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Abstract

With the prevalence of sensor-rich equipped smartphones in recent years, Mobile Crowd-
Sensing (MCS) becomes a promising paradigm to facilitate urban sensing applications,
such as environment monitoring and traffic congestion detection. MCS achieves the urban
sensing goal by leveraging the mobility of mobile users, the sensors embedded in mobile
phones and the existing wireless infrastructure. Compared to the traditional urban sens-
ing paradigms relying on the expensive specialized infrastructures, MCS can cheaply and
efficiently sense large urban regions.

During the process of MCS, for both participants and organizers, there exist a variety of
concerns affecting whether an MCS task can obtain enough satisfactory sensing results. For
participants, these concerns include smartphone energy consumption, mobile data cost, pri-
vacy, and incentive, which significantly influence the participants’ willingness to attend an
MCS task. For organizers, quality and budget are two primary concerns, which, however,
have some intrinsic conflicts, e.g., to achieve a better task quality, often more budget needs
to be consumed; thus, balancing the trade-off between quality and budget is a vital issue for
organizers to carry out satisfactory MCS tasks. How to appropriately address these partici-
pants’ and organizers’ concerns during the process of MCS has attracted a huge amount of
research interest nowadays.

Following this research direction, in this dissertation, aiming to address both partici-
pants’ and organizers’ concerns, we propose two categories of mechanisms for MCS tasks.

The first category of mechanism is collaborative data uploading in crowdsensing,
where participants help each other through opportunistic encounters in the data upload-
ing process of crowdsensing, in order to save energy consumption, mobile data cost, etc.
Specifically, two works in this dissertation belong to collaborative data uploading,

• Save the participants’ smartphone energy consumption and mobile data cost
via collaborative data uploading. Usually two classes of participants exist in MCS
tasks: data-plan users, who are mostly concerned with energy consumption; non-
data-plan users, who are more sensitive to data cost. Inspired by the observation
that non-data-plan users can save mobile data cost by offloading data to data-plan
users or uploading data via free Bluetooth/WiFi gateways, and data-plan users can
save energy by piggybacking or using more energy-efficient networks than 3G, we
propose a collaborative data uploading mechanism, called effSense, which can make
intelligent decisions about the appropriate timing and network to upload data for each
participant, in order to save both energy consumption and data cost.

• Reduce the organizers’ mobile data incentive budget in collaborative data up-
loading. Paying participants’ money to cover their mobile data cost is an effective
incentive method for the organizers to eliminate the participants’ concern about the
mobile data cost. Under the collaborative data uploading mechanism (i.e., certain
participants can offload data to others for saving mobile data cost), we further study
how to partition the users into two groups corresponding to two price plans Unlimited



Data Plan and Pay As You Go, so as to minimize the overall mobile data cost for all
participants, i.e., the mobile data incentive budget of the organizers. Based on pre-
dicting users’ mobility patterns and sensed data size, we propose a genetic algorithm
called ecoSense to do the participant partitioning.

The second category of mechanisms is called sparse mobile crowdsensing. To reduce
the sensing costs, such as energy and incentive, while still achieving satisfactory data qual-
ity, we propose sparse mobile crowdsensing to intelligently select only a small part of the
target area for sensing, while inferring the data of the remaining unsensed area with high
accuracy. Specifically, we also conduct two works for sparse mobile crowdsensing.

• Reduce the organizers’ incentive budget while guaranteeing a required level of
quality via sparse mobile crowdsensing. Inspired by the spatial and temporal cor-
relations among the data sensed in different sub-areas, we propose sparse mobile
crowdsensing, which leverages such correlations to significantly reduce the required
number of sensing tasks allocated, thus lowering the organizers’ incentive budget,
yet ensuring the data quality. We implement a sparse mobile crowdsensing frame-
work, called CCS-TA (Compressive CrowdSensing Task Allocation), combining the
state-of-the-art compressive sensing, Bayesian inference, and active learning tech-
niques, to dynamically select a minimum number of sub-areas for sensing in each
cycle, while inferring the missing data of unsensed sub-areas under the data quality
guarantee.

• Protect the participants’ location privacy through quality-optimized differential
location obfuscation in sparse mobile crowdsensing. To protect participants’ loca-
tion privacy in sparse mobile crowdsensing, we adopt a differential location privacy
notion called ε-region-ambiguity to provide guaranteed level of privacy regardless of
an adversary’s prior knowledge. As differential location privacy protection can cause
data quality loss due to the discrepancy between the original and obfuscated loca-
tions, we propose a linear program, called DUM-εe (Data Uncertainty Minimization
under the constraints of ε-region-ambiguity and evenly-distributed obfuscation), to
select the optimal location obfuscation function that attempts to minimize the data
quality loss incurred by the obfuscation.

Finally, we summarize the insights learned from both collaborative uploading and sparse
mobile crowdsensing mechanisms, and discuss future research directions, such as how to
enhance our mechanisms to cope with malicious behaviors of participants, how to adapt
our mechanisms to more innovative MCS applications in smart city scenarios, and how to
integrate all the techniques proposed in this dissertation into a unified MCS platform.

Keywords

Mobile Crowdsensing, Energy consumption, Mobile data cost, Data quality, Location
privacy, Delay-tolerant data uploading, Data relay, Piggybacking, Task allocation, Com-
pressive sensing, Bayesian inference, Active learning, Location obfuscation, Differential
privacy, Linear program.
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Chapter 1
Introduction

Contents
1.1 What is Mobile Crowdsensing? . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Concerns for Mobile Crowdsensing Organizers and Participants . . . . . . 5

1.3 Dissertation Contributions and Chapter Outline . . . . . . . . . . . . . . . 7

1.1 What is Mobile Crowdsensing?

Mobile Crowd Sensing (MCS) — a term coined by Ganti et al. [1], has recently spurred
lots of research interest. Similar to the notion of participatory sensing and human-centric
computing [2], mobile crowd sensing refers to the sensing paradigm in which mobile users
with sensing and computing devices are tasked to collect and contribute data in order to
enable various applications. MCS applications leverage the sensing, computing and wire-
less communication capability offered by the millions of mobile devices, e.g., Android
phones, iPhones or iPads, already “deployed in fields” and carried by people in their daily
lives. MCS has successfully extended the sensing scope from single physical space to
community and city scale, from recognizing hazard environmental situations to informing
collective behavior of crowds.

Thus, nowadays, a huge number of tasks can be completed by MCS, even though these
tasks could have heterogeneous properties from each other. From spatial and temporal
perspectives, MCS tasks can be classified into four categories:

• Short-range Short-term: This category corresponds to the MCS task executed by
participants in physical proximity for a short time, for example, sensing activities
and face-to-face interactions among participants in a conference.

• Long-range Short-term: It corresponds to the MCS task executed by participants
staying far apart for a short time, e.g., collecting users’ captured images and audio
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4 Introduction

clips across the city for rescue when flooding occurs.

• Short-range Long-term: It corresponds to the MCS task executed by participants in
physical proximity for a long time, e.g., sensing students’ activities and interactions
in a school for several weeks or semesters.

• Long-range Long-term: This category corresponds to the MCS task executed by par-
ticipants staying far apart for a long time, e.g., engaging citizens to monitor environ-
ment (e.g. air quality, noise) of a city for several months.

To carry out such a broad spectrum of tasks, various kinds of MCS applications have
been proposed and implemented in both academic and industry areas. Some representative
MCS applications are listed as follows:

• Environmental Applications: Many MCS applications are designed to monitor envi-
ronmental data, such as temperature, noise, and air quality. For example, PEIR [3]
generates a personal environment influence report for each participant by collecting
one’s GPS data and other context data (e.g., weather and traffic). A crowdsourced
urban noise map can be obtained via the Ear-phone system [4]. SakuraSensor [5] is a
participatory sensing system to recommend cherry-lined roads for comfortable driv-
ing, through analyzing short videos recorded by participants’ in-vehicle smartphones.

• Infrastructure Applications: This type of MCS applications attempts to measure the
large-scale phenomenon related to public infrastructure, e.g., traffic condition moni-
toring and location characterization. Cartel [6] and Nericell [7] are two representative
MCS applications of traffic congestion monitoring. CrowdSense@Place [8] links a
place to place categories (e.g. store, restaurant) by aggregating the opportunistically
captured images and audio clips from participants’ smartphones.

• Social Applications: Another category of MCS applications aims to deal with social
issues by collecting participants’ daily life traces and social interactions. In Socia-
bleSense [9], for instance, users are provided with a quantitative measure of their
sociability via their sensed office behavior from smartphones. DietSense [10] builds
up a participatory sensing system for diabetics where they take photos of the food
they eat and compare their eating habits with each other.

Despite the distinct design intention and objectives, in general, the life-cycle of an MCS
application consists of four stages: creating MCS applications according to the require-
ments, assigning sensing tasks to participants, executing the task (sensing, computing and
uploading) on the mobile device of individual participant, and collecting and processing
sensed results from participants. Fig. 1.1 illustrates the four stages, and the key functional-
ities of each stage are described as follows:

• Task Creation: The MCS organizer creates an MCS task through providing the par-
ticipants with the corresponding mobile sensing applications that would be deployed
in the participants’ smartphones later.

• Task Assignment: After the organizer creates an MCS task and the corresponding mo-
bile task applications, the next stage is task assignment - recruiting participants and
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Figure 1.1: The Four-stage Life Cycle of Mobile Crowd Sensing Process

assigning them with individual sensing tasks that are supposed to run in each partic-
ipant’s mobile device. Finding enough and appropriate crowd sensing participants is
the core issue in this stage.

• Individual Task Execution: Once receiving the assigned sensing task, a participant
would try to finish it within a pre-defined MCS task duration in parallel with other
tasks. This stage is called individual task execution stage, which can be further di-
vided into 3 sub-stages - sensing, computing, and data uploading.

• Crowd Data Integration: This stage takes the data streams collected from all the par-
ticipants as input, aggregates the data and provides end users with what they need
in the appropriate format. For some MCS applications [11], the data processing in
this stage is quite straightforward — central servers store the data and provide inter-
faces to end users for data query and sharing. While other MCS applications [8, 3, 9]
employ complicated algorithms to integrate data and extract high-level collective in-
telligence from the raw data of large crowds.

1.2 Concerns for Mobile Crowdsensing Organizers and Par-
ticipants

During the whole MCS task process, many concerns exist for both participants and orga-
nizers, which are necessary to be addressed well in order to successfully complete an MCS
task. For participants, the concerns include energy consumption, mobile data cost, privacy,
obtained incentive, etc.

• Energy Consumption. Energy consumption is directly related to the battery life of a
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participant’s smartphone. Usually the energy consumption is incurred during the “in-
dividual task execution” stage when the smartphone needs to do sensing, computing
and uploading to finish a task. If the energy consumption of an MCS task is too high,
it will severely discourage a potential user from becoming a crowd participant.

• Mobile Data Cost. Mobile data cost is associated with the fees that a participant
needs to pay to her telecommunication operator, which is primarily caused by the
uploading step in the “individual task execution” stage. According to the different
data plans held, the participants may have different sensitiveness on the data cost
concern: while the users with unlimited data plan may not consider it seriously,
the others, who have to pay more for uploading more data (e.g., pay-as-you-go data
plan), would see it as one of the most important factors relevant to the willingness of
participation.

• Privacy. Privacy is an important factor that will impact the willingness of the par-
ticipants to join in the sensing jobs. If a potential participant thinks that her privacy
would be violated during the MCS task, apparently she would not like to participate
in the task. One key privacy concern in MCS tasks is the location privacy, because
usually to complete a sensing job such as environment monitoring, the participants
will upload their sensed data accompanying with their actual locations, which may
expose the participants under the attacks such as stalking, identity theft, and breach of
sensitive information. In the uploading step of the “individual task execution” stage,
some location protection techniques, e.g., anonymization and obfuscation, could be
employed to relieve the participants’ concern about the location privacy.

• Incentive. All the above-mentioned concerns may decrease a participant’s willing-
ness to take part in an MCS task, thus certain kinds of incentives should be offered
to the participants to keep their motivation in conducting sensing tasks and contribut-
ing high-quality data. Generally, incentives can be classified into three categories,
money, love, and glory. More specifically, money is a participant’s external finan-
cial gain; love is her intrinsic enjoyment of joining an MCS task; glory is her desire
to be recognized by peers for her contributions [12]. How to design an incentive
mechanism considering all the three types of incentives is a key issue for MCS ap-
plications, as it significantly affects whether the “task assignment” stage can recruit
enough qualified participants to complete an MCS task.

For organizers, the concerns include the completion quality of the MCS task and budget
that needs to conduct the task.

• Quality. Making the quality of an MCS task achieve a predefined objective, or as
good as possible, will be a primary objective for an organizer. How to measure the
quality may depend on specific MCS tasks, while some common factors can affect the
quality of a wide spectrum of MCS applications, such as the uncertain low-quality
or even forgery data uploaded by the participants, and the spatial-temporal cover-
age of the target area and sensing duration offered by the crowd-contributed data.
How to improve quality go through the whole life-cycle of the MCS task. For exam-
ple, in the “task assignment” stage, how to recruit more participants to obtain larger
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spatial-temporal coverage; in the “individual task execution” stage, how to design
the mobile-client application to improve the quality of uploaded data and prevent
malicious behaviors of participants; in the “crowd data integration” stage, how to
aggregate individuals’ data to obtain a convincing overall MCS result.

• Budget. Budget is another critical concern that must be considered for an MCS or-
ganizer. As budget and quality have certain intrinsic conflicts for an MCS task (e.g,
the allowed budget may be too low to achieve the desired MCS task quality) , how to
balance the trade-off between the two concerns become a vital issue for the organizer.
Especially, the above-mentioned monetary incentives that need to be paid to partici-
pants is an important part of the budget. Thus, “how to reduce the monetary incentive
budget while ensuring the MCS task quality at a satisfactory level?” and/or “how to
improve the MCS task quality most significantly under a limited monetary incentive
budget?” become critical problems for organizers.

1.3 Dissertation Contributions and Chapter Outline

In this dissertation, aiming to address the concerns for both participants and organizers, we
have proposed two categories of crowdsensing mechanisms, in each of them we design two
specific approaches to address some of the organizers’ or participants’ concerns. Figure 1.2
illustrates the overall organization of the rest dissertation. In Chapter 2, we first review the
existing related work in mobile crowdsensing area. The next chapters describe our main
contributions. Chapter 3 and 4 illustrate the first category of mechanism, collaborative
data uploading in crowdsensing, where participants help each other in the individual data
uploading step of crowdsensing, in order to save energy consumption, mobile data cost,
etc. Specifically,

• In Chapter 3, we propose effSense — an energy-efficient and cost-effective data up-
loading framework, which utilizes adaptive delay-tolerant uploading schemes within
fixed data uploading cycles, in order to help participants save energy consumption
and mobile data cost. We classify participants into two classes: data-plan users,
who are mostly concerned with energy consumption; non-data-plan users, who are
more sensitive to data cost. In each cycle, effSense empowers the participants with
a distributed decision making scheme to choose the appropriate timing and network
to upload data. effSense reduces data cost for non-data-plan users by maximally
offloading data to free Bluetooth/WiFi gateways or data-plan users encountered; it
reduces energy consumption for data-plan users by piggybacking data on a call or
using more energy-efficient networks rather than initiating new 3G connections. By
leveraging the predictability of users’ calls and mobility, effSense selects proper up-
loading strategies for both types of users. Our evaluation with the MIT Reality Min-
ing and Nodobo datasets shows that effSense can reduce 55-65% energy consumption
for data-plan users, and 48-52% data cost for non-data-plan users, respectively, com-
pared to traditional real-time uploading schemes.
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Figure 1.2: Organization of the rest dissertation

• In Chapter 4, to advance the work of effSense, we further study the problem of how
to partition all the users into the two groups corresponding to the two price plans
Unlimited Data Plan (UnDP, i.e., data-plan users in effSense) and Pay As You Go
(PAYG, i.e., non-data-plan users in effSense), so as to minimize the total mobile data
cost for all participants. The overall mechanism, including both participant partition-
ing and collaborative data uploading, is called ecoSense. The partitioning is based
on the prediction of users’ mobility patterns and sensed data size. The collabora-
tive uploading, similar to effSense, is inspired by the observation that during the data
uploading cycles, UnDP users could opportunistically relay PAYG users’ data to the
crowdsensing server without extra 3G cost, provided the two types of users are able
to meet on a common local cost-free network (e.g. Bluetooth or WiFi Direct). We
conduct our experiments using both the MIT Reality Mining and the SWIM simula-
tion datasets. Evaluation results show that ecoSense could reduce total 3G data cost
by up to ∼50%, when compared to the direct-assignment method that assigns each
participant to UnDP or PAYG directly according to the size of her sensed data.

Chapter 5 and 6 present the second category of mechanisms in this dissertation, called
sparse mobile crowdsensing. To reduce the sensing costs, such as energy consumption and
incentive budget, of crowdsensing tasks significantly while still achieving satisfactory data
quality, sparse mobile crowdsensing intelligently selects only a small part of the target area
for sensing in the task assignment step, while inferring the data of the remaining unsensed
area with high accuracy in the crowd data integration step. Specifically,

• In Chapter 5, we leverage the spatial and temporal correlation among the data sensed
in different sub-areas to significantly reduce the required number of sensing tasks al-
located (corresponding to sensing costs), still ensuring the data quality. The proposed
crowdsensing paradigm is named as sparse mobile crowdsensing. Then, we design a
sparse mobile crowdsensing task allocation framework, called CCS-TA (Compressive
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CrowdSensing Task Allocation), combining the state-of-the-art compressive sensing,
Bayesian inference, and active learning techniques, to dynamically select a minimum
number of sub-areas for sensing task allocation in each sensing cycle, while inferring
the missing data of un-allocated sub-areas under a probabilistic data accuracy guaran-
tee. Evaluations on real-life temperature and air quality monitoring datasets show that
CCS-TA allocates 18.0-26.5% fewer tasks than baseline approaches. Specifically, for
temperature monitoring, CCS-TA assigns tasks to only 15.5% of the sub-areas on
average while the overall sensing error is kept below 0.25◦C in 95% of the cycles.

• In Chapter 6, we aim to empower sparse mobile crowdsensing with a location ob-
fuscation mechanism to protect participants’ location privacy. Firstly we adopt a
notion of differential location privacy for sparse mobile crowdsensing tasks, called
ε-region-ambiguity, which provides a guaranteed level of privacy regardless of an
adversary’s prior knowledge about participants’ location distribution; secondly we
design a location privacy protection mechanism which requests each participant to
obfuscate her location in a distributed manner, thus eliminating the need of a trustful
third-party server. As differential location privacy protection can cause data qual-
ity loss due to the discrepancy between the original and obfuscated locations, we
develop DUM-εe, a linear program which selects the optimal location obfuscation
function and reduces data quality loss through Data Uncertainty Minimization under
the constraints of ε-region-ambiguity and evenly-distributed obfuscation. We further
speed up DUM-εe by reducing the number of constraints from O(n3) to O(n2) (n:
number of sensing regions) with an approximation called Fast DUM-εe (FDUM-εe).
Our evaluations with real-world environment and traffic monitoring datasets show
that DUM-εe reduces the data quality loss by 15-45% compared to baseline mecha-
nisms, with the same level of differential privacy guarantee; FDUM-εe incurs 2-6%
more quality loss, but only needs 1% of the computation time compared to DUM-εe.

To conclude, Chapter 7 summarizes the insights provided by this dissertation. Future
research directions, such as how to enhance our mechanisms to cope with malicious behav-
iors of participants, how to adapt our mechanisms to more innovative MCS applications in
smart city scenarios, and how to integrate all the techniques proposed in this dissertation
into a unified MCS platform, are discussed in this final chapter.
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Literature Review
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In this chapter, we review the existing research efforts in the MCS area. First, we go
through the existing representative MCS applications and frameworks. Next, we exten-
sively discuss the relevant works to various concerns for both participants and organizers.
Specifically, for participants, we illustrate the existing works related to their concerns of en-
ergy consumption, mobile data cost, privacy and incentive; for organizers, we elaborate the
studies focusing on the quality and budget issues. Finally, we briefly describe the relations
of our works in this dissertation to the existing literature, and point out which participant
and organizer concerns are addressed by each of our works.

2.1 Crowdsensing Applications and Frameworks

2.1.1 Crowdsensing Applications

Recent studies on mobile crowdsensing lead to a variety of applications in both academia
and industry.

Applications in Academia

According to [1], MCS applications can be classified into three categories: environment,
infrastructure, and social applications.

11
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(i) Representative environment applications include Ear-phone [4], a urban-scale par-
ticipatory noise sensing map, and PEIR [3], which provides the participants with personal
environment impact reports. Smartphone based participatory air quality sensing mecha-
nisms are also under active development in many research groups [13, 14]. Recently, a
novel environment MCS application, SakuraSensor [5] is designed and implemented to
leverage crowd-sourced video data to detect the beautiful cherry-lined roads.

(ii) For infrastructure applications, common crowdsensing scenarios include traffic con-
gestion detection [6, 7], road speed monitoring [15], place characterization [8] and available
parking spot detection [16]. For example, CrowdSense@Place [8] infers the category of a
place (e.g. store, restaurant) based on the collective images and audio clips opportunisti-
cally captured and uploaded by the participants. GreenGPS [17] is a navigation service that
uses participatory sensed data to map fuel consumption on city roads, thus guiding drivers
to the most fuel-efficient routes between the original and target locations.

(iii) Social applications attempt to improve participants’ experience in their daily social
life via crowd data [9, 10, 18]. For instance, SociableSense [9] collects the data of partici-
pants’ encounters and meetings with other people in the office, measures’ each participant’s
sociability quantitatively, and gives the participants some suggestions for improving their
social relationships. Ubicon [18] is a crowd social-computing platform, based on which
MyGroup and Conferator applications are implemented to collect users’ social interactions
in a working group and a conference, respectively, so as to provide recommendations on
users’ future interactions.

Applications in Industry

In addition to academia, industry has also designed and implemented various off-the-
shelf MCS applications. Vaavud1 is a participatory wind speed sensing application, where
the participants leverage the smartphone plug-in wind meters to sense the local wind speed
and then share the information to other people. The crowdsourced traffic monitoring and
navigation application, WAZE2, has already appealed to more than 50 million users. Placeme-
ter3 recruits participants to suction-cup an old smartphone to their window and record the
street view outside, so as to measure how many people come in and out of the place, with
the objective of creating a crowdsourced placemeter world map. Stereopublic4 requires
participants to look for quiet places in their cities, geo-tag the places, and record the noise
there, with the objective of crowdsourcing a quiet-place city map.

2.1.2 Crowdsensing Frameworks

A variety of general MCS frameworks are proposed in the literature, so as to support MCS
application development, deployment, participant recruitment process, etc. To ease the

1http://vaavud.com
2https://www.waze.com
3https://www.placemeter.com
4http://www.stereopublic.net/
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development of MCS applications, a programming framework, Medusa [19], is designed
and implemented, which provides a high-level description language to specify an MCS
application. Reddy et al. [20] propose a participant recruitment framework for MCS appli-
cations to identify appropriate participants considering their mobility patterns and partici-
pation habits. In addition to the mobility patterns, McSense [21] also attempts to consider
social factors, such as collocations and social ties, when recruiting participants to enable
various crowdsourced smart city applications. Regarding the data collection process, CAR-
OMM [11] is designed to reduce the amount of data uploaded and the energy consumption
on the smartphone side. Concerning participants’ privacy, AnonySense [22] is proposed as
a privacy-aware framework for realizing MCS applications over anonymous participants,
where the sensed data from the participants is verified, yet anonymized. While ensuring
user anonymity, Christin et al. [23] design a reputation framework for MCS applications,
named IncogniSense, to measure the quality of user contributed data without needing to
know users’ true identities.

2.2 Participants’ Concerns

For participants, a lot of concerns may affect their willingness and activeness in the par-
ticipation of MCS tasks. In this section, we discuss the existing methods that can address
some important participant concerns, including energy consumption, mobile data cost, pri-
vacy and incentive.

2.2.1 Energy Consumption

Recall that in the “individual task execution” stage of MCS life-cycle (Figure 1.1), three
primary phases are included: sensing, computing, and data uploading. Accordingly, we
summarize the exiting energy saving mechanisms for MCS participants into such three
phases.

Energy Consumption in Sensing

Sensing is the process of acquiring data from sensors. Thus the energy consumption
here is primarily incurred by the sensor itself. To reduce the energy consumption of sensing,
one possible way is to implement a novel energy-efficient sensor to replace an old power-
hungry sensor, while the sensing functionality is kept the same. Actually, this direction is
especially pursued by industry sensor manufacturers as energy-efficiency is one of the most
important criteria to measure the quality of a specific sensor. For example, the Bluetooth
4.0 sensors reduce the energy consumption significantly compared to the old-generation
Bluetooth sensors by introducing the BLE low energy technology [24].

Another way of saving energy is to design new methodologies to use a kind of energy-
efficient senors to finish a specific sensing task, which traditionally is done by another kind
of more energy-hungry sensors. For example, for human body motion detection, Cohn
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et al. [25] propose to use ultra-low-power passive static electric field sensing to replace
traditional active accelerometer-based sensing.

In addition, how to schedule the sensors to do a sensing task also significantly impacts
the energy consumption. Generally there are two scenarios for sensor scheduling. (i) When
only a specific kind of sensor is needed to do the task, how to adjust the sampling fre-
quency is often the key of sensor scheduling algorithm. (ii) When heterogeneous kinds of
sensors can collaboratively conduct a sensing task, the scheduling is more challenging as
the scheduling algorithms need to decide which sensors need to be activated under which
scenarios. Take location tracking as a representative sensing task example. While GPS is
the most common sensor to track a user’s locations, other sensors such as accelerometers,
compass, WiFi, and Bluetooth can also assist location tracking. In [26], focusing on the
GPS sensor, authors propose an energy-efficient scheduling algorithm called EnTracked to
adaptively adjust the GPS sampling rates to robustly track a user’s location. By extending
EnTracked, the same authors propose an energy-efficient trajectory tracking system named
EnTrackedT [27], which adds the adaptive sensor management for other sensors such as
compass and accelerometers. a-Loc [28] and RAPS [29] consider the WiFi, celltower and
Bluetooth into the location tracking process, and study how to schedule all these heteroge-
neous sensors to make an energy-accuracy trade-off for the smartphone positioning.

Energy Consumption in Computing

The energy consumption of computing primarily refers to the energy consumed by the
smartphone processors during the individual task execution. In [30], authors propose a
multi-processor architecture composed of main processors and supplementary low-power
processors for smartphones; thus, a computing task can run on either main or low-power
processors according to the task characterization, in order to optimize the overall energy
consumption. Actually, a similar idea has been proposed by ARM, called big.LITTLE ar-
chitecture5, which is a heterogeneous computing architecture coupling low-power proces-
sor cores (LITTLE) and more powerful and power-hungry ones (big). Recently, many of
the top-end smartphone processors have already followed this architecture, such as Kirin
950 and Exynos 8890.

Another direction of reducing computing energy consumption lies on the technique
called code offloading or remote execution, where the smartphone delegates the computa-
tion tasks to resource-rich infrastructure, e.g., a workstation in the same local area network.
Actually, there exists a trade-off between the energy consumption of computation and data
transmission. Only when the energy consumption of computation is larger than that of
data transmission, the energy can be saved. Thus, in order to achieve the optimal energy-
efficiency, deciding which part of the code should be offloaded and which should not is
the key research challenge. A lot of research efforts have been done on this area, such as
MAUI [31], CloneCloud [32], and ThinkAir [33]. As energy-efficient code offloading can
be seen as an important use case in mobile cloud computing, interested readers can find
much more relevant works from the surveys on mobile cloud computing [34, 35]

5http://www.arm.com/zh/products/processors/technologies/biglittleprocessing.php
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Energy Consumption in Data Uploading

The final phase of individual sensing task execution is uploading the data to the MCS
server. To reduce the energy consumption in data uploading, the first kind of solutions
are trying to use relatively low-power wireless communication methods, such as WiFi, to
upload data, rather than directly using 3G/4G. However, waiting for the smartphones to
connect to the low-power wireless infrastructures often means some delay in data upload-
ing. To deal with this energy-delay tradeoff, Ra et al. [36] design an online algorithm
SALSA, which can automatically adapt to channel conditions and decide whether and when
to defer a data transmission. Ma et al. [37] study the MCS paradigm whose data collection
mainly relies on the opportunistic data transmission among mobile participants via short-
range radio communications (e.g., Bluetooth, WiFi Direct) instead of 3G/4G, which can
help participants to save energy consumption caused by data uploading.

Another possible way to upload data with low energy consumption is paralleling data
uploading with phone calls, which can save up to 75–90% of energy [38]. Based on this ob-
servation, Lane et al. [39] propose an energy-efficient mobile crowdsensing system, called
Piggyback CrowdSensing (PCS), which attempts to upload data to the server when users
place phone calls or use applications. Actually, such mobile smartphone app opportunities
can also be exploited in the sensing and computing phase of an individual task, thus PCS is
able to save smartphone energy during the whole process of individual task execution.

In addition, reducing the amount of data that needs to be uploaded may also lower the
energy consumption. For example, compressing data before uploading can save energy if
the energy required to compress data is less than the energy required to send it [40]. By
compromising slightly on data quality, Musolesi et al. [41] propose the energy-efficient data
uploading strategies that upload only part of continuous sensed data while inferring the rest
on the server.

In summary, energy conservation is a widely studied research area in mobile sensing,
which roughly consists of three phases, sensing, computing and uploading. It is worth
noting that some proposed methods may save energy of one phase while increase the energy
consumption for another phase. For example, compression [40] increases the computing
energy consumption and decreases the uploading energy consumption; on the contrary,
code offloading [31, 32, 33] does the opposite: consuming more energy in uploading and
less energy in computing. Therefore, it is still quite challenging to integrate different kinds
of energy-saving methods and trade off the energy consumption of different phases, in order
to achieve the ‘optimal’ energy efficiency for the ‘individual task execution’ stage of a
specific MCS application.

Note that in this section we primarily focus on the energy consumption for an individ-
ual participant and do not mention the overall energy consumption of all the participants.
Concerning the overall energy consumption, besides the energy-saving methods used in the
individual task execution, it also significantly depends on the design of task assignment
and crowd data integration mechanisms. Briefly speaking, the fewer recruited participants
and the less uploaded data, the less overall energy consumption. Actually, how to reduce
the number of recruited participants and the amount of uploaded data, while still making
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the MCS application achieve a satisfactory level of quality, is probably the most important
issue for organizers, as they usually have a limited budget for collecting data and need to
use it efficiently. We thus leave the discussion of the state-of-the-art works on this topic to
the later Section 2.3, Organizers’ Concerns.

2.2.2 Mobile Data Cost

Mobile data cost is a key concern of current MCS participants, as it is associated with the
communication fees incurred, especially for the participants who only hold a limited data
plan. A direct way to eliminate data cost concern is to allow participants to choose to
upload data only via WiFi (can also save energy consumption as discussed above). This
solution may incur some delay between sensing and uploading: according to a user study
in Seoul [42], which consists of 97 participants and lasts for 18 days in 2010, WiFi can
upload about 65% of total data immediately without any delay; for more than 90% of data
to be uploaded, a delay more than 1 hour is usually required. Thus, WiFi-only uploading
is suitable for delay-tolerant MCS applications, e.g., CrowdSense@Place [43] allows a 24-
hour delay and waits WiFi connections to upload data. As the number of WiFi hotspots are
increasing tremendously6, it is expected that in near future, the delay between sensing and
uploading by WiFi can be significantly shortened, so that more MCS applications may be
satisfied via the WiFi-only uploading strategy.

While for the MCS applications that require real-time data uploading, e.g., traffic con-
dition monitoring application where real-time user feedbacks are critical for improving the
quality of service, the delay incurred by WiFi-only uploading may not be tolerant and thus
other solutions are desired. Instead of eliminating mobile data cost, these applications usu-
ally loose the objective to reduce mobile data cost by decreasing the data uploaded as much
as possible. To this end, the methods of lossless data compression [40] and partial data
uploading [41], which have been discussed above to save energy, can also help to conserve
mobile data cost. Inferring high-level data from raw sensed data and only uploading high-
level data to the server can also save data cost for smartphones, but this may increase the
energy consumption if the computation is intensive. A detailed analysis about the energy
and data cost trade-off is conducted on SoiableSense by considering different configurations
(whether running on smartphone or on server) of a speaker identity task [9].

2.2.3 Privacy

Participants share a variety of sensed data in MCS, including time, location, pictures, sound,
biometric data, environment data, etc., which may incur privacy breaches if such data are
exposed to adversaries. For example, time and location can leak participants’ privacy-
sensitive information including home and workplace locations, as well as their habits [44];

6According to the WiFi growth map (http://www.ipass.com/wifi-growth-map/), the growth of WiFi
hotspots from 2013 to 2015 is more than 270%.
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even the camera is oriented from the participant, the pictures may opportunistically capture
some other people’s faces and thus leak the participant’s social relationship [45]. There-
fore, providing countermeasures to these potential privacy attacks to participants is another
important issue in MCS to encourage participants’ activeness and protect their security.
Inspired by a decent survey on preserving privacy in MCS [45], we categorize the state-of-
the-art privacy protection approaches in MCS into three classes: privacy preference setting,
anonymous task allocation, and privacy-preserving data reporting.

Privacy Preference Setting

A straightforward countermeasure to the privacy threats is to give the users the oppor-
tunities to express their privacy preferences, e.g., when and where does a participant allow
her smartphone to do sensing tasks, and what degree of data granularity that she is will-
ing to share with the MCS server (e.g., for location, sharing a precise GPS position or just
a city name). This mechanism has been widely adopted in state-of-the-art MCS applica-
tions [46, 47]. However, often a participant cannot properly translate her conception of
privacy into a privacy preference setting due to not fully understanding the implications of
the setting [48]; especially, users usually underestimate the privacy risks they would face
when setting privacy preferences [49].

Anonymous Task Allocation

During the task allocation stage, participants download tasks from the server and this
would reveal the participants’ locations (e.g., via IP address) at precise timestamps. Even
with pseudonyms, participants’ workplaces and home may be inferred over multiple task
downloads [50]. To tackle this privacy leakage, Kapadia et al. [51] proposes to use tasking
beacons to broadcast tasks to participants without the interaction between participants and
central server. Shin et al. [52] suggest the participants to accept tasks where people density
is high, so as to increase the difficulty for the server to identify the participants from their
locations. Besides, the connections to the central server can also be anonymized via routing
schemes such as The Onion Router (TOR) to hide participants’ IP addresses, thus their
locations [52].

Although hiding users’ identities during the task allocation stage can protect partici-
pants’ privacy, it also brings new challenges such as how to pay the anonymous participants
correct incentives and how to identify the malicious participants who report forgery data.
Some potential solutions have been proposed in the literature [53, 54, 23] to address these
issues, but it still seems to be rarely applied in real MCS applications, perhaps due to the
complexity of the proposed mechanisms.

Privacy-Preserving Data Reporting

Rather than directly sending raw sensed data to the server, how to manipulate the re-
ported data to relieve the potential privacy breaches has attracted plenty of research inter-
ests.

Location privacy is perhaps the most widely studied among different kinds of sensed
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data, as it is a common privacy issue in a variety of applications, such as location based
services, online social networks, not restricted to MCS. Many location privacy-preserving
mechanisms can be categorized into obfuscation methods, which seek to confuse the ad-
versary with either inaccurate or imprecise locations [55, 56]. Inaccuracy means giving
a different location from the actual one, and imprecision means giving a plurality of pos-
sible locations [56]. Among the obfuscation mechanisms, a popular mechanism is cloak-
ing [57, 55, 58]. It employs imprecision to process location-based queries relative to a larger
cloaked region, compared to the smaller regions or cells, where a user can be uniquely lo-
cated. For instance, a cloaked region satisfying l-indiscernible [55] is generated by includ-
ing the user’s actual cell along with other nearby l− 1 cells; and a cloaked region meeting
k-anonymity means that at least k participants are located in this region [57]. Another popu-
lar type of obfuscation mechanism is using dummy points, which also employs imprecision,
by adding the actual location to a set of dummy locations [59]. Recently, location based ser-
vices have introduced differential privacy [60, 61] into location privacy protection, which
is independent of an adversary’s prior knowledge [62, 63, 64, 65]. Differential location pri-
vacy protection often employs inaccuracy to alter or transform the user’s actual location to
another obfuscated location by adding appropriate Laplace or Exponential noises [62, 63].

