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Introduction & objectives

In 1998, the X-Noise [X-Noise 1998] collaborative network project was created uniting 29
European partners over 21 countries (companies, universities and institutes) in the aeroa-
coustic field. This project significantly contributed to the objectives of the Advisory Council
for Aeronautics Research in Europe (ACARE) to reduce the exposure of communities to
aircraft noise by a factor 2 (-10 PNdB) in 2020 with respect to 2000. At the beginning of
2010, thanks to an important effort in this research topic, a drastic decrease of the noise by
5 PNdB was reached. This progress has been possible by the reduction of jet mixing noise
and fan noise in modern aero engines. Yet, this reduction has also paradoxically led to an
increase in the relative contribution of other noise sources. Among them, one of the most
important at hearing frequencies is referred as "combustion noise" (CN).

During the 70’s, two mechanisms have been identified as CN [Candel 2009]. Di-
rect combustion noise (DCN) is generated by the unsteady heat release rate at the
flame front level [Ducruix 2003]. This noise appears in unsteady combustion situa-
tions, in opened or confined configurations. This acoustic disturbance has been exten-
sively investigated from theoretical [Bragg 1963, Strahle 1978, Hassan 1974], numerical
[Richter 2005, Mühlbauer 2009] and experimental [Bake 2007, Bake 2008, Bake 2009a,
Bake 2009b,Bake 2009c] points of view. In laminar configurations, the drivingmechanisms
are now well known but intense efforts are still carried out to investigate turbulent con-
fined situations. Indirect combustion noise (ICN) was theoretically predicted and observed
experimentally during the same period of time. This noise is induced by the acceleration
of burnt gas heterogeneities in velocity (vorticity) or in temperature (entropy fluctuations)
through a nozzle or a turbine. Initial measurements and theoretical works tended to show
that the levels of noise due to indirect and direct mechanisms are of the same order of
magnitude (see for instance the works of Candel [Candel 1972], Marble [Marble 1973],
Morfey [Morfey 1973] and Leyko et al. [Leyko 2011]). It appears to be crucial to study those
two phenomena in more details and to precisely discern their respective contribution to
combustion noise.

ICN generates noise both upstream and downstream of the nozzle and the turbine.
Noise radiated backward in the combustion chamber is partially reflected and can give
birth to combustion instabilities. Downstream acoustic emission propagates toward the
exhaust of the engine and thus contributes to the overall engine noise in the far field [Bla-
codon 2009]. Despite the numerous studies conducted during the last thirty years, iso-
lating direct noise from indirect noise sources still remains a challenging issue nowadays.
This is mainly due to the extreme operating conditions (high pressure and temperature
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gradients), the very limited means of measurement and also to the complex physical pro-
cesses (chemical reactions and variable Mach number flow). Finally, acoustic pressure and
velocity amplitudes are at least two orders of magnitude lower than the aerodynamic val-
ues encountered in the systems, requiring extremely clean and sensitive computations and
measurements.

Significant elements of the theory of DCN and ICN have been set by Marble & Can-
del [Marble 1977] for nozzle flows. They base their work on conservation principles for
one-dimensional perturbations to provide the amplitude of direct and indirect noise. This
approach is valid as long as the nozzle is compact with respect to the considered wave-
lengths. They also consider the non-compact configuration in the particular case of the
supercritical nozzle without shock. More recently, Moase et al. [Moase 2007], Giauque et
al. [Giauque 2012] and Duran & Moreau [Duran 2013a] extended the work of Marble &
Candel [Marble 1977] to account for subcritical and supercritical shocked flows with arbi-
trary nozzle shapes.

Bake et al. [Bake 2007, Bake 2008, Bake 2009a, Bake 2009b, Bake 2009c] studied the
mechanism of ICN on a dedicated test rig: the EWG (Entropy Wave Generator). The mea-
surements collected by Bake et al.were studied numerically by Richter et al. [Richter 2007],
Mülbauer et al. [Mühlbauer 2008,Bake 2009c] and Leyko et al. [Leyko 2011] amongst oth-
ers for the supersonic case and the results seemed to be in a good agreement. However,
regarding the subsonic case, the results are quite different between the theoretical esti-
mation and the experimental measurements. Studies tend to show that current 1D ICN
models fail to reproduce experimental results gathered by Bake et al. [Bake 2009c] as shown
more recently by Duran et al. [Duran 2013b] and Giauque et al. [Giauque 2012]. Both of
them concluded that in the EWG test rig, ICN cannot be held as the sole responsible for
the measured noise level and DCN is also present.

Currently, the question of the true relative importance of the indirect mechanism as a
source of CN is not settled. This might be due to a certain number of issues regarding the
understanding and the modeling of entropy and vorticity disturbances in real aero engines.
1D models have been intensively used for their simplicity. All these models are based on
Marble & Candel theory which neglects any radial variation of the mean flow. According
to Sattelmayer [Sattelmayer 2003], the non uniform mean flow leads to residence times
that vary across the cross-section. As a consequence, entropy perturbations at different
radial positions have different time delays and phases when they reach the nozzle throat.
This will tend to reduce their cumulative effect and consequently modify the amplitude of
the generated acoustic waves. In addition, diffusion and dispersion phenomena (change
in amplitudes and phases) are also important and can modify the resulting entropy noise.
Many authors including Sattelmayer [Sattelmayer 2003], Eckstein et al. [Eckstein 2006],
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Morgans et al. [Morgans 2013], Morgans & Li [Morgans 2015], Giusti et al. [Giusti 2016],
Xia et al. [Xia 2016], Hosseinalipour et al. [Hosseinalipour 2017] noted the importance of
entropy waves dispersion but so far it has not been considered in any analytical models
of ICN in nozzle flows. Leyko [Leyko 2010] in his thesis and in [Leyko 2014] studied the
distortion of injected planar entropy waves while Mishra & Bodony [Mishra 2013] studied
the distortion of entropy spots as they approach a static turbine blade. Recently, Livebar-
don et al. [Livebardon 2016] and Bauerheim et al. [Bauerheim 2016] proposed a compact
analytical model to take into account this distorsion to a stator-rotor stage. The same
behavior is expected to happen in a combustion chamber as the entropy waves approach
the nozzle. Indeed, the inhomogeneous acceleration profile present in the nozzle as one
goes from the centerline to the outer wall may be responsible of a distortion.

Based on these observations, the aim of this PhD thesis is to develop a non
compact two-dimensional axisymmetric semi-analytical model taking into ac-
count the distortion of the entropy waves in order to predict the ICN for nozzle
flows using numerical and analytical methods.

Chapter 1 gives an overview of the different ways adopted to study ICN. With the large
computing capacities improvements in the previous decades, the trend is to perform nu-
merical simulations on increasingly complex configurations. However, those computations
suffer from the lack of experimental databases since only one reference case made by Bake
et al. [Bake 2009c] was available at the beginning of the PhD thesis.

The tools available at Office Nationale d’Étude et de Recherche en Aérospatiale (ON-
ERA) for studying ICN are described in Chapter 2. First, 1D tools, solving Euler equations
are introduced. Then, a 3D numerical solver called CEDRE solving the Navier-Stokes equa-
tions is described. The different approaches regarding the steady and unsteady computa-
tions are detailed.

The incapability of the 1D models to take into account the deformation of the entropy
front by the mean flow has been pointed out previously. It is the objective of chapter 3 to
develop a 2D semi-analytical model for nozzle flows that includes such a distortion of the
entropy source term. In order to take this phenomenon into account, the radial evolution
of the convected entropy front through the nozzle must be incorporated. To do so, the Euler
equations are rewritten in 2D form for the entropic part while acoustic perturbations are
considered to be 1D. The mean flow is provided by a RANS computation of the DISCERN
nozzle (described in chapter 4). Through the inversion of a matrix in the frequency domain,
the resulting model allows to obtain the acoustic response of the nozzle.

Navier-Stokes numerical simulations are carried out in chapter 4. A RANS computation
of the nozzle is run to provide the mean flow needed for the application of the 2D model.
In order to validate the results provided by the 2D semi-analytical model, LES simulations
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of the nozzle are also performed on a finer hybrid mesh than the one used for the RANS
computation to capture the acoustic and entropy waves as well as the turbulence generated
by the flow. Planar entropy waves are forced at the entrance of the geometry and two
kinds of entropy fluctuation forcings are simulated. A harmonic forcing is used in order to
characterize the numerical dissipation, to quantify the thermal and viscous diffusions and
also to allow a precise study of the flow and the fluctuations inside the domain. A multi-
harmonic forcing then allows to compute the entropy generated noise for a large panel of
frequencies with a single simulation in order to obtain the spectral response of the nozzle.

In Chapter 5, the application and validation of the 2D model is carried out. Firstly, the
Thermo-Acoustic Transfer Functions (TATFs) obtained from the 2D model are compared
to ONERA’s 1D solver MarCan using a purely 1D flow as to assess the capability of the 2D
model to retrieve 1D solutions. Secondly, the mean flow provided by the RANS computa-
tion is used as an input for the 2D model where two different cases are studied assuming:
(1) fully non-reflective boundaries and (2) partially reflective boundaries. The first case
allows a comparison between the TATFs from the 2D model and MarCan, while the second
case reproduces the partially reflective boundaries in the LES computations. The TATFs
provided by the 1D model MarCan, the 2D model and from LES computations are finally
compared and the capability of the 2D model is assessed.
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In this section an overview of the combustion noise (CN) is given. Over the last decades, it
has been studied analytically, experimentally and numerically. With the drastic increase of
computing resources, the trend is to perform more and more numerical simulations. How-
ever, this approach still remains costly from an industrial point of view. More specifically, the
lack of available experimental databases on ICN (one experimental test bench [Bake 2009c]
at Deutsches Zentrum für Luft- und Raumfahrt (DLR)) has lead to the European project
RECORD (Research on Core Noise Reduction, FP7 Jan 2013-Dec 2015) aiming at under-
standing the mechanisms of generation and transmission of combustion noise, providing a
new database and developing reduction methods. Meanwhile, another approach is to study
ICN analytically with one-dimensional models as this approach is fast and responsive to the
problem. However, the strong hypotheses made on the flow and on the geometry tend to give a
global estimation of the noise and might suffer in terms of accuracy urging the development
of new 2D models.

Over the past 20 years, substantial progress has been made in order to reduce air-
craft noise. Improvements related to the airframe and jet exhausts have been partic-
ularly significant. The noise produced by the engine is experiencing a growing inter-
est, particularly the combustion noise, also named core noise. During the 70’s, Strahle
[Strahle 1971,Strahle 1973,Strahle 1978] has identified two main different sources of com-
bustion noise. The direct combustion noise (DCN) is related to the unsteady heat release
fluctuation in the combustion chamber. The indirect combustion noise (ICN) is related to
the acceleration in a nozzle or a turbine row of temperature or vorticity inhomogeneities
created by the flame, see Fig. 1.1. It was also shown during the last decades that combus-
tion instabilities are the major source of acoustic disturbances in a combustion chamber.
Since the aim of this PhD thesis is to study ICN in nozzle flows, the DCN and the ICN
generated through a turbine row are not described. The reader is invited to read the work
of [Cumpsty 1977,Kaji 1970a,Kaji 1970b,Muir 1977a,Muir 1977b,Pickett 1975] for details
regarding ICN in turbines stages.

In 1970, Giammar & Putnam [Giammar 1970] gave a summary regarding CN. Accord-
ing to their experiment, CN fills the lower part of the audible frequency spectrum (≤ 1500
Hz). In its appropriate frequency range, CN can overwhelm jet noise. Safran Aricraft En-
gines estimates for a turbojet engine that the typical contribution of CN at approach phase
is relatively important to the total engine noise, see Fig. 1.2. More especially in the scope
between 350 to 1000 Hz, its contribution can even be the major source of the engine total
noise. This point occurs mainly at landing or take-off phases while the engine is not at
its optimum operating point. As the frequency range of CN is low (large wavelength), it
is extremely difficult to silence this noise disturbance by using conventional absorbers. In
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Figure 1.1: Direct and indirect noise in a combustion chamber
extracted from Dowling & Mahmoudi [Dowling 2014].

this way, the challenge regarding CN is to develop new theoretical models, build test fa-
cilities and obtain a better understanding regarding the turbulence inside the combustion
chamber.

Figure 1.2: Summary of engine noise sources of a Rolls-Royce
Trent 1000 (left). Typical contribution of noise sources on a tur-
bojet engine at approach phase from Safran Aircraft Engines
(right).

Acoustic disturbances involve velocity, pressure, density and temperature fluctuations.
Chu & Kovásnay [Chu 1958] analyzed the interaction of acoustic, entropy and vorticity
waves in the 1D case by solving the full Navier-Stokes equations. Acoustic disturbances
are isentropic and irrotational, entropic disturbances are incompressible and irrotational
and vortical disturbances are incompressible and isentropic. The acoustic disturbances
propagate at the speed of sound with neither vortical nor entropy fluctuations while the
entropy and vorticity disturbances are only convected with the mean flow. ICN is related
to the acceleration in a nozzle or a turbine stage of entropy or vorticity inhomogeneities.
The density of the perturbation being different from that of the steady flow, its acceleration
caused by the mean pressure gradient differs from that of the unperturbed fluid. This leads
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to a local disequilibrium that is compensated by the generation of acoustic wavefronts that
correspond to ICN. Different methods for generating and modeling this noise are presented
in the following sections.

1.1 Analytical methods

Tsien [Tsien 1952] studies analytically the propagation of acoustic waves in a supercritical
rocket nozzle for the determination of nozzle-end acoustic impedance. The flow is supposed
to be isothermal (non isentropic), non-reacting, and inviscid for perfect gas. By assuming a
linear velocity distribution (Tsien’s assumption) inside the nozzle, he calculates the trans-
fer function of the nozzle with an unsteady one-dimensional flow. His results stand for
low frequencies and he gives also the asymptotic response to very high frequencies. He in-
troduces a characteristic non-dimensional frequency (Ω reduced frequency) as the angular
frequency ω divided by the velocity gradient along the nozzle that allows the correlation
between rocket nozzles of different sizes. To end, he underlines the fact that for high fre-
quencies (for very long nozzle), the wavelengths might be small in comparison with the
nozzle length and the one-dimensional flow assumption might introduce appreciable error.

One year after, Crocco [Crocco 1953], studying also the rocket instability problem, ex-
tends the model of Tsien to the non-isothermal case in the intermediate range of frequen-
cies for a supersonic nozzle. Rather than using the transfer function, linking the fractional
variation of mass flow to the fractional variation of pressure introduced by Tsien, Crocco in-
troduces the notion of impedance at the inlet and outlet boundaries. Again a linear velocity
distribution in the subsonic portion of the nozzle is assumed allowing some analytical sim-
plifications. Using the critical sound speed reached at the throat and applying again non-
dimensional variables (reduced angular frequency), he solves the continuity, momentum
and energy equations (the conservation of entropy). Looking for solutions in a harmonic
form, he expresses pressure and velocity perturbations as a combination of hypergeomet-
ric functions and uses a particular relation proposed by Snow [Snow 1952] to compute the
acoustic transfer functions of the rocket nozzle.

20 years later, Candel [Candel 1972] in his PhD thesis employs the model of Tsien to
study for the first time the passage of entropy spot regions of non-uniform temperature
through a choked nozzle. In 1973, Marble [Marble 1973] considers the problem of noise
production for low frequencies. He concludes that noise production by entropy fluctuations
can be important. He also states that in many technological situations the nozzle can be
considered as compact (the nozzle length is small compared to the interested wavelengths).
Marble obtains the compact solutions for both choked and subcritical nozzles. Marble &
Candel [Marble 1977] merge their stand-alone works to provide the reference article that
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will be used over the next 30 years on CN generated by the passage in a nozzle of an acoustic
or an entropy wave. The next section describes this reference article in details.

1.1.1 One-dimensional compact case of Marble & Candel

1.1.1.1 General equations

Basically, all acoustic analogies are derived from four governing equations:

• the continuity equation

• the momentum equation

• the energy equation

• the state equation

For the one-dimensional case, Marble & Candel [Marble 1977] make some hypotheses on
the flow, which is supposed to be:

• One-dimensional (axial flow)

• With no viscous effects (Euler equation)

• Composed of a thermodynamically perfect gas (constant γ)

• Giving rise to equations that can be linearized (small fluctuations)

• In a nozzle that can be considered compact compared to all wavelengths1

In the compact case, the nozzle can be seen as a discontinuity and matching conditions
can be written between the region upstream of the nozzle (noted with the subscript ’1’ in
Fig. 1.3) and the region downstream of the nozzle (noted ’2’) for the conservation variables
mass flow rate, total temperature and entropy (if no shock is present in the diverging part).

Figure 1.3: Compact nozzle with subscripts.
1The compact nozzle assumption states that the wavelengths of the acoustic and entropy perturbations are

large compared to the axial length of the nozzle. This is only valid for low-frequency perturbations and means
that acoustic and entropy waves propagate quasi-steadily through the nozzle.
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In the linear regime, the previous perturbed quantities write, as a function of the dimen-
sionless primitive variables:
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Using Eq. 1.6, it is possible to replace the expression of ρ
′

ρ
in Eqs. 1.4-1.5. The pressure

and velocity fluctuations satisfy the general acoustic wave equations and are written as
follows assuming harmonic solutions, where plus or minus stand respectively for a wave
propagating in the same direction as the flow and in the opposite direction:
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The amplitudes of the pressure and velocity fluctuations are linked: U+ = P + and U− = −P −,
so that one can rewrite:
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In the compact case, the location of the discontinuity occurs at x = 0 (see Fig. 1.3) and the
general acoustics wave equations as well as the entropy equation can be simplified and
easily evaluated as:

p′

γp
= P + exp (iωt) + P − exp (iωt) (1.10)

u′

c
= P + exp (iωt) − P − exp (iωt) (1.11)
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1.1.1.2 Subsonic Flow

In the subsonic case, three waves are entering the nozzle while three waves are exiting
the nozzle. These three unknowns are found using the jump relations (Eq. 1.1-1.3). As the
system is solved in the linear domain, the three possible forcings are considered separately
for a subsonic nozzle flow:

• Acoustic forcing from the inlet
In this case, only P +

1 = ε is imposed at the inlet. This means that there is no down-
stream propagating wave downstream of the nozzle P −

2 = 0 and no entropy forcing at
the inlet σ = 0. Combining Eqs. 1.10-1.12 with Eqs. 1.13-1.14 provides a linear system
of 2 equations with 2 unknowns, whose solutions are the generated acoustic waves.
They write
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• Acoustic forcing from the outlet
In this case, only P −

2 = ε is imposed at the outlet. Since neither acoustic wave nor
entropy forcing are imposed at the inlet P +

1 = σ = 0. The resolution process is similar
to that of the acoustic forcing at the inlet and the generated waves finally write
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• Entropy forcing
Here only the entropy forcing is imposed at the inlet σ ≠ 0 and no acoustic waves are
imposed at the boundaries: P +

1 = P −

2 = 0. The generated acoustic waves write in this
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case
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1.1.1.3 Supersonic Flow

Two cases have to be considered here, because the solutions are different whether there is
a shock in the diffuser or not.
For the compact supercritical nozzle with no shock, the wave P −

2 propagates in the
downstream direction and cannot be imposed (see Fig. 1.6). Two incoming waves have to
be imposed but four waves are generated, thus requiring 4 relations. As a consequence,
an additional equation is needed and is based on the choked flow condition imposed at
the throat (the Mach number fluctuation is zero at the throat). The fractional mass flow
variation can hence be deduced since it is directly proportional to the stagnation pressure
and inversely proportional to the square root of the stagnation temperature.
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Combining Eqs. 1.21 and 1.4, it finally comes the relation below that holds in the regions
upstream and downstream of the nozzle
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● Acoustic forcing from the inlet
Using P+

1 = ε, σ = 0 and combining Eqs. 1.10-1.12 with Eqs. 1.13-1.14 and Eq. 1.22
provides a linear system of 4 equations with 4 unknowns, whose solutions are the
generated acoustic waves. They write
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● Entropy forcing
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Considering now P +

1 = 0 and σ ≠ 0, the resolution of the system leads to:
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For the compact shocked supercritical nozzle, Marble & Candel focus on a case where
the shock is oscillating downstream of the outlet with the velocity u′s (see Fig. 1.4 where
the subscript 3 stands for the state after the shock). This is not a common situation as
the shock is generally located inside the diffuser. This more general case is investigated by
Moase et al. [Moase 2007]. The geometry of the nozzle is shown in Fig. 1.5.

Figure 1.4: Compact supersonic nozzle with normal shock down-
stream.

Moase et al. consider the cases of choked nozzles and supersonic diffusers, however only
the choked nozzle is described in this document as the flow coming out of the combus-
tion chamber is not supersonic in our configurations of interest, as opposed for instance
to scramjets. In the compact case, Eqs. 1.1-1.2 still hold. Only the entropy conservation
Eq. 1.3 is not valid and must be replaced by the fluctuation of the Mach number upstream
of the nozzle, imposed to be zero under the low-frequency assumption because the nozzle is
choked, this states

(
M ′

M
)

1

= 0 (1.29)

where (.) corresponds to the steady flow quantities. This gives three equations for three
unknown outgoing waves (P −

1 , P +

2 and σ2). To obtain the transmission and the reflection
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Figure 1.5: Compact supersonic nozzle with normal shock inside
the diffuser extracted from Moase et al. [Moase 2007].

coefficients, once again only one incoming wave (P +

1 , P −

2 and σ1) is resolved at a time. This
gives the expression of the coefficients regarding the type of forcing (see Table 1.1) in the
formalism of Marble & Candel (Moase et al. used a different expression for the acoustic
invariants).
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Table 1.1: Reflection and transmission coefficients for a compact
choked nozzle with a shock in the diffuser.

So far, the compact nozzle is treated assuming a linear regime. However, under some
circumstances this hypothesis might not be verified because acoustic or most likely entropy
perturbations become very large in the combustion chamber, for instance in the presence
of combustion instabilities (see for example Huet & Giauque [Huet 2013]). In these cases,
the nonlinear effects have to be considered and their possible modeling is described in the
next section.
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1.1.1.4 Nonlinear approaches

Recently, Huet & Giauque [Huet 2013] extend the compact nozzle model of [Marble 1977]
to the nonlinear domain in order to study the generation of sound through a subcritical or
choked (with no shock) nozzle. The aim is to study the generation of sound by the passage of
acoustic or entropy disturbances through a nozzle at low frequency where the wavelength of
the fluctuations are comparable to the turbulent integral scale in the engine. They develop
a second-order model but also a fully nonlinear model. It is found that the second-order
model is really accurate for both waves on a supercritical nozzle and also accurate for a
subcritical converging nozzles even for high forcing amplitude σ up to 0.5. For those config-
urations, the nonlinearities lead basically to the generation of additional noise at the first
harmonic of the forcing frequency.

In the case of a subsonic diverging nozzle with an entropy forcing, the results of the
second-order model are accurately compared to the fully nonlinear model for the acoustic
wave moving downstream towards the divergent exit (P +). Discrepancies arise when look-
ing at the acoustic wave moving upstream of the diverging nozzle. For this configuration,
the authors show that high-order nonlinearities occur (order 3 or above) in the flow and
might be responsible for important modifications of the generated acoustic wave P − espe-
cially if both inlet and outlet Mach number are highly subsonic. Consequently, the forcing
amplitude σ needs to be reduced to 0.1 and even below for the nonlinearities to have a small
impact on the solution. Yet in real engine where the inlet Mach number is small and the
outlet one is large, the second-order model remains very accurate.

1.1.2 Non-compact case

As stated by Marble [Marble 1973], for many technological devices the compact assumption
is a good approximation. However, in some particular cases, the wavelengths considered
are of the same dimension or smaller than the nozzle. Therefore, intense efforts have been
made over the last decade to provide solutions at arbitrary frequencies and especially at
low frequencies. Marble & Candel [Marble 1977] in the last part of the article study the
reflection and the transmission coefficients of a supercritical nozzle of finite length with a
linear velocity profile. However, this hypothesis is too restrictive to deal with general nozzle
shapes where the velocity profile can be of any kind. Moreover, for practical configurations
a shock might be present in the diffuser for supercritical nozzles. The additional works
performed during the last decade provide solutions for such flows and are detailed in the
following. Three different types of flow are analyzed: a supersonic flow without shock, a
supersonic flow with a normal shock in the diffuser.
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1.1.2.1 Supersonic Flow

For a supersonic flow, theoretical works have been carried on nozzles and thin annular
ducts giving the structure of this subsection.

● Nozzle
Under the 1D flow assumption, Marble & Candel write the conservation equation of

mass, momentum and entropy as follows:
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Assuming that the perturbations are small compared to the undisturbed steady flow
(z′/z ≪ 1), and expressing the terms as a sum of a fluctuating part and a mean part:
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one can linearize Equations 1.30, 1.31 and 1.32 to obtain:
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They define the nozzle length as lwith 0 ⩽ x ⩽ l and use the subscript 1 and 2 for respectively
the inlet (x < 0) and the outlet flow (x > l) (see Fig. 1.6).

Figure 1.6: Compact supersonic nozzle with subscripts.

For the supercritical nozzle of finite length in which the undisturbed gas velocity in-
creases linearly (Tsien’s assumption) through the nozzle and in which no shock is present,
Marble &Candel provide the response to entropy disturbances. Eqs. 1.33 and 1.34 aremod-
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ified using dimensionless variables:

●
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The terms with the subscript ()∗ denote the values at the throat. Assuming harmonic
solutions for the velocity, the pressure and the entropy disturbances are defined as:

u′

u
= Û(ξ)eiΩt (1.36)
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= P̂ (ξ)eiΩt (1.37)
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Eqs. 1.33 and 1.34 can be recast as follows:
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Combining the two previous equations to remove the velocity terms, it comes a hypergeo-
metric equation (Eq. 1.41) for the pressure perturbation P̂ (ξ):
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Once that P̂ (ξ) is obtained, the velocity perturbation Û(ξ) can be deduced from another
combination of Eqs. 1.39-1.40:

(2 + iΩ)Û = −(γ + 1)(1 − ξ)
∂P̂

∂ξ
+ (γ − 1 + iΩ)P̂ + σ̂ (

ξ

ξ1
)

−
iΩ
2 (1.42)

The solving process of this hypergeometric equation is the same as done by Tsien
[Tsien 1952] and Crocco [Crocco 1953]. The expression of the reflected and transmitted
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wave strengths are expressed as:
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2
[P̂ (ξ1) −M1Û(ξ1)] (1.43)
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2
[P̂ (ξ2) +M2Û(ξ2)] (1.44)

P −

2 =
1

2
[P̂ (ξ2) −M2Û(ξ2)] (1.45)

Stow et al. [Stow 2002] study the reflected acoustic waves in a choked annular duct (de-
scribed later). Goh & Morgans [Goh 2011] complete the work of Stow et al. [Stow 2002] to
compute the phase and the magnitude of the transmitted acoustic waves inside nozzles by
removing the circumferential modes. Their expression of the effective length is dependent
on the input perturbation type (acoustic or entropic) and improves the compact prediction
with a phase correction accurate to first order in frequency.

For the supercritical nozzle with no shock, the analytical prediction for the magnitude
of the transmitted noise does not vary with non-dimensional angular frequency Ω. For an
acoustic disturbance at the inlet, analytical and numerical results (quasi-one-dimensional)
are in good agreement both for the amplitude and the phase for P +

2 . However for P −

2 , the
results are satisfactory for the phase but not really accurate for the amplitude. The mag-
nitude discrepancies are higher between the analytical solution and the numerical com-
putation for the case of the injection of entropy disturbance while the phase is in good
agreement. This is due to the fact that entropy waves are convected with the mean flow
and then their wavelengths are shorter than those of the acoustic waves. As a consequence,
the small frequency hypothesis is more rapidly invalid than for the acoustic case.

For the supercritical nozzle with a shock inside or outside the diverging part, Goh &
Morgans consider that fluctuations (pressure and velocity) upstream of the moving shock
are not negligible (this approach was first used by Moase et al. [Moase 2007]). Using the
linearized Rankine-Hugoniot methodology, they avoid the difficult numerical evaluation of
the hypergeometric functions, the matching conditions necessary to solve them and remove
the hypothesis of piecewise linear velocity profile proposed by Moase et al. However, they
have to assume that the axial position of the abrupt change in the area of the equivalent
diffuser occurs at the average of the Mach number after the shock and the Mach number
downstream of the nozzle. This time the acoustic and entropy responses after a shock vary
with frequency. It gives a good prediction both in magnitude and phase, but this approach
is limited to nozzle with a shock and low frequencies only.

Moase et al. [Moase 2007] extend the non-compact analysis of Marble & Candel to a
choked nozzle with a shock wave using a different method than Goh & Morgans. They
use a piecewise linear velocity profile assumption. Pressure and velocity perturbations are
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described in each element by the solution of the hypergeometric equation given by Mar-
ble & Candel [Marble 1977] and the fluctuations are linked between successive elements
by continuity relations. Jump relations through the shock are derived from the dynamic
shock relations of Rankine & Hugoniot. This leads to a linear system that is solved to re-
construct the acoustic waves generated inside the nozzle. It is a model that predicts the
one-dimensional frequency response of choked nozzles and supersonic diffusers containing
shocks under both incident pressure and entropy waves. This model works for any nozzle
geometry as long as the steady velocity distribution can be approximated as piecewise lin-
ear. Also the nonlinear response, plus conditions for unchoking, unstart and over-choking
of compact choked nozzles and compact supersonic diffusers are provided in their paper
thanks to computations using a quasi-1D numerical solver.

Moase et al. give the transmission response of disturbances with no restriction on the
frequency. They conclude that a large part of the nonlinearity in amplitude or as a function
of the frequency appears when the nozzle acts as an inlet (excitation coming from down-
stream) rather than when the nozzle acts as an outlet (excitation coming from upstream).
The nonlinearity increases as the upstream and downstreamMach numbers are increased.

