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“BAO is easy, it is just double for loop...”

Jim Rich





Abstract

This thesis exposes my contribution to the measurement of baryon acoustic oscillations (BAO)

using Lyα forests and galaxies, with the cosmological interpretation of results.

The Baryon Oscillation Spectroscopic Survey (BOSS) - part of the Sloan Digital Sky Survey III

- measured spectra of ∼ 1.3 million galaxies and ∼ 150, 000 z > 2 quasars during four years

of observations. For the galaxy BAO measurement, I contributed to the development of a new

optimal estimator of the correlation function. Using Data Release 9 CMASS galaxy catalogs, we

obtained errors on the BAO peak position estimate reduced by 20% compared to Landy-Szalay

estimator.

My contribution to the BAO measurement in the Lyα forest covers from simulations, to data

analysis and cosmological interpretation.

Concerning simulations, I developed a method to generate spatially correlated random fields

dedicated to the production of mock Lyα forest absorption fields. This method has many advan-

tages: computing time scaling linearly with the number of quasars, low memory requirements

and no need to separate the survey into independent regions.

I created the MockExpander package, that converts an absorption field into a realistic set of

quasar spectra. These spectra follow BOSS characteristics, including resolution, noise, sky

residuals, mis-estimates of pixel errors. Astrophysical features such as metal absorption and

high column density systems are also implemented. The BOSS collaboration currently uses the

MockExpander to build mock catalogs.

These mock catalogs were extensively used to test our analysis chain. I quantified the possible

sources of systematics, such as continuum fitting methods, sky residuals, errors on pixel noise,

calibration features and metal absorption. No strong evidence was found for systematic errors

on the BAO peak estimates using mock catalogs.

Using DR11 data, the measurement of the radial and transverse BAO peak position yield, re-

spectively, c/rdH(z̄) = 9.18 ± 0.28(1σ) ± 0.6(2σ) and DA(z̄)/rd = 11.28 ± 0.65(1σ)+2.8
−1.2(2σ),

where rd is the comoving sound horizon and z̄ = 2.34 is the mean redshift of the measurement.

Assuming rd = 147.4 Mpc, value derived from cosmic microwave background measurements, our

results give H(z̄) = 222± 7(1σ) km s−1 Mpc−1 and the DA(z̄) = 1662± 96(1σ) Mpc. This pair

of values is at 1.8σ from the prediction given by a ΛCDM model with Planck best-fit parameters.
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m’a toujours motivé à la recherche, qui m’a conduit pendant les premiers mois de thèse. Merci
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conseils et à la sagesse des vieux: Mariana (o mejor, gracias), Seb pour le sourire et les débats
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le style original et contagieux, toujours dispo pour partager une bonne binch. Flavious, une âme
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Abraço cara!

Gracias mami, por el amor infinito con el cual siempre me cuidaste, de cerca o de lejos. Gracias
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Chapter 1

Introduction to Cosmology

Prelude

One century ago, Edwin Hubble observed for the first time the correlation between distance and

recession velocity of galaxies millions of parsecs away. This close-to-linear relationship was, and

still is, interpreted as the expansion of our Universe, which is observable only in scales much

larger than the size of galaxies (of tens of kiloparsecs). Using Cepheid stars as standard candles

to infer distances, he measured an expansion rate of H0 ∼ 500 km s−1 Mpc−1, showing for the

first time evidence for the expansion of the Universe. Hubble’s result is one order of magnitude

larger than the accepted value today, H0 ∼ 70 km s−1 Mpc−1 (Riess et al., 2011, Herrnstein

et al., 1999) for many reasons1, nevertheless the astonishing conclusion keeps unchanged since

then: the Universe is expanding.

In 1996, the instrument FIRAS on board of the COBE satellite measured the cosmic microwave

background radiation (CMB) spectrum showing that these photons follow a 2.7 Kelvin black-

body distribution (Mather et al., 1994). This is a clear evidence that these photons were once

thermalized with matter, meaning that the Universe was much denser and hotter than today,

giving another strong evidence for the expansion.

Cepheids are not bright enough if we try to measure them at larger distances. Supernovae of

type Ia (hereafter SNIa) are one the most energetic phenomena in the Universe, and can be seen

from much larger distances. A possible explanation for these events is the explosion of a white

dwarf when its mass reaches the Chandrasekhar limit of ∼ 1.4 solar masses (M� = 2, 0×1030 kg)

after accretion from its companion star, liberating as much radiation as the whole host galaxy. If

you can observe galaxies, you are able to observe supernovae. These objects have standardizable

light curves (Kowal, 1968) and can be used as standard candles. Even if we do not know the

intrinsic luminosity of these objects, relative measurements of the observed flux can tell their

relative distance. In 1998, measurements indicated for the first time that distant SNIa appear

1Hubble was wrong twice. First, he calibrated distance from M31 using Cepheids from a different kind of
those in the Milky Way. Then, instead of measuring Cepheids in more distant galaxies, he observed bright HII
regions.
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2 Introduction to Cosmology

dimmer than expected in a constant expansion Universe. This showed that the expansion is

actually accelerated (Riess et al., 1998, Perlmutter et al., 1999).

From Newton to Einstein, our interpretation of gravity results in attraction between massive

objects. How galaxies can be accelerated in the opposite way as gravity tell us? What is causing

this anti-intuitive acceleration? Are we misinterpreting observations somehow? Or the behavior

of gravity is more complex than described by Einstein’s General Relativity (hereafter, GR)?

Our current description of gravity, GR, is proven to be consistent with measurements up to the

scales of our Solar System. Most of gravity-related measurements beyond the Solar System are

“indirect”, meaning that they cannot contest the validity of GR, but they use GR to infer physical

properties, e.g. the mass of exoplanets or the mass of gravitational lenses. The accelerated

expansion of the Universe might be just another hint that GR is not a complete description of

gravity. Improving measurements on large distances, and therefore in the past, is very important

to access new physics.

A recent method to infer distances uses a standard ruler instead of standard candles as a probe

of the cosmic expansion. What is this ruler? As said before, observations show that the Universe

was so hot and dense in the past that nucleons, electrons and photons acted as a single fluid, a

plasma. During this hot period, each plasma overdensity was growing because of gravity. On

the other hand, this plasma was being pulled away of these potentials due to thermal pressure.

This competition between gravity and pressure around these density fluctuations lead to the

propagation of density waves outwards of potential wells. These sound waves propagate until

the pressure falls to zero after recombination. When the protons and electrons stop feeling the

pressure of photons, defined as drag epoch, the sound waves stop propagating and leave a slightly

over-dense shell of baryonic matter around each original perturbation. This phenomenon is then

called baryon acoustic oscillations (BAO). The radius of these shells is, since drag epoch, only

affected by the expansion of the Universe, with negligible gravitational collapse into the central

region of original perturbations. Therefore, measuring this radius at different times gives a direct

measurement of the expansion history of the Universe.

In this manuscript I describe how physics of the expansion can be inferred using measurements

of the baryon acoustic scale from the distribution of matter in the Universe. In this chapter, the

basics of the current cosmological model and the physics of BAO are presented. In Chapter 2, we

describe the Lyα forest and its relationship with the cosmic distribution of matter. In Chapter 3,

I summarize the Baryon Oscillation Spectroscopic Survey, conceived to measure BAO in the

distribution of galaxies and using the Lyα forest of quasars. In Chapter 4, I explain how to use

galaxies to measure BAO, summarizing the last BOSS BAO measurements, and describing the

new optimal estimator for this kind of measurement. The measurement of BAO using the Lyα

forest is the main subject of this thesis and is sub-divided into many chapters. Chapter 5 describes

the generation of mock catalogs dedicated to the measurement of BAO in the Lyα forest. The

analysis chain used to perform these measurements is presented in Chapter 6. Numerous tests

of our methods were performed using mock catalogs in Chapter 7. Once validated, our analysis

methods were applied to real data in Chapter 8. In Chapter 9, I discuss some of the systematic

effects related to this measurement, using both data and mock catalogs. Chapter 10 presents

the cosmological implications of the measurements presented in previous chapters.
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In models based on GR2, there is a simple model that can describe an Universe in accelerated

expansion. This model is based in the cosmological principle, that states: “Our Universe is

statistically homogeneous and isotropic on cosmological scales”. It means that, at scales much

larger than the largest structures such as clusters of galaxies (∼ 1 Mpc), matter seems to be

distributed homogeneously in the Universe, and that there are no preferred directions. In this

chapter, we briefly expose this model. However, it is obvious that the distribution of matter in

the Universe is not uniform, otherwise galaxies, filaments, planets or us would not exist. These

structures originate from density perturbations are difficult to describe analytically using GR,

but they can be included as an extension of the homogeneous and isotropic model. This will be

discussed in section 1.4.

1.1 A Little Word on General Relativity

Using the assumption that all free-falling frames are equivalent, Einstein concluded that gravity

is not a force. Actually, space-time becomes curved in the presence of matter, and matter free-

falls following this curved space-time over trajectories called geodesics. Massless particles such as

photons are subject to the curvature of space-time and also have curved trajectories in presence

of matter. Space-time curvature is usually described by a metric tensor gµν characterizing

the invariant line element ds2 = gµνdxµdxν (µ = 0 corresponding to time and µ = 1, 2, 3 to

space coordinates). This metric depends on the energy content filling space. This relationship

is summarized by Einstein’s field equations. These are non-linear, second order differential

equations for the metric gµν . They are written as

Gµν =
8πG

c4
Tµν , (1.1)

where Gµν = Rµν − R
2 gµν is the difference of the Ricci tensor and the metric scaled by half

of the scalar curvature R = Rµµ. Tµν is the energy-momentum tensor, representing energy

and momentum densities, and momentum fluxes (equivalent to pressure). G is the Newton’s

gravitational constant and c is the speed of light in vacuum. The 4x4 tensors in Eq. 1.1 are

symmetric, yielding a system of 10 independent equations (6 of them are the same because of

symmetry). The curved geometry described by the Ricci tensor is well defined if it satisfies

Bianchi identities. These identities come from differential geometry considerations, adding 4

more constraints on Einstein’s equations. These are expressed as Gµν;µ = 0, where the “;”

symbol denotes a covariant derivative (which is a well-defined derivative in curved space-time).

Bianchi identities are related to the physical independence of Einstein’s equations on the choice

of coordinate system. This freedom is called gauge invariance. To solve these equations, one

needs to fix a given coordinate system. It is interesting to note that Bianchi identities, pure

geometrical constraints, imply local energy conservation Tµν;µ = 0.

2No experiment to date has shown evidence against GR with direct measurements.
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1.2 Homogeneous and Isotropic Cosmology

The cosmological principle restricts the range of possibilities when choosing a metric describing

space-time. Isotropy allows us to define the spatial metric gij
3 through the expression of an

infinitesimal 4-line element ds with no spatial dependence. The time-dependence is allowed by

the cosmological principle. This dependence is set by an arbitrary function of time a(t), that

multiplies gij and works as a space dilator. For convenience, we write ds in spherical coordinates.

Formally, the radial dependence of the metric is set by the homogeneity condition, implying the

spatial scalar curvature R = Rii (contraction of the space-space Ricci tensor) to be also constant

over space. As stated before, the gauge freedom imposes us to arbitrarily fix some terms of the

metric. Usually the choice is a diagonal metric such that g00 = 1 and g0i = 0, which simplifies

equations. The homogeneous and isotropic metric is thus written as :

ds2 = c2 dt2 − a2(t)

[
dr2

1− κr2
+ r2( dθ2 + sin2 θ dφ2)

]
, (1.2)

where κ = R/6 is the curvature of the space. If κ = 0, space is flat and infinite (critical). If

κ < 0 space is hyperbolic and infinite (open), while κ > 0 corresponds to a spherical finite

space (closed). The function a(t), commonly called scale factor, describes the evolution of the

spatial metric, allowing the description of an expanding Universe. This metric was proposed by

Friedmann, Roberston and Walker, therefore referred as FRW metric hereafter.

The FRW metric allows us to completely compute the left hand side of Eq. 1.1 as a function of the

scale factor. The right-hand side of the same equation is also simplified under the assumptions

of homogeneity and isotropy. Describing the energetic content of our Universe as perfect fluid

in thermodynamic equilibrium, the energy-momentum tensor has the simplified form :

Tµν =
(
ρ+

p

c2

)
uµuν + pgµν , (1.3)

where ρ is the energy density, p the pressure, uµ is its 4-velocity. The cosmological principle

forces u0 = 1 and ui = 0, meaning that the fluid is locally at rest with respect to the frame

chosen. Also, it sets ρ and p constant over space (they can depend on time).

Putting these ingredients on Eq. 1.1, we obtain two differential equations for the evolution of the

scale factor. The first one comes from the time-time component. The second one comes from

the trace of Eq. 1.1. They are written as,(
ȧ

a

)2

= H2 =
8πG

3
ρ− κc2

a2
, (1.4)

(
ä

a

)
= −4πG

3

(
ρ+

3p

c2

)
. (1.5)

The dots here represent derivatives with respect to time t, and H = ȧ/a is the Hubble expansion

rate. Either combining equations above or using Bianchi identities (Tµν;µ = 0), we obtain the

energy conservation equation:

ρ̇ = −3H
(
ρ+

p

c2

)
(1.6)

3Latin letters are used for the three spatial components while Greek letters for all the four, including time.
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We have three unknowns, ρ(t), p(t) and a(t), and only two independent equations. The last

equation needed for solving this system of equations is given by the equation of state of the fluid,

that relates density and pressure. The equation of state can be obtained from the quantum

definitions of energy density and pressure. In the early hot Universe, reactions occurred at such

rates that different species were in thermal equilibrium, sharing the same temperature T . The

energy density and pressure are given by averages of energy E and momentum p weighted by

the distribution of particles in phase-space f(~x, ~p). These averages can be expressed as

ρi = gi

∫
d3p

(2π~)3
fi(~x, ~p)E(p) (1.7)

Pi = gi

∫
d3p

(2π~)3
fi(~x, ~p)

p2

3E(p)
(1.8)

where the i subscript denotes different species, gi is the species degeneracy (e.g. for photons

g = 2 because of the two spin-states) and E(p) =
√

(pc)2 + (mc2)2 is the 0th component of

the 4-momentum. Depending if we consider bosons or fermions in equilibrium, the distribution

f(p) =
[
e(E−µ)/kBT ± 1

]−1
is the Bose-Einstein (taking the “−” sign in this formula) or Fermi-

Dirac (taking the “+” sign), respectively. These distributions do not depend on the positions

~x or the orientation of the momentum ~p because of homogeneity and isotropy. To a good

approximation, the chemical potential µ is much smaller than the temperature over almost all

times and all species, therefore allowing us to set µ = 0. This also means that the number of

particles and anti-particles is the same, which is not true only for baryons.

If the rest mass energy mc2 of a given species is zero or much smaller than its average kinetic

energy ∼ kBT (mc2 � kBT , where kB is the Boltzmann constant and T is the temperature of

the system) these species need a relativistic description. We refer to these as relativistic species.

In this approximation, the integrals in Eqs. 1.7 and 1.8 can be solved analytically, giving a

simple relationship between energy density and pressure: PR = ρR/3 (the R subscript stands

for “relativistic”).

The opposite case, for non-relativistic species, the rest mass energy is greater than its temper-

ature (mc2 � kBT ), meaning that the momentum of these particles is negligible compared to

their rest energy. Therefore, PNR ≈ 0 (the NR subscript stands for “non-relativistic”). We

often refer to non-relativistic particles as pressure-less.

Given these equations of state, solutions for the Friedmann equations can be found. It is possible

to generalize the equation of state for different kinds of fluids by setting p = wρ, where w is a

constant (w = 1/3 for relativistic fluids and w = 0 for non-relativistic). The solutions for ρ(t) is

ρ(t) = ρ0 [a(t)]
−3(w+1)

, (1.9)

which is just translating how species are diluted by the expansion. For a(t), analytic solutions

can be obtained by assuming one species at a time. Setting a(0) = a0 = 1 and also assuming

flat space (κ = 0), the solution for a given species is

ln [a(t)] =
2

3(w + 1)
ln t (1.10)
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Note that there is an special case, where w = −1 which means that the pressure is negative.

In this case, the energy density ρ = ρ0 and the Hubble expansion rate H(t) are both constants

over time. This implies an exponential growth of the scalar factor with time a(t) = eHt. This

solution is important because it reproduces an accelerated expansion, as inferred by SNIa ob-

servations. This is the origin of the cosmological constant Λ, once added by Einstein in his field

equations when trying to model a static universe with matter. The cosmological constant has

two interpretations depending on which side of Eq. 1.1 it is written. Considered on the left-hand

side of the equation, the cosmological constant is a modified theory of gravity, with a constant

term Λgµν added to Gµν that cannot be derived from first principles. Added on the right-hand

side, it describes a fluid of negative pressure filling all the space, not being affected by the ex-

pansion, commonly referred as dark energy. This energy has something similar to the vacuum

energy in quantum electrodynamics. However, theoretical expectations from QED disagree with

observations by ∼ 120 orders of magnitude. The accelerated expansion is therefore one of the

most important unsolved problems in physics today.

1.3 The Contents of our Universe

The generally assumed species in our Universe are photons, baryons, cold dark matter and

neutrinos. In these section, the influence of these species on the evolution of our Universe is

described. As in the previous section, we still assume homogeneity and isotropy.

It is useful to define here the critical energy density ρcr, which is the density the Universe would

have in a flat space, κ = 0. It is directly related to the expansion rate of the Universe today, H0

by one of the Friedmann equations (Eq. 1.4),

ρcr =
3H2

0

8πG
. (1.11)

It is common to quote the energy density of different species in the present relative to this critical

density, using Ωi = ρi/ρcr. The curvature and the cosmological constant energy densities can

also be defined as fractions of the critical density.

1.3.1 Photons

Photons are mass-less particles responsible for the electromagnetic interactions of charged par-

ticles. Most of the photons filling out our Universe come from early epochs. They compose the

Cosmic Microwave Background (CMB). These photons are thermalized and follow very closely

a Tγ = 2.725 Kelvin black-body distribution as measured by the COBE satellite (Mather et al.,

1994). Therefore, the energy density of CMB photons can be written as

ργ = 2

∫
d3p

(2π~)3

1

epc/kBTγ − 1
pc =

π2k4
B

15c3~3
T 4
γ , (1.12)
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which depends only on the temperature Tγ . Since Eq. 1.9 for w = 1/3 (photons are relativistic)

gives ργ ∝ a−4, we derive that the CMB photon temperature is inversely proportional to the

scale factor, Tγ ∝ a−1. It is often useful and intuitive to use the temperature of photons, instead

of the scale factor or time, to define different epochs of our Universe. However, this is not valid

in very early epochs due to the change in the photon distribution when electrons and positrons

annihilate. It is actually the density of entropy s ∝ a−4 that can be used as a time indicator.

1.3.2 Baryons

Protons, neutrons and electrons are usually referred in cosmology as baryonic matter, even

though electrons are leptons. The term baryonic is used because electrons are much lighter

than protons and neutrons, not contributing significantly to the energy budget of these particles.

Baryonic matter interacts electromagnetically (through photons), and is in general measurable

with electromagnetic instruments.

The interaction of baryons with photons was very important when the Universe was hot and

dense, giving origin to baryon acoustic oscillations, the main subject of this work.

Many methods were used to measure the baryon density in the Universe and they seem to agree

in results (Fukugita et al., 1998). The two more precise techniques come from the measurement

of baryon acoustic oscillations in the CMB, and from the measurement of the abundances of

light elements. These measurements agree in a baryon density of about 4% of the total energy

density of the Universe today.

Unlike photons, baryons cannot be described as a gas at a given temperature and zero chemical

potential. Over most of the cosmic history, baryons are non-relativistic (w = 0), meaning that

their energy density evolves as ρb ∝ a−3.

1.3.3 Dark Matter

The measurements of baryon density uses information coming through photons. However, mass

measurements can be performed using information extracted from the dynamics of gravitational

potentials.

In this context, using Newtonian dynamics one can derive the total mass of gravitationally bound

structures based on the measured velocities of its components. Measurements of galaxy rotation

curves (Zwicky, 1937) and of the total mass of galaxy clusters based on the X-ray emission of

the intra-cluster gas (Vikhlinin et al., 2006) point to the presence of non-baryonic mass which

does not interact electromagnetically. This invisible matter is therefore called dark matter.

Gravitational potentials responsible for temperature fluctuations on the CMB also give strong

evidence for dark matter. The observed amplitude of these fluctuations is much larger (factor of

100) than expected by models with only baryonic matter (see section 1.4 for more details). Also

if there were only baryons, temperature fluctuations should be larger than observed by the same

factor in order to produce the observed structures today.
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Dark matter, as the cosmological constant, can be interpreted as a wrong description of gravity

on large scales. There are many theories that try to explain dark matter as an extension or a

modification of Newtonian gravity that would describe accelerations with more complex depen-

dence with distances than r−2 (see Famaey and McGaugh (2012) for a review). Even if these

theories are able to explain rotation curves and the observed mass-luminosity relationship, they

fail to describe most cosmological observations such as CMB temperature fluctuations or the

matter power spectrum.

Another possible explanation is that dark matter is composed by particles beyond the Standard

Model. These particles would interact only through gravity and weak interactions, therefore

referred as weak interacting massive particles (WIMPs). Many experiments try to measure a

signal coming from the scatter of WIMPs on high sensitivity fluids. None of them found to date

any convincing signal (see Bergström (2012) for a review). The larger density of dark matter in

the center of halos would increase the rate of annihilations of WIMPs into gamma rays. In many

models, it is expected that a gamma-ray peaked signal from the center of our Galaxy would be

visible on Earth (see Funk (2013) for a review). Observations show no evidence for such emission

to date (The Fermi-LAT Collaboration et al., 2013).

In any case, dark matter would act as a pressure-less fluid (w = 0) whose energy density decays

as ρDM ∝ a−3. The pressure-less nature of dark matter is essential to explain the observed

amplitude of CMB fluctuations and the clustering of galaxies today (details on section 1.4).

1.3.4 Neutrinos

Neutrinos are relativistic fermions that interact weakly with matter. Neutrino dedicated exper-

iments are converging towards the consensus that neutrinos actually are massive. The three

observable families of neutrinos (electronic, muonic and taunic) would be a quantum linear com-

bination of three in principle non-obsevable neutrino eigenstates. This implies that neutrinos

oscillate between different families, a measurable effect (Ahmad et al., 2002) possibly explained

by the neutrino mass. These experiments show that the difference between the square of two

neutrino eigenstate masses is at least of ∆m2 = 0.0027eV2 meaning that at least one neutrino

would have a mass of at least 0.04 eV (Beringer et al., 2012).

As photons, neutrino scattering was an efficient process at very early times are also thermalized

at a temperature Tν . The difference is that neutrinos stopped scattering efficiently at much

earlier times than photons due to the nature of the weak interaction. Except for the fact that

the photon temperature is slightly increased when positrons annihilates with electrons, neutrinos

have approximately the same temperature as photons.

The expansion history of the Universe is affected by neutrinos because they act as a relativistic

fluid, as photons. As described later in section 1.4, neutrinos also affect the evolution of per-

turbations. Therefore, it is possible to measure the effect of neutrinos on the CMB temperature

fluctuations and on structure formation, and extract information about their mass and the num-

ber of neutrino families. This shows the beautiful link between the physics of extremely large

objects and infinitesimally small fundamental particles.
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Figure 1.1: Scheme of interactions between different components of Einstein’s field equations.
Figure based on Fig. 4.1 of Dodelson (2003).

1.4 Linear Perturbation Theory

In section 1.2, a homogeneous and isotropic model for the Universe was introduced. Because of

homogeneity, no galaxies or other structures can be formed in this model. Also, baryon acoustic

oscillations (BAO), a phenomenon originated by density fluctuations, cannot exist. Because

of the complexity of GR equations (Eq. 1.1), the evolution of density perturbations cannot be

treated analytically. However, considering them small compared to the average density (which

is a good approximation for early times) allows us to expand equations to first order. Differential

equations become linear in this approximation.

The first step is to consider small fluctuations around the mean density,

ρ(~x) = ρ̄ [1 + δ(~x)] , (1.13)

with δ � 1. The evolution of the mean density ρ̄ is described by the homogeneous cosmology.

The interest is turned to the description of the density perturbations, δ(~x), responsible for

structure formation. Due to gravitational attraction, all species have peculiar velocities ~v which

need to be taken into account.

The evolution of density perturbations results from an interplay between density fields of dif-

ferent species (baryons, dark matter, photons and neutrinos) and the space-time metric. The

interaction between species and the metric is governed by Einstein equations and the Boltz-

mann equation (see § 1.4.2). Fig. 1.1 schematizes these interactions just described. Photons and

electrons interact mainly through Thomson scattering and all species interact with the metric

(gravity). Neutrinos interact with electrons through weak forces, but cross-sections are negligible

with respect to Thompson scattering between photons and electrons.
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1.4.1 The Perturbed Metric

To describe an homogeneous, isotropic and expanding Universe, we have chosen a coordinate

system for which the metric is diagonal (Eq. 1.2). To treat perturbations, we need to consider

a more general metric that allows space-dependence, eventually containing non-diagonal terms.

Metric perturbations can be divided on three classes4: scalar, vector and tensor perturbations.

Scalar perturbations dominate the evolution of the density field that describes structure forma-

tion and BAO. In most cosmological models, vector perturbations quickly decay and become

negligible since early times. Tensor perturbations are source of primordial gravitational waves,

which produce a special polarization pattern of CMB photons. Hereafter, only scalar pertur-

bations are considered (for an introduction of non-scalar perturbations see Dodelson (2003),

chapter 5).

The perturbed metric can be chosen to be described by two scalar functions (since we are

dealing with scalar perturbations), Φ and Ψ, both depending on space and time. This choice is

commonly referred as a “gauge” choice, that fixes the employed coordinate system. The metric

can be written as

g00(~x, t) = −1− 2Ψ(~x, t) , (1.14)

g0i(~x, t) = 0 , (1.15)

gij(~x, t) = a2(t)δij [1 + 2Φ(~x, t)] . (1.16)

In all our development, setting Φ and Ψ to zero should give us the homogeneous zero-order

cosmology discussed previously. Usually, Ψ corresponds to the Newtonian potential and Φ to

the spatial curvature.

In linear theory, these functions are treated as small quantities. All quadratic and higher order

terms are discarded. Of course, this is an approximation that works astonishingly well for the

statistical description of the CMB temperature fluctuations and the formation of large scale

structures (larger than ∼ 40 h−1Mpc), including BAO. The reason is that, in the standard

model, potential perturbations are small (Φ ∼ Ψ ∼ 10−5) since very early times and never grow

(actually decaying at radiation epoch). For a better small scale theory, the higher order terms

need to be considered.

1.4.2 Boltzmann Equation

One of the ingredients in the description of perturbations is the Boltzmann equation. It describes

the evolution of particles distributions in phase-space (position and momentum).

Let f(~x, ~p) be the distribution in phase-space of particles of a given species. The Boltzmann

equation is written as
df

dt
= C[f ] , (1.17)

4This division in three classes of perturbations is a consequence of the decomposition theorem (see Dodelson
(2003), section 5.4).
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where C[f ] is a functional that defines the collision, creation and annihilation terms. This

term takes into account possible interactions with other species. The left hand term is a total

derivative of the distribution with respect to time, that makes appear terms taking into account

the expansion of the Universe and metric perturbations.

To translate the idea of this equation, we consider the case of photons, for which the distribution

in phase-space is given by the Bose-Einstein distribution (with the chemical potential µ set to

zero),

f(~x, p, p̂, t) =

[
exp

{
p

T (t) [1 + Θ(~x, p̂, t)]

}
− 1

]−1

, (1.18)

where we include temperature fluctuations through the Θ(~x, p̂, t) function. The zero-order tem-

perature T depends on time (it is proportional to a−1(t), § 1.3). We assume that the temperature

contrast Θ depends only on the position (translating inhomogeneities) and on the direction of

photon momentum p̂ (translating anisotropies). This assumption discards the dependence of Θ

on the momentum magnitude p because the change in this magnitude is negligible for Compton

scattering processes considered next.

The zero-order Boltzmann equation (setting Θ = 0) gives us simply the dependence of temper-

ature with the scale factor already derived previously (T ∝ a−1). The first order Boltzmann

equation describes the evolution of Θ. The total derivative on the left side of Eq. 1.17 can be

developed (considering only first order terms),

df

dt

∣∣∣∣
first order

∝ ∂Θ

∂t
+
p̂i

a

∂Θ

∂xi
+
∂Φ

∂t
+
p̂i

a

∂Ψ

∂xi
(1.19)

The first two terms are related to the free streaming of photons, and the last two account for

the gravitational effects from the metric.

The collision term on the right-hand side of Eq. 1.17 takes into account Compton scattering

of photons. The computation of this term is an usual calculation in classical physics (energies

involved are not relativistic). The result depends on the Thompson scattering cross-section σT ,

the velocity of baryons ~vb and on the density of electrons ne. It is written as

C[f(~p)] ∝ −neσT [Θ0 −Θ(p̂) + p̂ · ~vb] , (1.20)

where Θ0(~x, t) = (4π)−1
∫

dΩΘ(~p, ~x, t) is the monopole of temperature fluctuations (integral

over the momentum direction).

Assembling Eqs. 1.19 and 1.20, writing them as function of conformal time η ≡ t/a(t) for clarity,

and using dots for derivatives with respect to η, leads to

Θ̇ + p̂i
∂Θ

∂xi
+ Φ̇ + p̂i

∂Ψ

∂xi
= neσTa [Θ0 −Θ(p̂) + p̂ · ~vb] . (1.21)

If we Fourier transform all these variables, the resulting Fourier amplitudes obey ordinary differ-

ential equations, which are much simpler to solve. Derivatives with respect to position become

scalar products with wavevector ~k. This procedure is commonly employed in perturbation theory.



12 Introduction to Cosmology

In Fourier space, the previous equation becomes

Θ̇ + ikµΘ + Φ̇ + ikµΨ = −τ̇ [Θ0 −Θ + µvb] , (1.22)

where we introduce the cosine of the angle between the wavevector and the photon direction,

µ = k̂ · p̂, and the optical depth τ(η) =
∫ η0
η

dη′ neσTa. For clarity, symbols denoting Fourier

amplitudes are the same as for configuration space if not otherwise stated.

For dark matter, the Boltzmann equation is much simpler due to the absence of collision terms.

Final equations for the evolution of dark matter overdensities δ = ρ/ρ̄ − 1 and velocities v are

given by

δ̇ + ikv + 3Φ̇ = 0 , (1.23)

v̇ +
ȧ

a
v + ikΨ = 0 . (1.24)

For electrons and protons, Coulomb scattering (e + p → e + p) needs to be considered in the

collision term of Boltzmann equation (Eq. 1.17). The Coulomb scattering rate is much larger

than the expansion rate at all epochs of interest. This tight coupling forces electron and proton

overdensities to a common value, δe = δp = δb (where b stands for baryons). Similarly, velocities

of the two species are the same. In Fourier space, the resulting equations for baryon density

perturbations are given by

δ̇b + ikvb + 3Φ̇ = 0 , (1.25)

v̇b +
ȧ

a
vb + ikΨ = τ̇

4ργ
3ρb

[3iΘ1 + vb] . (1.26)

where Θ1(~x, η) ≡ i
∫ 1

−1
µΘ(~p, ~x, η) dµ/2 is the local dipole of temperature fluctuations.

1.4.3 Perturbing Einstein’s Equations

The Boltzmann equation describes the evolution of distributions of different species under action

of the Newtonian potential Φ and curvature Ψ. To solve this system of differential equations,

two more equations are needed. In the following, we see that Einstein’s field equations give us

the evolution of Φ and Ψ as functions of densities of all species.

Using the perturbed metric (Eqs. 1.14, 1.15 and 1.16) to compute the Einstein’s equations

(Eq. 1.1) is a long computation. Details are not included here since no interesting physical

assumption is needed. As with Boltzmann equations, only terms linear in perturbations are

considered. The zero-order part of these equations leads simply to the homogeneous equations

of section 1.2. The first-order equations give the evolution of Φ and Ψ.

The first of the two missing equations come from the time-time component of the Einstein’s

equation and the second from the traceless component of the space-space part. Final equations

in Fourier space are given by

k2Φ + 3
ȧ

a

(
Φ̇− ȧ

a
Ψ

)
= 4πGa2 (ρmδm + 4ρrΘr,0) , (1.27)
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k2 (Φ + Ψ) = −32πGa2ρrΘr,2 , (1.28)

where ρm and ρr are the densities of total matter (dark + baryonic) and total radiation (photons

+ neutrinos), and Θr,2 is known as anisotropic stress and represents the quadrupole of the

radiation temperature in a given point (in configuration space).

The first equation is just a generalized Poisson equation in an expanding Universe. It shows that

the evolution of potentials is different if the Universe is dominated by radiation or matter, which

sets the right-hand side of the equation. The second equation defines the difference between

Φ and Ψ as a function of the anisotropic stress. Usually, Θr,2 = 0 is assumed, yielding an

equivalence relation between gravitational potential and curvature, Ψ = −Φ.

These two last equations complete the system of Boltzmann equations, allowing one to solve

for all variables: density and velocity perturbations for each species and the metric potentials.

The evolution of baryon and photon perturbations describes how BAO occurs in the primordial

plasma before recombination. The cosmic microwave power spectrum is described by solutions

for the photon temperature fluctuations Θ and the gravitational potential Φ, projected over the

last scattering surface.

1.4.4 Evolution of Perturbations: Matter Power Spectrum

Solutions for the differential equations described previously depend on the choice of initial con-

ditions. The problem of the initial conditions is related to the problem of the origin of our

Universe, which is one of the most intriguing questions in physics. The quasi-homogeneous

CMB temperature and the flatness of space-time support the idea that, at very early times,

the whole Universe was causally connected (becoming quasi-homogeneous). The Universe would

have passed through a rapid exponential expansion called inflation (Tsujikawa, 2003, Peebles,

1993). Inflation could in principle explain the seeds of structures (density fluctuations) by as-

suming they come from quantum fluctuations of a single field, that became macroscopic after

the rapid expansion epoch. Enlarged quantum fluctuations would set initial conditions for the

solutions of equations discussed in the previous section. Even though inflation seems to explain

homogeneity and flatness, no direct observational proof of inflation exist to date.

The main property of quantum fluctuations is that they are Gaussian and uncorrelated among

scales. If the potential driving inflation is very close to flat (a “slow-roll” potential), Fourier

modes of density fluctuations have variances that are scale-invariant. The power spectrum P (~k)

of density Fourier modes δ(~k) is defined as

〈δ(~k)δ(~k′)〉 = (2π)3δD(~k − ~k′)P (~k) , (1.29)

where δD is a Dirac distribution. The scale invariant power spectrum is defined as P (k) = Akns ,

with ns = 15. The statistical description of perturbations through its power spectrum is more

5 (This footnote ends at the next page) The scale independent object is actually the dimensionless power
∆2(k) = k3PΦ(k)/2π2. Let d3P be power inside a volume d3k of the gravitational potential fluctuations Φ,
given by

d3P =
d3k

(2π)3
PΦ(k) . (1.30)
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interesting than the evolution of each single mode. Linear perturbation theory predicts that

large scale modes keep their Gaussianity until later times. Non-linear physics affect small scale

modes, coupling different wavelengths, and creating non zero odd point correlation functions.

The power spectrum of dark matter is usually used as reference for the study of large scale

structures because dark matter is practically not affected by other species or thermal pressure,

simply falling into gravitational potential wells. Dark matter fluctuations are affected only

indirectly by radiation during radiation dominated era. During matter dominated era, dark

matter itself dominates potential wells. Baryons have a small effect in the overall shape of the

power spectrum apart from small wiggles due to BAO.
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Figure 1.2: Evolution of the matter power spectrum
P (k) starting at z = 500000 (bottom line) to z = 0
(top line).

Figure 1.2 shows the evolution of the dark

matter power spectrum as a function of time,

or redshift. Initial conditions are set with a

scale-independent power spectrum P (k) ∝ k.

Once the wavelength λk = 2πk−1 of a given

density mode is smaller than the Hubble ra-

dius DH = c/H(z), this mode is in causal con-

tact and dark matter starts to collapse. Grav-

ity makes matter density perturbations of all

scales grow with time, except during radia-

tion dominated era, where the rate of growth

is much smaller because of the thermal pres-

sure. Modes outside the horizon are not in

causal contact and do not feel the pressure,

and keep growing, causing the break in the

power spectrum slope. This peaks moves to smaller k (larger scales) because horizon grows and

increasingly larger modes become causally in contact. As matter starts to dominate at z < 2000,

perturbations inside and outside the horizon grow at same rate and the break in the power

spectrum no longer moves.

(End of previous page footnote) Integrating over the solid angle leads to

dP =
k2 dk

2π2
PΦ =

k3PΦ(k)

2π2
d ln k = ∆2(k) d ln k . (1.31)

The scale independence means that ∆2 does not depend on k. Energy density fluctuations δ are related to the
potential fluctuations Φ through the Poisson equation, which in Fourier space is written as

δ =
k2

4πGρ̄
Φ , (1.32)

yielding
P (k) = 〈|δ|2〉 ∝ k4〈|Φ|2〉 = k4PΦ(k) . (1.33)

Therefore, a scale invariant power spectrum expressed in terms of energy density fluctuations is

∆2(k) = C ⇒ PΦ = 2π2k−3C ⇒ P (k) = (2π2C)k , (1.34)

which has a dependence in k as expressed in the text.
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1.4.5 The Baryon-Photon Fluid : BAO

The baryon effect on the dark matter power spectrum is small but essential for the purpose of

this work and it is worth introducing it.

Mixing Boltzmann and Einstein equations in perturbation theory (Eqs. 1.22 to 1.28) results in a

differential equation for temperature fluctuations in the baryon-photon fluid before recombina-

tion. This equation is similar to a forced damped harmonic oscillator. The damping comes from

the expansion of the Universe, and the “force” comes from the gravitational potentials driving

the growth of perturbations. Solutions for this equation are oscillatory functions of krs(η), where

rs is the comoving distance6 traveled by a sound wave at conformal time η and at sound speed

cs, i.e.,

rs(η) ≡
∫ η

0

dη′cs(η
′) =

∫ z(η)

∞
dz′

cs(z
′)

H(z′)
(1.35)

The sound speed in the plasma, cs, is given by

cs(z) ≡
√

1

3[1 +R(z)]
, (1.36)

where R(z) = 3ρb(z)/4ργ(z) is the ratio of energy densities of baryons and photons (also in

Eq. 1.26).

