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Abstract

In this thesis, three crucial questions arising in multi-objective optimization are in-

vestigated. First, the existence of properly efficient solutions via scalarization tools

is studied. A basic theorem credited to Benson is extended from the convex case

to the general case. Some further scalarization techniques are also discussed. The

second part of the thesis is devoted to robustness. Various notions from the literature

are briefly reviewed. Afterwards, a norm-based definition given by Georgiev, Luc

and Pardalos is generalized to nonlinear multi-objective optimization. Necessary and

sufficient conditions for robust solutions under appropriate assumptions are given.

Relationships between new robustness notion and some known ones are highlighted.

Two kinds of modifications in the objective functions are dealt with and relationships

between the weak/proper/robust efficient solutions of the problems, before and af-

ter the perturbation, are established. Finally, we discuss the sensitivity analysis and

stability in parametrized multi-objective optimization. Strict semi-differentiability of

set-valued mappings of feasible sets and feasible values is proved under appropriate

assumptions. Furthermore, some sufficient conditions for semi-differentiability of ef-

ficient sets and efficient values are presented. Finally, pseudo-Lipschitz continuity of

aforementioned set-valued mappings is investigated.

iii



Résumé

Cette thèse porte sur trois questions qui se posent en optimisation multi-objectif. Dans

un premier temps, nous étudions l’existence de solutions efficaces via des techniques

de scalarisation. On étend le théorème de Benson du cas convexe à un cas général.

De plus, nous examinons d’autres techniques de scalarisation. Dans un second temps,

nous abordons la question de robustesse. Nous examinons les concepts proposés dans

la littérature sur le sujet. On étend au cas d’optimisation multi-objectif non-linéaire

la définition de Georgiev et ses collaborateurs. Quelques conditions nécessaires et

suffisantes pour obtenir une solution robuste moyennant des hypothèses appropriées

sont données. Les relations entre cette notion de robustesse et certaines définitions

mentionnées sont mises en évidence. Deux types de modifications des fonctions ob-

jectif sont traités et les relations entre les solutions faibles/propres/ robustes efficaces

sont établies. Le dernier chapitre est consacré à l’analyse de sensibilité et de stabilité

en optimisation multi-objectif paramétrée. On montre sous des conditions faibles que

la multi-application de l’ensemble des solutions réalisables et des valeurs réalisables

sont strictement semi-différentiables. On donne quelques conditions suffisantes pour

la semi-différentiabilité de l’ensemble efficace et des valeurs efficaces. De plus, nous

étudions la pseudo-Lipschitz continuité des multi-applications ci dessus citées.
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Preface

Decision making is as old as mankind on earth and everyone somehow faces this

issue everyday. In this problem, Decision Maker (DM) has some alternatives among

which he/she wishes to choose one with the most beneficial achievement. In most

cases, DM is faced with conflicting objectives that make the choice of best alternative

complicated. To clarify this let us give an example. Consider a person who is going

to buy a car and their criteria are fuel consumption and power. It goes without

saying that a car with high power burns more gas. There is no single alternative that

simultaneously satisfies the two criteria. How can DM make a choice?

As in a decision making problem, one is supposed to select merely one alternative;

he/she has to trade-off among objectives and opts for an alternative. However, it

would be profitable to distinguish alternatives (feasible set) which can be candidates.

Edgeworth1 is among the first to address this issue. He considered multicriteria

economic decision making and regarded an alternative as an eligible candidate if

there exists no feasible solution for which an improvement in one objective does not

lead to deteriorating at least one of the remaining objectives. Vilfredo Pareto2 in his

famous book3 studied this problem and called these candidates as efficient points.

Nowadays, in the literature, decision making problems are classified and treated

according to the nature of the feasible set. If the feasible set is finite and given ex-

plicitly in the beginning of the solution process, it is handled by multicriteria decision

analysis (MCDA); otherwise, it is treated by multi-objective optimization. However,

both paradigms could be applied to make a successful decision. MCDA is out of scope

1Philosopher and political economist, 1845- 1926
2Engineer, sociologist, economist, political scientist, and philosopher, 1848- 1923
3Manuale di Economia Politica, Societa Editrice Libraria, Milano, Italy, 1906
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of our work here and we refer the reader to the book [27] where special techniques

like AHP and TOPSIS are introduced to handle these problems.

Multi-objective optimization is a part of mathematical programming dealing with

the minimization of some conflicting objective functions over a feasible set. Multi-

objective optimization problems occur in many fields including economics, manage-

ment, multicriteria design optimization, water resource planning, medicine, etc. Up

to now a great deal of work has been devoted to multi-objective optimization, from

both theoretical and numerical aspects.

Numerous approaches have been proposed to solve multi-objective optimization

problems including scalarization techniques, interactive methods and so on. Scalar-

ization is a traditional approach to solve multi-objective optimization problems. By

scalarization methods, one solves a single objective optimization problem correspond-

ing to a given multi-objective optimization problem whose optimal solutions can be

efficient. Strictly speaking, a single objective optimization problem is formulated

related to the multi-objective optimization via a real-valued scalarizing function, typ-

ically being a function of the objective functions, auxiliary scalar or vector vari-

ables, and/or scalar or vector parameters. In addition, the feasible set of the new

problem may be restricted by new constraint functions associated with the objec-

tive functions of the multi-objective optimization problem and/or new variables are

introduced [24,26].

Scalarization methods have been employed like an engine in interactive methods

and approaches for estimating efficient sets. Moreover, heuristic methods such as

genetic algorithm, ant colony method, etc., have been widely developed for solving

multi-objective optimization problems in recent decades [18].

One of the solution concepts which plays an important role in multi-objective op-

timization, from both theoretical and practical points of view, is the proper efficiency

notion. This concept was first introduced by Geoffrion [31] to eliminate the efficient

solutions which cannot be characterized by weighted-sum method and those points

turn out to have unbounded trade-offs. However, similar concepts were also proposed

before and after Geoffrion. Kuhn and Tucker [48] introduced a notion for proper effi-

4



ciency in differentiable multi-objective optimization which is equivalent to Geoffrion’s

definition under convexity. Benson [9] and Henig [42] proposed two different notions

for proper efficiency in general vector optimization which are equivalent to Geoffrion’s

definition in multi-objective optimization.

Some scalarization methods are able to find properly efficient solutions and to

prove their existence. Geoffrion [31] established that any optimal solution of the

weighted sum method with a strictly positive combination of objective functions is a

properly efficient solution. Benson [8] introduced a new scalarization method, usually

referred to as Benson’s method. It is well-known under convexity that if Benson’s

method corresponding to a given multi-objective optimization problem is unbounded,

then there exists no properly efficient solution [8]. Moreover, Kaliszewski [46] intro-

duced a scalarization method that is able to produce efficient solutions with a given

bounded trade-off.

An important factor involved with multi-objective optimization problems is un-

certainty. The uncertainty may arise from estimation of parameters in the model,

error of machine, structure of problem and so on. Indeed, some parameters are often

unknown at the beginning of solving a multi-objective optimization problem.

Three common approaches addressing this subject in the literature are stochastic

optimization, robust optimization and stability/sensitivity analysis. Stochastic opti-

mization and robust optimization incorporate uncertainty in the model. Nevertheless,

in stability and sensitivity analysis methods first one solves the problem regardless of

uncertainty, and then analyzes continuity and differentiability of the optimal value or

the optimal set with respect to an uncertain set.

This thesis is organized as follows. In Chapter 1, some preliminaries on multi-

objective optimization and set-valued mappings are given. Chapter 2 is devoted

to scalarization methods. The purpose of this chapter is to check the existence of

properly efficient solutions by scalarization techniques. In Chapter 3, we study the

concept of robustness in multi-objective optimization. We extend Georgiev et al.’s

definition [32] to nonlinear case and provide some theoretical results concerning this

notion. Chapter 4 is dedicated to stability and sensitivity analysis in multi-objective

5



optimization. We investigate pseudo-Lipschitz continuity and semi-differentiability of

set-valued mappings corresponding to the efficient sets and efficient values of para-

metric multi-objective optimization problems.

This is author’s quick glance at the subject of the thesis. More detailed intro-

duction is provided at the beginning of each chapter containing more information

about the topic treated there. More history about multi-objective optimization can

be found in [74]. In addition, [75] provides an overview of some works on this subject.

The results of this thesis are essentially published in the following works:

1. Soleimani-damaneh, M., and Zamani, M. On Benson’s scalarization in multiobjec-

tive optimization. Optimization Letters, in press.

2. Zamani, M., Soleimani-damaneh, M., and Kabgani, A. Robustness in nonsmooth

nonlinear multi-objective programming. European Journal of Operational Research

247, 2 (2015), 370-378.

3. Luc, D. T., Soleimani-damaneh, M., and Zamani, M. Stability and sensitivity

analysis in multi-objective optimization, in preparation.
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Chapter 1

Preliminaries

This chapter contains some background materials on set-valued mappings and multi-

objective optimization. Moreover, some preliminary results are provided which will

be used later. We also provide notations that will be used throughout the thesis.

In most cases, we follow the notations from the books [17, 24, 47] according to the

subject.

In the present work, we consider problems in finite dimensional Euclidean spaces

only. The notation k.k stands for Euclidean norm and both ha, bi and aT b denote

inner product of a, b 2 Rn. For a set X ✓ Rn, we use the notations int(X), cl(X),

co(X) and pos(X) for the interior, the closure, the convex hull and the convex conic

hull of X, respectively. We use the notation x
X−! x̄ to show that x tends to x̄ while

x 2 X. Moreover, the notation t # 0 means that t goes to 0 from above. In matrix

spaces, the notation k.k stands for Frobenius norm.

1.1 Multi-objective optimization

We consider the following general multi-objective optimization problem (MOP):

min f(x)

s.t. x 2 X.

9



The set of feasible solutions of this problem is a closed set X ✓ Rn and f : X ! Rp

is a continuous vector-valued function.

The solution notion for (MOP) is defined with respect to an ordering cone which

is used for ordering the criterion space Rp. We use the natural ordering cone defined

by

R
p

=
= {x 2 Rp : xj ≥ 0, j = 1, 2, . . . , p}.

Utilizing this ordering cone, a feasible solution x̄ 2 X is called an efficient solution of

(MOP) if ✓
f(x̄)−R

p

=

◆\
f(X) = {f(x̄)}.

Likewise, we say x̄ 2 X is a weakly efficient solution of (MOP) if

✓
f(x̄)−R

p
>

◆\
f(X) = ;,

where R
p
> = {x 2 Rp : xj > 0, j = 1, 2, . . . , p}. We will use the symbol Rp

≥ to

denote the set Rp

=
\ {0}. Throughout the thesis, the notations 5,  and < stand for

the following orders on Rp:

x 5 y () y − x 2 R
p

=
,

x  y () y − x 2 R
p
≥,

x < y () y − x 2 R
p
>.

All above-mentioned orders are transitive. Nevertheless, only the order 5 is reflexive

and antisymmetric which induces a partial order on Rp.

A solution concept which plays an important role in multi-objective optimization,

from both theoretical and practical points of view, is proper efficiency. This notion

was introduced to eliminate the points which cannot be characterized by weighted-

sum method and those points turning out to have unbounded trade-offs [31]. There

are different definitions for proper efficiency in the literature; see [40,65]. We use the

following ones.

10



Definition 1.1. A feasible solution x̄ 2 X is called properly efficient in the Ge-

offrion’s sense, if it is efficient and there is a real number M > 0 such that for all

i 2 {1, 2, ..., p} and x 2 X satisfying fi(x) < fi(x̄) there exists an index j 2 {1, 2, ..., p}
such that fj(x) > fj(x̄) and

fi(x̄)− fi(x)

fj(x)− fj(x̄)
 M.

Definition 1.2. A feasible solution x̄ 2 X is called properly efficient in the Benson’s

sense, if

cl
⇣
pos(f(X) +R

p

=
− f(x̄)

)⌘\
(−R

p

=
) = {0}.

Definition 1.3. A feasible solution x̄ 2 X is called properly efficient in the sense

of Henig if (f(x̄) − C)
T

f(X) = {f(x̄)}, for some convex pointed closed cone C

satisfying R
p

=
\{0} ✓ int(C).

These three definitions have been proven to be equivalent for the natural cone;

see [65]. Hereafter, the set of efficient solutions, the set of weakly efficient and the set

of properly efficient solutions are denoted by XE, XWE and XPE, respectively. The set

XWE is closed but XE and XPE are not necessarily closed. Also, setting Y = f(X),

the set of nondominated points, denoted by YN , is defined by YN = f(XE), and the

set of properly nondominated points, denoted by YPN , is defined by YPN = f(XPE).

Similarly, the set of weakly nondominated points, denoted by YWN , is defined by

YWN = f(XWE).

The set Y is called R
p

=
−closed, if Y + R

p

=
is closed. Similarly, Y is called

R
p

=
−convex, if Y + R

p

=
is convex. If X is a convex set and f1, f2, . . . , fp are con-

vex functions, then Y is R
p

=
−convex.

1.2 Tangent cones and normal cones

We start this section with a definition of set convergence. The proof of forthcoming

statements in this section can be found in [17,47,59].

Definition 1.4. Let {Ct}t2T be a family of subsets of Rn, where T ✓ Rq. Sup-

pose that t̄ 2 cl(T ). The upper limit and lower limit, denoted by lim supt!t̄ Ct and

11



lim inft!t̄ Ct respectively, are defined as follows:

lim sup
t!t̄

Ct = {x : 9{tn} ✓ T, 9{xn}; xn 2 Ctn , tn ! t̄, xn ! x},

lim inf
t!t̄

Ct = {x : 8{tn} ✓ T, tn ! t̄, 9{xn}; xn 2 Ctn , xn ! x}.

These limits are known as Kuratowski-Painlevé upper and lower limits, respec-

tively. Both limits are closed sets. It is easy to see that the lower limit is a subset of

the upper limit.

The main idea behind the definition of a tangent cone is to obtain a set involving all

directions which one can move along with in the set. Some important applications of

tangent cone in optimization theory is its vital role in deriving optimality conditions

and specifying admissible directions in numerical methods. Elements of tangent cone

are known as variations in calculus of variation. Tangent cone plays a role similar to

tangent space in differential geometry. As in optimization, encountering nonsmooth-

ness even for differentiable problems, the notion of tangent space is not practicable.

There are various definitions of tangent cone in the literature . Here, we just mention

some of them. We refer the reader to [34] and the comprehensive book [47] for more

detailed information about tangent cones.

Definition 1.5. The Bouligand tangent cone to X at x̄ 2 X, denoted by TX(x̄), is

defined as

TX(x̄) := lim sup
t#0

X − x̄

t
.

In other words, d 2 TX(x̄), if there are sequences {xn} ✓ X and tn # 0 such that

t−1
n (xn − x̄) ! d, or equivalently, if there are sequences dn ! d and tn # 0 with

{x̄+ tndn} ✓ X.

The Bouligand tangent cone is a nonempty closed cone, but not necessarily convex.

When X is a differentiable manifold, the Bouligand tangent cone at a given point

coincides with the tangent space. Moreover, the Bouligand tangent cone is closure of

admissible directions as X is convex.

Definition 1.6. Let x̄ 2 X. The adjacent cone to X at x̄ 2 X, denoted by T a
X(x̄), is

12



defined by

T a
X(x̄) := lim inf

t#0

X − x̄

t
.

In other words, d 2 T a
X(x̄), if for every sequence tn # 0, there is a sequence dn ! d

with {x̄ + tndn} ✓ X. Put differently, d 2 T a
X(x̄) if and only if there is a function

φ : [0, ✏) ! X such that φ(0) = x̄ and φ0
+(0) = d.

Adjacent cone is nonempty, closed and a subset of the Bouligand tangent cone.

Definition 1.7. The Clarke tangent cone to X at x̄ 2 X is defined by

T c
X(x̄) := lim inf

t#0,x
X−!x̄

X − x

t
.

In other words, d 2 T c
X(x̄) if and only if for each sequence x

X−! x̄ along with a

sequence tn # 0 there is a sequence dn ! d such that {xn + tndn} ✓ X.

the Clarke tangent cone is closed and convex. Moreover, it is a subset of adjacent

cone. In Section 1.4, we will give an equivalent definition for the Clarke tangent cone.

The following example demonstrates that inclusion relation among tangent cones may

be strict.

Example 1.1. Let X = cl({(x1, x2) : x2 = sin(x−1
1 ), x1 > 0}) [ pos(

2
4−2

−1

3
5) be given.

At the origin, we have

TX(0) = {(d1, d2) : d1 ≥ 0} [ pos(

2
4−2

−1

3
5),

T a
X(0) = pos(

2
40

1

3
5 ,

2
4 0

−1

3
5) [ pos(

2
4−2

−1

3
5),

T c
X(0) = {0}.

Figures 1-1 and 1-2 depict X and corresponding tangent cones, respectively.

As we can see from the above example, it is generally impossible to compute the

Clarke tangent cone if the Bouligand tangent or the adjacent cone is known at a

13



x1

x2

Figure 1-1 – A set related to Example 1.1

x1

x2

(a) TX(0)

x1

x2

(b) T
a
X(0)

Figure 1-2 – Tangent cones in Example 1.1

given point. For instance, tangent cone may be the whole space while the Clarke

tangent cone is equal to zero. However, the following interesting theorem addresses a

connection between the Bouligand tangent cone around a point and Clarke tangent

cone at that point.

Theorem 1.1. Let x̄ 2 X be a given point and let X be locally closed around it.

Then,

T c
X(x̄) = lim inf

x
X−!x̄

TX(x).

Let K be a cone. The polar cone of K is defined and denoted by K◦ := {⌫ :

14



h⌫, di  0, 8d 2 K}. The polar cone of a subspace equals the orthogonal subspace.

In the rest of this section, we pay attention to the concept of normal cones. Normal

cone is a counterpart of normal bundle in differential manifolds.

Definition 1.8. Let x̄ 2 X be given and let X be locally closed around it. The Fréchet

normal cone to X at x̄, denoted by N̂X(x̄), is defined as

N̂X(x̄) = {⌫ 2 Rn : lim sup

x
X−!x̄

h⌫, x− x̄i
kx− x̄k  0}.

In other words, ⌫ 2 N̂X(x̄) if and only if

h⌫, x− x̄i  o(kx− x̄k), 8x 2 X,

where o(kx− x̄k)/kx− x̄k ! 0, when x
X−! x̄. Moreover, the limiting normal cone to

X at x̄, written as NX(x̄), is defined by

NX(x̄) := lim sup

x
X−!x̄

N̂X(x).

The two above-mentioned cones are both closed, but, in general, only the Fréchet

normal cone is convex. Moreover, the Fréchet normal cone is the polar cone of the

Bouligand tangent cone. The closure of convex hull of limiting normal cone is called

the Clarke normal cone and is denoted by N c
X(x̄). Clarke normal cone is the polar

cone of Clarke tangent cone.

Theorem 1.2. Let N̂✏(x̄) := {⌫ : lim sup
x

X−!x̄

h⌫,x−x̄i
kx−x̄k  ✏}. If X is locally closed

around x̄, then we have

NX(x̄) := lim sup

x
X−!x̄,✏#0

N̂X(x). (1.1)

The preceding theorem states that the Fréchet normal cone can be replaced by

N̂✏(x̄) in the definition of limiting normal cone. Mordukhovich [59] introduced this

set to define his normal cone by the formula (1.1). However, in finite-dimensional

15



spaces, Mordukhovich’s normal cone coincides with the limiting normal cone; see [59]

for more details.

Definition 1.9. Let X be locally closed around x̄. X is said to be regular at x̄ if

N̂X(x̄) = NX(x̄).

It is easily seen that X is regular at x̄, if and only if TX(x̄) = T c
X(x̄).

1.3 Set-valued mappings

Let Γ : X ◆ Rp be a set-valued mapping, i.e., Γ sends each x 2 X to a subset of Rp.

We call the set gphΓ := {(x, y) : x 2 X, y 2 Γ(x)} as graph of Γ. Moreover, domain

of Γ is defined as dom(Γ) := {x 2 X : Γ(x) 6= ;}.
In this section, we review some notions about continuity and differentiability of set-

valued mappings. The reader can find the proof of the forthcoming statements given

in this section in [47]. Unfortunately, there are no unified terminology in this area.

1.3.1 Continuity

Definition 1.10. The set-valued mapping Γ is said to be closed at x̄ 2 X, if for each

convergent sequence {(xn, yn)} ✓ gphΓ with (xn, yn) ! (x̄, ȳ), we have ȳ 2 Γ(x̄). In

other words, lim supx!x̄ Γ(x) ✓ Γ(x̄).

It is clear from the definition that if Γ is closed at x̄, then the set Γ(x̄) is also closed.