Another approach is adopted by Duran & Moreau [Duran 2013a] using the flow invari-
ant and the Magnus expansion [Magnus 1954]. They extend the compact nozzle solution of
Marble & Candel [Marble 1977] for both subsonic and choked flows with or without shock
waves. Their method differs from the method adopted by Stow et al. [Stow 2002] and Goh
& Morgans [Goh 2011]. The quasi-one dimensional linearized Euler equations are written
as a function of dimensionless mass, total temperature and entropy fluctuations (Eqs. 1.4-
1.6). A first-order linear system of differential equations is obtained and solved using the
Magnus expansion [Magnus 1954]. For each type of flow, different boundary conditions are
applied and for the choked case with a shock located in the diverging part, the nozzle has to
be divided into two regions, the shock representing the interface of the two zones (for this
case the linearized Rankine-Hugoniot shock relations used also by Stow et al. and Goh &
Morgans are applied). Good results between the invariant method and the hypergeomet-
ric equations (choked nozzle without shock) are found. Regarding a subsonic nozzle, the
results obtained with this method are described in the next subsection.

● Annular duct
An asymptotic approach is done by Stow et al. [Stow 2002] to study the reflected acous-

tic waves in a choked annular duct with a contraction with the presence of a shock inside
the diverging part of the duct. The configurations considered correspond either to a forcing
from acoustic, vorticity or entropy disturbances traveling downstream towards the nozzle
contraction (choked outlet configuration, see Fig. 1.7) or to an acoustic wave propagating
upstream and reflected at the shock location (choked inlet, see Fig. 1.8).
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Figure 1.7: Schematic of the choked outlet nozzle studied by Stow
et al. [Stow 2002].

Their objectives are to find boundary conditions that apply to flow perturbations at the
choked inlet/outlet for a thin annular geometry. A linear disturbance in a straight annular
duct can be decomposed as a sum of acoustic, entropy and vorticity waves. While acoustic
waves travel at the speed of sound, entropy and vorticity disturbances convect with the
mean flow. The set of equations is formulated as boundary conditions that can be applied
at the inlet/outlet.

For the choked outlet nozzle case, an asymptotic analysis for low frequency is carried
out. They use non-dimensional angular frequency Ω (disturbances have complex angular
frequency ω), dimensionless speed using the value at the throat, adiabatic nozzle (entropy is
simply convected) and assume that there is no viscosity and heat conduction. An asymptotic
expansion of the linearized Euler equations for small Ω is used. TheMach number is purely
a function of the cross-sectional area (provided the nozzle stays choked). To first order,
the boundary condition for linear perturbations is found to agree well with the Marble
& Candel form for one-dimensional waves. Extending the boundary conditions to second
order in compactness ratio (the product of wavenumber and nozzle length), the solution is
found to depend on the mean flow. This correction might be expressed as an effective length
and is simply the mean velocity at the inlet multiplied by the convection time to the throat.
The results are expressed in the form of a reflection coefficient and an effective length for
the nozzle in terms of the mean flow.

For the choked inlet nozzle case, the objectives are to calculate the downstream trav-
eling acoustic, entropy and vorticity wave produced by an incident upstream propagating
acoustic wave. They find that a weak shock assumption followed by a smooth area increase
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Figure 1.8: Schematic of the choked inlet nozzle studied by Stow
et al. [Stow 2002].

commonly used is incorrect and they propose a new boundary condition by considering the
interaction between the shock position and the perturbed flow. They apply the linearized
Rankine-Hugoniot shock relations previously used by Culick & Rogers [Culick 1983] and
Kuo & Dowling [Kuo 1996]. The linearized interaction between the flow perturbations and
the moving shock inside the diverging part of the nozzle is neglected. The fluctuations
upstream of the shock are also neglected.

The results for the amplitude for the choked outlet or inlet are accurate for an arbitrary
low forcing frequency. Good agreement with numerical computations is found up to a non-
dimensional frequency (Ω/2π) of 0.3 for acoustic waves and 0.15 for convected waves (both
entropy and vorticity), above those limits analytical and numerical results differ. For the
phase of the reflection coefficient, the results for arbitrary non-dimensional frequency are
improved compared to the compact solutions of Marble & Candel. The relevant conclusion
of their study is that the boundary condition of Marble & Candel is applicable even for
circumferential waves.

The analytical model developed by Duran & Moreau [Duran 2013a] presented before
is extended by Duran & Morgans [Duran 2015] for annular duct. This analytical model
allows to consider circumferential waves for both subsonic and choked flows2. It can ac-
curately predict the transfer functions for acoustic, entropy and vorticity waves for any
circumferential mode with comparison to numerical simulations. However, the entropy

2One should also note the contribution of Dowling & Mahmoudi [Dowling 2014] for circumferential modes
in annular duct in the compact case and for very low mach numbers where algebraic exact solutions are
developed for acoustic, entropy and vorticity waves. The very low Mach number approximation is verified
numerically using the linearized Euler equations.
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waves distortion is not taken into account in the model.

1.1.2.2 Subsonic Flow

Bohn [Bohn 1976, Bohn 1977] study the one-dimensional response of a subsonic nozzle
flow to small pressure and entropy disturbance. The aim is to extend the work of Marble &
Candel to flow fields which are entirely subsonic. The response is decomposed in terms of
transmitted and reflected acoustic waves for a subcritical nozzle flow. Solutions for high-
frequency disturbances are nondimensionalized with respect to the compact solution. This
normalization allows to conclude that the ATFs created by two independent acoustic dis-
turbances (a downstream-propagating acoustic wave impinging upon the nozzle inlet and
an upstream-propagating wave impinging upon the nozzle exit) can be expressed as a sin-
gle function of frequency. However, for an entropy wave convected though the nozzle, the
TATFs depend also of the Mach numbers at the inlet and the outlet. For the very high fre-
quencies, an asymptotic solution is found by assuming a mean linear velocity profile. He
uses the model of Tsien [Tsien 1952] to solve the hypergeometric equation Eq. 1.41. He as-
sumes that the inhomogeneous solution of Eq. 1.41 has a particular formwith an expansion
in the inverse power of iΩ. For the homogeneous solution, he also assumes a specific ex-
pansion of the form of the solution. He then obtains a solution for the pressure fluctuation
as a sum of two independent solutions where the two coefficients preceding each expanded
term are imposed by the boundary conditions. His analytical model for all the frequencies
is only validated with numerical solutions obtained by using a fourth-order Runge-Kutta
method with automatic error control for the integration process (Eqs. 2.6-2.8 of his PhD
thesis) as it is the first analytical model for non compact subsonic flows.

Bloy [Bloy 1979] uses themethod of characteristics in an unsteady one-dimensional flow
to calculate the pressure disturbances generated by the convection of a temperature fluc-
tuations (low frequency and large amplitude) through a high subsonic nozzle. His simple
flow model gives a good agreement with the prediction of the mean pressure disturbances
with numerical solutions. He shows that the pressure disturbances generated are propor-
tional to the fractional density change (due to the temperature disturbance time) times l/λ,
where l and λ are respectively the lengths of the temperature disturbance and the pressure
wave. He also studies the effect of the contraction shape (conical, bellmouth or smooth) on
the pressure fluctuations, and concludes that the bellmouth shape is the one generating
smallest peak disturbances.

Recently, Giauque et al. [Giauque 2012] revisit the model of Moase and apply it to sub-
critical nozzles with complex geometries. The nonhomogeneous hypergeometric equation
Eq. 1.41 is solved in a different way than Marble & Candel by considering a different form
for the two homogeneous solutions. The particular solution of Eq. 1.41 is found to be a linear
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combination of the two homogeneous solutions multiplied by two coefficients. The coeffi-
cients for this combination are obtained using the known acoustic impedance coefficients
upstream and downstream. The piecewise linear velocity approach consists in dividing the
nozzle into an arbitrary number of elements n, where in each element the velocity profile
is supposed to be linear. The homogeneous solutions and the particular solution are evalu-
ated for each element. Each element is linked to its neighbors with the condition that the
dimensionless pressure and velocity are continuous. The system is solved in a matrix form.
Good agreement is found between this analytical model and the results from a quasi-one-
dimensional numerical solver SUNDAY and a 3D Navier-Stokes flow solver CEDRE (both
developed at ONERA) for different nozzle cases. SUNDAY and CEDRE are described in
details in Chapter 2. The authors show that acceleration discontinuities at the boundaries
between adjacent elements do not influence the actual acoustic transfer functions. The is-
sue of nozzle compactness is also addressed. In the subcritical domain, spectral results are
nondimensionalized using the flow-through-time of the entire nozzle. Transfer functions
of nozzles of different lengths are successfully compared and a compactness criterion can
be expressed as ω ∗ ∫ L0

dζ
u(ζ) < 1 with L the axial length of the nozzle.

As mentioned in the previous subsection, the method developed by Duran & Moreau
[Duran 2013a] is also valid for subsonic flows. In the section 6.1 of their article, they com-
pare their model with the piecewise linear velocity profile approach proposed by Giauque
et al. [Giauque 2012] and show that the results were in perfect agreement.

All the one-dimensional method developed over the last decades might be seen as a good
way to study CN, however because of their 1D nature, thesemodels cannot take into account
a critical feature of the flow in a confined environment, namely the presence of boundary
layers at the walls. In addition, the effect of viscosity on the flow is not taken into account in
those models. Viscous effects are expected to damp entropy fluctuations that travel at the
mean convective velocity in the nozzle. This last point is important because this expectation
is responsible for the fact that a significant part of the research community is still convinced
that ICN can be neglected in realistic engines as entropy waves do not get to interact with
the nozzle before as they are dissipated.

1.1.3 Two-dimensional approaches

In the literature, one can find two semi-analytical attempts to take into account some of
the additional effects introduced by considering 2D or 3D flows in nozzles. Crocco & Sirig-
nano [Crocco 1967] focus on the behavior of a supercritical nozzle submitted to a 3D oscillat-
ing inlet boundary condition. This boundary condition is expressed by a relation between
the various perturbations (velocities, pressure, entropy) and results in the "admittance
condition". Assuming a small amplitude of the perturbations, the continuity, momentum
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and entropy equations are linearized. The increase in complexity induced by additional de-
grees of freedom related to the transverse perturbations is overcome by assuming that the
unperturbed flow in the nozzle is one-dimensional or irrotational, isoenergetic and isen-
tropic. Hence, the system of partial differential equations becomes a system of ordinary
differential equations. Indeed, on the one hand, the variables describing the transverse
dependencies of the flow properties are governed by Bessel’s differential equations. On
the other hand, the axial dependencies are governed by differential equations that must be
solved numerically. The nozzle admittance coefficients are related to the axial dependencies
of the flow properties. In this study, a reduction of the order of the differential equations
for a easier calculation of the admittance coefficients is undertaken. These coefficients at
the nozzle entrance are obtained for a conical nozzle (see Fig. 1.9), called "reference noz-
zle". From this "reference case", the application of the method to a whole family of nozzles
obtained by linear deformation of the axial scale is possible.

It can be seen that the assumption made on the unperturbed flow to be one-dimensional
is a strong assumption. This means that the steady-state velocity field and density are
uniform on each surface (x=constant) which is not true in real engines due to the presence
of boundary layers. In addition, the tables provided by the authors cannot be immediately
applied to arbitrary nozzle shape as it needs to have a conical nozzle shape (see Fig. 1.9).

Figure 1.9: Nozzle geometry and comparison of entrance portions
of approximate and actual nozzle contours from Crocco & Sirig-
nano [Crocco 1967].

Bohn during his PhD thesis [Bohn 1976] focuses on an analytical evaluation of the
transmission and reflection coefficients to calculate the full two-dimensional solution with
a variation of the flow variables across the duct. The area of the duct is considered to be
small. Bohn focuses exclusively on the second-order solutions that result from the interac-
tion of two-dimensional entropywave and the small area variation. The equations ofmotion
written in a two-dimensional form are expanded to the second order, where the zero-order
solution corresponds to the constant-area channel flow and the first-order solution has two
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parts: (1) a steady part that corresponds to the disturbance to the steady channel flow im-
posed by the area contraction and (2) a non-steady portion of the first-order solution that
corresponds to the periodic disturbances due to the entropy wave. The final solution is a
sum of the two solutions and is expressed in terms of complex amplitudes of propagating
duct modes (waves propagating far upstream and far downstream of the contraction). It
is shown that for low-frequency entropy disturbances, the duct responds with only planar
waves propagating far away. The duct response for higher-frequencies drops rapidly. Fi-
nally, it is stated that for a symmetric entropy wave no asymmetric acoustic modes are
present. In the contrary, if the entropy fluctuation is asymmetric, no symmetrical modes
can exit the nozzle. Even if this approach is interesting, it cannot be applied directly to
arbitrary nozzles shapes. The main hypothesis used in this method is related to the notion
of "small deflection", i.e that the area variation is small. In addition, the deflection (or area
variation) expressed as a function of the axial coordinate needs to have continuous first,
second, and third derivatives for a rapid convergence.

1.2 Experimental method

1.2.1 Previous test rig

Bohn [Bohn 1976] in his PhD thesis studies experimentally the response of subsonic nozzles
to impinging one-dimensional pressure and entropy waves. The flow composed of nitrogen
is perturbed with an electrical heating system. The heater generates a periodic fluctuation
in total temperature. It is composed of three identical independent heaters illustrated in
Fig. 1.10 and generates an entropy and a pressure waves that propagate into the nozzle.
In the chapter 5 of his thesis, as in a turbojet engine entropy disturbances do not appear
as one-dimensional necessarily, he studies the response of nozzles to two-dimensional en-
tropy fluctuations both in a subsonic and a supersonic regime. In these cases, only the
top and the bottom heaters are activated with a phase shift of 180○. This leads to a vary-
ing heat addition across the duct cross section. In this experiment, he supposes that the
pressure disturbances created by the pulse to be small which is true as the amplitude of
the temperature fluctuation was around 1 K only. In addition, at that time he encounters
technical difficulties to store enough data samples and to post-process the acquired data in
the time domain. His main conclusion regarding the two-dimensional effect of entropy spot
is that for a sufficiently low frequency disturbance, the two-dimensionality of the entropy
spot might be neglected and the resultant pressure field will scale with the cross-sectional
area occupied by the spot.

During the same period of time, Muthukrishnan [Muthukrishnan 1977] studies exper-
imentally the separation of direct noise sources and entropy noise on a Boeing 502-7D gas
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Figure 1.10: Schematic view of the pulse heater used by Bohn
[Bohn 1976].

turbine unit by varying the airflow rates and for a wide range of Mach numbers (from 0.05
to 1). The rms temperature fluctuations at the burner exit plane varies from 9 to 14 % of the
mean exit temperature. Muthukrishnan concludes that at low exit Mach numbers DCN is
the dominant contributor to the exterior radiated noise, whereas at high exit Mach num-
bers, entropy noise overtakes and dominates DCN. He finishes by concluding that a third
type of propagational noise source apart from DCN or entropy noise can be responsible for
the partial coherence results observed and links it for the first time to the vorticity-nozzle
interaction noise.

1.2.2 The EWG of Entropy Wave Generator

The renew in interest regarding test benches dedicated specifically to the study of entropy
noise has occurred during the last 10 years. Indeed, substantial efforts were made to reveal
the role of entropy waves and entropy noise in the onset of thermoacoustic instabilities.
At that period of time, the Deutsches Zentrum für Luft- und Raumfahrt (DLR) built the
EWG (Entropy Wave Generator), a test bench dedicated especially to study the indirect
combustion noise due to entropy waves3. Bake et al. [Bake 2007,Bake 2008,Bake 2009a,
Bake 2009b, Bake 2009c] study in particular two cases, a supersonic case with a normal
shock in the divergent part of the nozzle denoted as "case 1" and a subsonic denoted as
"case 2".

The EWG, shown in Fig. 1.11 and 1.12, is a nonreactive test rig. The flow supplied in
this experimental test rig is provided by a compressed air system. This flow is calmed in a

3a VWG ( Vorticity Wave Generator) has also been built at DLR a few years later, but as this PhD thesis is
mainly focussed on studying the ICN generated by entropy waves, the details regarding the ICN generated by
vortices will not be further described.
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Figure 1.11: Photo (left) and sketch (right) of the Entropy Wave
Generator from Bake et al. [Bake 2009c].

settling chamber with a honeycomb flow straightener before it enters the tube section via
a bellmouth intake to keep thin boundary layers and a uniform flow. The heating system
is composed of six ring sections; each ring is composed of ten platinum wires and is used to
generate non-isentropic perturbations in a spatially varying flow field. The specifications
and the cases studied in details by Bake et al. are shown in the Tables 1.2 and 1.3. They
consider flow conditions from the low subsonic to the choked transonic regimes. In addition,
the outlet termination of the experimental set up is not perfectly anechoic and the outlet
impedance has been measured. Unfortunately regarding the inlet impedance, it has never
been measured and might be lacking for the numerical computations (see Section 1.3).

Figure 1.12: Schematic view of the EWG test rig.

The entropy disturbance in their experiments is chosen to be small enough to ensure the
hypothesis of linear perturbations. As a consequence, the amplitude of the generated ICN is
assumed to increase linearly with the amplitude of the temperature forcing. The amplitude
of the generated sound pressure pulse as a function of the temperature for two different
Mach numbers is represented in Fig. 1.13 (left) and agrees with the hypothesis of linear
perturbations. In Fig. 1.13 (right), the amplitude of the generated sound pressure pulse
as a function of the nozzle Mach number for two different amplitudes of the temperature
fluctuations (7.5 K or 9 K) is plotted. A strong increase of the generated entropy noise is
seen up to Ma = 0.7 after that a decrease occurs. This behavior was not understood by the
authors at first [Bake 2008] and several numerical simulations of the EWG (see Section 1.3)
were performed by the combustion community to understand this phenomenon. With the
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Parameter Case 1 Case 2
Mass flow rate (kg.h−1) 42 37
Mean flow velocity upstream of the nozzle (m.s−1) 12.18 11.39
Nozzle Mach number 1.0 0.7
Inlet Mach number 0.037 0.033
Outlet Mach number 0.023 0.01861
Shock Mach number 1.340 -
Plenum temperature (K) 298 296
Plenum pressure (Pa) 111700 105640
Outlet pressure (Pa) 100800 101300
Pulse duration (s) 0.100 0.100
Heating power added electrically (W) 143.7 192.7
Temperature increase ∆T (K) 9.1 at 13.4 at

x=34mm x=47.5mm

Heating power measured based on ∆T (W) 106.8 138.2
Heating wired rings used (positioned from 1 to 6, 3 to 6 1 to 6
where 6 is the closest ring to the nozzle and x6 = 0 ) simultaneously with delay

Table 1.2: Physical parameters used in the EWG [Bake 2009c].

Convergent Divergent Inlet Outlet Throat
length length diameter diameter diameter
13mm 250mm 30mm 40mm 7.5mm

Table 1.3: Geometrical parameters used in the EWG
[Bake 2009c].
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help of a numerical simulation provided by Mühlbauer et al. [Mühlbauer 2009], according
to the authors the decrease of the generated noise with increasing Mach number is due
to the impedance at the outlet nozzle [Bake 2009c]. Indeed, the effect of the impedance
coefficients (both at the inlet and the outlet) is really important to compute numerically the
correct response of the nozzle.

Bake et al. [Bake 2007] also compare themeasurements provided by a generic combustor
rig and the EWG. The main difference between the two test benches is the capability of
EWG to measure only ICN, whereas the generic combustion chamber cannot separate the
contributions of both direct and indirect noise. Entropy spots convected through the nozzle
generate large quantities of noise in the EWG as well as in the generic combustion chamber
test rig. Inside the combustion test rig, the Mach number reached onlyMa = 0.5 but in most
of the cases the combustor outlet in a real engine is choked, thus ICN is then expected to
be higher.

Figure 1.13: Amplitude of the generated sound pressure pulse as
a function: of the amplitude of the temperature fluctuation for
two different nozzle Mach numbers (left) and of the Mach num-
ber at the nozzle for two different amplitudes of the temperature
fluctuation (right) from Bake et al. [Bake 2009c].

The reappraisal of earlier theoretical works described in the Section 1.1 on ICN ismainly
due to the experiments of Bake et al. [Bake 2007, Bake 2008, Bake 2009a, Bake 2009b,
Bake 2009c]. It has also generatedmany numerical studies to compare and also understand
the results and conclusions made by Bake et al. The works aroused several questions on
the EWG experiment leading to the recent development of a new test ring facility: the
Hot-Acoustic Test ring (HAT).
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1.2.3 The Hot-Acoustic Test ring (HAT)

Recently, theHot-Acoustic Test ring (HAT) has been build at DLR in the RECORDproject to
investigate the sound propagation through a nozzle and the sound generation when cold air
spots (at ambient temperature 288 K) are injected into a hot mean flow (temperature range
of 288 to 823 K). Experimental results are detailed in Knobloch et al. [Knobloch 2015a,
Knobloch 2015b]. A view of the experimental set up is visible in Fig. 1.14.

Figure 1.14: Photo of the Hot-Acoutic Test rig from Knobloch et
al. [Knobloch 2015a].

It is composed of two symmetric measurement sections with the nozzle module between
(see Fig. 1.16) and with partially anechoic terminations at both extremities of the set up.
The measurement sections have an inner diameter of 70 mm and the total length of the
configuration is 5.4 m. A schematic view of the HAT is represented in Fig. 1.15.

Figure 1.15: Sketch of the HAT with the position of instrumenta-
tion from Knobloch et al. [Knobloch 2015a]; where Pthr: pressure
at the nozzle throat, PS 1/2: static pressure, TT: total tempera-
ture and TC: fast thermocouple probes.

The acoustic test signal is generated by loudspeakers denoted A and B in Fig. 1.15.
Microphones are installed at ten non-equidistant axial positions. Temperature sensors
in the section 1 and 2 perform the temperature measurements. The sensors are either
resistive temperature detectors or shielded thermocouples with a precision of ±1 K and an
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immersion depth between 15 and 25 mm.
The nozzle module (see Fig. 1.16) is composed of three parts. Part 1 is a module with

a bias flow liner (see Fig. 1.17) or, alternatively, a liner replacement module. Part 2 is
simply a constant diameter additional part. Finally, part 3 is the converging-diverging
nozzle derived from the geometry of a full-scale nozzle guide vane (NGV) of a high-pressure
turbine stage. The nozzle Mach number is varied from subsonic to sonic conditions.

Figure 1.16: Sketch of the liner replacement section of constant
diameter followed by the nozzle (converging-diverging) with a
throat diameter of 30 mm and a 400 mm length from Knobloch
et al. [Knobloch 2015a].

Figure 1.17: Sketch of the perforated liner used for entropy noise
reduction from Knobloch et al. [Knobloch 2015a].

The injection of cold air is supplied by a 2 m3 pressure reservoir at a temperature of
288 K and a pressure of 1.6 MPa and using fast switching valves. The injection is made at
position 1, 2 or 3 by replacing the corresponding microphone (1, 2 or 3) radially through 6
flanges. Fig. 1.18 is a sketch of the air injection system as well as a photograph of different
types of injectors.

Knobloch et al. in [Knobloch 2015b] perform two interesting experiments. First, the
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Figure 1.18: Sketch of the air injection (top) and variable injec-
tors: (a) short mounted (l2 = 50 mm), (b) flushmounted (l2 = 0 mm)
and (c) axial blowing (l2 = 20 mm immersed in themean flow) from
Knobloch et al. [Knobloch 2015b].

Acoustic Transfer Functions (ATFs) are calculated by acoustic excitation using separately
speaker A (upstream) and speaker B (downstream) with different nozzle Mach number
(subsonic to sonic condition). This allows to obtain the reflection and transmission prop-
erties of the nozzle module (without the bias flow liner part) as a function of nozzle Mach
number with a mean flow at ambient temperature (see Fig. 1.19). In the subsonic case
(Mach number at 0.7), they show that using nondimensionalized frequency unit, the reflec-
tion and transmission coefficients are not influenced by the mean temperature of the flow,
see Fig. 1.20. Second, cold air spots (ambient temperature) are injected into a hot mean
flow going from 300 to 500 ○C at sonic condition. The temperature and the position of in-
jection of the cold spots as well as the way the cold air is injected (radial/axial blowing) are
studied and the noise generation due to accelerated temperature fluctuations is assessed.
The Thermo-Acoustic Transfer Functions (TATFs) are measured using pressure temporal
signals upstream and downstream of the nozzle. The main conclusion of the study is that
the amplitude of the noise peak depends linearly on the temperature difference between
the mean flow and the injected cold air (temperature gradient). They also find that for a
throat Mach number smaller than unity, no large entropy noise is observed which is in
contradiction with the findings in EWG experiments explained in the previous subsection.
According to the authors, in the subsonic case the amplitudes of the measured pressure
signals are small and the generated ICN might be hidden in the background noise of the
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configuration.

Figure 1.19: Transmission (T+ and T−) and reflection (R+ andR−)
coefficients as a function of Mach number at ambient condition.

Two additional relevant findings are made by Knobloch et al. in [Knobloch 2015a].
Fig. 1.21 shows that a higher injected mass flow rate but with the same created tempera-
ture difference (temperature gradient) can increase the generated entropy noise up to 30%.
This encourages the idea of a different shape of the cold spots in terms of spatial gradient
and three-dimensional structure for the 2 considered mass flow rates. Secondly, a first
attempt for entropy noise reduction by bias-flow liners is examined. The part 1 of the noz-
zle module is this time replaced by a perforated liner (see Fig. 1.17). The use of bias flow
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Figure 1.20: Reflection coefficientR+ as a function of temperature
for a mean flow at Mach number equals to 0.7. (left) SI units and
(right) nondimensionalized frequency.

liners shows an entropy noise reduction by about 11% using low bias flow rates. A higher
bias flow rate (3% pressure drop) does not remarkably improve the entropy noise reduction.
This study indicates that the reduction of the generated entropy noise is caused by a rather
three-dimensional change of the cold spot due to the bias flow. This noise reduction us-
ing bias flow is interesting but also needs to be in accordance with the engine performance
associated with the injection of additional cooling air originally used in the secondary flow.

Figure 1.21: Maximum generated entropy noise amplitude
recorded at microphone 7 as a function of temperature for two
different mass flow rates at sonic condition from Knobloch et
al. [Knobloch 2015a].
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1.3 Numerical approaches

Following the EWG experiment, Bake et al. [Bake 2007,Bake 2008,Bake 2009a,Bake 2009b,
Bake 2009c] study particularly two cases, a supersonic case with a normal shock in the
divergent part of the nozzle denoted as "case 1" and a subsonic denoted as "case 2". The ex-
periments generate interest in the community and multiple numerical applications arise
trying to explain the experimental results. Before describing the numerical simulations
performed by the community on these two cases, it is interesting to first have a look at the
work done by Leyko et al. [Leyko 2009]. The contribution of indirect combustion noise is as-
sessed using the one-dimensional theory of Marble & Candel [Marble 1977] combined with
numerical computations. The wave propagation in this model is either determined by using
the fully analytical compact method of Marble & Candel [Marble 1977] or a non-compact
numerical method. Their research focuses mainly on the effect of the operating conditions
on the sound production of combustion chambers situated in laboratories or enclosed in
real aero-engines. The conclusion is that a low ratio of indirect to direct combustion noise
is found in most laboratory combustion chambers since here the small pressure gradients
yields to low acceleration speeds at the combustor exit. As a consequence, ICN is negligi-
ble in these experimental test rigs. In an opposite way, for the flow conditions inside real
engines (low inlet Mach number, but high Mach number at the outlet), entropy noise is
found to be much more important than DCN; for instance the indirect to direct noise ratio
is found to be a factor of 10 when the nozzle inlet Mach number is fixed at 0.04 and the
outlet at 0.95. This confirms the importance of ICN in real engines. Fig. 1.22 shows the
ratio of indirect to direct noise plotted as a function of the Mach number at the nozzle inlet
and the Mach number at the nozzle outlet.

Now that the relevance of ICN has been assessed analytically and numerically, the fol-
lowing sections describe the different numerical computation methods performed on cases
1 and 2.

1.3.1 Supersonic case with shock or "case 1"

Even with the computing power improvement, numerical computations remain still a bit
costly regarding the physics and the accuracy aimed. The entropy noise generation in super-
sonic nozzles with a normal shock is first analyzed by Leyko et al. [Leyko 2008,Leyko 2010,
Leyko 2011] yet without trying to resolve the turbulent boundary layers developing in the
nozzle. A numerical and analytical approach is used to confirm the applicability of the one-
dimensional theory of Marble and Candel [Marble 1977] in case of choked nozzles. Leyko
et al. [Leyko 2011] use the AVBP code from CERFACS to compare data from the EWG test
rig with their simulation (see Figure 1.23).
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Figure 1.22: Direct/indirect combustion noise dominance ex-
tracted from Dowling & Mahmoudi [Dowling 2014] based on
Leyko et al. [Leyko 2009].

Figure 1.23: Fluctuating pressure downstream of the nozzle over
time, the pressure sensor is located at 1150mm downstream of
the nozzle: (−) measured pressure, (−−) simulated pressure; from
Leyko et al. [Leyko 2011].
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A two-dimensional axisymmetric and a fully three-dimensional configuration with var-
ious duct lengths and boundary conditions (acoustic reflections) are studied. The disagree-
ment between 2D computation and experimental data are not due to three-dimensional
effects as using a 3D model instead of a 2D axisymmetric does not significantly affect the
pressure signal (see Fig. 6 in [Leyko 2011]). Again, the discrepancies are mainly due to the
boundary conditions used at the inlet and outlet. Themeasured pressure signals come from
two main mechanisms: the conversion of entropy to acoustic due to the strong mean veloc-
ity gradient in the nozzle, but also from the acoustic reflection upstream and downstream
of the nozzle. They also report that the linear acoustic and the compact nozzle hypothesis
of [Marble 1977] is applicable on the EWG and proposed an analytical model taking into
account the acoustic impedances both at the inlet and outlet.