In configuration space, the oscillating solutions describe a sound wave propagation in the plasma

around each initial density perturbation. Figure 1.3 illustrates the evolution of the correlation

function in real space for four species: dark matter, photons, baryons and neutrinos. On the first

three panels, baryons and photons are coupled as a single fluid, and the perturbation propagates

as a sound wave with speed cs. Since very early times (first panel) neutrinos are decoupled from

other species and free-stream at speed c. Dark matter is pressure-less so perturbations grow with

no propagation of sound waves. At z ∼ 1100, the Universe cools down below energies E < 1 eV

and electrons start to recombine with protons. Photons have their mean free path increased

due to the decreasing number density of electrons. At some point, photon mean scattering

time becomes larger than Hubble time (age of the Universe at that time, H−1(z)), defining the

decoupling of photons from baryons at redshift z∗. This decoupling marks the emission of the

cosmic microwave background (CMB) photons that we observe today. Soon after, baryons stop

feeling the radiation pressure and no longer propagate as a sound wave, leaving a overdense

spherical shell around each initial perturbation. This defines the drag epoch at redshift zdrag.

The radius rd of this shell is given by the sound horizon at zdrag, rd = rs(zdrag). Decoupling of

photons happens slightly before drag epoch zdrag < z∗ because photon number density is much

larger than baryon number density by a factor of ∼ 1010. In simple words, photons are more

numerous and stop “feeling” baryons before baryons stop “feeling” photons around them. In the

current standard cosmological model, z∗ ∼ 1090 and zdrag ∼ 1060.

The last two panels in Fig 1.3 show that, after recombination, dark matter and baryons mix

their gravitational potentials finishing with the same correlation function on large scales. The

6A comoving length χ is defined by l/a(t), where l is the physical size of the object today and a(t) is the
scale factor. Comoving lengths are constant over time in an expanding Universe, while physical lengths expand
accordingly (on cosmological scales).
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BAO feature left by baryons at zdrag is also present in the dark matter correlation function at

low redshift.

1.4.6 The Cosmic Microwave Background

The cosmic microwave background (CMB) is a projected picture in the sky of the Universe at z∗.

Once the photons decouple from baryons, they scatter for the last time and free-stream. CMB

photons arriving on Earth today contain information about temperature Θ of the plasma and

about gravitational potential fluctuations Φ in the region where they last scattered (known as

last scattering surface). The potential information comes from the gravitational redshift (resp.

blueshift) experienced by the photon escaping an overdense (resp. underdense) region. An

overdense region produces more bluer photons because of its temperature Θ, but these photons

are redshifted when escaping its potential well at the last scattering surface: these effects have

opposite sign. It is actually the gravitational redshift that dominates over the local temperature

(which is defined by local density) when defining the observed photon temperature in the CMB

today. Against intuition, hot spots in the observed CMB correspond to underdense regions at

z∗.

The statistics of the observed temperature fluctuations are related to the matter power spectrum

projected in the sphere. Instead of Fourier space, temperature fluctuations are decomposed in

a linear combination of spherical harmonics Y`m, where ` is the multipole degree, related to a

separation angle ∆θ in the sky through ` = π/∆θ. The variance C` = 〈|a`m|2〉 of the measured

amplitudes a`m for each spherical harmonic Y`m is called temperature power spectrum. This

angular power spectrum C` is the spherical and discrete analog of the three dimensional power

spectrum P (k) for a given frequency k in Fourier space.

Figure 1.4 shows the re-scaled temperature angular power spectrum D` = `(`+1)C`/2π measured

by four experiments: Planck satellite (Planck Collaboration et al., 2014), Wilkinson Microwave

Anisotropy Probe (WMAP, Bennett et al. (2013), Hinshaw et al. (2013)), South Pole Telescope

(SPT, Bleem et al. (2012), Hou et al. (2014)) and Atacama Cosmology Telescope (ACT, Das

et al. (2011)). The first two experiments are satellites able to make full sky maps while the last

two are ground based experiments aiming small angular scales (high ` values). Up to nine peaks

due to baryon acoustic oscillations are clearly seen in the power spectrum, allowing a precise

measurement of the angular acoustic scale, given by θ∗ = 0.596724◦±0.00038◦. The fitted model

(dashed line) perfectly agrees with data, showing the success of the current cosmological model.

The acoustic scale, the overall amplitude of the power spectrum and the relative heights of the

peaks are all related to the matter and baryon energy densities, ρm and ρb, because they are

the most relevant quantities setting the evolution of acoustic oscillations prior to CMB emission.

The temperature of the CMB, TCMB = 2.7260±0.0013 K (Fixsen, 2009), gives the energy density

of the photons today ργ (Eq. 1.12) that scales back in time as (1 + z)4 because of the expansion.

Assuming three mass-less neutrino species, its possible to compute ρR = ργ + ρν . Using the

measured values for radiation and matter densities in Eq. 1.35, we obtain an estimate for the

sound horizon comoving length, rd = 147.47± 0.59 Mpc.
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Figure 1.3: Evolution of the correlation function of dark matter (gray), photons (red dotted),
baryons (blue solid) and neutrinos (green).
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Figure 1.4: Measured temperature angular power spectra D` = `(` + 1)C`/2π of Planck,
WMAP9, ACT, and SPT. The model plotted is Planck’s best-fit model including Planck
temperature, WMAP polarization, ACT, and SPT. Error bars include cosmic variance. The
horizontal axis is logarithmic up to ` = 50, and linear beyond.

1.5 Baryon Acoustic Oscillations as a Cosmological Probe

The most interesting feature of BAO in the correlation function is that the peak position in

comoving coordinates practically does not change during the whole period from recombination

to nowadays. In other words, the physical size of the sound horizon is only affected by the

expansion of the Universe. The reason for that is the large size of the sound horizon, of about

150 Mpc (larger than any collapsed structure) that protects this feature from non-linear effects

of structure formation. This means that the BAO scale rs can be used as an standard ruler for

cosmological measurements of distance or the expansion itself, similar to the concept of using

supernovae of type Ia as standard candles.

One of the differences with respect to supernovae is that BAO is a not a single object measurable

in the sky. The signal is very weak, so statistical measurements over large volumes are needed.

BAO is often referred as a statistical standard ruler (SSR) for this reason.

The baryon acoustic feature is a three dimensional ruler. Therefore, it is possible to measure

it in many orientations in the sky with respect to us, e.g. in the radial direction or transverse

direction. In practice, we measure angles in the sky and redshift differences as shown in Fig. 1.5.

If we assume that BAO has a known comoving size, using the measured angular size of BAO

we can infer the angular distance DA(z) to the redshift z of this measurement. Analogously,

the radial BAO scale expressed as a redshift separation (or difference of velocities) gives us a

measurement of the local expansion rate H(z). We explain now how this works.

Geometrical inferences described above are not as simple due to the expanding, and possibly

curved, space-time. The infinitesimal comoving radial displacement of a photon is given by
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Figure 1.5: The radial length of an object is given by c dz/H(z) where dz is the difference
in redshift between the front and back of the object while the transverse size of the object
is DA(z)θ and θ is its angular size. In the case of BAO, the diameter can be theoretically
determined, allowing a measurement of DA(z) and H(z) separately. Figure from Bassett and
Hlozek (2009).

Eq. 1.2 with ds = dθ = dφ = 0, which can be written as

dχ(z) =
c

a(t)
dt = − c

H(z)
dz = −DH(z) dz , (1.37)

where

DH(z) =
c

H(z)
(1.38)

is the Hubble distance. The Hubble expansion rate, H(z), can be written as a function of the

energy density fractions of different species as

H(z) = H0

√
Ωm(1 + z)3 + ΩDEf(z) + Ωk(1 + z)2 + Ωr(1 + z)4 . (1.39)

The function f(z) defines the evolution of the dark energy density. A cosmological constant

corresponds to f(z) = 1. The comoving distance at redshift z is given by the integral of the

photon radial displacement from z to now (z = 0),

χ(z) = c

∫ z

0

dz′

H(z)
. (1.40)

The angular diameter distance DA(z) is defined such that an object of size L at redshift z has

an angular size in the sky of ∆θ = L/DA(z). It can be expressed as a function of the comoving

distance χ(z) as

DA(z) =
c

H0(1 + z)
√

Ωk
sin

(√
Ωkχ(z)

H0

c

)
. (1.41)

where Ωk is the curvature “energy density”. If Ωk < 0, the sine function becomes a hyperbolic

sine. In the limit of flat cosmology, Ωk = 0, then this expression is simply DA(z) = χ(z)/(1 + z).

Figure 1.6 shows how DA and DH vary as a function of redshift for three cosmological models,

assuming flatness (Ωk = 0), H0 = 70 km s−1 Mpc−1 and Ωm = 0.27 and a cosmological constant

ΩΛ = 0.73 for the fiducial choice. When increasing or decreasing ΩΛ by ±5% the value of Ωm

changes accordingly to conserve flatness (Ωm + ΩΛ = 1).
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Figure 1.6: Evolution with redshift z of the angular diameter distance DA and the Hubble
distance DH defined in Eqs. 1.41 and 1.38, respectively, for a flat ΛCDM cosmology with H0 =
70 km s−1 Mpc−1. Dotted (dashed) lines show the same curves with ΩΛ increased (decreased)
by 5%. Bottom panels show the change of those distances in percents relative to the center
cosmology.

Measurements of transverse and radial BAO gives the angular ∆θ and radial size expressed in

redshift units ∆z of the sound horizon rd. This allows us to infer DA(z) and DH(z) through:

DA(z) =
1

∆θ

rd
1 + z

and DH(z) = ∆z
rd

1 + z
; . (1.42)

There are two possibilities to proceed with observations:

• To consider that rd is a standard ruler with unknown size. Therefore, similarly for su-

pernovae studies for which the intrinsic luminosity of explosions is not know, we need to

perform measurements of the sound horizon at many redshifts and work with ratios of

distances, DA(z1)/DA(z2) and DH(z1)/DH(z2), where z1 and z2 are the redshifts of two

different measurements of BAO. This can be considered as the most conservative and model

independent approach.

• Assume that rd is known and it is calculable using Eq. 1.35 and a set of cosmological

parameters derived from measurements using other probes such as the CMB. Latest mea-

surement of BAO in the CMB Planck Collaboration et al. (2013) yields 0.1% precision

for the angular size of the acoustic horizon : (1.04148 ± 0.00066) × 10−2. These values

constrain the matter density Ωmh
2, the Hubble constant h and the baryon density Ωbh

2

to 0.3% precision assuming a flat ΛCDM model. This results in rd = 147.4 Mpc comoving,

which can be used to derive distances. This approach is clearly more model dependent

than the first one.

Either procedure give measurements of H(z), which depend on the amount of different species

in the Universe, in particular dark energy for which not much information is available to date.
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Measurements of BAO at low and intermediate redshift combined with CMB measurements allow

one to constrain models of dark energy with time-dependent equation of state (f(z) in Eq. 1.39)

and other exotic models, e.g., decaying dark matter into relativistic particles.

In Chapter 10 we present cosmological constraints obtained with DA and H measurements using

galaxies at z = 0.32 and 0.57, and Lyα forests at z = 2.34, all observed with the Baryon

Oscillation Spectroscopic Survey (BOSS).





Chapter 2

Tracing Dark Matter : The

Lyman-α Forest

In this chapter is explained how the Lyα forest traces the underlying dark matter density field

allowing their use to measure baryon acoustic oscillations.

The first part of the discussion is based on the review by Rauch (1998) and references therein.

We start by introducing the Lyα forest as an astrophysical object in § 2.1. The theoretical

interpretation is discussed in § 2.2 which is linked to the reionization process (§ 2.3). All this

theory is put into simulations, described in § 2.4. The use of Lyα forest as a probe of dark

matter fluctuations is introduced in § 2.4 using hydrodynamic cosmological simulations. First

measurements of large scale correlations using real data are presented in § 2.6.

2.1 Introduction to the Lyman-α forest

The Lyman-α forest is the region of quasar spectrum containing large amount of thin absorption

lines giving it the aspect of a “forest”. The forest extends from the Lyα emission peak (at rest-

frame wavelength of λLyα = 121.6 nm) of the quasar spectrum to bluer wavelengths. Figure 2.1

gives an example of a high-resolution quasar spectrum and its Lyα forest observed with the

Keck telescope (Womble et al., 1996). Lyα forests are usually observed on spectra of high-

redshift quasars (z > 2) because at those redshifts the forests is observable with visible light

spectrographs at wavelengths larger than 360 nm.

According to the standard model of quasars (or quasi-stellar objects) (Greenstein and Schmidt,

1964), these objects are galaxies with a very active central region, very luminous in radio, visible

and UV light, historically thought to be stars. These objects are thought to be powered by a

super-massive black hole accreting the gas surrounding it (Kazanas et al., 2012). This creates an

intense continuum emission spectrum over a large region of the electromagnetic spectrum, with

some characteristic emission lines from hydrogen transitions, such as Lyman-α and Lyman-β,

and also from ionized metals such as SiIV, CIII, CIV, MgII and NV (blended with Lyα).

23
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Figure 2.1: High resolution [full width at half maximum (FWHM) ≈ 6.6km s−1 ] spectrum of
the zem = 3.62 QSO1422+23 (V = 16.5), taken with the Keck High Resolution Spectrograph
(HIRES) (signal-to-noise ratio ∼ 150 per resolution element, exposure time 25,000 s). Data
from Womble et al (1996). The right most peak is the Lyα emission line of the quasar and the
peak at ∼ 4800 Å is Lyβ.

The physical explanation for the nature of the Lyα forest was historically a subject of debate

(see Rauch (1998) for a review). It was first suggested that these lines would come from ejected

material from the quasar. However, the huge momentum requirements for ejection (Goldreich

and Scoville, 1976), the detection of galaxies at same redshifts as some metal absorption systems

(Bergeron, 1986), the detection of high metallicity gas in systems close to the quasar and low

metallicities at more than 30,000 km/s away from it (Petitjean and Bergeron, 1994) are strong

evidences showing that the absorbers are at cosmological distances from the quasar.

Giving the large distance of absorbers from the quasar and that the forest “stops” at the Lyα

emission peak, one plausible interpretation for the Lyα forest is that absorbers are composed

of neutral hydrogen, absorbing the redshifted light of the quasar at the Lyα resonance, λLyα =

121.6 nm. Indeed, for wavelengths smaller than Lyβ, neutral hydrogen atoms are able to absorb

at both wavelengths. Therefore, redwards of Lyβ peak of the quasar spectrum, Lyα and Lyβ

absorption are mixed together. Similar mixing happens for the higher order resonances of the

neutral hydrogen up to the Lyman limit, λ = 91.2 nm. Any photon with energies higher than

this limit are absorbed, creating a break in the spectrum. These observations confirm that the

forest is absorption by neutral hydrogen in the IGM. The intensity of the absorption depends

mainly in the local density of neutral hydrogen (see § 2.2).

A small fraction of the lines hidden in the forest are not caused by neutral hydrogen but belong

to UV transitions from several common metal or heavy element ions (various ionization stages

of C, O, Mg, Si, Fe, and Al are most frequently seen). These metal lines are often associated

with strong Lyα lines. By stacking spectra in the rest frame of these Lyα absorbers, metal lines

appear very clearly (see Fig. 9.5). These metals are produced by stars inside the gas clouds,

enriching the medium through supernova explosions.

If the local density of HI is higher than for usual Lyα lines, the gas becomes optically thick to

ionizing radiation, and a discontinuity at the Lyman limit (91.2 nm) is detectable. They are

usually referred as Lyman limit systems (LLS). In systems with even higher densities, the ionizing

background light cannot reach central regions rendering the gas predominantly neutral, a process

commonly called self-shielding. The full absorption of the lines and the peculiar velocities of the
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gas create a large trough in the spectrum. The damping wings of the Lorentzian component of

the absorption profile begin to be detected, reaching their maximum in the so called Damped

Lyman-α systems (DLAs).

When significant amounts of matter are being expelled from the quasar over its line of sight,

broad absorption lines (BALs) are produced in its spectrum at wavelengths corresponding to

Lyα and other metals. These lines are broad due to the velocity dispersion of the outflow gas.

Since the outgoing matter comes from the quasar itself, BALs usually appear bluewards of the

emission lines of the quasar. How close from the emission line depends on outwards velocity of

the gas.

2.2 The Gunn-Peterson trough

Gunn and Peterson estimated for the first time, in 1965, the amount of neutral hydrogen in the

intergalactic medium (IGM) needed to match observations of the Lyα forest at z ∼ 2 (Gunn and

Peterson, 1965). The conclusion was that most of the hydrogen in the IGM is actually ionized

at z ∼ 2. This calculation is detailed in this section.

If we define F (λ) as being the ratio between the observed flux in the forest, f(λ), and the original

unabsorbed flux, C(λ), at observed wavelength λ, we can express this fraction as a function of

the optical depth, τ(λ), as

F (λ) =
f(λ)

C(λ)
= e−τ(λ) . (2.1)

We refer to the transmitted flux fraction F as transmission hereafter. The optical depth, τ(λ),

quantifies the probability of a photon, observed at λ, to be scattered during its travel between

the quasar and us.

The scattering probability dτ of a photon over a infinitesimal proper length interval dl = a(t) dr

at time t (where a(t) is the scale factor as defined in § 1.2), is

dτ = nHI(t)σ(νs) dl , (2.2)

where nHI(t) is the local number density of neutral hydrogen atoms at time t (assumed to be

uniform over space) and σ(ν) is the excitation cross-section for the neutral hydrogen, function

of the local photon frequency ν. The function σ(ν) has the form

σ(ν) =
πq2

mec
g(ν) . (2.3)

where q is the electron charge, me the electron mass and g(ν) is the profile function such that∫∞
0
g(ν) dν = 1.

For neutral hydrogen, the profile function g(ν) has many narrow resonant peaks in the form

of Lorentzian profiles centered at each resonant frequency. Those frequencies correspond to

transitions between quantum levels of energy. Transitions between the ground state and other
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Figure 2.2: Scheme of the resonance peaks of the absorption cross-section of the neutral
hydrogen as a function of wavelength λ. The widths of those peaks is only illustrative.

levels are characterized by the Lyman series. Figure 2.2 schematizes σ(λ) for the Lyman series.

The most significant cross-section among the Lyman series is the Lyα resonance at λ = 121.6 nm.

The number density of neutral hydrogen atoms nHI(t) in Eq. 2.2 can be computed from the

baryon energy density. The baryon energy density today, ρb, is given by a fraction Ωb of the

critical density ρcr = 3H2
0/8πG (Eq. 1.11, assuming a flat metric). In a past time, or redshift z,

this density was larger by a factor of (1 + z)3 due to the expansion of the Universe. Considering

that most of baryons are hydrogen and helium atoms, and that the helium fraction is given by

Y ∼ 0.24, we have that the hydrogen energy density at redshift z is ρb(1−Y )(1+z)3. Neglecting

the contribution of electrons to the hydrogen energy density and assuming that a fraction X of

those atoms is neutral, the number of neutral hydrogen atoms per unit volume is given by

nHI(z) = X
3H2

0

8πG

Ωb
mp

(1− Y )(1 + z)3 = 5× 10−6cm−3X

(
H0

70 km s−1 Mpc−1

)2
Ωb

0.045

(
1 + z

3

)3

,

(2.4)

where mp is the mass of the proton.

Let ν be the frequency of an observed photon in the Lyα forest of a quasar at redshift z0. Due to

the expansion, the photon frequency in the past goes as νs = ν(1 + z). The total optical depth

is given by

τ =

∫ z0

0

dτ(z) =

∫ z0

0

nHI(z)σ[ν(1 + z)]
dl

dz
dz . (2.5)

The term dl/dz is equal to DH(z)/(1 + z) (Eq. 1.38). If the photon belongs to the Lyα forest,

it means that between z = 0 and z = z0 the only peak of the profile g(ν) in the range of the

integral is the one corresponding to the Lyα peak. The width of this profile depends on the IGM

temperature, but even at high temperatures (∼ 106 K) the velocity dispersion is ∼ 10−4c which

is much smaller than the velocity corresponding to a redshift z0 ∼ 2. Thus, the profile function

can be approximated as a Dirac delta centered at ν = να. The integral becomes

τ(ν) =

∫ z0

0

nHI(z)
πq2

mec
fδD[ν(1 + z)− να]

c

H(z)(1 + z)
dz , (2.6)

where f = 0.416 is the oscillator strength of the Lyα resonance. We can factor all functions out

of the integral by evaluating them at z = να/ν − 1 = zα. At observed frequency ν, it depends
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only on the physics at the absorber redshift zα. Assuming H0 = 70 km s−1 Mpc−1, Ωm = 0.27

and ΩΛ = 0.73, we have, at H(zα ∼ 3) ∼ 94 km s−1 Mpc−1, approximately

τ ∼ 105X . (2.7)

Observations show that the optical depth is of order unity in average. Unless the assumptions

are wrong by more than an order of magnitude, this result implies that the fraction of hydrogen

in neutral form is of order X ∼ 10−5, meaning that the IGM is mainly ionized at z ∼ 3. In

other words, if the IGM was neutral with X ∼ 1, the optical depth would be τ ∼ 105 meaning

that F = e−τ ∼ 0, i.e., no light would be observed in the Lyα forest, clearly going against

observations.

The optical depth can also be expressed as

τ(ν) = Σ(ν)NHI(zα) , (2.8)

where Σ(ν) is the cross-section integrated over the line of sight and NHI(zα) is the neutral

hydrogen column density, expressed in units of cm−2. It is common to quantify the absorption

of a given line in the forest by its corresponding column density. Most Lyα forest absorption

lines have column densities between 1013 and 1016 cm−2. More dense systems can completely

absorb the light from the quasar at Lyα, also showing a clear break at the Lyman limit. Those

systems are then referred as Lyman limit systems. For systems denser than 1020 cm−2 a large

trough in spectra can be observed even in low resolution spectra, therefore those are referred as

Damped Lyman Alpha (DLA) systems (Lowrance et al., 1972, Beaver et al., 1972, Wright et al.,

1979). These systems are often associated to dense regions of halos forming galaxies (Smith

et al., 1979).

2.3 Reionization and the photo-ionization equilibrium

We discuss now how the Universe became ionized between z ∼ 20 and 6 after being neutral since

recombination at z ∼ 1000. We introduce the concept of photo-ionization equilibrium in the

IGM that sets the properties of the Lyα forest.

Recombination is characterized by the evolution of the fraction X of the hydrogen in its neutral

form. It can be computed from the Boltzmann equation (Eq. 1.17), where the collision term has

three components,
dX

dt
= αrecne(1−X)− γcneX − ΓX . (2.9)

The first term in the right hand side accounts for the recombination of electrons with free

protons, producing a photon. The rate of radiative recombination is given by αrec = 4 ×
10−13(T/104K)−0.7 cm3/s (Peebles, 1968, Zeldovich et al., 1968). This expression does not con-

sider recombination processes where the resulting photon has exactly E∞ = 13.6 eV, i.e., a

photon able to ionize another hydrogen atom. The second term corresponds to collisional ion-

ization processes. The rate of ionization by collisions is given by γc which is relatively important

only if T > 106 K, temperatures much higher than those considered here, of about 104 K. The
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third term describes ionization by the UV photon background at rate Γ. The UV background

can be composed by photons of cosmological (CMB) or astrophysical origin (stars, quasars).

At recombination at z ∼ 1000, the cosmic photon temperature falls below 3000 K and the

ionization process is no longer an efficient process; electrons start to recombine with protons.

The neutral fraction X rapidly approaches unity. Translated in terms of Eq. 2.9, this means

that the third term in the right hand side becomes significantly smaller than the first one. The

recombination marks the beginning of the dark ages.

At redshifts z ∼ 20, stars begin to form inside galaxies and to emit a significantly large amount

of UV photons, increasing Γ in Eq. 2.9. Quasars also have an intense UV emission contributing

to Γ. At the same time, the average recombination time becomes larger than Hubble time. Both

factors lead to the ionization of the neutral hydrogen surrounding galaxies, forming spheres of

ionized hydrogen. Those spheres grow and merge together, characterizing the ionization of the

IGM with X � 1.

The photo-ionization rate is related to the UV background spectrum by

Γ =

∫ ∞
νL

dν 4π
J(ν)

hν
σ(ν) (2.10)

where J(ν) is the background radiation intensity and νL is the Lyman limit frequency. An

extensive work was performed by Haardt & Madau (Haardt and Madau, 1996) to compute the

spectrum of the ionizing photon background J(ν) created by galaxies and quasars, also taking

into account the contribution from helium atoms. Their conclusion is that Γ ∼ 10−12 s−1 at

2 < z < 4. This value is relatively more important at those redshifts in Eq. 2.9 than the

recombination rate.

The IGM becomes more and more ionized until the density of neutral atoms is such that ion-

ization probability is negligible. The fraction X becomes constant around 10−5, reaching the so

called photo-ionization equilibrium. In photo-ionization equilibrium, dX/ dt = 0, we have from

Eq. 2.9 (neglecting the collision term because of low temperatures)

αrecne(1−X) ≈ ΓX , (2.11)

yielding (since X � 1),

X ≈ αrecne
Γ

. (2.12)

This equation is used when computing the Lyα forest on simulations, relating the optical depth

based and the density of gas ne through Eq. 2.7. Simulations are further described in § 2.4.

Another ingredient in those equations is the IGM mean temperature T , that sets the rate of

recombination αrec. For an ionized hydrogen gas, the temperature is of the order of 105 K, at

which a significant fraction of electrons have energies larger than the bounding energy of the

hydrogen E∞ = 13.6 eV.
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2.4 Understanding the Lyα forest through simulations

First hydrodynamic cosmological simulations tried to reproduce main properties of the IGM and

the Lyα forest from a given structure formation model (Cen et al., 1994, Petitjean et al., 1995,

Miralda-Escudé et al., 1996). They are based on Eulerian dark matter N-body simulations in-

cluding hydrodynamics of the gaseous component, galaxy formation and a cosmological constant.

They observed that the basic properties of the IGM depend weakly on the cosmological model.

Since then, many numerical techniques were employed to simulate the IGM. The smoothed par-

ticle hydrodynamics (SPH) technique was first employed by Zhang et al. (1995) and Hernquist

et al. (1996) within a CDM model, using Eulerian and Lagrangian frames, respectively. Eulerian

techniques (fixed grid) are able to better resolve the low density regions producing the lowest

column density Lyα forest. Lagrangian codes (particle frame) are better adapted inside denser

regions (e.g. inside mini-halos or galaxies) where a larger dynamical range is needed. Lagrangian

codes model better the distribution of high column density systems in the forests such as DLAs

(Katz et al., 1996).

Besides small quantitative differences between different simulations of the Lyα forest, the qual-

itative conclusions are basically the same. Low column density systems (NHI < 1014 cm−2)

are formed by sheet-like gaseous structures. Gas accretes through weak shocks and settles in

a dense, central cooling layer, presumably to form stars. At the lowest column densities, gas

remains unshocked and just bounces back because of the hydrostatic pressure. The gas is partly

confined by gravity and partly by ram pressure. Higher column density clouds arise in more fil-

amentary structures, with column density contours of NHI ∼ 1014 cm−2 extending continuously

and with relatively constant thickness (∼ 40-100 kpc proper) over megaparsec distances. With

increasing column density, the absorber geometry becomes rounder; column density contours at

NHI > 1016 cm−2 invariably are spherical, entering the regime where the absorbers more closely

correspond to minihalos; there the enclosed gas column is high enough to make the absorption

system appear as a Lyman limit or damped Lyα system. Figure 2.3 shows the spatial appearance

of the Lyα absorbers. The visual appearance of the low column density, sheet-like filamentary

structure has been aptly described as a “Cosmic Web”. Looking at the higher column density,

optically thick gas on scales of several megaparsecs gives a somewhat different impression of

chains of mini or larger halos, lining up like pearls on a string, quite similar to the structure

seen in N-body simulations of the dark matter distribution. Confirming earlier analytical work,

a large fraction of all baryons (80-90%) resides in the low column density Lyα forest, mostly in

the column density range 1014 < NHI < 1015.5.

Figure 2.4 shows the temperature-density relation T (n) for a random line of sight of a smoothed-

particle hydrodynamical (SPH) simulation (Haehnelt et al., 1996). It reveals a significant de-

parture from the photo-ionization equilibrium (Eq. 2.12) given by the solid line in the diagram,

except for high density regions n > 10−3 cm−3. The temperature-density relation is generally

steeper than the equilibrium curve because the lower density gas cools by expansion, while the

gas in the density range 10−5-10−3 cm−3 is heated by adiabatic compression or shock heating,

non-linear processes that add the scatter observed in the diagram. For low density regions, the
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Figure 2.3: Slice of the 10 h−1Mpc hydrodynamic simulation of a ΛCDM model showing
contours of neutral hydrogen column density, with contours 1012+0.5i cm−2, i = 1 shown
dotted and i = 2, 3, ... shown solid. Figure from Miralda-Escudé et al. (1996).

temperature density relation is approximated by a power-law,

T = T0

(
ρb
ρ̄b

)γ
(2.13)

where γ lies between 0.3 and 0.6 (Hui and Gnedin, 1997). This relation is often used in semi-

analytical simulations where the gas temperature is not obtained from hydrodynamics and needs

to be inferred from the local density.

The evolution of the forest with time at high redshift is mainly driven by the expansion of the

universe and the increase of the mean ionization of the gas. The Hubble expansion dilutes the gas

inside low density regions, reducing the amount of absorption. The increase in the UV photons

(due to the increased amount of stars) reduces the neutral fraction of the hydrogen in those

regions, also reducing the absorption.

2.5 The Lyα forest and large scale structures

In § 2.2, the Gunn-Peterson (GP) trough was computed assuming a constant baryon density

over space. In this section we consider fluctuations (GP fluctuations hereafter) around this

mean density, relating them to the underlying dark matter field on large scales. The model for

the power spectrum of the Lyα forest transmission is described here.
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Figure 2.4: Density-temperature (n − T ) diagram of the Lyα forest at redshift 3.1 from a
smoothed particle hydrodynamics (SPH) simulation of a CDM universe. Each dot represents
the mean values of the total hydrogen density n and the gas temperature T along a random
line of sight (LOS) through the simulated box. The solid curve gives the locus of thermal
photo-ionization equilibrium. Departures from this curve are due to the dynamical nature
of the universe. For all but the most dense regions, expansion cooling in voids (low density
regions) and heating by compression and shocks during gravitational collapse steepen the T (n)
relation compared to the equilibrium curve. Figure extracted from Haehnelt et al. (1996).

As discussed in § 2.4, most of the Lyα absorption comes from low density regions presumably

associated to small dark matter fluctuations δ = ρ/ρ̄ − 1 . 1. For being small, those fluctu-

ations are not far inside the non-linear regime, and are well described by linear perturbation

theory (§ 1.4). Also, we should consider peculiar velocities of the gas that introduce a distortion

in the observed clustering of absorbers.

In redshift space, the observed position of a tracer is a sum of the radial distance (in velocity

units) and the radial velocity. The velocity gradients give rise to additional perturbations called

redshift-space distortions (RSD). One can view this as a mapping from the real space to the

redshift space with the total number of tracers being conserved. In the large scale limit the

RSD take a particularly simple form first derived by Kaiser (1987). The RSD in Fourier space

enhances perturbations along the radial direction breaking the isotropy of the original modes

δ(~k). This can be written as

δs(~k) = (1 + βµ2)δ(~k) , (2.14)

where the β is the RSD parameter defined below, and µ is the cosine of the angle between ~k and

the line of sight.

For the Lyα forest, the observable is the transmission F = e−τ . Let’s consider transmission

fluctuations δF defined as

δF =
F

F̄
− 1 , (2.15)

related to dark matter fluctuations δ through a bias function bF as

bF =
∂δF
∂δ

∣∣∣∣
η

, (2.16)
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Figure 2.5: Damping kernel of the Lyα forest three-dimensional power spectrum (Eq. 2.19)
for four different values of µ = k‖/k = 0, 0.5, 0.8 and 1. Table 2.1 show the values used for
the parameters.

where the derivative is taken at constant η = H−1∂vp/∂r, the velocity perturbation in the radial

direction. Analogously we define a velocity bias bη as

bη =
∂δF
∂η

∣∣∣∣
δ

. (2.17)

On large scales, the fluctuations are still in the linear regime, and considering both biases as

scale-independent functions is a good approximation (Kaiser, 1987).

Usually the large scale velocity bias is unity for tracers such as galaxies or gas because they

follow the dark matter flow. However, the transformation between gas density (or τ) and the

observable F = e−τ is non-linear, making the velocity bias become different from unity (Seljak,

2012).

In 2003, McDonald (2003) used hydro-particle-mesh simulations of Lyα forests to compute the

three-dimensional flux power spectrum. From these measurements, he obtained values for the

large scale bias bF and the RSD parameter β (defined as the ratio between the velocity bias bη

and the density bias bF ). He modeled the flux power spectrum PF (~k) as being related to the

linear dark matter power spectrum Plin(k) (described in § 1.4.4) through

PF (~k) = b2F (1 + βµ2)2Plin(k)D(~k) , (2.18)

where

D(~k) = exp

{[
k

kNL

]αNL

−
[
k

kP

]αP
−
[

k‖

kV (k)

]αV }
(2.19)

and kV (k) = kV 0(1 + k/k′V )α
′
V . Figure 2.5 shows the shape of D(~k) for the parameters in

Table 2.1. The first term in the exponential allows for the isotropic increase in power due to

non-linear growth, the second term for the isotropic suppression by pressure, and the third for

the suppression by non-linear peculiar velocities and temperature along the line of sight.

The flux power spectrum PF (~k) was computed over simulations in different box sizes and resolu-

tion : 20, 40, 80 h−1Mpc per side containing 5123, 2563 and 5123 particles, respectively. Those

simulations were produced to test the effect of resolution on the small scale power, while larger
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Table 2.1: Parameters defining the three-dimensional flux power spectrum (Eq. 2.18) obtained
from HPM simulations of McDonald (2003).

Parameter Value

bF −0.131± 0.017

β 1.580± 0.022

kNL 6.77 hMpc−1

αNL 0.550

kP 15.9 hMpc−1

αP 2.12

kV 0 0.819 hMpc−1

αV 1.50

k′V 0.917 hMpc−1

α′V 0.528

box simulations probe the large scale power. The flux-density bias bF and the velocity bias bη

were found by numerically computing derivatives in Eq. 2.16 and 2.17, averaging results from

few realizations. The result is bF = −0.131± 0.017 and β = bη/bF = 1.580± 0.022. The density

bias is negative because more density reduces the transmission F . In the next section we show

that these values are in agreement with measurements using real data. It is important to note

that those simulations are not sufficiently large to probe BAO scales. No simulation to date was

able to simulate such large scales (∼ 150 Mpc) while resolving correctly the Jeans scale of the

forest (∼ 200 kpc). Therefore, all statements about large-scale power are assumptions based on

the intermediate scale power.

Using the obtained values of bF and β, it was possible to fit the power spectrum model (Eq. 2.18)

over simulation measurements in order to obtain values for the parameters defining the damping

kernel (Eq. 2.19). Resulting parameters are summarized in Table 2.1. This is the model used to

produce mock forests in Chapter 5. By Fourier transforming we obtain the model for the three

dimensional flux correlation function ξF (~r) which is the main observable of this thesis.

2.6 First clustering measurements using

the Lyman-α forest

In this section we summarize some of the main results concerning the clustering in the Lyα

forest, that are complementary to the work on simulations presented previously.

2.6.1 One-dimensional power spectrum

Before the advent of a dedicated large volume/high density quasar survey such as BOSS, the

cosmological exploitation of Lyα forest data was achieved via the measurements of the clustering

along individual lines of sight, through the one-dimensional correlation function ξ1D or power
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spectrum P1D(k). First evidences for clustering among different absorption lines were found by

Sargent et al. (1980), Webb and Malkan (1986), Muecket and Mueller (1987).

Using less than 50 high resolution spectra, the first measurements of P1D(k) were performed by

Croft et al. (1999), McDonald et al. (2000), Croft et al. (2002), Viel et al. (2004), obtaining the

first cosmological constraints on σ8 and ns from the amplitude and slope of P1D. Those mea-

surements are sensitive to small scales, 0.003 < k < 0.03 km s−1 (equivalent to ∼ 2-20 h−1Mpc

at z ∼ 3).

With the advent of SDSS, the number of quasars could increase by two orders of magnitude,

even if this measurement was not the main goal of the survey. The 1D power spectrum was

measured by McDonald et al. (2006) using ∼ 3, 000 spectra, achieving sub-percent statistical

errors in the measurement of the amplitude (∼ 0.6%) and slope (∼ 0.005). An important effort

was made to understand the systematic errors that can affect the final power spectrum, either

from instrumental nature (sky residuals, pixel error mis-estimation, resolution effects) or form

astrophysical origin (e.g. metal absorption).

The latest published measurement (Palanque-Delabrouille et al., 2013) used a sample of 13,821

quasar spectra from the Baryon Oscillation Spectroscopic Survey (BOSS, more on next chapter).

This analysis followed closely methods from McDonald et al. (2006), yielding tighter constraints

on two cosmological parameters: the variance of the power spectrum of the density field smoothed

over spheres of radius 8 h−1Mpc, σ8 = 0.83± 0.03, and slope of the primordial power spectrum,

ns = 0.97 ± 0.02, when combined with H0 constraints from the cosmic ladder and the cosmic

microwave background in a ΛCDM model. For comparison, the same parameters found by the

Planck Collaboration are σ8 = 0.834 ± 0.027 and ns = 0.9616 ± 0.0094, showing a consistency

between results using totally different probes.

2.6.2 Three-dimensional correlation function

With BOSS, the quasar density in the sky is such that correlation measurements among different

lines of sight becomes possible (McDonald and Eisenstein, 2007, McQuinn and White, 2011).