Definition 1.11. We say that Γ is lower semicontinuous at x̄ 2 X, if lim infx!x̄ Γ(x) ◆
Γ(x̄), i.e., for each open set U in Rp with Γ(x̄) \ U 6= ;, there exists a neighborhood

O of x̄ such that

Γ(x) \ U 6= ;, 8x 2 O.

In addition, Γ is upper semicontinuous at x̄ 2 X, if for each open set U containing

Γ(x̄), there exist a neighborhood O of x̄ with

Γ(x) ✓ U, 8x 2 O.
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We say that Γ is continuous at x̄, if it is both upper semicontinuous and lower

semicontinuous at the point. It is easily seen that upper semicontinuity of Γ at x̄ and

closedness of Γ(x̄) imply closedness of Γ at the point. However, the converse is not

necessarily true; for instance, consider Γ : R ◆ R given by

Γ(x) =

8
><
>:

{0, x−1}, x 6= 0,

0, x = 0

at x̄ = 0. However, if for some neighborhood O of x̄ and each x 2 O, Γ(x) is compact

and if Γ is closed at x̄, then it is upper semicontinuous at the point; see [54].

Lower semicontinuity and upper semicontinuity are equivalent to continuity when Γ

is single-valued. Of course they are distinct when being set-valued; see Figure 1-3

depicting two set-valued mappings from R to the power set of R.

(a) Lower semicontinuous
but not upper semicontinu-
ous at x̄.

(b) Upper semicontinuous
but not lower semicontinu-
ous at x̄.

Figure 1-3 – Upper and lower semicontinuity of set-valued mappings

Some scholars consider definition of closedness for upper semicontinuity of set-

valued mappings. Γ is closed (lower semicontinuous or upper semicontinuous), if it is

closed (lower semicontinuous or upper semicontinuous) at each point of its domain.

Moreover, we call a set-valued mapping Γ closed-valued (convex-valued), if for each
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x 2 X, the set Γ(x) is closed (convex).

Now, we recall some notions about Lipschitz continuity for set-valued mappings that

are extensions of Lipschitz continuity of functions.

Definition 1.12. The set-valued mapping Γ is called upper locally Lipschitz at x̄ 2 X,

if there exist a constant k and a neighborhood O of x̄ such that

Γ(x) ✓ Γ(x̄) + kkx− x̄kB, 8x 2 O,

where B is the closed unit ball in Rp.

It is easy to see that upper locally Lipschitz continuity at a given point implies

closedness at the point, provided the value of set-valued mapping is closed at this

point. Nonetheless, a set-valued mapping may be upper locally Lipschitz while it is

not upper semicontinuous. The following example clarifies the issue.

Example 1.2. Let Γ : R ◆ R2
= be given by Γ(x) = {(y1, y2) : y2y1 ≥ x, y1 ≥ 1}.

It is easily seen that Γ is upper locally Lipschitz at x̄ = 2, though the open set U =

{(y1, y2) : y2y1 > 2− y−1
1 , y1 > 0.5} does not involve Γ(x) for each x < 2.

Compactness and upper locally Lipschitz continuity of set-valued mapping imply

upper semicontinuity. In some important cases, it is of interest to investigate the

behaviour of set-valued mappings around a point in their graph; for example differen-

tiability of set-valued mappings. Due to this fact, pseudo-Lipschitz continuity (also

called Aubin property and Lipschitz-like property) was proposed. Aubin [4] first in-

troduced this notion which plays an essential role in analysis of set-valued mappings;

see [64].

Definition 1.13. The set-valued mapping Γ is said to be pseudo-Lipschitz continuous

at (x̄, ȳ) 2 gphΓ, if there are neighborhoods O of x̄ and U of ȳ such that

Γ(x1) \ U ✓ Γ(x2) + kkx1 − x2kB, 8x1, x2 2 O,

for a constant k.
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Γ is lower semicontinuous at x̄, if it is pseudo-Lipschitz continuous at (x̄, ȳ) for each

ȳ 2 Γ(x̄). On the contrary, a pseudo-Lipschitz set-valued mapping may be neither

upper semicontinuous nor closed at x̄; see Example 1.2. Moreover, pseudo-Lipschitz

continuity at (x̄, ȳ) for each ȳ 2 Γ(x̄) may not imply upper Lipschitz continuity at

x̄, and vice versa. However, pseudo-Lipschitz continuity at (x̄, ȳ) for each ȳ 2 Γ(x̄)

implies upper Lipschitz continuity, closedness and upper semi continuity at x̄ under

additional assumptions such as closedness, compactness, etc. We omit the proofs as

they are straightforward. The next theorem states a handy criterion for checking

pseudo-Lipschitz continuity.

Theorem 1.3. Let gphΓ be locally closed around (x̄, ȳ) 2 gphΓ. Γ is pseudo-Lipschitz

continuous at (x̄, ȳ) if and only if

(⌫, 0) 2 NgphΓ(x̄, ȳ) ) ⌫ = 0.

The preceding theorem in known as Mordukhovich criterion in the literature. In

this section, we only recalled some notions about continuity of set-valued mapping

which will be used in our work. More concepts, including continuity notions defined

by Pompeiu-Hausdorff distance, can be very utile and meaningful in some situations.

For a deeper discussion of these notions and their relationships with stated concepts,

we refer the reader to [47,62,64].

1.3.2 Differentiability

In this subsection, we review some concepts about differentiability of set-valued map-

pings, most of which are motivated by geometric interpretation of derivative of single-

valued functions. first, we introduce the concept of contingent derivatives introduced

by Aubin [3]. It is a kind of standard derivative notion of set-valued mappings and

it also has been used widely in the literature. Some scholars use the term graphical

derivative instead of contingent derivative.

Definition 1.14. Let (x̄, ȳ) 2 gphΓ be given. A set-valued mapping DΓ(x̄, ȳ) : Rn ◆
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Rp is called contingent derivative of Γ at (x̄, ȳ), if

gphDΓ(x̄, ȳ) = TgphΓ(x̄, ȳ).

As mentioned before, contingent derivative is an extension of derivative for single-

valued functions. If Γ is single-valued and differentiable, then we have DΓ(x̄,Γ(x̄))(d) =

rΓ(x̄)d, for each d 2 Rn. When Γ is pseudo-Lipschitz continuous at (x̄, ȳ), dom(DΓ(x̄, ȳ)) =

Rn. While this not true when Γ is not pseudo-Lipschitz continuous. Furthermore,

contingent derivative enjoys the following property:

DΓ(x̄, ȳ)(d̄) = lim sup
d!d̄,t#0

Γ(x̄+ td)− ȳ

t
. (1.2)

The last formula is an extension of the upper Dini derivative notion for set-valued

mappings. As the Bouligand tangent cone can be intractable in some cases (may be

whole space or non-convex), other tangent cones have also been used to define new

notions of derivative.

Definition 1.15. Let (x̄, ȳ) 2 gphΓ be given. A set-valued mapping DadjΓ(x̄, ȳ) :

Rn ◆ Rp is said to be adjacent derivative of Γ at (x̄, ȳ), if

gphDadjΓ(x̄, ȳ) = T a
gphΓ(x̄, ȳ).

In addition, we say Γ is Proto-differentiable at (x̄, ȳ), if TgphΓ(x̄, ȳ) = T a
gphΓ(x̄, ȳ).

Rockafellar [63] introduced the concept of Proto-differentiability to take advantage

of derivability. He also established the Proto-differentiability of a class of set-valued

mappings corresponding to some parametric systems (under some mild conditions).

Likewise, Clarke derivative is defined as follows.

Definition 1.16. Let (x̄, ȳ) 2 gphΓ be given. A set-valued mapping DcΓ(x̄, ȳ) : Rn ◆

Rp is called Clarke derivative of Γ at (x̄, ȳ), if

gphDcΓ(x̄, ȳ) = T c
gphΓ(x̄, ȳ).
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Moreover, Γ is said to be Clarke differentiable at (x̄, ȳ), if TgphΓ(x̄, ȳ) = T c
gphΓ(x̄, ȳ).

It is easily seen that Clarke differentiability implies Proto-differentiability. In the

following example, we calculate the aforementioned derivatives at a given point.

Example 1.3. Let Γ : R ◆ R be given by

Γ(x) =

8
><
>:

{t : t  xsin(lnx)}, x > 0

{t : t  0}, x  0.

At (x̄, ȳ) = (0, 0), we have DΓ(x̄, ȳ)(1) = {e : e  1}, DadjΓ(x̄, ȳ)(1) = {e : e  −1}
and DcΓ(x̄, ȳ)(1) = ;.

Relation (1.2) provides a motivation for defining the following concept.

Definition 1.17. A set-valued mapping DlowΓ(x̄, ȳ) : R
n ◆ Rp is called lower Dini

derivative of Γ at (x̄, ȳ) 2 gphΓ if for each d̄ 2 Rn,

DlowΓ(x̄, ȳ)(d̄) = lim inf
d!d̄,t#0

Γ(x̄+ td)− ȳ

t
.

If TgphΓ(x̄, ȳ) = gphDlowΓ(x̄, ȳ), then Γ is said to be semi-differentiable at (x̄, ȳ);

equivalently, if for each (d, e) 2 TgphΓ(x̄, ȳ), dn ! d̄ and tn # 0, there exists en ! e

such that {(x̄+ tndn, ȳ + tnen} ✓ Γ.

As mentioned above, the semi-differentiability is an extension of the lower Dini

derivative. The concept of semi-differentiability was introduced by Penot [60]. He

also established semi-differentiability of some parametric systems. It is obvious from

definitions that semi-differentiability implies Proto-differentiability. The converse of

this statement may not hold, in general. The following example demonstrates this.

Example 1.4. Let Γ : R ◆ R be given by

Γ(x) =

8
><
>:

{px}, x > 0

{0}, x  0.
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At (x̄, ȳ) = (0, 0), we have DadjΓ(x̄, ȳ)(0) = {e : e ≥ 0}, but DlowΓ(x̄, ȳ)(0) = ;.

The following proposition provides a sufficient condition under which the converse

of the above statement holds.

Proposition 1.1. Let (x̄, ȳ) 2 gphΓ be given and let Γ be pseudo-Lipschitz continuous

at the point. If Γ is Proto-differentiable at (x̄, ȳ), then it is also semi-differentiable at

the point.

If a set-valued mapping Γ is convex-valued and pseudo-Lipschitz continuous at a

given point, then it is semi-differentiable [20]. In the remainder of this section, we pay

attention to the concept of strictly lower Dini derivative proposed by Thibault [73].

Definition 1.18. A set-valued mapping Ds−lowΓ(x̄, ȳ) : R
n ◆ Rp is said to be strictly

lower Dini derivative of Γ at (x̄, ȳ) 2 gphΓ if for each d̄,

Ds−lowΓ(x̄, ȳ)(d̄) = lim inf
d!d̄,t#0

(x,y)
gphΓ−−−!(x̄,ȳ)

Γ(x+ td)− y

t
.

In addition, if TgphΓ(x̄, ȳ) = gphDs−lowΓ(x̄, ȳ), then we say Γ is strictly semi-differentiable

at (x̄, ȳ). In other words, if for each (d, e) 2 TgphΓ(x̄, ȳ), dn ! d̄, (xn, yn)
gphΓ−−−! (x̄, ȳ)

and tn # 0, then there exists en ! e such that {(xn + tndn, yn + tnen)} ✓ Γ.

Rockafellar [2] established Proto-differentiability of a parametric system under

Mangasarian-Fromovitz constraint qualification and Amahroq et al. [2] proved its

strict semi-differentiability under the same condition. They also investigated strict

semi-differentiability of general parametric systems involving intersection. It is obvi-

ous that strict semi-differentiability at a given point implies both semi-differentiability

and Clarke differentiability. however, the converse does not necessarily hold. The fol-

lowing proposition introduces sufficient conditions under which strict semi-differentiability

is derived from Clarke differentiability.

Proposition 1.2. Let (x̄, ȳ) 2 gphΓ be given and let Γ be pseudo-Lipschitz con-

tinuous at the point. If Γ is Clarke differentiable at (x̄, ȳ), then it is also strictly

semi-differentiable at the point.
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As the last notion of the subsection, we address s-derivative. It was introduced

by Shi under the name TP-derivative [67]. Taa called it s-derivative [69].

Definition 1.19. A set-valued mapping DsΓ : Rn ◆ Rp is called s-derivative of Γ

at (x̄, ȳ) 2 gphΓ, if DsΓ(d̄) is consisted of all e such that there are (dn, en) ! (d, e)

and {tn} ✓ R≥ with {(x̄+ tndn, ȳ + tnen)} ✓ gphΓ and tndn ! 0.

It is easy to see that the graph of s-derivative contains that of contingent deriva-

tive. In addition, all of the derivatives presented so far will be equal when the graph

of the set-valued mapping in question is convex.

We conclude the section by the celebrated Kakutani fixed-point theorem.

Theorem 1.4. (Kakutani fixed-point theorem) Let Γ : C ◆ C be a given set-valued

mapping. Suppose that C is compact and convex and Γ(x) is convex and nonempty

for each x 2 C. If graph of Γ is closed, then there exists x̄ 2 C satisfying x̄ 2 C(x̄).

The proof of Theorem 1.4 can be found in [29]. It is worth mentioning that John

Nash used the Kakutani fixed-point theorem to prove the existence of equilibrium in

finite impartial games.

1.4 Clarke subdifferential

Throughout this work, we consider locally Lipschitz data when we are talking about

nonsmooth data. To handle nonsmoothness, we choose the Clarke generalized gradi-

ent. This tool was introduced by Clarke in 1973 in his Ph.D. thesis and since then

has found considerable applications in both optimization and nonsmooth analysis. It

shares many classical theorems of real analysis such as mean value theorem, implicit

function theorem and so on. We only provide the definitions and the results that will

be needed in the sequel. See [16,17] for more detailed information on this subject.

According to Rademacher’s theorem, we know every locally Lipschitz function on Rn

is almost everywhere differentiable in the sense of Lebesgue measure. The definition

of generalized gradient is as follows.
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Definition 1.20. Let f : Rn ! Rp be a locally Lipschitz function. The generalized

gradient of f at x̄, denoted by @f(x̄), is defined by

@f(x̄) := co{ lim
n!1

rf(xn) : xn ! x̄, xn /2 X, xn /2 Xf},

where X is any set with zero Lebesgue measure and Xf is the set of points at which

f is not differentiable.

Definition 1.21. Let f : Rn ! Rp. We say f is strictly differentiable at x̄ if there

is rf(x̄) 2 Rp⇥n such that

lim
x,y!x̄

f(x)− f(y)− hrf(x̄), x− yi
kx− yk = 0.

It is readily seen that continuously differentiable functions are strictly differen-

tiable on their domains. Generalized gradient enjoys nice properties. We list some of

them in the following propositions.

Proposition 1.3. Let f : Rn ! Rp be a locally Lipschitz function with modulus k

near x̄.

1) @f(x̄) is a nonempty, convex and compact set.

2) For every ⌫ 2 @f(x̄) we have k⌫k  k.

3) The set-valued mapping @f(.) is upper semi-continuous and closed.

4) f is strictly differentiable at x̄ if and only if @f(x̄) is a singleton.

The next proposition provides more properties when f is from Rn to R.

Proposition 1.4. Suppose that f : Rn ! R is a locally Lipschitz function.

1) If f is convex, then generalized gradient coincides with subgradient in the sense

of classic convex analysis.

2) If x̄ is a local extremum, then 0 2 @f(x̄).
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3)

lim sup
x!x̄,t#0

f(x+ td)− f(x)

t
= max

⌫2@f(x̄)
h⌫, di.

We denote the value max⌫2@f(x̄)h⌫, di by f ◦(x̄; d).

Definition 1.22. Let f : Rn ! R be a locally Lipschitz function. f is called regular

at x̄, if for each d 2 Rn,

f 0(x̄; d) := lim
t#0

f(x̄+ td)− f(x̄)

t
= max

⌫2@f(x̄)
h⌫, di.

We call f : Rn ! Rm regular at a given point, if its components are regular at the

point.

We say that a function is regular, if it is regular at each point in its domain. The

class of regular functions is vast; for example, convex functions and strictly differen-

tiable functions are regular. Furthermore, sum and pointwise maximum of a finite

number of regular functions are also regular. However, negative scaler multiplication

does not necessarily preserve regularity; consider f(x) = kxk. the next proposition

gives some calculus rules.

Proposition 1.5. Let f1, ..., fk : R
n ! R be locally Lipschitz functions.

1) For each scaler λ, @λf1(x) = λ@f1(x).

2) @(Σk
i=1fi(x)) ✓ Σk

i=1@fi(x).

3) Suppose f is given by f(x) = maxki=1 fi(x). Then, @f(x) ✓ co([i2I(x)@fi(x)),

where I(x) = {i : fi(x) = f(x)}.

The inclusions given in properties (2) and (3) hold as equality when fi are regular.

Theorem 1.5. (Mean Value Theorem) Let f : Rn ! R be a locally Lipschitz func-

tion. Then, for each x, y 2 Rn, there exists z 2 (x, y) such that

f(y)− f(x) 2 h@f(z), y − xi.

25



It is easy to see that if f : Rn ! Rp, then @f(x) ✓

2
6666664

@f1(x)

.

.

@fp(x)

3
7777775

. Nonetheless,

equality does not hold necessarily; for instance, consider f(x) =

2
4 |x|
−|x|

3
5. Then,

@f(0) = co(

2
4 1

−1

3
5 ,

2
4−1

1

3
5), while

2
4@f1(0)

@f2(0)

3
5 = co(

2
4−1

−1

3
5 ,

2
4−1

1

3
5 ,

2
4 1

−1

3
5 ,

2
41

1

3
5).

Theorem 1.6. (Implicit Function Theorem) Let f : Rn ⇥ Rp ! Rp be a locally

Lipschitz function and let f(x̄, ȳ) = 0. Suppose that each M 2 @yf(x̄, ȳ) is invertible.

Then, there exist a neighborhood O of x̄ and a Lipschitz function g : O ! Rp such

that g(x̄) = ȳ and

f(x, g(x)) = 0, 8x 2 O.

In the above theorem, @yf(x̄, ȳ) = {M : 9N ; [N M ] 2 @f(x̄, ȳ)}. A related

question to the foregoing theorem is the following amazing open problem.

Question 1.1. Let f : R(n+p) ! Rp be locally Lipschitz. Suppose that for every

M 2 @f(x̄), M has full rank. Is there some n ⇥ (n + p) matrix, N , such that

2
4M

N

3
5

is invertible for each M 2 @f(x̄).

The answer to Question 1.1 for some classes of functions is affirmative; see [21] and

the references therein. The response to this query may lead to extending important

results about Lipschitz manifolds and implicit function theorems. Consequently, some

results in sensitivity analysis could be extended. Now, let us see the implicit function

theorem in a more general setting [45,62].

Theorem 1.7. Let f : Rq⇥Rn ! Rp be locally Lipschitz. Suppose that the set-valued

mapping Γ is defined by Γ(u) = {x 2 C : f(u, x) 2 K}, where K ✓ Rp is a closed

and convex cone and C ✓ Rn is closed and convex. If 0 2 int(M(T (x̄)) + K) for

every M 2 @xf(ū, x̄), then Γ is pseudo-Lipschitz continuous at (ū, x̄).
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Now, we characterize Clarke tangent cones and Clarke normal cone by generalized

gradient notion. Let dX be the distance function defined by dX(y) = inf{ky − xk :

x 2 X}. The distance function is Lipschitz with modulus 1. Thanks to the distance

function, Clarke tangent cone can be expressed as T c
X(x̄) = {d : d◦X(x̄; d)  0} and

N c
X(x̄) = cl

⇣
pos(@dX(x̄)

⌘
.

Lemma 1.1. The vector d belongs to Clarke tangent cone X at x̄ 2 X if and only

if for each sequence xn
X−! x̄ and tn # 0, there exist subsequences {xnk

} and dnk
! d

such that {xnk
+ tnk

dnk
} ✓ X.

Proof. Due to the facts addressed before the lemma, we only need to prove the "only

if part". Let d fulfill the stated property. From the definition of generalized gradient,

there are sequences yn ! x̄ and tn # 0 such that

lim
n!1

dX(yn + tnd)− dX(yn)

tn
= d◦X(x̄; d).

Of course, {yn} converges to x̄. Consider a sequence {xn} with kyn−xnk  dX(yn)+

tn/n. Therefore, there is a sequence dnk
! d such that {xnk

+ tnk
dnk

} ✓ X. As a

result,

dX(ynk
+ tnk

d)  dX(xnk
+ tnk

dnk
) + kynk

− xnk
k+ tnk

kd− dnk
k

 dX(ynk
) + tnk

kd− dnk
k+ tnk

nk

.