Besides location information, privacy-preserving technologies such as data perturba-
tion, aggregation and pre-processing methods are also applied into other kinds of sensed
data. Epstein et al. [66] employ value sensitive design to consider how to share fine grained
step activity via data transformations that maximizes benefits while minimizing privacy
harms. Ganti et al. [67] design a privacy-preserving architecture PoolView, which uses
client-side data perturbation to ensure individuals’ privacy, and community-wide recon-
struction techniques to compute the aggregate information of interest such as traffic and
weight. Shi et al. [68] propose a privacy-preserving solution, called PriSense, to support
a wide range of statistical aggregation functions on the central server, such as Sum, Av-
erage, Variance, and Count, based on the concept of data slicing and mixing. Extracting
features from raw data on the client-side to remove privacy-sensitive information, and just
uploading the processed summaries is another kind of common countermeasures, e.g., used
in social sensing [69] and noise monitoring [70]. In addition, secure data storages, such as
personal data vaults [71] and virtual individual servers [72], are used to store raw sensed
data from mobile device . These storages are fully controlled and accessed by the devices’
owner. Then the owner can choose which information to report, or process the raw data to
eliminate sensitive information before reporting.

2.2.4 Incentive

As above mentioned, participating in the MCS tasks may incur extra smartphone energy
consumption, mobile data cost, and potential privacy leakage for users; thus, usually some
incentives are offered to participants to mitigate such concerns, motivate them to accept
the MCS tasks and contribute high-quality data. In this section, according to [12], we
classify incentives into three classes including money, love and glory, and describe some
representative works for each class. Specifically, money is a participant’s external financial
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gain; love is her intrinsic enjoyment of joining an MCS task; glory is her desire to be
recognized by peers for her contributions. Actually, incentive mechanism design is one of
the hottest research directions in MCS, so for a thorough overview, we recommend readers
to refer to the survey on MCS incentive mechanism, such as [73].

Money

Paying participants some money may be the most commonly used incentive method in
MCS. Designing an appropriate incentive mechanism to decide how much money should
be paid to each participant, so as to keep the participants motivated and meantime the total
incentive cost within the organizer’s budget, is the key research challenge. To address this
issue, generally two kinds of research works are conducted, one is to carry out experimental
studies to compare different kinds of monetary incentive schemes in real MCS applications;
the other is to design a theoretical incentive framework based on some mathematical ab-
straction and methodologies [73].

For experimental studies, Reddy et al. [74] compare micro-payment (money paid is
proportional to the amount of data contributed) and macro-payment (each participant gets
equal money), and verify that micro-payment works more efficiently; they also observe
that introducing participant competition can increase user activeness at the beginning, but
this high activeness would burn out soon, leading to a sharp decrease of the contributed
data just after the first few days. Besides traditional uniform micro-payment, Musthag
et al. [75] study variable micro-payment (the monetary incentive for each sensing task
varies), and argue that variable micro-payment can help to find the appropriate incentive
price settings for the tasks. Compared to micro-payment, Rula et al. [76] find that weighted
lottery (a participant completing more tasks has higher opportunity to get a prize, which is
often a relatively high monetary incentive) can recruit more participants, but the average
number of completed tasks for each participant is lower. By running an MCS campaign
among a pro-environmental group, called Close the Door, Massung et al. [77] show that
although monetary incentive can significantly increase the participant activeness, it has a
cost that intrinsic motivation for accepting an MCS task is reduced when the participation
performance is explicitly inked to monetary rewards.

To design a theoretical monetary incentive framework, existing works usually rely on
the techniques in mathematic tools such as auction or game theory. RADP-VPC [78] is a
auction-based MCS incentive framework, where users sell their data to the organizer with
their claimed bid prices. Specifically, a participant retaining mechanism, called Virtual Par-
ticipant Credit, is implemented in RADP-VPC to motivate the users who lose the current
auction round to still join the next auction rounds. Yang et al. [79] propose two kinds of
MCS incentive frameworks based on game theory, platform-centric and user-centric. In
the platform-centric model, the organizer distributes the total incentive budget to the partic-
ipants according to the amount of their contributed data; the objective for the organizer is to
find the optimal incentive budget to maximize her profit. In the user-centric model, authors
propose a auction-based framework, which is computationally efficient, individually ratio-
nal, profitable, and truthful. Peng et al. [80] further consider the data quality into the incen-
tive framework design to motivate the participants to contribute high-quality sensed data.
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Recently, some researchers begin to study the online incentive mechanism, where users
come one by one, and the organizer needs to make an immediate decision about whether a
task should be assigned to a user when she arrives [81, 82]. Besides, privacy-aware incen-
tive framework is also studied to pay the anonymous participants correct incentive without
knowing their true identities [53].

Love

Love is one of the intrinsic motivation of a participant to accept an MCS task. Although
usually this varies for different participants, some incentive system design may affect it.
For example, as mentioned above, monetary incentive might degrade a user’s intrinsic mo-
tivation to participate in an MCS task [77]. Besides, by introducing game elements into
an MCS application, i.e., gamification [83], a user’s intrinsic enjoyment of participating in
an MCS task can be increased. Representative gamified MCS applications include CityEx-
plorer [84], a location-based game to collect geo-spatial urban data, and PhotoCity [85], a
game to train its players to be experts at taking photos for creating 3D building models. A
generalized middleware, called Crowd Soft Control, is proposed in [86], which can help to
extend a traditional location-based MCS application into a location-based augmented real-
ity game named Ghost Hunter. Kawajiri et al. [87] study in detail how to design the game
point scheme to steer the participants to the locations with no or little data to contribute
data, so as to collect the data more efficiently. Actually, there exist some location-based
augmented reality games with millions of users, such as Ingress7, which have a dramatic po-
tential to carry out crowdsensing tasks on it. Although not officially announced by Ingress,
it is probable that why Google8 initially launched the Ingress project, to some extent, is to
efficiently collect large-scale user mobility data so as to create crowd-sourced solution for
some difficult problems, such as walking route planning.9

Glory

The last motivation factor is glory, which means a user’s desire to be recognized for her
contributions by other people. Explicitly showing the value of a participant’s contribution
may help her to feel glory, thus motivating her to contribute more data. Rashid et al. [88]
verify this hypothesis in a movie recommendation system: by showing the users how much
that their rating of a movie will contribute to the recommendation service for others, users
do become more likely to rate the movie. Another way to notify a user of her contribu-
tion is building a contribution ranking list of all the participants, which has already been
implemented in many MCS applications [77, 87]. Kawasaki et al. [89] argue that creating
multiple ranking lists, instead of just one, can further improve the participant activeness as
they have more probability to appear in certain top-ranking list. Moreover, creating a social
group for the participants to let them feel a sense of involvement and belonging, may in-

7https://www.ingress.com/
8In August 2015, Niantic Labs, which developed Ingress, was split from Google and became an indepen-

dent company.
9Some online discussions can be found on https://www.reddit.com/r/Android/comments/138res/google_

launches_ingress_a_worldwide_mobile/c71v7yv?context=2

https://www.reddit.com/r/Android/comments/138res/google_launches_ingress_a_worldwide_mobile/c71v7yv?context=2
https://www.reddit.com/r/Android/comments/138res/google_launches_ingress_a_worldwide_mobile/c71v7yv?context=2
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crease their engagement. Yu et al. [90] conduct a large-scale study in Amazon Mechanical
Turk including thousands of participants, and verify that such a social group strategy can
significantly increase not only the willingness of a user to participate in the task, but also
the completion quality of the task.

To briefly wrap up, a real-life MCS application probably needs to aggregate a variety of
incentive mechanisms to motivate participants from different aspects such as money, love
and glory. However, how to integrate different kinds of incentive schemes may not be as
trivial as it seems. It is found that merging multiple incentive schemes may not always
help to improve the participant engagement (sometimes even reduce) [90]. Therefore, the
implementation of the real-life MCS incentive mechanism is still a very critical and tricky
problem nowadays, which needs the application designer to make careful and extensive
investigation on users for the specific MCS application scenario.

2.3 Organizers’ Concerns

Data quality and Budget are two primary concerns for MCS organizers, and they also have
some intrinsic conflicts: generally, achieving higher data quality means that the organizers
need to put more budget into the MCS application. In this section, we discuss

2.3.1 Data Quality

To successfully run an MCS application for an organizer, the quality of the collected data
should achieve a satisfactory level. A straightforward method to quantify the quality of an
MCS task is just counting the amount of the data collected [91], which can be applied for
any MCS application. Specifically for location-based MCS applications, a more commonly
used quality metric is spatial-temporal coverage. That is, in a specific time slot, how many
sub-areas of the target sensing area can be covered by the collected data from participants.
On one hand, many existing works attempt to guarantee an MCS application to achieve
the full-coverage [92, 93] or partial-coverage [94, 95] of the target sensing area. On the
other hand, a lot of works aim to optimize the spatial-temporal coverage of an MCS appli-
cation with the limited resources in hand, e.g., a limited number of participants [20, 21] or
incentive budget [96].

However, if an MCS application only achieves partial-coverage (especially the partial
coverage is not very high), reporting the coverage ratio may not be enough for quantify-
ing the data quality. Suppose that two cases both with the coverage ratio 50%. The first
case iTruth Discovery in Crowd Sensing Systemss fully covering the left part of the sensing
area, while the second case is scattering in the whole sensing area. Intuitively, despite the
same coverage ratio, the data collected from the second case may achieve better quality
considering the whole target sensing area for the MCS application. To differentiate such
differences, some alternative measurements are proposed. One way to quantify the quality
of a partial-covered sensing map is to infer the data of unsensed sub-areas and then compute
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the inference error [15]: on one hand, choosing what inference algorithm is a critical issue
here as it significantly impacts the inference error; on the other hand, as the ground truth
data is not known in real life, the computation of inference error is not trivial, which has
to be estimated via some methods such as cross validation [97], leading to a relatively low
confidence level of the obtained inference error. Besides inference error, average or maxi-
mum predictive variance among all the sub-areas is also often used as a quality metric [98]
for continuous sensing values (e.g., temperature). If the MCS task is an outbreak detec-
tion (e.g., detecting a source of the pollution or contaminants), then the expected detection
time is a key quality metric [99]. In addition, for urban environment monitoring, Liu et
al. [100] propose a metric, called Urban Resolution, to describe how sensitivity the urban
MCS system could achieve.

While the above works give various useful methods to quantify the overall quality in
the whole spatial-temporal space of an MCS task, they often make the assumption that the
participants upload the true sensed data; but this assumption is not always true in real-
life scenarios due to the low-precision and accidental error of the smartphone sensors, or
even the malicious behaviors of the participants. Therefore, sometimes the organizer may
receive multiple conflicting data from participants. By using the crowd data collected from
all the participants to ‘cross-check’ the validity of each contributed data during the ‘crowd
data integration’ stage, many works aim to find the ‘true’ data and drop the ‘false’ data
among the conflicting data [101, 102, 103, 104]. This kinds of works are often called
‘Truth Finding’ or ‘Truth Discovery’. Most of these works depend on the intuition that the
contributed data from reliable users is trustful to find the fact; however, the challenge is
that the reliability of a user is not known a priori. As one pioneering work in this direction,
Yin et al. [101] build a graph model to represent user reliability, user observation (i.e.,
contributed data), and objective fact together, and then design an algorithm to iteratively
compute the value of each user reliability and the confidence of each objective fact, based
on all the collected observations. After [101], various other algorithms are proposed to
improve the truth finding performance, such as Expectation-Maximization [102], Bayesian
Network [103], and Semi-supervised [104] methods. Recently, a privacy-preserving truth
discovery method is proposed in [105], where not only the truth of the fact can be found, but
also the sensitive individual data (e.g., health and location data) and the reliability scores of
the participants can be kept secret. To see more works on truth discovery, interested readers
can refer to the survey on truth discovery [106].

In a nutshell, both the ‘task assignment’ and ‘crowd data integration’ stages signifi-
cantly affect the quality of an MCS application: the ‘task assignment’ stage determines
the number of participants and the amount of collected data to a large degree, thus dra-
matically impacting the spatial-temporal coverage (or other quality metrics) of the MCS
application; while the ‘crowd data integration’ stage needs to handle different problems in
the data integration process to achieve high task quality, such as how to infer the missing
data of unsensed sub-areas (i.e., missing data inference) and how to find truth from con-
flicting data (i.e., truth discovery). To obtain satisfactory quality, the algorithms involved
in both stages need to be seriously designed to adapt to the specific MCS applications.
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2.3.2 Budget

Budget is another serious issue that an MCS organizer cannot ignore for conducting the
MCS task. As we have mentioned in the previous section, although the organizer wants
to achieve the data quality as good as possible, it is always constrained by the budget the
organizer holds. Therefore, how to efficiently leverage the budget so as to achieve the best
possible task quality is usually the important and urgent pursuit for organizers.

Monetary incentive is often a primary part of the organizer’s budget. Most existing
works concerning the budget is focused on the incentive [20, 91, 93, 94, 96, 107, 108]. A
commonly used incentive mechanism in these works is to pay some money for recruiting
a participant into a task (recruitment incentive), and then to add more money that is pro-
portional to the amount of data a participant contributes (contribution incentive) [96, 108];
some works suppose that only one of the two parts of incentive exists (only recruitment in-
centive [20, 94] or contribution incentive [93]); some works also consider varying incentive
costs for different contributed data [107]. Then, based on the incentive mechanism sup-
posed, these works attempt to optimize the data quality of the MCS task, e.g., the amount
of collected data [91], spatial-temporal coverage [20, 93, 94, 96], and inferred data accuracy
of unsensed sub-areas [107], under a certain amount of budget.

Besides incentive, another part of budget may be needed to spent on the computation
resources that need to carry out the MCS task. As cloud computing is becoming prevalent
nowadays, currently for MCS organizers, especially small business companies, it is a much
more efficient and easier way to deploy the MCS server on the cloud instead of deploying
their own IT structure. This kind of service provided by the cloud is often called infrastruc-
ture as a service (IaaS) [109]. While organizers need to pay for IaaS, how to minimize the
cloud computing cost and meantime guarantee the quality of service provided by the MCS
server becomes another important commercial issue in addition to incentive. As the price
plans provided by the cloud computing providers are usually heterogeneous (e.g., , reser-
vation and on-demand) and varying overtime, and the computation resources needed by the
organizer are uncertain, how to achieve the optimal cost is very challenging. Some works
have studied this problem to achieve the cost-effective resource allocation in the cloud plat-
form [110, 111, 112]. Although these works are not specific for MCS servers, their insights
and results are still valuable to guide MCS organizers to spend budget efficiently on the
cloud computation resources.

2.4 Relations of Dissertation Contributions to Literature

In this dissertation, we attempt to advance the existing research works on MCS participants’
and organizers’ concerns from multiple perspectives. Before describing each work in detail,
in the end of this section, we show what specific concerns each of our works focuses on, and
briefly discuss how our works are different from existing literature. Figure 2.1 illustrates
the concerns that each of our works is associated to.
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Figure 2.1: Relations of our contributions to participants’ and organizers’ concerns.

Our proposed effSense framework deals with the data uploading phase of the ‘individual
task execution’ stage. Suppose participants usually belong to two categories with different
main concerns, data-plan (main concern is energy consumption) and non-data-plan (main
concern is data cost), effSense attempts to save energy for data-plan users and data cost for
non-data-plan users simultaneously. Compared to the existing literature, to the best of our
knowledge, this is the first work that aims to minimize both energy consumption and mobile
data cost for MCS participants by leveraging heterogeneous networks (e.g., 3G, Bluetooth,
and WiFi), participant collaborations (e.g., data relays), and delay-tolerant mechanisms.

In ecoSense, we suppose that the MCS organizer will give an enough incentive to partic-
ipants to cover their mobile data cost. Still based on a similar collaborative data uploading
framework like effSense, considering two mobile data cost plans — unlimited data plan
and pay as you go — we study how to classify the participants into the two plans, in or-
der to minimize the incentive budget of mobile data cost for an MCS organizer. As far as
we know, no existing work has yet discussed this problem of minimizing mobile data cost
incentive.

CCS-TA is an implementation of our proposed novel MCS paradigm, Sparse Mobile
Crowdsensing (Sparse MCS), where only a small part of the target area is selected for
sensing, while the rest data of the unsensed area is inferred with high accuracy. The target
of Sparse MCS is to reduce the amount of sensed data — suppose incentive is paid for each
contributed data, then the organizer’s budget is also reduced — and still guarantee the task
quality on a satisfactory level. Although some previous works consider to infer missing data
in MCS tasks [4, 15], we are the first to put forward the idea of Sparse MCS and propose
the general framework for Sparse MCS applications, including three steps named optimal
task allocation, missing data inference, and task quality assessment.

Finally, our effort of employing location privacy protection mechanism into Sparse
MCS applications leads to the work of DUM-εe. Specifically, DUM-εe tries to introduce
differential privacy [60, 62] into Sparse MCS to protect participants’ location regardless
of an adversary’s prior knowledge; meantime, it aims to minimize the data quality loss
incurred by the differential location obfuscation. Different from the previous location pri-
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vacy preserving MCS systems in the literature, this is the first time that differential location
obfuscation is adopted in MCS applications to provide location privacy protection.



26 Literature Review



Part II

Collaborative Data Uploading

27





Collaborative Data Uploading

To encourage users to participate in MCS tasks, it is paramount to minimize the inconve-
nience incurred for users. In this regard, energy consumption and mobile data cost are two
critical concerns. While energy consumption is related to a mobile phone’s battery life,
mobile data cost is associated with the monetary fees, especially for the users who do not
hold an unlimited data plan. Therefore, reducing energy consumption and data cost can
encourage more people to actively participate in crowdsensing tasks.

In this part of the dissertation, we design the collaborative data uploading framework
to address the two concerns of crowdsensing participants. In Chapter 3, we propose and im-
plement the basic idea of collaborative data uploading, leading to a system called effSense.
In effSense, via energy-efficient and cost-effective communication methods, participants
help each other in the data uploading step so as to save energy consumption and data cost.
In Chapter 4, we suppose that the organizer will pay participants monetary incentives to
cover their mobile data cost during collaborative data uploading. Then, we design an incen-
tive mechanism for participants, called ecoSense, which not only compensates participants’
data cost concern, but also is economically efficient for the organizer.
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Chapter 3
effSense: Energy-efficient and
Cost-effective Collaborative Data
Uploading
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3.1 Introduction

Energy consumption and data cost are two important concerns for MCS participants. Re-
searchers have developed several approaches to reduce energy and/or data cost for attracting
engagements in mobile crowdsensing. The proposed solutions include adopting dynamic
sensing duty cycle [9], making a trade-off between local and remote computation [11], re-
ducing data uploading frequency by predicting missing data on the server side [41], and
splitting the task intelligently among users [92], etc.

These existing works mostly assume that the sensed data should be sent to a central
server as soon as the data is produced. In fact, some mobile crowdsensing tasks do not nec-

31
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essarily require the sensed data to be uploaded in real-time. For example, in the MIT Reality
Mining project [113], around 100 participants’ mobile traces were collected to understand
users’ interests, activity patterns, etc. The project collected users’ data in two ways. (1)
30 participants were provided with a mobile data plan[114]. These users uploaded their
sensed data every night. (2) The other participants’ data was stored on SD-cards and was
collected after the mobile phones were returned at the end of the project. For both types of
participants, a certain amount of time delay between sensing and uploading is allowed.

In this chapter, for the crowdsensing task that does not require real-time sensed data
uploading (called a delay-tolerant crowdsensing task), we design a collaborative data up-
loading framework (named as effSense) leveraging heterogeneous networks (e.g., 3G, WiFi
and Bluetooth) and user collaborations (data relays), in order to enable (1) users without
a data plan or who are not willing to use their data plan for crowdsensing tasks (called
non-data-plan users) to reduce data cost by relaying data to a Bluetooth gateway or other
mobile phones encountered (rather than via 3G network), and (2) users with a data plan
(called data-plan users) to consume less energy in data uploading.

With the mobile users classified into two groups with different optimization goals: non-
data-plan users (reducing data cost) vs. data-plan users (reducing energy consumption),
we propose to change the data uploading scheme in effSense from real-time to allowing a
certain amount of delay with fixed uploading cycles. In such a way, sensed data uploading
in mobile crowdsensing tasks becomes delay-tolerant and data only needs to be sent to
the central server before the end of each data uploading cycle (rather than immediately
after it is produced). As some delay is allowed, mobile participants might encounter each
other or cheaper networks/devices to relay the sensed data before the end of each uploading
cycle, so that their data cost or energy consumption can be preserved. Specifically, effSense
empowers each mobile device with a distributed data relaying/uploading scheme to decide
when and how to upload the sensed data, in order to reduce data cost for non-data-plan
users and energy consumption for data-plan users.

effSense is designed based on the following observations:

1) Non-data-plan users can eliminate mobile data cost in data uploading by using zero-
cost networks such as Bluetooth and WiFi. For example, they can upload data to the server
directly via WiFi, or transfer data to another device via Bluetooth if the other device can
relay data to the server without incurring extra cost.

2) Data-plan users can reduce energy consumption in data uploading via the energy-
efficient methods other than establishing a new 3G connection. For example, piggybacking
a data uploading task on a 3G voice call can save 75-90% energy consumption [38]. Al-
ternatively, uploading data via WiFi or Bluetooth consumes less energy than via normal
3G.

A running example: Figure 1 shows a simple example to illustrate the basic idea of
effSense. Here, u1, u2, and u3 are three data-plan users, respectively, while u∗1, u∗2, and u∗3
are three non-data-plan users, respectively. In addition, there is a server (S ) and a fixed-
location Bluetooth gateway device (D). Instead of uploading the sensed data directly via a
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Figure 3.1: A running example of effSense

specific 3G link, effSense offers the following data uploading paths to save data cost and

energy consumption:

Path 1 (red dashed line): u∗
3
→ D→ S . A non-data-plan user (u∗

3
) uploads data via a

Bluetooth gateway.

Path 2 (green dot line): u∗
1
→ u3 → D→ S . A non-data-plan user (u∗

1
) relays data to

a data-plan user (u3) first and then u3 uploads data via a Bluetooth gateway other than 3G

directly to reduce both data cost and energy consumption.

Path 3 (purple solid line): u∗
2
→ u2→ u1→ S . The primary difference between this path

and the two above is that a data-plan user (u1) piggybacks the data uploading task over a

voice call in the end.

As shown in this example, non-data-plan users are guided to upload their sensed data

without mobile data cost, while data-plan users are recommended to upload data via energy-

efficient methods. Such preservation of data cost and energy consumption is exactly the

design objective of effSense.

The key issues involved in designing effSense include:

1) Identify and predict critical events. Typical critical events include making a voice
call, meeting another user, encountering a Bluetooth gateway, connecting to a WiFi AP, etc.

Predicting the critical events for each user is the basis for effSense to select the right data

relaying strategy. By leveraging the state-of-the-art activity prediction methods [115, 116],

effSense can predict critical events accurately.

2) Estimate data uploading energy consumption associated to each critical event.
Specifically, for data uploading, the energy consumption is not always proportional to the

data size. For instance, uploading a data packet smaller than 10KB via 3G always consumes

about 12 joule, whatever the exact data size [117]. According to the existing literature about

the energy consumption of mobile phones [117, 118], we estimate the energy consumption
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of various critical events for different data sizes.

3) Design real-time algorithms to decide if the data should be offloaded or kept at
each individual event. The algorithms should be lightweight and executed on each phone
locally without incurring much energy consumption or data cost.

In summary, this work has the following contributions:

1) To the best of our knowledge, this is the first work that aims to minimize both energy
consumption and mobile data cost in mobile crowdsensing tasks by leveraging heteroge-
neous networks and delay-tolerant mechanisms.

2) We consider two types of users (non-data-plan and data-plan) with different goals and
propose a collaborative data uploading framework including two data uploading schemes
for each kind of users, respectively: one is purely greedy, the other is based on the mo-
bility/call predictions. While the former one is quite effective in handling the cold-start
problem when the participants’ historic call or mobility logs are not available, the latter
one can achieve better performance by leveraging critical-event prediction according to the
participants’ historic logs.

3) We evaluate effSense with two real-world datasets - MIT Reality Mining [113] and
Nodobo [119]. The results show that effSense could upload about 48-52% of non-data-plan
users’ data without extra data cost, and reduce 55-65% of data-plan users’ data-uploading
energy consumption compared to the traditional method, given the condition that data-plan
users and non-data-plan users have the ratio of 3:41 and a data uploading cycle of 24 hours.

3.2 Preliminary: Delay-Tolerant Mobile Crowdsensing

Many crowdsensing tasks (e.g. MIT Reality Mining [113], environment monitoring [94,
93, 96, 91]) do not require immediate uploading of the data after it is sensed (called delay-
tolerant mobile crowdsensing task). Such tasks allow some delay (max tolerable delay Td)
between collecting the data from sensors and uploading it to the server, i.e. the sensed data
generated at t on a participant’s phone can be uploaded during [t, t + Td].

Formally, we consider a crowdsensing task process that is composed of two kinds of
cycles: sensing cycles and delayed-uploading cycles (see Figure 3.2).

• Sensing Cycle: A crowdsensing task process can be split into continuous sensing
cycles. As shown in Figure 3.2, each sensing cycle lasts for Ts, i.e. the ith sensing
cycle starts at ti−1 = t0 + (i− 1)Ts and ends at ti = t0 + iTs. We assume that each
participant’s sensed data is prepared for uploading right up until the end of each
sensing cycle (e.g. some aggregation algorithms need to be run on the raw sensed
data before uploading).

• Delayed-Uploading Cycle: The ith delayed-uploading cycle starts at the end of the

13:4 is the ratio when 30 users are selected as data-plan users in the MIT Reality Mining project, which is
the actual project setting [114].
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Figure 3.2: Sensing cycles and delayed-uploading cycles

ith sensing cycle (i.e. ti) and lasts for Td (i.e. ends at ti + Td). In the ith delayed-
uploading cycle, each participant attempts to upload her ith sensing cycle’s data to
the server. Various data uploading/relay strategies could be applied here. At the
end of a delayed-uploading cycle, if some participants’ data is still not uploaded to
the server, these participants are forced to upload their data to the server via 3G, in
order to ensure that all the sensed data could arrive at the server within the delay
Td. We consider only the condition that ti + Td ≤ ti+1 (i.e. Td ≤ Ts), which means
that participants need to upload their ith sensing cycle’s data to the server before their
i + 1th sensing cycle’s data gets ready (so different delayed-uploading cycles will not
overlap).

In summary, effSense can be applied to any mobile crowdsensing task process that
meets two requirements: (1) all the participants’ sensed data is ready for uploading at the
end of each sensing cycle; and (2) the ith sensing cycle’s data needs to be uploaded to
the server before the i + 1th sensing cycle’s data gets ready. Therefore, in each delayed-
uploading cycle, a participant only needs to upload one piece of sensed data.

3.3 Problem Statement

The research goal is to design the delay-tolerant data uploading schemes that can not only
minimize mobile data cost for non-data-plan users (Undp) but also maximally decrease
energy consumption for data-plan users (Udp). We make the following assumptions in the
crowdsensing process.

Assumption 1 - Offload and Dismiss: Once a user u offloads the sensed data to a recipi-
ent, no matter the recipient is the server, gateway, or another user, u will not be responsible
for sending the data any more.

This assumption in effSense ensures having only one copy for all the sensed data and
thus avoids redundant data uploading to meet the energy-saving objective.

Assumption 2 - Offload All Data: Once a user catches a chance to offload data, all the
data will be offloaded to the recipient, no matter the data was sensed locally or received
from other users.
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This assumption seems quite strong at first glance, especially when we use very short
Bluetooth encounters to transfer a large amount of data. However, there exist many crowd-
sensing applications that generate small amount of data; for such applications, this assump-
tion holds most of the time. For example, after analyzing the user data collected in the
MIT Reality Mining project, we find that even using the plain text to store users’ sensed
data without compression, the amount of data for one user per day is less than 100KB.
Section 3.7.1 will discuss this issue in more details.

Before formulating the problem, we introduce some key concepts.

Definition 3.1 (Critical Events). A critical event (e ∈ E) refers to an encounter between
a non-data-plan mobile terminal and another device that can help non-data-plan users
offload data without cost, or/and a call/encounter that can help data-plan users save energy
consumption in data uploading. The critical event set E contains two subsets:

• Server-related Critical Events (Es): When a user encounters a server (including in-
termediate servers, e.g., Bluetooth gateway) or initiates/receives a call, the sensed
data can be uploaded to the server directly.

• User-related Critical Events (Eu): When usera encounters userb who might be able
to better accomplish data uploading, usera can offload data to userb to reduce data
cost or energy consumption.

In each crowdsensing cycle, users encounter a sequence of critical events (EVENTS =

{e1,e2, · · · ,en}), where e1 could be usera encountering a server, e2 could be non-data-plan
userb encountering data-plan userc, and en could be data-plan userd receiving a phone call.
Our effSense framework is designed to provide users with decisions at each event (e), either
upload the data to the server (when e ∈ Es) or offload the data to an encountered mobile
device (when e ∈ Eu), or keep the data till next critical event occurs. Now, we formally
define the “Decision Making” mechanism.

Definition 3.2 (Decision Making). In delay-tolerant data uploading with maximum delay
dmax, when a user ui with sensed data ri encounters a critical event e at time t∗ (t∗ ∈ [t0, t0 +

dmax]), effSense makes a decision about whether data ri needs to be offloaded (i.e., true) or
kept (i.e., false). We denote it as DEC(ui,ri, t∗,e, t0,dmax)→ {true, f alse}.

As the mobile data cost and energy consumption are two primary concerns when critical
events occur, we define “Event Data Cost Function” and “Event Energy Consumption” as
follows.

Definition 3.3 (Event Data Cost Function). The event data cost function represents whether
an event e incurs mobile data cost or not.

δ(e) =

true, if e incurs data cost
f alse, otherwise

Definition 3.4 (Event Energy Consumption). (1) For e ∈ Es, the event energy consumption
is the amount of energy that user u consumes to upload r to the server under e, marked
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as Ws(u,r,e). (2) For e ∈ Eu, the total event energy consumption comprises two parts —
user ui sending data and user u j receiving data, marked as Wu(ui,u j,r,e) = Wu_sd(ui,r,e)+

Wu_rv(u j,r,e).

As critical event prediction is helpful in event decision making, we also define “Event
Probability” as follows:

Definition 3.5 (Event Probability). Given a user u, a critical event set E∗, a time t, the
event probability is the probability that u will encounter any event e (e ∈ E∗) from t to the
end of data uploading cycle td (i.e., t0 + dmax), marked as Pe(u,E∗, t, td).

Based on these definitions, we formulate our problem as follows:

Problem Statement: In a crowdsensing task with some delayed uploading cycle (max
delay dmax), data-plan users (Udp) and non-data-plan users (Undp) would encounter a crit-
ical event sequence (EVENTS). Each mobile device aims to obtain a decision making se-
quence DECISIONS corresponding to EVENTS (i.e., each d ∈ DECISIONS corresponds to
the decision (true or f alse) at an event e ∈ EVENTS), in order to achieve the following two
goals dedicated to Undp and Udp, respectively.

First goal: Maximize the number of non-data-plan users whose data is uploaded to the
server with zero data cost.

max |{u|u ∈ Undp,Ru(t0) ∈ Rs(td)}|

where

• Ru(t0) is the sensed data of u produced at t0.

• Rs(td) is the sensed data on the server at td.

Second goal: Minimize the energy consumption for data-plan users during the data
uploading process.

min
∑

u∈Udp

EnergyConsu(t0, td)

where EnergyConsu(t0, td) is the amount of energy that u consumes in data uploading dur-
ing [t0, td].

It is worth noting that we do not know when the critical events (EVENTS) would occur
in advance. In practice, the event appears one after another. When an event occurs for a
mobile device, a decision should be made instantly in a distributed manner. Although future
events are unknown, they could be predicted to help decision making for data offloading.

3.4 The effSense Framework

In order to solve the two-goal optimization problem formulated in the previous section, we
design effSense to accomplish effective data uploading for mobile crowdsensing applica-
tions. Our effSense framework is shown in Figure 3.3.
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Figure 3.3: The effSense framework

As shown in the left part of Figure 3.3, we have two types of crowdsensing users,

i.e., data-plan (Udp) and non-data-plan users (Undp). Each mobile device identifies future

critical events in a distributed manner using state-of-the-art prediction techniques — for

both mobility prediction [115] and call prediction [116]. Accordingly, we obtain a sequence

of critical events (EVENTS) for each mobile device in the middle of Figure 3.3. For Udp,

critical events are used to reduce energy consumption by offloading data via Bluetooth

gateways encountered or piggybacking sensed data on a 3G phone call as predicted. For

Undp, critical events are used to eliminate mobile data cost by offloading data to Bluetooth

gateways or Udp devices encountered as predicted.

In each crowdsensing uploading cycle, effSense selects the data uploading schemes by

analyzing the critical events. When a user encounters a critical event, effSense makes the

decision to offload or keep the data. As shown in the right part of Figure 3.3, the generated

data uploading schemes might include two non-data-plan users sending data to a data-plan

user and a gateway via Bluetooth, respectively, and a data-plan user sending data via 3G

when he makes a voice call.

There are two kinds of schemes proposed in effSense for both types of users.

• Cold-start scheme: It does not require users’ historic event traces, and applies a

straightforward greedy algorithm to offload data as soon as it encounters a “promis-

ing” event that can eliminate data cost for non-data-plan users D_Cost(Undp), or

reduce energy consumption for data-plan users E_Cons(Udp).

• Prediction-based scheme: It compares the current uploading cost (i.e., offload data at

current event) with future predicted uploading cost (i.e., keep data at current event),

to decide whether the sensed data should be offloaded or kept.

Before the end of each data uploading cycle, effSense checks with all mobile devices

to see whether they have un-uploaded data: for Undp with data, effSense forces them to
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symbol definition
u a user
r sensed data size
e a critical event

t0
sensed data generated time
(i.e., uploading cycle start time)

dmax max tolerable delay
td uploading cycle deadline (i.e., t0 + dmax)

Undp non-data-plan users
Udp data-plan users
Es server-related critical events
Eu user-related critical events
δ(e) whether e incurs data cost or not

Ws(u,r,e) energy consumption for u to upload r when e ∈ Es

Wu_sd(u,r,e) energy consumption for u to send r when e ∈ Eu

Wu_rv(u,r,e) energy consumption for u to receive r when e ∈ Eu

Pe(u,E∗, t, td) event probability of u encountering any e ∈ E∗ from t to td

Table 3.1: Notations

offload data to nearby Udp if possible; for Udp with data, effSense forces them to create a
3G connection to upload data.

3.5 Uploading Schemes

We propose two uploading schemes (cold-start and prediction-based) for both non-data-
plan and data-plan users. Note that the event probability (Pe) prediction is not the focus of
this work, so the prediction method will be later described in the experiment (Section 3.6).
The important notations are listed in Table 3.1.

3.5.1 Uploading Schemes for Non-Data-Plan Users

Suppose a non-data-plan user ui encounters a critical event e at time t (the encountered user
is u j if e is user-related), we propose two schemes for non-data-plan users to offload data:
S impleGreedyndp (cold-start) and AdvancedGreedyndp (prediction-based).

Cold-start Scheme: S impleGreedyndp

S impleGreedyndp follows the logic below:

• When a non-data-plan user ui encounters a server-related event,

– If the event is an encounter with a Bluetooth gateway or a WiFi AP, ui uploads
the sensed data as it will not incur any data cost.
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– If the event is a 3G call, ui will not upload data, as piggybacking data on a call
only reduces energy but still incurs 3G data cost.

• When a non-data-plan user ui encounters a user-related event,

– If the encountered user u j is a data-plan user, ui offloads data to u j, because
data-plan users can ensure uploading data before the uploading cycle deadline.

– If the encountered user u j is a non-data-plan user, ui does not offload data.

For generality, we use Endp_like to represent the above events that make the decision
making true:

Endp_like = {e|e ∈ Es, δ(e) = f alse}∪ {e|e ∈ Eu, δ(e) = f alse,u j ∈ Udp}

Prediction-based Scheme: AdvancedGreedyndp

On top of S impleGreedyndp, AdvancedGreedyndp adds a new data offloading condition
when a non-data-plan user ui meets another non-data-plan user u j:

• When a non-data-plan user ui meets another non-data-plan user u j, if u j has higher
probability to meet data-plan users or to upload data via Bluetooth or WiFi gateways
(i.e., encountering e ∈ Endp_like) than ui, ui will offload data to u j.

So the events which would trigger data offloading are generalized as:

1. e ∈ Endp_like

(same as S impleGreedyndp)

2. e ∈ {e′|e′ ∈ Eu,u j ∈Undp} and Pe(ui,Endp_like, t, td)< Pe(u j,Endp_like, t, td)

(new data offloading condition)

3.5.2 Uploading Schemes for Data-Plan Users

Suppose that a data-plan user ui encounters a critical event e at time t (the encountered
user is u j if e is user-related), we design two energy-saving schemes for data-plan users to
upload data: Greedydp (cold-start) and ExpectationBaseddp (prediction-based).