The first measurement of the three dimensional flux correlation function ξF (~r) (Slosar et al.,

2011) using first-year data from BOSS contained ∼ 14,000 quasars and is shown in Fig. 2.6.

This measurement put in evidence for the first time the long-range correlations among different

lines of sight, reaching comoving separations up to 60 h−1Mpc. Also for the first time, the effect

of redshift-space distortions in the Lyα correlation function was observed and quantified.

The first measurements of the density bias bF and the RSD parameter β were performed assuming

linear theory (Eq. 2.18). At 95% confidence, it was found −0.24 < bF < −0.16 and 0.44 < β <

1.20, at z = 2.25, with a well constrained combination b(1 + β) = 0.336 ± 0.012. The errors on

β are asymmetric, with β = 0 excluded at over 5σ confidence level. The value of β is somewhat

low compared to predictions from simulations discussed in § 2.4. One of the possible reasons

underlined by the authors for the low value of β (relative to expectations for the Lyα forest

alone) would be the presence of high column density systems (HCDs) and metal line absorption

in the forests, that increase the density bias (and therefore reducing β) as observed in mock
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Figure 2.6: First measurement of the flux correlation function in three dimensions. The left
panel shows the correlation as a function of parallel r‖ and transverse separations r⊥ with
respect to the line of sight. The right panel shows the same correlations spherically averaged,
with its best fit model.

catalogs. The effect of metals and HCDs in also part of this thesis and results are shown in

Chapter 9.

The first measurement of BAO in the Lyα forest correlation function was reported in the subse-

quent BOSS publication using two years of data (Busca et al., 2013, Slosar et al., 2013, Kirkby

et al., 2013), where correlations over separations of more than 160 h−1Mpc are statistically sig-

nificant. This measurement and its updated version using the full BOSS data sample are the

subject of this thesis. The full analysis and results are detailed in the next chapters.





Chapter 3

The Baryon Oscillation

Spectroscopic Survey

In this chapter I introduce the Baryon Oscillation Spectroscopic Survey project, part of the

third generation of the Sloan Digital Sky Survey. I present its main goals, the telescope and its

instruments for photometry and spectroscopy, the observation routine and the data reduction

pipeline. This Chapter is based on Dawson et al. (2013), Eisenstein et al. (2011) (and references

therein).

3.1 The Sloan Digital Sky Survey

The Sloan Digital Sky Survey (SDSS) is one of the most successful astronomical surveys to date.

It was built for deep digital optical imaging of one fourth of the sky, approximately 10,000 deg2,

and spectroscopy of a set of selected objects over 5,700 deg2. It started in the year 2000 and is

still operating in its third generation.

The two first versions of the survey SDSS-I and II measured, during eight years of operation,

more than 930,000 galaxies and 120,000 quasars, allowing the construction of the largest three

dimensional map of the Universe structure. The project has a huge scientific impact, with more

than 5000 publications related to SDSS data.

One of the most impressive results is the first detection of baryon acoustic oscillations in the

clustering of 46,000 luminous red galaxies at a mean redshift of 0.35 (Eisenstein et al., 2005).

The third generation of the SDSS (Eisenstein et al., 2011) started in autumn 2008 based on

the same telescope of SDSS-II with improved instruments in order to cover three main themes:

dark energy and cosmological parameters, the history and structure of the Milky Way, and

the population of giant planets around other stars. Four different projects cover those themes,

including BOSS (described later). They are listed below:

37
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• SEGUE-2 : it is the continuation of the SDSS-II Sloan Extension for Galactic Understand-

ing and Exploration (SEGUE), measuring medium-resolution (R = λ/∆λ ≈ 1800) optical

spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar

kinematics and substructure, and the mass profile of the dark matter halo from the solar

neighborhood to distances of 100 kpc.

• APOGEE : the Apache Point Observatory Galactic Evolution Experiment, obtained high-

resolution (R ≈ 30, 000), high signal-to-noise ratio (S/N ≥ 100 per resolution element), H-

band (1.51 µm < λ < 1.70 µm) spectra of 105 evolved, late-type stars, measuring separate

abundances for ∼ 15 elements per star and creating the first high-precision spectroscopic

survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of

stellar tracers and spectral diagnostics.

• MARVELS : The Multi-object APO Radial Velocity Exoplanet Large-area Survey mon-

itored radial velocities of more than 8000 FGK stars with the sensitivity and cadence

(10–40 m s−1, ∼ 24 visits per star) needed to detect giant planets with periods up to two

years, providing an unprecedented data set for understanding the formation and dynamical

evolution of giant planet systems.

3.2 BOSS: The main scientific goals

Since the first measurements of the acoustic peak in the large-scale structures of the Universe in

2005 by the 2dF Galaxy Redshift Survey (Cole et al., 2005) and by SDSS-II (Eisenstein et al.,

2005), the door was open for new and more accurate measurements of BAO using larger and

deeper survey, which is the main goal of BOSS.

BOSS is divided into two main spectroscopic surveys, executed simultaneously over 10,000 deg2

of the sky. The first targets 1,5 million massive galaxies in the redshift range of 0.15 < z < 0.7.

The effective volume traced using BOSS galaxies is eight times larger than for SDSS-II. The

second survey targets 150,000 quasars over 2.1 < z < 3.5 where the Lyα forest absorption in the

SDSS spectral range can be used as a tracer of structures at high-redshift. The surface density of

quasars in the sky is sufficiently high in order to able the first measurements of three-dimensional

structure traced by the Lyα forests.

With this amount of data, forecasts can predict the precision in measurements of the angular

diameter distance DA(z) and the Hubble expansion rate H(z) at the completion of the surveys.

Using galaxies, it is expected (Eisenstein et al., 2011) measurements of DA and H with 1σ

precision of 1.0% and 1.8%, respectively, at z = 0.35 (bin width 0.2 < z < 0.5), and with

precision of 1.0% and 1.7%, respectively, at z = 0.6 (0.5 < z < 0.7). The errors at the two

redshifts are essentially uncorrelated, while the errors on DA(z) and H(z) at a given redshift

are anti-correlated (Seo and Eisenstein, 2003). For the Lyα forest survey, forecasts (McDonald

and Eisenstein, 2007) indicate final measurement of 4.5% and 2.6%, respectively, on DA(z) and

H(z) at an effective redshift z ∼ 2.5, assuming 10,000 deg2 covered with a mean density of 15

quasars deg−2. No systematic effects were taken into account in this prediction, that can come

from metal absorption, damped Lyα systems or broad absorption lines.
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Figure 3.1: The SDSS 2.5m telescope at the Apache Point Observatory ready to start obser-
vations. Figure from Gunn et al. (2006).

3.3 The telescope

The Sloan Digital Sky Survey telescope is located at Apache Point Observatory, New Mexico,

United States. The telescope is a modified two-corrector Ritchey-Chrétien design with a 2.5 m,

f/2.25 primary, a 1.08 m secondary, a Gascoigne astigmatism corrector, and one of a pair of

interchangeable highly aspheric correctors near the focal plane, one for imaging and the other

for spectroscopy. The final focal ratio is f/5. The telescope is instrumented by a wide-area,

multiband CCD camera and a pair of fiber-fed double spectrographs. The telescope include

the following: (1) A 3◦ diameter (0.65 m) focal plane that has excellent image quality and

small geometric distortions over a wide wavelength range (300–1,060 nm) in the imaging mode,

and good image quality combined with very small lateral and longitudinal color errors in the

spectroscopic mode. The unusual requirement of very low distortion is set by the demands of

time-delay-and-integrate (TDI) imaging. (2) Very high precision motion to support open-loop

TDI observations. (3) A unique wind baffle/enclosure construction to maximize image quality

and minimize construction costs. The telescope had first light in 1998 May and began regular

survey operations in 2000. More details about the telescope design can be found in Gunn et al.

(2006).

3.4 The camera

The camera used by BOSS for its imaging phase is the same used in previous versions of SDSS.

It was optimized to work in TDI imaging and better cover the 3 deg field of view of the telescope.

The full description of the SDSS camera is found in Gunn et al. (1998).

Figure 3.2 shows the camera design. Six columns of five charged coupled devices (CCDs), one

for each photometric band, of 2k × 2k pixels each. Twenty-four smaller CCDs of 2k × 400 pixels

are placed around the main CCDs and are used for astrometry and calibration. The TDI drift

scan direction is upwards in the Fig. 3.2.
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Figure 3.2: The SDSS photometric camera.Optical layout of the focal plane of the SDSS
camera. Field 22 (top and bottom) are focus CCDs; Fields 16-21 are astrometric chips, and
1-15 are the photometric array. The time-delay and integrate drift scan direction is upward,
so a star traverses the array from top to bottom. Figure from Gunn et al. (1998).

Figure 3.3: System quantum efficiency for each filter/detector system in the photometric array
as a function of wavelength. The expected throughput of the optics is included; the lower of
each pair of curves includes the expected atmospheric extinction. Figure from Gunn et al.
(1998).

The main photometric CCDs are equipped with filters going from UV up to near infra-red

(the limit of silicon detectors). Figure 3.3 shows the quantum efficiency of each filter already

taking into account the optics, CCDs response and the atmospheric extinction. The low relative

efficiency of the u and z filters justify their positioning near the center of the focal plane.
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Figure 3.4: Optical layout of BOSS spectrographs. Light enters each spectrograph through the
fibers, which terminate at a curved slit plate mounted inside the slithead (A). The slit plate
positions the fiber ends on a radius concentric with the spherical collimating mirror (B). The
45 degree dichroic beamsplitter (C) reflects the blue portion of the bandpass (λ < 605 nm)
and transmits the red wavelengths (λ > 605 nm). Immediately after the beamsplitter in each
channel is a grism (D, E), dispersing the light, which enters the all-refractive eight-element
cameras (F, G). Each camera contains a single 4k × 4k CCD (H, i) with 15 µm pixels. Figure
from Smee et al. (2013).

Figure 3.5: The requirements and the measured resolving power for the two BOSS spectro-
graphs. The results for Spectrograph 1 are shown in the left panel and results for Spectrograph
2 are shown in the right panel. The dashed black curve is the requirement for the resolving
power. The green curve is the 68% confidence limit about the mean of the resolving power
for the central fiber and is representative of 80% of the fibers. The gray curve is the 68%
confidence limit about the mean of the resolving power for a representative fiber near the edge
of the spectrograph slit. Figure from Smee et al. (2013).

3.5 The spectrographs

BOSS is constituted of two identical spectrographs. The employed technology is similar to their

SDSS-II versions. The multi-fiber optic system is the main characteristic of this system. The

numbers of optical fibers increased from 600 in SDSS-II to 1000 for BOSS. Improvements on the

spectrographs quality were needed to attain BOSS scientific requirements. Full technical details

about BOSS spectrographs can be found in Smee et al. (2013). We discuss some main their

characteristics in this section that are important for analysis described on the next chapters.

The spectral resolution is measured from calibration arc images taken before each set of science

exposures. The one-dimensional arc image is first masked to include only pixels within 12 pixels

of the center of each arc line on each fiber. A Gaussian of width σλ is fit to each spectral profile

using the 25 unmasked pixels. A fourth order Legendre polynomial model is fit to the derived
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Figure 3.6: Throughput curves for SDSS (black) and BOSS (red). The results for Spectrograph
1 are displayed in the left panel. The results for Spectrograph 2 in the right panel. Figure
from Smee et al. (2013).

σλ as a function of wavelength to model the dispersion over the full wavelength range. The

resolving power for SDSS and BOSS is then formally defined as R = λ/2.35σλ. The resolution

is the FWHM of the Gaussian, 2.35× σλ.

The throughput for SDSS was measured by averaging the throughput from 84 different standard

stars observed under photometric conditions at an airmass of ∼ 1.0 and seeing ≤ 1.15”. Because

BOSS has smaller fibers, the measured throughput on the BOSS spectrographs is more suscep-

tible to guiding errors. We at- tempt to mitigate this effect by averaging the throughput over

the four stars that produce the highest throughput on each camera. The throughput for BOSS

was measured by averaging the throughput of 24 stars over three plates, split evenly between

the two spectrographs.

3.6 The imaging

The first stage of the survey, between the years 2000 and 2005, consisted on imaging the full

11,600 deg2 of the Northern Galactic Cap using five photometric filters in the u, g, r, i and z

bands. During the falls of the years 2008 and 2009, 3,100 deg2 of Southern Galactic Cap were

also imaged. The final image covers 14,555 deg2, more than one fourth of the sky, and contains

almost a billion objects detected individually up to a magnitude of r ∼ 22.5.

The next step consists in the spectroscopy of all interesting objects : galaxies and quasars for

BOSS. Spectroscopy is much more time consuming process than imaging, therefore a careful

selection of the targets for spectroscopy needs to be performed prior to observation. For BOSS,

our main targets are galaxies and z > 2 quasars.

The collaboration developed algorithms for selecting these kind of targets. The next two sections

briefly describes the process, which is a bit more complex for quasar targets.

3.7 Target selection: galaxies

For galaxies, the main goal is to select galaxies composing a homogeneous distributed high

density sample over the covered volume. Instead of selecting luminous red galaxies (LRG) as
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in SDSS I and II, BOSS galaxies of a same mass and no intrinsic color restrictions are selected,

resulting in a denser sample (n̄ ∼ 3×104 h−3Mpc3 at z = 0.6). For BOSS, two classes of galaxies

were selected based on their redshift, called “LOWZ” and “CMASS” samples.

Target selection algorithms for BOSS are based on SDSS-II algorithms (Eisenstein et al., 2001)

for LRGs, where the following combinations of colors,

c‖ = 0.7(g − r) + 1.2(r − i− 0.8) , (3.1)

c⊥ = (r − i)− (g − r)/0.4− 0.18 , (3.2)

d⊥ = (r − i)− (g − r)/8.0 , (3.3)

are appropriate to separate galaxies based on their evolution. Targets are selected by cuts made

in these new color space. To a good approximation, the perpendicular colors track the location

of the 400nm break in galaxy spectra, which provides an initial redshift selection.

The LOWZ algorithm is designed to select red galaxies at 0.15 < z < 0.45. This sample includes

galaxies with 16 < r < 19.5, r < 13.6 + c‖/0.3, and |c⊥| < 0.2. The CMASS sample is designed

to be approximately stellar mass limited above z ∼ 0.45 and is built using the following cuts:

17.5 < i < 19.9, d⊥ > 0.55, and i < 19.86 + 1.6(d⊥ − 0.8). Stellar mass measurements of

BOSS galaxies using photometry show that the distribution of masses is narrow and centered

at log(M/M�) ∼ 11.3 (Maraston et al., 2013), showing that the algorithms successfully select a

constant mass sample of galaxies. Further details about galaxy target selection can be found in

Parejko et al. (2013) for LOWZ and in Tojeiro et al. (2012) for CMASS.

3.8 Target selection: quasars

The main goal of the BOSS quasar sample is to provide a sufficiently dense sample of lines-of-sight

in order to measure BAO through three dimensional Lyα forest correlations. Science forecasts

for BOSS (McDonald and Eisenstein, 2007, McQuinn and White, 2011) show a linear dependence

of the clustering S/N with surface density of quasars. The quasar luminosities should also be

adequate for good spectroscopic measurements. At minimum, 15 quasars deg−2 at redshifts

2.1 < z < 3.5 with gPSF < 22.0 are required to make this measurement. Hopefully, since the

forests trace the IGM gas density, there is no requirements on the homogeneity of the quasar

sample as it is the case for galaxies clustering measurements.

To select quasar targets is a more challenging task compared to galaxies. The main reason is

that photometric quasar colors are very similar to the colors of stars as shown in Figure 3.7.

During the first year of BOSS, four different methods were developed to improve quasar selection

using photometric data :

• a “Kernel Density Estimation” (Richards et al., 2009), which measures the densities of

quasars and stars in color–color space from training sets and uses these to select high

probability targets;
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Figure 3.7: Color–color and color–magnitude distribution of objects in the training sets of the
“Kernel Density Estimation” algorithm for quasar target selection. Quasars are given in blue
(75,382 objects). “Stars” are given in red (429,908 objects). The (linear) contour levels are
relative to the peak in each sample. Figure from Richards et al. (2009).

• a “Likelihood” approach (Kirkpatrick et al., 2011) which determines the likelihood that

each object is a quasar, given its photometry and models for the stellar and quasar loci;

• an “Extreme Deconvolution” (XDQSO) (Bovy et al., 2011) selection, which performs a

density estimation of stars and quasars by incorporating photometric uncertainties;

• an artificial neural network (Yèche et al., 2010), which takes as input the SDSS photometry

and errors from a training set in order to run a classification scheme (star versus quasar)

and generate a photometric redshift estimate.

Quasar targets fall into five distinct categories. The CORE sample includes targets selected

by an uniform method, and since the second year of observations, by the XDQSO method.

The BONUS sample includes additional targets selected non-uniformly using full photometric

data in order to increase the quasar density. The other three categories include known quasars

observed by SDSS (KNOWN MIDZ), lower redshift quasars useful for studies of metal absorption

(KNOWN SUPPZ) and radio confirmed quasars (FIRST).

3.9 Observing

As in SDSS-I and II, the multi-object spectroscopy technology is used allowing the observation

of hundreds of spectra simultaneously. The focal plane of the telescope is equipped with a 1.5

degree radius spectroscopic plate, accommodating 1000 optical fibers of 2” diameter. Figure 3.8

Science targets are assigned to fibers in plates in a process referred as “tiling” (Blanton et al.

2003). The tiling process is intended to maximize the fraction of targets that are assigned fibers

(tiling completeness) while minimizing the number of tiles required to complete observations
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Figure 3.8: Image of plate 3552 immediately after the marking stage. Bundles are separated
by black bounded edges, and holes are marked blue to reduce contamination between nearby
emission line galaxies or quasars. Holes for guide star fibers are marked in black and denoted
by the corresponding number ranging from 1 to 16. Figure extracted from Dawson et al.
(2013).

(tiling efficiency) without leaving gaps of coverage in the survey footprint. The 10,269 deg2 are

completely tiled before the beginning of spectroscopic observations.

Approximately 160-200 fibers per plate are dedicated to the main quasar targets, 560-630 to

galaxy targets, and 20-90 to ancillary science targets. Around 100 of them are assigned to

measurements of the sky background and calibration F-stars (used for throughput measurements

of Fig. 3.6), distributed uniformly over the plate to ensure consistent data quality for all spectra,

regardless of their position in the focal plane.

The (x, y) positions of the fibers in the plate are computed taking into account the atmospheric

differential refraction and the time of the observation. Galaxies, stars and sky fibers are placed

such the throughput is maximized near 540nm, while quasar fibers at 400nm in order to improve

the signal in the Lyα forest. There is also a dependency on the z direction that is corrected by

the use of washers.

Once a given plate is installed in the focal plane with all fiber connected, the observation pro-

cedure can start. The first steps consists in flat-field calibration exposures and positioning of

the telescope. Then, a sequence of 15 minutes of science exposures are taken. Each exposure

needs to satisfy quality requirements otherwise a re-observation is performed. At the end of

each exposure, a simplified version of the data reduction pipeline (described in next section) is

run to check data quality. Basically it compares the magnitude of each object with the mean

signal-to-noise of pixels in the g band for the blue cameras and in the i band for the red ones.

If the signal-to-noise is too low a new observation is scheduled.

3.10 Data reduction

Data is transferred from the APO to the Lawrence Berkeley National Laboratory in order to run

the automatic data reduction pipeline (pipeline hereafter). The pipeline extracts, calibrates, co-

adds, classifies, and fits the redshift of all spectra using all exposures. The data is first collapsed
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Figure 3.9: Examples of BOSS spectra, with a resolution of R ≈ 2000. Black lines show data
(smoothed over a 5 pixel window), cyan lines show best-fit redshift/classification model, and
red lines show 1σ noise level estimated by the extraction pipeline. Spectra are labeled by
PLATE-MJD-FIBERID. Individual objects are (a) redshift z = 0.256 LOWZ galaxy; (b) redshift
z = 0.649 CMASS galaxy; (c) redshift z = 0.669 CMASS galaxy with post-starburst contin-
uum; (d) redshift z = 0.217 starburst galaxy (from QSO target sample); (e) redshift z = 2.873
quasar; (f) redshift z = 0.661 quasar; (g) spectrophotometric standard star; and (h) M star
(from CMASS target sample). Figure extracted from (Bolton et al., 2012).

from two-dimensional images into one-dimensional spectra. The second step is to classify objects

and estimate redshifts (Bolton et al., 2012).

Raw CCD frames are pre-processed by subtracting a bias model, their bias overscan, subtracting

a dark current model, and dividing by a pixel flat-field model for each CCD. The read noise

is measured from the bias overscan region for each CCD amplifier for each exposure. Per-pixel

variance is estimated using the measured read noise and the observed photon counts in each

pixel. The inverse variance is multiplied by a known CCD defect mask, and cosmic rays are

identified to mask affected pixels.
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Sky subtraction is performed using a model for background derived from the sky fibers that

were assigned during plate design. The background varies with fiber position to account for

smoothly varying differences across the focal plane. Similarly, the spectral response (i.e., the

flux calibration) is determined over the focal plane using models fit to the spectra from the

standard stars that were assigned in plate design.

Finally, the spectra from individual exposures are combined into a co-added frame for each fiber

on a resampled grid that is linear in log(λ). Blue and red data are combined into one spectrum

covering the full wavelength range of the instrument, 361-1014nm.

Pixel variances are propagated into the co-add spectrum pixels, discarding covariances among

different exposures. The current pipeline performs this extraction as a single pass, resulting in

a known bias due to estimating the variance from the data rather than iteratively updating the

noise model with the statistics of the extracted spectra. In the limit of zero flux, the technique

systematically assigns a slightly larger variance to pixels that fluctuate toward higher flux values,

leading to a weighted mean that is suppressed below its true value. This problem can affect Lyα

forest measurements that use this variance estimates and needs to be corrected. We further

discuss this in Chapter 5 and 6.

Each object is identified through a fit of a star, galaxy, or quasar template into their combined

spectrum. Figure 3.9 shows some typical spectra of different types, with its successfully fitted

template. Due to some low signal-to-noise spectra the identification is sometimes inaccurate;

those spectra are flagged with warning tags. The pipeline reports that 79% of quasar spectra

have a confident identification and redshift estimate. Approximately 51.5% of the quasar targets

are confirmed as quasars, the other part being mostly F-stars. However, only 33.6% of the quasar

targets are 2.1 < z < 3.5 quasars.

In addition to an automatic classification of objects, a visual inspection of all quasar targets

and some galaxy targets was performed in order to track errors made by the automatic pipeline.

This impressive work is described in Pâris et al. (2012). The inspection could increase by 1.7%

the sample of 2.1 < z < 3.5 quasars. Also, it found that 0.6% of pipeline-confirmed quasars have

bad redshift estimates which occurs in the presence of strong broad absorption lines or with very

low S/N spectra. Figure 3.10 shows some examples of classification errors committed by the

pipeline. Also, the visual inspection accurately flags the presence of damped Lyα systems or

broad absorption lines that affect the Lyα forest correlation measurements.

3.11 Data releases

Every year the BOSS collaboration makes publicly available the data in Data Releases1. Fig-

ure 3.11 shows the evolution of the sky coverage by BOSS data during three years, corresponding

to Data Release 9, 10, and 11. The final release is DR12 and will be public together with DR11

in ends of 2014.

1Data Releases can be found in sdss3.org

sdss3.org
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Figure 3.10: First column: examples of z > 2 quasars classified as STAR by the BOSS
pipeline. The overall shape of the spectrum is similar to the spectrum of F stars. Second
column: examples of stars identified as QSO by the BOSS pipeline. Strong absorption lines or
wiggles in the spectrum can mimic quasar features. Third column: examples of z > 2 quasars
for which the BOSS pipeline provides an inaccurate redshift estimate that must be corrected
during the visual inspection. The pipeline is confused by the strong absorption lines. The
spectra were boxcar median smoothed over 5 pixels. Figure extracted from Pâris et al. (2012).

Figure 3.11: Evolution of the BOSS sky coverage from DR9 to DR11. Top panels show our
observations in the North Galactic Cap (NGC) while lower panels show observations in the
South Galactic Cap (SGC). Colors indicate the spectroscopic completeness within each sector
as indicated in the key in the lower right panel. Gray areas indicate our expected footprint
upon completion of the survey. The total sky coverage in DR9, DR10, and DR11 is 3,275 deg2,
6,161 deg2, and 8,377 deg2, respectively.



Chapter 4

BAO in Galaxy Clustering

In this chapter we discuss how to measure the BAO scale using galaxies as tracers of the matter

density field. The basics of galaxy clustering methods are presented in § 4.1. The 1% BAO

measurement using BOSS CMASS galaxies is summarized in § 4.2, followed by a description of

a new optimal estimator of the correlation function that yields up to 20% improvement in the

BAO scale measurement when applied on DR9 data. This new estimator is part of my original

contribution of this chapter, published in Vargas-Magaña et al. (2013).

4.1 Measuring the galaxy clustering

As introduced in Chapter 1, the clustering of matter is characterized by its power spectrum,

P (k), or equivalently the correlation function, ξ(r), from which the BAO scale can be extracted.

Clustering measurements require estimates of the matter density in every point of space. How-

ever, dark matter is impossible to observe directly, and baryonic matter is in general too diffuse

in space to be observable, except in galaxies or galaxy clusters (observable with X-rays or radio).

The hydrogen in the intergalactic medium is observable through the Lyα forest, as discussed in

the previous chapter, or through the 21cm emission line in radio, but those measurements are

only possible at redshifts larger than z ∼ 2, where observations are still time-consuming. At

lower redshift, galaxies and galaxy clusters are still the best observable reservoirs of baryons.

Galaxies form in the central regions of dark matter halos, which are themselves large dark mat-

ter overdensities (δρ/ρ � 200). Galaxies are thus the most convenient tracer of the matter

distribution at low redshifts (z . 1).

Building a three dimensional map of the galaxy distribution gives information about the under-

lying dark matter density field. Let n(~x) be the galaxy number density at a given position ~x

in space. If the mean density of galaxies in the Universe is n̄, the galaxy number density fluc-

tuations at a given position in space ~x can be defined in analogous manner as the dark matter

overdensities as

δn(~x) =
n(~x)− n̄

n̄
. (4.1)

49
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Statistical properties of the galaxy density field fluctuations, defined as

ξg(~x, ~x
′) = 〈δn(~x)δn(~x′)〉 , (4.2)

are a well suited observable to study galaxy clustering and BAO.

Since densities of dark matter and galaxies are related, we also expect a relationship between

the galaxy correlation function ξg and the dark matter correlation function ξ. This relationship

between galaxy and matter densities, also known as density bias, depends on the physics of

galaxy formation inside halos of a given mass, and on the number of halos as a function of

mass (known as mass function). Therefore, the bias is, in general, a complex, non-linear and

non-local function. However, physical models (Bardeen et al., 1986, Cole and Kaiser, 1989) and

numerical simulations predict a linear constant bias b on large scales, so that ξg = b2ξ. On smaller

scales (below ∼ 10 h−1Mpc), this linear approximation does not hold anymore; the clustering

of galaxies is stronger than dark matter halos due to interactions between galaxies inside single

collapsed structures. Many existing models take into account the clustering of galaxies on small

scales by modeling dark matter halo profiles and the clustering of galaxies inside halos (Seljak,

2000, Peacock and Smith, 2000, Cooray and Sheth, 2002).

Galaxy surveys are therefore an important tool to measure clustering and had become popular in

the last 20 years, because of its power in constraining cosmological models. First galaxy surveys

predicted the need of a cosmological constant to explain the observed clustering (Efstathiou

et al., 1990). A galaxy survey is simply a three dimensional map of a sample of galaxies. It

is very important to have accurate locations of galaxies in order to precisely measure number

densities, reducing errors in clustering estimates. In a galaxy survey, the angular position of

galaxies is measured very precisely but their radial distance in not directly accessible. Instead

of distances, we measure redshifts and these are converted into distances by assuming a fiducial

cosmological model. It is crucial to measure redshifts accurately in order to correctly map the

radial distribution of the matter. Spectroscopic surveys such as BOSS are able to use emission

lines of spectra in order to measure redshifts with typical errors of ∼ 0.001(1 + z). Photometric

surveys also are able to measure redshifts but with larger errors. Future photometric surveys

such as the Large Synoptic Survey Telescope (LSST) expect to measure redshifts with typical

errors of order ∼ 0.015(1 + z) (Ivezic et al., 2008).

The use of redshift as radial distance estimates leads to physical effects on the clustering measure-

ments. When transforming redshifts into distances, it is implicitly assumed that the measured

recession velocity is only due to the Hubble flow. However, galaxies also have their own peculiar

velocities because of their infall towards potential wells. These peculiar velocities are added to

the recession velocity caused by the expansion. It is the combined velocity that gives the ob-

served redshift of a given galaxy. When converting redshifts to distances, there is an associated

error caused by this peculiar motion. Peculiar velocities thus modify the clustering in the radial

direction while the angular clustering is left unchanged. This effect is commonly referred to as

redshift-space distortions (RSD). The amount of distortion caused by peculiar velocities can be

predicted for a given theory of gravity and structure formation. In the limit of large scales and

linear theory, RSD can be simply modeled (Kaiser, 1987, Hamilton, 1992) as an enhancement of
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Fourier modes of the density field in the radial direction, as discussed previously in Chapter 2

for the case of Lyα forests.

Once the position of the galaxies of the survey is mapped, the galaxy correlation function ξg(~r)

can be estimated as a function of the separation ~r between galaxies. If the survey is sufficiently

large, correlations at separations of 100 h−1Mpc become significant and the BAO peak position

can be measured. The BAO peak in the galaxy clustering was measured for the first time in

2005 with ∼ 50, 000 SDSS-II luminous red galaxies over a comoving volume of 0, 72 h−3Gpc3

(Eisenstein et al., 2005). Concurrently the Two Degree Field Galaxy Redshift Survey (2dFGRS)

also reported the detection of BAO in the galaxy power spectrum (Cole et al., 2005).

We describe now how to estimate the correlation function from a given galaxy survey. In principle

it is necessary to known the average density of galaxies n̄ in order to compute galaxy density

fluctuations δn over the survey. A given survey observes a finite volume of the Universe set by the

sky coverage and the galaxy selection criteria, and this needs to be correctly taken into account

when computing the average density n̄. Also, the completeness and purity of observations affect

these estimates. The effective observed volume is often referred as the survey mask. In order

to correct for boundary effects, uncorrelated mock galaxies are randomly distributed over the

survey mask. Instead of explicitly computing n̄ over the survey, the correlations of real galaxies

are measured by “comparison” with the correlations of this random catalog of galaxies (expected

to be zero).

Correlations are measured by counting pairs of galaxies at a given comoving separation. Let

DD(~s) be the number of pairs of galaxies of the survey separated by a comoving distance

~s = ~x− ~x′, normalized by the total number of unique pairs in the survey (if the survey contains

Nd galaxies, then the normalization is Nd(Nd − 1)/2). If galaxies are clustered, we expect to

observe more pairs of galaxies at smaller separations than at larger separations compared to a

uniform distribution of galaxies. The random galaxy catalog allows us to make this comparison.

Let RR(~s) be the normalized number of randomly distributed galaxy pairs as a function of

separation. An estimator of the correlation function can be written as

ξ̂(~s) =
DD(~s)

RR(~s)
− 1. (4.3)

The expected value,

〈1 + ξ̂(~s)〉 =
1 + ξ(~s)

1 + ξΩ
, (4.4)

shows that the estimator is biased (Landy and Szalay, 1993), where ξΩ is the average of the

correlation function over the mask, also known as integral constraint. This bias appears because

the average number of galaxies n̄ is estimated from the survey itself, a procedure that might

incorrectly take into account very large scale fluctuations. Landy and Szalay defined an unbiased

estimator as

ξ̂(~s) =
DD − 2DR+RR

RR
(~s), (4.5)

where DR(~s) is the number of “cross” pairs between random and real galaxies. This estimator

also has smaller errors than those given by the estimator defined in Eq. 4.3. This is the most

commonly used estimator for galaxy clustering measurements and BAO. The BAO measurement
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Figure 4.1: Histograms of the galaxy number density as a function of redshift for LOWZ (red)
and CMASS (green) samples we analyse. We also display the number density of the SDSS-II
DR7 LRG sample in order to illustrate the increase in sample size provided by BOSS LOWZ
galaxies.

using galaxy clustering was performed by BOSS and is described in the next section (§ 4.2). In

§ 4.3, we show that an even more precise correlation function estimator can be constructed,

yielding ∼ 20% improvement on BAO peak position measurements.

4.2 BAO with BOSS galaxies

4.2.1 The galaxy samples

One of the main goals of the BOSS project was to measure BAO to 1% using galaxy clustering.

To achive this goal, more than 70% observing time was dedicated to galaxies. As described

in § 3.7, BOSS selected two samples of galaxies from photometric measurements in order to

measure spectra and redshifts: the LOWZ sample (0.15 < z < 0.43) and the CMASS sample

(0.43 < z < 0.7), totalizing more than 1.35 million galaxy targets. Figure 4.1 summarizes the

redshift distribution of those samples used for BAO measurements.

After the end of spectroscopic observations, a small fraction of the targets was not observed and

some spectrum were discarded. The reasons for a given target not being observed are:

• SDSS-II already obtained a good redshift for the object; these are denoted as known;

• a target of different type (e.g., a quasar) is within 62” (the angular size of sky region

measured by a single fiber); these are denoted as missed ;

• another target of the same type is within 62”; these are denoted cp for “close-pair”;

while a spectrum is discarded when :

• The spectrum reveals that the object is a star (characterizing an error in the target selection

procedure); these are denoted star ;
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• The automatic data reduction pipeline fails the redshift measurement of the galaxy spec-

trum; these are denoted fail.

4.2.2 Masks

Using the MANGLE software (Swanson et al., 2008) the sky areas covered by BOSS could be

tracked for completeness estimations. This software divides the survey footprint into spherical

polygonal sectors. The completeness in each sector is defined as

CBOSS =
Nobs +Ncp

Ntarg −Nknown
, (4.6)

where N is the number of objects in the sector, “obs” denotes observed and “targ” denotes

target. For the analysis are discarded any sector where CBOSS < 0.7. About 5% of the surveyed

sky surface was masked after all cuts. Figure 3.11 shows the footprint of BOSS divided in sectors

with their completeness.

4.2.3 Weighting galaxies

Each galaxy is weighted to take into account the problems listed previously. A galaxy is up-

weighted if its nearest neighbor (of the same target class) had a redshift failure (wzf ) or a redshift

of that neighbor was not obtained because it was in a close-pair (wcp).

For CMASS, it was found that the galaxy number density is significantly anti-correlated with the

stellar density and seeing (Ross et al., 2011, Ho et al., 2012). Basically the sky regions containing

more stars hide possible galaxies behind them. Seeing also reduces the quality of photometric

observations thus reducing the number of galaxy targets at high redshit. To take into account

those effects additional weights, wstar and wsee, were added to each galaxy. In summary, each

galaxy is counted as

wtot = (wcp + wzf − 1)wstarwsee . (4.7)

In addition to this systematic weight, Feldman, Kaiser and Peacock proposed to weight galaxies

in order to optimize the signal to noise of the measurement based on the clustering amplitude

(Feldman et al., 1994). The FKP weights are defined as

wFKP =
1

1 + n̄(zi)P0
, (4.8)

where n̄(zi) is the mean density at redshift zi and P0 = 20, 000 h−3Mpc3 is an approximated

value for the power spectrum that optimizes the BAO measurement. This ignores the scale

dependence of the power spectrum, but this approximation does not affect final results and

errors.

Using these weights, we define the effective volume of the survey by

Veff =
∑
i

(
n̄(zi)P0

1 + n̄(zi)P0

)2

∆V (zi) , (4.9)
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where ∆V (zi) is the effective volume of a redshift shell. The sum is performed over 200 redshift

shells. For DR11, the effective volume of the LOWZ sample is 2.4 Gpc3 and for CMASS, 6.6

Gpc3.

4.2.4 The measurements

The spherically averaged correlation function ξ(s) (or monopole) and its analogous in Fourier

space, the power spectrum P (k), were estimated from the same galaxy catalog. We discuss

here only isotropic measurements from Anderson et al. (2013). Details about anisotropic BAO

measurements using galaxies can be found in Vargas Magaña et al. (2013), Beutler et al. (2013),

Samushia et al. (2014), Chuang et al. (2013), Sánchez et al. (2014).

To compute distances from redshifts and for the model fitting described later, we used a fiducial

cosmology following a flat ΛCDM model with Ωm = 0.274, h = 0.7, Ωbh
2 = 0.0224, ns = 0.95

and σ8 = 0.8.

The correlation function ξ(s) was computed using the Landy-Szalay estimator (Eq. 4.5), summing

pair-counts into bins of width 8 h−1Mpc spaced between 29 < s < 200 h−1Mpc (22 bins). To

calculate P (k), we employed the FKP estimator (Feldman et al., 1994) in a Fourier grid of size

20483, 4000 h−1Mpc along each side enclosing the survey, including both Northern and Southern

Galactic Caps (NGC and SGC). The power spectrum was computed averaging mode amplitudes

in bins of ∆k = 8× 10−3 hMpc−1, between 0.02 < k < 0.3 hMpc−1 (35 bins).

Non-linear structure formation effects reduce the statistical sensitivity of the BAO measurement

because their effect is to smooth the correlation function (and the BAO peak) (Bassett and

Hlozek, 2009). Therefore, we used a procedure to reconstruct the linear density field (Eisenstein

et al., 2007) and revert partially the effects of non-linear growth and large-scale peculiar velocities.

The idea is to use the predicted relation between density and displacements in Lagrangian

perturbation theory and, using the measured density field of our galaxy catalog, move each galaxy

by an small amount in the opposite sense of the displacement field. The reconstruction technique

improves the precision of the BAO scale measurements by a factor of 1.54 in average for BOSS

(value estimated from mocks), as already shown in Padmanabhan et al. (2012), Anderson et al.

(2012). This improvement depends on how well the density of galaxies can be estimated in the

survey. A survey with a large shot-noise power component could not benefit from reconstruction.