Richter et al. [Richter 2007] propose an Hybrid or Zonal approach to solve the noise
generated by an entropic source. Their methodology is described in [Richter 2005] and
the assessment of the resolution process is performed with the help of the EWG test
data. The method is a three zones approach (see Fig. 1.24) using a sound source, a
propagation and a far field zone. It is cheaper than a two zones approach. For in-
stance in a two zones approach, the sound source zone requires to be resolved using com-
pressible Navier-Stokes equations in order to transport the acoustic modes to the inter-
face between the sound source and the far field zone (in our case, outside the combus-
tion chamber). In addition, high quality non reflective boundary conditions (NSCBC)
[Poinsot 1992, Baum 1994, Lodato 2008,Widenhorn 2008] have to include the interfaces
preventing pollution of the numerical computation due to acoustic reflections at the bound-
aries. On the opposite, an incompressible computation of the sound source contains the
non-isentropic and the vortical part of the perturbed flow field. The method is decomposed
into three steps. First accelerated entropy perturbations are obtained numerically using
an incompressible 2D URANS (Unsteady Reynolds Average Navier Stokes) with a mod-
ified eddy dissipation model (EDM). Then, data are injected in a Computational Aeroa-
coustics (CAA) code using Neumann or Dirichlet boundary conditions. The CAA solver is
based on a fourth order seven point Dispersion-Relation-Preserving (DRP) scheme of Tam
et al. [Tam 1993] for spatial discretization and the "Low Dissipation and Low Dispersion
Runge Kutta-scheme" (LDDRK-scheme) of Hu et al. [Hu 1996] for time integration. The
propagation of the acoustic waves is solved using linear or nonlinear Euler equations. Fi-
nally, the acoustic far field is described by the Lighthill acoustic analogy ( [Williams 1969]
or [Piscoya 2004]). Even if the CAA requires a Courant-Friedrichs-Lewy (CFL) number ≤
1, the axisymmetric assumption coupled with the highly efficient temporal scheme allowed
to keep a low computational cost. The 2D mesh used consists of 78277 cells. In addition, a
strong dependence of the pressure response on the upstream reflection coefficient is stated.
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Indeed, the use of the implementation of the termination impedance from the experimental
data is necessary since the boundary conditions in the EWG experiment are not perfectly
anechoic.

Figure 1.24: Schematic view of the three zones approach adopted
by Richter et al. for "case 1" [Richter 2007].

Some limitations regarding this three zonal CFD-CAA approach can be stated. First,
the missing influence of turbulent scales in the sound source can lead to errors at high fre-
quency at which turbulent structures might interact with entropy fluctuations. Therefore
a three-dimensional LES computation is a plus. Secondly, the mesh used for the numer-
ical computation might not be sufficiently fine enough to allow the propagation and sound
generation of entropy perturbation at higher frequencies. A possible solution would be to
refine the mesh or to perform a LES computation used as an input. This LES computation
might overcome the aforementioned limitations cited. Indeed, the possible interaction of
turbulence with sources generation, dissipation and dispersion are captured by LES. In ad-
dition, the boundary layer are better resolved or modeled, this is a key to accurately predict
those interferences at the source level.

Mühlbauer et al. [Mühlbauer 2007, Mühlbauer 2008, Mühlbauer 2009] use a three-
dimensional compressible URANS approach with a k − ε turbulent model to simulate the
acoustic disturbance observed in the EWG test facility to determine the pressure fluctua-
tion as well as the spectrum of entropy noise. The use of this turbulence model is justified
by the fact that in preliminary numerical investigations the effect of turbulence on dissipa-
tion and dispersion of the entropy wave is very low. This three-dimensional unstructured
grid is a 10○ rotation of a two-dimensional segment of the EWG test rig (see Fig. 1.25 and
1.26) with periodic boundary conditions and therefore cannot be really considered as a
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three-dimensional computation. 57000 nodes are considered in the final mesh.

Figure 1.25: Sketch of the 3D-URANS computational domain
segment [Mühlbauer 2009].

Figure 1.26: View of the 3D-URANS computational domain
[Mühlbauer 2009].

Acoustics is directly resolved by the CFD solver ANSYS CFX 11 however at that time
Navier-Stokes characteristics boundary conditions (NSCBC) where not really available in
the solver to model partially non reflecting boundaries. The boundary conditions allows a
modeling of the downstream impedance. At the inlet of the computational domain, they
use a fully reflective mass flow boundary condition. They manage to give an explanation
of the ICN decrease when the Mach number is higher than M = 0.7 by developing for the
first time a numerical method for the localization of the acoustic sources of entropy noise in
acceleration and deceleration regions. Mühlbauer et al. show that ICN sources intensity
increase as the Mach number in the nozzle increases. It is concluded that the decrease of
entropy noise in the case of near sonic Mach number nozzle flows is caused by the changes
of the spatial structure of the entropy wave.

As one can see in Figure 1.27, the 3D-URANS numerical simulation gives almost the
same results as the experimental data only when a partially reflective outlet boundary con-
dition is used (neither the fully reflective nor the fully non reflective boundary condition
managed to give the correct solutions). The minor discrepancies are due to the constant
reflection coefficient with no phase shift modeling the switch between the cylinder and the
square zone in this computation. A possible solution is to use instead of the NSCBC a time-
domain impedance boundary conditions (TDIBCs) introduced by Widenhorn et al. [Widen-
horn 2008] and Huber et al. [Huber 2008]. TDIBCs are able to consider measured reflection
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coefficient and the phase shift as a function of the frequency. In addition to the previously
mentioned issues occurring when using URANS simulation is the possible problem arising
from coherent excitation.

Figure 1.27: Comparison data between computed and measured
values from Mühlbauer et al. [Mühlbauer 2009], pressure signal
(left) and spectrum of the pressure signals (right) using partially
reflective outlet boundary condition.

Bake et al. [Bake 2009c] study also the mechanisms of ICN generation with a high
order CFD-CAA method. The steady base flow is provided by the 3D-URANS computation
performed by [Mühlbauer 2009] described in the previous paragraph. The two-dimensional
axisymmetric approach formulated by Li et al. [Li 2005] in the cylindrical coordinate system
is applied. The boundary conditions, mean and perturbed flow fields are assumed to be
constant in the azimuthal direction allowing to reduce the dimension of the problem by
one. A CAA- and a reduced CAA-domain are studied, see Fig. 1.28. The spatial DRP- and
time LDDRK-scheme are used.

Figure 1.28: Sketch of the CAA- and the reduced CAA-domain.

The reduced CAA-domain allows the replacement of the settling chamber by a time-
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domain impedance boundary conditions (TDIBCs) [Widenhorn 2008,Huber 2008]. As the
plenum impedance denoted Zplenum (see Fig. 1.28) was not measured and never will, it is ap-
proximated by a low frequency extendedHelmholtz resonator (EHR). The results regarding
a fully non reflective, a fully reflective, a partially reflective plenum and the experimental
measurements of Bake et al. are represented in Fig. 1.29 for subsonic and supersonic flows.

Figure 1.29: Normalized transmission coefficient of the maxi-
mum pressure fluctuations at the outlet duct and the entropy
perturbation at the inlet duct (left). Pressure response at the
exhaust duct for a Mach number Ma = 0.73 using the estimated
plenum impedance and measured experimentally (right) from
Bake et al. [Bake 2009c].

The pressure and non-isentropic density perturbation are normalized by themean pres-
sure in the outlet duct and the density in the heated duct respectively. The Mach number
is defined by the maximum steady flow velocity divided by the local speed of sound. It can
be seen that a partially reflective plenum (+ and × in the left of Fig. 1.29) gives the best fit
to the trend observed experimentally regarding the transmission coefficient. On the right
of Fig. 1.29, the experimental pressure response as well as the computed pressure response
are shown. The computed pressure response obtained by the representation of the plenum
as a low frequency Helmholtz resonator tuned by three parameters matches pretty well
with the experimental data.

An approach different than [Mühlbauer 2009] for the acoustic sources localizations is
carried. An analysis of the results based on the acoustic intensity is carried out which is
in good agreement with the ones obtained by Mulhbauer et al. [Mühlbauer 2009]. ICN
sources are found to be several orders of magnitude stronger than the DCN sources due to
the heating confirming that in "case 1", ICN is the dominant source.
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1.3.2 Subsonic case or "case 2"

Duran et al. [Duran 2011,Duran 2013b] study numerically and also analytically the EWG
experiment of Bake et al. [Bake 2009c] in the subsonic regime. A full numerical resolution
of the EWG test rig is performed using the code AVBP. A Lax-Wendroff scheme is used to
solve the unsteady Euler equations. In this configuration, it was shown by Mühlbauer et
al. [Mühlbauer 2007,Mühlbauer 2008,Mühlbauer 2009] but also Leyko et al. [Leyko 2011]
that three-dimensional effects (impact of turbulence) are negligible. A 2D axisymmetric
mesh of around 10000 nodes is then considered in the computational domain. Numerical
results are supplemented by an analytical method based on the work of Marble & Candel
in the low-frequency limit and a one-dimensional linearized Euler equations solver in the
frequency domain.

Figure 1.30: View of EWG test rig with the representation of the
domains used by Duran et al. [Duran 2013b].

The partially reflective boundary conditions of the facility are taken into account in the
simulations. The reflection coefficients are studied and show the necessity to take into
account both indirect and direct combustion noise as well as partially reflecting condition
at the outlet. However, as there is not a precise value of the inlet reflection coefficient
some discrepancies between the results of Duran et al. and the measurement of Bake et
al. can be observed. Once again this study shows the critical role of both the upstream and
the downstream impedance coefficients in the determination of ICN. The influence of DCN
stronger than ICN is shown by a first-order analysis of the waves generated by the heating
device. It is also stated that for lowMach number flows DCN is an important contributor to
the global sound emission in this test rig. This last study emphasizes the fact that for real
gas turbines where the flow remainsmostly subsonic, the direct noise needs also to be taken
into account. Regarding the flow properties, some questionable assumptions are made. For
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instance, there is no viscosity, no turbulence nor boundary layers in the computations. This
might be highly restrictive since in a real aero engine, these phenomena are present.

Recently, Giauque et al. [Giauque 2012] apply the analytical model of Moase et
al. [Moase 2007] to the subcritical case of the EWG. Impedance coefficients at the noz-
zle inlet and outlet and the experimental temperature perturbation provided by Bake et
al. [Bake 2009c] and Leyko et al. [Leyko 2011] are introduced in the analytical formulation.
A very good agreement is found between their results and the analytical model proposed
by Howe [Howe 2010]. In the subcritical range, even if ICN is the main phenomenon re-
sponsible for the acoustic disturbance in the configuration of Bake et al. [Bake 2009c], the
DCN has a role which cannot be neglected. The effect of the rising time of the tempera-
ture fluctuation is investigated with the result that the latter has also an influence on the
amplitude of the generated entropy sound in the EWG.

This conclusion is also stated by Lourier et al. [Lourier 2014]. Rather than usingNSCBC
to model the downstream impedance used by [Mühlbauer 2009], [Leyko 2011] or [Du-
ran 2013b], the authors propose to use instead a time-domain impedance boundary con-
ditions (TDIBCs) [Widenhorn 2008] and [Huber 2008]. Even if Lourier et al. manage to
obtain results in good agreement with the measurements of Bake et al. and the numerical
computations from Duran et al., no mention regarding the upstream impedance coefficient
is made. In the subsonic regime, it seems that a downstream propagative acoustic wave
at the inlet P +

1 or an upstream propagative acoustic wave at the outlet P −

2 give a larger
acoustic response than an entropic forcing at the inlet.

1.4 Entropy waves advection in a spatially varying mean
flow

Many authors have studied the effect to the entropy wave advection in a spatially vary-
ing mean flow. Sattlemayer [Sattelmayer 2003] is the first to consider this effect in the
context of combustion instabilities and to develop a model (rectangular entropy advection
model). He mainly concludes that for all the frequencies, the dispersion of the entropy wave
is strong even at low frequencies. His model is later revisited by Morgans et al. [Mor-
gans 2013] who develop amodel based on a gaussian profile; the comparison with numerical
computations illustrates the validity of this model. Morgans et al. find that the dissipation
of the entropy wave is negligible and the loss of entropy wave strength is caused predomi-
nantly by the mean flow shear dispersion. However this dispersion of the entropy waves is
not really strong at low frequencies as stated by Sattelmayer and significant entropywave
strength still remains at the combustor exit. Thus, acoustic waves generated by the ac-
celeration of low-frequency entropy waves are likely to play an important role in combustor
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thermoacoustics. Similar findings are found by Giusti et al. [Giusti 2016], who studied ex-
perimentally and numerically the propagation of entropy waves and observed that their
amplitudes decay with increasing frequency and mean residence time. The influence of
entropy advection and noise generation in the frame of combustion instabilities is inves-
tigated more in details by Morgans & Li [Morgans 2015] and Xia et al. [Xia 2016]. The
authors show that the presence of an advective shear dispersion on entropy noise has po-
tentially a strong effect on thermoacoustic modes. This result is supported by the recent
numerical results of Hosseinalipour et al. [Hosseinalipour 2017] who evaluated the effective
modification of a combustor hydrodynamics due to the decay of the entropy wave strength.

1.5 Conclusion & limitations

Combustion noise has two origins. It can be created by the unsteady heat release fluctua-
tion in the combustion chamber, in which case it is called DCN. It can also be related to the
acceleration in a nozzle or a turbine row of temperature or vorticity inhomogeneities cre-
ated by the flame; it is then called ICN. After a combustion chamber, two devices are likely
to produce indirect combustion noise: the nozzle and the turbine stages. Regarding the
ICN generated though the nozzle, it has been widely studied analytically, experimentally
and numerically.

Analytically, the acoustic nozzle emission problem has been solved by Marble & Can-
del [Marble 1977] and others for several types of flows: subsonic, supersonic with or with-
out shock. Several approaches have been studied to overcome the restrictive assumption
of "the compact nozzle". So far only the quasi-one-dimensional approach is used in the de-
sign process of future engines. All the models at hand assume a uniform mean flow over
the cross-sectional area and only axial perturbations. These approaches neglect any ra-
dial variation in the mean and unsteady flow field although recent numerical simulations
showed the importance of the distortion of the entropy waves. Entropy waves are convected
by a flow that is non-uniform in the radial direction, which leads to different resident times
across the sectional area. So far no available model seems to take this phenomenon into
account. Some attempts to consider the flow as two-dimensional rather than quasi-one-
dimensional has been carried by Crocco and Bohn 40 years ago, but since then no progress
have been made.

In the 70’s, studies at California Institute of Technology (Caltech) were focused on a test
rig designed to investigate ICN.However, in those experiments the amplitude of the injected
temperature fluctuation was quite low (around 1 K). In 2007, a new test rig named the
EWG was built at DLR generating strong interest inside the combustion community. Two
reference cases, one subsonic and one supersonic with a normal shock inspired analytical
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and numerical studies. However, as the operating conditions in the combustion chamber
of the EWG are quite different from a real aero engine, a European project RECORD was
launched in 2013 aiming at understanding themechanisms of generation and transmission
of combustion noise in a more realistic framework and also a better control of the inlet and
outlet impedances.

Numerically, several approaches have been used to determine the combustion noise
emitted by nozzles. The EWG experimental cases were studied using CFD-CAA, 2D/3D-
URANS, 2D/3D LES approaches. However, so far an axisymmetric configuration was often
considered allowing a simplification of the geometry and as a consequence a reduction of
the number of cells used. In reality, the geometry of a nozzle is rarely axisymmetric. In
addition, the operating conditions are far different from what is found in a real aero en-
gine. Usually high pressure and high temperature make numerical simulations difficult to
achieve.

Analytical entropy wave advection models based on numerical or experimental data
have been developed to take into account the distortion of the entropy fronts. Many au-
thors showed the importance of this phenomenon the generated entropy noise but also in
the context of thermoacoustic instabilities. However, no purely analytical entropy wave
convection models have been developed for nozzle flows.

Furthermore, the role played by turbulence should also be investigated as it might be
important during the process of sound generation as well as during the convection of en-
tropy waves. It is the opinion of the author that the boundary layers developing inside the
nozzle should be considered as they tend to reduce the effective cross sectional area and
change the location of the maximum Mach number location. Both effects are expected to
modify the acoustic emission of the nozzle.

In this context, the aim of this PhD thesis is to develop a 2D semi-analytical model that
will take into account these two-dimensional effects. In addition, to explore the interaction
of turbulence with entropy, fully 3D LES simulations are carried out in order to compare
with and validate this new model.
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Numerical and analytical tools

Science is not about making predictions or performing
experiments. Science is about explaining.

Bill Gaede
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In this section, the analytical and numerical tools available at Onera at the beginning of
the thesis are described. First, one-dimensional solvers based on Euler equations are intro-
duced. Those two solvers called SUNDAY and MarCan resolve the Euler equations in the
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time and spectral domain respectively. SUNDAY and MarCan are helpful tools to under-
stand and estimate ICN generated in a nozzle. However, they rely on strong simplifications
of the physical problem (one-dimensional mean nozzle flow and perturbations, etc.). These
hypotheses, by simplifying the problem at hand, also discard potential additional effects
that might have a significant role in ICN. Among these phenomena are the two and three-
dimensional effects on the flow disturbances due to turbulence and the presence of the end
walls. To evaluate them and quantify their effects, three-dimensional numerical computa-
tions are needed. After a brief introduction to the Navier-Stokes equations and turbulence,
the three-dimensional solver CEDRE is described and specific parameters (schemes, models)
used for the numerical computations performed during the PhD thesis are presented.

2.1 One-dimensional tools

With the increase of computational power and the storage capabilities, it has become more
and more convenient to perform numerical simulations. However, it remains still quite
expensive to solve all the physics of an unsteady flow by performing Direct Numerical Sim-
ulation (DNS) and the effort has been aimed at developing and improving low-order models.
One-dimensional models appear to be a good alternative in order to reduce the costs and
are commonly used during the design process of future aero engines.

2.1.1 Quasi one-dimensional temporal numerical solver SUNDAY

This section describes the numerical tool SUNDAY (SimUlation of Noise in 1D flows due to
fluctuAtions in entropyY) designed to investigate noise emission in nozzles. It was devel-
oped at ONERA [Huet 2013]. SUNDAY solves the quasi one-dimensional nonlinear Euler
equations in the time domain for the primitive variables p, u and ρ instead of the variables
chosen by Marble & Candel [Marble 1977] (p,u,s). This set of equations is formally equiva-
lent to Eqs. 1.30-1.32 where the entropy equation is replaced for numerical stability reason
by Eq. 2.1 on pressure:

∂p

∂t
+ u

∂p

∂x
+ γp

du

dx
= −γpu

1

A

dA

dx
(2.1)

The full equations are first solved to provide the undisturbed steady flow and then
acoustic or entropy disturbances are injected at the inlet using nonlinear or linearized
perturbation equations derived without the thermodynamically perfect gas assumption.
The resolution process is performed using a finite difference method. The spatial deriva-
tives are computed using the optimized 11-point scheme and a selective flow fields filter
proposed by Bogey & Bailly [Bogey 2004]. The time integration is done with the stan-
dard explicit fourth-order Runge–Kutta algorithm [Butcher 1996]. Centered schemes are
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used inside the computational domain and a switch to the upwind schemes proposed by
Berland et al. [Berland 2007] is done near the boundaries. Centered and noncentered co-
efficients for the derivatives and the selective filtering can be found in the work of Cac-
queray [Cacqueray 2010]. Finally, non-reflective boundary conditions are implemented at
both extremities of the geometry using the Navier-Stokes Characteristic Boundary Con-
ditions (NSCBC) proposed by Thompson [Thompson 1987, Thompson 1990]. Their imple-
mentation follows the form given by Poinsot & Lele [Poinsot 1992]. These conditions allow
acoustic and entropy waves to leave the domain without significant reflections. In addition,
these conditions are modified to enable the injection of pressure and temperature fluctu-
ations [Kaufmann 2002]. SUNDAY has been validated for noise generation in the linear
as well as in the nonlinear regimes [Giauque 2012,Huet 2013]. The resolution of the flow
with injected perturbations provides the pressure and velocity fluctuations at the extrem-
ities of the converging-diverging nozzle. The stored time signals are then analyzed in the
frequency domain to provide the transfer functions of the nozzle through the use of the
linear Riemann invariants:

P +
=

1

2
(
p′

γP0
+
u′

c0
) (2.2)

P −
=

1

2
(
p′

γP0
−
u′

c0
) (2.3)

2.1.2 One-dimensional analytical spectral solver MarCan

Marcan is a one-dimensional analytical spectral solver. It was developed by Giauque et
al. [Giauque 2012] and is based on the piecewise linearity assumption of the velocity pro-
file for a subsonic flow. It is briefly presented in §1.1.2.2. This solver is validated in [Gi-
auque 2012] through cross validation with SUNDAY on several representative geometries
of nozzles. Some additional details are however given in this paragraph, mainly to present
the limitations of the method. In a given element n of the nozzle, the velocity is assumed
to evolve linearly, the acceleration is thus constant and is defined as Λ = ∆U

∆x = du
dx . In some

cases, because of the nozzle geometry, this local acceleration can become very small leading
to an issue for the analytical method. The numerical evaluation of the hypergeometric func-
tion becomes difficult and wrong. Also, regardless of the acceleration, the numerical pro-
cess used to determine these hypergeometric functions does not converge if the frequency
is too large. Depending on the geometry of the nozzle, the maximum frequencies that can
be reached can be too low to study high frequency ICN. Finally, the results are strongly
influenced by the mean velocity profile obtained using the piecewise linear decomposition
and one has to ensure that the obtained profile remains sufficiently close to the initial one.

Despite their limitations, quasi one-dimensional models are helpful tools to understand
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and estimate ICN generated in a nozzle. These approaches however rely on strong simpli-
fications of the physical problem, such as one-dimensional mean nozzle flow and perturba-
tions. Neglected effects like the distortion of entropy perturbations by the heterogeneous
radial velocity profile may however modify the noise generated through the nozzle. To
evaluate the contribution of such effects and the limitations of the current hypotheses, the
ICN generated across a nozzle is examined later in this PhD thesis by performing three-
dimensional numerical computations (chapter 3 and 4) using the numerical solver CEDRE.
Before describing the solver CEDRE, a brief introduction to the Navier-Stokes equations
and turbulence is given.

2.2 Equations of Fluid mechanics and theory of Turbulence

2.2.1 Introduction of the Navier-Stokes equations

The Navier-Stokes equations in a cartesian coordinate system without a heat source term
write [Poinsot 2012]:
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where t is the time, xi a unit of length in the i-direction, ρ the fluid density, u the velocity
vector, P the pressure, T the temperature, E the specific total energy and q the heat flux.
The Einstein summation convention is used to simplify Eq. 2.4 with i, k and l indices. The
viscous stress tensor for Newtonian fluids (the relation between the viscous stress tensor
and the strain rate tensor is linear) can be computed as:

τij = µ(T )(
∂ui
∂xj

+
∂uj

∂xi
−

2

3

∂uk
∂xk

δij) (2.5)

where µ(T ) is the dynamic viscosity of the fluid, linked to the kinematic viscosity by µ = ρν.
Its variation with the temperature is expressed using the Sutherland law:

µ(T ) = µ0
T0 + T1

T + T1
(
T

T0
)

3
2

(2.6)

where µ0 = µ(T0) = 1.856.10−5 kg.m−1.s−1, T1 = 149.49232 K and T0 = 300 K are constants. It
is also useful to introduce the rate of strain tensor Sij and the vorticity tensor Ωij defined
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respectively as:

Sij =
1

2
(
∂ui
∂xj

+
∂uj

∂xi
) (2.7)

Ωij =
1

2
(
∂ui
∂xj

−
∂uj

∂xi
) (2.8)

The heat flux follows the Fourier law:

q = −Λgrad(T ) (2.9)

where Λ is the heat conduction coefficient and is computed using the Eucken’s law defined
by:

Λ = µ(Cp +
5

4

R

M
) (2.10)

where NPW is the specific heat capacity at constant pressure, R = 8.314472 J.mol−1.K−1 is
the molar gas constant andM is the molar mass of the fluid.
The perfect gas law writes:

P = ρ
R

M
T (2.11)

2.2.2 Kolmogorov theory of Turbulence

A turbulent flow is characterized by the presence of turbulent eddies of various scales. The
Reynolds number defines the ratio between the inertial forces and the viscous forces. In
such a flow, energy is extracted from the mean flow by the larger eddies and then cascades
down to the smaller ones, where it is dissipated into heat by viscosity. TheReynolds number
is expressed as:

ReL =
ρuLL

µ
=
uLL

ν
(2.12)

where ReL is the Reynolds number linked to the integral length scale L, uL is the charac-
teristic velocity of the structures at the integral length scale, µ is the dynamic viscosity, ν
is the kinematic viscosity and ρ is the density. When ReL is small, the flow is considered
as laminar, the viscous forces are dominant and the fluid motion is rather smooth. On the
other hand, when ReL is large, the flow is considered as turbulent and vortex structures
or eddies populate the flow. The relation regarding those structures has been theorized by
Kolmogorov [Kolmogorov 1991]. Fig. 2.1 shows the energy spectral densityE(κ) of a typical
turbulence spectrum of a homogeneous flow, as a function of the modulus of the wavenum-
ber κ obtained by the Fourier transform of the velocity field. This number is homogeneous
to the inverse of the turbulent structures scale.

The energy spectrum can be divided into three zones depending on the scale of the
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Figure 2.1: Energy spectrum of a homogeneous isotropic turbu-
lent flow and representation of the different levels of modeling in
the principal methods for simulating turbulent flows.

considered turbulent structures according to Kolmogorov:

• The Energy containing range is the zone where the kinetic turbulent energy is pro-
duced. The scale of the vortices is defined by the geometry and is associated to the
integral scale L.

• The Inertial subrange is the zone where the large eddies (smaller than the Energy-
containing eddies) transfer their energy to the smallest ones without dissipation. This
process is called the "energy cascade" and is self-similar, meaning that all the vortices
break up in the same way, whatever their scale. This implies for a homogeneous
isentropic turbulent flow, that the Energy spectrum decays as E(κ) ∼ κ−5/3.

• The Dissipation range or viscous sub-range is the zone where the smallest scales
dissipate the received energy into heat. The scale of the structures is associated to the
Kolmogorov scale η. For very large Reynolds numbers, the smallest scale is completely
determined by the viscosity ν and the dissipation rate of the energy ε and is expressed
as:

η = (
ν3

ε
)

1/4

(2.13)

The conservation of the dissipation rate of energy allows to link the Kolmogorov scale
to the integral length scale with:

L

η
∼ Re

3/4
L

(2.14)
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In the Kolmogorov theory, the inverse cascade or backscatter which corresponds to a trans-
fer of energy from the smaller scales to the largest ones through the pairing interaction and
amalgamation of vortices, is not taken into account. In order to solve a turbulent flow, sev-
eral numerical resolution methods can be applied. In this PhD thesis, three are presented,
but only two are detailed:

• the Direct Numerical Simulation (DNS) approach consists in resolving all the scales
of the turbulent spectrum;

• the Large Eddy Simulation (LES) approach consists in resolving the largest scales
(see Fig 2.1) where the main energy part is present and modeling the dissipation of
smaller scales;

• the Reynolds-Averaged Navier-Stokes (RANS) consists in modeling all the spectrum
in order to compute the average flow (in the statistical sense).

Direct Numerical Simulations (DNS) resolve numerically all the turbulent length scales
of the Navier-Stokes equations. However, this approach needs a sufficiently refined mesh
to capture the dissipative smallest scales down to the Kolmogorov scale η. The number
of points needed to solve a three-dimensional flow using DNS is estimated around Re9/4

L

for a free flow [Pope 2000]. An additional difficulty arises, as the time step has to be small
enough to reproduce the dynamic of smallest scales and is around the Kolmogorov temporal
scale defined as:

τη = (
ν

ε
)

1/2

(2.15)

One way to grasp the meaning of this time scale is to associate it with the fictional time to
dissipate an amount of energy k at the constant rate ε.

For high Reynolds wall-bounded flows, the length scales of turbulence rapidly decrease
as the wall is approached and require an extremely fine mesh in the near-wall region
[Pope 2000]. This means that most of the computational resources are spent in solving
that region rather than the outer layer. The nozzle studied in this thesis has a Reynolds
number above 106 and a DNS approach appears to be unfeasible due to high computa-
tional demand. DNS is indeed applicable to low Reynolds number and/or academic cases.
With the improvement of computing power resources, DNS should be applied to higher
Reynolds number flow in the medium and long term. Meanwhile, some alternative so-
lutions have been developed to study turbulent flows with a certain degree of turbulence
modeling: the Large Eddy Simulations (LES) and the Reynolds-Averaged Navier-Stokes
(RANS) approaches described in the next paragraph as they are used during the PhD the-
sis.
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2.3 Three-dimensional turbulent flows simulation

CEDRE is a multi-physics platform for both research and industrial applications dedicated
to the fields of aerodynamics, heat transfer, combustion, icing, propulsion and aeroacoustic
[Chevalier 2005,Refloch 2011]. The software is based on a multi-solver approach where the
fluid solver can be run alone or coupled to additional solvers to perform multi-physics com-
putations. In this thesis, only the fluid solver CHARME (Calcul Hybride d’Aérothermique
et Réactif Multi-Espèce) solving the fluid mechanics equations is used. CEDRE uses un-
structured generalized meshes and is used to perform numerical simulations of reactive or
high-speed flows inside complex geometries, such as combustion chambers or nozzles for
example. Flow physics in such configurations is often governed by the non-linear Navier-
Stokes equations and is characterized by the Reynolds number. In a realistic combustion
chamber, the flow is turbulent and has a high-Reynolds number. The two resolutions meth-
ods available in the solver CEDRE to model such turbulent flow, the Reynolds-Averaged
Navier-Stokes (RANS) and the Large Eddy Simulations (LES), are detailed. Finally, the
time and spatial schemes used for the numerical simulations are introduced.

2.3.1 Reynolds-Averaged Navier-Stokes equations (RANS)

2.3.1.1 Averaging operation of the Navier-Stokes equations

RANS computations are commonly used in the industry during the conception process
due to the relatively short restitution time. The approach requires modeling the entire
turbulence spectrum. The cost of this approach is relatively low and is well integrated
in the design process of the aero-engines industry. Due to the strong hypotheses made
on the model, this approach is not adapted for transient and unsteady flow. The RANS
method consists in solving the statistically averaged Navier-Stokes equations. The instan-
taneous quantities are decomposed into averaged and fluctuating quantities as proposed
by Reynolds [Reynolds 1895].

