace pressure ∆p, the liquid
forms a capillary bridge [51]. The pressure difference ∆p depends on the surface tension
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of fluid γf and on the radius of curvature of the capillary bridge r0,

∆p = −2γf
r0

. (2.54)

The height h of the capillary bridge is given by

h ' r2

2R. (2.55)

For a given radius of curvature r0 ' h and under the condition r0 � r, Eq 2.54
becomes

∆p = −4γfR
r2 , (2.56)

and the capillary force finally takes the form

Fcap = A∆p = −4πγfR, (2.57)

where A = πr2 is the area of the capillary bridge.

Figure 2.7: Capillary bridge formed at the contact between a sphere and a plane [51].

As for the force of adhesion between dry spheres (see Eq. 2.35, Eq. 2.51 and Eq. 2.52),
the capillary force depends on the radius of curvature of the solid and is independent on
the compression. If one regards the contact between two spheres with radius R1 and R2

the radius R should be replaced by its effective value R = 1/(1/R1 + 1/R2).

2.4.2 A seminal work on the collision between wet spheres

The dynamics of collisions between wet bodies has attracted some attention since a
decades. It is essential to understand the behavior of fluid coated spheres [55, 56] and
immersed collisions [57–64] for instance. In contrast to a dry collision where particles
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inertia dominates, the kinetic energy in liquid is dissipated by viscous stresses, in addition
to inelasticity of the solids. When an elastic body collides a wet surface, the dissipation
of energy can be quantified through the restitution coefficient e, which is the ratio of
rebound velocity Vout to the incident velocity Vin, e = Vout/Vin. In a seminal publication,
Davis, Serayssol and Hinch [65] identified two important parameters in this type of
experiments. The first one is the Stokes number, which measures the inertia of the
particles relatively to the viscous forces, St ∝ (ρdVin)/µ, where d is the sphere diameter,
ρ is the sphere density and µ is the fluid viscosity. The second one is the elasticity
parameter ε ∝ µVinR

3/2/Eh
5/2
0 , where h0 is the minimal separation distance and E is

the Young’s modulus. The parameter ε indicates the tendency of the solid to deform
elastically. For large values of ε, a significant deformation occurs during the collision.
In contrast, rigid spheres provides small ε and no significant deformations of the elastic
bodies occur. Davis et al. [65] analyzed in details the correlations of the two parameters
St and ε with the restitution coefficient e of a sphere bouncing on a thin film of viscous
fluid.

Through the careful analysis of the restitution coefficient of a sphere bouncing on a
film of fluid, they reported that part of the kinetic energy is converted into elastic strain,
enabling the spheres to rebound. This mechanism relies on the Stokes number: at low
stokes number, the viscous dissipation is predominant and no rebound occurs. At large
stokes number, the inertia contribution is predominant and enables the rebound of the
sphere. As the viscosity of the fluid increases, the critical Stokes number above which
the rebound is possible, decreases. According to [65] and [55], the experimental critical
Stokes number Stc can be fitted by

Stc ' 0.54ln (1/ε)− 1.25. (2.58)

Above Stc, the spheres are deformed elastically due to the hydrodynamic pressure
exerted by the viscous fluid and a rebound is observed. The ansatz shows for instance that
soft spheres (i.e. large ε) requires smaller Stokes number (i.e. smaller impact velocity)
than hard spheres to rebound.

The interplay between elastic and viscous contributions is quantified in the elastohy-
drodynamic (EHD) model presented in more details in the following sections.

2.4.3 Reynolds force between a rigid sphere and a rigid plane

At first we consider the classical case of a rigid sphere impacting a flat rigid wall, as
shown in Fig. 2.8: here, no elastic deformation occurs during the collision. The two
bodies are separated by a layer of an incompressible fluid with thickness h and viscosity
µ [11]. When the sphere with radius R is displaced against the wall with relative velocity
vz < 0 in the normal (axial) direction, the fluid is thinned, ḣ = vz < 0, and squeezed
out at velocity vr > 0 in the radial direction. In this condition, the viscosity of the fluid
induces a hydrodynamic pressure opposed to the displacement, which may induce in turn
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the deformation of the bead [66] if the elasticity would be taken into account. Within the
assumption of the absence of elastic deformation, the pressure is given by the Reynolds
equation [66],

∂

∂r

[
rh3(r, t)

12µ
∂p(r, t)
∂r

]
= rḣ(r, t) = −rvz(t), (2.59)

where the fluid thickness is h(r, t) = h0(t)+r2/2R = h0
[
1 + r2/2Rh0

]
= h0

[
1 + r2/a2

w

]
.

Here, aw =
√

2Rh0 is a characteristic extent of the hydrodynamic field and h0(t) is the
separation distance between the sphere and the plane. The integration of Eq. 2.59 gives
the hydrodynamic pressure in the form

p(r, t) = 3µRvz(t)
h2(r, t) , (2.60)

thus by integration of Eq. 2.60, one obtains the Reynolds force (i.e. the repulsive lubri-
cation force),

F (t) = 6πµR2vz(t)
h0(t) . (2.61)

By combining Eq. 2.60 and Eq. 2.61, one finds a typical area Sw,

Sw = |F (t)/p(0, t)| ' 2πRh0 ' πa2
w, (2.62)

which confirms that the typical extent of the hydrodynamic field is about aw =
√

2Rh0.

Figure 2.8: A rigid sphere and a rigid plane separated by a viscous fluid. The fluid is
squeezed out radially when the sphere approaches the plane.

In turn, the Stokes equation allows relating the pressure distribution p(r, t), see
Eq. 2.60, with the radial velocity vr or the shear rate γ̇s = ∂vr/∂z in the fluid,

∂p

∂r
= µ

∂2vr
∂z2 = µ

∂γ̇s
∂z

, (2.63)

such that with no slip conditions at the interfaces between the solids and the fluid,
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vr(r, z = 0, t) = vr(r, z = h, t) = 0,

vr(r, z, t) =
(

3rvz
h

)( z
h

)(
1− z

h

)
, (2.64)

and
γ̇s(r, z) =

(
3rvz
h2

)(
1− 2z

h

)
. (2.65)

We plot in Fig. 2.9 the radial velocity, the shear rate and the hydrodynamic pressure
distributions as a function of the radial coordinate. One clearly observes that both the
radial velocity vr(r, z = h0/2) and the shear rate γ̇s(r, z = 0) of the fluid are zero at r = 0,
for symmetry reasons: the fluid does not flows near the central part of the contact. In
addition, both these quantities are maximal near r = aw, see Fig. 2.9(a) and (b). In
particular, the shear stress τ = µγ̇s(r = aw, z = 0) is maximal in a ring of radius aw
centered on r = 0, which impedes the flow accordingly. As far as the bodies get close
to contact, at small fluid thickness h0 → 0, the fluid’s shear rate and stress diverge
and the fluid may ultimately gets clamped by its viscosity. In turn, the hydrodynamic
pressure is maximal at the center r = 0 and has a typical extent of the order of aw, see
Fig. 2.9(c): the stress is thus mostly transmitted through the central part of the fluid,
where it essentially does not flow. We will see in the sections that all these features are
crucial and reminiscent of the specific behavior of a more complex elastohydrodynamic
description.

Indeed, when the fluid thickness h0 tends to zero, the hydrodynamic pressure diverges
and will likely deform the elastic solids. However, the hydrodynamic pressure distribution
given by Eq. 2.60 significantly differs from the Hertzian distribution in a dry contact,
see for instance Eq. 2.9. In such a harsh condition, the relation between the repulsive
force and the relative displacement of the bodies must significantly differs from the Hertz
potential Eq. 2.18 and from the classical result Eq. 2.61 obtained in lubrication limit.
This latter finally results in a rather complex elastohydrodynamic mechanism: we provide
a detailed analysis and description of such an interplay in the following sections.

2.4.4 Mechanical impedance of a wet contact at small fluid thick-
ness

Here, we aim at presenting the description of the elastohydrodynamic (EHD) interplay
that occurs when two elastic bodies interact via a thin layer of viscous fluid. The EHD
mechanism is observed at very different scales [56,67–71], from nano object [72], through
lubricated solids [73] and up to geophysical faults [74]. The seminal work of Davis,
Serayssol and Hinch [65] showed, via detailed numerical study, that the close interplay
between the hydrodynamic field in the layer of fluid and the elasticity of the solids fairly
renders the dynamics of wet collisions. Only recently, over the last decade, the group
of Charlaix [26, 27, 75–82] achieved breakthroughs in the description, the modeling, the
characterization and the understanding of elastohydrodynamic interactions. Here and in
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Figure 2.9: (a) Normalized radial velocity, (b) normalized shear rate and (c) normalized
hydrodynamic pressure distribution as a function of the normalized radial coordinate
r/
√

2Rh0. Here, h0 is the minimal distance between the sphere and the plane and R is
the radius of the sphere.

the next section, we mainly summarize the work done by Leroy and Charlaix [26] and by
Villey et al. [81]. In both these studies, a spherical probe oscillates in a viscous fluid at
frequency ω near an elastic substrate. The sphere has a radius R about few millimeters
and the fluid thickness D lies in between few nanometers to few micrometers. A typical
setup is shown in Fig. 2.10 and constitutes a dynamic surface force apparatus [82]. In
these publications, the derivations provide an expression of the mechanical impedance
κω(D) (the ratio between the force and the deformation) which directly quantifies the
rheology of the wet contact as a function of the relevant parameters.

As shown in Fig. 2.10, the separation distance D(t) between the sphere and the
substrate is given by

D(t) = D + h0Acos(ωt), (2.66)

where h0A is the amplitude of oscillation and D is average distance between sphere and
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the plane; the experiments and analysis have been performed in the linear regime of small
deformation, h0A << D.

Figure 2.10: Elastic sphere oscillating in front of an elastic substrate, both are separated
by an interstitial viscous fluid [26].

According to [26], the mechanical impedance κω(D) is defined as the ratio of the
complex amplitude Fω of the dynamic force F (t) = <[Fωeiωt], acting on the plane at the
excitation frequency ω, to the amplitude h0A of the sphere oscillations h0A cos(ωt),

κω(D) = Fω
h0A

. (2.67)

As to obtain the mechanical impedance in the lubrication regime D << R, one
considers at first the Reynolds equation, which describes the drainage of the fluid between
the sphere and the plane [66],

∂

∂t
[h(r, t)] = 1

12µr
∂

∂r

[
rh3(r, t)∂p(r, t)

∂r

]
, (2.68)

where r is the radial coordinate, p(r, t) is the hydrodynamic pressure and h(r, t) is the
fluid thickness. Taking into account the deflection of the elastic plane u(r, t), the fluid
thickness is

h(r, t) = D + h0Acos(ωt) + r2

2R + u(r, t). (2.69)

In the linear regime, h0A << D, the time-dependent quantities are harmonic functions
of the time at the driving frequency. In this case, the relation between the deflection
u(r, t) = <[u(r)eiωt] and the pressure p(r, t) = P0 + <[δpeiωt] is obtained by linearizing
the Eq. 2.68 at first order in h0A, u and δp,

iωr[h0A + u(r)] = ∂

∂r

[
r

12µ

(
D + r2

2R

)3
∂δp(r)
∂r

]
, (2.70)

where P0 is the atmospheric pressure, u(r) and δp(r) are complex amplitudes.

Within mathematical manipulations [26], one can derive the mechanical impedance
in the form

κω(D) = 6πµR2ω

Dc
gk(D/Dc), (2.71)
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where
Dc = 8R (µω/E)2/3 (2.72)

is a critical distance above which the elasticity of the sphere is involved (see below in
Sec. 2.4.5) and gk(D/Dc) is a non dimensional function estimated semi-analytically [26].

In the regime where the separation is larger than the critical distance, D >> Dc, the
Eq 2.71 takes the form

κω(D) = 6πµR2ω

Dc

[
9π2

512

(
Dc

D

)5/2
+ i

(
Dc

D

)]
. (2.73)

The comparison between the classical lubrication force, Eq. 2.61, and the expression
of the mechanical impedance, Eq. 2.73, shows that including an elastic deformation in
the Reynolds equation, see Eqs. 2.68 and 2.69, provides a non trivial and nonlinear
contribution of the force which is in phase with the deformation, see the first term in
brackets in Eq. 2.73. The second term in Eq. 2.73 stands for the classical limit given by
Eq. 2.61, in which no elasticity is involved.

When the distance between bodies is smaller than the critical distance, D � Dc,
both the out-of-phase damping contribution (the imaginary part) and the in-phase con-
tribution (the real part) in Eq. 2.71 saturate toward constant values; in this case Eq. 2.71
becomes [26]

κω ' 1.163(
√

3 + i)6πµR2ω

Dc
. (2.74)

The asymptotic limits, Eqs. 2.73 and 2.74, have been verified experimentally [81].
The results are summarized in Fig. 2.11: the mechanical impedance describing the elas-
tohydrodynamic interaction depends on the interplay between the elastic characteristics
of the sphere (E, R) and the viscosity of the fluid µ.

It is worth mentioning that the mechanical impedance given by Eq. 2.71 can be
generalized straightforwardly to the interaction between two spheres (radius R1 and R2,
Young’s moduli E1 and E2 and Poisson ratio ν1 and ν2), by simply replacing the radius
R by its effective value

R = 1/(1/R1 + 1/R2), (2.75)

and the elastic modulus E by

E = 1/[(1− ν2
1)/E1 + (1− ν2

2)/E2]. (2.76)

2.4.5 Mechanical impedance of a wet contact at large fluid thick-
ness

In this subsection we present a more qualitative derivation of the mechanical impedance
κω between the sphere and the substrate, as detailed in [26]. Here, when the fluid’s thick-
ness is larger than the critical value, D � Dc, the hydrodynamic pressure, see Eq. 2.60,
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Figure 2.11: Normalized mechanical impedance Z (κω in our notations) as a function of
the normalized separation distance D. The elastic part is shown in blue and the viscous
part is shown in red [81]. Dc is the critical distance, ω is the angular frequency, R is the
radius of sphere and η is the viscosity.

and consequently the elastic deformation can be assumed low enough to decouple the
hydrodynamic problem from the elastic problem. For sake of simplicity, one can addi-
tionally assume the mechanical response of the substrate as the one of a flat punch [26]
of radius aw =

√
2RD, see for instance Eqs. 2.60 and 2.62. Within these frames, the

force exerted by the fluid on the plane being F = 6πµωh0R
2/D in this viscous regime,

see Eqs. 2.61, the resulting indentation δ0 becomes,(
F

πa2
w

)
∝ E

(
δ0
aw

)
→ δ0 ∝

F

E
√
RD

. (2.77)

One can thus model κω as a spring and dashpot in series to account for the presence
of the layer of viscous fluid on top of the elastic substrate,

κω ∝
(

1
k

+ 1
iωλ

)−1
, (2.78)

where k is a stiffness,
k ∝ F

δ0
∝ E
√
RD, (2.79)

and the strength of the dashpot λ is

λ ∝ F

h0ω
∝ µR2

D
. (2.80)

It clearly appears from Eq. 2.78 that a crossover occurs as long as the deformation of
the fluid equals the elastic deformation of the solid. This crossover happens at (ωλ/k) ∝
(δ0/h0) ∝ (Dc/D)3/2 = 1 where Dc ∝ R(µω/E)2/3, see Eq. 2.72. The critical thickness
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Dc thus separates a regime where the viscosity prevails, at D � Dc, and a regime where
the elasticity is involved, at D � Dc.

In the viscous regime, for which (ωλ/k)� 1, the Eq 2.78 becomes

κω(D � Dc) ∝ iωλ
(

1− i iωλ
k

)
∝ µωR2

D

[
i+
(
Dc

D

)3/2
]
. (2.81)

which qualitatively matches the asymptotic limit given by Eq. 2.73 or given by the
classical expression of the Reynolds force without elasticity Eq. 2.61, that is

κω ∝
iµωR2

D
. (2.82)

It is worth mentioning that in agreement with the initial assumption, the elastic
deformation remains negligible compared to the imposed motion in the viscous regime,
at D � Dc: (δ0/h0) ∝ (ωλ/k) � 1. On the opposite, when the thickness is well below
the critical value, D � Dc, the mechanical impedance is such that the ratio of its real
an imaginary parts tends to a constant, see Eq. 2.74,

<(κω)/=(κω) =
√

3, (2.83)

and so is the ratio between the elastic deformation δ0 to the imposed motion h0: (δ0/h0) ∝
(ωλ/k) ∼ 1. Interestingly, this last result demonstrates that the imposed motion is
totally accommodated by the elastic deformation of the sphere and the substrate and,
consequently, the fluid does not deform anymore. In the regime of very small fluid
thickness, the fluid is clamped by its viscosity due to the intense shear rate and shear
stress, see Eq. 2.65; this ultimately leads to an elastic confinement of the fluid [81].

2.5 Macroscopic scale: waves in dry and wet granular
media

After having analyzed the contact dynamic between dry and wet grains at the microscopic
scale, we now focus our attention on the description of the macroscopic scale, well above
the size of the particles. Our aim being the description of wave propagation in granular
media, the natural macroscopic scale is the wavelength; most of the descriptions given in
this section refer to the long wavelength approximation. In this section, we first present
a set of experiments which prove that in compressed media, the static force is distributed
along heterogeneous paths, the so-called force chains. The waves mainly propagate along
these paths. Next, we report on wave propagation in dry granular media, from both
the theoretical and the experimental point of view. In particular, we show the ability of
waves to probe the microscopic scale of the contact between grains. Lastly, we report on
recent experiments concerning wave propagation in wet granular media.
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2.5.1 Force distribution in granular media

The first set of experiment concerns three-dimensional granular media. As shown in
Fig. 2.12, Mueth [83] measured the normal force distribution in a granular packing under
static compression. In this experiment, the static uni-axial force is exerted on random
packing of monodisperse glass spheres enclosed in a cylinder. At the bottom of the
cylinder the beads under compression leave marks on a carbon paper, whose darkness
and area is proportional to the exerted force. Mueth thus demonstrated experimentally
that the force acts locally, as shown in Fig. 2.12(a): the marks on the carbon paper are
distributed heterogeneously. The statistical analysis shows that the force distribution is
nearly uniform for forces below the average force, while it follows an exponential decay for
forces larger than the mean, see Fig. 2.12(b). According to their data, such a distribution
depends neither on the boundary condition nor on the preparation history of the samples.

(a) Experimental setup (b) Force distribution

Figure 2.12: (a) The experimental setup where a granular medium is enclosed in a
cylinder and compressed by an upper piston. By analyzing the marks on a carbon paper,
one can determines the force distribution. By placing a double stick tape on the upper
piston and by estimating the net weight supported by the tow walls, (b) one measures
the force distribution P (f) in the lower piston, upper piston and in the wall of the
cylinder [83]; here f is the normalized force.

The photoelastic technique [84, 85] is also a powerful tool to reveal the intimate na-
ture of the force distribution in two-dimensional granular media. Photoelasticity is based
on the property of birefringence [86] and results from refractive indexes that depend on
the local mechanical stress. When the light passes through a birefringent photoelastic
material, it experiences two refractive indexes, along each of the principal stress direc-
tions. This leads to a phase delay between the component of light in these directions and
the lag is directly proportional to the stress difference. The phase lag thus affects the
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polarization of light. When a photoelastic sample is placed between two perpendicular
light polarizers, the whole system is opaque if no stress is applied on the sample. On the
opposite, light is transmitted locally, where a stress exists: the map of transmitted light
thus reveals the stress distribution in the sample.

For instance, the photoelastic experiments done by Howell [87] in two-dimensional
granular media, made of a pile of photoelastic disc, directly shows that the force is
distributed along heterogeneous paths, see Fig. 2.13. These force chains are also revealed
from the numerical simulations performed by Radjai [88], as shown in Fig. 2.13(c).

These quasi one-dimensional alignments of most compressed and most stiff particles
are privileged paths for the propagation of mechanical waves.

Figure 2.13: Photoelastic pictures of the heterogeneous force chains which support most
of the load in compressed granular media. (a) The media is either submitted to a point
force [89] or (b) under shear stress [87]. (c) Numerical simulations showing the network
of normal forces in polydisperes granular media [88].

2.5.2 Waves as a non intrusive probe of the microscopic scale

As for waves in continuous media, where the wave speed for instance closely relies on
the elasticity and the density of the matter, the waves propagating in granular media
and through force chains can serve as a non invasive probe of the features at the scale of
the grains. Analyzing how waves propagate in a granular medium would likely give an
insight into the contact dynamics between grains, revealing the intimate nature of the
microscopic scale.