Mock catalogs were created following the PTHalos methodology (Manera et al., 2013) for both

the LOWZ and CMASS samples. These mock catalogs are based on second-order Lagrangian

theory to create the matter density fields, using a empirical halo occupation function to populate

halos with BOSS-like galaxies. The mocks reproduce the correlation function of the data catalog

over the scales of interest and reproduce the redshift distribution and completeness of the data

samples. A total of 1000 mocks were produced and analyzed for the LOWZ sample and 600 for

CMASS. The cosmological model used to create these mock catalogs is the same as the one used

to analyze data, presented previously.

As in previous galaxy clustering studies, covariance matrices for ξ(s) and P (k) are defined by the

scatter of ξ(s) and P (k) around the mean, estimated from all mock catalogs. The full detailed
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Figure 4.2: Top panel: The measured monopole of the CMASS galaxy correlation function,
multiplied by the square of the scale, s, for each of the BOSS data releases. These figures
are shown pre-reconstruction. For clarity, the DR10 data have been shifted horizontally by
+1 h−1Mpc and the DR9 data by −1 h−1Mpc . Bottom panel: The measured spherically
averaged CMASS galaxy power spectrum, multiplied by the frequency scale, k, for each of the
BOSS data releases. For clarity, the DR9 data have been shifted by +0.002 hMpc−1 and the
DR10 data by −0.002 hMpc−1 .

procedure is described in Percival et al. (2013). Also, the errors on the covariance matrix estimate

from mocks were propagated into the covariance matrix itself.

Figure 4.2 shows the estimates of ξ(s) and P (k) described in this section for three samples in

increasing order of number of galaxies : DR9, DR10 and DR11. The first thing to note is the

clear presence of the BAO both in the correlation function, a peak near 100 h−1Mpc, and in

the power spectrum, giving the oscillating pattern. The second remark is that error bars are

significantly reduced between DR9 and DR11 samples by factor of ∼ 2.

4.2.5 Fitting for isotropic BAO

The BAO position in spherically averaged 2-point measurements is fixed by the comoving pro-

jection of the sound horizon at the drag epoch, rd, and provides a measure of

DV (z) ≡
[
z(1 + z)2D2

A(z)DH(z)
]1/3

, (4.10)
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where DA and DH were defined in § 1.5. If we measure our 2-point functions using a fiducial

cosmological model, then, to very good approximation, the observed BAO position depends on

the scale dilation parameter

α ≡ DV (z)

rd

(
rd

DV (z)

)
fid

, (4.11)

which simply tells us about the relative position of the BAO peak with respect to the expected

position in the fiducial cosmology. If α > 1, the actual BAO peak is shifted towards scales

smaller than expected, and vice-versa. This is the parameter that is fitted over the clustering

measurements to extract the BAO position.

We describe now the models used to fit the measured correlation function and power spec-

trum. For both, we fit a template given by the fiducial cosmology re-scaled by the α parameter,

with an added broadband smooth function to take into account possible systematic effects and

marginalize any information coming from the full shape. The idea is to fit only for the BAO

peak position.

To compute the power spectrum template, we first compute the linear power spectrum P lin

produced by CAMB1 (Lewis et al., 2000). We split it into two components, one oscillatory Olin

and the other smooth P sm,lin, that return the original power spectrum when multiplied together.

The full model fitted to the power spectrum is

P fit(k) =

[
B2
PP

sm,lin(k) +A1k +A2 +
A3

k
+
A4

k2
+
A5

k3

] [
1 +

(
Olin(k/α)− 1

)
e−

1
2k

2Σ2
nl

]
,

(4.12)

where the Ai and BP are additive and multiplicative nuisance parameters to be marginalized

over. The non-linear effects are modeled by the Gaussian damping kernel with characteristic

scale Σnl that is also fitted using a Gaussian prior of width 4 h−1Mpc centered at 8.3 h−1Mpc

(for pre-reconstruction) and 4.6 h−1Mpc (post-reconstruction). Those prior values were derived

from fits over mocks.

The template for the fit of the correlation function ξmod(s) is obtained by the Fourier transform

of the power spectrum model Pmod given by

Pmod(k) = P nw(k)

[
1 +

(
P lin(k)

P nw(k)
− 1

)
e−

1
2k

2Σ2
nl

]
, (4.13)

where P nw is a “de-wiggled” template power spectrum, where the BAO oscillations are subtracted

out (Eisenstein and Hu, 1998). The correlation function model is

ξfit(s) = B2
ξ ξ

mod(αs) + a1 +
a2

s
+
a3

s2
. (4.14)

Once again, the ai and the Bξ are nuisance parameters to marginalize out the broadband shape

of our measurement.

Each model was fitted over observations assuming that they were drawn from multi-variate

Gaussian distributions, finding the combination of parameters that minimizes the χ2 function.

1http://camb.info

http://camb.info
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Figure 4.3: DR11 CMASS clustering measurements (black circles) with ξ(s) shown in the
left panels and P (k) in the right panels. The top panels show the measurements prior to
reconstruction and the bottom panels show the measurements after reconstruction. The solid
lines show the best-fit BAO model in each case. One can see that reconstruction has sharpened
the acoustic feature considerably for both ξ(s) and P (k).

4.2.6 Results

In order to test our modeling, mock catalogs were also fitted. The average α is consistent with

unity for both the correlation function and power spectrum, before and after reconstruction

procedure is applied. The scatter around the mean α of about 1.6% for the pre-reconstruction

and 0.92% for the post-reconstruction case. This shows that we expect to obtain a measurement

of α at sub-percent precision on real data. Also, this scatter is consistent with the mean error

estimated for each individual realization. This shows that our analysis chain does not lead to

biased results, with correct estimation of errors, allowing us to apply it on real data.

Figure 4.3 shows the resulting fit over real data correlation function and power spectrum, for the

pre and post-reconstruction cases on the CMASS sample. The sharpening of the BAO features

is clearly seen in both estimators, justifying the observed increase in accuracy observed with the

recovered α for mock catalogs. Table 4.1 summarizes the isotropic measurements of DR11 for

CMASS and LOWZ samples. For LOWZ we only show the result of the combination of ξ(s) and

P (k). We prefer to not detail here how the combination is performed, but we show the results

to give an idea of the errors achieved. Indeed, we see that for the CMASS sample we reach

sub-percent precision for the post-reconstruction case, for the correlation function and power

spectrum.

The errors shown in Table 4.1 do not include possible systematic errors. In order to estimate the

systematic contribution to errors, tests were performed by changing fitting methods, binning and
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Table 4.1: Isotropic BAO scale measurements recovered from BOSS data. The errors quoted
are purely statistical. The χ2 values for the LOWZ sample are not shown because it refers to
a combined value of α from different estimators.

Estimator α χ2/dof

DR11 CMASS (z = 0.57)

post-recon P (k) 1.0114± 0.0093 18/27

post-recon ξ(s) 1.0209± 0.0091 16/17

pre-recon P (k) 1.023± 0.015 33/27

pre-recon ξ(s) 1.031± 0.013 14/17

DR11 LOWZ (z = 0.32)

P (k) + ξ(s) 1.018± 0.020 –

fitting to NGC and SGC separately. We found that the α value does not change considerably

in any of those tests. However, for some of them we see an increase in the errors by ∼ 10% in

average. Therefore we decided to increase the final consensus error on α by 10% to account for

those possible systematics.

Even though the procedure is not described here, the BOSS collaboration also performed BAO

measurements on the anisotropic correlation function and power spectrum, where effects of red-

shift space distortions are seen. Different analysis chains were developed inside the collaboration

(Beutler et al., 2013, Samushia et al., 2014, Chuang et al., 2013, Sánchez et al., 2014) yielding

consistent results for the radial and transverse dilation parameters α‖ and α⊥. The consensus

values given by Anderson et al. (2013) are

α‖ = 0.968± 0.033 and α⊥ = 1.045± 0.015 (4.15)

The cosmological implications of those measurements are discussed in Chapter 10, after the

presentation of BAO results using the Lyα forests of BOSS quasars.

4.3 An Optimal Estimator

The two point correlation function is one of the main statistical tools for the study of large

scale structures. As explained previously, the idea is not to directly measure the galaxy number

density within the survey volume but sample this density with galaxy locations. The observable

is the average number of galaxy pairs at a given separation. However, galaxies near the edges

of the survey have naturally less neighbors than they should; this observable becomes biased,

which needs to be corrected for in an optimal way. This issue does not occur for instance when

measuring the correlation function using absorption measurements on the Lyα forests because

in principle they directly translate the amplitude of the underlying density field (see Chapter 2).

In this section, a novel estimator for the two-point correlation function of galaxies is introduced.

Its performance can be optimized for a given galaxy survey geometry. First, I motivate this

effort, showing that various well-known estimators for the two-point correlation function have
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Figure 4.4: Input two-point correlation function (dotted black line) and reconstructed ones
using the various estimators available in the literature (solid lines of various colors) for a
cubic geometry (left) or a realistic (BOSS DR9) survey volume (right). The dashed lines of
various colors represent the RMS of the corresponding estimators. Note that the Hamilton
and Landy-Szalay lines are exactly superposed as well as the Davis-Peebles and Hewett lines.

bias and variance strongly dependent on the survey geometry. The commonly used Landy-Szalay

estimator has been shown to be both unbiased and of minimal variance in the limit of a vanishing

correlation function. We show that, in the cases of our interest (where the correlation function

is not zero), the Landy-Szalay estimator does not reach the Poisson noise limit. The novel

estimator reaches lower errors compared to Landy-Szalay.

For pedagogical reasons, we start with a simpler but biased version of our optimal estimator

and then we develop a simple iterative procedure that allows the final estimator to be unbiased

and model independent, while improving the accuracy by around 20-25% with respect to the

Landy-Szalay estimator. Then, an application of our estimator on the DR9 CMASS sample

is performed to show the improvement on the two-point correlation function measurement and

cosmological parameters with respect to previous analyses.

4.3.1 Commonly used estimators

Estimators of the two-point correlation function ξ(s) (s being the comoving separation) have

been studied by various authors (Landy and Szalay, 1993, Peebles and Hauser, 1974, Hewett,

1982, Davis and Peebles, 1983, Hamilton, 1993). Generically, pair counts in data are compared

to pair counts in random samples that follow the geometry of the survey. Let’s assume a catalog

of nd objects in the data sample and nr in the random sample and calculate three sets of numbers

of pairs as a function of the binned comoving separation s2:

• within the data sample, leading to dd(s) that can be normalized to the total number of

pairs as DD(s) =
dd(s)

nd(nd − 1)/2
.

2The number of pairs can be spherically averaged in the simplest approach. Its dependence on the angle with
respect to the line of sight can be considered in a more elaborated analysis, in order to account for the sensitivity
to angular distance in the transverse direction and H(z) in the radial one (see Cabre and Gaztanaga (2008) for
details).



60 BAO in Galaxy Clustering

• within the random sample, leading to rr(s) normalized as RR(s) =
rr(s)

nr(nr − 1)/2
.

• among both samples (cross correlation) leading to dr(s) normalized as DR(s) =
dr(s)

nrnd
.

The most common estimators discussed in the literature are:

• ξ̂PH(s) =
DD

RR
− 1 (Peebles and Hauser, 1974)

• ξ̂Hew(s) =
DD −DR

RR
(Hewett, 1982)

• ξ̂DP (s) =
DD

DR
− 1 (Davis and Peebles, 1983)

• ξ̂H(s) =
DD ×RR
DR2

− 1 (Hamilton, 1993)

• ξ̂LS(s) =
DD − 2DR+RR

RR
(Landy and Szalay, 1993)

The usual estimator (Landy and Szalay, 1993) is given by Eq. 4.5 is an unbiased and minimum

variance estimator in the case of a null correlation function. Since galaxy surveys are increasingly

large and dense yielding significant correlation amplitudes, this estimator is no longer a minimum

variance estimator though still unbiased. We provide a way to empirically compute a biased

minimum variance estimator, and an iterative method to estimate the bias and correct for it.

4.3.2 An optimized estimator

Given that common estimators of the correlation function are linear combinations of ratios of

pair counts (DD, DR and RR), we start by writing a generalized estimator:

ξ̂ =
∑
i

ciRRRi, (4.16)

where each ci is a coefficient (non-necessarily integer) associated to the i-th ratio,

RRRi = DDmDRnRR−m−n ,

which is a generalized ratio of pair counts. We can classify these ratios as being of k-th order if

the integers m and n take values between −k and k. Consequently, there is a single possible 0-th

order ratio (RRR0 = 1), six 1st order ratios and twelve 2nd order ratios. Table 4.2 summarizes those

ratios. We do not use 3rd or higher order ratios in this study. Our generalized estimator is thus

a linear combination of 19 ratios (i ∈ [0, 18] in Eq. 4.16). As an illustration, the Landy-Szalay

estimator is defined a linear combination of DD/RR, DR/RR and unity, with coefficients given

by 1, −2 and 1, respectively. For clarity, the dependence of correlation functions on separation

is taken into account by considering ξ̂, RRRi, DD, DR and RR as vectors, where each component

corresponds to a separation bin.
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Table 4.2: The nineteen ratios formed by data-data (DD), data-random (DR) and random-
random (RR) galaxy pair counts up to 2nd order.

0th order
1

1st order terms

DD

RR

DR

RR

DR

DD

RR

DD

RR

DR

DD

DR

2nd order terms

DR×RR
DD2

RR2

DD2

DR×DD
RR2

DD2

RR2

DR2

RR2

DD2

DR2

RR2

DR2

DD ×RR
DR2

RR2

DD ×DR
DR2

DD ×RR
DD2

DR×RR
DR2

DD2

The next step consists in finding the coefficients ci such that the estimator in Eq. 4.16 has

minimal error. We use numerical simulations to perform find these coefficients. First, we produce

hundreds of mock realizations of the galaxy survey following a given input correlation function

ξth. Second, for each realization we compute the pair counts DD, DR, and RR, and the nineteen

ratiosRRRi. Third, we search for the set of coefficients ci that minimizes the scatter of the estimated

correlation function (Eq. 4.16) around the input mock correlation function ξth. This last step is

translated as a minimization of

χ2 =
∑
j

[
ξ̂j − ξth

]T
· C−1 ·

[
ξ̂j − ξth

]
, (4.17)

with respect to the coefficients ci (implicit in the definition of ξ̂j). The j index stands for the

j-th mock realization. C is the covariance matrix of our estimate, which needs to be estimated

before the minimization. However, we do not have in advance our final estimate of ξ. Therefore,

we estimated C using the scatter around the mean of measurements using the Landy-Szalay

estimator.

The estimator ξ̂ defined by the optimal set of coefficients ci might be biased, even though it

is a minimal variance estimator by construction. It means that, using our estimator, the mean

correlation function of the mock catalogs differs from the input model (〈ξ̂〉 6= ξth). We refer to

this bias as residual bias, distinguishing it from the physical density bias. If the amount of this

mean residual bias is known, it is possible to correct each estimation for it, obtaining an unbiased

minimal variance estimator. We show an example of the residual bias in the next section. In

§ 4.3.4 we propose an iterative method to circumvent the residual bias problem.
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4.3.3 Performance on lognormal mock catalogs

To test the optimal estimator (Eq. 4.16), we used mock galaxy catalogs. Using the footprint

and the redshift distribution of DR9 CMASS galaxies (Figures 3.11 and 4.1), we produced 120

mock catalogs where the density field is assumed to be lognormal and following a flat ΛCDM

correlation function. The input cosmological parameters are h = 0.7, Ωm = 0.27, Ωb = 0.045,

σ8 = 0.8, and ns = 1.0. Galaxies are drawn following a Poisson statistics using the value of

density field as the mean of the Poisson distribution. Catalogs with galaxies randomly distributed

in the same survey geometry were also produced to compute RR and DR terms. Our random

catalogs contain 30 times more galaxies than correlated galaxy catalogs.

We proceeded to the construction of the optimal estimator. Following the steps described in

the previous section, we computed for each mock catalog the pair counts DD, DR and RR,

and the ratios RRRi as functions of comoving separation. We considered separations between 0

and 200 h−1Mpc, using 50 bins 4 h−1Mpc wide. The correlation function using Landy-Szalay

estimator was computed for each realization. Using the 120 estimated correlation functions, we

calculated the covariance matrix CLS needed in Eq. 4.17. The set of coefficients ci defining the

optimal estimator were found by minimizing the χ2, using only bins over separations between

40 and 200 h−1Mpc (typical on BAO analyses).

We computed the correlation function using the optimal estimator over all mock realizations.

The average correlation function over realizations, 〈ξ̂〉, and its covariance matrix, Copt, were also

computed. Figure 4.5 shows the residual bias, B = 〈ξ̂〉 − ξth, and the root mean squared errors

(RMS, defined as the square root of the diagonal terms of the covariance matrix), for both the

Landy-Szalay and our optimal estimator. We observe that the scatter of correlations measured

with the optimal estimator is ∼ 30% smaller over most of the separations range. However, the

optimal estimator has a residual bias that is also non-smooth, with a BAO peak shaped feature

at the exact same position as the BAO peak in the correlation function. Even thought this

residual bias is smaller than the scatter of the measurements, it is worrying because of the peak

shape that might introduce systematic errors on the measurement of the BAO peak position in

real data.

We checked for the dependence of the residual bias on the peak position. We produced 9 sets of

120 mock galaxy catalogs. For each set of mocks, the BAO peak position was slightly shifted in

separation. We observed that, when computing the optimal estimator in each set separately, the

BAO peak shape position in the residual bias is the same as in the input correlation function.

The mean residual bias of the optimal estimator is meant to be used as a correction for each

individual estimation of the correlation function. However, if the “true” BAO peak position of

the sample we are measuring differs from the input peak position of our simulations, correcting

for the residual bias could move the peak and change final results. This is indeed observed in

Fig. 4.6, where the squares and crosses show the systematic error in recovering the input value

of the BAO peak position, characterized by the α dilation parameter (the fitting procedure for

α is described in the next section). We see that the optimal estimator in this form cannot be

used for measurements of the BAO peak. In the next section, we describe an iterative method to
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Figure 4.6: Bias on αMeasured as a function of αInput (from lognormal simulations) for Landy-
Szalay (blue points), iterative optimal (red triangles) and two non-iterative minimum-variance
estimators with α = 0.96 (orange crosses) and α = 1.04 (green squares). The error bars
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points in each case with corresponding slopes shown in the legend. A strong bias can be seen
for the non-iterative estimators while the iterative optimal and Landy-Szalay estimators are
not biased.

circumvent this model dependence while keeping errors smaller than those of the Landy-Szalay

estimator.

4.3.4 The iterative optimal estimator

In order to correct for the model dependent residual bias of the optimal estimator, we developed

an iterative method that avoid systematic errors on the estimation of the BAO peak position in

the galaxy correlation function.
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Basically the idea is to iterate between two steps : 1) constructing a new optimal estimator from

mocks with a BAO peak at a given position, and 2) getting the new BAO peak position from

the measured correlation function, while correcting for the residual bias. In other words, on each

iteration the fitted BAO peak position is used to create a new set of mock catalogs from which

a new optimal estimator is constructed. We iterate until the convergence of the measured value

of the BAO peak position. This procedure avoids the use of a optimal estimator build on a set

of mocks with a BAO peak shifted with respect to the peak from the data.

The fitting procedure of this iterative process is similar to the procedure presented in § 4.2.

As before, we work only with the spherically averaged correlation function, also known as the

monopole of the 3D correlation function. The model ξm fitted over the estimated correlation

function is a defined as

ξm(r) = b2ξt(αr) + a0 +
a1

r
+
a2

r2
, (4.18)

which is a sum of two functions: a scaled cosmological template and a broadband smooth

function. The template ξt is obtained from our fiducial cosmological model using CAMB. This

template is scaled by the dilation parameter α in the separations direction and has its amplitude

set by a bias parameter b. Our broadband model is the same as in § 4.2. The scaling factor

α in the template is the parameter containing the information about the BAO peak position

relative to the prediction of the cosmological model used to build the template. The model ξm

contains five free parameters. We perform the fit over the measured correlation function using

separations between 40 and 200 h−1Mpc, yielding 35 degrees of freedom.

Once the BAO peak position is measured through the α parameter, the next step is to create a

new set of mock catalogs using an input correlation function with the BAO peak placed at the

last estimated position. However, instead of creating hundreds of mock catalogs at each iteration

which would be computationally expensive, we create only 9 sets of mocks with their input BAO

peak position determined by 9 different α parameters regularly distributed between 0.96 and

1.04. For each set of mocks we built a new optimal estimator. At each iteration the current α is

not exactly one of the 9 values computed above. Therefore, we perform an interpolation between

results of two estimators corresponding to the two nearest values of α in the grid. Details of how

the interpolation is performed and how the covariance matrix of this measurement is estimated

are presented in section 4.1 of Vargas-Magaña et al. (2013).

The iterations stop when the difference between the two last fitted α parameters is below 0.0001,

which is achieved in general after less than ten iterations.

4.3.5 Performance on PTHalos mock catalogs

We tested the performance of the iterative optimal estimator on a more realistic set of mock

catalogs also used on the BAO measurements with BOSS: the PTHalos mocks described in § 4.2.

Additional tests were performed in LasDamas suite of N-body simulations for SDSS-II and are

described in Vargas-Magaña et al. (2013).

Since the cosmological model of PTHalos is slightly different than the one used for our mocks,

we expect to measure a BAO peak placed such that α = 1.002 in our fiducial cosmology.
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Figure 4.7: “Pull” distribution of correlation functions measured with PTHalos mock catalogs
in the range 40 < s < 200 h−1Mpc with the Landy-Szalay (dashed-blue) and the iterative
optimal estimator (solid red). The standard deviation of the Gaussian fit shows a smaller
scatter for the latter estimator.

We used the iterative version of the optimal estimator to measure the correlation functions

of all PTHalos realizations. Again, the covariance matrix was estimated through the scatter

of different realizations around the mean correlation function. To make comparisons, we also

computed the correlation functions using Landy-Szalay estimator.

Figure 4.7 shows the “pull” histogram of the correlation functions, i.e., the residuals of the

correlation function relative to the average Landy-Szalay correlation function, normalized to the

empirical RMS of the Landy-Szalay estimator, (ξ̂−〈ξLS〉)/σLS. By construction, the width of the

pull distribution for the Landy-Szalay estimator is close to one while it is 0.8 for our estimator.

This corresponds to a gain of 20% in errors, similar to what was obtained in the lognormal mock

catalogs previously. We also observe that there is no residual bias in the estimation that would

move the mean away from zero.

Fitting for BAO in each realization gives the distribution of α parameters shown in Fig. 4.8. We

observe that the expected value of α is recovered by both estimators in average. However, the

optimal estimator values show a reduced scatter around the mean of about 20% compared to

the Landy-Szalay estimator, similar improvement as observed in the correlation function errors

shown in Fig. 4.7.

We conclude that our method is robust and unbiased, allowing the application to real data.

4.3.6 Application to real data: DR9 CMASS

We used the iterative optimal estimator to estimate the spherically averaged correlation function

ξ(s) of the DR9 CMASS sample of galaxies. Results are shown in Fig. 4.9. The covariance matrix

is obtained from the scatter around the mean of measurements on PTHalos mock catalogs, as

performed in Anderson et al. (2012). The Landy-Szalay was also computed for comparison.

We fitted the correlation function as described in § 4.3.4. It resulted in a χ2 = 27.7 for 35 degrees

of freedom for the Landy-Szalay estimator while χ2 = 29.5 for the iterative optimal estimator.
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Figure 4.8: Histogram of αMeasured for the 610 realizations of PTHalos mock galaxy catalogs
using the Landy-Szalay (dashed blue) and the iterative optimal estimators (solid red). The
average values over the realizations, shown in the legend, are represented as vertical lines with
the same line styles, while the RMS of the histograms are shown as horizontal thick lines. The
expected theoretical value is shown as a vertical black dotted line.
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Figure 4.9: Correlation functions obtained for DR9 CMASS sample using the Landy-Szalay
(left) and the iterative optimal estimator (right panel) with their best-fit models. The recovered
αMeasured are given in the legend, together with the χ2/d.o.f. and the probability of observing
this value of χ2. Errors come from the diagonal terms of the covariance matrix and do not
show the correlations among neighboring separation bins.

The α values obtained are

αLS = 1.010± 0.018, for the Landy − Szalay estimator and (4.19)

αopt = 1.009± 0.013, for the Iterative Optimal Estimator. (4.20)

We see a 28% improvement in the accuracy of the fit of the BAO peak position when using our

estimator. In Fig. 4.10 is shown that the α parameter obtained for DR9 CMASS and its error

are in agreement with measurements on PTHalos mock catalogs.

The values of α obtained using our two estimators are in agreement between them and with

the official measurement presented in Anderson et al. (2012) on the same DR9 CMASS sample

using Landy-Szalay correlation function (without reconstruction): α = 1.016 ± 0.017. With

reconstruction, the official measurement gains 6% in accuracy, while with our iterative optimal
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Figure 4.10: Comparison of the best-fit values of the isotropic α dilation parameter (left) and
their errors (right panel), obtained from correlation functions estimated using Landy-Szalay
and the iterative optimal estimators on PTHalos mocks (black dots) and for the DR9 CMASS
sample (red cross). Dashed blue lines show the expected value of α for PTHalos mocks and
black dotted lines show the identity relation in both panels.

estimation this improvement is even larger. A good test would be to use the optimal estimator

on reconstructed catalogs and to quantify the total gain in accuracy.

There is plenty of room for improvement of the optimal estimator, allowing a better understand-

ing of its performances. First, the estimator could be extended to treat anisotropic correlation

functions. Second, a deeper analysis of the behavior of the coefficients ci per iteration could tell

us more about the relative importance of each ratio RRRi, and how they improve the accuracy of

our estimates. Third, a more accurate model for the correlation function, used both in the mock

generation and in the final fits for BAO. Fourth, the optimal estimator needs to be applied to

larger samples, for instance DR12, and see whether the improvements are still significant.





Chapter 5

Mock catalogs of Quasar

Lyman-α forests surveys

In this chapter we discuss the production of mock catalogs of BOSS Lyα forests including cos-

mological large scale correlations. These mocks were extensively used to test our BAO analysis

(described in Chapters 6 and 7).

The first step, the generation of the correlated absorption field over quasar lines of sight is

discussed in § 5.1. Two methods are presented: the official one (Font-Ribera et al., 2011) used

on BOSS mocks, and a new method, less computationally demanding. The second step consists

in creating realistic BOSS spectra, adding instrumental and astrophysical effects to absorption

fields. All steps are detailed in § 5.2.

The original contribution of this Chapter is the development and testing of the new method to

generate absorption fields (§ 5.1.3 and § 5.1.4). Also, I developed the MockExpander package

that automatically transforms absorption fields into realistic BOSS spectra, allowing users to

turn on/off different instrumental or astrophysical features. This package was extensively used

for tests of the BAO analysis in Chapter 7; it will be publicly available at the Data Release 12

(December 2014).

5.1 Generating the absorption field

In this section we discuss how to generate the absorption field of Lyα forests of BOSS quasars.

I introduce the method used for the official DR11 mock catalogs, then I describe an alternative

for the first method that is significantly computationally cheaper and more flexible to changes

in the mock properties.

For both methods, we use the lognormal approximation for the optical depth which allows for a

sufficiently precise reproduction of the flux PDF of the Lyα forest, while also taking into account

its evolution in redshift. The underlying Gaussian random field is correlated according to a power
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spectrum. This implicitly means that the three-point function and other higher order odd-point

functions vanish for this field. This is an approximation since non-linear growth effects couple

different Fourier modes creating non-vanishing odd-point functions, but for the purposes of our

mocks this approximation is sufficiently good.

The usual method to generate a correlated Gaussian random field following a given power spec-

trum is to draw random Fourier amplitudes δ(~k) for ~k-modes in defined over a regular grid.

These amplitudes are drawn from a centered Normal distribution with variance equal to the

power spectrum. Using a Fast Fourier Transform (FFT) over this k-grid, we convert Fourier

amplitudes into a configuration space density field δ(~x), also defined over a regular grid with

periodic boundary conditions. This method was used when creating galaxy mock catalogs for

the study of the optimal estimator in § 4.3. Thanks to the available FFT algorithms, the FFT

method is very fast.

For a Lyα forest survey such as BOSS, the large volume (∼ 20 h−3Gpc3) and the resolution

needed to simulate forests observed with BOSS spectrographs (resolving better than 1 h−1Mpc

at z = 2.3) makes the FFT method impractical due to hardware limitations1. Also, this method

would compute the density field in a regular grid, over regions not probed by the quasar lines of

sight, representing a needless computing effort.

Therefore, two methods were developed to circumvent those limitations and are described next.

Both methods are adapted to compute a correlated density field only over quasar lines of sight.

5.1.1 The lognormal model for the forests

The goal is to obtain forests for which the transmissions F are correlated. The statistics of the

transmittance fluctuations δF = F/F̄ − 1 should follow the input flux power spectrum given by

the model described in § 2.5,

PF (~k, z) = b2(z)g2(z)(1 + βµ2)2Plin(k, z = z0)D(~k) , (5.1)

where the input cosmological model used to compute Plin(k) is the same fiducial model employed

in the Lyα BAO analysis described in Chapter 8 :

Ωm = 0.27, Ωbh
2 = 0.0227, h = 0.7, ns = 0.96, σ8 = 0.8 . (5.2)

The linear bias of the Lyα forest is b(z) = 0.14[(1 + z)/(1 + z0)]2.9, where z0 = 2.25, the growth

rate is g(z) = 1/(1+z) in the matter-dominated era (to a good approximation) and the redshift-

space distortion parameter is β = 1.4. The exponential damping term D(~k) is a parametric

function fitted to match hydro simulations (McDonald, 2003) basically describing modeling the

small scale clustering of the Lyα forest.

The final correlated variables F are given by the exponential of the optical depth τ , which is

itself the exponential of a correlated Gaussian random field δG in our lognormal approximation.

1The FFT algorithms store the full grid of amplitudes at a time in RAM memory, which might be impractical
if the number of points in the grid is too large.



Generating the absorption field 71

We can rewrite this transformation in a general form

F = exp
[
−a(z)eb(z)δG

]
, (5.3)

that ensures, for any positive values of a and b, that 0 < F < 1. The functions a(z) and b(z) are

computed to match the mean transmitted flux fraction F̄ (z) and its variance, σ2
F (z), given by

the integral of the power spectrum of Eq. 5.1, both functions of redshift. Our models for F̄ (z)

and σ2
F (z) match observations of the 1D Lyα power spectrum (McDonald et al., 2006). They

are given by

ln F̄ (z) = ln(0.8)

[
1 + z

1 + z0

]3.2

(5.4)

and

σ2
F (z) = σ2

F (z = z0)

[
1 + z

1 + z0

]γ
, (5.5)

where γ = 3.8. At z0 = 2.25, using the fiducial model (Eq 5.2) we obtain σ2
F (z = z0) = 0.110,

which yields a(z0) = 0.018 and b(z0) = 3.91.

In the next two sections, we describe how to generate a correlated Gaussian random field δG.

However, the transmission F is not Gaussian, it is a non-linear function of a Gaussian variable.

Since both are random variables with probability densities satisfying pF (F ) dF = pG(δG) dδG

(the relation between δG and F is bijective, where pG is the normal distribution), it is possible

to write a relationship between the transmission correlation function ξF = 〈F1F2〉 and the

correlation function of the Gaussian random variables ξG = 〈δG1δG2〉, given by

ξF (ξG) = 〈F (δG1)F (δG2)〉 =

∫ ∞
−∞

dδG1

∫ ∞
−∞

dδG2

exp
[
− δ

2
G1+δ2G2−2δG1δG2ξG

2(1−ξ2G)

]
2π
√

1− ξ2
G

F (δG1)F (δG2) . (5.6)

The former, ξF , is just Fourier transform of the transmission power spectrum (Eq. 5.1). The

latter, ξG, is computed as a function of ξF after inverting Eq. 5.6. This function depends only on

the relation between F and δG (Eq. 5.3), which translates into a dependence on a(z) and b(z). It

can be tabulated for many values of ξG and inverted, so we are able to convert values of ξF into

ξG (note that Eq. 5.6 does not depend on separation explicitly). The resulting ξG or its Fourier

transform, the Gaussian power spectrum PG, are used in the next sections to create correlated

Gaussian variables. Since a(z) and b(z) are functions of redshift, the relations ξF ↔ ξG and

PF ↔ PG also depend on redshift.

Next are described two different methods that use the Gaussian correlation function ξG(~r) and

the Gaussian power spectrum PG(~k) to generate a spatially correlated Gaussian random field,

δG(~x).

5.1.2 Cholesky decomposition of correlation matrix

This method uses matrix operations to rotate a vector of uncorrelated variables ηG into a corre-

lated one δG, such that

〈δGiδGj〉 = ξG(~ri − ~rj) . (5.7)
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Let ηG be an uncorrelated Gaussian random variable with zero mean and unity variance. First,

for each Lyα forest pixel of the survey we associate a random value ηGi, where the index i refers

to that pixel. Second, we compute, for the same pixels, linear combinations of all ηGi in order

to make correlated Gaussian variables, δGi, written as

δGi =

NpNq∑
i=1

AijηGj , or in vectorial notation, ~δG = A~ηG . (5.8)

Np is the number of pixels per line of sight (we start by assuming it is the same for all quasars)

and Nq is the number of quasars in the survey. The total number of pixels of the survey is

Np ×Nq. The coefficients Aij of the matrix A are to be determined. Reminding that we want

to satisfy Eq. 5.7, this corresponds to

〈~δ TG ~δG〉 = C = ATA , (5.9)

where the elements of the matrix C are given by Cij = ξG(~ri − ~rj).

Basically that means that the wanted matrix A is the “square-root” of C. The coefficients of A

can be obtained by a Cholesky decomposition of C. The Cholesky decomposition transforms C

into a product of a triangular matrix and its transpose.

The Cholesky decomposition is a simple procedure but limited by the fact that the matrix A

contains (NpNq)
2 elements. For a BOSS-like survey, Np ∼ 500 and Nq ∼ 104, meaning that the

Cholesky decomposition needs to store in memory a 1012 element matrix simultaneously, not

possible with the current available technology.

To overcome this issue, a physical argument can be used to divide the problem into smaller

ones. First, we need to assume that lines of sight are parallel. Let δG(r‖, ~r⊥) be the correlated

Gaussian variable at position r‖ of the line of sight at coordinate ~r⊥ (r2 = r2
‖ + r2

⊥). If we

perform a one-dimensional Fourier transform of δG in the direction of the line of sight only, we

obtain δ̃G(k‖, ~r⊥). Those one-dimensional Fourier modes have the following correlation:

〈
δ̃G(k‖, ~r⊥) δ̃G(k′‖, ~r

′
⊥)
〉

=
1

2π

∫
d~k⊥e

i~k⊥~r⊥

∫
d~k′⊥e

i~k′⊥~r
′
⊥δD(k‖+k

′
‖)δ

D(~k⊥+~k′⊥)PG(~k) (5.10)

= 2πδD(k‖ + k′‖)P×(k‖, |~x⊥ − ~x′⊥|) , (5.11)

where the symbol δD stands for the Dirac delta distribution, PG(~k) is the Gaussian power

spectrum of δG, and

P×(k‖, r⊥) =
1

2π

∫ ∞
k‖

k⊥ dk⊥
sin(k⊥r⊥)

k⊥r⊥
PG(k‖, k⊥) . (5.12)

This shows that modes δ̃G on different lines of sight are independent except when k‖ = k‖
′.

Therefore, the problem is now separated for each value of k‖, reducing the original correlation

matrix into Np matrices of N2
q elements each.

We proceed as follows : 1) we build a (k‖, r⊥) grid, 2) for each value of k‖, we compute the

correlations between the δ̃G using Eq. 5.12 to build the C matrix of N2
q elements, 3) we perform
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a Cholesky decomposition of each of the C matrices to obtain the triangular matrices A, 4)

we generate a set of independent Gaussian variables, gij for each quasar and each value of k‖,

then rotating them through the A matrices to obtain δ̃G = AAAg, 5) finally, we perform a one-

dimensional inverse Fourier Transform to convert the δ̃G back to the real-space field δG, that are

correlated as implied by the Gaussian power spectrum PG(~k).

The one-dimensional Fourier transform in the direction of the line of sight simplifies the pro-

cedure but implies that all pixels of the a given line of sight follow the same power spectrum.

Consequently, the redshift evolution of PG(~k) cannot be directly implemented. This problem is

solved by creating the same survey many times with a different power spectrum but same seeds

for the random number generator. Each survey is computed at a different redshift and the final

survey is obtained by interpolation.

Even after decomposing the problem, matrices involved still have a large number of elements

(N2
q ∼ 108 for BOSS). Therefore, we further simplify the problem by dividing the full survey

into independent sub-regions, each with a smaller number of quasars. More details on this on

§ 5.2, where we present specific characteristics of BOSS mock catalogs.

This method, even though it is memory demanding, was extensively tested in Font-Ribera et al.

(2011) and it was used to generate the absorption field for the official BOSS Lyα forest mock

catalogs, described in § 5.2.

5.1.3 Random sampling of modes : theory

We describe now an alternative method to the previous one. The idea of this method is to Fourier

transform a set of modes δ(~k) in order to obtain a correlated Gaussian random field δG(~r) but,

instead of using the usual FFT in a regular grid of modes, we compute explicitly the integral

using ~k-modes randomly distributed over the Fourier space, as a Monte Carlo integration. As we

demonstrate next, this method does not require large amounts of memory, neither the division

of the survey in sub-regions. Computing time scales linearly with the number of lines of sight

instead of quadratically. There is also no need to make the assumption of parallel lines of sight

and the redshift evolution implementation is straightforward. In addition, thanks to the random

sampling of the modes, the usual limits in frequency of FFT methods practically do not exist

anymore.