Cold-start Scheme: Greedydp

Greedydp follows the intuitions below to upload data:

• If a data-plan user ui encounters a server-related event, whether the event is making
a call, encountering a Bluetooth gateway, or connecting to WiFi, ui will upload data,
because all these events cost less energy than creating a new 3G connection for data
uploading.

• If a data-plan user ui encounters a user-related event, ui will not offload data.
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We use Edp_like to represent the events described above which make the decision making
true:

Edp_like = {e|e ∈ Es,Ws(u,r,e) < W3G(u,r)}

where W3G(u,r) is the energy consumption for user u to upload data of size r by creating a
new 3G connection.

Prediction-based Scheme: ExpectationBaseddp

The intuition behind ExpectationBaseddp is to compare the expected energy consump-
tions (i.e., expEnergy) needed for different data offloading schemes corresponding to possi-
ble events predicted before the end of each data uploading cycle (e.g., uploading data to the
server or keeping data under a server-related event) and select the one with least expected
energy consumption. In this process, ExpectationBaseddp leverages users’ mobility and
call prediction to predict future events.

ExpectationBaseddp might discard the current energy-efficient event to wait for another
more energy-efficient event later, while Greedydp always triggers the first-coming energy-
efficient event, specifically:

1. When encountering the server-related events that consume less energy than 3G,
Greedydp will always make ui upload data, while ExpectationBaseddp will sometimes
make ui keep data. For example, if ui currently makes a 3G call, and ui is predicted to
have a very high probability of meeting a Bluetooth gateway soon, then keeping data till
the next event of encountering the Bluetooth gateway could be a better strategy in terms
of energy saving (because uploading data via Bluetooth consumes less energy than piggy-
backing data on a call).

2. When encountering the user-related events, Greedydp will always make ui keep data,
while ExpectationBaseddp provides the possibility of offloading data between encountered
data-plan users ui and u j. For example, if ui has a much lower probability to upload data via
energy-efficient methods (i.e., encounter e ∈ Edp_like) in the future than u j, then offloading
data from ui to u j can hopefully reduce the users’ total energy consumption, because u j
later could probably upload data via an energy-efficient method.

Figure 3.4 illustrates the basic decision making process of ExpectationBaseddp, where
expEnergy refers to the user’s total energy consumption predicted from the current event
time (i.e., when u encounters e) to the end of uploading cycle (td). For example, suppose td
is 12:00 and current time is 8:25. If user Bob makes a phone call, then we calculate Bob’s
expEnergy from 8:25 to 12:00 under two distinct conditions: uploading data over this call
vs. keeping data locally.

When encountering the server-related events, we calculate expEnergy for two possible
conditions:

• ui uploads data to the server (expEnergyui→S )

• ui keeps data (expEnergyui 6→S )

And we select the scheme with smaller expEnergy.
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Figure 3.4: The decision making process of ExpectationBaseddp

When encountering the user-related events, if a data-plan user ui meets a non-data-plan
user u j, ui will not offload data to u j. (In fact, according to the non-data-plan user data
uploading schemes, the non-data-plan user u j will offload data to ui if u j has data.)

If a data-plan user ui meets another data-plan user u j, the decision making process is
a little more complicated. We need to take both ui and u j’s expected energy consumption
into account. If we only consider one user’s own energy consumption, ui and u j might both
decide to send data to the counterpart, which leads to more energy consumption. We thus
compute expEnergy for three possible conditions:

• ui offloads data to u j (expEnergyui→u j)

• u j offloads data to ui (expEnergyu j→ui)

• ui and u j both keep data (expEnergyui=u j)

We choose the scheme with smallest expEnergy. To calculate the aforementioned
expEnergy in Figure 3.4, two basic components are involved.

The first component is the Event Energy Consumption (defined in Section 3.3, e.g., data
transmission energy associated with 3G, WiFi, and Bluetooth). To estimate this part, we
refer to existing work [117, 118]. Further details are shown in the section of Evaluation.

The second component is expEnergykeep(u,r, t, td), which represents a user u’s expected
energy consumption (from t to td) if u keeps the data of size r at time t. To compute
expEnergykeep, we first predict u’s each event probability during [t, td]. Based on these
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Problem:
Given a data-plan user u, local data (size=r) and time t, calculate
the expected energy consumption during [t, td] if u keeps data r
at t.

Notation:
ei: all critical events belonging to Edp_like
pi: event probability, abbr. for Pe(u,{ei},t,td)
wi: event energy consumption, abbr. for Ws(u, r, ei)
w3G: energy consumption under new 3G connection, abbr. for 
W3G(u, r)
Prec(r): the probability for u to receive data (size=r) from t to td, 
 𝑟≥0𝑃𝑟𝑒𝑐 𝑟 = 1 (specifically, r=0 means the probability not 
receiving any data later)

Solution:
Step1. Sort critical events, make w1<=w2<=…<=wn
Step 2. Calculate the expected energy consumption for 
uploading data (size=r):
𝑒𝑛𝑒𝑟𝑔𝑦𝑢𝑝 𝑢, 𝑟, 𝑡, 𝑡𝑑 =

 
𝑗=1

𝑛

𝑝𝑗 ∗ 𝑤𝑗 ∗  𝑖=1
𝑗−1
1 − 𝑝𝑖 +𝑤3𝐺 ∗  𝑖=1

𝑛 1 − 𝑝𝑖

Step 3. As u may receive data from the other users later, so the 
expected energy consumption from t to td is:

𝑒𝑥𝑝𝐸𝑛𝑒𝑟𝑔𝑦𝑘𝑒𝑒𝑝(𝑢, 𝑟, 𝑡, 𝑡𝑑)

= 
𝑟′≥0
𝑃𝑟𝑒𝑐 𝑟′ ∗ 𝑒𝑛𝑒𝑟𝑔𝑦𝑢𝑝 𝑢, 𝑟

′ + 𝑟, 𝑡, 𝑡𝑑

Figure 3.5: Calculation for expEnergykeep

event probabilities, we sum up all the event energy consumptions for offloading/uploading
r. (Figure 3.5 shows the detailed algorithm.) It is possible that expEnergykeep(u,0, t, td) > 0
(even though u holds no data at t), because u may receive data from other users during [t, td]
(see Step 3 in Figure 3.5) .

With these two components, we can calculate all the aforementioned expEnergy in
Figure 3.4. The detailed formulas are given as follows:

1. For e ∈ Es

1) When ui uploads data to the server (expEnergyui→S )

expEnergyui→S includes two parts: (1) the energy to upload data, (2) the expected
energy consumption after this uploading (so ui keeps no local data).

expEnergyui→S

= Ws(ui,ri,e) + expEnergykeep(ui,0, t, td)

2) When ui keeps data (expEnergyui 6→S )
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expEnergyui 6→S includes only one part: the expected energy consumption when ui still
keeps data of size ri.

expEnergyui 6→S = expEnergykeep(ui,ri, t, td)

2. For e ∈ Eu

For e ∈ Eu, we consider both ui and u j’s energy consumptions together.

1) When ui offloads data to u j (expEnergyui→u j)

expEnergyui→u j includes four parts: (1) ui’s energy consumption for sending data, (2)
u j’s energy consumption for receiving data, (3) ui’s expected energy consumption after
sending data (so ui keeps no local data), (4) u j’s expected energy consumption after receiv-
ing data (so u j keeps both ui’s and u j’s data).

expEnergyui→u j = Wu_sd(ui,ri,e) + Wu_rv(u j,ri,e)

+ expEnergykeep(ui,0, t, td)
+ expEnergykeep(u j,ri + r j, t, td)

2) When u j offloads data to ui (expEnergyu j→ui)

Similar to expEnerygui→u j , we only need to exchange i and j in the above formula.

3) When ui and u j keep data (expEnergyui=u j)

expEnergyui=u j includes two parts: Both ui’s and u j’s expected energy consumption
when they keep their own data (ri and r j).

expEnergyui=u j = expEnergykeep(ui,ri, t, td) + expEnergykeep(u j,r j, t, td)

3.5.3 Scheme Selection

When a new user first participates in the crowdsensing task, since there is no activity his-
tory about this user, the cold-start scheme {S impleGreedyndp, Greedydp} is recommended.
After a period of time (Tchange), when the new user accumulates certain activity logs, he
can change to the prediction-based schemes {AdvancedGreedyndp, ExpectationBaseddp}
to get better performance.

Deciding Tchange is an important issue. The optimal Tchange may vary from one specific
mobile crowdsensing task to another. In this study we do not discuss how to choose Tchange
but focus on designing and evaluating the overall framework.

3.5.4 Additional Features

Here, we briefly introduce some other features in the implementation of effSense.

Information Exchange between Users
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When two users meet, they need to exchange some information with each other for
running effSense. For example, when two data-plan users meet, one needs to know the value
of expEnergykeep of the counterpart (for ExpectationBaseddp). We propose to exchange
information between encountered users as follows: encoding all the event probabilities in
the device name according to a predefined protocol. Then, when a user meets another one,
each user will know the event probabilities that can be used to calculate the other user’s
expEnergykeep. One defect of this solution is that the user’s device name needs to change
after a time period because the event probabilities change over time. Fortunately, this is a
simple operation without much energy consumption.

Flexibility to User-Type Interchange

An interesting and valuable feature of effSense is that one user can change his user type
at any time, so that he can decide whether he cares more about energy consumption or data
cost. We can still use the previously proposed solution: encoding the user type in the device
name. Then, one user could easily know the other user’s type when they meet each other.

Mechanisms for Exit-Users

A user might exit the task during a uploading cycle, which means that the un-uploaded
data in this exit-user’s phone might fail to be uploaded to the server. Note that as we have
the assumption of “Offload and Dismiss”, the un-uploaded data might include multiple
users’ data. To minimize the data loss incurred by exit-users, we propose the following
mechanisms:

• Forced-uploading (known-exit): If effSense knows when a user exits from a crowd-
sensing task (e.g., a user instructs to exit from the mobile task app menu), then the app
can upload/offload the un-uploaded data immediately (e.g., a data-plan user would
initialize a new 3G connection).

• Notify-reuploading (sudden-exit): A user might exit suddenly (e.g., due to operating
system errors). In this case, the mobile task app fails to operate normally for forced
uploading. To relieve this problem, at the end of each uploading cycle, the server can
use a method like Dial-to-Deliver [120] to notify the users whose data has not been
uploaded, to upload/offload their data again. Thus, if a user u’s data was relayed to a
sudden-exit user but u does not exit, u can still have a chance to upload his data again
in the end.

3.6 Evaluation

In this section, we evaluate the effSense framework using two real-world crowdsensing
datasets: MIT Reality Mining [113] and Nodobo [119]. While the MIT Reality Mining
dataset recorded more mobile users’ call and mobility traces, the Nodobo dataset reported
a more up-to-date mobile users’ traces with different patterns.
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Small-size(<10KB) Big-size(xKB)
3G 12 J 12+0.025x J

Bluetooth 1 J 1+0.003x J

Table 3.2: Energy consumption estimation of 3G/Bluetooth

3.6.1 Experimental Setup for the MIT Dataset

For the MIT dataset, we choose 7 weeks of sensing data (2004.10.4-2004.11.21) from 71
active users. The 30 users who consumed the largest volume of mobile data are considered
as data-plan users, and the remaining 41 users are non-data-plan users — as the MIT data
campaign provided 30 users with data plans subsidy [114]. We used the first five weeks of
user data to build the model, and evaluated the performance of effSense using the data of
the last two weeks. The data uploading cycle was set to one day, i.e., each uploading cycle
starts at 00:00 and ends at 24:00. Thus 14 rounds of data uploading occurred during the last
two weeks.

This experiment involved 3 types of critical events:

• e3g_call: making a 3G voice call.

• ebt_device: encountering a Bluetooth gateway. Two Bluetooth gateways are in the
experiment: localhost.media.mit.edu and studies.media.mit.edu.

• ebt_user: encountering another user via Bluetooth.

Based on the literature about the mobile phone energy consumption [117, 118], we
estimate the energy consumption for transmitting data through 3G and Bluetooth (Table
3.2). Table 3.3 shows the estimation results of energy consumption for each critical event
type.

Bluetooth Encounters

We clarify two practical issues related to the Bluetooth encounters in our experiment.

Bluetooth Contact Duration: Sometimes, the Bluetooth encounter between two users is
too short to transfer all data successfully. As the MIT Reality Mining campaign only acti-
vates Bluetooth scanning every 5 minutes [114], we cannot accurately know how long two
users really meet when they are in contact via Bluetooth. In the evaluation, we eliminated
the short Bluetooth encounters that do not have enough time to transfer data between two
devices as follows: we only use the encounters that can be discovered in two continuous
5-minute scannings. For example, if user ui meets user u j at 12:00 via Bluetooth, we will
use this encounter in our evaluation only if ui can still meet u j at 12:05. Due to the dataset
limitation, ui and u j might meet each other just at the two time points of 12:00 and 12:05,
while keeping away from each other between 12:00 and 12:05. However, with this data
preprocessing about the device encounters, we believe that most of the device encounters
could allow successful data transfer between devices via Bluetooth.
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Small-size(<10KB) Big-size(xKB)
e3g_call

2 12× (1−75%) = 3 J 3+0.006x J
ebt_device 1 J 1+0.003x J
ebt_user

3 2 J 2+0.006x J

Table 3.3: Energy consumption estimation for critical events

Action Energy
Idle (1 minute) 0.9 J

3G Call (1 minute) 75.9 J
SMS (1 message) 3.5 J

Bluetooth Scanning (20 seconds) 4.5 J

Table 3.4: Energy consumption for different phone usages

Bluetooth Scanning Energy: Note that the energy consumption of Bluetooth scanning is
not considered in the evaluation due to two reasons: (1) Intermittent Bluetooth scanning is
required by some crowdsensing tasks such as MIT Reality Mining and SociableSense [9];
so the energy consumption of Bluetooth scanning is not caused by data uploading, but is re-
quired by the crowdsensing task. (2) Bluetooth 4.0 low energy (BLE) technology is adopted
by more and more up-to-date smartphones (iPhone 5s, Nexus 5, etc.). With BLE, the battery
drain of Bluetooth scanning is dramatically decreased [24]. Due to the energy efficiency of
BLE, a lot of novel real-time smartphone sensing applications are emerging recently, which
require the smartphone users to turn on Bluetooth and do intermittent scanning all the time
(e.g., fitness sensing with FitBit wristbands4). Thus, we believe that in the near future, more
smartphone users would like to have Bluetooth (with BLE) always on to support such novel
applications; again the energy consumption of Bluetooth scanning is not caused by the data
uploading of effSense, but is required by these applications.

Energy Calculation and Battery Constraints

If a user’s phone battery has already reached a low energy level, he is typically not
willing to relay data for other users. Thus, we prevent a user from relaying data when his
phone battery level is lower than a predefined limit, e.g., 50% battery level.

Due to the lack of explicit battery information in the MIT dataset, we simulate a user
phone’s battery level based on real-time phone usage records, including calls, messages,
mobile data usage, etc. Our simulation makes the following basic assumptions:

1. Each user’s phone battery is fully charged as 100% level at 00:00 a.m. every day and
the phone would not be charged during the day.

2. We adopted the basic energy consumption for each phone usage type using exiting
statistics of Nokia N95 [118] (see Table 3.4). According to the specification, N95’s

23G data transmission during call saves ∼75% energy [38].
3The energy consumption of ebt_user is twice of ebt_device because of one user sending and one user receiv-

ing.
4https://www.fitbit.com/

https://www.fitbit.com/
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full battery is 950mAh/3.7v, which means the total battery energy is 950× 0.001×
3.7×3600 = 12654J.

We set the battery level limit to 50%. This limit is purposely set high for two reasons:

1. The phone usage records are not a complete set. Many application usage logs, such
as games, are not included. The actual energy consumption should be higher than our
simulation setting.

2. We set a high battery limit to ensure that relaying others’ data will not bring signifi-
cant inconvenience to phone users’ own experiences.

3.6.2 Prediction of Critical Events

To estimate the critical event occurring probability Pe(u,E∗, t1, t2), we use a Poisson dis-
tribution model [116, 115]. The computation process contains the following steps (Note
that E∗ might include different kinds of events, e.g., E∗ = {e3g_call,ebt_device} represents the
energy-efficient events for DP users.):

Step 1. Split one week into 24× 7 non-overlapping timeslots — each timeslot lasts
for one hour; then, map t1, t2 to the corresponding timeslots in a week, i.e., ts1 and ts2,
respectively.

Step 2. Assume the event ei ∈ E∗ follows a Poisson process, then the probability of
event ei happening k times for user u during [ts1, ts2] is:

p(ei,u,k, ts1, ts2) = µk
ei,u,ts1,ts2

· exp(−µei,u,ts1,ts2)/k!

where µei,u,ts1,ts2 is estimated as the average number of the occurrences that user u encoun-
ters event ei during [ts1, ts2] from the history data.

Step 3. As Pe(u,E∗, t1, t2) is the probability of at least one event ei ∈ E∗ occurring at
least once during [t1, t2], we thus calculate it as follows:

Pe(u,E∗, t1, t2) = 1−
∏

ei∈E∗
p(ei,u,k = 0, ts1, ts2)

= 1−
∏

ei∈E∗
exp(−µei,u,ts1,ts2)

To measure the performance of the Poisson method, we compare it with a simple
method that directly counts the frequency of event occurrences.

Frequency: Suppose that the history data includes m weeks, and there are n weeks u
encounters any event ei ∈ E∗ during [ts1, ts2], then Pe(u,E∗, t1, t2) = n/m.

To compare the performance between the two methods, we draw ROC curves [121]
and calculate their AUC values. Figure 3.6 and 3.7 show the ROC curves associated to the
prediction of 3G calls and Bluetooth encounters between users. We can see that the Poisson
method outperforms the Frequency method in both cases.
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Figure 3.6: ROC curve of call prediction (e3g_call)

on the MIT dataset
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Figure 3.7: ROC curve of Bluetooth encounter

prediction (ebt_user) on the MIT dataset

Weekday Weekend Overall
BT Activity 28.8 10.5 23.6

SimpleGreedy 24.5 (85.7%) 7.8 (74.3%) 19.7 (83.5%)

AdvancedGreedy 26.2 (91.0%) 8.5 (80.6%) 21.2 (89.8%)

(values in the brackets are the proportions to the value of BT Activity)

Table 3.5: Average Nnd_upload in one data uploading cycle on the MIT dataset

3.6.3 Experimental Results on the MIT Dataset

In order to evaluate the performance of proposed data uploading schemes in effSense, we

design the experiments to address the following key questions:

1. Data Cost: How many non-data-plan (NDP) users can upload their data before the

uploading cycle deadline without incurring data cost?

2. Energy Consumption: How much phone energy is consumed for data-plan (DP) users

during the data uploading process?

3. Event Triggering: How many critical events have triggered data uploading/offloading

during the data uploading process?

After answering the three questions, we also evaluate the influence of exit-users and

different parameter settings (ratio of NDP/DP users and max tolerable delay) on the perfor-

mance of effSense.

Data Cost Conservation

First, we investigate the performance of two effSense schemes for NDP users — the

number of NDP users who upload data successfully in each data uploading cycle (noted

as Nnd_upload). Figure 3.8 plots the detailed Nnd_upload in two weeks for the two schemes,

together with the upper-bound of Nnd_upload — the number of NDP users having Bluetooth

activities (BT Activity). This is because only Bluetooth activities can trigger successful data

uploading for NDP users without data cost. In Figure 3.8, effSense does not perform very
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Figure 3.8: Nnd_upload for 2 weeks on the MIT dataset
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Figure 3.9: Energy consumption of data-plan users, totalEnergydp, for uploading small(1KB)/100KB/200KB
data per cycle on the MIT dataset (S Gnd: S impleGreedyndp; AGnd: AdvancedGreedyndp; Gd: Greedydp; Ed:
ExpectationBaseddp)

well in weekends (11/13, 11/14, 11/20, 11/21) and Veterans day (11/11), as few users came
to school so that the opportunities for Bluetooth relay dropped.

In Table 3.5, we further list the statistics, observing that effSense helps on average 19.7
NDP users using S impleGreedyndp, and 21.2 NDP users using AdvancedGreedyndp, corre-
sponding to the success rate of 48% and 52% for 41 NDP users, respectively. AdvancedGreedyndp
outperforms S impleGreedyndp by 4%. This improvement is quite significant for AdvancedGreedyndp,
as S impleGreedyndp has already achieved more than 85% of the upper bound BT Activity
on weekdays.

Energy Conservation

Figure 3.9 shows the energy consumption for DP users in one data uploading cycle
(noted as totalEnergydp) when three different types of sensed data sizes are considered —
small (1KB), 100KB, and 200KB. effSense reduces 55-65% of the energy consumption for
DP users compared with the traditional method6. When using the same NDP scheme (ei-

6The traditional method means that DP users upload their data via a new 3G connection every day, while
NDP users store their data in the SD-cards instead of uploading to the server. So NDP users will not consume
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Figure 3.10: totalEnergyall for small-size data on the MIT dataset
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Figure 3.11: Event triggering per uploading cycle
on the MIT dataset (small data)
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Figure 3.12: Event triggering probability per up-
loading cycle on the MIT dataset (small data)

ther S impleGreedyndp or AdvancedGreedyndp), ExpectationBaseddp can save up to about
13% extra energy for DP users compared with Greedydp on weekdays. On weekends, the
energy consumption difference between ExpectationBaseddp and Greedydp is not signif-
icant, because few students go to school on weekends and thus data relays between DP
users will rarely happen. In addition, as the data size increases, the performance gap be-
tween ExpectationBaseddp and Greedydp decreases. The reason is that as the data size
increases, the overhead for one user to help others relay data becomes larger.

Figure 3.10 shows the total energy consumption for all DP and NDP users (totalEnergyall).
Though effSense causes NDP users to consume energy, which does not exist in the tradi-
tional method, totalEnergyall is still reduced by 46-54%.

Event Triggering

Figure 3.11 shows the total number of events that trigger data uploading/offloading for
each event type, and Figure 3.12 shows the corresponding triggering probability. Here, the
events are 3G-call, BT-device, and BT-user. In particular, BT-user can be further divided

energy in data uploading.
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Figure 3.13: N f ail for different Nexit on the MIT dataset

into 3 categories according to user type: (1) NDP→ DP (BT_UN2D), (2) NDP→ NDP
(BT_UN2N), and (3) DP→ DP (BT_UD2D).7

First, the frequency of requiring a new 3G connection decreases significantly in eff-
Sense compared with the traditional method that would incur 30 new 3G connections in
each data uploading cycle. As establishing a new 3G connection is energy-demanding, this
is the primary reason why effSense can reduce energy consumption significantly. In ad-
dition, for the cold-start scheme pair {S impleGreedyndp, Greedydp}, the data exchanges
between users are only carried out when NDP → DP. However, AdvancedGreedyndp
and ExpectationBaseddp introduce the data relays at NDP→ NDP and DP→ DP, re-
spectively. Furthermore, given the same NDP scheme, ExpectationBaseddp triggers much
fewer e3g_call and more ebt_device than Greedydp. This is why ExpectationBaseddp can fur-
ther conserve energy compared with Greedydp, as the energy consumption of ebt_device is
less than e3g_call.

Impact of Exit-Users

Exit-users can incur data loss and thus effSense needs some mechanisms to deal with
exit-users (Section 3.5.4). Here we evaluate how many users’ sensed data would fail to be
uploaded (N f ail) due to exit-users in one uploading cycle by simulations.

Exit-Model: We randomly choose Nexit users to be exit-users (either known-exit or
sudden-exit). For each selected user, we randomly assign a time line within the delayed
uploading cycle as his exit timing, via uniform distribution.

Figure 3.13 shows N f ail and its standard deviation, varying with Nexit (2-10) based on
100 simulations. Generally, N f ail is less than Nexit, which means that in most simulations,
some exit-users have already uploaded/offloaded their sensed data before they exit. The
ratio N f ail/Nexit is around 65%, no distinction between different Nexit. Therefore, if Nexit
users exit in one cycle, the expected N f ail is about 0.65Nexit, less than Nexit. We also
run the simulations when effSense does not deploy the exit-user mechanisms described in
Section 3.5.4, and the ratio N f ail/Nexit is larger (75-80%). This verifies the effectiveness of

7DP→ NDP does not exist in effSense because this direction conflicts the goal of saving data cost for
NDP users.
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|Udp| |Undp| Nnd_upload/|Undp| totalEnergydp/|Udp|

10 61 38% 6.06 J
20 51 47% 5.23 J
30 41 51% 4.76 J
40 31 53% 4.40 J
50 21 57% 4.26 J
60 11 68% 4.05 J

Table 3.6: Results of different DP/NDP ratios (24-hour delay)

our proposed exit-user mechanisms.

Parametric Analysis

We then analyze the two key parameters in effSense and study how they affect the
performance of the framework. The parameters are DP/NDP user ratio and max tolera-
ble delay (dmax). Our experiments here focus on the scheme pair {AdvancedGreedyndp,
ExpectationBaseddp} and small sensed data size.

DP/NDP User Ratio

In the previous experiments, we selected 30 out of 71 participants as DP users, as this
is the actual setting in the MIT Reality Mining project[114]; thus, the DP/NDP ratio is
30/41. Real-life crowdsensing tasks face various DP/NDP ratios. Furthermore, in a long
period of crowdsensing, existing participants could leave and new participants could join.
The objective of evaluations here is to verify effSense’s performance with different DP/NDP
ratios. Instead of investigating the absolute Nnd_upload and totalEnergydp metrics, we inves-
tigate their relative values to better present effSense’s robustness. The two relative metrics
are: Nnd_upload/|Undp| (the percentage of NDP users who upload data successfully) and
totalEnergydp/|Udp| (the average energy consumption of each DP user).

Table 3.6 shows the evaluation results under six different DP/NDP user ratio settings,
and from the table we have the following observations:

• With more DP users, greater percentage of NDP users can upload data successfully
without incurring data cost (i.e., Nnd_upload/|Undp| increases), because NDP users
could have more chances to encounter DP users and relay data to them.

• With more DP users, average energy consumption for each DP user decreases (i.e.,
totalEnergydp/|Udp| decreases), because each DP user needs to help fewer NDP users
to relay data.

Though effSense performs better with more DP users, it also works well when only
few DP users exist. As shown in Table 3.6, even under low |Udp|/|Undp| such as 10/61,
nearly 40% of the NDP users could upload data successfully without data cost, and a DP
user usually consumes less than 50% energy on average, compared with uploading data by
creating a new 3G connection which consumes 12J energy.
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dmax Nnd_upload totalEnergydp

3-hour 13.3 206.1 J
6-hour 17.0 184.4 J

12-hour 19.0 152.5 J
24-hour 21.2 142.9 J

Table 3.7: Results for different max delays dmax (30 DP users)

Start Nnd_upload totalEnergydp

8:00 7.2 189.4 J
11:00 14.3 209.1 J
14:00 13.2 195.4 J
17:00 10.8 181.4 J

Table 3.8: Results for different start time (30 DP users, 3-hour delay)

Max Tolerable Delay

All the evaluation results reported so far were carried out assuming the max tolerable de-
lay (dmax) for data uploading is 24-hour, as the MIT Reality Mining project asked DP users
to upload data once a day[114]. Nowadays, 24-hour is a long uploading delay as users most
likely be able to upload data using free WiFi at home. Thus, we conduct extra experiments
to test the performance at smaller dmax (see Table 3.7). As dmax decreases, NDP users have
less chance to upload data without incurring data cost (i.e., Nnd_upload decreases) and DP
users consume more energy (i.e., totalEnergydp increases) in each data uploading cycle.
This is because with a shorter delay, there are fewer critical events occurring for effSense
to trigger data offloading in order to reduce data cost and/or energy consumption.

In addition, we observe that the start time of data uploading cycle affects Nnd_upload and
totalEnergydp when applying smaller dmax, as the number of each type of critical events
differ greatly between different time periods. Table 3.8 shows the evaluation results with
different data uploading cycle start time and a max tolerable delay of three hours. Nnd_upload
is higher in the afternoon than in the morning/evening, as NDP users are more likely to
encounter DP users to relay in the afternoon; totalEnergydp is lower in the evening than in
the morning/afternoon, as users are likely to make calls in the evening.

3.6.4 Evaluation on the Nodobo Dataset

We also evaluated effSense on the Nodobo dataset with users’ WiFi traces. It contains
a type of critical event, ewi f i, different from the MIT dataset, when a user connects to a
WiFi Access Point (AP). Free WiFi APs can be used for NDP users to upload data without
incurring data cost. To simplify the experiment, we assume all WiFi APs in the Nodobo
project are free. In the Nodobo project, there is no Bluetooth gateway, so we excluded
ebt_device events, and focus on the ewi f i events. According to [117], uploading small-size
data via WiFi consumes 2J energy. In the experiment of the Nodobo dataset, we set the
same dmax (i.e., 24-hour), and DP/NDP ratio as 11/16 (similar to 30/41 on the MIT dataset).
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Figure 3.14: totalEnergydp for
small-size data on the Nodobo
dataset
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Figure 3.15: totalEnergyall for
small-size data on the Nodobo
dataset
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Figure 3.16: Event triggering per
uploading cycle on the Nodobo
dataset

Weekday Weekend Overall
BT/WiFi Activity 10.3 7.2 9.2
SimpleGreedy 10.0 (96.8%) 6.2 (86.1%) 8.6 (93.8%)

AdvancedGreedy 10.3 (100%) 6.4 (88.9%) 8.9 (96.9%)
(values in the brackets are the proportions to the value of BT/WiFi Activity)

Table 3.9: Nnd_upload on the Nodobo dataset

The results are shown in Figure 3.14, Figure 3.15, Figure 3.16, and Table 3.9 (we set the
upper bound of Nnd_upload as the number of NDP users who have either Bluetooth or WiFi
activity, called BT/WiFi Activity). Like the previous experiments on the MIT dataset, these
results show similar performance in conserving both data cost and energy consumption.

Figure 3.16 shows that ewi f i plays an active role in improving effSense’s performance
as it frequently triggers data uploading to conserve data cost or energy consumption. Note
that Nnd_upload can reach the upper bound when using AdvancedGreedyndp scheme for NDP
users in weekdays (see Table 3.9). These results show the flexibility and extensibility of
the effSense framework, and reveal the potential that effSense can become more powerful
when introducing more critical events.

3.7 Discussion

3.7.1 Data Size

In the experiment, we set three data sizes — small (1KB), 100KB, and 200KB, which
are not large, and thus our assumption of “Offload All Data” can probably be satisfied.
However, some mobile crowdsensing tasks can generate sensed data in a large volume up to
several MB (e.g., taking photos). When the data size is large, the assumption of “Offload All
Data” will become a bit unrealistic, especially for the events such as Bluetooth encounters
(often temporary and unstable). In the future, effSense can be improved to handle sensing
a large volume of data.
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3.7.2 User Incentives for Data Relay

Data relay between users is important in effSense to help reduce data cost and energy con-
sumption. In the experiment, we assumed that users are always willing to help others relay
data when their phone battery is not low (>50%). However, this is not always true in real
life; effSense in the future could additionally design incentive mechanisms for encouraging
users with the sufficient battery life to actively relay data for others.

3.7.3 Diversity of Critical Events

Although we identified several useful critical events in this study, there are still other criti-
cal events that we could consider in our future work. One example is the event of charging
the mobile phone battery. When a user’s phone is charging, energy consumption of data up-
loading could be assumed to be zero. Because of the dataset limitation, we cannot include
these critical events in our current evaluation. However, effSense is flexible to include new
critical events in the framework. Like these existing critical events, adding a new event in
effSense should address two key practical issues, i.e., estimating energy consumption of
uploading/offloading data under such an event, and providing the model for event predic-
tion.

3.7.4 Delay-Tolerant and Real-Time Tasks

The main purpose of effSense is to support delay-tolerant data uploading, but it can be
integrated with real-time data uploading to better serve application requirements. For ex-
ample, users use effSense to deal with delay-tolerant crowdsensing tasks, and initialize new
3G connections (or WiFi if possible) to upload data for real-time crowdsensing tasks. Al-
though it seems like a simple integration, this solution can further improve the performance
of effSense. For example, if a data-plan user participates in both delay-tolerant and real-
time crowdsensing tasks, then he regularly uploads real-time sensed data at certain time
every day. effSense can leverage this routine uploading event to reduce his energy con-
sumption by uploading the delay-tolerant data simultaneously, because uploading multiple
data together to the server can reduce the transmission energy overhead [39].

3.7.5 Prediction of Event Probability

We use a Poisson distribution model to predict the critical event probability. As this work
does not focus on the mobility/activity prediction, we apply this state-of-the-art method [116,
115] and focus on the data uploading schemes to show the feasibility and effectiveness of
effSense. A more advanced prediction method may further enhance the framework. How-
ever, when trying a complex prediction method, it is inevitable to consider that the predic-
tion itself could consume a certain amount of energy.
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3.8 Concluding Remarks

In this chapter, we investigate the problem of how to minimize both energy consumption
and data cost caused by data uploading in mobile crowdsensing. We address the key con-
cerns for both data-plan and non-data-plan users (energy consumption vs. data cost) simul-
taneously, and design a collaborative data uploading framework called effSense to improve
both types of users’ experience in mobile crowdsensing tasks.

For non-data-plan users, we propose to reduce or eliminate data cost in data uploading
by using the least expensive network (e.g., Bluetooth) other than 3G. For data-plan users, we
propose to choose the appropriate critical events (e.g., making a voice call) to trigger data
uploading that requires less energy rather than create a new 3G connection. We design two
dedicated schemes for both user types to help users make proper decisions about whether
to offload or keep data when encountering a critical event. Our effSense framework was
evaluated with the MIT and Nodobo datasets. The experiment results verified the efficiency
and effectiveness of effSense for data uploading in mobile crowdsensing tasks.
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4.1 Introduction

In MCS, for organizers, refunding participants money to cover the 3G data cost1 of sensed
data uploading is an efficient marketing strategy to compensate participants’ data cost con-
cern [77]. As this 3G data cost refund would increase organizers’ incentive budget, espe-
cially for tasks needing a large number of participants, how to reduce the 3G data refund
budget becomes a critical problem for MCS organizers.

To address this problem, first, we study the common price plans of 3G data cost. Cur-
rently two price plans are widely used by most telecom operators: Unlimited Data Plan and
Pay As You Go.

1In this chapter, for brevity, we use 3G data cost to represent all kinds of communication fees incurred by
data uploading via cellular networks (also including 2G, 4G, etc.).

59
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• Unlimited Data Plan (UnDP): with Unlimited Data Plan, a user can transfer an un-
limited amount of data during a period of time (usually for a month). The cost for an
unlimited data plan is fixed, e.g. $7/month (denoted as Priceu).

• Pay As You Go (PAYG): with Pay As You Go, a user pays 3G data cost according to
the amount of data transferred via 3G, e.g. $0.1/MB (denoted as Pricep).

With the above two 3G price plans, a simple solution to refunding participants’ 3G data
cost is to choose the right refund scheme for each mobile user according to the amount of
her uploaded data. Specifically, this direct-assignment method works as follows:

1. For each participant ui, estimate her amount of sensed data to be uploaded each month
(d MB).

2. Two possible refund schemes exist:

• UnDP: refund is Priceu.

• PAYG: refund is d ∗Pricep.

Choose the cheaper one as the refund for ui.

3. If assigned to UnDP, ui needs to set her 3G price plan to UnDP before the next month
starts (this is why we need to estimate d). At the end of the next month, the organizer
pays Priceu to ui.

4. If assigned to PAYG, ui can keep her original personal 3G price plan for next month
(independent of whether ui’s original price plan is PAYG or UnDP, the organizer
does not need to know2). In next month, the organizer counts the actual amount of
sensed data that ui uploads (d′ MB). At the end of the next month, the organizer pays
d′ ∗Pricep to ui.

When the sensing task is determined, one participant’s sensed data size in a month can
usually be estimated within reasonable error bounds (i.e. d ≈ d′), which makes direct-
assignment applicable.

Although direct-assignment can support real-time data uploading reasonably well, for
many delay-tolerant MCS tasks (Section 3.2), the refund budget of direct-assignment may
be still high. Recall in the collaborative data uploading mechanism, the following events
can be leveraged to reduce participants’ 3G data cost during the delay period:

1) Cost-free Network. A PAYG participant can use a cost-free network, such as Blue-
tooth or WiFi (e.g. at home or in the office), to upload sensed data to the server within the
delay period, which reduces her 3G data cost.

2) User Collaboration. UnDP participants can help relay PAYG participants’ sensed
data to the server. This kind of relay reduces 3G data cost for PAYG participants, with-
out increasing 3G data cost for UnDP participants, thus decreasing the organizer’s refund
budget.