In the seminal works of Liu et al. [3–5] and Jia et al. [6], authors probed the wave
propagation in granular media. In Fig. 2.14, we show the experimental setup of Liu [3–5]
where a loudspeaker source (S) and an accelerometer detector (D) are placed in a granular
medium. One observes that, as the distance increases, the first peak (presumably the
ballistic wave that propagates straight from the source to the detector) arrives with a
delay and is attenuated. As long as the magnitude of this wave sufficiently decreases, it
reveals the presence of late signals. A close inspection demonstrated that reflections on
the sides of the container are not responsible for this coda: according to Liu [3–5] the
late signal relies on the different paths the sound travels through. The proof comes from
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one of their experiment [3], see Fig. 2.14: a heater, which raises the local temperature by
only 0.8 K, is embedded in the granular media. The heater dilates when its temperature
is increased; it thus exerts local stress and strain in the sample which in turn provokes
an abrupt change in the amplitude received on the detector Ad. This observation thus
demonstrated that local rearrangements of the grains influence the sound propagation [3].
This interpretation, as well as other results presented in this subsection, is consistent
with the fact that wave is carried out along specific paths, the so-called force chains, in
granular media [3–5].

Figure 2.14: (top-left) Experimental setup used to study wave propagation in granular
media where S is the source (a loudspeaker), D is the detector (an accelerometer) and
Ld is the distance between S and D [3–5]. (right) Response of the samples as a function
of time τ for different distance Ld between the source and the detector [3]. (bottom-left)
A compact heater H is placed inside the granular media [3], in between the source and
the detector: it expands when its temperature is increased. The magnitude Ad of the
transmitted acceleration is closely related to the cycles of temperature of the heater:
the dilation of the heater generates additional force chains and consequently, a stronger
coupling between the source and the detector.

The experimental study of Jia et al. [6] sheds additional light on the intimate nature
of wave propagation in granular packing. In [6], Jia et al probed experimentally the
wave propagation in glass beads. They observed that the received signal is composed of
two distinct parts, see Fig. 2.15. First is a well-defined short pulse E which corresponds
to the ballistic pulse. This part is the coherent and reproducible contribution of the
signal. It weakly depends on the local arrangements of the grains and in average, it
propagates straight from the source to the detector, as through a continuous medium.
The ballistic contribution is followed by an incoherent speckle (a coda) which spreads
over a long interval of late time; according to Jia. [6], this contribution comes from the
multiple scattering of waves, on every particle. The incoherent contribution becomes
significant when the wavelength of the incident pulse becomes comparable with the size
of the scatterers. This part of the signal is strongly affected by the arrangements of the
particles and by the configurations of the force chains.
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The analysis of the speckle coming from the multiple scattering of the wave on every
grain provides a very rich information and allows reaching a deeper understanding of
many mechanisms at the microscopic scale. The coda wave for instance gives informa-
tion on the nonlinearity of granular media [90] and reveals phenomena such as aging,
compaction and even slipping of the microscopic asperities of the grains [91–94].

Figure 2.15: Inset (a), an experimental setup [6] for probing wave propagation in granular
media made of glass beads. (a,b) The detected signals where one sees the coherent part
E and the multiply scattered part S of the signal. Results for glass bead packing with
diameter d = 0.2−0.3 mm (a) and with diameter d = 0.4−0.5 mm (b), R is the reflected
signal and A is the amplitude.

2.5.3 Wave propagation in dry granular media

In this subsection, we report on theoretical and experimental analysis of wave propagation
in dry granular media, with the aim to verify how waves are related to the contact
dynamics between particles. We start from one-dimensional granular media and we then
switch to the case of three-dimensional granular packing.

Waves in one-dimensional dry granular media

Here at first, we consider a one-dimensional chain of spheres under static compression.
Under the action of a static force F0, the spheres deform and approach one to the other
by a distance δ0. The overlap δ0 between two spheres is strongly confined in a narrow
region near the point of contact. This allows to model the system as an alignment of point
masses M ∝ ρR3

0 connected by springs whose stiffness kH ∝ [E0/(1 − ν0)]R0(δ0/R0)1/2

is given by Hertz potential. Here, ρ is the density, R0 is the radius, E0 is the elastic
modulus and ν0 is the Poisson ratio of the spheres. The propagation of a longitudinal
plane wave in the chain causes the nth particle to translate by a distance yn from its
equilibrium position. By applying Newton’s second law of motion to each of the spheres
and by taking into account for a nonlinear Hertz potential interaction between closest
neighbors, one obtains [95]

Mÿn = κ (δ0 + yn−1 − yn)3/2 − κ (δ0 + yn − yn+1)3/2
, (2.84)
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where κ = E0(2R0)1/2/[3(1 − ν2
0)] and ẏn denotes the derivative in time. In the linear

regime, where the dynamic perturbation is smaller than the static overlap,

yn−1 − yn
δ0

� 1, (2.85)

the Taylor expansion of Eq. 2.84 gives

Mÿn ' (3/2)κδ1/2
0 (yn+1 + yn−1 − 2yn). (2.86)

Now replacing the displacements by the Taylor expansions yn±1 = yn ± (2R0)y′

n +
(2R0)2y

′′

n in Eq. 2.86, where y′

n denotes the derivative in space, one finally finds the
following equation of propagation

Mÿn ' (2R0)2kHy
′′

n. (2.87)

Figure 2.16: One-dimensional force chain of spheres with radius R0 connected by springs
kH under static compression F0.

Looking for a harmonic wave solution yn(t) = ej(ωt−qx) of Eq. 2.87, where q = ω/cφ

is the wavenumber and cφ is the phase velocity, one finds the dispersion relation in the
long wave length approximations,

cφ ' (2R0)
(
kH
M

)1/2
∝
(
E0

ρ

)1/2(
F0

E0R2
0

)1/6
∝ c0

(
P

E0

)1/6
. (2.88)

As observed in Eq. 2.88, the wave speed cφ nonlinearly depends on the confinement
pressure P = F0/πR

2
0 ∝ E0(δ0/R)3/2 and on the characteristics of the material of the

spheres, c0 ' (E0/ρ)1/2, where c0 stands for the longitudinal wave speed in the bulk
material of the spheres. The equation 2.88 clearly shows that the wave speed provides
a direct information on the contact dynamics between the grains, quantified by the
Hertz stiffness kH . Measuring the wave speed thus provides a measure of the interaction
potential between particles.

The nonlinear power law dependence of the wave speed versus the confinement pres-
sure, Eq. 2.88, has been experimentally probed by Coste et al. [96], where they measured
the wave speed as a function of the static force applied in one-dimensional alignments of
spheres. As to verify the validity of the Hertz prediction, Eq. 2.88, over a large range of
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parameters, they considered several elastic, elasto-plastic or brittle materials with very
different surface roughness. In addition to the Hertz potential, their measurements thus
allowed the close check of assumptions devoted to explain the few discrepancies observed
with waves in real sand; for instance, the incremental bulk modulus of a pile of sand
increases as a power law of the confinement pressure, but with a slightly different ex-
ponent [9]. The first extension of the Hertz model is due to De Gennes, who proposed
two different approaches. The first one accounts for a soft external layer, that may be
due to an oxidation of the surface and which may affect Hertz potential [97]. In turn,
Goddard intended to account for the effect of the surface roughness as an assembly of mi-
croscopic cones [98]; the indentation of a cone significantly differing from the indentation
of a sphere. The second extension of De Gennes deals with local plastic deformations at
microscopic contacts [99]; a non-Hookean behavior may lead to a different rheology of
the contact. However, the main conclusion of Coste et al. is that the Hertz potential
fairly predicts the acoustic behavior given by Eq. 2.88 in one-dimensional media, for
most materials and independently of the surface roughness of the spheres. Coste et al.
found a noticeable exception with brass beads: at large static compression, the wave
speed increases faster than the prediction, cφ ∝ (P/E0)1/4.5. The latter reveals the onset
of permanent plastic deformation of the contacts, according to the assumption of De
Gennes [99].

Coste et al. also probed the dynamical response of one-dimensional alignments in the
nonlinear regime [96,100], without restriction imposed by Eq. 2.85. In this case, the parti-
cles are barely touching one to the other, without any static compression. In this regime,
the linear wave speed tends to zero: this corresponds to a sonic vacuum [95], in which any
perturbation only propagates via nonlinearity. As predicted by Nesterenko [95], nonlin-
ear solitary waves can propagate in such a system. The relation between the wave speed
c and the amplitude of the dynamic force Fm of these specific waves follows the Hertz
potential prediction, c ∝ F 1/6

m [95]. The experimental observations conducted in [96,100]
at low static compression and high dynamic amplitude provided the same trends as in
the linear regime: below the onset of plastic deformation, no significant discrepancies is
observable from the prediction given by Hertz potential.

At this point, one can complete the description of wave propagation in dry alignments
of particles by addressing the effect of dispersion at high frequency, when the wavelength
tends to the size of the particles. The dispersion relation can be found by considering a
harmonic plane wave,

yn(t) = y(x = 2nR0, t) = exp [i(ωt− qx)], (2.89)

where ω = 2πf is the angular frequency, q = ω/cφ − i/latt is the wavenumber, cφ is the
phase velocity and latt is the attenuation length. Introducing Eq. 2.89 in Eq. 2.86 gives

−Mω2 ' 2kH [cos (2qR0)− 1], (2.90)
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such that the dispersion relation finally reads

q(ω) = 1
R0

asin
(

ω

ωcut

)
, (2.91)

where
ωcut = 2

√
kH/M = cφ(ω = 0)/R0 ∝ c0/R0(P/E)1/6, (2.92)

is a cutoff frequency. The wave number given by Eq. 2.91 is thus purely real below the
cutoff frequency, ω ≤ ωcut, and so are the phase velocity cφ = ω/<(q) and the group
velocity cg = ∂ω/∂<(q): elastic waves propagate and the dispersion relation indeed
shows that cφ(ω) 6= cg(ω). However, waves are not dispersive in the asymptotic limit
ω � ωcut, for which the Eq. 2.91 indicates cφ(ω = 0) = cg(ω = 0) = R0ωcut. The latter
exactly matches the result given by Eq. 2.88 and corresponds to the long wavelength
approximation: λ = 2π/<(q) ' R0(ωcut/ω) � R0. In turn, the higher frequency region
ω ≥ ωcut corresponds to a forbidden band, in which the wavenumber becomes purely
imaginary, q = −i/latt. In the forbidden band, elastic waves do not propagate and any
dynamic perturbation generates an evanescent wave.

Waves in three-dimensional dry granular media

From now on, we focus on three-dimensional granular packing. The theory concerning
wave propagation in three-dimensional granular media is based on an effective medium
in the long wavelength approximation. The effective medium theory (EMT) [101–105]
relies on the Hertz-Mindlin [50] contact dynamics. The contact model takes into account
for the Hertz potential in the normal direction, via the normal stiffness kH , and for the
tangential stiffness kt given in Eq. 2.27. The passage from the microscopic scale, at the
level of the contacts, to the macroscopic scale, in the long wavelength approximation,
provides an estimate of both the longitudinal speed Vp and the shear wave speed Vs from
an effective bulk modulus Ke, an effective shear modulus µe and an effective density
ρe. Under the long wavelength approximation, the longitudinal and shear wave speeds
are [7–9],

Vp =

√
Ke + 4/3µe

ρe
, (2.93)

Vs =
√
µe
ρe
, (2.94)

where ρe is defined as ρe = ρ × Φ, here ρ is the density of the material of the grains
and Φ is the compacity, defined as the ratio of volume occupied by the grains to the
total volume of the sample. In turn, the effective moduli Ke and µe are closely related
to the normal and the tangential contact stiffness between spheres, kH and kt, on the
compacity Φ and on the coordination number Z, which characterizes the average number
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of contacts per particles. The bulk modulus reads

Ke = ZΦ
12πR0

kH , (2.95)

while the shear modulus is

µe = ZΦ
20πR0

(kH + 3/2kt). (2.96)

In the case of frictionless spheres, the tangential stiffness is zero, kt = 0. The fact that
µe is non zero with frictionless particles results from the geometrical arrangement of the
grains: the normal repulsion between grains indeed induces by itself a shear resistance
in a granular sample. Still, it is worth mentioning that the relation between the static
force F0 between grains and the confinement pressure is given by

F0 = 4πR2
0P

ZΦ , (2.97)

and the radius of the contact disc a between two spheres is [7], in terms of the effective
parameters,

a = R0

[
3π(1− ν0)

2ZΦG0
P

]1/3
, (2.98)

where R0 is radius of the spheres, ν0 the Poisson ratio and G0 the shear modulus, G0 =
E0/2(1+ν0). As in one-dimensional alignments of spheres, the EMT predicts a nonlinear
power law between the confinement pressure P and the wave speed , Vp,s ∝ P 1/6, and
the wave speed is proportional to the longitudinal wave speed c0 in the bulk material of
the spheres,

Vp,s ∝
Φ1/3

Z1/6 × c0
(
P

E

)1/6
. (2.99)

Not surprisingly, the expression given in Eq. 2.99 matches the result obtained in the
one-dimensional case, see Eq. 2.88, corrected by the effective values of the compacity Φ
and the coordination number Z.

Up to certain extent, the EMT satisfactorily describes the experimental observations
under the long wavelength approximation. Makse et al. [8] indeed measured both the
longitudinal and the shear wave speed in granular packing as a function of the confinement
pressure; the knowledge of Vp and Vs provides a measure of the bulk and the shear
moduli. They also performed direct molecular dynamics simulations of these moduli. The
confrontation of these measurements, see for instance the Fig. 2.17(a), and the simulations
to the EMT show that the prediction given by Eq. 2.93 and Eq. 2.94 reliably renders a
nonlinear scaling of the longitudinal and shear velocities as a function of the confinement
pressure, Ke = AKP

nK and µeAµPnµ . A close inspection of these results demonstrates
that both the magnitude AK and the exponent nK ' 1/3 are closely predicted by Eq. 2.95
at low confinement pressure. At larger pressure, weak but noticeable discrepancies arise:
the order magnitude of the bulk modulus matches but increases slightly faster that EMT
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prediction with the confinement pressure, nK > 1/3. Makse related this discrepancy
to an increase of the coordination number [8], i.e. an increase of the overall number
of contact, at strong confinement pressure. Things are different for the shear modulus:
first, the EMT largely overestimates the magnitude Aµ of the shear modulus and second,
it significantly underestimate the exponent nµ: the shear modulus increases with the
confinement pressure faster than predicted. For instance, molecular dynamic simulations
shows that nµ ' 2/3 with frictionless particles at very low confinement pressure. The
failure of the EMT relies on the nonaffine motion of the grains under shear, due to
relaxation mechanisms related to structural disorder, see Fig. 2.17(b). The breakdown
becomes dramatic near the unjamming point [106], where a granular medium lose any
rigidity and below which the sample would start to flow at infinitely small confinement
pressure.

Figure 2.17: (a) Evolution of the longitudinal wave speed Vp speed as a function of the
confinement pressure P . (b) The relaxation of the shear stress σ12: the path from points
A to B indicates an affine motion while the relaxation takes place B to C.

2.5.4 Wave propagation in wet granular media

There are two type of experiments which quantifies experimentally the wave propagation
in wet granular media. The first type of experiments is due to Brunet [10] and later
to Griffiths et al. [107]. They both focused on wave propagation in three-dimensional
granular media made of polydisperse beads and they closely compared the wave speed
measured in dry and wet configurations, as shown in Fig. 2.18. Brunet observed two
antagonist effects. One one hand, using fluids with same viscosity but different surface
tensions, they observed a slower wave speed in presence of an interstitial fluid, compared
to the dry case. This decrease is more pronounced with surfactant with higher surface
tensions: they explained this observation by the decrease of the coordination number Z,
induced by the capillary cohesion between the grains. On the other hand, using fluids
with different viscosities, they observed that the waves in wet granular media are faster
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than in the dry configuration. One explanation given by Brunet relies with the increase
of the contact stiffness: the presence of a fluid facilitates micro slips of the contacts,
which in turn enables a better conformation of the surfaces in contact and an increase of
the contact area between grains; the latter would thus increases the contact stiffness.

Figure 2.18: (a) Wave speed as a function of confinement pressure: in purple is the
Hertz-Mindlin model, in red ◦ a dry configuration, in blue ♦ with water, in green O with
an oil with viscosity 50 mPas and in red ? with a fluid with viscosity 10 Pas [107]. (b)
Averaged intensity I in dry and wet granular packings: the solid lines stands for fitted
models [108].

The second type of experiments concerns the wave propagation in one-dimensional
alignments of spheres done by Job et al. [11]. One of the advantage of this type of exper-
iments relies on the known and constant coordination number, Z = 2 in one-dimensional
media. Here, Job et al. first characterized the dry configuration as a reference case. Next,
by adding a very small amount of viscous fluid, they observed the acoustical response
of wet granular media. By comparing these two cases, they found that the wave speed
could be increased by more than 50% in the presence of very narrow drop of interstitial
fluid. Here and contrarily to [10, 107], the increase of the wave speed is solely related to
a modification of the contact dynamics between particles. One of the reason invoked to
explain such a noticeable increase is related to the occurrence of an elastohydrodynamic
interaction [65] between grains, as described in Sec. 2.4. Among other features, this
assumption in particular, that we aim to probe in this manuscript.

In any of these cases, the effect of adhesion due to the Laplace force in liquid bridges
is not responsible for an overall increase of the confinement pressure at the level of the
contacts. Denoting the adhesive force contribution as FA, see Eq. 2.57, the experiments
of Job et al. [11] have been conducted with fluids with a surface tension at about γf ∼
20 mN.m−1 and spheres with radius 13 mm: the adhesive contribution, FA = 4πγfR '
0.0015 N (R is effective radius), is negligible compared to the characteristic amplitude of
the dynamic perturbations, Fex ' 10 N. In the experiment of Brunet [10] the fluids with
have a surface tension at about γf ∼ 70 mN.m−1 and the mean radius of the spheres
is R0 ' 350 µm. In this case, the force of adhesion is again negligible compared to the
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static force supported by each bead, F0/FA ∼ 500.
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3.1. PRESENTATION OF THE EXPERIMENTAL SETUP

In this chapter, we focus on the design and the calibration of the experimental setup.
Here, the granular medium consists in a one-dimensional chain of spheres under com-
pression; the alignment is constrained within four rods. The chapter is divided in five
parts. In first place, we present our experimental setup. Then, we detail the careful
characterization of the elastic properties of the spheres from ultrasonic measurements.
Next, we focus on the apparatus used to apply the static compression, in order to check
its reliability and stability. Later, we present a set of preliminary experimental results,
which reveal the main features of the wave propagation in one-dimensional granular me-
dia. Finally, we analyze the experimental frequency response of granular chain, paying
a special attention to the limits and the possible pitfalls of our setup.

3.1 Presentation of the experimental setup

The one-dimensional granular media under study consist in alignments of spheres made
of either polyacetal or steel, see Fig. 3.1. An alignment of spheres is supported by four
rods; these rods are made of either plexiglas or steel. The granular chain is compressed
with a static force F0. From one side, the system is clamped by a piezoelectric actuator,
see Fig. 3.2(a), mounted on a massive and rigid piece of steel; the actuator sends dynamic
perturbations. From the other side of the chain, the static force F0 is exerted by a heavy,
5 kg or so, translatable tray shown in Fig. 3.2(b): by translating the tray, one changes
the static force applied on the alignment.

Two dynamic force sensors are placed at each extremity of the chain, in contact with
the first and the last bead respectively. The first one, on the input side, consists in a light
and thin piezoelectric ceramic (used in conjunction with a charge amplifier) glued in front
of the piezoelectric actuator and set in contact with the first sphere of the alignment, see
Fig. 3.2(a). The second force sensor, on the output side, is a commercial sensor (Bruel
& Kjaer 8230-001) placed in front of the static force apparatus and in contact with the
last sphere, see Fig. 3.2(b). In addition, a static force sensor (TME F-442) is placed on
the output side, in between the dynamic force sensor and the tray, see Fig. 3.2(b): it
provides the direct reading of the static force applied on the chain.

Figure 3.1: Experimental setup, here consisting of 32 identical polyacetal spheres aligned
on four plexiglas rods.
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Figure 3.2: Experimental setup: at the left end of the chain, the piezoelectric actuator
sends dynamic perturbations which are sensed by a specially designed light force sensor
glued in front of it. At the right end of the chain, one sees the dynamic force sensor
screwed in front of the static force sensor and the translatable tray.