In general, a correlated random variable δG(~r) can be written as a Fourier transform of δ(~k) as

δG(~r) = S−1
Nmodes∑

j

δ(~kj) exp
(
i~kj · ~r

)
+ c.c. , (5.13)

where S is a normalization factor defined later and “c.c.” is the notation for the complex

conjugate of term in the sum, needed to make δG purely real. The mode amplitudes δ(~kj) are

also complex quantities. This sum is the discrete version of the integral form of the Fourier

Transform, which is a true equality in the limit of infinite number of modes, covering all possible

real values of wavevectors −∞ < k <∞. Of course in practice for numerical computations, only

a finite number of wavevectors are used.
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In a FFT, the wavevectors ~kj are sampled in a regular three-dimensional grid, that is related to

the regular grid of positions ~rj where the field is sampled through ~kj = (Lπ/rj)r̂j . There are as

many modes as positions in the grid. This is the reason why the FFT method is not adapted to

generate mock Lyα forest: in a 3D regular grid, most of the points would lay outside the quasar

lines of sight, representing a waste of computing effort.

In our new method, the wavevectors ~kj are not sampled in a grid, but randomly. The sum in

Eq. 5.13 is explicitly computed for all the real-space locations ~r of interest. The values of the

wavevectors ~kj are randomly drawn from a probability distribution function (PDF) p(~kj) defined

to be proportional to the Gaussian power spectrum PG(~k) as

p(~k) d3k =
1

(2π)3

PG(~k)

ξG(0)
d3k , (5.14)

where ξG(0) = (2π)−3
∫

d3kPG(~k), assumed to be finite. Since our Gaussian random field has

variance unity, we set ξG(0) = 1 hereafter.

Theoretically, there are no limits for the range covered by kj = |~kj |. However, the shape of the

power spectrum itself sets a natural range. The kj values where the power spectrum value is

negligible are drawn with negligible probability. This automatically sets the k range, interesting

for clustering measurements. In practice, a limited range is needed in order to numerically

define the PDF from Eq. 5.14. We use the range defined by kj ∈ [0, kcut], where the value of

kcut is chosen to be after the fall-off region of the power spectrum damping tail. This is another

advantage of this method, that can take into account a much larger range of kj compared to the

usual FFT method.

The amplitudes δ(~kj) of each mode are chosen to be independent complex Gaussian random

variables of zero mean,
〈
δ(~kj)

〉
=
〈
δ∗(~kj)

〉
= 0, and unitary variance,

〈
δ(~kj)δ

∗(~kj)
〉

= 1. At

this point, one can imagine the result: drawing n modes with amplitudes δ(~kj) in a Fourier

volume element d3k centered at a given ~k gives that the sum of these variables have a total

variance equal to n. The fraction n/Nmodes of modes inside this volume element is proportional

to probability distribution defined by the power spectrum P (~k). The effective result is that those

n modes have variance equal to P (~k), when choosing the appropriate value for the normalization

S in Eq. 5.13. This gives a normalization factor S =
√

2Nmodes (the “2” accounts for the complex

conjugate term).

In the following we show that taking expected values over the distributions we recover the correct

correlation function ξG for the δG. Expressing the expected value of the product of two correlated

variables δG(~r1) and δG(~r2) we have

〈
δG(~r1)δG(~r2)

〉
=

1

2Nmodes

Nmodes∑
j,l

〈
δ(~kj)δ(~kl) exp

(
+i~kj · ~r1 + i~kl · ~r2

)
+ c.c. (5.15)

+δ(~kj)δ
∗(~kl) exp

(
+i~kj · ~r1 − i~kl · ~r2

)
+ c.c.

〉
.
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This expression simplifies significantly since there is no correlation between the amplitudes δ(~kj)

and the wavevectors ~kj , drawn from two different PDFs. Therefore, all crossed terms in the

expression above vanish. Also, Fourier amplitudes of different wavevectors are independent so

only diagonal terms with j = l do not vanish when taking ensemble averages. Therefore, we

have

〈
δG(~r1)δG(~r2)

〉
=

1

2Nmodes

Nmodes∑
j

〈
exp

[
i~kj · (~r1 − ~r2)

]
+ c.c.

〉
. (5.16)

The expected value in the sum can be written as an integral the wavevector PDF, p(~kj). Since

the PDF is proportional to the power spectrum, this integral yields the Gaussian correlation

function ξG(~r). In other words,〈
exp

[
i~k · (~r1 − ~r2)

]〉
=

∫
d3k exp

[
i~k · (~r1 − ~r2)

]
p(~k) (5.17)

=
1

(2π)3

∫
d3k exp

[
i~k · (~r1 − ~r2)

]
PG(~k) ,

〈
exp

[
i~k · (~r1 − ~r2)

]〉
= ξG(~r1 − ~r2) . (5.18)

Finally, Eq. 5.16 becomes,

〈
δG(~r1)δG(~r2)

〉
=

1

2Nmodes

Nmodes∑
j

2ξG(~r1 − ~r2) = ξG(~r1 − ~r2) . (5.19)

We have demonstrated that the random sampling of modes produces a correlated Gaussian

random field following an input power spectrum in the limit of infinite number of modes Nmodes.

Having a finite number of modes introduces an intrinsic error on the equality of Eq. 5.18. This

error states how far from PG(~k) can be the actual variance of the modes drawn in a given

realization. The question is how many modes are needed such that this error is smaller compared

to the other source of errors in the survey, e.g., the sample variance or noise. In § 5.1.4 we try

to answer this question.

Including redshift-space distortions

Include linear redshift-space distortions (RSD) in this method is straightforward because, in

Fourier space, their effect is to amplify the isotropic modes δiso(k) in radial direction, which can

be described by the RSD operator (Kaiser, 1987)

δ(~k) = (1 + βµ2
k)δiso(k), (5.20)

where µk = k̂ · ~r is the cosine of the angle between the wavevector ~k and the direction r̂ of the

line of sight, and β is the RSD parameter of the Lyα forest.
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In our method, a given fluctuation δG(~r) is computed explicitly with Eq. 5.13. Since the position

~r is known, it is possible to compute µk and apply the RSD operator for each individual mode

while computing the sum. Therefore, the input power spectrum used in the wavevector PDF

(Eq. 5.14) is the isotropic one PG(k) and RSD are applied when computing δG. An interesting

feature of this procedure is that there is no need of the assumption of parallel lines of sight.

The RSD operator is local and this operation works with the spherical geometry of a BOSS-like

survey.

The value used for β in Eq. 5.20 is the same as in the flux power spectrum in Eq. 5.1. The

redshift-space distortions are correctly conserved even after applying the non-linear transforma-

tion between δG and F .

Redshift evolution of the clustering

We model the redshift evolution of the Lyα forest clustering through an scaling of the power

spectrum amplitude proportional to (1 + z)γ (Eq. 5.5).

As for the RSD, the redshift evolution could be applied by scaling the Fourier modes δ(~k) in the

sum of Eq. 5.13 by [(1 + z)/(1 + z0)]γ , but this procedure does not work. The reason for this

is the non-linear relation between δG and F (Eq. 5.3), for which we assumed 〈δ2
G〉 = 1 for all

redshifts. Scaling the amplitudes of δG would change their variance and the transformation to

F would not work anymore.

If no scaling on δG is applied, their variances would still be unity and we could expect that the

functions a(z) and b(z) would automatically scale the flux power spectrum when converting δG

to F . They actually do a correct scaling of σF but the scaling of the correlation function ξF is

incorrect.

The problem is that, when computing the Gaussian power spectrum PG(k) from the flux power

spectrum PF (k) using Eq. 5.6, a constant scaling factor in the latter does not simply translate

into a constant scaling factor in former; the scaling is actually a function of k.

Therefore, we compute the Gaussian power spectrum at different redshifts PG(k, z). When

performing the sum in Eq. 5.13 for a pixel at redshift z, each mode δ(k) is scaled by the function

R(k, z) =

√
PG(k, z)

PG(k, z = 2.25)
, (5.21)

which also conserves the unity of the variance of δG. This procedure artificially modifies the

power spectrum amplitude in a k and z dependent way.

5.1.4 Random sampling of modes : tests

In this section, we test the random sampling method by comparing with the Cholesky decom-

position method. The question we want to answer is how many modes Nmodes are required for
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constructing an absorption field for a BOSS-like survey having the correctly modeled correlation

function.

The idea

If the number of modes Nmodes is not sufficiently high, the underlying power spectrum PNmodes

G (k)

can be significantly different from the desired power spectrum PG(k). This can be visualized in

the limit case where just one k∗ mode is drawn: the underlying power spectrum is just a Dirac

delta distribution centered in k∗. A new realization would also have a Dirac power spectrum but

centered in a different k value. Many independent realizations of δG fields produced with a finite

number of modes will have their underlying power spectrum fluctuating around the desired one.

If the underlying power spectrum PNmodes

G (k) of each realization could be measured perfectly,

those measurements would scatter around PG(k) due to the finite number of modes. This scatter

should be smaller as we increase the number of modes used in each realization. We refer to this

scatter as the “finite-mode variance”, hereafter.

The problem is that, for a given survey, a perfect measurement of the underlying power spectrum

is not possible. For a finite survey, there is always an intrinsic error on the estimate of the power

spectrum due to the finite number of pixels sampling a given scale, called sample variance. This

is equivalent for the correlation function. Therefore, the scatter of measurements over many

mock realizations have both contributions combined, sample and finite-mode variance.

The idea of our test is thus to compute the spread of correlation functions estimated over a set

of realizations of the same survey, and see how this spread depends on the number of modes. We

consider that Nmodes is sufficiently large when this spread is dominated by the sample variance

(which does not depend on Nmodes).

Our test samples

We produced realizations of mock Lyα forest surveys using the random sampling method in order

to analyze the effect of the number of drawn modes. Our forests contain only the absorption

field, with no noise or continuum model added. The quasar positions were chosen to be the same

as the DR11 quasars. For simplicity, we chose a sub-sample of the DR11 NGC quasars, shown

in Fig. 5.1. Our larger sample contains ∼ 60, 000 quasars.

Forests were computed in pixels of 0.5 h−1Mpc comoving over the wavelength range between

λLyβ and λLyα in the rest-frame of each quasar. This comoving size for the bins is the same

used for the official DR11 mock catalogs created with the Cholesky decomposition method. It is

smaller than the typical BOSS spectrograph bin (of about 1 Å that corresponds to 0.7 h−1Mpc

at z = 2.3).

Sets of 20 realizations of mock surveys were produced for five values of Nmodes: 3 × 104, 105,

3× 105, 106 and 3× 106 modes.
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Figure 5.1: Angular distribution of the quasars used (black dots) to build mock catalogs
for testing the random sampling method of generating the correlated Gaussian random field.
These quasars are a sub sample of DR11 quasars (red dots) in the North Galactic Cap.

0 50 100 150 200
r(Mpc/h)

−0.1

0.0

0.1

0.2

0.3

ξ 0
(r

)
×
r2

Figure 5.2: Monopole of the Lyα forest correlation function of using 3× 106 modes estimated
from skewers without noise and exact continua. The dashed line is showing the input theory.

Analysis of convergence

We used the standard analysis chain described in § 6 to estimate the correlation function ξ̂(r‖, r⊥)

and its covariance matrix for each realization. We used 50×50 bins of width 4 h−1Mpc covering

separations between 0 and 200 h−1Mpc parallel and transverse to the line of sight.

Figure 5.2 shows an example of the estimated monopole of the correlation function (defined

as the average of ξ(r, µ) over 0 < µ < 1 for fixed r) for our largest sample of forests built

using Nmodes = 3 × 106. We observe a very good agreement between the input theory and our

measurement, showing that the random sampling of modes works correctly and reproduces the

BAO peak.
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Figure 5.3: Average and RMS of monopoles of the Lyα forest correlation function from 20
realizations of mock catalogs using different number of modes. The dashed line is showing the
input theory.

Figure 5.3 shows the mean and standard deviation of measured monopoles over each set of twenty

realizations, for three values of Nmodes: 3 × 104, 3 × 105 and 3 × 106. We clearly see that the

scatter reduces when increasing the number of modes as expected.

For future work, it is to be quantified how many modes a given survey needs for convergence

of the variance. Non-diagonal terms of the covariance matrix should also in principle converge

thanks to the Wick theorem, that decomposes the 4-point function into sum of products of 2-point

functions. If the 2-point function converges, the Wick theorem would imply the convergence of

the 4-point function.

5.2 Producing BOSS mock data-sets

In the previous section we described the process of generating the correlated transmitted flux

fraction F along quasar lines of sight. To generate realistic mocks of the data, these spectra need

to be transformed to include astrophysical features such as a quasar continuum, high column

density absorbers, metal absorption lines, and instrumental features such as noise, spectro-

photometric calibration, sky subtraction residuals, etc. In this section we explain how we included

all these features in DR11 mock catalogs.

These mock data are intended to mimic BOSS coadded spectra, that result from the coaddition

of several successive 20-minute invididual exposures of the same object, in a given plate and a

single night2. Most of our discussion below refers to coadded spectra except for the section on

noise properties where a distinction between the noise in each exposure and the noise in the

coadds is necessary.

2The number of exposures is determined by the target overall signal-to-noise of the given plate.
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The expansion procedure is summarized by the following expansion equation:

fλ = [(Fλ · Cλ) ∗ W̃λ(Rp, Rw) +Nλ] ·Mλ + f sky
λ . (5.22)

where fλ is the simulated flux and the parameters on the r.h.s are as follows: Fλ is the raw

transmission field, set to 1 outside the Lyα forest; Cλ is the PCA-generated quasar continuum;

W̃ (Rp, RW ) is the Fourier transform of the BOSS resolution and pixelization kernel (eq. 5.23)

which is convolved with the product FλCλ; Nλ is the noise computed from our model (eq. 5.25);

Mλ is a linear function of log λ (eq. 5.24) used to ensure that each mock spectrum has the

same mean flux and spectral index as the corresponding real spectrum; and fsky is the added

sky subtraction residuals (Fig. 5.6). The following subsections describe in detail each of the

components of this expansion equation.

5.2.1 Raw transmission field, Fλ

The procedure for generating the correlated transmission field is described in section 5.1, and

yields a field of mean absorption and variance given by equations 5.4 and 5.5. That transmission

field models regions of optically thin neutral hydrogen absorption. However, some of the regions

probed by the Lyα forest will inevitably contain higher density systems and non-Lyα absorbers.

We describe the addition of these systems in the next two sub-sections.

5.2.1.1 High column density (HCD) systems

Most of the Lyα absorption in a spectrum arises from regions that are highly ionized and optically

thin to ionizing photons. However, most of the neutral hydrogen is in dense systems with high

neutral hydrogen column density, which produce wavelength intervals of complete absorption

surrounded by damped wings. These structures affect the measured Lyα transmission correla-

tions in two ways. First, they affect the size of the Lyα forest fluctuations directly impacting

the variance in the resulting long-range 3D correlations. Second, since these systems are them-

selves biased differently than the optically thin regions, they will also affect these correlations

themselves.

Damped Lyα systems (DLAs) have strong damped wings that allow for their easy identification,

but Lyman limit systems (LLS) of lower column density can also affect the correlations even if

their damped wings are weak and individually not detectable.

We therefore insert systems of neutral hydrogen column density NHI > 1017.2 cm−2, which we

collectively designate as high column density systems (HCDs), following the procedure that is

described in (Font-Ribera and Miralda-Escudé, 2012). In brief, HCDs are distributed only in

pixels where the transmission F is lower than a certain threshold F0, defined such that the

probability to have an optical depth τ larger than τ0 = − ln(F0) is 1%. The column density

of the HCDs are randomly drawn from an analytical model (Zheng and Miralda-Escudé, 2002)

calibrated to match observations (Noterdaeme et al., 2009) from SDSSII-DR7. Voigt profiles are

included in these regions assuming a constant Doppler parameter bD = 70 km s−1.



Producing BOSS mock data-sets 81

1000 1100 1200 1300 1400 1500 1600
Rest-frame Wavelength [Å]
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Figure 5.4: Example continua from 5 random mocks showing variations in line shapes and the
continuum shape within the Lyα forest.

The effect of HCDs on the Lyα forest correlation function and the measurement errors was

studied previously in (Font-Ribera and Miralda-Escudé, 2012).

5.2.1.2 Metals

In addition to absorption from hydrogen, metals present in the intergalactic medium can also

absorb quasar light at discrete wavelengths inside the quasar forest. We added metal absorption

with a procedure that assumes that all significant metal absorption is associated with significant

Lyα absorption. For each mock spectra, we considered pixels for which the Lyα transmittance

F (λ) was below 0.4. For these cases, we decrease the flux by δFMet of their corresponding flux

bin at wavelength λ+ ∆λMet for a given metal line.

Application of this method requires a list of significant metal lines and appropriate values for

the absorption, δFMet. This was done following the procedure of Slosar et al. (2011) where

quasar spectra were stacked after shifting each spectra so that it is centered on a wavelength of

high absorption. The stacked spectra then have, necessarily, a strong absorption at the center,

but also absorption lines at wavelengths separated from the center by λi − λ0 where λ0 is the

wavelength of absorption by the species responsible for the strong absorption and λi is the

wavelength of absorption of any other absorber. With these stacks, we identified 21 correlated

absorption features, 9 of them corresponding to Lyα -metal correlations and the others to metal-

metal correlations (arising from the strong absorber being due to a metal line rather than to

Lyα ). We designate these metal-metal correlations as “shadows” hereafter (Pieri et al., 2010).

Using the line catalog and the deduced flux decrements, we added metal lines (including shadow

lines) to the mock spectra. No scatter is added to these flux decrements.
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5.2.2 Quasar continua Cλ

The quasar continuum C for each line-of-sight is constructed using eight higher ranked eigenspec-

tra of the Principal Component Analysis (PCA) of high resolution quasar spectra (Suzuki et al.,

2005). The final continuum is a sum of a mean shape and a linear combination of these eigen-

spectra for which amplitudes were randomly sampled following a centered Gaussian distribution

with the corresponding standard deviation. These eigenspectra cover restframe wavelengths

102–160 nm spanning from the Lyman-β peak through C IV λ1549. Wavelengths above and

below this range are discarded in the mock spectra. Figure 5.4 shows 5 example mock con-

tinua with variations in line shapes and the shape of the continuum within the Lyα forest. The

random sampling of the PCA eigenvalue amplitudes occasionally leads to negative continua at

some wavelength bins (this happens on 0.5% of the continua), and in this case the continuum is

discarded and a new set of random amplitudes is drawn.

5.2.3 The BOSS kernel

BOSS spectrographs cover the wavelength range 361 nm - 1014 nm with a resolving power

λ/∆λ varying from 1300 in the blue end to 2600 in the red end. Each data spectrum has its

own estimate of the wavelength dispersion per pixel. In BOSS coadded data, the pixels are

logarithmic in wavelength with steps of ∆ log10(λ) = 10−4 corresponding to 69 km s−1.

As described in § 5.1.2, the raw absorption fields were produced over the lines-of-sight using a

grid in comoving space with bins of 0.5 h−1Mpc. To match BOSS spectra binning and resolution,

we first compute the mean wavelength dispersion (PSF) Rw and mean pixel width Rp over the

Lyα forest region of the corresponding data spectrum. Each raw field was then convolved using

the following kernel (in Fourier space):

W (k,Rp, Rw) = exp

(
−k

2R2
w

2

)[
sin (kRp/2)

kRp/2

]
. (5.23)

We then match the binning by taking, for each data pixel, the absorption value of the closest

pixel of the smoothed raw field.

5.2.4 Flux normalization Mλ

We wish to ensure that each mock quasar has a mean forest flux and spectral index equal to

those of the corresponding real quasar. Specifically, we normalize the noise-free mock quasar

flux fmock to the data flux fdata by solving for M0 and M1 in

fdata = fmock(M0 +M1 log10 λ), (5.24)

over the rest-frame wavelength ranges 104.1 < λ < 118.5 nm (inside the Lyα forest) and 127.0 <

λ < 150.0 nm (between the Lyα and CIV emission peaks). Then, fmock is multiplied by the

factor Mλ = M0 +M1 log10 λ. These fits are done using the inverse variance given by the pipeline
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as fit weights and ignoring all masked pixels. For DR9 mock data-sets, the fit was performed

without weighting leading a slightly larger number of bad fits, nearly 1% of the full sample.

The parameter M1 effectively corrects for quasar spectral distortions introduced by the SDSS

optics that are currently not corrected by the pipeline. The Sloan 2.5-m telescope has a chromatic

focal plane and lacks an atmospheric dispersion corrector. As a result, the optimal position

for a spectrograph fiber is a wavelength and airmass dependent quantity. Galaxy targets and

calibration stars are optimized for 540 nm, while quasar targets are offset both along and across

the focal plane to optimize the signal-to-noise at 400 nm for Lyα forest studies. This offset means

that the flux calibration vectors derived from the standard stars are not correct for the quasars

and result in a flux mis-calibration which depends upon wavelength, airmass, seeing, guiding,

and the location on the focal plane (Dawson et al., 2013).

5.2.5 The noise Nλ

The noise, Nλ, added to the fluxes of a given mock quasar is a random number taken from

a Gaussian distribution of mean zero and with a variance determined by the noise model for

the corresponding real quasar. The noise models are most naturally expressed using the total

number of photo-electrons ptot (signal plus sky) since in an ideal system the variance would be

equal to ptot. In practice the model gives the variance σ2
phot as a linear function of ptot:

σ2
phot = N0 +N1ptot (5.25)

The coefficient N0 reflects the CCD readout noise and other systematic effects that are inde-

pendent of the photon flux. The coefficient N1 would be unity for pure Poisson photon noise in

the absence of systematics, but in practice N1 ≥ 1 owing to sky subtraction and flux calibration

errors.

For each mock quasar, the parameters N0 and N1 are found by fitting ptot as a function of σ2
phot,

both obtained from from its corresponding real quasar. This requires the use of the calibration

vector c(λ) to transform fluxes to photo-electrons:

ptot(λ) = [fQSO(λ) + fsky(λ)] /c(λ) (5.26)

σ2
phot(λ) = σ2(λ)/c(λ)2 (5.27)

where σ2(λ) is the estimated flux variance of the data. We fit a linear noise model for each

spectrum, using pixels from the blue side of the spectrograph, Fig. 5.5 shows an example of a fit

for N0 and N1 for one quasar spectrum in DR11.

Of course the accuracy of the noise model is only as good as the accuracy of σ(λ). We do not

use the pipeline-calculated σ(λ) because there are systematic deviations between it and the true

σ(λ). This was demonstrated by studying smooth regions redwards of the Lyα peak, between

142.0 and 151.0 nm where there are no strong emission lines. For each QSO spectrum we fit a

3rd order polynomial in this region to obtain an estimate of the continuum. The polynomial fit

includes 5-σ outlier rejection to be robust against metal absorption and data artifacts. We then
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Figure 5.5: Example of a noise model fitting for spectrum 5493-56009-0504 (plate-MJD-fiber).
The red line shows the result of the linear fit of the photon variance (Eq. 5.25) in the data
points for a given spectrum.

organize the data in wavelength bins and measure, in each bin, the spread of the pull distribution

by fitting a Gaussian to this distribution in the range [−2, 2]. Deviations from unity of the sigma

parameter of this Gaussian directly measure any pipeline mis-estimation of the noise variance.

We find that for spectra in individual exposures, the pipeline noise estimates are accurate at the

1–2% level. However, coadded spectra have an observer-frame wavelength dependent error in

the estimated noise. For λ < 600 nm where only the blue spectrograph contributes, it is approx-

imately proportional to the square root of the ratio of the coadd to individual spectrum spectral

bin sizes. Below ∼475.0 nm, where the coadded bins are smaller than the original exposures,

the pipeline underestimates the noise by 0–10%, while above ∼470 nm, where the coadded bins

are larger than the original exposures, it overestimates by noise by 0–15%. Similar estimates

were obtained in Palanque-Delabrouille et al. (2013). The “Concordance Lyα forest Sample” of

Lee et al. (2013) uses a slightly different parametrization which has the same functional form in

wavelength, but also includes a flux-dependent correction and a per-quasar overall normalization.

This parametrization of the pipeline noise correction is used when generating the noise for

mock spectra and for purposefully mis-reporting the noise in those spectra to simulate the

mis-estimated noise of the real data.

In addition to σ(λ), we also need the calibration vector c(λ) to convert the mock and coadded

data spectra into photo-electrons. The BOSS data individual exposures include the calibration

vector ci(λ) that converts between observed photo-electrons pi(λ) and calibrated flux fi(λ). The

coadd is performed as a weighted simultaneous spline fit to the individual exposures and the

resulting effective calibration vector is not calculated. We re-derive the effective calibration

vector using the approximation that the coadded photo-electrons are the unweighted sum of the

individual exposure photo-electrons: p =
∑
i pi(λ) = r(λ)

∑
i fi(λ)/ci(λ), where r(λ) corrects for

the wavelength dependent difference in bin-size between individual exposures and the coadded

spectra.

Since the coadded flux is normalized to the same units as the individual exposures (ergs/s/cm2/Å),

we may factor out f(λ) ' fi(λ) such that p(λ) = f(λ)r(λ)
∑
i c
−1
i (λ). Thus the effective cali-

bration vector to convert between coadded photo-electrons and coadded flux is:

c(λ) =

(
r(λ)

∑
i

c−1
i (λ)

)−1

(5.28)
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For this calculation we use only the blue exposures, therefore limiting the wavelength range of

mock spectra from 360 to 633 nm.

With the parameters N0 and N1 for each quasar, it is simple to add realistic noise to the mock

spectra. We compute the mock quasar flux from the product of the transmittance F and the

generated PCA quasar continuum C, and add the same sky flux fsky that is used in the data.

We then compute the mock photons p and noise σp at each pixel,

p = (F · C + fsky)/c (5.29)

σ2
p = N0 +N1p (5.30)

We add noise using a Gaussian distribution with mean 0 and sigma σp:

p̃ = p+N (0, σp) (5.31)

We convert back into quasar flux f̃QSO :

f̃QSO = p̃c− fsky (5.32)

σf̃ = cσp (5.33)

The final products are the noiseless mock spectrum, a noisy realization of that spectrum, the

true inverse variance of that noise, and a noisy measurement of that inverse variance to mimic

the fact that the real data measurement errors are themselves a noisy estimate of the true errors

.

The noisy measurement of the inverse variance is generated as follows. As explained previously,

the noise mis-calibration is defined by the ratio of wavelength bin sizes of individual exposures

and coadded spectrum r(λ). We also add Gaussian random fluctuations to this noise estimates

with standard deviation proportional to the photon variance itself. The final mock photon noise

estimate σ̃f̃ is given by σf̃ (λ)r(λ) +N (0,
√

2σf ).

The model presented here assumes that the noise in different pixels of the same spectrum is

uncorrelated. This is likely not realistic because covariance among neighboring pixels is intro-

duced by rebinning. However, other sources of small scale correlations in these mock catalogs are

not correctly modeled by the input power spectrum, since the log-normal model was built to fit

large-scale correlations. Therefore we do not consider any noise correlation between neighboring

bins.

5.2.6 Sky mis-subtraction f sky
λ

Figure 5.6 (left) shows the median residual of BOSS sky spectra after the sky model has been

subtracted. While this is only a 1–2% bias in the sky subtraction, it can be large compared

to the Lyα forest flux, which is typically faint compared to the sky. Fig. 5.6 (right) shows the

relative flux between noise-free simulated Lyα forest flux and the residual sky. The median is
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Figure 5.6: Median residual from BOSS sky-subtracted sky fibers (left panel), and the distri-
bution of the ratio of that residual to simulated Lyα forest flux (right panel).

5.6%, the mean is 9.9%, and there is a tail reaching up to 1.0. Note that this is an additive

component to mock spectra, unlike other mis-calibrations that are multiplicative.

Mock spectra add this median sky subtraction residual times a random constant scatter with

mean 1.0 and RMS 0.1 so that each spectrum receives a slightly different sky subtraction residual

bias.

5.2.7 The MockExpander package

These mocks are essential in the study of systematic effects, either physical or instrumental, that

could affect our measurements. They are extensively used in this work in § 7 to test our BAO

analysis chain.

The MockExpander package was developed to make the use of mocks easier. This package is a

compilation of codes that transform raw absorption fields into realistic spectra, with all features

discussed in this section. The user has the choice of turning on and off some systematics to test

their effect on their analysis. Therefore, the user only needs to download the absorption fields

and real data. This package is also easy to customize, allowing the user to modify our expansion

recipe.

In December 2014, the MockExpander and the full set of mock catalogs will be publicly available

for the community in the Data Release 12.



Chapter 6

Measuring the correlation

function of the Lyman-α forest

In this chapter we describe all the steps of the measurement of the 3D correlation function of

the Lyα forests, and the procedure to estimate of the BAO peak position.

Continuum fitting methods are discussed in § 6.1. Then, we compute the optimal weights for the

correlation function estimate in § 6.2. The covariance matrix, estimated through two different

methods described in § 6.3, is used on the measurement of the BAO peak position (§ 6.4).

Being just a descriptive chapter about the methods, all tests using mock catalogs showing the

limitations of our analysis are explained in the next chapter, and the application on real data in

the subsequent chapter.

This chapter is part of the original contribution of this thesis, also part of the following publi-

cations: Busca et al. (2013), Delubac et al. (2014). The BAO fitting procedure is published in

Kirkby et al. (2013).

6.1 Continuum fitting

The first step on the Lyα BAO analysis is to compute the transmitted flux fluctuations δF (de-

fined in Eq. 2.15) of Lyα forests. In this section, we present three different automatic procedures

to estimate flux fluctuations from BOSS quasar spectra.

6.1.1 Generalities

The transmitted flux fraction F in a given pixel centered at wavelength λ is simply the ratio of

the observed flux f(λ) and the unabsorbed flux coming from the quasar C(λ), also referred as

87
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continuum. Rewriting Eq. 2.15 in terms of f we have,

δF (λ) =
f(λ)

C(λ)F̄ (λ)
− 1 . (6.1)

To compute δF , we can choose between estimating either the product CF̄ , or C and F̄ indepen-

dently. The continuum C is different for each quasar while the function F̄ is assumed to be the

same for all quasars.

In high resolution quasar spectra the continuum level C is estimated manually since it is more

visible (as in Fig. 2.1). Samples of high resolution spectra usually contain at most hundreds

of quasars making the manual procedure feasible. However, BOSS quasar spectra have lower

resolution and lower signal-to-noise, making individual continuum level estimates more com-

plex. Furthermore, the BOSS sample contains hundreds of thousand spectra, making automatic

continuum fitting algorithms preferred.

First, a model for the continuum is needed. Quasar continua can be basically described by a

power-law and some emission lines which can have different relative intensities depending on the

composition of the quasar environment. The continuum region of our interest, over the forest, is

essentially smooth. Therefore, a basic model of the continuum shape over the forest can be build

by simply stacking forests in their rest-frame. This is used by the continuum fitting methods

C1 and C2 described in § 6.1.2 and § 6.1.3, respectively. The C2 method was chosen as the

standard method for all the analyses presented in the subsequent chapters. C2 was the most

tested method on mock catalogs, and uses a slightly more refined algorithm than C1.

Another continuum model can be built from a set of high resolution quasar spectra and a principal

component analysis (PCA) (Suzuki et al., 2005, Suzuki, 2006). A hand-fitted continuum is

estimated for each high-resolution quasar, then the mean continuum and its covariance matrix

are computed. The eigenvectors of the covariance matrix are extracted, ranked by its eigenvalues

in decreasing order. The principal components are defined by a subset of eigenvectors with larger

eigenvalues. Usually, about ten principal components are considered. A given quasar spectrum

can have its continuum modeled by a mean shape plus a linear combination of these components.

This is the case of method C3 described in § 6.1.4. Two samples of PCA on quasar spectra are

available (Suzuki et al., 2005, Pâris et al., 2011). The first sample was used to estimate BOSS

quasar continua in Lee et al. (2013), and to build mock catalogs for the BAO analysis (see § 5).

This method was not chosen as the standard one because of the lack of systematic testing on

mock catalogs (that are constructed using PCA templates).

6.1.2 The Gaussian method: C1

This method assumes that the transmitted flux fraction F is a Gaussian random field. A fixed

shape is fitted over each forest through a χ2 minimization. This method is not adapted to

estimate the continuum level of the quasar, C(λ), and the mean transmission F̄ (z) separately,

but to directly estimate the product of both, C(λ)F̄ (z).
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We describe now the steps of this method. First, all spectra are normalized by their respective

observed mean flux in the interval 127.5 and 128.5 nm in the quasar rest-frame. Second, normal-

ized forests are stacked in order to obtain a forest shape that will be used afterwards for fitting

individual forests. Actually, ten different stacks are produced corresponding to ten independent

quasar redshift ranges, between 2.1 and 3.5. Each stack is an estimate of the average product of

the normalized continuum times the absorption, 〈C(λ)F (z)〉. The third and last step is to fit the

stacked shape over the forest of each quasar q (using the stack associated to the redshift of the

quasar). In order to take in to account quasar intrinsic diversity and also wavelength dependent

spectro-photometric errors, a power-law is multiplied to the stacked shape,

Cq(λ)F̄ (z) = aqλ
bq
〈
C(λ)F̄ (z)

〉
, (6.2)

where the two parameters, aq and bq, are such that they minimize the weighted squared residuals

of the normalized flux for each quasar.

6.1.3 The Non-Gaussian method: C2

This method might be considered as an improvement of the Gaussian method since it actually

estimates the continuum level in the forest. The main improvement comes from the modeling of

the probability density function (PDF) of the transmission F .

The used flux PDF model P (F, z) is the same used to generate mock catalogs. It assumes

a redshift dependent lognormal distribution for the optical depth, τ in Eq. 2.1 (more details

in Chap. 5). In practice, this PDF is computed from the mock raw transmission fields. It is

important to match the rebinning of pixels in mock and data. Rebinning significantly alters the

flux PDF shape, and might introduce biases in the continuum estimation. In our analysis, we

rebin forests into “analysis pixels” composed of three BOSS pixels.

The probability density Pi of observing flux fi in each pixel i assuming a continuum C(λi) is

the convolution of P (F, zi) with the noise of that pixel σi, taken to be Gaussian, summarizing:

Pi(fi, Cq(λi), zi) ∝
∫ 1

0

dF P (F, zi) exp

[−(CqF − fi)2

2σ2
i

]
. (6.3)

Similar to method C1, in this method the continuum for each quasar is a product of a stacked

mean shape C̄(λrf) and a linear function in log λ,

C(λ) = (aq + bq log λ)C̄(λrf) . (6.4)

In this method, the mean shape C̄ is the same for all quasar redshifts. The parameters aq and bq

are determined for each quasar by maximizing a likelihood defined by the product of probabilities

for each pixel,

L(Cq) =
∏
i

Pi[fi, Cq(λi)] . (6.5)

The last step for computing δF is to estimate the mean transmission F̄ (λ). The value of F̄ (z)

could be derived analytically, if our flux PDF model P (F, z) was the true distribution of flux
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Figure 6.1: The measured mean transmitted flux fraction F̄ as a function of observed wave-
length λ for data (red dashed) and for a set of ten mock catalogs (blue solid).

fractions. Therefore, we estimate F̄ from fitted forests by requiring resulting fluctuations δF to

have zero mean.

The iterative procedure

In order to be less dependent on the mock flux PDF used in this method, we developed an

iterative procedure that extract more information from the data itself when fitting continua.

First, we fit all continua using a constant mean shape C̄(λrf) = 1 (we assume that this shape

is the same for all quasars at all redshifts). By stacking the resulting forests in the rest-frame

of their quasars, we obtain the shape for the next iteration, where we fit again all continua.

Furthermore, at each step we re-estimate the mean transmission F̄ (z) and the correction for

pixel error mis-estimations, as discussed in § 6.2.1. Usually, up to six iterations are needed for

convergence (more details in § 7.3).

6.1.4 The PCA method: C3

This method uses a set of PCA samples described in § ?? to estimate quasar continua, not

exclusively over the forest. We summarize here this method, but the full description and tests

are published in Lee et al. (2013).

The basic idea of this method is to fit amplitudes of the principal components from Suzuki et al.

(2005) between 102 and 160 nm in the quasar rest-frame. Inside the forest, measurements of the

mean transmitted flux F̄ (λ) are used to correct the continuum level, a procedure called “mean

flux regulation”.

Figure 6.2 gives an example of a randomly chosen spectrum with the continua estimated by the

three methods presented here.
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Figure 6.2: An example of a BOSS quasar spectrum of redshift 3.239. The red and blue lines
cover the forest region used here, 104.0 < λrf < 120.0. This region is sandwiched between the
quasar’s Lyβ and Lyα emission lines respectively at 435 and 515 nm. The blue (green) line is
the C2 (C3) model of the continuum, Cq(λ), and the red line is the C1 model of the product
of the continuum and the mean absorption, Cq(λ)F̄ (z). (See text.)

6.2 The correlation function

Once the flux fluctuations δF are estimated for all pixels in the survey, we compute the binned

correlation function using the following estimator,

ξ̂(A) =

∑
i,j∈A wiwjδiδj∑
i,j∈A wiwj

, (6.6)

where A is a bin of a separation grid. Separations can be computed using observable quantities

such as redshifts and angles (as in Slosar et al. (2013)), or by converting them into comoving

separation using a fiducial cosmology (as in Busca et al. (2013), Delubac et al. (2014)). This

expression tells us that for a given bin A, we only average the product of fluctuations of pairs

(i, j) of pixels whose separation falls inside A. The wi are the weights of each pixel, defined next.

6.2.1 Weights

Before estimating the correlation function, it is important to correctly compute the weight of

each pixel, taking into account the estimated error for each flux measurement and the redshift

evolution of the Lyα forest. This will affect not only the estimation of the correlation function

ξ itself but also its covariance matrix (§ 6.3).

A discussion on the optimal weights for the Lyα correlation function ξ is developed in McQuinn

and White (2011). We use a simplified version, where the weight is the inverse of the total pixel

variance, where the total pixel variance σ2
i is a sum of pixel instrumental variance σ2

i,pipeline (esti-

mated by the automatic data-reduction pipeline) and intrinsic variance of the Lyα forestσ2
LSS(z)

(redshift dependent), i.e,

σ2
i =

σ2
i,pipeline

η(zi)
+ σ2

LSS(zi) . (6.7)
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The function η(z) is included to correct for an eventual systematic error in the estimation of the

pixel variance by the pipeline. Indeed, many studies using BOSS spectra (McDonald et al., 2006,

Palanque-Delabrouille et al., 2013, Lee et al., 2013) have shown that η(z) 6= 1 in general. The

instrumental pixel noise σpipeline is underestimated by 0-10% at λ < 450nm and overestimated

for λ > 450 nm by 0-15%. The reason for these mis-estimates comes from the coaddition process

of individual exposures by the automatic pipeline, that does not propagate errors precisely.