These imply d◦X(x̄; d) = 0, leading to d 2 T c
X(x̄).

In most practical problems, sets are characterized explicitly by functions. The next

theorem provides estimations for tangent cones and normal cones in these situations.

Theorem 1.8. Let X ✓ Rn be given by X = {x : g(x)50}, where g : Rn ! Rm

is a locally Lipschitz function. Suppose that x̄ 2 X and I(x̄) := {i : gi(x̄) = 0}. If
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0 /2 co([i2I(x̄)@gi(x̄)), then

{d : g◦i (x̄; d)  0, 8i 2 I(x̄)} ✓ T c
X(x̄),

N c
X(x̄) ✓ co({@gi(x̄), 8i 2 I(x̄)}).

In addition to the above-mentioned assumptions, if g is regular at x̄, then equality

holds in both inclusions, X is regular at x̄ and we have TX(x̄) = T c
X(x̄).

Proof. Let h be given by h(x) = max15i5m gi(x). Thus, X = {x : h(x) 5 0} and the

theorem follows from Theorem 10.42 in [17] and Proposition 1.5.

We close this chapter by the extended Farkas Lemma for semi-infinite linear sys-

tems.

Theorem 1.9. [37] Let T be a given index set. Then, exactly one of the following

two statements is true:

(i) The following system has a solution.

8
><
>:

aTt x  0, t 2 T

aTx > 0.

(ii) a 2 cl(pos({at : t 2 T})).
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Chapter 2

Scalarization: Extending two

important theorems

2.1 Introduction

An important question in multi-objective optimization is the investigation of exis-

tence of proper efficient solutions. Scalarization methods are not only powerful tools

to generate efficient solutions, but also provide valuable information about proper and

improper efficient solutions. Here, we only concentrate on the applications of scalar-

ization tools related to properly efficient solutions. We refer the reader to [24,26,56]

for studying more aspects of these methods.

By scalarization methods, one formulates a single objective optimization problem

corresponding to a given multi-objective optimization problem and he/she studies

the relationships between the solutions of the two problems. It turns out in multi-

objective optimization that any efficient solution of a given multi-objective optimiza-

tion problem can be characterized as a solution of certain single objective optimization

problems [24,26].

Scalarization techniques have numerous applications in interactive algorithms [57],

estimating Pareto frontier [56], obtaining solutions with bounded trade-offs [46], etc.

In this chapter, we review some popular scalarization methods, though most of

them are closely related. The reader is referred to the book [26] for more details. In

29



the chapter, we consider the following general multi-objective optimization problem:

min f(x)

s.t. x 2 X, (2.1)

where X is a subset of Rn and f : X ! Rp.

2.2 Benson’s method

This section deals with the Benson’s method as a popular scalarization technique.

Benson’s method [8] gives an examination of the existence of efficient and properly

efficient solutions for multi-objective optimization problems. This technique employs

l1−norm to check the efficiency of a given point x0 by solving the following single-

objective optimization problem:

max

pX

k=1

lk

s.t. fk(x
0)− lk − fk(x) = 0, k = 1, 2, . . . , p,

lk ≥ 0, k = 1, 2, . . . , p,

x 2 X.

(2.2)

A linear version of the above model was studied by Ecker and Kouada [23]. Some

useful examples clarifying Model (2.2) can be found in Benson [8] and Giannessi et

al. [33].

The vector x0 2 X is efficient if and only if the optimal value of Problem (2.2) is

zero; see [9, 24]. If (x̂, l̂) is an optimal solution of Model (2.2), then x̂ is an efficient

solution; see [9, 24]. The natural question that arises here is: what happens when

Problem (2.2) is unbounded? Benson [8] answered this question under convexity

assumptions. He proved the following result. See also Theorem 4.16 in [24].

Theorem 2.1. [9, 24] Assume that fk, k = 1, 2, . . . , p, are convex functions and X
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is a convex set. If Problem (2.2) is unbounded, then XPE = ;.

As can be seen from the above theorem and discussion, any optimal solution of

Problem (2.2) yields an efficient solution. Furthermore, in many cases the unbounded-

ness of Problem (2.2) shows that no properly efficient solution exists. In the following,

we prove that this important result holds in all cases (without any assumption).

Theorem 2.2. If Problem (2.2) is unbounded, then XPE = ;.

Proof. If x0 2 X is efficient, then Problem (2.2) has a finite optimal value equal to

zero (see [8, 24]). Therefore, due to the assumption, we have x0 2 X\XE.

To the contrary, assume that there exists x̂ 2 XPE. Since x̂ 2 XPE, due to the Henig

proper efficiency, there exists a convex and pointed cone C, such that R
p
≥ ✓ intC

and

(f(x̂)− C \ {0}) \ f(X) = ;.

According to R
p
≥ ✓ intC, we have ei 2 intC, for i = 1, 2, . . . ,m (vector ei denotes

the ith unit vector in Rp). Thus, there exists ri > 0 such that B(ei; ri) = {y 2
Rp : ky − eik < ri} ✓ C.

Now, consider the following system, in which ↵, ✓, and y are variables:

8
>>><
>>>:

f(x0)− ↵ei = f(x̂)− ✓(ei + y),

kyk < ri,

↵ > 0, ✓ > 0.

(2.3)

Set ↵̄i := 2r−1
i kf(x̂)− f(x0)k and ȳ := ri

2
⇥ f(x̂)−f(x0)

kf(x̂)−f(x0)k . The vector

(↵, ✓, y) = (↵̄i, ↵̄i, ȳ)

is a solution of the system (2.3), and ei + y 2 B(ei; ri). Thus,

f(x0)− ↵̄iei − f(x̂) 2 −C.
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Also, clearly we have

8↵ > ↵̄i, −(↵− ↵̄i)ei 2 −C \ {0}.

Therefore, for each ↵ > ↵̄i, we have f(x0) − ↵ei − f(x̂) 2 −C \ {0}, because C is a

convex cone. This implies f(x0)− ↵ei 2 f(x̂)−C \ {0}. Hence, f(x0)− ↵ei /2 f(X),

due to Henig proper efficiency.

So far, we proved that for each ei, i = 1, 2, . . . ,m, there exists a positive scalar ↵̄i > 0,

such that

8↵ > ↵̄i, f(x0)− ↵ei /2 f(X). (2.4)

Now, defining ↵̄ := max1im ↵̄i, we show that for any d 2 R
p

=
satisfying

Pm

j=1 dj = 1

and any ↵ > ↵̄, we have f(x0) − ↵d /2 f(X). The cone −C is convex and also, for

each i, we have f(x0)− ↵̄ei − f(x̂) 2 −C. Therefore,

mX

i=1

di(f(x
0)− ↵̄ei − f(x̂)) 2 −C.

This implies

f(x0)− ↵̄d− f(x̂) 2 −C.

Furthermore, we have d 2 C, which implies

−(↵− ↵̄)d 2 −C \ {0}, 8↵ > ↵̄.

Thus,

f(x0)− ↵d− f(x̂) 2 −C\{0}, 8↵ > ↵̄.

Therefore, due to the proper efficiency of x̂, we get

f(x0)− ↵d /2 f(X), 8↵ > ↵̄.
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Thus, ↵̄ provides an upper bound for the objective function of Problem (2.2). This

contradicts the unboundedness assumption on Problem (2.2), and completes the

proof.

It is worth mentioning that the converse of Theorem 2.2 does not hold necessarily.

The following example illustrate this point.

Example 2.1. Consider this multi-objective optimization problem.

min (x1, x2)

s.t. x1x2 = 1,

x 2 −R2
>.

It is easy to see that the above problem does not have any properly efficient solution.

However, the Benson’s problem for each x0 belonging to feasible set is bounded.

Now, we consider the following single-objective problem which has been studied

by Guddat et al. [39] as a hybrid scalarization method; see also [24]:

min

pX

k=1

λkfk(x)

s.t. fk(x)  fk(x
0), k = 1, 2, . . . , p,

x 2 X.

(2.5)

In this problem, λ1, λ2, . . . , λm are nonnegative fixed scalars. This problem is an

extension of Problem (2.2). Setting λi = 1, for i = 1, 2, . . . , p, Model (2.5) leads to

Model (2.2).

The vector x0 2 X is efficient if and only if x0 2 X is an optimal solution of Problem

(2.5); see [24, 39]. It is not difficult to see that the unboundedness of Problem (2.5)

implies the unboundedness of Problem (2.2). Therefore, by Theorem 1, we get the

following corollary about the problem of Guddat et al. [39].
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Corrolary 2.1. If Problem (2.5) is unbounded, then XPE = ;.

Under the Rm
=−closedness and Rm

=−convexity assumptions, Benson [8] proved

that, the unboundedness of Problem (2.2) implies XE = ;. Due to the above dis-

cussion, it can be seen that, under Rm
=−closedness and Rm

=−convexity assumptions,

the unboundedness of Problem (2.5) implies XE = ; as well. Although, in Theorem

2.2, we omitted the Rm
=−convexity assumption for investigating XPE, the following

example shows that one cannot omit this assumption for XE.

Example 2.2. Let X = {(x1, x2) : x1 < 0, x2  0, x2 ≥ 1
x1
}[ {(0, 0)} and f1(x) =

x1, f2(x) = x2. Hence, Y = X is R2
=−closed, while it is not R2

=−convex. Considering

x0 = (0, 0), Problem (2.2) is unbounded while XE = {(x1, x2) 2 X : x2 =
1
x1
}.

It is worth mentioning that Theorem 2.2 holds for any ordering cone. Let C ✓ Rp

be a convex, closed and pointed cone with int(C) 6= ;. We call x̄ 2 X to be an

efficient solution of Problem (2.1) with respect to C, if f(X) \ (f(x̄)−C) = {f(x̄)}.
Likewise, x̄ 2 X is called a weakly efficient solution of Problem (2.1) with respect to

C if f(X) \ (f(x̄)− int(C)) = ;.
The point x̄ 2 X is called a properly efficient solution of (2.1) in the Benson’s sense

with respect to C, if

cl(pos(f(X) + C − f(x̄))) \ (−C) = {0}.

That is equivalent to the existence of a pointed, closed and convex cone K with

C \ {0} ✓ int(K) such that f(X) \ (f(x̄) − K) = {f(x̄)} (proper efficiency in the

Henig’s sense).

Consider the following scalarization corresponding to Problem (2.1) with respect to

C:

minλTf(x)

s.t. f(x0)− f(x) 2 C (2.6)

x 2 X,
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in which λ 2 C◦ is a fixed nonzero vector and x0 is a given feasible solution. If x0 is an

efficient solution of Problem (2.1), then the optimal value of the preceding problem

is zero.

Theorem 2.3. If XPE 6= ; with respect to C, then for any x0 2 X, Problem (2.6)

has a finite optimal value.

Proof. To the contrary, assume that there exists x0 2 X such that Problem (2.6)

is unbounded. Because of XPE 6= ;, there is x̂ 2 XPE. According to Henig proper

efficiency, there exists a closed, convex and pointed cone K, such that C\{0} ✓ int(K)

and

✓
f(X)− f(x̂)

◆
\ (−K) = {0}. (2.7)

As Problem (2.6) is unbounded, there is a sequence {xn} ✓ X such that

0 6= f(x0)− f(xn) 2 C ✓ K, λTf(xn)  −n, 8n 2 N.

The sequence f(xn)−f(x0)
kf(xn)−f(x0)k is bounded in Rn, and so, without loss of generality we

may assume that this sequence converges to a nonzero d 2 −C due to the closedness

of C. Moreover, it is trivial that kf(xn) − f(x0)k ! 1, as λ is fixed in Rn. So,

f(xn)−f(x̂)
kf(xn)−f(x0)k ! d. Furthermore, C \ {0} ✓ int(K), which leads to −d 2 int(K).

Therefore, for n0 sufficiently large, we have

f(xn)− f(x̂)

kf(xn)− f(x0)k
2 −K, 8n ≥ n0.

This contradicts (2.7), and completes the proof.
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2.3 Direction-based scalarization

Another popular scalarization method is direction-based scalarization [26]. The direction-

based scalarization problem is as follows:

min t

s.t. f(x) 5 a+ tr (2.8)

x 2 X,

where a 2 Rp and r 2 R
p
≥. This is also known as the Pascoletti-Serafini scalarization

in the literature. In addition, ✏-constraint scalarization is a special case of this method

[26].

Proposition 2.1. (i) If (x̄, t̄) is an optimal solution of Problem (2.8), then x̄ is a

weakly efficient solution of Problem (2.1).

(ii) If x̄ is an efficient solution of Problem (2.1), then (x̄, 0) is an optimal solution

of the following problem for every r 2 R
p

=
:

min t

s.t. f(x) 5 f(x̄) + tr

x 2 X.

Proof. See [26].

Proposition 2.2. If Problem (2.8) is unbounded for a 2 Rp and r 2 R
p
≥, then multi-

objective optimization Problem (2.1) does not have any properly efficient solution.

Proof. As Problem (2.8) is unbounded, there is some x̂ 2 X such that the following
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problem is unbounded:

min t

s.t. f(x) 5 f(x̂) + tr

x 2 X.

Thus, the following problem is unbounded:

max

pX

i=1

li

s.t. f(x) + l = f(x̂)

x 2 X, l = 0.

By virtue of Theorem 2.2, the properly efficient set of multi-objective optimization

problem (2.1) is empty.

2.4 Compromise Programming

Compromise programming is related to some useful techniques in multi-objective

programming which are seeking for solutions as close as possible to an utopia point

[24, 30]. We call the vector yU 2 Rp an utopia point, if yUi < minx2X fi(x), for each

i. The general form of a compromise programming problem corresponding to (MOP)

is {min d(f(x), yU) s.t. x 2 X}, in which d is a measure function from Rp ⇥ Rp to

[0,+1). A popular measure function, which has been widely used in the literature,

is defined by

d(λ, y) = kλ8 ykq,

for each (λ, y) 2 Rp ⇥Rp, in which q is a positive integer,

λ8 y = (λ1y1, λ2y2, . . . , λqyq, )
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and

kλ8 ykq =
✓ pX

j=1

|λjyj|q
◆ 1

q

.

Considering a λ 2 R
p
>, the set of best approximations of the ideal point measured by

k.kq is defined by

A(λ, q, Y ) =

⇢
ȳ 2 Y : kλ8 (ȳ − yU)kq = min

y2Y
kλ8 (y − yU)kq

}
,

in which Y = f(X). Now, the set of best approximations of yU considering all positive

weights is defined by

A(Y ) =
[

λ2ri(∆)

[

1q<1
A(λ, q, Y ),

where ∆ stands for the standard simplex. The following result has been proved by

Gearhart [30], and it has been addressed by Ehrgott [24] and Sawaragi et al. [65].

Theorem 2.4. If Y is Rm
=−closed, then A(Y ) ✓ YPN .

Gearhart [30] used Theorem 2.4 to show that the set of compromise solutions is

dense in the set of efficient points. Another proof for this theorem has been given

by Ehrgott [24] and Sawaragi et al. [65]. The proof given in [24, 65] is completely

different to that provided in [30], though the proof given in [24,65] is not correct. In

a part of the proof, the authors claimed that

kλ8 (ŷ − d

βk

− yU)kq < kλ8 (ŷ − yU)kq, 8k

implies

lim
k−!+1

kλ8 (ŷ − d

βk

− yU)kq < kλ8 (ŷ − yU)kq.

(See p. 188 of Ehrgott [24].) Clearly, this assertion is not correct. In fact, < is

converted to  after operating limit. This makes the given proof in [24,65] incorrect.

In the following, we provide another proof for Theorem A. Furthermore, it is

shown that the Rm
=−closedness assumption is redundant and it is removed. This

assumption has been considered in the three publications [24,30,65]. In fact, Theorem
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A establishes that, under Rm
=−closedness assumption, each compromise solution is

properly efficient. In the following, we show that this holds in the general case.

Theorem 2.5. A(Y ) ✓ YPN .

Proof. Without loss of generality, we assume that yU = 0. Thus, for every y 2 Y , we

have y > 0. Considering ȳ 2 A(Y ), there are λ 2 Λ0 and q 2 [1,1) such that ȳ is an

optimal solution (a minimizer) of the following optimization problem:

min
mX

i=1

λq
iy

q
i (2.9a)

s.t. y 2 Y. (2.9b)

We define a real-valued function f : Rp

=
−! R, by f(y) =

Pp

i=1 λ
q
iy

q
i . This function

has the following properties on R
p
> (and immediately on Y ):

(i) rf(y) > 0, 8y 2 R
p
>,

(ii) f(y + y
0

) ≥ f(y) + f(y
0

), 8y, y0 2 R
p
>.

The proof of property (i) is straightforward. So, we prove only property (ii). For two

positive scalars yi and y
0

i, we have (yi + y
0

i)
q ≥ (yi)

q + (y
0

i)
q. Therefore,

(λi)
q(yi + y

0

i)
q ≥ (λi)

q(yi)
q + (λi)

q(y
0

i)
q 8 i = 1, 2, . . . ,m

)
mX

i=1

(λi)
q(yi + y

0

i)
q ≥

mX

i=1

(λi)
q(yi)

q +
mX

i=1

(λi)
q(y

0

i)
q

) f(y + y
0

) ≥ f(y) + f(y
0

).

Now, to the contrary, assume that ȳ /2 YPN . Thus, according to Benson’s proper

efficiency definition, there are sequences {βk} ✓ (0,+1), {yk} ✓ Y and {dk} ✓ R
p

=

such that

lim
k!1

βk(yk + dk − ȳ) = −d, (2.10)

for some nonzero d 2 R
p

=
.
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Note that {βk} is a sequence of positive real numbers. Therefore, this sequence is

either bounded or unbounded. We consider these two possible cases and show that

in both cases we have a contradiction.

Case 1. {βk} is bounded.

In this case, {βk} has a convergent subsequence. For simplicity, we denote this sub-

sequence by {βk} again. So, βk ! β, for a β ≥ 0.

Assume that β = 0. There exists an i such that di > 0. Thus, by (2.10), there

exists k0 2 N such that

8k ≥ k0, βk(yik + dik − ȳi) < −di
2
.

Hence, for each k ≥ k0, we get

yik < − di
2βk

+ ȳi.

This implies yik ! −1. This yields a contradiction, because y > 0 for each y 2 Y .

Now, assume that β > 0. According to (2.10), there exists a nonzero d0 2 R
p

=

such that

lim
k!1

yk + dk − ȳ = −d0. (2.11)

Since f(d
0

2
) > 0, there exists an ✏̄ > 0 such that

8✏ 2 (0, ✏̄], f(
d0

2
) >

✓
(1 + ✏)q − 1

◆
f(ȳ). (2.12)

Due to ȳ > 0 and (2.11), there exists k1 2 N such that for each k ≥ k1, we have

yk + dk − ȳ < −d0

2
+ ✏̄ȳ.
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Hence, we get

0 < yk +
d0

2
< (1 + ✏̄)ȳ,

which implies

f(yk) + f(
d0

2
)  f(yk +

d0

2
) < (1 + ✏̄)qf(ȳ), (2.13)

because of property (ii) and the fact that f is strictly increasing. Therefore, for each

k ≥ k1, we get

f(yk) < (1 + ✏̄)qf(ȳ)− f(
d0

2
) < f(ȳ),

because of (2.12). This contradicts the optimality of ȳ for the optimization problem

(3.21).

Case 2. {βk} is unbounded.

Without loss of generality, we assume that βk ! 1. Thus, from (2.10), we have

lim
k!1

yk + dk − ȳ = 0.

Since ȳ is an optimal solution of Problem (3.21) and dk = 0, by property (ii), we have

f(yk + dk) ≥ f(ȳ). Furthermore, f is a continuously differentiable function on R
p
>.

Therefore, by the mean value theorem, we have

0  f(yk + dk)− f(ȳ) = rf(zk)
T (yk + dk − ȳ),

in which zk = ↵ȳ + (1− ↵)(yk + dk) for an ↵ 2 (0, 1). Thus,

rf(zk)
T

✓
βk(yk + dk − ȳ)

◆
≥ 0. (2.14)

Since yk + dk ! ȳ, we have zk ! ȳ. Therefore,

0  lim
k!1

rf(zk)
T

✓
βk(yk + dk − ȳ)

◆
= rf(ȳ)T (−d).

This is a contradiction, because rf(ȳ) > 0 and d 2 R
p

=
\{0} gives rf(ȳ)T (−d) < 0.
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Hence, in both possible cases we had a contradiction, and the proof is complete.

Corrolary 2.2. If f(x0) 2 A(Y ), then the optimal value of Problem (2.2) is zero.

