
HAL Id: tel-01390634
https://theses.hal.science/tel-01390634

Submitted on 2 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Plasticity for User Interfaces in Mixed Reality
Jérémy Lacoche

To cite this version:
Jérémy Lacoche. Plasticity for User Interfaces in Mixed Reality. Graphics [cs.GR]. Université de
Rennes 1, France, 2016. English. �NNT : �. �tel-01390634�

https://theses.hal.science/tel-01390634
https://hal.archives-ouvertes.fr

ANNÉE 2016

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l'Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L'UNIVERSITÉ DE RENNES 1

Mention : Informatique

Ecole doctorale Matisse

présentée par

Jérémy Lacoche

préparée à l'unité de recherche 6074 IRISA

Institut de Recherche en Informatique et Systèmes Aléatoires
ISTIC

Plasticity for

User Interfaces

in Mixed Reality

Thèse soutenue à Rennes
le 21 juillet 2016

devant le jury composé de :

Guillaume Moreau
Professeur à l'université de Nantes /Président

Torsten Kuhlen
Professeur à l'université de RWTH Aachen/ rappor-
teur

Laurence Nigay
Professeur à l'université de Grenoble / rapporteur

Sabine Coquillart
Directeur de recherche à INRIA Grenoble/examina-
teur

Thierry Duval
Professeur à Télécom Bretagne / directeur de thèse

Bruno Arnaldi
Professeur à l'INSA de Rennes / examinateur

Eric Maisel
Maître de conférences à l'ENIB / examinateur

Jérôme Royan
Chef de laboratoire R&D à b<>com/ examinateur

Remerciements

Cette thèse aura été pour moi une expérience très enrichissante d'un point de vue professionnel mais
également d'un point de vue humain. J'espère ici, sans en oublier, remercier toutes les personnes
qui ont contribué de près ou de loin à la réussite de mes travaux pendant ces trois ans.

Tout d'abord, je veux remercier Guillaume Moreau de m'avoir fait l'honneur de présider mon
jury de thèse. J'aimerais ensuite remercier Laurence Nigay et Torsten Kuhlen d'avoir accepté d'être
rapporteurs et de m'avoir donné des remarques très pertinentes et constructives concernant mes
travaux. Je tiens également à remercier Sabine Coquillart d'avoir accepté de participer à mon jury
de thèse.

Je souhaite ensuite remercier tout particulièrement Thierry Duval pour m'avoir fait con�ance
en acceptant de diriger cette thèse. Merci pour tes encouragements, tes conseils et ta disponibilité
tout aux long de mes travaux de thèse. Tes idées, tes connaissances et ta gentillesse ont été un vrai
soutien pendant ces trois ans. Un grand merci également à Jérôme Royan, pour ta con�ance, ton
suivi au quotidien, tes idées très créatives et la motivation que tu as su m'apporter durant cette
thèse. Je tiens également à remercier Bruno Arnaldi et Eric Maisel pour leur encadrement, pour
avoir partagé avec moi leurs connaissances et qui on su me guider sur des sujets très variés.

Par ailleurs je remercie l'IRT b<>com pour les conditions idéales dont j'ai pu béné�cier pendant
mes trois années de thèse. Participer au démarrage de l'institut a été pour moi une expérience
très enrichissante. Je tiens à remercier l'ensemble des membres de l'équipe I2 en particulier Amine
et Morgan mes compagnons de thèse pendant ces trois ans. Amine, qui a réussi à supporter mes
blagues douteuses pendant toute cette période et qui, même s'il ne fait pas de passes, restera mon
partenaire footballistique favori. Morgan, qui a été mon partenaire de travail mais également de
conférences en particulier lors des repas de gala! Vous avez été tous les deux d'excellents collègues
de travail et un soutien de poids pendant cette thèse. Pour toutes les pauses, les sorties et les
moments de rigolade, je vous remercie! Un petit bémol malgré tout, je ne vous remercie pas
pour le tabagisme passif que vous m'avez fait subir pendant ces trois années! Merci également à
Sébastien et Thomas qui m'ont procuré une aide essentielle dans la réalisation de mes travaux Je
tiens ensuite à remercier Delphine, Véronique et Karen qui pendant ces trois ans ont grandement
simpli�é mes démarches administratives et mes déplacements, et ce toujours dans la bonne humeur.
J'aimerais également remercier Florian et Pape mes partenaires de pause, de foot et de Fifa.

Merci également au laboratoire IRISA, en particulier à l'équipe Hybrid de m'avoir accueilli.
Merci notamment à Anatole et à Nathalie pour leur gentillesse. Je garderai un très bon souvenir
des discussions avec les membres de l'équipe notamment lors des séminaires.

Je tiens ensuite à remercier tous mes amis, en premier lieu mes amis de longue date, Maxime et
Simon. Merci également à tous mes amis de l'ESIR, je pense entre autres à David, Guilhem, Jude,
Julien, Maxime, Antoine, Delphine et Estelle avec qui j'ai passé cinq années d'études inoubliables.

Je remercie également mes parents qui m'ont toujours soutenu dans la réalisation de mes projets,
je vous dois beaucoup dans la réussite de mes études. Merci également à mon oncle Gilles pour
son soutien pendant ces trois ans. Merci à vous trois et à Jeans Yves d'être venus m'encourager
lors de ma soutenance.

En�n, un immense merci à Marie pour son soutien et ses encouragements quotidiens pendant
ces trois ans. Merci pour ta patience et ton écoute malgré les journées bien remplies. Tu as
largement contribué à la réussite de cette thèse. J'aimerais également remercier sa famille pour
leurs nombreux encouragements.

Contents

Résumé en Français 1

List of Acronyms 7

1 Introduction 9

2 Design Space of Mixed Reality User Interfaces 13
2.1 Introduction . 13
2.2 Mixed reality User Interfaces . 13

2.2.1 Virtual Reality . 14
2.2.2 Augmented Reality . 17
2.2.3 Augmented Virtuality . 19
2.2.4 Analysis . 19

2.3 Interacting with MR user interfaces . 20
2.3.1 Input devices . 20
2.3.2 Output devices . 23
2.3.3 Interactions techniques . 28
2.3.4 Analysis . 29

2.4 Development tools . 29
2.4.1 Markup languages for embedded execution 30
2.4.2 Game Engines . 31
2.4.3 VR and AR tools . 32
2.4.4 Analysis . 33

2.5 Global Analysis . 33

3 Plasticity for Mixed Reality User Interfaces 35
3.1 Problematics and Motivations . 35
3.2 The Plasticity Concept . 36
3.3 Adaptation Sources . 38

3.3.1 Devices . 39
3.3.2 Users and their environment . 40
3.3.3 Data . 41

3.4 Adaptation Targets . 42
3.4.1 Interactions . 42
3.4.2 Content . 43

3.5 Objectives and challenges . 45
3.6 Current Software Solutions . 46
3.7 Conclusion . 48

4 Device Adaptation 49
4.1 Introduction . 49
4.2 Related Work . 50

4.2.1 Device modeling . 50
4.2.2 Device adaptation solutions . 52

4.3 Overview . 55

4.4 A New Taxonomy for the Description of Interaction Devices 56
4.5 A New Model for the representation of 3D Application Components 60
4.6 The 3DPlasticToolkit task system . 64
4.7 Dynamic Recasting in 3DPlasticToolkit . 67

4.7.1 An Adaptation Process based on Scoring Mechanisms 67
4.7.2 Meta-User Interface: User Control over the Adaptation Process 71

4.8 Conclusion . 72

5 Use Cases and Results for Device Adaptation 75
5.1 Introduction . 75
5.2 Adapting the Interaction Techniques: The Furniture Application Case Study . . . 76
5.3 Adapting the Visualization: The Frame-Cancellation Case Study 80
5.4 Adapting both: the co-Manipulation Case Study 86
5.5 Conclusion . 93

6 Device Adaptation: the Speci�c Case of Redistribution 95
6.1 Introduction . 95
6.2 De�nitions and Related Work . 96
6.3 Overview . 98
6.4 Add Redistribution to 3DPlasticToolkit: D3PART 99
6.5 Redistribution for the furniture planning application 103

6.5.1 Redistribution for platform switching . 104
6.5.2 Redistribution for platforms combination 104
6.5.3 Redistribution for collaboration . 105

6.6 Perspectives . 106
6.7 Conclusion . 106

7 User Adaptation 109
7.1 Introduction . 109
7.2 Related Work . 110
7.3 User Preferences for Mixed Reality User Interfaces: A Preliminary Study 112

7.3.1 Comparing three selection techniques on two device setups 113
7.3.2 Could we use Machine Learning to Detect User Preferences? 121

7.4 Extension Of 3DPlasticToolkit for User Adaptation 124
7.4.1 User Model Integration . 124
7.4.2 Scoring Module For User Adaptation . 127

7.5 Conclusion . 128

8 Data Adaptation 131
8.1 Introduction . 131
8.2 Related Work . 132
8.3 An integration of data modeling . 133
8.4 Visualization metaphors deployments scores optimization 135
8.5 The Topic-Topos Database Visualization Case Study 139

8.5.1 The Topic-Topos database and one of its possible use cases 139
8.5.2 A �rst proof of concept for Topic-Topos database visualization 139

8.6 Conclusion . 141

9 Conclusion and Perspectives 143
9.1 Summary . 143
9.2 Results . 143
9.3 Perspectives . 144
9.4 Conclusion . 147

Publications 149

Appendix A: Frame Cancellation E�ects Evaluation 151

Bibliography 157

List of Figures 171

List of Tables 175

Listings 177

Résumé en Français

Introduction

Dans ce manuscrit de thèse, intitulé �Plasticité pour les interfaces de réalité mixte�, nous présentons
des travaux de recherche se plaçant dans le contexte des interfaces homme-machine et de la réalité
mixte.

Le terme "réalité mixte" fait référence selon Milgram [Milgram and Kishino, 1994] à un conti-
nuum allant du monde réel au monde virtuel qui englobe trois domaines particuliers. La "Réalité
Virtuelle" consiste à immerger via di�érent stimuli sensoriels un ou plusieurs utilisateurs dans
un environnement virtuel généré par ordinateur dans lequel ils peuvent interagir. La "Réalité
Augmentée" quant à elle consiste à intégrer des objets virtuels générés par ordinateur dans un
environnement réel. Ces éléments peuvent être superposés à l'environnement réel ou bien combinés
avec. La "Virtualité Augmentée" consiste à intégrer et à utiliser dans un environnement virtuel des
éléments du monde réel.

Aujourd'hui l'engouement est très fort autour de ce type d'applications grâce à l'arrivée de nou-
veaux dispositifs d'interaction et d'a�chage ainsi qu'à l'augmentation des performances graphiques
des ordinateurs et des plateformes mobiles. De nombreux cas d'usages béné�cient de l'utilisation de
ces applications comme le divertissement, la formation, la visualisation de données, etc. Toutefois,
le développement de ces applications comprend di�érentes problématiques. Tout d'abord il y un
grand nombre de dispositifs d'a�chage et d'interaction qui peuvent être utilisés en réalité mixte
et tous n'o�rent pas les mêmes capacités. Ensuite les interfaces de réalité mixte peuvent utiliser
une plus large variété de techniques d'interaction que les interfaces 2D classiques. De même les
possibilités de représentation du contenu sont plus importantes grâce à la troisième dimension.

Développer manuellement une application pour chacune des con�gurations possibles n'est pas
une manière �exible pour créer de telles interfaces. Des solutions sont nécessaires pour s'adapter
dynamiquement à ce qu'on appelle le contexte d'usage, c'est-à-dire l'ensemble des informations qui
permettent de caractériser l'interaction entre l'utilisateur et le système. Cette thèse s'intéresse à la
plasticité, un concept venant des interfaces 2D qui vise à traiter ces problématiques. La plasticité
d'une interface est sa capacité à s'adapter aux contraintes matérielles et environnementales dans le
respect de son utilisabilité [Thevenin and Coutaz, 1999]. La portabilité du code est nécessaire mais
n'est pas su�sante pour qu'un système interactif soit considéré plastique. La continuité de l'utilisa-
bilité doit être assurée quel que soit le contexte d'usage. Pour cela, les systèmes plastiques intègrent
généralement des mécanismes d'adaptation qui vont prendre en compte un certain nombre d'élé-
ments du contexte d'usage a�n de con�gurer de manière statique ou dynamique une application.
Par exemple, un exemple d'adaptation pourrait consister à changer les techniques d'interaction en
fonction des périphériques disponibles et des préférences d'un utilisateur.

Considérer ce concept de plasticité lors du développement d'une interface de réalité mixte peut
avoir de nombreux avantages comme la réduction des temps et des coûts de maintenance et de
développement, la possibilité de di�user son application très largement sans s'occuper des carac-
téristiques de l'utilisateur �nal et de ses périphériques, ou encore une attractivité de l'application
améliorée.

Le but de cette thèse est de proposer des modèles et une solution logicielle a�n de pouvoir créer
des interfaces de réalité mixte plastiques. Ainsi nos contributions s'articulent autour d'un même
outil logiciel pour la création de telles interfaces: 3DPlasticToolkit.

1

Contributions

État de l'art et proposition d'un espace problème

La première partie de cette thèse présente un état de l'art de la plasticité pour les interfaces 2D et
pour les interfaces de réalité mixte. Cet état de l'art permet de démontrer quelles sont les façons
d'adapter ce type d'interfaces et quelles sont les solutions actuelles. Ainsi nous pouvons proposer un
espace problème pour le développement des interfaces de réalité mixte ainsi qu'un ensemble d'exi-
gences qu'une solution doit respecter pour développer ce type d'applications. Cet espace problème
sépare la problématique sur quatre axes. Le premier groupe est celui des sources d'adaptations qui
correspondent aux éléments du contexte d'usage qui vont entrainer une adaptation. Pour la réalité
mixte nous avons identi�é 3 sources possibles. Tout d'abord les périphériques disponibles, c'est-
à-dire l'ensemble des dispositifs d'interaction et d'a�chage connectés à la plateforme ciblée. La
seconde source possible correspond aux utilisateurs et leur environnement. Cet ensemble comprend
la description des utilisateurs, leurs préférences ainsi que la description des environnements qui les
entourent. La dernière source correspond aux données manipulées dans l'application. Ces données
peuvent être caractérisées par leur structure ainsi que par leur sémantique. Ces sources d'adapta-
tion sont prises en compte a�n de modi�er un certain nombre de cibles. Ces cibles d'adaptation
constituent le deuxième axe de notre espace problème. Pour la réalité mixte nous avons identi�é
deux types de cibles. Le premier type correspond aux techniques d'interaction, pour lesquelles on
va adapter la façon dont l'utilisateur interagir avec l'application. Ensuite la deuxième cible possible
est la visualisation du contenu. En e�et, la façon dont est présenté le contenu peut être modi�ée,
par exemple la manière dont il est disposé dans l'espace 3D ou encore l'aspect visuel de chacun
des éléments a�chés. Le troisième axe correspond au temps de l'adaptation. L'adaptation est dite
statique si elle a lieu entre les sessions ou bien dynamique si des adaptations peuvent également
intervenir à l'exécution. En�n le quatrième axe correspond au contrôleur de l'adaptation. Le pre-
mier contrôleur possible est l'utilisateur lui-même qui peut con�gurer son application. Le deuxième
contrôleur possible est le développeur ou déployeur de l'application qui peut con�gurer le système
à distance ou via divers �chiers de con�guration. Le troisième contrôleur possible est le système
qui peut décider automatiquement des adaptations à e�ectuer grâce à une détection du contexte
d'usage. Au milieu de ces quatre axes on retrouve les moyens d'adaptation qui font référence à
la mise en oeuvre des modi�cations du système interactif. Tout d'abord, le remodelage consiste à
modi�er localement une application pour satisfaire un contexte d'usage local. Ensuite la redistri-
bution consiste à modi�er la distribution des composants d'un système sur plusieurs dimensions :
a�chage, plateforme et utilisateur. Nous avons ainsi pu extraire un ensemble de sept exigences
que doit respecter notre solution logicielle pour le développement d'interfaces de réalité mixte. Ces
exigences consistent à couvrir l'ensemble de l'espace problème que nous venons de décrire. Cette
solution doit pouvoir prendre en compte l'ensemble des sources d'adaptations, pouvoir impacter
l'ensemble des cibles, supporter la dynamicité, et supporter à la fois des adaptations initiées par
l'utilisateur, par le développeur et par le système. Les deux moyens d'adaptations, le remodelage
et la redistribution, doivent être supportés. Notre dernière exigence est également de proposer
une solution facile à utiliser et également facile à étendre pour pouvoir couvrir les problématiques
futures.

Adaptation aux dispositifs

Pour aider les développeurs à la création d'interfaces de réalité mixte plastiques, nous avons initié
la création de modèles logiciels qui visent à couvrir les di�érentes exigences de la plasticité. Ces
modèles sont intégrés dans une solution logicielle nommée 3DPlasticToolkit. Dans la première partie
de cette thèse nous présentons les bases de cette solution, c'est-à-dire ses mécanismes d'adaptation
pour le remodelage dynamique. La première partie se concentre sur la prise en compte les dispositifs
comme sources d'adaptation. Ces périphériques peuvent être pris en compte a�n d'impacter les
techniques d'interaction et la visualisation du contenu de l'application. Jusqu'à récemment, la
majorité des applications étaient développées pour une plateforme donnée. Aujourd'hui les usages
ont évolué, les gens ont accès à une grande variété de plateformes matérielles di�érentes : ordinateurs
personnels, dispositifs mobiles, plateformes immersives. De plus, à l'intérieur de ces catégories,

les périphériques possibles peuvent également être très di�érents. C'est pourquoi développer une
version d'une application pour chacune des possibilités n'est plus une option viable.

Notre première contribution est un modèle pour décrire les dispositifs d'a�chage et d'interaction
utilisés pour les interfaces de réalité mixte. Ce modèle décrit au format UML peut être étendu et
modi�é par n'importe quel développeur. Ce modèle expose les données que peuvent restituer ou
acquérir les dispositifs. De plus il ajoute des propriétés souvent absentes des taxonomies classiques
comme leurs limitations et leurs représentations dans le mode réel. Ainsi, avec notre modèle, un
dispositif peut être composés d'un certain nombre d'unités d'entrées, d'unités de sorties et d'objets
physiques. Un outil graphique est fourni pour con�gurer ces dispositifs.

Ensuite nous proposons un nouveau modèle pour développer des composants applicatifs dérivé
des modèles PAC[Coutaz, 1987] et ARCH[Arch, 1992]. Ces composants peuvent correspondre à
des techniques d'interaction, des widgets 3D, des métaphores de visualisation de données, ou en-
core des e�ets visuels. Ce modèle permet de décrire des composants indépendants des dispositifs,
indépendants du framework 3D utilisé et qui peuvent supporter di�érentes représentations. Ainsi,
il va permettre d'impacter à la fois les techniques d'interaction et la visualisation du contenu. A
l'exécution un composant applicatif est déployé pour chacune des tâches demandées par le dévelop-
peur. Ces tâches, décrites avec un modèle de tâche classique, permettent de décrire à haut niveau
le comportement et les possibilités de l'application.

Pour gérer le déploiement de ces composants en fonction des tâches et des dispositifs disponibles
nous proposons un processus d'adaptation dynamique. Ce processus qui gère le remodelage de
l'application va réagir aux changements de contexte à l'exécution a�n d'ajouter, de supprimer et de
modi�er les composants applicatifs déployés pour chacune des tâches. Ce processus est basé sur des
mécanismes de notation qui vont permettre de maximiser l'utilisabilité de l'application en fonction
du contexte d'usage. Ce système de notation est totalement con�gurable par le développeur.

Avec 3DPlasticToolkit l'utilisateur peut également contrôler et modi�er le processus d'adapta-
tion à l'exécution. En e�et, notre solution intègre une interface intégrée pour cela : la meta-interface
utilisateur. Cette interface permet à l'utilisateur entre autre de remplacer et de modi�er les com-
posants applicatifs ou de remplacer un dispositif utilisé par un autre dispositif disponible.

Nous présentons également un modèle pour supporter la redistribution : D3PART ("Dynamic
3D Plastic And Redistribuable Technology"). Dans ce modèle, un processus de redistribution va
permettre à l'utilisateur de con�gurer la distribution de son application via la meta-user interface.
Grâce à cette con�guration l'utilisateur va pouvoir choisir de migrer et de répliquer ces compo-
sants applicatifs entre plusieurs plateformes d'interaction. Cela va ainsi permettre à l'utilisateur
de changer d'une plateforme à une autre sans couture via une migration totale, par exemple pas-
ser d'une plateforme immersive à un dispositif mobile pour continuer son travail en mobilité. Il
va pouvoir combiner plusieurs plateformes grâce à une migration ou une réplication partielle, ou
encore pouvoir créer un contexte collaboratif grâce à une réplication totale.

Nous présentons également di�érents démonstrateurs développés avec nos modèles qui nous
permettent de démontrer comment notre ils peuvent être utilisés pour adapter les techniques d'in-
teraction et la visualisation d'une application. Nous présentons ainsi un démonstrateur d'aména-
gement d'intérieur, un démonstrateur d'interactions collaboratives et également di�érents e�ets
visuels développé pour régler le problème de "frame cancellation".

Adaptation aux utilisateurs

Nos modèles permettent ainsi de faire des choix de techniques d'interaction et de manières de
présenter le contenu en fonction des dispositifs disponibles et des choix du développeur. Ainsi
nous ne sommes pas assurés de fournir à l'utilisateur �nal une application qui va satisfaire ses
besoins et ses préférences. La personnalisation a pour but d'adapter l'application en fonction de
l'utilisateur. Nous avons ainsi proposé une extension de nos modèles pour considérer l'adaptation
aux utilisateurs.

A�n d'identi�er quels sont les exigences à respecter pour considérer l'adaptation aux utilisateurs
nous avons réalisé une expérimentation préliminaire qui a comparé les préférences et performances
de 51 utilisateurs pour trois techniques de sélection 3D sur deux dispositifs de réalité virtuelle
di�érents. Avec cette expérience nous avons pu démontrer que les préférences pour les techniques
d'interaction sont très variées. De plus nous avons également constaté que pour un même utili-

sateur la technique préférée ou la plus performante di�ère souvent d'un dispositif à l'autre et ce
malgré leurs similarités. Les résultats de cette expérimentation ont été exploités a�n d'évaluer si
un algorithme d'apprentissage supervisé est capable d'anticiper la technique adaptée pour un uti-
lisateur en fonction de son pro�l ou en fonction des données d'un pré-test préalablement e�ectué.
Les résultats obtenus avec cette approche sont encourageants mais pas encore su�sants a�n de
vraiment prouver son e�cacité parfaite. Un jeu de données comportant plus de participants serait
nécessaire pour réaliser plus d'investigations sur l'utilisation de cette méthode d'apprentissage. À
partir de ces résultats nous avons proposés un modèle utilisateur qui permet d'inclure pour un
utilisateur donné, les données du pro�l, les préférences, les informations sur l'environnement ou
les données de suivi de cet utilisateur. Via l'association entre un utilisateur et chacune des tâches
de haut niveau, le processus d'adaptation peut gérer le déploiement des composants applicatifs
en fonction des préférences utilisateurs. De plus cette association permet ensuite aux composants
applicatifs d'avoir accès aux informations sur l'utilisateur pour adapter leurs propriétés internes. Le
déploiement de ces composants s'e�ectue également via notre processus d'adaptation qui utilise des
mécanismes de notation. Ce système de notation prend ainsi compte les préférences de l'utilisateur
a�n de lui fournir l'application qui va lui correspondre aux mieux. Nous proposons également une
intégration de notre méthode d'apprentissage pour calculer automatiquement les notes.

Adaptation aux données

La dernière partie de cette thèse s'intéresse à l'adaptation aux données. En e�et, dans une interface
de réalité mixte, les utilisateurs peuvent visualiser, modi�er et manipuler des données. Ces données
sont décrites par des propriétés sémantiques et structurelles qui peuvent avoir un impact sur la
façon dont on va interagir avec elles et surtout sur la façon dont on va les présenter. Par exemple,
des objets culturels pourraient être visualisés dans un musée virtuel tandis qu'un catalogue de
vidéos à la demande pourraient être parcouru à l'intérieur d'un cinéma 3D.

Ainsi nous proposons un modèle complémentaire intégré à 3DPlasticToolkit a�n de prendre
en compte les données comme source d'adaptation. Pour l'instant l'implémentation du modèle est
encore partielle. Dans ce modèle nous proposons tout d'abord la représentation des données sous
la forme d'une ontologie gérée avec OWL ("Web Ontology Language"). Ce modèle permet le char-
gement de base de données dans di�érents formats et permet d'exposer à la fois la structure et
la sémantique des données. Pour visualiser ces données nous donnons la possibilité à l'utilisateur
�nal de créer des requêtes a�n de sélectionner un sous ensemble données à visualiser. Ces requêtes
peuvent être exprimées via di�érentes méthodes comme à l'aide d'un champ d'entrée textuel ou
à l'aide de commandes vocales. Ensuite nous proposons une mise à jour de nos mécanismes de
notation a�n de choisir les métaphores de visualisation adaptées aux données qui ont été sélection-
nées par l'utilisateur �nal. Cette notation est basée sur un processus d'optimisation réalisé pour
chacune des métaphores compatibles avec la requête de l'utilisateur. Cette optimisation consiste
à chercher les meilleurs paramètres de chaque métaphore en fonction de la structure et de la sé-
mantique des données sélectionnées. Une notation par métaphore est ainsi calculée à partir des
paramètres trouvés.

A�n d'illustrer ce modèle, nous proposons une première preuve de concept basée sur la vi-
sualisation de la base de données TOPIC-TOPOS. Cette base de données contient un ensemble
d'éléments relatifs à l'héritage culturel. Le parcours de ces données peut permettre à un utilisateur
d'en savoir plus sur certains éléments historiques ou alors de plani�er certaines visites.

Conclusion et perspectives

En conclusion cette thèse propose di�érents modèles a�n de créer des interfaces de réalité mixte
plastiques. Ces modèles permettent de couvrir l'ensemble de l'espace de problèmes proposé. Ainsi
ces modèles permettent de prendre en compte les périphériques, les utilisateurs et les données
comme sources d'adaptation. Ces sources peuvent être prises en compte a�n de modi�er à la fois
les techniques d'interaction et la visualisation du contenu. Les adaptations peuvent être statiques et
dynamiques et contrôlés par l'utilisateur �nal, le développeur et le système. Nos modèles supportent
le remodelage via un processsus d'adaptation local et la redistribution grâce à un processus intégré.

5

Ces modèles sont intégrés dans une solution logicielle nommée 3DPlasticToolkit. Cette solution
intègre de nombreux périphériques de réalité mixte comme l'Oculus Rift, la Kinect, le HTC vive,
le Razer Hydra, la zSpace, etc. De même elle propose également des techniques d'interaction et des
métaphores de visualisation de données prêtes à l'usage. Des outils visuels de création permettent
de con�gurer 3DPlasticToolkit. On peut donc dire que 3DPlasticToolkit est prêt à l'emploi pour
un développeur qui veut créer une interface de réalité mixte tout en béné�ciant des avantages de la
plasticité. Les applications présentées dans cette thèse qui ont été développées avec cette solution
permettent de démontrer son e�cacité.

La proposition de ces modèles et de cette solution logicielle o�re également de nombreuses
perspectives de travail. Il serait tout d'abord souhaitable de réaliser une évaluation formelle de
notre solution auprès de développeur d'applications a�n de mesurer son e�cacité. Il serait également
possible d'explorer la possibilité de déclencher automatiquement le mécanisme de redistribution en
détectant de manière automatique les actions de l'utilisateur. En�n il serait également intéressant
d'adapter le niveau de détail du contenu 3D en fonction des performances des plateformes a�n que
l'expérience ne soit pas dégradée sur les plateformes avec des faibles puissances de calcul.

6

List of Acronyms

2D Two-Dimensional
3D Three-Dimensional
AR Augmented Reality
CAD Computer-Aided Design
DOF Degrees Of Freedom
FOR Field Of Regard
FOV Field Of View GPS Global Positioning System
HMD Head-Mounted Display
IR Infrared
MDE Model-Driven Engineering
MR Mixed Reality
OS Operating System
PC Personal Computer
SDK Software Development Kit
UML Uni�ed Modeling Language
VE Virtual Environment
VR Virtual Reality
VRML Virtual Reality Modeling Language
WIMP Windows, Icons, Menus, Pointers
X3D eXtensible 3D
XML eXtensible Markup Language

7

8

Chapitre 1

Introduction

Context of the thesis

Today, there is a growing interest for Mixed Reality (MR) user interfaces. According to Milgram
[Milgram and Kishino, 1994], it includes Augmented Reality (AR), Virtual Reality (VR) and Aug-
mented Virtuality (AV) applications. This new trend can be explained in di�erent ways. First, the
impressive progresses made by the consumer electronic industry allow everyone to have access to
very powerful GPUs and to high quality display devices and interaction devices. For instance, the
timeline shown in Figure 1.1 gives an insight of the evolution of these peripherals. As shown, from
the Sutherland's head mounted display (HMD) in 1968 [Sutherland, 1968] to the Oculus CV1 pre-
sented in 2015, the gap is signi�cant but this revolution has been made in di�erent steps. Second,
today, compared to a few years ago, the creation of 3D applications is simpli�ed. Indeed, game en-
gines such as Unity3D or the Unreal Engine are now free-to-use. Such tools provide graphical tools
and built-in components that allow anyone to create interactive 3D applications without knowing
any concept of programing and any advanced 3D libraries such as OpenGLTMor DirectX R©. Third
and last, MR user interfaces have an important number of possible use cases. The most common one
concerns entertainment, which includes applications such as video games. However, other profes-
sional domains also bene�t from the use of MR user interfaces such as scienti�c data visualization,
education, Computer-Aided Design (CAD), e-commerce, architecture, computer-assisted surgery,
etc. Using 3D models can really improve attractiveness, interactivity, usability, and e�ciency of
such applications.

Even with the previously cited development tools, during the development of MR user interfaces,
designers and developers are confronted to many issues. Indeed, the large amount of display and
interaction devices is an opportunity but is also a problematics during the development of such
applications. All devices do not have the same capacities. An application cannot be developed in
the same way if it has to run with a mouse and a monitor or with an HMD and motion trackers.
Moreover, the way to interact with MR user interfaces is wider than classic 2D user interfaces.
Indeed, while classic 2D user interfaces are mostly based on the WIMP (Window, Icon, Mouse,
Pointer) interaction paradigm or on tactile 2D interactions, MR user interfaces include a lot of
interaction techniques that can be classi�ed into three categories according to Hand [Hand, 1997]:
selection/manipulation, navigation and application control. In each category a lot of interaction
techniques exist and it can be di�cult to choose one that will really �t the application needs, the
target interaction devices, and the target users needs and skills. The third dimension included with
MR user interfaces also increases the number of ways to present the content in comparison with 2D
user interfaces. For instance, for data visualization applications, there exists a lot of visualization
metaphors that can be chosen according to di�erent criteria such as the output devices properties
or the data intrinsic properties.

Developing manually a version of an application for each possible con�guration is not a very
�exible way toward adapting it to various features. The combinatorial complexity of such develop-
ment is important and need to be reduced with speci�c development tools. In order to deal with
such issues, this thesis is centered on plasticity for MR user interfaces. The plasticity concept comes
from the �eld of 2D user interfaces [Thevenin and Coutaz, 1999]. It is the capacity of an interactive

9

10 CHAPITRE 1. INTRODUCTION

1950 1960 1970 1980 1990 2000 2010 2020

1968
The sword of Damocles

1956
Sensorama

1977
Sayre Glove

2010
Microsoft Kinect

2013
- Oculus DK1
- Virtuix Omni
- Meta-Glasses 1
- zSpace

2012
- Leap Motion
- Google Glass

2015
- HTC Vive
- Oculus CV1
- Microsoft Hololens
- Samsung GearVR

2014
- Google CardBoard

1995
- Nintendo Virtual Boy
- VFX 1

1993
- CAVE
- Liquid Image MRG2
- KARMA

1984
- Nasa VIVED
- l’IHADSS

Figure 1.1 � A timeline that presents a non exhaustive list of VR and AR devices. Since 2010,
there is an increasing number of this kind of devices that reach the consumer market.

system to withstand variations of both the system physical characteristics and the environment
while preserving its usability. Code interoperability is a necessary condition but is not su�cient
for an interactive system to be considered as plastic. Usability continuity has to be guaranteed
too, performances and capabilities have to be at least constant. To do so, plastic interactive sys-
tems include an intelligent adaptation process that takes into account the context of use in order
to con�gure the �nal application. More than just ensuring usability continuity for an application
whatever the context of use, plasticity can also reduce maintenance and development times and
costs. Plasticity can also help an application to be distributed widely and it can also improve the
attractiveness of an application.

This thesis is realized in the context of the ImData project in the technological research institute
b<>com. The goal of this project is to develop technologies to navigate in and naturally interact
with large datasets. It focuses on the adaptation of the data presentation and of the interaction
techniques according to the context of use and also on how to collaboratively interact with these
data. Moreover, the project also aims to validate the di�erent technical choices by evaluating the
physiological and psychological acceptability of the di�erent proposed solutions.

Objectives

From the assessments of the previous Section we can highlight the fact that software tools are
needed by developers if they want to develop plastic MR user interfaces. The objective of this thesis
consists in creating such tools. We want to propose new models and concepts for the development
of plastic MR user interfaces. Our goal is to integrate these concepts and models into a software
solution: a toolkit for the creation of plastic MR user interfaces named 3DPlasticToolkit. To do so,
this thesis aims to complete the following objectives:

• We must identify the developers and designers needs and issues when they are confronted
to the development of MR user interfaces. We have to deduce from this analysis a set of
requirements that our solution has to cover.

• We must identify the current software solutions designed to deal with adaptive and plastic
MR user interfaces. We must analyze their advantages and limitations and also demonstrate
if they cover all the plasticity requirements for MR user interfaces or not.

11

• We must provide models and concepts that can cover the di�erent requirements of plasticity
and that can solve the limitations of current solutions. We must include these concepts and
models in a software solution. This solution must handle the modeling of the context of use
and must integrate an intelligent adaptation process that can take this context into account.

• We must create an easy to extend solution. As said before, today the MR domain is really
dynamic and the provided solution must be able to handle the future issues and needs.

• We must provide an easy to use solution that can be seamlessly integrated in the developer's
work�ow. In order to be easy to use, graphical authoring tools must be developed. If possible,
this aspect of our solution has to be evaluated.

• We must ensure reusability. Most of the components created for one target project must be
possibly reused another application. Ensuring this reusability is the best way to simplify any
development and to reduce development times and costs.

• We must help developers to focus on the content of their application and on the user expe-
rience. Technical issues induced by MR must be hidden.

Through the di�erent Chapters of this thesis, according to the new concepts and models we
introduce, we describe our new software models for the creation of plastic MR user interfaces.
We propose 3DPlasticToolkit as an implementation of these models. In order to demonstrate that
our solution can cover these di�erent objectives and more speci�cally the plasticity requirements,
we also present di�erent applications that have been developed with 3DPlasticToolkit. As these
applications cover di�erent possible use cases of MR, it enables us to demonstrate that our solution
can be viable for a lot of domains. Most of the contributions presented in this thesis address
adaptation to devices. Indeed, we consider that it is one of the main issues that developers encounter
today during the development of MR user interfaces. Nevertheless, this thesis and 3DPlasticToolkit
also aims to target the other issues such as adaptation to users and to data.

Dissertation Organization

In this section, we have brie�y discussed the context of MR user interfaces and the actual challenges
that we address in this thesis.

Chapters 2 presents the design space for the development of MR user interfaces. It focuses on
the devices issues as well as on the software ones that any developer has to take into account when
developing such application. The goal of this section is to highlight the di�erent adaptation sources
and to identify adaptation targets in the �eld of MR user interfaces.

Chapters 3 focuses on plasticity especially for MR user interfaces. First, it de�nes the plasticity
concept and gives close �elds of research. Then we present di�erent related work of 2D and MR user
interfaces with adaptation capabilities. The goal of this Chapter is to determine the requirements
that our software solution has to cover. We propose a problem space for the development of plastic
MR user interfaces. Then the other chapters are chosen according to the identi�ed adaptation
sources.

Chapters 4 focuses on device adaptation. In this chapter we propose new models and the basis
of our plasticity software toolkit: 3DPlasticToolkit. We present its adaptation process composed
of a scoring algorithm and of an integrated user interface for the modi�cation of the adaptation
behaviour. This Chapter focuses on detailing how this toolkit can take into account devices as an
adaptation source during the development of MR user interfaces.

Chapter 5 presents three di�erent applications developed with 3DPlasticToolkit. It shows how
devices can be taken into account with 3DPlasticToolkit in order to adapt the interaction techniques
and the content visualization of a MR user interface. This Chapter also demonstrates how 3DPlas-
ticToolkit can really bene�t to the development of MR user interfaces with concrete examples.

Chapters 6 focuses on a speci�c adaptation means possibly impacted by plasticity: Redistri-
bution. Redistribution consists in changing the components distribution of an interactive system

12 CHAPITRE 1. INTRODUCTION

across di�erent dimensions such as platform, display and user. For instance, for a given application,
it can make it possible to switch from an interaction platform to another one, to combine these
platforms or to create a collaborative context of use. Our contribution is a redistribution process
that provides redistribution capabilities to any application developed with our models.

Chapter 7 focuses on User adaptation. We present how any user can be modeled into 3DPlas-
ticToolkit and how this model is taken into account during the adaptation process. A preliminary
study has been performed in order to understand the user's adaptation needs for MR user in-
terfaces. The result of this study has also been exploited in order to explore the use of machine
learning for the creation of adaptation rules.

Chapter 8 presents how we handle data as an adaptation source. We show how data semantic
and data structure is modeled into 3DPlasticToolkit and how it can be taken into account by
the toolkit adaptation process. We demonstrate how this feature can be used to visualize a large
amount of patrimonial data.

Chapter 9 concludes this thesis an gives some opportunities for future work.

Chapitre 2

Design Space of Mixed Reality User

Interfaces

2.1 Introduction

In this chapter we identify the design space of Mixed Reality (MR) user interfaces in order to
determine and highlight the di�erent aspects that characterize this domain. We also want to identify
the developers needs for the development of MR user interfaces and the limitations of current MR
development tools.

With a critical analysis of this design space we aim to demonstrate its complexity and therefore
the needs for plasticity in the domain of MR user interfaces. The goal is also to identify a part of
the requirements that our software solution has to cover if we really want to meet the developer's
requirements.

This Chapter is structured as follows, �rst, in Section 2.2, we de�ne the di�erent types of MR
user interfaces and present some use cases. Second, in Section 2.3, we present the main components
involved in the development of MR user interfaces. Next, in Section 2.4, we describe some common
tools used to develop MR user interfaces. Last, in Section 2.5, we try to analyze the design space
of MR user interfaces in order to explain the needs for plasticity.

2.2 Mixed reality User Interfaces

In 1994, Milgram [Milgram and Kishino, 1994] de�nes the virtuality continuum that establishes a
continuity from the real world to the virtual world. This continuum is shown in Figure 2.1. Mixed
Reality (MR) refers to anywhere between the extrema of this continuum. According to Bowman
et al. [Bowman et al., 2004], the position of an environment on the continuum indicates its level of
virtuality from "purely virtual" to "purely real". This position may move during the execution of
an application as the user interacts with his environment. Therefore, a MR environment is de�ned
as a place that includes real world and/or virtual world objects. It refers to Augmented Reality
(AR), Augmented Virtuality (AV) and Virtual Reality (VR) applications, which are detailed in
the following sections.

Figure 2.1 � The virtuality continuum presented by Milgram [Milgram and Kishino, 1994]. A
Mixed Reality environment includes real world objects and/or virtual ones. It includes, AR, AV
and VR applications.

13

14 CHAPITRE 2. DESIGN SPACE OF MIXED REALITY USER INTERFACES

MR user interfaces are interactive, therefore this �eld of research is part of the Human-
Computer-Interaction (HCI) �eld of research. In an interactive system, the users' actions are
taken into account in order to control an application that provides in exchange multiple feed-
backs. Contrary to 2D user interfaces, for MR user interfaces, interactions are performed in a
spatial context. In that case we talk about 3D interactions as explained in Section 2.3. Dubois
et al. [Dubois et al., 1999] de�ne two possible targets for the user's task in a MR user interface:
real world and computer. They respectively correspond to the two terms presented by Milgram
[Milgram and Kishino, 1994]: AR and AV. According to Dubois et al. [Dubois et al., 1999], in
AR interaction with the real world is augmented by the computer and in AV interaction with the
computer is augmented by objects and actions in the real world. Dubois et al. also de�ne two types
of augmentation: augmented execution refers to the enhancement of the actions that the user can
perform and augmented evaluation refers to the enhancement of the perception. A complementary
classi�cation of HCI styles is also proposed by Rekimoto and Nagao [Rekimoto and Nagao, 1995].
First, in a desktop computer, interaction between the user and the computer is isolated from the
interaction between the user and the real world. Second in VR, the computer fully surrounds the
user and interaction between the user and the real world disappears. Third, in ubiquitous com-
puters environment, the user interacts with the real world and can also interact with computers
embodied in the real world. Last, augmented interaction supports the user's interaction with the
real world using computer augmented information.

The goal of MR user interfaces is to blur the border between the real world and the virtual world.
It gives new opportunities to a lot of application �elds. Indeed, it gives developers and designers the
possibility to create scenarios that could not be possible in the real world. For instance, imaginary
worlds can be created, meaningful data can be displayed upon the real world, a user can be
transported to another age or to another place, multiple users from all over the world can be
gathered in a same virtual space, etc., the possibilities are limitless.

The speci�cities of each part of the virtuality continuum are detailed in the following Sections.

2.2.1 Virtual Reality

De�nition

Virtual Environment (VE) refers to one extrema of the virtuality continum de�ned by Milgram
[Milgram and Kishino, 1994] and shown in Figure 2.1. A VE is a computed generated simulation
of an arti�cial world. Virtual Reality (VR) includes applications that consist in immersing one or
several users into a VE with which they can interact. When the VE is shared by multiple users, it
refers to Collaborative Virtual Environment (CVE).

In order to de�ne Virtual Reality we have chosen the technical de�nition provided by Fuchs et
al. [Fuchs et al., 2011] [Fuchs et al., 2003]:

"Virtual Reality is a scienti�c and technical domain that uses computer science and behavioural
interfaces to simulate in a virtual world the behaviour of 3D entities which interact in real time with
each other and with one or more users in pseudo-natural immersion via sensorimotor channels"

From this de�nition they derive the "perception, cognition, action" loop that is involved in
VR. First, the user interacts with a VE through motor interfaces that capture his actions suchs as
gestures movements or voices. Then, the simulation takes into account these interactions and modify
the VE accordingly. Last, with these modi�cations, sensorial reactions are transfered to the sensorial
interfaces. In most cases, a VR application is multi-sensory as the VE is presented to the end-user
through multiple sensory channels. For instance, it can target vision, sound, touch, smell or taste
sensory channels. The goal of VR is to provide end-users with a believable experience. Therefore,
the three steps of the loop have to be optimized in order to improve the end-user experience. Quality
of interaction between objects and users must be ensured. Moreover, the behaviors, appearance
and the provided sensorial outputs must be convincing enough. A VE is synthetic as it is created
at the time of the simulation and not replayed from a pre-recorded presentation.

In order to de�ne the basic characteristics of VR, Burdea et al. [Burdea and Coi�et, 2003]
present the three I's: Immersion, Interaction and Imagination. This is the VR triangle presented

2.2. MIXED REALITY USER INTERFACES 15

Figure 2.2 � The "perception, cognition, action" loop involved in Virtual Reality described by
Fuchs et al. [Fuchs et al., 2011]

in Figure 2.3. First, according to Mestre [Mestre et al., 2006] immersion is achieved by removing
as many real world sensations as possible and replacing them with sensorial feedbacks provided by
the VE. Therefore the level of immersion is directly linked to the �delity of these feedbacks that
depends on the computed simulation and on the output devices used. Presence is a psychological,
perceptual and cognitive consequence of immersion. It corresponds to the feeling of "being there",
"existing in" perceived by the user. Second, interaction enables the end-user to change the state
of the VE in real time. Virtual objects and characters within the VE can react to user's actions
and interactively communicate with them. Third and last, imagination is needed to design a VE
in order to make it credible and adapted to the target use case. This imagination also enables a
designer to create non-realistic worlds such as a world with di�erent physics laws.

Interaction Imagination

Immersion

I
3

Figure 2.3 � The three I's of Virtual Reality [Burdea and Coi�et, 2003]: Immersion, Interaction
and Imagination.

Use-cases

In the academic literature and in the industry, we can �nd a wide variety of possible use-cases of
Virtual-Reality. Moreover, today VR is a very trendy domain and many uses-cases still appear.
Indeed, the number of possible applications and di�erent virtual worlds is only limited by the
human imagination. From this statement, we can deduce that lots of �elds can bene�t from VR.
Here, we have selected some of the most relevant applications domains of VR.

16 CHAPITRE 2. DESIGN SPACE OF MIXED REALITY USER INTERFACES

First, the �eld of video games is the most common use case of VE and certainly the most
important creator of 3D content. The �eld of video games can really bene�t from VR. Indeed, it
can increase the immersion feeling of the user and make him feel that he is not just playing a game
but that he is part of this game with the sensation of presence. Video games can be categorized
into di�erent types such as:

• Action: it includes games such as �rst-person shooters (FPS), �ghting games or platform
games. It mainly relies on the player's dexterity and re�exes.

• Strategy: it includes games such as real-time strategy and turn-based strategy. It requires
skillful thinking in order to achieve victory.

• Role Playing: in this kind of games the player embodies an adventurer who has skills
that can be improved. Massively multiplayer online role-playing game (MMORPGs) is one
example of Role Playing game sub-category.

• Sports: it includes sports simulations such as car racing, tennis or football games.

Today, most of video games use classic interactions based on gamepad or keyboard and mouse.
However, some recent games tend to use 3D interactions with gestural interfaces. On the consu-
mer market, a �rst try was made with the PlaystationTMEyeToy R© and more recently with the
Nintendo R© Wiimotes as shown in Figure 2.4a and with the Microsoft R© KinectTM.

(a) (b)

Figure 2.4 � Two examples of video games with 3D interaction capabilities.(a) Wii tennis proposes
3D interactions with the accelerometer integrated in the Nintendo R© Wiimote. (b) Eve Valkyrie is
an immersive spacecraft shooter game that will be available on future VR devices such as the
Oculus Rift, the PlaystationTMVR or the HTC vive.

With the democratization of VR devices such as the Oculus Rift or the Playstation VR, a lot of
immersive VR games are in development such as Eve Valkyrie1, a spacecraft �ghting game which
is shown in Figure 2.4b or The Climb2 that is rock climbing simulation.

The second �eld concerns education and training. According to Cobb et al. [Cobb et al.,
2008], with VE, designers and developers can recreate scenario that would not be possible in a real
situation for cost, risk and logistic issues. Using VR for formation and training can familiarize a
trainee to these particular scenarios an can give him a similar experience as if he was confronted
to the real situation. With this kind of learning in VE, the goal is to improve the user skills when
he will be in the real working environment. One of the other advantages of using VR simulation
is that the activity and the progresses of the user can be tracked in order to provide him adapted
feedbacks.

In that category, Rickels et al. [Rickel and Johnson, 1999] propose a virtual agent to help a user
to inspect a high pressure air compressor aboard a ship. In the context of archaeological research,
smith et al. [Smith et al., 2013] present a stereoscopic research and training environment for ar-
chaeologists called ArtifactVis2. It makes possible the management and visualization of cultural

1https://www.evevalkyrie.com
2http://www.theclimbgame.com

2.2. MIXED REALITY USER INTERFACES 17

datasets within a collaborative virtual 3D system. This work is also an example of immersive data-
visualization, which is the next use case of VE that we present. Multiple trainees with di�erent
roles can also be integrated in the same learning scenario in a Collaborative Virtual Environment
(CVE). In the context of medicine, this is the example given by Claude et al. [Claude et al., 2015]
who propose a CVE for learning neurosurgery procedures. This example is illustrated in Figure
2.5.