Individual exposures also suffer from this problem, but with error mis-estimates smaller than

5%.

In practice, the functions η(z) and σLSS(z) are found by fitting Eq. 6.11 through the measurement

of the true pixel variance 〈δ2
F 〉 as a function of the furnished pipeline variance σ2

pipeline. The

relation 〈δ2
F 〉(σ2

pipeline) is measured in ten pixel redshift bins. Tests presented in § 7.4 show that

this model for the pixel variance is accurate to first order. The data measurement is shown in

§ 8.2.

The final weight is such that it maximizes the signal to noise ratio of the correlation function.

The amplitude of correlations increases as (1+z)γ with γ = 3.8 (McDonald et al., 2006) but also

does the intrinsic variance. In the approximation of independent bins of the correlation function,

the variance of the estimator (Eq. 6.6) can be written as

Var
[
ξ̂(A)

]
=

∑
i,j∈A w

2
iw

2
jσ

2
i σ

2
j[∑

i,j∈A wiwj

]2 , (6.8)

Since ξij(z) = (1 + zi)
γ/2(1 + zj)

γ/2ξij(z0), maximizing the signal to noise ratio given by

(
S

N

)2

=
〈ξ̂(A)〉2

Var
[
ξ̂(A)

] ≈
(∑

i,j∈A wiwjδiδj

)2

∑
i,j∈A w

2
iw

2
jσ

2
i σ

2
j

, (6.9)

with respect to (wiwj) gives

wiwj ∝
(1 + zi)

γ/2(1 + zj)
γ/2

σ2
i σ

2
j

. (6.10)

Therefore the final weight wi for each pixel is given by

wi =
(1 + zi)

γ/2[
σ2
i,pipeline

η(zi)
+ σ2

LSS(zi)
] . (6.11)

6.2.2 The measurement

For this work, we compute the correlation function (Eq. 6.6) as a function of comoving pixel

separation in three dimensions. Therefore, using Ωm = 0.27 in a flat ΛCDM cosmology we

translate angles in the sky (RA and DEC) and z of pixels into comoving positions ~ri in units of

h−1Mpc using Eqs. 1.40 and 1.41.
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The separation vector between two pixels ~r = ~ri − ~rj can be decomposed in radial separations

r‖ and separation transverse to the line of sight r⊥, with r2 = r2
‖ + r2

⊥. The binned correlation

function ξ̂A is computed in a grid of bins 4 h−1Mpc wide, covering from 0 to 200 h−1Mpc in

both radial and transverse separations, a total of 2500 bins. It is common to define the cosine

of the angle between the separation vector ~r and the line of sight direction ẑ as µ = r̂ · ẑ = r‖/r.

When computing ξ̂A, we exclude pairs of pixels from the same quasar to avoid contamination

coming from correlated differences between the true and the estimated continuum level. We also

exclude pairs of pixels that have nearly the same observed wavelength, i.e., r‖ < 4 h−1Mpc,

and that belong to the same plate. This is to avoid spurious correlations coming from the auto-

matic data reduction, that uses constant quantities over a given plate (e.g. the sky subtraction

algorithm).

6.2.3 Details about implementation

The computation of a correlation function is a straightforward procedure but it can be time

demanding for a BOSS-like survey.

Our code was implemented to run using parallel threads. Each thread has a list of forests, and

each forest has its own list of neighboring forests. The neighbors lists are obtained by first con-

verting the 200 h−1Mpc transverse separation (maximal separation for correlation measurement)

into an angle in the sky, which is 3.5 deg in our fiducial cosmology. Then, using the HEALPIX

package we can find neighbors present in cells at less than 3.5 deg from the central quasar. For

most quasars far from the survey boundaries, there are in average 400 neighboring forests. Those

lists are not only useful for computing the correlation function, but also for the estimate of the

covariance matrix by the Wick method (see § 6.3.2).

Once the forests are computed, they are exported into FITS format files with the wavelength,

the comoving distance, the weight, and the continuum level of each pixel, and also the list of

neighbors. Each forest has also the plate number, that is used to define the sub-regions for the

sub-sampling method of computing the covariance matrix (§ 6.3.1).

During the correlation function computation, we associate a redshift for a pixel pair defined as

the arithmetic mean of the pixel redshifts. This allows us to separate the correlation function

in many disjoint redshift bins without losing pairs. We associate a pixel pair, instead of a single

pixel, to a given bin.

6.3 The covariance matrix of ξ̂

To measure the BAO peak position (§ 6.4), we fit a BAO model over the binned correlation

function ξ̂(A). This fit requires an estimate of the covariance matrix of this measurement.

Since our measurement represents a vector of 2500 separation bins, our covariance matrix is a

2500 × 2500 element matrix. We estimate the covariance matrix C(A,B) using two methods,

sub-sampling and a Wick expansion of the four-point function of the δF field. Tests performed
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in § 8.4 show that both methods yield results in agreement. We describe now each of these

methods.

6.3.1 Sub-sampling

Our first method consists in dividing the survey in sub-samples of Np independent regions and

computing the scatter around the mean of estimated correlation functions over the sub-samples.

To define the regions, we used the focal-plane plates. If a pixel pair has its pixels in different

plates, this pair accounts for correlations of the plate with lower right-ascension (this is of course

an arbitrary choice).

We can rewrite Eq. 6.6 in terms of the sub-sample correlation function ξ̂p as

ξ̂(A) =

∑Np
p=1 w

p
Aξ̂

p(A)∑Np
p=1 w

p
A

, (6.12)

where wpA is the sum of weights in the sub-sample p. For the DR11 sample, Np = 2044. We

ensure that a given quasar accounts for a unique sub-sample.

The sub-sampling covariance matrix can be written as

C(A,B) =
〈
ξ̂(A)ξ̂(B)

〉
−
〈
ξ̂(A)

〉〈
ξ̂(B)

〉
= S−1

AB

Nplates∑
p=1

wpAw
p
B

[〈
ξ̂p(A)ξ̂p(B)

〉
−
〈
ξ̂(A)

〉〈
ξ̂(B)

〉]
.

(6.13)

In this expression we are neglecting correlations between ξp(A) and ξp
′
(A) for p 6= p′. In our

case, this means that the correlation functions estimated in two different plates are uncorrelated.

This approximation is only valid to first order because forests in different plates are all correlated

among themselves. However, the contribution to the correlation function of forests near the plate

boundary is small because of the larger number of pairs inside the same plate. The term SAB is

a normalization factor defined later (Eq. 6.16). We estimate the quantity inside the sum through

Ĉp(A,B) = ξ̂p(A)ξ̂p(B)− ξ̂(A)ξ̂(B) . (6.14)

We remark that the Np sub-samples give a very noisy measurement for the non-diagonal terms

of the covariance matrix. Therefore, we developed a smoothing method in order to reduce this

noise (see § 6.3.3).

Taylor et al. (2012) present a discussion about the precision of the covariance matrix estimates

using sub-samples. In their work, it is argued that, in order to get 5% errors in the covariance

matrix estimate, and if the number of data points of the measurement ND (in our case is the

number of correlation bins A effectively used in cosmological fits) is � 102, we need a number

of sub-samples NS > ND and a fractional accuracy of <
√

2/ND in the covariance. In our

case, there are slightly more sub-samples than measurement bins (NS ∼ 2000 and ND ∼ 1500).

The smoothing method presented in § 6.3.3 is able to make the covariance estimate achieve the

required level of accuracy.
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Figure 6.3: The six types of pairs of pairs used in the computation of the covariance matrix.
The dashed lines refer to quasar lines-of-sight. The variances are dominated by types 1,2
and 3. The (r⊥ − r′⊥ = 0) covariances are dominated by types 2 and 3.

6.3.2 The Wick approximation

The second method consists in using the approximation that δF is a Gaussian field, writing the

four-point function as a function of two-point functions (Wick theorem). The covariance between

ξ for two separation bins A and B is therefore

C(A,B) = S−1
AB

∑
i,j∈A

∑
k,l∈B

wiwjwkwl[ξikξjl + ξilξjk] . (6.15)

where the pairs (i, j) and (k, l) refer to the pixels separated by the vector ~rA ∈ A and ~rB ∈ B.

The normalization factor is basically the sum of the weights contributing for the sum in Eq. 6.15,

written as

SAB =
∑
i,j∈A

(wiwj)
∑
k,l∈B

(wkwl) . (6.16)

In Figure 6.3 we illustrate the six possible configurations of pixel pairs naming them in decreasing

order of importance to the final covariance.

Computing the full sum over pairs-of-pairs would require a large amount of computer time.

Instead, we used a random sub-set of pairs-of-pairs. This also introduces noise in the covariance

matrix as in the sub-sampling method, therefore needing a smoothing before the use in BAO

measurements.

Remark that, for most diagrams, the correlation function between pixels in the same line of

sight, i.e., the one-dimensional correlation function ξ1D(λ,∆λ) is needed and therefore is also

computed separately, in observable units (wavelength).

After computing separately the contribution of each diagram we observe that the diagonal ele-

ments of the covariance matrix are dominated (∼ 97%) by the two-quasar diagrams, T1 (con-

tributing ∼ 60%), T2 (25%) and T3 (15%) in Fig. 6.3. The dominant covariances have their

larger contributions from T2 and T3. The structure of the covariance matrix and its dominant

terms are analyzed in § 8.4.
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6.3.3 Smoothing the covariance matrix

Given the low number of regions in the sub-sampling method or the use of only a fraction of pairs-

of-pairs in the Wick method, the resulting covariance matrices C(A,B) are noisy. A smoothing

procedure is needed to reduce this noise before we use these covariaces in fits for the BAO peak

position.

The smoothing procedure is inspired by its structure, analyzed in § 7.6. Basically we make the

assumption that the correlation coefficient, defined as

c(A,B) =
C(A,B)√

C(A,A)C(B,B)
, (6.17)

depends only of the difference of separations of bins A and B, i.e., on ∆r‖ = r‖ − r‖
′ and

∆r⊥ = r⊥ − r⊥′. Therefore, we average all correlation coefficients with same ∆r‖ and ∆r⊥.

Then, we assign this averaged value c̄(∆r‖,∆r⊥) to each element of c(A,B).

We also avoid the noisy averages by setting to zero all elements for which the average correlation

coefficient is compatible with zero. The error of a given average is defined by the standard

deviation of the coefficients around this average.

The final smoothed covariance matrix is defined as

C̃(A,B) = c̄(∆r‖,∆r⊥)
√
C(A,A)C(B,B) . (6.18)

The assumptions around the smoothing of the covariance matrices are validated in § 7.6. In

§ 7.7, measurements of the BAO peak on mock catalogs show reasonable distribution of errors,

which validate our estimates of the covariance matrix up to a few percent level.

6.4 Measuring the BAO peak position

After estimating the flux fluctuations and computed the correlation function and its covariance

matrix, the BAO peak is clearly visible both in mock and in data (see § 7.5 and § 8.3). We proceed

then to the measurement of the peak position, essential to extract cosmological information. In

this section we expose the main points of the fitting procedure, also described in Kirkby et al.

(2013)1.

6.4.1 The model

The idea is to fit the estimated binned correlation function ξ̂(A) with a model composed of two

functions. First, a template ξcosmo coming from a given cosmological model (see § 2.4). Second,

a smooth function of separation without any peak-like feature, hereafter called “broadband” ξbb,

used to marginalize out the full shape of the correlation function that might be not correctly

1The fitter, BAOfit, is publicly available on http://github.com/baofit

http://github.com/baofit
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modeled by the template ξcosmo or to correct for any additive systematic correlations (function

of separation), such as the distortion caused by the continuum fitting procedure (see § 7.1). Our

model is written as,

ξmodel(~r, α‖, α⊥) = ξcosmo(~r, α‖, α⊥) + ξbb(~r), (6.19)

where the ξcosmo is also decomposed into a smooth function and a peak function,

ξcosmo(~r, α‖, α⊥) = ξsmooth(~r) + apeak · ξpeak(α‖r‖, α⊥r⊥). (6.20)

The parameter apeak determines the amplitude of the BAO peak. The dilation parameters α‖ and

α⊥ “move the peak”, defining the position of the BAO peak relative to the position predicted by

the fiducial cosmological model of the template ξcosmo, respectively in the radial and transverse

direction. The dilation parameters contain information that will be translated into cosmological

constraints in Chapter 10.

The angular size of the sound horizon at redshift z̄ is, to a good approximation, given byDA(z̄)/rd

and its radial length in redshift space is DH(z̄)/rd, where DA(z̄) is the angular diameter distance,

DH(z̄) = c/H(z̄) is the Hubble distance and rd is the comoving sound horizon at drag epoch.

All those quantities were defined in § 1.5. The α‖ and α⊥ parameters can be written as ratios of

the angular size and radial size of the BAO peak position with respect to the fiducial cosmology

values (denoted with subscript “fid”) as

α‖ =
DH(z̄)/rd

[DH(z̄)/rd]fid

and α⊥ =
DA(z̄)/rd

[DA(z̄)/rd]fid

. (6.21)

The function ξcosmo is calculated from the power spectrum using the following procedure. We

model the Lyα forest power spectrum including redshift-space distortions and nonlinear effects

as

P (~k) = b2F (1 + βµ2
k)2
[
Ppeak(k) exp(−k2Σ2(µk)/2) + Psmooth(k)

]
, (6.22)

where µk ≡ ẑ · k̂, b is the Lyα forest bias parameter and β is the redshift-space distortion

parameter. Here, we have defined Ppeak(k) = Plin(k) − Psmooth(k), where Plin is the linear-

theory matter power spectrum computed with CAMB (Lewis et al., 2000) using the fiducial

cosmological parameters and Psmooth is the same CAMB power spectrum with the BAO feature

erased by fitting a third order polynomial over the wiggled region. The exponential function

in Eq. 6.22 models the anisotropic nonlinear broadening from structure growth with Σ2(µk) =

µ2
kΣ2
‖+ (1−µ2

k)Σ2
⊥ and is only applied to the BAO feature. The default values we have adopted

are Σ‖ = 6.41 h−1Mpc and Σ⊥ = 3.26 h−1Mpc.

Instead of computing ξcosmo(~r) with a direct 2D Fourier transform of P (~k), we first decompose

P (~k) in multipoles using the base of Legendre polynomials L`(µk). In the distant observer

approximation (Kaiser, 1987), the three first non-zero multipoles are ` = 0, 2 and 4. The Legendre
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Figure 6.4: Cosmological linear models calculated for z = 2.25 and assuming a flat universe
with ΩΛ = 0.73, h = 0.7, Ωbh

2 = 0.0227 and ns = 0.97. Panels show the (k-weighted)
power spectrum (top-left) and the (r2-weighted) correlation function monopole (top-right),
quadrupole (bottom-left), and hexadecapole (bottom-right). Curves are calculated with CAMB
(thick,red) and using Eisenstein and Hu (1998) (light,blue) with solid curves showing the full
cosmological model and dotted (dashed) curves showing the corresponding CAMB (no-wiggles
of Eisenstein and Hu (1998)) smooth model. Figure extracted from Kirkby et al. (2013).

polynomials associated to these multipoles are given by

L0(µ) = 1 (6.23)

L2(µ) =
1

2
(3µ2 − 1) (6.24)

L4(µ) =
1

8
(35µ4 − 30µ2 + 3) , (6.25)

which give the following formulas for the power spectrum multipoles,

P`(k) =
2`+ 1

2

∫ +1

−1

P (k, µk)L`(µk) dµk . (6.26)

Due to the non-linear broadening of the peak, higher order multipoles of the power spectrum

are also non zero but they are negligible when compared to the first ones. We compute the

multipoles of the correlation function ξ`,cosmo(r) by a Bessel transform of P`(k), written as

ξ`,cosmo(r) =
i`

2π2

∫ ∞
0

k2j`(kr)P`(k) dk , (6.27)

where j` is the spherical Bessel function. Figure 6.4 shows the input linear isotropic power

spectrum Plin(k) and the multipoles, ξ0,cosmo, ξ2,cosmo and ξ4,cosmo of the correlation function

with their respective sideband functions (without BAO features).
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Table 6.1: Summary of fitted parameters of the correlation function model for BAO measure-
ments (Eq. 6.19).

Parameter Description

α‖ Dilation parameter over the line of sight

α⊥ Dilation parameter in the transverse direction

bF Density bias

β Redshift-space distortion parameter

apeak Amplitude of BAO peak (apeak = 0 means no peak)

Σ‖ Non-linear damping scale in the parallel direction

Σ⊥ Non-linear damping scale in the transverse direction

aij Broadband amplitudes

Finally, the template correlation function ξcosmo is just the combination of these multipoles,

ξcosmo(~r) =
∑

`=0,2,4

L`(µ) ξ`,cosmo(r) . (6.28)

The broadband function ξbb is also written as a combination of Legendre polynomials times

decreasing functions of separation r,

ξbb(~r) =

jmax∑
j=0

imax∑
i=0

aij
L2j(µ)

ri
, (6.29)

where the L2j is the Legendre polynomial of order 2j. The coefficients aij are free parameters

in the fit. Our standard model uses imax = jmax = 2 but we also performed the fit with other

limits.

A summary of the fitted parameters is given in Table 6.1. There are 7 parameters defining ξcosmo

and imax × jmax parameters defining the broadband function ξbb. In § 8.5 we analyze changes in

results when letting some of these parameters fixed at some fiducial value or free (with or without

a prior). The standard fit uses fiducial values for Σ⊥ and Σ‖, and sets apeak = 1. It thus has four

physical free parameters, b, β, α⊥, α‖, and nine free broadband parameters aij . The standard fit

uses a smaller domain in separations of the correlation function, 40 < r < 180 h−1Mpc, letting

remain a total of 1515 bins (from the 2500 originally), resulting in 1502 degrees of freedom. The

fitted parameters are such that they minimize

χ2 =
∑
A,B

[
ξ̂(A)− ξmodel(A,α‖, α⊥)

]
C−1(A,B)

[
ξ̂(B)− ξmodel(B,α‖, α⊥)

]
. (6.30)

The 68 and 95.5% confidence intervals (1 and 2σ) defining errors on α‖ and α⊥ are computed

through the marginalized χ2 surfaces, and finding the α values where χ2(α) − χ2
min = 1 and 4,

respectively.

In this Chapter was presented our full analysis chain for BAO measurements in the Lyα forest

flux correlation function. This chain was developed and tested using mock and real data, as

described in the following two chapters.





Chapter 7

Analyzing Mock Catalogs

In this chapter we validate the analysis chain described in Chapter 6 by using measurements on

mock catalogs (Chapter 5). We perform tests on most of the analysis steps showing satisfying

results and also their limitations. In § 7.3 we perform some tests related to the continuum fitting

procedure, quantifying errors in our estimates. In § 7.4 we estimate the optimal weights on mock

catalogs, comparing with the input values. The correlation function measurement is discussed

in § 7.5 and its covariance matrix in § 7.6. Finally, in § 7.7 is shown that our analysis chain is

unbiased when applied to our mock catalogs.

All subjects treated in this chapter are part of my original contribution.

7.1 Generalities

Lyα forest mock catalogs are created based on a two step process: first, production of absorption

fields with correlations given by a cosmological model (see § 5.1); second, production of realistic

spectra by adding quasar continua, metals, high column density systems, noise, sky subtraction

errors and noise mis-calibration (see § 5.2). Correlation function measurements on mock catalogs

are affected by all features added in the expansion. In this Chapter, the effect of each feature

on results is studied. We use the following samples of mock spectra:

• noiseless forests: the pure absorption field;

• with continuum model and noise: we test the impact of the continuum fitting;

• mocks with sky subtraction residuals;

• mocks with errors in the pixel noise estimate;

• “expanded mocks”, that include all features above.
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7.2 Distortion of correlations

We start by a theoretical motivation of the tests. The measured correlation function can be dis-

torted from the true cosmological correlation due to spurious correlations coming from continuum

fitting, sky residuals and noise. This section is based on Kirkby et al. (2013).

The correlation function between two pixels indexed i and j in a given separation bin A can be

written as

ξij∈A = 〈δiδj〉 − 〈δi〉〈δj〉 =
〈FiFj〉 − 〈Fi〉〈Fj〉
F̄ (λi)F̄ (λj)

, (7.1)

where

Fi =
fi − fi,sky

fi,cont
(7.2)

is the measured transmitted flux fraction, which is the total flux fi subtracted by the estimated

sky flux fi,sky and normalized by an estimate of the continuum level fi,cont, and F̄ (λi) is the

estimated mean transmission. Since these quantities are estimates, we can express them as

function of the true quantities (denoted with tildes) as

fi = f̃i + εi (7.3)

fi,sky = f̃i,sky + s(λi) + εi,sky (7.4)

fi,cont = f̃i,cont + ci (7.5)

where εi and εi,ski represent the pixel noise, s(λi) accounts for any wavelength-dependent residual

sky-subtraction bias (e.g. Fig. 5.6), and ci describes the continuum fitting error. Putting these

expressions into Eq. 7.2, we find

Fi =
f̃i − f̃i,sky − s(λi) + εi − εi,sky

f̃i,cont + ci
≈ F̃i[1− Si − Ci + Ei] (7.6)

where we defined the dimensionless quantities

F̃i ≡
f̃i − f̃i,sky

f̃i,cont

, Si ≡
s(λi)

f̃i − f̃i,sky

, Ci ≡
ci

f̃i,cont

, Ei ≡
εi − εi,sky

f̃i − f̃i,sky

, (7.7)

and assuming Ci � 1. Taking ensemble averages, we obtain

ξij ≈ rij
[
ξ̃ij(1 +Aij) +Bij

]
(7.8)

where ξ̃ij ≡ 〈F̃iF̃j〉/〈F̃i〉〈F̃j〉 − 1, rij ∼ 1 describes the discrepancy between the assumed and

true mean transmission. Aij is a multiplicative distortion of the true correlation function

Aij ≡ 〈SiSj〉+ 〈CiCj〉+ 〈EiEj〉+ 〈Si〉〈Cj〉+ 〈Sj〉〈Ci〉 − 〈Si〉 − 〈Sj〉 − 〈Ci〉 − 〈Cj〉 , (7.9)

and Bij is an additive distortion

Bij ≡ 〈SiSj〉 − 〈Si〉〈Sj〉+ 〈CiCj〉 − 〈Ci〉〈Cj〉+ 〈EiEj〉 . (7.10)
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We assumed that the S, C and E are mutually uncorrelated.

Equation 7.8 shows that the estimated correlation function is distorted by correlations in errors on

continuum estimation, sky residuals, and noise. Any multiplicative distortion comes mainly from

a mismatch between the assumed and the true mean transmission, whereas additive distortion

is due to correlated continuum fit errors.

The distortion is observed in mock and real data, as we will see in the two following chapters.

In mocks, the distortion can be quantified since we know the true correlation function. In the

following, we show that sky residuals also distort the correlation as predicted by Eq. 7.8. This

distortion is the main motivation for including an additive broadband function when fitting for

BAO, as explained in § 6.4.

7.3 Continuum fitting

7.3.1 Residuals

The first natural question addressed to continuum fitting methods is how well they estimate the

original continua. On mock catalogs the true continuum level Ctrue(λ) is known, therefore it

can be used to study errors in the continuum estimate. In this section the analysis concerns

results from method C2 only because it is the method with which I have worked. The C1 and

C3 methods are furnished by other collaborators.

Figure 7.1: Fitted (blue solid) and true (red
dashed) continuum level over a randomly se-
lected mock forest.

Figure 7.1 shows differences between the true and

the estimated continuum of a random mock forest.

The estimated continuum does not reproduces ex-

actly the original continuum. PCA-generated con-

tinua from mock spectra have an intrinsic spectral

shape diversity not taken into account by method

C2, that uses the same spectral shape to fit all

forests. Therefore, our method adds errors to

transmission estimates. However, these differences

can bias the correlation function only if they are

correlated among different lines-of-sight, as pointed

out in § 7.2. Since generated mock continua are in-

dependent1 those differences are in principle not

correlated.

For a consistency check, we computed the mean and scatter of residuals Ĉ(λ) − Ctrue(λ) as a

function of the rest-frame wavelength and forest mean signal to noise ratio (S/N). The S/N of

each forest is computed as the mean S/N of forest pixels (104 < λ < 120 nm).

1In principle, the continuum shape of a quasar depends on the quasar local environment, therefore making
those shapes uncorrelated among quasars.
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Figure 7.2: Mean relative deviation of the estimated continuum with respect to the true mock
continuum as a function of rest-frame wavelength and signal to noise. Left (right) panel shows
results on mocks without (with) sky residuals. The thin lines show the mean ±1σ values.

Figure 7.2 show results with two types of mocks : with and without sky residuals added, both

without noise mis-calibration (see next). We see that mocks with no sky residuals have almost

no bias in the continuum estimation, while those containing residuals have an average bias that

increases for lower S/N. For the second case, we observe a clear dependence of the mean residual

error with S/N. Forests with S/N > 3, corresponding to ∼ 50% of the forests, have relative mean

residuals of at most 7% with scatter around the mean consistent with zero bias. Forest with S/N

< 1.5 have larger biases in their continua because of the high amplitude of sky residuals relative

to the actual quasar flux (Fig. 5.6). However, forests within this S/N range represent less than

10% of the forests and contribute even less to the correlation function due to their low weight.

We computed continuum residuals for mocks with mis-calibrated pixel noise. Our analysis esti-

mates a correction for this mis-calibration (η(z) in Eq. 6.11). The iterative procedure (§ 6.1.3)

that computes η(z) correctly takes into account this systematic and do not introduce biases in

the continuum estimation.

7.3.2 Convergence of iterative method for C2

The iterative procedure for the method C2 (§ 6.1.3) was implemented to make measurements

less dependent on the mock input flux PDF.

Figure 7.3 shows the convergence of estimates of the mean continuum shape C̄(λrf), the mean

transmission F̄ (z), the noise correction η(z) and the forest intrinsic variance σ2
LSS(z) on mocks

containing sky residuals and mis-calibrated noise. All estimates converge near the third iteration.

Results from first iteration differ considerably from those of the last one, showing the importance

of the iterative procedure in the estimate of flux fluctuations. However, as we will show in § 7.4,

the final measurements of σLSS(z) and η(z) do not fully agree with the input values. The reasons

for this disagreement are discussed in § 7.4.
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Figure 7.3: Convergence of different observables with the iterative procedure for continuum
fitting method C2. Dashed lines show first five iterations and solid line the last one. Due to the
fast convergence at the third iteration, not all curves are visible. Top left: mean transmission
as a function of redshift. Top right: Mean stacked continuum shape as function of rest-frame
wavelength. Bottom left: intrinsic variance of the forest function of redshift. Bottom right:
correction for the pixel noise estimates.

7.3.3 Mean transmission

The estimation of the mean transmission level F̄ of forests results from the requirement of a

zero mean δF field. We remind that only the C2 method is able to measure F̄ since C1 directly

measures the product C(λ)F̄ and C3 fits continua by matching F̄ to a given model. Note,

however, mean transmission measurements might contain any other systematic effect present in

average on spectra, such as sky residuals. Therefore, F̄ is not a measurement of the true mean

transmission of the absorption field if the systematic effects are not suppressed.

Figure 7.4 shows the estimated mean transmission relative to the input model for mocks with

increasing number of added systematic effects. In order to see the effect of our continuum fitting

method, we also estimated F̄ on forests built with the true continuum level Ctrue. Noise mis-

calibration does not affect our results, as also observed with the continuum residuals (§ 7.3.1), the

main systematic effect comes from sky residuals. Noiseless mocks have their mean transmission

correctly estimated (magenta). When using noisy spectra but with the true continuum and no

sky residuals, a small bias of less than one percent in the F̄ estimate is seen (red line). The

effect of the sky residuals is seen by the green and blue lines at low redshift where these residuals

introduce large fluctuations (the same shape as in left panel of Fig. 5.6). When fitting the

continuum level, the F̄ estimate is biased differently, smoothly increasing with redshift (blue

and yellow). In principle, these errors distort the correlation function multiplicatively, but, as

we can seen in Fig. 7.4, the multiplicative factor is very close to unity (deviations up to 2%).
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Figure 7.4: Effect of continuum fitting and sky subtraction residuals in the estimated mean
transmission (with respect to the input values). Mocks surveys with different systematics
are considered: noiseless and true continuum (magenta); true continuum, noise and no sky
residuals (red); true continuum, noise and sky residuals (green); estimated continuum, noise,
no sky residuals (yellow); estimated continuum, noise and sky residuals (blue).

Furthermore, the BAO peak position is not affected by discrepancies is the F̄ estimate because

the consequent distortion is smooth.

7.4 Pixel variances

The procedure used to compute optimal pixel weights wi for the correlation function, described

in § 6.2.1, assumes that the pixel variance σ2 has two contributions. The first is intrinsic to

the forest and is related to the fluctuations of the underlying density field, σ2
LSS(z). The second

contribution comes from the instrumental pixel noise estimated by the pipeline, σpipeline, which

is known to be biased, needing a wavelength (or redshift) dependent correction, η(z). In this

section, we use mocks to test whether the input values are recovered, and if not, what is the error

on those estimates. As in the previous sections, we analyze the effect of different systematics on

the pixel variance estimates using mocks defined in § 7.1.

Figure 7.5 compares the intrinsic variance (left) and the noise correction estimates (right panel)

with input values for different mock samples:

• For noiseless mocks, the input values of σ2
LSS are correctly recovered. When using either the

fitted continuum or the true continuum, the intrinsic variance is slightly overestimated: up

to 10% at z < 3.0 for the fitted continuum and up to 8% for the true continuum. At higher

redshift, the disagreement is slightly larger but it concerns a small fraction of the pixels

(less than 10%). The noise mis-calibration does not affect significantly these conclusions.

• The noise correction η(z) for noiseless mocks is unity by definition (magenta). For mocks

without noise mis-calibration, a flat function of z is recovered for fitted (yellow) and true
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Ĉ - With noise mis-calib

Figure 7.5: Effects of noise mis-calibration and continuum fitting on the estimate of the intrin-
sic forest variance σ2

LSS (left panel) and the noise correction term η (right panel). The dashed
line shows the input values.

continuum (red), but with values ∼ 3 to 5% higher than unity. Purposefully including

a biased estimate of pixel errors on mocks, we see that fitted (blue) and true continuum

(green) cases does not give the same result. While using the true continuum Ctrue yields

the correct mis-calibration, using the fitted continuum Ĉ gives a biased estimate of η(z).

This would indicate that continuum fitting adds variance to the pixels. To understand this

bias, we analyzed some fits of the relation between σ2 and σ2
pipeline), discussed next. Sky

residuals do not affect these results, since they modify F̄ and not the variances.

Figure 7.6 shows examples of the fitted pixel variance model over measurements on mocks with

fitted continua, for two redshift bins. In practice for a given bin in redshift, the noise correction

η(z) is the inverse of the slope of the fitted model, and the intrinsic variance σ2
LSS(z) is the

intercept of the model with the y-axis (i.e., the variance when σ2
pipeline = 0). Looking at residuals

of the fit we see that the relation between 〈δ2
F 〉 and σ2

pipeline is not exactly linear. Also, we see

that the intrinsic variance is underestimated because points at low σ2
pipeline are above the model.

However, in the left panel of Fig. 7.5 we saw that the intrinsic variance is actually overestimated

with respect to input values. These observations are similar for other mock sets, e.g., with true

continuum, or with noise mis-calibration or sky residuals. An additional source of variance is

being added to the intrinsic variance not coming from continuum fitting or sky residuals. The

intercepts and slopes are thus less representative of the true behavior of the variances, that would

need a model with more free parameters to be correctly described. Nevertheless, residuals in

Fig. 7.6 are less than one standard deviation from the fitted model for most of the range, so we

consider our linear approximation valid at first order. In any case, the variances are not being

underestimated and we can consider this slight overestimation as a conservative marge on errors.

7.5 Correlation function

In this section we study the measured correlation function obtained from the estimator described

in § 6.2 applied to mock catalogs, studying the impact of continuum fitting and systematic effects.
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Figure 7.6: Fits of pixel variance model on a mock realization for two redshift bins (shown in
the title). The bottom plots show the residuals of the fit normalized by the error bars. We
show only results using forests computed using the estimated continua. Similar results are
obtained on mock sets with true continua or without systematic effects.

Figure 7.7 presents all 100 correlation functions computed with the standard analysis on “ex-

panded mocks”. The correlation functions are represented by averages in µ = r‖/
√
r‖2 + r⊥2

ranges. Respectively, three weighted averages of ξ̂ are plotted : ξ⊥ (0 < µ < 0.5), ξint (0.5 <

µ < 0.8) and ξ‖ (0.8 < µ < 1), as function of the comoving separation r. Blue solid lines show

the mean stacked measurement, while dashed lines show the one standard deviation region.

The BAO peak shows itself very clearly, in particular on ξ‖. As explained in Chapter 2, the

enhancement of the peak in the radial direction is due to the strong redshift-space distortions

(RSD) of the Lyα forest.

Since the goal of this study is the measurement of the BAO peak, we are not interested in the

clustering on scales smaller than 40 h−1Mpc, where the theoretical modeling is difficult, or larger

than 180 h−1Mpc, where we do not expect significant signal. Therefore, our standard range for

model fitting is defined by separations between 40 < r < 180 h−1Mpc (see § 7.7).

A direct comparison of results in Fig. 7.7 with the input theory is not possible because measure-

ments are affected by the distortion, as discussed in § 7.2. Figure 7.8 compares the correlation

function of the stack of ten realizations computed using the true continuum level (red and green)

with the stack of 100 realizations with fitted continuum (blue). The input theory (dashed black)

and the correlation function of noiseless forests (magenta) are also presented. We see that, even

using the actual continuum level with no sky residuals added (red), the mean correlation func-

tion does not agree with the input theory, as opposed to the correlation function computed with

noiseless forests. This happens because of the difference in the effective redshift zeff of the two

measurements. The noise in forest pixels depend on redshift, changing the relative weight of

low and high redshift pixels. The effective redshift for the true continuum case is zeff = 2.33

and for the noiseless case is zeff = 2.18, which yields an effective amplitude difference of 20%,

assuming a (1+z)3.8 evolution of the correlation function amplitude, in agreement with Fig. 7.8.

For the fitted continuum case, the effective redshift is the same as for the true continuum case,

confirming that the differences indeed come from distortion effects.
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Figure 7.7: Correlation function from mock DR11 catalogs represented in averages over µ
ranges, ξ⊥ (0 < µ < 0.5, top left), ξint (0.5 < µ < 0.8, top right) and ξ‖ (0.8 < µ < 1,
bottom). The average and scatter around the mean (±1 standard deviation) are shown in
blue solid and dashed lines respectively.

In § 7.7, we analyse the dependence of the inferred values for the BAO peak position and its

errors on the continuum used (true or estimated).

7.6 Covariance matrix

The covariance matrix C(r‖, r⊥, r‖
′, r⊥

′) for the 100 expanded mock catalogs were computed

individually using the sub-sampling method (§ 6.3.1) with the smoothing procedure that assumes

a dependence of the correlation coefficients c(r‖, r⊥, r‖
′, r⊥

′), defined in Eq. 6.17, only on ∆r‖ =

r‖−r‖′ and ∆r⊥ = r⊥−r⊥′. The sub-sampling method is computationally much faster than the

Wick approximation calculation (§ 6.3.2). Tests using data (see § 8.4) show that both methods

agree at surprisingly high levels. Therefore, all following tests are performed using smoothed

sub-sampling covariance matrices.

The diagonal elements of C (the variance of ξ, Var(ξ)) have simple structure. The quantity

Var(ξ)×npairs is basically scale dependent. Figure 7.9 shows histograms of this quantity for four

sets of mock catalogs (the same as previously). The noise mis-calibration does not affect these

variances, while sky residuals decrease the variance of the correlation function by 10%. This is

probable because the mean transmission F̄ is over estimated for mocks containing sky residuals,
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Figure 7.8: Radial (left) and transverse (right) correlation functions of the stack of mock
realizations using: raw forests without noise (magenta points, 10 realizations), true continuum
without sky residuals (red points, 10 realizations), true continuum containing sky residuals
(green points, 10 realizations), and estimated continuum with sky residuals (blue points, 100
realizations). The dashed line shows the input theory of mock forests computed at the effective
mean redshift of noiseless forests.

Figure 7.9: Histograms of the diagonal elements of the covariance matrix times the number of
pairs contributing to each bin, for four sets of mock catalogs.

reducing the variance of δF = F/F̄ − 1. Using the true continuum instead the fitted one does

not change variances.

The smoothing procedure of the covariance matrix should work if the assumption that all corre-

lation coefficients corresponding to the same ∆r‖ and ∆r⊥ are drawn from the same distribution,

and that this distribution does not depend on r‖ or r⊥ for given values of ∆r‖ and ∆r⊥. Fig-

ure 7.10 presents distributions of c as functions of r‖ and r⊥, given (∆r‖,∆r⊥). We see that

these distributions, or their means, do not change significantly with either r‖ or r⊥, validating

our assumptions.

Figure 7.11 shows the distributions of the correlation coefficients for the six smallest combinations

of (∆r‖,∆r⊥). From each distribution it is possible to estimate their mean value c̄ and the error

σc̄ of this mean for the pair (∆r‖,∆r⊥). If the averaged coefficient is less than 2σc̄ distant from

zero, we set it to zero to avoid noisy coefficients.