Also, x0 is an optimal solution of Problem (2.5).

The converse of the above corollary is not correct necessarily, i.e., there exists some

x0 2 X for which the optimal value of Problem (2.2) is zero, while f(x0) /2 A(Y ).

To show this, it is sufficient to consider an improperly efficient point. But if Y is

Rm
=−closed, there exists the utopia point and the optimal value of Problem (2.2) is

zero, then f(x0) is the limit of some outcomes belonging to A(Y ). This results from

the fact that, under the considered assumptions, the set of compromise solutions is

dense in the set of efficient points; see [24, 30].
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Chapter 3

Robustness

3.1 Introduction

Due to perturbations and partial knowledge, in most practical optimization problems

we are faced with uncertainty. Popular approaches for dealing with uncertainty are

stochastic optimization, robust optimization, stability and sensitivity analysis. Each

approach has its own advantages. Stability and sensitivity analysis are used to analyze

a solution set. In the first step, we neglect uncertainty in the model, and stability

and sensitivity analysis tools are utilized after obtaining an optimal solution. They

are also called post-optimal analysis techniques in the literature. We investigate

robustness in the present chapter and stability and sensitivity analysis in the next

chapter.

Unlike stability and sensitivity analysis, stochastic optimization and robust op-

timization entangle uncertainty in the first step. These approaches find solution(s)

while uncertainty is involved in objective function and constraints. Consider the

following uncertain multi-objective optimization problem:

min f(u, x)

s.t. g(u, x) 5 0 (3.1)

x 2 X, u 2 U,
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where x and u are decision variable and uncertain parameter, respectively. In addi-

tion, f : U ⇥ X −! Rp, g : U ⇥ X −! Rm and U ✓ Rq. Moreover, X ✓ Rn and

p ≥ 2. The set U is called an uncertain set and its members are called as scenarios. To

handle the problem, we are faced with two challenges. First, which decision variable

vector is admissible? Second, which admissible decision variable vector is efficient?

One practical method to address these questins is to apply scalarization techniques in

order to reduce the uncertain multi-objective problem to an uncertain single objective

problem. Then, one can apply the rich theory of stochastic optimization and robust

optimization. The reader is referred to great books [7,66] for details about stochastic

optimization and robust optimization in single objective optimization. However, we

merely mention methods that sustain the multi-objective nature of the problem.

3.1.1 Stochastic multi-objective optimization

In stochastic optimization, data of Problem (3.1) are assumed to have a statistical

structure. We mean that there are probability measure P and σ-algebra F ✓ 2U such

that (U, F, P ) is a probability space. Moreover, for every x 2 X, the functions fi(., x)

and gi(., x) are measurable (random variables).

We review two intuitive ways for managing the problem called multi-objective

method and stochastic method. Suppose that the feasible set is a fixed set X̄; for

instance, X̄ = {x 2 X : P (gi(u, x)  0) ≥ 1− ✏, 8i} for some tolerance ✏ 2 (0, 1).

In multi-objective approach corresponding to each objective function fi, a vector

(z
(1)
i (x), ..., z

(is)
i (x)) := (H1(fi(u, x)), ...,H

s(fi(u, x))),

is defined. Each Hi can be expectation value, risk measure, etc. According to the

transformation, x̄ is called efficient if it is an efficient solution of the following multi-

objective problem:

min (z
(1)
1 (x), ..., z

(1s)
1 (x), ..., z1p(x), ..., z

(ps)
p (x))

s.t. x 2 X̄.
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Stochastic methods use some aggregation function A : Rp ! R and transforms the

stochastic multi-objective optimization to the following stochastic single objective

optimization:

min A(f1(u, x), ..., fp(u, x))

s.t. x 2 X̄,

and manage this problem. More details and various stochastic methods can be seen

in the two survey papers [1, 41].

3.1.2 Robustness: an introduction

Robust optimization has been introduced by Soyster [68] in 1973; However, it has

attracted attention in the late 1990’s. The works of Ben-tal, El Ghaoui and co-

workers introduced robust optimization as a strong tool to handle uncertainty. Unlike

stochastic optimization, the uncertain set U can be any arbitrary set. However, it is

common to regard uncertain set as a compact set. The reader is referred to [7,10] for

more information.

Consider problem (3.1) with p = 1. A common approach to deal with it is to

manage the optimization problem,

min (sup
u2U

f(u, x))

s.t. g(u, x) 5 0, 8u 2 U, (3.2)

called robust counterpart. As the problem signifies, we try to find a point that hedges

against all scenarios and simultaneously minimizes the worst case of the objective

function with respect to U .

The robust counterpart problem, in general, may be intractable. For example,

consider the case that U is not finite, which is a semi-infinite programming problem.

However, for some practical cases robust counterpart is manageable. For instance, in

the linear case, when uncertain set is an ellipsoid or polyhedral the robust counter-
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part will be conic programming or linear programming, respectively. Thus, robust

counterpart enjoys not only nice properties, but also there are polynomial-time algo-

rithms to solve it; see [7, 10] for more details. Semi-infinite programming tools have

also been used to handle robust counterpart; see [36] and the references therein.

In the approach by robust counterpart we consider only feasible points that satisfy all

constraints for all scenarios. In certain cases these feasible points hardly exist, and

therefore the methods that disregard rare scenarios are often proposed to solve the

problem (light robustness and some other notions go in this direction). We refer the

reader to [38] and reference therein for more discussions on other robust approaches.

Robustness in single objective optimization has received considerable attention in

the past decades, but robustness in multi-objective optimization has been considered

seriously in recent years; see [19,25,35,36]. This notion has been studied from different

standpoints. In the rest of this section, we review some concepts of robustness in

multi-objective optimization.

Deb and Gupta [19] introduced two definitions for robustness. In the first definition,

they call an efficient solution robust if it is an efficient solution of the mean of all

objective functions. In the second definition, the objectives do not change, but a

constraint is added which restricts the absolute difference between the mean and the

original objective values. There, the efficient solutions of the modified problem are

called robust efficient.

Consider the following uncertain multi-objective optimization problem,

min f(u, x)

s.t. x 2 X, u 2 U.

where f : U⇥X ! Rp is continuous. We only care about uncertainty in the objective

function and the feasible set is not subject to uncertainty. Otherwise, we can specify

a set X by the single objective robust optimization methods, such as hedging against

all scenarios and so on. If U is singleton, then the problem reduces to a deterministic

multi-objective problem. We denote the above problem by P (u) for a given u 2 U .
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We follow the terms and the notations used in [44].

Definition 3.1. [44] The feasible solution x̄ 2 X is called a flimsily robust (weakly)

efficient solution if it is a (weakly) efficient solution of P (u) for some u 2 U .

Definition 3.2. [44] We say x̄ 2 X is highly robust (weakly) efficient if it is a

(weakly) efficient solution of P (u) for every u 2 U .

It is easy to see that highly robust (weakly) efficiency implies flimsily robust

(weakly) efficiency. It is likely that highly robust efficient solution may not exist even

for finite uncertain set U . The following example demonstrates this.

Example 3.1. Let X = {x1, x2, x3} and U = {u1, u2}. Suppose that the values of

f : U ⇥X ! R2 are given as follows:

f(u1, x1) f(u1, x2) f(u1, x3) f(u2, x1) f(u2, x2) f(u2, x3)

(1, 1) (3.5, 2) (3.2, 2.8) (6, 1.5) (2.6, 0.7) (5.1, 1.2)

It is readily seen that x1 and x2 are flimsily robust efficient while there is no highly

robust efficient solution (see Figure 3-1).

f(u1, x1)

f(u1, x2)

f(u1, x3)

f(u2, x1)

f(u2, x2)

f(u2, x3)

Figure 3-1 – Image of f in Example 3.1

Goberna et al. [35] consider uncertain linear multi-objective optimization, and

provide some necessary and sufficient conditions for highly robust weak efficiency.

Ehrgott et al. [25] extended the worst case robustness notion from the single objective

optimization to the multi-objective case based on the idea of set order.
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Definition 3.3. The decision variable x̄ 2 X is called a set-based minmax robust

efficient solution if there is no x̂ 2 X such that

fU(x̂) ✓ fU(x̄)−R
p
≥,

where fU(x) = {f(u, x) : u 2 U}. Likewise, x̄ 2 X is called a set-based minmax

robust weakly efficient solution if there is no x̂ 2 X such that

fU(x̂) ✓ fU(x̄)−R
p
>.

For the case p = 1 and under the compactness of U , these two concepts are

equivalent to the nonexistence of x̂ 2 X with supu2U f(u, x̂) < supu2U f(u, x̄), which

is exactly the definition of robustness in single objective optimization. In Example

3.1, all admissible points are set-based minmax robust efficient.

The following propositions, by taking advantage of two scalarization techniques,

introduce some methods to obtain a set-based minmax robust (weakly) efficient so-

lution. Their proofs can be found in [25].

Proposition 3.1. Let x̄ be an optimal solution of the following problem:

min(sup
u2U

hλ, f(u, x)i)

s.t. x 2 X,

where λ 2 R
p
> (λ 2 R

p
≥). Then x̄ is a set-based minmax robust (weakly) efficient

solution.

Proposition 3.2. suppose that x̄ is an optimal solution of the following problem:

min(sup
u2U

fi(u, x))

s.t. fj(u, x)  ✏j j 6= i 8u 2 U,

x 2 X,
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where ✏ 2 Rp. Then x̄ is a set-based minmax robust weakly efficient solution. In

addition, if x̄ is the unique optimal solution, then it is a set-based minmax robust

efficient solution.

Unlike deterministic multi-objective optimization, the aforementioned methods

cannot produce all set-based minmax robust (weakly) efficient solutions even for the

convex case; see [25] for some counterexamples.

In general there is no relationship between set-based minmax robust efficiency and

flimsily robust efficiency. Strictly speaking, a feasible point may be set-based minmax

robust efficient while it is not flimsily robust efficient, and vice verse. Similarly highly

robust efficiency and set-based minmax robust efficiency have no connection. To

clarify this point, we take another look at Example 3.1. x3 is a set-based minmax

robust efficient point while it is neither flimsily robust efficient nor highly robust

efficient.

Based on the idea of set-based minmax robust efficiency, the concept of hull-based

minmax robust efficiency has been proposed by Bokrantz et al. [11].

Definition 3.4. The decision variable x̄ 2 X is called hull-based minmax robust

efficient if there is no x̂ 2 X such that

fU(x̂) ✓ co(fU(x̄))−R
p
≥.

It is established that hull-based minmax robust efficiency implies set-based min-

max robust efficiency [11]. However, the converse does not hold necessarily; for in-

stance, in Example 3.1, x3 is set-based minmax robust efficient but not hull-based

minmax robust efficient. Another notion suggested for robustness in multi-objective

optimization is point-based minmax robust efficiency, which deals with efficient solu-

tions of a deterministic multi-objective optimization problem for which each objective

function is worst case of the original objective on the uncertain set.
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Definition 3.5. [28,50] If x̄ is an efficient solution of the following problem:

min fmax
U (x)

x 2 X,

where fmax
U (x) :=

2
6664

supu2U f1(u, x)
...

supu2U fp(u, x)

3
7775, then it is called a point-based minmax robust

efficient solution.

This concept was introduced by Kuroiwa et al. [50] and Fliege et al. [28] almost

simultaneously. Moreover, Fliege and Werner [28] applied it to portfolio optimization.

Note that if supu2U fi(u, x) = maxu2U fi(u, x) for all x 2 X and each i 2 {1, . . . , p},
then every point-based minmax weakly robust efficient solution is set-based minmax

robust weakly efficient; see Theorem 4.11 of [25]. The converse does not hold in

general. However, Ehrgott et al. [25] pointed out that if U = U1 ⇥ ... ⇥ Up and the

objective functions f1, ..., fp are independent of each other with respect to the uncer-

tain set, namely if f((u1, ..., up), x) :=

2
6664

f1(u1, x)
...

fp(up, x)

3
7775, then point-based minmax robust

(weak) efficiency is equivalent to set-based minmax robust (weak) efficiency.

Other concepts have also been proposed for robustness; we listed here some of them.

For example, on account of the definition of set-based minmax robust efficiency Ide

et al. [43, 47] introduced order-robust definition by using orders for set. Schöbel et

al. [44] extended light robustness to multi-objective optimization. Pourkarimi et al.

introduced two new concepts for robustness in linear multi-objective optimization [61].

We refer reader to the survey paper [44].

In a recent work, Georgiev et al. [32] have defined the robustness for linear multi-

objective optimization problems from a different point of view. They considered a

perturbation standpoint, and defined an efficient solution as a robust solution if it

remained efficient for small perturbations of the coefficients of the objective functions.
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They also studied their definition considering different kinds of perturbations, includ-

ing changing the objectives’ coefficients and adding a new objective function. They

obtained necessary and sufficient conditions and presented various nice properties of

the robust solutions in the linear case. Goberna et al. [35, 36] extended Georgiev et

al.’s definition for linear multi-objective optimization problems under perturbations

of the coefficients of both the objective functions and constraints.

In the rest of our work here, we extend the definition given by Georgiev et al. to

nonlinear multi-objective optimization. We show that, under the compactness of the

feasible set or convexity, the set of robust efficient solutions is a subset of the set of

properly efficient solutions. Some necessary and sufficient conditions for robust so-

lutions with respect to the Bouligand tangent cone and non-ascent directions, under

appropriate assumptions, are given. A robustness radius is calculated. The relation-

ships between the robustness notion considered in this sense and some mentioned

definitions are highlighted. Two kinds of modifications in the objective functions are

dealt with and the relationships between the weak/proper/robust efficient solutions

of the problems, before and after the perturbation, are established. Some examples,

to clarify the theoretical results, are given.

In Section 3.2, robustness is defined, its relationship with proper efficiency is estab-

lished, and some necessary and sufficient conditions are proved. Section 3.3 is devoted

to the robustness radius calculation. Section 3.4 contains some results on connections

between the newly and previously defined robustness definitions. In Section 3.5, we

study some alterations of the objective functions that preserve weak/proper/robust

efficiency.

3.2 Robustness

We start this section by introducing the concept of robust solution in nonlinear multi-

objective optimization. This definition extends Definition 3.1 in Georgiev et al. [32].
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Consider the following multi-objective optimization problem:

min f(x)

s.t. x 2 X, (3.3)

where X ✓ Rn is nonempty and f : X ! Rp is locally Lipschitz.

Definition 3.6. Let x̄ 2 X be an efficient solution of Problem (3.3). x̄ is called a

robust efficient solution if there exists ✏ > 0 such that for any p ⇥ n matrix C with

kCk < ✏, the vector x̄ is an efficient solution of

min f(x) + Cx

s.t. x 2 X.

Note that the notation k.k stands for the Frobenius norm in matrix spaces. How-

ever, since all the norms are equivalent in finite dimension, the definition of robust

is independent of the choice of norm. In the above definition, ✏ is called radius of

robustness. Thanks to mean value Theorem 1.5, we have the following result.

Proposition 3.3. Let x̄ be a robust efficient solution with radius ✏. Then for any

Lipschitz function h : Rn ! Rp with modulus less than ✏, x̄ is an efficient solution of

the following problem:

min f(x) + h(x)

s.t. x 2 X.

The following theorem presents a nice property of robust efficient solutions. It

states that the set of robust efficient solutions is a subset of properly efficient solutions

under the compactness of the feasible set.

Theorem 3.1. Let X be compact. If x̄ is a robust efficient solution of Problem (3.3),

then x̄ is a proper efficient solution of Problem (3.3).

Proof. Suppose x̄ is not a properly efficient solution. Then, there exist {xi} ✓ X,

increasing sequence {Mi} of positive real numbers, and k 2 {1, ..., p}, such that
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Mi −! +1,

fk(xi) < fk(x̄), 8i, (3.4)

and
fk(x̄)− fk(xi)

fj(xi)− fj(x̄)
> Mi, for each j 2 {1, ..., p} with fj(xi) > fj(x̄). (3.5)

Since X is compact, without loss of generality, we may assume that {xi} converges to

some x̂ 2 X. Also, we define Qi = {j : fj(xi) > fj(x̄)}. This set is nonempty because

x̄ is efficient. Without loss of generality, by choosing an appropriate subsequence,

Qi is a constant set for all i indices. So, we denote it by Q. Two cases may occur

for x̂; either it is equal to x̄ or not. We consider these two possible cases and get a

contradiction in each case.

Due to the robustness of x̄, there exists some ✏ > 0 such that x̄ is an efficient

solution of Problem (3.4) for any matrix Cp⇥n with kCk < ✏. Let x̂ 6= x̄. We can

choose the matrix with property kC̃p⇥nk < ✏ such that

C̃j(x̂− x̄) < −2δ, 8j 2 Q, (3.6)

C̃j = 0, 8j 2 {1, ..., p} \Q, (3.7)

for some δ > 0 (C̃j denotes the jth row of C̃). Since f is bounded on X, from (3.5),

we have fj(xi) −! fj(x̄) for each j 2 Q as i −! +1. Therefore, for sufficiently large

i values, we have fj(xi)−fj(x̄)− δ < 0. Hence, by (3.6), for sufficiently large i values,

we get

fj(xi) + C̃jxi < fj(x̄) + C̃jx̄− δ < fj(x̄) + C̃jx̄, 8j 2 Q. (3.8)

Also, by (3.7) and due to the definition of Q, for sufficiency large i values, we have

fj(xi) + C̃jxi  fj(x̄) + C̃jx̄, 8j 2 {1, ..., p} \Q. (3.9)

Inequalities (3.8) and (3.9) contradict the robustness of x̄.

Now, we consider the latter case, x̄ = x̂. We assume that the sequence { xi−x̄
kxi−x̄k}
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converges to some nonzero vector d. We choose C̃p⇥n satisfying kC̃p⇥nk < ✏ and

C̃jd < −2δ, 8j 2 Q, (3.10)

C̃j = 0, 8j 2 {1, ..., p} \Q, (3.11)

for some δ > 0. Assume that Lj is the Lipschitz constant of fj on a neighborhood of

x̄. By (3.5), for sufficiently large i values, we get

fj(xi)− fj(x̄) <
Lkkx̄− xik

Mi

< δkx̄− xik. (3.12)

Therefore, by (3.10)-(3.12) we get inequalities (3.8) and (3.9) in this case as well.

These contradict the robustness of x̄ and the proof is complete.

The converse of the above theorem does not hold necessarily, even for the linear

case; see Example 3.2 of [32].

The following example shows that the compactness assumption of X in Theorem

3.1 is essential.

Example 3.2. Consider the multi-objective optimization problem,

min (−x, x3)

s.t. x 2 R.

It is not difficult to see that x̄ = 1 is a robust efficient solution (consider ✏ = 0.1),

while the problem does not have any properly efficient solution.

Now, we are going to provide a characterization of robust efficient solutions with

respect to the non-ascent directions of the objective function and the Bouligand tan-

gent cone of the feasible set.

Definition 3.7. The vector d 2 Rn is called a non-ascent direction of f at x̄ if

dT ⇠  0, for each ⇠ 2 @fi(x̄) and each i 2 {1, 2, . . . , p}. G(x̄) denotes the set of all

non-ascent directions of f at x̄.

54



The following theorem presents a necessary condition for robustness.

Theorem 3.2. If x̄ is a robust efficient solution of Problem (3.3), then TX(x̄)\G(x̄) =

{0}.

Proof. We argue by giving a contradiction. Suppose that 0 6= d 2 G(x̄) \ TX(x̄).

By robustness of x̄, there exists an ✏ > 0 such that x̄ is an efficient solution of problem

(3.4) for any matrix Cp⇥n, with kCk < ✏. We choose a matrix C̃p⇥n such that

kC̃k < ✏ and C̃, d < −2δe (3.13)

for some δ > 0 (e is a column vector with all components being equal to one). Since

d 2 TX(x̄),

9({xi} ✓ X, ti # 0);
xi − x̄

ti
! d. (3.14)

Therefore, from (3.13) and (3.14), for sufficiently large i, we have

C̃(
xi − x̄

ti
) < −δe, (3.15)

which implies C̃xi + tiδe < C̃x̄. Using the mean value theorem (Theorem 1.5), for

each i, we have

f(xi) = f(x̄) + ⇠Ti (xi − x̄), (3.16)

where ⇠i is an n⇥p matrix whose jth column belongs to @fj(x̃
j
i ), for some x̃j

i 2 (x̄, xi).

Thus,

f(xi) + C̃xi + tiδe < f(x̄) + ⇠Ti (xi − x̄) + C̃x̄

) f(xi) + C̃xi + ti(δe− ⇠Ti (
xi−x̄
ti

)) < f(x̄) + C̃x̄.