3.2 Estimation of the characteristics of the spheres

3.2.1 Elastic properties of the spheres

As predicted by Eq. 2.88 the wave speed in a one-dimensional granular medium depends
on the radius of the spheres, their mass, their Young’s modulus, their Poisson ratio and on
the applied static force. The radius and the density of the spheres are easily measurable
(R0 = 12.5 mm and ρ = 1385 ± 20 kg.m−3 for polyacetal and ρ = 7785 kg.m−3 for
steel) while one probes directly the static force F0 in our setup. As to determine the
Young’s modulus E0 and the Poisson ratio ν0 of the sphere, we performed ultrasonic
measurements in the bulk of their material. On purpose, we cut a flat slab of material
from an original sphere in order to achieve these measurements.

These experiments are performed in transmission mode using longitudinal ultrasonic
pairs of emitter and receiver centered at 1 MHz (Panametrics A103S-RB), 2.25 MHz
(Panametrics V306-SU), 5 MHz (Panametrics A109S-RB) and a pair of shear transducers
centered at 0.5 MHz (Panametrics V151-RM). The experiments consist in measuring the

Figure 3.3: Ultrasonic measurements in a slabs of material cut from an original poly-
acetal sphere placed between two longitudinal transducers (left) or between two shear
transducers (right). Both experiments are performed in transmission mode.
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Figure 3.4: Phase delay Φ of the transfer function as a function of frequency for longi-
tudinal waves centered at 1 MHz (blue), 2.25 MHz (red) and 5 MHz (green). The black
curve is a guide line showing the linear regression Φ = ωe/cL.

phase delay and the attenuation between a reference signal uin, acquired when the emitter
is in direct contact with the receiver and a signal uout propagated through a sample of
material. The phase delays provide the measure of both the longitudinal and shear phase
velocity. The Fig. 3.3 shows a slab of thickness e, cut from an original polyacetal sphere
and placed between two transducers.

The longitudinal wave speed cL and the shear wave speed cS are estimated from the
transfer function between the input and output signals uin and uout, H = uout/uin. The
phase Φ(ωc) of H near the central angular frequency of the transducers ωc = 2πfc serves
for the estimation of the wave speed,

cL,S = ωce

−Φ(ωc)
. (3.1)

The estimation of Poisson ratio ν0 of the spheres is thus obtained as,

ν0 = c2L − 2c2S
2(c2L − c2S) , (3.2)

and the Young’s modulus E0 is

E0 = c2Lρ(1 + ν0)(1− 2ν0)
1− ν0

. (3.3)

We find that polyacetal spheres have a Poisson ratio ν0 = 0.38± 0.02 and a Young’s
modulus E0 = 4.25 ± 0.25 GPa, while steel beads are such that ν0 = 0.29 ± 0.009 and
E0 = 203± 0.46 GPa.

The bulk attenuation in the spheres is quantified by the loss angle δ; it corresponds
to the phase lag between the strain and the stress and is taken into account as a complex
Young’s modulus E? = E0e

iδ. Assuming weak dissipation, δ � 1, the loss angle can be
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Figure 3.5: Natural logarithm of the modulus of the transfer function versus frequency.
The loss angle estimated from Eq. 3.8 near the central frequency (here around 2.25 MHz)
of the transducer is shown in red.

estimated from the expression of the longitudinal wave speed,

cL =

√
E?
ρ
'

√
E0

ρ
(1 + iδ/2) ' cL(1 + iδ/2). (3.4)

According to Eq. 3.4, the longitudinal wavenumber q = ω/cL becomes

q = ω

cL
(1− i δ2), (3.5)

which, inserted into the expression of a harmonic plane wave for the displacement,
u(x, t) = exp[i(ωt− qx)], gives

un(t, x) = exp
[
iω

(
t− x

cL

)]
× exp

(
− ωδ

2cL
x

)
. (3.6)

The modulus of the transfer function being

|H| =
∣∣∣∣un(x = e)
un(x = 0)

∣∣∣∣ , (3.7)

the loss angle thus becomes, from Eq. 3.6 and Eq. 3.7,

δ = −ln(|H|)2cL
ωe

. (3.8)

We estimate δ as the mean value of Eq. 3.8 over the central frequency of transducer,
see Fig. 3.5: we find δ = 0.053 ± 0.02 rad for polyacetal and δ = 0.023 ± 0.0074 rad for
steel.

The estimation of the transfer function H between an input signal uin and an output
signal uout is performed as follows. First we estimate the Fourier transform of the signals
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over the time t, Ci = FTt(uin) and Co = FTt(uout). Then, the transfer function is
estimated as the ratio of the average (over multiple repetitions) cross correlation Cio =<
C∗i Co > and the average auto correlation Cii =< C∗i Ci > Coo =< C∗oCo >, where C∗i
denotes the complex conjugate of Ci. Thus H read

H = Cio
Cii

. (3.9)

and the coherence [109] is defined as,

coh = |Cio|2

CiiCoo
. (3.10)

The coherence shows the similitude between two signals in the frequency domain.
When signals are not correlated, for instance if the signal to noise ratio is low, then the
coherence falls; in the opposite, the coherence between signals well correlated is close to
one. The coherence is used to determine the region of frequency where the measurement
of the transfer function is reliable and accurate.

3.2.2 Effect of the solid friction on wave attenuation

In addition to the dissipation of energy due to the deformation of the contacts, see
Sec. 3.2.1, the solid Coulombic friction of the particles on their support may participate
to the overall attenuation of dynamic perturbation propagating along the alignment.
Here, we intend to provide an order of magnitude of the dissipation due to the solid
friction.

Figure 3.6: An alignment of particles with mass M and radius R0 interacting via an
elastic potential with stiffness kH . The particles are pressed against the ground with a
force FR, for instance the weight of each particle, and interact with the ground via a
Coulomb’s coefficient of friction µs.

We consider a chain of particles with massM and radius R0 interacting via an elastic
potential, with stiffness kH . Every particles slide on a ground surface an we define a solid
friction coefficient µs. We assume that a radial force FR is exerted between the particles
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and the ground (for instance due to the weight of the particles, or due to the buckling of
the alignment when the particles are compressed in the axial direction, see below). Now
let’s assume that a perturbation comes from the left side in Fig. 3.6: the dynamic force
at contact n is F̃ (n) = kH(yn−yn+1), the potential energy is UP (n) = kH(yn−yn+1)2/2
and the kinetic energy of particle n is UK(n) = Mẏ2

n/2. Since the interaction potential
between particles is elastic, then the total energy is Utot(n) = UP (n)+UK(n) = 2UP (n) '
|F̃ (n)|2/kH , where |F̃ (n)| is the magnitude of the force. As long as the magnitude of
the dynamic force is smaller than the Coulomb’s force of friction, |F̃ (n)| ≤ µsFR, then
the particle n sticks to the ground. As soon as the perturbation exceeds the frictional
force |F̃ (n)| > µsFR, then the particle n slips and loose part of the incident energy and
momentum. In the latter case, for a perturbation going from left to right in Fig. 3.6, the
decay of the total energy from sites n− 1 to n is equal to the work done by the frictional
force at particle n,

Utot(n)− Utot(n− 1) = −µsFRyn, (3.11)

or else, from the difference between three particles,

Utot(n+ 1) + Utot(n− 1)− 2Utot(n) = µsFR(yn − yn+1), (3.12)

which can be rewritten in term of the magnitude of the traveling force,

|F̃ (n+ 1)|2 + |F̃ (n− 1)|2 − 2|F̃ (n)|2 ' µsFR|F̃ (n)|. (3.13)

Introducing an attenuation length lf such that |F̃ (n + 1)|/|F̃ (n)| = e−2R0/lf , then
the Eq. 3.13 gives

e−4R0/lf + e+4R0/lf − 2 = 2 sinh2
(

2R0

lf

)
' µsFR

|F̃ (n)|
, (3.14)

which, assuming weak frictional dissipation lf � 2R0, finally gives

lf
2R0

'

√
2|F̃ (n)|
µsFR

. (3.15)

From the practical point of view, if FR = Mg corresponds to the weight of a polyacetal
sphere, M ' 10.9 g, and assuming a perturbation with amplitude |F̃ (n)| ∼ 0.5 N and
a coefficient of solid friction µs ∼ 0.1, one finds a rough estimation for the attenuation
length due to friction

lf
2R0

∼ 10. (3.16)

It is worth mentioning that the Eq. 3.15 is valid only when the particles slip, i.e. if
|F̃ | > µsFR. If the particles stick to the ground then no frictional dissipation occurs.
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SENSOR

3.3 Design and calibration of an embedded dynamic
force sensor

Figure 3.7: Experimental setup. (left) Embedded dynamic force sensor: a piezoelectric
ceramic is glued between two caps cut from a 25 mm in diameter polyacetal sphere.
(right) The sphere with embedded sensor can replace any particle in an alignment and
allows precise measurement of the dynamic force as a function of time and position in
the chain.

As to measure the dynamic force that propagates inside our alignments of spheres,
we specially designed a non-intrusive instrumented particle. This particle consists in a
2 mm thin and 12.5 mm in diameter piezoelectric annular patch glued in between two
caps cut from an original sphere, as shown in Fig. 3.7. The electrical charge generated
by the piezoelectric patch is proportional to the dynamic force exerted on the direction
perpendicular to the patch and the signal is conditioned by a separate charge amplifier
and then amplified. The total mass of the device matches the mass of an original sphere
up to a good precision. In addition, the contact mechanics is preserved: the thinnest
cap is few millimeter thick, well larger than the penetration depth of the deformation
near a contact between particles, see Sec. 2.3. Both the inertia and the elasticity of the
instrumented particle thus reliably match the features of an original sphere.

The sensor is calibrated as follows. We place the embedded sensor in direct contact
either with the dynamic force sensor glued on the piezoelectric actuator, or with the
dynamic force sensor on the output extremity of the alignment. The alignment is made of
40 polyacetal particles under moderate compression. In both cases, we excite the system
with a chirp between 50 Hz and 4 Hz and we estimate the transfer function between
the embedded sensor voltage (via the charge amplifier) and the reference sensor. This
provides a measurement of the sensitivity of the embedded sensor. The ratio H(ω) =
|H|ejφ between the dynamic force measured by the embedded sensor to the dynamic
force measured by the reference sensors is presented in Fig. 3.8 as a function of frequency.
These results demonstrate the reliability and the robustness of the embedded sensor: it
provides a fairly constant sensitivity and no phase shift over the whole frequency range
of interest.

page 67



CHAPTER 3. ONE-DIMENSIONAL EXPERIMENTAL SETUP

Figure 3.8: Transfer function H(ω) = Femb/Fref between the signals acquired by the
embedded sensor and the reference dynamic force sensor Fref , where Fref = Fin is
the dynamic force sensor in front of the piezoelectric actuator (the blue curve) and
Fref = Fout is the dynamic force sensor on the output side (the red curve). Results are
shown in modulus (a) and in phase (b) as a function of frequency.

3.4 Characterization of the static loading apparatus

Here, we describe in details the apparatus used to apply a static load F0 on the alignment.
In particular we will analyze its accuracy, reliability and mechanical stability. Due to the
friction between the spheres and their supports (the aligning rods), one can infer that
the static force F0 is not homogeneously distributed along the chain. For instance, the
beads near the extremity, where the static force is applied, may be more compressed than
the spheres in the central part or at the other side of the alignment. The latter depends
on the way the static force is prescribed and issues can be bypassed by first applying
a value that exceeds a given set point, before slowly decreasing it until reaching a final
desired value. In all cases, the stabilization of the static force depends on a relaxation
time related to micro slips of the grains on their supports.

As to quantify these influences, we perform two sets of experiments. For these exper-
iments, we use a granular chain of 40 polyacetal spheres supported by four steel rods. In
the first set of experiments, following a protocol (A), the chain is compressed at a given
value of the static force (10 N, 20 N, 30 N and 40 N) for about 5 minutes. During this
time, we observe the evolution of the force registered by the static force sensor as a func-
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Figure 3.9: Relative decay of the static force F0 measured as a function of time t. (a)
Protocol 1A: temporal evolution of the static force from set points 10 N, 20 N, 30 N and
40 N in red, green, blue and dark respectively. (b) Protocol 1B: temporal evolution of
the static force at 20 N after having waited 1 min, 2 min, 3 min 4 min and 5 min in red,
green, blue, dark and magenta respectively at the static force of 40 N. Here, the system
is not excited by a dynamic signal.

tion of time. In the second type of experiments, following a protocol (B), one compresses
the chain with a static force at 40 N up to 5 minutes. Then this force is decreased to
20 N, while we record the time evolution of the static force during 5 more minutes.

In addition, these two protocols are done via two different variants, in order to probe
the occurrence of micro slips of the grains on their support. Following the protocol of
Espindola [93], we set the dynamic actuator either on or off while loading and unloading
the chain. In the protocol (1), one does not send any dynamic signal in the alignment.
In the protocol (2), a chirp of 1 s duration is sent every 5 s by the actuator. The chirp
signal has a large frequency range (100 Hz to 6 kHz) and has a rather large magnitude.

Experimental results for both protocoles (1) and (2) are traced in Fig. 3.9 and in
Fig. 3.10, in which both protocols (A) and (B) reveal the temporal evolution of the
static force. The results from the protocols (1A) and (1B) are traced on the Fig. 3.9.
Here at time t = 0, the compression is concentrated at the beginning of the chain,
where one applies and measures the static force. At longer time, the static force starts
to redistribute along the chain, due to micro slips at the level of the contact [91, 93].
This homogenization of the compression results in the decay (in A) or an increase (in
B) of the force measured at the extremity as a function of time t. Comparing protocols
(1A) and (1B), one observes that the relative evolution of the static force are comparable,
dF0/F0 ∼ 3−5%, within the same duration. The latter suggests that the relaxation time
is controlled by the same process, no matter the static load is increased or decreased.

In the protocols (2A) and (2B) in which one sends intermittent chirps, the temporal
evolution of the force is more pronounced, see Fig. 3.10(a). One expects here to reach
a homogeneous compression more quickly: applying a dynamic perturbations facilitates
micro slips of the beads at the level of asperities [91, 93], which in turn boosts the
homogenization of the force.
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Figure 3.10: Relative decay of the static force F0 measured as a function of time t. (a)
Protocol 2A: temporal evolution of the static force from set points 10 N, 20 N, 30 N and
40 N in red, green, blue and dark respectively. (b) Protocol 2B: temporal evolution of
the static force at 20 N after having waited 1 min, 2 min, 3 min 4 min and 5 min in red,
green, blue, dark and magenta respectively at the static force of 40 N. Here, the system
is intermittently excited by a broad frequency range chirp with a rather large amplitude.

In the protocol (2) and experiment (b), one observes that the dynamic solicitation of
the system has almost no impact on the convergence of the force, compare for instance
the results shown in Fig. 3.9(b) and in Fig. 3.10(b). Indeed, if the static force is increased
up to 40 N, as in the previous case, F0 is concentrated in the region at the beginning
of the chain. Along the chain, the force is smaller than the compression applied at the
extremity. However, there exists regions (maybe even the whole chain), where the static
force is yet above 20 N. Decreasing then the set point down to 20 N at the extremity,
from this higher state, let the chain in a more stable arrangement: the applied static
force is homogeneously distributed along the chain. So far, the solicitation of the signal
does not change further the configuration of the particles on their support. This differs
from the cases shown in Fig. 3.9(a) and Fig. 3.10(a), where the beads are in metastable
positions and where the dynamic signal alters these configurations.

When it comes to the stability and the convergence of the applied static force, the
best way to perform experiments is thus to protocol (1B), by overloading the set point
and without dynamical solicitation; the latter having no significant effect on the practical
point of view. However the method (B) has a pitfall at the highest static loads, since
the onset of plastic deformation may easily be reached while preparing the system. In
order to bypass this limit, we tested a third protocol (C) which consists in applying a set
point at the desired value of the static force and then in facilitating the homogenization
by accommodating the micro displacements of the beads by hand at random locations.

As for the protocols (A) and (B), the stability of the static force is tested by following
the temporal evolution of the static force at 20 N for 5 minutes, while driving or not
a dynamic solicitation. The experimental results are traced in Fig. 3.11. With this
method one obtains a relative decay which is comparable but slightly more regular and
more repeatable than the original protocol (A) and (B). Taking into account that the
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Figure 3.11: Relative decay of the static force as a function of time t with experimental
protocol C, for a 20 N static force and during 5 min. In red, the response without
solicitation (protocol 1C), in blue the response with solicitation (protocol 2C).

protocol (C) helps avoiding any onset of plastic deformation at large static force as in
the protocol (B), we chose to retain it as the conventional way to set our alignments of
spheres under compression, without any dynamical solicitation.

3.5 Preliminary results: observation of a band struc-
ture

After having evaluated the elastic properties of the sphere and quantified the stability
and the homogeneity of the static compression, we here perform our first experiments
concerning wave propagation in one-dimensional chains. For this, we excite the medium
with the piezoelectric actuator on one of its extremity and we measure the output signal
at the other side. The transfer function and the coherence between the input and the
output is estimated according the method described in Eq. 3.9 and Eq. 3.10.

In what follows, we use two different types of signals to excite the system: long
duration chirps or short duration, time resolved, gaussian pulses. On one hand, owing
to their high energetic content, the broad band chirp signals allow probing efficiently the
frequency response of the system with a very good signal to noise ratio. However, their
long duration does not allow discriminating the incident waves from their reflections.
On the other hand, owing to their short duration, gaussian pulses centered at particular
frequency allows distinguishing any delayed reflected waves in transmitted signals: one
can thus truncate these contributions to obtain unambiguous information of the wave
speed or the attenuation.

In this first set of experiments, we send a chirp along granular chain of 32 polyacetal
spheres supported by four plexiglas rods with length L = 0.8 m. The estimation of the
cutoff frequency fcut = 2

√
kH/M/2π, see Eq. 2.92, in an alignment of polyacetal spheres

under a static compression ranging from 5 N to 40 N indicates that fcut lies in between
3 kHz and 4.5 kHz. We thus chose a chirp signal with frequency going from 10 Hz to
7.5 kHz as to reveal the whole propagative band and part of the forbidden band.
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Figure 3.12: Modulus of the transfer function between the force measured at the begin-
ning Fin and at the end Fout of the chain as a function of frequency. Different colors
correspond to different applied static forces F0. Here, the spheres are in polyacetal and
the rods are in plexiglas.

It is worth mentioning that the maximum value of F0 remains below the onset of
plasticity; according to von Mises criterium [50], the onset of plastic deformation is
Fp ∼ 45 N for 25 mm in diameter polyacetal spheres and Fp ∼ 350 N for steel spheres
with same radius. Additionally, as to fulfill the condition of a linear regime, see Eq. 2.85,
the amplitude of the chirp signal is chosen so that it does not exceed 1 N, well below the
imposed static force.

In a first attempt, we acquire the transfer function between the force at the beginning
Fin(t) and at the end Fout(t) of the chain. The experimental results are traced on
Fig. 3.12. In Fig. 3.12, the modulus of the transfer function |Fout/Fin| shows that above
a cutoff frequency fcut, in between 3 kHz and 4.5 kHz, the transmission is strongly
attenuated: one observes a pass band at low frequency and a forbidden band above
the cutoff frequency. Additionally, one sees that the cutoff frequency increases with the
static compression. These results appear in qualitative agreement with the theoretical
description given in Eq. 2.91 and Eq. 2.92.

Finally, by focusing on the low frequency region, around 1-2 kHz, one distinguishes a
slight attenuation of the transmitted signal. At even lower frequency, around 0.1-0.5 kHz
one also remarks peaks of transmission and possibly resonances. These two phenomena
are not predicted by the model derived in Eq. 2.91. In the following sections and chapters,
we focus our attention on the identification of the observations at low frequency, below
2 kHz.
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3.6 Preliminary analysis of the response of granular
chains

3.6.1 Analysis of the low frequency attenuation: elasto-frictional
coupling between the spheres and the supports

At first, we focus on the source of attenuation encountered in the low frequency range
between 1 kHz and 2 kHz, where a cutoff frequency appears in the transfer function. Here
and in the following, we denote this low frequency cutoff as f0. Interestingly, f0 depends
on the static force F0. As to quantify this behavior in more details, we performed
experiments within different configurations corresponding to different combinations of
materials of the spheres (polyacetal or steel) and of the supporting rods (plexiglas or
steel). Here, the frequency response of all alignments are achieved by using the same
chirp signal and the same range of static forces as in Sec. 3.5.