ϕ = ϕ + ϕ′ (2.16)

However, for compressible flow, a filtering corresponding to a statistical ensemble average
proposed by Favre [Favre 1965] is preferred to avoid cross-terms that are difficult to model
in the mass equation. This filtering writes:

ϕ = ϕ̃ + ϕ′′ (2.17)
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where ϕ̃ =
ρϕ

ρ
and ρϕ′′ = 0. By neglecting the viscosity fluctuations and the nonlinearity of

the heat flux, Eqs. 2.4 become:
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τ̃Rik and q̃tk are respectively the turbulent Reynolds stress and heat flux tensor. These non-
linear terms are related to the effect of turbulence on the average quantities in the flow.
They need to be modeled and are replaced by simplified terms replicating the effect of tur-
bulence (turbulence model).

2.3.1.2 RANS equation closure

In order to close the set of equation 2.18, the Reynolds stress tensor (τ̃Rik) and the turbulent
heat flux (q̃tk ) need to be modeled by applying a turbulence model. Several models have
been developed over the last forty years. Two main categories of models exist:

• First order models that are based on the Boussinesq assumption. They link the
Reynolds stress tensor and the turbulent heat flux to a viscosity coefficient and
the mean strain tensor. Those quantities are resolved using an algebraic relation
[Prandtl 1925, Johnson 1985] or using transport equations to quantify turbulence
properties using Spalart Allmaras model [Spalart 1994], k − ε models [Jones 1972,
Launder 1974] or k − ω models [Kolmogorov 1991,Wilcox 1988,Menter 1993] for in-
stance.

• Second order models or Reynolds Stress Models (RSM). They use a different approach
by resolving directly the transport equations of the Reynolds stress tensor (τ̃Rik) com-
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ponents. However, higher order fluctuating terms appear using this approach and
also need to be modeled.

In this work, a numerical study on a converging-diverging nozzle is carried out. Only the
k −ω Shear-Stress Transport (SST) of Menter [Menter 1993] is described as it will be used
during the RANS computation in chapter 3. The reader is invited to read the literature
regarding the other approaches if interested. The diverging part of the nozzle is the critical
part of the computation. Indeed, the presence of an adverse pressure gradient (APG) in the
diverging zone may lead to the presence of a detached flow. As a consequence, the choice
of a k − ω model is made for its capability to take into account a potential APG in the
wall region. The k − ω model proposed by Wilcox [Wilcox 1988] could be sufficient, but
even if this model is simple and robust, it suffers from its extreme sensitivity to the value
of ω at the limit of the boundary layer. Menter [Menter 1992] showed in 1992 that this
behavior is due to a lack of diffusivity in the shear region due to the formulation of the
model. Consequently, the k − ω Shear-Stress Transport (SST) of Menter [Menter 1993] is
chosen. It is, in fact, a hybrid approach combining the k−ω proposed byWilcox [Wilcox 1988]
and the k − ε [Jones 1972,Launder 1974]. The k −ω model is applied in the boundary layer
region while the k − ε one is used for detached regions and the other parts of the flow. The
transition between the two models [Menter 1994] is ensured by ω = ε

β∗k with β∗ = Cµ = 0.09,
where β∗ is the constant of the Wilcox’s k −ω model and Cµ is the constant of the k − ε one.

2.3.2 Large eddy simulation (LES)

The Large Eddy Simulation (LES) approach consists in resolving the largest scales where
the main part of the turbulent kinetic energy is present and modeling the smallest scales
where the dissipation takes place. The LES approach and the wall treatment are explained
in the following sections.

2.3.2.1 Filtering operation of the Navier-Stokes equations

The small scales, which are excluded from the spatial filtering process as they are not
resolved by the mesh, are called the sub-grid scale (SGS) and are modeled with a SGS
turbulencemodel. The cutoff length of the filter is usually placed in the inertial range of the
turbulent spectrum (where the energy spectrum has a constant slope equal to κ ∼−5/3 (see
Fig. 2.1). The procedure of decomposing the variables as a sum of a mean and a fluctuating
part is the same as in the RANS method (Eq. 2.17). This filter can be seen as a convolution
function (G) and can be applied to any field ϕ(x). If G is the filter convolution kernel, the
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filtering method can be seen as:

ρϕ̃(x) = ∫
−∞

+∞

ρϕ(x′)G(x − x′)dx′ (2.19)

The filter function satisfies the condition:

∫

+∞

−∞

G(x)dx = 1 (2.20)

G has an associated cutoff length scale ∆cut but also a cutoff time scale τcut. This process
is in fact a low-pass filtering in the spectral domain. Any field variable denoted as ϕ(x)
can be decomposed as a resolved part denoted ϕ1 and a filtered part or unresolved part ϕ′.
Applying the filtering operation described previously results in the appearance of unknown
SGS stresses. The Navier-Stokes equations 2.4 become after applying the filter:
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Q̇ is the heat source terms if present

τLik and qLtk , where the superscript L refers to LES, are respectively the turbulent stress
tensor and the turbulent heat flux tensor. Fig. 2.2 gives an illustration of different eddy
sizes that are resolved (blue) and unresolved (red) by the grid mesh represented in the
background. A good LES mesh is capable to fairly capture down to the inertial range and
cut off the small part of the turbulent energy contained in the smaller scales.

This unsteady formulation makes LES a very attractive approach for simulating tur-
bulent flows as it can capture accurately large scale unsteady features, provide access to
the turbulence characteristics and finally reduce the modeling requirements. However, the

1Similar notations for f̃ and f are used here in RANS and LES. These quantities denote ensemble averages
in RANS whereas they correspond to filter quantities in LES.
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Figure 2.2: Schematic view of the resolved eddies in blue and
the unresolved eddies (SGS) in red when the background grid
corresponds to the mesh.

disadvantage of this method lies in its computational cost, much higher than for steady
RANS computations. The increasing computational resources and the storage capabili-
ties however make this approach more accessible even for relatively high Reynolds number
flows. To apply this approach, the set of equations 2.21 needs to be closed, this procedure
is described in the next section.

2.3.2.2 LES equations closure

In order to close the system and have a consistent set of equations, it is necessary to model
the SGS terms. These SGS terms should hold only a small portion of the kinetic energy
and are responsible for the dissipation of energy in the turbulent cascade. Neglecting this
energy should result very quickly in an energy accumulation in the system and a diver-
gence of the numerical computation. To avoid this problem, a modeling of the SGS terms
is performed to mimic the real behavior of the finest turbulent scales onto the resolved
field. To achieve this objective, as with several RANS turbulence models, the Boussinesq
assumption is commonly used. It links the Reynolds Stress tensor τLik to the filtered strain
rate tensor S̃ij (Eq. 2.7) by introducing the kinematic turbulent viscosity µt. It reads for
compressible flows:

τLik = −2µt (S̃ij −
δij

3
S̃kk) +

δij

3
ρτkk (2.22)

Several SGSmodels can be found in the literature. For example, one can cite the commonly
used Smagorinsky SGSmodel [Smagorinsky 1963], theWall Adapting Local Eddy-viscosity
model (WALE) [Nicoud 1999] or the σ-model [Nicoud 2011]. In the absence of the σ-model
and due to a lack of validation of the WALE model in the CEDRE solver, the SGS model of
Smagorinsky is used during this thesis for the two LES computations described in chapter
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4. This model is simple and robust. The turbulent viscosity is defined as:

µt = ρ(Cs∆i)
2
√

2SijSij (2.23)

whereCs is the Smagorinsky coefficient usually fixed around 0.18 and obtained by assuming
a statistically converged flow in the spectral domain [Sagaut 2006]. ∆i is the mesh scale
and is evaluated for an unstructured grid as:

∆i = 6
Vi

∑kAi,k
(2.24)

where Vi is the volume of the i-cell delimited by n faces of area Ai,k=1..n. For a cubic cell
mesh, ∆i is simply the length of the side edge while for a tetrahedron, it corresponds to
the diameter of the inscribed sphere. When one wants to apply LES to a bounded flow, the
question arises whether or not the behavior of the model is correct down to the wall if the
mesh is too coarse. With a simple model such as Smagorinsky, it is not the case. Because
of that the user is left with a first option which is to refine the grid at the wall and capture
a large part of the turbulent spectrum down to the wall or use an additional wall model
compatible with the SGSmodel at hand. To this end the next section describes the near-law
commonly adopted in LES.

2.3.2.3 Near-Wall law

The near-wall treatment as well as the boundary layer simulation are still challenging is-
sues for numerical computations no matter the type of simulation. For LES computations,
according to Chapman [Chapman 1979], 90% of the total turbulent kinetic energy needs
to be resolved by the large scales. For high Reynolds wall-bounded flows, the length scales
of turbulence rapidly decrease as the wall is approached and it requires an extremely fine
mesh in the near-wall region [Pope 2000,Kawai 2012]. This means that most of the com-
putational resources are spent in solving that region rather than the outer layer. As a
consequence, two different approaches (illustrated in Fig. 2.3) are employed when simulat-
ing boundary layers with LES:

(1) Wall resolved LES
In this approach, an attempt to resolve all the scales of the boundary layer and most
of the turbulence produced is carried out. This implies a very fine mesh resolution at
the wall. It is characterized by the maximum non-dimensional wall normal distance
(or wall unit) of the first node close to the wall of y+ < 5 (viscous sub-layer, see Fig. 2.4).
Von Kármán [von Kármán 1931] defined y+ as the non-dimensional wall distance for
a wall-bounded flow.
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Figure 2.3: Wall layer modeling approaches from [Piomelli 2002].
(a) Resolved inner boundary layer. (b) Modeled inner boundary
layer.
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Figure 2.4: Law-of-the-wall with mixing length model. ξ is the
height ratio of the flow.
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In this layer,

U
+

= y+ (2.25)
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yUτ
ν

(2.26)
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ρ

(2.27)

U
+

=
U

Uτ
(2.28)

where

– y+ is the non-dimensional distance to the wall.

– y the distance to the wall.

– Uτ is the friction velocity.

– τw is the wall shear stress

– U+ is the dimensionless velocity.

– U is the velocity tangent to the wall.

In the buffer layer (5 ≤ y+ ≤ 30) neither the U+ = y+ nor the logarithmic-law (defined
in the next paragraph) can be applied. This very accurate approach which does not
require any further modeling demands extreme computational resources. An estima-
tion of this cost has been given by Choi & Moin [Choi 2012] showing to scale with
Re13/7 and reaching almost the requirements for a DNS computation Re9/4.

(2) Wall modeled LES
In this approach the resolution of the small length scales in the inner boundary layer
and the flow gradients at the viscous sublayer are not carried out and are considered in
a Reynolds-averaged sense. Their contributions are modeled and the outer boundary
layer, where the length scales are larger, is resolved instead. The first node, close
to the wall, is placed in the logarithmic region of the turbulent boundary layer at a
wall unit 30 ≤ y+ ≤ 200 (logarithmic-law region). Several wall modeling approaches of
the inner layer have been analyzed by Piomelli & Balaras [Piomelli 2002]. The most
common one is the computation of the wall shear stress by the wall model (using flow
variables from the LES flow field and a law-of-the-wall, frequently analytical) and the
transfer of the flow quantities to the LES solver. In general, one uses conventional
wall laws based on the local equilibrium assumption, mimicking the behavior of a
zero pressure gradient boundary layer following the log-law. The problem is locally
reformulated into finding the wall friction velocity, which can be expressed this time
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as:
U+

=
1

κv
ln(y+) +B (2.29)

where κv is the von Kármán constant and B is a constant whose value is generally
set to 5.25. This approach reaches its limits when simulating boundary layers with
non-zero pressure gradient. Yet, in the diverging part of the nozzle an APG is present
and the application of conventional laws might give poor results. The cost of the wall
modeled approach was calculated in [Choi 2012] to scale only with Re, highlighting
the significant gains compared to the wall-resolved approach. Table 2.1 shows an
estimation of the number of mesh points needed for wall resolved and wall modeled
LES as a function of the Reynolds number.

Rec Nwm (wall-modeled LES) Nwr (wall-resolved LES)
106 3.63 × 107 5.23 × 107

107 8.20 × 108 7.76 × 109

108 9.09 × 109 5.98 × 1011

109 9.26 × 1010 4.34 × 1013

Table 2.1: Approximate number of grid points required for the
simulation of flow over an airfoil without separation, using wall-
modeled and wall-resolved LES. Rec = ucc/ν were c is the chord
length. Results extracted from Choi & Moin [Choi 2012].

In this thesis, a wall modeled LES approach is retained for the LES computations described
in chapter 4. The conventional wall law, that might give poor results due to the presence of
an APG in the nozzle diverging part, is replaced by the Simple Integrated Boundary Layer
Equations (SIBLE) wall law proposed by Chedevergne [Chedevergne 2010]. The resolution
process consists in the resolution of a system of one-dimension boundary layer equations
on each wall-cell. A recurrence procedure allows the numerical integration of the system.
The closure of the system is ensured by choosing an eddy viscosity formulation based on a
mixing length model. Each wall-cell is discretized in the direction normal to the wall into
N nodes using a geometrical series with a constant ratio r. The reader is invited to read
the article [Chedevergne 2010] for more details regarding the numerical resolution process
of the wall model.

2.3.3 Parameters of the computations

The last part of this section describes the spatial and the temporal schemes and the ther-
modynamic properties of the flow used during the RANS and the LES computations. Re-
garding the spatial scheme, the same parameters are chosen for the RANS and the LES
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computations. Indeed a second order spatial scheme is used as it was the most accurate
available at the beginning of the thesis2.

2.3.3.1 Spatial scheme

The resolution of the Navier-Stokes equations 2.4 requires a spatial discretization method
which needs to be conservative. In the solver CEDRE, the Finite Volume Method (FVM) is
used. The fluid domain is divided into small volumes whose sizes are defined by the small-
est fluctuations of interest. One can distinguish between conservative quantities (momen-
tum, energy by unit volume, etc.) and primitive variables (velocity, pressure, temperature).
In the solver, the flux balance from all the faces of a cell is treated with conservative vari-
ables. A cell-centered formulation is retained (computed conservative variables are located
at the center of the cells) rather than a vertex-centered formulation (computed conserva-
tive variables are located at the nodes of the cells). In order to obtain the velocity at the
center of the cell, a Green method described in [Bertier 2006] is retained. After that, the
computation of the hyperbolic flux (Euler flux containing the advection terms and the com-
pressibility effects) at the cell faces is possible using a second order Monotonic Upstream
Schemes for Conservation Laws (MUSCL) widely used in fluid mechanics. An ODFI flux
scheme is retained for the computations. It corresponds to a Riemann solver or Flux Differ-
ence Splitting (FDS) based on the resolution of a linearized Riemann problem (see Eq. 2.30)
where the intermediate state U(x, t) is evaluated as an arithmetic mean.

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∂U
∂t

+A∂U
∂x

= 0

U(x, t) =
UL +UR

2

(2.30)

where A is a linearized and diagonalizable matrix with real eigenvalues and the subscripts
()L and ()R refer respectively to the left and right value. A is in fact the Jacobian matrix
associated to the normal projection of the Euler hyperbolic flux on a cell face. U is the
velocity vector. Finally, the dissipative flux, which contains the viscous stresses and the
heat transfer, is obtained by a simple centered scheme.

2.3.3.2 Temporal scheme

Regarding the temporal scheme, two different schemes are used for the RANS and the LES
computations. Writing ∆t = tn+1 − tn, one can distinguish an explicit scheme for which the
solution at the time step n+1 only depends on the solution at n, and an implicit scheme for
which the solution at n + 1 results from an iterative process.

2Recently, higher order spatial scheme (4th order) have been implemented in the solver CEDRE.
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• For the LES, an explicit temporal scheme is required for the application at the bound-
aries of the non-reflecting boundary conditions (NSCBC) [Poinsot 1992, Selle 2004,
Yoo 2005,Lodato 2008] recently implemented in the 3D solver CEDRE (see Appendix
A for additional details). It has been shown by Kaufmann et al. [Kaufmann 2002] that
acoustic of entropy fluctuations can be injected through these boundaries conditions.
In the solver, two approximations or three approximations Runge-Kutta schemes, de-
noted respectively as RK2 and RK3, are available [Butcher 1996]. It was observed
that the gain in terms of accuracy using the RK3 rather than the RK2 is not worth-
while the time spent for one iteration. As a consequence, the RK2 scheme is chosen
instead. An explicit scheme is stable only if the Courant-Friedrichs-Lewy (CFL) is
smaller than a given limit depending on the scheme at hand. This condition can be
expressed in 1D as:

∆t < CFLmax
∆x

∣U∣ +C
(2.31)

where ∆x is the mesh size. In general, the CFL can not be larger than 1. However,
for the RK2 scheme used during this work, this theoretical number is even reduced
to 0.5.

• For the RANS, an implicit θ-scheme is preferred as the aim is to obtain a steady solu-
tion with a large time step. The value of θ is fixed at 1 which corresponds to a Euler
scheme. This approach allows the possibility to override the CFL requirement for the
time step with the condition to perform enough sub-iterations between each time step
to ensure a satisfactory convergence of the fluxes. Finally, the iterative resolution of
the linear system is achieved by the use of a Generalized Minimal Residual Method
(GMRES) developed by Saad & Schultz [Saad 1986].

2.3.3.3 Thermodynamic properties of the considered flow

In this work, a small portion of the combustion chamber (1/3 of the total length) is con-
sidered. Is it assumed that this region is not in the reaction zone. Therefore, only air is
considered for the numerical computations. It is assumed to be a perfect gas where the
interactions between the molecules are ignored. The specific heat capacity at constant
pressure for air is evaluated in a polynomial form depending on the temperature:

cp(T ) =
n

∑
k=0

ak(
T

T0
)
k (2.32)

where T0 = 1000 K is a temperature scale. For the numerical computation, n = 7 and the
coefficients ak (J.mol−1.K−1) are given in the Table 2.2. In addition, the specific enthalpy
and entropy for a perfect modeled gas are directly deduced by integration from a reference
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ak Value (J.mol−1.K−1)
a0 30.654884
a1 −15.230388
a2 43.949342
a3 −42.747854
a4 21.632853
a5 −6.0749147
a6 0.89733242
a7 −0.054422652

Table 2.2: Values of the ak coefficients.

state giving:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

h(T ) = href + ∫
T
Tref

Cp(T )dT

s(T ) = sref + ∫
T
Tref

Cp(T )

T
dT

(2.33)

and 0 K ≤ T ≤ 4000 K. The entropy fluctuations are computed from the unsteady and mean
quantities assuming a linearized expression:

s′

Cp
=
T ′

T0
−
γ0 − 1

γ0

P ′

P0
(2.34)

Regarding the transport properties, the dynamic viscosity has already been defined in
Eq. 2.6 using the Sutherland law. For the specific thermal conductivity (λ), the Eucken
equation for heat conductivity is applied to provide:

λ = µ [Cp(T ) +
5R

4M
] (2.35)

For T = 300K, µ = 1.856×10−5 kg.m−1.s−1,M is the molar mass of air fixed at 2.8965161×10−2

kg.mol−1 and R = 8.314472 J.mol−1.K−1. The thermodynamic properties used during the
numerical computations are summarized in Table 2.3.

Variable Value Unit
Reference enthalpy: href −125.53 J.mol−1

Reference entropy: sref 198.822 J.K−1.mol−1

Table 2.3: Thermodynamic properties of air.
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Now that the tools used during this PhD thesis have been presented, it is time to get
straight to the heart of the matter of this thesis. In chapter 1, entropy wave distortion was
briefly mentioned. Such a distortion can be observed in numerical simulations and origi-
nates from the variable acceleration profile in the nozzle as one goes from the centerline to the
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outer wall. Even if this distortion is difficult to measure in experiments, it can reasonably
be assumed as real. In order to take this phenomenon into account, the radial evolution of
the convected entropy front through the nozzle must be incorporated. The model proposed
here combines a 2D modeling of the entropy fluctuations, with longitudinal and radial de-
pendencies, and a 1D acoustic propagation. This last assumption is justified by the fact that
the transverse acoustic modes of the nozzle are associated with frequencies that are well be-
yond the spectral region of interest. This model needs mean flow profiles either analytical or
extracted from a CFD computation. This model was presented during the 21st AIAA/CEAS
Aeroacoustics Conference [Zheng 2015]. The following chapter is divided into three sections.
The hypotheses of validity of this model are first introduced. Then, the set of equations is
detailed. Finally, its implementation is described and the methodology of the resolution
process is given.

3.1 Hypotheses of the semi-analytical model

Configurations showing a cylindrical symmetry are considered in the present section. In
what follows, the axis of symmetry is the x-axis. Fivemajor assumptions are used to develop
this ICN model.

• The Euler equations are used, neglecting all the viscous terms.

• The turbulent fluctuations are neglected.

• The swirl is also neglected.

• All the flow variables are supposed to be axisymmetric with longitudinal and radial
dependencies (the flow is axisymmetric along the x-direction).

• Acoustic fluctuations are considered one-dimensional along the nozzle. Indeed, radial
modes are neglected as they are cut off at low frequencies.

Chu & Kovásznay’s [Chu 1958] decomposition of the modes of fluctuations in the flow is
used. Only first order coupling terms are considered in which the entropy mode is supposed
to be isobaric (P ′

e=0). For each flow variable, ()0 and ()′ respectively refer to the mean value
and the fluctuating part. In addition the density fluctuating part is also decomposed as an
entropic and an acoustic parts denoted respectively as ()′e and ()′a giving ρ′ = ρ′e + ρ′a. The
linearized entropy relation writes:

s′

Cp
=
P ′

a

γP0
−
ρ′

ρ0
(3.1)
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Thus,

ρ′e
ρ0

=
−s′

Cp
(3.2)

ρ′a
ρ0

=
P ′

a

γP0
(3.3)

Since acoustic fluctuations are purely along the x-direction, it gives u′r = 0 or ur = u0r. In
addition, Pa′ and u′x are also considered to be 1D giving ux = u0x + u

′

x and P = P0 + Pa
′.

One can remark that even if P ′

a is uniform in a given section, this does not imply that ρ′a is
also uniform as the mean flow variables can evolve with the radial position. In addition, a
sectional mean integration formula is used to reduce the radial dependent flow variables
to 1D quantities. The integration is performed as follows:

f =
1

Ax
∫

Ax

fdA (3.4)

where Ax stands for the cross section area at a given x-position. This yields for the axial
mean velocity and the acoustic pressure fluctuation:

u′x = u
′

x and P ′

a = Pa
′ (3.5)

since both variables are assumed to show no radial dependency.

3.2 2D set of equations

As presented in the state of the art, a distortion of the entropy wave can be observed in
numerical simulations and originates from the variable acceleration profile in the nozzle
as one goes from the centerline to the outer wall. The current one-dimensional models
assume a mean flow uniform over the cross-section therefore the application to geometries
representative of aero engine nozzles where important radial flow distortions may occur is
very limited. In order to take this distortion phenomenon into account, a radial evolution
of the convected entropy is introduced in the equations. This radial evolution of the entropy
can be computed numerically from the mean flow velocities.

3.2.1 Presentation of the coordinate systems and of the Jacobian matrix

The objective of the present method being to take into account the deformation of the en-
tropy perturbation due to the heterogeneous radial velocity profile, it is convenient to work
with a local set of equations rather than a global coordinate system.
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!er

ϕ0

!eτ

!ex!es

!eθ

Figure 3.1: Local coordinate system (Ð→ex,
Ð→er ,
Ð→eθ), particle coordi-

nate system along a streamline (Ð→es ,
Ð→eτ ,
Ð→eθ).

The coordinate system shown in Fig. 3.1 is used. (Ð→es ,
Ð→eτ ,
Ð→eθ) is simply a rotation of an

angle ϕ0(s, τ) around the Ð→eθ axis of the original coordinate system (Ð→ex,
Ð→er ,
Ð→eθ). Ð→eθ remains

the same between the two coordinate systems. The idea is to take into account the curva-
ture effect on the flow. For purposes of brevity ϕ0(s, τ) is denoted as ϕ0. In the (Ð→es ,

Ð→eτ ,
Ð→eθ)

coordinate system, the vectors Ð→es and Ð→eτ can be decomposed as:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Ð→ex = cosϕ0
Ð→es + sinϕ0

Ð→eτ

Ð→er = − sinϕ0
Ð→es + cosϕ0

Ð→eτ

(3.6)

so that

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x = cosϕ0s + sinϕ0τ

r = − sinϕ0s + cosϕ0τ
(3.7)

The chain rule derivation gives:

⎛
⎜
⎜
⎝

∂

∂s
∂

∂τ

⎞
⎟
⎟
⎠

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂x

∂s

∂r

∂s
∂x

∂τ

∂r

∂τ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⎛
⎜
⎜
⎝

∂

∂x
∂

∂r

⎞
⎟
⎟
⎠

(3.8)

J

Keeping in mind that ϕ0 is a function of s and τ , the Jacobian matrix J can be expressed
as:

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cosϕ0 + r
∂ϕ0

∂s
− sinϕ0 − x

∂ϕ0

∂s

sinϕ0 + r
∂ϕ0

∂τ
cosϕ0 − x

∂ϕ0

∂τ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

J11 J12

J21 J22

⎤
⎥
⎥
⎥
⎥
⎦

(3.9)

Now that the Jacobian matrix and the coordinate systems have been introduced, the set of
equations used for this two-dimensional model have to be expressed. The original approach
presented here is to use equations commonly used in turbomachinery and to apply them
for a nozzle flow. The streamlines curvature method of the Radial-Equilibrium proposed
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by Smith [Smith 1966] and Novak [Novak 1967] is used to provide the momentum equa-
tions while the conservation of mass flux in the cylindrical coordinate system provides the
continuity part of the system.

3.2.2 Continuity equation

Considering an infinitesimal volume V = Axdx, the mass variation in V can be rewritten
as the difference between the mass flux entering the domain and the one leaving it, giving:

∂

∂t
∫

V

ρdV = ∫

Ax

[ρux](x)dA − ∫

Ax+dx

[ρux](x + dx)dA (3.10)

The right-hand side terms can be rewritten using Eq. 3.4 as:

∫

Ax

[ρux](x)dA − ∫

Ax+dx

[ρux](x + dx)dA = [Axρux](x) − [Axρux](x + dx) (3.11)

Thus Eq. 3.10 can be rewritten in a surface integral form as:

∂

∂t
∫

Ax

ρdAdx = −([Axρux](x + dx) − [Axρux](x)) (3.12)

or

∂

∂t
∫

Ax

ρdA = −
∂Axρux
∂x

(3.13)

Applying Eq. 3.4 to the left-hand side of the previous equation, developing the right-hand
side term and dividing all the terms by Ax finally yields:

∂ρ

∂t
+
∂ρux
∂x

= −
1

Ax
ρux

dAx
dx

(3.14)

The previous equation being now decomposed as a sum of a mean and a fluctuating part
ρ = ρ0 + ρ

′ and ux = u0x + u
′

x, the equation becomes to first order:

∂ρ′

∂t
+
∂ρ0u0x

∂x
+
∂ρ0u′x
∂x

+
∂ρ′u0x

∂x
= −

1

Ax
ρ0u0x

dA

dx
−

1

Ax
(ρ0u′x + ρ

′u0x)
dA

dx
(3.15)

Using the mass conservation equation on the mean flow, the second term of the left-hand
side cancels with the first term of the right-hand side, thus:

∂ρ′

∂t
+
∂ρ0u′x
∂x

+
∂ρ′u0x

∂x
= −

1

Ax
(ρ0u′x + ρ

′u0x)
dA

dx
(3.16)
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Using Eq. 3.5, the previous equation becomes:

∂ρ′

∂t
+ ρ0

∂u′x
∂x

+ u′x
∂ρ0

∂x
+
∂ρ′u0x

∂x
= −

1

Ax
(ρ0u

′

x + ρ
′u0x)

dA

dx
(3.17)

The terms ∂ρ
′

∂t
and ρ′u0x can be written using Eqs. 3.2 and 3.3 as:

∂ρ′

∂t
= −

∂

∂t
(ρ0

s′

Cp
) + (

ρ0

γP0
)
∂Pa

′

∂t
(3.18)

ρ′u0x = ρ′eu0x + ρ′au0x = −(ρ0u0x
s′

Cp
) + (

ρ0u0x

γP0
)Pa

′ (3.19)

Differentiating the previous equation over x gives:

∂ρ′u0x

∂x
= −

∂

∂x
(ρ0u0x

s′

Cp
) +

∂

∂x
[(
ρ0u0x

γP0
)Pa

′
] (3.20)

= −
∂

∂x
(ρ0u0x

s′

Cp
) + (

ρ0u0x

γP0
)
∂Pa

′

∂x
+ Pa

′
∂

∂x
(
ρ0u0x

γP0
) (3.21)

Finally Eq. 3.17 becomes using Eqs. 3.18 and 3.21:

−ρ0
∂

∂t
(
s′

Cp
) + (

ρ0

γP0
)
∂Pa

′

∂t
+ ρ0

∂u′x
∂x

+ u′x
∂ρ0

∂x
−
∂

∂x
(ρ0u0x

s′

Cp
) + (

ρ0u0x

γP0
)
∂Pa

′

∂x

+Pa
′
∂

∂x
(
ρ0u0x

γP0
) = −

1

Ax
ρ0u

′

x

dA

dx
+

1

Ax
(ρ0u0x

s′

Cp
)
dA

dx
−

1

Ax
Pa

′
(
ρ0u0x

γP0
)
dA

dx

(3.22)

This can be rewritten as:

[
∂ρ0

∂x
+
ρ0

Ax

dA

dx
]u′x + ρ0

∂u′x
∂x

+ [
1

Ax
(
ρ0u0x

γP0
)
dA

dx
+
∂

∂x
(
ρ0u0x

γP0
)]Pa

′

+ [(
ρ0

γP0
)
∂

∂t
+ (

ρ0u0x

γP0
)
∂

∂x
]Pa

′
=

1

Ax
(ρ0u0x

s′

Cp
)
dA

dx
+
∂

∂x
(ρ0u0x

s′

Cp
) +

∂

∂t
(ρ0

s′

Cp
)

(3.23)

or in a factorized form, by multiplying by the surface section Ax and using the relation
c2

0 =
γP0

ρ0
:

Ax(
1

c2
0

)
∂Pa

′

∂t
+
∂

∂x

⎡
⎢
⎢
⎢
⎢
⎣

Ax(
u0x

c2
0

)Pa
′

⎤
⎥
⎥
⎥
⎥
⎦

+
∂(Axρ0u

′

x)

∂x
=
∂

∂x

⎡
⎢
⎢
⎢
⎢
⎣

Ax(ρ0u0x
s′

Cp
)

⎤
⎥
⎥
⎥
⎥
⎦

+Ax
∂

∂t
(ρ0

s′

Cp
) (3.24)



3.2. 2D set of equations 77

3.2.3 Momentum equation

The momentum equation can be written using the local polar system (Ð→es ,
Ð→eτ ,
Ð→eθ) from the

streamlines curvature method of the Radial-Equilibrium [Smith 1966,Novak 1967]. The
equation of motion can be expressed using the variables (s, τ, θ) represented in Fig. 3.2 as:

∂ρrus
∂t

+
1

r

∂ρrusuθ
∂θ

+
∂ρru2

s

∂s
+
∂ρrusuτ
∂τ

− ρ (u2
θ + ω

2r2
+ 2ωruτ) sinϕ + 2ρruτusKs

−ρrKτ (u
2
τ − u

2
s) = −r

∂P

∂s
+

1

r

∂rεsθ
∂θ

+
∂rεss
∂s

+
∂rεsτ
∂τ

− εθθ sinϕ + rKτ (εss − εττ)

+rKs (εsτ + ετs)

(3.25)

∂ρruτ
∂t

+
1

r

∂ρruτuθ
∂θ

+
∂ρrusuτ
∂s

+
∂ρru2

τ

∂τ
− ρ (u2

θ + ω
2r2

+ 2ωruτ) cosϕ + 2ρruτusKτ

−ρrKs (u
2
s − u

2
τ) = −r

∂P

∂τ
+

1

r

∂rετθ
∂θ

+
∂rετs
∂s

+
∂rεττ
∂τ

− εθθ cosϕ + rKs (εττ − εss)

+rKτ (ετs + εsτ)

(3.26)

∂ρruθ
∂t

+
1

r

∂ρru2
θ

∂θ
+
∂ρrusuθ
∂s

+
∂ρruτuθ
∂τ

+ ρ (uθuτ + 2ωruτ) cosϕ + ρ (uθus + 2ωrus) sinϕ

+ρruθ (usKτ + uτKs) = −
∂P

∂θ
+

1

r

∂rεθθ
∂θ

+
∂rεθs
∂s

+
∂rεθτ
∂τ

+ εsθ sinϕ + ετθ cosϕ

+r (εθsKτ + εθτKs)

(3.27)

Figure 3.2: Schematic view of the streamlines curvature method.