2A participant’s refund scheme may be different from her 3G price plan. Refer to Section 4.7.2 and 4.7.3
for more details. In this chapter, unless specified otherwise, UnDP and PAYG represent refund schemes.
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Figure 4.1: Comparison between ecoSense and direct-assignment

Based on these events, we incorporate a new participant partition module into the col-

laborative data uploading framework, whose goal is to optimally partition the participants

into UnDP or PAYG sub-groups, in order to minimize the organizer’s 3G data refund bud-

get, via maximumly taking advantage of cost-free networks and user collaborations. The

resultant framework is called ecoSense. Note that the difference between ecoSense and eff-

Sense is: in effSense, whether a participant holds an UnDP is foreknown (e.g. according

to each user’s own preference) and we focus on designing data uploading strategies; while

in ecoSense, in addition to uploading strategies, another key technical issue is deciding

whether to assign a participant to the UnDP or PAYG group.

To better illustrate the basic idea of ecoSense, we use an example to compare ecoSense

and direct-assignment (see Figure 4.1). Suppose that Priceu is $7/month, Pricep is $0.1/MB,

and each participant’s sensed data will be larger than 70MB/month, so direct-assignment

refunds each of the four participants as UnDP. The refund budget of direct-assignment is

$7∗4 = $28 for a month.

By allowing some delay between data sensing and uploading, ecoSense enables the

following new data uploading paths:

• u1 and u2 have high probability to encounter u4 via Bluetooth within the delay period,

thus u4 can relay u1 and u2’s data.

• u3 is likely to meet a free WiFi access point (AP) within the delay period, so u3 could

upload data via that AP without 3G data cost.

As a result, by using delay-tolerant data uploading mechanisms, u1, u2 and u3 could sig-

nificantly reduce the amount of uploaded data via 3G. By adopting the above mechanisms,

if we assume that u1, u2 and u3’s 3G-uploaded sensed data size can decrease to less than

70MB/month, e.g. 50MB, 60MB, and 40MB respectively, then ecoSense would choose

the PAYG scheme for the three participants instead of UnDP, reducing the organizer’s re-

fund budget to $0.1 ∗ (50+ 60+ 40)+ $7 ∗ 1 = $22 for a month, compared to the $28 of
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direct-assignment.

Two important issues are involved in designing ecoSense:

1) How to transfer data when two PAYG participants meet?

Unlike the clear relay strategy between a PAYG participant and an UnDP participant

(i.e. PAYG
data
−→ UnDP), relay strategy between two PAYG participants is more complicated

and will affect the organizer’s refund budget. Among all the possible strategies, flooding
(i.e. always exchanging data between two PAYG participants) is expected to produce the
smallest refund budget. Because after flooding, if any one of two PAYG participants could
meet an UnDP participant or a cost-free network, both of their data could be uploaded with-
out 3G cost. However, flooding might incur too many redundant relays that rapidly drain
the batteries of participants’ mobile phones. Though our work focuses on minimizing the
organizer’s 3G data refund budget, the participants’ energy concerns should also be taken
into account to some extent. Otherwise, even if ecoSense “successfully” minimizes the re-
fund budget, participant phones’ energy consumption might be too high, making ecoSense
impractical. Thus, to study the trade-off between the organizer’s 3G data refund budget and
participant phones’ energy consumption, we try different data uploading/relay strategies.

2) How to decide each participant’s refund scheme — PAYG or UnDP?

To minimize the organizer’s 3G data refund budget, another key issue is to determine
which participants should be assigned to each of the schemes (and not just the percentage
of participants allocated to each scheme). Thus, the participant partition algorithm needs to
consider each participant’s mobility pattern and sensed data size:

• Mobility Pattern. To maximize data relay opportunities between PAYG and UnDP
participants, accurately profiling each participant’s mobility pattern is necessary for
deciding whether she should be assigned to the UnDP or PAYG scheme. Intuitively,
“active” participants who can help more other participants relay data should be as-
signed to UnDP.

• Sensed Data Size. A participant’s sensed data size would also impact whether she is
assigned to PAYG or UnDP. Generally a participant who uploads a larger amount of
sensed data should be assigned to UnDP.

Our proposed partition algorithm first predicts each participant’s mobility pattern and es-
timates her sensed data size, and finally uses a genetic algorithm to obtain a participant
partition for PAYG and UnDP groups. This algorithm is run before a new month starts
(only once a month) on the MCS organizer’s server.3

In summary, this work makes the following contributions:

1) To the best of our knowledge, this is the first work that aims to minimize the orga-
nizer’s 3G data refund budget by leveraging heterogeneous networks (e.g. 3G, Bluetooth,
WiFi) and user collaborations in MCS.

3Most telecom operators need a participant to decide her 3G data price plan for the upcoming month
before the end of the current month.
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2) We propose a collaborative data uploading framework, called ecoSense, attempting
to minimize the organizer’s 3G data refund budget. ecoSense considers two 3G price plans
to refund the participants — Pay As You Go and Unlimited Data Plan — and proposes
data uploading strategies for both UnDP and PAYG participants in the delayed uploading
period. Furthermore, a participant partition algorithm is designed to split all the participants
between PAYG/UnDP participant groups, in order to minimize the organizer’s 3G data
refund budget, via maximumly taking advantage of opportunistically encountered cost-free
networks and participant collaborations (data relays).

3) We use a real-life dataset, the MIT Reality Mining [113], and a larger SWIM [122]
simulation dataset to evaluate our approach. The evaluation results show that ecoSense
can reduce the organizer’s 3G data refund budget by up to ∼50% compared to the direct-
assignment solution.

4.2 Problem Statement

Considering the delaty-tolerant mobile crowdsensing task process (Section 3.2), ecoSense
aims to reduce the crowdsensing organizer’s refund budget for participants’ 3G data cost.
Before formulating the problem, we introduce some key concepts.

Definition 4.1 (Cost-free Events). A cost-free event refers to an encounter between a PAYG
participant and another participant or device that can probably help PAYG participants
upload data to the server without 3G data cost4.

Definition 4.2 (Uploading Decision Making). In a delayed-uploading cycle with maximum
tolerable delay Td, when a PAYG participant ui with sensed data ri (generated at t) encoun-
ters a cost-free event e at time t∗ (t∗ ∈ [t, t + Td]), ecoSense makes a decision about whether
data ri needs to be uploaded/relayed (i.e. true) or not (i.e. false). We express this decision
function as: D(ui,ri, t∗,e, t,Td)→ {true, f alse}.

Similar to effSense, if the decision D is true, we assume that a PAYG participant can
always relay/upload data successfully.

Definition 4.3 (Participant Partition). Given all the crowdsensing participants U, a par-
ticipant partition assigns each participant to UnDP group (Uu) or PAYG group (Up). We
express this partition function as: P(U)→ [Uu,Up], where Uu∪Up = U and Uu∩Up = φ.

Based on these definitions, we formulate our problem as follows.

Problem Formulation: In a crowdsensing task allowing certain data uploading delay
(Td), given all the participants (U), unit prices for both 3G price plans UnDP (Priceu, e.g.
$7/user for a month) and PAYG (Pricep, e.g. $0.1/MB), we require an uploading deci-
sion making strategy for PAYG participants (D) and a PAYG/UnDP participant partition

4Cost-free events are considered only for PAYG participants, as UnDP participants can upload an unlimited
amount of data via 3G.
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function (P), in order to minimize the crowdsensing organizer’s refund budget for all the
participants’ additional 3G data cost in one month5:

argmin
D,P

Re f und = argmin
D,P

(Re f undu + Re f undp)

= argmin
D,P

(|Uu| ∗Priceu +
∑
i∈Up

di ∗Pricep)

where

• Re f undu: refund budget for UnDP participants.

• Re f undp: refund budget for PAYG participants.

• di: amount of data uploaded via 3G by participant i in a month.

The solution to this problem is non-trivial, because:

1) We can neither foresee the participants’ mobility traces in the next month, nor how
much sensed data that needs to be uploaded. Thus, obtaining di is not straight-forward:
both participant mobility and sensed data size prediction methods should be combined in
order to estimate di.

2) Different D and P would affect Re f undu and Re f undp jointly. For example, if P
assigns more participants to UnDP, then Re f undu increases and Re f undp decreases, so that
whether overall Re f und increases or decreases remains uncertain. Even if P is determined,
D can still impact Re f undp, because PAYG participants hold different uploading strategies
under differentD.

4.3 The ecoSense Framework

To solve the problem formulated in the previous section, we design a novel mobile crowd-
sensing data uploading framework named ecoSense. The ecoSense framework is shown in
Figure 4.2, which contains two key components:

1) Uploading Decision Making (client component). This component runs on every
crowdsensing participant’s smartphone. It is triggered to decide whether to upload/relay or
keep data when a participant encounters a cost-free event, such as meeting another partici-
pant or discovering a Bluetooth/WiFi gateway. The Uploading Decision Making component
will be further elaborated in Section 4.4.

2) Participant Partition (server component). This component runs on the crowdsens-
ing organizer’s server to assign the participants to either the UnDP or PAYG group. It relies
on two modules - mobility prediction and sensed data size estimation.

5The problem is parameterized by the frequency with which we can update the participants’ type of price
plan. Currently, this is usually done on a monthly basis, but our approach is generalizable to different update
frequencies which may be more likely in the future provision of crowdsensing services.
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Figure 4.2: Overview of the ecoSense Framework

• Mobility Prediction module predicts participants’ mobility patterns in the next month.

With mobility prediction results, we can forecast how often a participant might meet

another participant, a Bluetooth gateway, or a WiFi access point, etc.

• Sensed Data Size Estimation module estimates the amount of sensed data that a spe-

cific participant would contribute in the following month. For different participants,

sensed data size might vary according to their activeness, privacy concerns, visited

locations, etc.

Currently, most telecom operators’ 3G data plans can change once a month, so this compo-

nent needs to run once at the end of a month, to obtain the group partition for the following

month. The Participant Partition component will be further elaborated in Section 4.5.

Now we briefly explain ecoSense’s workflow during a crowdsensing task period:

1) As shown in the left part of Figure 4.2, before a new month begins, the Participant
Partition component partitions all the participants into two groups with two different 3G

refund schemes: UnDP and PAYG.

2) After the new month starts, in each delayed-uploading cycle, when a participant

encounters a cost-free event (e.g. encountering a Bluetooth gateway or another participant),

the Uploading Decision Making component decides whether to upload/relay or keep data.

For example, in the right part of Figure 4.2, after making the decision, a PAYG participant

relays data to an UnDP participant via Bluetooth, while another PAYG participant relays

data to a Bluetooth gateway.

3) At the end of each delayed-uploading cycle, ecoSense checks all the participants to

see whether they have non-uploaded data, which can include the sensed data collected by

a participant himself and relayed data received from other participants. Then, ecoSense

forces those participants with outstanding non-uploaded data to create 3G connections in

order to upload it at the end of the cycle. In fact, only under this condition will PAYG

participants upload sensed data with 3G data cost in a particular cycle.
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4.4 Uploading Decision Making

In this section, we focus on introducing the strategies used in the uploading decision making
component (called uploading strategy), especially for PAYG participants, because their
uploading strategy will affect the organizer’s 3G data refund budget. To make the work
complete, we also introduce the uploading strategy for UnDP participants.

4.4.1 PAYG Uploading Strategy

We provide PAYG participants with three candidate uploading strategies: OneRelay, One-
HopFlooding and Epidemic.

1) OneRelay: a PAYG participant up would relay her data when she encounters an UnDP
participant uu (or a Bluetooth/WiFi gateway) at the first time in the delayed-uploading cy-
cle. After this relay, up’s data uploading process ends successfully as uu (or the gateway)
would help upload up’s data to the server. The name “OneRelay” just means that a PAYG
participant will relay her data at most once. Note that using OneRelay, a PAYG participant
will not relay her data to another PAYG participant.6

2) OneHopFlooding: a PAYG participant up would relay her data unconditionally to
another PAYG participant encountered until up meets either one of the two following stop-
ping criteria: (1) up directly encounters an UnDP participant (or a gateway) uu and relays
data to uu, or (2) the server notifies up that she could stop flooding (which we will further
discuss in the next subsection – UnDP uploading strategy). The name “OneHopFlooding”
just means that the flooding is only one-hop, i.e. a PAYG participant up1 will only flood
her own data (i.e. up1’s data) to the PAYG participants encountered. That is, even if up1
previously received a PAYG participant up2’s data, up1 will not further flood up2’s data to
other PAYG participants. However, if up1 encounters an UnDP participant (or a gateway)
uu, up1 will relay both up1 and up2’s data to uu.

3) Epidemic [123]: Removing the one-hop restriction of OneHopFlooding can lead to
a complete flooding strategy, i.e., Epidemic routing. Using the Epidemic strategy, when
two PAYG users meet, they will exchange all the data that they do not have in common,
independent of whether the data is generated by themselves or received from someone
else. To avoid redundant connections, a reconnection time threshold is set to ensure that
two specific users exchange data at most once within a predefined time period [123]. For
example, supposing the threshold is 30 minutes, then if two users u1 and u2 exchange data at
12:00, they will not reconnect with each other and exchange data until 12:30, even though
they re-encounter between 12:00 and 12:30. Although a smaller threshold could incur a
lower refund budget, in practice, we cannot greatly reduce the reconnection time threshold
due to the energy consumption issue.7

6Actually, OneRelay is the same as S impleGreedyndp in effSense (Section 3.5.1). While to make this
section self-contained, we still describe it here.

7We set the reconnection time threshold of Epidemic to one hour in the experiment.



Participant Partition 67

In general, among the three strategies, Epidemic incurs the most data relays, while it can
help the organizer to pay the smallest refund budget. OneRelay makes every relay valuable,
but the refund budget is likely to be higher than for the other two strategies. All the strate-
gies take the energy consumption (i.e. relay count) into account, as we cannot make the
delayed uploading process too energy-draining in real-life scenarios. A detailed compari-
son of the three uploading strategies with respect to refund budget and energy consumption
will be examined in our experiments.

Currently, we restrict our comparison of PAYG uploading strategies to OneRelay, One-
HopFlooding and Epidemic, as they are easily implemented in participants’ mobile phones.
In our future work, we will evaluate other strategies such as Binary Spray and Wait [124].

4.4.2 UnDP Uploading Strategy

How UnDP participants upload data during delayed-uploading cycles does not affect the
crowdsensing organizer’s 3G data refund budget. For brevity, we assume that the UnDP
participants use the UpEnd strategy, defined as follows:

UpEnd: UnDP participants keep all the sensed data collected by themselves, and re-
ceived from other PAYG participants, until the end of the delayed-uploading cycle; at which
point they upload all the data together.

Specifically, if PAYG participants adopt OneHopFlooding or Epidemic, UnDP partic-
ipants will perform an additional action when they receive PAYG participants’ data: If an
UnDP participant uu receives a PAYG participant up’s data, uu will notify the server that
up’s data will definitely be uploaded to the server by uu before the end of the delayed-
uploading cycle. Then, the server will notify up to stop flooding her data,8 which corre-
sponds to the second stopping criterion that we described previously in OneHopFlooding
(the same stopping criteria also apply to Epidemic). While this additional action would not
affect the organizer’s 3G data refund budget, it could decrease the relay count of PAYG
participants significantly and make OneHopFlooding and Epidemic more energy-efficient
in real-life scenarios.

4.5 Participant Partition

After choosing the uploading strategy for the participants, the crowdsensing organizer also
needs to partition the participants into two groups — PAYG and UnDP — in order to
minimize the 3G data cost that needs to be refunded. Figure 4.3 shows the overview of the
participant partition framework. To achieve a reasonable participant partition, two factors
need to be considered:

8This notification will consume some data cost for PAYG participants. However, the amount of data cost
incurred by the notification is usually small compared to the sensed data to upload. So we currently ignore it.
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Figure 4.3: Overview of participant partition framework

• Mobility Pattern. A participant’s mobility pattern affects how often she could meet
another participant or a Bluetooth/WiFi gateway.

• Sensed Data Size. Different participants will most likely contribute different sizes of
sensed data due to variant behaviors such as their degree of activity and their privacy
concerns.

In this section, we first describe our methods to predict participants’ mobility pattern
and to estimate participants’ sensed data size. Then we propose a genetic algorithm to
partition the participants into UnDP and PAYG groups.

4.5.1 Mobility Pattern Prediction

Though mobility prediction has been studied comprehensively, most of the existing work
focuses on short-term “Next Place” prediction [125, 126] and could not be applied directly
to ecoSense. In ecoSense, we want to solve a long-term mobility pattern prediction prob-
lem:

In the next upcoming month, for each delayed-uploading cycle, what is the probability
that a participant encounters another participant or a Bluetooth/WiFi gateway?

Specifically, through previous mobility trace analysis, we predict whether a PAYG par-
ticipant can upload data without 3G data cost in a delayed-uploading cycle, i.e. the prob-
ability that she could meet at least one UnDP participant or one Bluetooth/WiFi gateway.
We note this probability as pi, j for participant i and delayed-uploading cycle j.

Similar to effSense, we also use a Poisson-distribution-based method to predict pi, j:

1. Represent a delayed-uploading cycle j as a triple: (tstart, tend,day_type), e.g. (8:00,12:00,week-
day), where tstart and tend are the start and end time of the cycle, respectively, and
day_type refers to weekday or weekend.
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2. Find all the historic time spans with the same triple as the delayed-uploading cycle j
(denoting the set of these historic time spans as HS j), then count the total number of
the cost-free events that could help ui to upload data without additional 3G cost oc-
curred in HS j, denoted as #event f ree(ui,HS j). Then pi, j can be predicted as follows,
assuming the Poisson distribution stands:

pi, j = 1− e#event f ree(ui,HS j)/|HS j|

4.5.2 Sensed Data Size Estimation

Estimating how much sensed data each participant needs to upload is also important to
obtain a participant partition to reduce total 3G cost. In this subsection, we attempt to
model a participant i’s sensed data size during the sensing cycle j, denoted as di, j.

1) Fixed-Size Sensed Data. Some sensing tasks will generate similar sensed data size in
a sensing cycle. For example, the size of each user’s accelerometer record is approximately
proportional to the sensing duration time. So if all the users participate in a common sensing
task for the same duration (e.g. activity recognition during daytime) in a sensing cycle, their
contributed sensed data size will be similar.

For fixed-size sensing tasks, we model di, j as:

di, j = c

where c is a constant, which means that for different participants and different sensing
cycles, this sensing task would generate the same sensed data size.

2) Varied-Size Sensed Data. Some sensing tasks will generate different sensed data
sizes for different participants in a sensing cycle for various reasons, e.g.:

• Location-centric sensing. This kind of sensing task usually triggers sensing when
a participant enters a new location within a target sensing area, e.g. air quality and
noise monitoring. Thus, the more places a participant visits, the more sensed data she
would gather.

• Activeness in participatory sensing. Participatory sensing needs participants to be
actively involved in the sensing tasks, e.g. taking photos at specific locations. Differ-
ent participants can have different levels of activity, leading to different contributed
sensed data sizes.

• Private concern. To protect privacy, some participants might choose not to upload
part of the sensed data.

For varied-size sensing tasks, here we consider only the influence of locations visited
on the size of the sensed data and model di, j as:

di, j = c + k ∗ li, j

where
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Algorithm 1 GA-based Partition Algorithm
Input: Re f und: optimization function; U: all participants
Output: Up and Uu: participant partition

1: B← bivector(U) . Change U into a bi-vector, where each element marks a participant as PAYG (0) or
UnDP (1).

2: N(population)← initialize with randomly assigning 0 or 1 in B for each candidate participant partition
in the population.

3: i← 0
4: while i < itermax do
5: K ← keepbest(N) . The best partitions are the ones that can get the smallest values on Re f und

function.
6: C← crossover(N)
7: M← mutation(N)
8: N ← {K ,C,M}
9: i← i + 1

10: end while
11: Up,Uu← the best participant partition that can achieve the smallest Re f und during all the iterations.

• c is the size of the constant part of the sensed data. Though the data sizes of varied-
size sensing tasks usually vary for different participants, still some part of the sensed
data size is constant (e.g. some aggregation/summary information of the sensing
task). In fact, we can also see fixed-size sensing tasks as a special form of varied-size
sensing tasks.

• k ∗ li, j is the sensed data size for location-centric sensing, where k is the unit sensed
data size for one location, while li, j is the number of the locations that participant i
would visit during the sensing cycle j. We predict li, j via the same mobility prediction
method previously discussed.

In real life, the sensed data size distribution is likely to be more complicated than sug-
gested by our estimation formula, due to our abstracting away from subtle variations be-
tween different instances of sensing tasks. In our future work, we will model the sensed
data size in a more precise way, taking into account more task-dependent and participant-
dependent factors.

4.5.3 GA-based Partition Algorithm

Based on the mobility prediction and sensed data size estimation results, we can approxi-
mate the organizer’s 3G data refund budget for the upcoming month. This 3G data refund
budget approximation function takes a specific UnDP/PAYG participant partition as input:
Re f und(Uu,Up).

In other words, given a participant partition result (i.e. knowing Uu and Up), we can
approximate Re f und for the next upcoming month (supposing all the sensing cycles for the
following month is C):
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Re f und = |Uu| ∗Priceu +
∑
j∈C

∑
i∈Up

di, j ∗ (1− pi, j)∗Pricep

Considering Re f und as the optimization function, participant partition can be directly
expressed as a set split problem for minimizing Re f und, which is NP-hard. Thus we use
a genetic algorithm [127] to obtain a near-optimal solution. Algorithm 1 shows the pseu-
docode of the genetic algorithm. We use a bi-vector to mark each participant as an PAYG (0)
or UnDP (1) participant (Line 1). In each generation, we keep the best participant partitions
from the previous generation by evaluating Re f und function on every partition (Line 5). In
addition to the best partitions, applying crossover (Line 6) and mutation (Line 7) func-
tions [127] on the previous generation’s population, we obtain the other two sets of candi-
date partitions, in order to compose the whole population that will be examined in the new
generation (Line 8). Finally, the genetic algorithm could generate a near-optimal participant
partition result. Note that we adopt a fixed number of iterations as the stopping criterion for
the genetic algorithm (Line 4).

4.6 Evaluation

In this section, we first evaluate ecoSense using the MIT Reality Mining dataset [113]
including 48 active users. Then, to further evaluate both ecoSense’s budget saving efficacy
and algorithm computation efficiency with a larger number of users, we simulate a 500-user
mobility trace leveraging SWIM [122] and show the corresponding results.

4.6.1 Experimental Setup on MIT Reality Mining

For the MIT Reality Mining dataset, we choose two months’ data (2004.10 and 2004.11)
from 48 active users who have more than 20-day records per month. The mobility traces in
the MIT Reality dataset include each user’s Bluetooth encounters with other users and gate-
ways deployed by the organizer. Note that to ensure that the sensed data can be successfully
offloaded between two users via Bluetooth, we only use the Bluetooth encounters lasting
for more than 5 minutes in the experiment. We use the first month’s user data (2004.10) as
the historic record to obtain a participant partition of PAYG and UnDP groups, and evalu-
ate the performance on the second month (2004.11). The sensing cycle lasts for one day
and the delayed-uploading cycle lasts for 3 hours9 (recall Figure 3.2 for the illustration of
sensing and delayed-uploading cycles). In this experiment, we set two Bluetooth gateways
named localhost.media.mit.edu and studies.media.mit.edu. The costs of PAYG and UnDP
price plans are set to $0.1/MB and $7/month respectively.

Adding up-to-date WiFi usage logs. To mitigate the shortage of WiFi usage logs in
the MIT dataset10, we use an up-to-date mobile phone usage dataset, Cambridge Device

9The delayed-uploading cycle starts at noon every day.
10Back to 2004 when the MIT Reality Mining campaign was conducted, WiFi was not a popular data
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Analyzer [128], to complement the MIT dataset. Specifically, for each MIT user umit, we
randomly select a Cambridge user ucam and uses ucam’s latest two-month WiFi usage logs
to represent umit’s WiFi usage.

Setting the battery threshold for relaying data. Similar like the previous work effSense,
in this experiment, a user will relay others’ data only when the battery level of her phone
is above a predefined threshold (50%). More details about how to simulate the battery
consumption please refer back to Section 3.6.1.

4.6.2 Baseline Methods

To compare with ecoSense, we introduce the following two methods:

1. direct-assignment is the baseline method that assigns each participant to the UnDP
or PAYG group directly according to her estimated sensed data size in the upcoming
month.

2. ecoSense-ideal does not do mobility prediction and directly leverages the second
month’s mobility trace (2004.11) in the genetic algorithm in order to get an opti-
mal participant partition. In real life, this future data is not available; however, this
result serves as a bound of the organizer’s refund budget and shows the potential im-
provement that we could make by designing a better mobility prediction method in
the future.

4.6.3 Evaluation Results on MIT Reality Mining

The most important issue is how much ecoSense could save for the organizer’s 3G data
refund budget when compared to direct-assignment. We will first show the results when all
the participants upload the same size of sensed data in each sensing cycle (i.e. fixed-size
data setting). Then, we will change the fixed-size data setting to the varied-size data setting,
where the size of the sensed data that a participant would contribute is proportional to the
number of visited locations. For the sake of simplicity, the above experiments are conducted
using the OneRelay uploading strategy (the “uploading strategy” in the evaluation section
refers to “PAYG uploading strategy”). Afterwards, we will illustrate the difference between
the OneRelay, OneHopFlooding and Epidemic uploading strategies, from two perspectives:
refund budget and energy efficiency. Finally, we evaluate how two parameters — max
tolerable delay and 3G price plan cost — affect ecoSense’s performance.

Fixed-Size Sensed Data Uploading

Here, we show how much refund cost ecoSense could save compared to direct-assignment
for sensing tasks generating fixed-size sensed data. We adopt OneRelay as the uploading
strategy. To see whether ecoSense’s Poisson-distribution-based mobility prediction method

transmission method for mobile phones.



Evaluation 73

 0

 50

 100

 150

 200

 250

 300

 350

 1000  1500  2000  2500  3000  3500  4000  4500  5000  5500  6000
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

R
ef

un
d 

($
)

R
ef

un
d 

Pr
op

or
tio

n 
(v

s 
di

re
ct

-a
ss

ig
nm

en
t)

Data Size (KB/cycle)

ecoSense
ecoSense-ideal

direct-assignment
(prop.) ecoSense/direct-assignment

(prop.) ecoSense-ideal/direct-assignmenent
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Figure 4.5: Average number of visited cell towers per day for each participant in 2004.11

has already achieved good enough performance or not, we also compare ecoSense with
ecoSense-ideal.

Figure 4.4 shows the mobile data cost refund under different fixed data size settings:
1000-6000 KB/cycle. ecoSense could save 25-48% monetary refund compared to direct-
assignment. We find that the data size setting where ecoSense can get the most significant
effect (∼ 48% saving) is around 2500 KB/cycle, where direct-assignment changes from as-
signing the participants with PAYG to UnDP (denoted as turning point, the vertical dashed
line in Figure 4.4).

Compared to ecoSense-ideal, ecoSense’s refund budget is larger by only 1-4%. This
demonstrates that with the Poisson-distribution-based mobility prediction method, ecoSense
has already achieved good performance. It may be possible to design a better mobility pre-
diction method, but even with higher accuracy, the improvement on refund budget saving
is not likely to be significant.

Varied-Size Sensed Data Uploading

We now consider the 3G data refund budget for varied-size sensing tasks. As mentioned
in Section 4.5.2, the estimated varied data size for participant i in sensing cycle j can be
modeled as di, j = c + k ∗ li, j.
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Figure 4.6: Refund budget for varied-size data
uploading (c = 0)
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Figure 4.7: Refund budget for varied-size data
uploading (c = 500KB)

We write li, j for the number of cell towers the participant i stayed in during sensing
cycle j.11 Figure 4.5 illustrates the average number (avg± std) of the visited cell towers per
sensing cycle for each participant in 2004.11. The average number of visited cell towers
for different participants ranges from 3.6 to 9.7 per sensing cycle. For constant c in the
di, j model, when c = 0, we assume that the participants sense only in each visited place.
When c , 0, we assume that besides the sensed data for each visited place, participants
also upload some other sensed data, e.g. aggregated coarse activity log, which accounts for
approximately the same size of data for different participants (e.g. 500 KB).

Figures 4.6 and 4.7 show the organizer’s 3G data refund budget when the sensed data
size for each cell tower is set as k ranges from 100 to 600 KB/cell tower, where c is set to
0 and 500 KB respectively. Similar to the evaluation results for the fixed-size data setting,
compared to direct-assignment, ecoSense could save 33-51% of the refund budget. Besides,
the most significant budget saving also appears around the turning point (the vertical lines in
Figure 4.6 and 4.7), where direct-assignment begins to assign all the participants to UnDP.

Compared to ecoSense-ideal, ecoSense’s refund budget is larger by 1-5%, which gives
the range for improvement through the introduction of a more precise mobility prediction
method.

Different Uploading Strategies

Previous experiments all run under the OneRelay uploading strategy. Here we study
how different uploading strategies (OneRelay, OneHopFlooding, or Epidemic) would af-
fect ecoSense’s performance. In addition to the 3G data refund budget, we also consider
the energy consumption in participants’ smartphones by counting participants’ relays and
battery drain per delayed-uploading cycle. For simplicity, we consider only the fixed-size
data setting.

Figure 4.8 shows the 3G data refund budget when PAYG participants adopt different up-
loading strategies for fixed-size data. As expected, Epidemic achieves the smallest refund
budget, while OneRelay incurs the largest. Specifically, Epidemic could save 2-15% more
budget than OneRelay. For smaller sensed data sizes, the improvement is more pronounced

11To avoid those cell towers that a participant just passed by, we record a cell tower only if a participant
stayed in the vicinity of the cell tower for more than 5 minutes.
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Figure 4.10: 2000mAh battery drain of the worst
participant for different uploading strategies

(e.g. 15% for 1000-1500 KB/cycle, while 2% for 6000 KB/cycle). This occurs because, for
smaller data packets, fewer participants will be assigned to UnDP, leading to more PAYG
participants. The large number of the PAYG participants consequently improve the per-
formance of Epidemic. For OneHopFlooding, it achieves almost the same refund budget
as Epidemic with the increase in data size. This indicates that with more UnDP partici-
pants for larger data packets, flooding a PAYG user’s data within only one hop has already
achieved high probability of making the data received by an UnDP participant or gateway
(thus reducing the budget); using Epidemic, i.e., removing the restriction of one-hop of
OneHopFlooding, does not increase this probability significantly.

Figure 4.9 shows the average relay count per delayed-uploading cycle for a partici-
pant, as well as the maximum relay count among all the participants (including both PAYG
and UnDP groups). Epidemic and OneHopFlooding incur the similar average relay count,
which is 1.2–4.6 times larger than OneRelay. Considering the maximum relay count for a
participant in a delayed-uploading cycle (i.e. the worst energy consumption case), Epidemic
is significantly larger than OneHopFlooding and OneRelay, especially when the data size
is less than 3000 KB/cycle. For example, when data size is 1000 KB/cycle, the maximum
relay count for Epidemic is 30, while only 18 and 15 for OneHopFlooding and OneRelay,
respectively. The maximum relay count for OneHopFlooding is also larger than OneRelay,
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Figure 4.11: Refund budget proportions for varying maximum tolerable delays

however the difference is usually smaller than the average relay count (less than 1.5 times).
Specifically, using OneHopFlooding would trigger at most 5 more relays than OneRelay
for the “worst participant” who consumes the most energy for relays. Based on previous
research on mobile phone energy consumption [117], we calculate the mobile phones’ bat-
tery drain for the “worst participant” with different uploading strategies. Figure 4.10 shows
that — for a 2000mAh battery — the battery drain with OneHopFlooding and OneRelay is
always less than 7%, while the battery drain difference between the two strategies is at most
2%; in comparison, the battery drain with Epidemic is a bit higher, leading to 8.5% in the
worst case. For real-life scenarios, the strategy selection among Epidemic, OneHopFlood-
ing and OneRelay needs to be further studied in order to better balance the 3G refund saving
and the participant mobile phones’ battery drain.

Other Experimental Parameter Analysis

To better understand how max tolerable delay and 3G price plan cost affect ecoSense’s
performance, in this section, we use some different parameter settings from the ones used
in the previous experiments.

Varying Maximum Tolerable Delays

Here, we conduct the experiments to test ecoSense’s performance for various delays
other than 3-hour. Suppose the uploading strategy is OneRelay, Figure 4.11 shows the 3G
data refund budget proportion (ecoSense vs. direct-assignment) for 3/6/12-hour maximum
delays. As the delay increases, the 3G refund budget becomes lower. This is because adopt-
ing a longer delay, participants have more opportunities to relay data via another participant
or a Bluetooth/WiFi gateway to reduce 3G data cost.

Varying 3G Price Plan Costs

The costs of different telecom operators’ 3G price plans can vary. Thus, we also exam-
ine the evaluation results for various price plan settings.

Suppose the uploading strategy is OneRelay, Figure 4.12 shows the refund budget pro-
portion (ecoSense vs. direct-assignment) for three different price plan settings — where
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Figure 4.12: Refund budget proportions for varying price settings

data size ecoSense direct-assignment saving ratio

500 KB $368 $750 51%

1500 KB $573 $2250 75%

2500 KB $728 $3500 79%

3500 KB $849 $3500 76%

4500 KB $956 $3500 73%

Table 4.1: Refund budget for 500-user SWIM simulation

PAYG prices are all set to $0.1/MB and UnDP prices are set to $5, $7, $9/month respec-
tively. The most significant difference among different settings is that the turning point
(i.e. the data size where the refund budget proportion is the lowest) changes, because the
turning point is the sensed data size where direct-assignment begins to assign all the par-
ticipants to UnDP, which is sensitive to the price plan setting. Except for the turning point,
most observations are similar for different settings. For example, whatever the price plan
settings, ecoSense could save at most about 50% of the refund budget compared to direct-
assignment.

4.6.4 Experiment on SWIM Simulation

To evaluate ecoSense’s budget saving efficacy and algorithm computation efficiency (espe-
cially the participant partition algorithm) on a larger number of users, we simulate a user-
encounter dataset containing 500 users’ two-month traces by SWIM [122]. The simulation
parameters are selected according to the “Dartmouth” setting in [122], in order to simulate
user encounters in a campus. The experimental settings are similar to those used with the
MIT Reality Mining dataset: the sensing cycle lasts for one day and delayed-uploading cy-
cle lasts for 3 hours. For simplicity, we show only the evaluation results when the uploading
strategy is OneRelay and the sensing task is fixed-size.

Budget Saving Efficacy
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Table 4.1 shows the refund budget with the 500-user simulation dataset. As the user
number increases to 500 and the users’ activity area remains within the campus-like scale
of the MIT dataset, the user spatial density in the SWIM simulation is much larger than
that for the MIT dataset, which leads to more refund budget saving. For example, when
the fixed data size is 2500 KB, ecoSense can save 79% in the 500-user simulation dataset,
with respect to 48% on the 48-user MIT dataset (see Figure 4.4). In other words, if more
users are active in a smaller area, they will have more chances to meet each other so that
ecoSense could save more 3G data cost.

Algorithm Computation Efficiency

With respect to computation efficiency, we focus on the run-time performance of the
server-side participant partition component, as the smartphone-side uploading decision
making component’s strategy (OneRelay, OneHopFlooding or Epidemic) is simple. For
the participant partition component, the genetic algorithm dominates the running time, be-
cause our proposed mobility prediction and sensed data size estimation methods are simple
and run much faster than the genetic algorithm.

For the genetic algorithm, the main difference between 48 users (MIT) and 500 users
(SWIM simulation) is that for more users we need more iterations to obtain a near-optimal
result. In our experiment environment12, we can get a good solution in 50 rounds for
the 48-user MIT dataset (approximately 5 minutes of execution time), while we need 500
rounds for the 500-user simulation dataset (approximately 90 minutes of execution time).
As the participant partition is an offline algorithm, which only needs to run once a month,
we believe that this execution efficiency is already adequate for most real-life conditions.
Furthermore, the performance of the genetic algorithm can be easily (and dramatically)
improved by leveraging its inherent parallelism.

4.7 Discussion

As this is the first research work investigating how to refund crowdsensing participants’
3G data usage incurred by sensing tasks and it is still at an early age, we will discuss
some issues which are not addressed due to space limit, and point out some future potential
research directions.

4.7.1 Other Kinds of Monetary Incentives

Currently, we consider only the refund to cover crowdsensing participants’ additional 3G
data cost. In real life, other kinds of monetary incentives can also be provided to the partic-
ipants, such as a fixed payment for the participation and higher reward (prize) for a small
number of most active participants.