The results for each configurations are presented in Fig. 3.13. The Fig. 3.13(a) cor-
responds to the transfer functions at different static forces in an alignment of polyacetal
spheres clamped between four plexiglas rods, the Fig. 3.13(b) is for polyacetal spheres
with steel rods and the Fig. 3.13(c) stands for steel spheres with steel supports.

In all the configurations presented in Fig. 3.13, one clearly observes the low cutoff
frequency f0 below which an attenuation is more pronounced. For the configurations
presented in Fig. 3.13(a) and (b), f0 depends on the static compression F0, while it
appears almost constant in the configuration shown in Fig. 3.13(c). On one hand, the
low frequency cutoff thus depends on the specific materials of the sphere and of the rods.
In another hand, f0 depends on the combination of materials; it thus stands to reason
that the underlying mechanism may rely on an interaction between the two.

As to gain further information on these observations, we performed additional exper-
iments, which are summarized in Fig. 3.14. Here, the static force is applied in a cyclic
way, first by increasing F0 by steps of 5 N, from 5 N to 40 N, and then by decreasing it,
down to 5 N. The procedure is then repeated twice to check the reproducibility. For each
value of the static force, one estimates the transfer function and the low cutoff frequency
f0, measured at -20 dB below the average level of the propagative band. As shown in
Fig. 3.14, the cutoff f0 increases with the static force F0 and experiences a slight but
noticeable non-repeatability if not a hysteresis. The latter is compatible with the occur-
rence of solid friction between the spheres and their supports, which may likely introduce
a hysteretical response depending on stick/slip regimes for instance. At this point, one
can derive an assumption on the mechanism leading to the occurrence of the low cutoff
frequency and of a low frequency region of noticeable attenuation. If the solid friction
is involved, the spheres can stick to the rods, and as long as the low frequency cutoff f0

depends on the elastic properties of both materials in contact, then the low frequency
cutoff may results from an on-site elastic interaction between the two. As we will see
in the next third chapter, including such a local elastic interaction in a lattice indeed
induces a forbidden band gap at zero frequency, in agreement with our observations.
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Figure 3.13: Modulus of the transfer function, for dry chain between the output signal
Fout and input signal Fin as a function of frequency; different colors show different static
force applied F0 ranging from 5 N to 40 N every 5 N. (a) The results for configuration
with polyacetal spheres and plexiglas supports, (b) polyacetal spheres and steel supports
and (c) steel spheres and steel supports.
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Figure 3.14: Low cutoff frequency f0 estimated at -20 dB below the average value of
the propagative band (see Fig. 3.13). (a) Polyacetal spheres with plexiglas supports, (b)
polyacetal spheres with steel supports and (c) steel spheres with steel supports. The red
curves correspond to the first increase of the static force, from 5 N to 40 N, the blue
curves to the first decrease, from 40 N to 5 N, the green curves to the second increase
and the black curves to the second decrease.
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3.6.2 Analysis of the resonant peaks at very low frequency: spu-
rious resonances and bending waves in the support

Having quantified the interaction between the spheres and their supports, here we focus
on the peaks of transmissions observed in the transfer function at very low frequency,
between 100 Hz to 500 Hz, see Fig. 3.12 and Fig. 3.13. Possible sources of these observa-
tions may result from resonances of the experimental setup. As to identify these sources,
we ruled out any possible contributions, starting from the resonances of the table on
which stands the setup, resonances of individual mechanical parts of the setup (mainly
the apparatus used to apply the static force) or resonances of the rods.

Figure 3.15: (a) Power spectral density of the force measured with an impact hammer
while kicking the table on which stands the setup. (b) Acceleration γ measured by
an accelerometer glued on a side of the table. (b) The different colors show different
experimental conditions: in blue the hammer kicks the table as is, in red a 40 kg mass is
set on top of the table and in yellow the table is firmly constrained against a wall. The
inset shows a sketch of the experiment (b).

We here first check eventual resonances of the table. The frequency response of
the table is probed, as is, by kicking it with an impact hammer, instrumented with a
dynamic force sensor, and by recording the lateral acceleration. The attempt is repeated
by putting a heavy mass of 40 kg on top of the table: any resonance mode should be
shifted toward lower frequency regions. Finally in a third attempt, the table is firmly
constrained against a wall, with the hope that it would stiffen the system and shift any

page 76



3.6. PRELIMINARY ANALYSIS OF THE RESPONSE OF GRANULAR CHAINS

Figure 3.16: Modulus of the transfer function between the acceleration γ captured by
an accelerometer glued on the static force sensor and the force F recorded by an impact
hammer. One can observe resonances near 280 Hz and 470 Hz and anti-resonance near
380 Hz (see inside the black circle). Inside the red circle, resonances are observed in the
1-5 kHz frequency region. In inset, a sketch showing the experimental configuration.

resonant frequency toward high frequency region.
The transfer functions between the acceleration and the force sensor of the impact

hammer are presented in Fig. 3.15 all three configurations. In any of the configuration,
no clear peaks of resonance appear in the frequency range of interest, 0.1-0.5 kHz. As a
consequence, one can conclude that the table is not responsible for the peaks observed
in the response of the media at very low frequency.

Next, we probe the mechanical response of the device used to apply the static force.
Possible artifacts may result from the fact that this apparatus is made from the assembly
of a fairly rigid dynamic sensor screwed on a rather soft static force sensor. The assembly
would therefore likely present one resonant peak. In addition, the whole apparatus is
placed on a heavy, 5 kg or so, translation tray: thanks to inertia, the extremity does not
recoil when reached by a high frequency dynamic perturbation. The mechanical response
of this subsystem is probed by gluing an accelerometer in front of the dynamic sensor
and by kicking the subsystem with the impact hammer. The results are presented in
Fig. 3.16.

Firstly, we focus on the frequency range below 500 Hz, where we observe a peak
at about 280-470 Hz, see the black circle in Fig. 3.16. The comparison between the
transfer functions of the static force apparatus in Fig. 3.16 and the transfer function of
an alignment in Fig. 3.17 - another realization similar to Fig. 3.12 and Fig. 3.13 but with
a lot more averaging - shows that the peak does not match all the resonances observed
in the transfer function of the chain of spheres. Although the resonance at 280-470 Hz
may participate to the overall mechanical response of the setup, it does not explain the
entire frequency spectrum of the alignments below 500 Hz: we thus exclude this part
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Figure 3.17: Modulus of the transfer function between the signal measured at the begin-
ning Fin and at the end Fout of the chain as a function of frequency, under 20 N static
compression. Here, the configuration is an alignment of polyacetal spheres on steel rods.
Red lines indicate the values of the resonant frequencies measured in Fig. 3.16

of the system from the possible sources of the peaks observed at very low frequency in
Fig. 3.12, Fig. 3.13 and Fig. 3.17.

Next, we focus on the transfer function of the static force apparatus at higher fre-
quency, above 1 kHz, see the red circle in Fig. 3.16. Here, one observes resonant peaks
and anti-resonant deeps at frequency between 2.5 kHz and 4.7 kHz, right in the middle
of the pass band of the granular chains: the pass band is comprised between 2-4 kHz
with polyacetal spheres while it is 2-6 kHz with steel spheres, see Fig. 3.13). As to
verify if these resonances and anti-resonances may perturb the characterization of one-
dimensional alignments, we intend to estimate the stiffness kE at the boundary, as the
ratio between the force F and the displacement δ0 = γ/ω2 of the apparatus: ideally,
the stiffness kE should be very large compared to the typical stiffness of the alignment.
The stiffness kE is thus compared to the Hertzian stiffness kH between contacts given by
Eq. 2.20,

kH = ER

(
6F0

ER2

)1/3
. (3.17)

The experimental measurements of kE is compared to the estimations of kH in
Fig. 3.18. One sees that above few hundreds hertz, the effective stiffness kE at the
extremity, where the static force apparatus stands, is few order of magnitude larger than
the stiffness kH between the spheres. The static force apparatus would thus not deform
or displace: it should not affect the characterization of the media in the frequency region
of interest. However, kE falls below kH at extremely low frequencies, below 200 Hz for
steel spheres and below 30 Hz for polyacetal spheres. The latter relies on the inertia of
the static force apparatus, which is not sufficiently large at very low frequency to prevent
the recoil of the static force apparatus. Below these frequencies, the estimation of the
transfer function of the samples should be considered with care, since they may not be
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Figure 3.18: Effective stiffness kE of the end extremity, as the ratio between the force F
measured by the impact hammer and the displacement δ0 measured from the accelerom-
eter. The red line (resp. the green line) indicates the typical stiffness kH between two
steel spheres (resp. between two polyacetal spheres).

fully reliable.
In a very final attempt, we focus our attention on the behavior of the elastic rods

supporting the granular chain. These rods are very stiff in traction and compression:
the only reasonable deformation may rely on bending. Here, we aim at verifying if the
bending of the cylindrical rods may participate to the low frequency region of the transfer
function.

We start from the equation of propagation of bending waves in a cylindrical beam.
The transverse displacement zb(x, t) satisfies the equation [110],

ρsAsz̈b(x, t) + EsIs
∂4

∂x4 zb(x, t) = 0, (3.18)

where As = πR2
s is the cross section of the supporting beam with radius Rs, ρs is the

density, Es is the Young’s modulus and Is = πR4
s/2 is the second moment of inertia.

Looking for the dispersion relation of a harmonic bending wave zb(x, t) = ei(ωt−qbx),
where qb = ω/cb is the bending wavenumber and cb is the bending wave speed, the
Eq. 3.18 gives

qb =
(
ρsAsω

2

EsIs

)1/4

∝
(

ω

cLRs

)1/2
, (3.19)

where cL stands for the longitudinal wave speed in the rod, cL ∝
√
Es/ρs. The wave

speed cb = ω/qb of the bending mode is thus

cb =
(
EsIsω

2

ρsAs

)1/4

∝ (ωcLRs)1/2
. (3.20)

As a consequence, assuming an unconstrained finite length beam of length L, the
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Figure 3.19: Modulus of the transfer function between the input force Fin and the output
force Fout measured for 20 N (blue) and for 40 N (red) static compression. The green
curve represents the transfer function between the radial acceleration γr of a supporting
cylinder and the axial input force Fin. The black vertical lines indicate the resonant
frequencies found experimentally at about 22.5, 42.8, 69, 128.6, 184.8 and 246.4 Hz.

normal modes matches qbL = nπ with n an integer, such that the bending frequencies of
resonance are, from Eq. 3.19,

ωn ∝ cLRs
(nπ
L

)2
. (3.21)

Experimentally, we verify the presence of bending modes in the supporting rods by
sensing the radial acceleration γr captured by an accelerometer glued on the lateral side
of a cylinder. The acceleration normalized to the dynamic force input shown in Fig. 3.19
indeed reveals a transverse deformation of the rods while exciting the alignment with a
chirp signal.

Comparing the experimental transfer function between Fin and Fout with the exper-
imental transfer function between Fin and γr, one clearly observes that the transverse
deformations of the rods closely rely on the frequency peaks observed at low frequency
region. Additionally, the numerical estimation of the five first resonant frequencies, from
Eq. 3.21, of a steel rods (radius Rs = 5 mm, length Ls = 1.15 m, Es = 190 GPa and
ρs = 7780 kgm−3) indicates that fn = 14.6, 58.6, 132.1, 234.7 and 366.8 Hz. Up to cer-
tain extent, the minimal model given by Eq. 3.21 provides a fair agreement, as shown in
Fig. 3.20.

Since the alignments of spheres slightly buckle when set under static compression - all
spheres are aligned up to a given tolerance - the transverse deformation of the supporting
rods thus introduce a weak coupling with the axial displacement of the spheres. As a con-
sequence, we can thus conclude from the very last experimental probe that the resonant
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Figure 3.20: Modulus of the transfer function between the input force Fin and the output
force Fout measured for 20 N (blue) and for 40 N (red) static compression. The green
curve represents the transfer function between the radial acceleration γr of a supporting
cylinder and the axial force Fin. Here, the black vertical lines show the resonant frequen-
cies estimated theoretically by a simple model at 14.6, 58.6, 132.1, 234.7 and 366.8 Hz,
from Eq. 3.21. These frequencies correspond to the mode number n= 1, 2, 3, 4, 5, 6, re-
spectively.

peaks observed below the cutoff frequency f0 in the transfer functions of the alignments
essentially relies on the bending deformation of the supporting cylinders. These peaks are
most favorably detected below the cutoff frequency f0, where the longitudinal waves are
strongly attenuated. Above the low frequency cutoff of the samples, where longitudinal
waves propagate through the sample, the bending modes likely exist but contribute to a
lesser extent. In addition, the bending modes frequency being inharmonic, see Eq. 3.21,
the density of these modes rapidly decreases with the frequency.

3.7 Conclusions

In this chapter we have focused our attention on the careful presentation and calibration
of the experimental setup. Firstly, we characterized the bulk elastic properties of our
spheres from ultrasonic experiments. Then, we derived a reliable and repeatable method
to set our alignments of spheres under static compression; as far as one can do, we
aimed at ensuring that the static compression is homogeneously distributed along the
alignment. Next, we carefully ruled out any observable artifacts from the experimental
setup, in order to ensure the accuracy of further estimations of the transfer function
of one-dimensional granular media. Then, we unraveled a low frequency region with a
significant attenuation due to frictional and elastic interactions between the grains and
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the aligning rods. These interactions likely induce an elastic on-site potential between
the particles and their supports, as demonstrated in the next chapter. One of the pitfalls
of the coupling between the particles and their supports is related to the fact that it
generates transverse deformations of the rods that ultimately lead to the propagation of
spurious bending waves along them. However, the strongest effects of the bending modes
in the rods are mostly concentrated at low frequency. Having undertaken this study,
one can now tackle a detailed experimental analysis on wave propagation in dry granular
media, as presented in the next chapter.
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CHAPTER 4. WAVES IN DRY 1D GRANULAR MEDIA

4.1 Wave propagation in 1D alignments of spheres

In the previous chapter, we related the occurrence of a low cutoff frequency f0 observed
in Fig. 3.12 and in Fig. 3.13 to the existence of an elastic on-site potential between every
particle and their supports. Here and in the following, we will denote the stiffness of this
potential as k0. In the first section of this chapter, we derive a theoretical expression for
k0 as a function of the elastic and geometrical properties of both the spheres and the
cylindrical supports. We then find the dispersion relation in an alignment of particles
that account for such a local potential at every bead. Then in the next three sections,
we describe the experimental procedures as to estimate the phase velocity, the group
velocity and the attenuation in these media. Lastly we compare our observations to the
analytic estimations.

4.1.1 Zero frequency band gap and cutoff frequencies

Figure 4.1: One-dimensional chain of spheres with mass M under static compression
F0 interacting via a Hertzian contact stiffness kH , with an additional stiffness k0 which
quantifies the interaction of the spheres with the support.

Firstly, we focus on the theoretical derivation of k0 and f0. For this purpose, we model
the granular medium as an alignment of compressed spheres, with mass M , interacting
via the Hertz potential kH given by Eq. 2.20. In addition, every particles interact with
the ground via an elastic potential with stiffness k0. As for the alignment described in
Sec. 2.5, see Eq. 2.84, one uses the Newtonian’s second law of motion,

Mÿn = κ (δ0 + yn−1 − yn)3/2 − κ (δ0 + yn − yn+1)3/2 + k0yn, (4.1)

where κ =
√

2R0E0/[3(1− ν2
0)]. In the linear regime, see Eq. 2.85, Eq. 4.1 becomes,

Mÿn ' kH(yn+1 + yn−1 − 2yn) + k0yn, (4.2)

with kH = (3/2)κδ1/2
0 . By looking for a harmonic plane wave solution yn(t) = y(x =
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2nR0, t) = ej(ωt−qx) one finds the dispersion relation,

ω2 = ω2
cut sin2(qR0) + ω2

0 , (4.3)

where ω0 stands for the low cutoff frequency,

ω0 =
√
k0

M
, (4.4)

and ωcut is

ωcut = 2
√
kH
M
. (4.5)

According to the dispersion relation Eq. 4.3, the wavenumber q is purely imaginary
below the low cutoff frequency, ω < ωmin, and above the high cutoff frequency, ω > ωmax,
with

ωmin = ω0, (4.6)

ωmax =
√
ω2
cut + ω2

0 . (4.7)

In between, for ωmin < ω < ωmax, the wavenumber is real: waves propagate. The
alignment schematized in Fig. 4.1 is thus characterized by a band gap at zero frequency,
a forbidden band at high frequency and a propagative band in between.

Figure 4.2: (a) Spheres with radius R0, weight Mg and clearance ∆ under compression
F0. (b) Axial view, where Fy is the projection of F0 and Fr is the radial force.

Theoretically, we model k0 as twice the tangential component of the stiffness between
a sphere and a cylinder, see Eq. 2.29,

k0 = 2× 2Gr
(

3FRRr
4E

)1/3
, (4.8)

where Rr, Gr and E stand for the effective radius, Shear and Young’s modulus, see from
Eq. 2.29 to Eq. 2.31, and FR is the magnitude of the radial force that compresses a
sphere on one cylinder. The stiffness is counted twice in Eq. 4.8 since every sphere is in
contact with two cylinders. The radial component FR comes from the buckling of the
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alignment of spheres. Considering a clearance ∆ between the diameter of the spheres
and the distance between two cylinders, see Fig. 4.2, the alignment can indeed naturally
buckles when it is set under static compression. The origin of the clearance comes from
the machining of the spacers, made of plexiglas, that maintain the four cylinders in place,
as shown in Fig. 3.1 and in Fig. 3.2. We checked that the clearance is about ∆ ' 0.5 mm
at the most. From a geometrical consideration, see Fig. 4.2, the radial force is either the
projection of the static force F0 exerted in the axial direction of the alignment,

FR '
∆F0

4R0
if FR �Mg, (4.9)

or the projection of the weight Mg of a sphere

FR '
Mg√

2
if FR �Mg, (4.10)

where g is the gravity. Here in Eq. 4.9, the radial force is FR =
√
F 2
x + F 2

y '
√

2Fy, see
Fig. 4.2, if one assumes Fx = Fy with Fy ' (F0/2)(∆/

√
2)/(2R0).

According to Eq. 4.4 and Eq. 4.8, the lower cutoff frequency f0 depends on the
characteristics of the spheres and the supporting cylinders. If the beads are not too
heavy (this is the case for polyacetal spheres, as shown below) in respect to the radial
force FR, then the lower cutoff frequency may depend on the static force F0 maintained
in the axial direction of the alignment, see Eq. 4.9. Otherwise, f0 does not depend on F0

if the spheres are heavy enough, as it is the case with steel beads, as shown below.

Next, we confront the theoretical expression given by Eq. 4.4 and Eq. 4.8 with the
experimental observations shown in Sec. 3.6, see for instance the Fig. 3.14. As to es-
timate f0, we indeed used different combinations involving polyacetal or steel spheres
and plexiglas or steel rods. For the estimations of f0, we consider a Young’s modulus
Ec = 3.3 GPa, a Poisson ratio νc = 0.3 and a radius Rc = 5 mm for the plexiglas
cylinders, while the Young’s modulus of steel cylinders if assumed at Ec = 190 GPa.

The mass of one steel bead is M ' 63.8 g and the mass of one polyacetal bead
is M ' 10.9 g. In the case of steel beads with steel supports one has 0.1 × Mg <

∆F0/4R0 < 0.6 ×Mg: we thus retain the approximation given in Eq. 4.10 to estimate
the radial force FR. In this case, the lower cutoff frequency does not depend on the
static load F0, f0 = const in first approximation. For polyacetal spheres, one finds
0.5×Mg < ∆F0/4R0 < 3.8×Mg: the weight of a polyacetal sphere is marginal in the
range of moderate to large axial static forces and we thus retain the approximation given
in Eq. 4.9 to estimate the radial force FR. For polyacetal, the lower cutoff frequency
depends on the axial static force, f0 ∝ F 1/6

0 in first approximation.