Ks and Kτ are respectively the tangent and the normal curvatures defined as the fol-
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lowing:

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Ks =
1

rs
=
∂ϕ0

∂s

Kτ =
1

rτ
=
∂ϕ0

∂τ

(3.28)

where rs and rτ are respectively the radius curvatures over s and τ . ω is the angular velocity
of the blade raw, in our case since no blades are present so that ω = 0. ε. . are the terms of
the Cauchy stress tensor, since there is no deformation the Cauchy stress tensor is equal
to zero. With the assumption of no tangential velocity (uθ = 0) the remaining quantities are
independent of θ and Eq. 3.27 vanishes allowing to rewrite Eqs. 3.25 and 3.26 as:

∂ρrus
∂t

+
∂ρru2

s

∂s
+
∂ρrusuτ
∂τ

+ 2ρruτusKs − ρrKτ (u
2
τ − u

2
s) = −r

∂P

∂s
(3.29)

∂ρruτ
∂t

+
∂ρrusuτ
∂s

+
∂ρru2

τ

∂τ
+ 2ρruτusKτ − ρrKs (u

2
s − u

2
τ) = −r

∂P

∂τ
(3.30)

3.2.3.1 s-direction equation

Let us start with Eq. 3.29 first. The term ∂ρrus
∂t

can be expressed also as:

∂ρrus
∂t

= ρr
∂us
∂t

+ rus
∂ρ

∂t
(3.31)

The objective is to obtain the term ρr
∂us
∂t

. The term rus
∂ρ

∂t
is expressed using Eq. 3.32. This

equation is the local continuity equation obtained from the streamlines curvature method
of the Radial-Equilibrium.

∂ρ

∂t
+

1

r
[

1

r

∂ρruθ
∂θ

+
∂ρrus
∂s

+
∂ρruτ
∂τ

] + ρ (usKτ + uτKs) = 0 (3.32)

The last term of Eq. 3.31 then becomes:

rus
∂ρ

∂t
= rus (−

1

r
[
∂ρrus
∂s

+
∂ρruτ
∂τ

] − ρ (usKτ + uτKs)) (3.33)

= −us
∂ρrus
∂s

− us
∂ρruτ
∂τ

− ρru2
sKτ − ρrusuτKs (3.34)
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Using 3.29 and 3.34, ρr∂us
∂t

is then

ρr
∂us
∂t

=
∂ρrus
∂t

− rus
∂ρ

∂t

= −
∂ρru2

s

∂s
−
∂ρrusuτ
∂τ

− 2ρruτusKs + ρrKτ (u
2
τ − u

2
s) − r

∂P

∂s
+ us

∂ρrus
∂s

+ us
∂ρruτ
∂τ

+ ρru2
sKτ + ρrusuτKs

(3.35)

noticing that

∂ρru2
s

∂s
= us

∂ρrus
∂s

+ ρrus
∂us
∂s

(3.36)
∂ρrusuτ
∂τ

= us
∂ρruτ
∂τ

+ ρruτ
∂us
∂τ

(3.37)

Eq. 3.35 becomes:

ρr
∂us
∂t

= −ρrus
∂us
∂s

− ρruτ
∂us
∂τ

− ρruτusKs + ρru
2
τKτ − r

∂P

∂s
(3.38)

or

∂us
∂t

+ us
∂us
∂s

+ uτ
∂us
∂τ

+ uτusKs − u
2
τKτ = −

1

ρ

∂P

∂s (3.39)

Eq. 3.39 becomes, in perturbed form:

∂ (u0s + u
′

s)

∂t
+ (u0s + u

′

s)
∂ (u0s + u

′

s)

∂s
+ u′τ

∂ (u0s + u
′

s)

∂τ
+ u′τ (u0s + u

′

s)Ks − u
′2
τ Kτ

= −
1

ρ0 + ρ′
∂ (P0 + Pa

′)

∂s

(3.40)

or

∂u′s
∂t

+ (u0s + u
′

s)
∂(u0s + u

′

s)

∂s
+ u′τ

∂(u0s + u
′

s)

∂τ
+ u′τ (u0s + u

′

s)Ks − u
′2
τ Kτ

+
1

ρ0
(1 −

ρ′

ρ0
)
∂(P0 + Pa

′)

∂s
= 0

(3.41)

Developing and linearizing the terms gives the following equation:

∂u′s
∂t

+ u′τ
∂u0s

∂τ
+ u0s

∂u0s

∂s
+ u0s

∂u′s
∂s

+ u′s
∂u0s

∂s
+ u′τu0sKs +

1

ρ0

∂P0

∂s
+

1

ρ0

∂Pa
′

∂s
−
ρ′

ρ2
0

∂P0

∂s
= 0 (3.42)
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Since the mean flow satisfies Eq. 3.39

∂u′s
∂t

+ u′τ
∂u0s

∂τ
+ u0s

∂u′s
∂s

+ u′s
∂u0s

∂s
+ u′τu0sKs +

1

ρ0

∂Pa
′

∂s
−
ρ′

ρ2
0

∂P0

∂s
= 0 (3.43)

Injecting ρ′ = −ρ0s
′

Cp
+
ρ0

γP0
P ′

a and using c2
0 =

γP0

ρ0
, it comes

∂u′s
∂t

+ u′τ
∂u0s

∂τ
+ u0s

∂u′s
∂s

+ u′s
∂u0s

∂s
+ u′τu0sKs +

1

ρ0

∂Pa
′

∂s
+

s′

ρ0Cp

∂P0

∂s
−
P ′

a

ρ2
0c

2
0

∂P0

∂s
= 0 (3.44)

Keeping in mind that the objective is to solve the system in the (Ð→ex,
Ð→er ,
Ð→eθ) coordinate

system, the projection using Eq. 3.6 and assuming u′r = 0 meaning that u′s = u′x cosϕ0,
u′τ = u

′

x sinϕ0 and u0s = u0x cosϕ0 − u0r sinϕ0, with ϕ0 ∈ ] −
π

2
;
π

2
[, leads to:

∂u′x
∂t

+ tanϕ0u
′

x

∂u0s

∂τ
+ u0s

∂u′x
∂s

+
u0su

′

x

cosϕ0

∂ cosϕ0

∂s
+ u′x

∂u0s

∂s
+ u′x tanϕ0u0sKs

+
1

ρ0 cosϕ0

∂Pa
′

∂s
+

s′

ρ0Cp cosϕ0

∂P0

∂s
−

P ′

a

ρ2
0c

2
0 cosϕ0

∂P0

∂s
= 0

(3.45)

The terms ∂u
′

x

∂s
and ∂Pa

′

∂s
are then projected in the (Ð→ex,

Ð→er ,
Ð→eθ) coordinate system using the

Jacobian matrix (Eq. 3.9).

∂u′x
∂s

= (
∂u′x
∂x

× J11 +
∂u′x
∂r

× J12)

= (
∂u′x
∂x

× J11) = (cosϕ0 + r
∂ϕ0

∂s
)
∂u′x
∂x

(3.46)

and

∂Pa
′

∂s
= (

∂Pa
′

∂x
× J11 +

∂Pa
′

∂r
× J12)

= (
∂Pa

′

∂x
× J11) = (cosϕ0 + r

∂ϕ0

∂s
)
∂Pa

′

∂x

(3.47)

∂Pa
′

∂τ
is also projected in the (Ð→ex,

Ð→er ,
Ð→eθ) coordinate system (this term is used in τ -direction

equation) giving

∂Pa
′

∂τ
= (

∂Pa
′

∂x
× J21 +

∂Pa
′

∂r
× J22)

= (
∂Pa

′

∂x
× J21) = (sinϕ0 + r

∂ϕ0

∂τ
)
∂Pa

′

∂x

(3.48)
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Eq. 3.45 therefore rewrites:

∂u′x
∂t

+ tanϕ0u
′

x

∂u0s

∂τ
+ u0s (cosϕ0 + r

∂ϕ0

∂s
)
∂u′x
∂x

−
u0su

′

x

cosϕ0
sinϕ0

∂ϕ0

∂s
+ u′x

∂u0s

∂s

+u′x tanϕ0u0sKs +
1

ρ0 cosϕ0
(cosϕ0 + r

∂ϕ0

∂s
)
∂Pa

′

∂x
−

P ′

a

ρ2
0c

2
0 cosϕ0

∂P0

∂s
= −

s′

ρ0Cp cosϕ0

∂P0

∂s

(3.49)

or finally

∂u′x
∂t

+ [tanϕ0
∂u0s

∂τ
− u0s tanϕ0

∂ϕ0

∂s
+
∂u0s

∂s
+ tanϕ0u0sKs]u

′

x

+u0s (cosϕ0 + r
∂ϕ0

∂s
)
∂u′x
∂x

+
1

ρ0
(1 +

r

cosϕ0

∂ϕ0

∂s
)
∂Pa

′

∂x
−

P ′

a

ρ2
0c

2
0 cosϕ0

∂P0

∂s

= −
s′

ρ0Cp cosϕ0

∂P0

∂s

(3.50)

Applying the spatial averaging (Eq. 3.4), the previous equation finally becomes

∂u′x
∂t

+ [tanϕ0
∂u0s

∂τ
+
∂u0s

∂s
]u′x + u0s (cosϕ0 + r

∂ϕ0

∂s
)
∂u′x
∂x

+
1

ρ0
(1 +

r

cosϕ0

∂ϕ0

∂s
)
∂Pa

′

∂x

−
1

ρ2
0c

2
0 cosϕ0

∂P0

∂s
P ′

a = −
s′

ρ0Cp cosϕ0

∂P0

∂s

(3.51)

At this stage it is possible to solve the system since there are two unknowns (u′x and P ′

a)
for two Eqs. (3.24 and 3.51). However it is also interesting to express Eq. 3.52 since this
additional equation can be used to check the validity of the hypotheses made on the flow
and so to obtain a consistent model.

3.2.3.2 τ -direction equation

Let us work with Eq. 3.30 now. The term ∂ρruτ
∂t

can be also expressed as:

∂ρruτ
∂t

= ρr
∂uτ
∂t

+ ruτ
∂ρ

∂t

Once again the objective is to get an expression of the term ρr
∂uτ
∂t

. The term ruτ
∂ρ

∂t
is

obtained using Eq. 3.32, a similar approach as in 3.2.3.2 is adopted to give:

∂uτ
∂t

+ us
∂uτ
∂s

+ uτ
∂uτ
∂τ

+ uτusKτ − u
2
sKs = −

1

ρ

∂P

∂τ (3.52)
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Developing the linearized terms and using the decomposition mentioned in the previous
section, 3.52 becomes since the mean flow satisfies Eq. 3.52:

∂u′τ
∂t

+ u0s
∂u′τ
∂s

+ u′τu0sKτ − 2u0u
′

sKs +
1

ρ0

∂P ′

a

∂τ
−
P ′

a

ρ2
0c

2
0

∂P0

∂τ
= −

s′

ρ0Cp

∂P0

∂τ
(3.53)

Projecting the previous equation in the (Ð→ex,
Ð→er ,
Ð→eθ) coordinate system as in 3.2.3.1 gives:

sinϕ0
∂u′x
∂t

+ u0s sinϕ0
∂u′x
∂s

+ u0su
′

x

∂ sinϕ0

∂s
+ u′x sinϕ0u0sKτ

−2u0u
′

x cosϕ0Ks +
1

ρ0

∂P ′

a

∂τ
−
P ′

a

ρ2
0c

2
0

∂P0

∂τ
= −

s′

ρ0Cp

∂P0

∂τ

(3.54)

Using Eq. 3.48, Eq. 3.54 therefore rewrites

sinϕ0
∂u′x
∂t

+ u0s sinϕ0 (cosϕ0 + r
∂ϕ0

∂s
)
∂u′x
∂x

+ u0su
′

x cosϕ0
∂ϕ0

∂s
+ u′x sinϕ0u0sKτ

−2u0u
′

xKs cosϕ0 +
1

ρ0
(sinϕ0 + r

∂ϕ0

∂τ
)
∂Pa

′

∂x
−
P ′

a

ρ2
0c

2
0

∂P0

∂τ
= −

s′

ρ0Cp

∂P0

∂τ

(3.55)

or

sinϕ0
∂u′x
∂t

+ (u0s cosϕ0
∂ϕ0

∂s
+ u0s sinϕ0Kτ − 2u0Ks cosϕ0)u

′

x

+u0s sinϕ0 (cosϕ0 + r
∂ϕ0

∂s
)
∂u′x
∂x

+
1

ρ0
(sinϕ0 + r

∂ϕ0

∂τ
)
∂Pa

′

∂x
−
P ′

a

ρ2
0c

2
0

∂P0

∂τ
= −

s′

ρ0Cp

∂P0

∂τ

(3.56)

Applying the mean section formula Eq. 3.4 on Eq. 3.56 gives

sinϕ0
∂u′x
∂t

+ (u0s cosϕ0
∂ϕ0

∂s
+ u0s sinϕ0Kτ − 2u0Ks cosϕ0)u

′

x

+u0s sinϕ0 (cosϕ0 + r
∂ϕ0

∂s
)
∂u′x
∂x

+
1

ρ0
(sinϕ0 + r

∂ϕ0

∂τ
)
∂Pa

′

∂x
−

1

ρ2
0c

2
0

∂P0

∂τ
P ′

a = −
s′

ρ0Cp

∂P0

∂τ

(3.57)

3.3 Implementation

The system to solve is composed of two equations:

Ax(
1

c2
0

)
∂Pa

′

∂t
+
∂

∂x

⎡
⎢
⎢
⎢
⎢
⎣

Ax(
u0x

c2
0

)Pa
′

⎤
⎥
⎥
⎥
⎥
⎦

+
∂(Axρ0u

′

x)

∂x
=
∂

∂x

⎡
⎢
⎢
⎢
⎢
⎣

Ax(ρ0u0x
s′

Cp
)

⎤
⎥
⎥
⎥
⎥
⎦

+Ax
∂

∂t
(ρ0

s′

Cp
) (3.24)
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and

∂u′x
∂t

+ [tanϕ0
∂u0s

∂τ
+
∂u0s

∂s
]u′x + u0s (cosϕ0 + r

∂ϕ0

∂s
)
∂u′x
∂x

+
1

ρ0
(1 +

r

cosϕ0

∂ϕ0

∂s
)
∂Pa

′

∂x

−
1

ρ2
0c

2
0 cosϕ0

∂P0

∂s
P ′

a = −
s′

ρ0Cp cosϕ0

∂P0

∂s

(3.51)

3.3.1 Harmonic regime

To numerically solve the above system Eqs. 3.24 and 3.51, it is useful to express these two
equations in the frequency domain. Assuming a harmonic regime of angular frequency ω,
pressure, velocity and entropy fluctuations can be expressed as:

u′x = û(x)eiωt (3.58)

Pa
′

= P̂a(x)e
iωt (3.59)

s′

Cp
= σ̂(x, r)eiωt (3.60)

where

σ̂(x, r) = Se

⎛

⎜

⎝

−iω∫
s

s1

dζ
√
u2

0x(ζ) + u
2
0r(ζ)

⎞

⎟

⎠
(3.61)

with S = s′peak/Cp the amplitude of the entropy fluctuation. With this expression, the en-
tropy is supposed to be planar at the position of injection for a purpose of simplification.
σ̂(x, r) can be computed analytically and corresponds to the Fourier transform of the en-
tropy fluctuation in the nozzle at the position (x, r) knowing the initial position at (x1, r1).
Using Eqs. 3.58-3.60, Eq. 3.24 can be rewritten as:

⎛

⎝
Ax(

1

c2
0

)iω +
∂

∂x

⎡
⎢
⎢
⎢
⎢
⎣

Ax(
u0x

c2
0

)

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
P̂a(x) +Ax(

u0x

c2
0

)
∂P̂a(x)

∂x
+
∂ (Axρ0)

∂x
û(x) +Axρ0

∂û(x)

∂x

=
∂

∂x
[Ax(ρ0u0xσ̂(x, r))] +Axiω(ρ0σ̂(x, r))

(3.62)

and Eq. 3.51 becomes:

[iω + (tanϕ0
∂u0s

∂τ
+
∂u0s

∂s
)] û(x) + u0s (cosϕ0 + r

∂ϕ0

∂s
)
∂û(x)

∂x

+
1

ρ0
(1 +

r

cosϕ0

∂ϕ0

∂s
)
∂P̂a(x)

∂x
−

1

ρ2
0c

2
0 cosϕ0

∂P0

∂s
P̂a(x) = −

σ̂(x, r)

ρ0 cosϕ0

∂P0

∂s

(3.63)
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3.3.2 Methodology of the resolution process

Before introducing the precise resolution process, it is useful to explain the general method-
ology used in the study, as described in Fig. 3.3. Five steps are needed to evaluate the
nozzle transfer functions using the two-dimensional model (blue box in Fig. 3.3). Each box
numbered from 1 to 5 is described in this section.

(1) Mean flow: As mentioned in the introduction, this model uses a steady nozzle flow
as an input. This steady nozzle flow can be obtained by performing a numerical simulation
or generated manually. It contains all the mean flow variables expressed in Eqs. 3.62 and
3.63. However, as the entropy fluctuations are not present in the inputs, they need to be
computed. These additional steps (red box in Fig. 3.3) are numbered i and ii. A method
based on the streamlines generation is adopted here for computing the entropy fluctuations.

Figure 3.3: Methodology of the resolution process adopted in this
PhD thesis.

(i) Streamlines generation: From the 2D mean flow velocity field, streamlines of the
flow are generated using a temporal approach. This step is important to accurately compute
the deformation of the entropy wave. A time marching method is adopted here to follow the
trajectory of a particle and is used to generate a streamline. In this view, several particles
are convected for different initial radial positions at the inlet of the configuration.

Those streamlines, illustrated in Fig. 3.4 (a), can be seen for each axial
positions in 2D as delimiting different rings contributing differently to the ICN
emitted by the nozzle.
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Figure 3.4: Example of three generated streamlines inside a noz-
zle represented in dotted blue lines. The full black line represents
the external geometry of the nozzle.

(ii) Spectral space entropy variation: Since the velocity inside each tube is differ-
ent, the convection time varies and increases as one goes from the centerline to the nozzle
wall. Furthermore, by assuming a constant radial velocity between two streamlines for
a given x position, the entropy fluctuations can be transported numerically using the 2D
mean flow velocity. The accuracy of this approach is ensured by using enough streamlines
(thus a sufficiently small radial distance ∆r between two streamlines) to correctly predict
the actual distortion occurring inside the geometry. The distortion of the entropy front is
depicted by the term:

∫

s

s1

dζ
√
u2

0x(ζ) + u
2
0r(ζ)

(2) Averaging over r: Acoustic perturbations are supposed to be one-dimensional
only, subsequently, the section averaging, Eq. 3.4, is applied at each axial position to
obtain 1D flow variables depending only on the axial coordinate x. One can notice that
by doing so, the amplitude of the radially averaged entropy fluctuation differs
from that obtained for one dimensional flows.

(3) Spatial discretization: In order to solve the system, a spatial discretization along
the axial direction of the nozzle is applied. The nozzle is divided into n−1 elements related
to n − 1 center points and n nodes numbered from 1 to n. As an illustration, an element
is shown in Fig. 3.5. F represents any flow variable at the center of the element ck and
c1 ≤ ck ≤ cn−1.

Fk Fk+1●
Fck {

∆x

Figure 3.5: Schematic view of one element. F represents any flow
variable at the center of the element ck and c1 ≤ ck ≤ cn−1.
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One can assume that in a given element the term ∥ u0s ∥ is constant. This allows to
write the expression of the phase shift of the entropy fluctuation at each element node k,
where s is the curvilinear abscissa:

∫

sk

s1

dζ
√
u2

0x(ζ) + u
2
0r(ζ)

=
k−1

∑
i=1

si+1 − si
√
u2

0xci
+ u2

0rci

(3.64)

Assuming the element as shown in Fig. 3.5, a second order spatial discretization is used
to express the values and the derivatives of the pressure and velocity perturbations at the
center of the element from the values at the nodes1:

Fck =
Fk+1 +Fk

2
(3.65)

F
′

ck
=
Fk+1 −Fk

∆x
(3.66)

By doing so, one can rewrite Eqs. 3.62 and 3.63 in a factorized form for the element ck as:

⎡
⎢
⎢
⎢
⎢
⎣

1

2

⎛

⎝
Ax(

1

c2
0

)iω +
∂

∂x

⎡
⎢
⎢
⎢
⎢
⎣

Ax(
u0x

c2
0

)

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
+
Ax
∆x

(
u0x

c2
0

)

⎤
⎥
⎥
⎥
⎥
⎦

P̂k+1

+

⎡
⎢
⎢
⎢
⎢
⎣

1

2

⎛

⎝
Ax(

1

c2
0

)iω +
∂

∂x

⎡
⎢
⎢
⎢
⎢
⎣

Ax(
u0x

c2
0

)

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
−
Ax
∆x

(
u0x

c2
0

)

⎤
⎥
⎥
⎥
⎥
⎦

P̂k

+(
1

2

∂ (Axρ0)

∂x
+
Axρ0

∆x
) ûk+1 + (

1

2

∂ (Axρ0)

∂x
−
Axρ0

∆x
) ûk

=
∂

∂x
[Ax(ρ0u0xσ̂(x, r))] +Axiω(ρ0σ̂(x, r)) = ŜCck

(3.67)

and:

[
iω

2
+

1

∆x
u0s (cosϕ0 + r

∂ϕ0

∂s
) +

1

2
(tanϕ0

∂u0s

∂τ
+
∂u0s

∂s
)] ûk+1

+ [
iω

2
−

1

∆x
u0s (cosϕ0 + r

∂ϕ0

∂s
) +

1

2
(tanϕ0

∂u0s

∂τ
+
∂u0s

∂s
)] ûk

− [
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(3.68)

For each element ck, ŜCck (resp. ŜMck ) stands for the source term in the continuity (resp.
momentum) equation.

1The size of the elements can be made arbitrarily small.
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(4)Linear system: Rewriting the entire system for the nozzle, a linear system of 2(n−1)

equations is obtained. The last two conditions required to close and then solve the system
are given by the boundary conditions. Here, the impedance relations at the nozzle extrem-
ities are used to link the pressure and the velocity fluctuations:

P̂ −Zρ0c0û = 2ρ0c0
2P̂f (3.69)

where Z is the reduced impedance and is equal to Z = −1 at the nozzle inlet and Z = +1

at the outlet for perfectly non-reflective boundary conditions. P̂f is the nondimensional
acoustic forcing. It can either be P̂ +

1f at the nozzle entrance or P̂ −

nf at the exit, so that:

P̂ +

1f =
1

2
(
P̂1

γP0

+
ρ0c0

ρ0c0
2
Û1) (3.70)

P̂ −

nf =
1

2
(
P̂n

γP0

−
ρ0c0

ρ0c0
2
Ûn) (3.71)

In the case of an entropy forcing, the forcing contributes through the source terms ŜCc1 and
ŜMc1 . The final matrix of 2n lines can then be written as follows in the general case:
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where the expressions of the coefficients for the element ck are:
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(5)Resolution: Now that the system has been expressed in a matrix form, it is possible
to inverse the relation and to obtain P̂k and Ûk for each element. In particular, P̂1, Û1, P̂n
and Ûn provide the acoustic invariants P̂ −

1 = 1
2 ( P̂1

γP0
−

ρ0c0

ρ0c02
Û1) and P̂ +

n = 1
2 ( P̂n

γP0
+

ρ0c0

ρ0c02
Ûn)

leaving the nozzle and used to evaluate the TATFs.
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3D numerical simulations of the
DISCERN nozzle

A computer lets you make more mistakes faster than
any invention in human history - with the possible
exceptions of handguns and tequila.

Mitch Ratliffe
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In this chapter a description of the different numerical simulations performed during this
PhD thesis is done. First, the studied configuration is introduced. Then, a RANS computa-
tion is carried out giving the different flow characteristics and also a mean flow field used as
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an input for the application of the two-dimensional axisymmetric model in chapter 5. The
validity of this mean field is ensured by the comparison to the mean flow obtained from a
Large Eddy Simulation of the nozzle without any excitation (thereafter denoted "background
noise LES"). In addition to this background noise LES computation, two LES computations
forced with inlet entropy fluctuations are also performed. The first LES is forced with an in-
coming 900 Hz entropy fluctuation in order to collect the background noise mainly related to
the turbulent boundary layers. It also enables us to study the amount of dissipation experi-
enced by temperature disturbances as they travel in the nozzle. The second LES forced with
a multi-harmonic entropy fluctuation (411 to 905 Hz) provides the TATFs that are compared
in chapter 5 to the prediction of the new semi-analytical 2D model developed in this thesis.

4.1 Introduction of the studied configuration

The nozzle studied here is one of the shapes designed in the framework of the project ANR/
FRAE DISCERN [Ducruix 2011] and studied experimentally in the acoustic part of the
project EU/FP7 RECORD studying the mechanisms of generation and transmission of CN.
The DISCERN nozzle has been optimized in order to generate maximum ICN using the
in-house software Marcan Evolution [Giauque 2013]. A sketch of the experimental setup
is visible on the left of Fig. 4.1. In the experimental setup the combustion chamber is fed
by two stages of injectors, which are not considered in the computations. A view of the
DISCERN nozzle with some flow characteristics is represented on the right of Fig 4.1. This
nozzle is studied in the subsonic regime with an accelerated flow inside the nozzle up to a
Mach number of 0.8 at the throat. However, in the supersonic case, this nozzle is capable
to ensure the presence of a normal shock in the diverging part for an inlet pressure Pin
bellow 180000 Pa for an atmospheric pressure outlet (101325 Pa). The nozzle length is 18.5
cm long. Additional characteristics regarding the nozzle are given in Table 4.1.

In addition to this nozzle, a small portion of the combustion chamber (1/3 of the total
real length) is added at the nozzle inlet. It is in this zone that the injection of entropy
fluctuations takes place. It has been verified numerically with reactive simulations of the
combustion chamber, performed at ONERA during the project RECORD, that the retained
inlet position of the present numerical domain is located downstream of the flame loca-
tion. This portion of the square combustion chamber has a cross-sectional area of 7 cm ×

7 cm and a length of 5 cm. This length was decided during a pre-study carried out before
the beginning of the thesis. Indeed, it cannot be further reduced if one wants to impose
one-dimensional fluctuations at the inlet and permit the natural stretching of the waves
(see Fig. 4.10) as they travel towards the throat of the nozzle. At the end of the nozzle, an
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additional constant radius cylinder of 5 cm in length is also added. In this area an axial
stretching of the mesh is applied in order (i) to remove the turbulent structures and prevent
the generation of spurious acoustics at the outlet and (ii) to maintain theMach number con-
stant in the zone where acoustic measurements are undertaken. This gives a total length
of 28.5 cm for the computational domain. The three-dimensional computational domain
is visible in Fig. 4.2, where three zones represented in blue, red and gray are respectively
the combustion chamber, the nozzle and the constant radius cylinder. For the numerical
computations, the Mach number at the inlet of the domain is set atMinlet = 0.01 in order to
achieveMthroat = 0.8. The temperature inside the combustion chamber is set to 1300 K.

Figure 4.1: Schematic view of the experimental test bench at
EM2C (left) and the DISCERN nozzle with some flow properties
(right).