Figure 2.5 � A collaborative Virtual Environment for learning neurosurgery procedures proposed
by Claude et al. [Claude et al., 2015]

Third, the �eld of data-visualization proposes to immerse one or several users into a VE for
analyzing and annotating data. The third dimension provided by VR for the visualization and
interactions can improve the user's perception and understanding of the data. It could help him
to detect some aspects that would not have been visible in 2D. Moreover, by integrating multiple
users into a CVE, we can make several remote users to visualize and interact with the same dataset
synchronously as proposed by Fleury et al [Fleury et al., 2012] and illustrated in Figure 2.6.

Regarding the type of data that can be visualized with VR, the most common one concerns
scienti�c data. For instance, Cosmic explorer [Song and Norman, 1993] is a VR applications for
investigating the cosmic structure formation. In [Brooks Jr et al., 1990], Brooks et al use VR to
visualize and interact with protein molecules. In the same way, Bryson and Levit [Bryson and Levit,
1991] propose the Virtual Windtunnel, a VE for the visualization of three-dimensional unsteady
�uid �ows. However, immersive data visualization is not limited to scientifc data. Indeed, other
kinds of data can also be visualized. For instance Esnault et al. [Esnault et al., 2010] propose to
use VR to visualize a Video On Demand (VOD) database. As well, Bonis et al. [Bonis et al., 2009]
create personalized VEs for visualizing museum data.

Figure 2.6 � A collaboration between two distant users for visualizing and interacting with scien-
ti�c data presented by Fleury et al. [Fleury et al., 2012]. Here, the two users manipulate together
a clipping plane.

2.2.2 Augmented Reality

De�nition

With VR, the user is totally immersed into the VE and cannot see the real world around him. In
contrast, AR consists in integrating computer-generated virtual objects into the real word [Azuma,

18 CHAPITRE 2. DESIGN SPACE OF MIXED REALITY USER INTERFACES

1997]. AR is the �rst step between real environment and VE on the virtuality continuum presented
by Milgram [Milgram and Kishino, 1994]. The virtual objects can be superimposed upon, such as
illustrated in Figure 2.7a, or composited, such as illustrated in Figure 2.7b with the real world.
AR is interactive in Real-Time. The goals of AR is to display objects and information that the
user cannot directly detect with his own senses [Azuma, 1997]. More than just being displayed,
these objects and information can also be interactive and manipulable. It can help a user to have
a better understanding of his surroundings or to perform better a real-world task. In order to
precisely align the real world and the virtual objects, AR systems use calibration and registration
processes [Zhou et al., 2008]. Indeed, according to State et al. [Hirota et al., 1996] a virtual object
should appear at its proper place in the real world. However, the user cannot correctly determine
spatial relationships between real objects and virtual ones. Dynamic registration is needed when
the user moves around the real world. The relative position between real and synthetic objects must
be constant. In addition, AR rendering is also challenging as the virtual objects must be integrated
in a proper way to be perceived correctly. This rendering includes algorithms that compute the
lighting and the shadows of virtual objects according the real environment and also that compute
eventual occlusion between real and virtual content.

(a) (b)

Figure 2.7 � Two examples of AR applications. These two examples mix a real world with virtual
information (a) Contextual virtual information is superimposed over the real world with Junaio AR
View. (b) The virtual world is composited with the real world. Here a virtual "castle" is displayed
on the table.

Use-cases

AR can also be found in a wide variety of domains. Some of them are common with VR. For
instance, AR can also be used for gaming and training. We can also cite other �elds where AR is
used. A lot of these use cases are given by Krevelen et al. [Van Krevelen and Poelman, 2010].

AR can be used by industrials for assembly and maintenance. Indeed, AR can be used to
display to an operator di�erent informations about an assembly or a maintenance procedure. Using
AR can reduce the time and the cost of these procedures and can also avoid mistakes.

For instance, in the automotive industry, BMW experimented AR to improve welding processes
on their cars [Echtler et al., 2004] and Volkswagen [Pentenrieder et al., 2007] uses AR for fac-
tory design and planning. In the same way, AR is also used in the aeronautics industry such the
Boeingwire bundle assembly project [Mizell, 2001] that aims at using AR to guide the assembly of
electrical wire bundles. In the energetic energy industry, Klinker et al. [Stricker et al., 2001] show
how AR is used by Framatome ANP for the inspection of power plants.

In the same way AR can be used for assistance in the �eld of medicine. In this �eld, most
approaches consist in overlaying the patient with data from medical imagery. It requires real-time
in-situ visualization of co-registered heterogeneous data [Mekni and Lemieux, 2014]. For instance,
Vogt et al. [Vogt et al., 2006] overlay MR scans on heads and also display a view of the hidden parts
of a manipulation tool. To continue, Haouchine et al. [Haouchine et al., 2013] overlay pre-operative

2.2. MIXED REALITY USER INTERFACES 19

CT scans in order to show vascular networks during hepatic surgery as shown in Figure 2.8. In the
same way, Navab et al. [Navab et al., 1999] also display x-ray imagery on top of real objects.

Figure 2.8 � An example of AR system for hepatic surgery proposed by Haouchine et al. [Haou-
chine et al., 2013]. Here, it shows a superimposition of a 3D real-time biomechanical model onto a
human liver. This virtual model has been previously acquired through CT scans.

To continue, AR has a lot of military applications. Indeed, AR can help soldiers in parti-
cular battle�eld environments. Some examples of concrete applications are given by Livingston
[Livingston et al., 2011] et al. It can be used to improve target acquisition, to help soldiers in
understanding their environment and tracking the current battle state (situation awareness). For
instance, in [Piekarski et al., 1999] Piekarski et al. propose a collaboration between a VR system
and soldiers using an AR system in order to provide them situation awareness. Some works also
focus on displaying only the important information to the soldiers in order to not overload their
view such as the information �ltering algorithm proposed by Julier et al. [Julier et al., 2002].

2.2.3 Augmented Virtuality

In AR, most of the user's view is dedicated to the real world. Virtual Objects are present to
enhance this real environment. On the contrary, for Augmented Virtuality (AV) most of the view
is dedicated to the VE and some objects from the real world can be inserted in it.

Most use cases of AV concern telepresence. For instance, it includes applications where a dis-
tant user can be added in the VE through a window that displays his webcam view such as in
[Regenbrecht et al., 2004] or through a 3D reconstructed avatar such as presented by Vasudevan
et al. [Vasudevan et al., 2010] and shown in Figure 2.9a. Other applications consist in making the
user be aware of his body such as his hands or aware of his close environment such as obstacles or
other people in the room. This last case is the one presented by Never Blind In VR [Nahon et al.,
2015] and illustrated in Figure 2.9b.

2.2.4 Analysis

VR, AR and AV share a lot of problematics and possible use cases. Each of these domains relies
on immersion and interaction with 3D content.

We have seen that the user experience in VR mainly relies on the feeling of presence which
can easily disappear if the simulation is not realistic enough. For AR applications, the coherence
between the VE and the real world mainly depends on the registration and on the quality of the
virtual objects display. AV mixes the di�erent issues encountered in AR and VR.

In addition, the level of virtuality of a given application is not always �xed. For instance, an
application could use VR to prototype a virtual object and then propose to see this virtual object
in the real world with AR.

Whatever the use-case, these issues are the same so re-usability of software components can be
very important for the development of such applications.

To conclude, we can say that a software solution can target these three domains if it can
ensure a good interaction with a realistic VE or with virtual objects correctly displayed in the real
world. Nevertheless, such a solution must also be able to take into account each particular domain
speci�cities.

20 CHAPITRE 2. DESIGN SPACE OF MIXED REALITY USER INTERFACES

(a) (b)

Figure 2.9 � Two examples of AV applications. These two examples present how real objects can
be injected into a VE. (a) Vasudevan et al. [Vasudevan et al., 2010] represent a 3D reconstruction of
the upper bodies of two distant users into a shared VE. (b) "Never Blind VR" [Nahon et al., 2015]
represents in the VE some elements from the real world such as close obstacles or other people in
the room.

2.3 Interacting with MR user interfaces

The "perception, cognition, action" loop described in Section 2.2 represents the di�erent com-
ponents needed when developing a MR user interface. In this section we describe these di�erent
components.

We demonstrate here that each step of this loop implies a lot of attentions for developers.
Indeed, we show here that MR users interfaces can be used with a lot of di�erent display devices
and input devices and can involve a lot of interaction techniques. We also describe that even if
devices and interaction techniques can be grouped into categories, in each category their properties
di�er a lot. From these descriptions, we aim to show that developers need software tools that allow
them to adapt their applications to this wide variety of devices and interaction techniques.

2.3.1 Input devices

The input devices are part of the last step involved in the "perception, cognition, action" loop. These
devices enable the user to communicate with the application. It integrates all peripherals that sense
and collect the user data and actions that can have an impact on the VE. According to Ohlenburg
et al. [Ohlenburg et al., 2007], an input device is a combination of an hardware component and
a software component, sending data into the system, based upon input from reality. The software
component may contain a driver, a library, or a software development kit (SDK). For instance, a
sensed data can be the positions of the user's hands and a possible action could be the detection
of a particular gesture. Input devices can be categorized according to three main points:

• the sensory modality acquired by the device, for instance, a sound, a position, an image, etc.

• the number of DOF of the acquired data, for example, a 3D position or a 2D mouse motion,

• the frequency of the acquisition as some input devices provide continuous data (position,
sound) while others provide discrete data (key presses, punctual gesture).

A complete classi�cation for the categorization of input devices is given in Section 4.2.1. Here, we
describe the main categories of input devices that are commonly used to interact with VEs.

Desktop and Mobile devices
Desktop and mobile input devices are used for classical 2D user interfaces and also for interactive

games. Even if they do not provide data in a 3D space they can also be used in di�erent ways
for MR user interfaces. They are often used for 3D applications because they are inexpensive, and
are natively supported by most desktop computing platforms [Lindt, 2009]. In this category, the

2.3. INTERACTING WITH MR USER INTERFACES 21

classical combination 2D Mice/Trackball/Trackpad and Keyboard is used in Desktop environment
as the basis of the WIMP (Windows, ICON, Menus and Pointers) interaction paradigm. Then,
touch sensing input devices are now commonly used with tablets and smartphones. These devices
sense the user's touches. It can include direct touch, for instance with the user's �ngers, and also
indirect touch when a stylus is used. To continue, game controllers are mainly used for video
games especially on consoles. Most of the time game controllers are composed of buttons that give
binary discrete values, of triggers that give continuous values between 0 (not pressed) and 1 (totally
pressed), and of joysticks that give a 2-DOF continuous positions between [-1, -1] and [1, 1]. These
three types of inputs are shown on the Xbox360TMcontroller illustrated in Figure 2.10. Some recent
game controllers also tend to provide more complex inputs such as the tactile surface integrated
in the PS4 R© gamepad or the rotation tracking system integrated in the WiiTMremote plus.

Joysticks

Triggers

Simple buttons

Figure 2.10 � The Xbox360TMgamepad is a classic game controller composed of joysticks, triggers
and simple buttons. This kind of device is commonly used for playing video games.

Tracking devices
Tracking devices are certainly the most important input for MR user interfaces. They are respon-

sible to continuously detect the position and/or rotation of human body parts or of physical objects
in the real world in order to maintain consistency between the real and the virtual world [Rolland
et al., 2001]. They can be used in many di�erent ways for MR applications such as interacting with
the VE as described in Section 2.3, computing a user-centric stereoscopy or for 3D registration
in AR applications. As explained in Section 2.3, tracking devices are frequently used in MR user
interfaces because they support the realization of immersive interaction techniques [Lindt, 2009]
that increase the user's impression that he is part of the VE. According to Bowman et al. [Bowman
et al., 2004], the main characteristics of tracking systems are:

• the range, which refers to the limits between which variation of the acquired data is possible,

• the latency, which refers to the delay between a position/rotation is in a given state and when
this state is reported,

• the jitter, which refers to the noise or instability of the acquired data,

• the accuracy, which refers to the precision of the acquired data. How much it is closed to the
real value.

Tracking systems can also be categorized according to the type of data they can sense. For example
tracking systems exist for gaze estimation, body-parts localization and for objects detection. We

22 CHAPITRE 2. DESIGN SPACE OF MIXED REALITY USER INTERFACES

can cite di�erent kinds of tracking technologies such as optical, inertial, GPS (Global Positioning
System), magnetic, acoustic or mechanical. Another kind of technology concerns datagloves that
are wearable devices used to track the user's hands motions. One common example of optical
tracking systems used for motion capture and MR applications is given in �gure 2.11 for a VR
application proposed by Artanim3. This system combines multiples VICON4 infrared cameras. The
infrared light emitted by the cameras are re�ected on passive marker patterns, then the system
is able to couple the di�erent images acquired by the cameras in order to compute the position
and rotation of each pattern. More information about how these di�erent tracking systems work is
given in [Rolland et al., 2001], [Foxlin et al., 2002] and [Bowman et al., 2004].

Figure 2.11 � A tracking system that combines multiple infrared VICON cameras (in red) in order
to track re�ective marker patterns. By increasing the number of cameras used, the tracking zone
(range) can be enlarged. Here, for a VR application, the system is used in order to track the user's
body parts such as his hands and his head.

Depth sensors
Depth sensors acquire 3 dimensional imaging with a real-time compatible frame rate. For a

given frame, such sensors deliver an image where each pixel corresponds to the distance of the
corresponding object to the sensor. A point cloud of the scene can be extracted from this depth
image. According to Castaneda and Navab [Castaneda and Navab, 2011], depth sensors can be
classi�ed into multiple categories according to the technology used to acquire the depth data. In
the context of MR user interfaces, the most commonly used types of depth sensors are the following
ones: stereo-based depth sensors, structured-light-based depth sensors and Time-of-Flight sensors.
First, some depth sensors are composed of two cameras and use a triangulation algorithm to
reconstruct a depth images from disparity between the two views. Other systems use structured
light cameras to project a light pattern into the 3D scene, thus the distortion of this pattern allows
the computation of the 3D scene structure. An example of such a sensor if the �rst version of the
Microsoft R© KinectTMthat is illustrated in Figure 2.12a. An example of point cloud acquired by this
sensor is given in Figure 2.12b. Last, Time-of-Flight (ToF) sensors measure the depth of a scene by
quantifying the changes that an emitted light signal encounters when it bounces back from objects
in a scene [Castaneda and Navab, 2011]. Such a technology is used by the second version of the
KinectTM.

Depth sensors can have multiple applications in the �eld of MR user interfaces. For instance,
in the previously cited example Blind In VR [Nahon et al., 2015], a depth sensor was used to
reconstruct the user body and his surrounding into a VE. Depth images can also be interpreted
by the system in order to give other input data to the application. Indeed, for instance, computer
vision algorithms can compute body parts positions and orientations from depth images [Shotton
et al., 2013], as well as gaze information [Mora and Odobez, 2012]. It can also be used for 3D
registration in AR applications [Henry et al., 2012].

Direct Human Input
Direct human input devices directly acquire the signals emitted by the human body [Bowman

3http://www.artanim.ch
4http://www.vicon.com

2.3. INTERACTING WITH MR USER INTERFACES 23

(a) (b)

Figure 2.12 � (a) The Microsoft R© KinectTMis an example of depth sensor that uses a structured
light approach. (b) The point cloud provided by this sensor crosses the depth image with the RGB
one.

et al., 2004]. They can be classi�ed into multiple types: speech input devices, brain computer
interfaces and bioelectric input devices.

First, speech input devices are based on speech recognition. Weinschenk et al. [Weinschenk
and Barker, 2000] de�ne speech recognition as the technologies that enable computers or other
electronic systems to identify the sound of a human voice, separate that sound from noise in the
environment, and use the messages from the voice as input for controlling the system. Speech input
devices are classically composed of a microphone and of a software component that detects what
the user says and converts it to application commands. Speech inputs can be used for di�erent
purposes when interacting with VEs. For instance, it can be used for application control to display
a menu or changing an application parameter such as in [De Sa and Zachmann, 1999]. Speech
input can also be used jointly with another input device, in that case we talk about multimodal
interactions. This kind of interaction is more detailed in Section 2.3.3.

Second, brain computer interfaces (BCI) consist in recording input commands directly from the
signals generated by the human brain activity. The raw signals of the brain are acquired with one
or multiple electrodes and are then converted into software commands through signal processing
algorithms. According to Bowman et al. [Bowman et al., 2004] BCIs hardware solutions can be
noninvasive when the user only wears a headband or a cap with integrated electrodes. A most
performing but really invasive approach consists in surgically implanting the electrodes into the
motor cortex. OpenViBE [Renard et al., 2010] is an example of software solution which enables
to design, test and use BCIs. BCIs were initially used to develop communication and control
technologies for people with severe neuromuscular disabilities [Wolpaw et al., 2002]. However,
recently a lot of approaches tend to use BCIs in order to interact with VEs [Lotte et al., 2013]. For
instance, it can be used for object manipulation such as the brain-based spaceship control proposed
by Lotte et al. [Lotte et al., 2008]. An example of application of BCI is given in Figure 2.13b: the
mind mirror is an AR application that allows a user to see his brain activity.

Last, bioelectric input is a generalization of BCIs for the entire body. Such devices can record
di�erent electrical signal activities from the human body. For instance, the NASA uses such devices
to read muscle nerve signals from the forearm in order to control a virtual aircraft [Jorgensen et al.,
2000]. In the same way, the Myo5, illustrated in Figure 2.13a, is an armband that can detect gestures
and motions through bioelectric inputs.

2.3.2 Output devices

The output devices (or display devices) are involved in the �rst step of the "perception, cognition,
action" loop. They are responsible to provide the user with the sensorimotor feedbacks computed
by the system. According to Ohlenburg et al. [Ohlenburg et al., 2007], an output device is able
to represent or to emit information. An output device receives data from the system and a�ects

5https://www.myo.com

24 CHAPITRE 2. DESIGN SPACE OF MIXED REALITY USER INTERFACES

(a) (b)

Figure 2.13 � Two examples of direct input devices. (a) The Myo armband acquires the forearm
bioelectric signals in order to detect gestures and motions. (b) An example of EEG cap used for
an AR application: the mind mirror [Mercier-Ganady et al., 2014] allows a user to see his brain
activity.

its output to reality. In the same way as input devices, an output device is a combination of an
hardware and of a software component. According to Bowman et al. [Bowman et al., 2004], output
devices present information to one or more of the user's senses through the human perceptual
system. Therefore, they can be categorized according to the human sense they can stimulate:

• visual perception is the capacity to see his surroundings,

• auditory perception is the capacity to perceive sounds,

• haptic perception is the capacity to perceive forces and touches,

• taste is the sensory impression given by food or other substances on the tongue,

• olfaction is the capacity to sense the presence of smell.

In this Section we describe some of the main devices in each category and we give some of their
characteristics.

Visual display devices
Visual display devices are the most common output devices used for MR user interfaces. They

are responsible to transform a VE rendered by the system into a form perceptible by the Human
Visual System (HVS). The goal of these displays is to make the end-user perceive the virtual world
in 3 dimensions by stimulating his depth perception. The HVS perceives depth thanks to a variety
of depth cues. These cues are separated into two categories. The �rst one contains monocular
cues that are interpreted by each eye. For example, in this category we can �nd motion parallax,
perspective, occlusion or texture gradient. The second category includes binocular cues that require
both eyes to be perceived. Stereopsis and convergence are such cues. Visual display devices have
multiple characteristics that can impact the level of immersion. These characteristics are given in
[Bowman and McMahan, 2007]:

• the Field of View (FOV) is the size of the visual �eld in degrees that can be seen instanta-
neously on a display. The FOV of the human visual system is close to 160�,

• the Field of Regard (FOR) is measured in degrees of visual angle. The FOR is the amount of
the physical space surrounding the user in which visual images are displayed [Bowman et al.,
2004],

• from the display size and resolution we extract the spatial resolution, [Bowman et al., 2004],
a measure of quality of the display expressed in dots per inch (dpi),

2.3. INTERACTING WITH MR USER INTERFACES 25

• stereoscopy provides an additional depth cue to the human visual system: stereopsis. Stereop-
sis, allows depth perception with the ability of our visual system to merge the two di�erent
images acquired by the two eyes,

• with head-based-rendering the rendering system considers the user's head position and rota-
tion in order to create a consistency between the virtual and the real world,

• the refresh rate and the frame rate are expressed in hertz (refreshes per second). The frame
rate refers to speed with which images are computed by the system and placed into the frame
bu�er. The refresh rate is the speed of the visual display device to refresh to display from
the frame bu�er.

Among the di�erent kinds of visual display devices used for MR user interfaces we can cite
simple screens, such as PC monitors, televisions or smartphones and tablet screens. These are
the most commons screens used for 3D applications as their prices are relatively low. Some of
these screens can be stereoscopic with or without the use of additional glasses. However, because
of their small FOR, simple stereoscopic screens do not provide a good level of immersion. They
are often used for computer games, Computer Aided Design (CAD) and desktop VR applications.
When these screens are hand-worn such as tablets and smartphones they can also be used for
AR applications. Then, multiple display systems use multiple screens in order to surround the user
and provide an important FOR and an important spatial resolution for immersive VR applications.
They are commonly combined with a head tracking system and provide stereopsis. In that category
we can for example cite the CAVEs [Cruz-Neira et al., 1992] and Holostages. To continue, Head-
Mounted-Displays (HMD) are recently the most commonly used display devices for immersive VR
applications. A HMD places the images directly in front of the user's eye. It is composed of one
or multiple screens, of lenses and of a tracking system. VR HMDs are closed-view, they totally
cover the user eyes in order to hide the real world and to provide an important immersion. It
provides stereopsis and a 360�FOR. However, for now HMDs su�er from a low FOV (less than
100�horizontal) and sometimes users experience something called the "tunnel vision" e�ect which
decreases the immersion feeling. Even if some progress have been made recently the resolutions of
HMDs is also a critical issue. An example of HMD is given in Figure 2.14a, the Oculus Rift DK26.
In addition, see through HMDs used for AR applications let the user see the real world with virtual
objects superimposed by optical or video technologies [Azuma, 1997]. Optical see-through HMDs
places optical combiners in front of the user's eyes. These combiners are partially transmissive, so
that the user can look directly through them to see the real world and also partially re�ective in
order to display virtual images. On the contrary, video see through HMDs use a classical closed
view HMD and display as a background (behind the virtual content) the images captured by two
cameras placed in front of the headset (the real scene). For instance, the Epson Moverio BT-3007

shown in Figure 2.14b is an example of optical see through display. In the same way the Oculus Rift
shown in Figure 2.14a can be transformed into a video see through HMD with the addition of the
OVRvision system8. Other kinds of visual output devices can also be cited such as workbenches,
retinal displays and volumetric displays.

Sound output devices
Sound output devices or auditory displays render the sounds generated by the system and that

come from the VE. In some cases, in order to provide a realistic simulation, sounds can be spa-
tialized. In that case, we talk of localization, which is the psychoacoustic process of determining
the direction from which a sound comes [Sherman and Craig, 2002]. Localization cues allow the
end-user to determine the direction and the distance of a sound source. These depth cues are detai-
led in [Bowman et al., 2004] and [Shilling and Shinn-Cunningham, 2002]. For instance, it includes
binaural cues, head-realted transfer functions (HRTFs), reverberation, sound intensity, etc. Two
main kinds of auditory displays can be found. First, stereophonic headphones are directly placed
on the user's ears and can provide two di�erent sounds to each ear in order to create sound loca-
lization e�ects. One of the advantages of using headphones is the possibility to provide di�erent

6https://www.oculus.com/en-us/
7http://www.epson.fr/fr/fr/viewcon/corporatesite/products/mainunits/overview/12411
8http://ovrvision.com/entop/

26 CHAPITRE 2. DESIGN SPACE OF MIXED REALITY USER INTERFACES

(a) (b)

Figure 2.14 � Two examples of visual display devices used for MR user interfaces. (a) The Oculus
Rift DK2 is an HMD used for VR applications that provides a 100�horizontal �eld of view and
a 360�FOR with a positional and rotational tracking. Its resolution is 960×1080 pixels per eye.
(b) The Epson Moverio BT-300 is an example of see-through glasses used for AR applications. It
provides a 23�diagonal FOV and depending on the tracking technology used can provide a 360�FOR.

sounds to multiple users. Second, external speakers can be placed at di�erent locations in the real
world. It avoids users to wear any additional device but it is more complicated to display di�erent
sounds to each user. Simulating localization with external speakers is also more complicated as the
emanating sounds can interact with the real environment, and therefore, it can decrease the sound
quality of the simulation [Bowman et al., 2004].

(a) (b)

Figure 2.15 � Two examples of haptic output devices. (a) The Novint Falcon is a ground-reference
haptic device that can apply force on the 3 axis of translation. (b) The Cybergrasp glove is a
body-referenced haptic device that can apply forces on each �nger in order to prevent the user's
�ngers from penetrating into a solid virtual object 2.15b.

Haptic devices
According to Burdea [Burdea, 1996], haptic feedback refers to both kinesthetic and tactile feed-

back. Using haptic feedbacks gives the opportunity to the end-user to "touch" the VE. In most
cases, haptic devices can also be categorized into the input device category as they also include tra-
cking systems. One challenging issue for haptic display systems is haptic rendering [Bowman et al.,
2004], which refers to the software components used to compute the forces based on a physical
simulation.

Kinesthetic (or force) feedback triggers the receptors in the human muscles, joints and tendons.
A force feedback device can exert a controlled force by the means of mechanical actuators during
the user interaction [Florens et al., 2007]. This type of devices has di�erent properties. First, the
number of degrees of freedom on which a force can be applied. Then, the maximum forces that can
be applied by the device (in Newton). An haptic device can be ground-referenced if it is placed on
the �oor, ceiling wall or on the desktop [Bowman et al., 2004]. For instance in that category, the

2.3. INTERACTING WITH MR USER INTERFACES 27

Novint Falcon9 illustrated in Figure 2.15a o�ers haptic feebacks on the three axis of translation,
and in the same way the Haption VirtuoseTM 6D10 also o�ers feedbacks on the three rotation axis.
For these two devices, the user has to hold the device e�ector with one of his hands. SPIDAR
systems [Hirata and Sato, 1992] are also ground-referenced haptic devices composed of actuators
that provide a force through a set of strings attached to an object or to the user's �ngers. On
the contrary, body-referenced haptic devices are placed directly on some part of the user's body
[Bowman et al., 2004]. In that category we can talk about exoskeleton or hand-force-feedback
devices such as the Cybergrasp R©11 glove illustrated in Figure 2.15b. It is also possible to simulate
haptic feedback without applying any force. In that case we talk about pseudo-haptic feedback
[Lecuyer et al., 2000] that consists in using passive mechanisms combined with visual or sound
feedbacks in order to give the user an impression of force feedback. For instance, the Elastic-Arm
[Achibet et al., 2015], is a body-mounted elastic armature that links the user's hand to his shoulder
in order to make the user perceive a progressive resistance force when he extends his arm.

Tactile feedback is the second type of haptic feedback. It stimulates the user tactile sens in
order to feel elements such as the texture of surfaces, temperatures or vibrations. For instance,
most today's game controllers integrate vibrotactile actuators in order to produce vibrations during
games. Another example is the Cybertouch R©12 glove that has vibrotactile stimulators on each �nger
and on the palm in order to provide tactile feedbacks.

Smell output devices
In the �eld of human computer interaction, using smell as a medium is really less unexplored

than visual, sound and haptic outputs. Using olfactory stimulations can enforce the immersion
feeling of the user. For example, it could be used to simulate the smell of virtual food or the
smell of a meadow. This kind of device is very uncommon. However, some academic researchers
are working to develop such devices. For instance, Nakamoto et al. [Nakamoto and Minh, 2007]
propose a smell output device composed of multiple solenoid valves that can blend 32 component
odors. In the same way, Sato et al. [Sato et al., 2008] explored a pulse ejection technique. Moreover,
some olfactory displays that use vaporizers have already been commercialized such as Scentair13

or will be commercialized such as the Feelreal solution 14.

Taste output devices
As well as smell output devices, taste displays are not really commons in interactive applica-

tions. Taste can be classi�ed into 5 di�erent basis tastes: : sweetness, sourness, saltiness, bitterness,
and umami. For instance, Aminzade [Maynes-Aminzade, 2005] introduces two "edible user inter-
faces" (EUI). It proposes two low-resolution gustatory devices. First, the BeanCounter, a discrete
gustatory device that can dispense jellybeans with di�erent �avors. Second, the TasteScreen is a
continuous gustatory device that can blend di�erent �avors that are placed into cartridges and
dispense the result as liquid redisdue on a PC monitor. In the same way, Iwata et al. [Iwata et al.,
2004] propose the "Food Simulator" [13] that integrates an interface that displays the biting force,
auditory information, and the chemical sensation of taste. Taste is rendered by releasing prepared
taste components using a micro injector.

Some work also try to create a taste simulation without any taste output devices. For instance,
a method introduced by Narumi et al. [Narumi et al., 2011] propose to "Pseudo-gustation" method
to change the perceived taste of food when eaten by changing its appearance and scent in an AR
application. It exploits the fact that what we sense as taste is a�ected by what we smell and what
we see.

9http://www.novint.com/index.php/novintfalcon
10http://www.haption.com/site/index.php/fr/products-menu-fr/hardware-menu-fr/virtuose-6d-menu-fr
11http://www.cyberglovesystems.com/cybergrasp/
12http://www.cyberglovesystems.com/cybertouch/
13http://www.scentair.com/
14http://feelreal.com/smells

28 CHAPITRE 2. DESIGN SPACE OF MIXED REALITY USER INTERFACES

2.3.3 Interactions techniques

In the "perception, cognition, action" loop described before, the action step refers to the interaction
part of MR applications. During this step the input devices are manipulated by the user or they
directly sense what he is doing and these actions are then reported to the system. If these manipu-
lations are made in order to accomplish a task into the application, we talk about an interaction
technique. Indeed, as de�ned by Bowman et al. [Bowman et al., 2004], an interaction technique
is a method to accomplish a task in an application that includes both hardware and software
components. When an interaction technique combines di�erent input devices that acquire di�erent
sensory modalities, we talk about multimodal interaction. A common example is the combination
of gesture and voice recognition systems such as the "Put That There" system proposed by Bolt
[Bolt, 1980]. Interacting with VEs implies a wider range of possible interactions than classical 2D
user interfaces. Indeed, this kind of interfaces mainly relies on the WIMP (Windows, Icon, Mouse,
Pointer) interaction paradigm as well as tactile interactions. These kinds of interactions are often
not appropriate for VE. Indeed, to interact with VE, 3D interactions are more adapted. According
to Bowman et al. [Bowman et al., 2004], 3D interactions are interactions performed in a spatial
context. Interaction techniques are based on metaphors that can be natural, pseudo-natural or
symbolic. For 3D interactive systems, three kinds of interaction techniques are proposed by Hand
[Hand, 1997]:

• Objects selection and manipulation interaction techniques allow the user to select and move
scene objects. In that category, we can cite hand-based interaction techniques that use a vir-
tual model of the user hands such as the Go-Go interaction technique [Poupyrev et al., 1996].
Some other interaction techniques are based on pointers such as the ray-based interaction
technique presented by Mine [Mine et al., 1995] illustrated in Figure 2.16a.

• Navigation interaction techniques allow the user to change his point of view. For instance,
moving the point of view with a joystick can be considered as a symbolic interaction while
walking in the VE as in the real world can be considered as natural. In Figure 2.16b we give
an example of interaction techniques that mixes these two paradigms: the Joyman [Marchal
et al., 2011] proposes an interaction technique based on a human-scale joystick.

• Application control interaction techniques allow the user to change di�erent application pa-
rameters. In that category interaction techniques are mainly based on graphical menus and
on voice and gesture commands. For instance, a graphical menu for application control is
illustrated in Figure 2.16c.

(a) (b) (c)

Figure 2.16 � Three examples of 3D interaction techniques. (a) A ray-based interaction technique
for selection and manipulation controlled with a 6-DOF tracking device. (b) The Joyman [Marchal
et al., 2011] proposes an interaction technique based on a human-scale joystick for navigating in
VEs. (c) A graphical 3D menu for application control

When the interaction implies multiple users at the same time on the same object, we talk about
collaborative interactions. This kind of interaction can be necessary for re-creating real situations
such as the manipulation of heavy objects that needs multiple persons. According to Margery et
al. [Margery et al., 1999], collaborative interaction can be classi�ed onto multiple levels:

2.4. DEVELOPMENT TOOLS 29

• Level 1: the interaction includes the perception of distant users through 3D representation of
each user (avatars) and communication (text or audio).

• Level 2: individual interactions enable each user to act on the scene.

Level 2.1: scene modi�cations are constrained by scene design.

Level 2.2: modi�cations made by a single user are not constrained.

• Level 3: collaborative/codependent interactions enable users to modify the same object at
the same time.

Level 3.1: two users can act on the object in independent ways.

Level 3.2: two users can act in a codependent way: the resulting reaction of the object
is a combination of the di�erent inputs.

2.3.4 Analysis

Compared to 2D user interfaces, MR relies on a lot of possible variety of input devices. We have
identi�ed 5 main categories of input devices but we have shown that in each category there are a lot
of possible devices with very di�erent properties. If an application is developed for one particular
device we can wonder if it can seamlessly be exchanged by another one from the same category
or by another one from a di�erent category. Indeed, maybe the end-user of an application will not
own the needed devices. We could also imagine a scenario where a device is replaced at runtime
by another one. To continue, desktop devices are commonly handled by most of software tools
for the creation of interactive systems, but as the other categories are less common they need the
installation of speci�c drivers and the use of particular SDKs. Learning and integrating these SDKs
can be di�cult and time consuming for developers.

We can make similar observations for output devices than for input devices, MR user interfaces
rely on way more possible output devices than 2D user interfaces. The problem of devices replace-
ment is the same, and in the same way as input devices, outputs devices also often need the use
of particular drivers and software libraries. More than handling just the di�erent possible devices,
this category also implies the di�culty to generate the outputs. Indeed, the application needs to
be able to generate the di�erent outputs which include problematics such as managing stereoscopy
and head tracking, generating spatialized sounds and computing force feedbacks according to a
physical simulation.

Software tools that could help developer to adapt their application to the di�erent input and
output devices could be a solution to cover these di�erent issues. These tool must hide the com-
plexity of the di�erent devices. Moreover such tools could also give to an application the capacity
to evolve when new devices appear. Indeed, if we want the developer to really focus on the content
of his application and on the interaction mechanisms, we need to provide him the tools that already
cover these di�erent issues.

To continue, we have shown the wide diversity of interactions used in MR user interfaces.
Choosing the interaction techniques for an application can be a di�cult task. Indeed, a choice can
be in�uenced by multiple aspects of an application. Of course, the input devices and the output
ones have an important impact on these choices. Some interaction techniques can be more adapted
to particular devices and even not compatible with others. For instance, it could be complicated
to precisely control a virtual hand composed of �ve �ngers with a Flystick. A Dataglove or a hand
tracker would be more convenient Moreover, theses choices can also be in�uenced by the type
of the target application and the skills and habits of target users. Indeed, for instance, some 3D
interaction techniques can be di�cult to use for people who do not use MR user interfaces very
often. Adaptation tools may help developers to automatically adapt their applications to these
di�erent aspects.

2.4 Development tools

The creation of MR applications �rst involves the creation of the assets that will be part of the VE.
These assets can be of di�erent types, for instance, 3D models created with a modelisation tool

30 CHAPITRE 2. DESIGN SPACE OF MIXED REALITY USER INTERFACES

such as 3ds Max15 or CAD tool such as Autocad 16, or obtained by scanning a real object. These
assets can also include animations, shaders, sounds, etc. The goal of 3D development tools is to
enable developers to use these di�erent assets in order to create interactive applications. They also
aim to help the developer to integrate the devices presented in Sections 2.3.2 and 2.3.1. However
they do not propose solutions to automatically adapt an application to these devices. Today, most
developers use integrated tools that propose the basis components for most of the steps involved in
a 3D application development work-�ow. Software middlewares for handling speci�c features are
sometimes combined with these tools. Indeed, today it is really uncommon to start to develop a
3D application directly from scratch with a graphics library or with a 3D engine.

In this section we present the main tools used to develop MR applications. First, the markup
languages are designed for the creation of embedded 3D applications. Second, game engines are
complete tools that include the main software components for 3D development and that ease the
development with visual editors. Last, VR and AR middlewares are frameworks that handle speci�c
features such as devices management, AR registration, stereoscopic rendering, etc.

2.4.1 Markup languages for embedded execution

Markup languages enable users to create interactive 3D applications even with only a little know-
ledge of coding. The created �les can then be embedded in an application that includes the associa-
ted execution environment that interprets the language. In order to navigate through 3D worlds on
the World Wide Web, the creation of VRML[Carey and Bell, 1997] (Virtual Reality Modeling Lan-
guage) has been investigated during the 1990s. Its �rst version was speci�ed in 1994 17. VRML is a
mutli-platform declarative language for the creation of interactive VEs embedded in applications.
VRML is an ISO standard that has been initially designed in the context of Web3D but its execu-
tion is not limited to this context and can also be done in a standalone application. VRML includes
concepts for the creation of simple and complex 3D shapes, for the integration of 3D sounds, for
animation, for interaction, for handling events, for scripting (with VrmlScript, ECMAScript or Ja-
vaScript), etc. It also includes the concept of prototypes, which are parametric sub-graphs that can
be instantiated in di�erent scenes. The evolution of 3D technologies have resulted in the creation of
X3D (extensible 3D)18 that is a meta-language based on XML retro-compatible with VRML. This
ISO standard includes additional features such as shaders, multi-texture rendering, geo-localization,
etc. An example of simple X3D �le is given in Figure 2.17.

1 <Scene>
2 <Background skyColor='1 1 1'/>
3 <Viewpoint description='scene view' orientation='-1 0. 0 0.68' position='0 2.9 4.83'/>
4 <Shape>
5 <Cylinder radius='2' top='false'/>
6 <Appearance>
7 <Material/>
8 </Appearance>
9 </Shape>
10 </Scene>

Figure 2.17 � An example of a scene described with a X3D �le. Here, the scene contains only one
cylinder with a radius of 2. The viewpoint refers to the camera pose in the scene (position and
orientation). Here, we give the preview of the scene in Blender.

With X3DOM [Behr et al., 2009], X3D �les can be integrated natively into web pages. Indeed,
this solution proposes an integration of X3D into the DOM tree of HTML5 in order to be supported
by all web navigators. Some authoring tools can be found for the creation of VRML and X3D such

15http://www.autodesk.fr/products/3ds-max/overview
16http://www.autodesk.fr/products/autocad/overview
17http://gun.teipir.gr/VRML-amgem/spec/index.html
18http://www.web3d.org/standards

2.4. DEVELOPMENT TOOLS 31

as Blender19 and Sketchup20.
As VRML and X3D are standards for the creation of VE, ARML (Augmented Reality Markup

Language) [Lechner, 2013] is an OGC R© standard �le format for the creation of augmented reality
applications. It allows developers to describe virtual objects in an Augmented Reality (AR) scene
with their locations related to the real world. As VRML it can also use ECMAScript as a scripting
language. Additionally, it is also possible to dynamically modify the AR scene based on user input.

These �le formats provide a lot of possibilities for creating VR and AR applications. Nevertheless
they do not provide the same �exibility as modern tools such as game engines for the creation of
such applications. Indeed, they do not include optimization capabilities, the possibilities to create
complex animations and behaviors are limited and the range of interaction and display devices
possibly used is also limited.

2.4.2 Game Engines

Today, in order to develop 3D applications, especially video games, using a game engine is certainly
the approach that is the most chosen by developer and designers. According to Gregory [Gregory,
2009], a game engine is a framework that separates the core software components from the art
assets, game worlds and rules of play. It can be extensible and then be used as the "foundation"
for other 3D applications without important modi�cations. In the category of game engines we can
�nd for example Unity3D21, the Unreal Engine22, Lumberyard 23, or the CryEngine24. The main
goal of game engines is re-usability. Indeed, with a game engine, all the code and all the assets
developed for a particular application can be used seamlessly in another context to develop an
another application. Usually a game engine provides the following built-in software components:

• the scene graph is the structure that logically and spatially arranges the di�erent virtual
objects of a VE. It is a collection of nodes in a graph or a tree structure. Each node de�nes
a transformation matrix (position, rotation, scale). A node can also be associated with other
components such as geometries, animations, behaviors, etc.

• The rendering system handles the display part of the game engine. It converts the 3D mo-
dels into 2D images. It can render photorealistic e�ect or non-photorealistic ones. For most
game engines, rendering systems are based on rasterization and on graphics APIs such as
OpenGLTM25, DirectX R© and more recently Metal 26 on iOS and VulkanTM27.

• The physics engine handles the physical behaviour of virtual objects. It includes a collision
detection process and it can emulate the real physical laws as well as imaginary ones.

• The audio system is used to render sounds into a 3D application. It can include mechanisms
that simulate 3D sounds, reverberations with the 3D environment and also binaural e�ects.

• The scripting system proposes one or multiple programming languages in order to create
application behaviors or interaction techniques.

• The animation system is used to animate the virtual world. It can include inverse kinematics
and key-frame algorithms. For instance the animation system can be used to animate a virtual
agent body as well as his face.

• The Graphical User Interface (GUI) system enables a developer or a designer to create 2D
or 3D interactive menus for application control purposes.

19https://www.blender.org/
20https://www.sketchup.com/fr
21https://unity3d.com/
22https://www.unrealengine.com/
23https://aws.amazon.com/lumberyard/
24http://cryengine.com/
25https://www.opengl.org/
26https://developer.apple.com/metal/
27https://www.khronos.org/vulkan/

32 CHAPITRE 2. DESIGN SPACE OF MIXED REALITY USER INTERFACES

Figure 2.18 � The Unity3D visual editor. It allows a developer or a designer to visually create
and test a 3D applications.

• The Arti�cial Intelligence (AI) system allows creating "intelligent" virtual characters. Most
of the time this system includes an algorithm that extracts the navigable zones in the 3D
world and also path �nding algorithms such as A* search algorithm that exploit these zones.

• The network system is useful for creating multi-users applications. It handles state synchroni-
zation of the di�erent instances of the same shared applications. For instance, it synchronizes
the position and rotation of the virtual 3D objects in order to maintain a consistent 3D world.

• The visual editor provides a user interface for creating and parameterizing a 3D application.
The goal is to minimize the programming part of the development. It lets developers visually
create a 3D applications by editing parameters, associating behaviors to objects through
drags and drops, or moving objects directly into the 3D world. An example of visual editor
is given in Figure 2.18.

With modern game engines the created applications can be deployed on a wide variety of compu-
ting platforms. It includes PC environments (Windows, MacOS, Linux), mobile platforms (iOS,
Android), Web player, native web with WebGL support and also video game consoles. For now,
game engines do not integrate an important VR and AR support. Indeed, they mainly integrate
desktop devices and they do not provide built-in 3D interactions yet. However, with the growing
interest for VR, some game engines such as Unreal and Unity3D now support natively di�erent
HMDs.

2.4.3 VR and AR tools

In most cases, 3D development tools such as game engines are not enough for the creation of
MR user interfaces. Therefore, some frameworks, toolkits and middlewares have been developed
in order to bring to these tools essential features needed by this kind of applications. The goal of
these tools is to abstract hardware and software complexities of MR user interfaces in the system
in order to help developers in the creation of such applications. Here, we give some of the common
tools used for the development of MR user interfaces. These tools and additional ones will be more
described in the next Chapters.

For the creation of VR applications, development tools often implement the same basis features.
First, they aim to give access to developers to the wide variety of possible input and output devices
such as trackers and HMDs. For instance, in that category we can cite VRPN[Taylor et al., 2001],
VR Juggler [Bierbaum et al., 2005], the MORGAN framework [Ohlenburg et al., 2004], and the

2.5. GLOBAL ANALYSIS 33

commercial solution MiddleVR 28. Second, Appart VRPN, these cited tools also handle stereoscopy
and clustering for managing multi-display systems. Last, some of these tools such as MiddleVR
also provide a library of ready-to use interaction techniques. Last, VR delopment tools such as
MiddleVR, the Morgan framework[Ohlenburg et al., 2004] and OpenMask [Margery et al., 2002]
give the possibility to create collaborative virtual environment (CVEs). Such solutions commonly
include components for handling network synchronization, collaborative interactions and awareness
mechanisms.

For the creation of AR applications, development tools mainly focus on providing calibration
and registration algorithms in order to precisely align the real world and the virtual objects.
For instance, ARToolkit29 is an Open-Source toolkit that provides marker-based computer vision
algorithms that can run on multiple platforms (Windows, Android, iOS, etc.). In the same way
commercial solutions such as VuforiaTM30 and Wikitude 31 also provide markerless solutions.

2.4.4 Analysis

These commonly used tools propose the basic mechanisms for the creation of MR applications.
However, they do not provide solutions to really automatically adapt these applications to di�erent
contexts of use.

However, today these tools, especially game engines and VR and ARmiddlewares, are commonly
used by the MR developers community. Developers have their habits with these tools and may have
a lot of software components developed for them.

Therefore, being able to interface our software solutions with these tools could have two main
advantages. First, it would let us not reimplementing a lot of basic features. Second, they could
be easily integrated into the developers work�ow in order to not disturb them. However, we must
not be dependent to a particular development tool to ensure the upgradability of our framework
independently of previous tools evolutions.

2.5 Global Analysis

In this chapter we described the design space for the development of MR user interfaces. The goal
was to highlight the di�erent components involved in the development process of such applications
and the complexity of such development.

As shown in Section 2.2, VR, AR and AV share a lot of concerns and possible use cases. Each
of these domains relies on immersion and interaction with 3D content. Each domain has also its
own speci�cities and problematics that must possibly be taken into account.

As demonstrated in Section 2.3, comparing to 2D user interfaces MR relies on a lot of possible
variety of input and output devices. We have shown that these di�erent devices can be grouped
into categories but we have seen that in each category there is a lot of possible devices with very
di�erent properties. Most of these devices need the use of particular SDKs, which can complexify
the development process. In the same Section we also show that MR user interfaces rely on a lot
of possible interaction techniques. Choosing the interaction techniques for an application can be a
di�cult task because it depends on a lot of aspects such as the available devices or the user skills
and habits. From these observations we can conclude that the context of use of a MR user interface
(devices, users, use case, etc.) can have a real impact on its usability.

In Section 2.4, we presented di�erent development tools that can handle some of the speci�cities
of MR user interfaces. These commonly used tools propose the basic mechanisms for the creation of
MR applications but they do not provide solutions to really automatically adapt these applications
to di�erent contexts of use. Indeed, with most of the presented tools, an application is developed
for a particular use-case, with determined interaction techniques for determined devices.

From the analysis performed in Sections 2.2.4 and 2.3.4, we can say that this kind of approach
has multiple issues for the development of MR user interfaces. For instance, re-usability: will the

28http://www.middlevr.com/
29http://artoolkit.org
30http://www.vuforia.com/
31http://www.wikitude.com/

34 CHAPITRE 2. DESIGN SPACE OF MIXED REALITY USER INTERFACES

developed components be compatible for another applications, with other interactions and with
other devices? The devices part is a very challenging point, as there is a daily emergence of new MR
devices. An application needs to possibly evolve in order to take into account these new devices.
To continue, will this application �t all the possible users skills and habits? Indeed, most of people
are now very comfortable with 2D user interfaces but 3D interaction is still something new for
most of them. Moreover, creating an application for a determined context of use also excludes it
to run on a wide variety of other contexts. Maybe, the end-user will not own the devices used in
the application and therefore will not be able to use it. Developing a version of an application for
each possible con�guration has an important combinatorial complexity and therefore is not a very
�exible way toward adapting it to various features. Considering adaptation during the creation of
such interface is the best way to distribute it widely. Nevertheless, as explained in Section 2.4.4, it
is important to be possibly interfaced with these tools. It could have two main advantages. First,
it would let us not reimplementing a lot of basic features. Second, they could be easily integrated
into the developers work�ow in order to not disturb them.

To conclude, we can highlight the need for software adaptation tools in the �eld of adaptable MR
user interfaces. Adaptations tools could help developers to create applications that can be usable
on a wide variety of contexts of use and that can satisfy the needs of a lot of users. The concept of
plasticity presented in the next Chapter aims to add adaptation features to MR applications. In
the next Chapter, we present complementary related work on adaptation for MR user interfaces
and more speci�cally on this concept of plasticity. From these related work, we present the di�erent
types of entities for which adaptations can be intended and how a MR user interface can be adapted
according to these entities. Our goal is to identify the requirements for the development of plastic
MR user interfaces.