Since x̃j
i −! x̄, as i −! +1, and f is locally Lipschitz at x̄, by Proposition 1.3 the

sequence {⇠i} is bounded. Hence, ⇠i −! ⇠, for some ⇠ 2 @f(x̄), because of Proposition

1.3. Thus, ⇠Td  0. Therefore, for sufficiently large i values, ⇠Ti (
xi−x̄
ti

) < δe. Thus, we

get

f(xi) + C̃xi < f(x̄) + C̃x̄,

which contradicts the robustness of x̄, and completes the proof.
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The condition given in the above theorem is necessary for robustness and it is not

sufficient, in general. The following example clarifies this.

Example 3.3. Consider the multi-objective optimization problem,

min (f1(x), f2(x))

s.t. x 2 R,

where

f1(x) := x,

f2(x) :=

8
><
>:

−x |x| < 1,

−x( 1
3
) |x| ≥ 1.

Let x̄ = 2. At this point we have TX(x̄) = R and G(x̄) = {0}. It is not difficult to

see that x̄ = 2 is an efficient solution of the above problem, while for any ✏ > 0 it is

not an efficient solution of

min (f1(x), f2(x) +
✏
2
x)

s.t. x 2 R,

because for each ✏ > 0, by setting x✏ = min{−125, −1
✏3
}, we have f1(x✏) < f1(2) and

f2(x✏)  f2(2).

As shown by the above example, the necessary condition given in Theorem 3.2

may not be sufficient for robustness, in general. Theorem 3.3 establishes that this

condition is sufficient under convexity assumption.

Theorem 3.3. Let X be a closed and convex set and fi (i = 1, . . . , p) be convex.

Assume that x̄ is an efficient solution of Problem (3.3). x̄ is a robust efficient solution

of Problem (3.3) if and only if TX(x̄) \G(x̄) = {0}.

Proof. The “only if” part is derived from Theorem 3.2. For “if” part, suppose

that x̄ is not a robust efficient solution. Thus, there exist a sequence {Ci} of p ⇥ n
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matrices and a sequence {xi} ✓ X such that Ci ! 0, and

f(xi) + Cixi  f(x̄) + Cix̄. (3.17)

Set

di :=
xi − x̄

kxi − x̄k . (3.18)

Two cases may occur for the sequence {xi}. Either it has a subsequence convergent

to x̄ or it does not have any subsequence convergent to x̄. We consider these two

possible cases and we get a contradiction in each case.

In the first case, without loss of generality, we assume that xi ! x̄. From the convexity

of f , for any ⇠ 2 @f(x̄), we have,

f(xi) ≥ f(x̄) + ⇠T (xi − x̄), (3.19)

with ⇠ being an n⇥ p matrix whose jth column belongs to @fj(x̄). Therefore, due to

(3.17), we have

kxi − x̄k−1
(
⇠T (xi − x̄) + Ci(xi − x̄)

)
 0. (3.20)

Without loss of generality, we can assume that di ! d, for some d 2 Rp with kdk = 1

and it is obvious that d 2 TX(x̄). Moreover, from (3.20) we conclude that d 2 G(x̄).

Thus d 2 G(x̄) \ TX(x̄). This gives a contradiction.

Now, we consider the other case: {xi} does not have any subsequence convergent to

x̄. Therefore, without loss of generality, there exists a r > 0 such that kxi − x̄k > r.

On the other hand, di ! d for some nonzero d 2 TX(x̄). Since X is convex and

closed, for each i, we have

tdi + x̄ 2 X, 8t 2 [0, r],

td+ x̄ 2 X, 8t 2 [0, r].

Thus, 0 6= d 2 TX(x̄). Suppose that {ti} is a sequence of scalars in [0, r] that converges
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to zero. By convexity of f and due to (3.17) and (3.18), we get

f(x̄+ tidi)  (1− ti
kxi−x̄k)f(x̄) +

ti
kxi−x̄kf(xi)

 f(x̄) + ti
kxi−x̄kCi(x̄− xi).

Since Ci ! 0, from the convexity of f and the above statement, we have ⇠Td  0,

with ⇠ being an n ⇥ p matrix whose jth column belongs to @fj(x̄). Therefore, 0 6=
d 2 G(x̄) \ TX(x̄). This gives a contradiction and completes the proof.

In the rest of this section, we consider a multi-objective optimization problem

whose feasible set is defined by some constraint functions. Consider

min f(x)

s.t. gi(x)  0, i = 1, 2, ...,m, (3.21)

where f : Rn ! Rp is the objective function (i.e., f(x) = (f1(x), . . . , fp(x)) and the gj

functions define the constraints. Hereafter, whenever we use the Clarke subdifferential

for the gj functions, we assume that these functions are locally Lipschitz.

For a feasible point x̄, the index set I(x̄) is defined by

I(x̄) = {j 2 {1, 2 . . . ,m} : gj(x̄) = 0}.

In the following, we are going to provide a characterization of robust efficient solutions

of Problem (3.21). The following constraint qualification (CQ) helps us in the sequel.

Definition 3.8. We say that constraint qualification (CQ) holds at x̄, if

0 /2 co

⇢ [

j2I(x̄)
@gj(x̄)

}
.

Theorem 3.4. If x̄ is a robust efficient solution which satisfies (CQ), then

pos

✓ p[

i=1

@fi(x̄)

◆
+ pos

✓ [

i2I(x̄)
@gi(x̄)

◆
= Rn.
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Proof. For simplicity, we set Ix̄ = pos

✓ p[

i=1

@fi(x̄)

◆
+ pos

✓ [

i2I(x̄)
@gi(x̄)

◆
. It can

be seen that under the assumptions of the theorem and Theorem 1.8,

{d : g◦i (x̄; d)  0, 8i 2 I(x̄)} ✓ TX(x̄).

Therefore, according to Theorem 3.2, the system below has no solution d 2 Rn:

⇠Td  0, 8⇠ 2 @fi(x̄), 8i 2 {1, ..., p}
⇠Td  0, 8⇠ 2 @gi(x̄), 8i 2 I(x̄)

d 6= 0.

Hence, the following system has no solution d 2 Rn:

⇠Td  0, 8⇠ 2 @fi(x̄), 8i 2 {1, ..., p}
⇠Td  0, 8⇠ 2 @gi(x̄), 8i 2 I(x̄)

d1 > 0.

Using the semi-infinite Farkas Theorem 1.9, we have e1 2 cl(Ix̄). Similarly, it can

be shown that ±ei 2 cl(Ix̄) for each i 2 {1, 2, . . . , p}. Here, ei denotes the ith unit

vector. Therefore, cl(Ix̄) = Rn. Since Ax̄ is a convex set whose closure is equal to Rn,

we have Ix̄ = Rn and the proof is complete.

Corrolary 3.1. Assume that fi (i = 1, . . . , p) and gj (j = 1, . . . ,m) in Problem

(3.21) are continuously differentiable. If x̄ is a robust efficient solution of Problem

(3.21) which satisfies (CQ), then

pos{rf1(x̄), . . . ,rfp(x̄)}+ pos{rgi(x̄) : i 2 I(x̄)} = Rn.

Theorem 3.5 provides a converse version of Theorem 3.4. Theorems 3.4 and 3.5

extend Theorem 3.4 of Georgiev et al. [32].

Theorem 3.5. Let fi (i = 1, . . . , p) and gj (j = 1, . . . ,m) in Problem (3.21) be
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convex. If x̄ is an efficient solution and

pos

✓ p[

i=1

@fi(x̄)

◆
+ pos

✓ [

i2A(x̄)

@gi(x̄)

◆
= Rn,

then x̄ is a robust efficient solution of Problem (3.21).

Proof. We prove the theorem by contradiction. Suppose that x̄ is not robust.

Then, according to Theorem 3.3, there exists a nonzero vector d̄ 2 TX(x̄)\G(x̄). From

the convexity assumption, we get ⇠T d̄  0, for each ⇠ 2 pos(@gi(x̄)) and each i 2 I(x̄).

Also, ⇠T d̄  0, for each ⇠ 2 pos(@fi(x̄)) and each i 2 {1, 2, . . . , p}, because of d̄ 2

G(x̄). On the other hand, by the assumption of the theorem, d̄ =

pX

i=1

ui⇠i+
X

j2I(x̄)
vjζj,

for some ui, vj ≥ 0, ξi 2 pos(∂fi(x̄)), and ζj 2 pos(∂gj(x̄)). Therefore, d̄T d̄  0.

Hence, we get d̄ = 0 which gives a contradiction.

Corrolary 3.2. Assume that fi (i = 1, . . . , p) and gj (j = 1, . . . ,m) in Problem

(3.21) are differentiable and convex. If x̄ is an efficient solution and

pos{rf1(x̄), . . . ,rfp(x̄)}+ pos{rgi(x̄) : i 2 I(x̄)} = Rn,

then x̄ is a robust efficient solution of Problem (3.21).

Although the compactness assumption is essential in Theorem 3.1 (see Example

3.2), the following result shows that Theorem 3.1 remains valid without compactness

of the feasible set for convex programming problems.

Theorem 3.6. Let fi (i = 1, 2, . . . , p) and gj (j = 1, 2, . . . ,m) be convex in Problem

(3.21). If x̄ is a robust efficient solution of Problem (3.21), then x̄ is a properly

efficient solution of Problem (3.21).

Proof. Suppose that x̄ is not a properly efficient solution. Therefore, there exist

{xi} ✓ X, increasing sequence {Mi} of positive real numbers, and k 2 {1, ..., p}, such

that Mi −! +1,

fk(xi) < fk(x̄) 8i, (3.22)
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and

fk(x̄)− fk(xi)

fj(xi)− fj(x̄)
> Mi, for each j 2 {1, ..., p} with fj(xi) > fj(x̄). (3.23)

Define Qi = {j : fj(xi) > fj(x̄)}. This set is nonempty because x̄ is efficient. Without

loss of generality, by choosing an appropriate subsequence, Qi is a constant set for

all i indices. So, we denote it by Q. Also, define the feasible set of Problem (3.21)

by X = {x 2 Rn : gj(x)  0, j = 1, 2, . . . ,m}. Without loss of generality, we

assume that the sequence { xi−x̄
kxi−x̄k} converges to some nonzero vector d. Setting ti =

min{1
i
, kxi − x̄k} and di =

xi−x̄
kxi−x̄k , we have ti # 0 and x̄ + tidi 2 X, according to the

convexity assumptions. Hence, d 2 TX(x̄). Due to the convexity assumption, we get

fj(xi) ≥ fj(x̄) + ξT (xi − x̄), 8ξ 2 ∂fj(x̄), 8j 2 {1, ..., p} \Q,

) ξT (xi − x̄)  0, 8ξ 2 ∂fj(x̄), 8j 2 {1, ..., p} \Q,

) ξTd  0, 8ξ 2 ∂fj(x̄), 8j 2 {1, ..., p} \Q.

Moreover, from (3.23) and the convexity of the objective functions, we have

ξT (xi − x̄)  fj(xi)− fj(x̄), 8ξ 2 ∂fj(x̄), 8j 2 Q,

< fk(x̄)−fk(xi)
Mi

, 8ξ 2 ∂fj(x̄), 8j 2 Q,

 1
Mi

ηT (x̄− xi), 8η 2 ∂fk(x̄).

Thus,

ξTd  0, 8ξ 2 ∂fj(x̄), 8j 2 Q.

Therefore, d 2 TX(x̄) \ G(x̄). This is a contradiction because of Theorem 3.2, and

the proof is complete.

Remark 3.1. The robust solution studied in the present chapter may not exist in

some special cases, though these solutions (if exist) have nice properties as compared

to non-robust points. An efficient point is robust if it stays efficient under small
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linear perturbations. Let us assume that the fi and gj functions are differentiable

here. Under some CQs and appropriate assumptions, the KKT/FJ condition

pX

i=1

λirfi(x̄) +
X

j2I(x̄)
µjrgj(x̄) = 0

for some nonnegative µj’s and some nonnegative λi’s (not all zero), is necessary for

the efficiency of x̄. If some objective function, say f1, is perturbed, then rf1(x̄) is

alerted and hence to preserve the KKT/FJ condition (efficiency of x̄), the Lagrange

multiplier(s) of some other objective function(s) or some constraint function(s) should

be changed. Hence, at least one other objective function or at least one constraint

function is required for robustness, i.e., m+ p ≥ 2. Thus, there is no robust solution

for unconstrained single objective problems. To show this analytically, let x̄ be an

arbitrary optimal solution of min
x2Rn

h(x), where h : Rn −! R. Then rh(x̄) = 0

which implies rh(x̄) + C 6= 0 for each C 6= 0. Therefore, x̄ is not optimal for

min
x2Rn

h(x) + Cx for each C 6= 0. Hence, x̄ is not robust for min
x2Rn

h(x). Thus, this

unconstrained problem does not have any robust solution.

Now, consider an unconstrained multi-objective programming problem min
x2Rn

f(x),

with f : Rn −! Rp and p ≥ 2. Here, m = 0. If x̄ is a robust solution, then by

Corollary 3.1, pos{rf1(x̄), . . . ,rfp(x̄)} = Rn, and hence p ≥ n+ 1.

For constrained problem (3.21) satisfying the assumptions of Corollary 3.1, if x̄

is a robust solution, then p +m ≥ n + 1. This is not restrictive for practical cases,

because in practice the problem has at least 2n constraints due to the lower and upper

bounds on variables.

Remark 3.2. The necessary condition presented in Theorem 3.2 provides a tie-in to

the gradient-like descent methods existing in the literature for solving vector optimiza-

tion problems; see [22] and [28]. Extending these numerical tools to generate robust

solution(s) can be worth studying in future.
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3.3 Robustness radius

In this short section, we compute a radius of robustness. For a given vector a 2 Rp,

the vector a+ is obtained from a by substituting all negative components by zero. It

is not difficult to show that ka+k is equal to the distance from a to −R
p

=
= {x 2

Rp : x  0}.

Lemma 3.1. Let X be a closed and convex set and fi (i = 1, ..., p) be convex. Let d 2
TX(x̄) with kdk = 1. If x̄ is a robust solution of Problem (3.3), then k(f 0(x̄; d))+k > 0

and it is equal to the optimal value of the following problem,

sup{t : f 0(x̄; d) + tCd /2 −R
p

=
, 8kCk  1}.

Proof. First, we show that f 0(x̄; d) /2 −R
p

=
. If f 0(x̄; d)  0, then due to the

convexity of f , we have d 2 G(x̄), which gives a contradiction according to Theorem

3.2. The proof of the second part is similar to that of Lemma 4.2 of [32].

Theorem 3.7. Under the assumptions of Lemma 3.1, the optimal value of the fol-

lowing problem is positive and it is a robustness radius for x̄:

min k(f 0(x̄; d))+k
s.t. d 2 TX(x̄),

kdk = 1.

Proof. Let ⇢ be the optimal value of the given problem. Thus, by Lemma 3.1,

⇢ > 0. Now, we show that ⇢ is a robustness radius for x̄. If it is not a robustness

radius, then there exist some xo 2 X and some matrix Co such that kCok < ⇢, and

f(xo) + Coxo  f(x̄) + Cox̄. (3.24)
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Setting do = xo−x̄
kxo−x̄k , we have kdok = 1 and do 2 TX(x̄) due to the convexity of X.

Furthermore, by convexity of f , we get

f
0

(x̄; do) + Codo =
f

0

(x̄; xo − x̄)

kxo − x̄k + Codo  f(xo)− f(x̄)

kxo − x̄k +
Co(xo − x̄)

kxo − x̄k .

Therefore, according to (3.24), we get

f 0(x̄; do) + Codo 2 −R
p

=
. (3.25)

Defining

⇢o = sup{t : f 0(x̄; do) + tCdo /2 −R
p

=
, 8kCk  1}, (3.26)

we have ⇢  ⇢o. Furthermore, for each t 2 (0, ⇢o) and each C with kCk  1, we have

f
0

(x̄; do) + tCdo /2 −R
p

=
. This is a contradiction with (3.25) by setting t = kCok and

C = Co

kCok , and the proof is complete.

It can be seen that the optimal value of the optimization problem considered in the

above theorem is equal to the maximum robustness radius, if one furthermore assumes

the equality of the Bouligand tangent cone and the cone of feasible directions.

3.4 Comparison with other notions

In the following, we highlight the relationships between the robustness notion con-

sidered in this chapter and some notions mentioned in Section 3.1.2. See also [32] for

some comparisons.

Proposition 3.4. Let x̄ be a robust solution of Problem (3.3) with radius ✏. Then,

x̄ is flimsy and highly robust efficient for the following uncertain multi-objective opti-

mization problem,

min f(C, x)

s.t. x 2 X,C 2 U,
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with uncertain set U = {Cp⇥n : kCk < ✏} and uncertain objective f(C, x) = f(x)+Cx.

Proof. The proof is not difficult and is hence omitted.

The following proposition provides a connection between the robustness and point-

based minmax robust efficiency.

Proposition 3.5. Let x̄ be a robust solution of Problem (3.3) with radius ✏. Then

considering any ✏̄ 2 (0, ✏), the vector x̄ is a point-based minmax robust efficient solu-

tion with U = {Cp⇥n : kC ik  ✏̄p
p
, 8i = 1, 2, . . . , p} and f(C, x) = f(x) + Cx.

Proof. Let fmax
u (x) = maxC2U f(x) + Cx. To the contrary, assume that there

exists some xo 2 X such that fmax
u (xo)  fmax

u (x̄). If x̄ = 0, then fmax
u (x̄) = f(0)

and hence by considering a p ⇥ n matrix C with kC ik  ✏̄p
p
, i = 1, 2, . . . , p, we get

kCk =
(Pp

i=1 kC ik2
) 1

2 < ✏, and

f(xo) + Cxo  f(0).

These relations contradict the robustness of x̄ (in the sense of Definition 3.6). Now,

assume that x̄ 6= 0. Then fmax
u (x̄) = f(x̄) + ✏̄kx̄kp

p
e, where e is a vector with all

components being equal to one. Now, we consider a p ⇥ n matrix C̄, with C̄ i =

✏̄p
pkx̄k x̄

T . We get C̄ 2 U and

f(xo) + C̄xo  fmax
u (xo)  fmax

u (x̄) = f(x̄) +
✏̄kx̄kp

p
e = f(x̄) + C̄x̄.

Furthermore, kC̄k =

vuut
pX

i=1

kC̄ ik2 < ✏. Hence, kC̄k < ✏, and

f(xo) + C̄xo  f(x̄) + C̄x̄.

These relations contradict the robustness of x̄ (in the sense of Definition 3.6) and the

proof is complete.

The next theorem states relationship between robust efficiency and set-based min-

max robust efficiency. Moreover, we also investigate the connection with hull-based
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minmax robust efficiency.

Theorem 3.8. Let x̄ be a robust solution of Problem (3.3) with radius ✏. Then x̄ is

a set-based minmax robust solution of the following uncertain problem:

min f(C, x)

s.t. x 2 X,C 2 U,

with uncertain set U = {Cp⇥n : kCk < 0.5✏} and uncertain objective f(C, x) =

f(x) + Cx. In addition, x̄ is also hull-based minmax robust efficient.

Proof. To the contrary assume that

fU(x
o) ✓ fU(x̄)−R

p
≥ (3.27)

for some xo 2 X. This implies

8C 2 U 9C̄ 2 U s.t. f(xo) + Cxo  f(x̄) + C̄x̄. (3.28)

The two vectors xo and x̄ can not be zero. If xo = 0, then by (3.28),

f(0) + C̄(0)  f(x̄) + C̄x̄,

or some C̄ 2 U . This contradicts the robustness assumption. Moreover, if x̄ = 0,

then by considering C = 0 in (3.28), there exists some C̄ with kC̄k  0.5✏ such that

f(xo)  f(x̄). This contradicts the efficiency of x̄. Hence, x0 6= 0 and x̄ 6= 0.

Now, define

M = {λ 2 R
p
≥ : kλk  1,

pX

j=1

λj ≥ 1}.

It is clear that M is a nonempty compact convex set. Let F : M ◆ M be a set-valued

mapping defined by

F (λ) = {λ0 2 M : f(xo) +
✏kxok
2kλk λ  f(x̄) +

✏kx̄k
2kλ0kλ

0}.
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We show that F (λ) is nonempty and convex for each λ 2 M .