All these results are consistent with the observations given in Sec. 3.6. A close com-
parison between these data and the theoretical estimation of f0, given by Eq. 4.4 and
Eq. 4.8, is shown in Fig. 4.3. Our model explains quantitatively and qualitatively the
experimental findings: one observes a nonlinear increase of the lower cutoff frequency
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4.1. WAVE PROPAGATION IN 1D ALIGNMENTS OF SPHERES

Figure 4.3: Lower and upper cutoff frequencies, fmin and fmax, as a function of the static
force in the axial direction. (a) Configuration with polyacetal spheres and plexiglas
supports, (b) polyacetal spheres with steel supports and (c) steel spheres with steel
supports. Blue lines represent Eq. 4.6 and Eq. 4.7 and red dots are the experimental
data extracted from Fig. 3.13 and shown in Fig. 3.14.
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fmin = f0 with the axial static force, see Fig. 4.3(a) and (b). In turn, when considering
steel spheres, the lower cutoff frequency is almost constant over the range of compres-
sion, see Fig. 4.3(c). In all cases, the upper cutoff frequency fmax increases with the
axial static force F0, in fair agreement with Eq. 4.7.

In this section, we derived an expression for the lower and the upper cutoff frequency,
fmin and fmax, which reliably describe the experimental data. We thus showed that the
elastic coupling between the spheres and the cylindrical supports, via shear deformations
due to sticky frictional contacts between the two, introduces a zero frequency band gap
in the dispersion relation of an alignment of particles. The precise knowledge of the
dispersion relation, see Eq. 4.3, now allows one to determine all the features of the waves
that propagate in these media. In the next sections we aim at probing how fast they
propagate and attenuate.

4.1.2 Theoretical dispersion relation with on-site potential

In this section, we focus on the theoretical estimation of the dispersion relation, in order
to get information on the wave speed and the loss factor. The dispersion relation is, from
Eq. 4.3,

q = <(q) + i=(q) = 1
R0

asin
(√

ω2 − ω2
0

ωcut

)
, (4.11)

From Eq. 4.11, one can estimate the phase velocity cφ, the group velocity cg and the
attenuation length la,

cφ = ω

<(q) , (4.12)

cg = ∂ω

∂<(q) , (4.13)

la = −1
=(q) . (4.14)

As an example, we represent in Fig. 4.4 the dispersion relation given by Eq. 4.11
both in magnitude and in phase, for an alignment of polyacetal spheres supported by
cylindrical rods made of materials with very different elasticity. Here, the dissipation is
taken into accounts via the loss angle measured in polyacetal in Sec. 3.2.1. In Fig. 4.4(b),
we show the magnitude of the transfer function H = exp (−i=(q)L) in dB. One can
observe clear forbidden bands, at zero frequency and above a high cutoff frequency. In
the propagative band, the waves are dispersive: the phase velocity and the group velocity
differ and both depends on the frequency.

As to quantify and measure the dispersion relation given by Eq. 4.11 in the following,
we rewrite the wave number in a more convenient way,

q =
(
ω

cφ
− i

la

)
= (ω/cφ)× (1− iη), (4.15)
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where η is the loss factor: the loss factor is defined as the ratio of the energy dissipated
per cycle of oscillation to the energy stored during one cycle,

η = 1
ωτa

= cφ
ωla

= 1
<(q)la

= λ

2πla
, (4.16)

where τa = la/cφ is a relaxation time related to the dissipation.

Figure 4.4: (a) Theoretical dispersion relation, where <(q) is the real part of the wave
number and R0 is the sphere radius, (b) modulus of the transfer function. Here the results
are estimated for polyacetal spheres under a 20 N static compression. The spheres are
supported by four 1 m long rods with Young’s Modulus of Es ' 0.1 GPa (red curves)
and with Es ' 200 GPa (blue curves).

4.1.3 Long wavelength speed and attenuation estimations

Here, for sake of clarity and simplification, we consider the long wavelength approxi-
mation of Eq. 4.11. On purpose, we consider an arbitrary medium where the stiffness
of the on-site potential is weak compared to the contact stiffness between spheres, i.e.
ωmax � ωmin see Eq. 4.6 and Eq. 4.7. We analyze this medium in an intermediate
frequency range ω ' (ωmax + ωmin)/2, such that the angular frequency is high enough
to neglect the effect of the on-site potential and is low enough to linearize the Eq. 4.11,

q ' ω

R0ωcut
, (4.17)

where ωcut is given by Eq. 4.5. In the intermediate frequency range, see Fig. 4.4, the
wave number is such that <(q)R0 ' π/4 ∼ 1: the wavelength λ = cφ/f = 2π/<(q) is few
particles wide, λ/2R0 ∼ 4.

We then account for the attenuation of waves from the dissipation involved by the
deformation of the contacts between the particles. This dissipation is rendered by the
complex elastic modulus E = E0e

iδ introduced in Sec. 3.2.1, where δ is the loss angle,
see Eq. 3.8: we measure δ ' 0.053 in polyacetal and δ ' 0.023 in steel. Since ωcut ∝
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k
1/2
H ∝ E1/2, see Eq. 2.20 and Eq. 4.5, then one finds,

cφ ' cg ∝ c0(P/E0)1/6, (4.18)

η ' tan(δ/2), (4.19)

where c0 = (E0/ρ)1/2 is proportional to the speed of longitudinal waves in the bulk
material of the spheres and P = F0/πR

2
0 is the confinement pressure.

In Eq. 4.19, η stands for a rough estimation of the attenuation in the dry case. In
turn, the friction of the beads on the supports may also affects the attenuation of the
waves. In this case, the loss factor may account for such a contribution,

η ' tan(δ/2) + ηf , (4.20)

where ηf = 1/<(q)lf and where lf is the frictional attenuation length defined in Eq. 3.16.
According to the order of magnitude indicated in Eq. 3.16, lf/2R0 ∼ 10, the frictional
loss factor would lies around ηf ∼ 0.05 in the intermediate range <(q)R0 ∼ 1. It thus
turns out that the contribution of the friction to the attenuation of the waves, when
friction is involved between the particles and their supports, has likely the same strength
as the dissipation in the contact between particles, tan(δ/2) ∼ 0.025, with polyacetal
spheres and steel supports,

ηf ∼ tan(δ/2). (4.21)

4.1.4 Measurement method of the wave speed and the loss factor

In this subsection, we provide the details of the protocol derived to obtain reliable mea-
surement of both the wave speed and the attenuation in alignments of particles. Owing to
the experimental protocol described in Sec. 3.5 and in Sec. 3.6, we quantified the transfer
function between the input dynamic force measured at one extremity of the alignment,
Fin = F (x = 0, t), and the output Fout = F (x = L, t) at the other end, where L is the
total length of the chain. Considering a harmonic plane wave F (x, t) = ei(ωt−qx), such
that the Fourier transform over time is FTt[F (x, t)], the transfer function is

H(L, ω) = FTt[F (x = L, t)]
FTt[F (x = 0, t)] = e−iqL. (4.22)

where q is the complex wave number. Note that in practice, the sample is excited by a
broad frequency range chirp signal and we measure the average transfer function over a
large number of acquisitions from the method detailed in Eq. 3.9, from which one also
estimates the coherence from Eq. 3.10.

According to Eq. 4.22, the phase and the magnitude of the transfer function provides
estimations of the phase velocity cφ and the attenuation length la, see Eq. 4.15,

φ(ω) = −<(q)L = −ωL/cφ(ω). (4.23)
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|H(L, ω)| = exp [−=(q)L] = exp [−L/la(ω)]. (4.24)

However, issues with this this approach is twofold. Owing to the strong attenuation
near the cutoff frequency and inside the low and the high forbidden bands, see Fig. 3.13
for instance, the signal to noise ratio of the transmitted wave is thus degraded. This
leads to the determination of the transfer function with a very poor coherence between
the input and the output of our samples near edges of pass band. This first limit is
illustrated in Fig. 4.5, where we show both the normalized phase and the coherence
of H as a function of frequency. The phase and consequently, the phase velocity is
poorly determined in frequency bands where the attenuation is strong, i.e. where the
coherence between input and output signals is weak. The second limit is related to the
fact that the phase of the transfer function turns very quickly as a function of frequency.
Indeed, assuming a phase velocity at about cφ ∼ 250 m/s (see below), the phase is about
φ/2π ∼ 20 at the upper frequency 5 kHz and for L = 1 m. Issues arise when attempting
to unwrap the phase, not mentioning the fact that the low frequency reference phase is
not reliable to modulo 2π. The third limit relies on the existence of additional modes, see
for the bending waves that may propagates in our supports described in Sec. 3.6.2. These
spurious contributions may affect the reliability of our characterization: identifying all
the contributions is in fact not an easy task. This third limit is tackled in the following
Sec. 4.2.

Figure 4.5: (a) Measured dispersion relation for polyacetal spheres with steel support
and F0 = 20 N, in response to chirp excitation. <(q) is the real part of the wave number
and R0 is the radius of the spheres. (b) Coherency between the output and input signals.

Here, we present a protocol to tackle the issues found from the ambiguity of the
phase shifting. Instead of the phase velocity, we aim at estimating the group velocity
from the group delay. The method consists in the deconvolution of the transfer function
acquired with a chirp excitation, Eq. 4.22, by a well defined analytic incident wavepacket
Fpulse(x = 0, t), defined as a gaussian pulse centered on any specific frequency fc and
with a narrow frequency bandwidth.
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Figure 4.6: Example of the experimental method. (a) Magnitude |H| of the experi-
mental transfer function H(ω) = Fout/Fin versus frequency, is shown in blue; the black
curve represents the Fourier transform of the analytic input wavepacket (b) convolved
by the experimental transfer function. Temporal representation of (b) the analytic input
wavepacket and (c) output force convolved by the experimental transfer function. All
data are shown for an F0 = 5 N static force. Here, the analytic wavepacket is a gaussian
pulse centered at fc = 2.2 kHz with bandwidth 0.2. The red stars indicate the maximum
of the envelopes.

Figure 4.7: (a) Input signal measured at the beginning of the chain Fin(t) = Fpulse(x =
0, t). (b) Output signal measured as the response of gaussian pulse excitation F gout(t)
(black curve) and as the convolution of the input (a) with the experimental transfer
function measured from the response of broadband chirp excitation Fout(t) = Fpulse(x =
L, t) (red curve, see the details of the method in Sec. 4.1.4).
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The transmitted wavepacket is thus

Fpulse(x = L, t) = FT−1
t {H(L, ω)× FTt[Fpulse(x = 0, t)]}, (4.25)

and one can extract its envelope as the absolute value of the Hilbert transform,

F envpulse(x = L, t) = |FT−1
t [Fpulse(x = L, t)]|. (4.26)

The estimation of the magnitude and the arrival time of the maximum of the envelope
then provides information on the dissipation and the group delay τg (the time of flight of
the maximum of a wavepacket), i.e. on the attenuation length and on the group velocity
cg = L/τg. The protocol defined in Eq. 4.25-4.26 is illustrated in Fig. 4.6. As a crude
check of reliability of the method, we compare in Fig. 4.7 a transmitted gaussian F gout

pulse measured in an alignment of spheres to the deconvolution of the acquired incident
pulse Fpulse(x = L, t) with the transfer function obtained from a chirp excitation. The
transmitted and the deconvolved pulses fairly match one to the other: the method defined
in Eqs. 4.23-4.24 and the method described in Eqs. 4.25-4.26 thus provide similar features
and shapes. Any nonlinearity may have introduced some bias, which are not observable
here. Finally, from the practical point of view, it is worth mentioning that acquiring a
transfer function with a chirp excitation, at once, and then deconvolving as many gaussian
pulses at any frequency, instead of exciting the sample with many pulses, significantly
saves time when performing experiments.

4.1.5 Experimental values of the wave speed and the loss factor

Having validated the experimental method, we now present the experimental estimations
of the group velocity cg and the loss factor η = cφ/ωla, obtained from the protocol
defined in Eqs. 4.25-4.26. Since the phase velocity is poorly determined, we assume that
cφ ' cg in first approximation in the middle of the pass band, such that the loss factor is
determined as η ' cg/laω. The attenuation length la is estimated from the maximum of
input envelope, F envmpulse (x = 0, t), and output envelope of wave packet, F envmpulse (x = L, t),
la = −L/ln(F envmpulse (x = L, t)/F envmpulse (x = 0, t)) (where ln is the natural logarithm).

Here, the granular sample is an alignment of 40 polyacetal spheres supported by
four cylindrical rods in steel. We deconvolve the transfer function acquired from a chirp
excitation, see Eq. 4.22, to obtain a gaussian pulse centered in the middle of the pass band,
at fc = (fmin(F0) + fmax(F0))/2 (where fmin(F0), fmax(F0) are the theoretical values
see Sec. 4.1.1) and with a 20% bandwidth, according to Eq. 4.25. Owing to the narrow
bandwidth of the analytic pulse, the time of flight of the maximum of the envelope, see
Eq. 4.26, thus provides an estimate of the group velocity cg near the central frequency
fc. The experimental result is presented in Fig. 4.8 as a function of the static force F0.
Here one observes that cg nonlinearly increases with F0. These results are compared to
the theoretical values given by Eq. 4.11 and Eq. 4.13. In the model, ω0 and ωcut are
inferred from the experimental determination of the low and the high frequency cutoff,
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Figure 4.8: (a) Theoretical dispersion relation for polyacetal spheres with steel support
under F0 = 20 N static force. From (a), one estimate the theoretical group velocity as
the average slope over the frequency range indicated in red. (b) Experimental (blue dots)
group velocity, cg, at central frequency fc = (fmax(F0) + fmin(F0))/2.

Figure 4.9: Experimental loss factor η (blue dots) versus estimation from Eq. 4.19 (red
line) as a function of the static force.
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fmin and fmax, according to Eq. 4.6 and Eq. 4.7; the values of the cutoff frequencies are
shown in Fig. 4.3.

In turn, the loss factor is directly estimated from the amplitude ratio between the
maximum of the input and output of wave packet’s envelopes, and from the approximate
knowledge of the phase velocity, cφ ' cg, see Eq. 4.16. The result are presented in
Fig. 4.9. Here, we compare the observations to the theoretical dissipation coming from the
viscoelastic behavior of the particles only, see Eq. 4.19. One observes that the prediction
provides the correct order of magnitude. The slight overestimation of the prediction is
in fact due to the underestimation of the phase velocity by the group velocity, while
estimating the loss factor η = cφ/ωla ' cg/ωla, as demonstrated in Sec. 4.2.2.

4.2 Full dispersion relation with an on-site potential

In the Sec. 4.1, we demonstrated that the model given in Eq. 4.11 fairly describes the
existence of a pass band between a low and a high cutoff frequency, see Eq. 4.6 and Eq. 4.7.
The low frequency cutoff is related to an on-site potential; below this frequency stands a
band gap at zero frequency. As mentioned in Sec. 3.6.2, this elastic potential also possibly
introduces a coupling with bending waves in the support. These spurious contributions
may constitute a limit of the interpretation if they are not correctly identified, see the
comments in Sec. 4.1.4. Still, despite the satisfactory agreement found between the
measured and the estimated group velocity and loss factor deep inside the pass band,
as shown in Sec. 4.1.5, the details of the dispersion relation near the cutoff frequencies
remains unclear. Here, we aim at providing a deeper inspection of the dispersion relation,
by probing waves as they propagate inside our alignments or particles.

4.2.1 Experimental method and protocol

Here, we use the embedded sensor presented in Sec. 3.3 in order to get a deeper inspection
of the features of waves as they propagate inside an alignment of n particles. Here, the
embedded sensor probes the dynamic force near a contact, see the picture in Fig. 3.7, as
a function of time t and at any position x = 2nR0 in the chain,

Femb(0 < x ≤ L− 2R0, t), (4.27)

where in our protocol, the sample is driven in x = 0 by a 10 s chirp excitation whose
frequency ranges from 10 Hz to 7.5 kHz; all acquisitions are repeated 8 times in order to
get rid of the noise as much as possible.

From the whole measurement, one can first estimate the Fourier transform over time,
similarly to Eq. 4.22,

H(x, ω) = FTt[Femb(x, t)]. (4.28)

A plot of the magnitude of H(x, ω) may for instance provide a closer view on how
the energy decays in space, as a function of frequency. From now, one can also extract
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the Fourier transform over the propagated distance,

K(<(q), ω) = FTx[H(x, ω)], (4.29)

in order to get a direct access to the dispersion relation, <(q) = 2π/λ, including all the
modes involved from one extremity of the sample to the other. It is worth mentioning
that the function K(<(q), ω) obtained from Eq. 4.28 and Eq. 4.29 can be estimated
indifferently as

K(<(q), ω) = FTxt[Femb(x, t)], (4.30)

where FTxt is the bi-dimensional Fourier transform over time and space coordinates.

As a crude check of the method, before any measurement, we set the analytic transfer
function Hth = e−iqthx of a finite chain of N = 40 particles in Eq. 4.30, where qth is given
by Eq.4.11 and accounts for 20 N static load. It is worth mentioning that Hth does not
account for wave reflection at the extremities of the sample; these reflections should likely
excite resonance modes in the axial direction of the alignment.

Figure 4.10: Dispersion relation Kth, the dashed line is Eq. 4.11. Here the simulations
and the analytic estimation are performed for polyacetal spheres with steel rods under
F0 = 20 N static compression.

The result of our verification is presented in Fig. 4.10, where we plot the magnitude
of Kth as a function of the normalized wave number and the frequency. One can observe
clearly the dispersion relation between low and high frequency cutoff, which matches the
direct estimation given by Eq. 4.11 and superimposed in dashed line.
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4.2.2 Experimental results

Figure 4.11: (a,c) 40 realizations of the transfer function H(ω) = Fout/Fin between the
signals measured at the beginning Fin and at the end Fout of the alignment, as a function
of frequency; (a) is at 20 N static compression and (c) at 40 N. (b,d) Average magnitude
|H| over the 40 realizations at 20 N and 40 N, respectively.

Experimentally we probe a one-dimensional chain of 40 polyacetal spheres supported
by steel rods and either 20 N or 40 N static load. The sample is driven by a 10 s long
chirp ranging from 10 Hz to 7500 Hz. Here, one acquires simultaneously the signals at the
beginning of the chain where stands the piezoelectric actuator and a dynamic force sensor,
Fin(t) = F (x = 0, t), at its end Fout(t) = F (x = L, t) and at one particular location with
the dynamic embedded force sensor Femb(x, t). We then displace the embedded sensor
at every positions in the alignment and redo the acquisition. The information gathered
by the embedded sensor serves for the estimation of the transfer function H(x, ω) and
the function K(<(q), ω), see Eq. 4.28 and Eq. 4.29. In turn, the forces acquired at x = 0
and x = L serve for the estimation of the transfer function defined in Eq. 4.22.

Firstly in Fig. 4.11, we present the modulus of the transfer function H measured
between the input and the output extremities. Thanks to the very large amount of data
collected by displacing the embedded sensor at every position in the chain, we obtained
the well defined average values shown in Fig. 4.11(b,d) at either 20 N or 40 N. Here, one
clearly observes, for both static load, a pass band surrounded by the forbidden bands with
an attenuation greater than 60 dB; in addition, the bending modes resonances clearly
show up in the low frequency forbidden band. Remarkably, the comparison between 20 N
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Figure 4.12: (a,c) Modulus of the transfer function measured by the embedded sensor for
20 N and 40 N respectively. (b,d) Dispersion relation reconstructed from the embedded
sensor for 20 N and 40 N, respectively. The black vertical lines in (a) and (c) shows the
minimal fmin and maximal frequency fmax, which stems from the fit of the dispersion
relation, see the black lines in (b) and (d). Red lines in (b) and (d) stands for the
dispersion relation of bending waves. Here, <(q) is the real part of the wavenumber and
R0 is the radius of the spheres.

page 98



4.2. FULL DISPERSION RELATION WITH AN ON-SITE POTENTIAL

and 40 N experiments shows that the whole pass band is shifted according to the static
load, whereas the low frequency resonances do not.

In Fig 4.12(a,c) we plot the modulus of the transfer function H(0 < x < L, ω)
measured at every position of the chain, see Eq. 4.28. One can first,Fig 4.12(a,c), observes
the formation of the forbidden bands as the waves propagate deeper inside the alignment.
Except at very low frequency, below 1 kHz, both plots shift in frequency according to the
confinement pressure. In Fig 4.12(b,d) we show the dispersion relation obtained from the
method described in Eq. 4.29. In this figure, we fit the dispersion relation where the low
and the high frequency, fmin and fmax, correspond to the data shown in Fig 4.12(a,c)
(black vertical lines). We find that the pass band extend from 1450 Hz to 4100 Hz under
20 N. The theoretical estimation given by Eq. 2.20 and Eq. 4.4 to Eq. 4.9 indicates a
frequency range spanning from 1440 Hz to 4120 Hz. For a chain under 40 N we find
1800 Hz and 4700 Hz, and the theory gives 1620 Hz and 4620 Hz. One observes that the
model and the measurements are in excellent agreement. In addition, we also superimpose
the theoretical dispersion relation of the bending waves traveling in the cylindrical rods,
from the knowledge of the bending wave velocity defined in Eq. 3.20. The latter provides
a reliable demonstration that the short propagative band below 1 kHz, i.e. inside the
zero frequency band gap, comes from the coupling between the chain of spheres and their
support.