Characteristics Inlet Outlet
Mass flow (g.s−1) 11.5
Temperature (K) 1300 1270
Diameter (mm) 59 13.9

Table 4.1: Additional characteristics of the DISCERN nozzle.

Figure 4.2: Schematic view of the 3D compuational domain of the
study.
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4.2 RANS computation

The goal of this RANS computation is to obtain the mean flow that is used as an input for
the two-dimensional axisymmetric semi-analytical model in chapter 5.

4.2.1 Mesh and global parameters of the RANS computation

The RANS mesh has 4.8 million cells and is composed of tetrahedral, hexahedral and
prismatic elements (see Fig. 4.3). Two hexahedral zones are present at the inlet and
the outlet of the domain (see Fig. 4.5). These zones are needed during the LES compu-
tations to improve the stability of the Navier-Stokes characteristic boundary conditions
(NSCBC) [Poinsot 1992,Selle 2004,Yoo 2005,Lodato 2008] recently implemented in the 3D
solver CEDRE. The tetrahedral mesh size inside the nozzle as well as the hexahedral mesh
size inside the combustion chamber are set to 0.6 mm. Close to the nozzle walls, two pris-
matic layers are added. Those two layers grow progressively from the nozzle inlet to the
nozzle throat. At the nozzle throat position the y+ of the first prismatic layers is 62 (y+ = 1

corresponding to 15 µm). One can question why the prismatic layers are increased while
in a converging area the boundary layers tend to be very small, this choice is only justify
by a simplified meshing procedure.

Fig. 4.4 shows a cut of the mesh at the throat. After the throat, the thickness of the
layers is kept constant till the end of the computational domain. In addition, inside the
cylindrical part, an axial stretching of 2% of the mesh size is applied to limit the total
number of elements. Table 4.2 gives a summary of the mesh properties inside the domain.

Combustion chamber Nozzle Constant cylinder part

Hexa Tetra Prisms +
Tetra

Prisms
and Tetra

2% axial
stretching:
Prisms

and Tetra

Hexa
+ Prisms

x = -5 cm to
-1.7 cm

x = -1.7 cm
to 0 cm

x = 0 cm to
18.5 cm

x = 18.5 cm
to 21.1 cm

x = 21.1 cm
to 22.2 cm

x = 22.2 cm
to 23.5 cm

Table 4.2: Mesh types inside the computational domain.

The turbulent quantities imposed at the inlet boundary for the RANS computations us-
ing the k − ω SST Menter turbulent model are obtained using the isotropic homogeneous
turbulence assumption and considering the velocity fluctuation being 5% of the mean ve-
locity. This gives k = 0.288 and ω = 136.8 which is evaluated using the turbulence length
scale of a fully developed pipe flow (0.038d, where d is the diameter of a circular pipe equals
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to the diameter of the nozzle throat). This corresponds to the most favorable case where the
turbulence is the largest. The inlet boundary condition is based on the total temperature
and mass flow set respectively to Ti = 1300.15 K and 11.4856 g.s−1, which corresponds to an
axial velocity of 6.974 m.s−1. The outlet boundary condition is a regular subsonic outflow
controlled by the pressure set at 101325 Pa. All the walls are set to be adiabatic and the
computational time step is 3 × 10−5 s with a one step implicit scheme. The convergence of
the computation with such a large time step is made possible by using 100 sub-iterations
for each implicit time step.

Figure 4.3: Longitudinal cross section view of mesh.

Figure 4.4: Longitudinal cross section close view of mesh at the
theoretical throat.

4.2.2 Flow fields characteristics

The convergence of the RANS computation is first ensured by looking at the mass conser-
vation between the inlet and the outlet. The left-hand side of Fig. 4.6 shows the absolute
difference between the inlet and the outlet mass flux using a log scale. The total mass flow
imbalance is around 5.10−5 kg.s−1. This represents less than 0.44% of the inlet injection. In
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Figure 4.5: Cross sectional view of hexahedral mesh at the inlet
and the outlet of the computational domain.

addition, the right-hand side of Fig. 4.6 shows the convergence of the resolved variables and
it can be seen that the computation is indeed converged. Note that the initial values of the
maximum residuals (t = 0) was not recorded during the computation. Due to the presence
of the boundary layers, the location of maximum velocity is displaced by approximately
2.5 cm when compared to the geometrical throat. Both sections (theoretical and numerical
throats) are represented in Fig. 4.7. TheMach number at the effective throat for this RANS
computation is 0.785. The pressure in the combustion chamber is 124600 Pa (see Fig. 4.8).
A longitudinal cut colored by temperature is shown in Fig. 4.9. A comparison of the RANS
results to the LES or 1D results is performed in the next section.

In addition, due to the presence of the square combustion chamber, four recirculation
zones appear. They are represented in Fig. 4.10 where the axial velocity is voluntarily
saturated at 12 m.s−1. Inside the diverging part of the nozzle, no separation of the boundary
layers is present. The same behavior has been observed while using another RANS mesh
with 15 prismatic layers at the boundary and with y+=1 but without hexahedral regions
inside the combustion chamber or the constant cylinder. This mesh contains 7.7 million
cells and the flow fields are very close to the one presented here. These results are not
included in this manuscript as the idea was to have similar mesh types between the RANS
and the LES computations described in the next section.
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Figure 4.6: Total mass flux absolute difference between the inlet
and the outlet of the computational domain in the RANS compu-
tation (left). Maximum residuals of the resolved variables in log10

scale (right).

Figure 4.7: Overall longitudinal cross sectional view of the Mach
number inside the computational domain for the RANS compu-
tation. The theoretical and effective throat positions are also rep-
resented.

Figure 4.8: Longitudinal cross sectional view of the pressure for
the RANS computation.
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Figure 4.9: Longitudinal cross sectional view of the temperature
for the RANS computation.

Figure 4.10: Cross sectional zoomed view of the combustion
chamber colored by the axial velocity (m.s−1) with streamlines
(left). Spanwise view of the combustion chamber at the location
x = −0.005 m (right). The axial velocity is voluntarily saturated
in order to see recirculation areas due to the square combustion
chamber.
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4.3 LES computations

The choice of a LES approach to study ICN is justified by the fact that in addition to obtain
the TATFs of the DISCERN nozzle, it is also interesting to explore the possible effects of the
turbulent boundary layers upon the generation of this kind of combustion noise. Indeed,
LES has a good capability to simulate the interaction between the turbulent boundary
layers, the entropy and the acoustic disturbances.

4.3.1 Mesh and global parameters of the LES computations

In the domain, the velocity at the inlet is set to approximately 7 m.s−1. Depending on
the type of wave one wants to simulate (entropy or acoustic), the Number of Points per
Wavelength (here NPW = 30) one can afford, and the characteristic frequency of the wave
(here fmax = 900 Hz), one obtains three limiting scales that represent the smallest sizes one
should enforce in the mesh in order to propagate those waves without too much dissipation.
They are respectively defined according to their critical zone. For P + and the entropy waves,
the critical zone is the combustion chamber while for P − it is the throat of the nozzle. The
three limiting scales are defined as:

∆entro =
umin

NPW × fmax
=

7

30 × 900
= 0.259 mm (4.1)

and

∆acou =
umin + c

NPW × fmax
=

707

30 × 900
= 26.2 mm (4.2)

as well as

∆upwardacou =
cthroat − umax−throat
NPW × fmax

=
680 × (1 − 0.8)

30 × 900
=

136

30 × 900
= 5.03 mm (4.3)

whereNPW is the number of grid points per wavelength and fmax is 900 Hz, the maximum
considered frequency for the entropy forcing. Looking at the three previous values, the
∆entro = 0.259 mm is the critical size inside the combustion chamber. The mesh size can
be increased up to 5.03 mm at the throat. However, one should keep in mind that the
diameter of the nozzle at the throat is 10 mm and increasing the mesh size up 5.03 mm is
not a appropriate idea. For aerodynamic purposes, themesh size inside the nozzle is chosen
at ∆entro also.

Themesh used in this section is a hybridmesh composed of the same zones as previously
described in the RANS section 4.2. The size for the hexahedra and tetrahedra are set to
0.259 mm inside the combustion chamber and the nozzle. This mesh allows the propagation
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a b

Figure 4.11: (a) Longitudinal cross sectional view of the end of the
combustion chamber and the nozzle inlet. (b) Longitudinal cross
sectional view of the two prismatic layers used near the nozzle
wall as well as the nozzle throat.

of entropy waves inside the nozzle and acoustic waves and with minimum numerical dis-
persion and dissipation. Inside the nozzle, a prismatic layer composed of two layers (y+ = 57

for each layer). The large value of the y+ for the first cell allows to consider the latter to be
in the logarithmic region of the turbulent boundary layer. This makes possible the applica-
tion of the wall model SIBLE [Chedevergne 2010] for the computation of the wall friction.
In the downstream cylinder, once again an axial stretching of 2% is applied starting at
21.1 cm. The maximum mesh size at the outlet of the domain is 0.70 mm. The stretched
zone and the downstream hexahedral zone help to dissipate the turbulent structures. This
gives a total of 56 millions cells. Fig. 4.11 shows some details of the LES mesh used for the
computations.

A second order explicit Runge-Kutta (RK2) scheme is used for the computation with a
time step of ∆t = 2.7 × 10−8 s. This corresponds to a maximum CFL number of 0.14. The
spatial scheme is the second order MUSCL scheme. A Smagorinsky subgrid scale model
is applied with the default parameters in the solver CEDRE. The recently implemented
NSCBC are used both at the inlet and the outlet of the computational domain. Following
Selle et al. [Selle 2004] and Lodato [Lodato 2008], the inlet relaxation coefficients are set
at 0.2 while at the outlet the value is 0.5 (higher acoustic reflection) with a characteristic
length of 0.285m. The slightly larger value at the outlet is due to stability reason: it ensures
that the pressure does not drift during the simulations. At the inlet, the target velocity is
fixed at 6.974 ms−1and the target temperature at 1300 K. At the outlet, the pressure is
relaxed toward 101325 Pa.

Finally, cross sectional plane surfaces are used inside the combustion chamber and the
cylindrical part for the LES acoustic post-treatment presented in chapter 5. The positions
of the planar surfaces are shown in Fig. 4.12 where the colors refer to those used in Fig. 4.2.
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Tables 4.3 and 4.4 give the exact positions of each planar surface.

Figure 4.12: Schematic view of the plane surfaces of sensors used
for the acoustic treatment.

Combustion chamber Constant cylinder part
20 plane surfaces 21 plane surfaces

x = -5 cm to -2.5 mm
step size: 2.5 mm

x = 18.6 cm to 21.1 cm
step size: 1.25 mm

Table 4.3: Number and positions of the plane surfaces used for
the acoustic treatment.

Nozzle
Inlet Theoretical throat Effective throat Outlet
x = 0 x = 0.1024 m x = 0.126 m x = 0.185 m

Table 4.4: Additional plane surfaces used inside the DISCERN
nozzle

The initialization and the convergence to a steady state (in terms of mass flux) of this
configuration are achieved after 43.5 ms of simulated time and all the following LES com-
putations are started at this point. This time corresponds to 5.8 Flow Through Time of the
computational domain.

4.3.2 Unperturbed Large Eddy Simulation of the configuration ("Back-
ground Noise" case)

In order to study the background noise in the configuration, a first non-forced LES compu-
tation is performed. This "background noise" LES is computed during 17.4 ms and provides
a mean flow that can be compared to the RANS results. A good agreement in the results
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allows to use the mean flow from the RANS computation rather than the one LES as an
input for the two-dimensional axisymmetric semi-analytical.

Figure 4.13: Total mass flux absolute difference between the inlet
and the outlet of the computational domain in the LES computa-
tion.

First, the convergence of this LES is assessed on zero order quantities such as the total
mass flux imbalance in the domain. Fig. 4.13 shows the variation of the absolute total mass
variation between the inlet and the outlet over time. It can be seen, as in the RANS case (see
Fig. 4.6), that the absolute total mass flux variation is fluctuating around 10−5 kg.s−1 and
represents less than 0.1% of the entering mass flow. These additional 17.4 ms corresponds
to 2.3 Flow Through Time of the total geometry. The next paragraphs compare the charac-
teristics of the mean flows obtained either by LES or RANS. First, a comparison between
the axial profile of the pressure, temperature and Mach number is performed. In addition
to the LES and RANS results, the one-dimensional isentropic perfect gas flow in a vari-
able section duct solution is also added to the plots. The axial profiles are represented in
Fig. 4.14.

Regarding the pressure signals, some discrepancies appear between the LES and the
RANS computations especially inside the combustion chamber. The reason is due to a
different estimation of the pressure losses. The one-dimensional isentropic perfect gas
flow assumption does not take into account the pressure losses occurring inside the nozzle,
giving a pressure in the combustion chamber lower than for the 3D computations. The
temperature profiles are also different between RANS and LES but the general shape is
quite similar. This discrepancy comes from a different maximum throat Mach number.
Indeed, the Mach number in LES is around 0.81 while for RANS it is at 0.785. Even with
these different Mach numbers, RANS and LES computations predict the same position for
the effective throat (difference of 0.1 mm) while the one-dimensional solution, which does
not take into account the development of the boundary layer, assumes the maximumMach
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Figure 4.14: Plots of the axial pressure, temperature and Mach
number profiles at the centerline of the nozzle from the LES (red),
RANS (blue) and the one-dimensional isentropic perfect gas flow
in a variable section duct solution (black).

number at the theoretical throat. The one-dimensional Mach number is overestimated and
reaches 0.86, this is imputed to the design process based on a heat capacity ratio of 1.4
instead of 1.32 for the computations.

The same type of comparison is performed in the radial direction at different axial lo-
cations, between RANS and LES computations. First, this comparison is carried out at
nozzle inlet. Due to different pressure loss estimations between RANS and LES compu-
tations, the radial pressure profile cannot be directly compared. In order to compare the
radial profiles of pressure, the averaged value obtained for both simulations is subtracted
beforehand. Fig. 4.15 shows a really good agreement between the two different approaches.
Note also that the velocity at the walls does not go to zero as the value is taken at the center
of the first cell and not directly at the wall.

Figure 4.15: Plots of the radial evolution of the pressure, the tem-
perature and velocity profiles at the inlet of the nozzle.

The same comparison is made at the effective throat position (x = 0.126 m). The
pressure correction is applied also for the temperature and the axial velocity. In general,
the shapes of the different profiles are quite similar (see Fig. 4.16).
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Figure 4.16: Plots of the radial pressure, temperature and veloc-
ity profiles at the effective throat.

Similar observations are made at the nozzle outlet, see Fig. 4.17.

Figure 4.17: Plots of the radial pressure, temperature and veloc-
ity profiles at the outlet of the nozzle.

4.3.3 900 Hz harmonic entropy forcing LES

A first computation with a 900 Hz entropy forcing at the inlet is achieved. This value corre-
sponds to the highest possible frequency to achieve a simulation without noticeable numer-
ical dissipation, and therefore to the lowest required simulated time. This computation was
performed at ONERA on the supercomputer Stelvio [ONERA 2009] on 900 CPUs. There
are multiple reasons for undertaking this first step using a single harmonic frequency for
the forcing. The main reason is that the development of post-processing tools is easier in
this context. Also, it enables us to precisely study the dissipation of the entropy waves due
to numerical effects. Finally, the TATFs obtained at 900 Hz from this LES computation is
performed in chapter 5 and compared to the TATFs obtained using a multi-harmonic forc-
ing. This comparison is an assessment of the multi-harmonic approach and the capability
to treat a large frequency band with only one computation.

The amplitude of the forcing is set to 40 K, representing 3% of the mean temperature in
the chamber which is 1300 K. The precise entropy fluctuations are obtained by subtracting
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Figure 4.18: Axial specific heat at constant pressure in J.kg−1.K−1

from the "Background noise" LES (left). Longitudinal cross
section view of the dimensionless entropy fluctuations for a
900Hz entropy forcing LES at the inlet with two streamlines rep-
resented in black line (right).

the mean flow values from the "Background noise" LES to the instantaneous field of the
900 Hz harmonically forced LES and then normalizing by Cp taken at the inlet, as the Cp
varies inside the nozzle (see left in Fig. 4.18). The right of Fig. 4.18 shows the dimensionless
entropy fluctuations inside the computational domain. The non-axisymmetric behavior of
the flow inside the combustion chamber has already beenmentioned in the previous section
(see Fig. 4.10). This phenomenon is present in the "Background noise" LES but it is more
visible in the 900 Hz harmonic entropy forcing LES see left of Fig. 4.19. However, at the
effective throat as well as at nozzle outlet, the flow can be considered as quasi axisymmetric
(see center and right of Fig. 4.19). This axisymmetric condition is important as the new
semi-analytical 2D model is based on an axisymmetric flow condition.

Figure 4.19: Cross sectional view colored by the temperature at
the nozzle inlet (left), the effective throat (center) and the nozzle
outlet (right).

The entropy fluctuation is computed using Eq. 2.34 and is represented in Fig. 4.18.
One can notice that the amplitude of the fluctuating entropy wave fronts decreases as they



104 Chapter 4. 3D numerical simulations of the DISCERN nozzle

approach the nozzle inlet meaning that some dissipation/diffusion occurs inside the com-
putational domain. Two streamlines are also added in the figure, they correspond to the
location where two studies on the dissipation/diffusion phenomena are carried out. The
dissipation phenomenon is the numerical reduction of the amplitude of the entropy signal.
The dispersion phenomenon is the numerical change in phase of the entropy signal. Finally,
the diffusion phenomenon is the thermal diffusion or also called the shear dispersion.

4.3.3.1 Axial dissipation/diffusion

Fig. 4.20 represents the non-dimensional entropy fluctuations at the centerline of the com-
bustion chamber over the axial nozzle distance (blue) but also along the streamline close
to the wall (red) previously introduced in Fig. 4.18. Table 4.5 summarizes the axial dissi-
pation/diffusion of the injected entropy fluctuations inside the combustion chamber. The
reference axial position is set to 0 at the nozzle inlet.

Figure 4.20: Plots of the axial dimensionless entropy fluctua-
tion s′/Cp for a streamline along the nozzle axis (blue) and for
a streamline close the nozzle wall (red).

One can notice that even if the mesh has been optimized for 30 points per wavelength.
Around 45% of the dissipation/diffusion is located in the upstream hexahedral zone due
to the low inlet velocity (M = 0.01). Appendix C gives a study on the thermal and viscous
diffusion as well as the mesh dissipation in a computational domain comparable to the
combustion chamber. It can be concluded that the thermal diffusion is themain responsible
of the amplitude decrease occurring in this region. In the test cases, it is expected to be
100 times larger than the viscous diffusion while the mesh dissipation is estimated to be
around 5.78%. The position x = −1.75 cm is interesting as this is the location at which the
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mesh elements transition from hexahedra (−5 cm ≤ x ≤ −1.7 cm) to tetrahedra (occuring at
x = −1.7 cm). In the tetrahedral zone of the combustion chamber, the amplitude decrease is
reduced due to an increase of the velocity (M = 0.02). Even if the thermal diffusion in the
combustion chamber is not negligible, this is not an issue for the prediction of ICN as long
as the real entropy fluctuations profile entering the nozzle is known and no or sufficiently
small dissipation occurs inside the nozzle. Inside the nozzle, the flow is strongly accelerated

Position (m) Average maximum Dissipation/diffusion (%)
peak amplitude

-0.05 0.030741416 0 (reference value)
-0.04 0.024882328 -19.06
-0.03 0.021406792 -30.37

-0.0175 0.018417221 -40.09
-0.01 0.017599159 -42.75

-0.0025 0.017022382 -44.63
0 0.016906554 -45.00

Table 4.5: Axial dissipation/diffusion inside the combustion
chamber for a streamline along the nozzle axis.

thus the axial numerical dissipation is supposed to be negligible. Table 4.6 gives a summary
of the axial diffusion where the reference state is taken this time at the nozzle inlet. It
should be retained that diffusion occurs inside the nozzle (13% between inlet and outlet).

Position (m) Average maximum Diffusion (%)
peak amplitude

0 0.016906554 0 (reference value)
0.1024 0.016406430 -2.96
0.126 0.015974835 -5.51
0.185 0.014726004 -12.90

Table 4.6: Axial diffusion inside the nozzle.

4.3.3.2 Dissipation/diffusion along a streamline close to the nozzle wall

The axial streamline is the location where the velocity is maximum, consequently the dis-
sipation/diffusion have been evaluated for the most favorable case. A look on the second
streamline represented in Fig. 4.18 is carried out. The same type of analysis as done pre-
viously is applied for this streamline. Fig. 4.20 also shows the non-dimensional entropy
fluctuations along the streamline close to the nozzle wall over axial distance (red). Table
4.7 summarizes the axial dissipation/diffusion of the injected entropy fluctuations inside
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the combustion chamber. The values in red represent significant variation compared to
Table 4.5. The reference position is set to 0 at the nozzle inlet.

Position (m) Average maximum Dissipation/diffusion (%)
peak amplitude

-0.05 0.030740188 0 (reference value)
-0.04 0.024904242 -18.98
-0.03 0.021516735 -30.04

-0.0175 0.017830772 -42.00
-0.01 0.016487801 -46.36

-0.0025 0.015523422 -49.50
0 0.015335994 -50.11

Table 4.7: Dissipation/diffusion inside the combustion chamber
observed for the streamline close the nozzle wall.

It can be noticed that the dimensionless entropy fluctuation signals are not perfectly
steady, this phenomenon is understandable as the velocity is quite small close to the wall.
However, it can be seen that the average peak amplitude remains the same. In addition,
this time as the velocity is not as large as for the axial value, some dissipation might still
occurs inside the nozzle. Table 4.8 gives a summary of the axial dissipation/dispersion
where the reference state is taken this time at the nozzle inlet. One can notice that the dis-
sipation/diffusion phenomena are very important especially inside the converging region
(42.25%) while in the diverging region it is 18.31%. Compared to the evaluation performed
on the axis, the wave attenuation is increased by 47.66 points. Thus, the LES TATFs pre-
dicted in the chapter 5 are likely to present slight discrepancies, all the more important as
the forcing frequency is important.

Position (m) Average maximum Dissipation/diffusion (%)
peak amplitude

0 0.015335993 0 (reference value)
0.1024 0.008856476 -42.25
0.126 0.008158938 -46.80
0.185 0.006047780 -60.56

Table 4.8: Dissipation/diffusion at the streamline close the nozzle
wall.
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4.3.4 Multi-harmonic entropy forcing LES

Several types of forcing have been studied by Polifke [Polifke 2014] or Jaensch et al. [Jaen-
sch 2014]. In this section, a frequency comb forcing of 7 frequencies going from 411.52 to
905.35 Hz (with a frequency step ∆f = 82.30 Hz) is used for the determination of the TATFs
of the nozzle. The main reason for the low frequency limit is defined by the necessity to
have a long enough temporal signal compatible with to the computational cost. The fre-
quency step is limiting the total signal length needed to be able to distinguish properly the
injected frequencies. One point between each forced frequency in the computed spectra is
the least to be achieved and it can be done at a reasonable cost.

4.3.4.1 Phases optimization

In order to stay in the linear domain, a maximum entropy fluctuation of 5% (65 K) of the
combustion chamber mean temperature is required at the inlet. For 7 frequencies in the
comb, the natural way to choose the amplitude is to divide the total temperature fluctuation
by the number of frequencies, thus giving an amplitude of 9.29 K. Using 7 random phases
with an amplitude (see Table 4.9) of 1 K for each frequency gives a temperature signal
represented in Fig. 4.21. It can be seen in this figure that the maximum amplitude reached
is 5.8 K. With these phases, it is possible to increase the amplitude for each frequency up
to 11.20 K rather than the theoretical 9.29 K.

Frequency (Hz) Initial phase value (rad) Optimized phase value (rad)
411.52 0.0001412331 1.736084
493.83 0.5342746 0.6656057
576.13 3.77841 6.003267
658.44 5.602159 1.792779
740.74 6.081845 0.7952823
823.05 1.191856 2.746402
905.35 3.235689 5.077471

Table 4.9: Values of the original and the optimized phases using
the Crest-Factorminimization. The number of digits is due to the
capability of the solver CEDRE to handle double precision floats.

In order to maximize the signal to noise ratio, a different approach is used here. A phase
optimization based on the Crest-Factor minimization proposed by Guillaume et al. [Guil-
laume 1991] is applied. An optimization algorithm is developed allowing to maximize the
signal to noise ratio by optimizing the phases for the different frequencies of interest1. This
method can be directly applied as the injection of the temperature fluctuations at the inlet

1The reader is referred to the paper of [Guillaume 1991] for details regarding the optimization algorithm.
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Figure 4.21: Initial signal with 7 random phases for an amplitude
of 1K for each frequency.

of the domain through the NSCBC is a multisine periodic signal. Indeed, the injected tem-
perature signal is a sum, in this case, of 7 cosine functions with an amplitude of 1 K. The
lp-norm of the function x(t) taken over the interval [0, T] is denoted by lp(x) and is defined
as:

lp(x) =

⎡
⎢
⎢
⎢
⎢
⎣

1

T

T

∫

0

∣ x(t) ∣
p dt

⎤
⎥
⎥
⎥
⎥
⎦

1
p

, p ≥ 1 (4.4)

During the optimization process, the lp-norm is computed up to p = 256. The optimization
is started using the initial phases of Table 4.9 and the optimized phases are shown in the
last column. No gain in the crest-factor reduction was seen for p number larger than 256.
Fig. 4.22 gives a view of the optimized temperature signal after the crest-factor minimiza-
tion. It can be seen that the maximum amplitude is this time around 3 K meaning that
only 3 frequencies can be in-phase over time. This method allows to increase the amplitude
of the forcing up to 21.5 K for each frequency rather than 11.20 K and to double the noise
to signal ratio.

4.3.4.2 Results

The numerical computation was started at GENCI on the supercomputer OCCIGEN
[CINES 2014] and completed at ONERA on the supercomputer Stelvio. Fig. 4.23 shows
the injected temperature at the inlet of the domain over time. The maximum injected
temperature fluctuation is 63.76 K. The amplitude represented in Fig. 4.22 needs to be
multiplied by a factor of 21.5 and a comparison of the theoretical signal and the measured
one is plotted in Fig. 4.23. One can notice a good agreement in terms of the shape of the
temperature signal and that the phase optimization has been successfully applied.
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Figure 4.22: Optimized signal using the new phases. The maxi-
mum total amplitude is 3 K.

Figure 4.23: Superposition of the temporal evolution of the tem-
perature at the inlet boundary for the LES computation (blue)
and the theoretical temperature signal (red).
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The entropy fluctuations are obtained by the same approach as in the 900 Hz harmonic
entropy forcing. It is represented in Fig. 4.24.

Figure 4.24: Longitudinal cross section view of the dimensionless
entropy fluctuations for a 411 to 905 Hz entropy forcing at the
inlet at a random time.

Finally, Fig. 4.25 shows the Q-criterion (second invariant of the velocity gradient ten-
sor) [Cantwell 1993] colored by the axial velocity. One can notice that strong turbulent
structures are present downstream of the nozzle throat showing the interest of a LES ap-
proach for the study of ICN even in the framework of a simple nozzle case. Indeed, the
effect of these structures and their interactions with the entropy fluctuations are captured
by the plane surfaces of sensors inside the cylindrical part as well as in the combustion
chamber. The acoustic analysis performed in chapter 5 therefore includes these effects
but also a variable specific heat ratio (γ). They are likely to be partly responsible for the
discrepancies that might arise between LES and the results from the model.

Figure 4.25: Longitudinal cross section view close to the nozzle
outlet of the Q-criterion colored by the axial velocity.



Chapter 5

Comparison of the results from the
different methods and validation

of the 2D model

Success is a science; if you have the conditions, you get
the result.

Oscar Wilde
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validation of the 2D model

This chapter presents the comparisons between the two-dimensional model, the one-
dimensional model MarCan and LES computations. Since the 2D model proposed in this
work relies on streamlines in the flow, the capability of the model to reconstruct the convected
entropy waves using the streamlines is first validated by comparison with the effective en-
tropy wave computed from the 900 Hz entropy forced LES. In a second step, two compar-
isons of the models are presented assuming perfectly non-reflective boundary conditions: (1)
a strictly one-dimensional mean flow is used for the 2D model to assess its capability to re-
trieve the one-dimensional analytical results provided by Onera’s 1D tool MarCan, (2) the
RANSmean flow is used as an input for the two-dimensionalmodel. Finally, the impedances
present in the LES are taken into account in the 2D model and results are compared with
the transfer functions obtained from LES.

5.1 Validation of the convection of the entropy waves by the
2D model

This section aims to validate the convection of the entropy waves implemented in the 2D
model using the streamlines. This validation is achieved by comparison with the results
of the 900 Hz harmonic entropy forcing LES, for identical amplitudes of the inlet entropy
wave. On one hand, a harmonic entropy wave is forced into a 3D LES at 900 Hz. The trans-
port of these waves (i.e convection, dispersion and dissipation) are thereby directly deter-
mined by the solver CEDRE. On the other hand, streamlines are first extracted from the
mean flow obtained from LES. Then, unsteady entropy fluctuations are imposed as bound-
ary conditions at the left end of streamlines and are transported along the lines thanks
to a dedicated 1D solver. This validation step is crucial because the 2D model relies on
these streamlines to determine the acoustic and entropy transfer functions of the nozzle. A
comparison of the two methods is made in Fig. 5.1 where modeled and simulated entropy
fluctuations flow fields are combined in one figure. The top-half of this figure shows the
entropy waves artificially transported along the streamlines whereas the bottom-half dis-
plays the entropy fluctuations directly obtained with CEDRE. As the model only considers
axisymmetrical geometries, it is not possible to reproduce the squared-shape combustion
chamber and an approximated geometry is used. The real geometry is indicated with dot-
ted lines in the figure, highlighting the difference of geometry between the two cases. The
use of this configuration is justified in the section 5.2.2.