Chapitre 3

Plasticity for Mixed Reality User

Interfaces

3.1 Problematics and Motivations

As presented in the previous Chapter, the design space for the development of MR user interfaces
is very large. Indeed, during such development, designers and developers have to handle a lot
of input and output devices, a lot of interaction techniques, a lot of possible kinds of targeted
users, and a lot of ways to present content. The third dimension o�ered by MR user interfaces
also complexi�es the developments. For instance, as explained by Lindt [Lindt, 2009], a common
problem of current MR user interfaces is that they only work with speci�c interaction devices and
techniques. Developing manually a version of an application for each possible con�guration is not
a very �exible way toward adapting it to various features.

Concretely, the research orientation that led to this thesis has been motivated by the need
to develop multiple applications that must be usable in a wide variety of possible context of
use. For instance, such an application could consist in laying-out an empty room with furniture.
This application is described in the following chapters and most of our examples are based on
this application. Its goal is to help people to plan the use of particular premises. Regarding its
speci�cations, the application must be available on a wide variety of platforms, from desktop ones
to immersive systems through mobile devices. It must be independent from any concrete interaction
devices, and new devices must be easily integrated. In a context of mobility, easy switching from
a platform to another one must be supported. For instance, a user may have to switch from an
immersive system to a mobile device in order to continue his work while mobile. Collaboration
must also be considered in order to let di�erent users work on the same room con�guration in
the same shared virtual environment. To continue, the application may be used by expert and
novice users. All do not have the same interaction skills and preferences. Thus, the application
needs to be adapted to each particular user. This adaptation process must be observable and
con�gurable at runtime by the end-user. Furthermore, the di�erent components implemented for
this application must be easily reusable for another project. They must be independent from this
particular application and from the 3D framework used in the project.

In order to develop an application that can answer to these di�erent requirements, today,
solutions propose to adapt MR user interfaces automatically to �t a given context of use. As
explained in the next Section, in that case we talk about con�gurable, auto-con�gurable, adaptable
or adaptive user interfaces, depending on how the adaptation is handled. A recent concept tries to
gather these di�erent categories into one �eld of research: the notion of plasticity for the creation
of plastic user interfaces that is also de�ned in the next Section.

Using such a tool for the development of a MR user interface with adaptation or plasticity
capabilities can induce a lot of advantages:

• Development times and costs are reduced. As explained by Calvary [Calvary, 2007],
with such solutions there is no more need to develop one version of an application for each

35

36 CHAPITRE 3. PLASTICITY FOR MIXED REALITY USER INTERFACES

particular context of use. Therefore, the development process is simpli�ed and shortened, and
so will cost less.

• Maintenance times and costs are reduced. Consistency between the di�erent versions of
the application is ensured and the di�erences are only managed by adaptations mechanisms.
Therefore, the maintenance of the application is simpli�ed.

• An application can be distributed widely. With integrated adaptations mechanisms an
application can target a lot of possible users. Indeed, a same application can be adapted to
the speci�c user's platform, to his skills, etc.

• An application can evolve without supplementary costs. With plasticity an appli-
cation can be easily upgraded in order to support new interaction techniques or the latest
devices.

• An application can bene�t from Usability continuity. More than being able to �t a
wide variety of contexts of use, an application that supports adaptations can switch from a
context to another one without degrading the interaction quality and the interaction possi-
bilities. In that case, we talk about usability continuity.

• Attractiveness of an application can be improved. Indeed, relevant adaptations can
have a substantial impact on the interest of the user in an interactive system. Adaptations
can bring a MR user interface from an impersonal and maybe not optimally usable shape to
a personalized one that will meet user's expectations.

In this thesis, we focus on Plasticity because we consider that this concept gathers the di�erent
�elds of research related to the notion of adaptation for human computer interfaces. This Chapter
aims to detail the Plasticity Concept in the context of MR user interfaces, to provide a survey of
existing solutions and to propose a problem space for the development of plastic MR user interfaces.
The results of this survey and the proposition of this problem space have been published in [Lacoche
et al., 2014].

3.2 The Plasticity Concept

The Plasticity concept comes from the �eld of 2D user interfaces and the �rst de�nition of the
concept has been given by Thevenin and Coutaz [Thevenin and Coutaz, 1999].

Plasticity is the capacity of an interactive system to withstand variations of both the
system physical characteristics and the environment while preserving its usability.

As explained by Calvary et al. [Calvary et al., 2002a], the term "plasticity" is directly inspired
from the property of materials that expand and contract under natural constraints without brea-
king, thus preserving continuous usage. Plasticity takes into account the variation of the context
of use [Calvary, 2007]. The conception of an interactive system for multiple contexts of use is not
enough. Indeed, a plastic interactive system needs to be able to detect the current context of use
and if necessary to change its appearance and behaviour in order to �t this current context.

The plasticity concept includes requirements such as parametrization, customizability, con�gu-
rability, user-adaptivity, reusability, mobility and portability. In the �eld of real-time interactive
systems (RIS), the plasticity de�nition is adapted to cover the interaction problematics. The de-
�nition of Thevenin and Coutaz means that code portability is a necessary condition but is not
su�cient for an interactive system to be considered as plastic. This notion of portability means
that the system can be run on all considered platforms but does not ensure a good usability. That
is why usability continuity has to be guaranteed too. Performances and the possibilities o�ered by
the system have to be at least constant.

In order to achieve such a goal an interactive system must be adapted. The adaptation design
space for plasticity can be modeled onto �ve di�erent axes:

3.2. THE PLASTICITY CONCEPT 37

• The adaptation controller determines the entity that decides on the adaptation. It can be
the user (end-user or developer) or the system. These adaptations can be chosen by users from
a prede�ned set of parameters: this is user adaptability. They can be chosen automatically by
the software: this is system adaptivity. Another level can also be found: the developer/deployer
of the application. In that case, the adaptations are chosen by a specialist who can con�gure
the system with programming skills, by editing a con�guration �le or by using an authoring
tool.

• The adaptation sources point to the entities for which adaptation is intended. Three
examples are given for these entities by Thevenin and Coutaz [Thevenin and Coutaz, 1999]:
users, environment and hardware characteristics.

• The adaptation targets concern modi�cations applied by the system and the software
components involved in adaptation. For example, it can refer to the application content or
the interaction techniques.

• The temporal dimension of adaptation. The adaptation mechanism is static if it occurs
between sessions and is dynamic if it can also occur at runtime.

• The adaptation means are de�ned by Calvary et al. [Calvary et al., 2004a]. The �rst
one is recasting which consists in locally adapting an application to �t the context of use
without modifying its component distribution. For instance, it can consist in locally adding,
deleting or replacing application components [Vanderdonckt et al., 2008]. The second one is
redistribution, which consists in changing the component distribution of an interactive system
on multiple dimensions such as display, platform and user. Redistribution includes migration
and replication mechanisms and is more described in Section 6.

Lindt et al. propose a complementary classi�cation of adaptive user interfaces based on the tem-
poral dimension (at runtime or between sessions) and the adaptation controller (here it considers
only the user or the system) [Lindt, 2009]. This classi�cation is shown in table 3.1.

PPPPPPPPPPPPPPPPP

adaptation
time (when)

adaptation
controller

(who) user system

Compile time
con�gurable
user interfaces

auto-
con�gurable
user interfaces

Runtime
adaptable user
interfaces

auto-adaptive
user interfaces

Table 3.1 � Classi�cation of user interfaces based on adaptation controller and adaptation time
from [Lindt, 2009]

Lindt also de�nes an adaptive user interface as any interface than can be classi�ed in one of the
four possible categories. Therefore we can say that an adaptive user interface can be considered
as plastic as long as the adaptation is done in order to guarantee a constant user experience or
to improve it while considering the current context. The de�nition should not just be limited to
usability continuity but should also be extended to usability improvement.

These de�nitions suit both 2D or 3D applications. Nevertheless, as demonstrated in Chapter 2,
the design space for the development of 3D applications is wider than for 2D ones. Indeed, there
is a great di�erence between these two categories of user interfaces. While 2D user interfaces are
mostly based on Windows, Icons, Menus, Pointers (WIMP) and interaction devices like mouses

38 CHAPITRE 3. PLASTICITY FOR MIXED REALITY USER INTERFACES

and touch-screens, 3D user interfaces can use a wider range of interactions techniques, input and
output devices and ways to present content. Therefore, the set of possible adaptation sources and
adaptation targets for 3D is larger than for 2D. We can deduce that the combinatorial complexity
is even bigger for 3D user interfaces. Indeed, developing a code for all possibilities creates a great
number of possibilities detailed in the following formula:

number of possible codes = Numberof adaptation controllers

×Numberof Adaptation sources
×Numberof adaptation targerts
×Numberof adaptation time
×Numberof adaptatio means

Plasticity aims to solve this combinatorial complexity in order to reduce the development times
and costs.

Other �elds of research are also concerned by these issues and can then be considered close to
plasticity and adaptive user interfaces even if they do not mention it as such. First we can mention
intelligent user interfaces that change their behavior to adapt to a person or a task [Ross, 2000]. As
an example an autonomous agent may provide users with advice if it notices his/her di�culties to
interact with the system. Next, we have adaptive hypermedia [Brusilovsky, 1996] that focuses on
the adaptation of hypertext and hypermedia (including 3D [Dachselt et al., 2006]) systems to the
user and to the environment [Brusilovsky, 2001] and could be therefore considered as plasticity. By
building a user model according to his/her goals, preferences and knowledge, the system can adapt
itself to his/her needs. Environment adaptation appeared in adaptive hypermedia with ubiquitous
computing. The environment can refer to the user location or to its hardware platform. Therefore,
we can compare this kind of adaptation with context aware applications [Schilit et al., 1994] [Chen
et al., 2000] that are systems that examine the computing environment (the context) and can react
to its changes. As reported by Chen et al. [Chen et al., 2000], there is no uni�ed de�nition for
context but according to Dey et al. [Dey, 2001] context means any information that can be used
to characterize the situation of something that is relevant to the interaction between a user and an
application (person, place, object). As well as for plastic user interfaces, adaptive hypermedia and
context aware applications are systems that examine adaptation sources to �nd the best adaptation
targets in order to maximize the user experience.

In the same way as adaptive Hypermedia, in the web context, responsive web design appeared
recently to help developers during websites creation in order to ensure their perfect usability and
readability in a large range of platforms [Marcotte, 2010]. With CSS3 media queries, a website is
able to adapt automatically its layout to the rendering device. Media types included in the CSS3
speci�cation allow developers to inspect the physical characteristics of the rendering device in order
to adapt them automatically. In the case of responsive web design, the only adaptation source is
the hardware, especially the size of the rendering screen. The aim is to create and manage one
version of a website to serve all the possible platforms such as desktop PCs, smartphones, tablets
or connected TVs.

Regarding the 5 axes of adaptations of the plasticity concept, the adaptation sources and targets
can take a lot of values when we talk of 3D user interfaces. In the following Sections, we de�ne the
di�erent adaptation sources and targets involved in the literature and we give some examples on
how they are used in adaptation mechanisms.

3.3 Adaptation Sources

As explained in the previous Section, adaptation sources refer to entities for which adaptation is
intended. These entities must be relevant to the interaction between the system and the users to be
taken into account. Thus, according to the context de�nition given in section 3.2, we can generalize
by talking about context. An adaptation source refers to something that represents context for
the application. First, these properties must be modeled in the system. Secondly, they must be
available to the adaptation mechanisms. From the design space described in Chapter 2 and from
the di�erent related work about plasticity we can extract three main adaptation sources for MR

3.3. ADAPTATION SOURCES 39

user interfaces. Adaptation to hardware is described in Section 3.3.1, adaptation to users and their
environment is detailed in Section 3.3.2 and adaptation to the data is reported in Section 3.3.3.

3.3.1 Devices

There is a wide variety of platforms on which an application can be run and this list grows sub-
stantially when we talk about 3D as explained in Sections 2.3.1 and 2.3.2. All platforms do not
o�er the same capabilities. For instance, without talking about code portability, it is obvious that
we cannot run the same version of an application in an immersive cube than on a tablet for virtual
reality, or on a tablet with camera than on see-through glasses for augmented reality. In both
cases, setups are too di�erent. Typically a platform is one or more computing units connected
with input and output devices. This composition may change during runtime, some devices may
be disconnected while others may be added. There is a wide range of possible devices used for
MR user interfaces and these devices have a lot of di�erent properties as detailed in Sections 2.3.1
and 2.3.2. The properties, the capabilities and also the limitations of these devices can be used for
adaptation purposes. Regarding the solutions that take into account the platform capabilities as
an adaptation source, three main types of information are taken into account:

• the output devices capabilities,

• the input devices capabilities,

• the computing power of the platform.

The properties of the output devices can impact the sensory feedbacks provided by an applica-
tion. For instance, the size property of a display screen can be used to dynamically adapt the layout
of an application. For instance, as shown in Figure 3.1a Thevenin et al. [Thevenin and Coutaz,
1999] adapt the layout of a 2D user interface according to the screen space variations. In the same
way, as shown in Figure 3.1b, for a 3D user interface, Dachselt et al. [Dachselt et al., 2006] propose
a solution to switch between multiple 3D layouts according to the screen size.

(a) (b)

Figure 3.1 � Two examples of how the layout of an application can be adapted according to the
output capabilities of a given platform (here, the screen size). (a) In [Thevenin and Coutaz, 1999],
the quantity of information displayed and how this information is represented change according to
the screen space variations. (b) In [Dachselt et al., 2006], depending on the screen size the layout
of the 3D scene is changed. Here, on the left a ring menu is chosen for a large screen and on the
right a �oating menu is chosen when the screen is smaller.

To continue, the input devices can impact the way we interact with an application. One critical
point is to seamlessly adapt the application interaction techniques to these devices as detailed in
Section 3.4.1. As detailed by Lindt in [Lindt, 2005], exchanging an input device by another can
result in an impractical interaction technique. For instance, for a 3D-cursor controlled with a 6-DOF
tracker, if this tracker is replaced by a speech input device at runtime, the interaction technique
is no longer adapted. This assessment is also discussed by Bowman et al. [Bowman et al., 2004].

40 CHAPITRE 3. PLASTICITY FOR MIXED REALITY USER INTERFACES

According to them, many di�erent interaction techniques can be mapped onto any given input
device. However, in some cases, these mappings can be unnatural, ine�cient and inappropriate.

Regarding the computing units of a system, it can be symbolized by di�erent properties such as
the bandwidth of the network or the computing resources available. For example a transfer of large
amount of data coupled with a slow connection can a�ect the user experience. The network and
the terminal capabilities can be taken into account to send an adaptable version of a 3D content
using level of detail (LOD), such as a 3D agent [Kim et al., 2004], or a 3D model of a city [Royan
et al., 2007]. More details about LOD representations will be given in section 3.4.2.

3.3.2 Users and their environment

As brie�y discussed in Chapter 2 and in Section 3.1, all users do not have the same interaction
habits, the same skills, the same needs. Therefore, some solutions propose to adapt the user in-
terfaces according to the user properties. In that case, we talk about personalization. Using such
mechanisms can improve an application usability and its attractiveness. The �rst step in order to
be able to adapt the application to a user is to extract or learn from him/her a pro�le that contains
his/her main characteristics that di�erentiate him/her from the other users. This is the goal of user
modeling. A lot of research work have been published about how to construct user models. Surveys
of user modeling are given by Kobsa [Kobsa, 1993] [Kobsa, 2001] and by Fischer [Fischer, 2001].
According to Kobsa [Kobsa, 1995] a user model is de�ned as a set of information and assumptions
on an individual user or on user groups that are used in an adaptation process. Di�erent kinds of
user properties can be included into this model:

• The properties that de�ne the user as a person. As explained by Calvary [Calvary,
2007], it can include general information such as his/her age his/her gender, his/her size. It
can also include information about his/her skills, his/her profession or his/her knowledge.

• The user preferences and interests. It can include information about the interaction
techniques and the devices that the user prefers and also his/her global or application-oriented
interests.

• The user environment. It can refer to the physical and social properties of his/her envi-
ronment [Calvary, 2007]. For instance, it can include the user's location, is he/she inside or
outside, his/her GPS position, is he/she at home, at work or in transportation. Moreover, it
can also include information about his/her surrounding. For example, it would be interesting
to know if is he/she alone or in a crowded environment, if is he in a noisy environment or
what is the temperature and the illumination conditions of his/her environment.

• The user monitoring information. The interaction between an interactive system and
a user can be monitored and then reported into his/her user model. For instance, it can be
used to gather the user's interaction habits and interests.

Even if a user model can include a lot of information, most of the time personalization systems
only consider a small number of properties in order to perform adaptation. For instance, in [Spara-
cino, 2003] Sparacino represents a museum visitor just by one criteria among three (greedy, busy,
selective). This value is then used to propose him/her the most suited visit program on a multi-
media guide. In the case of 2D user interfaces, Motti et al. [Motti et al., 2013] compare di�erent
studies on interaction techniques with touch-screen for elderly people and demonstrate that age
of users must be a source of adaptation. For example, elderly people will perform better if targets
on a touchscreen and spaces between them are bigger. Chittaro et al. [Chittaro et al., 2002] and
Dos Santos et al. [dos Santos and Osorio, 2004] present e-commerce applications where the perso-
nalization of the 3D worlds are made according to the detected user preferences. By tracking the
user action, his/her pro�le with his/her preferences are edited and the visibility of his/her favorite
products is increased. As said, it is also interesting to know more about the environment in which
the user is located. The use of this kind of properties is cited by Chen et al. in a call forwarding
process [Chen et al., 2000]. A user's phone is ringing in his/her o�ce that is empty, consequently

3.3. ADAPTATION SOURCES 41

the system detects his/her location (position property) and automatically forwards the call to the
nearby phone. In a second time, the system notices that the user is in a meeting, therefore the
software forwards the call directly to the user's voice mailbox. Concerning 3D interactive systems,
properties of the user environment can also be useful, e.g in an augmented reality application in
which the lighting property of the real scene can be used to get more consistency between the real
and the virtual world. For instance, this is done by Kanbara et al. in [Kanbara and Yokoya, 2002]
where the evaluation of the real scene lighting is made with a mirror ball technique. A mirror ball
on a tracked marker is placed in the real scene. Then, the distribution of light sources in the real
scene is estimated by processing the projected area of the mirror ball in the �nal image captured
by the real camera. This distribution is then used for the virtual object rendering.

3.3.3 Data

In an application, the user will interact with data that can have di�erent kinds of properties. For
a given application, the data may change, for instance according to a user's request. In adaptation
systems that consider data as an adaptation source, two kinds of properties are generally taken
into account:

• Data semantic. The semantic aims to give a meaning to the data.

• Data structure. The structure of the data represents the properties of an entire dataset
such as the quantity of data, its spatial or temporal distribution or a speci�c organization
(array, graph etc.).

There are two categories of semantic modeling according to Chevaillier et al. [Chevaillier et al.,
2012]. The �rst one is content-oriented semantic modeling, it provides a representation of an appli-
cation content and it is commonly based on ontologies. The second one is system-oriented semantic
modeling, it aims to give meta-access to the features of the application entities.

In most cases, application designers and developers use the content-oriented semantic even if
it has not been speci�ed to the system. For example, Walczak uses X-VRML for designing two
di�erent applications manipulating each one a particular kind of data: furniture for the �rst one and
art artifacts for the other [Cellary andWalczak, 2012]. The designer chooses the way he will organize
the two 3D scenes by using his/her semantic knowledge about data. That is why he/she chooses the
museum representation for the artifacts and the shop for the furnitures. Therefore, in applications
where semantic is speci�ed to the system, it can be used as a source of automatic adaptation. For
example, Hatala et al. [Hatala et al., 2004] use ontologies to match sounds from a database with
museum artifacts and user preferences. In the same way, Bilasco et al. use semantic for object
retrieval [Bilasco et al., 2007] and propose rules that specify adaptations to 3D objects with a
particular semantic. One example consists in deteriorating geometries of "building" type objects
as shown in Figure 3.2. To continue, MASCARET [Chevaillier et al., 2012] uses UML (Uni�ed
Modeling Language) in order to model the semantic of 3D objects, procedures and behaviors in
order to automatically generate interactive 3D worlds with learning scenarios. This knowledge
database can then be used as a source of adaptation by 3D autonomous agents.

Other solutions are also interested in adapting the content visualization of an application accor-
ding to the data structure. In this category, Esnault et al. [Esnault et al., 2010] present a framework
for the creation of visualization metaphors that can take into account the hierarchical structure
of a database in order to display its content. One provided example is the visualization of a large
catalog of videos on demand. To continue, in the context of web search results, AVE (Adaptive
Visualization Environments) presented by Wiza et al. [Wiza et al., 2003] present a new approach to
adapt the graphical presentation of search results according to the structure of the data returned
by the search engine. The goal of this approach is to maximize the readability of the interface.
Information about the data structure such as the overall number of documents returned, the quan-
tity of keywords, the �les types, can be used in order to choose a good visualization metaphor. The
global result also depends on the user's choices as he/she can in�uence the selection process and
modify di�erent parameters of the �nal interface such as the color that represents particular types
of documents.

42 CHAPITRE 3. PLASTICITY FOR MIXED REALITY USER INTERFACES

Figure 3.2 � In the solution proposed by Bilasco [Bilasco et al., 2007], a 3D scene can be adapted
according the semantic of each element. Here, in the image on the right, the geometries of type
"building" have been degraded, and the geometries of type "tree" have been removed from the
scene.

3.4 Adaptation Targets

As explained in Section 3.2, adaptation targets concern modi�cations applied by the system and
the software components involved in adaptation. Basically, an adaptation mechanism takes sources
into account to produce adaptation on some targets. The aim is to change the system in order to
respect the plasticity properties developed in section 3.2: usability continuity and attractiveness
improvement. We have classi�ed the targets found in the literature into two main categories:
interaction techniques modi�cation in Section 3.4.1 and content adaptation in Section 3.4.2.

3.4.1 Interactions

The �rst type of adaptation that can be applied on an application is the modi�cation of how the
user is interacting with this application. As detailed in Section 2.3.3, this part refers to the action
step in the "perception, cognition, action" loop of MR user interfaces. In the same Section, we de�ne
an interaction technique as a method to accomplish a task in an application which includes both
hardware and software components. For MR user interfaces, three kinds of interaction techniques
are proposed by Hand [Hand, 1997]: objects manipulation, navigation and application control. In
each category, there are a lot of possible techniques that may perform di�erently depending on the
context of use. Therefore, a lot of solutions propose to adapt these interaction techniques according
to the context of use. Two types of adaptation can be involved:

• Interaction technique parameter modi�cation. Here, the technique can be used in the
current context of use and some of its intrinsic parameters can be tuned in order to make the
technique optimal for the given context.

• Interaction technique replacement. In that case, we consider that an interaction does
not �t to the current context of use, it is not optimal or not usable. Therefore, this technique
is replaced by another one.

Regarding interaction technique replacement, in some circumstances it is possible that some
interaction techniques cannot be used because of this context. For instance, in the paper already
cited in section 3.3.1, Lindt [Lindt, 2005] shows that selecting an object with the ray technique is
possible with a hand tracker but not with a speech recognizer. If this last device is the only one
available, the application will have to use another selection technique such as speech commands.
The interaction techniques selection depending on available devices is one of the aims of tools such
as Grapple [Green and Lo, 2004], the CATHI framework [Lindt, 2009], and VIARGO [Valkov et al.,
2012]. These solutions are more detailed in Chapter 4.

To continue, as said, intrinsic parameters of interaction techniques can also be adapted. For
example, Dragicevic and Fekete [Dragicevic and Fekete, 2001] propose to �lter the movement of

3.4. ADAPTATION TARGETS 43

a cursor in order to stabilize it for people su�ering from Parkinson's disease. Similarly, Schon et
al. [Schön et al., 2004] change navigational keys sensitivity according to the user performance.
If the user is getting lost in the 3D world this sensitivity is damped in order to improve his/her
performance. While this method aims to facilitate navigation in 3D worlds, Celentano et al. propose
to improve interactions with 3D objects [Celentano et al., 2004]. Interaction techniques are modeled
with �nite state machines (FSM), then user activity is monitored in order to recognize interaction
patterns. The �nal aim is to anticipate what the user wants to do and therefore shorten his/her
interaction.

Some solutions also consider both types of adaptation such as the solution proposed by Octavia
et al. [Octavia et al., 2009] that considers both parameters modi�cation and techniques replacement
and these are made according to a user model. For instance, two interactions can be exchanged as
shown in Figure 3.3 according to the user needs.

Figure 3.3 � Octavia et al. [Octavia et al., 2009] consider interaction techniques parameters
modi�cation and techniques replacement according to a user model. For instance, two interactions
can be exchanged: a bubble cursor on the left and a 3D ray based interaction technique on the
right.

The temporal Augmented Transition Network (tATN) introduced by Latoschik [Latoschik,
2002] goes further FSM by associating transitions with events, guarding constraints and temporal
information. tATN are included into the framework presented in [Latoschik, 2005]. This framework
enables designers to easily create multimodal interactions with context adaptation and hardware
platform portability capabilities.

3.4.2 Content

An interactive system enables a user to interact with some content that can be adapted. This
content can be modi�ed according to multiple ways:

• Content selection. In that case the content displayed to the end-user is chosen. For example
we could display only the content that satis�es the user needs, interests, preferences or one
of his requests. The other available content is omitted.

• The content intrinsic parameters. Here, each piece of content is adapted individually.
For instance, for a 3D object multiple parameters can be adapted such as a color, a material
or its display quality.

• The content presentation layout. The content is generally displayed according to a pre-
de�ned or generated layout. This layout can be adapted to the context of use, for example,
modifying the layout in order to �t to screen size as shown in Section 3.3.1.

Regarding content selection, Bonis et al. [Bonis et al., 2009] propose to select the content that
matches the user's preferences in order to ful�ll virtual museum rooms with 3D objects as shown
in Figure 3.4a. It is also possible in 2D user interface as in FlexClock [Grolaux et al., 2001] that

44 CHAPITRE 3. PLASTICITY FOR MIXED REALITY USER INTERFACES

displays a graphic clock and a calendar only if the window is large enough. More globally this is
the goal of content-based recommendation systems. As de�ned by Lops et al. [Lops et al., 2011],
such systems try to recommend items similar to those a given user has liked in the past. In the
same paper, a literature review of such solutions is provided.

(a) (b)

Figure 3.4 � Two examples of how the content of an application can be adapted to the context of
use. (a) Bonis et al. [Bonis et al., 2009] propose a method to select the content that matches the
user's preferences in order to ful�ll virtual museum rooms with 3D objects. Here the museum is
ful�lled with science-�ction artifacts (b) Dachselt et al. [Dachselt et al., 2006] propose a solution
to adapt the intrinsic parameters of the content according to the context of use. Here, the chair's
color is chosen according to the favorite color of the user.

Changing intrinsic parameters of some objects is one of the possibilities o�ered by Dachselt et
al. [Dachselt et al., 2006]. Chair's color is set to the user's favorite color in one of the given examples
shown in Figure 3.4b. In the same way, in the e-commerce application [Chittaro et al., 2002] already
cited in section 3.3.2, the size of user's favorite products is changed in order to get more visible.
Visibility of important information is also the issue of Julier et al. [Julier et al., 2000] who aim at
�nding the correct opacity for each information display according to its consistency in the current
context. Content quality can also be adapted such as an image resolution or the number of vertices
and polygons of a 3D mesh. In such a case, we talk about level of detail (LOD). The aim of LOD is
to improve or decrease the complexity of a content according to a metric. Creating these di�erent
levels of detail for a 3D content can be possible thanks to decimation algorithms such as the method
proposed by Schroeder et al. [Schroeder et al., 1992]. This algorithm aims to reduce the number
of triangles of a mesh while preserving its topology. Progressive meshes by Hoppe [Hoppe, 1996]
are another way for dealing with LOD. It o�ers a continuous and lossless representation of a 3D
mesh that handles di�erent issues such as the smooth choice of LOD, progressive transmission and
mesh compression. The metric taken into account in the LOD choice can be one of the adaptation
sources detailed in section 3.3. This is the case for the two examples cited in section 3.3.1 where
the metric is the hardware capabilities for adapting a 3D agent [Kim et al., 2004] and a 3D city
model [Royan et al., 2007]. Adapting the intrinsic parameters of some objects from the VE can also
be used in order to improve the physiological acceptability of a MR user interface. For instance,
in order to limit the visual discomfort named "frame cancellation" that occurs with stereoscopic
screens, Ardouin et al. [Ardouin et al., 2011] propose to clip the objects outside a free-con�ict
area. This phenomenon is more described in Section 5.3. In the same way, in order to deal with
cybersickness, Fernandes and Feiner [Fernandes and Feiner, 2016] propose to dynamically adapt
the camera �eld of view according to its speed and to its angular velocity.

Some examples for adapting the layout of the displayed content can also be found. For instance
ENTER [Guinan et al., 2000] can update a scene layout with functions like "Swap" "Move" or
"Rotate" called on 3D objects by an adaptation engine that takes into account the user-pro�le.
Layout adaptation is further addressed in [Lee and Green, 2005] by proposing an automatic layout
framework. By de�ning layout policies, a designer can manage a scene by taking into account
di�erent constraints such as the user behaviour. In the example cited in Section 3.3.1 and shown
in Figure 3.1b, Dachselt et al. [Dachselt et al., 2006] use a rule based system in order to switch

3.5. OBJECTIVES AND CHALLENGES 45

between di�erent content layouts according to the context of use. To continue, Stuerzlinger et al.
[Stuerzlinger and Smith, 2002] propose a method for automatically grouping scene objects according
to the user's intent and the way humans perceive groups.

3.5 Objectives and challenges

According to the previous Sections, we propose a problem space for the development of plastic
MR user interfaces. As explained in Section 3.2, for a plastic user interface, adaptations can occur
at di�erent time such as runtime or between sessions. The adaptation controller can be the user,
the developer/deployer or the system. We have also identi�ed two adaptation means for the mo-
di�cation of an interactive system: recasting and redistribution. In Section 3.3, we have identi�ed
three di�erent adaptation sources for MR user interfaces: hardware, users and their environment
and data. In Section 3.4, we have also identi�ed two adaptation targets: content and interaction
techniques. This space is given in Figure 3.5.

Sources

Targets

Time

Content

Interaction techniques

Data

User and their environment

Hardware

R
u

n
ti

m
e

C
o

m
p

ile
-t

im
e

U
se

r

Sy
st

em

Controller
Recasting

And
Redistribution

D
ev

el
o

p
er

/D
ep

lo
ye

r

Figure 3.5 � The problem space for the development of plastic MR user interfaces.

In the context of this thesis, our goal is to propose software models and tools dedicated to the
creation of plastic MR user interfaces. The creation of such solutions creates new challenges. The
�rst di�cult point is the representation and the detection of the context of use. The adaptation
mechanisms need to be able to get enough information about the users, the hardware and the data
in order to perform application modi�cations. To continue, designing an intelligent adaptation
engine that will �nd and perform the most suited modi�cation of a system is another challenging
step. Managing hardware is a really complex stage regarding ubiquitous computing and the growing
number of new devices in the context of MR user interfaces as explained in Section 2.3. Moreover,
another challenge relates to the right time and the way to react to these new con�gurations of
the system. If the application allows adaptations at runtime, it is substantial to choose the good
time for adaptations in order to avoid changing the application too often. The risk of too many
modi�cations is to get the opposite by disturbing the user experience.

From the space problem of plasticity and these di�erent issues we can identify the main chal-
lenges that we have to face for the creation of models and tools for the creations of plastic MR

46 CHAPITRE 3. PLASTICITY FOR MIXED REALITY USER INTERFACES

user interfaces. These challenges are represented as a list of requirements that our solutions have
to cover:

R1 Deal with the main adaptation sources or be extendable to do so. Therefore, we should
provide solutions for the modelization and detection of hardware, users and data. At least,
we must provide the possibility to extend our solutions to integrate a missing context model.
Each model must be able to represent each piece of context with a small granularity.

R2 Deal with the main adaptation targets or be extendable to do so. The proposed adaptation
process must be able to impact the application content and the interaction techniques.

R3 Support the two means of adaptation of plasticity. The adaptation process must be able to
modify the application: this is recasting. It must also be able to change its distribution across
di�erent dimensions such as platform, display and user: this is redistribution.

R4 Ensure code portability. The created solution must be available on many operating systems
(mobile and desktop). Indeed, code portability is a necessary condition of the plasticity
property. Moreover, the toolkit needs to be possibly interfaced with the main 3D frameworks
and must not depend on a particular one. Indeed, as detailed in Section 2.4 each developer
may have his/her own code database for input, rendering and physics management in a
particular framework and may not want to redevelop them all to be able to use particular
functionalities.

R5 Perform dynamic and static adaptations. The adaptation mechanism is static if it occurs
between sessions and is dynamic if it can also occur at runtime. To ensure usability continuity
the system needs to be able to detect a context modi�cation such as a device plugged or a
new user con�guration at runtime and to update the interface accordingly.

R6 Handle user, developer/deployer and system adaptations. The system automatically chooses
the best 3D user interfaces according to the adaptation process, this is adaptivity. However,
the user must be aware of which adaptation occurs and to be able to modify the aspect of the
interface with a set of prede�ned parameters, this is adaptability. Our adaptation process must
be able to decide itself which adaptations are needed in a particular context of use but it also
has to give to the end-user a control over the decided modi�cations. The developer/deployer
of the application must also be able to control and to con�gure the adaption process.

R7 Be �exible, easy to use and to extend for developers and designers. That is why an authoring
tool is required to create and con�gurate MR user interfaces. Indeed, providing an authoring
tool is the only way to bring a plasticity toolkit to the consumer market. According to Myers
et al. [Myers et al., 2000], the toolkit and its authoring tool must have a low threshold (easy
to use and to learn) while having a high ceiling (how much can be done using them).

3.6 Current Software Solutions

In this Section, we recall the main software solutions that deal with Plasticity and Adaptation for
MR user interfaces. Our goal is to highlight the advantages and the limitations of current tools in
order to propose an original solution. Here, we do not precisely describe each solution but they will
be more described in the following Chapters.

For dealing with plastic 2D user interfaces the most common approach consists in using Model-
Driven Engineering (MDE). For instance, the CAMELEON conceptual framework [Calvary et al.,
2002b] or the UsiXML based markup language [Limbourg et al., 2004] are two MDE approaches for
the development of plastic 2D user interfaces. Multiple uses of such approaches have demonstrated
that MDE can cover the di�erent requirements of the development of plastic 2D user interfaces.
Nevertheless, in the �eld of 3D, MDE has not been deeply explored and has not been successfully

3.6. CURRENT SOFTWARE SOLUTIONS 47

applied for the development of plastic MR user interfaces that meet all requirements described in
Section 3.5. For instance, handling dynamically the wide variety of MR devices and handling the
generation of adapted 3D worlds are not really covered by these solutions. Moreover, for now MDE
lacks authoring tools for developing applications. Thus, today, solutions based on this concept are
not widely used by developers.

The �rst category of software tools that consider adaptation for MR user interfaces is the cate-
gory of middlewares already introduced in Section 2.4.3. Solutions such as Collaviz [Dupont et al.,
2010], MiddleVR and VR Juggler [Bierbaum et al., 2005] propose to create con�gurable MR user
interfaces. By editing a con�guration �le manually or with a graphical tool, the created interfaces
can target a wide variety of hardware platforms and can support features such as clustering and
collaboration. Such solutions mainly focus on adapting the interaction techniques according to the
hardware platform and do not consider adaptation according to the users and the data. They also
only support the re-con�guration between sessions, context-changes cannot be handled at runtime.
In the same way, Grappl [Green and Lo, 2004] also include such features and has the advantage
to also cover content presentation as an adaptation target by integrating layout policies [Lee and
Green, 2005]. Collaviz has also the particularity to integrate a MDE approach [Duval et al., 2014].
With this approach, the deployment of 3D CVEs on various software and hardware platforms can
be automated through code generation.

Such solutions go further by including automatic adaptation mechanisms such as Viargo [Val-
kov et al., 2012] and the CATHI framework [Lindt, 2009]. However, they do not take user as an
adaptation source and they cover redistribution only partially (only clustering is handled).

In the context of Web3D, AMACONT [Dachselt et al., 2006] proposes a solution for the creation
of adaptive 3D user interfaces. Hardware is considered as an adaptation source but the possible
handled platforms are limited to desktop environments. The user properties can be taken into
account during the adaptations process.

Adaptation Sources Adaptation Targets Adaptation Time Adaptation Controller Adaptation Means

Hardware Users Data Content Interaction
Techniques

Runtime Compile
Time

User Developer/
Deployer

System Recasting Redistribution

VR Juggler Yes No No No Yes No Yes No Yes No Yes Partially
(Clustering)

Collaviz Yes No No No Yes No Yes No Yes No Yes Partially
(Clustering,

Collaboration)

MiddleVR Yes No No No Yes No Yes No Yes No Yes Partially
(Clustering,

Collaboration)

Grappl Yes No No Yes Yes No Yes No Yes Yes Yes No

Viargo Yes No No No Yes Yes Yes No Yes No Yes Partially
(Clustering)

CATHI
Framework

Yes No No No Yes Yes Yes No Yes Yes Yes Partially
(Clustering)

AMACONT Partially
(Few

devices)

Yes No Yes No Yes Yes No Yes Yes Yes No

Table 3.2 � A classi�cation of software solutions for the creation of plastic MR user interfaces
according to the problem space of plasticity.

In Table 3.2, we provide a classi�cation of these solutions according to the issues they can solve
on the problem space of plastic MR user interfaces presented in Figure 3.5. As we can see, for now
none solution is really designed to deal with all the plasticity issues. We can also highlight that
for now, in the �eld of MR user interfaces, taking data into account during the adaptation process
and considering redistribution as an adaptation mean are not very explored. Our goal with this
thesis is to �ll that gap by providing models ans development tools that handle the di�erent issues
of plasticity.

48 CHAPITRE 3. PLASTICITY FOR MIXED REALITY USER INTERFACES

3.7 Conclusion

In Chapter 2, we have identi�ed the design space for the development of MR user interfaces. From
this survey, we can conclude that without appropriate tools the development of such applications
can be di�cult for a developer who wants to satisfy each user needs or each platform capabilities.

In this Chapter we have presented the plasticity concept: it is the capacity of an interactive
system to withstand variations of both the system physical characteristics and the environment
while preserving its usability. Considering such properties for the creation of a MR user interfaces
is one way to handle the issues presented in Chapter 2. Indeed, considering plasticity for the
development of a MR user interface can induce a lot of advantages for the developer such as the
reduction of the development and maintenance times and costs and the possibility to distribute the
application widely. It also bene�ts to the end-user as he will get an application that corresponds
to his/her needs and that provide him/her usability continuity on his/her di�erent interaction
platforms.

In Section 3.6 we have shown that some software solutions exist for the creation of MR user
interfaces but they do not solve all the issues induced by the plasticity concept. Therefore, our goal
with this thesis is to propose new models integrated into a new software solution for the creation
of MR user interfaces. In Section 3.5 we have identi�ed the requirements that these models and
this software solution have to cover.

The next Chapters are organized in order to present successively how our solution can target
the di�erent adaptation sources (Devices in Chapter 4, Users in Chapter 7 and Data in Chapter
8). Only Chapter 6 makes a focus on one adaptation mean: Redistribution.

Chapitre 4

Device Adaptation

4.1 Introduction

As detailed in Chapter 3, taking into account the hardware con�guration as an adaptation source is
a very important requirement for any MR application that wants to be distributed widely. Indeed,
until recently most applications were developed for a speci�c target platform. Today uses have
evolved, people have now access to a wide variety of di�erent hardware platforms: desktop, mobile
and immersive platforms. In the speci�c case of immersive ones, as explained in Sections 2.3.1 and
2.3.2, the hardware environment can really di�er from a platform to another one. The set of possible
output and input devices is very large. That is why developing manually a version for each possible
con�guration is no longer a viable option. One common way to solve this kind of issue is to support
static recon�guration of the system. However, such solution would require the intervention of the
end-user for modifying the con�guration of the system through a con�guration �le or through
a graphical tool. For non expert users, performing this con�guration can be di�cult. A better
solution consists in automatically detecting the end-user con�guration in order to automatically
adapt the application. Such solutions could also detect the variations of the hardware con�guration
at runtime. For instance, if the user plugs or unplugs a device at runtime.

In order to help the developers in the creation of plasticity MR user interfaces, we have initiated
the creation of models, concepts and algorithms that aim to deal with the di�erent plasticity issues.
The focus of this Chapter according to our design space problem is detailed in Figure 4.1. This
chapter only presents how recasting is handled, redistribution is discussed in the next Chapter.
The device model and the application component model that we present in this Chapter have been
published in [Lacoche et al., 2015a].

This Chapter is structured as follows. First, in Section 4.2, we detail the related work that deal
with adaptation to the devices. Second, in Section 4.3 we give an overview of our models and we
present how they can take the device con�guration as an adaptation source. These models and
concepts are integrated in a software solution: 3DPlasticToolkit. This Chapter presents the basis
of this software solution with a focus on how it takes into account devices as an adaption source.
To continue, in Section 4.4 we present our model for the description of input and output devices.
In Section 4.5, we present our application component model and we describe how it can be used
to perform interaction and content adaptations. In Section 4.6, we present the task system used in
3DPlasticToolkit and how we describe an application with a set of high level tasks. Next, in Section
4.7, we detail how dynamic recasting is handled with 3DPlasticToolkit with an internal adaptation
process based on scoring mechanisms, and with a user interface that lets the end-user control
the adaptation behaviors. We conclude in Section 4.8 and in the next Chapter we present three
use cases where our solution is used to perform interaction adaptation and content visualization
adaptation.

49

50 CHAPITRE 4. DEVICE ADAPTATION

Sources

Targets

Time

Content

Interaction techniques

Data

User and their environment

Hardware

R
u

n
ti

m
e

C
o

m
p

ile
-t

im
e

U
se

r

Sy
st

e
m

Controller
Recasting

And
Redistribution

D
ev

e
lo

p
e

r/
D

e
p

lo
ye

r

Figure 4.1 � Regarding our design space problem of plasticity for MR user interfaces, this chapter
is interested in adapting the interaction techniques and the content visualization according to the
devices. The basis of our models are also described in this Chapter so we also describe how we can
handle the di�erent adaptation times and adaptation controllers.

4.2 Related Work

For taking into account devices as an adaptation source, related work can be classi�ed into two
main categories. First, solutions that aim at classifying and modeling hardware devices. Second,
solutions that use such classi�cations in order to adapt an application. Some solutions can be
included in the two categories as they both propose a classi�cation and an adaptation mechanism.

4.2.1 Device modeling

In order to take the device context as an adaptation source, a lot of solutions aim to categorize
and model interaction and display devices. These categorizations can have multiple goals. First, it
can help a designer or a developer to �nd the appropriate device for a particular situation during
the conception of an application by giving him some guidelines. In that case, the application
is developed for a particular device and is not compatible with equivalent ones. Second, such
modelization can also be directly integrated into a software component in order to perform data
comparison between the devices capabilities and the needs of an application. Such solutions can
be used in order to perform static and dynamic adaptations to devices.

Several classi�cations exist about how to perform static or automatic input device selection.
First, Buxton [Buxton, 1983] introduced a taxonomy that separates input devices into di�erent axes
such as the number of degrees of freedom (DOF), the property sensed (position, motion, pressure),
the motor capacity used and the presence or not of a physical intermediary for the interaction. In
the taxonomy shown in Figure 4.2, some common devices are classi�ed such as mouses, trackers
and joysticks. In an extension of this taxonomy, Mackinlay et al. [Mackinlay et al., 1990] established
a di�erence between absolute and relative values and separated translation and rotational axes.
This model also indicates which axes are acquired instead of just giving the number of DOF. Such
taxonomies only expose information about the input data provided and nothing on how the data
is acquired, its semantic or its limitations like values boundaries. Therefore, Lipscomp and Pique
[Lipscomb and Pique, 1993] introduced a graph representation of interaction devices that gives
the physical characteristics of each device and so a more precise description on how the data is
acquired and their limitations. For example, it di�erentiates bound and unbound inputs as well as
isotonic, isometric and elastic. It can specify if the device is on a table, held up or body mounted.

4.2. RELATED WORK 51

Figure 4.2 � The taxonomy of input devices proposed by Buxton [Buxton, 1983].

Recent devices are more complex than the ones available at the time of these taxonomies. Indeed,
they may provide multiple inputs that are more complex than just a tracking value. For instance,
the �rst Microsoft R© KinectTM is able to acquire 20 positions and rotations (skeleton joints), three
image streams : depth, color and IR and can also perform gesture and voice recognition. Some
devices can also provide outputs capabilities such as haptic, tactile or visual outputs. DEVAL
[Ohlenburg et al., 2007] proposes a more actual model. As explained in Section 4.2.2, DEVAL is
a device abstraction layer for VR and AR that hierarchically structures inputs and outputs units
according to their properties. For example, it �rst di�erentiates continuous and discrete inputs.
Then, these inputs are structured according to the modality they acquire and the number of
degrees of freedom they provide. The DEVAL classi�cation of inputs is given in Figure 4.3. A

Figure 4.3 � The hierarchy for input devices proposed by DEVAL [Ohlenburg et al., 2007]. This
hierarchy includes a wide variety of input device units including trackers, buttons and gesture
recognizers.

device is then a composition of several input and output units. The model includes a wide variety

52 CHAPITRE 4. DEVICE ADAPTATION

of device units including trackers, buttons, haptic feedback, speech and gesture recognition. In
contrast to the other models, less common sensors are also included such as light and temperature
sensors. Anyway, this model and the previous ones only de�ne devices with input and output
data while it would be interesting to also expose their physical properties. Indeed, describing the
data is not enough, the physical properties of the devices in the real physical workspace and their
internal properties, such as refresh rate or accuracy, must be known if possible. In case of automatic
adaptation, these properties are needed to ensure usability continuity. For example, the position of
a sensor impacts the reference coordinate system of any captured position. The model introduced
by Lipscomp and Pique [Lipscomb and Pique, 1993] tries to ful�ll this issue but, as said before, it
does not provide enough properties to describe well today's devices. The device model proposed
by Lindt [Lindt, 2009] extends DEVAL to add this kind of meta-data. For instance, in Figure 4.4,
three 6-DOF trackers are di�erentiated by their accuracy, usage and update rate. To do so, three
kinds of meta-data can be added to a device unit instance. First, static devices properties that do
not change over the time like the weight of a HMD. Next, con�gurable devices properties depend on
the device setup like the smoothing factor of a tracking device. Finally, runtime properties include
performances and device states. The classi�cation into three categories can be discussed because
the associated category of a property may change over di�erent devices. For instance, the resolution
of an image acquired by a camera can be con�gurable for some devices such as the Microsoft R©

KinectTM while for most of them it is a static value. Moreover, the set of properties introduced
in the model does not include enough properties to precisely describe the capabilities of each
device. For instance, values boundaries and devices position in the real world are not included.
Another model that includes such meta-data is included in the MPEG-V standard [Han et al.,
2012]. It includes a description of input and output devices even the less common ones such as
wind, light and scent output devices. Nevertheless, it does not include description for display and
sound output devices. Moreover, the range of meta-data included is not enough to really expose all
devices capacities and limitations. The representation of the devices in the real world is also not
included.

Figure 4.4 � In the extension of DEVAL [Ohlenburg et al., 2007] proposed by Lindt [Lindt, 2009],
meta-data about internal and physical properties of inputs devices can be added. Here, three 6-DOF
trackers are di�erentiated by their accuracy, usage and update rate.

From these di�erent device models, we can conclude that none of them really provide enough
information in order to adapt an application to all device properties. It would be interested to
propose a new model that solve the issues of current models. Such a model must consider input
and output devices, must provide devices capabilities and devices limitations and must also give
the physical representation of devices .

4.2.2 Device adaptation solutions

With such device models, software solutions can take into account the device context of use in
order to adapt the interaction techniques of an application or its content presentation. Here, we
focus on recasting, solutions that consider also redistribution are described in the next Chapter. We
separate the software solutions into two categories: solutions for 2D user interfaces and solutions
for MR user interfaces.