Finally, we depict in Fig. 4.13 the evolution of the analytic gaussian pulse, deconvolved
from the experimental transfer function H(x, ω) with a method similar to the Eq. 4.25
and Eq. 4.26, as it propagates inside the alignment,

Fpulse(x, t) = FT−1
t {H(x, ω)× FTt[Fpulse(x = 0, t)]}, (4.31)

F envpulse(x, t) = |FT−1
t [Fpulse(x, t)]|. (4.32)

Here, the central frequency of the incident pulse Fpulse(0, t) matches the central fre-
quency of the pass band, (fmin + fmax)/2 ' 3.25 kHz. The Fig. 4.13(a) actually shows
the dynamic force oscillations as a function of position and time: this type of plot pro-
vides a direct and non-biased observation of the phase velocity, from the slope of the
red and the blue parallel beams that unravel the compression and the depletion phases
of the wave, respectively. Instead, the plot of the envelop of the deconvolved pulse, see
Eq. 4.26, provides a direct visualization of the group velocity as the speed of the maxi-
mum of the wavepacket, as shown in Fig. 4.13(b). A quick estimation indicates that the
phase velocity is here about cφ ' 330 m/s while the group velocity is about cg ' 250 m/s.
According to our expectations, the phase velocity is larger than the group velocity inside
the propagative band, see for instance the Fig. 4.4 where the ratio ω/<(q) is larger than
the slope ∂ω/∂<(q). In addition, the latter provides an indication on the accuracy of
the approximation retained in Sec. 4.1.5 to estimate the loss factor η = cφ/ωla ' cg/ωla;
within this approximation, the experimental value of η is likely underestimated by 30%.
Taking into account for the phase velocity instead of the group velocity would have led
to a better agreement for the attenuation.
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Figure 4.13: (a) Output signal Fpulse(x, t) deconvolved from the transfer function mea-
sured at each position inside the alignment and as a function of time. (b) Envelope of
the pulse F envpulse(x, t) as a function of time and position. Both results obtained by the
method given by Eq. 4.31 and Eq. 4.32 while considering an input wavepacket centered
at 3.25 kHz and bandwidth 0.3, at F0 = 40 N static force.

4.3 Conclusions

In this chapter, through theoretical and experimental studies, we quantified wave prop-
agation in one-dimensional chains of spherical particles. In particular, we showed that
interactions of every sphere with its support induces a low cutoff frequency. We de-
scribed the coupling between elastic bodies by mean of a tangential component of the
stiffness between plane and cylinder, which provides a quantitative prediction of the cut-
off frequencies of various combinations of spheres and supports, as a function of either
the weight of the spheres or the static load applied on the sample. Next, we quanti-
fied a global group velocity and the loss factor in the pass band; our description of the
system matches the experimental observations. Finally we unraveled the full disper-
sion relation of the system thanks to an embedded force sensor that allows measuring
perturbations as they propagates inside the chain; the experimental dispersion relation
is in close agreement with the prediction and our measurements allows identifying the
spurious propagation of bending waves in the supports at very low frequency.
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CHAPTER 5. WAVES IN WET 1D GRANULAR MEDIA

In this chapter, we probe wave propagation in wet granular chain. This chapter is
divided in three sections. The first section concerns the experimental study of wave
propagation in wet chain over a broad range of static compressions and viscosities of
fluids. In the second section, we derive appropriate contact model between wet spheres,
which qualitatively and quantitatively describes our experimental observations. In the
third section, we present additional experimental results concerning wave propagation in
wet chain.

5.1 Raw experimental data

As in chapter 3, we probe dynamics of compressed granular chain made of polyacetal
spheres supported by steel rods. We create wet granular media by adding small amount
(less then 1 mm3) of viscous fluid at each contact between spheres, see Fig. 5.1(a). Due
to capillary forces Fcap, see Sec. 2.4.1, the fluid remains at the contact between spheres,
see Fig. 5.1(b), as long as the weight of the droplet remains negligible, mg < Fcap. Here,
we use Rhodorsil fluid [111] with viscosity µ equals to 0.1, 0.2, 0.5, 1, 5 and 10 Pas.

Figure 5.1: (a) Small quantity of viscous fluid (Rhodorsil 47V) is poured between each
sphere in contact. (b) A viscous meniscus of fluid shown between two polyacetal spheres.

Our experimental procedure is the same as for dry granular media (chapter 3). At
first by sending large band energetic signal in from of chirp one obtains experimental
transfer function H. Next one generates analytic gaussian pulse Fpulse(x = 0, t) centered
in the middle of passing band of dry system at fc = (fmin(F0) + fmax(F0))/2 (where
fmin(F0), fmax(F0) are the theoretical values see Sec. 4.2, F0 is static force). Here we
send additionally pulse centered at fc1, fc2±20%fc. Both signals, H and Fpulse(x = 0, t),
serve for estimation of output signal Fpulse(x = L, t) (see Sec. 4.1.4). Then by estimating
envelope of Fpulse(x = 0, t) and Fpulse(x = L, t) (by Hilbert transform); from time of
flight of maximum envelope one obtains group velocity cg while it’s ratio quantifies loss
factor η.
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Experimental results are obtained for static force, F0, varying from 5 N, every 5 N,
up to 40 N and for viscosity µ of 0.1 0.2 0.5 1 5 and 10 Pas. Firstly on Fig. 5.2 we
trace magnitude of experimental transfer functions. In Fig. 5.2(b) we show magnitude
of H = Fout/Fin for fluid with viscosity of 10 Pas with varying compression. While
on Fig. 5.2(c) we present transfer function for fixed compression F0 =5 N and different
viscosity. As the comparison we trace also |H| for dry chain Fig. 5.2(a).

We remark that addition of the small amount of fluid increases the attenuation by
about 20 dB when compared to the dry case. As observed on Fig. 5.2 dynamics of
wet chain depends on the static force applied Fig. 5.2(b) and on viscosity Fig. 5.2(c).
The passing band in the wet case shifts with static force Fig. 5.2(b), while attenuation
depends both on compression and viscosity Fig. 5.2(b)(c).

If we focus on low and height cutoff frequency (below/above 2 kHz) one observes that
in low frequency region, which quantifies interaction between the sphere and support
(section 4.1.1) is not significantly changed in the wet chain when compared to the dry
case.

We remark also that the high frequency region (above 2 kHz) changes with static
force. For high compression, see Fig. 5.2(b) wet system tends to present cutoff frequency
characteristic for the dry chain, see Fig. 5.2(a), while for low static force applied H

decreases with frequency.
Next, we trace the temporal representations of a gaussian pulses Fpulse(x = L, t) as a

function of viscosity and for compression of 5 N in Fig. 5.3 while the compression is 40 N
in Fig. 5.4. As comparison in Figs. 5.3(a),5.4(a) we trace Fpulse(x = L, t) estimated in
dry chain. Here one clearly see that wave propagates faster in wet case when compared
to dry case Figs. 5.3(a),5.4(a), signals arrives faster. One observes in addition that cg
increase with viscosity. Additionally signals in wet chain are more attenuated when
compared to dry case.

Finally, we focus on group velocity and loss factor for all viscosities η and static force
F0. On Fig. 5.5 we show cg and η in function of viscosity and static force applied, where
central frequency of pulse is fc. As observed on Fig. 5.5(a) group velocity increase in the
wet case up to 50% for the high viscosity when compared to dry case. From Fig. 5.5(a)
we remark that for the lowest viscosity group velocity depends nonlinearly to static force
applied, while for higher values group velocity is independent to compression. Loss factor
in wet case Fig. 5.5(b) for the lowest compression is three times bigger when compared to
the dry case, while the difference between loss factor in the dry and wet media decrease
in function of the static force F0.

5.2 Contact model between loaded wet spheres

In the first section we experimentally estimated the group velocity and the loss factor of
wet granular media. Here we aim at deriving an expression for the mechanical impedance
which quantifies the potential interaction between wet spheres, in order to provide a
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Figure 5.2: Magnitude |H| of the transfer function H = Fout/Fin versus frequency. (a)
In the dry case for different static force F0. (b) In the wet case as a function of F0 for
viscosity µ = 10 Pas.(c) In the wet case at F0 = 5 N, but for viscosity of 0.1, 0.2, 0.5, 1, 5
and 10 Pas, shown respectively in green, blue, magenta, red, light blue and cyan curves.

page 104
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Figure 5.3: (a) Output deconvolved wavepacket Fpulse(x = L, t) in the dry media. In (b),
(c), (d), (e), (f) and (g): output signals for wet media for viscosity of µ = 0.1, 0.2, 0.5, 1, 5
and 10 Pas; Here the static force is F0 = 5 N. The wavepackets are centered at fc =
2.2 kHz.
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Figure 5.4: (a) Output deconvolved wavepacket Fpulse(x = L, t) in the dry media. In (b),
(c), (d), (e), (f) and (g): output signals for wet media for viscosity of µ = 0.1, 0.2, 0.5, 1, 5
and 10 Pas; Here the static force is F0 = 40 N. The wavepackets are centered at fc =
3.2 kHz.
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Figure 5.5: (a) Group velocity cg and (b) loss factor η = cg/ωla at central frequency fc.
The dry case is shown in black squares, the wet cases with viscosity of 0.1, 0.2, 0.5, 1, 5
and 10 Pa.s are traced respectively in green ◦, blue +, magenta ∗, red B, light blue C
and cyan O.

theoretical expression for cg and η. The theoretical estimations are obtained by probing
the difference between the dry and the wet configurations.

5.2.1 Identification of the mechanical impedance between wet
contacts

Here, we intend to provide a framework to describe our results. We follow the strategy
derived in see Sec. 4.1.1. In the long wavelength approximation, the dispersion relation
in a wet chain of spheres with radius R0, Young’s modulus E0 and mass M is

Mω2 ' kwq2
w(2R0)2 + k2

0, (5.1)

where qw is the wet wave number, k0 is the on-site stiffness and kw is the mechanical
impedance, i.e. the stiffness, between two wet particles. In turn, the dispersion relation
in the dry alignments

Mω2 ' kHq2
d(2R0)2 + k2

0, (5.2)

where qd is the wet wave number and kH ' ER(F0/ER
2)1/3 is the hertzian stiffness

between two dry spheres, see Eq. 2.20.
In the following, we will assume that the mechanical impedance in the wet case, kw,

has two origins, as depicted in the sketch shown in Fig. 5.6: (i) an elastic contribution
kH that comes from the central region of the contact between particles under static load
and (ii) an additional term κw due to the presence of the fluid at the periphery and which
remains to be identified. In this case Eq. 5.1 becomes

Mω2 ' (kH + κw)(2R0)2q2
w + k2

0, (5.3)

Similarly to the expression given in Eq. 4.15, we introduce a complex wave number
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Figure 5.6: Sketch of the contact region between two compressed wet spheres. Here, ad
is the extent of the dry contact while aw indicates the extent of the hydrodynamic field
in the fluid. Such a framework is compatible with the one given by Marshall [63].

qd = (ω/cd)×(1−iηd) in the dry case and a complex wave number qw = (ω/cw)×(1−iηw)
in the wet case, where cd,w stand for group velocities and ηd,w are loss factors in dry and
wet case. Subtracting Eq. 5.2 from Eq. 5.3, one simply obtains,

(kH + κw)q2
w ' kHq2

d, (5.4)

which equivalently provides a relation between cd, cw, ηd, ηw, kH and κw,[
cw
cd

(1− iηd)
(1− iηw)

]2
' 1 + κw

kH
. (5.5)

Within the assumption of weak dissipation ηd,w � 1, Eq. 5.5 becomes

(cw/cd)2[1 + 2i(ηw − ηd)] ' 1 + κw/kH . (5.6)

Identifying the real and the imaginary parts of Eq. 5.6, one finally obtains

(cw/cd)2 ' 1 + <(κw/kH), (5.7)

(ηw − ηd) ' =(κw/kH)
2 [1 + <(κw/kH)] . (5.8)

As a crude attempt to verify if the framework given by Eq. 5.7 and Eq. 5.8 is reliable,
we plot the non-dimensional ratio of group velocities (cw/cd)2−1 as a function of the main
characteristics of a sample. The response of the system depending on the confinement
pressure P = F0/πR

2
0, on the viscosity of the fluid µ and on the angular frequency ω,

see Fig. 5.5, one natural choice is to consider a non-dimensional parameter defined as
µω/P as the control parameter. The plot is shown in Fig. 5.7. Not surprisingly, all
the data shown in Fig. 5.5(a) appear to collapse in a single master curve. A deeper
inspection shows that the group velocity ratio increases as a power law of the non-
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dimensional parameter, [(cw/cd)2 − 1] ∝ (µω/P )1/3. Interestingly, the exponent 1/3
appears compatible with the models presented in Sec. 2.4.

Figure 5.7: Ratio between the group velocity in the wet case cw and the dry case cd
traced as a function of the viscosity µ, angular frequency ω and confinement pressure
P = F0/πR

2
0. The experimental data are traced for all static forces F0, viscosity µ and

central frequencies fc, fc1 and fc2. The black line is a guide line indicating a power law
with and exponent 1/3.

5.2.2 Estimation of the mechanical impedance between wet con-
tact

Here we aim at deriving an estimation of the mechanical impedance between loaded wet
contacts, based on the description given in Sec. 2.3.2 and in Sec. 2.4.4. The analysis
derived in Sec.5.2.1 shown that κw depends on properties of the fluid and elasticity of
spheres. These findings are compatible with the elastohydrodynamic description provided
by the group of Charlaix, see for instance [26,81].

One has to mention that our experimental conditions differ from the conditions de-
scribed in [26,81]. In our configuration, the particles are in direct contact and submitted
to a static load in the normal direction. The latter has to be taken into account in the
description.

On purpose, we consider an elastic sphere with effective values of radiusR and Young’s
modulus E pressed against another sphere, with a static force F0. A small drop of liquid
with viscosity µ stands right at the contact. Under the static compression, the fluid
escapes the central region of the contact where the particles touches. This central region
is a disk with radius ad, see the sketch shown in Fig. 5.6. However, it stands to reason
that some fluid may be trapped within the asperities and the roughness of the spheres,
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i.e. one still has an arbitrarily thin layer of fluid between the solids. In any cases, owing
to the strong confinement, the fluid trapped in the central region of the contact between
the particles does not flow, the interaction potential between particles thus results in a
stiffness given by Eq. 2.20

kH = ER

(
6F0

ER2

)1/3
, (5.9)

over a radial extent ad =
√
Rδ0, where δ0 is the overlap distance.

In turn, at the periphery of this central region, an annular capillary bridge of fluid
surrounds the solid contact. Such a framework is compatible with the description given by
Marshall [63]. When submitted to a perturbation in the normal direction, the peripheral
fluid is squeezed out in the radial direction. As in Sec. 2.4.3, we start from the Reynolds
equation [66], see for instance the Eq. 2.59,

∂

∂r

(
rh3

12µ
∂p

∂r

)
= rḣ (5.10)

where r is radial coordinate, h is the fluid thickness, ḣ is the normal velocity and p is
the hydrodynamic pressure.

The fluid standing at the periphery of the solid contact, r ≥ ad, its thickness can be
defined as

h(r ≥ ad) ' D + r2 − a2
d

2R , (5.11)

where D is the arbitrarily thin thickness of the fluid trapped in the central region r ≤ ad.
Thus, the integration of Eq. 5.10 gives

rh3

12µ
∂p

∂r
= r2ḣ

2 + const, (5.12)

where the integration constant can be found from the Stokes equation ∂rp = µ∂2
zzvr ∝

−µvr/h2, where vr is the radial velocity of the squeezed fluid. At the edge of the capillary
bridge, the radial velocity of the fluid is zero, i.e. ∂rp(r = ad) = 0, such that const =
−a2

dḣ/2. It turns out that the pressure gradient becomes

∂p

∂r
= 6µḣ
rh3

(
r2 − a2

d

)
, (5.13)

and the pressure, once integrated over r ≥ ad, is

p ' −3µḣR
h2 + µḣa2

d

h3 . (5.14)

The second term in the right hand side of Eq. 5.14 is an approximation found by
assuming D as arbitrarily small, D → 0, and by considering h(r) � δ0, i.e. r ≥ 3ad,
such that h(r) ' r2/2R in first approximation. Finally, the integration of the pressure

page 110



5.2. CONTACT MODEL BETWEEN LOADED WET SPHERES

given by Eq. 5.14 provides the viscous repulsive force exerted by the peripheral fluid,

Fw '
6πµR2ḣ

D

(
1− a2

d

6RD

)
. (5.15)

This force is similar to the one found in Eq. 2.61, but minored by the term in paren-
thesis: the fluid here extends over a smaller region than in Sec. 2.4.3. In turn, the
mechanical impedance κw = Fw/h of the peripheral fluid thus becomes

κw(h) ' 6πµR2ω

D

(
1− a2

d

6RD

)
, (5.16)

and one recovers a result which is compatible with the description given by Marshall [63].
At arbitrarily small thickness D the elastic confinement of the fluid clamped at the

periphery of the solid contact occurs, see Sec. 2.4.4 and Sec. 2.4.5: both elastic solids
deform upon the action of the hydrodynamic pressure generated by the very large viscous
shear and stress near the geometrical singularity, at the edge of the disk of solid contact.
According to the description given in Sec. 2.4, when the thicknessD tends to the crossover
thickness Dc = 8R(µω/E)2/3, see Eq. 2.72, the elastohydrodynamic interaction between
the fluid and the elastic solids implies that the mechanical impedance given by Eq. 5.16
tends to

κw ' 1.163
(√

3 + i
) 6πµR2ω

Dc

[
1− 1

3

(
ad
aw

)2
]
, (5.17)

where aw =
√

2RDc is the typical extent of the fluid’s flow, see for instance Eq. 2.62.
From now on, adding the elastic repulsion coming from the central region of solid

contact, see Eq. 5.9, to the viscous repulsion of the peripheral fluid given by Eq. 5.17, and
assuming that the fluid extends significantly above the region of solid contact, aw � ad,
one finds the overall mechanical impedance of a wet contact between two statically loaded
spheres, kw = kH + κw, such that

kw ' ER
(

6F0

ER2

)1/3
+ 1.163

(√
3 + i

) 6πµR2ω

Dc
. (5.18)

It turns out that, according to Eq. 5.7 and Eq. 5.8, the ratio of wet to dry group
velocity and the difference of the loss factors become

(cw/cd)2 ' 1 + α(µω/P )1/3, (5.19)

(ηw − ηd) ' β(µω/P )1/3

1 + α(µω/P )1/3 , (5.20)

where P = F0/πR
2
0 is the confinement pressure and α and β are constants of the order

of unity, α ∼ β ∼ 1. These results are consistent with the trend of the experimental data
demonstrated in Fig. 5.7.

It is worth mentioning that strictly speaking, the square bracketed correction term in
in Eq. 5.17 can be safely neglected if (aw/ad) ≥

√
10/3 ' 1.8. Within our experimental
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Figure 5.8: (a) Ratio between the group velocity in the wet case cw and in the dry case
cd; the experimental data are traced in blue dots. (b) Difference between loss factor in
the wet case ηw and in the dry case ηd; the experimental data are traced in red dots.
In both cases, the data are represented as a function of viscosity µ, angular frequency
ω and confinement pressure P = F0/πR

2
0. Experimental data are traced for all static

forces F0, viscosity µ and central frequencies fc, fc1 and fc2. The black line represents
the theoretical estimations from Eq. 5.19 and Eq. 5.20.

conditions, this assumption is fulfilled at low confinement pressure or high fluid viscosity
only, since (aw/ad) ∝ (µω/P )1/3 . At large pressure or low viscosity, the correction
term should be taken into account, though we do not do it in practice. The limit of
arbitrarily high pressures or arbitrarily small viscosity indeed corresponds asymptotically
to the behavior of a dry contact: the description given in Eq. 5.18 actually matches
this limit, though our model remains beyond the required precision to account for a
reliable crossover between dry and wet regimes. In practice, the typical extent of the dry
solid contact ad lies in between 200 µm and 400 µm at lowest and highest confinement
pressures, respectively. In turn, the characteristic extent of the the fluid’s flow is aw
is 200 µm at the lowest viscosity µ = 0.1 Pa.s: in this case, aw < ad < 2aw and the
assumption is not fully valid. However, at the the highest viscosity µ = 10 Pa.s, the
typical extent of the fluid’s flow is aw ' 1 mm such that 2.5 < aw/ad < 5, in agreement
with the assumption leading to Eq. 5.18.