The shape of the waves is well predicted by the model, however one can notice several
discrepancies. First, it can be seen in LES an important amplitude decrease of the en-
tropy wave in the overall domain. This effect is important especially inside the combustion
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Figure 5.1: Comparison between the convected entropy waves
using the streamlines generation method computed by the two-
dimensional model at 900 Hz (top) and the 900 Hz harmonic en-
tropy forcing LES (bottom). The dashed lines represent the com-
bustion chamber.

chamber and close to the walls as already explained in chapter 4. Outside the boundary
layer, the thermal diffusion is expected to be less important inside the nozzle and the down-
stream additional constant radius cylinder where the axial velocity is greatly larger than
upstream. Secondly inside the nozzle and close to the wall contrary to the LES observa-
tion, the modeled entropy waves are still present and convected far downstream. This is
because in the LES the thermal diffusion tends to smooth the entropy waves (temperature
gradient) while this thermal diffusion is not considered in the model. By neglecting this
physical phenomenon in the model, an overestimation of the source terms close to the wall
inside the nozzle is expected. The thermal diffusion and the mesh dissipation occurring
inside the combustion chamber is not a crippling issue. Indeed, it is possible to rescale the
inlet entropy fluctuation amplitude in the model by the effective value entering the nozzle
in the LES to overcome this problem. Doing so, Fig. 5.2 is obtained.

In this figure, the LES field is voluntary saturated to the values entering the nozzle. As
a conclusion, the streamlines generationmethod works pretty well regarding the prediction
of the shape of the entropy waves except in the region close to the wall of the nozzle, and
as long as the thermal dissipation arising inside the combustion chamber is compensated
for. This last point is not satisfactory and represents one of the main improvements that
should be brought to the 2D model before it can be used efficiently as a stand-alone tool.

The convergence of the solution of the downstream transfer function (P +

2 /σ) regarding
the number of streamlines used for computing the entropy source terms is represented in
Fig. 5.3. The amplitude is more affected by the number of streamlines than the phase. It
can be seen that convergence of the solution is reached with 50 streamlines, in this case.



114
Chapter 5. Comparison of the results from the different methods and

validation of the 2D model

Figure 5.2: Comparison between the convected entropy waves
using the streamlines generation method computed by the two-
dimensional model at 900 Hz (top) and the 900 Hz harmonic en-
tropy forcing LES (bottom). The levels are scaled by the axial
amplitude of the entropy fluctuation in the LES at the entrance
of the nozzle (x=0).

Of course, such an investigation should be performed for any other geometry.

Figure 5.3: Amplitude (left) and phase (right) of the downstream
transfer function (P +

2 /σ) as a function of the number of stream-
lines used.
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5.2 Comparison of the 1D and 2D models in the context of
perfectly non-reflective boundary conditions

5.2.1 One-dimensional mean flow

Before introducing more complexity, it is interesting to validate the implementation of the
new 2D model by comparing the results it provides with the ones obtained from usual 1D
analytical models. This one-dimensional mean flow is extruded in the radial direction to
provide a 2D mean flow for the model. The model is applied with this mean flow and the
equations to resolve remain unchanged. Indeed, degenerating the two-dimensional axisym-
metric model (Eqs. 3.24 and 3.51) for one-dimensional flows gives the same equations as the
ones of Marble & Candel [Marble 1977] (see Appendix D for additional details). Therefore,
one should retrieve the usual one-dimensional solutions when using the 2D model with
one-dimensional flows. A test case is proposed here as a first validation of the model for
one-dimensional flows. The case considered corresponds to the DISCERN nozzle with the
flow regime described in the previous chapter.

Figure 5.4: View of theMach number profile inside theDISCERN
nozzle in the one-dimensional case.

The 2D mean flow is obtained by solving the isentropic quasi one-dimensional perfect
gas flow equations in a variable section duct and extruded in the radial direction. The
evolution of the Mach number through the nozzle is reproduced in Fig. 5.4. Figures 5.5 and
5.6 compare the transfer functions obtained using the present two-dimensional model and
using the one-dimensional analytical tool MarCan [Giauque 2012] developed at ONERA.
The amplitude of the transfer functions P −

1 /σ and P +

2 /σ which correspond to the generated
acoustic waves traveling respectively upstream and downstream are shown in Fig. 5.5. It
can be observed that for this nozzle operating condition ∣P −

1 /σ∣ is around 10 times smaller
than ∣P +

2 /σ∣. The phase of the transfer functions is visible in Fig. 5.6. One can see a perfect
agreement between the analytical one-dimensional method and the semi-analytical two-
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dimensional model both in amplitude and phase. From these results, one can consider
that the implementation of the model is correct.

For the comparisons performed in the rest of this chapter, the solutions provided by
MarCan are obtained using this isentropic quasi one-dimensional perfect gas flow.

Figure 5.5: Amplitude of the transfer functions with a one-
dimensional mean flow. (left) ∣P −

1 /σ∣ and (right) ∣P +

2 /σ∣.

Figure 5.6: Phase of the transfer functions with a one-
dimensional mean flow. (left) arg(P −

1 /σ) and (right) arg(P +

2 /σ).

5.2.2 Two-dimensional mean flow

From the observation of the flow field of the RANS computation or LES, one can see that the
entropy waves are already distorted when they enter the nozzle. For the sake of simplicity,
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the injected waves at the inlet of the model are supposed to be planar1, it is then logical to
consider the presence of the combustion chamber in the model as it is present in the LES.
Unfortunately, the combustion chamber has a square shape and the model can only handle
axisymmetric geometries. In addition, the flow presents recirculation zones in which it
difficult to clearly define streamlines. In order to consider this region in the 2D model, its
shape has to be modified. This is done by extending the nozzle lines inside the combustion
chamber using a fourth order polynomial equation constrained by smooth junctions at both
extremities. The added part is similar to the curvature of the most external (radially)
streamlines presented in Fig. 4.10. The extended geometry is represented in Fig. 5.7 on
the left with the black lines delimiting the edges of the real combustion chamber. Fig. 5.7
on the right shows a longitudinal view of the extended nozzle colored in blue and the initial
combustion chamber colored in red. The mean flow obtained from the RANS computation
is interpolated on this new three-dimensional mesh and is azimuthally averaged to obtain
a two-dimensional flow field. With these modifications, it is now possible to apply the two-
dimensional model with either acoustic or entropy forcing. The last case represents the
main interest of this study.

Figure 5.7: Geometry of the considered nozzle. (left) Three-
dimensional view of the nozzle (blue) with the edges of the initial
combustion chamber (black square). (right) Close axial cut view
of the combustion chamber where the zone in red represents the
combustion chamber and in blue the extended nozzle.

1This hypothesis is not restrictive and any axisymmetric entropy wave pattern can be injected through a
modulation of the phase term of the entropy fluctuation in Eq. 3.64 (not tested during this thesis).
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5.2.2.1 Acoustic forcing at the inlet

An acoustic wave is imposed at the inlet of the configuration. The results obtained with the
two-dimensional model and MarCan are illustrated in Fig. 5.8. Looking at the amplitude,
discrepancies are quite small for P −

1 /P +

1 between MarCan and the 2D model. The trend of
the phase is well retrieved for P −

1 /P +

1 . Although remaining acceptable, discrepancies are
greater between MarCan and the 2D model for P+

2 /P +

1 both in amplitude and phase. De-
spite the 1D assumptionmade in the 2Dmodel for the acoustic perturbations, contributions
of the radial gradients of the mean flow remain in the model and explain the differences ob-
served between the 2 models. It is also worth mentioning that due to the hypotheses made,
the 2D model does not verify the conservation of acoustic energy through the nozzle. The
2D model only uses the transport information along the streamlines (Eq. 3.57 is not used).
Because of that the strict conservation of the energy along the nozzle is not enforced which
might explain the discrepancies with the 1D model in which such conservation principle is
directly used. However the discrepancies are quite small and still remain acceptable.

Figure 5.8: Illustration of the amplitude (left) and phase (right) of
the ATFs obtained using the two-dimensional model andMarCan
for an acoustic forcing at the inlet.

5.2.2.2 Acoustic forcing at the outlet

An acoustic forcing is now applied at the outlet boundary. The solutions are compared
to the ones provided by MarCan in Fig. 5.9. For the phases, the trend for both outgoing
waves is well retrieved. For the amplitude, ∣P −

1 /P −

2 ∣ obtained with the 2D model is similar
to the value provided by MarCan. The amplitude ∣P +

2 /P −

2 ∣ is slightly different between Mar-
Can and the 2D model especially at low frequency. Once again, although the assumptions
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made in the 2D model explain the discrepancies observed with the 1D solution and these
differences remain acceptable.

Figure 5.9: Illustration of the amplitude (left) and phase (right) of
the ATFs obtained using the two-dimensional model andMarCan
for an acoustic forcing at the outlet.

Globally, in the case of an acoustic forcing scattering predicted by the 2D model is very
close to the 1D results. This result is quite logical since even though the model uses 2D
average fields, they mostly concern convected quantities. Acoustic in this model is still
assumed to be 1D (i.e. having no radial dependence).

5.2.2.3 Entropy forcing

The 2D model proposed in this study has been developed by the author because of the sus-
picion that the radial evolution of the convection velocity might have an influence on the
indirect acoustic transfer function. The following comparison is therefore the most inter-
esting one as far as the 2D model is concerned. The amplitude and phase of the TATFs
obtained with MarCan and the 2D model are represented in Fig. 5.10. It was already
observed in the previous subsection 5.2.1 that for this nozzle operating condition, the am-
plitude of downstream TATF ∣P +

2 /σ∣ is ten times larger than the upstream TATF ∣P −

1 /σ∣ for
MarCan. The same behavior is found by the 2D model. One should realize that this result
by itself should not be generalized since it is strongly influenced by the shape of the nozzle,
the maximum flow velocity

The first impression is that the distortion of the entropy waves by the convection field
does have an influence upon the generated noise. Looking at the amplitude, the generated
noise is divided by a ratio of 2 (-6 dB) with the 2Dmodel in the upstream region, compared to



120
Chapter 5. Comparison of the results from the different methods and

validation of the 2D model

MarCan. This reduction reaches amaximum ratio of 2.4 (-7.6 dB) downstream of the nozzle.
In order to help the reader and provide order of magnitude, it is recalled that, for example,
that a value of 0.055 corresponds to 111 dB for a temperature fluctuation amplitude of
only 1 K in the combustion chamber. This order of magnitude shows the efficiency of the
generation process of indirect noise and explains by itself the renewed interest it undergoes.
The phases of both outgoing waves are also quite different than inMarCan but the tendency
is however in agreement with MarCan.

Figure 5.10: Illustration of the amplitude (left) and phase (right)
of TATFs obtained using the two dimensionalmodel andMarCan.

5.3 Analysis of the results with partially reflective boundary
conditions

It has already been said that the LES reflection coefficient at the inlet and at the outlet
cannot be set to 0. Otherwise, a potential drift of the mean quantities can occur leading
to computational instabilities. This section aims at characterizing the effective reflection
coefficients present in the Large Eddy Simulations in order to take them into account in
MarCan and the two-dimensional model.

5.3.1 1D characteristics filtering

All over the study, acoustic waves are considered to be 1D. In order to separate P + over
P −, a 1D characteristics filtering is applied in the combustion chamber and in the cylinder
downstream of the nozzle. To apply the 1D characteristics filtering method, one needs to
know the 1D fluctuating and the mean part of the pressure and velocity. From the LES
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computations, they are obtained using the plane sensors described in chapter 4 where a
spatial averaging of the variables is applied. Due to the small velocities of the flow in the
combustion chamber, thin boundary layers and small radial gradient; the averaging proce-
dure is quite immediate and the quantities are filtered using the characteristic method to
obtain P −

1 , P +

1 and consequently, the inlet reflecting coefficient Rin.
One should pay more attention in the region downstream of the nozzle where a flow

with thick boundary layers is observed. The averaging procedure is not that easy in this
region. Fig. 5.11 shows the fluctuating values of the pressure (left) and axial velocity (right)
using different number of points in the radial direction in the averaging process. In this
figure, it is expressed in terms of percentage of the downstream total surface area. It can
be seen that on the left-hand side of Fig. 5.11, the three curves are superimposed showing
that hypothesis of one-dimensional waves is ensured for the pressure fluctuations.

On the other hand, the axial velocity fluctuations are strongly dependent on the surface
area used for the averaging procedure (see right of Fig. 5.11). Indeed, the axial velocity is
the largest at the centerline and decreases as one goes to the wall.

Figure 5.11: Illustration of the downstream one-dimensional az-
imuthally averaged value of the pressure (left) and axial velocity
(right) fluctuations at plane of sensors 3 (see 4.3) for the multi-
harmonic entropy forced LES computation. The numbers are ex-
pressed in terms of the surface area percentage used in the aver-
aging process, where 0% represents the axial value and 100% is
the complete surface.

Another possible way to illustrate this is to look at the two-dimensional spatial root
mean square (rms) value of the pressure and the axial velocity. As an illustration, rms
values of the pressure and axial velocity are plotted for the plane of sensors 3 in Fig. 5.12.
The range of variation of the velocity rms is much larger than for the pressure rms. One can
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also remark the remaining pattern of the square combustion chamber in the illustrations.
A strong spot for u′ located at (y, z) = (0,−0.005) (inside the boundary layer) is also visible,
this might be due to an insufficient converged flow in this region.

Figure 5.12: Rms value of the pressure (left) and the axial veloc-
ity (right) at plane sensor 3. Both illustrations are voluntarily
saturated.

It was seen that the spatially averaged values of the velocity could not be used for the 1D
characteristics filtering. It is then necessary to adopt an another approach to reconstruct
the acoustic waves using only the pressure fluctuating signals.

5.3.2 Acoustic waves reconstruction and downstream reflecting coeffi-
cient

In this section, the method of the acoustic wave reconstruction in the downstream duct is
described. In this duct, the velocity fluctuations are not 1D because of the thick boundary
layer, the characteristics filtering therefore cannot be performed. Another solution is to
perform the waves separation using the pressure fluctuations solely, which is essentially
1D. Assuming a harmonic regime, the system to be solved writes:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

p′ = p+ + p−

∂p′

∂x
= −iK+

xp
+ − iK−

xp
−

(5.1)
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where the wavenumbers are expressed as:

K+

x =
ω

u0 + c0
(5.2)

K−

x =
ω

u0 − c0
(5.3)

K+

x and K−

x are given by the mean flow, p′ is the pressure fluctuations signal presented
previously and ∂p′

∂x
is obtained by finite difference method. This gives a closed system with

two unknowns p+ and p− for two equations.

∆x

Figure 5.13: Illustration of the five-point stencil in one-
dimension.

For the resolution process, 21 plane surfaces are available in the region downstream
of the nozzle. However the first two surfaces are not considered because the flow is not
perfectly stabilized in this region. The system is solved by setting x = 0 at each position
to simplify the resolution. This has only an effect on the phase of the solutions which is
considered later during the phase-shifting procedure of all the waves to the same reference
position. The resolution is made in the spectral domain. A five-point stencil illustrated
in Fig. 5.13 is used for the evaluation of the pressure derivative. The formula is easily
retrieved using the Taylor expansion of f(x + ∆x), f(x + 2∆x), f(x − ∆x) and f(x − 2∆x)

giving:
f ′(x) =

−f(x + 2∆x) + 8f(x +∆x) − 8f(x −∆x) + f(x − 2∆x)

12∆x
(5.4)

u0 and c0 correspond respectively to one-dimensional averaged value of the axial velocity
and speed of sound2. Fig. 5.14 illustrates the Fast Fourier Transform (FFT) of the one-
dimensional value of the pressure signals recorded at position 3, 11 and 19.

The resolution process allows to obtain p+2 and p−2 at 15 different positions. As an ex-
ample, Fig. 5.15 shows the results for positions 11 and 19. It is important to notice that in
the figure, the amplitude has not been non-dimensionalized by γP0. The evolution of the 2
acoustic waves is very similar the 2 positions, in both amplitude and phase.

The averaged amplitude of p+2 and p−2 is directly obtained by averaging the 15 solutions.
The phase of each wave for each position is phase-shifted to a common reference position
and then averaged. From these data, it is possible to compute the outlet reflection coeffi-
cient Rout =

p−2
p+2

which is illustrated in Fig. 5.16. Since the resolution process is not perfect,

error bars are included in the plots. A discussion on the reflection coefficients is proposed

2During the thesis, other values of u0 have been tested without having a strong impact on the results.
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Figure 5.14: FFT of the one-dimensional value of the pressure
signals recorded at position 3, 11 and 19.

Figure 5.15: Illustration of the amplitude (left) and phase (right)
of the solutions p+2 and p−2 at two different positions.
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in the next paragraph.

Figure 5.16: Amplitude (left) and phase (right) of the outlet re-
flecting coefficient. The blue lines represent the error bars.

5.3.3 Effective reflection coefficients

Now that the reflection coefficients have been obtained from the multi-harmonic entropy
forcing 3D LES, it is relevant to compare the amplitudes and phases of Rin and Rout to the
analytical expressions given by [Selle 2004]. The expressions of the terms are presented
in Appendix B where the validation of the NSCBC implementation is performed in the
one-dimensional case.

The first analysis is made for the inlet reflection coefficient, visible in Fig. 5.17. One
can note that the point for f = 905 Hz is not displayed in the graphs. Indeed, at this fre-
quency, the small pressure amplitudes involved inside the combustion chamber, P +

1 are
masked by the background noise (of numerical nature and of the order of 1 Pa in ampli-
tude) and the ∣∣ Rin ∣∣ is likely not to be physical. In contrary to Appendix B where the
NSCBC performs well in the one-dimensional case the agreement is not that good in the
3D LES computations. For the amplitude (left), the first two points are close to the theo-
retical values in terms of amplitude and phase. After that, the values in amplitude and
phase are strongly different than the theoretical value of Selle et al. meaning that the
background noise strongly pollute the pressure signal. It is the author belief that this is
due to the background numerical noise which has a constant amplitude with frequency
whereas the "physical" pressure fluctuation decreases with the frequency. This combined
dependence on frequency makes the reflection coefficient more sensitive to the numerical
background noise as the frequency increases.
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Figure 5.17: Inlet reflection coefficient of the LES and analytical
expressions given by Selle et al. [Selle 2004]: Amplitude (left) and
phase (right).

Considering now Rout, the amplitude and phase are represented in Fig. 5.18. For the
phase, although not perfect, the comparison holds for frequency higher than 600 Hz. At
lower frequency, the comparison is quite arguable. For the amplitude, the comparison re-
veals strong discrepancies both in term of amplitude and trend for all the frequencies. One
possible explanation is related to the fact that in the cylindrical region where the acoustic
analysis is made, turbulent boundary layers are present that generated additional noise in
the upstream direction whichmight bemistakenwith reflected noise from the outlet bound-
ary. One should also remind that a "simple" determination of the reflection coefficient at
the outlet is not possible because of the acoustic identification method used.

It can also be seen that for f = 658 Hz, the reflection coefficient is slightly greater
than unity. It might seem to be not physical, but if one performs an acoustic energy bal-
ance [Cantrell 1964,Goldstein 1976,Minotti 2004] at the outlet it proves to be possible see
Appendix F. In our case at the outlet boundary condition the maximum value reached is
1.1 so 21% of the acoustic energy is indeed reflected.

5.3.4 Comparison of the different approaches using the LES impedances

The TATFs obtained using the different approaches (two-dimensional model, MarCan and
LES) and the acoustic impedances obtained by LES are plotted in this section. The re-
sults of the 900 Hz harmonic forcing LES are also added in the figures. Except for the 900
Hz harmonic forcing LES, the results for the outgoing waves are represented in blue and
for the ingoing waves in red. A good match is found between the 900 Hz harmonic and the
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Figure 5.18: Outlet reflecting coefficient of the LES and the an-
alytical expressions given by Selle et al. [Selle 2004]: Amplitude
(left) and phase (right).

multi-harmonic entropy forcing LES both in amplitude and phase. This shows the interest
and the potential of the multi-harmonic approach [Giauque 2005]. Besides, the proof of
acoustic generation due to entropy forcing in the 2D model is given in Appendix G.

5.3.4.1 Upstream zone

The first comparison concerns the upstream zone. The amplitude and phase of the up-
stream outgoing TATF P −

1 /σ are plotted in Fig. 5.19. As for the purely non-reflecting case,
the amplitude predicted by the two-dimensional model is 2 to 3 times smaller than 1D re-
sults. The LES results in this thesis show that the TATFs are twice smaller than the one
predicted by the two-dimensional model. Still, the model gives a good improvement of the
results compared to MarCan. Moreover, the shape and the tendency of the phase are well
retrieved between the different approaches.
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Figure 5.19: Amplitude (left) and phase (right) of the TATF of the
upstream outgoing wave P −

1 .

5.3.4.2 Downstream zone

A focus is carried out now in the downstream region. The amplitude and phase of the
downstream outgoing TATF P +

2 /σ are represented in Fig. 5.20. Once again, the amplitude
of P +

2 /σ predicted by MarCan is largely overestimated compared to the LES and the 2D
model reduces the discrepancy by at least a factor of two. The computed amplitude provided
by the model is higher than in the LES until 905 Hz where a match is found. Regarding
the phase obtained by the three approaches, it decreases in the three cases, but the phase
variation occurs more rapidly in the LES than for MarCan and the 2D model.

Figure 5.20: Amplitude (left) and phase (right) of the TATF of the
downstream outgoing wave P +

2 .
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5.4 Conclusions

The validation of the entropy wave distortion has been carried out and a good comparison
has been found between the modeled convection using the streamlines and the 900 Hz har-
monic entropy forced LES. Aside from the thermal diffusion in the combustion chamber
due to the very low convection velocity, the main discrepancy is visible at the nozzle bound-
aries where the model predicts distorted entropy waves while in LES, the thermal diffusion
tends to damp the temperature fluctuations. It could be really interesting to incorporate
in the future the thermal diffusion phenomenon in the convection model. In addition, this
method has been applied to a nozzle but it is no difficulty to extend it to turbine stages in
the future.

A comparison of the two-dimensional and one-dimensional (MarCan) models on a 1D
flow showed a perfect agreement proving that the degeneration of the equations of the
2D model is working well. The developed model is then used with a 2D RANS flow and
non-reflecting boundaries. Acoustic and entropy forcing computations are carried out and
compared to MarCan. For the acoustic forcing small discrepancies are observed, they come
from the contributions of the radial gradients of the mean flow despite the 1D acoustics
propagation and remain small. Regarding the entropy forcing, an important decrease of at
least a factor of two in the TATFs is found with the new model.

In a next step, the effective reflection coefficients from LES have been imposed in the
two- and one-dimensional models and new comparisons have been made. It is seen that the
transfer functions of the LES are largely lower than their estimation with the 1D model.
The 2D model drastically improves the agreement of the transfer functions with the LES,
even if some differences remain. It should however be reminded that several assumptions
are made in the model that make the comparison to LES difficult: the LES are performed
with a variable specific heat ratio, thermal diffusion, numerical dissipation, turbulence
features and a three dimensional geometry which was unfortunately not axisymmetric. It
should be interesting to perform in the future a numerical simulation with all the assump-
tion made in the model to complete the validation of this model. In addition, at the current
stage, no experimental data on the configuration are available to validate the LES findings.

It can be finally concluded that this model improves the results compared to a purely
one-dimensional approach by at least a factor of two. The use of a RANS flow field improves
significantly the ICN estimation and as this type of computation is less time consuming
than LES it allows a rapid estimation of the generated ICN in an industrial context for
aero-engines.
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Conclusions

This PhD thesis deals with the subject of indirect combustion noise (ICN) estimation in
nozzle flows using numerical and analytical tools in the purpose of developing a two-
dimensional axisymmetric model.

In a first step, a brief overview of the literature on ICN over the last four decades is
carried out both analytically, experimentally and numerically. Analytically, even if Crocco
& Sirignano [Crocco 1967] and Bohn [Bohn 1976] developed approaches to study 3D and 2D
effects, their models suffer from restrictions that make them unsuitable for configurations
of interest. Crocco & Sirignano assume for instance a purely uniform flow over a sectional
surface and Bohn a small deformation of the flow due to the contraction (nozzle). As a con-
sequence, analytically only one-dimensional models are of practical interest. Numerically
and experimentally, the general conclusions are that 3D effects are really important for es-
timating ICN. Especially, the temperature gradient (between the entropy wave fluctuations
and the mean flow) but also the entropy waves distortion need to be taken into account for
the prediction of ICN analytically [Knobloch 2015b]. The literature review highlighted the
need to develop a two-dimensional axisymmetric model for estimating ICN in nozzle flows.

For the comparison and the validation of the 2D model, several tools are needed. ON-
ERA’s 1D solvers Sunday and MarCan are first described. They are used to demonstrate
the limitation of 1D solvers for the prediction of ICN. After a brief introduction of the equa-
tions of Fluid mechanics and the theory of Turbulence, ONERA’s 3D Navier-Stokes solver
CEDRE is then presented in details both for RANS and LES computations. These 3D nu-
merical computations are later exploited for the validation of the 2D model.

After that, the 2D model is described. The hypotheses of the model are first presented.
In order to take into account the entropy waves distortion, the radial evolution of the con-
vected entropy fronts through the nozzle must be incorporated in the model. This is done
by adding a modeled convection using the streamlines method. The Euler equations are
rewritten in 2D form for the entropic part while acoustic perturbations are considered to
be 1D: those equations are deeply explained and derived successively. The equations are
finally expressed in a Matrix form allowing their resolution and to obtain the Thermo-
Acoustic Transfer Functions (TATFs).

Numerical simulations of the flow through a nozzle are carried out in chapter 4. A RANS
and a LES computations are first run to provide the mean flow requested by the 2D model
and to ensure that this mean flow does not depend on the modeling used in the numeri-
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cal simulation. LES simulations are then pursued with a harmonic or a multi-harmonic
entropy forcing, in particular to quantify numerical dissipation as well as thermal and
viscous diffusions. In the configuration considered, it is shown that thermal diffusion is
important and this phenomenon, not taken into account in the 2D model, is most likely
to occur in realistic aero engines. Limitations of the present LES computations have been
highlighted and improvements may be achieved by using better suited sub-grid scale and
wall-law models as well as more efficient non reflective boundary conditions. A grid con-
vergence study would also help to enforce the reliability of the numerical results. Despite
these limitations, it is the writer’s belief that the results obtained are globally representa-
tive of the flow physics of the nozzle configuration and are sufficient for a first validation of
the developed model.

Finally in the last chapter, the 2D model is validated by comparison with the numeri-
cal results of the LES. The modeled entropy convection is first compared with the entropy
fronts distortion observed in the LES with harmonic entropy forcing. Despite the discrep-
ancies close to the wall where the 2D model predicts the presence of entropy waves that
are damped by thermal diffusion in the LES, the convected entropy waves method devel-
oped during this study is found to be accurate. The TATFs are then estimated with the
2D model using the RANS mean flow as input. First evaluations are performed consider-
ing non-reflecting boundaries and results are compared with the 1D model MarCan. For
the acoustic forcing small discrepancies are observed; they come from the contributions
of the radial gradients of the mean flow despite the 1D acoustic propagation and remain
small. Regarding the entropy forcing, an important decrease of at least a factor of two in
the TATFs is found with the new model, which evidences the strong influence of the dis-
tortion of the entropy fronts in ICN generation. In the final step of the validation, the 2D
model is confronted to the ICN computed with the LES. To this end, the effective reflection
coefficients from LES are imposed in the two- and one-dimensional models. It is seen that
the transfer functions of the LES are largely lower than their estimation with the 1Dmodel.
The 2D model drastically improves the agreement of the transfer functions with the LES,
even if some differences remain. It should however be reminded that several assumptions
are made in the model that make the comparison to LES difficult. The "reference" LES
computations are performed with a variable specific heat ratio, include thermal diffusion,
numerical dissipation, turbulence features and a three-dimensional geometry that cannot
be taken perfectly into account by the 2D model.

Within this work the proof of the importance of entropy waves distortion to the ICN
generation3 was assessed. The study revealed a great improvement in the estimation of
ICN by taking into account these distortions. A decrease in the amplitude by a factor of

3 Previously observed on the engine representative MT1 transonic high-pressure turbine.
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2 (6 dB) is found by the 2D model compared to 1D models. The estimation of ICN in an
industrial context remains possible with this new model, as it requires solely the 2D mean
flow inside the nozzle that can be quickly provided by a RANS simulation.
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Outlook

It has been evidenced that the main discrepancy of the model occurs at the nozzle bound-
aries where it predicts distorted entropy waves while physically the thermal diffusion tends
to damp the temperature fluctuations as observed in LES. In the future, the model could
be improved by incorporating the thermal diffusion phenomenon in the convection step.

In this thesis, in the absence of data regarding the shape and amplitude of the en-
tropy fluctuations in the combustion chamber just downstream of the flame, planar en-
tropy waves are used. Other wave structures, such as entropy spots as done by Mishra
& Bodony [Mishra 2013], can however be imposed at domain inlet in the model with no
difficulty.

In addition, future work could focus on the contribution of the various effects not taken
into account in the 2D model for entropy noise generation, such as varying specific heat ra-
tio, entropy-turbulence and acoustic-turbulence interactions, thermal diffusion, etc. Such
an investigation could be achieved by comparison with LES results, which include the
above-mentioned effects, with other numerical approaches such as RANS+CAA for in-
stance. At the current stage, no experimental data on the configuration are available to val-
idate the LES findings. Additional numerical computations and experimental campaigns
are required to really understand the contribution of ICN to the total noise of an aero engine
and in the future to be able to reduce it.

Concerning the 2D model, due to a lack of time the normal momentum equation,
Eq. 3.57, was not studied during this PhD. The evaluation of this equation should give
a strong indication of the accuracy of the developed model. A strong limitation of the model
is the absence of vorticity waves and their inclusion in a new version of the model would be
highly beneficial. To end, the model was shown not to conserve the acoustic energy. Con-
sidering the remarks above a deeper analysis of the energy conservation, including energy
budgets, seems to be of interest.