12Software: DEAP (https://github.com/DEAP/deap) with python 2.7, Windows 7; Hardware: Intel core
i7-3612QM@2.1GHz, 8G RAM.
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Though the refund of 3G data cost is only a part of the total monetary incentives, it
could be a reasonable baseline because refunding each participant with her 3G data cost
can mitigate the participant’s worry about whether the 3G data usage would exceed her data
plan and incur extra fees [129, 77]. In other words, refunding 3G data cost could at least
prevent the participants from paying extra fees because of participation in a crowdsensing
task. Other kinds of monetary incentives could be added to the 3G data cost refund to
further encourage users to participate in the sensing task.

4.7.2 Participants’ Personal 3G Data Usage

In addition to the 3G data usage for the crowdsensing task, participants also consume 3G
data for their personal application usage. Here, we prove that ecoSense can always work
effectively (i.e. refund can cover additional 3G cost incurred by the crowdsensing task)
even if we do not know participants’ actual personal data usage.

For an UnDP participant, personal data usage does not matter because the unlimited 3G
data plan covers it automatically. However, for a PAYG participant, each of the two price
plan cases requires further clarification and analysis:

1. If a PAYG participant up’s original price plan is also PAYG (i.e. small personal data
usage), then ecoSense’s refund for up just equals the additional 3G data cost incurred
by the sensing task.

2. If a PAYG participant up’s original price plan is UnDP (i.e. large personal data usage),
obviously up’s reasonable choice is still using UnDP as price plan after participating
in the sensing task, which means that up’s additional 3G data cost incurred by the
sensing task is 0. Currently, ecoSense would still refund this kind of participant
through the PAYG scheme (i.e. refunding them the money proportional to their 3G-
uploaded data size), because we cannot easily distinguish them from the previous
small-personal-data-usage kind of participant.13

In summary, without knowing the actual personal data usage for each participant, ecoSense’s
refund mechanism can always cover each participant’s additional 3G data cost incurred by
the crowdsensing task.

4.7.3 Other 3G Price Plans

Usually telecom operators offer users 3G price plans other than PAYG and UnDP. For exam-
ple, D100MB price plan: $1 for the first 100MB data and then $0.1/MB (like PAYG). Here,
we discuss the problem: whether ecoSense’s refund mechanism can still cover participants’
additional 3G cost when other 3G price plans exist?

On one hand, by still using only two refund schemes of PAYG and UnDP, even if other
3G price plans exist, ecoSense can effectively refund participants to cover their additional

13We can distinguish these two kinds of participants provided we assume that all the participants trustfully
report their original price plans. However, due to the privacy concern and user selfishness, we do not make
this assumption in our current work.
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3G cost. For example, assume that a participant’s original price plan is D100MB. If re-
funded as UnDP, she can change next month’s price plan to UnDP; and if refunded as
PAYG, she can keep the D100MB price plan. As long as a participant follows the above
rule, ecoSense’s refund can always cover her additional 3G cost.

On the other hand, it is promising to introduce new 3G price plans, such as D100MB,
into refund schemes of ecoSense. For example, after importing D100MB as a new refund
scheme (i.e. refund schemes increase to three types: UnDP, D100MB, and PAYG), we could
model the participants with D100MB refund scheme as “UnDP” participants when data
usage is less than 100MB, and as “PAYG” participants when data usage exceeds 100MB.
This type of polymorphic participant partition mechanism requires further research.

4.8 Concluding Remarks

Refunding mobile crowdsensing participants for additional 3G data cost incurred during the
crowdsensing process is an effective marketing strategy for the organizer. In this chapter,
we investigate the problem of how to minimize total 3G data refund budget for the crowd-
sensing organizer who follows such a marketing strategy, especially via heterogeneous net-
work communications and user collaborations. Based on two widely-used 3G price plans,
Pay As You Go and Unlimited Data Plan, we propose a delay-tolerant collaborative data
uploading framework called ecoSense, whose goal is to minimize the organizer’s 3G re-
fund budget. Specifically, ecoSense includes the data uploading strategies for both PAYG
and UnDP participants, as well as a participant partition algorithm to determine whether a
participant should be assigned to PAYG or UnDP. Our ecoSense framework was evaluated
using the MIT Reality Mining dataset and a larger SWIM simulation dataset. The evalua-
tion results showed that ecoSense could save up to ∼50% of the refund budget compared to
direct-assignment that assigns each participant to UnDP or PAYG directly according to the
size of her sensed data.
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Sparse Mobile Crowdsensing
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Sparse Mobile Crowdsensing

In a traditional MCS paradigm, to obtain a high-quality sensed result, organizers usually
need to recruit enough participants so that their uploaded sensed data can cover almost the
whole target sensing area (full or high coverage). Nevertheless, this strategy may still incur
high sensing cost, including overall smartphone energy and network bandwidth consump-
tion, as well as incentives paid to the participants. Then, one question arises: is it possible
to reduce the sensing cost by only sensing a small number of the sub-areas, meanwhile still
guarantee satisfactory data quality for the whole target area?

To address this question, in this part of the dissertation, we consider the spatial and tem-
poral correlation among the data sensed in different sub-areas to significantly reduce the
required number of sensing tasks allocated, and thus propose a new MCS paradigm called
Sparse Mobile Crowdsensing (Sparse MCS). Sparse MCS applications intelligently se-
lect only a small part of the target area for sensing while inferring the data of the remaining
unsensed area with high accuracy. In Chapter 5, we describe the basic idea and research is-
sues in Sparse MCS, as well as implement a prototype Sparse MCS system, called CCS-TA,
for urban environment monitoring.

As location privacy is an important concern which impacts MCS participants’ active-
ness, in Chapter 6, we also study this issue specifically for Sparse MCS applications. To
this end, we introduce a differential location privacy mechanism, called DUM-εe, to obfus-
cate participants’ actual locations before data uploading, and meanwhile minimize the data
quality loss incurred by the privacy protection.
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Chapter 5
CCS-TA: Quality-Guaranteed Task
Allocation for Sparse Mobile
Crowdsensing
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5.1 Introduction

To obtain high-quality sensed results in MCS applications, existing work usually aims at
recruiting enough participants so as to ensure that their sensed data can cover almost the
whole target area, i.e., full coverage [92, 93] or high probabilistic coverage [95, 8, 130, 94].
Specifically, by ensuring coverage of each sensing sub-area or cell (full coverage) or most
of the cells (probabilistic coverage) by mobile participants, the MCS applications attempt
to obtain accurate and reliable sensing values throughout the target area, in order to compile
a full sensing picture which meets the needs of the MCS organizers. The underlying con-
nection between full coverage (or high probabilistic coverage) and data quality is that the
full coverage (or high probabilistic coverage) can ensure the MCS organizers get represen-
tative sensing values for the target area. In essence, for the MCS organizers, the data quality
requirement is to obtain a reasonably accurate sensing value for each sub-area (cell).
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Figure 5.1: Use case: temperature monitoring in an urban area.

While ensuring full or high probabilistic coverage is a straightforward approach to ob-

tain representative data for each cell, the down side is that whatever the efficient task allo-

cation mechanism is used, the MCS organizer has to allocate tasks to almost every cell at

least once [93]. This may still lead to high incentive budget, especially when the organizer

plans to carry out a variety of MCS campaigns at a large scale.

In order to further reduce the number of recruited participants, an alternative approach

is to select only a few cells for physical data sensing, while inferring the data of the rest of

cells of the target area and ensuring the data accuracy. This alternative method is actually

feasible as many kinds of environmental data, such as temperature [131] and noise [4, 132],

have been shown to be able to be inferred with good quality due to the strong temporal and

spatial correlations among the data.

With this insight in mind, we propose to use the overall sensing data accuracy, rather

than the sensing area coverage, as the data quality metric. We further exploit the temporal

and spatial correlations among the sensing data to infer the missing data of unsensed cells

from the sensing data in selected cells. By actively selecting a minimal number of cells

for task allocation, we try to minimize the number of recruited participants, while ensuring

the overall data accuracy meets a predefined bound. We name this novel MCS paradigm,

which applies inference algorithms to construct the complete sensed data map from partial

sensed data, as Sparse Mobile Crowdsensing (Sparse MCS).

The basic idea can be illustrated by the following use case (Figure 5.1): an MCS orga-

nizer launches an environment temperature monitoring task in a target urban area, which

has already been divided into cells according to the organizer’s requirement. The orga-

nizer needs to update the full temperature sensing map once every hour (sensing cycle),

and in each sensing cycle, the data quality requirement is that the mean absolute error for

the whole area should be less than 0.25◦C. In each sensing cycle, to meet the data qual-

ity requirement while minimizing the number of the allocated tasks, the organizer actively

selects a subset of the cells to sense physically, i.e., allocating tasks to the participants in

those selected cells. Based on the sensed temperature values of those selected cells, the

temperature values of the remaining cells are inferred.
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To accomplish the Sparse MCS task described in the use case above, we need to address
the following two research challenges:

1) How many and which cells should be chosen for task allocation? In each cycle, to
minimize the number of allocated tasks while ensuring the data quality, the organizer needs
to select a minimum subset of the cells to allocate tasks. In order to find this minimum
cell combination, we need to identify the salient cells whose sensing values, if collected,
can help infer the values of other cells to the maximum extent. However, how to identify
the salient cells in an online manner is not trivial, because without foreknowing the true
sensing value of a cell, it is hard to predict how much that value can help increase the data
accuracy if collected.

2) How to quantitatively measure and estimate the data quality online throughout
an MCS task without knowing the true sensing values of the unsensed cells? Since
the true sensing values of the unsensed cells are unknown, we cannot measure the data
accuracy directly by comparing the inferred data with the unknown ground truth. We thus
need a method to efficiently estimate such sensing data accuracy online in each sensing
cycle. Furthermore, as the estimated data accuracy intrinsically has certain discrepancy
from the actual accuracy, it is practically hard to strictly guarantee all the sensing cycles
to meet a predefined error bound. Therefore, we need to find a practical way to define the
data quality requirement for an MCS task instead of merely setting the error bound for each
sensing cycle.

With the above-mentioned research objective and challenges, the main contributions of
the work are:

1) We propose a novel sensing data quality metric to assess the quality of an MCS task,
called (ε, p)-quality, which considers not only the required error bound ε but also what
fraction p of sensing cycles should meet the bound ε. We further propose to exploit the
temporal and spatial correlations among the sensing values of different cells to significantly
reduce the number of allocated tasks. To the best of our knowledge, this is the first work
in MCS that attempts to reduce the number of cells being sensed by intelligently selecting
which cells are best for sensing while inferring the missing values of the remaining cells, to
ensure that the overall data accuracy meets a predefined quality requirement. Specifically,
we coin a new term, Sparse Mobile Crowdsensing, to refer to such a novel MCS paradigm.

2) In order to reduce the number of sensing cells required for task allocation in each
sensing cycle while achieving the predefined (ε, p)-quality in Sparse MCS, we propose a
two-phase online task allocation framework, called CCS-TA (Compressive CrowdSensing
Task Allocation). With CCS-TA, in phase one we decide which cell is the best to add
for sensing in each cycle according to active learning techniques. After collecting the
sensing data from the selected cells, in phase two we propose a Bayesian inference based
method to estimate the overall data accuracy online after inferring the data of the remaining
cells using compressive sensing. Based on the estimated overall data accuracy, CCS-TA
decides whether more cells should be selected for task allocation to ensure the predefined
(ε, p)-quality.
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3) We conduct extensive evaluations on real-life temperature [133] and air quality [134]
monitoring datasets to show the effectiveness of CCS-TA. In the case of temperature mon-
itoring, CCS-TA needs to assign tasks to only 15.5% of the cells on average which can en-
sure the overall sensing error below 0.25◦C in 95% of the cycles, i.e., satisfying (0.25◦C,0.95)-
quality. As a comparison, the baseline approaches need to allocate 18.0-26.5% more tasks
to ensure the same data quality.

5.2 Problem Statement

In this section, we first define the key concepts used throughout this chapter. Then, we
clarify our assumptions, followed by the problem formulation.

5.2.1 Definitions

To formally define the sensing data quality metric, we first define the concepts about the
sensing and selection matrices (see Figure 5.3 for an example).

Definition 5.1. Full Sensing Matrix. For a location-centric MCS task involving m cells and
n sensing cycles, its full sensing matrix is denoted as Fm∗n, where each entry F[i, j] denotes
the true sensing data of cell i in cycle j.

Definition 5.2. Cell-Selection Matrix. In a cell-selection matrix S m∗n, each entry S [i, j]
denotes whether or not the corresponding entry in the full sensing matrix F[i, j] is selected
for sensing: if cell i is selected for sensing in cycle j, S [i, j] = 1; otherwise, S [i, j] = 0.

Definition 5.3. Collected Sensing Matrix. A collected sensing matrix Cm∗n records the
actual collected sensing data:

C = F ◦S

where ◦ denotes the element-wise product of two matrices.

Definition 5.4. Sensing Matrix Reconstruction Algorithm. A sensing matrix reconstruction
algorithm R attempts to reconstruct a full sensing matrix F̂m∗n from the collected sensing
matrix Cm∗n:

R(Cm∗n) = F̂m∗n ≈ Fm∗n

Now, we define the overall sensing error, which represents the data quality.

Definition 5.5. Overall Sensing Error. It quantifies the difference between the reconstructed
full sensing matrix F̂ and the true full sensing matrix F. In this work, we focus on the
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overall sensing error of each sensing cycle separately. For sensing cycle k, the overall
sensing error is defined as:

Ek = error(F̂[:,k],F[:,k])

where F[:,k] is the kth column of F, i.e., the true sensing values of all the m cells in cycle k,
and F̂[:,k] contains the corresponding inferred sensing values by using the reconstruction
algorithm R.

Note that the specific technique to calculate the overall sensing error (i.e., the error()
function) depends on the type of sensing data. In this work, we focus on two widely-used
metrics: mean absolute error (for continuous values, e.g., temperature [135]), and classifi-
cation error (for classification labels, e.g., PM2.5 air quality index (AQI) descriptors [134]).

• Mean Absolute Error

error(F̂[:,k],F[:,k]) =

m∑
i=1
|F̂[i,k]−F[i,k]|

m
(5.1)

• Classification Error

error(F̂[:,k],F[:,k]) = 1−

m∑
i=1

I(ψ(F̂[i,k]),ψ(F[i,k]))

m
(5.2)

where ψ() is the function to map a value to its classification label. I(x,y) = 1 if x = y;
otherwise, 0.

With the overall sensing error, we define the data quality for an MCS task including n
sensing cycles:

Definition 5.6. (ε, p)-quality. For an MCS task lasting for n sensing cycles, it satisfies
(ε, p)-quality, iff

|{k|Ek ≤ ε,1 ≤ k ≤ n}| ≥ n · p

where ε is a predefined error bound for the overall sensing error of each cycle, and p is
a predefined probability threshold to quantify the minimum fraction of the cycles whose
errors should satisfy the error bound ε.

Ideally, for a predefined error bound ε, we expect that an MCS task keeps the overall
sensing error lower than ε in all (p = 1) the cycles. However, it is intractable for a real-life
MCS task to satisfy (ε,1)-quality because we cannot know the accurate overall sensing error
Ek but have to estimate it (as the ground truth F cannot be foreknown). Thus we focus on
the cases where p is large (e.g., 0.9 or 0.95), to guarantee the overall sensing error bounded
by ε in most (e.g., 90% or 95%) cycles. Later we show how this allows us to use some
techniques from probability theory and Bayesian statistics to handle the problem.
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5.2.2 Assumptions

We make the following assumptions.

Assumption 1. Massive Candidate Participants. There are sufficient number of candidate
participants across the target sensing area, so for any cell in any sensing cycle, the orga-
nizer can always find a participant to allocate a sensing task.

We believe this assumption is realistic in many current and future MCS applications.
For example, the crowdsourcing traffic monitoring application WAZE (https://www.waze.
com) has already appealed to more than 50 million users. With this massive user base, this
assumption can be easily satisfied, especially in the user-intensive urban areas.

Assumption 2. High Quality Sensing. Every participant returns the accurate sensing value
if a task is allocated to her.

The assumption 2 also appears in other existing research work [15]. We note that in real
life, it is not always true due to possible issues such as sensor error or varying conditions.
But with an attractive incentive scheme in place, this assumption is also reasonable.

Assumption 3. Not Moving Out During Sensing. After a participant receives a sensing
task in a cell, she will not move out of the cell before she finishes sensing.

Assumption 3 ensures that if we allocate a sensing task to a participant in cell i, her
returned sensing value will actually represent cell i. This assumption can usually be satisfied
if the sensing task does not consume much time. For example, with an embedded ambient
temperature sensor, a smartphone can obtain the temperature reading in a few seconds;1

for air quality monitoring, usually the sensor needs 30-60 seconds to be prepared to start
sensing and then the sampling cycle is 2-10 seconds [137, 13].

Assumption 4. Cycle-Length-Satisfying Sequential Sensing. Each sensing cycle is suffi-
ciently long to collect enough sensing values by sequentially allocating tasks — the next
task is allocated after the sensing value of the previous task is returned.

Like assumption 3, if the sensing task is quick (e.g., a few seconds for temperature
sensing), then assumption 4 can also be satisfied for most MCS tasks with reasonable-
length cycles (e.g., 30-minute cycle).

In summary, the above assumptions are made for the following reasons:

• Assumption 1 allows us to reduce the task allocation problem to a cell selection prob-
lem.

• Combining assumptions 2 and 3, we only need to allocate one task to one participant
in cell i during cycle j in order to get the true sensing value from cell i in cycle j.

• Assumption 4 allows us to use an iterative method, i.e., progressively selecting the
cells for sensing, in each cycle, for solving the cell selection problem.

1The response time of the temperature/humidity sensor SHTC1 of Galaxy S4 is about 8 seconds [136].

https://www.waze.com
https://www.waze.com
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Figure 5.2: Workflow of CCS-TA.

5.2.3 Problem Formulation

Based on the previous definitions and assumptions, we formulate the research problem as

follows: Given an MCS task with m cells and n cycles, and a sensing matrix reconstruction
algorithm R, select a minimal subset of sensing cells during the whole MCS task process
(i.e., minimize the number of non-zero entries in the cell-selection matrix S ), while ensuring
that the overall sensing errors of at least n · p cycles are below the predefined error bound
ε (i.e., satisfying (ε, p)-quality):

min

m∑
i=1

n∑
j=1

S [i, j]

s.t., |{k|Ek ≤ ε,1 ≤ k ≤ n}| ≥ n · p
where Ek = error(F̂[:,k],F[:,k])

F̂ = R(C), C = F ◦S

If we know F in advance, it is possible for us to get the optimal S by enumerating all the

possibilities (given sufficient computation time). However, in real life, we cannot foreknow

F, which makes the problem challenging: (1) Ek cannot be directly obtained, and (2) the

cell selection process is monotonic (i.e., only after we set S [i, j] = 1 can we get F[i, j], and

this selection cannot be retracted to save incentive costs). To overcome these difficulties,

we design a Sparse MCS task allocation mechanism, CCS-TA, which leverages an iterative

process to select cells for sensing in each cycle, with details elaborated in the following

sections.

5.3 Overview of CCS-TA

In this section, we introduce the design of CCS-TA. Figure 5.2 shows the workflow of

CCS-TA. In each cycle, CCS-TA iteratively selects the next salient cell for sensing and
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Figure 5.3: An example of CCS-TA process (5 cells and 5 cycles, temperature).

waits for allocating a sensing task to a participant present in that cell, until the estimated
data quality satisfies the predefined (ε, p)-quality requirement. Then, the task allocation

stops and missing data values of the unsensed cells are inferred.

Figure 5.3 shows an example to illustrate the task allocation process of CCS-TA in one

sensing cycle. Suppose the target sensing area contains five cells and the fifth sensing cycle

starts currently; in the beginning, no sensing data is collected in cycle 5 (Figure 5.3-1,

ground truth F is unknown). CCS-TA works as follows:

1) CCS-TA selects the first salient cell (cell 3, S [3,5]=1) and allocates a sensing task to

one participant appearing in cell 3. This participant performs the sensing task and returns

the sensing data to CCS-TA (Figure 5.3-2, C[3,5]=F[3,5]=4.3◦C).

2) After CCS-TA gets the sensing data of cell 3, it assesses whether the data quality sat-

isfies the predefined (ε, p)-quality. Assume the assessment result is no, CCS-TA continues

selecting the next salient cell (cell 5, S [5,5]=1) to allocate another sensing task (Figure 5.3-

3, C[5,5]=F[5,5]=4.7◦C).

3) After collecting the sensing data from cells 3 and 5 in cycle 5, CCS-TA assesses

whether the data quality satisfies the predefined (ε, p)-quality again. If the obtained result

is yes, CCS-TA stops further task allocations for cycle 5 and infers the missing data of the

unsensed cells (Figure 5.3-4, F̂[1,5], F̂[2,5], and F̂[4,5] are inferred).

5.4 Detailed Design of CCS-TA

In this section, we describe the algorithms used in CCS-TA: inferring missing values, de-
termining task allocation stopping criterion, and selecting salient cell for sensing.



Detailed Design of CCS-TA 93

5.4.1 Inferring Missing Values

To reconstruct the full sensing matrix from the partically collected sensing values, Com-
pressive Sensing (CS) is commonly used in the literature [131, 15]. In this section, we
first introduce the basic idea of CS, and then illustrate an enhanced version of CS, called
Spatio-Temporal Compressive Sensing (STCS), which considers the spatial and temporal
correlations among the environmental data explicitly to further improve the reconstruction
performance [131, 138]. We use STCS to infer missing values in CCS-TA, given its im-
proved reconstruction accuracy over normal CS and the other methods [131].

CS: Compressive Sensing

Given a partially collected sensing matrix C, compressive sensing reconstructs the full
sensing matrix F̂ based on the low-rank property:

min rank(F̂)

s.t., F̂ ◦S = C
(5.3)

Directly solving this problem is hard because it is nonconvex. Based on the singular value
decomposition, i.e., F̂ = LRT , and compressive sensing theory [139, 140, 141], a more prac-
tical optimization problem is formulated [131, 138, 15], which changes rank minimization
to minimizing the sum of L and R’s Frobenius norms:

min λ(||L||2F + ||R||2F) + ||LRT ◦S −C||2F (5.4)

where λ is used to make the trade-off between rank minimization and accuracy fitness. To
get the optimal F̂, we use an alternating least squares [131, 138, 15] procedure to estimate
L and R iteratively (F̂ = LRT ).

STCS: Spatio-Temporal Compressive Sensing

As environment data such as temperature usually exhibits strong spatial and temporal
correlations, explicit spatio-temporal correlations are introduced into compressive sensing
in recent work [131, 138], called spatio-temporal compressive sensing, which focuses on
the optimization function below:

min λr(||L||2F + ||R||2F) + ||LRT ◦S −C||2F
+λs||S(LRT )||2F +λt||(LRT )TT ||2F

(5.5)

where S and T are spatial and temporal constraint matrices respectively; λr, λs, and λt are
chosen to balance the weights of different elements in the optimization problem.

Similar to the CS optimization problem (5.4), the above STCS optimization problem (5.5)
could be solved by using alternating least squares [131, 138]. We elaborate below our strate-
gies of choosing the temporal and spatial constraint matrices.

Temporal constraint matrix (T): Like [131, 138], we choose the temporal constraint
matrix T as Toeplitz(0,1,−1)n∗n (total n sensing cycles), which considers the temporal cor-
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relation in the following manner — for a specific cell, its sensing values in two continuous
sensing cycles should be similar.

Spatial constraint matrix (S): The spatial constraint matrix S is used to express the
correlations between the sensing data from different cells. Generally, if two cells are close
to each other, their sensing data might be similar. In [131], due to the lack of the GPS
information, the authors have to use sensor network topology to construct S. Here, since we
can get the GPS positions of the cells, we directly use the distance to model the correlation
between cell i and j, ci, j, as 1/distance(celli,cell j). Then, we get S as follows:

Si,i = −1; Si, j = ci, j/
∑
k,i

ci,k, if i , j

5.4.2 Data Quality Assessment

In CCS-TA, for each sensing cycle, the data quailty assessment step, which decides when to
stop task allocation, is a key issue: if we stop too early, the server might not collect enough
data to achieve the predefined (ε, p)-quality for the MCS task; if we stop too late, then the
server might collect redundant data, which would lead to waste in the organizer’s budget. A
well-designed stopping criterion should guarantee the data quality to satisfy the predefined
(ε, p)-quality requirement, while allocating sensing tasks to as few cells as possible in each
sensing cycle.

To this end, we propose a Leave-One-Out Bayesian-Inference (LOO-BI) based method
to decide the stopping criterion for each sensing cycle, as shown in Algorithm 2. First,
LOO-BI uses leave-one-out re-sampling method to obtain a set of re-inferred sensing data
with the corresponding true collected data. Then, comparing the re-inferred data to the true
collected data, Bayesian inference is leveraged to assess whether the current data quality
can satsify the predefined (ε, p)-quality requirement or not.

Leave-One-Out Re-Sampling

In statistics, leave-one-out is a popular re-sampling method to measure the performance
for many prediction and classification algorithms [97]. Suppose we have m true observa-
tions, the basic idea of leave-one-out is for each time, we leave one observation out and
using the other m− 1 observations (as training data set) to make a prediction for the ex-
cluded observation. By running this process on all m observations, we get m predictions
accompanying with the m true observations, which can be used to estimate the prediction
error.

We adopt the basic idea of leave-one-out in the LOO-BI (Algorithm 2), where we ac-
tually run leave-one-out on the collected data of the current cycle k (line 3-11). In each
iteration, LOO-BI attempts to temporarily remove one piece of collected data of the current
cycle k and then run the reconstruction algorithm R to re-infer the removed data (line 6-9).
After enumerating all the collected data in cycle k, we finally get two vectors x and y: x
stores the true collected data for the current cycle k, while y stores the corresponding re-
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Algorithm 2 LOO-BI task allocation stopping criterion
Input:

Cm∗k: collected sensing matrix with m locations and k cycles, non-collected entry is null (current cycle is
k).
R(): a sensing matrix reconstruction algorithm (e.g., STCS).
error: an error metric (e.g., mean absolute error).
ε, p: predefined (ε, p)-quality requirement.

Output:
stop: true/false – stop/continue task allocation.

1: x← [ ] . vector storing collected data
2: y← [ ] . vector storing re-inferred data
3: for i← 1 to m do
4: if C[i,k] , null then . if data is collected in C[i,k]
5: x.append(C[i,k])
6: C′←C
7: C′[i,k]← null . remove one collected data
8: F̂′←R(C′) . re-infer the removed data
9: y.append(F̂′[i,k])

10: end if
11: end for
12: P(Ek ≤ ε)← BayesianIn f erence(error,x,y, ε)
13: if P(Ek ≤ ε) ≥ p then
14: stop← true
15: else
16: stop← f alse
17: end if
18: return stop

inferred data by using leave-one-out. Suppose we have already collected data from m′ cells
for the current cycle, then both x and y have m′ elements:

x = 〈x1, x2, · · · , xm′〉, y = 〈y1,y2, · · · ,ym′〉

where xi is the i th ground truth data collected in cycle k, and yi is the corresponding re-
inferred data by leaving xi out of the collected data.

Based on the ground truth set x and the leave-one-out re-inferred set y, in the next
section, we will describe how to assess whether the task could satisfy (ε, p)-quality or not.

Assessing Task Quality by Bayesian Inference

According to the law of large numbers in probability theory [142], ensuring a task
satisfies (ε, p)-quality can be achieved by making sure that the probability of the error of
each sensing cycle being at most ε be at least p, formally:

∀k,1 ≤ k ≤ n : P(Ek ≤ ε) ≥ p (5.6)

Thus, the problem of assessing whether a task can satisfy (ε, p)-quality is converted to
calculate P(Ek ≤ ε). To this end, we need to estimate the probability distribution for the
cycle k’s overall sensing error Ek, which can be done with Bayesian inference [143].
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In Bayesian inference, we see Ek as an unknown parameter with a prior probability dis-
tribution g(Ek);2 based on our observation θ (obtained from the leave-one-out re-inferred
data, will be explained later), we update the probability distribution of Ek, getting the pos-
terior probability distribution g(Ek|θ) according to the Bayes’ Theorem:

g(Ek|θ) =
f (θ|Ek)g(Ek)

∞∫
−∞

f (θ|Ek)g(Ek)dEk

(5.7)

where f (θ|Ek) is the likelihood function that represents the conditional probability of ob-
serving θ given Ek.

The posterior g(Ek|θ) is thus the estimated probability distribution of Ek, based on which
we can approximate P(Ek ≤ ε):

P(Ek ≤ ε) ≈

ε∫
−∞

g(Ek|θ)dEk (5.8)

If P(Ek ≤ ε) ≥ p, then CCS-TA stops the task allocation for current cycle k and waits for the
start of the next cycle; otherwise, CCS-TA continues selecting a new cell to collect sensing
data (see Algorithm 2, line 12-18).

Note that for different error metrics, the calculation processes for the posterior g(Ek|θ)
are different (as the likelihood functions f (θ|Ek) are usually different). In the next two
sub-sections, we introduce how to compute the posterior g(Ek|θ) for two-widely used error
metrics, mean absolute error (for continuous value, e.g., temperature [135]) and classifica-
tion error (for classification label, e.g., AQI descriptor [134]).

Bayesian Inference for Mean Absolute Error

When Ek is defined as mean absolute error (MAE, Eq. (5.1)), we use the absolute dif-
ference of y (leave-one-out re-inferred data set) and x (true collected data set) as the obser-
vation θ (suppose m′ sensed data has already been collected in the current cycle):

θ = abs(y−x)
= 〈|y1− x1|, |y2− x2|, . . . , |ym′ − xm′ |〉

After inspecting our evaluation temperature dataset (which will be described in detail
later), we find that the MAE in each sensing cycle follows the normal distribution. Fig-
ure 5.4 shows the histogram of the standardized MAE (i.e., MAE divided by the standard
deviation of MAE in each cycle) when we keep the data of 10% of the cells and infer that
of the remaining 90%. Thus, by supposing that the sampled absolute errors satisfy the
normal distribution around mean Ek and variance σ2, we get the likelihood function (the
probability of observing θ given a specific Ek):

f (θ|Ek) : θi = |yi− xi| ∼ N(Ek,σ
2)

2The prior distribution is often selected as a non-informative probability distribution (such as uniform
distribution) if we do not have specific prior knowledge about Ek.
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Figure 5.4: Histogram of mean absolute error with fitted normal curve.

Given the above, calculating the posterior g(Ek|θ) from the above likelihood function and
observation is a classic Bayesian statistics problem: inferring normal mean with unknown
variance, which can be solved by fixing the variance σ2 to the sample variance s2 and then
directly calculating the posterior g(Ek|θ) by t-distribution [144]. For the prior g(Ek), we
select the Jeffreys’ flat prior [145]: g(Ek) = 1, ∀Ek. Then, the posterior g(Ek|θ) satisfies the
following (m′-1) degree-of-freedom t-distribution:

g(Ek|θ) ∼ tm′−1(θ̄, s2) (5.9)

where θ̄ is the sample mean of the values in θ. Based on the posterior g(Ek|θ) obtained from
Eq. (5.9), we can then use Eq. (5.8) to calculate the P(Ek ≤ ε) and decide whether more
cells should be selected in the current cycle k.

Bayesian Inference for Classification Error

For classification problems, the classification error (Eq. (5.2)) measures the percentage
of the test data that is classified into a wrong label. We now show how we use Bayesian
inference to estimate the posterior distribution for the classification error Ek. First, as our
reconstruction algorithm R deals with continuous values, we map x and y to their cor-
responding classification labels using the mapping function ψ() in Eq. (5.2), e.g., for the
PM2.5 AQI value between 0 and 50, we map it into the AQI descriptor label “Good”. Af-
terward, we use the I() function on ψ(x) and ψ(y) to get our observation θ:

θ = I(ψ(x),ψ(y))
= 〈I(ψ(x1),ψ(y1)), I(ψ(x2),ψ(y2)), . . . , I(ψ(xm′),ψ(ym′))〉

Each θi is either 1 (success, ψ(xi) = ψ(yi)) or 0 (failure, ψ(xi) , ψ(yi)), and the classification
error Ek is exactly the failure ratio. Suppose each θi is independent, then it satisfies the
Bernoulli distribution with the probability of 1−Ek:

f (θ|Ek) : θi = I(ψ(xi),ψ(yi)) ∼ Bernoulli(1−Ek)

Based on this likelihood function f (θ|Ek), the problem to infer the posterior g(Ek|θ) is con-
verted to a classic Bayesian statistics problem, Coin Flipping [144, 143]. We choose the
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uniform prior for Ek: g(Ek) = 1 for 0 ≤ Ek ≤ 1. Then the posterior for Ek follows Beta
distribution [144, 143]:

g(Ek|θ) ∼ Beta(m′− z + 1,z + 1) (5.10)

where z =
∑m′

i=1 θi, i.e., the number of successes. Then, for the classification error Ek, comb-
ing Eq. (5.10) and Eq. (5.8), we can calculate the P(Ek ≤ ε) to decide whether we need to
continue the task allocation.

Computation Complexity of LOO-BI

As there are two phases for the computation of LOO-BI, we discuss the computation
complexity of both phases respectively. First, to use leave-one-out to estimate the sensing
error, LOO-BI needs to run the reconstruction algorithm R for m′ times, where m′ is the
number of the already collected sensing values in the current cycle. This time consumption
dominates the running time so that the computation complexity is O(m′ ·TR) for the leave-
one-out part, where TR is the complexity of the reconstruction algorithm R. For the second
part, Bayesian inference, recalling Eq. (5.9) and Eq. (5.10), we can simply use two distri-
butions, t-distribution and Beta distribution respectively, to calculate the posterior for mean
absolution error and classification error, which makes the computation process of Bayesian
inference run much faster than the leave-one-out part. In summary, the computation com-
plexity of LOO-BI is dominated by the leave-one-out part, which is O(m′ · TR). If m′ is
large, sequentially executing LOO-BI might consume much time. Fortunately, though we
need to run R for m′ times, each run is independent, so LOO-BI can be easily parallelized
to accelerate as needed.

5.4.3 Selecting Salient Cell for Sensing

When the output of the stopping criterion LOO-BI is false, CCS-TA will continue select-
ing more cells for sensing. During this process, selecting some salient cells for sensing
may reduce the overall sensing error more significantly, e.g., the missing values of some
cells might incur more inference errors and are thus more uncertain. If CCS-TA can iden-
tify these salient cells, the number of the allocated tasks can possibly be reduced to make
the data quality satisfy the predefined (ε, p)-quality requirement earlier, compared to other
simple cell selection methods such as random selection.

Based on the recent research advances in active learning on matrix completion, we use
a method proposed in [146], called Query by Committee (QBC), to select the salient cell
to allocate the next task (committee here refers to a set of various matrix reconstruction
algorithms). QBC attempts to use each algorithm in the committee to reconstruct the full
sensing matrix. Then it allocates the next task to the cell with the largest variance among
the inferred values of different algorithms [146].

In CCS-TA, the committee includes CS, STCS, KNN-S, and KNN-T. CS and STCS
are described previously, and KNN-S and KNN-T use the classic K-Nearest Neighbors
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Algorithm 3 QBC: Selecting salient cells using Query By Committee
Input:

Cm∗k: collected sensing matrix with m cells and k sensing cycles, non-collected entry is null. Current
sensing cycle is cycle k.
CR: a set of sensing matrix recovery algorithms (called committee, e.g. CS, STCS, KNN-S, and KNN-T).

Output:
s: salient cell for next task allocation in current cycle.

1: for each Ri ∈ CR do . for each algorithm Ri in the committee
2: F̂i←Ri(C) . F̂i is the reconstructed matrix via algorithm Ri
3: end for
4: s← 0
5: vmax← 0 . initialize the max variance
6: for j← 1 ∼ m do
7: if C[ j,k] = null then . for each unsensed cell j in cycle k
8: v j← variance(F̂1[ j,k], F̂2[ j,k], ..., F̂k[ j,k])
9: . F̂i[ j,k] is the inferred value of cell j in cycle k via algorithm Ri

10: if v j > vmax then . select the cell whose inferred value variance is the largest
11: s← j
12: vmax← v j
13: end if
14: end if
15: end for
16: return s

(KNN) [147] method to interpolate missing values. For a missing value, KNN uses a
weighted average of the values of the k nearest neighbors. In sensing matrix reconstruction,
we can perform KNN on columns or rows, i.e., using spatial (KNN-S) or temporal (KNN-
T) K nearest neighbors. Specifically, for a missing value F[i, j] (cell i in cycle j), KNN-S
attempts to find K nearest spatial neighbors F[i′, j] (weight ∝ 1/distance(celli,celli′)), while
KNN-T attempts to find K nearest temporal neighbors F[i, j′] (weight ∝ 1/| j− j′|).