5.3 Experimental validation

5.3.1 Group velocity and loss factor

In this part we confront the descriptions given in Sec. 5.2 with our experimental results.
The full comparison between all the experimental data shown in Fig. 5.5 and the theo-
retical expressions given by Eq. 5.19 and by Eq. 5.20 is presented in Fig. 5.8 as a function
of the non-dimensional parameter µω/P . One observes that the theoretical description
is in fair agreement with the experimental observations, for both the group velocity and
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the loss factors. In Fig. 5.8(a), the estimations given by Eq. 5.18 provides qualitatively
and quantitatively the master curve found in Fig. 5.8. In addition, we observe that the
description also provides the correct order of magnitude and the correct trend for the
difference of the loss factors, see Fig. 5.8(b), though the data are more scattered. Ac-
cording to Eq. 5.19 and Eq. 5.20, both the relative difference of group velocity and the
difference of the loss factors increases as a power law of the non-dimensional parameter
µω/P .

5.3.2 Dispersion relation

Having validated experimentally the theoretical description, we present additional ex-
periments and comparisons between the dynamics of dry and wet chains. Using our
embedded sensor, we record the dynamic force as a function of time and position in-
side an alignment of 40 wet polyacetal spheres supported by steel rods. As in previous
Sec. 4.2.2, we excite the medium with a chirp. The force is registered at the beginning
of the chain Fin(t) = F (x = 0, t), at the end Fout(t) = F (x = L, t) and by the embed-
ded sensor Femb(x, t) at any position x = 2nR with 1 ≤ n ≤ 40. This experiment is
performed with the three highest fluid viscosity, µ = 1 Pas, µ = 5 Pas and µ = 10 Pas.
For the two last fluids, we record the force at the first 10 particles only. In all cases, the
static compression is 20 N.

At first, one analyzes the results obtained with an interstitial fluid with a viscos-
ity equal to 1 Pas. In Fig. 5.9(a) and in Fig. 5.9(b), we show the dispersion relation
K(<(q), ω) = FTtx[Femb(x, t)], estimated according to the method described in Sec. 4.2.1,
for dry and wet configurations respectively. Here the fluid viscosity is µ = 1 Pa.s. In
Fig. 5.9(c) and in Fig. 5.9(d), we plot the modulus of the transfer function, H(x, ω) =
FTt[Femb(x, t)], as a function of the position x and frequency ω, see Sec. 4.2.1, for dry
and wet chains respectively. One can see that the wet medium is more dissipated than
the dry medium: the decay as a function of the position is faster and more pronounced;
in addition, the decay is faster at higher frequencies. As observed on the dispersion
relations shown in Fig. 5.9(a,b), the low frequency region remains almost unaffected by
the presence of fluid, in agreement with the fact that the mechanical impedance of the
wet contact tends to the stiffness of a dry contact at low frequency, see Eq. 5.18. On
the opposite, the overall slope of the dispersion relation is larger with fluid than in the
dry case: this suggests that the fluid stiffens the contact and significantly increases the
group velocity. Finally, on can still observe the spurious bending mode of the supports
in the low frequency region of the dispersion relation of bending modes, as in the dry
case detailed in Fig. 4.12.

Then, as a crude probe of the attenuation of waves, as they propagate inside the align-
ments, we deconvolve the measured transfer functionH(x, ω), obtained from the chirp ex-
citation, with the Fourier transform of an analytic incident gaussian pulse Fpulse(x = 0, t)
centered in the middle of the propagative band in order to obtain a time resolved propa-
gated pulse Fpulse(x, t), see the details of the method in Sec. 4.1.4. One then extract the
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Figure 5.9: (a,b) Dispersion relation unraveled by the use of the embedded sensor in the
dry and the wet cases, respectively. Here, the fluid viscosity is µ = 1 Pa.s. (c,d) Modulus
of the transfer function measured by the embedded sensor in the dry and the wet cases,
respectively. Here, the static compression is 20 N and <(q) is the real part of the wave
number and R0 is the radius of the spheres.
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envelope of the pulse propagated from the Hilbert transform, F envpulse(x, t), as detailed in
Sec. 4.1.4. The envelop of such a signal is shown Fig. 5.10 as a function of propagated
distance and as a function of time. One clearly sees that the time of flight is shorter with
an interstitial fluid with viscosity µ = 1 Pa.s than in the dry case; the group velocity is
significantly faster in presence of a fluid.

Figure 5.10: Envelope of the wavepacket deconvolved from the response to a chirp exci-
tation, as a function of position of the embedded sensor and time: (a) in a dry chain and
(b) with an interstitial fluid with 1 Pas viscosity. Here, the alignments are both under a
20 N compression.

Figure 5.11: Evolution of the attenuation max[F ep (x, t)]/max[F ep (x = 0, t)] as a function
of the position x = 2nR inside the chain; experimental results are shown in red dots
and the the black line stands for the Eq. 5.21. (a) Dry chain of spheres and in (b,c,d)
wet chains of spheres with interstitial fluid with viscosity of 1 Pas, 5 Pas and 10 Pas,
respectively. Here, the alignments are both under a 20 N compression.
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At this point, one can finally extract the evolution of the maximum of the envelope of
the deconvolved pulse as a function of the propagated distance. This result is presented
in Fig. 5.11, for the dry configuration and for the three viscosities. These results are
compared with the attenuation length la inferred from the ratio of the force deconvolved
at the beginning and at the end of the chain,

max[F envpulse(L, t)]/max[F envpulse(0, t)] ≈ e−L/la . (5.21)

One observes in Fig. 5.11 that the magnitude of the pulse decreases as a function of
the propagated distance of the chain and attenuation measured at the end of chain gives
the conform results. The extrapolation from the measurements at both extremities, see
Eq. 5.21, demonstrates in all cases a fairly well defined exponential decay which matches
the experimental data, our description, in term of an attenuation length is thus confirmed.
It turns out that friction for instance would have led here to a non-exponential decay,
which is not observed here.

5.4 Conclusions

In this chapter, we characterized wave propagation in wet alignments of spheres via
careful measurements of the experimental transfer function H. From the knowledge of
H, we measured the group velocity and the loss factor over a vast range of static forces,
frequencies and fluid viscosities. By comparing the group velocity and the loss factor
measured in wet and dry chains, we inferred a model of contact dynamics between wet
load particles.

Our model shows that Hertz contact dynamics, which describes the propagation of
waves in dry chains of spheres, commonly used in the literature, must be corrected
by an elastohydrodynamic contribution [81] in the presence of a very small amount
of interstitial fluid. Our interpretations and estimations are both in qualitative and
quantitative agreement for the group velocity and a qualitative agreement for the loss
factor.
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In this chapter, we present a preliminary experimental study on ultrasonic wave prop-
agation in three-dimensional dry and wet granular media, in a setup shown in Fig. 6.1.
In particular, we focus on the characterization of the wave speed c and the attenuation
length la. This chapter is divided in three sections. In the first section, we expose a
theoretical framework for the description of both the wave speed and the attenuation
length in dry and wet case. In the second part, we present the experimental protocols
and the results acquired at low or high frequencies and at low or high driving amplitudes.
Finally, we compare the experimental results with the theoretical estimations derived in
the first section.

6.1 Wave speed and attenuation in 3D granular media

6.1.1 Effective medium theory in dry and wet granular media

Firstly, we remind the model concerning wave propagation in three-dimensional dry
granular media based on the effective medium theory (EMT) [101–105]. In EMT, the
contact dynamics between grains is described by Hertz-Mindlin interaction [50]. In the
presence of a normal confining pressure P , one has to consider not only the hertzian
normal stiffness kH but also a tangential stiffness kt resulting from shear deformation of
the contacts. The passage from the microscopic scale, at the level of the contact, to the
macroscopic scale, in the long wavelength approximation, is provided by an effective bulk
modulus Ke, an effective shear modulus µe and an effective density ρe = ρΦ, where Φ is
the compaction of the packing of grains, ρ is the density of the material of the sphere,
see Eq. 2.95 and Eq. 2.96. The longitudinal wave speed Vp is given by [7,9], see Eq. 2.93

Vp =

√
Ke + 4/3µe

ρe
, (6.1)

where the effective moduli are

Ke = ZΦ
12πR0

kH , (6.2)

µe = ZΦ
20πR0

(kH + 3/2kt). (6.3)

Here, R0 is the radius of the spheres and Z is the coordination number. In the case
of frictionless spheres, one has kt = 0. The normal and transverse contact stiffnesses
are [7, 9]

kH = 4aG0

1− ν0
, (6.4)

kt = 8aG0

2− ν0
, (6.5)
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6.1. WAVE SPEED AND ATTENUATION IN 3D GRANULAR MEDIA

Figure 6.1: A five layers thick three-dimensional granular medium filled with 2 mm in
diameter polyacetal spheres. A plane wave ultrasonic emitter is placed on the bottom of
the sample and the receiver is fixed on the upper movable cap. The confinement pressure
is exerted by placing different mass on the upper cylindrical part.
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where, ν0 is the Poisson ratio and G0 is shear modulus

G0 = E0

2(1 + ν0) . (6.6)

The radius a of the contact disc is [7]

a = R0

[
3π(1− ν0)

2ZΦG0
P

]1/3
, (6.7)

where ν0 is the Poisson ratio of the spheres. Under a confinement pressure P , the static
force F0 between grains is estimated at

F0 = 4πR2
0P

ZΦ . (6.8)

Starting from the EMT, which describes wave propagation in dry media, we attempt
to extend the derivation to the wet configuration and find an expression for the longi-
tudinal velocity in the presence of an interstitial fluid. On this purpose, one introduces
the mechanical impedance between wet grains kw, where kw is the combination of Hertz
stiffness kH and the mechanical impedance κw estimated from the EHD theory [26],

kw = kH + κw, (6.9)

where according to Eq. 5.17, κw is

κw = 1.163
(√

3 + i
) 6πµR2ω

Dc

(
1− a2

d

3a2
w

)
. (6.10)

Here, Dc = 8R(µω/E)2/3 is the critical distance, with effective values of sphere
radius R and Young’s modulus E. In this case we assume that aw > ad (where aw is the
characteristic extent of the fluid and ad is the characteristic extent of the dry contact)
for ultrasonic frequency f > 20 kHz, for a fluid viscosity µ = 5 Pas and for a confinement
pressure P ' 5 kPa, such that Eq. 6.10 becomes

κw = 1.163
(√

3 + i
) 6πµR2ω

Dc
. (6.11)

In analogy with the EMT, see Eq. 6.2 and Eq. 6.3, and assuming that the tangential
stiffness is zero in presence of the lubricant, one finds the effective moduli Kew and µew
as

Kew = ΦZ
12πR0

kw, (6.12)

µew = ΦZ
20πR0

kw, (6.13)
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and the longitudinal wave speed Vw in the wet granular media, see Eq. 6.1, finally becomes

Vw =

√
Kew + 4/3µew

ρe
. (6.14)

6.1.2 Multiple scattering and attenuation in 3D samples

Here, we deal with the attenuation in three-dimensional dry granular media. In one-
dimensional dry granular media, the attenuation of waves is mostly given by a loss angle
of the bulk material of the spheres; in the wet case the dissipation mainly results from
the elastohydrodynamic interaction. In three-dimensional configuration, an additional
mechanism of attenuation is due to the scattering of waves on every grain. In this
section, we derive an estimation of the attenuation length ls which accounts for wave
scattering; this will serve for the estimation of total attenuation length in both dry ld
and wet lw three-dimensional granular media.

Let’s consider an incident plane pressure wave pi(ω, q0), where q0 is the incident wave
number, scattered by a spherical obstacle with radius R0, see Fig. 6.2. The magnitude
of the scattered wave ps[ω, q(θ)] ∝ f(θ) depends on the angular coordinate θ.

Figure 6.2: A plane wave scattered by a sphere.

The directivity function f(θ) defines the differential scattering cross section σ(θ), such
that |f(θ)|2 = dσ(θ)/dθ [112]. By integrating over all directions, one obtains the total
scattering cross section,

σT =
∫ 2π

0
|f(θ)|2dθ. (6.15)

The scattering cross section is an effective area which can be compared to the real
area of the spherical scatterer, 4πR2

0, and which provide a measure of its capacity to
scatter an incident wave: the scattered energy is proportional to the scattering cross
section σT . As a consequence, σT thus also provides a measure of the amount of energy
the incident coherent wave lost to generate a scattered field in all directions [113]. In the
independent scattering approximation [114], which assumes that each obstacle scatters
independently the incident wave pi(ω, q0), one defines a characteristic decay length of
the intensity of the coherent wave. This distance corresponds to the attenuation length
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ls. It is related to the total scattering cross section: the larger is the scattering cross
section, the larger is the attenuation, i.e. the shorter is the attenuation length ls. These
quantity are formally related as [112]

ls = 1
nσT

, (6.16)

where n is the number of scatterers per unit volume. The compacity being Φ = 0.64 ' 2/3
for a random loose packing of sphere and the volume of a sphere being Vs = (4/3)πR3

0,
the density n is thus

n ' 1
2πR3

0
. (6.17)

It is worth mentioning that the independent scattering approximation holds for weak
concentrations of scatterers only, n� 1. Up to a certain extent, it is not fully applicable
in the case of dense granular media. However, we retain this approximation as a lowest
order estimation. In any case, the presence a very small volume fraction of an interstitial
fluid does not affect the multiple scattering: analyzing the difference of attenuation
between the wet and the dry configurations cancels out the effect of wave scattering.

In the long wavelength approximation limit, λ � R0, which corresponds to the
Rayleigh scattering regime [113], the cross section is such that

σT
πR2

0
' 7

9 (q0R0)4
. (6.18)

The regime at which the wavelength is smaller than the radius of the scatterers,
λ� R0, corresponds to the geometrical limit [113], in which the cross section tends to

σT
πR2

0
' 2. (6.19)

By combining Eq. 6.16, Eq. 6.17 and Eq. 6.18, one obtains the attenuation length in
the Rayleigh limit,

ls = 18
7q4

0R
3
0
, (6.20)

and by combing Eq. 6.16, Eq. 6.17 and Eq. 6.19, one obtains ls in the geometrical limit,

ls = R0. (6.21)

Finally one can estimate the total attenuation length ld in dry media as

1
ld

= 1
ls

+ 1
lH
, (6.22)

where lH stands for the attenuation length due to the dissipation in the contacts, 1/lH =
−=(q) ' =(ω/R0ωcut), where ωcut = 2

√
kH/M .
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In wet media, the total attenuation length lw is

1
lw

= 1
ls

+ 1
lH

+ 1
lehd

. (6.23)

where lehd is the attenuation length in the wet case, 1/lehd = −=(q) ' =(ω/R0ωw),
where ωw = 2

√
kw/M .

In turns out that the difference of attenuation between the dry and the wet configu-
rations simply gives

1
lw
− 1
ld

= 1
lehd

. (6.24)

6.2 Experimental ultrasonic waves in 3D granular me-
dia

After having tackled the theoretical descriptions, we here focus on the experimental setup.
We probe wave propagation in three-dimensional granular media made of polyacetal
spheres with Young’s modulus E0 = 4.25 GPa and Poisson coefficient ν0 = 0.38. Here,
the grains have a diameter DS = 2 mm and are enclosed in a cylindrical container
with radius Rc = 4 cm, see Fig. 6.3(a). The whole system is clamped between two
steel cylinders; by placing different weight on the top cylinder cap, one changes the
confinement pressure P = (m + M)g/πR2

c , where m is the mass of the upper cylinder
and M is the mass of an additional weight. We placed an ultrasonic emitter on the
bottom part and an ultrasonic receiver on the upper part. Transducers are not in direct
contact with granular media: a 0.25 mm thick steel sheet protects the transducers. This
sheet is thin enough to be acoustically transparent.

6.2.1 Probing granular media at low frequency

In the first experimental study, we probe the sample by sending a short impulsion pro-
duced by an pulser-receiver (Sofranel 5072PR) to the emitting transducer, see Fig.6.3.
Waves propagating through the granular medium are then received by a receiving trans-
ducer. This signal is amplified by a conditioner (Sofranel 5072PR) and transmitted to
an oscilloscope (Teledyne Lecroy HD0 4024). We use two indentical plane wave and
broadband receiving and emitting transducers (Olympus V101) centered on frequency
f = 0.5 MHz.

Here, we probe wave propagation in the dry and wet granular media. We create a
wet granular media by adding a very small amount of fluid with viscosity of µ = 5 Pas
between grains. The volume fraction of the liquid corresponds to a dozen of drops and
is about ϕ ' 0.05%. By carefully mixing the spheres, we ensure that the fluid is equally
distributed in the sample.

In the main part of the experiment one pours from one to six layers of polyacetal
spheres inside the cylindrical container. For each sample thickness, we compress and
decompress by putting and removing the top cylinder on the granular sample, as to obtain
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(a)

(b)

Figure 6.3: Sketch of the two experimental setups used to characterize ultrasonic wave
propagation in granular media.(a) The emitter is connected to a pulser which drives the
sample with a short broadband impulsion. (b) The emitter is connected to an arbitrary
wave generator and an amplifier, which drive the medium with a long duration chirp.
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the maximal achievable compacity. This procedure is repeated several times. Once the
maximal compacity is obtained, Φ ' 0.64, we place anM = 2 kg mass on the top cylinder.
The mass of the top cylinder ism = 530 g, this generates a confinement pressure of about
P ' 5 kPa. This pressure is far below the yield stress for our beads, see Eq. 2.24: the
sphere would deform plastically with a mass larger than 50 kg, approximately.

Next, for each sample thickness, we repeat 8 times the acquisition of the transmitted
signals. As an example shown in Fig. 6.4, we trace the mean value of the signals prop-
agated through samples made of three or five layers of dry spheres. Here we trace also
the envelope of the signal estimated with the Hilbert transform. The magnitude and the
location of the maximum of the envelope, see the black stars in Fig. 6.4, serves for the
estimation of the wave speed c and the attenuation length la.

We obtain c from the slope of the curve giving the time of flight (Tof) of the maximum
of the envelope as a function of the thickness of the samples e. The attenuation length
la is obtained from the slope of the curve giving the natural logarithm of the magnitude
of the envelope, ln(Amax), as a function of the thickness of the sample e.

It is worth to mention that by tracing the Fourier transform of the signals transmitted
through three and five layers, as shown in Fig. 6.5, one observes that the signals mostly
contains very low frequency content, approximately centered on 30 kHz. The latter is
due to the very strong and frequency dependent attenuation of the signals (Eq. 6.20)
and the inefficiency of a short impulsion to properly excite the media: only the very low
frequency content is detectable. However, we turned this pitfall in our advantage, and we
used these signals to analyze the response of the media in the low frequency range. The
response of the media at higher frequency is analyzed, via a more appropriate protocol,
in the next subsection. From the estimation of the wave speed in a dry media within the
experimental conditions, c ' 200 ms−1 see Eq. 6.1, we estimate the wavelength λ = c/f

at about λ ' 6.5 mm at 30 kHz: this corresponds to the long wavelength approximation
λ > R0 = 1 mm.

At first, we probe our granular media with low amplitude impulsions, in order to
ensure the linearity of the response: the magnitude of the pressure wave must remain
well below the confinement pressure. The experimental results for the wave speed are
presented in Fig. 6.6 while in Fig. 6.7, we show the results for the attenuation length. By
estimating the slope of the curves in Fig. 6.6, one obtains a wave speed cd ' 180 ms−1

in the dry case. In wet granular media, the experimental wave speed is cw ' 344 ms−1.
From the slope of the curve shown in Fig. 6.7, we measure the attenuation length la.
Unfortunately, the results shown in Fig. 6.7 are too noisy, especially for the 5 and 6
layers. Thus as to increase the quality of the signal, we increased the amplitude by a
factor five.