Let λ 2 M . Defining the p⇥ n matrix Co := ✏
2kλkkxokλx

oT . We have kCok  0.5✏,

and hence by (3.28), there exists some p⇥ n matrix C such that kCk  0.5✏, and

f(xo) +
✏kxok
2kλk λ  f(x̄) + Cx̄. (3.29)

Consider λ̄ with λ̄i = kC ik. Define λ
0

:=
λ̄

kλ̄k . By considering the Cauchy-Schwarz

inequality and
✏

2kλ̄k ≥ 1, we have

f(xo) + ✏kxok
2kλk λ  f(x̄) + Cx̄

 f(x̄) + kx̄kλ̄
 f(x̄) + ✏kx̄k

2kλ̄k λ̄

 f(x̄) + ✏kx̄k
2kλ0kλ

0

Therefore, due to λ
0 2 M , we have λ

0 2 F (λ), and hence F (λ) is nonempty.

To prove the convexity, let λ1, λ2 2 F (λ) and υ 2 (0, 1). First, we assume that

kλ1k = kλ2k = 1. Then, by definition of F (λ), we get

f(xo) +
✏kxok
2kλk λ  f(x̄) +

✏kx̄k
2

(υλ1 + (1− υ)λ2)

Due to kυλ1 + (1− υ)λ2k  1 and υλ1 + (1− υ)λ2 ≥ 0, we can infer

f(xo) +
✏kxok
2kλk λ  f(x̄) +

✏kx̄k
2kυλ1 + (1− υ)λ2k

(υλ1 + (1− υ)λ2).

Hence, υλ1+(1−υ)λ2 2 F (λ) when kλ1k = kλ2k = 1. Now, considering two arbitrary

vectors λ1,λ2 2 F (λ) and υ 2 (0, 1), there are γ > 0 and µ 2 (0, 1) such that

υλ1 + (1− υ)λ2 = γ(µ
λ1

kλ1k
+ (1− µ)

λ2

kλ2k
). (3.30)

Notice that 0 < kλ1k, kλ2k  1. By definition of F (λ), it is clear that λ1

kλ1k ,
λ2

kλ2k 2
F (λ). Furthermore, if λ

0 2 F (λ) and γλ
0 2 M , for some γ > 0, then γλ

0 2 F (λ).
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Therefore, according to (3.30), we have υλ1 + (1− υ)λ2 2 F (λ). Hence, F is convex-

valued. It is clear that graph of F is closed. Therefore, by the Kakutani fixed-point

Theorem 1.4, there exists some λ⇤ 2 M such that

f(xo) +
✏kxok
2kλ⇤kλ

⇤  f(x̄) +
✏kx̄k
2kλ⇤kλ

⇤. (3.31)

The above inequality does not hold as equality, since otherwise due to (3.28) we have

f(x̄) +
✏kx̄k
2kλ⇤kλ

⇤ = f(xo) +
✏kxok
2kλ⇤kλ

⇤  f(x̄) + eCx̄,

for some eC with k eCk  0.5✏. Then ✏kx̄k
2kλ⇤kλ

⇤  eCx̄. By the Cauchy-Schwarz inequality,

we get ✏kx̄k
2kλ⇤kλ

⇤  kx̄kd in which d 2 Rp with di = k eC ik. Therefore, k eCk = kdk > 0.5✏

which is a contradiction. Thus, inequality (3.31) holds and it does not hold as equality.

On the other hand, by Cauchy-Schwarz inequality,

f(xo) +
✏x̄Txo

2kλ⇤kkx̄kλ
⇤  f(xo) +

✏xoTxo

2kλ⇤kkxokλ
⇤.

Hence, according to (3.31),

f(xo) +
✏x̄Txo

2kλ⇤kkx̄kλ
⇤  f(x̄) +

✏x̄T x̄

2kλ⇤kkx̄kλ
⇤.

Therefore, setting Co = ✏
2kλ⇤kkx̄kλ

⇤x̄T , we have kCok < ✏ and

f(xo) + Coxo  f(x̄) + Cox̄.

The two last relations contradict the robustness of x̄ (in the sense of Definition 3.6)

and the proof of the first part is complete.

As co(fU(x̄)) = fU(x̄), x̄ is also hull-based minmax robust efficient.

It is not difficult to see that Theorem 3.8 will be valid if one replaces 0.5✏, in the

considered uncertainty set, with any ✏̄ 2 (0, ✏). Note that the converse of none of the

propositions given in this section holds, in general.
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3.5 Modification of the objective function

In this section, we consider two robustness aspects of (weakly/properly) efficient

solutions. In the first one, we consider a convex combination of the objective function

of Problem (3.21) with a new special function. The second robustness aspect is due to

adding a new objective function to the problem. In both cases, we examine preserving

the weak/proper/robust efficiency.

Consider the following problem for ↵ 2 [0, 1]:

min f(x) + (1− ↵)h(x)q

s.t. gi(x)  0, i 2 {1, 2, . . . ,m},

where h : Rn ! R is a convex function and q 2 R
p
≥ is a p-vector with nonnegative

components. We denote this program by (MOP )↵, and this program coincides with

(3.21) when ↵ = 1.

Note: Throughout this section, we assume that the functions h, fi (i = 1, . . . , p) and

gj (j = 1, . . . ,m) are convex and there is x̂ such that gj(x̂) < 0 (j = 1, . . . ,m).

Theorem 3.9 presents a sufficient condition for properly efficient solutions of prob-

lems (3.21) and (MOP )0 to remain properly efficient for (MOP )↵.

Theorem 3.9. If x̄ is a properly efficient solution of both problems (3.21) and

(MOP )0, then x̄ is a properly efficient solution of (MOP )↵ for each ↵ 2 (0, 1).

Proof. Since x̄ is a properly efficient solution of Problem (3.21), then there exist

λ 2 Rp and w 2 Rm such that

0 2
pX

i=1

λi@fi(x̄) +
mX

j=1

wj@gj(x̄), wjgj(x̄) = 0, j = 1, . . . ,m, λ > 0, w ≥ 0.

Also, since x̄ is a properly efficient solution of Problem (MOP )0, there exist µ 2 Rp

and v 2 Rm such that µ > 0, v ≥ 0, and

0 2
pX

i=1

µi@fi(x̄) + qTµ@h(x̄) +
mX

j=1

vj@gj(x̄), (3.32)
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vjgj(x̄) = 0, j = 1, . . . ,m. (3.33)

Notice that the convexity of h is crucial in obtaining (3.32).

Let ↵ 2 (0, 1). We define t and γ as follows:

t := ↵qTµ

↵qTµ+(1−↵)qTλ
,

γ := tλ+ (1− t)µ.

It is clear that 0 < t < 1 and γ > 0. Also,

(1− t)qTµ = (1− ↵)qTγ. (3.34)

Thus,

pX

i=1

γi@fi(x̄)+(1−↵)qTγ@h(x̄) = t

pX

i=1

λi@fi(x̄)+(1−t)

pX

i=1

µi@fi(x̄)+(1−t)qTµ@h(x̄).

Therefore, setting z = tw + (1− t)v, we get

0 2 Pp

i=1(tλi + (1− t)µi)@fi(x̄) + (1− t)qTµ@h(x̄) +
Pm

j=1(twj + (1− t)vj)@gj(x̄)

=
Pp

i=1 γi@fi(x̄) + (1− ↵)qTγ@h(x̄) +
Pm

j=1 zj@gj(x̄),

where γ > 0 and z ≥ 0. Therefore, x̄ is a global minimizer for

min
Pp

i=1 γifi(x) + (1− ↵)qTγh(x)

s.t. gj(x)  0, j = 1, ...,m.

This implies that x̄ is a properly efficient solution of (MOP )↵, according to Theorem

3.11 of [24].

The following two results give sufficient conditions for efficient (respectively weakly)

solutions of problems (3.21) and (MOP )0 to remain efficient (resp. weakly) for

(MOP )↵. These results extend Proposition 2.2 of [32].

Theorem 3.10. Let x̄ be an efficient solution of both Problems (3.21) and (MOP )0.
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Then x̄ is an efficient solution of (MOP )↵ for each ↵ 2 (0, 1).

Proof. Let ↵ 2 (0, 1). To the contrary assume that there exists a feasible point,

x̂, such that

f(x̂) + (1− ↵)qh(x̂)  f(x̄) + (1− ↵)qh(x̄),

f(x̂) + (1− ↵)qh(x̂) 6= f(x̄) + (1− ↵)qh(x̄).

If h(x̄) < h(x̂), then

f(x̂)− f(x̄)  (1− ↵)q(h(x̄)− h(x̂))  (and 6=) 0.

This contradicts the efficiency of x̄ for (3.21). Hence, we assume h(x̄) ≥ h(x̂). Due

to the convexity assumption, we have

f(1
2
x̂+ 1

2
x̄) + qh(1

2
x̂+ 1

2
x̄)

 1
2
f(x̂) + 1

2
f(x̄) + 1

2
qh(x̂) + 1

2
qh(x̄)

 (and 6=) f(x̄) + 1
2
(1− ↵)q

✓
h(x̄)− h(x̂)

◆
+ 1

2
qh(x̂) + 1

2
qh(x̄)

= f(x̄) + q

✓
h(x̄) + ↵

2

(
h(x̂)− h(x̄)

)◆
 f(x̄) + qh(x̄).

Hence, setting z = 1
2
x̂+ 1

2
x̄, the vector z is feasible and

f(z) + qh(z)  f(x̄) + qh(x̄).

This contradicts the efficiency of x̄ for (MOP )0, and completes the proof.

Theorem 3.11. Let x̄ be a weakly efficient solution of both Problems (3.21) and

(MOP )0. Then x̄ is a weakly efficient solution of (MOP )↵ for each ↵ 2 (0, 1).

Proof. The proof is similar to that of Theorem 3.10 and is hence omitted.

Theorem 3.12 gives a sufficient condition for robust efficient solutions of Problems

(3.21) and (MOP )0 to remain robust efficient for (MOP )↵.
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Theorem 3.12. If x̄ is a robust efficient solution for both Problems (3.21) and

(MOP )0, then x̄ is a robust efficient solution of (MOP )↵ for each ↵ 2 [0, 1].

Proof. Let ↵ 2 [0, 1]. By Theorem 3.10, x̄ is efficient for Problem (MOP )↵.

Now, we show that x̄ is robust for (MOP )↵. By Theorem 3.4,

pos

✓ p[

i=1

@fi(x̄)

◆
+ pos

✓ [

i2A(x̄)

@gi(x̄)

◆
= Rn

and

pos

✓ p[

i=1

@
(
fi + qih

)
(x̄)

◆
+ pos

✓ [

i2I(x̄)
@gi(x̄)

◆
= Rn.

By the above two equalities, and since all the @-sets are convex here, we have

pos

✓ p[

i=1

@
(
fi + (1− ↵)qih

)
(x̄)

◆
+ pos

✓ [

i2I(x̄)
@gi(x̄)

◆
= Rn. Therefore, x̄ is a robust

efficient solution for (MOP )↵, because of Theorem 3.5.

In the rest of this section, we examine adding a new objective function to Prob-

lem (3.21). Consider the following multi-objective optimization problem, denoted by

(MOPh):

min

0
@ f(x)

h(x)

1
A

s.t. gi(x)  0 i = 1, . . . ,m,

where h : Rn ! R. The following two theorems address some connections between

the properly efficient solutions of the two problems (3.21) and (MOPh). Recall that

the functions h, fi, and gj are convex.

Theorem 3.13. Let x̄ be a properly efficient solution of Problem (MOPh). If

@h(x̄) ✓ pos

✓ p[

i=1

@fi(x̄)

◆
+ pos

✓ [

i2I(x̄)
@gi(x̄)

◆
, then x̄ is a properly efficient solu-

tion of Problem (3.21).

Proof. Since x̄ is a properly efficient solution of Problem (MOPh), then there
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exist λ 2 Rp and w 2 Rm such that

0 2 Pp

i=1 λi@fi(x̄) + @h(x̄) +
Pm

j=1 wj@gj(x̄),

wjgj(x̄) = 0, j = 1, . . . ,m λ > 0, w ≥ 0.

Therefore, by assumption of the theorem, 0 2 Pp

i=1 λ̄i@fi(x̄) +
Pm

j=1 w̄i@gj(x̄), for

some λ̄ > 0, w̄ ≥ 0. This implies that x̄ is a properly efficient solution of Problem

(3.21).

By a manner similar to the proof Theorem 3.13, it can be shown that the result

is valid for weak efficient solutions as well. The following example shows that this

result may not be valid for efficient solutions.

Example 3.4. Let g(x) = f(x) = x and h(x) = x2. It is clear that x̄ = 0 is an

efficient solution of (MOPh) and {rh(0)} ✓ pos(rf(0)) but x̄ = 0 is not an efficient

solution of Problem (3.21).

The following result gives even more insights into the connection between the

proper efficient solutions of the two problems (3.21) and (MOPh), when the fi and

gj functions are continuously differentiable.

Theorem 3.14. (i) If x̄ is a properly efficient solution of both Problems (3.21) and

(MOPh), then there exist vectors u 2 Rp and v 2 Rm such that u > 0, and

✓ pX

i=1

uirfi(x̄) +
mX

j=1

vjrgj(x̄)

◆
2 @h(x̄).

(ii) Let x̄ be a properly efficient solution of Problem (3.21). If there exist vectors

u 2 Rp and v 2 R|I(x̄)| such that v ≥ 0 and

✓ pX

i=1

uirfi(x̄)−
X

j2I(x̄)
vjrgj(x̄)

◆
2 @h(x̄),

then x̄ is a properly efficient solution of Problem (MOPh).

Proof. (i) Since x̄ is a properly efficient solution of Problem (MOPh), then there
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exist (λ, λp+1) 2 Rp ⇥R and w 2 Rm such that

0 2 Pp

i=1 λirfi(x̄) + λp+1@h(x̄) +
Pm

j=1 wjrgj(x̄),

wjgj(x̄) = 0, j = 1, . . . ,m, λ > 0, w ≥ 0.

Therefore, there exists some d 2 @h(x̄) such that

d = −Pp

i=1
λi

λp+1
rfi(x̄)−

Pm

j=1
wj

λp+1
rgj(x̄).

On other hand, x̄ is a properly efficient solution of Problem (3.21). Therefore, there

exist λ0 2 Rp and w0 2 Rm such that

0 =
Pp

i=1 λ
0
irfi(x̄) +

Pm

j=1 w
0
jrgj(x̄), (3.35)

w0
jgj(x̄) = 0, j = 1, . . . ,m λ0 > 0, w0 ≥ 0. (3.36)

Let t > max1ip{ λi

λ0

iλp+1
}. We have

d =

pX

i=1

(tλ0
i −

λi

λp+1

)rfi(x̄) +
mX

j=1

(tw0
j −

wj

λp+1

)rgj(x̄).

Setting ui := tλ0
i − λi

λp+1
and vj = tw0

j − wj

λp+1
, completes the proof of part (i).

(ii) Setting µj = 0, for each j /2 I(x̄), by the assumption of the theorem, we have

0 = −Pp

i=1 uirfi(x̄)+ d+
Pm

j=1 µjrgj(x̄), for some d 2 @h(x̄). On other hand, since

x̄ is a properly efficient solution of Problem (3.21), there exist λ0 2 Rp and w0 2 Rm

satisfying (3.35) and (3.36). For t > max1ip{ui

λ0

i

}, we have

0 =
Pp

i=1(tλ
0
i − ui)rfi(x̄) + d+

Pm

j=1(tw
0
j + µj)rgj(x̄)

2 Pp

i=1(tλ
0
i − ui)rfi(x̄) + @h(x̄) +

Pm

j=1(twj + µj)rgj(x̄).

Therefore, x̄ is a properly efficient solution of (MOPh), and the proof is complete.

The following example shows that part (i) of the above theorem may not hold

when some fi or gj functions are nonsmooth. A similar example can be constructed
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for part (ii).

Example 3.5. Let f : R ! R be defined by

f(x) =

8
<
:

x2 − x1, x2 > 0

−x1, x2  0.

Consider the following optimization problem:

min f(x)

s.t. g(x) = x1 − x2  0.

The functions f and g are convex and

@f

0
@ 0

0

1
A =

8
<
:

0
@ −1

↵

1
A : ↵ 2 [0, 1]

9
=
; , @g

0
@ 0

0

1
A =

8
<
:

0
@ 1

−1

1
A

9
=
; .

With λ = ↵ = µ = 1, we have

0
@ 0

0

1
A = λ

0
@ −1

↵

1
A+ µ

0
@ 1

−1

1
A .

Therefore, x̄ =

0
@ 0

0

1
A is an optimal solution of the above problem. Now, consider

the function h(x) = x1 and the following problem

min

0
@ f(x)

h(x)

1
A

s.t. g(x) = x1 − x2  0.

(3.37)

We have @h(x̄) =

8
<
:

0
@ 1

0

1
A

9
=
;. Also, for λ1 = λ2 = 1 and ↵ = µ = 0, we get

0
@ 0

0

1
A = λ1

0
@ −1

↵

1
A+ λ2

0
@ 1

0

1
A+ µ

0
@ 1

−1

1
A .
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Therefore, x̄ =

0
@ 0

0

1
A is a properly efficient solution of Problem (3.37). Hence, in

this example, x̄ =

0
@ 0

0

1
A is a properly efficient solution of both problems (3.21) and

(MOPh), while there is not any λ > 0 satisfying

0
@ 1

0

1
A = λ

0
@ −1

↵

1
A+ µ

0
@ 1

−1

1
A ,

for some µ 2 R and ↵ 2 [0, 1]. It shows that part (i) of Theorem 3.14 may not be

valid in the presence of nonsmooth fi or gj functions.

The last theorem of this section establishes a connection between the robust so-

lutions of two problems (3.21) and (MOPh).

Theorem 3.15. If x̄ be a robust efficient solution of Problem (3.21), then x̄ is a

robust efficient solution of (MOPh). The converse holds if

@h(x̄) ✓ pos

✓ p[

i=1

@fi(x̄)

◆
+ pos

✓ [

i2I(x̄)
@gi(x̄)

◆
.

Proof. The results follow from Theorems 3.3 and 3.6.
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Chapter 4

Stability and sensitivity analysis

4.1 Introduction

This chapter is concerned with sensitivity analysis and stability in parametrized multi-

objective optimization. A fundamental question in optimization is the investigation

of behavior of solution set and efficient values under perturbation. Considerable work

has been devoted to these topics under the titles of stability and sensitivity analy-

sis. The stability term is used for examination of continuity of optimal value and

solution set under perturbation. By sensitivity analysis we mean studying differen-

tiability of the optimal value function and solution set. Moreover, this served as an

important motivation for proposing some generalized derivatives including proximal

subdifferential.

Here, we only mention some works dedicated to sensitivity analysis and stability

in multi-objective optimization. We refer the reader to [12] and references therein for

single objective optimization.

Stability in optimization problems is both theoretically and practically important.

It has been used as a useful tool in post-optimal analysis. There are many papers

addressing stability in vector optimization. Some scholars have considered parametric

vector optimization with the objective function and the feasible set depending on

a parameter lying in a Banach space. They provide some sufficient conditions for

lower and upper semicontinuity of set-valued mappings corresponding to feasible set,

77



efficient set and so on; see, e.g., [53, 54, 65, 72] and the references therein. Moreover,

Sawaragi et al. [65] also investigate the problems with parameter-dependent ordering

cones. Bednarczuk [5,6] introduces the concept of strict efficiency and she establishes

Holder like continuity of feasible solution set and optimal value under strict efficiency

and some other appropriate assumptions.

Some scholars study stability from a different standpoint. They consider a se-

quence of vector optimization problems whose feasible set and objective function

tend to a given set and a given function in the sense of Painlevé-Kuratowski or other

sense, respectively. They give some sufficient conditions for convergence of the se-

quence of efficient sets to the efficient set of the given problem; see [52, 58] and the

references therein.

Sensitivity analysis is also a strong tool in post-optimal analysis. There are nu-

merous works devoted to this concept in vector optimization. Tanino [70,71] is among

the first scholars who have dedicated some studies to this issue. He applies contingent

derivative for analyzing efficient solutions and efficient values [70, 71]. Shi [67] intro-

duces the concept of TP cone. Some results on contingent derivative of the efficient

value mapping are improved and extended by using this concept [49, 67]. We refer

the readers to excellent survey [72].

Lee et al. [51] use Proto derivative for analyzing parametric vector optimization.

The authors obtain some sufficient conditions for Proto differentiability of efficient

solution set and efficient values. Chuong et al. [15] use the generalized Clarke epi-

derivative notion to study the problem. They provide some formulas for calculating

this derivative. Chuong [14] studies the sensitivity analysis via s-derivative. He also

gives some formulas for inner and outer estimation of s-derivative for efficient values.

The concept of coderivative has also been applied to investigating the behavior of

efficient solutions and efficient values; see [13,47] and the references therein.