Computation Complexity of QBC

The running time of the QBC method is primarily spent on using all the algorithms in
the committee to reconstruct the sensing matrix. Suppose for each reconstruction algorithm
Ri in the committee, the computation complexity is TRi , then the complexity of QBC is
O(
∑

i TRi). If the committee contains more algorithms, then running QBC sequentially will
cost more time. However, like LOO-BI, since the executions of different reconstruction
algorithms are independent, QBC can also be parallelized to improve runtime performance.

5.5 Evaluation

5.5.1 Experiment Setup

To evaluate the real-world applicability of our work, we use two real-life sensing datasets,
temperature (TEMP) and PM 2.5 air quality (PM25), to create two experimental scenarios.
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Note that though the two datasets are collected by sensor networks or static stations, we
assume the MCS participants can obtain them using smartphone applications [137, 13].

The TEMP dataset has been collected by the SensorScope project [133]. The project
maintains nearly one hundred sensors across the EPFL campus (500m×300m) to collect
various environment readings, e.g., temperature, solar radiation, and humidity. For our
evaluation, we divide the target area into 100 cells (each cell is 50m×30m), and find that
57 cells are deployed with the temperature sensors. If a cell has more than one sensor,
we select the sensor collecting the most number of the temperature readings. In summary,
TEMP dataset includes the temperature readings in 57 cells from 2007-07-01 to 2007-07-
07; each sensing cycle lasts for 30 minutes. To measure the data quality for temperature,
referring to [135], we use the mean absolute error (Eq. (5.1)) as the metric.

PM25 dataset has been collected by the U-Air project [134], which includes PM2.5,
PM10, and NO2 AQI (air quality index) values reported by 36 air quality monitoring sta-
tions in Beijing. For our evaluation, like [134], we also split the Beijing urban area to
1km×1km cells and only use the cells where the stations are situated. In summary, PM25
dataset includes the PM2.5 AQI values on 36 station-situated cells from 2013-11-10 to
2013-11-20; each sensing cycle lasts for one hour. To measure the data quality for PM2.5
AQI, we follow the methods used in [134] — each AQI value is classified to a range called
descriptor, which is used as the basis for computing the classification error discussed in
Eq. (5.2). Six levels of descriptors are defined: Good (0∼50), Moderate (51∼100), Un-
healthy for Sensitive Groups (101∼150), Unhealthy (150∼200), Very Unhealthy (201∼300),
and Hazardous (301∼500).

5.5.2 Performance Analysis: Inferring Missing Values

First, we aim to verify the effectiveness of STCS in inferring missing values for temper-
ature and PM 2.5 compared to the other state-of-the-art matrix reconstruction algorithms
described before, including CS, KNN-S, and KNN-T. Note that for STCS and CS, optimiza-
tion parameters are selected as in [131]; for KNN-S and KNN-T, we set K to 3 because by
comparing different values of K, we find that K = 3 achieves the best performance for
KNN-S and KNN-T.

Figure 5.5 and 5.6 show the overall sensing error (with standard deviation) of different
reconstruction algorithms on TEMP and PM25 datasets, respectively. In this experiment,
we iteratively consider each sensing cycle k as the latest cycle, reconstruct the full sensing
matrix based on the collected sensing matrix from cycle 1 to k, and calculate the overall
sensing error for the cycle k. The x axis, i.e., sparsity ratio, denotes the fraction of un-
sensed entries in the collected sensing matrix. Consistent with the literature [131], our
evaluation results also show the improved accuracy of STCS over the other methods, veri-
fying that compressive sensing is effective in inferring the missing environmental data such
as temperature and air quality, especially when the explicit spatio-temporal correlations are
incorporated. Therefore, for both TEMP and PM25 datasets, we use STCS to infer the
missing values.
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Figure 5.5: Error of different reconstruction algo-
rithms (TEMP).
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TEMP PM25

p ε 0.25◦C 0.30◦C 6/36 9/36
0.90 0.915 0.919 0.904 0.912
0.95 0.943 0.949 0.944 0.965

Table 5.1: Fraction of the cycles whose errors are lower than the error bound ε.

5.5.3 Performance Analysis: Stopping Criterion

Then, we evaluate the effectiveness of the stopping criterion LOO-BI. We use various set-
tings of (ε, p)-quality to see what fraction of sensing cycles can actually keep the overall
sensing error less than ε. Table 5.1 shows the results for both TEMP and PM25 datasets.
For p, we purposely set it to a large value as 0.90 and 0.95, i.e., ensuring most (90% or
95%) sensing cycles’ error to be less than the predefined error bound ε, which we think is
a more reasonable and realistic scenario than small p for MCS organizers. For ε, we vary
it from 0.25◦C to 0.30◦C for TEMP and 6/36 to 9/36 for PM25. Note that for PM25, the
error bound X/36 represents that to satisfy this error bound, more than 36−X cells have the
correct AQI level.

From Table 5.1, we see that for any predefined error bound ε, the actual fraction of
the cycles whose errors are less than ε is quite similar to the p in the predefined (ε, p)-
quality. Specifically, for p = 0.90, all the actual fractions are larger than 0.90; for p = 0.95,
even though the the actual fractions sometimes are slightly less than 0.95, the values are still
quite near 0.95 (in our settings, the smallest actual fraction is 0.943, only 0.007 smaller than
0.95). Based on these results, we verify that, by using LOO-BI as the stopping criterion,
CCS-TA can well satisfy the predefined (ε, p)-quality.

5.5.4 Performance Analysis: Number of Allocated Tasks

After selecting the best sensing data reconstruction algorithm and verifying the effective-
ness of the stopping criterion, now we focus on analyzing the research objective — how
many allocated tasks could CCS-TA reduce while ensuring a certain data quality?
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TEMP CCS-TA RAND-TA ICDM-FIX-k
p = 0.9 0.915 0.900 0.911 (k = 9)

p = 0.95 0.943 0.943 0.949 (k = 12)

Table 5.2: Fraction of the cycles whose errors are lower than 0.25◦C (TEMP).

We first compare CCS-TA with baseline approaches to see the advantage of CCS-TA.
Afterward, we compare CCS-TA with the OPTIMAL solution, i.e., if the sensing data of
all the cells for each cycle is foreknown, what is the minimal number of allocated tasks
that we can achieve under a predefined error bound ε. Although the OPTIMAL solution is
unrealistic from a performance perspective, we want to show the performance gap between
CCS-TA and the ideal condition to identify the potential improvement space for CCS-TA.

CCS-TA vs. Baselines

To compare with CCS-TA, we use the following baselines:

• ICDM-FIX-k: An alternative way to extend the QBC active learning method [146]
from ICDM’13 to the MCS task allocation mechanism is fixing the task number k
in each sensing cycle, while still using QBC to actively select cells to allocate tasks;
we call this modified algorithm ICDM-FIX-k. Compared to ICDM-FIX-k, CCS-TA
shows the benefit brought by LOO-BI, which helps the organizer decide when to
stop the task allocation, thus adaptively adjusting the number of the sensed cells for
different cycles.

• RAND-TA: In this baseline, we randomly select the next cell for sensing, but still
leverage LOO-BI as the task allocation stopping criterion. Compared to RAND-TA,
CCS-TA shows the advantage of applying QBC to select the salient cells for sensing.

On the TEMP dataset, for the predefined (ε, p)-quality, we set the error bound ε as
0.25◦C and p as 0.9 or 0.95. Before comparing the number of allocated tasks, we need to
ensure that all the methods can achieve the similar task quality. While CCS-TA has already
been verified to be able to satisfy (ε, p)-quality in the previous section, now we need to
check the two baselines. Table 5.2 shows the results. We can see that RAND-TA can also
satisfy (ε, p)-quality well, as it adopts LOO-BI as the stopping criterion like CCS-TA. For
ICDM-FIX-k, we tune k to achieve the similar task quality, which leads to k = 9 for p = 0.9
and k = 12 for p = 0.95.

As all the methods can satisfy similar task quality, we compare their numbers of the
allocated tasks (i.e., number of selected cells) in Figure 5.7. When p = 0.9, CCS-TA can
allocate 11.1% fewer tasks than RAND-TA, and 18.0% fewer tasks than ICDM-FIX-9;
when p = 0.95, CCS-TA outperforms RAND-TA and ICDM-FIX-12 by assigning 18.0%
and 26.5% fewer tasks, respectively. Specifically, CCS-TA allocates tasks to only 12.9%
(15.5%) cells on average, while ensuring the overall sensing error below 0.25◦C in 90%
(95%) of the cycles.

On the PM25 dataset, we get similar observations. See Table 5.3 and Figure 5.8 for the
results when we set ε to 9/36 (i.e., 0.25) and p to 0.90 or 0.95. In general, while achieving
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Figure 5.7: Number of allocated tasks (TEMP, ε = 0.25◦C, varying p).

PM25 CCS-TA RAND-TA ICDM-FIX-k
p = 0.9 0.912 0.916 0.884 (k = 16)

p = 0.95 0.965 0.969 0.961 (k = 18)

Table 5.3: Fraction of the cycles whose errors are lower than 9/36 (PM25).

similar data quality, CCS-TA allocates 7.5-9.9% and 25.0-31.9% fewer tasks than RAND-
TA and ICDM-FIX-k, respectively.

CCS-TA vs. OPTIMAL

Now we compare CCS-TA with the OPTIMAL solution. The OPTIMAL solution as-
sumes the sensing data of all the cells for each cycle is foreknown, so it can choose the
optimal (i.e., minimal-size) cell combination to satisfy the error bound ε. OPTIMAL is
not practical in real life, but it can serve as the bound for CCS-TA. To get the OPTIMAL
solution, we enumerate all the possible cell combinations from size 1 to m until we find the
smallest-size cell combination that can meet the error bound. The enumeration process is
highly time-consuming, so we trim the TEMP dataset to a small number of cells, i.e., 15
cells, to conduct this experiment.

Suppose the error bound ε is 0.25◦C, for CCS-TA, we set p = 0.95 and it actually guar-
antees the overall sensing error below 0.25◦C in 95.4% of the cycles, and the average task
number in each cycle is 4.74. In contrast, OPTIMAL allocates only 2.23 tasks per cycle
(53.0% fewer tasks than CCS-TA) while ensuring the error below 0.25◦C in 100% of the
cycles (4.6% more cycles than CCS-TA). Therefore, a noticeable gap still exists between
CCS-TA and OPTIMAL, which inspires us to to improve CCS-TA to narrow this gap in the
future work.

5.5.5 Running Time Analysis

Finally, we study the running time of CCS-TA to see whether it can satisfy the real-life
MCS scenario, as well as the speedup it provides vis-a-vis the OPTIMAL solution. We
run the experiments on a laptop (Intel core i7-3612QM, 8GB RAM, Windows 7) with
Python 2.7. Table 5.4 shows the running time for different parts of CCS-TA. The most
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Figure 5.8: Number of allocated tasks (PM25, ε = 9/36, varying p).

Reconstruction Stopping Criterion Cell Selection
(STCS) (LOO-BI) (QBC)

TEMP 0.95s <9s 1.04s
PM25 0.75s <7s 0.91s

Table 5.4: Running time for each sub-step of CCS-TA.

time-consuming part is the LOO-BI stopping criterion, which needs 9 seconds at most. As
described previously, LOO-BI is suitable for being parallelized, which can help improve
its performance. In summary, on our experimental setup, CCS-TA spends ∼10 seconds to
allocate one task, i.e., estimating the task quality once and, if it cannot meet the prede-
fined (ε, p)-quality, finds the next sensing cell. Thus, for the sensing tasks requiring a few
seconds, such as temperature sensing, if we can find a participant and receive her sensing
data in 10 seconds, CCS-TA can allocate tasks to ∼180 cells in an hour; even for the air
quality sensing that needs 60 seconds to get a valid reading [137, 13], CCS-TA can allo-
cate tasks to ∼50 cells in an hour. We believe this efficiency can meet most real-life MCS
scenarios, especially with more powerful servers in CCS-TA deployment environment and
more efficient smartphone-equipped sensors in the future. As a comparison, the OPTIMAL
solution, even in the trimmed TEMP dataset with 15 cells, needs >30 minutes to find an
optimal combination containing only 6 cells.

In summary, we have shown that each constituent of the our approach performs better
than the baseline. We have shown (in Figures 5.5 and 5.6) how STCS is the best choice
for reconstruction, and comparison with ICDM-FIX-k shows how LOO-BI as the stopping
criterion is better. Since CCS-TA and RAND-TA share the reconstruction and stopping cri-
terion techniques, differing only in the cell-selection process, they are close in performance,
although our approach is still marginally better.

5.6 Concluding Remarks

In this chapter, we attempt to reduce the number of the required sensing cells and thus the
number of the allocated tasks to participants in MCS applications by considering the tem-
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poral and spatial correlations among the sensing data from different cells. To that end, we
propose a novel crowdsensing paradigm, Sparse Mobile Crowdsensing, and further design
a Sparse MCS task allocation framework called CCS-TA, combining the state-of-the-art
compressive sensing, Bayesian inference, and active learning techniques to actively select
a minimum number of sensing cells in each cycle while inferring the missing values of
the remaining cells, and ensuring that the overall data accuracy meets a predefined bound.
Evaluation results on real-world temperature and air quality monitoring datasets show the
effectiveness and applicability of CCS-TA.
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6.1 Introduction

In Chapter 5, we have shown that Sparse MCS can be used to facilitate various MCS ap-
plications such as environment monitoring (e.g., noise [4]). In these applications, the par-
ticipants report not only the sensed data, but also their corresponding location and time.
This has serious privacy implications for MCS participants. Knowing each participant’s
location, an adversary, who wants to exploit information about the participant, can stage
a broad spectrum of attacks, such as physical surveillance and stalking, identity theft, and
breach of sensitive information [148]. Thus, ensuring location privacy is an essential aspect
of MCS, because mobile users will not accept to engage in an MCS task if their privacy
may be violated.

Location privacy has been widely addressed in the context of location-based systems [56,
149]. There are two general mechanisms to protect a user’s location privacy: (i) protect the

107
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user’s identity through anonymity, so that the user’s location traces cannot be linked to the
individual user, and (ii) using location obfuscation to alter the user’s actual locations in
order to reduce the location information exposed to the service provider. In this work, we
focus on the latter mechanism of privacy protection.

Much research has been conducted in location privacy protection with various obfusca-
tion techniques [55, 56, 149]. These protection mechanisms are based on either hiding or
perturbing the user’s actual location to increase the uncertainty of the adversary’s knowl-
edge about the locations. The most popular mechanism is cloaking [150, 151, 152], where
the user’s location is represented as a cloaked region (containing multiple fine-grained cells)
instead of a specific place or cell. Usually, the number of fine-grained cells in the cloaked
region is leveraged to measure the privacy protection level. However, one common short-
coming of the cloaking mechanisms is that they are sensitive to the adversary’s prior knowl-
edge about the user’s location distribution [62]. For example, if a user appears in a cloaked
region including one school and one government office, and the adversary knows in ad-
vance that the user is likely to be at schools (e.g., the user is a student), then the adversary
will have high confidence that the user would be at the school in the cloaked area, instead
of the government office. This violates the intended protection effect of cloaking.

Differential privacy [60, 61] has been proposed to remedy this shortcoming of the ob-
fuscation mechanisms regarding the adversary’s prior knowledge. From the domain of
statistical databases, its original goal is to protect an individual’s data while publishing ag-
gregate metrics (e.g., count and sum) from the database. Differential privacy specifies that
modifying a single user’s data will have an insignificant effect on the query outcome. This is
typically done by adding a controlled amount of random noise to the query output. Suppose
an adversary attempts to find out a user’s certain attribute value (e.g., age) in a database,
even if the adversary already has the query results using the aggregate of all other attribute
values, he cannot gain significantly more knowledge about the single attribute value from
the perturbed query output, regardless of what prior knowledge the adversary holds.

In applying differential privacy to location-based services (LBS), Andres et al. [62]
proposed geo-indistinguishability, which gives a user l-privacy within a circular area R
with certain radius. The probability to report the same obfuscated location r′ from any
two actual locations within R is similar (the level of similarity depends on l). Thus, after
observing a user’s obfuscated location r′, the adversary gains little additional knowledge
about which location within R produces r′, regardless of the adversary’s prior knowledge
about the user’s location distribution. To protect location privacy while maintaining the
quality of service in LBS (such as Point-of-Interest queries), both the cloaking mechanisms
and differential privacy mechanisms assume that the distance between the user’s actual
location and the obfuscated location is small. This assumption works well for LBS, as the
quality for the output of a privacy-preserving location-based query is usually only degraded
with the increase of the distance between the obfuscated and actual locations.

However, in Sparse MCS, the data quality loss is affected by the difference of sensed
data between the actual location and obfuscated location, other than just the distance be-
tween the two locations. To limit the data quality loss for Sparse MCS, as long as the
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sensing values of the two locations are close, the participant’s location may be mapped to a
location far from the actual one. For example, when sensing air quality in a city, two parks
may have similar air quality values. If a participant is at a park, obfuscating her location
to another park would incur little loss in data quality, even if the two parks are far from
each other. Due to this distinction between the qualities of LBS and Sparse MCS, instead
of directly using the mechanisms for LBS (e.g., [62]), we need to redesign the obfuscation
mechanisms used in Sparse MCS to protect location privacy, while ensuring data quality.

With this insight in mind, in this chapter, we explore how to balance the location pri-
vacy for participants and the overall data quality obtained for Sparse MCS applications. We
consider three key elements in the location-privacy preserving mechanism design: the par-
ticipant’s privacy requirements, the adversary’s prior knowledge about the participant’s
actual location distribution, and the data quality degradation stemming from the obfusca-
tion of actual locations. The main contributions are:

1. Bringing differential location privacy to Sparse MCS by introducing the privacy no-
tion of ε-region-ambiguity, to restrict what an adversary may learn of participants
regardless of his prior knowledge about participants’ location distribution.

2. Addressing the two issues of location obfuscation and sensed data mapping simulta-
neously for data quality in Sparse MCS by modeling the data-quality-aware location
privacy-preserving requirement as an optimization problem. Specifically, we propose
a novel linear program called DUM-εe, which selects the optimal location obfusca-
tion function and reduces data quality loss through Data Uncertainty Minimization
under the constraints of ε-region-ambiguity and an even distribution of obfuscated
locations. Hence the resulting optimal obfuscation function ensures differential loca-
tion privacy with significantly reduced loss of data quality.

3. Reducing the number of constraints of DUM-εe from O(n3) to O(n2) by proposing
an approximation linear program Fast DUM-εe (FDUM-εe). As the number of con-
straints affects both the time and space complexity of the linear programming solver
techniques [153], FDUM-εe requires much less computation time and memory usage
than DUM-εe. Therefore, it can be applied in large-scale MCS tasks that DUM-εe
cannot handle.

To the best of our knowledge, this is the first work to apply differential location pri-
vacy to MCS while reducing the loss of data quality due to obfuscation. We evaluate our
optimization mechanisms, DUM-εe and FDUM-εe, with experiments using real-world en-
vironment (temperature and humidity) and traffic monitoring datasets. Our results show
that compared to three baseline approaches, DUM-εe can reduce the data quality loss
for Sparse MCS tasks by 15-45%, with the same level of differential privacy guaran-
tee. Compared to DUM-εe, FDUM-εe can achieve similar data quality (2-6% more quality
loss), while only needing less than 1% computation time for generating the obfuscation
function.
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6.2 Preliminaries

6.2.1 Target Privacy Protection Scenarios

In this work, we focus on the MCS scenarios when the participants upload their sensed data
and locations in a sporadic manner [154]. That is, in each sensing cycle, the participants
will be re-selected; then with a large number of candidate participants, no single participant
will report her locations in a continuous manner (e.g., continuous cycles). In a sporadic
manner, an adversary may do a snapshot localization attack [154, 152], i.e., inferring a
participant’s current location via her currently reported (obfuscated) location. We aim to
protect the users’ location privacy against this snapshot localization attack. Protecting the
users’ location privacy in the continuous data uploading manner (against the adversary’s
trajectory attack) will be our future work (brief discussion in Section 6.7.2).

6.2.2 Inferring Missing Data in Sparse MCS

Recall that the data inference in Sparse MCS is modeled as a matrix completion problem:
let Collected Sensing Matrix (C) be a matrix to record all the sensed data values collected
from the participants, such that C[r, t] represents the sensed data value of region r in sensing
cycle t. If no participant uploads data from region r in cycle t, then C[r, t] is unknown. The
key to a successful Sparse MCS task is to determine a high quality, low uncertainty infer-
ence algorithm to infer such missing data. In this work, we still use the Spatio-Temporal
Compressive Sensing (STCS) method (Section 5.4.1), which has been verified to outperform
other methods in CCS-TA (Section 5.5.2).

As a corollary from compressive sensing theory, Candes et al. [155] have proven that
one can recover an unknown matrix of low rank, given a small number (compared to the
size of the matrix) of noisy entries uniformly sampled, with an error which is propor-
tional to the noise level. Restated, applying compressive sensing to the problem of matrix
completion makes two inherent assumptions:

1. Even Data Distribution. To ensure the data inference algorithm performs effectively,
uniform distribution of the observed data is required. In Sparse MCS, this means
that the sensed regions in the target sensing area should be evenly distributed. If
the distribution is biased, e.g., one row of a matrix contains no observation (i.e., one
region is not covered by participants in all sensing cycles), then it is impossible to
infer the missing data for this row [155, 139].

2. Small Data Uncertainty. When there is no noise or uncertainty in the sampled entries,
the missing values in the matrix can be accurately inferred as long as the previous as-
sumption also holds. When the sampled entries have noise or uncertainty involved,
the total inference error is proportional to the uncertainty level of the sampled en-
tries [155]. The smaller the uncertainty of the sampled entries, the better the overall
inference performance.
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Figure 6.1: Regular data reporting for Sparse MCS (Top) and with location privacy protection using obfusca-

tion (Bottom).

Therefore, these two assumptions in matrix completion require that the sensed regions in

Sparse MCS should be evenly distributed and the uncertainty in the reported sensed data

should be as small as possible.

6.3 Location Privacy-Preserving Framework

Regular Sparse MCS does not consider the participants’ location privacy such that the par-

ticipants report their actual regions. Using obfuscation to add location privacy protection

can allay participants’ privacy concerns, but will lead to data quality loss as the sensed data

of the original actual region may not be representative of the obfuscated region. There-

fore, we design a location privacy-preserving framework, which incorporates two unique

components: location obfuscation and data adjustment.

Figure 6.1 (Bottom) illustrates the process of privacy-preserving Sparse MCS for the

temperature monitoring use case compared to the regular case (Top). In each sensing cycle,

a participant reports her obfuscated region to the server, so that the server never knows her

actual region. However, as the sensed data from the actual region might not well represent

the obfuscated region, the data to report also needs to be adjusted on the mobile phone side

before uploading. Thus, 〈obfuscated region, adjusted data〉 is uploaded to the server by

each participant. After receiving all the (adjusted) data from the participants, the server
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Figure 6.2: Location privacy-preserving framework for Sparse MCS.

infers the complete sensing map, following the same process of regular Sparse MCS.

Figure 6.2 shows the overview of our proposed location privacy-preserving framework

for Sparse MCS. It consists of two tiers — server side and mobile client side. On the server

side, before a Sparse MCS task starts, based on the historical sensed data, it generates the

probabilistic obfuscation matrix (Step S1) and data adjustment function (Step S2) in an of-

fline manner. The probabilistic obfuscation matrix encodes the probabilities of obfuscating

any one region to another one. By carefully selecting the probabilities in the matrix, we can

guarantee the participant’s location privacy so that the participant’s actual region cannot be

accurately inferred from the obfuscated region, even if the adversary knows the obfusca-
tion matrix.1 The data adjustment function is used to reduce the error in the sensed data

due to the region obfuscation. It is learned by studying the correlation between any two

regions’ sensed data in the historical log. For example, the sensed temperature value can be

adjusted to be higher if the temperature of the obfuscated region is historically higher than

the participant’s actual region.

Before task execution, participants pre-download both obfuscation matrix and data ad-

justment function to their mobile phones. When executing a task, the workflow on the

mobile phone client is as follows. First, the mobile phone obtains the sensed data in the

actual region. Then, based on the probabilistic obfuscation matrix, it obfuscates the actual

region to another region with the corresponding probability (Step M1). Afterward, knowing

both the actual region and obfuscated region, the data adjustment function adjusts the origi-

nal sensed data to estimate the real sensed data of obfuscated region (Step M2). Finally, the

mobile phone accomplishes a sensing task by uploading the obfuscated region and adjusted

data to the server.

With this framework overview in mind, in the following sections, we introduce our

notion of differential location privacy for Sparse MCS and describe how we construct the

probabilistic obfuscation matrix and data adjustment function.

1Same as an adversary, the server cannot know the participant’s actual region even though the obfuscation

matrix is generated by the server.
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6.4 Differential Location Privacy for Sparse MCS

In the context of Sparse MCS where the sensing area is divided into regions, we introduce
ε-region-ambiguity, a notion of differential location privacy for Sparse MCS, which can
guarantee the differential location privacy regardless of the adversary’s prior knowledge
about the participant’s location distribution.

6.4.1 Defining ε-Region-Ambiguity

Let R represent the set of regions in the target sensing area and r∗ represent the obfuscated
region. We define the aforementioned probabilistic obfuscation matrix as P. For a target
sensing area of m regions (i.e., |R| = m), we need an m×m obfuscation matrix P, where
P[r,r∗] is the probability of assigning region r to obfuscated region r∗. If an adversary
knows the obfuscation matrix P and some prior information about a participant’s location,
e.g., a set of likely visited regions R̃ ⊂ R (where R̃ includes the user’s actual location), then
the adversary can compute the probability of generating r∗ for each region in R̃. If a certain
region in R̃ has a significantly high probability, the adversary can confidently infer the user’s
actual region. To prevent the adversary from tracing back to the user’s actual location, the
basic idea of differential location privacy is to make the obfuscation probabilities from any
two regions in R̃ to the obfuscated region r∗ similar. In such a way, there is no single region
in R̃ that has significantly higher obfuscation probability than the others, thus the adversary
cannot accurately infer which region in R̃ is the actual location of the user.

However, an adversary’s prior knowledge may be unknown in advance, we thus take
the whole set of regions R as R̃. That is to say, given the obfuscated region r∗, we attempt
to make any two regions in R have similar obfuscation probabilities to be mapped to r∗. So
regardless of which set of regions the adversary has prior knowledge about, he gains little
additional knowledge about which region in R is the user’s actual location after observing
the obfuscated region r∗.

With this insight, we formally define the differential location privacy notion used in
Sparse MCS, ε-region-ambiguity, as follows:

Definition 6.1. ε-Region-Ambiguity. Suppose the target sensing area consists of a set of
regions R, then a probabilistic obfuscation matrix P satisfies ε-region-ambiguity iff:

P[r,r∗] ≤ eε ·P[r′,r∗], ∀r,r′,r∗ ∈ R (6.1)

where r and r′ are any region in R, P[r,r∗] is the probability of obfuscating region r to
region r∗, and ε is the differential privacy parameter indicating the level of privacy.

Eq. (6.1) can also be represented as:

1
eε
≤

P[r,r∗]
P[r′,r∗]

≤ eε
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region 1 2 3
1 0.50 0.25 0.25
2 0.25 0.50 0.25
3 0.25 0.25 0.50

region 1 2 3
1 0.25 0.25 0.50
2 0.25 0.50 0.25
3 0.50 0.25 0.25

Table 6.1: Two obfuscation matrices satisfying ln(2)-region-ambiguity for three regions. The entry [i, j] refers
to the probability of obfuscating region i to region j.

For the same obfuscated region r∗, it bounds the maximum ratio difference between any
two entries of P[r,r∗], ∀r. Note that the smaller ε an obfuscation matrix P can satisfy, the
higher-level location privacy P can provide, because the probability of obfuscation from
any actual region is more uniform such that it is less distinguishable to know which is
the original actual region. However, setting ε too small would restrict P too much and
compromise data quality, which will be explained later.

To illustrate the implications of Eq. (6.1), Table 6.1 shows two examples of obfusca-
tion matrices designed for a Sparse MCS task with three regions, both satisfying ε-region-
ambiguity (where ε = ln(2)). Given an obfuscated region, e.g., region 1, ε-region-ambiguity
specifies that any two probabilities in the column 1 of the obfuscation matrix are bounded
within a constant factor of eε . In other words, the ratio of the largest probability to the
smallest one in each column cannot be larger than eε . For example, we can see that for
each column in the left obfuscation matrix in Table 6.1, the largest probability is 0.5 and
the smallest is 0.25, so the ratio is bounded within 2 (i.e., eε where ε = ln(2)). Thus, the left
obfuscation matrix satisfies ln(2)-region-ambiguity. Similarly, the right obfuscation matrix
in Table 6.1 satisfies ln(2)-region-ambiguity as well. By showing two obfuscation matri-
ces satisfying ln(2)-region-ambiguity, we want to point out that there can exist multiple
probability matrices satisfying ε-region-ambiguity, given a predefined privacy level ε.

6.4.2 Privacy Guarantee of ε-Region-Ambiguity

Next, we show how the differential privacy characteristic of ε-region-ambiguity can limit
the knowledge gained by an adversary, regardless of his prior knowledge about the user’s
location distribution.

Adversary Model: Suppose an adversary has some prior knowledge about the proba-
bilistic distribution of a user’s actual region r, denoted as π(r). Now if the adversary knows
the user’s obfuscated region r∗ and the obfuscation matrix P, then based on Bayes’ rule, the
adversary can get a posterior distribution of the user’s location, noted as σ(r), as follows:

σ(r) =
P[r,r∗] ·π(r)∑

r′∈RP[r′,r∗] ·π(r′)
(6.2)

With this adversary model, if the obfuscation matrix P satisfies ε-region-ambiguity,
the adversary’s knowledge about the user’s actual location distribution is not significantly
changed after observing the obfuscated region r∗. In other words, the improvement of
the adversary’s knowledge caused by the observation, i.e., σ(r)/π(r), is bounded within a
certain range. Formally, we have the following theorem:
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Theorem 6.1. If an obfuscation matrix satisfies ε-region-ambiguity, then for an adversary
with any prior knowledge π, his posterior knowledge σ satisfies:

1
eε
≤
σ(r)
π(r)

≤ eε , ∀r ∈ R (6.3)

Proof.

σ(r) =
P[r,r∗] ·π(r)∑

r′∈RP[r′,r∗] ·π(r′)
(6.4)

=⇒ σ(r) =
π(r)∑

r′∈R
P[r′,r∗]
P[r,r∗] ·π(r′)

(6.5)

=⇒ σ(r) ≤
π(r)

1
eε ·
∑

r′∈R π(r′)
(6.6)

=⇒
σ(r)
π(r)

≤ eε (
∑
r′∈R

π(r′) = 1) (6.7)

The proof for σ(r)
π(r) ≥

1
eε is similar, change Eq. (6.6) to:

σ(r) ≥
π(r)

eε ·
∑

r′∈R π(r′)
(6.8)

�

Hence, by modeling the location privacy requirement with differential privacy (Eq. (6.1)),
we can restrict the knowledge leakage caused by the observed obfuscated region r∗. Recall
that this leaves many choices for the obfuscation matrix P. In the next section, we describe
how we find the optimal P with the consideration of data quality.

6.4.3 Relationship with Other Differential Location Privacy Notions

The definition of ε-region-ambiguity is inspired by a few existing works about the differ-
ential location privacy. A generalized differential privacy notion is proposed in [156] and
used in the location context recently [65]:

P[r,r∗] ≤ eε·d(r,r′) ·P[r′,r∗], ∀r,r′,r∗ ∈ R (6.9)

where d(r,r′) can be arbitrary distance metric. Thus, ε-region-ambiguity can be seen as
an instance of Eq. (6.9) by setting d(r,r′) as discrete distance [65]. By comparison, the
existing differential location privacy notion used in LBS, Geo-indistinguishability [62, 64],
is another instance of Eq. (6.9) by setting d(r,r′) as Euclidean distance. Other distance
metrics, such as Manhattan distance and location semantic distance, can also be used ac-
cording to specific applications [65].

In this work, we use discrete metric due to its simplicity for explaining the effect of
differential privacy protection. Note that our proposed mechanism to obtain the obfuscation
matrix (Section 6.5) can be easily applied to the differential location privacy notion with
other distance metrics, or even multiple differential location privacy notions simultaneously.
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6.5 Differential Location Privacy with Data Quality Loss
Reduction

With our definition of ε-region-ambiguity to ensure the differential location privacy in
Sparse MCS, we can select a probabilistic obfuscation matrix P to obfuscate the partici-
pant’s location region, but there can be many suitable matrices. The choice of P affects two
things: (i) the spatial distribution of obfuscated regions and (ii) the sensed data uncertainty
of the obfuscated region. Hence, among the set of P, which satisfies ε-region-ambiguity,
we aim to select the optimal P which produces an even spatial distribution of obfuscated
regions and minimum data uncertainty in order to reduce the loss in data quality. In this sec-
tion, we formulate the differential location privacy-preserving problem in Sparse MCS as a
data quality optimization problem, with minimizing the data uncertainty in the obfuscated
regions as the optimization objective and with ε-region-ambiguity and even obfuscated re-
gion distribution as constraints.

6.5.1 Data Quality Requirements for Obfuscation

Recall that in regular Sparse MCS tasks, to infer the complete sensing matrix, compressive
sensing theory assumes that (1) the participants report from uniformly or evenly distributed
regions, and (2) their reported sensed data are accurate [155, 139]. However, introducing
differential location privacy into Sparse MCS may compromise these two requirements:

1. Even Obfuscated Region Distribution. Even if the selected participants’ actual loca-
tion distribution is even, the distribution of the obfuscated regions may be uneven.
For instance, consider an extreme case of the obfuscation matrix where no region can
be obfuscated to region i. Then in the collected sensing matrix C, all the values of
the ith row will be unknown, thus it is impossible to recover the values in this row
accurately [139].

2. Small Data Uncertainty in Obfuscated Regions. The participant’s actual sensed data
corresponds to the original actual region, not the obfuscated region. Although the
data adjustment step can reduce the discrepancy or uncertainty in the reported data,
there will still be a baseline uncertainty due to the choice of obfuscation matrix. We
describe later how an optimal choice of probabilistic obfuscation matrix can further
minimize this uncertainty.

With these problem statements, we next formulate our optimization problem.

6.5.2 Optimal Obfuscation Matrix Generation

We seek to reduce the data uncertainty and control the distribution evenness of the ob-
fuscated regions which arise due to location obfuscation. To reduce data uncertainty, we
optimally select a probabilistic obfuscation matrix that can minimize the expectation of
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region 1 2 3
1 0 0.1 0.2
2 0.1 0 0.1
3 0.2 0.1 0

Table 6.2: An example of uncertainty matrix for three regions. The entry [i, j] refers to the data uncertainty
incurred by obfuscating region i to region j.

data uncertainty between the reported and true data in the obfuscated regions. To keep
the obfuscated region evenly distributed, we introduce an evenness constraint to the ob-
fuscation matrix so that different regions have similar probabilities of being the obfuscated
region. Finally, we propose a mechanism, DUM-εe, to combine these two aspects and ε-
region-ambiguity together, to obtain an optimal obfuscation matrix which achieves better
data quality while ensuring the differential privacy protection for Sparse MCS.

Objective: Data Uncertainty Minimization

The first step to reduce the data uncertainty in the obfuscated regions is to estimate the
corresponding sensed data of the region by incorporating a data adjustment function in our
mechanism (Figure 6.2). As environmental data (e.g., temperature, humidity) usually has
high spatial correlations [131, 157], for simplicity, we use linear regression as the data ad-
justment model. In our privacy-preserving framework (Figure 6.2), the linear regression
function is learned or trained in the server (Step S2), while the linear fit estimation is per-
formed on the mobile phone (Step M2). We will discuss how more sophisticated adjustment
functions may be used in a later section.

Since all data adjustment models have intrinsic uncertainty, the selection of the proba-
bilistic obfuscation matrix will impact the inferred data quality. We define an uncertainty
matrix, U, to represent the data uncertainty for every location obfuscation, where U[r,r∗]
is the data uncertainty incurred by the obfuscating region r to region r∗. Note that the
uncertainty matrix U is intrinsic to the mapping 〈r→ r∗〉,∀r,r∗ and is independent of ob-
fuscation matrix P. For the case of using linear regression as the data adjustment model,
the uncertainty U[r,r∗] can be computed by the residual standard error [97]. Intuitively,
obfuscating a certain region to different regions would result in different data uncertainties.
For example, when sensing environmental data such as air quality, if the original region, r,
is a park, then obfuscating it to another park, r∗1, will likely lead to lower data uncertainty
than that of obfuscating it to a transportation hub, r∗2, i.e., U[r,r∗1] < U[r,r∗2]. We therefore
seek to find an obfuscation matrix P which is likely to obfuscate r to r∗1 instead of r∗2, i.e.,
P contains the relation P[r,r∗1] > P[r,r∗2].