Finally, this method has been applied to a nozzle but its extension to a stator stage
does not seem to present any difficulty. The extension to the rotor, however, seems more
complicated due to the rotating geometry and base flow.
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Appendix A

Injection of entropy perturbations
in CEDRE with the NSCBC

formulation

For purpose of brevity and simplicity, the NSCBC in 1D are described in this appendix
even if the formulation of Lodato et al. [Lodato 2008] is implemented in CEDRE. NSCBC
are based on the decomposition of the flow into characteristic waves leaving or entering
the domain. This decomposition was first proposed by Thompson for inviscid flows [Thomp-
son 1987,Thompson 1990] and adapted to viscous flows by Poinsot & Lele [Poinsot 1992].
Poinsot & Lele demonstrated that for a one-dimensional flow, only three characteristic
waves are present, see Figure A.1. The concerned wave equations are:

L1 = (u − c) (
∂p

∂x
− ρc

∂u

∂x
) , backward acoustic wave (A.1)

L2 = u(c2 ∂ρ

∂x
−
∂p

∂x
) , entropy wave (A.2)

L5 = (u + c) (
∂p

∂x
+ ρc

∂u

∂x
) , forward acoustic wave (A.3)

Figure A.1: Boundary conditions located on the x1 axis extracted
from [Poinsot 2012].
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formulation

where L1 and L5 define the sound waves moving in the negative and positive x1 direc-
tions respectively andL2 is the entropy wave. L3 andL4 are the amplitudes of characteristic
waves associated with vorticity and L5+k are the amplitudes of the characteristic waves of
the reacting species. Hence it is possible to inject perturbations through a proper definition
of the ingoing Li’s. In our case, at the inlet for a subsonic flow, only the entropy injection
is explained. To prevent any drift of the mean quantities, a partially reflecting boundary
condition is preferred and the Li’s are expressed as a sum of a theoretical and a relaxation
terms:

Li = Litheo +Lirelax (A.4)

If one injects only entropy fluctuations at the inlet of the the computation domain, L3theo =

L4theo = L5+ktheo = L5theo = 0 and L1 is directly imposed by CEDRE. In the formalism of Selle
et al. [Selle 2004], the expression of L5 is then

L5 = L5relax =K5(u − u∞) = Σ5
ρc2

L
(A.5)

where u∞ (the velocity at infinity) is introduced to prevent any drift of the mean static
velocity at the inlet, K5 is a constant, Σ5 is the inlet relaxation coefficient and L is a char-
acteristic size of the domain. The entropy equation is then defined as:

L2 =
1

2
(γ − 1)(L1 +L5) +

ρc2

T

∂T ′

∂t
(A.6)

where T ′ represents only the imposed entropy fluctuations due to the temperature fluctu-
ations. This relation links directly the target entropy fluctuation and the characteristic
wave L2.

At the outlet for a subsonic flow, L2, L3, L4, L5, L5+k are leaving the domain, they are
imposed by the solver CEDRE. Only L1 is entering the domain (L1theo = 0) and is defined as

L1 = L1relax =K1(p − p∞) = Σ1(1 −M
2
)
c

L
(p − p∞) (A.7)

where p∞ (the pressure at infinity) is introduced to prevent any drift of the mean static
pressure at the outlet, K1 is a constant, Σ1 is the outlet relaxation coefficient andM is the
maximum Mach number in the flow.



Appendix B

Validation of the NSCBC on a
one-dimensional domain

As the NSCBC have been recently implemented in the solver CEDRE, it is necessary to
validate them. To this end, two test cases are presented here. These cases are conducted
on a one-dimensional duct of 259 mm × 0.259 mm composed of structured quadrihedral
elements. It has one cell along the radial direction (∆y = 0.259 mm) and 1000 cells (∆x =

0.259 mm) in the axial direction. The flow properties correspond to those in the combustion
chamber, as detailed in chapter 4. The other numerical parameters are identical to those
of chapter 4 except for the type of forcing. A multi-harmonic acoustic forcing composed of 7
frequencies going from 411 to 905 Hz (with a frequency step around ∆f = 82 Hz) is injected
at the inlet for the first case and at the outlet for the second one. The amplitude of the 7
frequencies in the comb is imposed at 1.4 Pa for each frequency.

B.1 Acoustic forcing at the inlet

The aim of this test case is to compute the outlet reflection coefficient under the injection of
a multi-harmonic acoustic forcing at the inlet (P +

1 ). Using the same subscript as in Fig. 1.3,
the outlet reflection coefficient is defined as:

Rout =
P −

2

P +

2

(B.1)

where all the three terms are complex numbers. The numerical amplitude and phase are
compared to the analytical expressions given by Selle et al. [Selle 2004] defined respectively
as:

∣∣ Rout ∣∣=
1

√

1 + (
2ω

K1
)

2
(B.2)

and
Φout = −π − arctan(

2ω

K1
) (B.3)
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where
K1 = Σ1(1 −M

2
)
c

L
(B.4)

In the LES computation, the outlet relaxation coefficient (Σ1) is set at 0.5 in accordance to
the value of chapter 4. ρ and c are directly obtained from the computation. Fig. B.1 shows
both the amplitude and phase of the outlet reflection coefficient from numerical compu-
tation in blue and also using the analytical expression in red. A perfect match is found
for the results showing a good behavior of the recently implemented NSCBC for the outlet
reflection coefficient for an ingoing multi-harmonic acoustic wave.

Figure B.1: Illustration of the amplitude (left) and phase (right)
of the outlet reflecting coefficient. Blue: One-dimensional LES
results and red: Analytical solution.

B.2 Acoustic forcing at the outlet

In a similar way as in the previous section, a computation with a multi-harmonic acoustic
forcing at the outlet (P −

2 ) is carried out aimed at computing the inlet reflecting coefficient
expressed as:

Rin =
P +

1

P −

1

(B.5)

A similar approach as the one adopted by Selle et al. for the outlet reflecting coefficient
is applied to the inlet to obtain the analytical amplitude and phase of the inlet reflecting
coefficient. This time, they are defined as:

∣∣ Rin ∣∣=
1

√

1 + (
2ρcω

K5
)

2
(B.6)
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and
Φin = −arctan(

2ρcω

K5
) (B.7)

where
K5 = Σ5

ρc2

L
(B.8)

In the LES computation, the inlet relaxation coefficient (Σ5) is set to 0.2 in accordance with
the value of chapter 4.

The analytical and numerical amplitudes (left) and phases (right) of the inlet reflection
coefficient are illustrated in Fig. B.2. A very good agreement is found for the amplitude.
Minor discrepancies arise for the phase with increasing frequency. However, they remain
quite small. It can be concluded that the recently implemented NSCBC are acting as a first
order low-pass filter as expected. Moreover, due to the lower value of the relaxation coeffi-
cient Σ5 at the upstream boundary compared to Σ1, the acoustic reflection is less important
at the upstream boudary than at the downstream boundary.

Figure B.2: Illustration of the amplitude (left) and phase (right)
of the inlet reflecting coefficient. Blue: One-dimensional LES re-
sults and red: Analytical solution.





Appendix C

Test case on the diffusion and the
numerical dissipation in a
one-dimensional domain

In order to study the convective and viscous diffusion phenomena as well as the numerical
dissipation (either due to the temporal or spatial scheme) occurring inside the nozzle, sev-
eral test cases are presented here.
These cases are conducted on a one-dimensional computational domain of 259 mm × 0.259
mm). It is made long enough to ensure no potential reflection at the outlet. Two structured
quadrihedral meshes are generated. They both have one cell along the radial direction
(∆y = 0.259 mm) but differ in the number of cells in the axial direction. Mesh 1 has 1000
cells (∆x = 0.259 mm) and Mesh 2 2000 cells (∆x = 0.1295 mm). The mesh size of Mesh 1 is
chosen in accordance to the nozzle LES computations presented in this thesis which is sup-
posed to withstand 30 NPW at 900 Hz, whereas Mesh 2 contains twice as much elements
(60 NPW) for the same frequency
The different test cases are summed up in Table C.1. Case 1 corresponds to the reference

Case Mesh Equations Time step Specificity/Goal
Case 1 Mesh 1 Navier-Stokes 2.7 × 10−8 Comparison to the LES results
Case 2 Mesh 1 Navier-Stokes 2.7 × 10−7 Influence of the time step
Case 3 Mesh 2 Navier-Stokes 2.7 × 10−8 Numerical dissipation
Case 4 Mesh 1 Navier-Stokes 2.7 × 10−8 High Prandtl number (144500)
Case 5 Mesh 1 Euler 2.7 × 10−8 No diffusive terms

Table C.1: Summary of the different numerical test cases.

simulation, with numerical parameters identical to the 900 Hz harmonic forcing LES. Only
one parameter is changed for cases 2-5 to evaluate its contribution on the diffusion and dis-
sipation of the entropy wave. The velocity, temperature at the inlet and the pressure at
the outlet of the 900 Hz harmonic forcing LES are used to initialize the following compu-
tations. After reaching a steady state, the computations are forced at 900 Hz at the inlet.
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one-dimensional domain

The amplitude of the forcing is set to 40 K but due to the inlet relaxation factor set at 0.2,
it slightly varies between the different test cases.
One sensor is placed at the inlet and another one 5 cm downstream as it corresponds to the
length of the combustion chamber in the LES configuration. They are respectively denoted
Sen1 and Sen2.

C.1 Case 1

In this test case, only the mesh differs from the 900 Hz harmonic forcing LES of Chapter
4. It is the reference case for the following computations. The two-dimensional views of
the flow inside the computation domain are plotted between 0 and 5 cm. In addition, as
the radial dimension is really small compared to the length, the XY aspect ratio is set to be
independent. One can see in Fig.C.1 the two dimensional evolution of the non-dimensional
entropy disturbance amplitude. The diffusion and dissipationmechanisms found in the 900
Hz LES computation (see Fig. 4.18) are also present in this reference test case. This means
that the accelerating flow present in the 900 Hz harmonic forcing LES is not responsible
of the diffusion and the dissipation phenomena. In order to characterize precisely the de-
crease in amplitude of the forcing, the dimensionless entropy disturbance signals recorded
at Sen1 and Sen2 are plotted in Fig. C.2. Their respective amplitudes are 0.029 and 0.01152,
which corresponds to an attenuation of the wave of 60.27 %.

Figure C.1: (left) Colored view of the computational domain and
(right) axial evolution of the dimensionless amplitude of the en-
tropy disturbances for Case 1.
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Figure C.2: Dimensionless entropy fluctuations signals recorded
for Case 1 at Sen1 (left) and Sen2 (right).

C.2 Case 2

For this computation, the time step of the temporal scheme is increased by a factor of ten
which is possible due to the absence of the nozzle. The aim of this computation is to char-
acterize the effect of the temporal scheme on the convection of the entropy wave. Once
again, a part of the computational domain colored by the temperature is visible in Fig. C.3
and Sen1 and Sen2 are again plotted in Fig. C.4. This time, Sen1 recorded an amplitude of
0.02905 and Sen2 of 0.01152. It corresponds to an amplitude decrease of 60.34 % which is
identical to the reference case. This shows that the number of temporal iterations does not
influence the results on the diffusion/dissipation and also that the numerical dissipation
in the LES computations is only due to the mesh size.
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one-dimensional domain

Figure C.3: (left) Colored view of the computational domain and
(right) axial evolution of the dimensionless amplitude of the en-
tropy disturbances for Case 2.

Figure C.4: Dimensionless entropy fluctuations signals recorded
for Case 2 at Sen1 (left) and Sen2 (right).
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C.3 Case 3

Case 3 differs from Case 1 by the use of Mesh 2. The NPW is increased to 60 for the
frequency of 900 Hz. This computation is carried out in order to study the influence of a
finer mesh grid on the amplitude decrease. A close view of the upstream computational
domain colored by s′/Cp is represented in Fig. C.5. One can see that the results are not
strongly different than Fig. C.1. Indeed, in this case the amplitude captured at Sen1 is

Figure C.5: (left) Colored view of the computational domain and
(right) axial evolution of the dimensionless amplitude of the en-
tropy disturbances for Case 3.

0.02918 and 0.01223 for Sen2. Both signals recorded by the two sensors are plotted in
Fig. C.6. The amplitude decreases by about 58.08 %. Comparing to the reference case
(Case 1), it represents a reduction of 2.26 points only. Doubling the axial number of cells
has not a significant improvement on the diffusion and the numerical dissipation of the
entropy wave.
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one-dimensional domain

Figure C.6: Dimensionless entropy fluctuations signals recorded
for Case 3 at Sen1 (left) and Sen2 (right).

C.4 Case 4

The aim of this computation is to characterize the influence of the thermal diffusion on
the attenuation of injected entropy disturbances. This is done by changing artificially the
heat conduction coefficient. The heat conduction coefficient initially computed using Eu-
cken’s law defined in Eq. 2.10 is substituted by Eq. C.1 and corresponds to the Prandtl law
equation.

Λ =
µCp

Prt
(C.1)

where Prt is the Prandtl number. This number represents the ratio between the viscous
diffusion rate and the thermal diffusion rate. A high Prtmeans that the thermal diffusion
is negligible. A stable computation is found with a Prt smaller than 144500 and Λ is then
deduced using Eq. C.2 to give Λ = 4.27 × 10−7 W.m−1.K−1 (for case 1, Prt = 0.7648 or Λ =

8.0347 × 10−2 W.m−1.K−1).

Prt =
µCp

Λ
=

5.19 × 10−51184

Λ
= 144500 (C.2)

The computation is carried out and a part of the computational domain colored by the
temperature is represented in Fig. C.7. It can be seen that the amplitude decrease is con-
siderably reduced. More precisely, Fig. C.8 shows the signal of s′/Cp at the two sensors.
On average, the amplitude of the entropy fluctuation is 0.0289 at Sen1 and 0.0271 at Sen2.
In terms of percentage, it corresponds to an attenuation of 6.23 %. Assuming that the
thermal dissipation is close to zero in this case (even if the Prt cannot be set to infinity
for stability reason), one can compare the results to the reference case and quantify the
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thermal dissipation to be 54 points.

Figure C.7: (left) Colored view of the computational domain and
(right) axial evolution of the dimensionless amplitude of the en-
tropy disturbances for Case 4.

Figure C.8: Dimensionless entropy fluctuations signals recorded
for Case 4 at Sen1 (left) and Sen2 (right).

C.5 Case 5

In the last case, the Euler equations are resolved rather than the Navier-Stokes equations.
The diffusive terms are not taken into account in this computation and the numerical dis-
sipation due to the mesh is characterized. One can see in Fig. C.9 the decrease of the
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one-dimensional domain

amplitude of the forcing. Looking at the recorded dimensionless signals in Fig. C.10, the
mean maximum amplitude at Sen1 is 0.03092 and 0.02913 at Sen2. This gives a 5.78% de-
crease, which corresponds quasi-exclusively to the numerical dissipation due to the mesh.
Comparing Case 5 and Case 4 gives an idea about the viscous dissipation inside the geom-
etry. Assuming that the thermal diffusion is close to zero for Case 4, it gives an estimation
of 0.45 point for the viscous dissipation.

Figure C.9: (left) Colored view of the computational domain and
(right) axial evolution of the dimensionless amplitude of the en-
tropy disturbances for Case 5.

Figure C.10: Dimensionless entropy fluctuations signals
recorded for Case 5 at Sen1 (left) and Sen2 (right).
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C.6 Dispersion of the different cases

The attenuation of the entropy wave for the 5 cases has been studied previously, the dis-
persion is now addressed in this section. The phases are plotted in Fig. C.11 both at the
inlet (Sen1) and at 5 cm (Sen2). For the cases 1-4, the dispersion is similarly the same at
around π

100 rad. Only Case 5 has a phase shift close to zero ( π
1600 rad). It seems that a better

coding of the numerical scheme inside the solver has been reached for the Euler equations
than the Navier-Stokes equations. However, the phase shift of cases 1-4 remains small and
acceptable for our study allowing to conclude that the numerical scheme used in this study
is enough to ensure a small dispersion of the injected entropy waves even while solving the
Navier-Stokes equations.

Figure C.11: Phase error after 5 cm of propagation.

C.7 Conclusions

The comparison between Case 1 and Case 2 shows that the temporal numerical scheme
has no influence on the temperature amplitude decrease inside the domain. Case 5 shows
that the mesh size of 0.259 mm gives a numerical dissipation of 5.78% and the same phe-
nomenon is likely to occur in the 900 Hz harmonic and multi-harmonic LES computations.
However, one needs to remember that this numerical dissipation is less important for fre-
quencies lower than 900 Hz. In addition, inside the combustion chamber the flow is accel-
erated, going from 7 m.s−1 up to 14 m.s−1 at the nozzle inlet, and this dissipation is likely to
be overestimated. Furthermore, the comparison of Case 3 and Case 1 shows only a small
reduction of the amplitude decrease, meaning that a mesh size of 0.259 mm is a good com-
promise in terms of accuracy and number of cells. It should also be reminded that the
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numerical dissipation due to the mesh occurring inside the combustion chamber is not a
real issue for computing the TATFs, as long as the dissipation is negligible between the
inlet and the outlet of the nozzle. Looking at the dispersion of injected entropy waves, it
can be concluded that the numerical scheme used in this PhD thesis is enough to ensure a
small dispersion.
Finally, the diffusion phenomenon occurring inside the combustion chamber is a physical
phenomenon that should be present in real engines. The diffusion occurring in the nozzle
is mainly due to the thermal diffusion, it is around 100 times larger than the viscous dif-
fusion. It has a major impact on ICN. From the combustion chamber to the nozzle inlet, it
tends to smooth in our case the entropy waves and in real engines the entropy spots.



Appendix D

Retrieving Marble & Candel
equations for the 2D-model

D.1 Continuity equation

In 1D, Eq. 3.62 can be rewritten as:

(A(
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In 1D, one can also write c0
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By doing so, one can simplify the Eq. D.1 and obtain:
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For the left-hand side terms:
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û(x)

u0x
+Aρ0

∂û(x)

∂x
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The first and the third terms are equal to zero using the continuity equation, the previous
equation can be simplified to give finally:
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The variable change from x to ξ proposed by Marble & Candel leads to:
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The phase shift can (assuming that ξ1 = (
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)

2

) also be rewritten as when injecting the
relations D.8 and D.9 in the Eq. D.7 to give:
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Then,

LHS

Aρ0

x∗
c∗

=iΩ(
P̂a(ξ)

γP0
) + 2ξ

∂

∂ξ
(
P̂a(ξ)

γP0
+
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For the right-hand side:
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Thus,
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The first line of the equation is equal to zero using the continuity equation.
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One can notice that those two terms canceled. So the final simplified equation is then
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D.2 Momentum equation

In 1D, Eq. 3.63 becomes using ϕ0 = 0, x = s and u0s = u0x:
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Relations in the section D.1 are also used giving:
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Since the mean flow satisfies the momentum equation D.2, the relation
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û(x)

u0x
) +
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And

c0
2 P̂a(x)

γP0
2

∂P0

∂x
=
P̂a(x)

γP0

γ

ρ0

∂P0

∂x

= − γu0x
∂u0x

∂x

P̂a(x)

γP0

= − γu0x
c∗
x∗

P̂a(ξ)

γP0

(D.27)



158 Appendix D. Retrieving Marble & Candel equations for the 2D-model

Eq. D.25 finally becomes:
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Hence,
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û(ξ)

u0x
) + u0x

c∗
x∗

[(γ + 1) − (γ − 1)ξ]
∂

∂ξ
(
P̂a(ξ)

γP0
)

−γu0x
c∗
x∗

P̂a(ξ)

γP0
+ u0x

c∗
x∗

P̂a(ξ)

γP0
= S (

ξ

ξ1
)

−
iΩ
2

u0x
c∗
x∗

(D.29)

The previous equation can be simplified by u0x
c∗
x∗

knowing that u0x =
√
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Finally,
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Which corresponds to Eq. 42 in the article of Marble & Candel in the spectral domain.



Appendix E

1D characteristics filtering

All over the study, acoustic waves are considered to be 1D. In order to separate P + over
P −, a 1D characteristics filtering is applied in the combustion chamber and in the cylinder
downstream of the nozzle. To apply the 1D characteristics filtering method, one needs to
know the 1D fluctuating and the mean part of the pressure and velocity. From the LES
computations, they are obtained using the plane sensors described in chapter 4 where a
spatial averaging along the section of the variables is applied. The Riemann invariants
are used at each positions (i) to give P +

i and P −

i . P +

i and P −

i are expressed as a sum of an
acoustic and a non acoustic part.

P +

i (t) = P
+

iac(t) + P
+

inac(t)

P −

i (t) = P
−

iac(t) + P
−

inac(t)

The non acoustic part needs to be filtered. The procedure is detailed for the acoustic
wave propagating in the positive x-direction (the same method is applied in the negative
x-direction).

As an example, if the reference position is chosen for i = 1, in order to find P +

1ac(t), let us
consider the acoustic propagation of a one-dimensional wave. If ∆t+12ac is the time needed
for the wave from 1 to reach the point called 2. Two equations can be written:

P +

1 (t) = P +

1ac(t) + P
+

1nac(t)

P +

2 (t +∆t+12ac) = P
+

1ac(t) + P
+

2nac(t +∆t+12ac)

Those two equations show that without any dissipation, after the time ∆t+12ac , the acoustic
wave at position 2 is the same as in 1. This is not valid for the turbulent or the entropy
waves which are not necessarily correlated. Based on Kopitz [Kopitz 2005] studies, the
acoustic filtering method uses the propagating characteristic of the acoustic information at
a specific speed to filter the non acoustic one (defined as P +

1nac(t), P
+

2nac(t + ∆t+12ac) and so
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on). Regarding this, one can write for n points:

P+

1 (t) = P +

1ac(t) + ⟨P1nac(t)

P +

2 (t +∆t+12ac) = P
+

1ac(t) + P
+

2nac(t +∆t+12ac)

P +

3 (t +∆t+12ac +∆t23ac) = P
+

1ac(t) + P
+

3nac(t +∆t+12ac +∆t+23ac)

⋮ = ⋮
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n (t +∆t+12ac + ⋅ ⋅ ⋅ +∆t+
(n−1)nac

) = P +

1ac(t) + P
+

nnac(t +∆t+12ac + ⋅ ⋅ ⋅ +∆t+
(n−1)nac

)

Summing all the terms on the left-hand side and in the right-hand side gives:

n

∑
i=1

P +

i (t +
i

∑
j=1

∆t+
(j−1)jac

) = nP +

1ac(t) +
n

∑
i=1

Pinac(t +
i

∑
j=1

∆t+
(j−1)jac

)

assuming ∆t01ac = 0.
The last term in the right hand side goes to zero when n is becoming large. The reason

is that this term is a sum uncorrelated terms. Thus with 1

n
∑
n
i=1 P

+

iac
(t+∑ij=1 ∆t+

(j−1)jac
) ∼ 0,

one can write:

P +

1ac(t) ≈
∑
n
i=1 P

+

i (t +∑
i
j=1 ∆t+

(j−1)jac
)

n

The acoustic propagation speed is defined as u + c, where u is the local fluid speed and
c is the local speed of sound.The times ∆t+ is defined as:

∆t+
(j−1)jac

=
D(j−1)j

V(j−1)j

=
D(j−1)j

u(j−1) + uj

2
+
c(j−1) + cj

2

(E.1)

Where D(j−1)j is the distance between the point j − 1 and j and using the assumption that
the acoustic propagation speed is the average of the propagating speed at j − 1 and j.

The same procedure can be applied for the acoustic wave going in the negative x-
direction, this time the acoustic propagation speed is defined as c − u.

∆t−
(j−1)j =

D(j−1)j

V(j−1)j

=
D(j−1)j

−
u(j−1) + uj

2
+
c(j−1) + cj

2

(E.2)



Appendix F

Acoustic energy balance at the
outlet of the domain

The acoustic intensity (or acoustic energy flux) [Cantrell 1964, Goldstein 1976,
Minotti 2004] can be written as:

Ð→
I+ =

1

ρ0c0
(1 +M0)

2p+2
2Ð→ex (F.1)

and
Ð→
I− = −

1

ρ0c0
(1 −M0)

2p−2
2Ð→ex (F.2)

The objective is to quantify the ratio ∣
I−

I+
∣ and to check if this term is smaller than unity. It

writes:

∣
I−

I+
∣ =

(1 −M0)
2

(1 +M0)
2

p−2
2

p+2
2

(F.3)

=
(1 −M0)

2

(1 +M0)
2
R2
out (F.4)

At the outlet,M0 = 0.413 so the ratio becomes:

∣
I−

I+
∣ = 0.175R2

out (F.5)

This means that for a total reflection of the wave ∣∣ Rout ∣∣= 2.4, in our case at the outlet
boundary condition the maximum value reached is 1.1 so 21% of the acoustic energy is
indeed reflected.





Appendix G

Proof of acoustic generation due to
entropy forcing in the 2D model

The objective here is to ensure that the outgoing acoustic waves found by the 2D model in
the configuration are primarily due to the entropy forcing and not to the acoustic forcing
issuing from the reflection of the acoustic waves on the domain boundaries. The outgoing
waves P −

1 and P +

2 can be expressed respectively as the sum of three different contributions:

P −

1 = [
P −

1

σ
]σ + [

P −

1

P +

1

]P +

1 + [
P −

1

P −

2

]P −

2 (G.1)

and
P +

2 = [
P +

2

σ
]σ + [

P +

2

P +

1

]P +

1 + [
P +

2

P −

2

]P −

2 (G.2)

In Eq. G.1, the terms [P −

1 /σ], [P −

1 /P +

1 ], [P −

1 /P −

2 ] (respectively [P +

2 /σ], [P +

2 /P −

2 ] and
[P +

2 /P +

1 ] for Eq. G.2) are the (T)ATFs obtained using perfectly non-reflective boundary con-
ditions (see section 5.2.2) while P +

1 and P −

2 correspond to the amplitude of the acoustic
waves entering the nozzle with the partially reflective boundaries. If one assume σ = 1, it
is possible to respectively plot the first and the sum of the last two terms of Eqs. G.1 and
G.2 to verify that the first term in both equations is the main contributor. They are plotted
in Fig. G.1 for Eq. G.1 (left) and Eq. G.2 (right).

Looking at the left of Fig. G.1, one can see that the term [P −

1 /σ] ∗ σ has a greater
contribution compared to the sum of the two other terms. Except for the point at 493
Hz between where the first term is 1.22 times larger than the sum of the two others, a
factor above 2 is found for the other frequency. In addition, once again the frequency at 905
Hz is removed from the figure where it was seen that in the upstream region of the nozzle
that P +

1 is strongly polluted by the background noise. Despite a not negligible contribution
of the second and third terms in the RHS of Eq. G.1, it can be concluded than the outgoing
waves P −

1 is for the most part generated by the entropy forcing.
Looking at the right of Fig. G.1, the same conclusion can be stated namely that the

term [P +

2 /σ] ∗ σ represented in blue is at least 2 times larger than the sum of the two last
terms. Once again, it can be concluded than the outgoing waves P +

2 is for the most part
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Appendix G. Proof of acoustic generation due to entropy forcing in the 2D

model

Figure G.1: Illustrations of P −

1 terms (left) and P +

2 terms(right).

generated by the entropy forcing even though the sum of the last terms represented in red
has also a non negligible contribution.
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Title: Analytical and numerical study of the indirect combustion noise generated by
entropy disturbances in nozzle flows

Keywords:Combustion noise, entropy wave, indirect combustion noise, nozzle transfer functions, large eddy
simulation

Abstract: Due to the reduction of jet mixing noise
and fan noise in modern aero engines, the relative
contribution of combustion noise (CN) has signifi-
cantly increased over the last few decades. Twomech-
anisms have been identified as CN in the 70’s: di-
rect combustion noise (DCN) and indirect combustion
noise (ICN). A focus is made on the ICN in this thesis
with the development of a two-dimensional axisym-
metric semi-analytical model taking into account the
distortion of the entropy waves in order to predict the
ICN for nozzle flows. The state of the art performed
in the first chapter highlights the necessity to im-
prove the prediction of ICN of 1D models by intro-
ducing the radial distortion of the entropy waves in-

side the nozzle. The second chapter of themanuscript
details the ONERA’s tools for studying ICN. The 2D
model is developed in the third chapter where the
Euler equations are rewritten in 2D form for the en-
tropic part while acoustic perturbations are consid-
ered to be 1D. The fourth chapter describes the nu-
merical computations performed during the thesis on
the retained configuration (the DISCERN nozzle): a
RANS and two large eddy simulations (LES) are car-
ried out respectively for the use and the validation of
the 2D model. In the last chapter, the application of
the newmodel using the RANSmean flow field is per-
formed, the results are compared to the 1Dmodel and
validated by confrontation with the LES predictions.

Titre : Étude analytique et numérique du bruit de combustion indirect généré par
l’injection d’ondes entropiques dans une tuyère

Mots clefs : Bruit de combustion, onde d’entropie, bruit de combustion indirect, fonction de transfert d’une
tuyère, simulation des grandes échelles

Résumé : Avec la réduction du bruit de jet et de
soufflante dans les moteurs aéronautiquesmodernes,
la contribution relative du bruit de combustion (BC)
a augmenté de manière significative au cours des
dernières décennies. Deux mécanismes ont été iden-
tifiés comme étant du BC dans les années 70 : le bruit
de combustion direct (BCD) et le bruit de combustion
indirect (BCI). Le cœur de la thèse est axé sur le BCI
avec le développement d’un modèle semi-analytique
2D axisymétrique prenant en compte la distorsion
des ondes entropiques afin de prédire le BCI dans
des écoulements de tuyère. L’état de l’art réalisé
dans le premier chapitre met en évidence la néces-
sité d’améliorer la prédiction du BCI des modèles
1D en introduisant la distorsion radiale des ondes

entropiques dans la tuyère. Le second chapitre du
manuscrit détaille les outils disponibles à l’ONERA
pour l’étude du BCI. Lemodèle 2D est développé dans
le troisième chapitre où les équations d’Euler sont
réécrites en 2D pour la partie entropique et en 1D
pour les perturbations acoustiques. Le quatrième
chapitre décrit les simulations numériques réalisées
pendant la thèse sur la configuration retenue (la
tuyère DISCERN) : un calcul RANS et deux sim-
ulations des grandes échelles (SGE) sont effectués
respectivement pour l’utilisation et la validation du
modèle 2D. Dans le dernier chapitre, l’application du
nouveau modèle utilisant le champ moyen RANS est
accompli, les résultats sont comparés au modèle 1D
et validés par confrontation avec les prédictions SGE.
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