Here, we study parametric multi-objective optimization problem whose feasible

set is given explicitly by some inequalities. Throughout this chapter, all functions

are assumed to be locally Lipschitz. We establish some theorems for strict semi-

differentiability of feasible set and feasible values. Moreover, we give some formulas

78



for their derivatives. We also provide some sufficient conditions for their pseudo-

Lipschitz continuity. Thanks to the mentioned theorem, we provide sufficient con-

ditions for semi-differentiability and pseudo-Lipschitz continuity of efficient solutions

and efficient values. Furthermore, some formulas for their derivatives are given. In

addition, some counterexamples are given to clarify the theoretical results.

The rest of the chapter unfolds as follows. Section 2 is devoted to strict semi-

differentiability and pseudo-Lipschitz continuity of the set-valued mappings of feasible

set and feasible values. We establish that under mild conditions, the set-valued map-

ping of feasible set and its feasible value are strictly semi-differentiable. Moreover, we

investigate the pseudo-Lipschitz continuity of the mentioned set-valued mappings. In

Section 3, we provide some sufficient conditions for pseudo-Lipschitz continuity and

semi-differentiability of the efficient solutions and efficient values.

4.2 Parametric multi-objective optimization

Consider the following parametric multi-objective optimization problem, denoted as

P (u),

min f(u, x)

s.t. g(u, x) 5 0, (4.1)

where f : Rn ⇥ Rq ! Rp and g : Rn ⇥ Rq ! Rm are locally Lipschitz functions.

Here, x is a decision vector and u is a parameter. Associated with this problem, the

following set-valued mappings, called feasible solution, feasible value, efficient solution

and efficient value mappings, are respectively defined by

X(u) := {x 2 Rn : g(u, x) 5 0}

Y (u) := {f(u, x) : x 2 X(u)}

E(u) := {x 2 X(u) : x is an efficient solution of P (u)}

V (u) := {f(u, x) : x 2 E(u)}
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In the sequel, we say that constraint qualification CQ holds at (ū, x̄) 2 gphX if

0 /2 co([i2I(ū,x̄)@xgi(ū, x̄))

where I(ū, x̄) denotes the index set of active constraints at (ū, x̄) and @x stands

for generalized gradient with respect to x. It is well-known that this constraint

qualification is equivalent to

M(Rn) +R
|I(ū,x̄)|
=

= R|I(ū,x̄)|, 8M 2 @xgI(ū,x̄),

where gI(ū,x̄) is the function defined by the active components of g at (ū, x̄) and

|I(ū, x̄)| is equal to the cardinal number of I(ū, x̄). The next remark provides a

sufficient condition for pseudo-Lipschitz continuity of X at a given point [62].

Remark 4.1. Let (ū, x̄) 2 gphX. If CQ holds at (ū, x̄), then X is pseudo-Lipschitz

continuous at (ū, x̄).

Proposition 4.1. Let (ū, x̄) 2 gphX and let g be regular at this point. If CQ holds

at (ū, x̄), then X is strictly semi-differentiable at (ū, x̄) and for each l 2 Rq

Ds−lowX(ū, x̄)(l) = {d : g0i(ū, x̄; l, d)  0, 8i 2 I(ū, x̄)}. (4.2)

Proof. Since CQ holds at (ū, x̄) and g is regular at this point, gphX is regular at

(ū, x̄); see Theorem 1.8. Therefore, X is Clarke differentiable at the given point.

Strict semi-differentiability follows from Proposition 1.2 and Remark 4.1. Due to the

mentioned facts, derivative of X at (ū, x̄) is given by the above formula.

The following examples illustrate that all the given assumptions of Proposition

4.1 are essential.

Example 4.1. Let g(u, x) = x−max{u, 1}. It can be verified easily at (ū, x̄) = (1, 1)

that

DX(ū, x̄)(1) = {l : −1 < l  1}, Ds−lowX(ū, x̄)(1) = {l : −1 < l  0}.
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Thus, X is not strictly semi-differentiable at (ū, x̄). Here, g is not regular.

Example 4.2. Let g(u, x) = x2 − u2. It can be verified easily at (ū, x̄) = (0, 0) that

DX(ū, x̄)(1) = {l : −1  l  1}, Ds−lowX(ū, x̄)(1) = ;.

Thus, X is not strictly semi-differentiable at (ū, x̄). Here, CQ does not hold at the

given point.

In the rest of the section, we deal with pseudo-Lipschitz continuity and strict semi-

differentiability of Y at a given point. To express the result more concisely, we define

the set-valued mapping X̂ : gphY ◆ Rn given by X̂(u, y) = {x 2 X(u) : f(u, x) = y}.

Theorem 4.1. Let (ū, ȳ) 2 gphY and let gphY be closed around (ū, ȳ). Under each

of the following assumptions, Y is pseudo-Lipschitz continuous at (ū, ȳ).

(i) there is x̄ 2 X̂(ū, ȳ) such that for any sequence {(un, yn)} ✓ gphY with (un, yn) !
(ū, ȳ), there exists a sequence {xn} with xn 2 X̂(un, yn) admitting x̄ as a cluster

point and X is pseudo-Lipschitz continuous at (ū, x̄);

(ii) the set-valued mapping X̂ is locally compact on N\gphY for some neighborhood

N of (ū, ȳ). X is pseudo-Lipschitz continuous at each (ū, x̄) 2 X̂(ū, ȳ).

Proof. According to Theorem 1.3, Y is pseudo-Lipschitz continuous at (ū, ȳ) if and

only if (σ, 0) 2 NgphY (ū, ȳ) implying σ = 0. We argue by contradiction. Let Y be not

pseudo-Lipschitz continuous at (ū, ȳ). So, (σ, 0) 2 NgphY (ū, ȳ), for some σ 6= 0.

Hence, there are sequences {un, yn} ✓ gphY and (σn, µn) ! (σ, 0) with (σn, µn) 2
N̂gphY (un, yn) and (un, yn) ! (ū, ȳ). On the account of condition (i), there is a

sequence {xn} (without relabelling) with xn 2 X̂(un, yn) and xn ! x̄. Due to the

local Lipschitz continuity of f , for each n, we have

hσn, u− uni+ hµn, y − yni  o(ku− unk+ ky − ynk), 8(u, y) 2 gphY,

)hσn, u− uni+ hµn, f(u, x)− yni  o(ku− unk+ kf(u, x)− f(un, xn)k), 8(u, x) 2 gphX,

)hσn, u− uni  o(ku− unk+ kx− xn)k) + ✏n(ku− unk+ kx− xn)k), 8(u, x) 2 gphX,
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with positive sequence {✏n} tending to zero. We can infer from Theorem 1.2 that

(σ, 0) 2 NgphX(ū, x̄). This is a contradiction with pseudo-Lipschitz continuity of X

at (ū, x̄), and so Y is pseudo-Lipschitz continuous at (ū, ȳ).

The pseudo-Lipschitz continuity of Y at (ū, ȳ) under (ii) can be proved in a similar

way.

It is easy to see that if [u2UX(u) is bounded for some neighborhood U of ū, then

the first part of condition (ii) in Theorem 4.1 is fulfilled. In the following theorem,

we provide another hypothesis for having Theorem 4.1. Before we state the theorem,

we need to recall some notions.

Consider the set-valued mapping X. The outer horizon limit of X at ū is denoted and

defined by X1(u) := {limn tnxn : tn # 0, un ! u, xn 2 X(un)}. The outer horizon

limit of a set-valued mapping at a given point is a closed cone. The reader can see [64]

for more information about the outer horizon limit.

The asymptotic function of f with respect to the set-valued mapping X at u is defined

and denoted by f1
X (u; d) := {limn tnf(un, xn) : tn # 0, un ! u, tnxn ! d, xn 2 X(un)}

(with some modifications). In general, asymptotic function is a closed-valued set-

valued mapping. We refer the reader to [55] for more details.

Theorem 4.2. Let (ū, ȳ) 2 gphY be given and let gphY be closed around (ū, ȳ).

Assume the following conditions hold:

(i) X is pseudo-Lipschitz continuous at (ū, x̄) for every x̄ 2 X̂(ū, ȳ);

(ii) {v : f1
X (u; v) = 0} \X1(ū) = {0}.

Then Y is pseudo-Lipschitz continuous at (ū, ȳ).

Proof. For each sequence {(un, yn)} ✓ gphY with (un, yn) ! (ū, ȳ), there exists

a sequence {xn} with xn 2 X̂(un, yn). If {xn} has no cluster point, then {kxnk}
converges to 1. By taking tn = 1/kxnk, we may assume {tnxn} converges to some

nonzero vector d. Then

0 = lim
n!1

tnyn 2 f1
X (u; d),
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which shows that d 2 {v : f1
X (u; v) = 0}. This contradicts the hypothesis because

d 2 X1(ū) and d 6= 0. Hence, {xn} admits some cluster points. Moreover, on account

of continuity of f and g, cluster points belong to X̂(ū, ȳ). Now, the result can be

obtained similar to Theorem 4.1.

Example 4.3. Let X(u) = {x 2 R : 0  x 
p
|u|} [ [2, 3] and

f(u, x) =

8
><
>:

x, x  1

2− x, x ≥ 1.

It can be verified easily that neither (i) nor (ii) holds at (ū, ȳ) = (0, 0) and is not

pseudo-Lipschitz continuous at the point.

In the next theorem, we provide some sufficient conditions for strict semi-differentiability

of Y .

Theorem 4.3. Let y 2 Y (ū) be given and let gphY be closed around (ū, ȳ). If the

following conditions hold, then Y is strictly semi-differentiable at (ū, ȳ).

(i) there exists x̄ 2 X̂(ū, ȳ) such that for each sequence {(un, yn)} ✓ gphY with

(un, yn) ! (ū, ȳ), x̄ is a cluster point for some sequence {xn} with {(un, yn, xn)} ✓
gphX̂;

(ii) X is pseudo-Lipschitz continuous and strictly semi-differentiable at (ū, x̄) and

f is regular at this point;

(iii) DX(ū, x̄)(0) \Kerf 0
x(ū, x̄) = {0},

where Kerf 0
x(ū, x̄) = {d : f 0(ū, x̄; 0, d) = 0}.

In addition,

Ds−lowY (ū, ȳ)(l) = {f 0(ū, x̄; l, d) : 8d 2 Ds−lowX(ū, x̄)(l)}, 8l 2 Rq. (4.3)

Proof. First, we show that if (l, e) 2 TgphY , then e 2 {f 0(ū, x̄; l, d) : 8d 2 Ds−lowX(ū, x̄)(l)}.
Let (l, e) 2 TgphY . By the definition of Bouligand tangent cone, there exist {(un, yn)} ✓
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gphY and tn # 0 with t−1
n (un−ū, yn−ȳ) ! (l, e). According to the assumptions (with-

out relabelling), there is a sequence xn 2 X(un) with yn = f(un, xn) and xn ! x̄.

Consider the sequence of (xn − x̄)/tn. If it is not bounded, then we may assume

(xn − x̄)/kxn − x̄k converges to some nonzero vector d and tn/kxn − x̄k converges to

zero as n tends to 1. Then we get

0 = lim
n!1

(yn − ȳ)/kxn − x̄k = lim
n!1

(f(un, xn)− f(ū, x̄))/kxn − x̄k = f 0(ū, x̄; 0, d),

which contradicts the hypotheses. Hence, (xn − x̄)/tn is bounded and without loss

of generality we assume that t−1
n (xn − x̄) ! d. As X is strictly semi-differentiable

at (ū, x̄), d 2 Ds−lowX(ū, x̄)(l). Moreover, due to the regularity of f at this point

e = f 0(ū, x̄; l, d).

Now, we show that if e = f 0(ū, x̄; l, d) for some d 2 Ds−lowX(ū, x̄)(l), then e 2
Ds−lowY (ū, ȳ)(l). Consider an arbitrary sequences {(un, yn)} ✓ gphY and {tn} with

(un, yn) ! (ū, ȳ) and tn # 0. By (i), there is a subsequence {xnk
} with xnk

2
X̂(unk

, ynk
) and xnk

! x̄. From strictly semi-differentiability of X at (ū, x̄), there are

sequences lnk
! l and dnk

! d with {(unk
+ tnk

lnk
, xnk

+ tnk
dnk

)} ✓ gphX. Consider

the sequence {ynk
} given by ynk

= f(unk
, xnk

). Let enk
= t−1

nk
(f(unk

+ tnk
lnk

, xnk
+

tnk
dnk

) − f(unk
, xnk

)). Thus, {(unk
+ tnk

lnk
, ynk

+ tnk
enk

)} ✓ gphY , and regularity

of f at (ū, x̄) implies enk
! e. In view of Lemma 1.1, we have (l, e) 2 T c

gphY (ū, ȳ).

From Theorem 4.1 and Proposition 1.2, the set-valued mapping Y is strictly semi-

differentiable at the given point. This establishes the result.

In the next theorem, we provide another sufficient condition for the strict semi-

differentiability of Y at a given point.

Theorem 4.4. Let y 2 Y (ū) and let gphY be closed around (ū, ȳ). Suppose that the

following properties hold:

(i) {v : f1
X (u; v) = 0} \X1(ū) = {0};

(ii) X is pseudo-Lipschitz continuous and strictly semi-differentiable on X̂(ū, ȳ) and

f is regular on this set;
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(iii) DX(ū, x̄)(0) \Kerf 0
x(ū, x̄) = {0}, for every x̄ 2 X̂(ū, ȳ).

Then Y is strictly semi-differentiable at (ū, ȳ) and for each l 2 Rq

Ds−lowY (ū, ȳ)(l) = {f 0(ū, x̄; l, d) : 8x̄ 2 X̂(ū, ȳ), 8d 2 Ds−lowX(ū, x̄)(l)}.

Proof. The proof is similar to that of Theorem 4.3 and Theorem 4.2.

Remark 4.2. The hypothesis DX(ū, x̄)(0) \Kerf 0
x(ū, x̄) = {0} in Theorem 4.3 can

be replaced by “ (i) holds in Theorem 4.1 and for some positive constant k

kxn − x̄k  kkun − ūk+ kkyn − ȳk.”

This statement can be established in a similar way.

The following example shows that the hypotheses assumed in Theorems 4.3, The-

orems 4.4 and Remark 4.2 are essential for deriving strict semi-differentiability.

Example 4.4. Let X(u) = {(x1, x2) : x1 + x2 = 1, x1, x2 ≥ 0} and f(u, x) = u(x1 −
x2). At (ū, ȳ) = (0, 0), we have

TgphY (ū, ȳ) = pos{(1, 1), (1,−1)} [ pos{(−1, 1), (−1,−1)},

Ds−lowY (ū, ȳ)(l) = {0},

for each l. Thus, Y is not strictly semi-differentiable at (ū, ȳ).

In the next lemma we provide a sufficient condition for having the hypothesis of

Remark 4.2.

Lemma 4.1. Let h :=

2
4 f(u, x)

gI(ū,x̄)(ū, x̄)

3
5 . Assume that for each M 2 @xh(ū, x̄), we have

M(Rn) + {0} ⇥ R
|I(ū,x̄)|
=

= R|I(ū,x̄)|+p. Then for each sequence {(un, yn)} ✓ gphY

with (un, yn) ! (ū, ȳ), there exists xn ! x̄ with xn 2 X(un) and yn = h(xn, un) for
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sufficiently large n. Moreover,

kxn − x̄k  k(kun − ūk+ kyn − ȳk), (4.4)

with k being a positive constant independent of the sequence {(un, yn)}.

Proof. This follows from Theorem 1.7.

We say CQ1 holds at (ū, x̄) if we have assumptions of Lemma 4.1.

Since efficient points of the two sets Y (u) and Y (u) +R
p

=
are the same, it would

be in some cases beneficial to consider the set-valued mapping Y +R
p

=
, where Y +

R
p

=
(u) = Y (u)+R

p

=
. For instance, when the functions g and f are convex with respect

to x, Y (u) may not be convex while Y (u) +R
p

=
is convex. So, we are equipped with

the great tools of convex analysis. Another noticeable case is when Y (u) is not closed

while Y (u)+R
p

=
is closed. In what follows we investigate pseudo-Lipschitz continuity

and strict semi-differentiability of this set-valued mapping.

Theorem 4.5. Let (ū, ȳ) 2 gphV and let Y be closed at ū. If the following conditions

hold, then Y +R
p

=
is pseudo-Lipschitz continuous at (ū, ȳ).

(i) Y is pseudo-Lipschitz continuous at (ū, ȳ) and gphY and gph(Y +R
p

=
) are closed

around it;

(ii) Y 1(ū) \ −R
p

=
= {0}.

Proof. We show that if (σ, 0) 2 NgphY+R
p

=
(ū, ȳ) then σ = 0. On the contrary, suppose

that σ 6= 0. By the definition of limiting cone, there are sequences {(un, yn + rn)} ✓
gphY + R

p

=
and {(σn, µn)} such that (un, yn + rn) ! (ū, ȳ) and (σn, µn) ! (σ, 0).

Note that {rn} is bounded, since If this is not the case, then we would assume without

loss of generality that rn ! 1 and krnk−1rn ! r, where r is a nonzero vector in R
p

=
.

Therefore,

lim
n!1

(un − ū,
yn
krnk

) = (0,−r),
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which contradicts our assumptions. Moreover, rn ! 0, since if this does not hold,

then it leads to a contradiction with ȳ 2 V (ū). As µn ! 0, there is a sequence

{✏n} ✓ R> such that

hσn, u−uni  o(ku−unk+kz−yn−rn)k)+✏n(ku−unk+kz−yn−rn)k), 8(u, z) 2 gphY+R
p

=
,

and ✏n # 0. Moreover, clearly we have

hσn, u− uni  o(ku− unk+ ky − yn)k) + ✏n(ku− unk+ ky − yn)k), 8(u, y) 2 gphY,

which implies σ 2 NgphY (ū, ȳ) (Theorem 1.2), contradicting pseudo-Lipschitz conti-

nuity of Y at (ū, ȳ).

The contingent differentiability and the Proto differentiability of Y +R
p

=
have been

investigated in [51, 72]. In the following theorem, we present sufficient conditions for

strict semi-differentiability of Y +R
p

=
.

Theorem 4.6. Let (ū, ȳ) 2 gphV . Assume that the following conditions hold:

(i) Y is strictly semi-differentiable at (ū, ȳ) and Y is closed at ū;

(ii) Y 1(ū) \ −R
p

=
= {0}.

Then, Y +R
p

=
is strictly semi-differentiable at (ū, ȳ) and

Ds−low(Y +R
p

=
)(ū, ȳ)(l) = Ds−lowY (ū, ȳ)(l) +R

p

=
8l 2 Rq. (4.5)

Proof. The proof includes two parts. First we show that if (l, e) 2 TgphY+R
p

=
(ū, ȳ),

then e 2 Ds−lowY (ū, ȳ)(l) +R
p

=
. Next, we establish that e 2 Ds−lowY (ū, ȳ)(l) +R

p

=

implies e 2 Ds−low(Y +R
p

=
)(ū, ȳ)(l), which completes the proof.

let (l, e) 2 Tgph(Y+R
p

=
)(ū, ȳ). By definition, there are sequences {(un, yn + rn)} ✓

gph(Y + R
p

=
) and tn # 0 such that t−1

n (un − ū, yn + rn − ȳ) ! (l, e). Similar to the

proof of Theorem 4.5, it can be shown that rn ! 0. Then, if t−1
n rn has a convergent

subsequence, without loss of generality, we may assume that t−1
n rn ! r̄. Hence,
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t−1
n yn ! ē 2 Ds−lowY(ū,ȳ)(ζ), which implies e 2 Ds−lowY (ū, ȳ)(ζ) +R

p

=
, for otherwise,

t−1
n rn is unbounded. We may assume that krnk−1yn converges to a nonzero vector

r̄ 2 −R
p

=
. Therefore,

lim
n!1

(un − ū,
yn
krnk

) = (0, r̄),

which is impossible. Hence, t−1
n dn has a convergent subsequence and the first part is

established.

For the second part, let e 2 Ds−lowY (ū, ȳ)(l), d 2 R
p

=
, ln ! l̄ and {(un, yn + rn)} ✓

gph(Y + R
p

=
) such that (un, yn + rn) ! (ū, ȳ). We can show similar to the proof

of Theorem 4.5 that rn ! 0, and yn ! ȳ. Since Y is strictly semi-differentiable

at (ū, ȳ), there exists en ! e such that {(un + tnln, yn + tnen)} ✓ gphY . Hence,

{(un + tnln, yn + rn + tnen)} ✓ gph(Y +R
p

=
), and the proof is complete.

The property Y 1(ū)\−R
p

=
= {0} plays an important role here. It is readily seen

that if Y is bounded from below on a neighborhood of ū then this property holds.