In general, given a data adjustment function, our objective is to find an obfuscation
matrix P that can minimize the overall expectation of data uncertainty in the uncertainty
matrix U. Table 6.2 shows an example uncertainty matrix for three regions. Note that
U[r,r] = 0 because there is no uncertainty if the obfuscated and actual regions are same.

The overall expectation of data uncertainty across the whole target sensing area is just
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region 1 2 3
1 0 0.75 0.25
2 0 0.75 0.25
3 0 0.50 0.50

Table 6.3: An obfuscation matrix satisfying ln(2)-region-ambiguity for three regions, where no region can be
obfuscated to region 1.

the normalized sum product of data uncertainty over all region obfuscations R, i.e.,

Ū =
∑
r∈R

p(r) ·
∑
r∗∈R

U[r,r∗] ·P[r,r∗] (6.10)

where U[r,r∗] is the data uncertainty of obfuscating r to r∗, and P[r,r∗] is the probability
of the obfuscation; p(r) is the overall probability that any one participant will appear at
the region r (

∑
r∈R p(r) = 1). Usually we can assume p(r) as uniform distribution or es-

timate it via the overall human mobility pattern (e.g., via anonymous mobile phone call
records [93, 94]). Actually, for a well-designed Sparse MCS task using compressive sens-
ing, the distribution of p(r) should also be roughly even to get the good data quality (recall
the assumption of ‘Even Data Distribution’ in Section 6.2.2). For simplicity, p(r) is set to
follow uniform distribution here, i.e., p(r) = 1/|R|.

With Eq. (6.10), we can calculate the expectation of data uncertainty for the obfuscation
matrices in Table 6.1: 0.067 (Left) and 0.100 (Right). This implies that under the same
privacy level of ε-region-ambiguity (in this case, ε = ln(2)), the left obfuscation matrix in
Table 6.1 produces better data quality than the right one.

Therefore, to improve data quality for Sparse MCS, the objective for the optimization
problem is minimizing the expectation of data uncertainty (see Eq. (6.13)). This optimiza-
tion is performed under several constraints which we discuss next.

Constraint 1: Differential Privacy with ε-Region-Ambiguity

The first constraint is that the optimal probabilistic obfuscation matrix P must satisfy
ε-region-ambiguity to provide a guaranteed level of privacy, which is tunable by setting the
value of ε. We have described this previously in Eq. (6.1).

Constraint 2: Even Obfuscated Region Distribution

The second constraint concerns the inference of missing data for Sparse MCS. In addi-
tion to minimizing the data uncertainties in the obfuscated regions, the obfuscated regions
need to be evenly distributed to ensure the inferred data quality. Formally, we represent this
evenness with the probability of a certain region r∗ to be the obfuscated region:

ψ(r∗) =
∑
r∈R

p(r) ·P[r,r∗] (6.11)

Both example obfuscation matrices in Table 6.1 have even obfuscated region distribution:
ψ(r∗) = 1/3, ∀r∗ ∈ {1,2,3}. However, this is not always the case. While the obfuscation
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matrix in Table 6.3 still satisfies ln(2)-region-ambiguity, no actual region is ever obfuscated
to region 1, i.e., ψ(1) = 0. With this obfuscation matrix for location obfuscation, the server
would never receive any data from region 1, such that all the values in the corresponding
row of the collected sensing matrix C will be unknown. Thus, it is impossible to recover the
missing data for region 1 accurately via compressive sensing [155, 139]. To avoid uneven
obfuscation, we introduce an evenness constraint:

ψ(r∗) =
1
|R|
, ∀r∗ ∈ R (6.12)

which means that every region has exactly the equal probability to be the obfuscated region.
In the experiment, we will evaluate that the evenly-distributed obfuscation outperforms
different levels of unevenly-distributed obfuscation in terms of the data quality for a Sparse
MCS task.

Optimization: Reduced Data Quality Loss

With the objective of reducing data quality loss, by considering the data uncertainty,
differential location privacy and the distribution of the obfuscated regions, we formulate the
following linear optimization program, Data Uncertainty-Minimization under constraints
of ε-region-ambiguity and evenly-distributed obfuscation (DUM-εe), to obtain the optimal
obfuscation matrix:

Choose P[r,r∗],∀r,r∗ ∈ R, in order to

min
P

∑
r∈R

p(r) ·
∑
r∗∈R

U[r,r∗] ·P[r,r∗] (6.13)

s.t. P[r,r∗] ≤ eε ·P[r′,r∗] ∀r,r′,r∗ ∈ R (6.14)∑
r∈R

p(r) ·P[r,r∗] =
1
|R|

∀r∗ ∈ R (6.15)

P[r,r∗] ≥ 0 ∀r,r∗ ∈ R (6.16)∑
r∗∈R

P[r,r∗] = 1 ∀r ∈ R (6.17)

where Eq. (6.13) is the objective function to minimize data uncertainty, R is the set of all
regions in the target sensing area, |R| is the number of regions, and the following are the
series of linear constraints: Eq. (6.14) is the requirement for ε-region-ambiguity differential
location privacy; Eq. (6.15) is the evenness constraint; Eq. (6.16) and Eq. (6.17) are general
constraints for probabilities. ε represents the privacy level, which is a constant specified for
the application. δ is also predefined and we discuss the method to select its value next.

In summary, we propose a location privacy-preserving framework to generate an opti-
mal obfuscation matrix P. The obfuscation matrix satisfies differential privacy as defined as
ε-region-ambiguity (Eq. (6.14)), and is optimized via DUM-εe to produce an even obfusca-
tion distribution (Eq. (6.15)) with minimized data uncertainty (Eq. (6.13)). This supports a
guaranteed privacy level while still satisfying the two requirements for compressive sensing
to achieve good inference performance in Sparse MCS.
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r1 r2

r3 r4

r1 r2

r3 r4

Figure 6.3: Two examples of diameter-2-critical graphs for 4 regions.

6.5.3 Approximation of Optimal Obfuscation Matrix

Although DUM-εe is expected to obtain good performance in Sparse MCS, it has O(|R|3)
constraints, which makes it hard to be scaled up to a large number of regions. In this
subsection, we approximate the optimal obfuscation matrix by reducing the number of the
constraints in the linear programming to O(|R|2). The basic idea is: instead of comparing
the probabilities of obfuscating any two regions r,r′ to a given region r∗ (Eq. (6.14)), we
restrict the comparison only between some specific region pairs but still ensure the privacy
protection of ε-region-ambiguity.

To mark which two regions need to be compared, we define a region-comparison graph
G(R,E) where each vertex r ∈ R represents a region. Two regions r, r′ are required to be
compared if there exists an edge 〈r,r′〉 ∈ E. Intuitively, for DUM-εe, G is a complete graph
as every two regions should be compared.

Now, to describe the approximation mechanism, we introduce the definition of diameter-
2-critical graph [158]. A diameter-2-critical graph is a graph whose diameter (i.e., the max-
imum distance between any pair of vertexes) is 2 and the deletion of any edge increases its
diameter (examples in Figure 6.3). Then, the following theorem holds (see the appendix
for proof):

Theorem 6.2. If G(R,E) is a diameter-2-critical graph, an obfuscation matrix P satisfies
ε-region-ambiguity if:

P[r,r∗] ≤ e
ε
2 ·P[r′,r∗], ∀〈r,r′〉 ∈ E,r∗ ∈ R (6.18)

Proof. As G(R,E) is a diameter-2-critical graph, for any two regions r1,r2 ∈ R, we can find
a region r′ and 〈r1,r′〉, 〈r′,r2〉 ∈ E, then for any region r∗ ∈ R:

P[r1,r∗] ≤ e
ε
2 ·P[r′,r∗] (6.19)

=⇒ P[r1,r∗] ≤ e
ε
2 · (e

ε
2 ·P[r2,r∗]) (6.20)

=⇒ P[r1,r∗] ≤ eε ·P[r2,r∗] (6.21)

�

Note that the number of comparisons in Eq. (6.18) is |E||R|. To minimize |E||R|, we
expect to find the diameter-2-critical graph with the minimal number of edges. Fortunately,
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the minimal diameter-2-critical graph can be constructed as follows: one vertex is joined
by an edge with all others [159] (Figure 6.3 (1) is the minimal diameter-2-critical graph
for 4 regions). For the minimal diameter-2-critical graph, |E| = |R| − 1, so the number of
comparisons to ensure differential location privacy can be reduced from |R|3 (Eq. (6.14)) to
|R|2−|R| (Eq. (6.18)). To wrap up, we propose the following linear program to approximate
DUM-εe by replacing Eq. (6.14) with Eq. (6.18), called Fast DUM-εe (FDUM-εe):

min
P

∑
r∈R

p(r) ·
∑
r∗∈R

U[r,r∗] ·P[r,r∗]

s.t. P[r,r∗] ≤ e
ε
2 ·P[r′,r∗] ∀〈r,r′〉 ∈ E,r∗ ∈ R

constraints (6.15)− (6.17)

Selecting the “central” vertex: When we construct the minimal diameter-2-critical
graph, any region can be chosen as the “central” vertex that connects to all others, which
leads to different formulations of FDUM-εe (e.g., in Figure 6.3 (1), r1 is the “central” ver-
tex). Our empirical experiments show that this selection does not affect the data quality of
FDUM-εe obviously, thus we choose the region whose ID is 1 as the “central” vertex in the
evaluation.

6.6 Evaluation

In the experiment, we use two real-life datasets, environment and traffic monitoring, to
evaluate the performance of our proposed mechanisms.

6.6.1 Baseline Methods and Evaluation Scenarios

We compare the data quality of our proposed location privacy-preserving mechanisms,
DUM-εe and FDUM-εe, to three privacy-preserving baseline mechanisms. The difference
between the three privacy-preserving mechanisms and our mechanisms is the resultant se-
lected obfuscation matrix; we use the same data adjustment model (linear regression) for
all the mechanisms.

We further measure the data quality when no location privacy (No-Privacy) is applied in
the Sparse MCS and use it as the data quality upper bound for comparison purpose. Below
are the three privacy-preserving baseline mechanisms.

Self [160]: If a region is obfuscated to itself, the data uncertainty of the obfuscation
is zero. Thus, if an obfuscation matrix assigns higher probability to self-obfuscation pairs,
i.e., P[r,r], it is likely that the overall data uncertainty will be lower. Based on the intuition,
we use a computationally simple obfuscation matrix putting more probabilities on the self-
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obfuscation while satisfying ε-region-ambiguity:

Psel f [r,r∗] ∝

eε , r∗ = r
1, r∗ , r

(6.22)

This diagonal obfuscation matrix was also previously used in [160] to improve the privacy-
preserving mining of association rules. Note that the “∝” in eq. (6.22) means “proportional
to”, and the exact value of Psel f [r,r∗] should be normalized to ensure that

∑
r∗∈RPsel f [r,r∗]

= 1. For example, Table 6.1 is the Self obfuscation matrix for 3 regions for ε = ln(2).

Planar-Laplace [62]: The state-of-the-art approach in differential location privacy is
to add Laplace noise to the actual location data to probabilistically obfuscate the loca-
tion [62, 63, 60]. To compare with this kind of mechanism, we adapt the Planar-Laplace
mechanism [62] into the MCS scenario. Planar-Laplace first adds Laplace noise to the
actual location coordinate to generate an obfuscated location point (might be outside of the
target sensing area), and then remaps the obfuscated location point to the nearest region as
the obfuscated region. Intuitively, Planar-Laplace tends to obfuscate a region to its nearby
regions with high probability.

Exponential [61]: Another widely-used mechanism to achieve differential privacy is the
exponential mechanism [61]. By considering the uncertainty matrix as the scoring function,
we construct the Exponential obfuscation matrix that attempts to reduce the uncertainty
incurred by the obfuscation, while satisfying ε-region-ambiguity. Intuitively, the smaller
the uncertainty of obfuscating r to r∗ is, the larger the probability of obfuscating r to r∗ will
be for the Exponential mechanism.

In the following sections, we use two Sparse MCS task scenarios to evaluate our pro-
posed mechanisms:

Environment Monitoring: this task collects environment temperature and humidity
sensing data in a modest number of regions (57 regions); thus we can run DUM-εe for
this scenario. The objective of this experiment is to compare the data quality of our opti-
mal mechanism DUM-εe to three baseline mechanisms with the same differential location
privacy guarantee.

Traffic Monitoring: this task collects travel speed from taxis in a number of road seg-
ments, i.e., regions. For some large settings (≥200 road segments in our experiment),
DUM-εe fails with the error of ‘out of memory’ on our test computer, while FDUM-εe can
work efficiently. Besides comparing our mechanisms to the baselines, another objective
of this experiment is to compare the performance between our proposed two mechanisms,
DUM-εe and FDUM-εe, with respect to computation time, memory usage and data quality.

6.6.2 Evaluation on Environment Monitoring

We first evaluate our privacy-preserving mechanism using the temperature and humidity
sensing datasets from the SensorScope project [133], which deployed 97 sensors across
the EPFL campus (300m×500m). We divided the target area into 100 equal-sized regions
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(each region is 30m×50m), and found that 57 regions are deployed with the sensors. Since
Sparse MCS requires all regions to be sensed at least once, we limit our target area to these
57 regions. If a region had more than one sensor, we only used the sensor with the most
number of the temperature or humidity readings to ensure that all the data from the same
region is generated by the same sensor. The sensed data spanned one week, from 2007-07-
01 to 2007-07-07, with a sensing cycle of 30-minute intervals. We used the sensed data of
the first day as historical data to train the data adjustment function, and the remaining six
days as the evaluation dataset. Thus, we have totally 288 sensing cycles. As the number
of regions is modest, we run DUM-εe to generate the optimal obfuscation matrix on this
dataset.

Evaluation Experiment Method

We set the experiment up with the number of participants selected in each cycle, k, and
privacy level, ε, as independent variables. ε is usually chosen by participants and could
be personalized.2 For simplicity, we assume all the participants require the same privacy
level ε. The MCS organizer typically decides on the number of participants k, based on the
incentive budget, the level of privacy guarantee, and the expected data quality. We assume a
large number of candidates, N, from which the organizer can select the actual participants.
As k ranges from 5 to 25 in our experiment, we set N to a larger value, 1000, and simulate
the 1000 candidates’ mobility traces around the target sensing area using a state-of-the-
art mobility model, SWIM [122]. The SWIM parameters are chosen as the ‘Dartmouth’
setting [122] to simulate the user mobility traces on campus.

In each sensing cycle, we randomly selected k participants from N candidates. Each
selected participant was placed in one of the 57 regions (w.r.t. the simulated trace). We take
the sensing values of the placed regions as ground truth. If the server received multiple data
reports for one region (it is possible due to the probabilistic nature of the obfuscation pro-
cess), we used the average value as the reported reading for that region. For the No-Privacy
mechanism, the data in placed regions was reported with the ground truth data, while the
data in uncovered regions without reported data was inferred using the STCS algorithm.
For the privacy-preserving mechanisms, a participant would have her placed region obfus-
cated to another region (different obfuscation matrices for different mechanisms). Then
her sensed data from the placed region would be adjusted, using the learned linear regres-
sion functions, and reported with the obfuscated region. Finally, the data of the uncovered
regions was inferred by the STCS algorithm like for the no-privacy mechanism.

As measures of data quality, we calculated the Mean Absolute Error (MAE) between
the captured data (whether participant reported or inferred via STCS) and ground truth data
on all the 57 regions for each sensing cycle, and report the mean values over 288 sensing
cycles.3 Due to the probabilistic nature of the obfuscation matrices, for each experiment
setting of k and ε values, MAE are calculated over 10 repeated trials. Furthermore, since we

2The server can pre-generate obfuscation matrices for different privacy levels ε. Then, a participant can
decide to download the one that satisfies her privacy requirement.

3We also calculated the Root Mean Squared Error (RMSE) and the evaluation results are similar.



124 DUM-εe: Differential Location Privacy Protection for Sparse Mobile Crowdsensing

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 2  3  4  5  6  7  8

M
A

E 
(C

el
si

us
 d

eg
re

e)

ε (ln)

DUM-εe
Planar-Laplace

Self

Exponential
No-Privacy

(a) k=15, varying ε

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2
 0.22
 0.24
 0.26
 0.28

 0.3

 5  10  15  20  25

M
A

E 
(C

el
si

us
 d

eg
re

e)

k

DUM-εe
Planar-Laplace

Self

Exponential
No-Privacy

(b) ε = ln(4), varying k

Figure 6.4: MAE on the temperature monitoring.

focus on the data quality loss due to privacy protection, we are also interested in the relative
errors with respect to the No-Privacy mechanism. For example, the MAE data quality loss
due to DUM-εe is:

LossMAE(DUM-εe) = MAE(DUM-εe)−MAE(No-Privacy)

For our evaluation, we compare LossMAE for DUM-εe, Self, Planar-Laplace and Exponen-
tial.

Performance Results

In general, our results show that DUM-εe can reduce data quality loss by 15-45% com-
pared to three baseline privacy-preserving mechanisms, with the same level of differential
privacy guarantee ε. The detailed results are illustrated as follows.

Figure 6.4 (a) shows the MAE of temperature under varying privacy levels ε for dif-
ferent mechanisms, with a fixed number of participants (k = 15). As expected, No-Privacy
achieves the best data quality (the smallest MAE, i.e., 0.175). Among the privacy-preserving
mechanisms, DUM-εe incurs the smallest LossMAE at each privacy level. For example,
when the privacy level ε is ln(6), LossMAE(DUM-εe) = 0.056, smaller than LossMAE(Planar-Laplace)
= 0.093, LossMAE(Self) = 0.084, and LossMAE(Exponential) = 0.081. Generally, when vary-
ing ε in [ln(2), ln(8)], DUM-εe can reduce the data quality loss, LossMAE, by 23.6-45.4%,
19.9.7-36.1% and 15.3-35.3% compared to Planar-Laplace, Self and Exponential, respec-
tively. We can also see that the MAE of DUM-εe decreases more sharply with increasing
ε compared to the three baseline privacy-preserving mechanisms. This indicates a less de-
manding compromise of data quality for the privacy level. Loosening the privacy level
leads to more significant improvements in data quality for DUM-εe compared to the other
mechanisms.

Figure 6.4 (b) shows that the MAE of temperature decreases for all the mechanisms
with more participants (higher k). When the privacy level ε is fixed to ln(4), by varying k
from 5 to 25, LossMAE of DUM-εe is always the smallest among all the privacy-preserving
mechanisms. Specifically, LossMAE of DUM-εe is smaller than the three baseline mecha-
nisms by 21.3-35.3%. Furthermore, we can see that if the task organizer requires a certain
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Figure 6.5: MAE on the humidity monitoring.
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Figure 6.6: MAE on the temperature dataset, varying δ in the δ-evenness constraint of DUM-εe.

data quality level, he will have to trade-off between smaller, more manageable recruitment
populations (k) and the participants’ privacy level (ε). For example, suppose the organizer
requires MAE ≤ 0.23 for temperature sensing, this can be achieved with No-Privacy by
recruiting k = 5 participants. To achieve the same MAE using DUM-εe, the organizer will
need to recruit 20 more participants (k = 25) to ensure ε-region-ambiguity for ε = ln(4).
On the other hand, decreasing the privacy level to ε = ln(6) can allow a smaller recruitment
size k = 15.

The results for the humidity dataset are similar to the temperature, shown in Figure 6.5.

Evenness vs. Unevenness

Here, we verify that by ensuring the exactly even obfuscated region distribution (Eq. (6.15)),
DUM-εe can achieve better quality for a Sparse MCS task than uneven obfuscated region
distribution. To compare even distribution to different levels of uneven distribution, we re-
place the exact evenness constaint (Eq. (6.15)) in DUM-εe by introducing another constraint
called δ-evenness:

∀r∗1,r
∗
2 ∈ R, ψ(r∗1) ≤ δ ·ψ(r∗2) (6.23)

where δ is a predefined constant (δ ≥ 1). δ-evenness ensures that for any two regions, the
difference between their probabilities of being the obfuscated region is bounded within δ.
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Server-Side Function Generation
S1: obfuscation matrix 17.2s

S2: linear regression function 8.3s
Mobile-Side Real-time Running

M1: region obfuscation 3.6×10−4s
M2: data adjustment 5.7×10−6s

Table 6.4: Average durations for server and mobile computations.

Note that when δ = 1, δ-evenness is equivalent to the exact evenness constraint (Eq. (6.15)).

We evaluated how δ impacts the quality for a Sparse MCS task. Figure 6.6 shows the
MAE of DUM-εe when setting different δ-evenness constraints on the temperature dataset.
Generally, with the increase of δ, the MAE becomes larger, illustrating that the data quality
degrades when the distribution of the obfuscated regions becomes uneven. Therefore, we
use the exact evenness constraint (δ = 1) in our implementation of DUM-εe.

Computation Time

We used the CPLEX optimizer to solve DUM-εe to obtain the optimal obfuscation ma-
trix.4 Recall that our proposed privacy-preserving framework includes two stages: (i) the
offline server-side process to learn both probabilistic obfuscation matrix and data adjust-
ment function, and (ii) the online mobile client-side process to real-time obfuscate a par-
ticipant’s actual location and adjust her raw sensed data. Table 6.4 shows the computation
time of each stage on the temperature dataset. The first stage is more computation-intensive,
especially for solving the linear program DUM-εe to get the optimal obfuscation matrix.
This lasts for about 17 seconds using CPLEX on our test computer (CPU: Intel Core i7-
3612QM@2.10GHz, RAM: 8 GB, OS: Windows 7). As the first stage is an offline process,
this computation duration is acceptable for the 57-region environment monitoring task.5

For the second stage, our mechanism runs in less than 1 millisecond on the Nexus 5, which
is also reasonable on a mobile phone.

6.6.3 Evaluation on Traffic Monitoring

We also evaluate our mechanism in another Sparse MCS scenario — traffic monitoring [15].
In this scenario, the MCS organizer is interested in the real-time travel speed of some road
segments in the urban area, while many participants (e.g., taxis) are willing to upload their
travel speed to the organizer. Due to the budget constraint, the organizer cannot collect
data from all the participants. [15] has already verified that by collecting the travel speed
from only a small portion of road segments, the travel speed of the other road segments can
be inferred with high accuracy via compressive sensing. By considering road segments as

4CPLEX: http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
5In the next experiment of traffic monitoring, we will show that when the number of regions increases,

DUM-εe might not be solvable.

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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#Segments DUM-εe FDUM-εe
100 337s / 1000MB 2s / 28MB
150 1119s / 1433MB* 4s / 60MB
200 N/A 8s / 108MB
300 N/A 22s / 236MB
400 N/A 48s / 410MB
500 N/A 121s / 633MB

*turn on the ‘memory reduction switch’ in CPLEX; otherwise N/A

Table 6.5: Computation time (second) and memory usage (MB) of the obfuscation matrix generation for
100-500 road segments.

‘regions’, our privacy-preserving framework is applicable to this MCS scenario as well.

Experiment Setting

We use a trajectory dataset generated by more than 30,000 taxis in Beijing [161] to
conduct this experiment. The sensing cycle is set to 1 hour. Like [15], as a road segment
might not be covered by any one taxi in some sensing cycles (i.e., without ground truth
travel speed), we only keep a subset of the road segments in our experiment to make the
ground truth sensing matrix have as fewer vacancies as possible. We thus choose the top
100-500 road segments which are covered by the taxis most frequently to construct the
target sensing area. In each sensing cycle, among all the taxis in the target sensing area,
we randomly choose k (10-50% of the number of the road segments) taxis to upload their
travel speed with their (obfuscated) road segments. One selected taxi only uploads the
travel speed of one road segment even though it can cover multiple segments in one cycle.
We adopt the same assumption as [107]: every selected taxi can obtain the ground truth
travel speed, which is the average travel speed of the road segment in the cycle. This taxi
dataset contains data for four days: the first day’s data is used to train the data adjustment
functions, while the remaining three days’ data are for test purposes.

Computation Time and Memory Usage

Due to the large number of constraints (O(|R|3)), we can run DUM-εe only on the top
100/150 road segments in our experiment environment; for more than 200 road segments,
DUM-εe fails with the error of ‘out of memory’ on our test computer. In comparison,
FDUM-εe can deal with the scenario up to 500 road segments. The detailed computation
costs, including both time and memory usage, are shown in Table 6.5. We can see that
the computation time of FDUM-εe is less than 1% of the computation time of DUM-εe,
if DUM-εe is available. As FDUM-εe reduces the number of constraints from O(|R|3) to
O(|R|2), the memory usage of FDUM-εe is much less than DUM-εe. Therefore, FDUM-εe
is capable of dealing with the large-scale problems that DUM-εe cannot handle.

Data Quality

We compare the data quality obtained by our proposed mechanisms to the baseline



128 DUM-εe: Differential Location Privacy Protection for Sparse Mobile Crowdsensing

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2  3  4  5  6  7  8

M
A

E 
(k

m
/h

)

ε (ln)

DUM-εe
FDUM-εe

Exponential
No-Privacy

(a) k=30, varying ε

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 10  15  20  25  30  35  40

M
A

E 
(k

m
/h

)

k

DUM-εe
FDUM-εe

Exponential
No-Privacy

(b) ε = ln(4), varying k

Figure 6.7: MAE on traffic monitoring (100 road segments).
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Figure 6.8: MAE on traffic monitoring (500 road segments).

mechanisms. For brevity, we only show the results with 100 (see Figure 6.7) and 500 road
segments (see Figure 6.8, DUM-εe is not available for this problem scale); the data quality
metric is MAE. For clarity, among all the baseline mechanisms, we only show the results
of the best one, Exponential. Generally, DUM-εe and FDUM-εe achieve much better data
quality than Exponential with the same level of differential privacy guarantee. Further-
more, FDUM-εe achieves quite similar data quality as DUM-εe. For example, FDUM-εe
increases the quality loss only by 2.1-6.0% compared to DUM-εe when 30 taxis are ran-
domly selected for the traffic monitoring on 100 road segments with different levels of
differential privacy guarantee (Figure 6.7 (a)).

6.7 Discussion

As the first work to balance differential location privacy and data quality in MCS, this work
focuses on the major algorithms, process and evaluation results. We discuss future work to
address some limitations.
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6.7.1 Need for Historical Sensed Data

Our mechanism requires some initial ground truth historical sensed data to generate the data
adjustment functions and the optimal location obfuscation matrix. To get this initial data,
before the privacy-preserving Sparse MCS task begins, the MCS organizer needs to employ
a group of workers to cover the target sensing area and collect accurate sensed data. After
the data adjustment functions and obfuscation matrix are learned, we can stop the initial-
ization stage and recruit participants for the privacy-preserving Sparse MCS task. Note that
the learned data adjustment functions and obfuscation matrix could be less effective after
a period of time (e.g., the temperature correlations between different regions will probably
change for different seasons) and thus need to be updated periodically. Deciding when to
update them will be one direction of our future work.

6.7.2 Repeated-Observations Trajectory Attack

In this work, we have focused on privacy protection from a snapshot attack [152, 154],
i.e., the adversary attempts to find a user’s actual region r only using the obfuscated re-
gion r∗ of one sensing cycle. This kind of attack is reasonable as we make the assumption
that there exist a large number of candidate participants so that no participant needs to
continuously report her locations. However, if this assumption does not hold (i.e., a par-
ticipant is required to contribute her sensed data and locations in continuous cycles), then
an alternative attack is a trajectory attack, where an adversary observes a user’s obfuscated
regions over multiple or repeated sensing cycles, 〈r∗1,r

∗
2, ...,r

∗
n〉. Specifically, if P satisfies

ε-region-ambiguity under the snapshot case, then it only satisfies nε-region-ambiguity un-
der the trajectory case. This is a common limitation of differential privacy [62, 60] and
fortunately, new methods have been proposed to achieve better privacy protection under
trajectory attacks (e.g., [162]), which may be applied in our future work.

6.7.3 Location Correlations between Participants

To achieve the desired protection effect, differential privacy implicitly assumes that the dif-
ferent data are generated independently [163]. That is, to protect participants’ location
privacy in Sparse MCS, differential privacy requires that the locations of different partici-
pants should not have strong correlations. Supposing an extreme case that two participants
are always together, if they both upload sensed data with obfuscated regions to the server
at the same cycle, the adversary can use two obfuscated regions to infer their actual re-
gion. Then the differential location privacy protection is degraded to 2ε-region-ambiguity.
Fortunately, this concern can be mitigated largely via a well-designed participant selection
scheme: As we assume a large number of candidate participants exist, it is probable for an
organizer to select a small subset of participants whose locations are almost independent.
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6.7.4 Alternative Data Adjustment Models

Although we use linear regression as the data adjustment model, our proposed privacy-
preserving mechanism is not limited to it. Given an alternative data adjustment model,
M, the key adaptation is to generate the corresponding data uncertainty matrix U for our
privacy-preserving framework. For any model M, we can use resampling methods [97],
such as cross-validation and bootstrapping, to estimate the data uncertainty incurred by
location obfuscation, and then construct the uncertainty matrix U.

6.7.5 Auxiliary Knowledge beyond Location Distribution

If an adversary has auxiliary knowledge beyond the location distribution (which cannot be
written in the form of π(r)), then the differential privacy protection effect (Section 6.4.2)
may fail. For example, if the adversary foreknows that the participant is “in the hottest
region” and he gets the temperature sensing map from the MCS task, then he can infer the
participant’s actual location (suppose the temperature sensing map is accurate enough). In
our future work, we will try to deal with this kind of auxiliary information — in addition to
location obfuscation, some sensed data perturbation (e.g., temperature) may also be needed.

6.8 Concluding Remarks

In this chapter we present a framework for achieving differential location privacy in sparse
mobile crowd-sensing. This takes into account the desired level of privacy protection, the
prior knowledge that an adversary might have, and the data quality loss due to location
obfuscation. Our contributions are (i) the introduction of the differential location privacy
notion, called ε-region-ambiguity, into Sparse MCS, (ii) a mechanism to obtain the optimal
location obfuscation matrix, called DUM-εe, which provides a guaranteed level of location
privacy with reduced loss in data quality, and (iii) a less computation-intensive mechanism
to approximate the optimal obfuscation matrix, called FDUM-εe, which can achieve sim-
ilar data quality compared to DUM-εe while significantly reducing the computation time
and memory usage. We evaluated our mechanisms DUM-εe and FDUM-εe with real-world
environment and traffic monitoring datasets, and showed that they achieved better data qual-
ity than the state-of-the-art baseline mechanisms, with the same level of differential privacy
guarantee.
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Chapter 7
Conclusion and Future Work
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As an alternative and complementary sensing paradigm to the traditional infrastructure-
based sensing methods, Mobile CrowdSensing (MCS) provides an efficient way to conduct
large-scale sensing campaigns for tasks such as environment monitoring, traffic congestion
detection, and social relationship sensing, with the help of large crowds owning up-to-
date sensor-rich equipped smartphones. Primarily, there are two human roles in MCS,
organizers and participants; accordingly, there exist a variety of research challenges and
opportunities, in order to help both organizers and participants play their corresponding
roles better. This dissertation, following this research direction, attempts to address some
of the research issues from two roles’ perspectives, such as reducing smartphone energy
consumption for participants and achieving efficient quality-budget trade-off for organizers.

In this final chapter, the main contributions of the dissertation are summarized. Then,
future research opportunities are discussed.

7.1 Dissertation Summary

The main contributions of this dissertation include two MCS mechanisms: collaborative
data uploading and sparse mobile crowdsensing.

Collaborative Data Uploading. Energy consumption and mobile data cost are two key
factors affecting users’ willingness to participate in MCS tasks. By allowing some delay
between data uploading and sensing for the participants, various methods, such piggyback
data uploading and data relays between participants, are studied to relieve the burden of the
participants in both energy consumption and mobile data cost, which finally leads to the
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collaborative data uploading mechanism. Specifically,

• effSense: In Chapter 3, we consider two kinds of participants: data-plan and non-
data-plan. Data-plan users are mostly concerned with energy consumption as they
hold enough mobile data plan (e.g., unlimited data plan); non-data-plan users are
more sensitive to data cost. The proposed framework, called effSense, attempts to
save energy consumption for data-plan users and data cost for non-data-plan users,
respectively, by appropriately selecting the timing and network to transfer data. The
possible networks include WiFi, Bluetooth, and piggybacking on 3G calls. Espe-
cially, the short-range user encounters via Bluetooth are leveraged to trigger user data
relays, i.e., collaborations, to further improve the system efficiency. Based on real-
life dataset, effSense is verified that it can reduce 55-65% of energy consumption
for data-plan users, and 48-52% of data cost for non-data-plan users, respectively,
compared to direct 3G data uploading.

• ecoSense: In Chapter 4, suppose that the MCS organizer pays participants incentives
to cover their 3G data cost, a participant partition problem is formulated in collabora-
tive data uploading: how to partition all the participants into two 3G data price plans
— Unlimited Data Plan or Pay As You Go — in order to minimize the total incentives
for the organizer? Based on user mobility prediction and sensed data size estimation,
a genetic algorithm based partition method, called ecoSense, is proposed to achieve
an efficient user partition, which can save around 50% of total 3G cost incentives
compared to the basic partition method that directly assigns each participant’s data
plan according to her sensed data size.

Sparse Mobile Crowdsensing. Budget and quality are two primary concerns for MCS
organizers. To get a high-quality urban sensing map, the traditional way is recruiting
enough participants to cover almost all the sub-areas of a city; but the incentive budget
can be high. Considering the sptio-temporal correlations of urban data, we propose a novel
MCS paradigm that significantly reduces the number of tasks allocated (thus budget) by
only sensing partial sub-areas and inferring missing values for the rest sub-areas; mean-
while, the overall data quality of the sensing map is guaranteed. Due to the sparsity of the
sensed sub-areas, we name this novel crowdsensing paradigm as sparse mobile crowdsens-
ing. Specifically,

• CCS-TA: In Chapter 5, a pioneering sparse MCS implementation is proposed for
urban environment monitoring applications. A three-step sparse MCS framework,
called CCS-TA, is introduced, including optimal task allocation, missing data in-
ference, and data quality assessment. A combination of state-of-the-art data min-
ing and machine learning techniques, such as active learning, compressive sensing,
and Bayesian inference, are implemented in CCS-TA to ensure task quality via only
sparsely sensed data. Evaluation results on a temperature dataset show that by sens-
ing only 13% of cells, the mean absolute error of temperature is ensured to be less
than 0.25◦C in 90% of sensing cycles.

• DUM-εe: In Chapter 6, a location privacy preserving mechanism based on differ-
ential privacy is designed for the participants who take part in sparse MCS tasks.
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Differential location privacy uses the location obfuscation method to change a user’s
actual location to another one before sensed data is uploaded to the server. Then,
to reduce the data quality loss (i.e., inference error in sparse MCS), an optimal ob-
fuscation mechanism is designed by prioritizing the location obfuscation between
two areas that have similar or correlated sensing values. This mechanism is called
DUM-εe, meaning Data Uncertainty Minimization under the constraints of ε-region-
ambiguity and evenly-distributed obfuscation. Experiment results show that DUM-εe
can reduce the data quality loss by 15-45% compared to two state-of-the-art differen-
tial privacy mechanisms, Laplace and Exponential obfuscation.

7.2 Future Research Opportunities

This dissertation proposes two novel MCS frameworks, collaborative data uploading and
sparse mobile crowdsensing. While several key issues and challenges have been studied,
still a variety of research opportunities exist for improving the two MCS frameworks in the
future.

Malicious Participants. Sometimes, malicious participants may exist, which can bring
unexpected threats and losses to other participants and the organizer. In collaborative data
uploading, a malicious participant might abuse another participant’s personal sensed data,
which is received via Bluetooth encounters, for the malicious user’s own purpose; this can
bring privacy violations to other participants. In sparse mobile crowdsensing, a malicious
participant can ruin the quality of the inferred sensing map by uploading faked sensed
data. Against such attacks from malicious participants, it is urgently required to introduce
security mechanisms, such as encryption, and participant reputation evaluation systems into
our proposed MCS frameworks.

Multiple Task Scenario. In reality, an organizer may carry out multiple MCS tasks
simultaneously; a participant also can take part in multiple tasks at the same time. By
considering certain relationships between different tasks, it is probable that our proposed
frameworks can be enhanced. For collaborative data uploading, if there exist sensed data
redundancy between different tasks of different participants, the data to be uploaded may
be reduced by merging or aggregating different participants’ data when they make data
relays, which finally results in lower energy consumption and data cost. For sparse mobile
crowdsensing, diverse data of multiple tasks may show certain correlations, which can boost
the inference accuracy of all the tasks together (e.g., via transfer learning [164]).