4.2. RELATED WORK 53

2D Solutions

For dealing with plastic 2D user interfaces the most common approach consists in using Model-
Driven Engineering (MDE)). The CAMELEON conceptual framework [Calvary et al., 2002b]
proposes to structure the development process of a user interface into four steps where each step
is represented by models:

• Task and concepts (T&C): a high level description of the user interface with the tasks that
the user will perform and the concepts that he/she will manipulate.
• Abstract UI (AUI): it de�nes the interaction spaces and the navigation between these spaces.
There is a correspondence between a workspace and a task. Furthermore, a workspace that
corresponds to an abstract task can include the workspaces that correspond to the subtasks.
• Concrete UI (CUI): it concretises the AUI with concrete interaction objects including widgets
and navigation interfaces.
• Final UI FUI: the generated user interface running on a computing platform by code inter-
pretation or execution.

The recon�guration of the user interface consists in applying transformations at each of these steps
according to the context of use in order to ensure usability continuity. UsiXML [Limbourg et al.,
2004] is an XML based markup language for the development of plastic user interfaces that is
conform to the CAMELEON framework and can be used by designers and developers. It proposes
a language for the creation of the di�erent models at each development step of CAMELEON. It
also introduces a language for the creation of rules for transforming the models according to the
context of use. This context of use, including plaform, user and environment descriptions, can also
be modeled with UsiXML.

In the �eld of pervasive computing, the Dynamo Framework introduced by Avouac et al.
[Avouac et al., 2012] uses proxy models and interaction models to maintain a mediation chain
that de�nes multimodal interaction techniques. The system is able to check the context (services,
devices) at runtime and recon�gure itself dynamically. These models enable developers to focus
on interaction techniques development independently from the concrete devices used. However,
in order to avoid wrong associations between interaction techniques and devices, designers or
developers have to create pre-de�ned mediation chains (interaction models). It needs a priori
knowledge on how the devices will be used and is a lesser automatic approach than describing at
a �ne grain each device to perform the associations. Moreover, the framework does not include yet
the possibility for the user to recon�gure the system and to express his preferences.

MR solutions

The �rst category of software solutions that aim to deal with devices as an adaptation source is
the category of abstraction layers. Such solutions group devices into categories according to the
data they can acquire or provide. This categorization directly exploits the taxonomies of devices
introduced in Section 4.2.1. According to Lindt [Lindt, 2009], device abstraction layers have three
main objectives:

• They encapsulate and hide the complexity of concrete interaction devices. They avoid the
developer from using a complex SDK or library in order to use a particular device.

• They avoid an application from being dependent to particular devices.

• They support the exchange of a device by another one that can acquire or provide the same
data with a static recon�guration.

In this category, OpenTracker [Reitmayr and Schmalstieg, 2001] and ICON [Dragicevic and
Fekete, 2001] are two abstraction layers based on data�ow architectures that can combine and
�lter input devices in order to connect them to di�erent actions of an application. ICON has the
advantage over OpenTracker to be dynamic, as the recon�guration can be done at runtime. ICON
also provides a graphical user interface in order to con�gure the system. Unfortunately, it does not
handle natively any MR devices. Conversely, OpenTracker has been designed to handle common

54 CHAPITRE 4. DEVICE ADAPTATION

MR devices such as trackers. One abstraction layer commonly used in MR is VRPN [Taylor
et al., 2001]. VRPN gives access to a wide variety of peripherals such as trackers, buttons and
force feedback devices. VRPN is based on a client-server architecture with a network-transparent
interface: a server provides access to registered devices while the application is the client that uses
these devices. VRPN is still very used because it already includes a lot of devices and because
it is easy to extend and therefore new devices can be quickly integrated. Abstraction layers only
give the possibility to statically con�gure the routing between concrete devices and application
components. Most of the time, this con�guration has to be done by a developer/deployer. Therefore,
such solutions do not support the automatic replacement of a device by an equivalent one with the
same capabilities. It needs the intervention of someone to recon�gure the system. If the new device
does not provide the same capabilities it can result to the impossibility to ensure the same usability
with a simple recon�guration. Moreover, they do not include any built-in interaction techniques
and component to modify the visual content of an application. Therefore, our solution needs to
include a device abstraction layer to have an easy access to di�erent devices but it is not enough
to handle the di�erent plasticity issues.

We can �nd in literature this kind of solution: MR toolkits that are built upon abstraction
layers. First, Viargo [Valkov et al., 2012] is a generic interaction library. In the library, input
devices are abstracted by device units that provide events to interaction metaphor components.
These components process the events in order to update the state of the application. If a device is
exchanged at runtime, the interaction metaphor is not disturbed as long as the new device events
are compatible with it. It includes di�erent built-in interaction techniques for navigating and ma-
nipulating. Nevertheless, Viargo only considers hardware as adaptation source and the interaction
techniques as adaptation target. Moreover Viargo uses its internal scene graph (the "state system")
that is synchronized with a 3D framework. This kind of method does not o�er to developers the
new capabilities and performances for graphics and physics of modern 3D frameworks. Next, as
Viargo, the Grappl library [Green and Lo, 2004] focuses on adapting the interaction techniques
to the hardware context. An extension has been proposed in order to also impact the content
presentation with layout policies that can take into account the hardware context [Lee and Green,
2006]. Grappl proposes an association between a high level task and a set of compatible interac-
tion techniques. At runtime, depending on the available devices, Grappl instantiates a compatible
interaction technique for each needed task. The selected interaction technique is the one that best
matches the task. To re�ne the choice, a set of parameters is associated to each task by the de-
signer or by the developer such as the interaction style needed. However, Grappl does not solve
the con�ict that may happen when di�erent interaction techniques provide the same interaction
possibilities. In case of such a con�ict it could be interesting to give the choice to the developer or
to the user. To continue, even if the user interface is constructed at runtime, Grappl does not give
any solution to deal with context modi�cations at runtime such as a device unplugged. Moreover,
as Viargo, Grappl also uses its own internal graph system. Last, the most complete solution seems
to be the CATHI framework [Lindt, 2009]. As Grappl, it also aims to adapt the application
according to the hardware con�guration. CATHI also creates the best user interface according to
a set of high level needed tasks and to the current context of use. CATHI represents a 3D user
interface as a graph of interconnected components. The designer selects the high level tasks to add
to this graph. Then, according to the encountered context at runtime, the most adapted low level
tasks are connected to the graph. A low level task represents an interaction technique. It is based
on an interaction modality and determines a set of device units that is needed for this interaction
modality to be usable. This low level task is instanciable if all these units are available at runtime. A
scoring system is used to avoid con�icts between equivalent possible low level tasks. The scores are
customized by developers or designers with rules that can take the context into account. At runtime
the graph with the higher level score is selected as the current 3D user interface proposed to the
user. Contrary to Grappl, CATHI can handle context modi�cations at runtime by recreating the
interface graph when a modi�cation happens. For now, the toolkit only takes into account device
con�guration and weather conditions as context information. For now, the only possibility given
to the user to change the adaptation behaviors is to modify the set of rules, which can be di�cult
for non-expert users. Editing these rules is the role of the developer/deployer of the application.
Moreover content presentation and redistribution are not covered by the framework yet.

4.3. OVERVIEW 55

The last kind of solutions consists in using MDE. Indeed, Gonzalez-Calleros et al. [Gonzalez-
Calleros et al., 2009] propose to extend model-based user interface development from 2D to 3D
in order to handle plasticity. They introduce a solution based on UsiXML [Limbourg et al.,
2004] and CAMELEON [Calvary et al., 2002b]. With model transformations rules described
with UsiXML, user and hardware adaptations can be integrated in the user interface development
process. Nevertheless, the solution focuses on the creation of adaptable 3D widgets and the �nal
user interface is generated as a VRML or X3D �le. Therefore, the interaction part is limited,
no solution is included to create interaction techniques independently from any concrete device.
In the same way, Duval et al. [Duval et al., 2014] propose to use MDE for the development of
3D Collaborative Virtual Environments (3DCVE). With this solution the con�guration of the
3D content and the deployment on various software and hardware platforms can be automated
through code generation. However, the con�guration is static, it does not includes mechanisms to
take dynamically the context into account.

To �nish, one important missing feature in these di�erent solutions is the lack for the end-
users to check and control the adaptation behaviors. Most solutions presented here can only give
the adaptation control to the system or to the developer/deployer. Indeed, even if the created
application is considered as the best one by the system, the user may want to try another interaction
technique or another available device. We have to provide the end-user with the possibility to
modify the application adaptations at runtime. In the same way, most solutions do not yet take
user adaptation into account. As each user has his own pro�le and preferences, such a solution
must take these information into account during the adaptation process. This issue is discussed in
Chapter 7.

4.3 Overview

Our contributions are models, concepts and algorithms that are integrated in a software solution
named 3DPlasticToolkit, aim at satisfying the requirements exposed in Section 3.5. An illustrated
overview of the components of the toolkit is provided in Figure 4.5.

Adaptation targets

Interaction

Tasks

Devices

Users
(Chapter 7)

Context models

Scoring PAC/ARCH
concrete

components

Final application

Meta-user
interface

Adaptation process

Content
visualization

Data

(Chapter 8)

Figure 4.5 � The 3DPlasticToolkit overview.

In order to deal with the main adaptation sources and complete R1, these adaptation sources
are modeled into the system and exposed to the adaptation process. They correspond to the context
models represented in Figure 4.5. These models can be edited and extended by any developer. In
this Chapter we describe how tasks and devices are modeled in 3DPlasticToolkit while Chapter 7
focuses on our user model and Chapter 8 on our data model.

The device model represents the hardware con�guration at runtime. It exposes the di�erent
input and output capabilities handled by the available devices. More than just describing the
data acquired or provided by devices, the model also exposes their properties, limitations and
representations in the real world. These information are needed to ensure usability continuity.

56 CHAPITRE 4. DEVICE ADAPTATION

The task model represents at a high level the application behaviour and possibilities. An appli-
cation is represented as a collection of high level tasks. This collection is provided in a con�guration
�le by the application developer or designer. Tasks can also be added and removed at runtime using
the toolkit API. Tasks have to expose compatible concrete application components that will be
possibly instantiated in the �nal application. A concrete application component is a software ele-
ment that can be instantiated in the �nal application in order to accomplish a task. For instance, it
can correspond to the code for a 3D widget or an interaction technique. The compatibility between
a task and a concrete application component is ranked: each compatible component is associated
with a score. This score can be modi�ed at runtime according to the context. Additional properties
can also be included into the tasks descriptions in the con�guration �le.

As shown in Figure 4.5, we propose a new model for creating application components to impact
all the adaptation targets and therefore cover R2. This model proposes an extension of PAC
[Coutaz, 1987] in order to create application components independent of any concrete interaction
device and that can support alternative concrete representations. This concrete representation
implements how the component will be represented in the 3D world. The model decomposes an
application component into di�erent facets in order to decouple component semantic, view and
devices management. The model also ensures an independence from any targeted 3D framework in
order to satisfy R4.

In order to take into account the adaptation sources and impact the di�erent adaptation targets,
as in the CATHI framework [Lindt, 2009], we propose to use a scoring algorithm that will drive
the application component instantiations and modi�cations. As shown in Figure 4.5, this scoring
algorithm is one part of our adaptation process. This adaptation process handles local adaptations
in order to support recasting. In Chapter 6, we propose a redistribution process that allows us to also
cover this adaptation means in 3DPlasticToolkit. Therefore R3 is covered. This core component
of our system receives the di�erent events corresponding to the changes in the context of use and
can react accordingly at runtime. Therefore dynamicity is supported and R5 is covered. Thanks
to this mechanism a good usability of the application is always ensured.

One important missing capability in the state-of-the-art solutions is the possibility for the end-
user to check and modify the adaptation behaviors at runtime. To solve this issue and coverR6, our
toolkit contains a built-in con�guration user interface that can be shown and hidden at runtime: the
meta-user interface. As shown in Figure 4.5, this is the second part of our adaptation process. For
instance, the meta-user interface allows the end-user to replace concrete application components or
switch from an interaction device to another one. As shown in Chapter 6, this integrated interface
is also used to control the redistribution process of an application developed with our models.
In Chapter 7 we also show how it can be used to modify the user model. Therefore, R3 can be
completely covered.

For now we only partially cover R7 by providing some graphical authoring tools (device and
task con�guration), a collection of implemented interaction techniques and visual e�ects and some
integrated devices.

4.4 A New Taxonomy for the Description of Interaction De-
vices

The �rst adaptation source that we consider and that we model in the system is the hardware
con�guration: this is the device model. In this Section, we present this model and its concrete
implementation in 3DPlasticToolkit. We consider a platform as a hardware con�guration composed
of several devices and computing units on which an application can be launched. Input devices are
considered as the devices that can collect data from the real world such as a position, a pressure
on a button or a sound acquisition. Output devices restitute computer generated values to the real
world such as an image on a screen or a vibration. This model exposes to our adaptation process
described in Section 4.7 which devices are available, what are their capabilities and what are their
limitations. This model is needed to perform device selection and adaptation in order to make an
application available on a wide variety of platforms. It includes the properties to describe a device
and its associated units. Our device model aims to solve the issues of the models presented in

4.4. A NEW TAXONOMY FOR THE DESCRIPTION OF INTERACTION DEVICES 57

Section 4.2.1 through the use of an accurate description of the devices capabilities and limitations,
and of their representation in the real world.

Regarding the description, in the model, we consider an interaction device as a complex entity
that may acquire input(s) and render output(s) and that has a representation in the real world. As
shown in Figure 4.6, the model represents a device as a collection of inputs, outputs and physical
objects entities. A device is de�ned by its name, the name of the SDK used to manage it, its index
in the case we use di�erent instances of the device, and a boolean that indicates if it is plugged or
not.

Figure 4.6 � A device is a set of inputs and outputs as well as a collection of physical objects for
its real representation.

The set of physical objects describes the representation of the device in the real world. For
example, it gives properties such as a 3D representation of the device if we want to represent
it in the virtual world. Its position gives the possibility to a developer to automatically adapt
the coordinate system of the tracking values. Moreover, all inputs and outputs are associated to a
physical object, this information may help to select an input or an output unit used by an interaction
technique. Indeed, for an interaction technique, inputs and outputs that correspond to the same
physical object can be preferentially selected. The goal would be to minimize device switchings
as well as the homing time of the GOMS model (Goals, Operators, Methods, and Selection rules)
[Card et al., 1983]. The homing time corresponds to the duration that the user spends to move his
hand from one device to another one during the interaction.

Regarding input description, the goal is to describe all possible acquired signals that are cur-
rently used in 3D applications. We established a list of three categories that gather these possible
inputs:

• Real values: the most common value type used. It refers to continuous values acquired by
trackers, sensors, touch-screens, etc. It can represent a position or a rotation as well as more
original values such as a temperature or the lighting intensity of a room.

• Discrete values: taken into a set of prede�ned ones. For example a button press or a button
release event, a symbolic gesture or a vocal command.

• Generic streams: they continuously provide arrays of values. This category is divided into
multiple subtypes with more speci�c properties (image streams, EEG signals, sound acquisi-
tion...).

In the model, these di�erent input types include a description of the acquired data, their
properties and limitations, and information about how these data are acquired by the device. To
do so, we propose to describe each input into two entities. The "data description" ensures the �rst
need, and the "technology" ensures the second one.

For the two entities of the real value input type described in �gure 4.7, the description reuses
the most important properties of previously described taxonomies, especially [Lipscomb and Pique,
1993] and [Mackinlay et al., 1990], while adding some new ones. Regarding the new properties, three

58 CHAPITRE 4. DEVICE ADAPTATION

Figure 4.7 � The description of real value input with two entities: the "data description" and the
"technology".

booleans describe the axis on which the value is de�ned as proposed by Mackinlay et al [Mackinlay
et al., 1990]. A fourth axis called "none" is also included for values that are not expressed in a
3D coordinate system, for example a temperature. To continue, the semantics lets the developer
know which real world data is acquired. For example, it can be the name of a body joint in the
case of the Microsoft R© KinectTM. In the "technology" entity, we included a reliability rank of
the acquired data between 0 and 1, this property is present for all input types. This value may
change at runtime, as some SDK are able to give a reliability score for each value acquired. With
the "Techno Real Type" property, we di�erentiated the values acquired with a distant wireless
sensor from the ones acquired with a physical object. For example with optical tracking there is
no intermediary for the interaction contrary to a gamepad.

A description of output devices is also included. An output is described by one entity that
provides the information about how the data is rendered to the real world. All output types but
visual and sound are extracted from the MPEG-V standard [Han et al., 2012]:

• Visual outputs. They include screens such as monitors and HMDs. They also encompass
punctual lights, for instance a gamepad led or a remotely controlled lighting system that
modi�es the lighting conditions of the real world.

• Sound outputs. They stimulate the auditory sense and include devices such as speakers and
headphones.

• Tactile outputs. They stimulate the touch sense, for example the vibration of a gamepad.

• Force-feedback outputs. They apply a force in return of a user interaction in order to simulate
a collision with a virtual object. Typical force devices are robotics arms.

• Temperature outputs. They modify the temperature of the real world or of a contact point.
An example is to control the temperature according to the weather conditions in a virtual
world.

• Wind output. They change the air speed and direction dynamically.

• Scent outputs. They stimulate the olfactory sense.

4.4. A NEW TAXONOMY FOR THE DESCRIPTION OF INTERACTION DEVICES 59

Figure 4.8 � The description of a force feedback output device

• Sprayer outputs. They can throw water on a user. It can be used to simulate a virtual rain
e�ect in the real world.

Three properties are common to all output and input types: the name, the refresh rate and a
possible associated relative object. For instance, the force feedback type properties are listed in
Figure 4.8. The �rst three properties are extracted from the description of force feedback devices
given by Florens et al. [Florens et al., 2007]. First, the continuous force is the maximum force that
can be applied for an unlimited period without damaging the device. Secondly, the peak force is the
maximum feasible force. Thirdly, the force resolution gives the quantization step of the force that
can be applied. These values are expressed in newtons. Our description also contains a boolean for
each DOF on which the device can apply a force.

(a) (b)

Figure 4.9 � The graphical tool for creating and editing devices con�guration �les. Here, the �le
of the Razer Hydra is currently edited. (a) The developer can edit each input, output, and physical
object individually and add other ones if necessary. (b) The developer edits the data description
that corresponds to the right controller position of the device.

Regarding the implementation of the model in 3DPlasticToolkit, the model must be extendable
because new devices will still appear and they might include new properties not yet included in
the current model. The model is described with UML class diagrams, so it is totally editable by
any developer who wants to add new properties or new input or output types. In order to add a
new device into the toolkit, the developer has to create a new class that inherits from the basic
device class. In this new class, the developer has to complete some functions to ful�ll the input
data, trigger the outputs and tell the system when a new instance of the device is plugged or
unplugged. These steps can be done with a device SDK. Two examples of code for the Razer Hydra
device are given in Listings 4.1 and 4.2. In these two code examples, the only part that will be

60 CHAPITRE 4. DEVICE ADAPTATION

1 public class RazerHydra : Device {
2 (. . .)
3 public override void update(){
4 { . . .)
5 // Get the position with the Razer Hydra API
6 Vector3 vecR = SixenseInput .GetController(SixenseHands .RIGHT) .Position ;
7 // Ful f i l l the data of the associated device unit
8 DeviceRealInput razerPosRight = (DeviceRealInput) getInput("POS_R") ;
9 razerPosRight .Data. setValue(vecR) ;
10 // Get the Rotation with the Razer Hydra API
11 Quaternion quatR= SixenseInput .GetController(SixenseHands .RIGHT) .Rotation ;
12 // Ful f i l l the data of the associated device unit
13 DeviceRealInput razerRotRight = (DeviceRealInput) getInput("ROT_R") ;
14 razerRotRight .Data. setValue(quatR) ;
15 // Get the f i r s t button state with the Razer Hydra API
16 bool button1 = SixenseInput .GetController(SixenseHands .RIGHT) .GetButton(SixenseButtons .ONE) ;
17 // Ful f i l l the data of the associated device unit
18 DeviceDiscreteInput razerButton1= (DeviceDiscreteInput) getInput("BUTTON1") ;
19 razerButton1 .Data. setValue(button1) ;
20 }
21 }

Listing 4.1 � An excerpt of the update function of the Razer Hydra device class. Here, with the
device SDK, the developer ful�lls the data for the position and rotation of the right controller
and also for one button. This example can be generalized for other devices. Indeed, for each
device unit the process is the same. First, in lines 6, 11 and 16 the developer gets the data
with the device SDK. Then, with our model API, he updates the data of the associated device
input unit for the current frame.

changed from a device to another one are the calls to the function of the concrete devices SDK. In
Listing 4.1 the inputs data are ful�lled with the data coming from the device SDK. The Listing
4.2 gives an example of the function that updates the device plug status. In this function, the
developer declares to the device manager the index of the device instances that have been plugged
or unplugged during the current frame. Then, the device manager automatically adds or removes
these device instances from the available ones accordingly. Some devices cannot update their plug
status at runtime. This is the case for some particular screens and sound outputs. Therefore, for
now, the screen and sound con�guration of the system must be manually edited in the application
con�guration �le before execution. This is edited in the XML con�guration �le of 3DPlasticToolkit.

Regarding the device properties that correspond to the device and its device units description,
they are ful�lled at runtime with an XML description �le. For instance, an excerpt of the XML �le
of the Razer Hydra device is given in Listing 4.3. It presents the properties of the data description
for the position of the tracker integrated in the right controller of the device. The developer can
create and edit directly this XML or he can use a provided graphical tool. Indeed, in order to
simplify the description of models and satisfy R7 we have created a graphical tool for the creation
and edition of devices con�guration �les. An insight of this graphical tool is shown in Figures 4.9a
and 4.9b. In the device class the developer can also edit the dynamic properties at runtime. Static
properties have to be ful�lled into the description before execution if needed such as the position
of a motionless device in the real world. These properties can also be reported into the device SDK
by the developer to perform its con�guration.

4.5 A New Model for the representation of 3D Application
Components

Our solution 3DPlasticToolkit decomposes a 3D user interface into di�erent application components
that can interact with each other. For instance, these components can be interaction techniques,
widgets, visual e�ects, etc. According to the plasticity requirements detailed in Section 3.5, these
components must be independent of any particular 3D framework, independent of any concrete
interaction devices and support alternative concrete representations. Moreover, they must take into

4.5. A NEWMODEL FOR THE REPRESENTATIONOF 3D APPLICATION COMPONENTS61

1 public override void checkNewInstancePlugged(bool [] CurrentPlug , out bool [] NewPlug, out
bool [] UnPlug){

2 int RAZER__MAX__INSTANCE= 2 ;
3 // Only two Razers can be plugged at the same time
4 NewPlug = new bool [RAZER__MAX__INSTANCE] ;
5 UnPlug = new bool [RAZER__MAX__INSTANCE] ;
6 for (int i = 0 ; i < RAZER__MAX__INSTANCE ; i++){
7 NewPlug[i] = false ;
8 UnPlug[i] = false ;
9 i f (SixenseInput . IsBaseConnected(i) && !CurrentPlug[i]){
10 NewPlug[i] = true ;
11 } else if (! SixenseInput . IsBaseConnected(i) && CurrentPlug[i]) {
12 UnPlug[i] = true ;
13 }
14 }
15 }

Listing 4.2 � The function that updates the plug status for all Razer Hydra instances. For
a particular frame, the developer tells if some indexes of the device have been plugged or
unplugged. To do so he uses the Razer Hydra SDK. As shown in lines 9 and 12, we use a
function from the Razer Hydra API that tells if for a given index a device is plugged. As long
as a device SDK can dynamically detect plug status, this function can be easily generalized.

1 <DeviceDescription Name="RazerHydra" SdkName="Sixense">
2 (. . .)
3 <DeviceRealInput>
4 <DataDescription Name="DOF_POS_R" X="True" Y="True" Z="True" None="False" TransformationType="

POSITION" RealValueType="ABSOLUTE" SEMANTIC="RIGHTPOS" ReferenceSpace="WORLD">
5 <Bounds minX="−1.0" minY="−1.0" minZ="−1.0" minW="0" maxX="1.0" maxY="1.0" maxZ="1.0" maxW="0"

/>
6 </DataDescription>
7 <Technology>
8 (. .)
9 </Technology>
10 </DeviceRealInput>
11 (. . .)
12 </DeviceDescription>

Listing 4.3 � A part of the Razer Hydra con�guration �le. Here is the data description for the
position of the tracker integrated in the right controller of the device

62 CHAPITRE 4. DEVICE ADAPTATION

account context changes at runtime and be con�gured accordingly.
Our application component model extends PAC [Coutaz, 1987] (Presentation-Abstraction-

Control), by taking into account Compact [Calvary et al., 2004b] (COntext of user Mouldable
PAC for plasticity) and ARCH [Arch, 1992] concepts in order to satisfy our needs. PAC is a multi-
agent model that ensures a good decoupling between user interface semantics and its concrete
implementation. It decomposes an interaction component into three facets:

• the Presentation: it is the concrete implementation of the component in charge of its input
and output management,

• the Abstraction: it describes the semantics of the component and the function it can perform,

• the Control: it ensures the consistency between the presentation and the abstraction.

This model has not been designed to perform context adaptation: a PAC agent will be the same
whatever the target platforms and users. Compact [Calvary et al., 2004b] is a specialization of PAC.
It divides each facet into two parts, the physical part that is dependent from the current context
and the logical one which is always the same. The model introduces a way to take into account the
context of use. Indeed, the physical part of the control facet is in charge of the sensing of any context
change and then of computing and applying a reaction. Both, PAC and Compact do not provide
a good decoupling between the input and the output management because the Presentation facet
includes both. This decoupling is needed in 3D because of the wider set of possible interaction
devices. ARCH is a meta-model for other software models that proposes a generic separation
between facets of interactive components. ARCH represents an interactive component as a set of
facet branches dedicated to speci�c features such as presentation and data processing.

Our model has two mains di�erences compared to the PAC model. First, as it can be done with
ARCH, it separates the original presentation facet into two branches as shown in Figure 4.11. The
two branches are based on its rendering (rendering presentation) and device management (logical
driver) core functions in order to decouple the two functions:

• The rendering presentation facet is the only facet depending on a 3D framework. It handles
graphics output and physics. With the development of multiple compatible rendering pre-
sentations we can ensure the portability of the component over di�erent operating systems
and di�erent 3D frameworks. For a given application component, this facet can also de�ne
its representation in the virtual world. For instance, the 3D aspect of a widget will be de�ned
in this facet.

• The logical driver handles input and output devices management. If the application com-
ponent does not need any device, it can be omitted. Its main use is for the development of
interaction techniques. It describes the way the interaction technique is controlled according
to a set of interaction device units. The work of the developer is to choose these device units
in order to drive correctly the interaction technique. The logical driver describes all requi-
red inputs and outputs units according to a set of parameters taken from our device model
described in Section 4.4. Some can be optional if they are not needed for a good usability.
The logical driver can be instantiated if these units can be found at runtime. At runtime, the
logical driver receives from concrete devices the input data that it needs and it can trigger
the outputs. The device units may come from di�erent concrete devices in order to perform
device composition. The developer can also access each speci�c properties in order to ensure
the same behaviour whatever the concrete device used. These properties are included in the
device model described in Section 4.4. An example of logical driver is given in Figure 4.10.

The second di�erence compared to the PAC model consists in placing another facet on top of
the control one. As proposed in Compact, this facet receives the context modi�cations at runtime
and then is able to determine if a presentation facet is still possible in the current context. For
instance, if a device is unplugged from the system, the supervision control may detect that the
current logical driver is unusable. Contrary to Compact, the facet does not compute and apply any

4.5. A NEWMODEL FOR THE REPRESENTATIONOF 3D APPLICATION COMPONENTS63

Driver
Fly Navigation

«Joysticks »

Action: Orientation Control Action: Position Control

Action: Collision Feedback

Optional
Type : Tactile Output

Needed
Type : Real Input
Axe X : Yes
Axe Y : Yes
Axe Z : No
Real Value Type : FORCE
Bounds : [(-1 , -1 , 0 ,0) , (1 ,1 , 0 ,0)]

Needed
Type : Real Input
Axe X : Yes
Axe Y : Yes
Axe Z : No
Real Value Type : FORCE
Bounds : [(-1 , -1 , 0 ,0) , (1 ,1 , 0 ,0)]

Needs

Figure 4.10 � An example of logical driver that controls a �y navigation interaction technique
with joysticks. The di�erent properties for the devices needed are extracted from the device model
described in Section 4.4. The �rst needs are two real values that describe the two joysticks needed.
The �rst one controls the translation of the point of view, and the second one its rotation. A need
is de�ned with some properties extracted from the device model. As shown some device properties
can be omitted, only the detailed ones will be used to select the available device units. The last
one is tactile feedback, which is optional and can give a vibration feedback when the user collides
any 3D object.

modi�cation but it asks the adaptation engine for a modi�cation. We consider that the modi�cation
must be global and not local as it can also impact other parts of the application. For instance, if
the devices used by a component are replaced by other ones, they could be possibly connected to
another component. The modi�cation of an application component can be the replacement of one
of the presentation facets (rendering presentation or logical driver), or the replacement of all the
component. This component also contains all the types that can be instantiated as a logical driver
or rendering presentation facet for the current application component. As shown in Figure 4.11
each compatibility is associated with a score: a score Sld for each compatible logical driver and a
score Srp for each compatible rendering presentation. It allows the developer or the designer to
rank the compatibilities in order to choose one facet over another if multiple are possible. These
choices and the use of these scores are described in Section 4.7.

By using this approach we ensure a good decoupling between the application component se-
mantics and its concrete implementation, the independence of the component over the targeted 3D
framework and OS and over the concrete devices used. As multiple rendering presentation can be
implemented, a same component can have di�erent 3D aspects in the �nal application.

To illustrate our application model, the Figure 4.11 presents a 3D ray-based interaction tech-
nique used in the furniture planning application described in Section 5.2 for menu selections and
objects manipulations. For creating this new component, the developer has to implement the dif-
ferent classes that correspond to our model. To do so, each of these new classes have to inherit from
the basic model classes included in 3DPlasticToolkit: ComponentAbstraction, ComponentControl,
ComponentSupervisionControl, ComponentRenderingPresentation and ComponentLogicalDriver.
In the 3D Ray example, the rendering presentation facet creates the ray geometry, handles collision
detection and performs scene graph modi�cations according to the control facet requests. It imple-
ments these di�erent features with a particular 3D framework. The logical drivers handle how the
ray is manipulated according to di�erent device units. The �rst one is based on a 3D interaction
device that can provide a 6-DOF tracker. The ray base is controlled in position and rotation by
the data given by this tracker. A discrete input (such as a button event) is used to attach and
detach an object to the ray extremity. Two other discrete inputs are used to change the length of
the ray, the �rst one to increase it, the other one to decrease it. It also includes an optional tactile
output in order to perform a vibration feedback when an object is caught. This implementation is
shown in Figure 4.12a, the device used is a Razer Hydra1. The second logical driver is based on a

1http://sixense.com/razerhydra

64 CHAPITRE 4. DEVICE ADAPTATION

3D Ray PAC Agent

3D Ray
Abstraction

3D Ray
Rendering

Presentation

3D Ray
Logical
Driver

3D Ray
Control

3D Ray
Supervision Control

Selected from

Driver
« 6-Dof »

Driver
« GamePad »

Driver
« Mouse »

Compatible with

Separation of the
presentation facet
into two branches

Presentation
Unity3D

Presentation
Unreal

Presentation
Ogre3D

Logical drivers

Rendering presentations

Sld = 1.0 Sld = 0.7 Sld = 0.5

Srp= 1.0 Srp= 1.0 Srp= 1.0

Figure 4.11 � The PAC agent of the 3D ray-based technique. This agent is compatible with three
concrete logical drivers and three rendering presentations. As shown each compatibility is ranked
with a score.

2-DOF force input and on a 1-DOF force input. For instance, it can correspond to two joysticks.
The position of the ray base is constant and set at the center of the user view, just in front of
the main camera. The 2-DOF input is used to control the rotation of the ray on the X and Y
axes in order to control the ray target. The 1-DOF input is used to increase the ray length when
a positive force is applied and to decrease it when a negative force is applied. A discrete input is
still used for object catching. The last logical driver is based on an input of mouse type with a
2-DOF input in screen space, as shown in Figure 4.12c. The position is also constant at the center
of the user view. To control the ray rotation, we compute the ray target as the intersection point
between the far clipping plane and a ray de�ned by two points, the camera position and the 3D
point that corresponds to the mouse position on the near clipping plane. A 1-DOF speed input that
corresponds to the mouse wheel is used to increase and reduce its length and a discrete state (one
button) for object catching. The Figure 4.12b gives another example of application component: a
3D cursor represented by a virtual hand. In that case, the logical driver used consists in controlling
a 3D cursor in position and rotation by tracking the user's hand. To catch an object, the user has
to close his hand.

With this model we can implement application components independently from 3D frameworks
and from devices. In Section 4.7 we describe how the application components are instantiated and
con�gured at runtime according to the context of use. One component is instantiated for each high
level task de�ned as needed by the developer. The task model for the description of these high
level tasks is described in the next Section.

4.6 The 3DPlasticToolkit task system

As in Grappl [Green and Lo, 2004] and CATHI [Lindt, 2009] we represent a 3D user interface as a
composition of high level tasks. Both consider a high-level task component as a self-contained part
of a 3D user interface. Both solutions focus on interaction tasks. An interaction task corresponds
to an action performed by a user via a user interface in order to achieve a certain goal. In Grappl,
each interaction task has a corresponding coding interface that compatible interaction techniques
have to respect. In the CATHI framework, high level interaction tasks are connectable components
connected to the application logic and to low level interaction tasks. These low level interaction

4.6. THE 3DPLASTICTOOLKIT TASK SYSTEM 65

(a) (b) (c)

Figure 4.12 � An illustrative case of the possibilities o�ered by 3DPlasticToolkit. (a) On a laying-
out scenario a user is manipulating the furnitures with a Razer Hydra and a 3D-ray based interac-
tion technique (in red). (b) When the Razer Hydra is unplugged and a leap motion is plugged, the
current interaction technique is replaced by cursor based-interaction technique represented with a
virtual hand. Usability continuity is ensured with this adaptation. (c) Even without any 3D inter-
action device the user can still drive a 3D-ray based interaction technique with a mouse, mapping
the mouse movements on the ray target.

tasks represent the concrete user interface.

Our task model does not only focus on interaction tasks. The tasks can refer to interaction
techniques, widgets, visual e�ects, data-visualization metaphors or application logic components.
They are elementary tasks that represent the behaviour of the application independently from any
concrete application component. They represent the features that the developer wants to integrate
into the application with a high granularity. Therefore, a task is represented by a name that
describes its role in the �nal application. For instance, it can be "Selection", "Navigation", etc.
Second a task can be parametrized with di�erent attributes. These attributes allow the developer
to more precisely describe the task. Last, a task is composed of events that are methods called
when some particular actions related to the task occur in the application. For instance, in the
selection task two possible events can be the selection of an object and the deselection of this same
object. These events can be connected to other parts of the application.

For now our task model does not include the notions of sequences of events and actions that
can occur in the application. Only simple events can be included in tasks. At runtime each task
is associated with a concrete application component. An application component represents the
concrete instantiation of a task in the application. Each task in the system derives from a basic task
class and contains a list of compatible application components developed with the model presented
in Section 4.5. Task events can be triggered automatically by a compatible application component
and can be manually connected to other software components by the developer. Some example of
task events are given in Section 5.2. The compatibility between tasks and components is ranked.
Indeed, some application components can be considered more adapted than others. Therefore, a
compatibility score is assigned to each application component. This compatibility list has to be
edited in an XML �le. For a given task, the developer has to give the list of the control facets
names that correspond to the compatible application components. These control facets names are
associated with the compatibility scores Sa. This XML �le also contains the compatibility scores
Srp and Sld between control facets, rendering presentations and logical drivers as described in
Section 4.5. In this XML �le we also give to the developer the possibility to change the score Sa of
a component according to the main display type taken from our device model. Indeed, for instance,
we consider that the compatibility between a task and an interaction technique can be di�erent if
the display is a �at screen or a HMD. An excerpt of this XML �le for the creation of this list is
given in Listing 4.4. It corresponds to the compatible application components for the selection and
manipulation task given in Figure 4.13. For the 3D cursor component we show that its score can
be changed according to the main display used. Here, if the display is a �at screen its compatibility

66 CHAPITRE 4. DEVICE ADAPTATION

1 <TaskCompatibility taskName="TaskSelectionManipulation" componentName="Ray3DC" score="1.0">
2 <DriverCompatibility componentName="Ray3DC" driverName="3DRayGamePadDriver" score="0.3"/>
3 <DriverCompatibility componentName="Ray3DC" driverName="3DRay6DofDriver" score="1.5"/>
4 <DriverCompatibility componentName="Ray3DC" driverName="3DRayMouseDriver" score="0.5"/>
5 </TaskCompatibility>
6 <TaskCompatibility taskName="TaskSelectionManipulation" componentName="Cursor3DC" score="0.8">
7 <TaskCompatibility taskName="TaskSelectionManipulation" componentName="Cursor3DC" displayType=

"FLAT_SCREEN" score="0.3">
8 </TaskCompatibility>
9 <TaskCompatibility taskName="TaskSelectionManipulation" componentName="Proximity3DC" score="0.5

">
10 </TaskCompatibility>

Listing 4.4 � An excerpt of the XML �le where the developer or the designer can edit
the compatibilities between tasks and application components. Here, the selection and
manipulation task is compatible with three interaction techniques: a 3D ray component with
a score of 1.0, a 3D cursor component with a score of 0.8, and a 3D proximity component
with a score of 0.5. Compatibilities between application components and logical drivers and
rendering presentations. Here the Ray3D component is compatible with three logical drivers.

score is reduced, otherwise it takes the default one.
In order to associate the component names with concrete code instances, we use a factory design

pattern in which the developer has to register his components. As the compatibility can also depend
of the context of use, these scores can be edited at runtime, which can result to modi�cations in the
�nal application. This compatibility list is exposed to the system to allocate the best application
components according to the desired tasks and the current context of use. To illustrate this task
model, the Figure 4.13 gives an example of a task commonly needed in MR applications: a selection
and manipulation task. This task is compatible with three application components, a 3D ray-based
interaction technique, a 3D cursor, and a 3D proximity manipulation technique.

The developer can also include some parameters into the task as key-value properties. At run-
time, an application component will have access to its corresponding high level task and therefore
its parameters. For instance, in the example of manipulation task given in Figure 4.13 we can pa-
rametrize the degrees of freedom on which objects can be manipulated. An application control task
could be parameterized with a tree that de�nes the possible choices of a menu. Dependent tasks
can also be de�ned by the developer or the designer in order to indicate if a task needs another
one to be completely performed. For example, a 3D menu would need a selection interaction task
in order to be achieved.

In order to add a new task to the system, the developer has to create a new class that inherits
from a basic task class. To select which tasks will have to be performed in a particular application,
the developer has to ful�ll the XML con�guration �le of 3DPlasticToolkit. This part of this �le
also contains the tasks parameters. As for the device model, a graphical tool is provided to perform
this con�guration in order to make it usable by any designer. For now, key value properties in a
string format can be extracted from the con�guration �le for each task. Custom properties can
also be included into XML nodes in the con�guration �le. The parsing of these nodes must be
implemented in the corresponding task class by the developer. As an example, an extract of the

3D
Cursor

3D
Ray

3D
Proximity

Compatible with :

Sa = 1.0 Sa=0.8 Sa= 0.5
Selection and
Manipulation

Task

Figure 4.13 � An example of high level task: selection and manipulation. This task is compatible
with three concrete application components. As shown, this compatibility is ranked with scores.

4.7. DYNAMIC RECASTING IN 3DPLASTICTOOLKIT 67

1 <TaskConfig>
2 <NeedTask userId="1" taskName="SelectionManipulation" taskId="0" ScoringModule= "User" >
3 </NeedTask>
4 <NeedTask userId="1" taskName="FurnitureControl" taskId="1" topTask="0" ScoringModule="Default"

/>
5 <NeedTask userId="1" taskName="Navigation" taskId="2" ScoringModule="User"/>
6 </NeedTask>
7 </TaskConfig>

Listing 4.5 � An extract of the 3DPlasticToolkit con�guration �le of the furniture planning
application described in Section 5.2. Two high level tasks are de�ned as need: selection and
manipulation, and application control. The "ScoringModule" �eld is discussed in Section 4.7
and the "userId" one in Chapter 7

con�guration �le for the furniture planning described in Section 5.2 is given in Listing 4.5. Two
high level tasks are de�ned. First, a selection and manipulation task for menu selection and moving
3D objects into the scene. Second, an application task for adding furniture into the room with a
menu. A menu needs a selection mechanism so this task is de�ned as dependent to the �rst one
in the con�guration �le. As shown for each task there is a parameter named "ScoringModule". It
gives the possibility to the developer to choose for each task how the compatibility scores will be
taken into account. The possible choices and the impact on adaptations are described in Section
4.7. There is also a parameter named "userId" that associates to each task a particular user in
order to perform user adaptation as explained in Chapter 7.

4.7 Dynamic Recasting in 3DPlasticToolkit

Recasting consists in locally adapting an application to the context of use without modifying
its component distribution. According to the plasticity requirements our solution must be able
to automatically adapt an application without an external intervention. It must also give the
possibility for the end-user to change the adaptation behaviors. This is ensured in 3DPlasticToolkit
with two main components: an automatic adaptation process based on scoring mechanisms and a
meta-user interface to modify the adaptation behaviors.

4.7.1 An Adaptation Process based on Scoring Mechanisms

As for the CATHI framework [Lindt, 2009], our solution proposes an adaptation process that uses
a scoring system combined with our application model described in section 4.5. The goal of these
scores is to maximize the usability of the �nal application.

At runtime the construction of the 3D user interface consists in associating to each task the
best triplet (application component, logical driver, rendering presentation). The goal of the adap-
tation engine is to �nd the triplet that maximizes the score of compatibility in order to create the
application that uses the most suited devices and with the most adapted content presentation.

We propose an abstract way to compute these scores through what we named "scoring modules".
Each task is associated to a particular scoring module as explained in Section 4.6. A scoring
module implements a particular way to compute scores for an application component according to
the context of use. Moreover, the 3DPlasticToolkit API also gives the possibilities to developers
to integrate new scoring modules. Therefore, it gives them the �exibility to deeply control the
adaptation process if they have speci�c needs. The �rst built-in scoring module that has been
developed in 3DPlasticToolkit is the default one. It uses the di�erent compatibility scores exposed
in the application model and in the task model that are given by the developer or the designer.
Other modules are discussed in Chapters 7 and 8 and some are given as perspectives of work.

Regarding this default scoring module, as explained before, for a given task the developer or the
designer can rank each compatible application component with a score Sa. In the same way, for a
given application component, a compatible rendering presentation will be ranked with a score Srp
and a logical driver will be ranked with a score Sld. This module only considers these compatibility
scores provided by the designer or the developer. The goal is to provide them the maximum control
over the adaptation process. The score for a given triplet is computed as: S = Sa+ Sld+ Srp

68 CHAPITRE 4. DEVICE ADAPTATION

The adaptation process uses these scoring modules in order to compute scores at every context
modi�cation. It ensures to detect not any longer usable application components or more adapted
ones. In this process a task is classi�ed as done if an application component is currently deployed
for it in the application. If it is classi�ed as not done no application component is deployed for
this task because the adaption process did not �nd an adapted one yet. The life cycle of an
application component starts when it is deployed in the application and ends when it is destroyed.
The destruction of a component only a�ects usability continuity if no other component is deployed
by the adaptation process to replace it. A device unit is de�ned available only if it is not used
by another application component. Otherwise it is de�ned as not available. The process can be
described as follows:

1. A context modi�cation is detected. For example, it can be the connection of a new device,
the add of a task, or the association of a task to a new detected user.

2. This modi�ed context is transmitted through all supervision controls currently instantiated.
For each one, we check if the associated logical driver is still convenient in the current context
of use. It is still convenient if the devices that it uses are still plugged and available. If not,
the application component is destroyed and the associated task is classi�ed as not done.

3. For each not done task, we create a list of all convenient triplets (application component,
logical driver, rendering presentation) that can achieve the given task. A triplet is possibly
instantiable if the logical driver needed device units can be found in the list of connected
devices and if they are available. The rendering presentations that do not correspond to the
current used 3D framework are omitted. A score is attributed to each triplet according to the
scoring module chosen for the given task. Then, if multiple triplets are found, the one that
obtains the best positive score is used to instantiate the PAC agent with the suited logical
driver and rendering presentation. The devices units associated with the logical driver are
set as not available. The task is classi�ed as done

4. For each done task that has not been processed in the previous step, we check if we can �nd a
triplet more adapted than the current one. To do so, we create a list with all triplets that get
a better score (positive) than the current one. If the list is empty, the current one is still the
most adapted. Conversely, we destroy the current application component and we instantiate
the new best choice. For now, this choice is directly applied but it could be only suggested
to the user in order to produce a less disturbing e�ect.

In order to illustrate this adaptation process, a usage scenario given in Figure 4.14 shows the
di�erent steps of the adaptation process in 3DPlasticToolkit when context changes happen. In
this example we focus on the instantiation of the application components for the following tasks:
navigation and objects manipulation. In this example, the context change consists of modi�cations
of the available devices. For this scenario, the Figures 4.12a, 4.12b and 4.12c represent how the
adaptations impact the application and the end-user. In this scenario, when the application is
launched, three devices are connected to the computer, a keyboard, a mouse and a Razer Hydra.
The Unity3D game engine is used. In the XML con�guration �le of the application, the Oculus Rift
HMD is chosen as the main display. Therefore, the associated device class con�gures the device
SDK and the 3D rendering accordingly. The launch of the application induces the instantiation
of a component for each task. The score assignation for the components is made with the default
scoring module according to some of the scores that are detailed in Listing 4.4:

1. For the selection and manipulation task, according to the devices available the possible choices
are:

• (3DRay, 3DRay6DofDriver, 3DRayPUnity3D) with S = 1.0 + 1.5 + 1.0 = 3.5

• (3DCursor, 3DCursor6DofDriver, 3DCursorPUnity3D) with S = 0.8 + 1.5 + 1.0 = 3.3

• (3DProximity, 3DProximity6DofDriver, 3DProximityPUnity3D) with S = 0.5 + 1.5 +
1.0 = 3.0

• (3DRay, 3DRayMouseDriver, 3DRayPUnity3D) with S = 1.0 + 0.5 + 1.0 = 2.5

4.7. DYNAMIC RECASTING IN 3DPLASTICTOOLKIT 69

Launch application

- Selection/Manipulation
- Navigation

Add tasks Connection

Connection

Disconnection

3DRay and WalkingNavigation are destroyed: they are no more possible

Task Selection/Manipulation:
- Best couple: (3DCursor, 3DCursor6DofDriver, 3DCursorPUnity3D) with score = 3.3
- 3DCursor6DofDriver is connected to Leap Motion units (hand position, rotation, open

state)

 Task Navigation
- Best couple: (WalkingNavigation , WalkingNavigationKeyboardDriver,

WalkingNavigationPUnity3D) with score = 2.5
- WalkingNavigationKeyboardDriver is connected to keyboard units (directional arrows)

Task Selection/Manipulation:
- Best triplet: (3DRay , 3DRay6DofDriver, 3DRayPUnity3D) with score = 3.5
- 3DRay6DofDriver is connected to Razer Hydra units (position, rotation, buttons)

 Task Navigation

- Best couple: (WalkingNavigation, WalkingNavigationJoystickDriver,
WalkingNavigationPUnity3D) with score = 3.0

- WalkingNavigationJoystickDriver is connected to Razer Hydra units (one joystick)

New Tasks : New Devices

Figure 4.14 � A usage scenario of the furniture planning application developed with 3DPlastic-
Toolkit. It demonstrates how the application can handle context changes: here the replacement of
an interaction device by another one. This example represents the adaptation steps that correspond
to the transition from the situation illustrated in Figure 4.12a to the one illustrated in Figure 4.12b

70 CHAPITRE 4. DEVICE ADAPTATION

• (3DRay, 3DRayGamePadDriver, 3DRayPUnity3D) with S = 1.0 + 0.3 + 1.0 = 2.3

• (3DCursor, 3DCursorGamePadDriver, 3DCursorPUnity3D) with S = 0.8 + 0.2 + 1.0 =
2.0

• (3DProximity, 3DProximityGamePadDriver, 3DProximityPUnity3D) with S = 0.5 +
0.2 + 1.0 = 1.7

The combination chosen is (3DRay, 3DRayDriver6Dof, 3DRayPUnity3D) because it gets the
best score (3.5). Therefore, the application component is instantiated. As shown in Figure
4.12a, the user can now manipulate the objects with a 3D Ray-based interaction technique
controlled with the Razer Hydra.