Figure 7.12 shows the smoothed correlation coefficients for three values of ∆r⊥ = 0, 4 and

8 h−1Mpc as functions ∆r‖. We observe that the coefficients fall very quickly to zero as ∆r⊥
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Figure 7.10: Histograms of correlation coefficients c(r‖, r⊥, r‖
′, r⊥

′) of four ranges of r‖ (left
panels) and r⊥ (right panels), for ∆r⊥ = 0 and ∆r‖ = 4 (top panels) and 8 h−1Mpc (bottom
panels).
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Figure 7.11: Histograms of the correlation coefficient elements for six pairs of (∆r‖,∆r⊥).

increases, becoming smaller than 1% for ∆r‖ > 10 h−1Mpc when ∆r⊥ > 4 h−1Mpc. In galaxy

clustering measurements, the covariance matrix is estimated from measurements on multiple

realizations of mock catalogs. The measurement described in § 4.2 uses 600 of them. For Lyα the

100 realizations are not sufficient for a precise estimate of the covariance matrix. Furthermore,

those mock catalogs do not reproduce all identified systematic effects and have disagreements

with respect to real data (see § 8.3) that affect the covariance matrix. Nevertheless, ignoring

those factors we computed the covariance matrix using the 100 correlation measurements, then
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Figure 7.12: Averaged correlation coefficients as a function of (∆r‖,∆r⊥) for the three first
∆r⊥ bins. We compare coefficients from a sub-sampling covariance matrix from a single
realization (blue points) with the covariance of the 100 mock realizations (red points).

Figure 7.13: Summary of the results of fits for (α‖, α⊥) for the 100 mock catalogs. The
histograms show the best-fit values, the minimum χ2 values and the 1σ uncertainties.

smoothing it as for the sub-sampling method. The averaged correlation coefficients c(∆r‖,∆r⊥)

are shown in Fig. 7.12 and compared to those obtained by sub-sampling of one realization. There

is an significant disagreement between both methods for almost all values of (∆r‖,∆r⊥) where

the “scatter” correlations are not consistent with zero. The reason for this disagreement is still

an open question.

7.7 Measuring BAO

Once correlation functions and covariance matrices are estimated for each mock realization, we

performed fits of the BAO template in order to recover the BAO peak position. Since the answer

is known (α‖ = 1, α⊥ = 1), this test can tell us about possible biases in the standard analysis.

The first two panels of Figure 7.13 shows the distribution of recovered values for α‖ and α⊥ and

their estimated 1σ errors. The mean recovered α‖ and α⊥ are consistent with unity showing

no significant bias in our methodology for extracting the BAO peak position. The number of

measurements of α‖ within 1 and 2σ is, respectively, 61 and 93, consistent with the expected

numbers, 68 and 95.5. For α⊥ these numbers are 68 and 95. For the combined measurement of

(α‖, α⊥), 70 are within 1σ and 93 within the 2σ contours.

In the third panel of Fig. 7.13, we see that the χ2 distribution has mean ∼ 1573 and r.m.s. of

56, which is more than 1σ greater the expected value of 1502 corresponding to the number of
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Figure 7.14: Measured α‖ and α⊥ for the 100 mock catalogs.

degrees of freedom of the standard fit (1515 separation bins and 13 parameters of Table 6.1).

This would mean that either our model is not accurate enough or that our covariance matrix is

slightly underestimated. We remind that our template ξcosmo and our broadband ξbb are both

computed with a limited number of multipoles (see § 6.4). Increasing the number of multipoles

in the broadband adds free parameters and the χ2 is then reduced (see § 8.5). On the other hand,

our covariance matrix for mocks is estimated using the sub-sampling method with smoothing,

that might have small inaccuracies. Nevertheless, if the underestimation of covariance matrix is

the reason for this distribution of χ2, the error would be of less than 2% which does not change

significantly our final errors on (α‖, α⊥).

The distributions of estimated errors σα‖ and σα⊥ on the best-fit dilation parameters (two right

panels in Fig. 7.13) show that the typical error on α‖ is 2.6% and on α⊥, 5.1%, both with a

relative scatter of ∼ 50%. In § 8.5 it will be shown that the errors obtained with real data are

consistent with these distributions.

Figure 7.14 shows the anti-correlation between the measurements of α‖ and α⊥. The correlation

coefficient is about −0.6.

In order to quantify the effect of continuum fitting on BAO estimates, we fitted for (α‖, α⊥)

on mock correlation functions obtained with the true continuum level. Figure 7.15 compares

values of retrieved α‖ and α⊥ parameters between ten mocks with true continuum and the same

mocks with fitted continuum. In the radial direction, the BAO peak is measured with a mean

uncertainty of 2.1% when using the true continua while for fitted continua we have a mean 2.6%

error in α‖, corresponding to a 20% difference. In the transverse direction the “improvement” on

errors is larger, of 30%. The mean χ2 of the same ten realizations reduces from 1545 to 1503 when

using the true continuum instead of the fitted one. This gives an idea of how continuum modeling

increases errors on recovered BAO parameters, even given the low number of realizations studied.

A check for our BAO fitting procedure consists in comparing input and recovered values for

the Lyα forest bias parameter, b, and the redshift-space distortion parameter, β, which have

input values of b = −0.14 and β = 1.4 in mocks. In practice, the fitted parameters are β and

b(1 + β), which set, respectively, the relative and absolute amplitude of transverse and radial

correlation functions. Correct values of those parameters are difficult to recover since the smooth

component of the correlation function is affected by distortions caused by the continuum fitting

and sky residuals. Figure 7.16 shows the distribution of the best-fit β and b(1 + β) from 100
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Figure 7.15: Comparison of the α‖, α⊥ values obtained from 10 mock surveys with forests built
with a fitted continuum or the true continuum.

Figure 7.16: Distribution of fitted β and b(1 + β) for the 100 mock catalogs. There are 11
outliers outside the plot ranges, giving unphysical values for both parameters. The dashed red
lines show the input values.

mock catalogs containing sky residuals and fitted continua. Excluding 11 outliers which have

unphysical values, we obtain that the mean β is 1.86 ± 0.09 which is in disagreement with the

input value of 1.4. The mean b(1 + β) parameter, −0.340 ± 0.005, is in 1σ agreement with the

input value of −0.336. The bias value could be derived from the combination of β and b(1 + β),

but since the fitted β values are typically not correct, the derived bias values would also have

systematic errors included. In order to improve estimates of β and b, a better understanding of

distortions is needed.

We conclude, based on the tests performed in our mock catalogs that the method for estimating

the Lyα forest correlation function and extracting the BAO peak position leads to unbiased

results. We are able to correctly estimate the covariance matrix of the correlation function as

shown by the distributions of the dilation parameters, α‖ and α⊥, and their respective errors.

These estimates were obtained from 100 mock realizations analyzed with our standard methods.
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Of course, this conclusion is considering the systematic effects added in our mock catalogs dis-

cussed up to now. Real data contains other systematic effects, such as absorption by high column

density systems, metal absorption, and instrumental effects on spectra such as the presence of

calibration residuals. In the following two chapters we characterize the effect of these systematic

effects on the correlation function, using data and improved mock catalogs.





Chapter 8

Analysis of Real Data

In this chapter, we finally present the Lyα BAO measurement using real data. Results of each

step of the analysis are discussed and compared with mock measurements. The data sample is

presented in § 8.1, the mean transmission and variances estimates in § 8.2; the correlation function

is shown in § 8.3 and a discussion about the covariance matrix in § 8.4. In § 8.5, measurements

of the BAO peak position using a variety of data sets and different analysis assumptions are

exposed. We conclude that our measurement is robust against those changes in the analysis.

The standard analysis gives α‖ = 1.054+0.032
−0.031 and α⊥ = 0.973+0.056

−0.051, a result consistent with the

fiducial model within 2σ.

8.1 Our sample: Data Release 11

The Data Release 11 of BOSS was used for the analysis described in this chapter. As described

in § 3.10, the visual inspection of DR11 spectra associated to quasar targets confirmed 158,401

quasars with redshifts z in the useful range for Lyα forest observations: 2.1 < z < 3.5.

The visual inspection could identify quasars containing broad absorption lines (BALs) that were

not used in our analysis, leaving 140,579 quasars, even though it is possible to use a fraction of

their forest as in Slosar et al. (2013). An additional cut requiring a minimum number of good

quality forest pixels (50 “analysis pixels” as explained in § 6) yields 137,562 quasars. Those

numbers are summarized in Table 8.1.

Damped Lyα systems (DLAs) were also flagged by the visual inspection, but they were also

identified and characterized by an automatic procedure detailed in Noterdaeme et al. (2012).

Forests containing DLAs were not excluded from the analysis. Instead, using their measured

redshift and column density we fitted forest continua adding Voigt profiles over DLAs. Forest

pixels where the absorption from the DLA is less than 20% were preserved. Since DLAs are

strong absorption systems, metal lines associated to these DLAs produce strong absorption lines

in the forests. Those lines where masked over widths of 0.2 or 0.3nm depending on the strength

of the line and 0.4 for Lyβ.

117
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Table 8.1: Summary of the DR11 Lyα forest sample.

Set Number

All QSOs 239,148

2.1 < z < 3.5 158,401

Flagged with BALs 17,822

Flagged with DLAs 17,518

Flagged with both 1,046

Low number of analysis pixels 3,017

Final Lyα forest sample 137,562

Forests were rebinned into analysis pixels corresponding to 3 BOSS pixels, yielding pixels of

∆ log λ = 3× 10−4 which corresponds to ∆v = c∆λ/λ = 207 km s−1 ∼ 0.2 nm or ∼ 2 h−1Mpc

at z = 2.3. The total sample of 137,562 forests provides 2.4 × 107 transmission measurements

over a volume of ∼ 50 h−3Gpc3, the largest volume ever used for clustering studies.

All forest had their continua fitted using the three methods presented in § 6.1. As in the previous

chapter, the discussion is focused on method C2, the method for which I contributed in this thesis.

Final results with other continuum fitting methods are compared when fitting for the BAO peak

in § 8.5 as a systematic check.

8.2 Mean transmission and weights

Figure 8.1 shows the obtained F̄ (λ), compared with the same measurement performed on mock

catalogs. We observe the expected evolution on redshift (z = λ/λLyα−1). We also observe some

data reduction features, such as the galactic calcium absorption doublet at 393 and 397 nm,

and the Balmer residuals due to flux calibration errors near 398, 410 and 435 nm, corresponding

to Balmer transitions of hydrogen. These Balmer bumps are present in each forests and could

in principle introduce systematic errors in the correlation measurements. The effect of these

Balmer lines on the correlation function is further studied in § 9.1. At wavelengths λ < 400 nm,

fluctuations due sky subtraction residuals are seen both in data and mocks.

Once continua are fitted and the mean transmission estimated, we estimated the optimal pixel

weights for the correlation function measurements (see § 6.2.1). Figure 8.2 shows the estimated

intrinsic variance, σ2
LSS, and the noise correction term, η(z), for DR11 forests from C2 method.

Intrinsic variances of real data have a redshift evolution similar to mocks. The noise correction of

real spectra is 20% smaller than the correction for the mocks. However, as shown in Fig. 8.3 and

previously discussed in § 7.4, the fit of our pixel variance model is not very accurate, but correct

to first order. Fit residuals for both mock and data show the same dependence on σ2
pipeline.

8.3 The correlation function

Following the same procedure as for mock catalogs in § 7.5 we computed the correlation function

for DR11 Lyα forests. The result is shown in Fig. 8.4, represented by averages over the same
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Figure 8.1: Mean transmission F̄ as function of observed wavelength estimated using contin-
uum fitting method C2 over DR11 forests (red). As a reference, the mock measurement (blue)
is also shown with its input values. The bumps observed at 398, 410 and 435 nm (Balmer
transitions of hydrogen) are spectro-calibration errors in data.

Figure 8.2: The estimated intrinsic variance of the forests and the noise correction term as
function of redshift for DR11 forests (red points) compared to mock estimates (blue points).

three µ intervals as for mock catalogs. The error bars come from the diagonal of the covariance

matrix, summed over the same µ ranges. The BAO peak is seen in the three panels, especially

in ξ‖(r). Comparing with DR9 measurements of Busca et al. (2013) where the peak was only

visible in the radial direction, the error bars were reduced by a factor ∼ 3, which agrees with

expectations given that DR11 has three times more data.

The superimposed curves in Fig 8.4 are two fitted models. The first obtained when letting

free the peak position dilation parameters, α‖ and α⊥, and the second is the same but fixing

α‖ = α⊥ = 1. Fit results are discussed in § 8.5, after the discussion about the covariance matrix

estimate.
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Figure 8.3: Detail of the pixel variance model fit for two redshift bins and their relative
residuals for DR11 forests (red points) and for a mock realization (blue points).

8.4 The covariance matrix

The covariance matrix C(A,B) of the correlation function ξ(A) was computed using the two

methods presented in § 6.3: sub-sampling and Wick approximation. We smoothed these covari-

ance matrices by assuming that correlation coefficients (Eq. 6.17) depend only on ∆r‖ = r‖− r‖′
and ∆r⊥ = r⊥−r⊥′. We have shown in § 7.6 that this assumption is valid. For the sub-sampling

method, 2044 plates were used as sub-samples of the full survey.

The full 2500× 2500 element covariance matrix has a relatively simple structure. As for mocks,

the diagonal terms are, in a good approximation, inversely proportional to the number of pairs

and independent of separation, as shown in Fig. 8.5,

C(A,A) ∼ 0.041

Npairs(A)
. (8.1)

This value is twice the value that would have been obtained if considering all pixels independent.

It is larger because of the correlation between neighboring pixels of the same quasar. It means

that the measurement of ξ(r‖, r⊥) using a pair of pixels in two different quasars is not independent

of the measurement of ξ(r‖, r⊥) using a different pair of pixels in the same two quasars.

Figure 8.5 also shows that diagonal terms of the mock covariance matrix are 30% smaller than

for data. The reason is that mock fluctuations δF have lower variance than data fluctuations as

shown in Fig. 8.6. Taking the square of these variances, which is approximately the T1 terms

of the covariance matrix, gives roughly the same 30% factor between data and mocks. This

difference have two possible origins: the presence of undetected high column density systems in

data, or a bad correction of the pixel noise estimate.

Figure 8.7 shows averaged correlation coefficients of the non-diagonal terms of the covariance

matrix, as functions of ∆r‖ for the first ∆r⊥ bins, computed for both sub-sampling and Wick ex-

pansion. The first remarkable observation is that both estimates agree for almost the full range

of separations. This validates the use of the sub-sampling method for computing the covari-

ance matrices for cosmological fits. Indeed, fitting using both covariances yields no significant

difference in final results.
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Figure 8.4: The measured Lyα forest correlation functions (continuum C2) in three angular
regions: µ < 0.5 (top), 0.8 > µ > 0.5 (middle), and µ > 0.8 (bottom), where µ is the central

value of r‖/
√
r2
‖ + r2

⊥ in each (r‖, r⊥) bin. The curves show the results of fits as described in

§ 6.4. The full curve is best fit and the dashed curve is best fit when the parameters α‖ and
α⊥ are both set to unity. The irregularities in the fits are due to the use of (r‖, r⊥) bins rather
than (r, µ) bins.
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Figure 8.5: Variance of the correlation function times the number of pairs in each bin for data
(red points) and for a mock realization (blue points) as functions of r‖. This quantity is almost
scale-invariant, except for small values of r‖.

Figure 8.6: Variance squared of the transmission fluctuations δF as a function of rest-frame
wavelength, computed for data forests and for a mock realization.

The structure of the covariance is simplified by the fact that we are close to the situation where

lines of sight are parallel, so correlations of type T2 and T3 dominate the covariance (the T1 term

contributes only to the diagonal terms). The reasons for this structure is made clear by the Wick

expansion in § 6.3 relating the covariance to correlations within pairs-of-pairs of pixels. To the

extent that two neighboring lines of sight are parallel, these terms contribute only to the elements

of the covariance matrix where r⊥ = r′⊥ (or ∆r⊥ = 0). These elements are shown as a function

of ∆r‖ in Fig. 8.7 (top left). They follow closely the line of sight correlation function found

within individual forests. The Lyα-SiII correlation peak is clearly seen at ∆r‖ ∼ 20 h−1Mpc.

For the terms of the covariance matrix where r⊥ 6= r⊥
′ (or ∆r⊥ > 0), only pairs-of-pairs of pixels

of three or four quasars can contribute (T4, T5 and T6 in Fig. 6.3). As explained previously,

these have sub-dominant contributions for the covariance. As shown in Fig. 8.7 (bottom panels)

these terms fall to zero very quickly when increasing ∆r⊥ or ∆r‖.

The statistical accuracy of the covariance matrix estimate with the sub-sampling method is

∼ 0.02, number related to the number of both sub-samples and bins over which correlation

coefficients (Eq. 6.17) are averaged over in the smoothing process. As described in § 6.3.3, all
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Figure 8.7: The correlation C(r⊥, r‖, r⊥
′, r‖

′)/[V ar(r⊥, r‖)V ar(r⊥
′, r‖

′)]1/2 as a function of
r‖−r‖′ (averaged over (r⊥

′, r‖
′)). The top figures are for r⊥−r⊥′ = 0 over the full range of ∆r‖

(left) and for ∆r‖ > 20 h−1Mpc (right). The bottom two figures are for r⊥− r⊥′ = 4 h−1Mpc
(left) and for r⊥ − r⊥′ = 8 h−1Mpc (right). Shown are the correlations determined by sub-
sampling and by a Wick expansion. The latter correlations are decomposed into the pair-of-pair
types, T1-T6, from Fig. 6.3.

elements for which the averaged correlation coefficient is consistent with no correlation are set

to zero.

In Fig. 8.8 we compare the averaged correlation coefficients from data and from a mock realiza-

tion, both computed using the sub-sampling method. Since the peak of Lyα-SiII is clearly seen

in the covariance, for a better comparison we also compute the covariance matrix for a mock

realization containing metal absorption in the forests. We see in Fig. 8.8 that the Lyα-SiII peak

in the covariance is reasonably well reproduced in mocks. Correlations look similar but show

slightly different dependence with ∆r‖ and ∆r⊥. For example, at ∆r⊥ = 0, the data correlations

are larger than for mocks by at most 20% in the 0 < ∆r‖ < 30 h−1Mpc range, whereas for the

next transverse separation bin (∆r⊥ = 4 h−1Mpc) the mock correlations are larger by 30% in

the same range.

The differences in covariances between mock and data can be understood as coming from dif-

ferences in the small scale clustering. Following the arguments of the Wick expansion of the

covariance matrix, small scale correlations are dominant for the total covariance (T2 and T3

terms). However, the input model for the mock correlation function was built for the large scale

measurement of the BAO peak, while the small scales were not precisely modeled (e.g., using

hydro-simulations).
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Figure 8.8: Correlation coefficient C(r⊥, r
′
⊥, r‖, r

′
‖)/

√
V ar(r⊥, r‖)V ar(r′⊥, r

′
‖) of the 3D corre-

lation function as a function of parallel separation difference ∆r‖ = r‖− r′‖. The values shown
are the average of all correlation matrix elements with the same ∆r‖ and ∆r⊥, for ∆r⊥ = 0
(left), 4 h−1Mpc (center) and 8 h−1Mpc (right panel). Data is shown in red solid lines, mock
measurements in blue, with (solid) and without metals (dashed).

Figure 8.9: Constraints on (α‖, α⊥) using the three continuum estimators, C1 (red), C2 (blue)
and C3(green). The solid and dashed contours correspond to 1σ and 2σ (∆χ2 = 2.3, 6.2).

8.5 BAO peak position measurement

Once the correlation function and its covariance matrix were estimated, and since the BAO

peak was clearly visible near the expected position, we could estimate its position by fitting the

correlation function model over the measurement, as described in § 6.4. The fitting procedure

was already tested in § 7.7 over mock catalogs, where we showed that we are able to recover

unbiased results with correct estimation of errors.

Table 8.2 shows the results of fits over data for a variety of data sets and analysis assumptions.

The first line lists our standard analysis using C2 continua,

α‖ = 1.054+0.032
−0.031 and α⊥ = 0.973+0.056

−0.051 , (8.2)

for which the fitted model is shown by the red line in Fig. 8.4. The precision on α‖ and α⊥

inferred from our fitting procedure are in agreement with the distribution of errors on mock

catalogs shown in Fig. 7.13.

The 1σ and 2σ χ2 contours in the (α‖, α⊥) plane are shown in Fig. 8.9 for the three continuum
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Table 8.2: Results for the standard fit and modified fits. The standard fit uses the C2 continuum, a broadband
defined by (imax, jmax) = (2, 2), a forest defined by 104.0 < λrf < 120.0 nm, and apeak = 1.

analysis α‖ α⊥ β b(1 + β) χ2
min/DOF

standard(C2) 1.054+0.032
−0.031(1σ)+0.069

−0.063(2σ) 0.973+0.056
−0.051(1σ)+0.199

−0.103(2σ) 1.47± 0.87 −0.39± 0.05 1499.0/(1515-13)

C1 1.038+0.035
−0.037(1σ)+0.073

−0.074(2σ) 1.054+0.132
−0.093(1σ)+0.246

−0.176(2σ) 3.47± 2.78 −0.42± 0.05 1571.5/(1515-13)

C3 1.038+0.026
−0.039(1σ)+0.054

−0.071(2σ) 1.041+0.259
−0.063(1σ)+0.259

−0.126(2σ) 2.28± 1.24 −0.46± 0.05 1603.7/(1515-13)

β-prior (1.4± 0.4) 1.055+0.032
−0.031(1σ)+0.068

−0.063(2σ) 0.972+0.053
−0.051(1σ)+0.117

−0.102(2σ) 1.41± 0.36 −0.39± 0.04 1499.1/(1515-13)

apeak free 1.054+0.035
−0.031(1σ)+0.078

−0.063(2σ) 0.973+0.057
−0.052(1σ)+0.232

−0.104(2σ) 1.49± 1.08 −0.38± 0.24 1499.0/(1515-14)

Σ⊥ = Σ‖ = 0 1.053+0.029
−0.028(1σ)+0.062

−0.059(2σ) 0.961+0.055
−0.052(1σ)+0.254

−0.103(2σ) 1.31± 0.87 −0.34± 0.05 1501.2/(1515-13)

Σ⊥,Σ‖ free 1.063+0.041
−0.036(1σ)+0.101

−0.073(2σ) 0.976+0.053
−0.05 (1σ)+0.124

−0.102(2σ) 1.56± 0.80 −0.46± 0.07 1497.2/(1515-15)

no special DLA treatment 1.049+0.038
−0.034(1σ)+0.089

−0.068(2σ) 0.954+0.053
−0.049(1σ)+0.132

−0.096(2σ) 0.36± 0.46 −0.33± 0.06 1489.7/(1515-13)

104.5< λrf <118.0 nm 1.052+0.041
−0.041(1σ)+0.145

−0.094(2σ) unconstrained 2.37± 2.81 −0.34± 0.07 1448.2/(1515-13)

No spectra with DLAs 1.031+0.035
−0.035(1σ)+0.074

−0.074(2σ) 1.073+0.117
−0.082(1σ)+0.228

−0.171(2σ) 2.38± 1.91 −0.43± 0.06 1506.5/(1515-13)

z < 2.295 0.996+0.052
−0.054(1σ)+0.113

−0.134(2σ) 0.89+0.064
−0.053(1σ)+0.148

−0.108(2σ) 1.10± 0.92 −0.31± 0.06 1523.0/(1515-13)

z > 2.295 1.096+0.037
−0.036(1σ)+0.079

−0.073(2σ) 0.994+0.057
−0.049(1σ)+0.155

−0.1 (2σ) 1.61± 1.05 −0.48± 0.06 1479.1/(1515-13)

apeak = 0 - - - - 1526.2/(1515-11)

fitting methods. They show that errors on those parameters are non-Gaussian and the anti-

correlation between them, consistent with the observed anti-correlation for mocks in Fig. 7.14.

The errors on α⊥ extend asymmetrically to large values, as expected from the visual impression

in Fig. 8.4.

The next seven lines of Table 8.2 present the results using the same data, but with different

choices of analysis procedures : use of non-standard continuum fitting C1 and C3; adding a

Gaussian prior to the redshift distortion parameter β around the nominal value of 1.4 with a

width of 0.4; freeing the peak amplitude apeak; fitting the non-linearity parameters, Σ‖ and Σ⊥,

or setting them to zero (and thus not correcting for non-linear effects); using spectra containing

DLAs but using their pixels as if they were not a systematic (no fit of damping wings). Since all

those fits use the same data, significant differences in results would indicate a systematic effect

caused by our analysis chain or fitting procedure. All those seven sets give (α‖, α⊥) values with

differences smaller than 1σ. However the only noticeable effect is seen when using non-standard

continuum fitting methods C1 and C3, for which errors in α⊥ are larger. This is somehow

expected because of the low significance of the transverse BAO peak in our measurements. The

errors on α‖ are robust with respect to changes in the continuum fitting method.

The next two lines in Table 8.2 show results obtained with the method C2 on forests with reduced

wavelength range, 104.5 < λrf < 118.0 nm (the same range used in the DR9 analysis (Busca

et al., 2013)); and discarding forests containing detected DLAs. Both results are consistent with

the standard ones within 1σ. The error bars are increased by ∼ 50 and 13% since those data

sets represent smaller amounts of data.

The next two lines present results obtained when dividing the full sample into two redshift bins.

The redshift of a pixel pair is defined by the average of the redshift of both pixels. We have

chosen to split the sample at z = 2.295 that represents the median of the pixel pair redshift

distribution. Both samples, low and high redshift, are fairly independent and results agree

at the 2σ level. The difference between the low and high z values for (α‖, α⊥) is consistent
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Table 8.3: Fit results with the C2 continuum with a modified fitting range [standard: 40 < r <
180 h−1Mpc] and number of terms in the broadband (Eq. 6.29) [standard:(imax, jmax) = (2, 2)].

α‖ α⊥ χ2
min/DOF

standard (C2) 1.054± 0.032 0.973± 0.055 1499.0/(1515-13)

range
( h−1Mpc)

60 < r < 180 1.045± 0.032 0.986± 0.063 1391.8/(1415-13)
40 < r < 160 1.052± 0.033 0.974± 0.053 1139.2/(1177-13)

(imax, jmax)
(2,3) 1.057± 0.032 0.970± 0.050 1484.2/(1515-16)
(3,2) 1.050± 0.033 0.987± 0.067 1497.8/(1515-16)
(3,3) 1.051± 0.034 0.986± 0.068 1479.2/(1515-20)

with the differences observed with mock catalogs, shown in the left panel of Fig. 8.10. Those

measurements have naturally larger error bars due to the lower statistics of those samples. The

right panel of Fig. 8.10 shows the correlations between low and high z measurements of α‖ and

α⊥ using mock catalogs. The data point is also shown for comparison. The values of α⊥ are

only 2% correlated while the values of α‖ have a correlation of 16.6%. This higher correlation

for α‖ is certainly due to the larger number of pixels near z = 2.295 contributing to correlations

in both redshift bins.

Figure 8.10: Left: Difference in best-fit α‖ and α⊥ values between high redshift (z > 2.295)
and low redshift (z < 2.295) subsets of the 100 mock realizations and the result for data (red
star). Compared to Fig 7.14, the plot shows the degraded precision resulting from the division
of the data into two redshift bins. Right: comparison between low and high redshift values for
the same parameters showing correlations between both measurements in both redshift bins.

The last line of Table 8.2 shows the fit result when assuming that there is no BAO peak in the

correlation function, fixing the amplitude of the peak to zero. The χ2 difference with respect

to the first line reveals ∆χ2 = 27.2 for two extra degrees of freedom, corresponding to a 5σ

detection.

Table 8.3 shows results when changing the separation range and the broadband model (Eq. 6.29)

in the fits of the correlation function. The broadband model is included to take into account

systematic effects affecting the broadband of the correlation function, e.g., the distortion from
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continuum fitting or smooth correlated calibration errors. Results show no significant change

on the derived (α‖, α⊥) parameters, indicating that the broadband is performing as required.

Of particular significance, adding greater freedom to the broadband function has only a ∼ 10%

impact on the size of the α‖ error, although it has a larger impart of about 20-30% on the α⊥

error.

The uncertainties on α‖ and α⊥ reported in this section are derived from χ2 surfaces and are

purely statistical. Physical and instrumental effects could add systematic errors in our measure-

ments of the BAO peak position. In the next chapter we describe and characterize the impact

of those potential systematics. No strong evidence for a systematic was found in the tests we

performed to this point.

We conclude that our measurement of the DR11 Lyα forest correlation function is robust given

our methodology and the possible choices of cuts on data. The BAO peak is clearly seen in

the correlation function shown in Fig. 8.4. The covariance matrix of our measurement was

computed with two different methods yielding same results. Our standard analysis gives a BAO

peak position consistent with the fiducial model within 2σ on the radial direction and within

1σ in the transverse direction. The cosmological interpretation of those results is discussed in

Chapter 10.





Chapter 9

Study of Systematic Effects

In this chapter we explore the possible systematic effects that could introduce a change in the es-

timated position of the BAO peak, by the introduction of spurious non-smooth correlations in our

estimation of ξ(r‖, r⊥) described in the previous chapters. In § 9.1 we study the effect of calibra-

tion errors mistakenly introduced in all BOSS spectra by pipeline at wavelengths corresponding

to Balmer transitions of the hydrogen. In § 9.2 we characterize the effect of metal absorption

that is naturally correlated with Lyα absorption. We conclude that all those systematics indeed

include spurious correlations but too small to be significant for BAO measurements.

9.1 Balmer features

Going back to our measurement of the mean transmitted flux fraction F̄ (z) (Fig. 8.1), some

bumps, not present in mocks, are clearly visible. The wavelengths of these bumps correspond to

the Balmer transitions of the hydrogen atom. The most visible ones correspond to Hδ (410 nm)

and Hγ (434 nm).

The most likely explanation for those features is problems on estimation of the flux calibration

vectors used by the pipeline described in § 3.10 to convert CCD electron counts into flux for each

spectrum. When performing observations, for each spectrograph some fibers of the plate are

pointed to standard F-stars (bottom left panel in Fig. 3.9) with known spectral shape, that are

then used to compute these flux calibration vectors. A spline function is fitted over each standard

spectrum (in electron units) of which the flux is known. Calibration vectors are defined as the

ratio between the known flux and the fitted number of electrons. For a given plate exposure,

two calibration vectors are computed for the blue side and two for the red side.

The left panel of Figure 9.1 shows one example of such calibration vector for the blue spec-

trograph. The broadband shape translates the throughput of the spectrograph (Fig. 3.6). We

smooth this broadband shape using a running average over 200 wavelength pixels, building a

smoothed calibration vector. Dividing the original vector by its smoothed version allows one

to see small fluctuations. These fluctuations are shown in the right panel of Fig. 9.1 where at
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Figure 9.1: Left: examples of flux calibration vectors for one blue exposure and two fibers on
distinct half-plates. All calibration vectors of a given half-plate are the same. The half-plates
are defined by the numbers of fibers inside the ranges: 1-500 and 501-1000. Right: same
calibration vectors normalized by their smoothed versions. Blue dashed lines show the Balmer
transition wavelengths.

least five Balmer features appear clearly at 389, 397, 410, 434 and 486 nm. These features come

from bad modeling of the fitted spline over the Balmer emission present in the standard spectra,

leaving these residuals in the final calibration. Due to this problem, all BOSS spectra contain

Balmer features included in their spectrum, including quasars and galaxies.

Those calibration errors at Balmer wavelengths might introduce additional correlations between

flux fluctuations that would create non-smooth structure in the Lyα correlation function. Those

structures could bias our BAO peak position measurement. Therefore, we first checked the

significance of these lines through the calibration vectors themselves. Second, we computed the

correlation function of calibration vectors to see if they have important non-smooth correlations.

For a given half-plate (500 fibers), the calibration vector C(λ) is the same. Figure 9.2 shows the

mean and the scatter around the mean of fluctuations ∆C(λ)/C̄(λ) of the calibration vectors

around their broadband shape C̄(λ) from a sub-sample of 896 half-plates. We see that the

Balmer lines are significant with relative amplitudes up to 0.02 ± 0.004. If not corrected, these

calibration errors would lead to additional δF ∼ 0.02 over Balmer wavelengths. The subtraction

of the mean F̄ (z) when estimating δF removes this effect in average but does not correct each

spectrum individually. It is thus important to check whether those fluctuations create spurious

spatial correlations.

We computed the correlation function of calibration vector fluctuations δC = C(λ)/C̄ − 1. We

placed these fluctuations in the same position as the Lyα forests. Figure 9.3 shows results. We

do observe additional correlations at r‖ ∼ 64, 100 and 160 h−1Mpc corresponding to the cor-

relations between, respectively, the pairs (389, 397)nm, (397,410)nm and the mix of (389,410)

and (410,434)nm. However, these additional correlations of about 10−7 are small when com-

pared to the noise level of ξ̂(A) at those separations, of about 10−5. This implies no significant

change in the Lyα correlation function. Furthermore, removing from the analysis pixel pairs

near (397,410)nm, near BAO peak separations, does not generate any measurable change in the

BAO peak position.

We conclude that the Balmer residuals do not affect BAO measurements at our level of precision.

Nevertheless, this work was important for the improvement of the automatic data reduction
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Figure 9.2: Average and RMS of calibration vectors with their broadband shape removed.
Green dashed lines are the positions of the hydrogen Balmer transitions. Red line is the
stacking of δF from data.

Figure 9.3: Left : Correlation function of calibration vector fluctuations as function of sepa-
ration (r‖, r⊥). Right: The same correlation averaged over 0.8 < µ < 1.0, compared with the
DR11 Lyα correlation function.

pipeline, that took into account a correction for these errors in the new version of the calibration

vectors.

The correction we proposed is simple: for each of the five significant Balmer lines, we make a

linear interpolation of the between the values of the vector taken at λi±∆λi, where ∆i varies from

2.5 to 3.5 nm. We were able to fix the fluxes of individual spectra by multiplying them by the ratio

of uncorrected and corrected calibration vectors. Since the calibration vectors are associated to

individual exposures, for each quasar we performed the correction on individual exposures and

we made our own coadded spectra using a inverse variance weighted sum. Figure 9.4 compares

mean transmissions F̄ obtained from our coadded and corrected spectra with respect to the

uncorrected ones. A clear improvement is seen on at least three of the five lines for which the
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Figure 9.4: Mean Transmission of Lyα forest computed with a sub-sample of ∼ 20, 000 quasars,
for which we applied the correction for the Balmer artifacts.

correction was applied. This improvement was already implemented on the pipeline associated

to Data Release 12.

9.2 Metal contamination

Another possible source of spurious correlation is metal absorption lines in the forest. As ex-

plained in § 2.1, metals in the IGM can absorb quasar light in the forest. Metal absorption

lines are hard to identify on individual forests, but they are visible when stacking forests at

the rest-frame of each absorption line having a transmission F lower than some threshold Fcut.

Figure 9.5 shows a stacked spectrum of absorption lines with −0.05 < F < 0.05 from Pieri et al.

(2013), revealing different metal components of the IGM such as Si, N, O, C.

Since the metal and Lyα absorption are correlated, correlations as a functions of separation might

appear in the Lyα correlation function at separations corresponding to the differences between

wavelengths of Lyα and other metals. For example, the correlation between Lyα (121.6nm) and

SiII (126nm) absorption correspond radial separations at z ∼ 2.3 of about r‖ = 110 h−1Mpc.

This excess peak-shaped correlation might introduce systematic errors in the BAO peak shape

and position.

The effect of metals on the BAO measurements was characterized through mock catalogs. We

included metals in ten DR11 mock catalogs following procedure described in § 5 and Pieri et al.

(2013). Each realization was analyzed with the usual procedure, from the continuum fitting

to the computation of the correlation function and the fit for the BAO peak position. The

left panel of Fig. 9.6 shows correlation function differences between mocks with and without

metals. We see that most of the effect of metals is concentrated on separations near to the

line of sight (r⊥ < 30 h−1Mpc), showing smoothed peaks due to redshift space distortions. In

the right panel, we show correlations averaged over µ > 0.8, ξ‖,Met(r), and the mean difference

∆ξ‖(r) = ξ‖,Met − ξ‖ between results from the same realization with and without metals. We

see that, except for the peaks at r ∼ 20 and 175 h−1Mpc, no peak-like feature appears in ξ‖(r)

that would change the BAO peak shape or position. At this precision level, metals act only as
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Figure 9.5: Composite spectrum of Lyα absorbers selected with transmission between −0.05 <
F < 0.05. Error bars are shown in blue. Vertical dashed lines indicate metal lines identified
and dotted vertical lines denote the locations of the Lyman series. A sample of 242,150 forests
from DR9 were used. Figure extracted from Pieri et al. (2013).

a new source of noise in our estimates. Fitting for the BAO peak position parameters,α‖ and

α⊥, yields a mean difference of ∆α‖ = 0.002 ± 0.003 and ∆α⊥ = 0.003 ± 0.009, indicating no

significant shifts in the BAO peak position.

This result was obtained assuming that our metal implementation on mocks is realistic. However

our model could be limited by different factors: the experimental uncertainty on the true am-

plitude of individual metal lines derived from the stacks, or the leak of scatter in the amount of

metal absorption added in mock spectra. However, it is difficult to improve the characterization

of the metal absorption distribution from data because metal lines are often blended with Lyα

absorption inside the forest.

Given those uncertainties in our metal model, we also performed a model independent test

using only data to see the importance of the metal correlations for BAO. This test consists in

fitting the correlation function but excluding bins corresponding to transverse separations below

a given r⊥min, therefore neglecting the region where metal correlations are expected to be seen.

Different values for r⊥min were used and results are shown in Fig. 9.7. We see in this plot that no

significant change is observed in (α‖, α⊥) when cutting data bins, except for the natural increase

in error bars due to the reduced number of degrees of freedom in the fits.

Given these tests, we conclude that at this precision, metals do not affect our measurements of

the BAO peak position in a significant way.
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Figure 9.6: The effect of metals on the stacked measurement correlation function of 10 mock
sets. Left: difference between correlations measured of mock with and without metal absorp-
tion included. Right: the same difference averaged over 0.8 < µ < 1.0 (blue points) compared
with the measurement itself (red points). The light red and blue lines show the results for
individual mock sets. Error bars are the standard deviation of the 10 estimates.

Figure 9.7: Values α‖ (blue dots) and α⊥ (red dots) recovered from the DR11 data for different
choices of the minimum transverse separation, r⊥

min, used in the fit. The measured values
do not change significantly when eliminating the small r⊥ bins that may be contaminated by
correlations due to absorption by metals.