Event Detection. While the studied MCS applications in this dissertation are primarily
monitoring, such as user activity and environment monitoring, another important usage of
MCS is for event or anomaly detection. To better suit the event detection purpose, our
designed mechanisms in this dissertation are also necessary for certain adaptation. For
example, in collaborative data uploading, while some delay (even relatively long) is tolerant
for normal human activity monitoring scenario, it may not suit the requirement of abnormal
event detection; in sparse mobile crowdsensing, the data are collected only in partial target
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area, thus the anomalies happening in unsensed areas may fail to be identified. Therefore,
to adapt our proposed MCS frameworks to event detection still needs much research effort
in the future.

Generalized MCS Platform. To provide organizers with an efficient way to create
and conduct various kinds of MCS tasks, as well as participants with an easy portal to
discover and join in interested MCS campaigns, designing a generalized MCS platform or
middleware is another critical research and practical topic. To implement such a platform
that can incorporate the techniques proposed in this dissertation, as well as other state-of-
the-art research advances in MCS, requires extensive future endeavors from both academia
and industry.
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Résumé de la thèse en français 
 

La collecte participative des données mobiles est un nouveau paradigme dédié aux 
applications de détection urbaines utilisant une foule de participants munis de téléphones 
intelligents. Pour mener à bien les tâches de collecte participative des données mobiles, 
diverses préoccupations relatives aux participants et aux organisateurs doivent être 
soigneusement prises en considération. Pour les participants, la principale préoccupation 
porte sur la consommation d'énergie, le coût des données mobiles, etc. Pour les 
organisateurs, la qualité des données et le budget sont les deux préoccupations 
essentielles. Dans cette thèse, deux mécanismes de collecte participative des données 
mobiles sont proposés : le téléchargement montant collaboratif des données et la collecte 
clairsemée des données mobiles. Pour le téléchargement montant collaboratif des 
données, deux procédés sont proposés 1) « effSense », qui fournit la meilleure solution 
permettant d’économiser la consommation d'énergie aux participants ayant un débit 
suffisant, et de réduire le coût des communications mobiles  aux participants ayant un 
débit limité; 2) « ecoSense », qui permet de réduire le remboursement incitatif par les 
organisateurs des frais associés au coût des données mobiles des participants.  Dans la 
collecte clairsemée des données mobiles, les corrélations spatiales et temporelles entre les 
données détectées sont exploitées pour réduire de manière significative le nombre de 
tâches allouées et, par conséquent, le budget associé aux organisateurs, tout en assurant la 
qualité des données.  De plus, l’intimité différentielle est afin de répondre au besoin de 
préservation de la localisation des participants. 



Facilitation de la collecte participative des données mobiles (MCS : 
Mobile Crowd Sensing) du point de vue des organisateurs et des 

participants 
Avec la prévalence des téléphones intelligents (smartphones) équipés de capteurs, au 
cours des dernières années, la collecte participative des données mobiles (MCS) devient 
un paradigme prometteur pour favoriser les applications de détection urbaine, telles que 
la surveillance de l'environnement et la détection de la congestion du trafic. Grâce à cette 
collecte participative, MCS atteint l'objectif de détection urbaine en tirant parti de la 
mobilité des utilisateurs mobiles, des capteurs intégrés dans les téléphones mobiles et de 
l'infrastructure sans fil existante. Par rapport aux paradigmes de détection urbains 
traditionnels reposant sur les infrastructures spécialisées coûteuses, MCS peut couvrir la 
détection dans de grands espaces urbains, de manière efficace et à un coût réduit. 

Pour les participants et les organisateurs, dans le processus MCS,  il existe une variété de 
préoccupations relatives à l’obtention, par une tâche MCS, d’une quantité suffisante de 
résultats de détection satisfaisants. Pour les participants, ces préoccupations comprennent 
la consommation d'énergie des téléphones intelligents (Smartphones), le coût des données 
mobiles, la vie privée, et les incitations qui influencent de manière significative la volonté 
des participants à contribuer à une tâche MCS. Pour les organisateurs, la qualité et le 
budget sont les deux préoccupations principales qui, cependant, ont des conflits 
intrinsèques. Par exemple, pour parvenir à une meilleure qualité de la tâche, cela 
nécessite plus de budget; ainsi, trouver le compromis entre la qualité et le budget est une 
question vitale pour que les organisateurs puissent effectuer des tâches MCS 
satisfaisantes. La problématique de traitement approprié des préoccupations des 
participants et des organisateurs, au cours du processus MCS, a engendré un intérêt 
croissant d’une grande communauté de recherche de nos jours. 

Cette thèse a pour objectif de répondre aux préoccupations des participants et des 
organisateurs en proposant deux catégories de mécanismes pour l’exécution des tâches 
MCS. La première catégorie porte sur le téléchargement montant collaboratif des 
données (collaborative data uploading), dans lequel les participants s’associent 
mutuellement, grâce à des rencontres opportunistes, dans le processus de téléchargement 
des données, afin d'économiser la consommation d'énergie, le coût des données mobiles, 
etc. 

La deuxième catégorie porte sur la collecte clairsemée des données mobiles (sparse 
mobile crowdsensing). Afin de réduire les coûts de détection, tels que l'énergie et la 
motivation, tout en conservant une qualité satisfaisante des données, nous proposons ce 
mécanisme permettant la sélection intelligente d’une petite partie de la zone cible pour la 
détection, tout en inférant les données de la zone non contrôlée restante avec une grande 
précision. 

Le téléchargement montant collaboratif des données regroupe deux contributions : 
effSense et ecoSense. 

effSense: Energy-efficient and Cost-effective Collaborative Data Uploading  



La consommation d'énergie et le coût des données sont deux préoccupations importantes 
pour les participants MCS. Les chercheurs ont développé plusieurs approches pour 
réduire l'énergie et/ou le coût des données afin d’attirer les adhésions à  la collecte 
participative. Les travaux existants supposent essentiellement que les données détectées 
doivent être envoyées à un serveur central dès qu’elles sont générées. En fait, certaines 
tâches de collecte de données mobiles n’exigent pas nécessairement le téléchargement 
des données détectées en temps réel. Pour les tâches qui n’exigent pas un téléchargement 
des données captées en temps réel (delay-tolerant crowdsensing task), nous avons conçu 
un procédé de téléchargement collaboratif de données (désigné par effSense) tirant parti 
des réseaux hétérogènes (par exemple, 3G, WiFi et Bluetooth) et des collaborations 
d’utilisateurs (relais de données), afin de permettre (1) aux utilisateurs sans plan de 
données ou n’étant pas prêts à utiliser leur plan de données pour les tâches de collecte 
(appelés utilisateurs sans plan de données) pour réduire le coût des données en 
transmettant des données à une passerelle Bluetooth ou d'autres téléphones mobiles 
rencontrés (plutôt que via le réseau 3G), et (2) aux utilisateurs disposant d'un plan de 
données (appelés utilisateurs avec plan de données) à consommer moins d'énergie lors du 
téléchargement de données. 

En classifiant les utilisateurs mobiles en deux groupes, avec différents objectifs 
d'optimisation: utilisateurs sans plan de données (réduction des coûts de données) par 
rapport aux utilisateurs avec plan de données (réduction de la consommation d'énergie), 
nous proposons de modifier le modèle de téléchargement de données à temps réel pour 
disposer d’un certain délai avec des cycles de téléchargement fixes. De cette façon, le 
téléchargement de données captées au cours des tâches de collecte devient tolérant au 
délai et les données ne doivent être envoyées au serveur central qu’avant la fin de chaque 
cycle de téléchargement (plutôt qu'immédiatement après la production). Comme un 
certain délai est autorisé, les participants mobiles pourraient trouver d’autres participants 
ou des équipements/réseaux  moins coûteux pour relayer les données détectées avant la 
fin de chaque cycle de téléchargement, de sorte que le coût des données ou la 
consommation d'énergie soient préservés. Plus précisément, effSense procure à chaque 
appareil mobile un système réparti de téléchargement/relais de données lui permettant de 
décider quand et comment effectuer le téléchargement des données captées, afin de 
réduire le coût des données pour les utilisateurs sans plan de données et la consommation 
d'énergie pour les utilisateurs avec plan de données. 

effSense est conçu sur la base des observations suivantes: 

1) Les utilisateurs sans plan de données peuvent supprimer le coût de téléchargement des 
données mobiles en utilisant des réseaux sans coût tels que Bluetooth et WiFi. Par 
exemple, ils peuvent télécharger des données directement vers le serveur, via WiFi, ou les 
transférer, via Bluetooth, vers un autre appareil en mesure de transmettre des données au 
serveur sans encourir de frais supplémentaires. 

2) Les utilisateurs avec plan de données peuvent réduire la consommation d'énergie dans 
le téléchargement grâce à des méthodes économes en énergie plutôt que l'établissement 
d'une nouvelle connexion 3G. Par exemple, la superposition d’une tâche de 
téléchargement de données sur un appel vocal 3G permet d'économiser 75-90% de 



consommation d'énergie. D’autre part, le téléchargement des données via WiFi ou 
Bluetooth consomme moins d'énergie que via 3G. 

 

Les fonctions clés ayant servi à la conception d’effSense incluent: 

1) Identification et prédiction les événements critiques : les événements critiques typiques 
incluent l’appel vocal, la rencontre avec un autre utilisateur, le passage par une passerelle 
Bluetooth, la connexion à un point d’accés WiFi, etc. La prédiction des événements 
critiques pour chaque utilisateur constitue la base d’effSense dans la sélection de la 
meilleure stratégie de relais des données. 

2) Estimation de la consommation d'énergie associée à chaque événement critique : Dans 
le téléchargement, la consommation d'énergie n’est pas toujours proportionnelle à la taille 
des données. Par exemple, le téléchargement d'un paquet de données inférieur à 10Ko via 
3G consomme environ 12 joules, quelle que soit la taille exacte des données. 
Conformément à la littérature existante sur la consommation d'énergie des téléphones 
mobiles, nous avons estimé la consommation d'énergie de divers événements critiques 
pour différentes tailles de données. 

3) Conception d’algorithmes temps réel permettant de décider du téléchargement ou de la 
conservation des données, à chaque événement. Les algorithmes doivent être légers et 
exécutés sur chaque téléphone sans engendrer de consommation d'énergie ou de coût de 
données importants. 

En résumé, effSense apporte les contributions suivantes: 

1) A notre connaissance, ceci est le premier travail qui vise à réduire, à la fois, la 
consommation d'énergie et le coût des données mobiles dans les tâches de collecte des 
données mobiles en tirant parti des réseaux hétérogènes et des mécanismes de tolérance 
au délai. 

2) Nous avons considéré deux types d'utilisateurs (sans plan et avec plan de données) 
avec des objectifs différents et proposons une structure de collaboration comprenant deux 
systèmes de téléchargement de données pour chaque type d'utilisateurs, respectivement: 
l'un est purement gourmand, l'autre est basé sur les prédictions de mobilité/d'appel. Alors 
que le premier est très efficace dans le traitement du problème à froid lorsque les 
historiques d’appels ou les journaux de mobilité des participants ne sont pas disponibles, 
le second peut atteindre une meilleure performance en tirant parti de la prévision des 
événements critiques selon les journaux historiques des participants. 

3) Nous avons évalué effSense avec deux bases de données du monde réel - MIT Reality 
Mining et Nodobo. Les résultats montrent que, par rapport aux méthodes traditionnelles,  
le volume de téléchargement augmente d’environ 48-52% pour les utilisateurs sans plan 
des données, sans aucun coût supplémentaire et que la consommation d’énergie est 
réduite de 55 à 65% pour les utilisateurs avec plan des données.  

 



ecoSense: Minimisation des coûts de données grâce au téléchargement collaboratif 
des données (Collaborative Data Uploading) 

Dans MCS, le remboursement incitatif par les organisateurs des frais associés pour 
couvrir le coût de téléchargement des données 3G est une stratégie de marketing efficace 
pour compenser le problème du coût des données des participants. Comme le 
remboursement du coût des données 3G devrait augmenter le budget d’incitation des 
organisateurs, en particulier pour les tâches qui ont besoin d'un grand nombre de 
participants, la réduction du budget de remboursement devient ainsi un problème critique 
pour les organisateurs. Pour résoudre ce problème, nous avons d’abord étudié les grilles 
tarifaires des coûts de données 3G. Actuellement, deux modèles de prix sont largement 
utilisés par la plupart des opérateurs de télécommunications: Plan de données illimité 
(Unlimited data Plan) ou Pay As You Go. 

Plan illimité de données (UnDP): avec le plan de données illimité, un utilisateur peut 
transférer un nombre illimité de données pendant une période de temps (habituellement 
pendant un mois). Le coût d'un plan de données illimité est fixé, par exemple à 7 $ / mois 
(notée Priceu). 

Pay As You Go (PAYG): un utilisateur paie le coût des données 3G en fonction de la 
quantité de données transférées via 3G, par exemple $ 0.1 / Moctets (notée Pricep). 

Avec les deux plans de prix 3G ci-dessus, la solution simple au remboursement du coût 
de données 3G est de choisir le bon régime de remboursement pour chaque utilisateur 
mobile en fonction de la quantité des données téléchargées. Bien que cette méthode 
d’affectation directe prenne en charge, raisonnablement bien, le téléchargeant les données 
en temps réel pour de nombreuses tâches MCS tolérant au délai, le budget de 
remboursement peut encore rester assez élevé. Dans le mécanisme de téléchargement 
collaboratif de données, les événements suivants peuvent être mis à profit pour réduire le 
coût des données 3G des participants durant le délai imparti: 

1) Réseau sans coûts : Un participant PAYAG peut utiliser un réseau sans frais, tel que 
Bluetooth ou Wi-Fi (par exemple à la maison ou au bureau), pour télécharger des 
données détectées sur le serveur dans le délai imparti, ce qui réduit son coût de données 
3G. 

2) Collaboration des utilisateurs : Les participants UnDP peuvent aider au 
réacheminement des données issues des participants PAYG vers le serveur. Ceci réduit 
les coûts de données 3G pour les participants PAYG, sans augmenter les coûts pour les 
participants UnDP, en diminuant ainsi le budget de remboursement de l'organisateur. 

Sur la base de ces événements, nous incorporons un nouveau module de partition dans le 
système de téléchargement collaboratif de données, dont le but est de répartir de façon 
optimale les participants en sous-groupes UnDP ou PAYG, afin de minimiser le budget 
de remboursement de données 3G de l'organisateur, en profitant au maximum des réseaux 
sans coût et des collaborations des utilisateurs. Le modèle résultant est appelé ecoSense. 
Notons la différence entre ecoSense et effSense: Dans effSense, un participant disposant 
d’un plan UnDP est prévu (par exemple, en fonction de préférences de chaque utilisateur) 
et on ce concentre sur la conception de stratégies d'ajout de données; tandis que dans 



ecoSense, en plus de stratégies téléchargeant, un autre problème technique essentiel est 
de décider si on souhaite attribuer un participant au groupe UnDP ou PAYG. 

Dans la conception d’ecoSense , deux questions importantes sont considérées: 

1) Comment transférer des données lorsque deux participants PAYG se rencontrent? 

Si la stratégie d’acheminement est évidente entre un participant PAYG et un participant 
UnDP (à savoir PAYG →  UnDP), elle est beaucoup plus complexe entre deux 
participants PAYG et aura plus d’incidence sur le budget de remboursement de 
l'organisateur. Parmi toutes les stratégies possibles, la diffusion (échange permanent des 
données entre deux participants PAYG) est sensé générer le plus petit budget de 
remboursement. En effet, suite à la diffusion, si l’un ou les deux participants PAYG 
rencontrent un participant UnDP ou un réseau sans coût, leurs données pourront être 
téléchargées sans frais. Cependant, les diffusions pourraient engendrer trop redondance 
dans les acheminements en déchargeant rapidement les batteries de téléphones mobiles 
des participants. Bien que notre travail vise la réduction du budget de remboursement de 
données 3G de l'organisateur, l'économie d’énergie des participants devrait également 
être prise en compte dans une certaine mesure. Autrement, même si ecoSense permet de 
minimiser le budget de remboursement, la consommation d'énergie des téléphones 
pourrait être trop élevée, et ecoSense devient impraticable. Ainsi, pour étudier le 
compromis entre le budget de remboursement de données 3G de l'organisateur et la 
consommation d'énergie des téléphones des participants, nous avons appliqué différentes 
stratégies de téléchargement/ d’acheminement de données. 

2) Comment décider du régime de remboursement de chaque participant - PAYG 
ou UnDP? 

Pour minimiser le budget de remboursement de données 3G de l'organisateur, une autre 
question clé est de déterminer les participants qui doivent être affectés à chacun des 
régimes (et pas seulement le pourcentage de participants alloué à chaque régime). Ainsi, 
l'algorithme de partition des participants doit examiner le profil de mobilité de chaque 
participant et le volume de données détectées: 

•Schéma de mobilité : Afin de maximiser les possibilités d’acheminement des données 
entre les participants PAYG et UnDP, un profilage précis du schéma de mobilité de 
chaque participant est nécessaire pour décider la catégorie à laquelle on doit l’affecter : 
PAYG ou UnDP. Intuitivement, les participants «actifs» qui peuvent aider d’avantage 
d’autres participants à acheminer leurs données doivent être affectés à la catégorie UnDP. 

•Taille des données détectées : Le volume des données détectées d'un participant devrait 
également avoir une incidence selon qu’il soit affecté à PAYG ou à UnDP. Généralement, 
un participant qui télécharge un plus grand volume de données doit être affecté à UnDP. 

L’algorithme de partition proposé prédit d'abord le profil de mobilité de chaque 
participant et estime le volume de données détectées puis utilise un algorithme génétique 
pour obtenir la répartition des participants dans les groupes PAYG et le UnDP. Cet 
algorithme est exécuté avant le début de chaque mois (seulement une fois par mois) sur le 
serveur de l'organisateur MCS. 



En résumé, ecoSense apporte les contributions suivantes: 

1) A notre connaissance, ceci est le premier travail visant à minimiser le budget de 
remboursement de données 3G de l'organisateur en tirant parti des réseaux hétérogènes 
(par exemple 3G, Bluetooth, WiFi) et des collaborations entre utilisateurs dans le MCS. 

2) Nous avons proposé un modèle de téléchargement collaboratif des données, appelé 
ecoSense, permettant de minimiser budget de remboursement de données 3G de 
l'organisateur. ecoSense considère deux plans tarifaires 3G pour rembourser les 
participants - Pay As You Go et la formule illimitée - et propose des stratégies de 
téléchargement de données pour les participants UnDP et PAYG dans la période de 
téléchargement imparti. En outre, un algorithme de partition a été conçu pour affecter les 
participants aux groupes PAYG et UnDP, afin de minimiser le budget de remboursement 
de données 3G de l'organisateur, en tirant au maximum parti des réseaux sans frais et des 
collaborations des participants (relais de données). 

3) Afin d’évaluer notre modèle, nous avons exploité un ensemble de données réelles 
issues des bases MIT Reality Mining et SWIM. Les résultats de l'évaluation montrent que 
ecoSense peut réduire le budget de remboursement de données 3G de l'organisateur 
jusqu'à -50% par rapport à la solution d’affectation directe. 

La seconde catégorie de nos travaux sur la collecte clairsemée des données mobiles 
(sparse mobile crowdsensing) comporte deux contributions  CCS-TA et DUM-εe : 

CCS-TA: Allocation de tâches assurant la qualité pour la collecte clairsemée des 
données mobiles 

Pour obtenir des résultats de collecte de qualité élevée dans les applications MCS, les 
travaux existants vise généralement à impliquer suffisamment de participants de sorte que 
leurs données peuvent couvrir la quasi totalité de la zone cible, à savoir, une couverture 
complète ou une couverture probabiliste élevée. 

Plus précisément, en assurant la couverture de chaque sous-zone ou cellule (couverture 
complète) ou la plupart des cellules (couverture probabiliste) par les participants mobiles, 
les applications MCS tentent d'obtenir des valeurs de détection précises et fiables dans 
toute la zone cible, afin d’élaborer une image de détection complète qui répond aux 
besoins des organisateurs MCS. La relation sous-jacente entre une couverture complète 
(ou une couverture probabiliste élevée) et la qualité des données est que la couverture 
complète (ou une couverture probabiliste élevée) peut permettre aux organisateurs de 
MCS d’obtenir des valeurs de détection représentatives de la zone cible. En substance, 
pour les organisateurs de MCS, l'exigence de la qualité des données est d'obtenir une 
valeur de détection raisonnablement précise pour chaque sous-zone (cellule). 

La couverture probabiliste complète ou élevée est certes une approche simple pour 
obtenir des données représentatives dans chaque cellule, mais son inconvénient est que 
quelque soit le mécanisme d'allocation efficace des tâches utilisé, l'organisateur MCS doit 
allouer les tâches à presque toutes les cellules, au moins une fois. Cela peut encore 
engendrer un budget incitatif élevé, en particulier lorsque l'organisateur prévoit de 
réaliser diverses campagnes MCS à grande échelle. 



Afin de réduire davantage le nombre de participants, une autre approche consiste à 
sélectionner seulement quelques cellules pour la détection de données, tout en déduisant 
les données associées au reste des cellules de la zone ciblée avec une bonne précision. 
Cette méthode alternative est en fait réalisable puisque certains types de données 
environnementales, telles que la température et le bruit, se sont avérées utiles dans le 
processus d’inférence de bonne qualité en raison des fortes corrélations temporelles et 
spatiales entre ces données. 

Nous proposons alors d'utiliser comme métrique de qualité de données la précision 
générale des données détectées plutôt que la couverture de la zone de détection. Ainsi, on 
exploite les corrélations temporelles et spatiales entre les données détectées pour en 
déduire les données manquantes des cellules non contrôlées. En sélectionnant activement 
un nombre minimal de cellules pour la répartition des tâches, nous tentons de minimiser 
le nombre de participants tout en assurant la précision globale de données. Nous 
nommons « collecte clairsemée des données mobiles (Sparse mobile Crowdsensing)», 
ce nouveau paradigme qui applique des algorithmes d'inférence pour élaborer la 
couverture complète à partir de la couverture partielle des données détectées partielles. 

L'idée de base peut être illustrée par le cas d'utilisation suivant: un organisateur MCS 
lance une tâche de surveillance de la température de l'environnement dans une zone 
urbaine cible, qui a déjà été décomposée en cellules selon les exigences de l'organisateur. 
L'organisateur doit mettre à jour la carte de détection de température complète, une fois 
toutes les heures (cycle de détection), et dans chaque cycle de détection, l'exigence de 
qualité des données est que l'erreur absolue moyenne pour toute la zone doit être 
inférieure à 0,25°C. Dans chaque cycle de détection, pour répondre à cette exigence de 
qualité des données tout en minimisant le nombre des tâches attribuées, l'organisateur 
procède à une sélection active d’un sous-ensemble de cellules à solliciter pour la 
détection physique, à savoir la répartition des tâches aux participants à ces cellules 
sélectionnées. Sur la base des valeurs de température détectées dans les cellules 
sélectionnées, les valeurs de température des cellules restantes sont inférées. 

Pour accomplir la tâche de collecte clairsemée des données mobiles, décrite dans le cas 
d'utilisation ci-dessus, nous devons aborder les deux défis suivants: 

1) Combien et quelles cellules doivent être choisies pour l’allocation des tâches? Dans 
chaque cycle, afin de minimiser le nombre de tâches assignées, tout en assurant la qualité 
des données, l'organisateur doit sélectionner un sous-ensemble minimal de cellules pour 
l’allocation des tâches. Afin de trouver cette combinaison minimale de cellules, nous 
avons besoin d'identifier les cellules pertinentes dont les valeurs détectées, peuvent servir, 
au mieux, à déduire les valeurs des autres cellules. Cependant, l’identification des 
cellules pertinentes d'une manière directe n’est pas triviale car, sans connaître la vraie 
valeur détectée dans une cellule, il est difficile de prévoir combien cette valeur peut aider 
à améliorer la précision des données. 

2) Comment mesurer quantitativement et estimer la qualité des données en ligne à travers 
une tâche MCS sans connaître les vraies valeurs de détection des cellules non contrôlées?  

Étant donné que les vraies valeurs de détection des cellules non contrôlées sont inconnues, 
nous ne pouvons pas mesurer l'exactitude des données directement en comparant les 



données inférées avec la réalité du terrain inconnu. Nous avons donc besoin d'une 
méthode pour estimer efficacement une telle précision des données de détection en ligne 
dans chaque cycle de détection. En outre, comme la précision des données estimées a 
intrinsèquement un certain écart de la précision réelle, il est pratiquement difficile de 
garantir strictement que tous les cycles de détection satisfassent l’erreur limite prédéfinie. 
Par conséquent, nous avons besoin de trouver un moyen pratique pour définir l'exigence 
de qualité des données associée à une tâche MCS au lieu de régler simplement la limite 
d'erreur pour chaque cycle de détection. 

Selon les objectifs et les défis de recherche mentionnés ci-dessus, les principales 
contributions de ce travail sont: 

1) Nous avons défini une nouvelle métrique pour évaluer la qualité d'une tâche MCS, 
appelé (ε,p)-qualité, qui considère non seulement l'erreur limite nécessaire ε mais aussi la 
fraction p de cycles de détection des données de détection qui doivent répondre à cette 
limite ε. Ainsi, nous proposons d'exploiter les corrélations temporelles et spatiales entre 
les valeurs de détection issues de cellules différentes afin de réduire de manière 
significative le nombre de tâches attribuées. A notre connaissance, ceci est la première 
contribution dans le MCS qui tente de réduire le nombre de cellules sollicitées dans la 
détection en sélectionnant intelligemment les meilleures cellules à détecter permettant de 
déduire les valeurs manquantes des cellules restantes, afin de garantir que la précision 
globale des données est conforme à l’exigence de qualité prédéfinie.  

2) Afin de réduire le nombre de cellules de détection requis pour la répartition des tâches 
dans chaque cycle de détection, tout en ciblant la qualité prédéfinie (ε, p), nous proposons 
une architecture de répartition des tâches en ligne à deux phases, appelé CCS-TA 
(Allocation de compression CrowdSensing Task). Dans la première phase, nous 
determinons quelle est la meilleure cellule à ajouter pour la détection dans chaque cycle 
selon des techniques d'apprentissage actives. Après avoir recueilli les données de 
détectées dans les cellules sélectionnées, nous appliquons ensuite , dans la deuxième 
phase,  une méthode basée sur l'inférence bayésienne pour estimer la précision globale de 
données en ligne après avoir inféré les données des cellules restantes en utilisant la 
détection compressive. Sur la base de la précision globale des données estimée, CCS-TA 
détermine si d’avantage de cellules doivent être sélectionnés pour la répartition des tâches 
afin d’assurer la qualité prédéfinie (ε, p). 

3) Pour montrer l'efficacité du CCS-TA, nous avons effectué des évaluations 
approfondies sur des bases de données réelles de surveillance de température et de qualité 
de l'air. Dans le cas de la surveillance de la température, on constate que CCS-TA a 
besoin d’attribuer des tâches à seulement 15,5% des cellules en moyenne, ce qui peut 
assurer une erreur de détection globale inférieure à 0.25◦C dans 95% des cycles, donc 
satisfaisant la qualité (0.25◦C, 0,95). A titre de comparaison, les approches classiques ont 
besoin d'allouer plus de 18,0 à 26,5% de tâches afin de garantir le même niveau de 
qualité. 

DUM-εe: Protection de l’intimité différentielle pour la collecte clairsemée des 
données mobiles 



Dans les applications de collecte clairsemée MCS, les participants communiquent non 
seulement les données détectées, mais aussi leur emplacement et le temps correspondants. 
Cela peut avoir des conséquences graves sur la vie privée des participants MCS. 
Connaissant l'emplacement de chaque participant, un adversaire, qui veut exploiter des 
informations sur le participant, peut organiser un large spectre d'attaques, telles que la 
surveillance physique, le harcèlement, le vol d'identité, et la violation d’informations 
sensibles. Ainsi, la confidentialité de la localisation est un aspect essentiel du MCS, 
puisque les utilisateurs mobiles n’accepteront pas participer à une tâche MCS si leur vie 
privée est menacée. 

La préservation de la vie privée a été largement abordée dans le contexte des systèmes 
basés sur la localisation. Il existe deux mécanismes généraux pour protéger 
l'emplacement de la vie privée d'un utilisateur: (i) protéger l'identité de l'utilisateur à 
travers l'anonymat, de sorte que les traces de localisation ne puissent pas être associés à 
un utilisateur particulier, et (ii) modifier la localisation réelle de l'utilisateur, à l'aide des 
mécanismes d’obscurcissement afin de réduire les informations de localisation livrées au 
fournisseur de services. Dans ce travail, nous nous sommes concentrés sur ce dernier 
mécanisme de protection de la vie privée. 

Quantité de travaux ont été menées sur la protection de la vie privée avec diverses 
techniques d'obscurcissement. Ces mécanismes de protection visent soit à cacher soit à 
perturber l'emplacement réel de l'utilisateur en augmentant l'incertitude de sa localisation 
par un intrus. Le mécanisme le plus populaire est la masquage (cloaking), où 
l'emplacement de l'utilisateur est représenté sous la forme d'une région masquée 
(contenant de multiples cellules très réduites) au lieu d'un lieu ou une cellule bien 
déterminé. Habituellement, le nombre de cellules réduites dans la région masquée est 
utilisé pour mesurer le niveau de protection de la vie privée. Cependant, un défaut 
commun des mécanismes de masquage est qu'ils sont sensibles à la connaissance 
préalable de l'adversaire sur la distribution de l'emplacement de l'utilisateur. Par exemple, 
si un utilisateur apparaît dans une région masquée contenant une école et un bureau 
gouvernemental, et l'adversaire sait à l'avance que l'utilisateur est susceptible d'être à 
l'école (par exemple, l'utilisateur est un étudiant) ; par conséquent, l'adversaire aura élevé 
une forte présomption que l'utilisateur se trouve à l'école dans le domaine masqué. Ce qui 
porte atteinte à la protection recherchée par le masquage. 

L’intimité différentielle a été proposée afin de remédier à cette lacune due au mécanisme 
d'obscurcissement relative à la connaissance préalable de l'adversaire. Dans le domaine 
des bases de données statistiques, son objectif initial est de protéger les données d'un 
individu lors de la publication des données agrégées (par exemple, comptage et somme) à 
partir de la base de données. L’intimité différentielle spécifie que la modification des 
données d'un utilisateur unique aura un effet négligeable sur le résultat de la requête. Cela 
se fait généralement par ajout d'une quantité contrôlée d'un bruit aléatoire en sortie de la 
requête. Supposons qu’un adversaire tente de trouver la valeur d'un certain attribut sur un 
utilisateur (par exemple, l'âge) dans une base de données. Même si l'adversaire dispose 
déjà des résultats de la requête grâce  à l’agrégation des autres valeurs d'attribut, il ne 
peut pas gagner plus de connaissances sur la valeur d'attribut à partir du résultat de la 
requête perturbée, quelque soit la connaissance préalable que l'adversaire détient. 



En appliquant l’intimité différentielle aux services basés sur la localisation (LBS), Andres 
et al. ont proposé la géo-indiscernabilité, ce qui donne à un utilisateur l-intimité dans une 
zone circulaire R avec un certain rayon. La probabilité de reporter la même localisation 
obscurcie r0 à partir de deux localisations réelles dans R est similaire (le degré de 
similitude dépend de l). Ainsi, après avoir observé la localisation obscurcie r0 d'un 
utilisateur, l'adversaire gagne peu de connaissances supplémentaires sur la localisation au 
sein de R qui produit r0, indépendamment de la connaissance préalable de l'adversaire sur 
la distribution de l'emplacement de l'utilisateur. Pour protéger l'intimité de la localisation 
tout en maintenant la qualité de service dans LBS (telles que les requêtes sur les centres 
d’intérêt), les deux mécanismes de dissimulation et d’intimité différentielle supposent 
que la distance entre l'emplacement réel de l'utilisateur et l'emplacement obscurci est 
petite. Cette hypothèse est bien adaptée pour les LBS car la qualité de la sortie d'une 
requête basée sur la localisation préservant la vie privée est généralement dégradée avec 
l'augmentation de la distance entre les localisations obscurcie et réelle. 

Cependant, dans a collecte clairsemée MCS, la perte de la qualité des données est 
affectée par la différence entre les données détectées aux deux emplacements réel et 
obscurci, en plus de la distance entre ces deux emplacements. Afin de limiter la perte de 
qualité de données, lorsque les valeurs de détection des deux emplacements se trouvent à 
proximité, l'emplacement du participant peut être cartographié à un endroit éloigné de 
l'emplacement réel. Par exemple, lors de la détection de la qualité de l'air dans une ville, 
deux parcs peuvent avoir des valeurs similaires de qualité de l'air. Si un participant est 
dans un parc, l’obscurcissement de son emplacement à un autre parc subirait peu de perte 
de la qualité des données, même si les deux parcs sont éloignés l’un de autre. En raison 
de cette distinction entre les qualités de LBS et la collecte clairsemée MCS, au lieu 
d'utiliser directement les mécanismes de LBS, nous avons besoin de reconcevoir les 
mécanismes d'obscurcissement utilisés dans la collecte clairsemée MCS pour protéger 
l’intimité de l’emplacement, tout en assurant la qualité des données. 

Avec ce concept à l'esprit, nous avons exploré la façon d'équilibrer l’intimité de 
l'emplacement pour les participants et la qualité globale des données obtenues pour les 
applications MCS clairsemées. Nous considérons trois éléments clés dans le mécanisme 
de conception pour la préservation de l’intimité de localisation: les exigences en matière 
de protection des renseignements personnels du participant, la connaissance préalable de 
l'adversaire sur la distribution de la position réelle du participant, et la dégradation de la 
qualité des données provenant de l'obscurcissement des emplacements réels. Nos 
principales contributions sont les suivantes: 

1. Apporter l’intimité différentielle de localisation en introduisant la notion de 
préservation de vie privée ε-region-ambiguïté , afin de réduire ce qu'un adversaire peut 
apprendre des participants indépendamment de sa connaissance préalable sur la 
distribution de l'emplacement des participants. 

2. Répondre simultanément aux deux objectifs de localisation et d'obscurcissement pour 
la qualité des données en modélisant l'emplacement sensible à la qualité des données avec 
l’exigence de préservation de vie privée comme problématique d'optimisation. Nous 
avons alors proposé un nouveau programme linéaire appelé DUM-εe, qui sélectionne la 
fonction optimale d'obscurcissement de l’emplacement et réduit la perte de qualité des 



données grâce à la Minimisation de l'incertitude des données sous les contraintes de ε-
region-ambiguïté et une répartition uniforme des emplacements brouillées. Ainsi, la 
fonction d'obscurcissement optimale obtenue permet d’assurer l’intimité différentielle de 
localisation avec un taux de perte considérablement réduit de la qualité des données. 

3. Réduire le nombre de contraintes dans DUM-εe de O(n3) à O(n2) en proposant une 
programme linéaire d’approximation rapide (FDUM-εe). Comme le nombre de 
contraintes affecte à la fois le temps et la complexité de l'espace des techniques de 
programmation linéaire, FDUM-εe nécessite beaucoup moins de temps de calcul et 
d'utilisation d’espace de stockage que DUM-εe. Par conséquent, il peut être appliqué dans 
les tâches de MCS à grande échelle que DUM-εe ne peut pas gérer. 

Au mieux de notre connaissance, ce travail est le premier à mettre en œuvre l’intimité  
différentielle de localisation  dans MCS, tout en réduisant la perte de la qualité des 
données due à l'obscurcissement. Nous avons évalué expérimentalement nos programmes 
d'optimisation, DUM-εe et FDUM-εe, en utilisant des bases de données du monde réel 
sur l’environnement (température et humidité) et la surveillance du trafic. Nos résultats 
montrent que, par rapport aux trois approches de base, DUM-εe peut réduire de 15 à 45% 
la perte de la qualité des données, en garantissant le même niveau d’intimité différentielle. 
Comparé à DUM-εe, FDUM-εe peut atteindre une qualité de données similaire (2 à 6% 
de plus de perte de qualité), alors qu’il nécessite moins de 1% de temps de calcul pour 
générer la fonction d'obscurcissement. 

Enfin, nous avons résumé les apports en termes de téléchargement collaboratif et de 
collecte clairsemée, et discuté des futures perspectives de recherche sur: 

- la façon d'améliorer nos mécanismes pour faire face aux comportements 
malveillants des participants  

- l’adaptation de nos mécanismes à des applications plus innovantes dans les 
scénarios de la ville intelligente,  

- l’intégration de toutes les techniques proposées dans cette thèse dans une plate-
forme de MCS unifiée. 
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