2. For the navigation task, the possibilities are:

• (WalkingNavigation, WalkingJoystickDriver, WalkingNavigationPUnity3D) with S =
1.0 + 1.0 + 1.0 = 3.0

• (WalkingNavigation, WalkingKeyboardDriver, WalkingNavigationPUnity3D) with S =
1.0 + 0.5 + 1.0 = 2.5

The chosen triplet is (WalkingNavigation, WalkingDriverJoystick, WalkingNavigationPU-
nity3D) because it gets the best score (3.0). It corresponds to an interaction technique based
on a walking navigation metaphor controlled with one of the joysticks provided by the Razer
Hydra. This metaphor can be compared to the "WALK" navigation type from X3D. The
joystick is used to move the point of view forward and backward as well as changing its
rotation around the up axis.

The logical driver instantiated for the navigation task also describes a tactile output as an
optional output. A vibration is triggered when colliding a virtual object. As this output is optional,
the logical driver can be instantiated without it. Indeed, the Razer Hydra does not provide any
vibration capabilities.

After a few minutes, someone asks the user for the Razer Hydra. The user does not want to
stop using the application because he has not �nished to lay out the furnitures. In exchange for the
Razer Hydra, a Leap Motion is given to him. As the Razer Hydra is disconnected, the two currently
instantiated application components are destroyed because they are not adapted anymore. Then,
with the connection of the Leap Motion the interface is rebuilt as follows:

1. For the selection and manipulation task, some triplet are no more convenient, the list of
convenient one is updated:

• (3DCursor, 3DCursor6DofDriver, 3DCursorPUnity3D) with S = 0.8 + 1.5 + 1.0 = 3.3

• (3DProximity, 3DProximity6DofDriver, 3DProximityPUnity3D) with S = 0.5 + 1.5 +
1.0 = 3.0

• (3DRay, 3DRayMouseDriver, 3DRayPUnity3D) with S = 1.0 + 0.5 + 1.0 = 2.5

• (3DProximity, 3DProximityGamePadDriver, 3DProximityPUnity3D) with S = 0.5 +
0.2 + 1.0 = 1.7

The triplet that gets the best score (3.3) is now (3DCursor, 3DCursor6DofDriver, 3DCursor-
PUnity3D). It corresponds to a 3D cursor controlled with a driver that implements a 6-DOF
interaction as shown in Figure 4.12b. The position and rotation of the cursor are controlled
through one hand detected by the Leap Motion. The open or close state of the hand is used
as the signal for selection and unselection.

2. For the navigation task, no more joysticks are available. One triplet is possible and the-
refore is instantiated: (WalkingNavigation, WalkingKeyboardDriver, WalkingNavigationPU-
nity3D). The walking navigation component is now controlled with the directional keys of
the keyboard. The up and down keys are used to move forward and backward while the left
and right ones are used to rotate the point of view around the up axis.

The Figure 4.12c represents an extension of this scenario. It demonstrates that the user can still
use the application without any 3D interaction device. Indeed, if the Leap Motion is unplugged
no more 3D interaction device will be available. Nevertheless, as said in Section 4.5, the 3D-ray

4.7. DYNAMIC RECASTING IN 3DPLASTICTOOLKIT 71

based interaction technique can also be controlled with the mouse. The triplet that corresponds
to this interaction is therefore automatically instantiated. The keyboard is still used to control the
navigation.

This usage scenario demonstrates the ability of the proposed model to handle context modi-
�cation in order to ensure usability continuity of any 3D user interface. Moreover, with the use
of a scoring system this usability is maximized according to the current context of use. In the
next section, we demonstrate how this adaptation mechanism can be con�gured at runtime by the
end-user thanks to a an integrated graphical user interface: the meta-user interface.

4.7.2 Meta-User Interface: User Control over the Adaptation Process

In the previous Section we demonstrate that thanks to our automatic adaptation process the
adaptation controller can be the system itself. However, one of the identi�ed drawbacks in current
MR solutions is the lack of control given to the user over the adaptation process. Indeed, the user
has to be aware of any system adaptation and must be able to modify the result (requirement R5).
Therefore, our solution proposes a built-in application component that implements a graphical user
interface (GUI) that satis�es this need: the meta-user interface.

Meta-user interface have been already integrated into plastic 2D user interfaces. For instance
in the Sedan-Bouillon plastic web site [Vanderdonckt et al., 2008], a meta-user interface is used
to control the con�guration of the applications. In the same paper, Vanderdonckt et al. de�ne a
meta-user interface as an integrated user interface that provides users with the means to con�gure,
control, and evaluate the adaptation process. A meta-user interface may be plastic and may or
may not negotiate the alternatives for adaptation with the user.

Our meta-user interface provides the end-user with a view of the current state of the system
and gives him the possibility to modify it. This meta-user interface works with both 2D and 3D
selection techniques integrated in 3DPlasticToolkit. Therefore, our meta-user interface is totally
plastic. In our case the meta-user interface incorporates negotiation as the user can not only observe
the adaptation process but he can also impact it with di�erent possibilities. The following aspects
of the application can be modi�ed with this interface (some of these features are still currently in
development):

• For each task, the user can see the current associated application component and can select
another one to achieve it. Only the ones that can be instantiated in the current context of use
are proposed. For instance, it can be used to switch from an interaction technique to another
one.

• For each instantiated application component, the user can see the associated logical driver
and can select another one to control it. Similarly to the interaction techniques, only the
convenient logical drivers are proposed. For example, it can be used to change the kinds of
devices that control an interaction technique.

• For each instantiated application component, the user can see the associated rendering presen-
tation and can select another one. As well, only the possible ones are proposed. For example,
it can be used to change the aspect of a 3D widget at runtime.

• For each logical driver, the user can see all associations between actions and device units.
The user can change each associated device unit in a list of compatible and available ones.
An example of this features is given in Figure 4.15. In this example, for the case of the 3D
ray-based interaction technique controlled with the Razer Hydra, the user can change which
controller manipulates the ray position. It can be the right or the left one.

• The user can change the current display used. For example a user could stop using an HMD
and continue to interact on his/her monitor screen.

Any modi�cation of the application performed by the user with the meta-user interface is then
reported to the adaptation process as a context of use modi�cation. Indeed, the modi�cations

72 CHAPITRE 4. DEVICE ADAPTATION

Figure 4.15 � An illustration of the meta-user interface. Here is an example where the user can
change a device unit associated to a logical driver from a list of compatible ones. For the 3D ray-
based interaction technique controlled with the Razer Hydra, the user can change which controller
manipulates the ray position. It can be the one on the right or the one on the left.

that can be applied could change the device context of use. Some device units may be set as not
available while others could be set as available and therefore be possibly used by other application
components.

Other features of this meta-user interfaces are detailed in the next Chapters. For instance it is
also used to control the redistribution process presented in Section 6 and to modify the user pro�le
as explained in Section 7

4.8 Conclusion

In this Chapter we present the basis of our solution for the creation of plastic MR user interface.
The focus of this Chapter is on adaptation to devices.

We propose a device model in order to precisely describe display and interaction devices that
can be used by an application. With this model a MR user interface can be adapted according to
the available devices and to their properties. Therefore, we partially cover R1 in this Chapter. In
order to fully cover this requirement some extensions of our solution are proposed in Sections 7
and 8. To continue, we also propose a model for the development of application components. These
components deployed at runtime to accomplish high level tasks can correspond to interaction tech-
niques, 3D widgets, visual e�ects, etc. By instantiating this kind of components 3DPlasticToolkit
can target both interaction techniques and content visualization as adaptation sources. Therefore,
R2 is fully covered. These components can be developed independently from an OS or from a 3D
framework, thereforeR4 can be covered. The recasting capability is ensured by two elements. First,
a dynamic adaption process that checks the modi�cations of the context of use in order to deploy
an application component for each task. This process maximizes the usability of the application
with scoring mechanisms that use scores set by the developer. Second, an integrated user interface
that allows the end-user to check and to modify the adaptation behaviors at runtime: the meta-user
interface. For instance, he/she can use it at runtime in order to replace an interaction technique
by another one. With these two elements recasting is handled, therefore R3 is partially covered.
In order to fully cover this requirement we also propose a redistribution process in Chapter 6.
With this automatic adaption process, the possibility for the developer/deployer to edit di�erent
con�guration �les, and with the meta-user interface, we can say that R5 and R6 are fully covered.
These di�erent models, the adaptation process and the meta-user interface are integrated in a

4.8. CONCLUSION 73

software solutions for the creation of plastic MR user interfaces: 3DPlasticToolkit. For now, only
one authoring tool is provided with 3DPlasticToolkit for the con�guration of devices. We also plan
to develop authoring tools for the creation of the 3DPlasticToolkit main con�guration �le or for
con�guring the compatibility scores. Therefore, we can say that R7 is just partially covered

As detailed, our task model allows the developer to model the application behavior and possi-
bilities at a high level. However it does not let him orchestrate the sequences of events and actions
that can occur in the virtual environment. This is the goal of scenario engines such as SEVEN
[Claude et al., 2014]. This engine can describe scenarios that handle collaboration between dif-
ferent users where each user has as an assigned role. Extending our task model with this kind of
scenario engine and taking into account this notion of role in our user model could be perspectives
for future work. In addition, as explained with our application component model the creation of a
new component requires the creation of multiple classes. Indeed, as explained, multiple faces must
be developed, one abstraction facet, one supervision control facet, one control facet and possibly
multiple rendering presentations and logical drivers facets. The creation of these classes can be
time consuming. Using a MDE approach for the creation of theses classes and to automatically
connect their di�erent functions could be a perspective of work to reduce the development time of
application components.

In order to illustrate our solution and its bene�ts for the development of MR user interfaces, in
the next Chapter we present three applications that have been developed with 3DPlasticToolkit.
These concrete examples demonstrate how the interaction techniques and the content visualiza-
tion can be adapted according to the device setup. These three uses cases are detailed before we
present how we handle redistribution, user adaptation and data adaptation, because although the
main focus of these applications is on adaptation to devices, nevertheless they also allow us to
demonstrate the need for this redistribution adaptation means and for these two other adaptation
sources.

74 CHAPITRE 4. DEVICE ADAPTATION

Chapitre 5

Use Cases and Results for Device

Adaptation

5.1 Introduction

In the previous Chapter, we present our models for the creation of MR user interfaces and how
they can be used in order to adapt an application according to the hardware con�guration. In this
Chapter, we present three concrete applications that have been developed with 3DPlasticToolkit
and that take this adaption source into account in order to adapt the two possible adaptation
targets: interaction techniques and content visualization. In this Chapter, the content visualization
modi�cations refer to changes of display modes and not on the choice of the adapted layout to
present some data. This last point is discussed in Chapter 8. With the presentation of these three
applications, our goal is to demonstrate how the use of 3DPlasticToolkit can really bene�t to the
development of MR user interfaces.

The �rst example that we present is a furniture planning application. The goal of this applica-
tion is to help a customer to plan the use of premises, here a room rented for special events. The
user has the capability to layout the room with furniture (add, remove, move) in order to help him
to understand the potential of the free space. We demonstrate that this application can be used
on a wide variety of platforms (desktop, mobile and immersive ones) thanks to 3DPlasticToolkit.
A collaborative extension of this demo is also presented. In the second example, we present how
3DPlasticToolkit can be used in order to adapt the content visualization of a 3D application. This
example focuses on a particular case of visual discomfort experienced by users with stereoscopic
displays: frame cancellation. We propose two visual e�ects that can be applied with 3DPlastic-
Toolkit in order to deal with visual discomfort. The last example has been developed for IEEE
3DUI contest 2016. It proposes a collaborative scenario where di�erent users have to collabora-
tively manipulate an object in order to pass it through a labyrinth. In this application, thanks
to 3DPlasticToolkit, each user automatically bene�ts from adaptation interaction techniques and
from an adapted scene visualization according to his device setup.

These three use cases that present how plasticity can be used in order to adapt an application
according to the hardware con�guration have been published respectively in [Le Chenechal et al.,
2015], [Lacoche et al., 2015b] and [Le Chénéchal et al., 2016b, Le Chénéchal et al., 2016a].

This Chapter is structured as follows. First, in Section 5.2, we present how 3DPlasticToolkit
has been used to adapt the interaction techniques to the available devices in the furniture planning
application. Second, in Section 5.3, we present our two visual e�ects that can be applied with
3DPlasticToolkit in order to deal with frame cancellation. In Section 5.4 we present our collabora-
tive application that has been developed with 3DPlasticToolkit. In this application the interaction
techniques and the scene visualization are adapted to the device setup of each user. In Section 5.5,
we conclude and we also give some hints about what we have learned from the development of
these three applications based on 3DPlasticToolkit

75

76 CHAPITRE 5. USE CASES AND RESULTS FOR DEVICE ADAPTATION

Figure 5.1 � Two screen-shots of our application showing a rented room that can be organized
with furniture.

5.2 Adapting the Interaction Techniques: The Furniture Ap-
plication Case Study

The furniture planning application is one of the �rst applications that we have created with
3DPlasticToolkit. This application enables us to demonstrate how the di�erent features inclu-
ded in 3DPlasticToolkit can be used in order to adapt the interaction techniques according to
the available devices. Indeed, we show how this application can be used on di�erent platforms.
With this demonstration our objective is to demonstrate the bene�ts that can bring 3DPlastic-
Toolkit to such development. A video that describes this application can be found here: https:
//www.dropbox.com/s/a7ugnevvhcgdua3/FurniturePlanningAdapt.mp4?dl=0.

The goal of this application is to help a customer to plan the use of premises, here a room rented
for special events as shown in Figure 5.1. As this room can be under construction or too far for a
real guided tour, we propose to immerse the customer into a virtual version of the premises. The
customer has the capability to layout the room with furniture (add, remove, move). These features
help him/her to understand the potential of the free space and makes it possible for him/her to
imagine and plan how the space will be used.

The di�erent 3D models used in the demonstration such as the room and the furniture were
already available. Our goal was to use these models in order to create an interactive application.

High level tasks

The �rst step in the development of this application with 3DPlasticToolkit consists in selecting
the high level task that will describe this application. At the task level, the furniture planning
application is composed of three di�erent tasks:

• The "SelectionManipulation" task. This is the same task that the one detailed in Section
4.6. The goal of this task is to give the possibility to the end user to select and move furniture
in the room.

• The "Navigation" task. This task has also been mentioned in Section 4.7. With this task
the user will be able to move his point of view in the scene with a navigation interaction
technique.

• The "FurnitureControl" task. This task has been especially created for this application.
It contains di�erent events that can be triggered by the associated application component
such as adding a furniture, saving the current layout and loading a pre-de�ned one.

The con�guration �le of 3DPlasticToolkit is given in Listing 5.1. It de�nes as needed these three
tasks and it also de�nes the current main display used as explained in Section 4.4, here a simple

https://www.dropbox.com/s/a7ugnevvhcgdua3/FurniturePlanningAdapt.mp4?dl=0
https://www.dropbox.com/s/a7ugnevvhcgdua3/FurniturePlanningAdapt.mp4?dl=0

5.2. ADAPTING THE INTERACTION TECHNIQUES: THE FURNITURE APPLICATION CASE STUDY77

1 <3DPlasticToolkitConfig>
2 <TaskConfig>
3 <NeedTask taskName="SelectionManipulation" taskId="0"/>
4 <NeedTask taskName="FurnitureControl" taskId="1" topTask="0"/>
5 <NeedTask taskName="Navigation" taskId="2"/>
6 </TaskConfig>
7 <MainDisplay deviceName="ScreenMonitor" displayName="MONITOR"/>
8 </3DPlasticToolkitConfig>

Listing 5.1 � The XML task con�guration �le of the furniture planning application. Here,
the applcation is de�ned by three high level tasks: Selection Manipulation, Navigation and
Furniture Control. In this example, the de�ned main display is a screen monitor.

PC monitor.

The deployment of the application on multiple platforms

As explained in Section 4.7, in 3DPlasticToolkit, one application component is automatically asso-
ciated to each task according to the context of use. For this application, concrete application com-
ponents for navigation and selection/manipulation were already developed because they have been
created for previous prototypes. It demonstrates the re-usability capabilities o�ered by 3DPlastic-
Toolkit. Only the component that corresponds to the furniture control task has been speci�cally
developed. Here, we describe the instantiated components for three very di�erent platforms.

(a) (b) (c)

Figure 5.2 � Three di�erent types of platforms on which the furniture application can be run: (a)
a desktop platform (b) a mobile platform (a tablet), (c) an immersive platform (an HTC Vive).

First, as shown in Figure 5.2a, the application can be used on a desktop platform. This platform
is simply composed of a monitor, a mouse and a keyboard. For the selection and manipulation task,
a 3D ray-based interaction technique is proposed. The logical driver uses the mouse position to
control the ray extremity and the buttons for selecting and grabbing as detailed in Section 4.5.
For the navigation task, a walking navigation metaphor is deployed. The associated logical driver
uses the arrows of the keyboard in order to translate and rotate the user's point of view. For
the furniture application control task, a 3D menu is deployed and placed according to the user's
point of view. This menu that can be shown and hidden gives access to the di�erent events of the
furniture control task for adding a furniture in the scene, loading the current layout and saving the
current one.

Second, as shown in Figure 5.2b, the application can be used on a mobile platform. Here
the platform is an Android tablet. In order to handle di�erent exploitation systems, we use the
portability capabilities o�ered by the current game engine used: Unity3D. For the selection and
manipulation task, a 2D cursor interaction technique is deployed on the tablet. The chosen logical
driver uses the multi-touch capabilities of the tablet. With this technique the user can translate
the objects onto the �oor with one �nger and rotate them around the up axis with two �ngers.
For the navigation task, a pan and zoom navigation technique is deployed. The 3D menu for the
application control task is also deployed on this platform. It is placed just in front of the camera
and therefore it gives a 2D impression as shown on the Figure 5.2b.

78 CHAPITRE 5. USE CASES AND RESULTS FOR DEVICE ADAPTATION

Third, as shown in Figure 5.2c, the application can be used on an immersive platform. Here,
we use an HTC Vive1 that is composed of an HMD and two 6-DOF controllers with buttons and
trackpads. For the selection and manipulation task, a virtual hand is used to select and catch the
scene objects. The logical driver uses the position and the rotation of one of the controllers to set
the hand's position and rotation. One button of the controller is used to close the hand and grab an
object. For the navigation task, the user can navigate at scale one in the area de�ned by the head
tracking zone. Moreover we combine it with a teleportation capability. With the second controller,
the user can use a ray-based interaction technique to select a point in the scene where he wants
to be teleported. As for the two previous examples, a 3D menu is also deployed for the furniture
application control task.

Of course, the possible handled platforms are not limited to these three platforms. Indeed,
for instance the application could also be used with a force feedback device and a stereoscopic
screen, or with an HMD with a leap motion mounted on it or as shown in Section 6.5 with a
CAVE system. Changing some devices directly at runtime is possible with this application thanks
to 3DPlasticToolkit. It can give to the end user the possibility to totally interact di�erently with
its application. For instance, in the case of the desktop platform, a razer hydra could be plugged at
runtime. In that case, the users would not use anymore the mouse and the keyboard and he would
be able to use 3D interactions with the two razer hydra controllers and to use the joysticks in order
to navigate. For the "furniture application control task", for now we have just implemented an
application component that corresponds to a 3D menu. A possible alternative could be to propose
a concrete application component based on vocal recognition. Vocal commands would then be used
in order to add a furniture, to load a pre-de�ned layout and to save the current one.

The collaborative extension

In an extension of this application, published as a research demonstration in [Le Chenechal et al.,
2015], we have developed an asymmetric collaborative scenario between a customer immersed
inside the room and an estate agent that guides and helps him. A video of this application can
be found here: https://www.dropbox.com/s/gu4sp3r7a7coyoj/FurniturePlanning.mp4?dl=0.
This collaboration is asymmetric because in this extension each role has its own interaction setup
and its own interaction capabilities. The two users can communicate through microphones.

Both users have some common interaction capabilities that correspond to the tasks and appli-
cations components presented before. They can:

• Select and manipulate the scene objects ("SelectionManipulation" task),

• Add, remove furniture, load a pre-de�ned layout and save the current one ("Furniture-
Control" Task).

Each user has also some speci�c interaction capabilities. First the customer can:

• Make measurements in the scene,

• Navigate in the scene ("Navigation" task presented before).

In the scenario that we have tested, the interaction setup of the customer is composed of an
Oculus Rift DK2 HMD and a Razer Hydra. The user is totally immersed into the room with a
�rst person view as shown in �gure 5.3b. He uses a ray-based interaction technique to select and
manipulate the objects. He can make the measurements using his 3D ray in a laser meter fashion.

Second, the guide can:

• Send help to the distant user on how to use the application,

• Highlight objects to catch the attention of the distant user.

1https://www.htcvive.com

https://www.dropbox.com/s/gu4sp3r7a7coyoj/FurniturePlanning.mp4?dl=0

5.2. ADAPTING THE INTERACTION TECHNIQUES: THE FURNITURE APPLICATION CASE STUDY79

(a) (b)

Figure 5.3 � The collaborative extension of the furniture planning application (a) The customer
is immersed with a �rst person view in the shared virtual world with a HMD and interacts with a
Razer Hydra. (b) The guide has a 3/4 top view of the scene and uses the zSpace interactive system.

The guide cannot navigate in the scene, he has just a 3/4 top view of the scene in order to see the
entire room.

In our scenario, the interaction setup of the guide is the zSpace2 interactive system composed
of a 6-DOF tracker and a 24-inches co-located stereoscopic display. In the same way, with this
setup as illustrated in Figure 5.3a, the guide uses a 3D ray-based interaction technique to select
and manipulate the objects. Another button of the stylus is use to highlight the objects with the
ray. A menu is also displayed to send help commands to the customer.

In this extension, the software framework that handles network synchronization is totally inde-
pendent from 3DPlastictoolkit. Indeed, a software overlay of SmartFox Server3 is used to manage
collaboration. It ensures the synchronization of the shared VE between the di�erent users as well
as a consistent physical simulation. For awareness issues, the guide frustum and its 3D ray are
represented in the shared environment. In order to handle concurrency when moving objects, the
priority to move an object is given to the �rst user who grabs it. We could also have used the
redistribution capabilities of 3DPlasticToolkit which are presented later in Section 6.

Conclusion and perspectives

This application enables us to demonstrate how 3DPlasticToolkit can be used in order to adapt the
interaction techniques according to the available devices at runtime. As most of the components
were already implemented before, the development of this application was very fast. The main
work was to create the 3D content. For the collaborative extension, some of the components have
been modi�ed in order to handle some particular synchronization issues. However, in the same way
the development of this extension has also been quick.

Here, we only demonstrate how the application can be used in a VR model. More work could be
done to visualize and edit the created layouts in real situations with the help of AR. For example,
visiting an under construction building with AR glasses to assess the quality of the current target
layout. Interactions could be also adapted to AR devices.

To �nish, the laying out scenario is not restrained to real estates need but could also be used
for instance by heavy industries to imagine the future of factories.

2http://zspace.com/
3http://www.smartfoxserver.com/

80 CHAPITRE 5. USE CASES AND RESULTS FOR DEVICE ADAPTATION

5.3 Adapting the Visualization: The Frame-Cancellation Case
Study

In this Section we demonstrate that 3DPlasticToolkit can also be used to adapt the content visua-
lization of a 3D application. Here, we focus on a particular case of visual discomfort experienced
by users with stereoscopic displays: frame cancellation. In order to deal with this discomfort we
propose two visual e�ects that can be applied on 3D objects. We show that these e�ects can be
easily applied with 3DPlasticToolkit. We also propose an alternative solution that consists in adap-
ting a manipulation interaction technique. The results of this research work have been published
in [Lacoche et al., 2015b].

Stereoscopic display is a sensorimotor contingency used for Virtual Reality (VR) applications
in order to improve place and plausibility illusion [Slater, 2009]. Indeed, stereoscopy creates a
three dimensional illusion by simulating stereopsis depth cue. One of the binocular depth cues
introduced in Section 2.3.2. However, in some cases, stereoscopy may also lead to visual discomfort.
When virtual objects in negative parallax (front of the screen) are overlapped by one of the screen
borders (horizontals and/or verticals), two depth cues con�ict. The �rst one, stereopsis, allows
depth perception with the ability of our visual system to merge the two di�erent images acquired
by the two eyes. In negative parallaxes, this cue tells our visual system that the object is in front
of the screen. The second cue is occlusion. If a screen edge is partially overlapping an object, the
edge seems to be closer. Moreover, because of the limited display size, one part of an object can
be clipped for one camera and not for the other [Mulder and Liere, 2000]. It is a particular case
of binocular rivalry. Binocular rivalry occurs when the two eyes acquire two unrelated images.
With horizontally aligned eyes, the parallax is only horizontal, and then only vertical edges are
concerned by binocular rivalry. In case of a head tracking that considers head rotation around
the 3 degrees of freedom, vertical parallax is also possible. Therefore, horizontal edges can also be
concerned by binocular rivalry. This phenomenon, �rst described by Valyus [Valyus, 1966] is called
�frame cancellation� and is described in Figure 5.4. This con�ict reduces the illusion of depth in the
perceived 3D image [Wartell, 2002] and creates an unpleasant e�ect sometimes called �eyestrain�
for people watching the screen [Lipton and Akka, 2010]. These consequences of frame cancellation
have been observed in [Ardouin et al., 2011]. As frame cancellation sometimes induces binocular
rivalry, the problem is reinforced.

Figure 5.4 � Top view and side view of camera volumes with horizontally aligned eyes. In red, the
area without con�ict. In blue, the area where objects will be visible only by one camera (binocular
rivalry). The green circle represents a virtual object subject to frame cancellation. In case of non
horizontally aligned eyes, the blue area could also be visible on the side view.

Frame cancellation is mainly caused by the physical limitations of most available visual displays:
they do not �ll the entire �eld of view of the observers. CAVETM systems and head-mounted
displays (HMD) are two display types that can avoid the problem by totally immersing the user in
the virtual world thanks to a wide �eld of view. Nevertheless, when such a display is not available,
we need to adapt the rendering and/or the interaction in order to reduce the frame cancellation
e�ect. In these Section, we demonstrate that these adaptations can be directly performed with
3DPlasticToolkit. Indeed, the visual e�ects and the interaction technique are implemented into

5.3. ADAPTING THE VISUALIZATION: THE FRAME-CANCELLATION CASE STUDY 81

application components developed with the model described in Section 4.5. This Section describes
these di�erent new e�ects and also how they can be automatically deployed when the main display
is a simple stereoscopic screen.

Related Work

Adapting the rendering to deal with frame cancellation has been addressed for o�ine and real-time
purposes. Indeed, 3D movies as well as interactive 3D applications can su�er from this problem.

One common approach consists in rede�ning the display window with virtual black bands on
the screen borders when some objects are subject to the frame cancellation e�ect. The Floating
Window introduced by Autodesk [Autodesk, 2008] for o�ine rendering and the Cadre Viewing
approach proposed by Mulder et al. [Mulder and Liere, 2000] for real-time contexts are solutions
based on vertical black bands. The virtual objects are then perceived in positive parallax related
to the virtual window, and no part of a virtual object in negative parallax is then visible by only
one eye. The main drawback of this approach is �eld of view reduction. Moreover, the occlusion
issue with the horizontal screen borders is not addressed.

To continue, the Cyclopean Scale introduced by Ware et al. [Ware and Fleet, 1997] proposes
to scale the virtual environment (VE) about a point between the observer's two eyes in order to
always place it just behind the screen in terms of stereoscopic depth. This method avoids frame
cancellation by always placing the VE in positive parallaxes or very small negative ones. Therefore,
the Cyclopean Scale reduces the possibility of simulating popping-out e�ects o�ered by stereoscopic
rendering. It is particularly limited in the case of co-located interactions.

One of the most relevant approaches has been proposed by Ardouin et al. [Ardouin et al., 2011].
The e�ect is called the Stereo Compatible Volume Clipping (SCVC) and consists in rendering only
the part of the virtual objects that are in the con�ict-free area: the Stereo Compatible Volume
(SCV). This is done by clipping all the object's parts that intersect the blue area, as shown in
Figure 5.4. One possible result is given in Figure 5.5. This technique always ensures two consistent
right and left images, does not reduce the �eld of view, and is fully compatible with head tracking.
However all con�icts are not solved. Indeed, the technique mainly focuses on solving the binocular
rivalry issue, and no part of an object in negative parallax is visible by only one eye, but may still
be perceived as roughly clipped by a horizontal or by a vertical screen border, which disrupts the
object form perception.

Figure 5.5 � SCVC approach illustration. The clipping of the 2 spheres in negative parallax avoids
inconsistent left and right images

Most of the current methods focus on adapting the rendering to deal with frame cancellation.
Nevertheless, we can also �nd an approach that consists in adapting an interaction technique to
reduce the frame cancellation e�ect. Wartell et al. [Wartell et al., 1999] introduce a navigation
technique for a large dataset based on scaling, panning, and rotating. During the navigation,

82 CHAPITRE 5. USE CASES AND RESULTS FOR DEVICE ADAPTATION

the technique performs automatic translation of the scene perpendicular to the projection plane in
order to always minimize frame cancellation. The translation is computed by detecting the collision
between the scene and a plane slightly above the projection plane, and parallel to it, with the help
of the depth bu�er. Such a method can be compared to the Cyclopean Scale because it also avoids
important negative parallax values. Therefore, it reduces the possibility of simulating popping-out
e�ects.

Two visual e�ects based on alpha blending to avoid frame cancellation

The main drawbacks of current methods are �eld of view reduction, scene scale alteration or a
too rough clipping of virtual objects. Moreover no approach considers the horizontal edges of the
screen in case of X-aligned eyes while they may also occlude virtual objects in negative parallax.

That is why we introduce two approaches that aim at solving these drawbacks by proposing a
smoother technique based on alpha blending that will a�ect virtual objects in negative parallax.

Progressive Stereo Compatible Volume Clipping (PSCVC)

The main drawback of the stereo compatible volume clipping is the rough clipping of virtual
objects. This clipping may lead the observer to a visual discomfort. Particularly when the clipping
lets appear a virtual object behind the clipped one. That is why we propose to apply SCVC
progressively by doing the clipping with an alpha blending method in order to create a smoother
e�ect.

To compute the alpha value applied to each pixel (x, y), �rst we have to evaluate the distance
d(x, y) of the corresponding 3D point to the frame cancellation area. To do so, we compute the
distance of this 3D point to the plane that is supposed to clip the object in SCVC. This plane
selection is described in [Ardouin et al., 2011]. For non X-aligned eyes two planes can clip the
object for a camera. In that case we compute two distances, one for each plane, then the minimal
distance is taken to compute the alpha value (0: totally transparent, 1: totally opaque). The alpha
factor that linearly decreases when the 3D point gets closer to the plane is computed with respect
to the equation 5.1.

Alpha(x, y) = 1− d(x, y)− distMinP lane

distMaxP lane− distMinP lane
(5.1)

where distMinPlane is the distance where the transparency begins (Maximale opacity) and dist-
MaxPlane the distance where the transparency ends (Minimal opacity). Both values are expressed
in meters, distMinPlane can take a negative value in order to really clip the virtual object after
the SCVC planes. The alpha value is then clamped between 0.0 and 1.0. A result is given in �gure
5.6 where we apply progressive SCVC on the two spheres subject to frame cancellation. For this
image we have set distMinPlane to -0.02m and distMaxScreen to 0.05m, the sphere radius is 0.1m.
Compared with SCVC in �gure 5.5, we observe a smoother result that may lead to a better visual
comfort in frame cancellation situations.

Virtual alpha blended window (VABW)

As stereo compatible volume clipping [Ardouin et al., 2011], progressive SCVC considers the two
horizontal edges only in case of head-tracking with non X-aligned eyes. Even without head-tracking
the horizontal edges may occlude virtual objects in negative parallax and cause stereo cues con�icts.
The virtual alpha blended window aims to take into account this issue by considering vertical
edges of the screen as well as the horizontal ones in all cases. This approach consists in applying a
progressive alpha blending over the screen edges to the virtual objects in negative parallax for the
two cameras. Contrary to SCVC and progressive SCVC, with this e�ect, when an object is close
to a screen edge its rendering is a�ected for the two cameras. Indeed, we suppose that modifying
only one view can lead to an increased visual discomfort by generating a di�culty to fuse the two
images.

As for progressive SCVC, we propose to apply a linear decreasing alpha blending but this
time on the two axes of the screen. Our method considers the screen as a space where all pixels

5.3. ADAPTING THE VISUALIZATION: THE FRAME-CANCELLATION CASE STUDY 83

Figure 5.6 � Progressive SCVC applied to the virtual objects close the screen edges

coordinates take a value between [-1.0 , -1.0] (bottom left corner) and [1.0 , 1.0] (right top corner).
The transparency is computed in order to get a square with rounded angles shape in this space.
This shape is a "squircle" which is a particular case of a superellipse. A square shape would have
been really coarse on the screen corners, and a circle shape would have to much erase the objects
on these corners. For both cameras, for a pixel (x, y), we compute its alpha factor only if the
corresponding position in the 3D world is front of the screen (negative parallax). Concerning the
alpha factor computation, we �rst compute its distance to the squircle center. This computation
is described in equation 5.2.

d(x, y) = 4
√
x4 + y4 (5.2)

This value is then used to compute the alpha factor in equation 5.3.

Alpha(x, y) = 1− d(x, y)− distMinScreen

distMaxScreen− distMinScreen
(5.3)

Where distMinScreen is the distance where the transparency begins (Maximale opacity) and
distMaxScreen the distance where the transparency ends (Minimal opacity). The alpha value is
then clamped between 0.0 and 1.0.

As the alpha computation only depends on the 3D positions of the scene objects and to the
corresponding projected pixels positions, it is totally independent of a possible head tracking.

One possible result is given in �gure 5.7 where we apply our �lter on the two spheres subject
to frame cancellation. For this rendering we have set distMinScreen to 0.8 and distMaxScreen to
0.97. We can see on this �gure that the virtual objects are smoothly clipped by the horizontal and
the vertical screen edges: this clipping would have been rougher with state of the art approaches.

Implementation in 3DPlasticToolkit

In order to deal with frame cancellation in 3DPlasticToolkit we added a built-in high level task:
"FrameCancellationSolver". If the developer wants to handle frame cancellation in his/her appli-
cation he/she just has to de�ne this task as needed in the 3DPlasticToolkit con�guration �le. This
task and its compatible components are shown in Figure 5.8.

Our di�erent visual e�ects are implemented in the same application component which is de�ned
as compatible with the "FrameCancellationSolver" task. This component is shown in Figure 5.8.
The abstraction of this component is named "VisualE�ectFrameCanellationA". The abstraction
role is to collect the di�erent information about the current stereoscopic con�guration and com-
pute the view frustum of each camera. Then these information are transmitted to the rendering
presentation facet through the controller facet. The component is compatible with three rendering

84 CHAPITRE 5. USE CASES AND RESULTS FOR DEVICE ADAPTATION

Figure 5.7 � Virtual alpha blended window e�ect applied to the virtual objects close the screen
edges

VisualEffect Frame
Cancellation PAC Agent

Compatible with

Visual effect
Abstraction

Visual effect
Rendering

Presentation

Visual effect
Control

Visual effect
Supervision Control

Selected from

PSCVC SCVC VABW

Frame Cancellation
Solver
Task

ManipConstraint
FrameCancellationC

VisualEffect
FrameCanellationC

Compatible with

Figure 5.8 � The "FrameCancellationSolver" task and its compatible application components.
Here, the application component that applies a visual e�ect is described.

presentation facets that implement three di�erent e�ects: SCVC [Ardouin et al., 2011] from the
state of the art, and PSCVC and VABW our two visual e�ects.

In order to be deployed only if the screen is a �at stereoscopic screen the scores are set to a
positive value only in this case. This is done in the compatibility con�guration �le ful�lled by the
developer as detailed in Section 4.7. In other cases the components get a negative score and they
are not deployed. The part of the compatibility con�guration �le that set these scores is shown in
Listing 5.2.

The three e�ects are implemented in each rendering presentation facet with Surface Shader in

5.3. ADAPTING THE VISUALIZATION: THE FRAME-CANCELLATION CASE STUDY 85

1 <TaskCompatibility taskName="TaskFrameCancellationSolver" componentName="
VisualEffectFrameCanellationC" displayType="FLAT" score="1.0">

2 <PresentationCompatibility componentName="VisualEffectFrameCanellationC" presentatioName="
VisualEffectFrameCanellationSCVC" score="0.5"/>

3 <PresentationCompatibility componentName="VisualEffectFrameCanellationC" presentatioName="
VisualEffectFrameCanellationPSCVC" score="0.8"/>

4 <PresentationCompatibility componentName="VisualEffectFrameCanellationC" presentatioName="
VisualEffectFrameCanellationVABW" score="1.0"/>

5 </TaskCompatibility>

Listing 5.2 � The scores assigned to the visual e�ects that handle frame cancellation. The score
of the full application component is positive only if the main display is a �at screen. Here, the
biggest score is given to VABW e�ect.

Unity3D 4and are fully compatible with simple materials like di�use or specular and more complex
ones such as bumped, re�ective, etc. These e�ects are applied to every 3D objects in the scene. It
is also possible to apply the e�ects only on particular objects by tagging them.

One interaction technique that uses collision detection to avoid frustum
clipping

In order to avoid frame cancellation, in the context of an application that involves manipulations,
we propose to adapt the user interaction on the virtual objects by constraining the position of
the manipulated object into the Stereo Compatible Volume (SCV) described by Ardouin et al.
[Ardouin et al., 2011]. Indeed, when manipulating virtual objects, the user may place them in a
con�ict area corresponding to the outside of the red zones in Figure 5.4. That is why, we propose
a new approach to avoid such a situation during the object manipulation. Contrary to the method
introduced by Wartell et al. [Wartell et al., 1999], ours does not reduce the possibilities of creating
the popping out e�ect during the manipulation. This interaction technique is implemented in
the second application component compatible with the "FrameCancellationSolver" task, which is
named "ManipContraintFrameCancellation".

The goal of this component is to constrain the position of a manipulated object inside the SCV.
With this component, we attach to a manipulated object an encapsulating rigid body controlled by
a physics engine detecting collisions with the two cameras frustums modeled with collision planes.
The result is a collision detection between the object and the intersection of the two frustums. The
planes that de�ne the SCV are updated in real time in the physical engine according to the user's
head position. Then, according to the user's movements a collision detection algorithm ensures
that the manipulated object never gets outside the area de�ned by these planes. A particular case
to handle is when the user moves close to the screen. In that case the rigid body reacts as if it was
pushed by user's head. Actually, it is pushed by the intersection planes of the two frustums, which
ensures that the object is always free of stereoscopic con�icts.

If the size of a virtual object is taller than the screen's physical size, we can not move it in front
of the screen since our algorithm is going to keep it behind the screen plane because of the collision
with the frustums' planes. A solution to overcome this limitation can be a smart merge of this
collision detection-based approach with one of the visual e�ects presented before. For example,
the user could enable a scaling mode in order to increase the size of an object and see it with
more details. In that case, the collision detection algorithm may be disabled and one of our two
rendering e�ects may be enabled in order to reduce the frame cancellation e�ect, possibly caused
by the scaling. An illustrative use case is provided Figure 5.9.

For now, in 3DPlasticToolkit the application component that implements this adaptation also
includes the implementation of the manipulation. As perspective of work, this component must
become independent from the manipulation and must be possibly compatible with the di�erent
manipulation techniques presented in Chapter 4. Another possibility could consist in making this
component compatible with haptic devices thanks to the implementation of a particular logical
driver. Indeed, it would let the end-user physically feel the constraint of the SCV with haptic
feedbacks.

4http://docs.unity3d.com/Manual/SL-SurfaceShaders.html

86 CHAPITRE 5. USE CASES AND RESULTS FOR DEVICE ADAPTATION

Figure 5.9 � Illustrative use case (inspired from [Gaucher et al., 2013]) of the manipulation
technique smartly merging the two proposed approaches to handle frame cancellation. The user
is interacting with a virtual carousel carrying several virtual objects (1). The user can turn the
whole carousel and manipulate the front object. The object can be a map that the user can bring
very close to him/her with the collision detection-based approach activated (2). Then, he/she can
switch the manipulation mode to scale the map and perceive small details with the virtual alpha
blended window approach activated (3). The �rst line shows the scene from an external point of
view while the second line is captured from the user's point of view.

Conclusion

In this Section we demonstrate that 3DPlasticToolkit can be used in order to adapt the content
visualization to deal with a visual discomfort created by stereoscopy: frame cancellation. An inter-
action technique adaptation is also proposed to deal with this issue. Each e�ect is implemented in
an application component that is compatible with a built-in high level task that the developer can
de�ned as needed in 3DPlasticToolkit if he/she wants frame cancellation to be handled.

First, we propose two visual e�ects, PSCVC and VABW that are based on a progressive alpha
blending that lets the objects disappear close to the physical screen edges. These e�ects are im-
plemented in 3DPlasticToolkit with shaders and can be automatically deployed when the display
detected is a �at stereoscopic screen.

Second, we introduce a new approach designed for 3D user interactions. Instead of adapting the
rendering of objects in frame cancellation areas, the technique proposes to constrain the interaction
in order to avoid this kind of situation. The technique is based on a collision detection system in
order to constrain the manipulated object in the stereo compatible volume described by [Ardouin
et al., 2011]. This adaptation is also implemented in a 3DPlasticToolkit application component.

In Appendix A, we present an evaluation of these di�erent methods. A video of this evaluation
can also be found here: https://www.dropbox.com/s/o7bhfnrihdo313p/FrameCancellation.
mp4?dl=0.

5.4 Adapting the Visualization and the Interaction Techniques:
the Co-Manipulation Case Study

In the context of the IEEE 3DUI contest 2016, the goal was to propose a set of interaction techniques
in order to achieve collaborative manipulation tasks in VR. This contest consisted in a challenge
between multiple teams for the proposition of a solution adapted to the manipulation tasks. The
proposed tasks consisted in overcoming di�erent obstacles by moving, rotating and scaling an
object collaboratively. This kind of collaborative manipulation can be used to simulate industrial
tasks such as in an automotive factory where cumbersome objects must be carried by several
collaborators [Aguerreche et al., 2009]. Multiple constraints had to be respected such has integrating
a collaboration between two are more users with MR devices (no desktop ones). The proposition
also had to be innovative, easy to use and to learn and had to be tested on some provided 3D

https://www.dropbox.com/s/o7bhfnrihdo313p/FrameCancellation.mp4?dl=0
https://www.dropbox.com/s/o7bhfnrihdo313p/FrameCancellation.mp4?dl=0

5.4. ADAPTING BOTH: THE CO-MANIPULATION CASE STUDY 87

(a) (b) (c)

Figure 5.10 � Collaborative manipulation of a virtual object (here, a cube) based on an asymmetric
setting between two users who can be helped by two additional users. With 3DPlasticToolkit each
user bene�ts from the adapted interaction technique, the adapted point of view and the adapted
scene visualization according to his/her device setup in order to ensure an e�cient collaboration.
(a) The �rst participant has a global view of the scene and moves the object with a 3D bent ray. (b)
The second user is placed inside the object and precisely rotates and scales it. (c) Two additional
roles can be added. The �rst one helps to scale the object using a third person view of it. The
other one is a spectator who switches between the other participants' viewpoints and helps them
with oral communication.

scenes such as the labyrinth shown in Figure 5.10.
To do so, we proposed an asymmetric collaboration between two or more users with di�erent de-

vices (cf. Fig. 5.10). A presentation of this contribution in the video: https://www.dropbox.com/
s/w66xxgx5ivmc1rh/3DUIContest2016.mp4?dl=0. This choice to propose an asymmetric collabo-
ration and the needs to handle multiple devices and multiple interaction metaphors led to technical
constraints that have been easy to solve with 3DPlasticToolkit. In this scenario each person bene�ts
from a di�erent role according to his/her available devices thanks to our plasticity mechanisms.

With the help of 3DPlasticToolkit, adapted interaction techniques are automatically associated
to the suited users with our plasticity models. Therefore each user automatically bene�ts from
the interaction technique and the point of view that matches his/her device setup. The concrete
devices used in this demonstration can be exchanged by others with the same capacities thanks
to 3DPlasticToolkit. In the same way the interaction technique of each user could also work with
other types of devices if we implement other logical drivers. Some alternatives are proposed in
this Section. Moreover, we demonstrate that 3DPlasticToolkit is also used in order to adapt the
visualization of the scene for the users that wears an HMD. Indeed, this demonstration was also
the opportunity to test a visual e�ect inspired from the ones presented in Section 5.3 in order to
deal with cybersickness.

In this demonstration, the software framework that handles network synchronization is totally
independent from 3DPlastictoolkit. Indeed, the same software overlay of SmartFox as the one
discussed in Section 5.2 is used to manage collaboration.

Roles and interaction techniques

For this demonstration of 3DPlasticToolkit, we propose an asymmetric collaboration where each
user bene�ts from interaction capabilities adapted to his/her interaction devices in order to move,
rotate and scale a virtual object. As proposed by Pihno et al. [Pinho et al., 2002], our approach
splits the DOF of the manipulated object between collaborators in order to maximize the system
e�ciency. Our approach is based on two main roles. First, the Giant has a global viewpoint of
the scene and controls the object's translation. Second the Ant is inside the object and sets its
scale and rotation. In our shared multi-scale VE, this approach allows the Giant to quickly move
the object, while the Ant performs better accurate transformations. Two other uses can also be
included. The helping user with a 3rd person viewpoint of the object can also set the scale of the
manipulated object by asymmetrically integrating its action with the Ant 's one. A spectator can
also be included, he can share one of the other participants' viewpoints. The visualization of the
scene is also adapted to each hardware setup. Indeed, the interaction technique for the Ant also

https://www.dropbox.com/s/w66xxgx5ivmc1rh/3DUIContest2016.mp4?dl=0
https://www.dropbox.com/s/w66xxgx5ivmc1rh/3DUIContest2016.mp4?dl=0

88 CHAPITRE 5. USE CASES AND RESULTS FOR DEVICE ADAPTATION

displays some feedbacks to help him/her during his/her manipulation task. As this user is also
moved by the Giant, we also propose a visualization adaptation that consists in a visual e�ect
that aims at reducing cybersickness. Indeed this situation can cause symptoms similar to motion
sickness [Fernandes and Feiner, 2016] such as headaches, nausea, fatigue and disorientation, which
can really decrease the user experience.

The collaborators bene�t from complementary interaction techniques to perform collaborative
manipulation tasks that need translating, rotating, and scaling. An example of manipulation task
that we have tested is given in Figures 5.10a, 5.10b and 5.10c. The goal is to pass a cube through
a labyrinth while maximizing the �lling of this labyrinth with the manipulated object.

In 3DPlasticToolkit, the application of each user is exactly con�gured in the same way with
two high level tasks:

• "CollaborativeMazeManipulation": this is the main task of the application. Each appli-
cation component compatible with this task gives to the user the possibility to manipulate
the object. As said, our collaboration is asymmetric, therefore each application component
implements a particular role for the end user and does not give him/her the same interaction
capabilities.

• "CybersicknessSolver": as some users with HMDs may be moved in the VE during the
simulation, it could disturb them and create a cybersickness e�ect. Therefore, we added a
built-in high level task and compatible application components that aim at reducing cyber-
sickness.

Global View: the Giant

As illustrated in Figure 5.11, the �rst user has a global view of the scene and can roughly manipulate
the object in order to move it really fast in easy passages. This user can translate the object. As
shown in Figure 5.10a, in our scenario this �rst user is interacting on a zSpace. This device is
composed of a 3D stereoscopic display with head tracking and of a 3D tracked stylus for interacting.
The zSpace screen is used to create a window to the VE.