In the following propositions, we provide some sufficient conditions for having this

property.

Proposition 4.2. Let (ū, ȳ) 2 gphV and let Y be closed at ū. Assume that there is a

neighborhood N of ū such that Y (u) is convex for each u 2 N . If Y is pseudo-Lipschitz

at (ū, ȳ), then Y 1(ū) \ −R
p

=
= {0}.

Proof. Suppose, contrary to our claim, that there is a nonzero vector e 2 Y 1(ū) \
−R

p

=
. By definition, there are sequences {(un, yn)} ✓ gphY and {tn} ✓ R> such

that (un, tnyn, tn) ! (ū, e, 0). Y being pseudo-Lipschitz at (ū, ȳ), there is a sequence

{(un, zn)} ✓ gphY with zn ! ȳ. Thus, for n sufficiently large tnyn + (1 − tn)zn 2
Y (un). This implies ȳ − r 2 Y (ū) which contradicts efficiency of ȳ. Thus, e = 0 and

the proof is complete.

Shi [67] and Lee [51] obtained formula (4.5) for contingent derivative and Proto

derivative, respectively, under the assumption of DsY (ū, ȳ)(0)\−R
p

=
= {0} instead of

hypotheses (ii). In the following proposition, we show that this hypothesis is satisfied

when we have DsY (ū, ȳ)(0) \ −R
p

=
= {0}.
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Proposition 4.3. Let ȳ 2 V (ū) be a given point. If DsY (ū, ȳ)(0)\−R
p

=
= {0}, then

(i) DY(ū,ȳ)(0) \ −R
p

=
= {0};

(ii) Y 1(ū) \ −R
p

=
= {0}.

Proof. Suppose the assertion of the proposition is false. If we have a nonzero vector

e 2 DY(ū,ȳ)(0)\−R
p

=
, then e 2 DsY (ū, ȳ)(0)\−R

p

=
which is impossible. Thus, there is

a nonzero vector e 2 Y 1(ū)\−R
p

=
. By definition, there exist sequences {(un, yn)} ✓

gphY and tn # 0 with un ! ū and tnyn ! e. This implies (tn(un − ū), tn(yn − ȳ)) !
(0, e) which contradicts our assumption. Thus, the proof is complete.

Shi [67] gave some conditions under which DsY (ū, ȳ)(0)\−R
p

=
= {0}; see Propo-

sition 3.2. We have this property when gph(Y +R
p

=
) is convex; see [72]. As a result,

the mentioned conditions imply DY(ū,ȳ)(0) \ −R
p

=
= {0} and Y 1(ū) \ −R

p

=
= {0}.

The following example shows that the hypotheses (ii) and (iii) in Theorems 4.5 and 4.6

are essential for having pseudo-Lipschitz continuity and strict semi-differentiability,

respectively.

Example 4.5. Let

Y (u) =

8
><
>:

{u2, u−1}, u < 0

0, x ≥ 1.

Note that Y is pseudo-Lipschitz and strictly semi-differentiable at (0, 0), but Y +

R= is neither pseudo-Lipschitz nor strictly semi-differentiable at this point. Indeed,

Ds−low(Y +R=)(0, 0)(−1) = R= but D(Y +R=)(0, 0)(−1) = R.

We refer the reader to Example 3.4 of [70] to see that proper efficiency and closed-

ness are also necessary in Theorem 4.6.

In general, pseudo-Lipschitz continuity and strict semi-differentiability of Y and

Y + R
p

=
are not related to each other. Y may be pseudo-Lipschitz continuous and

strictly semi-differentiable at a given point, while Y +R
p

=
does not fulfill these prop-

erties at the given point, and vice versa. To check pseudo-Lipschitz and strict semi-

differentiability of Y +R
p

=
, one can consider the following parametric multi-objective
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optimization problem:

min f(u, x) + r

s.t. g(u, x) 5 0

r = 0,

where x and r are decision variables and utilize related theorems.

4.3 Pseudo-Lipschitz continuity and semi-differentiability

of the efficient set and the Pareto frontier

In this section, we study pseudo-Lipschitz continuity and semi-differentiability of the

efficient solution and the efficient value mappings. Since strict semi-differentiability of

the efficient solution and the efficient value mappings hold only under strict conditions,

we only concentrate on semi-differentiability. For example, consider the optimization

problem with X(u) = Y (u) = {(x1, x2) : 2x1 + x2 ≥ 0, x1 + x2 ≥ 0}. While X and

Y are independent of parameter, neither V nor E is strictly semi-differentiable at

(0, (0, 0)).

Definition 4.1. Y is called locally dominated near ū, if for U neighborhood of ū we

have

Y (u) ✓ V (u) +R
p

=
, 8u 2 U.

The following lemma gives some conditions to guarantee local domination property

for Y near a given point.

Lemma 4.2. Let ȳ 2 V (ū). Suppose that Y is closed-valued on a neighborhood of

ū and Y is pseudo-Lipschitz at (ū, ȳ). If Y 1(ū) \ −R
p

=
= {0}, then Y is locally

dominated near ū. As a result, for some neighborhood of ū, V is nonempty.

Proof. Suppose the result is false. Due to closed-valuedness and pseudo-Lipschitz

continuity of Y , there are sequences un ! ū, {yn} and {zn} such that yn, zn 2 Y (un),

90



zn  yn and kznk ≥ n + kynk2. Let us extract a subsequence {kznk−1zn} without

relabeling that converges to some nonzero vector r. Therefore,

lim
n!1

(un, kznk−1zn) = (0, r).

Since zn  yn, r 2 −R
p

=
which contradicts our assumptions. In virtue of pseudo-

Lipschitz continuity of Y , Y is nonempty in some neighborhood of ū. This implies

non-emptiness of V in a neighborhood of ū.

Theorem 4.7. Let Y be pseudo-Lipschitz at (ū, ȳ) 2 gphV . If for some neighborhood

U⇥O of (ū, ȳ) the following conditions hold, then V is pseudo-Lipschitz at this point:

(i) Y is closed on U and gphV is closed around (ū, ȳ).

(ii) DY (u, y)(0) \ −R
p

=
= {0} for all (u, y) 2 (U ⇥O) \ gphV ;

(iii) Y 1(u) \ −R
p

=
= {0} for each u 2 U .

Proof. We argue by contradiction. If it is false, then there exists (σ, 0) 2 NgphV (ū, ȳ)

such that σ 6= 0. We consider two cases: either (σ, 0) belongs to Fréshet normal cone

or not.

Let (σ, 0) 2 N̂gphV (ū, ȳ). By definition,

lim sup

(u,y)
gphV−−−!(ū,ȳ)

hσ, u− ūi
ku− ūk+ ky − ȳk  0. (4.6)

Moreover, since Y is pseudo-Lipschitz at this point, (σ, 0) /2 NgphV (ū, ȳ). This im-

plies (σ, 0) /2 N̂gphV (ū, ȳ). Thus, there are ✏ > 0 and {(un, yn)} ✓ gphY such that

(un, yn) ! (ū, ȳ) and

lim
n!1

hσ, un − ūi
kun − ūk+ kyn − ȳk > 2✏. (4.7)

Y is locally dominated around ū (Lemma 4.2), and so we can choose a sequence

{rn} ✓ R
p

=
such that yn− rn 2 V (un) for n sufficiently large. Note that {rn} tends to

zero, since if it were not the case, either {rn} has a convergent subsequence tending
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to a nonzero vector or it tends to infinity. In the first case, because yn ! ȳ, we obtain

ŷ 2 Y (ū) with ŷ  ȳ. This is a contradiction with ȳ 2 V (ū). In the second case,

reducing to subsequence if necessary,

lim
n!1

(un,
yn − rn
krnk

= (0,−r),

where r 2 R
p
≥. This is a contradiction with condition (iii).

We can infer from (4.7) that for each δ > 0 and for n sufficiently large, we have

✏(kun − ūk+ kyn − ȳk)
kun − ūk+ kyn − rn − ȳk  hσ, un − ūi

kun − ūk+ kyn − rn − ȳk  δ.

The above inequality and the triangle inequality imply

lim
n!1

(un − ū, yn − ȳ)

krnk
= (0, 0).

Without loss of generality, we assume that {krnk−1rn} converges to a nonzero vector

r 2 R
p
≥. Thus, we have

lim
n!1

(un − ū, yn − rn − ȳ)

krnk
= (0,−r),

which is a contradiction with DY (ū, ȳ)(0)\−R
p

=
= {0}. Hence, if (✓, 0) 2 N̂gphV (ū, ȳ),

then ✓ = 0.

Now, we consider the other case. By definition, there are sequences {(un, yn)} ✓ gphV

and (σn, µn) ! (σ, 0) such that (un, yn) ! (ū, ȳ) and (σn, µn) 2 N̂gphV (un, yn). Since

Y is pseudo-Lipschitz at (ū, ȳ), there is ✏ > 0 such that for each sufficiently large n,

there exists a sequence {(ui
n, y

i
n)} ✓ gphY with

lim
i!1

hσn, u
i
n − uni+ hµn, y

i
n − yni

kui
n − unk+ kyin − ynk

> 2✏, (4.8)

and (ui
n, y

i
n) ! (un, yn). If it is not the case, then we obtain a contradiction (σ, 0) 2

NgphY (ū, ȳ). Similar to the first case, for sufficiently large n, we obtain a vector
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r 2 −R
p
≥ such that r 2 DY (un, yn)(0). This leads to a contradiction with the

assumptions, and the proof is complete.

In the following propositions, we provide a lower and upper estimation of DlowV (ū, ȳ).

Proposition 4.4. Let (ū, ȳ) 2 gphV . Then for each l 2 Rq,

DlowV (ū, ȳ)(l) ✓ {W minDlowY (ū, ȳ)(l)} (4.9)

Proof. this can be proven similar to Theorem 3.3. of [49].

Theorem 4.8. Let (ū, ȳ) 2 gphV . Assume that the following conditions hold:

(i) Y is locally dominated around ū and Y is closed at ū;

(ii) DY(ū,ȳ)(0) \ −R
p

=
= {0};

(iii) Y 1(ū) \ −R
p

=
= {0}.

Then for each l 2 Rq,

minDlowY (ū, ȳ)(l) ✓ DlowV (ū, ȳ)(l). (4.10)

Proof. Let e 2 {minDlowY (ū, ȳ)(l)}. From the assumptions, for tn # 0 and ln !
l, there is a sequence en ! e such that {(ū + tnln, ȳ + tnen)} ✓ gphY . By the

assumptions, for sufficiently large n, we can construct a sequence {hn} such that{(ū+
tnln, ȳ+ tnhn)} ✓ gphV and ȳ+ tnhn 5 ȳ+ tnen. The sequence {tnhn} tends to zero,

since otherwise, either it tends to infinity or it has a convergent subsequence. Suppose

that {tnhn} tends to infinity and khnk−1hn ! h. Since hn 5 en, we have h  0. Thus,

lim
n!1

(ū+ tnln,
ȳ + tnhn

tnkhnk
) = (0, h),

which contradicts condition (iii). For the second case, without loss of generality, we

assume that tnhn ! −r. Similar to the former case it is shown that r 2 R
p
≥. Hence,

ȳ − r 2 Y (ū) which contradicts ȳ 2 V (ū). Thus, {tnhn} tends to zero. The proof is
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complete by showing that {hn} tends to e. Assume that this is not the case. Then,

either it tends to infinity or it has a subsequence not converging to e. If {hn} tends

to infinity, then we may assume that khnk−1hn ! h 2 −R
p
≥. Consequently,

lim
n!1

(
ū+ tnln − ū

tnkhnk
,
ȳ + tnhn − ȳ

tnkhnk
) = (0, h),

which contradicts condition (ii). Now, without loss of generality, assume that hn ! h

with hn 6= e. By virtue of the construction of {hn}, h  e. Thus,

lim
n!1

(
ū+ tnln − ū

tn
,
ȳ + tnhn − ȳ

tn
) = (l, h)

which is impossible. Therefore, {hn} tends to e, which is the desired result.

The following example shows that the upper and lower estimations of DlowV (ū, ȳ)(l)

can be strict.

Example 4.6. Let Y (u) = {y 2 R2 : y21 + y22 5 1}. Y and V are strictly semi-

differentiable and semi-differentiable at (ū, ȳ) = (0, (−1, 0)), respectively, and DlowV (ū, ȳ)(1) =

{e 2 R2 : e1 = 0, e2 5 0} with

W minDYs−lowY (ū, ȳ)(1) = {e 2 R2
= : e1 = 0},

minDYs−lowY (ū, ȳ)(1) = ;.

Definition 4.2. We call ȳ 2 V (ū) a uniformly proper efficient point, if there is a

convex, closed and pointed cone K such that Rn
= ✓ int(K) [ {0}. Furthermore, for

some neighborhood N of (ū, ȳ),

Y (u) \ (y −K) = {y}, 8(u, y) 2 gphV \N.

The next theorem gives some conditions under which the inclusion given in The-

orem 4.8 holds by an equality.

Proposition 4.5. If ȳ 2 V (ū) is a uniformly proper efficient point, then for each
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l 2 Rq we have

DlowV (ū, ȳ)(l) ✓ {minDlowY (ū, ȳ)(l)}. (4.11)

Proof. Let l be given and e 2 DlowV (ū, ȳ)(l). Suppose to the contrary that e /2
{minDlowY (ū, ȳ)(l)}. Then there is some e0  e with e0 2 DlowY (ū, ȳ)(l). Let

tn # 0 and dn ! d be given. By definition, there are en ! e and e0n ! e0 with

{(ū+ tndn, ȳ + tnen)} ✓ gphV and {(ū+ tndn, ȳ + tne
0
n)} ✓ gphY . Thus, we have

lim
n!1

ȳ + tne
0
n − (ȳ + tnen) = lim

n!1
e0n − en = e0 − e.

This contradicts the uniform proper efficiency hypothesis.

Remark 4.3. The Propositions 4.4, 4.8 and 4.5 hold when Dlow is substituted by

D,Dlow, Ds−low, Ds−up and Da providing Y is semi-differentiable at (ū, ȳ).

The next theorem investigates the semi-differentiability of V at a given point.

Theorem 4.9. Let the following conditions hold:

(i) Y is semi-differentiable at (ū, ȳ) and it is locally dominated around ū;

(ii) DY(ū,ȳ)(0) \ −R
p

=
= {0};

(iii) Y 1(ū) \ −R
p

=
= {0}.

If ȳ 2 V (ū) is a uniformly proper efficient point, then V is semi-differentiable at

(ū, ȳ) and

DlowV (ū, ȳ)(l) = {minDlowY (ū, ȳ)(l)}. (4.12)

Proof. The proof involves two parts. First, we show that e 2 DV (ū, ȳ)(l) implies

e 2 {minDlowY (ū, ȳ)(l)}. Second, we show that e 2 {minDlowY (ū, ȳ)(l)} leads to

e 2 DlowV (ū, ȳ)(l).

Let e 2 DV (ū, ȳ)(l). From the definition of the Bouligand tangent cone, there are
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ln ! l, en ! e and tn # 0 with {(ū + tnln, ȳ + tnen)} ✓ gphV . Due to the semi-

differentiability of Y , e 2 DlowY (ū, ȳ)(l). If e belongs to {minDlowY (ū, ȳ)(l)}, then

this part is complete; otherwise, there is (l, h) 2 Ds−lowY (ū, ȳ)(l) with h  e. As Y is

semi-differentiable, there is a sequence hn with {(ū+ tnln, ȳ + tnhn)} ✓ gphY . Since

ȳ is a uniformly proper efficient point of Y (ū), there is a cone K such that

Y (ū+ tnln) \ (ȳ + tnen −K) = {ȳ + tnen}, 8n ≥ n0, (4.13)

where n0 2 N. Since h  e, for sufficiently large n, this leads to a contradiction with

(4.13).

The rest of proof follows from that of Theorem 4.8.

In Theorem 4.9 if one substitutes semi-differentiability of Y for prorto-differentiability,

then prorto-differentiability of V follows in a similar manner. This is stronger than

the conditions given by Lee-Huy [51], only in the convex case. Tanino [71] proposed

the notion of normal efficiency for the case that Y is a convex set-valued mapping

(gphY is a convex set). He proved the relation (4.12) with respect to contingent

derivative under the convexity condition and normal efficiency. Theorem 4.9 can be

adapted such that we have Tanino’s result without convexity and normal efficiency.

In the following lemma, we extend the definition of normal efficiency for the case that

Y is convex-valued. Furthermore, we show that normal efficiency implies uniformly

proper efficiency even for this extension.

Definition 4.3. Let Y be convex-valued. ȳ 2 V (ū) is said to be a normal proper

point, if NY (ū)(ȳ) ✓ −int(Rp

=
), where NY (ū)(ȳ) is the normal cone in the sense of

convex analysis.

Theorem 4.10. Let Y be convex-valued. Assume that Y is pseudo-Lipschitz at

(ū, ȳ) 2 gphV . If ȳ is normal proper, then it is uniformly proper efficient.

Proof. Suppose the assertion of the lemma is false. Then, for each ✏ > 0 there is a
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sequence {(un, yn)} ✓ gphV such that

{0} * (Y (un)− yn) \ −K✏,

where K✏ = \p
i=1{d : hei+ ✏e, di ≥ 0}, ei is the unit vector of the standard basis and e

is a vector with all components being to one. It is clear that if for some convex, closed

and pointed cone R
p

=
✓ int(K) [ {0}, then there is ✏ such that K✏ ✓ K. Moreover,

by using Farkas’ lemma, if we have

8
><
>:

Y (un) \ (yn −R
p

=
) = {yn}

{0} * (Y (un)− yn) \ −K✏,

then there is λn = 0 such that −λn 2 NY (un)(yn),
Pp

i=1 λ
i
n = 1 and min1ip λ

i
n  ✏.

We consider a sequence with ✏n # 0. By Cantor’s diagonal argument and the afore-

mentioned fact, if necessary reducing to a subsequence, we can construct sequence

{(un, yn)} ✓ gphV and {λn} such that for some j 2 {1, ..., p}

8
>>>>>>>><
>>>>>>>>:

{0} * (Y (un)− yn) \ −K✏n ,

(un, yn) ! (ū, ȳ), λn ! λ,

λn = 0, λj
n = min1ip λ

i
n  ✏n,

−λn 2 NY (un)(yn),
Pp

i=1 λ
i
n = 1.

Since Y is pseudo-Lipschitz at (ū, ȳ), for a neighborhood N of ȳ and for each z 2
Y (ū) \N , there is a sequence {(un, zn)} ✓ gphY with zn ! z. Thus, for sufficiently

large n,

hλn, zn − yni ≥ 0.

This implies −λ 2 NY (ū)\N(ū). Since Y (u) is convex, −λ 2 NY (ū)(ū) which contra-

dicts normal efficiency of ȳ.

The following example shows that we can have uniformly proper efficiency at a

given point while not having normally proper.
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Example 4.7. Let Y (u) = R2
=. It is easily seen that zero is K-minimal but NY (0)(0) =

R2
=.

Proposition 4.6. Let (ū, x̄) 2 gphE and let CQ1 hold at this point. If V is pseudo-

Lipschitz continuous at (ū, f(ū, x̄)), then E is pseudo-Lipschitz at the given point.

Proof. Since CQ1 holds at (ū, x̄), X̂ is pseudo-Lipschitz at this point. Thus, pseudo-

Lipschitz continuity of E at (ū, x̄) follows from pseudo-Lipschitz continuity of V .

Theorem 4.11. Let (ū, x̄) 2 gphE. Assume that the following assumptions hold:

(i) f is regular at (ū, x̄);

(ii) CQ1 holds at (ū, x̄);

(iii) V is pseudo-Lipschitz and semi-differentiable at (ū, f(ū, x̄)) and gphV is closed

around it.

Then, E is semi-differentiable at (ū, x̄) and

DlowE(ū, x̄)(l) = {d 2 Ds−lowX(ū, x̄)(l) : C 0(ū, x̄; l, d) 2 DlowV(ū,ȳ)(l)} (4.14)

Proof. E(u) can be shown as {x 2 Rn : g(u, x) 2 K}, where g(u, x) =

2
4 (u, x)

(u, C(u, x))

3
5

and K = gphX ⇥ gphV . It follows from Remark 4.1 and Proposition 4.1 that X is

pseudo-Lipschitz and strictly semi-differentiable at (ū, x̄). From the assumptions and

the mentioned facts, all the assumptions of Corollary 5.7 in [2] are fulfilled. (here,

differentiability can be substituted by regularity). Thus, E is Proto differentiable at

(ū, x̄) and we have (4.14). Since E is pseudo-Lipschitz at the given point, it is also

semi-differentiable at (ū, x̄).
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