Next, we present experimental observations with impulsions at larger amplitudes.
The results for the wave speed are presented in Fig. 6.8 while in Fig. 6.9 we show the
results for the attenuation length. Here, we obtain wave speeds at about cd ' 435 ms−1

in the dry case and cw ' 305 ms−1 in the wet case. The attenuation length in the dry
media is ld ' 4.76 mm, while in the wet case one obtains, lw ' 2.44 mm.
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Figure 6.4: Example of signals propagating through (a) three and (b) five layers of
polyacetal spheres. Black stars show the maximum of the envelope.

Figure 6.5: Example of Fourier transform of signals propagating through three (red
curve) and five (blue curve) layers of polyacetal spheres.
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Figure 6.6: Time of flight (Tof) of the maximum of the envelope of transmitted pulses
as a function of the sample thickness e (number of layers). Red circles are experimental
results in the dry case and blue squares are experimental results in the wet case. The
black line indicates the wave speed given by the EMT theory, see Eq. 6.1. Here, the
input signal has a low amplitude.

Figure 6.7: Maximum of the envelope of the transmitted pulses Amax as a function of
the sample thickness e (number of layers). Red circles are experimental results in the
dry case and blue squares are experimental results in the wet case. Here, the input signal
has a low amplitude. The red and blue straight lines are best fits in the wet and dry
cases, respectively.
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Figure 6.8: Time of flight (Tof) of the maximum of the envelope of transmitted pulses
as a function of the sample thickness e (number of layers). Red circles are experimental
results in the dry case and blue squares are experimental results in the wet case. Here,
the input signal has a high amplitude.

Figure 6.9: Maximum of the envelope of transmitted pulses Amax as a function of the
sample thickness e (number of layers). The red circles are experimental results in the
dry case and the blue squares are experimental results in the wet case. Here, the input
signal has a high amplitude.
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6.2.2 Probing granular media at high frequency

As to obtain an information on the attenuation length at higher frequencies, λ ≤ R0,
we perform additional experiments. This second experimental procedure is such that
the signal generated by an arbitrary wave generator (Agilent 33500B), is amplified by
a high frequency power amplifier (VectaWave VBA230-35) and is finally transmitted to
the emitting transducer, see the sketch in Fig. 6.3(b). The wave propagated through
the granular media is then sensed by the receiving transducer and then amplified by a
conditioner (Sofranel 5072PR), before being fed to the oscilloscope (Teledyne Lecroy HD0
4024). With the arbitrary waveform generator, one can drive the system with any type
of signals. For this particular study we use a very long, 1 ms in duration, chirp covering
a broad frequency range around 0.5 MHz, from 0.1 MHz to 0.9 MHz, see Fig. 6.10. The
chirp is weighted by a hanning window. This very long signal is then post-processed as
follows. One can estimate the cross correlation of the acquired voltage Vacq(t) with the
driving voltage reference Vref (t) sent by the arbitrary wave generator. This procedure
provides a very short impulse response xout(t),

xout(t) = Vacq(t)⊗ Vref (−t), (6.25)

where ⊗ denotes the convolution product. The result of the cross correlation of the
driving voltage acquired by the oscilloscope Vacq(t) with the reference voltage Vref (t) is
shown in Fig. 6.10(c). The result of the cross correlation depends on the window used
to weight the chirp, here a hanning window. Without windowing, Eq. 6.25 would have
produced a delta Dirac function. When windowing the chirp, owing to the very long
acquisition, one obtains a very well defined short pulse with a signal to noise ratio close
to 100 dB. The hanning window is here used to adapt the spectrum of the driving voltage
to the finite bandwidth of the frequency response of the transducers.

As in the original protocol, one pours particles of polyacetal (here from two to
three layers) in the cylindrical container. We then compress/decompress the sample by
putting/removing the top cylinder. This procedure is repeated several times until reach-
ing the maximal achievable compacity. We then place the 2 kg mass on the top cylinder,
in order to generate a confinement pressure of about P ' 5 kPa. The experimental
protocol for the acquisition also remain unchanged: we acquire 8 realizations, which we
then average. These acquisition (Vn) are then cross correlated with the reference sig-
nal Vref (t) provided by the arbitrary wave generator. According to the post-processing
defied in Eq. 6.25, one finds

xoutn (t) =< Vn(t) > ⊗Vref (−t), (6.26)

where < · · · > denotes the average of the 8 realizations and n is the number of layers,
i.e. the thickness of the sample.

In Fig. 6.11, we plot the signals xout2 (t) and xout3 (t) as a function of time. One observes
several additional pulses following the first pulse: these are due to multiple reflections at

page 129



CHAPTER 6. WAVES IN 3D GRANULAR PACKING

Figure 6.10: (a) Temporal representation of a signal generated by the arbitrary wave
generator Vref (Agilent 33500B). (b) Modulus of the Fourier transform of (a). (c)
Cross-correlation xout(t) between the reference signal Vref (−t) and the signal transmitted
through the sample Vacq(t).

the boundaries of the sample. We then estimate the envelope of the signal by the Hilbert
transform; the arrival time and the magnitude of the maximum of the envelope, xm2 and
xm3 , serve for the estimation of the wave speed and the attenuation length. Here, we
estimate c from the time of flight of the maximum of the envelope between xm2 and xm3 ,
while the ratio between xm2 and xm3 serves for the evaluation of the attenuation length
la = −∆e/ln(xm3 /xm2 ), where ∆e = e3 − e2 is the thickness difference between two and
three layers of spheres. We estimate the wave speed at about cd ' 260 ms−1 and the
attenuation length at about la ' 1.8 mm.

In Fig. 6.12, we plot the Fourier transform of xout2 (t) and xout3 (t): we observe that the
transmitted signals are centered around 0.5 MHz, in agreement with our requirement.
Next, we analyze the wave transmitted through the wet granular medium. The results
are plotted in Fig. 6.13 and in Fig. 6.14.
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Figure 6.11: (a,b) Signals propagating through two xout2 and three xout3 layers of dry
granular media, respectively.

Figure 6.12: Fourier transform of the signals propagating through two xout2 and three
xout3 layers of dry granular media, in red and in blue respectively.
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Figure 6.13: (a,b) Signals propagating through two xout2 and three xout3 layers of wet
granular media, respectively. The signals are not filtered.

Figure 6.14: Fourier transform of the signals propagating through two xout2 and three xout3
layers of wet granular media, in red and blue respectively. The signals are not filtered.
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Figure 6.15: (a,b) Signals propagating through two xout2 and three xout3 layers of wet
granular media, respectively. The signals are here filtered with a gaussian filter centered
at 0.5 Mhz and with bandwidth equal to 0.15.

Figure 6.16: Fourier transform of the signals propagating through two xout2 and three
xout3 layers of wet granular media, in red and blue respectively. The signals are here
filtered with a gaussian filter centered at 0.5 Mhz and with a bandwidth equal to 0.15.
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The lower magnitude of the transmitted signals, due to the slightly larger attenuation,
make the signals more affected by spurious contributions; for sake of clarity, we clean these
data by filtering out the frequency content with a gaussian filter centered on f = 0.5 MHz
and bandwidth bw = 0.15. The filtered data are shown in Fig. 6.15 and in Fig. 6.16.
As observed in this case, we estimate the wave speed to be cw ' 275 ms−1, while the
attenuation length is found at la ' 2.6 mm. Applying the same gaussian filter to the dry
case, we obtain cd ' 250 ms−1 and la ' 1.8 mm.

6.3 Analysis of the experimental results

6.3.1 Analysis of low frequency experiments

First, we comment the experimental velocity at low frequency and low amplitude. The
measured wave speed is cd ' 180 ms−1 in the dry case and is compatible with the
estimation of EMT, Vp ' 200 ms−1, see the black line in Fig. 6.6, obtained from Eq. 6.1
with Z = 6, Φ = 0.64, P = 5 kPa, f = 30 kHz and with the characteristics of polyacetal
spheres. Additionally, the measured wave speed is cw ' 344 ms−1 in the wet case, which
also fairly agrees with the EMT estimation Vw ' 340 ms−1, see Eq. 6.14. As for the dry
case, we use Z = 6, Φ = 0.64, P = 5 kPa, f = 30 kHz and µ = 5 Pa.s.

It is worth mentioning that our estimations also fairly describe the experimental result
obtained by Brunet [10] and Griffiths [107]. There the relative difference between wet and
dry speed is about 10%, in both cases, for fluid with viscosity 20 mPas and confinement
pressure P ' 350 kPa [10] and for fluid with viscosity 10 Pas and P ' 1 MPa [107]. In
theirs experimental studies, Brunet and Griffiths used glass beads with Young’s modulus
Eg = 70 GPa, Poisson ratio νg = 0.25 and density ρg = 2450 kg/m3. Our estimation
of the wave speed at frequency f = 100 kHz and with sphere radius R0 ' 400 µm, in
the dry case, see Eq. 6.1, and in the wet case, see Eq. 6.14, indicates that the relative
difference would be 10% when using the parameters indicated by Brunet [10], while it
would by 12% in the configuration probed by Griffiths [107].

Next, we focus on the experimental velocity obtained at low frequency and high
amplitude. In this case, the measured wave speed cd ' 435 ms−1 in the dry case does
not provide a satisfactory agreement with the EMT estimation Vp ' 200 ms−1: the
measurement is more than twice the prediction. However, the curve of the time of flight
versus thickness looks somehow awkward since it seems to tend to a plateau at large
thickness: the data may lack precision and consistency here. Possible reasons may result
from various nonlinearity at high amplitude and spurious contributions. The agreement
is slightly better in the wet case, where the magnitude of the wave is lowered by the
larger dissipation: we obtain cw ' 305 ms−1 experimentally while it is Vw ' 340 ms−1

in theory.
Finally, we consider the estimations and the measurements of the attenuation length.

At low frequency, the wavelength λ = c/f is theoretically λd ' 6.5 mm in the dry case
and λd ' 11.3 mm in the wet case: in all cases, the wavelength is larger than the size
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of the spheres. We thus estimate the scattering attenuation length ls from the Rayleigh
approximation, see Eq. 6.20. In this case one obtains

lths ' 12.5 mm, (6.27)

lthH ' 64 mm, (6.28)

lthehd ' 11 mm. (6.29)

According to Eq. 6.22 and Eq. 6.23, the attenuation lengths in dry and wet cases are

lthd = 10.5 mm, (6.30)

lthw = 5.4 mm. (6.31)

Both the theoretical and the experimental data shows that the attenuation length is
smaller in the wet case than in the dry case: this is consistent with an increase of the
attenuation. In addition, the experimental data, ld ' 4.76 mm and lw ' 2.33 mm, have
same order of magnitude as the estimations given by Eq. 6.30 and Eq. 6.31. Finally, by
subtracting the attenuation of the dry configuration from attenuation of the wet case,
see Eq. 6.24, one obtains lehd = 1/(1/lw − 1/ld) ' 4.56 mm: the theoretical estimation,
Eq. 6.29, underestimates the measured attenuation by a approximately a factor two.

6.3.2 Analysis of high frequency experiments

In the high frequency regime, around f = 0.5 MHz, the theoretical wavelength is
λd ∼ 0.4 mm in the dry case and λw ∼ 0.7 mm in the wet case: in both configura-
tions, the wavelength is smaller than the size of the particles, λ < R0. As a consequence,
the long wavelength approximation is not fulfilled and the EMT is not reliable: the com-
parison with experimental velocity is pointless. However, extending the long wavelength
estimations, Vp ' 200 ms−1 and Vw ' 340 ms−1, we find again a fair agreement in the
dry case, cd ' 250 ms−1, and a more cautious one in the wet case, cw ' 275 ms−1.

Concerning the attenuation lengths, we find theoretically

lths ' 1 mm, (6.32)

lthH ' 4 mm, (6.33)

lthehd ' 1 mm. (6.34)

where lths is estimated from the geometrical limit of the scattering given by Eq. 6.21,
according to the short wavelength approximation. From Eq. 6.22 and Eq. 6.23, the
overall attenuation lengths in the dry case and in the wet cases are

lthd = 0.8 mm, (6.35)

lthw = 0.5 mm. (6.36)
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In this frequency range, the attenuation due to the scattering becomes important: lthd
and lthw have similar magnitudes. In contrary to the low frequency case, the estimations
given by Eq. 6.35 and Eq. 6.36 here overestimates the experimental data, which are about
ld ' 1.8 mm and lw ' 2.6 mm. However, the order of magnitude is correctly estimated.

6.4 Conclusions

In this chapter we presented a preliminary experimental study concerning ultrasonic wave
propagation in dry and wet three-dimensional granular media. We measured both the
wave speed and the attenuation length at low and high frequencies and at low and high
amplitudes. Up to a certain extent, all our measurement provides somehow correct order
of magnitudes but still lack precision and consistency in some cases.

In the dry case, the measured wave speed at low amplitude provides a satisfactory
agreement with the theoretical estimation from the effective medium theory. In the wet
case, the effective medium theory combined with an elastohydrodynamic description of
the contact dynamics fairly reproduces the measured wave speed. As observed with
signals at high amplitudes, the attenuation length provides a correct order of magnitude
between theory and experiment.

We analyzed also the attenuation length for signals in a high frequency band, where
the wavelength is equal to, if not smaller than, the size of the particles. Here, the
theoretical estimations provide also a correct order of magnitude between theory and ex-
periment. Our observations suggest that the attenuation at high frequency is dominated
by the scattering.
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Chapter 7

General conclusion and
perpectives

This thesis dealt with wave propagation in dry and wet granular media, with the aim
of relating the features at the microscopic scale of the grains and at the macroscopic
scale of the acoustic wavelength. In a first place, we presented an experimental study
devoted to probe how elastic waves propagate in laboratory scaled one-dimensional dry
granular media. These media stand for an equivalent of the force chains, which are the
quasi one-dimensional paths of strongest contacts in three-dimensional granular packing,
along which elastic waves are known to propagate. Practically, our samples are align-
ments of centimetric spherical particles aligned on a support; these alignments were set
under static compression. Our measurements and our analysis, based on the microscopic
description of the dynamics of the grains, revealed the effect of an elastic coupling be-
tween the particles and an elasto-frictional on-site potential between the particles and
the supports. The on-site potential induces a zero frequency band gap in the transfer
function of the medium: the transmission of vibrations at low frequency is impeded. The
model of such a local interplay via a tangential stiffness between the spheres and the
cylindrical supports renders all the details of the measured dispersion relation.

In a second place, we dealt with wave propagation in wet one-dimensional granular
media. Wet media were obtained by adding a small drop of viscous fluid at the contacts
between every particle. Our observations demonstrated that wet particles interact via a
complex elastohydrodynamic (EHD) mechanism, which relies on the ability of the inter-
stitial fluid to elastically deform the particles. The EHD interplay confers remarkable
and non-trivial features upon waves, such as a significant increase of the propagation
speed compared to the dry case. We derived a model that quantitatively matches our
observations on the wave speed, while the agreement of the attenuation was only quali-
tative.

In a third place, we checked the reliability of our analysis to depict wave propagation
in real granular media, such as the wet sand. We performed preliminary ultrasonic wave
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transmission experiments in dry and wet random close packing of millimetric particles.
In the dry case, our results agree with a well-known effective medium theory (EMT) in
the long wavelength approximation. The EMT model combined with an EHD mecha-
nism fairly reproduces most of our experimental observations concerning wave speed and
attenuation in wet media. As a whole, our achievements likely contribute to a better
understanding of the mechanisms relying on wave propagation in dry and wet granular
media.

As a perspective, more experimental and analytic studies should be undertaken to im-
prove the estimation and the understanding of the attenuation in both one-dimensional
and three-dimensional granular media, especially in the dry case. In granular alignments,
the attenuation was directly correlated to the loss angle, which in turn, was quantified by
the knowledge of the complex Young’s modulus of the spheres. By performing experimen-
tal manipulation on the chain composed of the spheres with different bulk characteristic,
one would gain a better insight in this mechanism.

In turn, in three-dimensional configurations, an additional mechanism of attenuation
is due to the scattering of waves on every particles, quantified here by an independent
scattering approximation. The independent scattering approximation holds for weak
concentrations of scatters only. In perspective one could consider a more appropriate
model to describe our experimental configuration.

Concerning the preliminary experiments performed in three-dimensional granular me-
dia, we only probed one value of viscosity and one confinement pressure; our observations
are promising and analyzing the response of wet granular packing within a broader range
of parameters would be necessary. Still, additional protocols to quantify the influence of
the coordination number and the compacity on the wave speed and attenuation, both in
dry and wet configurations would be of interest. The later could be done for instance by
considering fluids with different surface tensions and over a broader range of confinement
pressure.

Finally in the three dimensional media, the very last experiment have been performed
at high frequency from the comparison between signals transmitted through two and
three layers of particles only; considering thicker samples may also help reaching a better
accuracy of the measurements. In any case, this will likely require larger excitation to
overcome the very strong dissipation observed in both dry and wet configurations.
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Abstract: This thesis deals with the study of 

mechanical wave propagation in dry or wet granular 

media, with the aim of relating the phenomena at 

the microscopic scale (particles dynamics, 

interaction potentials between grains, rheology of 

the interstitial fluid) to the features at the 

macroscopic scale (dispersion relation, wave speed 

and attenuation in the long wavelength 

approximation). The systems under study are either 

large one-dimensional granular media, as the 

analogs of the paths of the most compressed grains 

(the force chains) in real granular packings, or the 

real granular media themselves. In a first place, we 

study experimentally the wave transmission through 

alignments of dry centimetric spheres, which we 

model via the Hertz potential. We show that the 

elasto-frictional coupling between the grains and a 

substrate (the spheres’ support) induces an on-site 

elastic potential, which in turn induces a band gap at 

zero frequency in the transfer function. In a second 

place, we show that the presence of an infinitesimal 

amount of viscous fluid at the contact between 

every particle induces an elasto-hydrodynamic 

(EHD) interaction. The later affects the attenuation 

of waves in addition to a significant increase of the 

wave speed, which in this case both non-trivially 

depend on the elasticity of the particles, on the 

viscosity of the fluid and on the frequency. In a third 

place, we check the reliability of our analysis to 

describe ultrasonic wave propagation in real 

granular materials such as dry or wet sand; our 

particles are here millimetric spheres. In the dry 

configuration, our results are consistent with an 

effective medium theory (EMT) which relies on the 

Hertz-Mindlin interaction in the long wavelength 

approximation. In the wet configuration, the EMT 

model combined with an EHD mechanism fairly 

reproduces our preliminary observations. 
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Résumé : Cette thèse porte sur l’étude de la 

propagation d’ondes mécaniques dans des milieux 

granulaires secs ou mouillés, avec pour objectif de 

relier les phénomènes de l’échelle microscopique 

(dynamique des grains, potentiels d’interactions 

entre particules, rhéologie du fluide interstitiel) aux 

propriétés de l’échelle macroscopique (relation de 

dispersion, vitesse et atténuation des ondes dans 

l’approximation des grandes longueurs d’ondes). Les 

systèmes étudiés sont soit des milieux granulaires 

unidimensionnels de grande taille, analogues des 

chemins de plus forts contacts entre particules (les 

chaînes de force) dans les empilements de grains 

réels, soit les milieux granulaires réels eux-mêmes. 

Dans un premier temps, nous étudions 

expérimentalement la transmission d’ondes au 

travers d’un alignement de sphères centimétriques 

sèches, que nous modélisons via le potentiel de 

Hertz. Nous montrons que le couplage élasto-

frictionnel entre les grains et un substrat (le support 

des sphères) engendre un potentiel élastique local, 

qui induit à son tour une 

 

bande  interdite a fréquence nulle dans la fonction de 

transfert. Dans un deuxième temps, nous montrons 

que la présence d'une quantité infime de fluide 

visqueux au contact entre chaque particule induit une 

interaction élasto-hydrodynamique (EHD). Ce 

dernier induit une modification de l’atténuation des 

ondes et une augmentation très significative de la 

vitesse de propagation, qui dans ce cas dépendent de 

manière non-triviale de l’élasticité des particules, de 

la viscosité du fluide et de la fréquence. Dans un 

troisième temps, nous vérifions la fiabilité de notre 

analyse pour décrire la propagation d'ondes 

ultrasonores dans des milieux granulaires réels, tel 

que le sable mouillé ou non ; les particules sont ici 

des sphères millimétriques. Dans le cas sec, nos 

résultats sont en accord avec un modèle connu de 

milieux effectifs (EMT) qui  relève de l’interaction 

de Hertz-Mindlin dans l'approximation des grandes 

longueurs d'ondes. Dans le cas mouille, le modèle 

EMT combiné à un mécanisme EHD reproduit de 

manière acceptable nos observations préliminaires. 
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