In 3DPlasticToolkit, the application component compatible with the "CollaborativeMazeMa-
nipulation" task and that is deployed in this case is named "GiantManipulation". With this com-
ponent, the user on the zSpace (Giant) can translate the object with a bent ray inspired from the
interaction technique proposed by Riege et al. [Riege et al., 2006]. With the currently implemented
logical driver, the ray is controlled in position and rotation by the stylus tracked by the zSpace.
One button is used for object grabbing, and the other buttons are used to switch between four
point of views: front, left, back and right. The ray is bent during the object translation in order to
respect three constraints:

(a) (b)

Figure 5.11 � The Giant has a global view of the scene. He can translate the object with a 3D
bent ray.

5.4. ADAPTING BOTH: THE CO-MANIPULATION CASE STUDY 89

• The physical collider of the object avoids it to pass through other objects. The ray is bent
accordingly.

• We limit the ray extremity speed when an object is grabbed. The goal is to not disturb the
distant user inside the manipulated object and reduce his/her cybersickness.

• Third, a last constraint is optional. We added an active help for the translation. It is a
magnetic path that represents the perfect path to follow. The manipulated object can be
connected to the closest point on this path and the ray is bent accordingly.

To make the others understand the Giant 's actions, his head, stylus and 3D ray are rendered
in the shared environment.

For this user, nothing is deployed for the "CybersicknessSolver" task. Indeed, this user only
sees the VE through a small stereoscopic screen. Therefore the user is not fully immersed in the
VE and the cybersickness e�ect is reduced.

Micro View: the Ant

(a) (b)

Figure 5.12 � The Ant is placed inside the manipulated object. He can rotate and scale the object.
He can also see where is the Giant (the blue head).

For this role, the user is placed inside the manipulated object as illustrated in Figure 5.12. This
position enables him/her to manipulate the object with a �ne accuracy. His/her role is essential
to overcome di�cult passages and maximize the courses �lling by the object. He/she can scale the
object and he/she can rotate it. His/her scale in the scene also o�ers him/her direct interaction
possibilities such as pushing buttons to trigger di�erent actions. The second user visualizes the
scene with a Head-Mounted Display (HMD), here an Oculus Rift as shown in Figure 5.10b. He/she
is interacting with a Razer Hydra composed of two 3D tracked controllers.

In 3DPlasticToolkit, the application component compatible with the "CollaborativeMazeMani-
pulation" task and that is deployed in this case is named "AntManipulation". To be deployed with
the presented logical driver, this component needs two available 6-DOF controllers with buttons.
With this component the Ant is placed inside the manipulated object. The logical driver of the
component enables him/her to scale and rotate with the two Razer Hydra controllers thanks to
bimanual metaphors inspired from the work of Cutler et al. [Cutler et al., 1997]. These manipula-
tions are performed with a �x reference: the object front face. This reference face can be changed
with the Razer Hydra joysticks. With this application component, as shown in Figure 5.13a, the
rotation is made with a modi�ed version of the grab-and-twirl metaphor. Compared to the classical
version, the pitch rotation is performed with a metaphor close to a plane yoke by orienting the two
controllers to the top or to the bottom. The scale of the object is uniformly controlled with a grab-
and-scale metaphor by bringing closer or further the two Razer Hydra controllers while pushing
two corresponding buttons (cf. Fig.5.13b). Manipulations of the object are physically constrained,
thus, it can not pass through an obstacle. Two visual feedbacks are rendered to make the Ant
understand the distance between the manipulated object and possible obstacles. First, we render
particles at the collision points. Second, a virtual grid visible in blue at bottom in Figure 5.10b,
parallel to the user current front face, is displayed outside of the object.

90 CHAPITRE 5. USE CASES AND RESULTS FOR DEVICE ADAPTATION

(a) (b)

Figure 5.13 � The two metaphors used by the Ant to rotate and scale the manipulated object.

With our plasticity models and 3DPlasticToolkit, this role could be also available on other
kinds of devices. For instance, it could be seamlessly adapted to a platform composed of an HMD
and of a 6-DOF controller. The interaction would remain the same. Desktop devices could also be
used. Indeed, the bent ray could be controlled with a 2D mouse as for the 3D ray-based interaction
technique introduced in Section 4.5.

In some particular situations, local interactors can be integrated at scale one in the VE. For
instance, in the example given in Figure 5.14, virtual buttons are available in the scene for trig-
gering di�erent actions such as opening doors. These virtual buttons are too smalls for the Giant.
Therefore, as the application component also renders the Razer Hydra controllers in the VE. They
can be used by the Ant to interact with these local interactors. Here, by touching one virtual button
with one of the controller, the Ant can trigger the corresponding action. Our plasticity models are
used to render these controllers automatically into the VE. We exploit the description of the device
that is associated with the current logical driver. Indeed, as detailed in Section 4.4, with our device
model we can get the list of physical objects from the device and each of these physical objects can
be described with the path of 3D model that represents it. Here, we transmit these paths to the
rendering presentation that loads and displays the associated models of the controllers. This is a
good example of how the physical representation of a device included in our device model can be
used to adapt the application. For example, if the Oculus Rift and the Razer Hydra were replaced
by an HTC Vive, the 3D models that correspond to the controllers of the Vive would seamlessly
replace the Razer Hydras ones in the VE.

To guide the Ant when he/she is placed in a closed environment such as the provided labyrinth,
di�erent spatial cues can help him/her. They are shown in Figure 5.10b. First, a World-In-Miniature
[Stoakley et al., 1995a] shows a third person view that focuses on the manipulated object. Second,
an arrow simulates a compass to show him/her the direction to follow. Third, in the labyrinth, the
path to follow is also indicated with arrow signs.

Regarding the "CybersicknessSolver" task, the Ant is totally immersed in the VE and can
be moved by the Giant. Therefore, here we deploy an application component that implements a
visual e�ect that aims at reducing the cybersickness experienced by this user. The e�ect can be
compared to the one propose by Fernandes and Feiner [Fernandes and Feiner, 2016], which consists
in dynamically adapting the �eld of view dimension in order to reduce cybersickness. Our e�ect
is also inspired from the visual e�ects that we have proposed and compared in Section 5.3 for
dealing with frame cancellation. Our e�ect does not just reduce the �eld of view but it also makes
the peripheral view of the user consistent with his/her head movement. Therefore, as shown in
Figure 5.15, at the center of his/her view the user still views the VE while in the extremities of
his/her viewport we display something consistent with his/her head movement. The transition is
exactly the same as the one presented in Section 5.3 for the VABW e�ect. Indeed the VE rendering

5.4. ADAPTING BOTH: THE CO-MANIPULATION CASE STUDY 91

Figure 5.14 � As the Ant is placed at scale one in the shared VE, he/she has direct interaction
capabilities with this VE. For instance, here it can push a virtual button in order to trigger an
action in the scene (here, open a door). This kind of actions could not be performed by the Giant.

is progressively faded to head consistent area of the viewport by decreasing its opacity with the
"squircle" distance formulate detailed in 5.2. This e�ect is applied before the viewport deformation
applied by the HMD. We have experimented two kinds of contents on the peripheral view:

• A grid displayed on a �xed object. Here as shown on top right of Figure 5.10b, the user
is placed inside a virtual object (a cube or a sphere) that is always �xed. The texture of
this object is a simple grid. When the user is translated this object follow the user's head
position. In this demonstration, as the user is placed inside the manipulate cube, the e�ect
is directly applied on it.

• The images from two additional cameras. This case is possible if the HMD used is
a video see-through HMD. We tested this e�ect with the OVRvision mentioned in Section
2.3.2. Therefore, as shown in Figure 5.15 the peripheral view will be ful�lled with the real
world view, which will be consistent with the user's head movement.

With this kind of e�ect, the user's peripheral view is less disturbed by translations performed
by the Giant. Some preliminary evaluations of this e�ect have been performed in another context
and have shown good results. However, a formal evaluation of the e�ect needs to be performed if
we really want to validate its e�ciency. As shown in Figure 5.15, the area of the peripheral view
is adjustable. Contrary to the e�ect proposed by Fernandes and Feiner [Fernandes and Feiner,
2016], for now, the area is �xed at runtime. Nevertheless, the impact of this area should also be
investigated. One of our hypothesis is that the cybersickness feeling will decrease when we increase
this area. If this hypothesis is veri�ed it would let us dynamically adapt this area if we are able
to measure the importance of cybersickness felt by the end user, for instance with physiological
sensors.

Thanks to our plasticity models the devices used could be seamlessly replaced by equivalent
ones. For instance, the combination Oculus Rift/Razer Hydra could be replaced by the HTC Vive
that is composed of an HMD and two 6-DOF controllers with buttons. The Razer Hydra could also
be replaced by the STEM system 5 that also provides similar tracked controllers. We could also
imagine another logical driver or another application component in order to change the interaction
technique of the Ant. For example, an haptic device could be used to change the position, the scale
and the orientation of the manipulated object. In that case, haptic feedbacks would help the Ant
to understand the presence of close obstacles. With our plasticity models and 3DPlasticToolkit,
these adaptations can occur at runtime. It could allow the end-user to change dynamically his/her
way to interact with the application only by replacing a device currently plugged by another one
(equivalent or not).

5http://sixense.com/wireless

92 CHAPITRE 5. USE CASES AND RESULTS FOR DEVICE ADAPTATION

Viewport for one eye

Grid

Camera

Head ’s movement
Consistent
Peripheral

effect

Virtual
Environment

Adjustable
distance

Figure 5.15 � Our peripheral e�ect that aims at reducing cybersickness. This e�ect makes the
peripheral view of the user consistent with his/her head movement. It progressively blends the
rendered VE on the screen extremities to a grid displayed on a �xed object or to the images
acquired by the cameras of a video see-through HMD.

Third Helping User

This user has a third person view of the manipulated object. His/her role is to help the Ant to
scale it. Therefore, the scaling capability is shared by these two users. This role and this interaction
technique are designed for a user that does not have any 3D interaction device. The application
component that corresponds to this technique and that is compatible with the "CollaborativeMa-
zeManipulation" task is named "ScalerHelperManipulation". In our scenario, as shown in Figure
5.10c, the third user is interacting with a GearVR6, an HMD with a 2D trackpad. The component
"ScalerHelperManipulation" is automatically deployed for the "CollaborativeMazeManipulation"
task by 3DPlasticToolkit when the current device used is a GearVR or an equivalent one. In
3DPlasticToolkit, the logical driver compatible with the application component that corresponds
to this role modi�es the scale with slide gestures on the GearVR trackpad.

The scale control is shared between the Ant and this third helping user. To solve this concur-
rency, we add the factors that the two users want to apply to the scale. The scale is modi�ed by
taking care of environmental physical constraints.

As explained in the previous Section, thanks to our automatic adaptation process, the appli-
cation component that implements the anti-cybersickness �lter is also deployed because in our
scenario this user is also wearing an HMD (the GearVR). In the same way, a virtual sphere is
placed around the user head with the transparency e�ect as shown in Figure 5.15.

For this role, as the task to perform is relatively simple, a lot of di�erent other devices could
be used thanks to 3DPlasticToolkit. For example, a logical driver could be implemented in order
to use vocal commands in order to change the scale or simply uses two buttons or one joystick. For
the display, another HMD or a simple screen could also be used.

Spectator

The last role is a spectator. The application component that corresponds to this technique and that
is compatible with the "CollaborativeMazeManipulation" task is named "SpectatorManipulation".
In our scenario shown in Figure 5.10c, the device used is a Google Cardboard 7. The component

6http://www.samsung.com/fr/galaxynote4/gear-vr/
7https://www.google.com/get/cardboard/

5.5. CONCLUSION 93

"SpectatorManipulation" is automatically deployed for the "CollaborativeMazeManipulation" task
by 3DPlasticToolkit when the current device used is a Google Cardboard or an equivalent one
equipped with at least one button. This component for this user is really simple. It only lets the
user switch between the other participants' viewpoints. Multiple spectators can be included in the
shared VE. A spectator cannot really act on the manipulated object but he can help the other
users by giving oral instructions. For changing the point of view, the user has to pull the Cardboard
trigger. Indeed, the logical driver of the application component that corresponds to the spectator
only needs a button to work. Therefore, thanks to 3DPlasticToolkit the spectator can be deployed
on a wide variety of platforms, even the more simple ones. A desktop platform could have also been
used as well as a simple tablet. Another kind of logical driver could have also been implemented,
for example one that use vocal commands in order to change the point of view.

If a HMD is used as display such as here with the Google Cardboard, the component that
corresponds to the anti-cybersickness �lter is deployed as explained in the two previous Sections.
This is also needed for the spectator as he/she can follow a point of view that can move.

Conclusion & Perspectives

This application lets us demonstrate that 3DPlasticToolkit can be used to develop collaborative
applications context and to adapt the interaction techniques and the visualization of each partici-
pant according to their available devices. This demonstration has received the second price of the
IEEE 3DUI contest 2016.

For this application our plasticity models and 3DPlasticToolkit have been used to develop
each interaction technique independently from concrete devices. Therefore, the application can be
seamlessly adapted on a wide variety of platform that are equivalent to the currently used ones.
Moreover, with the development of other logical drivers or other application components, it could
be possible to use other type of devices. For instance, haptic devices could be exploited in order
to help the di�erent users to feel the obstacles. It has not been exploited for the 3DUI contest but
the possibility given by our models to change dynamically the application at runtime (with the
meta-user interface or by plugging new devices) could really bene�t to the application. Indeed, it
would allow the end-user to try dynamically other ways to interact with the application.

5.5 Conclusion

In this Chapter, we present three applications that enable us to demonstrate how our plasticity
models can be used in order to adapt the interaction techniques and the content visualization. The
�rst application demonstrates how 3DPlasticToolkit has been used to develop a furniture planning
application. This application can be run on a wide variety of device setups thanks to our solution.
The second one presents two visual e�ects that can be applied with 3DPlasticToolkit. These e�ects
aim to reduce a visual discomfort experienced by users with stereoscopic displays named frame
cancellation. A formal evaluation of these e�ects has been performed and have shown good results.
The last application proposes a collaborative scenario where multiple users collaboratively perform
manipulations tasks. For this application, we propose an asymmetric approach. Indeed, with the
use of 3DPlasticToolkit, each user automatically bene�ts from adapted interaction techniques and
from an adapted visualization of the scene according to his available devices.

From our point of view, the use of 3DPlasticToolkit has really simpli�ed and accelerated the
developments of these applications. Nevertheless, feedbacks from other developers would be needed
in order to demonstrate its e�ciency. A formal evaluation of 3DPlasticToolkit is discussed in the
perspectives of this thesis.

Nevertheless, with the development of these applications some perspectives of work for im-
proving our solution have been identi�ed. The re-usability of the components could be improved.
Indeed, even with the similarity between some components used in the furniture planning appli-
cation described in Section 5.2 and in the co-manipulation one 5.4, none have been used in both
demos. A possible amelioration of this aspect could be to decompose application component into
multiple ones. An interaction technique, a visual metaphor or a widget will then be a combination
of multiple connected application components. However, such an approach would also increase the

94 CHAPITRE 5. USE CASES AND RESULTS FOR DEVICE ADAPTATION

number of classes to develop in order to create an interaction technique or a widget and therefore
it would complexify developments. With the di�erent demonstrations we also noticed the need to
support user adaptation. Indeed, as some interactions can be compatible with the same device
setup, the choice is given to the developer that edits the compatibility scores. In the same way, for
the di�erent visual e�ects that we propose, the developer also chooses which one is applied. The
only way for the end-user to change the automatically chosen interaction technique or visual e�ect
is to use the meta-user interface. A better solution could be to take into account the user proper-
ties and preferences during the automatic adaptation process. This aspect of 3DPlasticToolkit is
discussed in Chapter 7.

Chapitre 6

Device Adaptation: the Speci�c Case

of Redistribution

6.1 Introduction

In the previous Chapter we focused on recasting according to the device context. As said in Chapter
3, recasting is one means of adaptation of plasticity. The second means of adaptation is redistri-
bution. A Distributed User Interface (DUI) is a user interface whose components are distributed
across di�erent dimensions such as platforms, displays and users [Elmqvist, 2011] [Melchior et al.,
2009]. For instance, these components can be widgets, interactors, or content. The redistribution
capability of an interactive system refers to its property to change statically or dynamically its
components distribution [Calvary et al., 2004a]. It can include migration and replication mecha-
nisms.

Sources

Targets

Time

Content

Interaction techniques

Data

User and their environment

Hardware

R
u

n
ti

m
e

C
o

m
p

ile
-t

im
e

U
se

r

Sy
st

em

Controller
Recasting

And
Redistribution

D
ev

el
o

p
er

/D
ep

lo
ye

r

Figure 6.1 � Regarding our design space problem of plasticity for MR user interfaces, this chapter
is interested in allowing the end user to change dynamically the distribution of a MR user interface.

The need for redistribution can be explained in di�erent ways. Indeed, today, users have access
to a wide variety of platforms such as mobile devices, desktop computers and immersive systems.
Therefore, users are more frequently confronted with situations where they have to move from
one platform to another [Demeure et al., 2008]. They need interaction continuity between these
changes. Moreover, combining di�erent platforms can give new interactions prospects to users.
These possibilities directly refer to "distributed user interfaces" (DUI) and redistribution.

95

96 CHAPITRE 6. DEVICE ADAPTATION: THE SPECIFIC CASE OF REDISTRIBUTION

In this Chapter, as detailed in Figure 6.1, our focus is on allowing the end user to change
dynamically the distribution of a MR user interface. Our contribution is D3PART (Dynamic 3D
Plastic And Redistribuable Technology), a new model for developers for the design of MR user
interfaces that can be dynamically redistributed across di�erent dimensions: platform, user and
display. The model is totally implemented into 3DPlasticToolkit. This model has been published
in [Lacoche et al., 2016].

This Chapter is structured as follows: �rst we review the details of the redistribution concept
and we present some related work. Second, we give an overview of D3PART. To continue, we
describe the D3PART model and its integration into 3DPlasticToolkit. Then, we present how the
redistribution process can be controlled with the meta user interface. Next, we present the three
examples of redistribution between a tablet and an immersive multi-display system based on our
furniture planning application presented before. Last, we give some directions for future work and
we conclude about redistribution.

6.2 De�nitions and Related Work

A DUI is a user interface which components are distributed across di�erent dimensions [Elmqvist,
2011]. For MR user interfaces we consider three dimensions of distribution from the ones described
in [Elmqvist, 2011] and [Melchior et al., 2009]:

• Display. The application content is displayed on one or multiple devices. Common examples
in 3D for this kind of distribution are multiple display systems.

• Platforms. The application runs on a single computing platform or is distributed across
multiple ones. These platforms may be heterogeneous (operating system, computing power,
plugged devices). For 3D applications, in that category we can talk about cluster approaches
that combine connected homogeneous computers to run a VR application with high perfor-
mances. It can also concern interactive systems where the interactors of a same application
are distributed across di�erent platforms.

• Users. In that case the application is shared by multiple users. This dimension is directly
linked to the two other ones as the di�erent participants can use di�erent displays and
platforms. In 3D, this dimension directly refers to Collaborative Virtual Environments (CVE).
The �eld of CVE includes concepts for sharing virtual worlds between di�erent platforms and
users.

Redistribution consists in changing the distribution of an interactive system on these di�erent
dimensions. According to Demeure et al. [Demeure et al., 2008], redistribution can be system-
initiated (the system performs automatically the redistribution), user-initiated (the user initiates
and parametrizes the redistribution), or mixed-initiated (the user and the system collaborate to
perform the redistribution). According to Calvary et al. [Calvary et al., 2002b], redistribution can
be performed on the �y (at runtime) or between sessions and the redistribution granularity may
vary on four levels, application, workspace, domain concept and pixel:

• At application level, on the platform or user dimension, the application is fully replicated
or fully migrated on a distant platform. The application may be adapted to its new context of
use, which can include platform capabilities and user preferences. Full replication implies state
synchronization to maintain consistency between the di�erent instances of the application.
On the contrary, for a full migration, each platform runs its own independent version and no
synchronization is performed. For instance, Bandelloni and Paterno [Bandelloni and Paternò,
2004] present a bank 2D application that can fully migrate from a PDA to a PC while
keeping the application runtime state during the process as shown in Figure 6.2a. The solution
considers the di�erent platforms capabilities in order to adapt the application's appearance
and behaviour. In the same way, such example can also be found on the consumer market
with the Nintendo R© Wii UTM1. With this console, the migration is not automatically done

1http://www.nintendo.com/wiiu/features/

6.2. DEFINITIONS AND RELATED WORK 97

but chosen by the user in the case that he does not or cannot play on his/her television
anymore. The game totally migrates on the gamepad and the user can continue his/her game
as he/she would have done on his/her television.

• At workspace level, workspaces can be redistributed on the platform, display and user
dimensions. A workspace is an interaction space that groups together interactors that support
the execution of a set of logically connected tasks. In graphical user interfaces, a workspace
can be considered as a window. For instance, the painter metaphor [Rekimoto, 1997], shown
in Figure 6.2b, includes two workspaces: the palettes of tools on a mobile device and the
drawing area on an electronic white board. In the same way CamNote [Demeure et al., 2005]
is a slides viewer that proposes to migrate a remote controller from a PC to a Smartphone.
This controller allows the navigation in a presentation displayed by the PC.

• At domain concept level, physical interactors can be redistributed on the di�erent dimen-
sions. In 3D, it corresponds to the interaction techniques and widgets. A lot of example of
this kind of distribution can be found in the �eld of MR user interfaces. For instance, BUILD
IT [Rauterberg et al., 1998] is a tool dedicated to the design of factories. It is composed of
two projective displays. A horizontal one allows the users to have a 2D view of the factory
and provides them 2D interaction for object manipulation. A vertical display provides a pers-
pective view of the result. In the same way, for data visualization, Slice WIM [Co�ey et al.,
2011], shown in Figure 6.2c, combines an interactive multi-touch table and a stereoscopic
display in order to provide at the same time an overview of the data as well as a detail view.
To continue, in [Medeiros et al., 2013], physical interactors for navigation, pointing and ap-
plication control are distributed on a tablet in order to interact with content in an immersive
system. In all cases the system distribution is hard-coded. It is not performed automatically
as it has only been designed to work with these two platforms.

• At pixel level, view continuity is ensured across di�erent displays thanks to a distribution
on the display and the platform dimensions. In 3D, this kind of redistribution is performed
for multiple display systems. In this case, an application can be distributed on a cluster of
PCs and rendered on multiple displays with view continuity. A common example of such
system in VR is the CAVE system [Cruz-Neira et al., 1992] shown in Figure 6.2d.

In order to handle redistribution on the di�erent dimensions and at the di�erent levels of
granularity, solutions designed for 2D user interfaces can be found. For instance, VIGO [Klokmose
and Beaudouin-Lafon, 2009] is an architecture that supports ubiquitous instrumental interaction
among multiple devices and computers. It proposes an alternative to the MVC design pattern
(Model-View-Controller) [Reenskaug, 1979] speci�cally designed to create distributed interfaces.
The 4C reference framework [Demeure et al., 2008], introduced by Demeure et al., is divided in
four dimensions: computation, communication, coordination, and con�guration that capture the
what, when, who, and how aspects of the distribution. It provides a meta-user interface in order
to control the redistribution process. To continue, Melchior et al. [Melchior et al., 2009] propose a
peer-to-peer architecture for the creation of DUIs. It includes mechanisms for widgets migrations
and for the adaptations of the widgets representations and interactions according to the context
of use. Moreover, ZOIL [Zöllner et al., 2011] is a software framework for the developement of
post-WIMP ("Windows Icons Menus Pointer") distributed user interfaces. It proposes a client
server architecture with a transparent persistent mechanism for the synchronization of a multi-
user/multi-display/multi-device visual workspace. In the same way, the PolyChrome [Badam and
Elmqvist, 2014] is a web application framework that supports the creation of distributed web-
based applications for data visualization. The framework handles synchronous and asynchronous
collaboration on multiple devices. It handles interaction sharing and synchronization among devices
with a secure peer-to-peer (P2P) network. Persistent data and consistency are managed by a
dedicated server.

In the �eld of MR user interfaces, solutions to create DUIs also exist but they mainly focus on
speci�c cases and do not let the end-user change the system distribution at runtime. One speci�c
case handled in 3D and cited before is the case of clusters of computers that manage multiple

98 CHAPITRE 6. DEVICE ADAPTATION: THE SPECIFIC CASE OF REDISTRIBUTION

(a) (b)

(c) (d)

Figure 6.2 � Four examples of distribution at di�erent levels.(a) A bank application that can be
redistributed at the application level [Bandelloni and Paternò, 2004]. (b) The painter metaphor
[Rekimoto, 1997] is an example of distribution at the workspace level. (c) Slice WIM [Co�ey et al.,
2011] is an example of distribution at the domain concept level. (d) A CAVE [Cruz-Neira et al.,
1992] is an example of distribution at the pixel level.

display systems such as CAVEs, Holostages, or Workbenches. In that case the system distribution
is performed on the platform and display dimensions. The VR Juggler [Bierbaum et al., 2005]
framework and MiddleVR2, already described in Section 4.2, propose cluster solutions based on
client-server architectures. The second speci�c case handled in 3D is the �eld of CVE that needs
a distribution at the platform and user levels. This implies a state synchronization between the
di�erent users' platforms in order to maintain a consistent application. Some architectures for CVE
are reported in [Fleury et al., 2010]. They describe three main types of synchronization architecture:
client-server, peer-to-peer and hybrid architecture which use both peer-to-peer connections and one
or several servers.

In this Chapter, we introduce D3PART a solution that can handle redistribution on the plat-
form, display and user dimensions that considers the 3D speci�cities. In our case, the redistribution
is user-initiated and controlled with an integrated user interface. We focus on redistribution for
MR user interfaces at application, workspace, and domain concept levels. Pixel level on clusters
of PCs is not covered. Indeed, we consider that handling redistribution at the pixel level with
high performances expectations is already a mature �eld of research while the other levels are less
explored in 3D. With the integration of this model in 3DPlasticToolkit, any application developed
with our software solution automatically bene�ts from redistribution capabilities.

6.3 Overview

D3PART (Dynamic 3D Plastic And Redistribuable Technology) is a new model for developers
dedicated to the design of MR user interfaces that can be dynamically redistributed across di�erent
dimensions: platform, user and display. The model is totally implemented into 3DPlasticToolkit.

As shown in Figure 6.3, D3PART is placed on top of the models presented in Chapter 4 and
includes a redistribution process that consists in distributing the high level interaction tasks and

2http://www.middlevr.com/middlevr-sdk

6.4. ADD REDISTRIBUTION TO 3DPLASTICTOOLKIT: D3PART 99

Device model

Task model

Application
Component

model

Context models

D3PART Model for Redistribution

Adaptation process
for

dynamic recasting

Taken into
account

Drives
deployment
at runtime

Redistribution
process Can create a new

task distribution
across multiple

platforms

Handle Virtual
Environment

replication and
synchronization

Needs it in order
to handle local

adaptations

Figure 6.3 � The D3PART model consists of a redistribution process combined with the local
adaptation mechanisms presented before.

the virtual environment of a 3D application across these di�erent dimensions. D3PART is combined
with our previously described adaptation process that ensures that a redistributed application will
�t any local context of use. At runtime, we use a client-server architecture to automatically detect
new platforms and also to synchronize the di�erent instances of a redistributed application. The
redistribution process is user-initiated. Indeed, an integrated user interface is provided to the end
user in order to enable him to choose the new distribution of the system.

To illustrate our solution, we present three di�erent scenarios of redistribution between a tablet
and an immersive multi-display system for a furniture planning application. This prototype is
developed with a toolkit that implements the D3PART model. In these examples, we show how
the virtual environment and the interaction tasks can be distributed across the two platforms in
order to combine them, to switch seamlessly from one platform to the other one and also to create
a collaborative context of use.

6.4 Add Redistribution to 3DPlasticToolkit: D3PART

As explained in Chapter 4, 3DPlasticToolkit handles dynamic recasting according to the available
devices and therefore a developer can create an application that can be adapted to the capabilities
of a wide variety of platforms. D3PART aims to go further local adaptations and to bring to
3DPlasticToolkit the possibility to change the distribution of any developed application.

D3PART can be integrated in any application implemented with the models presented in Chap-
ter 4. An application is composed of multiple tasks that represent at a high level the application
behavior and possibilities. It is also composed of its 3D content (the virtual environment). At this
point, thanks to our models the application supports recasting, it can be adapted locally on a
wide variety of platforms. In order to add D3PART in such an application we propose a built-in
high level task and its corresponding application component. This task and this component allow
any developer to add redistribution capability to an application. To do so, the task has just to be
de�ned as needed in the 3DPlasticToolkit con�guration �le. By de�ning this task as needed, the
application can still support local adaptations (recasting) but it can also now be redistributed on

100 CHAPITRE 6. DEVICE ADAPTATION: THE SPECIFIC CASE OF REDISTRIBUTION

Platform 1 Platform 2
Redistribution

Server

Virtual
Environment

Application State

Tasks

Virtual
Environment

Tasks

Application State

Virtual
Environment

Application State

Tasks

Virtual
Environment

Tasks

Application State

Virtual
Environment

Application State

Tasks Tasks

Application State

Virtual
Environment

1- Connection
to the server

2 -High level tasks
Redistribution

Example :
Task 2 replicated
Task 3 migrated

3- Virtual Environment
Replication

4- State Synchronization

Redist

Redist Task
1

Task
2

Task
1

Task
2

Task
2

Task
3

Task
2

Task
3

Task
1

Task
2

Task
3

Redist

Redist

Redist

Redist

Figure 6.4 � With D3PART, the redistribution process is performed in four steps. First, the
di�erent platforms connect to the redistribution server. An empty application runs on these distant
platforms. It only contains the redistribution task. Then, the user initiates a new distribution of the
system with the meta-user interface. Here he chooses to replicate the task 2 and to migrate the task
3 to a second platform. For these two tasks, thanks to the dynamic recasting mechanism handled
with our adaptation process, compatible application components are automatically deployed on
the second platform that �ts its capabilities. The third step consists in replicating the VE from
the �rst platform to the second one. It includes 3D meshes, their materials, and sound assets. We
ensure that the state of the application remains consistent during the redistribution. Then in the
last step, the redistribution server ensures state synchronization between the two platforms while
the applications are running.

multiple platforms, users and displays. The redistribution process has a strong dependency to the
adaptation process (recasting) as it ensures usability continuity whatever the new chosen distribu-
tion. In the �nal application, a new distribution of the system will be intended by the end-user.
The application component for redistribution is also de�ned with the extension of the PAC and
ARCH models described in Section 4.5. No logical driver is de�ned as no speci�c interaction de-
vice is needed by this component. The abstraction facet contains the redistribution logic and the
rendering presentation facet contains the parts that are dependent on the targeted 3D framework.
This component implements a redistribution process that consists in distributing the high level
tasks and the virtual environment across the di�erent dimensions: platform, display and user.

Regarding the process, redistribution needs a connection mechanism between the di�erent plat-
forms. This is needed for platforms discovery and state synchronization. To do so, we use a client/-
server architecture to which the di�erent platforms can register. For now, this feature is implemen-
ted with the network capabilities of the targeted 3D framework. Therefore, it is integrated into
the rendering presentation facet. We chose this solution in order to rapidly create prototypes. As
proposed in the 4C reference framework [Demeure et al., 2008], this component implements an

6.4. ADD REDISTRIBUTION TO 3DPLASTICTOOLKIT: D3PART 101

1 <TaskConfig>
2 <NeedTask taskName="SelectionManipulation" taskId="0"/>
3 <NeedTask taskName="FurnitureControl" taskId="1" topTask="0"/>
4 <NeedTask taskName="Navigation" taskId="2"/>
5 <NeedTask taskName="Redistribution" taskId="3">
6 <ParamTask serverIp="127.0.0.1"/>
7 </NeedTask>
8 </TaskConfig>

Listing 6.1 � The XML task con�guration �le of the furniture planning application in the case
that redistribution has to be handled. To do so, the redistribution task has to be added in the
list of needed tasks. As shown, this task is parametrized with the redistribution server IP.

integrated user interface for platform registration and control redistribution process: the meta-user
interface. In our case, the redistribution is performed at runtime and is user-initiated. Indeed, the
meta-user interface is proposed to the end-user of the application. The interface can be shown and
hidden at runtime with a graphical button or a device button depending on the context of use.
The redistribution process is then performed in four di�erent steps as shown in Figure 6.4.

The �rst step consists in connecting to the redistribution server. The IP address of the server
can be given in the meta-user interface or the XML task con�guration �le as shown in listing 6.1.
This step must be performed on the platform where the application is running and on each platform
that must be available for redistribution. An empty application developed with 3DPlasticToolkit
runs on these distant platforms. The only task de�ned as "needed" on these distant platforms is
the redistribution one. Therefore, the corresponding application component is deployed on these
platforms. The goal of this empty application is to be available as a redistribution target. It could
receive a part of the main application.

The second step consists in con�guring the desired redistribution with the meta-user interface.
First, the user chooses the platform on which the application will be redistributed from a list
of available ones. In our case, the basis of the redistribution process is made on the platform
dimension. However, as each platform may manage another display and may be used by another
person, user and display dimensions can also be targeted. Then, the user con�gures the high level
tasks distribution across the two platforms. As shown in Figure 6.5: multiple choices are given to
the user in the menu:

• Full migration: all tasks migrate. These tasks are now de�ned as needed on the distant
platform and are deleted from the current one. Each platform runs an independent version
of the application. It can be performed when the user wants to switch to another platform.

• Partial migration: the user chooses which task(s) will migrate to the distant platform. The
selected tasks are de�ned as needed on the distant platform and deleted from the current one.
The application is distributed and so shared between the two platforms. It can be performed
to combine di�erent platforms.

• Partial replication: the user replicates some tasks to the distant platform. The selected
tasks are de�ned as needed on the distant platform and are still de�ned as needed on the
current one. Therefore, he/she will be able to perform these tasks on the two platforms within
the same shared application. In the same way, it can be used to combine multiple platforms.

• Full replication: all tasks are replicated and can be performed on di�erent platforms in
the same shared application. All tasks are now de�ned on the distant platform and are still
de�ned as needed on the current one. This kind of redistribution can be used to start a
collaboration with a user on a di�erent platform.

Dependent tasks must be redistributed together. Therefore, they are grouped into the menu
as shown in Figure 6.5. In this �gure the furniture control task is dependent on the selection and
manipulation task. In the meta-user interface we associate a warning icon to a high level task if it
cannot be performed on the distant platform. To do so, we ask the distant platform if an application
component can be deployed for each task according to the platform capabilities. The goal of this

102 CHAPITRE 6. DEVICE ADAPTATION: THE SPECIFIC CASE OF REDISTRIBUTION

Figure 6.5 � The extension of the meta-user interface to control the redistribution process. Here,
the user chooses the high level tasks that will be redistributed to the distant platform. In this
example based on the furniture planning application, three tasks can be redistributed: navigation,
selection/manipulation and furniture control. The last two ones are dependent. The user chooses
a partial migration, only the navigation task will be redistributed. The two others tasks remain on
his current platform.

feature is to warn the end user that the application can be degraded if this task is redistributed. On
the other platform, thanks to the adaptation process included in 3DPlasticToolkit and described
in Section 4.7, an application component is automatically associated with each redistributed task.
As said, these components are chosen in order to �t the platform capabilities in terms of device
availability. With this recasting mechanism, we ensure usability continuity during the redistribution
process.

When the redistribution of tasks has been done, the third step consists in fully copying the
virtual environment to the distant platform. The goal is to keep the application state during the
redistribution to the target platform. This virtual environment includes 3D meshes, their materials,
and sound assets. To perform this copy, we consider three solutions.

• Assets are known in the distant platform. Only the names are transmitted.

• Assets are not known but can be downloaded from a distant server. In this case, URLs are
provided.

• Assets are not known. For instance in a case of a 3D painting application, the user is editing
a new 3D content. Here, assets can be streamed over the network.

For now, our implementation only includes the �rst one. In order to implement the two others
modes, we would exploit some related work on the streaming of virtual worlds through the network.
For instance, Alliez et al. [Alliez and Gotsman, 2005] presents a survey of methods for compressing
3D meshes. To continue, Teler [Teler, 2001] presents a client-server architecture for streaming 3D
scenes. In the same way, FLoD [Hu et al., 2008] is a framework for peer-to-peer 3D streaming.

The last step consists in synchronizing the di�erent platforms. As for CVEs, a synchronization is
performed in order to keep a consistent state between the instances of the same application running
on di�erent platforms. In case of full migration, no synchronization is performed because each
platform runs an independent version. The synchronization is performed as long as all platforms
are connected to the redistribution server. Two kinds of information are synchronized between the
di�erent instances of the application. First, the 3D objects transforms are synchronized in order
to maintain a consistency between the di�erent 3D worlds. In case of collaboration, to handle
concurrency when moving objects, the priority to move an object is given to the �rst user who
grabs it. Then, other users cannot grab and move this object until the �rst user has released
it. Other mechanism could be integrated as well. Second, the events of high level tasks are also
synchronized. The events constitute the logical implementation of the application and have to be

6.5. REDISTRIBUTION FOR THE FURNITURE PLANNING APPLICATION 103

synchronously performed on each application instance. To do so, we use an observer design pattern.
The redistribution application component observes all task events. When one event is triggered, it
is transmitted with its corresponding parameters through the network as text messages in order
to be triggered distantly. An example of an event given in the use case application in Section 6.5
is the addition of a 3D object into the scene.

With D3PART the integration of redistribution capacities is totally transparent and automatic
for the developer. The developer has just to add the redistribution task as needed in the 3DPlas-
ticToolkit con�guration �le. As explained, the process consists of distributing the high level tasks
and the virtual environment across the di�erent dimensions: platform, display and user. There-
fore, the developer has just to focus on the task selection and on the creation of the content of
the application. If needed, he can also create new high level tasks and implement new compatible
application components with the help of the models described in Chapter 4. D3PART can target
the di�erent granularity levels. With the implementation of multiple compatible components for
each task and multiple logical drivers, which use di�erent kinds of devices, for each component,
the developer ensures that an application will be usable on a wide variety of platforms.

In the next Section, we demonstrate how D3PART and 3DPlasticToolkit have been used in
order to add redistribution capabilities to the furniture planning application described in Section
5.2.

6.5 Redistribution for the furniture planning application

In order to illustrate the redistribution possibilities o�ered by D3PART, we present di�erent use
cases that are based on a furniture planning application. This is the same application described in
Section 5.2 which consists in laying-out an empty room with furniture. Its goal is to help people
to plan the use of particular premises. With the integration of an implementation of D3PART
into 3DPlasticToolkit, this application automatically bene�ts from redistribution capabilities. A
video that shows the redistribution capabilities of this application can be found here: https:
//www.dropbox.com/s/f39b1756js51jtb/Redistribution.mp4?dl=0.

As explained previously, at the task level, the application is composed of three tasks. First, a
navigation task is needed in order to navigate within the room. Second, we need an application
control task (named furniture control) for adding furniture into the room with the help of a menu.
Adding an object is de�ned as an event into the task. Last, we need a selection and manipulation
task for moving furniture and for menu selections. These two last tasks are de�ned as dependent:
indeed selection possibilities are needed for interacting with the menu. In the di�erent cases of
redistribution that we present we use two platforms. First, we use a mobile device which is an
Android tablet. Then, we use an immersive system, the Immersia platform3 that is a CAVE-like
system [Cruz-Neira et al., 1992] with active stereo and with dimensions: 9.6m length × 3.1m height
× 3.0m width. Our goal is to demonstrate that our system can handle redistribution between two
very di�erent platform: a lightweight mobile platform and an heavy immersive one. For Immersia,
MiddleVR is used to handle the di�erent screens and clustering. Even if they are not present in
these examples other platforms could also be considered such as HMDs, desktop environments, etc.
In the di�erent examples, both systems runs approximately at 25 fps. The di�erence of frame rates
does not impact the synchronization.

As described in section 6.4, the redistribution process starts with the connection of the tablet
and of Immersia to the redistribution server. For all the presented cases, the application is �rst
launched on a tablet. For now, the applications only runs locally on the tablet, therefore with the
automatic adaptation process integrated in 3DPlasticToolkit, one concrete application component
is deployed for each needed task. Each component is chosen in order to �t the platform capabilities.
The application components deployed on this tablet are the same as the ones described in Section
5.2 for the mobile platform. First, for the furniture control task, a menu is instantiated with the
list of furniture that can be added. According to its implementation the menu can be hidden if
needed. For the manipulation task, a 2D cursor interaction technique is deployed on the tablet.
The chosen Logical Driver exploits the multi-touch capabilities of the tablet. With this technique
the user can translate the objects onto the �oor with one �nger and rotate them around the up

3http://www.irisa.fr/immersia/technical-description/

https://www.dropbox.com/s/f39b1756js51jtb/Redistribution.mp4?dl=0
https://www.dropbox.com/s/f39b1756js51jtb/Redistribution.mp4?dl=0

104 CHAPITRE 6. DEVICE ADAPTATION: THE SPECIFIC CASE OF REDISTRIBUTION

(a) (b)

Figure 6.6 � The redistributed World-In-Miniature: an example of redistribution that demons-
trates how D3PART can be used for platform combination.

axis with two �ngers. For the navigation task, a pan and zoom navigation technique is deployed.
Here, this component places the camera in order to have a plan view of the scene on the tablet as
shown in Figure 6.6a. With the multi-touch capabilities, the user can translate the point of view
and can zoom within the scene while keeping the plan view of the room.

6.5.1 Redistribution for platform switching

Today, users are more frequently confronted with situations where they have to move from one
platform to another [Demeure et al., 2008]. This is one scenario possible for our furniture plan-
ning application. This example demonstrates how the redistribution capabilities of our solution can
ensure usability continuity during changes of hardware environment. In this scenario the redistri-
bution is performed on the platform and display dimensions and at the application level.

First, the user is interacting on the tablet at his desk. With this tablet he can also work
while mobile. All the tasks are available as corresponding application components are deployed as
explained in the previous Section. However, the tablet only o�ers a 2D plan view of the result and
the user would like to have a 3D view at scale one in order to better perceive the volumes. To do
so, an immersive system is available: the Immersia platform. The meta-user interface allows the
user to perform a full migration of his/her application to this platform. The application totally
migrates to Immersia, all tasks and all contents, nothing remains on the tablet. The user can now
be immersed at scale one and continue to �ne-tune the layout of the room. Usability continuity is
ensured thanks to the adaptation process included in 3DPlasticToolkit. Indeed, the application is
adapted to the target platform as application components are chosen for each task according to
the new platform capabilities. In that case, a 3D ray-based manipulation technique is deployed.
The associated logical driver sets the position and the rotation of the ray with the tracked �ystick
and it uses its buttons for object selections and to change the ray length. For the navigation task,
a walking navigation metaphor is deployed. The associated logical driver uses the tracked head
position and the �ystick joystick in order to move the point of view. For the furniture control task,
a 3D movable menu is deployed. The 3D ray is used to select the menu items, to move it and also
to hide and show it.

When the user has �nished his work he may want to continue his work while mobile. Therefore,
the meta-user interface is also available in Immersia and so the inverse process is also possible to
migrate back to the tablet. For example, he would go showing the result to a colleague who could
use another kind of VR setup such as an HMD.

6.5.2 Redistribution for platforms combination

In this Section, our example demonstrates how redistribution can be used in order to combine
di�erent platforms. In that case redistribution is performed on the display and platform dimensions

6.5. REDISTRIBUTION FOR THE FURNITURE PLANNING APPLICATION 105

and at the domain concept level. Our example is based on the World-In-Miniature technique
[Stoakley et al., 1995b] that provides the user with a handheld model of the virtual environment at
a smaller scale. It can be used for manipulating virtual objects or for navigation. This miniature
representation is directly rendered in the virtual world. Here, we propose to deploy this technique
onto a tablet in order to control the furniture planning application in Immersia. The user will be
able to interact with the tablet while being immersed at scale one in Immersia. This use case can
be useful for novice users who are not con�dent with 3D interactions and may prefer more common
multi-touch interactions. Indeed, the user can interact with the usual and easy-to-use multi-touch
capacities of the tablet while being immersed at the same time in the 3D world with Immersia.

To do that, the user chooses a partial migration to Immersia. Only the navigation task migrates
to the distant platform. Other tasks remain on the tablet. This choice is made with the meta-user-
interface as shown in Figure 6.5. As described in Section 6.5.1, an interaction technique based
on a walking metaphor controlled with head tracking and a joystick is deployed in Immersia for
this navigation task. It places the point of view inside the room in order to immerse the user in
it. At this time the application is distributed on two platforms and displays. First, as shown in
Figure 6.6a, a redistributed World-In-Miniature is on the tablet. The virtual world is displayed at
a lower scale with a plan view. Moreover, as said in Section 6.5.1, a 2D menu for furniture control
and a multi-touch interaction for selection and manipulation are deployed. Second, as shown in
Figure 6.6b, at the same time the user is immersed at scale one into the room in Immersia and can
navigate in it. Our transparent synchronization mechanism ensures the consistency between the
two parts of the application. Indeed, the synchronization of the 6 DoF transforms of the objects
between the two platforms ensures consistency when the user moves an object on the tablet. As
well, the command for adding an object into the room is also synchronized. Therefore when an
object is added with the 2D menu on the tablet, the same object is also added in Immersia.

6.5.3 Redistribution for collaboration

In this example, we demonstrate that our redistribution process can be used in order to create a
Collaborative Virtual Environment (CVE). Here, redistribution is performed on the user, platform
and display dimensions and at the application level. Indeed, the replication capabilities included
in our solution let any user to start at any time a collaboration with another person using a
di�erent platform. With this feature any application developed with 3DPlasticToolkit, including
the furniture planning one, automatically bene�ts from collaboration capacities.

In this scenario, the �rst user has performed a �rst con�guration of the empty room with
his/her tablet and now wants to share his/her room con�guration and wants to complete it with
another user. Therefore, he performs a full replication from the tablet to the second user platform:
Immersia. All tasks are replicated, navigation, selection and manipulation, and furniture control.
Therefore, the two users have now the same interaction capabilities. The plasticity property handled
by the system ensures usability continuity between the two platforms, the interaction capabilities
remain the same. Indeed, the application components deployed for these di�erent tasks are chosen
according to each platform capabilities with the adaptation process included in 3DPlasticToolkit.
They are the same than for the two scenarios described in the two previous sections. In this
case, the collaboration is asymmetric as the two people are using di�erent platforms and di�erent
interaction techniques as shown in Figure 6.7. A collaboration with two similar systems could
also be performed. Here, the collaboration is co-located, both users are situated in the same place
and can directly communicate about the result. However, the collaboration could also be distant.
Indeed, our architectures makes possible to have distant connections to the redistribution server.
With the virtual environment replication and the synchronization performed by the redistribution
process, a high consistency between the two instances of the application is ensured. Both users
are interacting in the same shared virtual environment. In order to provide awareness about the
activity of the distant user, for now only the view frustum of each user is represented in the virtual
environment. Future work could include di�erent awareness mechanisms, for instance trying to
make the distant user perceive his/her current context of use.

106 CHAPITRE 6. DEVICE ADAPTATION: THE SPECIFIC CASE OF REDISTRIBUTION

Figure 6.7 � An example of redistribution on the user dimension. For the furniture planning
application, a full replication is performed from the tablet to Immersia The two users are now
collaborating in the same shared virtual environment. Both users have the same interaction capa-
bilities.

6.6 Perspectives

This work can be extended following three main directions.
First we want to consider level of details during the virtual environment replication. Indeed,

as each platform may not have all the same computation capabilities, the rendering of the assets
could be handled di�erently. In some cases it would be necessary to consider adaptive assets. For
instance, a very complex 3D model cannot be rendered in the same way on a PC with multiple
GPUs or on a mobile device. To solve this issue, we plan �rst to integrate information about the
computing power of the platforms into the device model. Second, we plan to give the possibility to
parametrize the choice of an asset according to the computation capabilities of the target platform.
During the virtual environment replication process, only the assets that correspond to the distant
platform computation capabilities would be transmitted.