Chapter 10

Cosmology from BAO

measurements

This chapter is dedicated to the cosmological implications of the BAO measurement presented

previously. In § 10.1 we discuss the consequences of estimates using Lyα forests presented in

§ 8.5). The same kind of discussion is made with the galaxy measurements of § 4 in § 10.2.

Finally, in § 10.3 we combine galaxy and Lyα BAO and we discuss the derived cosmological

parameters.

10.1 Implications of BAO in the Lyα forest

In this section, implications of BAO measurements on cosmological parameters are analyzed.

When combined with CMB measurements, Lyα BAO at z = 2.34 has the power to constrain

dark energy density.

We compare now our results with predictions given by the ΛCDM model using CMB mea-

surements. Two different sets of CMB constraints are used and summarized in Tab. 10.1.

The first one is obtained from a combination of Planck temperature (Planck Collaboration

et al., 2013) and WMAP polarization measurements1, denoted Planck+WP hereafter. The

second set uses WMAP nine-year data (polarization included, Bennett et al. (2013)) combined

with data from high resolution experiments ACT and SPT2 (Calabrese et al., 2013), denoted

WMAP9+ACT+SPT hereafter. These two CMB data sets have slightly different constraints

on cosmological parameters. In particular, the matter density parameter of Planck+WP is 6%

larger than the value obtained with WMAP9+ACT+SPT, which results in a disagreement of

1.5σ on the Hubble constant h between these two sets.

1The WMAP polarization breaks the degeneracy between the power spectrum amplitude As and the optical
depth to the last scattering surface τ(z∗), increasing the accuracy in the measured matter Ωmh2 and baryon
densities Ωbh

2 by about 12%.
2The high resolution experiments are more sensitive to foreground emissions and point sources in the CMB.

Full-sky experiments use this data to fit more accurately foreground models. The more accurate foreground
extraction and the larger angular range probed reduces error bars in cosmological parameters, in particular the
angular sound horizon at recombination (due to the larger number of acoustic peaks).
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Table 10.1: Parameters of the fiducial flat ΛCDM cosmological model used for this analysis,
the flat ΛCDM model derived from Planck and low-` WMAP polarisation data, ‘Planck +
WP” (Planck Collaboration et al., 2013), and a flat ΛCDM model derived from the WMAP,
ACT and SPT data (Calabrese et al., 2013). The models are defined by the cold dark matter,
baryon and massive neutrinos densities, the Hubble constant and the number of light neutrino
species. The sound horizon at the drag epoch, rd is calculated using CAMB (which can be
approximated with equation (55) of Anderson et al. (2013) to a precision of 0.1%).

fiducial Planck WMAP9
+ WP +ACT+SPT

Ωmh
2 0.1323 0.14305 0.1347

= Ωch
2 0.1090 0.12038 0.1122

+Ωbh
2 0.0227 0.022032 0.02252

+Ωνh
2 0.0006 0.0006 0

h 0.7 0.6704 0.714
Nν 3 3 3

Ωm 0.27 0.3183 0.265
rd (Mpc) 149.7 147.4 149.1

(104.80 h−1) (98.79 h−1) (106.4 h−1)
DA(2.34)/rd 11.59 11.76 11.47
DH(2.34)/rd 8.708 8.570 8.648

The standard fit values for (α‖, α⊥) from Table 8.2,

α‖ = 1.054+0.032
−0.031 and α⊥ = 0.973+0.056

−0.051 ,

combined with the fiducial values from Table 10.1 yield the following results

DH(2.34)

rd
= 9.18± 0.28(1σ) ± 0.6(2σ) (10.1)

DA(2.34)

rd
= 11.28± 0.65(1σ) +2.8

−1.2(2σ) . (10.2)

The blue shading in Figure 10.1 shows 68.3% and 95.5% likelihood contours for these parameters,

showing the anti-correlation between them. These constraints can be expressed equivalently as

H(z = 2.34) = (222± 7 km s−1 Mpc−1)× 147.4 Mpc

rd
DA(z = 2.34) = (1662± 96 Mpc)× rd

147.4 Mpc
, (10.3)

where we have scaled by the value rd = 147.4 Mpc from the Planck+WP model in Table 10.1.

Our measurements of (DA/rd, DH/rd) can be compared to expected values obtained from CMB

measurements. The Planck+WP values in a ΛCDM model from Tab. 10.1, (8.570, 11.76) are

at 1.8σ from our measurements, while the WMAP9+ACT+SPT values, (8.648, 11.47), are at

1.6σ. These differences are mainly driven by the slightly higher value of our DH/rd estimate.

On the other hand, our estimate of DA/rd has large errors and is in agreement with both CMB

predictions in Tab. 10.1. These results are independent of the choice for the fiducial cosmology

used in the analysis. We re-analyzed our data using a different fiducial cosmology based on

Planck+WP parameters, which yields same results.
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Figure 10.1: Constraints on (DA/rd, DH/rd). Contours show 68.3% (∆χ2 = 2.3) and 95.5%
(∆χ2 = 6.2) contours from the Lyα forest auto-correlation (this work, blue), the quasar Lyα
forest cross-correlation (Font-Ribera et al., 2013) (red), and the combined constraints (black).
The green contours are CMB constraints calculated using the Planck+WP+SPT+ACT chains
(Planck Collaboration et al., 2013) assuming a flat ΛCDM cosmology.

In order to see what kind of models are in agreement with our measured values of (DA/rd, DH/rd),

we computed the probability distribution for parameters of a open ΛCDM model (which allows

non zero curvature). Results are shown in Fig. 10.2, where contours give the 68 and 95.5%

confidence regions for Ωm and ΩΛ. In addition to our measurements, priors on the value of the

Hubble constant h and on the baryon density Ωbh
2 were used when computing these contours.

The prior on h is given by a Gaussian centered at 0.706 with 0.032 as standard deviation, cov-

ering measurements from both the distance ladder (Riess et al., 2011) and the CMB assuming a

ΛCDM model (Planck Collaboration et al., 2013). For Ωbh
2, we used a Gaussian prior based on

the Planck+WP measurement given by Ωbh
2 = 0.02205 ± 0.00033. Figure 10.2 shows that our

BAO measurement at z = 2.34 prefers lower values for Ωm in a flat cosmology than the Planck

prediction (represented by the star). In a open ΛCDM , the Lyα measurement have a slight

preference for an closed universe. However, Ωk < 1 is not detected significantly due to small

constraining power of a single BAO measurement. In § 10.3, we combine this result with BAO

measurements using galaxies at lower redshift.

Using the same forests, a BAO measurement was performed using the cross-correlation between

quasars and the Lyα forest(Font-Ribera et al., 2013). Results are shown by the red contours

in Fig. 10.1. Due to the higher density bias of quasars (around 4), the cross-correlation BAO

signal is significant even if the quasar density is low. Also, for the same reason the redshift space

distortion effect is reduced (β is the ratio between the velocity and density biases), yielding

similar errors in both radial and transverse directions. The error in DA/rd is even smaller than

the same value for the Lyα auto-correlation. The (DA/rd, DH/rd) measurement for the cross-

correlation alone also shows a 1.5σ difference with respect to ΛCDM predictions from CMB

measurements.

The statistical errors in the cross-correlation BAO measurement are dominated by the quasar

shot noise while the auto-correlation BAO measurement errors are dominated by instrumental
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Figure 10.2: Constraints on the oΛCDM parameters (ΩΛ,Ωm) based on the auto-correlation
contours of figure 10.1. The contours show 68.3% and 95.5% confidence levels. The Planck
value of Ωbh

2 is assumed together with a Gaussian prior for H0 = 70.6 ± 3.2 km s−1Mpc−1.
The yellow star is the Planck ΛCDM measurement and the dashed line corresponds to a flat
universe.

errors and small-scale clustering (for instance the two quasar diagram in the Wick theorem

computation, see § 6.3.2). For this reason, the statistical errors in the two BAO measurements

are almost completely uncorrelated. We have therefore combined the two likelihood surfaces

as independent to produce the joint likelihood contours shown by the solid lines in Fig. 10.1.

Marginalized 1-d constraints from the combined likelihood are:

DH(2.34)

rd
= 9.15+0.20

−0.21 (1σ) +0.40
−0.42 (2σ) (10.4)

DA(2.34)

rd
= 10.93+0.35

−0.34 (1σ) +0.75
−0.65 (2σ) . (10.5)

The combined measurement of (DA/rd, DH/rd) differs from CMB predictions by 2.5σ, as shown

in Fig. 10.1. Central values differ by 7% from the green contours from Planck+WP+ACT+SPT

(which are very similar to Planck+WP in Tab. 10.1). The “tension” between the CMB-constrained

flat ΛCDM model and the auto-correlation measurement of DH is evident in the top panel of

Figure 8.4, where the peak in the data is visually to the left of the peak in the fiducial model

(and would be even more to the left of the Planck+WP model).

This tension could be interpreted as coming from systematic errors in our auto-correlation mea-

surement. However, during Chapters 7 and 9 we performed tests on all steps of our analysis

chain using both mock catalogs and real data. The continuum fitting methods, noise properties,

sky-residuals, metals, high column density systems, model fitting methods: all those possible

systematic sources were investigated, and no systematic errors could be found at this precision

level.

The same kind of systematic tests could not be performed for the cross-correlation BAO mea-

surement. This is because our mock catalogs do not simulate the quasar-Lyα cross-correlation.

The absorption fields of these mocks are build completely ignoring correlations with quasars.

In principle, mocks including those correlations can be produced with our method discussed in



Implications from galaxy BAO measurements 139

§ 5.1.3, where the same correlated field could be used to place quasars and their Lyα forest.

However, we leave this topic as subject for future work.

While it is premature to conclude that a major modification of ΛCDM is needed, it is nevertheless

interesting to note what sort of changes are indicated by the data. The most widely discussed

extensions to flat ΛCDM , allowing non-zero space curvature or a dark energy equation-of-state

with w 6= −1, do not readily resolve the tension seen in Fig. 10.1 without running afoul of other

constraints. This is because of the necessity of decreasing DA(2.34) while increasing DH(2.34)

(which would solve the tension), something not easily done since the former is related to the

integral of the latter. In addition, as we will see in the next section, models also need to match

galaxy BAO measurements at lower redshift, which are more consistent with the CMB.

10.2 Implications from galaxy BAO measurements

In Chapter 4 we presented the BAO measurement using two samples of BOSS galaxies : LOWZ

and CMASS, yielding measurements of DV /rd (isotropic BAO), DA/rd (transverse BAO) and

DH(z)/rd (radial BAO) at effective redshifts of 0.32 and 0.57, respectively. These measurements

are obtained from the fits of α, α⊥ and α‖, respectively, on the galaxy correlation function. The

values from Table 4.1 and Eq. 4.15 yields, using the fiducial cosmology from Anderson et al.

(2013), for the isotropic case,

DV (0.32) = (1264± 25 Mpc)

(
rd
rd,fid

)
, (10.6)

DV (0.57) = (2056± 20 Mpc)

(
rd
rd,fid

)
, (10.7)

and for the anisotropic case,

H(0.32) = (81.7+4.0
−4.4 km s−1 Mpc−1)

(
rd,fid
rd

)
, (10.8)

DA(0.32) = (965± 42 Mpc)

(
rd
rd,fid

)
, (10.9)

H(0.57) = (96.8± 3.4 km s−1 Mpc−1)

(
rd,fid
rd

)
, (10.10)

DA(0.57) = (1421± 20 Mpc)

(
rd
rd,fid

)
, (10.11)

These constraints are also shown in Fig. 10.3 and Fig. 10.4 compared with predictions obtained

from Planck and WMAP+SPT/ACT Bennett et al. (2013), Hou et al. (2014), Sievers et al.

(2013) measurements.

In Fig. 10.3, one can see the 5% tension between the two sets of CMB results, coming from differ-

ences on the values of Ωmh
2. The current galaxy BAO data fall in between the two predictions

and are clearly consistent with both. CMASS measurements are in agreement with WiggleZ re-

sults (Parkinson et al., 2012) at z = 0.6 while LOWZ is compatible with SDSS-II measurements

at z = 0.275 (Percival et al., 2010) and at z = 0.35 (Padmanabhan et al., 2012). The 6dFGRS
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Figure 10.3: The DV (z)/rd measured
from galaxy surveys, divided by the best-
fit flat ΛCDM prediction from the Planck
data. All error bars are 1σ. The Planck
prediction is a horizontal line at unity,
by construction. The dashed line shows
the best-fit flat ΛCDM prediction from
the WMAP+SPT/ACT results (Bennett
et al., 2013). The grey regions shows the
1σ variation in the predictions for DV (z),
which are dominated by uncertainties in
Ωmh

2. SDSS-II results are plotted as
open symbols, from Percival et al. (2010)
at z = 0.275 and from Padmanabhan
et al. (2012) at z = 0.35. Figure from
Anderson et al. (2013).

Figure 10.4: Comparison of the
68 and 95% constraints in the
DA(0.57)(rd,fid/rd) − H(0.57)(rd,fid/rd)
plane from CMASS consensus anisotropic
(orange) and isotropic (grey) BAO con-
straints. The Planck contours correspond
to Planck+WMAP polarization (WP)
and no lensing. The green contours show
the constraints from WMAP9. Figure
from Anderson et al. (2013).

(Beutler et al., 2011) result at z = 0.1 is also shown. In § 10.3, we use the 6dFGRS, LOWZ and

CMASS values of DV /rd to create a combined set of galaxy BAO measurements for constraining

cosmological parameters.

Figure 10.4 shows the constraints of the anisotropic BAO measurement of CMASS galaxies

in the DA − H plane. The 68 and 95% confidence levels define the contours. The contours

from the isotropic measurement are also plotted, creating the gray band seen in this plot (since

DV ∝ D2
A/H). The expected values in a ΛCDM model using WMAP and Planck measurements

yields narrow ellipses due to the high precision in determining the sound horizon at z∗ = 1089.

As discussed in § 1.4.6, the amplitude and the relative height of the acoustic peaks in the CMB

temperature power spectrum give values for Ωmh
2 and Ωbh

2. Combining with the measurement

of the sound horizon breaks the degeneracy between Ωm and h in a ΛCDM model. The main

uncertainty in CMB measurements is the value of the cold dark matter density Ωch
2. Planck

constraints are tighter since they observe 9 acoustic peaks instead of 3, increasing the accuracy

on the measurement of the acoustic scale. The anisotropic BAO measurement with CMASS

galaxies is in 1σ agreement with CMB predictions, as also observed with the isotropic estimates.

Both isotropic and anisotropic measurements provide no indication that additional parameters

are needed to describe the expansion history beyond those in flat ΛCDM . However, if one con-

siders more general models with curvature Ωk or a different equation of state for dark energy wDE

(assumed to be constant over time), the lower redshift BAO measurements are complementary

to CMB. This is summarized in Figure 10.5 where we show constraints on Ωk and w separately,



Combining Lyα forests and galaxies 141

Figure 10.5: Constraints on the curvature Ωk (left panel), the equation of state of dark en-
ergy wDE (right panel), and matter density fraction Ωm, for ePlanck (Planck+HighL) and
CMASS+LOWZ isotropic (ξ(s)) and anisotropic (ξ∆µ(s)) BAO measurements. Dotted lines
show the ΛCDM values: Ωk = 0 and wDE = −1. Figures from Sánchez et al. (2014).

when combining CMASS and LOWZ anisotropic measurements with CMB measurements, de-

noted ePlanck (Planck+highL).

In the left panel of Fig. 10.5, BAO measurements at low redshift break the so called geometrical

degeneracy (Efstathiou and Bond, 1999) of CMB measurements, relating models with same

prediction for the angular scale of the acoustic peaks. This explains the large contours of ePlanck

(Planck+highL) alone in the Ωk−Ωm plane. This case gives 100Ωk = −4.2+2.7
−1.7. When combining

with BOSS anisotropic measurements, this degeneracy is broken yielding 100Ωk = 0.10 ± 0.29,

in good agreement with a flat model.

In the right panel of Fig. 10.5, a similar degeneracy is observed for the dark matter equation of

state in the wDE−Ωm plane when using only Planck measurements. The isotropic BAO partially

breaks this degeneracy, giving wDE = −1.28+0.24
−0.16. Using the anisotropic measurements reduces

even more this degeneracy, resulting in wDE = −1.049 ± 0.078. These results show that the

combination CMB and LSS data constrain the dark energy equation of state to 8%, with results

in agreement with a cosmological constant (wDE = −1). The same conclusions are obtained by

using WMAP data instead of Planck, with only a small shift in the mean value of wDE giving

−0.964± 0.077.

Letting both curvature and dark energy equation of state free, the degeneracy is larger. Anisotropic

BAO measurements again reduce considerably this degeneracy, yielding 100Ωk = 0.02±0.43 and

wDE = −1.05± 0.11, values consistent with flat ΛCDM .

10.3 Combining Lyα forests and galaxies

In this section we discuss the combination of BAO measurements using galaxies at lower redshift

and using Lyα forests at z = 2.3. In the previous section we discussed whether each of these
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Figure 10.6: Measurements of DA(z) (left) and H(z)/(1 + z) (right) for three BOSS data-
sets: LOWZ, CMASS and Lyα forest. The gray area shows the Planck prediction for a
ΛCDM model.

measurements agrees with predictions from the CMB. Here, we analyze the combination of all

those estimates.

Figure 10.6 summarizes the measurements of DA(z) and H(z) discussed previously using BOSS

data: LOWZ, CMASS and Lyα forest (auto-correlation only). The 1σ expectations from Planck

measurements in a ΛCDM model are also shown for comparison. The left panel shows a very

good agreement within 1σ of all DA(z) estimates with the Planck prediction. The right panel of

Fig. 10.6 shows H(z)/(1 + z) estimates. This quantity is simply a rewriting of derivative of the

scale factor ȧ(t) = a(t)H(t), that shows more clearly the expected deceleration and subsequent

acceleration of the Universe in a ΛCDM cosmology with a non-zero cosmological constant. We

see that the galaxy measurements are in agreement within 1σ with the Planck expectations, with

a CMASS value somewhat higher also seen in Fig. 10.3 which is related to a high value of Ωm

measured by Planck. The Lyα measurement of H(z) is also below Planck predictions by 1.8σ,

as discussed in § 10.1. If combined with the quasar-Lyα cross-correlation measurement at the

same z, this tension increases to ∼ 2.5σ. For this reason the combination of CMB, galaxies and

Lyα BAO measurements is not straightforward in the context of a standard ΛCDM model. A

more general model is needed to fit all measurements at a time.

For the combination of our measurements, we considered a more general cosmological model with

curvature Ωk and an equation of state for dark-energy w, called owCDM. We used Monte Carlo

chains to compute the combined likelihood surfaces and determine these parameters together

with Ωm, ΩΛ. Instead of using all Planck ΛCDM estimates, as in § 10.1, we have chosen be more

conservative and only use a prior on the baryon density Ωbh
2 = 0.02207± 0.00033 from Planck

and a larger prior on h = 0.706 ± 0.032 allowing Planck and direct measurement values for H0

to be equally likely.

Figure 10.7 shows three marginalized likelihoods for Ωm, ΩΛ and w, and 68 and 95% likelihood

contours in three parameter spaces, (ΩΛ,Ωm), (w,Ωm) and (w,ΩΛ) for three data sets: galaxies

alone (green), Lyα forest alone, and both combined. The Planck ΛCDM central values are shown

with stars. In this generalized model, the Lyα measurement alone gives very loose constraints

in these parameters due to a geometrical degeneracy. The same happens for galaxies alone, even
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Figure 10.7: Open wCDM constraints for combined BAO measurements.

though the constraints on Ωm have reasonable values in agreement with CMB measurements with

not so large errors (∼ 0.1). When combining galaxy and Lyα BAO measurements, constraints

are much tighter due to the orthogonality between likelihood surfaces arriving from the redshift

difference of the two measurements. With the combined likelihood, even in this general model,

we are able to recover values in agreement with ΛCDM at 1σ level. This shows that BAO

measurements are able to measure, with a more conservative prior on the baryon density and h:

• a non-zero dark energy componenent with a equation of state compatible with a cosmo-

logical constant;

• reasonable values for the matter density;

• and values for the curvature compatible with a flat model.

These results demonstrate the power of BAO as a probe for cosmological measurements over a

very large range of redshifts. Also, they show the impressive agreement of the ΛCDM model

with all measurements discussed here.





Conclusions

In this thesis, I presented baryon acoustic oscillations measured in the large scales structures of

the Universe seen by the BOSS survey. My work was mainly dedicated to the measurement at

z = 2.35 using Lyα forests, but I also contributed to the z = 0.57 measurement using galaxies.

BOSS is the largest spectroscopic survey to date, that measured more than 1.3 million luminous

galaxies over 0.1 < z < 0.7, and 150,000 quasar spectra at 2.0 < z < 3.5, covering the largest

volume for large scale structure studies.

Measurements of galaxy clustering lead to a sub per cent level estimate on the isotropic BAO

peak position at z = 0.57 with the DR11 CMASS sample. This estimate is compatible with

expectations of the concordance ΛCDM model with cosmological parameters derived from the

cosmic microwave background temperature power spectrum. Still using galaxies, I developed

an iterative optimal estimator for isotropic correlation functions. Applied to Data Release 9

CMASS galaxies, the new estimator gives an improvement of 20% in errors of the BAO peak

position with respect to the usual estimator Landy-Szalay.

The measurement of BAO using the Lyα forests is the main topic of this thesis, where my

contributions were important over all steps of the analysis, from observations, data reduction,

simulations and tests for systematic effects in our analysis, to the final measurement and its

interpretation.

Concerning mock Lyα forest catalogs, I developed a new method to generate spatially correlated

Gaussian random fields useful in the creation of mock Lyα absorption fields. My new method

leads to same results as the usual method but with several improvements: computing time scaling

linearly with the number of quasars, virtually no memory requirements and no need to divide the

survey into independent regions. For the second step of mock creation, which consists in creating

realistic BOSS quasar spectra from absorption fields, I developed the MockExpander package

that performs this transformation, also allowing the user to turn on and off different systematic

effects. This package was distributed to the collaboration and will be publicly available as part

of DR12.

These mocks were used to perform exhaustive tests on the full BAO analysis chain. I have studied

the effect of many possible sources of systematic effects on the final measurement: noise mis-

estimates, continuum fitting, sky residuals, calibration errors, metal and high column density

absorption. No strong evidence for systematic errors or biases were found at this statistical

precision level. Mock BAO measurements are consistent with the input model, with reasonable
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error estimates, validating our methods to compute the covariance matrix and the model fitting

procedure.

The BAO peak in the DR11 Lyα correlation function was detected at high significance, leading

to a 3% measurement of its position in the radial direction and 5.4% in the transverse direction.

Changing slightly the data set and analysis assumptions results in sub-σ shifts in our measure-

ment. The derived Hubble expansion rate at z = 2.35 is at 1.8σ from ΛCDM expectations coming

from Planck measurements of the CMB. This difference might just be a statistical fluctuation or

an indication for new physics happening between z∗ ∼ 1000 and z = 2.35. All tests performed

with data and mock catalogs indicate that the systematic contribution is negligible.

When combined with the DR11 quasar-Lyα cross-correlation, both the angular diameter dis-

tance and the Hubble expansion rate are in tension with Planck measurements at 2 and 2.5σ,

respectively. Translating this into cosmological parameters, the matter density fraction needed

to fit z = 2.35 BAO measurements should be lowered from 0.3 to 0.2, while increasing the dark

energy fraction in a flat universe. Also, if allowed to vary, the dark energy density at z = 2.35

is at 2.5σ below the expectation from a cosmological constant.

BAO in the large scale structures at low redshift have the power to break the geometrical

degeneracy of CMB measurements. If not just a statistical unlucky result, our measurements

seem to indicate that new physics would need to be included in our current cosmological model.

Our 2.5σ discrepancy with predictions is not statistically significant but it demands a thorough

consideration. The next generation of BOSS, called “extended BOSS” aims the measurement

of BAO using galaxies and quasar clustering in the redshift range not probed in this work

(0.7 < z < 2.0). The eBOSS survey uses the same telescope as BOSS, but targets different

objects. The Dark Energy Spectroscopic Survey (DESI) is the ambitious improved version of

BOSS, using a 4-meter class telescope and a focal plane observing 5,000 objects simultaneously.

DESI aims the measurement of BAO with all probes of large scale structure, galaxies, quasars

and Lyα forest, from 0.1 < z < 4. DESI will not only be able to improve the measurements

discussed in this thesis, but it will perform a full measurement of H(z) over the probed redshift

range. These measurements will help us in understanding more about about the origin of the

expansion, opening new doors for the exploration of new physics.
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S. Donzelli, O. Doré, M. Douspis, A. Ducout, J. Dunkley, X. Dupac, G. Efstathiou, F. Elsner,

T. A. Enßlin, H. K. Eriksen, O. Fabre, E. Falgarone, M. C. Falvella, Y. Fantaye, J. Fergusson,

C. Filliard, F. Finelli, I. Flores-Cacho, S. Foley, O. Forni, P. Fosalba, M. Frailis, A. A. Fraisse,

E. Franceschi, M. Freschi, S. Fromenteau, M. Frommert, T. C. Gaier, S. Galeotta, J. Gallegos,

S. Galli, B. Gandolfo, K. Ganga, C. Gauthier, R. T. Génova-Santos, T. Ghosh, M. Giard,

http://link.aps.org/doi/10.1103/PhysRevD.86.010001
http://adsabs.harvard.edu/abs/2003moco.book.....D
http://adsabs.harvard.edu/abs/2003moco.book.....D
http://arxiv.org/abs/hep-ph/0304257
http://adsabs.harvard.edu/abs/1993ppc..book.....P
http://adsabs.harvard.edu/abs/1993ppc..book.....P


Bibliography

G. Giardino, M. Gilfanov, D. Girard, Y. Giraud-Héraud, E. Gjerløw, J. González-Nuevo,
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González, S. Masi, M. Massardi, S. Matarrese, T. Matsumura, F. Matthai, L. Maurin, P. Maz-

zotta, A. McDonald, J. D. McEwen, P. McGehee, S. Mei, P. R. Meinhold, A. Melchiorri, J.-B.

Melin, L. Mendes, E. Menegoni, A. Mennella, M. Migliaccio, K. Mikkelsen, M. Millea, R. Minis-
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Nathalie Palanque-Delabrouille, Christophe Yèche, Arnaud Borde, Jean-Marc Le Goff, Graziano
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D. G. York. Baryon acoustic oscillations in the lyalpha forest of BOSS quasars. Astronomy

and Astrophysics, 552:96, April 2013. ISSN 0004-6361. doi: 10.1051/0004-6361/201220724;.

URL http://adsabs.harvard.edu/abs/2013A%26A...552A..96B.
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ers, Robert C. Nichol, Pasquier Noterdaeme, Nathalie Palanque-Delabrouille, Isabelle Pâris,
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Uroš Seljak. Analytic model for galaxy and dark matter clustering. Monthly Notices of the Royal

Astronomical Society, 318:203–213, October 2000. ISSN 0035-8711. doi: 10.1046/j.1365-8711.

2000.03715.x. URL http://adsabs.harvard.edu/abs/2000MNRAS.318..203S.

J. A. Peacock and R. E. Smith. Halo occupation numbers and galaxy bias. Monthly Notices of the

Royal Astronomical Society, 318:1144–1156, November 2000. ISSN 0035-8711. doi: 10.1046/

j.1365-8711.2000.03779.x. URL http://adsabs.harvard.edu/abs/2000MNRAS.318.1144P.

Asantha Cooray and Ravi Sheth. Halo models of large scale structure. Physics Reports, 372:

1–129, December 2002. ISSN 0370-1573. doi: 10.1016/S0370-1573(02)00276-4. URL http:

//adsabs.harvard.edu/abs/2002PhR...372....1C.

http://adsabs.harvard.edu/abs/2012AJ....144..144B
http://adsabs.harvard.edu/abs/2012A%26A...548A..66P
http://adsabs.harvard.edu/abs/2013A%26A...554A.131V
http://adsabs.harvard.edu/abs/1986ApJ...304...15B
http://adsabs.harvard.edu/abs/1989MNRAS.237.1127C
http://adsabs.harvard.edu/abs/2000MNRAS.318..203S
http://adsabs.harvard.edu/abs/2000MNRAS.318.1144P
http://adsabs.harvard.edu/abs/2002PhR...372....1C
http://adsabs.harvard.edu/abs/2002PhR...372....1C


Bibliography

G. Efstathiou, W. J. Sutherland, and S. J. Maddox. The cosmological constant and cold dark

matter. Nature, 348:705–707, December 1990. ISSN 0028-0836. doi: 10.1038/348705a0. URL

http://adsabs.harvard.edu/abs/1990Natur.348..705E.

Z. Ivezic, J. A. Tyson, E. Acosta, R. Allsman, S. F. Anderson, J. Andrew, R. Angel, T. Axelrod,

J. D. Barr, A. C. Becker, J. Becla, C. Beldica, R. D. Blandford, J. S. Bloom, K. Borne, W. N.

Brandt, M. E. Brown, J. S. Bullock, D. L. Burke, S. Chandrasekharan, S. Chesley, C. F.

Claver, A. Connolly, K. H. Cook, A. Cooray, K. R. Covey, C. Cribbs, R. Cutri, G. Daues,

F. Delgado, H. Ferguson, E. Gawiser, J. C. Geary, P. Gee, M. Geha, R. R. Gibson, D. K.

Gilmore, W. J. Gressler, C. Hogan, M. E. Huffer, S. H. Jacoby, B. Jain, J. G. Jernigan, R. L.

Jones, M. Juric, S. M. Kahn, J. S. Kalirai, J. P. Kantor, R. Kessler, D. Kirkby, L. Knox,

V. L. Krabbendam, S. Krughoff, S. Kulkarni, R. Lambert, D. Levine, M. Liang, K-T. Lim,

R. H. Lupton, P. Marshall, S. Marshall, M. May, M. Miller, D. J. Mills, D. G. Monet, D. R.

Neill, M. Nordby, P. O’Connor, J. Oliver, S. S. Olivier, K. Olsen, R. E. Owen, J. R. Peter-

son, C. E. Petry, F. Pierfederici, S. Pietrowicz, R. Pike, P. A. Pinto, R. Plante, V. Radeka,

A. Rasmussen, S. T. Ridgway, W. Rosing, A. Saha, T. L. Schalk, R. H. Schindler, D. P.

Schneider, G. Schumacher, J. Sebag, L. G. Seppala, I. Shipsey, N. Silvestri, J. A. Smith,

R. C. Smith, M. A. Strauss, C. W. Stubbs, D. Sweeney, A. Szalay, J. J. Thaler, D. Van-

den Berk, L. Walkowicz, M. Warner, B. Willman, D. Wittman, S. C. Wolff, W. M. Wood-

Vasey, P. Yoachim, H. Zhan, and for the LSST Collaboration. LSST: from science drivers to

reference design and anticipated data products. ArXiv e-prints, 0805:2366, May 2008. URL

http://adsabs.harvard.edu/abs/2008arXiv0805.2366I.

A. J. S. Hamilton. Measuring omega and the real correlation function from the redshift

correlation function. The Astrophysical Journal Letters, 385:L5–L8, January 1992. doi:

10.1086/186264. URL http://adsabs.harvard.edu/abs/1992ApJ...385L...5H.

Stephen D. Landy and Alexander S. Szalay. Bias and variance of angular correlation functions.

The Astrophysical Journal, 412:64, July 1993. ISSN 0004-637X, 1538-4357. doi: 10.1086/

172900. URL http://adsabs.harvard.edu/doi/10.1086/172900.

Molly E. C. Swanson, Max Tegmark, Michael Blanton, and Idit Zehavi. SDSS galaxy clustering:

luminosity and colour dependence and stochasticity. Monthly Notices of the Royal Astronomi-

cal Society, 385:1635–1655, April 2008. ISSN 0035-8711. doi: 10.1111/j.1365-2966.2008.12948.

x. URL http://adsabs.harvard.edu/abs/2008MNRAS.385.1635S.

Ashley J. Ross, Shirley Ho, Antonio J. Cuesta, Rita Tojeiro, Will J. Percival, David Wake,

Karen L. Masters, Robert C. Nichol, Adam D. Myers, Fernando de Simoni, Hee Jong Seo, Car-

los Hernández-Monteagudo, Robert Crittenden, Michael Blanton, J. Brinkmann, Luiz A. N.

da Costa, Hong Guo, Eyal Kazin, Marcio A. G. Maia, Claudia Maraston, Nikhil Padmanab-

han, Francisco Prada, Beatriz Ramos, Ariel Sanchez, Edward F. Schlafly, David J. Schlegel,

Donald P. Schneider, Ramin Skibba, Daniel Thomas, Benjamin A. Weaver, Martin White,

and Idit Zehavi. Ameliorating systematic uncertainties in the angular clustering of galax-

ies: a study using the SDSS-III. Monthly Notices of the Royal Astronomical Society, 417:

1350–1373, October 2011. ISSN 0035-8711. doi: 10.1111/j.1365-2966.2011.19351.x. URL

http://adsabs.harvard.edu/abs/2011MNRAS.417.1350R.

http://adsabs.harvard.edu/abs/1990Natur.348..705E
http://adsabs.harvard.edu/abs/2008arXiv0805.2366I
http://adsabs.harvard.edu/abs/1992ApJ...385L...5H
http://adsabs.harvard.edu/doi/10.1086/172900
http://adsabs.harvard.edu/abs/2008MNRAS.385.1635S
http://adsabs.harvard.edu/abs/2011MNRAS.417.1350R


Bibliography

Shirley Ho, Antonio Cuesta, Hee-Jong Seo, Roland de Putter, Ashley J. Ross, Martin White,

Nikhil Padmanabhan, Shun Saito, David J. Schlegel, Eddie Schlafly, Uros Seljak, Carlos

Hernández-Monteagudo, Ariel G. Sánchez, Will J. Percival, Michael Blanton, Ramin Skibba,

Don Schneider, Beth Reid, Olga Mena, Matteo Viel, Daniel J. Eisenstein, Francisco Prada,

Benjamin A. Weaver, Neta Bahcall, Dimitry Bizyaev, Howard Brewinton, Jon Brinkman, Luiz

Nicolaci da Costa, John R. Gott, Elena Malanushenko, Viktor Malanushenko, Bob Nichol,

Daniel Oravetz, Kaike Pan, Nathalie Palanque-Delabrouille, Nicholas P. Ross, Audrey Sim-

mons, Fernando de Simoni, Stephanie Snedden, and Christophe Yeche. Clustering of sloan

digital sky survey III photometric luminous galaxies: The measurement, systematics, and

cosmological implications. The Astrophysical Journal, 761:14, December 2012. ISSN 0004-

637X. doi: 10.1088/0004-637X/761/1/14. URL http://adsabs.harvard.edu/abs/2012ApJ.

..761...14H.

Hume A. Feldman, Nick Kaiser, and John A. Peacock. Power-spectrum analysis of three-

dimensional redshift surveys. The Astrophysical Journal, 426:23–37, May 1994. ISSN 0004-

637X. doi: 10.1086/174036. URL http://adsabs.harvard.edu/abs/1994ApJ...426...23F.

Lauren Anderson, Eric Aubourg, Stephen Bailey, Florian Beutler, Vaishali Bhardwaj, Michael

Blanton, Adam S. Bolton, J. Brinkmann, Joel R. Brownstein, Angela Burden, Chia-Hsun

Chuang, Antonio J. Cuesta, Kyle S. Dawson, Daniel J. Eisenstein, Stephanie Escoffier,

James E. Gunn, Hong Guo, Shirley Ho, Klaus Honscheid, Cullan Howlett, David Kirkby,

Robert H. Lupton, Marc Manera, Claudia Maraston, Cameron K. McBride, Olga Mena,

Francesco Montesano, Robert C. Nichol, Sebastian E. Nuza, Matthew D. Olmstead, Nikhil

Padmanabhan, Nathalie Palanque-Delabrouille, John Parejko, Will J. Percival, Patrick Pe-

titjean, Francisco Prada, Adrian M. Price-Whelan, Beth Reid, Natalie A. Roe, Ashley J.

Ross, Nicholas P. Ross, Cristiano G. Sabiu, Shun Saito, Lado Samushia, Ariel G. Sanchez,

David J. Schlegel, Donald P. Schneider, Claudia G. Scoccola, Hee-Jong Seo, Ramin A. Skibba,

Michael A. Strauss, Molly E. C. Swanson, Daniel Thomas, Jeremy L. Tinker, Rita Tojeiro,

Mariana Vargas Magana, Licia Verde, David A. Wake, Benjamin A. Weaver, David H. Wein-

berg, Martin White, Xiaoying Xu, Christophe Yeche, Idit Zehavi, and Gong-Bo Zhao. The

clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: Baryon acoustic

oscillations in the data release 10 and 11 galaxy samples. arXiv:1312.4877 [astro-ph], December

2013. URL http://arxiv.org/abs/1312.4877.

Mariana Vargas Magaña, Shirley Ho, Xiaoying Xu, Ariel G. Sánchez, Ross O’Connell, Daniel J.

Eisenstein, Antonio J. Cuesta, Will J. Percival, Ashley J. Ross, Eric Aubourg, Stéphanie Es-
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sets for large-scale lyman-$\alpha$ forest correlation measurements. arXiv:1108.5606, August

2011. URL http://arxiv.org/abs/1108.5606.
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Miralda-Escudé, Adam D. Myers, Pasquier Noterdaeme, Daniel Oravetz, Kaike Pan, Isabelle
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Slosar, Éric Aubourg, Stephen Bailey, Vaishali Bhardwaj, Julian Bautista, Florian Beutler,

Dmitry Bizyaev, Michael Blomqvist, Howard Brewington, Jon Brinkmann, Joel R. Brownstein,

Bill Carithers, Kyle S. Dawson, Timothée Delubac, Garrett Ebelke, Daniel J. Eisenstein, Jian

Ge, Karen Kinemuchi, Khee-Gan Lee, Viktor Malanushenko, Elena Malanushenko, Moses

Marchante, Daniel Margala, Demitri Muna, Adam D. Myers, Pasquier Noterdaeme, Daniel

Oravetz, Nathalie Palanque-Delabrouille, Isabelle Pâris, Patrick Petitjean, Matthew M. Pieri,
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