Second, we want to explore the automation of the redistribution process. Our goal is to
obtain also system-initiated redistribution or mixed-initiated redistribution. Indeed, for now the
process is only user-initiated with the help of the meta-user interface. For instance, this kind of
approach could consist in �nding the right platform or the right user for each task according to
the platforms capabilities and the user preferences. Our scoring system could be used to do so,
for example by applying no longer locally, but instead by applying it on all available platforms.
Indeed, for each task we could compare the scores obtained by the applications components on
each available platforms and instantiate the best ones. Another possibility to trigger automatically
the redistribution process could be to analyze the user behaviour. For example, we could detect
when the user enters in Immersia with his tablet or when he drops it before coming in.

Third, for now the network synchronization between the di�erent instances of the application is
dependent on the 3D framework used and implemented in the rendering presentation facet of the
redistribution application component. However, as future work, the synchronization mecha-
nisms could become independent of the 3D framework and implemented in the abstraction
facet of the redistribution application component. Our current implementation does not show ap-
parent latency but being independent from the 3D framework would let us optimize the network
load.

Last, we plan to evaluate the system in order to assess its interest, its usability and its accep-
tability for end users.

6.7 Conclusion

D3PART (Dynamic 3D Plastic And Redistribuable Technology) is a new model to handle redis-
tribution for MR user interfaces which is integrated into 3DPlasticToolkit in order to fully cover
our requirement R3. With D3PART, redistribution can be performed on the display, platform and
user dimensions and can target three levels of granularity: application, workspace, and domain

6.7. CONCLUSION 107

concept levels. Our approach is based on a client-server architecture. Redistribution can be per-
formed at runtime by the user with an integrated user interface: the meta-user interface. Dynamic
recasting handled by 3DPlasticToolkit, with the included adaptation process, ensures usability
continuity whatever the new distribution chosen. The distributed application will �t each target
platform properties. Thanks to this approach, any application developed with the 3DPlasticToolkit
automatically bene�ts from redistribution capabilities.

To illustrate these possibilities, we have presented three examples of redistribution on di�erent
dimensions and at di�erent levels for a furniture planning application. These examples show how
redistribution can be used to switch from a mobile platform to an immersive one, to combine these
two platforms, and �nally to create a collaborative context of use between them.

108 CHAPITRE 6. DEVICE ADAPTATION: THE SPECIFIC CASE OF REDISTRIBUTION

Chapitre 7

User Adaptation

7.1 Introduction

The second adaptation source that we take into account with our plasticity models is the user and
his/her environment. For now, the choices of interaction techniques and of the content presentation
are only impacted by the available devices and by the developer's decisions. Therefore, it could
result to an interface that does not really match the user's needs and preferences. Indeed, the
developer's choice will not always be the user's preference. As illustrated in Figure 7.1, the focus
of this Chapter targets the adaptation to users. We have demonstrated in Section 3.3.2 that perso-
nalization consists in adapting an application to the user's properties, preferences and information
about his/her environment. The two adaptation targets of our plasticity space problem, content
visualization and interaction techniques, can be impacted by these di�erent properties.

Sources

Targets

Time

Content

Interaction techniques

Data

User and their environment

Hardware

R
u

n
ti

m
e

C
o

m
p

ile
-t

im
e

U
se

r

Sy
st

em

Controller
Recasting

And
Redistribution

D
ev

el
o

p
er

/D
ep

lo
ye

r

Figure 7.1 � Regarding our design space problem of plasticity for MR user interfaces, this chapter
is focused on adapting the interaction techniques and the content visualization of an application
according to the user properties.

For instance, in the experiment described in Section 5.3, we have shown that users have a global
preference for some e�ects that deal with frame cancellation. Nevertheless, the decision is not
unanimous and therefore it could be interesting to apply a di�erent visual e�ect for each particular
user. In the same way in the co-manipulation application described 5.4, no formal experiment
has been performed but multiple interaction techniques have been tested during the development
process especially for the user inside the manipulated object (the Ant). The user's feedbacks were

109

110 CHAPITRE 7. USER ADAPTATION

not always in the same direction. Therefore, it also demonstrates that adapting the interaction
techniques to each particular user can be a good way to improve the user experience. In this
Chapter, we also propose a preliminary experiment that compares the user preferences for selection
techniques. One goal of this experiment is to identify the needs that our toolkit has to satisfy in
order to consider user adaptation.

In order to cover this adaptation source in our model, three main issues have to be considered.
First, we must create a user model that can include the di�erent kinds of properties de�ned in Sec-
tion 3.3.2: the pro�le, the preferences, the environment properties, the monitoring information. To
do so, we also added a user model in 3DPlasticToolkit that is complementary to the device model
detailed in Section 4. Second, we must also be able to update this user model at runtime. Two pos-
sibilities can be proposed, either the user can update himself/herself his/her properties, this is the
explicit approach described in [dos Santos and Osorio, 2004], in 3DPlasticToolkit this is performed
with the meta-user interface, or the system updates itself the model, which is the implicit approach
detailed in [dos Santos and Osorio, 2004]. For now, the implicit approach is not fully implemented
in 3DPlasticToolkit but our model covers the possibility to create a monitoring component that
can track the user's behavior. Third and last, we must be able to take into account this user model
in order to modify the application. Therefore, we have also implemented three new scoring mo-
dules that exploit our user model. They are named "UserPreferences", "UserAndDeveloper" and
"MachineLearning". These modules update the application components compatibility scores and
therefore provide the user with the MR user interface that matches his/her preferences. Two of
these modules only use the preferences scores in the user model. However, with our preliminary
experiment we have also investigated the use of machine learning in order to detect automatically
the user preferences for interaction techniques according to the other kinds of properties of the
user model. These results are integrated in the other scoring module.

This Chapter is structured as follows. First, in Section 7.2 we present di�erent related work
of software solutions that deal with user adaptation. In Section 7.3, we present a preliminary
user study that we have performed in order to identify the needs that our toolkit has to satisfy
to consider user adaptation. This preliminary study focuses on interaction techniques selection.
The results of this preliminary study have been used in order to explore machine learning for the
detection of user preferences. Then, in Section 7.4, we present our integration of automatic user
adaptation in 3DPlasticToolkit. We present our user model, how it can be updated by the user and
by the system, and how it is taken into account by the adaptation process with two di�erent scoring
modules. In this Section, we also present some examples of how user adaptations have performed
in the demonstrators presented in Chapter 5. To �nish, in Section 7.5 we conclude and give some
perspectives of work.

7.2 Related Work

In the �eld of MR user interfaces, most solutions that handle user adaptation only target one of
the possible adaptation targets: content visualization or interaction techniques.

Content visualization adaptation
In this category, multiple solutions can be found. For example, Bonis et al. [Bonis et al., 2009]

propose a software solution for the creation of virtual museums with personalized content including
a user model based on a semantic graph. In this graph, nodes stand for objects and concepts, edges
represent the relations between them, and the levels represent the degree of generalization. The user
model is an instance of this graph as shown in Figure 7.2a, with all nodes being given a numerical
value (positive or negative) that represents the degree of interest that the user is assumed to have for
the object associated to the node. This user model is updated by monitoring the user's behaviour.
For example, it observes the time spent by the user observing an object. The user model is then
used in order to choose dynamically the museum content by focusing on the objects that get the
better scores. To continue, in the �eld of personalized e-commerce 3D applications, Chittaro et al.
[Chittaro et al., 2002] propose AWE3D, an architecture for the creation of adaptive 3D websites.
This solution stores the user model on the server side. This model can include information about the
user pro�le and his/her preferences. A rule-based system updates this model by using monitoring

7.2. RELATED WORK 111

information from VRML sensors. Another rule-based system adapts the application according to the
user model. A similar approach is also proposed in AMACONT [Dachselt et al., 2006]. In [Chittaro
et al., 2002], di�erent examples are given on how to change products visibility and attractiveness
according to the user model. For the same domain, Dos Santos et al. [dos Santos and Osorio,
2004] propose AdapTIVE (Adaptive Three-dimensional Intelligent and Virtual Environment) an
architecture for the creation of personalized VEs. The user model contains information about the
users's interests, preferences and behaviors. It can be edited explicitly by the user or implicitly by
the system with a monitoring. Then, a generator of environment creates a VE that matches the
user model.

Interaction techniques adaptation
Other solutions focus on adapting the interaction targets. Nevertheless, these kinds of solutions are
less common. Octavia et al. [Octavia et al., 2009] propose a conceptual framework for the creation of
3D user interfaces with interaction techniques adapted to the user preferences. An overview of this
framework is given in Figure 7.2b. First, this framework is composed of a user model that includes
the user's interaction patterns, interests and characteristics. They de�ne three levels of information
included in this model. The general user model includes basic information used for adaptation to
all users. The group user model provides specialized information to be applied to a group of users.
For instance, group user models can be used in order to detect the user preferences according
to his/her pro�le. The individual user model gives detailed information about one particular user.
Second, the framework is composed of an adaptation engine that modi�es the interaction techniques
according to the user model. Interaction techniques can be replaced, disabled or enhanced with
other modalities. They have investigated the creation of these di�erent levels for a selection task

(a) (b)

Figure 7.2 � Two software solutions for user adaptation (a) In [Bonis et al., 2009] a user mo-
del is represented by a semantic graph with scores of interest (b) The conceptual framework for
adaptation and personalization in VEs proposed by Octavia et al. [Octavia et al., 2009].

in a VE. Two selection techniques were compared: a ray-based interaction technique and a bubble
cursor. Physiological data was measured in order to evaluate user frustration, user experience and
mental workload. They did not �nd any trend for the creation of group user models. Nevertheless,
they have shown in [Octavia et al., 2011] that employing general and individual user models can
increase users' performances and can decrease users' frustrations. The general user model was
created according to the scene parameters and an individual user model was created for each user
after a �rst experiment with the two interaction techniques. Such approaches do not really give
the possibility to adapt an application to the preferences of a new user. That is why more work
should be done to create a solution that can detect the preferences of a new user according to the
collected information about him/her. An interesting perspective of work have been proposed by
Wingrave et al. [Wingrave et al., 2002]. They address interaction techniques exchangeability and

112 CHAPITRE 7. USER ADAPTATION

intrinsinc parameters tuning from users with two di�erent selection techniques: Ray-casting and
Occlusion selection. During the experiment, they did not �nd any trend, each user had his own
preferences. That is why they propose a perspective of work that aims at correlating the user's
pro�le and behaviour with his/her preferences. This approach consists in using "nuances" in an
inverse reinforcement learning process to predict user behaviors. A nuance is de�ned by Wingrave
et al. [Wingrave et al., 2001] as "A repeatable action the user makes in their interactions in an
environment, intentional or not, that are highly correlated with an intended action but not implicit
in the interaction metaphor".

Analysis
To conclude, none of existing solutions considers personalization of both the content visualization

and the interaction techniques. In the �rst category, solutions are mainly based on Web3D applica-
tions and on content selection. In the second category, no solution has succeeded to automatically
detect the preferences for interaction techniques of a new user according to his/her properties. Our
goal is also to �nd a way to detect the preferences of a user that has never used the application by
only using his/her pro�le or by monitoring him/her. In this Chapter, we propose an integration of
user adaptation in 3DPlasticToolkit that aims to target both categories. This integration focuses
more on the choices of content visualization metaphors, visual e�ects and interaction techniques
than on content selection. With a preliminary study we try to identify the needs that our toolkit
has to satisfy to consider interaction techniques selection. The results of this study has also been
exploited in order to explore the use of machine learning for detecting the preferences of a new
detected user.

7.3 User Preferences for Mixed Reality User Interfaces: A
Preliminary Study

As explained in the previous Section Octavia et al. [Octavia et al., 2011] explored the creation of
user models with an experiment that compared two selection techniques on the same device setup.
They have shown that choosing the adapted interaction technique according to a general model or
an individual one can really be appreciated by the end-user. Nevertheless they did not succeed in
building group user model for detecting the preferences of a new user.

Therefore, in this Section we propose a complementary experiment of this related work that
aims to ful�ll its lacks. Now we are going to describe our objectives.

1. Verify consistency of performances and preferences on two device setups. In their
experiment they only analyzed the preferences on the same device setup. We wonder if the
preferred interaction technique of a user on a given hardware con�guration will be the same
with a di�erent setup. Therefore, we have compared the users preferences and performances
for three 3D selection techniques on two device setups that mainly di�er by their display
types (stereoscopic screen and HMD).

2. Verify consistency between performances and preferences. Octavia et al. built the
automatic choice algorithm by taking into account at the same time the preferences and the
performances. Nevertheless we can wonder if the preferred interaction technique of a user
always corresponds with the one with which he/she performed the best. Therefore, in our
experiment we propose to collect and compare the qualitative preferences and the quantitative
performances of the participants for three 3D selection techniques.

3. Predict the preferences of a new detected user with machine learning. In their work
they did not succeed in creating a solution that can �nd the preferred interaction techniques
of a new user according to his/her properties. Therefore, we propose to explore two ways
based on machine learning to create such a solution:

(a) Predict the preferences according to a 2D preliminary selection task. We
propose a preliminary test based on a 2D selection task. The results of this test can be

7.3. USER PREFERENCES FORMIXED REALITY USER INTERFACES: A PRELIMINARY STUDY113

used in two di�erent ways. First, we want to know if there is a correlation between this
test and the users performances during the 3D selection tasks. It could then be used as
a preliminary test for any application in order to detect if the user would need any kind
of interaction assistance at runtime. Second, we also want to use the results of this test
in order to try to predict the user preferences by training a machine learning algorithm.

(b) Predict the preferences according to the user pro�le. We propose to ask more
information about the user in order to build a more complete pro�le. Then, from these
di�erent collected pro�les, we try to train a machine learning algorithm in order to
predict the preferred technique of a new user.

In Section 7.3.1 we present our experiment, we present the results obtained by the di�erent
interaction techniques on our device setups and we try to reach our �rst two objectives. Then in
Section 7.3.2, we try to reach the third objective by exploring the use of machine learning to predict
user preferences.

7.3.1 Comparing three selection techniques on two device setups

Hardware
As said previously, one goal of this experiment was to compare the performances and preferences

of users for the same application run on two di�erent hardware con�gurations. The main di�erence
between the two platforms was the display used as the control of the interaction techniques was
approximately the same on the two platform with a 6-DOF controller. The two setups have already
been presented in Chapter 5. First, the zSpace shown in Figure 7.4a is composed of a 6-DOF tracker
with buttons (the stylus) and a 24-inches co-located stereoscopic display. Second, we used a setup
based on an Oculus Rift DK2 HMD and a Razer Hydra as shown in Figure 7.4b. The Razer Hydra
is composed of two 6-DOF controllers with buttons. Only one of them was used.

Participants
As one goal of the experiment was to use the results in order to train a machine learning algorithm, it
was important to have a great number of participants. Therefore, our experimental group consisted
of 51 subjects aged from 23 to 57 (age: M=34.8, SD=10.24). There were 38 males and 13 females.
The subjects had various backgrounds, some of them even were not working in the technology
industry. Most of them had a few knowledge about VR. In order to build the user pro�le of each
participant that is integrated in the user model, each of them was asked to ful�ll a preliminary
questionnaire. The user pro�le consists in a set of parameters directly given by the user in order
to de�ne him/her as a person. The following informations were requested:

• gender,

• handedness,

• age,

• master Eye,

• visual problems (Yes/No),

• experience with virtual reality (Yes/No) (Hours per Week),

• experience with video games (Yes/No) (Hours per Week),

• experience with computers/tablets (Hours per week).

2D selection task
The �rst step consists in a 2D selection task based on Fitts's law. A view of a participant performing
this test is given on the right of Figure 7.3. The Fitts law describes the relation between the target

114 CHAPITRE 7. USER ADAPTATION

Figure 7.3 � ISO 9241-9 multi-directional pointing task. The user �rst selects the highlighted
circle, then the next circles to select follow the pattern drawn with the arrows. On the image on
the right, a participant is performing this selection test on the zSpace. As shown, the green disk is
the one to select.

distance, width and time needed for a selection task. Fitts's law can be used in order to compare
the performances of pointing devices by analizing the throughput. Our Fitts's law based tests
follow the ISO9241-9 standard and the seven recommandations given by Soukore� and Mackenzie
[Soukore� and MacKenzie, 2004] that are:

1. Use the Shannon formulation of the index of di�culty (ID).

ID = log2(
A

W
+ 1) (7.1)

where A is distance between targets and W the targets width.

2. Use a wide and representative range of ID (between 2 and 8 bits). Each ID con�guration
must be presented to each subject many times (15-25) times. Movement time data should
also be collected.

3. Subject's movement end-points must be collected. Obvious outliers such as double clicks may
be removed from the data.

4. The end-points should be used to perform the adjustment for accuracy. Having these data
you can de�ne the e�ective target width We and the e�ective index of di�culty IDe. A large
discrepancy between ID and IDe should be investigated.

5. least-squares linear regression is used to �nd the intercept and the slope of the Fitts' law
equation. This test is needed to have a measure of the goodness of �t.

6. You can calculate the movement time prediction using the regression model and the ID value.

7. If devices or experiment conditions are to be compared, calculate the dependent measure
throughput via the mean of means.

The standard describes the Multi-directional pointing task that can be used to evaluate pointing
movements in many di�erent directions. This is the pointing task that we have used in the �rst
part of our experiment has shown in Figure 7.3. This �rst part of the experiment was performed
by each user on the zSpace. No stereoscopy or head tracking were used. The targets were simply
displayed in 2D on the screen of the device. The 6-DOF stylus and one of its button were used
to control a 2D cursor to perform selections. The cursor position corresponded to the intersection

7.3. USER PREFERENCES FORMIXED REALITY USER INTERFACES: A PRELIMINARY STUDY115

between the stylus and the screen. Therefore, to move it the user had to target the screen as
shown in Figure 7.3. Two color feedbacks were provided. The disk to select was colored in green
and when selected (clicked) the disk was colored in red. During this part of the experiment this
multi-directional pointing task was performed three times by each participant with three di�erent
IDs (di�culty increases over time):

• disk diameter = 40 pixels ; distance = 200 pixels ; ID = 2.58

• disk diameter = 20 pixels ; distance = 200 pixels ; ID = 3.46

• disk diameter = 20 pixels ; distance = 500 pixels ; ID = 4.7

The goal of this �rst test is to get a �rst result on the interaction skill of each user for a basic task.
The results can then be exploited in the user model as explained in Section 7.3.2

All the actions of each user were collected. Indeed, for instance, we collected the selection times,
the cursor movements relative to the straight path between two targets, the number of clicks outside
a disk or on a wrong one, the distance from a click to the center of click, etc.

(a) (b)

Figure 7.4 � The two device setups used for our user preferences study (a) The �rst setup is zSpace
composed of a stereoscopic screen with head tracking and of a 6-DOF tracked stylus. As shown
the biggest button of the stylus is used for object selection. (b) The second setup is composed of
an Oculus Rift DK2 and a Razer Hydra. Only one 6-DOF controller of the Razer Hydra was used.
As shown one of its triggers is used for object selection.

3D selection task
The second part of the experiment proposed a series of 3D selections to perform with the two
interaction setups and with three di�erent interaction techniques. In this part of the experiment
participants were placed in a VE at scale one just in front of a box containing di�erent spheres
to select as shown in Figure 7.5. These spheres were all the same �xed size: 3cm of diameter. The
three interaction techniques that we compared were:

• 3D Ray-Casting: this �rst interaction technique is based on the ray-casting metaphor as
described by Bowman et al. [Bowman et al., 2004]. A straight ray that comes from the user
hand and intersects a scene object for selection as described in Figure 7.4a. The ray base
is controlled in position and rotation with the values given by the stylus tracker or by one
Razer Hydra controller. A button was used for selections.

• 3D Bendcast this technique is very similar to the �rst one. It is also controlled with the
stylus or by one Razer Hydra controller. The technique is described in Figure 7.5b. Our

116 CHAPITRE 7. USER ADAPTATION

implementation is similar to the one described by Cashion et al. [Cashion et al., 2013],
the bendcast technique automatically bends to the closest target in order to help the user
during the selection task. One di�erence in our implementation is that the ray bends only if
the distance between the ray and the object is under a threshold. This threshold is chosen
according to the targets sizes.

• Occlusion: as described by Pierce et al. [Pierce et al., 1997], the occlusion selection technique
consists in placing the tip of your �nger between your eye and the object you want to select.
The occluded object is the one selected. In our implementation the stylus extremity or one
Razer Hydra controller is used to drive the occluder and a button is also used to con�rmed
selection. The eye used by the technique corresponds to the user's master eye. The technique
is described in �gure 7.5c.

(a) (b) (c)

Figure 7.5 � The three interaction techniques compared in our user preferences study. (a) A 3D
Ray-Casting interaction technique. The position and the orientation of the ray directly follow the
6-DOF controller. (b) A 3D Bendcast interaction technique. This technique is similar to the �rst
one. Here, the ray bends in order to automatically sticks to a target if it is close enough (under
a threshold). (c) The Occlusion selection technique. Here, the user has to hide an object with his
controller extremity in order to point it. As shown, a small black cube is displayed in the VE at
this extremity.

For each technique, two color feedbacks were provided to the user. A pointed sphere was colored
in yellow, and a selected one in red. For this part of the experiment, some users started with the
Oculus Rift while other users started with the zSpace. In order to pass to the next setup, the
user had to perform all selections in four scene con�gurations and with the three interaction
techniques. All the users did not try the techniques in the same order. Nevertheless the same order
was applied on both setups for one particular participant. We applied a counterbalanced design:
2 device setups ∗ 6 technique orders. For each technique the process was the same. The users had
to select the spheres in four scene con�gurations. For each con�guration the user had to perform
10 selections. The sphere to display was colored in green as illustrated in Figure 7.5c. These scene
con�gurations were depending on two parameters: two conditions of density (low and high) and two
conditions of movement (mobile, stationary). For each interaction technique the scene con�guration
order was always the same: low density/stationary spheres, high density/stationary spheres, low
density/mobile spheres and high density/mobile spheres. The goal was to increase the di�culty
progressively. The instruction given to each user was to select the spheres as fast as possible and
to avoid mistakes. In order to challenge them we displayed a score about their performances. This
score took into account the selection times and was decreased when a wrong selection was made.

In order to get the preferences of all users, they had to ful�ll di�erent subjective questionnaires
at di�erent steps of the experiment. In these subjective questionnaires, participants had to grade the
three techniques using a Likert-scale, from 1 (very low appreciation) to 7 (very high appreciation)
according to one criteria: global appreciation. The goal was just to record which technique they
were preferring. A �rst grade had to be given to an interaction technique after having performed all

7.3. USER PREFERENCES FORMIXED REALITY USER INTERFACES: A PRELIMINARY STUDY117

selections for one scene con�guration. Then, after having �nished all selections on the �rst device
setup, users were asked to give new grades to each technique, a global one and one for every scene
con�guration. The same process was performed on the second device setup, di�erent grades for
each technique were asked for this second setup. Last, at the end of the experiment, di�erent grades
for each setup and for each technique were requested. In this last step, the user had to give again
di�erent global grades for each technique on each device, and also to each technique for each scene
con�guration for each device setup. During this step, participants did not have access to the grades
they gave earlier in the experiment. Each time, the given grades are �nal and cannot be modi�ed
later in the experiment. The goal of this last step was to allow the user to make comparison between
the two hardware con�gurations. The user's actions and performances were also collected during
this part of the experiment. One of our goals was to compare the preferences with the performances
in order to determine if they are always consistent.

Results
For now, our analysis of the results does not separate the performances and the preferences

according to the di�erent scene con�gurations. Indeed, we have added the preferences scores and the
performances scores of each technique over the selections performed for the four scene con�gurations
proposed.

Figure 7.6 � Comparison of the preferences and performances results for the three techniques on
the two device setups. The results for the 3D Ray-based interaction technique and the 3D Bentray
are similar. However, the 3D Bentray seems to be preferred on the zSpace. We can also see that
participants less preferred and less performed with the Occlusion selection technique.

First we compare the preferences and the performances of each technique on each device. With
this comparison, our goal is to identify the technique that has to be selected by default if we do
not know anything about the end user. This can be compared to the general user model presented
in [Octavia et al., 2011]. For each technique and for each setup two di�erent global grades between
one and seven were given by the participants. The �rst one was requested after having �nished the
selections on one device setup. The second one was requested at the end of the experiment. These

118 CHAPITRE 7. USER ADAPTATION

Oculus

Preferences

Performances

 1st 2nd 3rd 1st 2nd 3rd

Ray 27 21 3 22 20 9

BentRay 26 21 4 22 21 8

Occlusion 9 10 32 7 10 34

Zspace

Preferences

Performances

 1st 2nd 3rd 1st 2nd 3rd

Ray 19 30 2 17 24 10

BentRay 35 11 5 24 17 10

Occlusion 11 12 27 9 10 31

Table 7.1 � For each technique number of times they have been ranked as �rst, second or third
according to the preference or the performance. For the preferences, when two techniques got the
same grade, they are both classi�ed in the same unit. Results for the 3D Ray-based interaction
technique and for the 3D Bentray are similar, even if this last one seems to be preferred on
the zSpace. Moreover, participants less preferred and less performed with the Occlusion selection
technique.

two grades have been added in order to have the global appreciation of the user for each technique.
For the performances we have used the scores that we computed at runtime that correspond to
a combination between the selections times and the number of errors. The more this score is
important, the better the performances were.

The results of this comparison are compiled in Figure 7.6 and in Table 7.1. First, in Figure 7.6,
we present a boxplot that presents a comparison of the global performances and preferences results
of the three techniques on the two devices setups. Second, in Table 7.1, we present how many
time each technique has been ranked at the �rst, second and third places for the preferences and
performances. From this Figure and this Table we can say that the results for the 3D Ray-based
interaction technique and the 3D Bentray are similar even if the 3D Bentray has been slightly
more preferred on the zSpace. To continue, we also notice that participants less preferred and less
performed with the Occlusion selection technique on the two device setups. On the Oculus Rift,
an Analysis of Variance (global ANOVA) revealed that the technique used had a signi�cant e�ect
on the preferences (F1,150 = 15.23, p < 0.005). For this criterion, no signi�cant result was found
between the 3D Ray-based interaction technique and the 3D Bentray. Nevertheless, the Occlusion
selection technique was signi�cantly worse than the 3D Bentray (F1,100 = 25.59, p < 0.005) and si-
gni�cantly worse than the 3D-Ray based interaction technique (F1,100 = 20.49, p < 0.005). For this
same device setup, an ANOVA revealed that the interaction technique also had a signi�cant impact
on the performances (F2,150 = 10.54, p < 0.005). No signi�cant result between the 3D Ray-based
interaction technique and the 3D Bentray was found. Nevertheless, for the performances, the Oc-
clusion selection technique was signi�cantly worse than the 3D Bentray (F1,100 = 12.16, p < 0.005)
and signi�cantly worse than the 3D-Ray based interaction technique (F1,100 = 14.82, p < 0.005). Si-
milar observations can be made on the zSpace. Indeed, an ANOVA revealed that the technique used
also had a signi�cant e�ect on the preferences (F2,150 = 23.98, p < 0.005). No signi�cant result was
found between the 3D-Ray based interaction technique and the 3D Bentray. Nevertheless, the Oc-
clusion selection technique was signi�cantly worse than the 3D Bentray (F1,100 = 36.76, p < 0.005)
and signi�cantly worse than the 3D Ray-based interaction technique (F1,100 = 25.67, p < 0.005).

7.3. USER PREFERENCES FORMIXED REALITY USER INTERFACES: A PRELIMINARY STUDY119

Figure 7.7 � Comparison of the global performances and of the global grades between the two
device setups. As shown the performances have been globally better on the zSpace. In the same
way the three interaction techniques have globally obtained better grades on the zSpace than with
the Oculus rift.

For this same device setup, an ANOVA revealed that the interaction technique also had a signi�cant
impact on the performances (F2,150 = 5, 39p < 0.05). No signi�cant result between the 3D Ray-
based interaction technique and the 3D Bentray was found. Nevertheless, for the performances, the
Occlusion selection technique was signi�cantly worse than the 3D Bentray (F1,100 = 7.19, p < 0.05)
and signi�cantly worse than the 3D-Ray based interaction technique (F1,100 = 6.34, p < 0.05).

As in most cases presented here the 3D Ray-based interaction technique and the 3D Bentray
got similar results we can say that in general case it is complicated to choose a technique that
will satisfy all users. This assessment justi�es the need for user adaptation. Moreover, we have also
shown that the 3D Bentray has been slightly more preferred on the zSpace. This is a �rst clue
for demonstrating our �rst objective. Indeed, it is possible that the preferred interaction technique
di�ered from a device setup to another one even if the two are similar.

Our �rst objective is to verify the consistency between the performances and the preferences
on the two device setups. First, in order to demonstrate this objective we compare the scores and
the qualitative grades obtained on both hardware con�gurations. To do so, for a given setup, all
grades and all scores for all techniques have been added for each user. We compare the results
obtained on the two setups. As shown in Figure 7.7 the performances have been globally better on
the zSpace than with the Oculus Rift. One-way analysis of variance (ANOVA) showed a signi�cant
main e�ect of the device setup on the performances (F1,100 = 131.0, p < 0.005). In the same way
the three interaction techniques have globally obtained better grades on the zSpace than with
the Oculus rift. One-way analysis of variance (ANOVA) showed a signi�cant main e�ect of the
device setup on the grades (F1,100 = 33.57, p < 0.005). From these two results, we can say that
participants signi�cantly preferred to interact on the zSpace and signi�cantly performed better
on this same device setup. Therefore, we can say that even with the similarities between the two
device setups (the same kind of 6-DOF controller was used to control the interaction techniques),
the performances and global appreciations were di�erent.

To continue, in order to demonstrate this objective we also want to know if the preferred
interaction techniques or the ones that got the best performances are di�erent on the two device
setups. Therefore, we have computed the number of times the preferred interaction technique or
the one that performed the best has changed from the �rst device setup to the second one. We
obtained the following results:

• Regarding the preferences grades, 10 participants (19,6%) did not preferred the same inter-
action technique on both device setups. For these 10 participants, the grade of a preferred
technique on a given device setup has decrease by an average of 14.70% on the other device
setup.

• Regarding the performances scores, for 33 participants (64.7%)the interaction technique that
obtained the best performance was not the same on the two device setups. For these 33

120 CHAPITRE 7. USER ADAPTATION

participants, the score of a technique that performed the best on a given device setup has
decreased by an average of to 8.94% on the other device setup.

From these results, we can say that the interaction technique with which a user performs the
best will not always be the same on all devices setup. The same observation can be made for the
preferences. The technique that a user prefers will not always the be same on all hardware con�-
gurations. As the main di�erence between the two setups was the display type we can assume that
this parameter has an important impact on the preferred technique and on the one that performs
the best. This parameter has to be possibly taken into account in the adaptation mechanisms in
3DPlasticToolkit.

Our second objective is to verify the consistency between performances and preferences.
In order to demonstrate this objective, we have computed on each setup the number of times
the technique that obtained the best performance did not correspond to the one that the user
preferred. In case of equality of grades at the �rst place, multiple techniques can be considered as
the preferred one. We obtained the following results:

• With the Oculus, for 25 participants (49%), the preferred interaction technique did not cor-
respond the one that performed the best. For these 25 participants, the average di�erence
between the performance score of the technique that performed the best and the performance
score of the preferred technique is 8.22%. The average di�erence between the grade of the
preferred technique and the grade of the technique that performed the best is 22.32%.

• On the zSpace, for 21 participants (41%), the preferred interaction technique did not cor-
respond the one that performed the best. For these 21 participants, the average di�erence
between the performance score of the technique that performed the best and the performance
score of the preferred technique is 6.59%. The average di�erence between the grade of the
preferred technique and the grade of the technique that performed the best is 21.64%.

For the two device setups we obtain similar results. Approximately one on two users did not
preferred the same technique that the one with which he/she performed the best. The average
di�erences that we computed are important enough to conclude that when selecting a technique
for a user a choice has to be made, in a lot of cases there will be a technique that will maximize
his/her performances and another one that will maximize his/her preferences. Another possibility
could also be to select a technique by making a compromise between performances and preferences.

One particular point of objective 3.a consists in demonstrating if there is a correlation between
the results obtained in the preliminary 2D preliminary selection task and the results obtained in
the 3D selection tasks. If this point can be demonstrated, such a 2D pre-test could be used in
order to detect the skills of a user before a real 3D application. Therefore the application could
be automatically adapted, for example it could be possible to give more instructions to a user
with low skills. In order to demonstrate this point, we compare the global preferences for the 3D
test obtained by the participants on each device setup with the global preferences obtained by the
participants on the 2D preliminary test. For the 3D application, the selection times for the three
techniques and for all scene con�gurations have been added. For the 2D application, the selection
times obtained for the three di�erent ID have also been added. We obtain the following results:

• First, we have computed the correlation factor between the selection times obtained on the
2D pre-test and the selection times obtained on the 3D application (times for the two setups
have been added). We found a positive correlation between this data: r = 0.303. This result
is signi�cant F1,49 = 4.95, p < 0.05.

• Second, we have computed the correlation factor between the selection times obtained on
the 2D pre-test and the selection times obtained on the 3D application on the zSpace. We
found a positive correlation between this data: r = 0.451. This result is signi�cant F1,49 =
12.52, p < 0.005.

• Second, we have computed the correlation factor between the selection times obtained on the
2D pre-test and the selection times obtained on the 3D application on the Oculus rift. We
found a positive correlation between this data: r = 0.234. This result is not signi�cant.

7.3. USER PREFERENCES FORMIXED REALITY USER INTERFACES: A PRELIMINARY STUDY121

From these observations we can say that there is a small positive correlation between the perfor-
mances obtained on the 2D pre-test and the ones obtained with the 3D application. Nevertheless,
the results show that the positive correlation is more important with the performances on the
zSpace. Therefore, we could say that if we want to anticipate the performances of a user with a
pre-test, it is important that this pre-test is performed with the same device con�guration. Mo-
reover, the correlations were not important enough to totally demonstrate the e�ciency of such a
pre-test to anticipate the performances of a user in 3D selection tasks. In the next Section, we try
to use the results of this pre-test in order to choose automatically a 3D selection technique.

7.3.2 Could we use Machine Learning to Detect User Preferences?

From this experiment we have obtained a dataset that includes the correspondences between each
user pro�le and each user results from the 2D pre-test with his/her preferred technique and his/her
best performing one on each setup. As explained in objectives 3.a and 3b, our goal is to determine
if from this dataset we could automatically predict the interaction technique that would correspond
to a new user.

This is the goal of supervised machine learning. Supervised machine learning aims to infer a
function from labeled training data in order to predict unseen points [Mohri et al., 2012]. In order
to create a mapping function, supervised learning algorithms are trained on labeled training data
that include examples composed of an input object (a vector) and a label (the desired output). To
do so, a loss error is minimized between the labels predicted by the function and the initial real
labels. From this training a function that generalizes the problematics is created and in the ideal
case this function will be able to predict the label of an unseen example. To evaluate the prediction
robustness and accuracy of such method datasets are commonly separated in two parts. First the
training dataset on which the algorithm is trained. Second, the testing dataset is composed of
unseen points, not present in the training set on which the generalization ability is evaluated. The
ratio Good predictions/All predictions is used to quantify the accuracy. Our objective is to exploit
our dataset obtained from our preliminary experiment to create such function that could possibly
detect the appropriate technique for a new user.

Here, we use a Support-Vector-Machine (SVM) classi�er as supervised learning algorithm. A
SVM classi�er aims to construct from training examples a set of hyperplanes in a high dimensional
space that separate the data into two classes (positive or negative) [Boser et al., 1992]. Recent
approaches also exploit SVMs to deal with multi-classes problems. This is the kind of approach we
use here as our data are labeled with three possible classes: the three interaction techniques (3D-
Ray, 3D-Bentray or Occlusion). Our implementation is based on LIBSVM [Chang and Lin, 2011]
that combines multiple binary classi�ers in order to create a multi-classes classi�er. Our choice is
strongly motivated by the ability of SVMs to deal with small training unlike other algorithms such
as neuronal networks and random forests. Indeed, our database only contains 51 examples, which
would ne be enough for these classes of algorithms.

Each of our examples can be formulated as a pair {xi; yi} in Rn×{0, 1, 2}. Here, xi corresponds
to the input feature vector and contains information extracted from the pro�le or from the 2D
preliminary tests. In this Section, we use di�erent compositions (di�erent sizes and di�erent values
extracted from the pro�le or from the pre-test) of xi as all compositions do not provide the same
results depending on what we try to predict (preferences or performances on the zSpace or on the
Oculus rift). In all cases, each value contained in xi is normalized. Binary data such as "handedness"
or "experience with VR" is set to 0 or 1. The dimensions of the di�erent feature vectors used are
kept �xed during the learning process as we use a linear kernel during the SVM optimization. yi
corresponds to the label, which is the interaction techniques associated to the pro�le (the preferred
one or the one with the best performance), 0 corresponds to the 3D-Ray technique, 1 to the
3D Bentray and 2 to the Occlusion technique. For a given user, in case of equality between the
qualitative grades obtained by multiple techniques, only one technique has been selected as the
preferred one according to performances ranking.

In order to determine the prediction accuracy, in all cases we separate our data into two datasets:
40 examples in the training set and 11 examples in the testing set. During the training step, we have
performed a k-fold cross validation in order to optimize one parameter of the SVM. This parameter
named C tells to the SVM optimization problem how much it has to avoid misclassifying each

122 CHAPITRE 7. USER ADAPTATION

training example. This cross-validation method consists in randomly partitioning the training set
into k subsamples. Then the model is trained on (k − 1) subsamples and tested on the remaining
subsample. The process is repeated k times for each value of C we want to evaluate. During
this cross validation, the metric to optimize in order to choose the best value of C is the ratio
Good predictions/Number of predictions. Because of the small size of our training data, the
generalization ability is a very challenging task. To enhance and guaranty this ability, we have
decided to repeat the process 1000 times where each time the training set and the testing set
are ful�lled randomly. The obtained results correspond to the average value of the ratio of good
predictions on the testing set and the standard deviation for this same value obtained for the SVM
classi�ers evaluated on the 1000 separations. We test di�erent SVM to try to predict: the preferred
technique on the Oculus Rift, the best performing technique on the Oculus Rift, the preferred
technique on the zSpace, the best performing technique on the zSpace. Indeed, we have seen in
the previous Section that the results can di�er for each of these con�gurations. For all cases, We
compare the results obtained for the SVM with the result with a simple "majority" method. This
method can be compared to the general user model proposed by Octavia et al. [Octavia et al.,
2011]. It consisted in selecting for a new user the technique that has performed or preferred the
most by the participants on one setup. Our goal is to obtain better ratios with our machine learning
approach.

Prediction on the Oculus Rift
First, we evaluate our approach on the Oculus Rift. For evaluating the preferences and the

performances with the data from the users pro�les we use the following feature vector xi:

xi = {Wear glasses (binary), V R experience (binary), Hour/week V R(real),

V ideo game experience (binary), Hour/week V ideogame (real)}

For evaluating the preferences and the performances with the data from the users pro�les we
use the following feature vector xi:

xi = {Number Click Outside (real), T otal Selection T ime (real), Min Selection T ime (real),

Click Mean Distance Center (real), Click Min Distance Center (real),

Click Max Distance Center (real), Distance Max Straight Path (real)}

The results are compiled in Table 7.2.
As shown in the Table, for detecting the adapted technique of an unseen user on the Oculus

Rift, using a SVM trained on the pro�le data or on the 2D pre-test data could slightly improve
the prediction. Indeed, both method provide better performances than just applying the preferred
technique or the best performing one for all new users. Our method has the advantage to possibly
propose the three selection techniques to the end-user. Nevertheless, the di�erences are not impor-
tant enough to really demonstrate the e�ciency of the method. Indeed, with our approach between
43% and 51% of new users would not get the appropriate selection technique.

Prediction on the zSpace
Second, we evaluate our approach on the zSpace. For evaluating the preferences and the perfor-

mances with the data from the users pro�les we have changed the vector xi for the zSpace. Indeed,
we did not obtained similar ratios with the same one. This vector is the following one:

xi = {Age (real), V R experience (binary), Hour/week V R(real),

V ideo game experience (binary), Hour/week V ideogame (real)}

For evaluating the preferences and the performances we have also changed the vector xi ful�lled
with the data from the pre-test. This following feature vector xi:

xi = {Number Click Outside (real), T otal Selection T ime (real), Min Selection T ime (real),

Click Max Distance Center (real), Distance Mean Straight Path (real)}

The results are compiled in Table 7.3.

7.3. USER PREFERENCES FORMIXED REALITY USER INTERFACES: A PRELIMINARY STUDY123

« Majority » method SVM with profile features SVM with pre-test features

Ratio of good predictions
for the preferred technique

25/51:
M = 49.02%

M = 57.17%
SD = 12.99%

M= 52.95%
SD = 13.85%

Ratio of good predictions
for the best performing

technique

22/51:
M=43.14%

M = 55.60%
SD= 13.97 %

M = 49.14%
SD= 13.03 %

Table 7.2 � Comparison of the prediction ratios obtained with SVMs for the Oculus rift. M
corresponds to the mean ratio of good predictions and SD to the standard deviation.

« Majority » method SVM with profile features SVM with pre-test features

Ratio of good predictions
for the preferred technique

24/51:
M = 47.05%

M = 52.36%
SD = 13.94%

M = 39.12%
SD = 12.77%

Ratio of good predictions
for the best performing

technique

24/51:
M=47.05%

M = 35.98%
SD = 11.79%

M = 38.47%
SD = 12.97%

Table 7.3 � Comparison of the prediction ratios obtained with SVMs for the zSpace. M corresponds
to the mean ratio of good predictions and SD to the standard deviation.

As shown in the Table, the results obtained on the zSpace are worse than those on the Oculus
Rift. Indeed, only the SVM based on the pro�le features for detecting the preferred technique gives
a better ratio than the "Majority" method. However, the improvement between the two approaches
is only 5.31%. For the three other cases, the results are not good enough to possibly detect the
adapted technique for a new user.

124 CHAPITRE 7. USER ADAPTATION

Conclusion
To conclude on our machine learning approach, the results are encouraging enough to tell that it

could be applied in order to detect the adapted technique of a new user. We have obtained better
results with the pro�le features than for the pre-test features. In the same way, better results
have been obtained on the Oculus Rift than on the zSpace. Regarding these di�erences, we think
that the di�culty to predict the good technique on the zSpace can be explained by the fact that
the di�erences of preferences and performances were less signi�cant on this setup. Participants
globally preferred the three techniques and had better performances on the zSpace. We think that
the participants noticed less di�erences between the three techniques on this setup and therefore
it is more di�cult in that case to predict the adapted technique. To continue, the improvements of
ratio of good predictions compared to the "Majority" method are not important enough to really
apply our SVMs in their current states in order to detect the adapted interaction technique of a
new user. Even with our better ratio, 43% of users would not get the adapted technique. Some
work need to be done in order to demonstrate if these ratios can be improved.

Two main perspective of work can be identi�ed in order to improve these results. First, the
approach must be tested with a larger database. Indeed, we assume that our dataset composed of
51 participants was not big enough to really create accurate SVMs. Second, with more users in the
database, it could be interesting to experiment the learning process with other algorithms such as
the previously cited neural networks and random forests.

Last, the approach also su�ers from generalization. Indeed, it can only detect the adapted
technique between three interaction techniques for a selection task and for the two given setups.
Other experiments would be needed if we want to create others SVMs to predict the adapted
navigation interaction technique or the adapted manipulation technique. It could be possible to
use SVMs to predict global characteristics from the user pro�le or from a preliminary test and
then match these characteristics with the properties of some interaction techniques. For example,
we could detect automatically a novice user with low skill and propose him/her automatically 3D
menus with bigger icons and an assisted selection technique such as the 3D Bentray.

7.4 Extension Of 3DPlasticToolkit for User Adaptation

7.4.1 User Model Integration

Model contents and task association
The goal of the user model is to describe the users that will interact with the application and

therefore perform user adaptations. As for the other con�guration �les of 3DPlasticToolkit, the
con�guration of the di�erent user models is also performed with a XML �le. One example of such
a �le is given in Listing 7.1. This user model must contain the four types of properties that we
have de�ned in Section 3.3.2.

First, the user pro�le contains the di�erent properties that characterize the user. These pro-
perties can be for example the user age, his/her gender, his/her level of expertise. In the user model
they are represented as key-value properties. These properties are shown in the �rst part of the
XML �le presented in Listing 7.1.

Second, the user model contains the user preferences. These preferences are represented as
scores that will be taken into account by the 3DPlasticToolkit adaptation process in order to
instantiate the application components at runtime through one of the scoring modules presented
in the next Section. Multiple scores can be contained in the user model:

• As proposed in Chapter 4, a score Sa represents the compatibility between a high level
task and a concrete application component. The user can also express how he perceives this
compatibility by including a score Sau in his model. For instance, it can tell to the system
which interaction techniques or which visual e�ect the user prefers. As demonstrated in our
user evaluation this compatibility can di�er according the type of display used. Therefore, as
shown at line 12 of Listing 7.1, this compatibility can be parametrized with a display type.

• In the application model, the scores Sld represent a compatibility between an application
component and a logical driver. The user model includes scores Sldu to expose preferences

7.4. EXTENSION OF 3DPLASTICTOOLKIT FOR USER ADAPTATION 125

1 <UserConfig>
2 <User userId="1">
3 <Profile key="Name" value="Bernard"/>
4 <Profile key="Age" value="35"/>
5 <Profile key="Gender" value="M"/>
6 <Profile key="Expertise" value="Novice"/>
7 <Profile key="MasterEye" value="Right"/>
8 <UserPrefComponent Name="3DRay" Task="SelectionManipulation" score="1.0">
9 <UserPrefDriver Name="3DRay6DofDriver" score="1.5" />
10 <UserPrefDriver Name="3DRayMouseDriver" score="0.5" />
11 </UserPrefComponent>
12 <UserPrefComponent Name="3DCursor" displayType="HMD" Task="SelectionManipulation" score="0.8">
13 (. . .)
14 </UserPrefComponent>
15 <Environment key="Weather" value="Rainy"/>
16 <Environment key="Noise" value="Quiet"/>
17 </User>
18 </UserConfig>

Listing 7.1 � An example of user con�guration �le. Here one user is described. First the model
includes the user pro�le. Here, it includes the user's name, his/her age, his/her gender, his/her
expertise and his/her master eye. Second, his/her preferences are also included. For a given
task a score is assigned to a compatible application component as shown in lines 8 and 12.
As shown at line 12, this compatibility can be parametrized with a display type. Then, in
lines 9 and 10, for a given application component, score for its compatible logical drivers and
rendering presentations can also be assigned. Third, information about the environment of the
user can also be added. For instance, here, the properties concern the weather and the sound
atmosphere at the user's place.

for this compatibility. For example, the user may prefer using some kinds of devices to control
a speci�c interaction technique.

• In the same way, the scores Srp represent a compatibility between an application component
and a rendering presentation facet. The user model can also expose preferences for these facets
with scores Srpu. For instance, it can express a preference for a particular representation of
a 3D widget.

Third, information about the user environment can also be added. These properties refer
to the physical and social properties of his/her environment. As for the user pro�le, in the user
model they are represented as key-value properties. In the con�guration �le provided in Listing 7.1,
two examples of such properties are given. These properties concern the weather and the sound
atmosphere at the user's place. For instance, by knowing the sound atmosphere at the user's place
it could be possible to change dynamically the sound volume of an application.

Last, at runtime the user model can also be updated with monitoring information. In that
case, data about the interaction between the application are collected and reported in the user
model. Our implementation of the user model in 3DPlasticToolkit allows the developer to collect
such information with di�erent data-structures. For example, in a 3D selection application such
as the one presented in the previous Section, it could be interesting to monitor the user perfor-
mances in order to automatically propose him/her another interaction technique if he/she has some
di�culties.

As said, both Grappl and CATHI represent an interaction task as an action performed by a
user via a user interface. However, these two solutions do not represent this relation into the system
while it would be needed to perform user adaptations. Therefore, in 3DPlasticToolkit we represent
this relation by associating each task to a particular user. Such associations are illustrated in listing
7.2 where all tasks are associated with the same user whose index is "1". With this association, the
score of a triplet (application component, logical driver, rendering presentation) can be computed
according to the user model as explained in the next Section. With this association, a deployed
component can have access to all the properties of the user. It can be used to precisely adapt
a concrete application component to a user. For instance, in Section 7.3 the occlusion selection
technique uses the user's master eye in its selection process. As this property can be included

126 CHAPITRE 7. USER ADAPTATION

1 <TaskConfig>
2 <NeedTask userId="1" taskName="Navigation" taskId="0" topTask="0" ScoringModule="

UserPreferences"/>
3 <NeedTask userId="1" taskName="Sketching" taskId="1" ScoringModule="UserAndDeveloper"/>
4 <NeedTask userId="1" taskName="Selection" taskId="2" ScoringModule= "LearningUser" >
5 </NeedTask>
6 </NeedTask>
7 </TaskConfig>

Listing 7.2 � The task description in the 3DPlasticToolkit con�guration �le. Here three tasks
are associated with the three scoring modules presented in this Section. The "Navigation"
task is associated with the scoring module that only takes the user preferences scores. The
"Sketching" task is associated with the scoring module that combines the user's scores and
the developer's ones. The "Selection" task is associated with the scoring module that uses a
pre-trained machine learning algorithm to compute a triplet score.

in the user model (in the user pro�le part), the application component that corresponds to this
interaction technique can directly have access to this information. As di�erent users can be asso-
ciated to di�erent tasks in the same application, it could allow to take into account multiple users
collaborating in the same application, for example with a multi-user stereoscopic display such as
the Two-User Responsive Workbench presented by Agrawala et al. [Agrawala et al., 1997]. For now
two possibilities are implemented to select the user associated to each task. First, it can be directly
edited in the 3DPlasticToolkit �le as shown in Listing 7.2. Second, it can also be edited with the
meta-user interface. A login page could also be implemented in order to allow a user to load his/her
pro�le from a distant server and associate it with all the high level tasks of an application. Another
possibility could be to detect automatically the person that is using the application. For example,
such a solution would use a face recognition algorithm in order to attach all current tasks to the
detected user.

User model update
As explained before, there are two ways of updating a user model. First, the explicit way when

the user edits himself/herself his/her properties. Second, the implicit way when the system auto-
matically detects and updates some properties of the user model. For now, 3DPlasticToolkit fully
includes the �rst way, the second one being partially implemented.

For the explicit way, there are two possibilities. First the user can directly edit the XML
con�guration �le and ful�ll his/her properties. Nevertheless, for a novice user without knowledge
about 3DPlasticToolkit and about XML it can be a di�cult task. Therefore, at runtime the meta-
user interface can also be used to update the user model. Another possibility could be to edit this
model between sessions and to load it at runtime through a login page as explained before.

In order to support the implicit way, some solutions are currently in development. For ins-
tance, as explained in Section 4.7.2, the application components, logical drivers and the rendering
presentations can be modi�ed with the meta-user interface. When a user changes one of these
components in the meta-user interface and keeps the new one until the end of the application,
the preferences scores of the two components could be swapped. The goal would be to learn from
the user habits in order to automatically adapt the application another time. For now this feature
is not implemented. Second, we included a "UserMonitoring" task and we plan to develop some
compatible components for updating automatically the user model at runtime. It would allow the
developers to develop their own monitoring components. With this approach some logical drivers
could be implemented in order to detect some information about the user environment. For ins-
tance, a microphone could be used to detect the sound atmosphere. One example of component for
this task that we have implemented is based on a weather sensor virtual device based on the web
API: OpenWeatherMap 1. Our application component that monitors the user uses a logical driver
that exploits this virtual device in order to update the weather information in the user model.
Then we have used this information in order to dynamically adapt the weather conditions in the
VE by changing the skybox of the scene.

1http://openweathermap.org/api

7.4. EXTENSION OF 3DPLASTICTOOLKIT FOR USER ADAPTATION 127

1 public class ScoringModuleUserPreferences : ScoringModule
2 (. . .)
3 public float getTripletScore(Task task , string componentName, string logicalDriverName , string

renderingPresentationName)
4 {
5 IndividualUser user = task . associatedUser ;
6 float Sau = user . getCompatibilityControl(task .Name , componentName) ;
7 float Sldu = user . getCompatibilityLogicalDriver(logicalDriverName) ;
8 float Srpu = user . getCompatibilityRenderingPresentation(renderingPresentationName) ;
9 return Sau+Sldu+Srpu ;
10 }
11 (. . .)
12 }

Listing 7.3 � The implementation of the user preferences scoring module. The function that
computes the score of a triplet adds the user preferences scores for the application component,
for the logical driver and for the rendering presentation.

7.4.2 Scoring Module For User Adaptation

In order to take into account this user model in 3DPlasticToolkit three di�erent scoring modules
have been implemented. They are named "UserPreferences", UserAndDeveloper" and "Machine-
Learning". As explained in Section 4.7, a scoring module implements a particular way to compute
the scores of a triplet (application component, logical driver, rendering presentation) that can be
associated to a task in the current context of use. The goal of this module is to order these di�erent
triplets for the adaption process. Then the adaption process automatically deploys the triplet that
gets the better score.

As explained in the previous Section, in the user model, each user has his/her own preferences
for the compatibilities between task and applications components, and between components and
logical drivers and rendering presentations. Therefore, each user model contains the following scores:
Sau, Srpu and Sldu.

The �rst scoring module named "UserPreferences" provides the maximal importance to these
scores when ranking the di�erent compatible components. Its name is "User Preferences". This
is the one associated with the task "Navigation" in Listing 7.2. This module only uses the scores
extracted from the user preferences. The goal is to provide the application that corresponds as
much as possible to the user needs. The score for a given triplet is:

S = Sau+ Sldu+ Srpu (7.2)

As these scores can be edited in the meta-user interface by the end-user, it gives him another
possibility to change dynamically the application components currently deployed. Nevertheless in
that case, the compatibility scores provided by the developper of the application are not taken into
account. Therefore, in that case the developer has not really the control of adaptation process.

That is why the second scoring module named "UserAndDeveloper" combines both the scores
in the user model (Sau, Srpu and Sldu) and the ones provided by the developer (Sa, Srp and Sld).
This is the one associated with the task "Sketching" in Listing 7.2. The implementation of this
module in 3DPlasticToolkit is given in Listing 7.3. It provides a good compromise between the user
preferences and the developers and designers choices. This module proposes to add these di�erent
scores to compute the score of a triplet:

S = (Sa+ Sau) + (Sld+ Sldu) + (Srp+ Srpu) (7.3)

If needed, it could also be possible to weight the importance given to the developers scores and to
the users ones. In that case, this scoring module can be parametrized with two values Wd and Wu
that correspond respectively to weight for the developers scores and to the weight for user scores.
In that case, the score of triplet is computed as:

S =Wd× (Sa+ Sld+ Srp) +Wu× (Sau+ Sldu+ Srpu) (7.4)

With these two modules, the adaptation process can choose the interaction techniques and the
content visualization that best match the user preferences and the developers needs. As explained

128 CHAPITRE 7. USER ADAPTATION

in the previous Section two methods are proposed to acquire the user preferences scores. A user
can directly edit his/her score with the meta-user interface, or they are automatically updated
when he/she replaces a component by another one with the same interface. The �rst solution can
be quite di�cult to understand for a novice user with poor knowledge about MR user interfaces.
The second one forces the user to try multiple application components before being able to know
which one he prefers. A better solution could consist in performing an automatic detection of the
user preferences by analyzing his pro�le or his performances during the interaction.

This is what we have proposed in Section 7.3.2 with the use of machine learning. This is the one
associated with the task "Selection" in Listing 7.2. For now, this scoring module is not implemented
in 3DPlasticToolkit. This module computes the scores of application components according to a
pre-trained SVM. This module can only be associated to the "Selection" task as it the only one
for which we have trained SVMs on a dataset. In the same way, the scores are computed from
the pre-trained SVM only if the main display is an HMD (as the Oculus rift) or a stereoscopic
screen (as the zSpace). Of course other SVMs could also be trained with other displays and for
other tasks and components. For computing the score of a triplet, the scores that correspond to
the logical driver and to the rendering presentation are taken from the user preferences scores as
for the "UserPreferences" scoring module. Only the score for the global component is computed
from the prediction of the SVM. The scoring module has to be possibly con�gured by the developer
in order to determine if it computes a prediction from �nding the preferred technique or the best
performing one for a given user. Therefore, the score of a triplet is computed as follows:

S = Sasvm+ Sldu+ Srpu (7.5)

with Sasvm = 1 if the corresponding component is the one predicted by the SVM, however
Sasvm = 0.

The main limitation of this module lies in its di�culty to be applied for other tasks.s, other
displays and other components as it needs a dedicated pre-trained SVM. It also requires pro�les
containing the needed properties to make the prediction with the SVM (the user pro�le informations
or the data from a preliminary test). Moreover, as explained before, the ratio of good predictions
are not good enough to really ensure the e�ciency of the method.

7.5 Conclusion

In this Chapter we present how we have integrated user adaptation in our plasticity models and in
3DPlasticToolkit. The goal is to include another adaptation source in order to complete R1.

With a preliminary experiment we have identi�ed the di�erent issues to consider for dealing
with user as an adaptation source. The goal of this experiment was to compare the preferences and
performances for three 3D selection techniques on two device setups. First we have shown that the
preferred or the best performing interaction technique of a user can di�er on two similar hardware
con�gurations. Indeed, the main di�erence between our two setups was the display type, an HMD
or a stereoscopic screen. We have also demonstrated that the preferred technique of a user is not
always the one with which he/she performs the best. That is why, the developer has to determine
if the chosen adapted technique will match the preferences of the user or his/her performances.
From this experiment we propose a machine learning approach based on SVMs in order to detect
the adapted technique for a new user from his/her pro�le or from the monitoring information
obtained during a 2D selection pre-test. The results obtained with this approach are encouraging
enough to tell that it could be possibly integrated in a user adaptation process. Nevertheless, the
obtained ratio of good predictions are not good enough to really apply our SVMs in their current
states to detect the adapted interaction user for a new user. As perspective of work, we could test
our approach with more data or with another machine learning algorithm. Then, based on these
di�erent results we propose a user model that can include properties about the user pro�le, the user
environment, the user preferences and also user monitoring information. As each high level task in
3DPlasticToolkit is associated with a particular user the deployed application components can be
chosen according the user preferences and can be parametrized according to the user properties. For
this deployment we propose three scoring modules. The �rst one only uses the preferences scores of
the user in order to choose the application components that will match his/her preferences. Second,

7.5. CONCLUSION 129

we propose a scoring module that combines the preferences scores with the developer ones in order
to make a compromise between the developer choices and the user choices. The last scoring module
uses our machine learning approach in order to compute the score of an application component.
More work should be done to improve the accuracy of our machine learning approach in order to
really use it in an application.

Regarding the experiment, the performances and the preferences have been evaluated for similar
types of 3D scenes. It would be interesting to see if the preferences and performances remain the
same for a di�erent virtual environment with other types of objects to select. More work could
also be done in order to apply an automatic detection of the users preferences. Indeed, for now
the main part of our approach depends on the scores provided by the end-user. More than just
improving the accuracy of our machine learning approach, its generalization capability could also
be improved. The current approach cannot be extended to other tasks and to other interaction
techniques. Therefore, one objective could be to use machine learning in order to predict the user
global characteristics from his/her user pro�le or from a preliminary test. These characteristics
could then be matched with the properties of some interaction techniques in order to select the
best one. Another possibility could also be to integrate a rule-based system in order to compute
the preferences scores from the other properties of the user model.

130 CHAPITRE 7. USER ADAPTATION

Chapitre 8

Data Adaptation

8.1 Introduction

In a MR user interface a user is interacting with data, he/she can visualize them, modify them and
manipulate them. This is particularly true for data-visualization applications but it is also true for
other use cases. For instance, in a training application a user can have access to di�erent kinds of
documents such as procedures documents and diagrams. In the same way, for an AR application for
assisted surgery, medical data are displayed to the end-user. As illustrated in Figure 8.1, the main
focus of this Chapter is on the adaptation of the content visualization of an application according
to the data structure and semantics.

Sources

Targets

Time

Content

Interaction techniques

Data

User and their environment

Hardware

R
u

n
ti

m
e

C
o

m
p

ile
-t

im
e

U
se

r

Sy
st

em

Controller
Recasting

And
Redistribution

D
ev

el
o

p
er

/D
ep

lo
ye

r

Figure 8.1 � Regarding our design space problem of plasticity for MR user interfaces, this chapter
is interested in adapting the content visualization of an application according to data structure
and semantics. At a lower level, we also show that the data can also be combined with the devices
properties and the users properties.

As detailed in Chapter 3, considering the data as an adaptation source is one of the requirements
for the development of plastic MR user interfaces. The data can really have an impact on the �nal
aspect of an application, more speci�cally on its content visualization. First, the structure of the
data can be taken into account in order to adapt a MR user interface. For instance the hierarchical
structure of a database can automatically be used in order to choose a visual metaphor that can
transpose the hierarchy in the virtual environment. In the same way, the data semantics can also
be used in order to choose an adapted metaphor. For instance, a visual metaphor based on a virtual

131

132 CHAPITRE 8. DATA ADAPTATION

museum can be used in order to display cultural artifacts [Bonis et al., 2009]while a virtual movie
theater metaphor can be used to present a video on demand catalog such as in [Esnault et al.,
2010].

In this Chapter we present a model for integrating data as an adaptation source in our plasticity
models. We �rst propose an integration of a data model that can load large databases of di�erent
types and can expose information about data semantics through Web Ontology Language (OWL).
This data model is currently implemented in 3DPlasticToolkit. Second we propose an update of the
scoring mechanisms in order to choose an adapted visualization metaphor with adapted parameters
to display the results of user data query. This update is based on an optimization function. For
now, these scores computations are not implemented in 3DPlasticToolkit. Nevertheless we present
a proof of concept that demonstrates di�erent aspects of our solution with some implemented
visualization metaphors. This proof of concept is based on an application for the visualization of
cultural heritage data contained in the Topic-Topos. database1.

This Chapter is structured as follows. First, in Section 8.2, we detail the related work that deals
with adaptation to the data. Second, in Section 8.3 we present our integration of data modeling
in our plasticity models and in 3DPlasticToolkit. To continue, in Section 8.4 we demonstrate how
application components that correspond to data visualization metaphors can be deployed with our
scoring mechanisms. In Section 8.5, we present a proof of concept demonstrating how our solution
can handle data as an adaptation source for a cultural heritage application. Last, in Section 8.6 we
conclude on this Chapter and we give some perspectives for future work.

8.2 Related Work

In the �eld of MR user interfaces only few related work is interested in proposing solutions for
dealing atomically with data in order to adapt an application. This is particularly true when
we compare the number of such solutions with the number of approaches proposed to deal with
adaptation to devices and to users.

In that category, we can for example cite the visualization framewrok proposed by Esnault et
al. [Esnault et al., 2010]. It proposes a solution for the creation of 3D representations of databases
through XSLT (eXtensible Stylesheet Language Transformations) stylesheets that exploit the ex-
tracted data structure. The generated visual representation can be related to the content such as
a 3D museum for cultural artifacts or it can also be generic representation such as a carousel or
a time-line. For instance, an example of generic metaphor is given in Figure 8.2a. It demonstrates
that the same visualization metaphor (a tower of carousels) can be used for two di�erent databases.
To continue, in the context of web search results, AVE (Adaptive Visualization Environments) pre-
sented by Wiza et al. [Wiza et al., 2003] is a new approach for adapting the graphical presentation
of search results according to the structure of the data returned by the search engine. The goal of
this approach is to maximize the readability of the interface. Information about the data structure
such as the overall number of documents returned, the quantity of keywords, the �les types, can
be used in order to choose a good visualization metaphor. A scoring mechanism �nds the best
interface and the best mapping of the data on this interface. In case of equality the choice is given
to the end-user. The end-user can also modify di�erent parameters of the �nal interface such as the
color that represents particular types of documents. Three types of interfaces can be instantiated.
First holistic interfaces are used for voluminous search results and present an entire result through
groups of documents that share one or several criteria. Second, analytical interfaces present the
search results in detail and are well suited for small amount of data. In such interfaces each 3D
object represents a single document. Last, a hybrid interface presents aggregated data as well as
detailed aspects. Nevertheless, the systems only allows the visualization of web search results and
nothing is proposed to visualize data represented by 3D models. Content-related metaphors are
not included either. In addition, the data semantics is not taken into account during the interface
choice. An implementation of the AVE model is proposed in the Periscope system [Wiza et al.,
2004] which proposes an intermediary layer between a user and indexing search engines.

In [Golemati et al., 2006], the authors propose a method to match visualization methods against
the user, task, available devices and document contexts. To do so they propose a set of properties

1http://fr.topic-topos.com/

8.3. AN INTEGRATION OF DATA MODELING 133

(a) (b)

Figure 8.2 � Two examples of automatic creation of data visualization interfaces. (a) The visua-
lization of two di�erent databases (Music and Movies) with the same visualization metaphor (a
tower of carousels) [Esnault et al., 2010]. (b) An example of analytical interface created with the
Periscope system [Wiza et al., 2004].

to describe users, tasks devices and documents (the context). In the same way, the visualization
methods are described according to di�erent properties. The system uses a rule-based systems in
order to compute the score of a method according to its properties and according to the properties
of the context elements. The method with the best score is chosen to visualize the data. Nevertheless
no solution is proposed in order to �ne tune the intrinsic parameters of a visualization methods
according to the context of use. In this work, an example based on the visualization of historical
archives is introduced.

To continue in order to adapt the visualization according to the data semantics. Bosca et al.
[Bosca et al., 2007] propose a solution for the 3D visualization and exploration of OWL ontologies.
For this visualization, concepts are rendered as spheres, instances as cubes and semantics rela-
tionships between entities are symbolized by arrowed lines. Nevertheless, it does not include any
solution to construct a content-related visualization metaphor according to the ontology. Only the
structure of the ontology can be visualized.

From all this work we can extract �ve main types of 3D visualization metaphors: content-related
metaphors, generic exploration metaphors, temporal metaphors, maps and 3D diagrams. In order
to atomically create such metaphors, two kinds of information about the data can be used: the
semantic and the structure. For now, no solution can create the three types of interfaces according
to the two kinds of information about the data. Moreover, for most solutions only the choice of
the metaphor is impacted by the data properties, the intrinsic parameters of the chosen metaphor
do not always depend on the data properties. Our solution aims to ful�ll the lacks of this current
related work.

8.3 An integration of data modeling

Our �rst goal in order to support data as an adaptation source is to include a data model in our
solution. This data model must include and expose the two types of information that we identi�ed
in the related work. First, it must include semantics information about the data in order to describe
the global topic of the database and the nature of each element. Second, the structural information
must also be exposed by the model or possibly extracted from it. For instance, such information
can range from a simple number to complex data structure for representing neighborly relations.

Our approach is separated into two parts as illustrated in Figure 8.3. First, the knowledge

134 CHAPITRE 8. DATA ADAPTATION

information and the data elements are represented in the data model with ontologies and concrete
instances with the use of Web Ontology Language (OWL). Second, we propose the possibility
to implement di�erent data loaders in order to support multiple types of databases. Of course
OWL �les can be loaded seamlessly but other types of databases can also be supported with the
intervention of a developer, such as SQL databases.

OWL is a semantic markup language for publishing and sharing ontologies [Bechhofer, 2009].
OWL is developed as a vocabulary extension of RDF (the Resource Description Framework). An
ontology is a shared conceptualization of knowledge in a particular domain. With the concept of
classes included in OWL, resources with similar characteristics can be grouped. A list of properties
for each class can be de�ned as well as relationships between the di�erent classes. For instance we
can imagine a class "Cultural Artifacts" and a list of its subclasses such as "Painting", "Sculpture"
and "Book". These elements represent at a high level the concepts, semantics and knowledge about
the database entities. The concrete instances of the database are represented with the concept of
individual included in OWL. An individual is a concrete example of a class (a class extension) and
is de�ned with properties instances. For instance, as possible individuals that derive from the class
"Painting" we could imagine "The Mona Lisa" or "Guernica". With the use of OWL, we bene�t
from a widely used ontology standard that can expose data elements and their semantics and from
which the data structure can be easily extracted.

OWL
file

SQL
database

XML
file

Databases Database loaders Data model

Owl representation
- Semantic
- Structure
- Data elements

Owl loader
(OwlDotNetApi)

Generic SQL
loader

Database
specific

converter

Generic XML
loader

Database
specific

converter

Developer Intervention

Figure 8.3 � The 3DPlasticToolkit data model based on a OWL representation and compatible
other databases through the implementation of speci�c converters by the developer.

An application developed with 3DPlasticToolkit can be con�gured with the link to the data.
For instance, the classic method to ful�ll the data model is to load a OWL �le as seen in Figure
8.3. This is performed with the global XML con�guration �le of 3DPlasticToolkit. An extract
of this con�guration �le to con�gure the data model is given in Listing 8.1. In this example, a
OWL �le that contains the description of a cultural heritage database is loaded. Regarding the
implementation, we have interfaced 3DPlasticToolkit with OwlDotNetApi2 in order to load OWL
�les and to handle OWL data at runtime.

Nevertheless, as explained, we must also give the possibility to the developer to load any other
kind of databases such as SQL databases or data organized in XML �les. For instance, in the ap-

2https://github.com/bpellens/owldotnetapi

8.4. VISUALIZATION METAPHORS DEPLOYMENTS SCORES OPTIMIZATION 135

1 <Datamodel dataFile="D:/Data/CulturalArtifacts .owl"/>

Listing 8.1 � The data model con�guration in the 3DPlasticToolkit con�guration �le. Here a
OWL �le is loaded.

plication described in Section 8.5, data are organized in a SQL database and a semantic knowledge
is provided as a hierarchy of keywords included in a text �le. Therefore, the process of loading an
other type of database is performed in two steps as illustrated in Figure 8.3. First, the developer
can create a generic module that loads in memory the data included in a given type of database.
For instance, a generic module for loading a SQL database in memory can be developed. This
loading module can then be reused in other applications for the same type of databases. After this
step, the data and its structure are loaded in the memory but nothing describes its semantics. The-
refore, a speci�c converter has to be implemented by the developer in order to convert these data
to the OWL representation of our data model. In this converter basic semantic information can
be extracted automatically from the �elds names of the database or it can also load an additional
�le that exposes some semantic knowledge about the data. This converter is speci�c to a given
database and has to be redeveloped if this database is replaced by a di�erent one. The currently
used converter can be con�gured in the 3DPlasticToolkit con�guration �le. For instance, in the
application described in Section 8.5, this converter loads the hierarchy of keywords from a text �le
and converts the concepts as OWL classes in the data model. Then, the data elements are de�ned
as OWL individuals and are associated to their corresponding classes according to their keywords.

With this data model included in our solution, semantic and structural information of the data
visualized and manipulated at runtime can be exposed to the di�erent application components and
to the adaptation process. In the next Section we describe how this data model can be exploited
in order to deploy and to adapt automatically data visualization metaphors.

8.4 Visualization metaphors deployments scores optimization

From our data model our goal is to exploit the information about the data structure and the data
semantics in on order to adapt the content visualization of the application.

The adaptation of the content visualization is performed into two main steps as illustrated in
Figure 8.4. First, it starts with data selection. In that step the user creates a query to select the
data that he/she wants to visualize. In this query the user also indicates the type of the metaphor
used to visualize the data. Five types of metaphor can be selected: temporal, cartography, generic
exploration, contend-related and diagram. Second, we select a metaphor that corresponds to the
type chosen by the user and that best matches the data query. To do so, we propose to optimize the
intrinsic parameters of each compatible visualization metaphors according to the data properties.
From this optimization a score of compatibility is computed and the metaphor with the best score
is selected. This is seamlessly integrated in our adaptation process with our scoring mechanisms.
Then if needed, the user can re�ne his request or perform an another one, and he/she can also
change the created visualization interface with the help of the meta-user interface integrated in our
solution. This process is not fully implemented in 3DPlasticToolkit. Indeed, for now, as detailed in
Section 8.5 only simple queries can be expressed and there is only one concrete metaphor associated
to each global type. The scoring mechanism is not included yet.

In the �rst step of the visualization process, the user gives a data selection query as well as
the type of the metaphor that he/she wants to be used. To do so, we propose a high level task
"DataSelection" as illustrated in Figure 8.4 for which a concrete application component will be
deployed. A compatible component must give the possibility to select data elements according to
three di�erent levels:

• At the concept level the user selects to display all the elements in the ontology that cor-
respond to a class,

• at the property level the user selects the elements that satisfy a common property, for
instance he/she could want to visualize the elements created between two given dates,

136 CHAPITRE 8. DATA ADAPTATION

Data-query
« DataSelection » task

Metaphor choice
and deployment

« DataVisualization »
task

- Data selection
- Metaphor type

Express or
refine a

data query

Pair:
(Metaphor, List of optimized parameters)

With the meta-user interface:
- Metaphor replacement

- Parameters modifications

Figure 8.4 � The 3DPlasticToolkit data visualization process is composed of two main steps: data
selection and visualization metaphor choice.

• at the element level the user selects individual elements.

Then, a compatible application component must also give the possibility to the end user to perform
basic set operations for his query such as unions, negations and intersections. In order to allow
the end-user to provide such a query we can bene�t from the capacities of our solution to handle
multiple types of devices. Therefore, as concrete application components that could be used in
order to perform this query and provide the visualization metaphor type we could imagine:

• A 2D menu with a text input �eld could be used to enter and con�rm the query with a mouse
and a keyboard. Such a component could be used on desktop and mobile platforms.

• An application component based on speech recognition could be used in order to allow the
user to express vocal queries. It could be used on any platform that has a microphone.

• A 3D menu could be implemented in order to con�gure a query with a graphical tool. For
instance, it could be based on the ontology visualization metaphor proposed by Bosca et al.
[Bosca et al., 2007]. Such a component could be used on many platform as long as selections
mechanisms are deployed

Another possibility that could be used by an expert user could be an application component that
allows him/her to provide more complex queries such a queries expressed with the SPARQL query
language 3. SPARQL is a semantic data query format that can be used to retrieve data included
in RDF format such as OWL. Such an application component could be automatically deployed for
expert users with the help of our user adaptation process described in Chapter 7.

From that query a list of data is created. It contains all elements that will be visualized by the
end-user with an adapted visualization metaphor. In order to perform the choice of the adapted
metaphor, two types of parameters are needed, the semantics information about the data and the
structural properties. The data semantics information can be directly extracted from our data mo-
del based on OWL. Regarding the structural properties of the dataset, functions can be registered
in the "DataSelection" task in order to compute from the selected elements a list that contains
their structural properties. Such a function takes as inputs the data elements from the query and

3https://www.w3.org/TR/rdf-sparql-query/

8.4. VISUALIZATION METAPHORS DEPLOYMENTS SCORES OPTIMIZATION 137

extracts from them a given structural property. For instance, built-in functions can be implemented
in the task such as computing the number of elements, the �le types to visualize (pictures, text,
3D model etc.) or the spatial distribution of the data. If needed, the developer can also register its
own functions in order to extract other structural properties that he would require for the visua-
lization metaphors that he implemented himself/herself. All the registered functions are triggered
before the metaphor choice in order to compute all the needed properties. Therefore, to perform
the visualization, the dataset created with the query is associated with a set D of semantics and
structural properties:

D = {
n⋃

i=1

(xi,1, ..xi,m), (y1, .., yk)}

Where n corresponds to the number of elements in the dataset created from the query, m corres-
ponds to the number of semantic properties associated to a given element in the dataset, xi one
property of an element, k is the number of structural properties y extracted from the dataset.

When the data query has been given by the user, the dataset of elements to visualize has
been created and the di�erent semantic and structural properties have been computed by the
"DataSelection" task, a new task is de�ned as needed: "DataVisualization". This task is compatible
with multiple application components that implement visualization metaphors. These metaphors
correspond to the di�erent types that we have detailed. For each type, we can image multiple
compatible concrete application components implemented with our model presented in Chapter 4.
For instance, for each type we can cite the following possible metaphors:

• 3D Diagrams: data-cube[Bach et al., 2014], point-cloud (Figure 8.2b), pie chart, etc.

• Generic exploration: carousel (Figure 8.2a), cover�ow Figure 8.8 , city [Panas et al., 2003],
etc.

• Cartography: Mercator projection map (Figure 8.6), Winkel projection map, globe, etc.

• Content related: museum[Bonis et al., 2009], movie theater [Esnault et al., 2010], store [dos
Santos and Osório, 2004], library, etc.

• Temporal: timeline (Figure8.7), perspective wall [Mackinlay et al., 1991], etc.

Before the instantiation of a concrete application component with the "DataVisualization" task,
all scores that correspond to the compatible metaphors are updated according to the semantic and
structural properties of the dataset. The score of each compatible metaphor depends on the values
of its parameters. For instance, as parameter we can imagine the level of zoom to select in order to
see each element in detail, the size of each displayed element, the type of scale used in a diagram
(linear, logarithmic, etc.). These parameters depend on the semantic and structural properties of
the dataset to visualize. For a metaphor of index j, for each parameter pi,j with i the index of the
parameter, the developer has to create a function fi,j that can provide the impact of the di�erent
possible values of pi,j on the metaphor compatibility score according to the structural and semantic
properties of the dataset D. The developer also has to give the continuous or discrete range of the
parameter pi,j between two values a and b. It gives: pi,j ∈ [a, b]

fi,j(pi,j , D)

If needed, the developer could also access in these functions fi,j to the user properties included in
our user model detailed in Chapter 7. As well, the properties of the currently used devices could
also be exploited by these functions. For example a zoom level could be computed according to
the size of the main display. In case of dependent parameters it could also be possible to de�ne
a function f that computes an impact score according to multiple parameters. These functions
could be edited directly in the implementation of the metaphor or we could also imagine to edit
them in separate �les with the creation of a speci�c language. It could allow the developer to edit

138 CHAPITRE 8. DATA ADAPTATION

these functions without recompiling the code. For example, the impact a zoom level z to display
an element in detail (a picture or a 3D model) for a cartographic metaphor such as illustrated in
Figure 8.6 could be expressed as:

z ∈ [1, 10] with z ∈ N

fz,j(z,D) = (z
10 ×

nbElem
nbElemMax) + (Res/ResMax

z/10)

Where z is the zoom level, an integer between 1 and 10 that respectively correspond to a very
close view and to a very far view. nbElement is included in the parameter D and corresponds
to the number of elements to display and nbElemMax the maximum number of elements that
the metaphor can display. Res corresponds to number of pixel of the current display. This value is
normalized by a value ”ResMax”. The function makes a compromise between two facts symbolized
by the two operands of the equation. First, as expressed in the left operand of the right side of the
equation, a high zoom level is required if there are many elements to display. Second, as expressed
in right operand of the right side of the equation, with a higher resolution the elements can be
displayed in detailed with a smaller zoom level.

To continue, the compatibility score of a visualization metaphor is the addition of the impact
score of each of its parameters. The value is divided by the number of parameters. The scores of
the metaphors that do not correspond to the type required by the user are set to zero. Then, for
the remaining visualization metaphors, the computation of the compatibility score Sa of a given
metaphor of index j is an optimization problem. The goal is to maximize the compatibility score of
each metaphor by tuning their di�erent parameters and then to deploy the metaphor that obtains
the better score. For a given application component that implements a visualization metaphor, the
choice of the best parameters (p1,j , ..., pn,j) and the computation of its compatibility score Sa can
be described as:

pi,j = argmax
p

fi,j(p,D)

Sa =
∑n

i=1 fi,j(pi,j ,D)

n

When the score Sa of each visualization has been computed, we deploy the application component
that corresponds to the metaphor that obtained the best score. To do that, the computed score
Sa is used by the "Default" scoring module described in Chapter 4 or by the "UserAndDeveloper"
scoring module described in Chapter 7 in order to also take into account the users preferences scores.
When the best application component is deployed it uses the previously computed parameters
(p1,j , ..., pn,j) to con�gure itself.

After this step, the visualization interface is created. In that case, the metaphor and the para-
meters have been chosen by the system and by the developer choices. Regarding our requirement
R6, the end-user must also be able to con�gure the adaptation process. As for the AVE model
[Wiza et al., 2003], we aim to provide the end user with the possibility to con�gure the created
visualization interface. Our goal is to extend our meta-user interface to do so. First, as explained
in Chapter 4, the meta-user interface can be used in order to replace an application component
by another compatible one. This feature could be used in order to allow the user to replace the
currently deployed visualization metaphor by another one. Second, the di�erent parameters that
have been optimized could be modi�ed with the meta-user interface. For example, for a 3D diagram
that arranges the data on multiple axis, we could imagine changing the association between axis
and properties. The meta-user interface needs to be edited to do so.

As shown in Figure 8.4, in the last step of the data visualization process the user can perform a
new query on the all dataset or can re�ne its previous query. Indeed, the user may want to visualize
di�erent data or if he/she may want to visualize a subset of the currently displayed elements. In
the case that he/she re�nes the query, we must ask the end-user if he/she wants to keep the
same visualization metaphor or if he/she wants the new metaphor to still be chosen automatically.
Indeed, we consider that changing automatically the visualization metaphor to observe a subset of
the currently displayed elements could disturb the end-user. This choice has to be possibly given
to the user by the concrete application component associated with the "DataSelectionTask".

8.5. THE TOPIC-TOPOS DATABASE VISUALIZATION CASE STUDY 139

These di�erent visualization metaphors can be used at the same time with the di�erent interac-
tion tasks and the di�erent interaction techniques that we described previously. For instance, the
selection techniques presented in Chapter 7 could be used in order to select particular elements
and get additional information about them. In the same way, a navigation interaction technique
could be deployed in order to navigate within the data.

8.5 The Topic-Topos Database Visualization Case Study

For demonstrating the interest of our model and its e�ciency we propose a proof of concept based
on the visualization of cultural heritage database.

8.5.1 The Topic-Topos database and one of its possible use cases

The Topic-Topos database proposes an inventory of French patrimonial data. It includes 25 000
patrimonial elements that are arranged according to four main criteria:

• the "Topic" corresponds to the textual description of an element,

• the "Topos" refers to the geographical area of an element,

• the "Khronos" points to the time of an element,

• the "Thema" is the general theme of an element. Four main themes are possible: society,
economy, space and mentality. These main themes are then re�ned through a hierarchy of
elements.

The database also includes a picture for approximately all elements. For instance, in Figure 8.5 two
elements of the database are represented. The particularity of this database is that each element
can be described with one or multiple keywords. The goal of these keywords it to add a semantic
knowledge for all patrimonial elements. Almost 1000 di�erent keywords are used to annotate the
database elements. These keywords are organized as a tree where the highest nodes represent more
general themes and the lowest ones represent more precise information. Moreover, the database
can also be edited by any user who wants to share his knowledge about cultural heritage.

From this database we want to propose an interactive 3D visualization tool in a context of
virtual tourism. A possible use-case of such an application could be to plan the di�erent steps of
a discovering trip. It could help the end-users to plan their trip by selecting the elements they are
interested in and according to the position, the time and the themes of each of these elements.
Moreover, with the possibility of our models to adapt an application to devices, this tool could be
used with a mobile platform or with augmented reality glasses during the trip in order access the
elements descriptions included in the database.

8.5.2 A �rst proof of concept for Topic-Topos database visualization

The Topic-Topos database is composed of two parts. First a SQL table includes all the elements
and that contain �elds such as "name", "keywords", "dating", "GPS position". This database is
loaded through a generic SQL data loader in our data model. Second, an additional �les provides
a hierarchy of the keywords as a tree. These keywords represent the semantics concepts of the
database. As explained in Section 8.3, this hierarchy is parsed by a speci�c converter in order to
create classes and subclasses in the OWL ontology. Each element of the SQL database is de�ned
as an individual of a class according to its associated keywords. For instance, an example of a
class extracted from the database is "Housing" and "Manor", "House" and "Villa" are three of its
subclasses.

Regarding the data visualization process, for the �rst step we have implemented an application
component based on a text input �eld and on multiple virtual buttons in order to edit a query and
give the metaphor type that he/she wants to be used. This graphical interface is shown in Figures
8.6, 8.7 and 8.8. In this three �gures, the request is the same, the user wants to display all manors

140 CHAPITRE 8. DATA ADAPTATION

Figure 8.5 � Two patrimonial elements taken from the Topic-Topos database. On the left the
Benoist windmill in the town of Mont-Dol. On the right, a painting of church that can be seen in
the town of Ploermel.

("Manoir" in french). For now, the query component only supports the concept level detailed in
Section 8.4 and the union operator. In the same way, for now, only three global types can be
selected: temporal, cartography and generic exploration. In the current implementation, only one
visualization metaphor is compatible to each type. No optimization process is performed and the
visualization metaphor that corresponds to the global type required by the user is automatically
instantiated.

(a) (b) (c)

Figure 8.6 � The Mercator map visualization metaphor. The visualization of the elements changes
according to the zoom level.

For the cartography type, we have implemented a Mercator map as illustrated in Figure 8.6.
This map is based on the satellite images provided by Google and allows the user to zoom in or
zoom out the map according to prede�ned zoom levels. The point of view can also be modi�ed
by the end-user. Di�erent logical drivers have been implemented in order to control the map with
di�erent types of devices such as a mouse, a gesture sensor or a gamepad. As illustrated in Figure
8.6, the visualization of the elements change according to the zoom level. Indeed, as shown in
Figure 8.6a, with a small zoom level, only spheres represent the di�erent elements on the map.
As illustrated in Figure 8.6b, when the user zoom in the map the names of the elements are also
displayed. Last, as shown in Figure 8.6c, a picture is displayed for a high zoom level. For now, the
zoom levels that trigger a change of how the elements are displayed are static and do not depend
on the on the data properties. As future work, the parameters must be set with the optimization

8.6. CONCLUSION 141

process described in Section 8.4. In that case the data properties would be used to select the
di�erent zoom levels.

For the temporal type, we have implemented a timeline metaphor as illustrated in Figure 8.7.
As for the map, the user can also move the timeline with di�erent types of devices in order to
see the elements of other dates. For this metaphor, the elements are simply placed on the timeline
according to their date of creation included in the database. Both the name and the picture are
displayed for each element. A possible parameter that could be optimized for this metaphor is
the time resolution of time line. Indeed, this resolution could be chosen according to the time
distribution of the elements to visualize.

Figure 8.7 � The timeline visualization metaphor.

For the generic exploration type, we have implemented a cover�ow visualization metaphor
illustrated in Figure 8.8. This metaphor displays one central element with its picture and its name
The user can scroll through the di�erent items with di�erent types of devices. For instance, a Leap
Motion can be used in order to detect swipe gestures for changing the central element. A possible
parameter that could be optimized for this metaphor is the scrolling speed. This speed could be
chosen according to the number of elements to visualize. Indeed, in order to explore a very large
dataset, an increased speed is needed.

As future evolution of these three visualization metaphors, we must integrate the possibility to
select each individual element in order to display additional information such as the description
of the elements included in the database. This could be performed with the di�erent selection
interaction techniques included in 3DPlasticToolkit and detailed in the previous Chapters.

With the possibilities to edit a data query and to visualize its results, this application demons-
trates a �rst implementation of the basis of our model for taking data as an adaption source. This
application allows any user to visualize the Topic-Topos cultural heritage database through dif-
ferent aspects in order to �nd interesting elements so that he/she can plan a discovering trip. The
implementation of the model must be completed in order to evaluate its e�ciency. This use case
could be used for evaluating the model. Indeed, for instance, it could be interesting to evaluate the
e�ciency of our solution for planning a discovering trip by comparing our model with a classic 2D
search engine.

8.6 Conclusion

In this Chapter we present a model for integrating data adaptation in our plasticity models. For
now, this model is not fully implemented in 3DPlasticToolkit. Nevertheless, a �rst proof of concept
illustrates the basis of this model and how it can be used to develop a cultural heritage visualization

142 CHAPITRE 8. DATA ADAPTATION

Figure 8.8 � Cover�ow

application. When this model will be fully implemented in 3DPlasticToolkit we will be able to fully
cover R1.

In this Chapter we �rst propose an integration of a data model in our solution. This model is
based on OWL and aims at providing to the application the semantic and structural information
about the manipulated data at runtime. OWL �les can be seamlessly loaded with this model and
we also ensure that any other type of databases can also be loaded. To do so, we propose a two
steps conversion process that requires the intervention of the developer. Second, we propose a data
visualization process composed of two steps. The �rst step allows the user to express a data query
in order to select the data that he/she wants to visualize. Thanks to possibility o�ered by our
models to handle multiple kinds of devices, this query can be edited through di�erent ways such
as directly with a keyboard or with the use of a speech recognizer. With this query, the user also
provides a global type of metaphor that he/she wants to be used between �ve types: content-
related metaphors, generic exploration metaphors, temporal metaphors, maps and 3D diagrams.
In the second step, the semantic and structural properties of the selected data are used in order
to choose the best visualization metaphor that corresponds to the global type given by the user.
To do so, an optimization process is applied per compatible metaphor to select the best metaphor
with the best parameters according to the data properties. For now, this data visualization process
is not fully implemented in 3DPlasticToolkit. Nevertheless, we propose a �rst proof of concept of
this model in a cultural heritage context that allows a user to edit queries with his/her keyboard
and to visualize the results through three di�erent visualization metaphors: a timeline, a Mercator
map and a cover�ow metaphor.

As perspective of work, of course we want to implement the whole model in 3DPlasticToolkit.
Multiple visualization metaphors must be implemented in each category in order to provide end-
users with a wide variety of visualization possibilities. A method to edit the impact score of each
parameter must also be provided in order to perform the con�guration of this part of the adaptation
process without recompiling the code. As future work, it could also be interesting to illustrate the
model in another context of use such as visualizing procedure data in a training process. Last,
we plan to evaluate if the automatic choices of visualization metaphors always satisfy end-users.
We want to see if the metaphors are always well chosen and if the frequent changes of metaphors
disturb the end-user.

Chapitre 9

Conclusion and Perspectives

9.1 Summary

Our thesis focuses on plasticity for mixed reality user interfaces. It can concern virtual reality,
augmented reality and augmented virtuality applications. Today, there is a growing interest for
this domain and a lot of use cases can bene�t from the use of MR. Nevertheless, developing such
applications is more complex than developing classic 2D user interfaces.

The plasticity concept originally proposed in the context of 2D user interfaces is the capacity of
an interactive system to withstand variations of both the system physical characteristics and the
environment while preserving its usability. A plastic interactive system is able to detect the current
context of use and is capable, if necessary, to change its appearance and behaviour in order to �t
this current context. Considering plasticity during the creation of MR user interfaces can induce a
lot of advantages such as the reduction of development and maintenances costs, the possibility to
distribute widely an application, and the capacity to improve the attractiveness of an application
according to the context of use.

The objective of this thesis is to identify the di�erent requirements for the development of plastic
MR user interfaces and to propose models, concepts and algorithms integrated in a software solution
in order to cover these di�erent requirements.

9.2 Results

In this context, we �rst propose a design space problem for the development of plastic MR user
interfaces based on four axis that correspond to the adaptation time, the adaptation controller,
the adaptation sources and the adaptation targets. At the center of this space problem, the two
adaptations means are recasting and redistribution. This design space problem has been published
in [Lacoche et al., 2014]. Based on this design space problem, we successively propose three models
for dealing with the three identi�ed adaptation sources: devices, users and data. By integrating
these models into one software solution named 3DPlasticToolkit we can cover the di�erent issues
identi�ed in the design space problem. A summary of our contributions according to this design
space problem is illustrated in Figure 9.1.

For the creation of a MR user interface, one of the main issues is to consider devices as an
adaptation source. Indeed, in MR the set of possible output and input devices is very large. Fur-
thermore, this domain is very dynamic and new devices appear really often. Developing manually
a version for each possible con�guration is not a viable option. In order to cover this issue, we
propose a device model for the description of interaction and display devices and an application
component model for the development of MR applications components independently from devices
and 3D frameworks. These models have been published in [Lacoche et al., 2015a]. From these two
models, we support recasting with two elements. First, a dynamic adaption process that checks
the modi�cations of the context of use in order to deploy the adapted application components at
runtime. This process maximizes the usability of the application with scoring mechanisms that use
scores given by the developer. Second, an integrated user interface allows the end-user to check and

143

144 CHAPITRE 9. CONCLUSION AND PERSPECTIVES

to modify the adaptation behaviors at runtime: the meta-user interface. In order to demonstrate
how these models can be used in concrete examples we present multiple applications developed
with 3DPlasticToolkit that consider device as an adaptation source. For instance, we present a
furniture planning application demonstrated at IEEE VR 2015 [Le Chenechal et al., 2015] and a
collaborative manipulation demonstration presented for the IEEE 3UI contest 2016 [Le Chénéchal
et al., 2016b]. A demonstration of how it can be used in order to deal with the "frame cancellation"
visual discomfort has also been published in [Lacoche et al., 2015b].

To continue we also propose a model for allowing the end-user to change dynamically the
distribution of his/her application across platforms/displays and user: this is redistribution. We
propose D3PART (Dynamic 3D Plastic And Redistribuable Technology), a model specially designed
to deal with redistribution for MR user interfaces. This model has been published in [Lacoche et al.,
2016]. D3PART allows the user to con�gure a new distribution of the high level tasks with the meta-
user interface and also handles the virtual environment replication. Combined with the dynamic
recasting capability of our models, with the included adaptation process, usability continuity is
ensured whatever the new distribution chosen. With D3PART any application developed with
3DPlasticToolkit automatically bene�ts from redistribution capabilities. We present three examples
of redistribution for our furniture planning application. These examples show how redistribution
can be used to switch from a mobile platform to an immersive one, to combine these two platforms,
and �nally to create a collaborative context of use between them.

From the di�erent applications developed with our models that consider devices as an adap-
tation source, we have highlighted the need for also taking into account the users during the
adaptation process: this is personalization. Indeed, the user preferences and properties have to be
possibly taken into account during the choices of interaction techniques, visual e�ects, etc. In this
thesis, we �rst try to understand the needs for taking into account the users preferences to adapt
the interaction techniques and how we can detect automatically these preferences. To do so we
present an experiment that compares di�erent selection techniques on two device setups that only
di�er by their display type. We show that even with few di�erences between the two setups the
users performances and the preferences are di�erent. The results of this experiment are used in
order to propose a machine learning approach based on SVMs in order to automatically detect the
adapted selection technique for a new user. The results of this approach are really encouraging and
more work needs to be done in order to demonstrate totally its e�ciency. Then, based on these
di�erent results we propose a user model that can include properties about the user pro�le, the
user environment, the user preferences and also user monitoring information. During the applica-
tion components deployment these information can be taken into account in order to compute the
di�erent compatibility scores. The result of the integration of this user model and of the update
of the scoring mechanisms is the possibility for 3DPlasticToolkit to dynamically adapt a MR user
interface according to the user preferences.

The last focus of this thesis is on adaptation to data. Indeed, in most applications users mani-
pulate, visualize and modify di�erent kinds of data. The structure of these data and their semantic
properties can really impact an application, mostly its content visualization. Therefore we pro-
pose a complementary model for taking into account data as an adaptation source. For now, this
model is not totally implemented in 3DPlasticToolkit. Only preliminary proof of concepts have
been developed. We �rst propose an integration of a data model which can load large databases
of di�erent types and can expose the information about data semantic through Web Ontology
Language (OWL). Second we propose an update of the scoring mechanisms in order to choose an
adapted visualization metaphor with adapted parameters to display the results of user data query.
This mechanisms is based on an optimization function. An application component is also proposed
in order to let the end-user expresses data queries. To illustrate this model we propose a proof of
concept application for the visualization of cultural heritage data.

9.3 Perspectives

The di�erent models, concepts, algorithms and software components presented in this thesis can
be extended and also evaluated. Therefore, we have identi�ed a list of future work that could be
performed in order to complement the research contributions presented in this thesis.

9.3. PERSPECTIVES 145

Sources

Targets

Time

Content

Interaction techniques

Data

User and their environment

Hardware

R
u

n
ti

m
e

C
o

m
p

ile
-t

im
e

U
se

r

Sy
st

em

Controller

Recasting
And

Redistribution

D
ev

el
o

p
er

/D
ep

lo
ye

r

Adaptation process

D3PART model
Scoring modules

and configuration
files

New device model (capacities, limitations, 3D representation)

New user model (profile, preferences,
environment, monitoring)
Machine learning approach (SVM)

Data model (structure and semantic)

New Application
Component

Model based on
PAC and ARCH

Meta-user
Interface

Context changes
detection

Configuration files

Chap. 4

Chap. 4,7 and 8
Chap. 4,,6 and 7

Chap. 4

Chap. 8

Chap. 4,7 and 8

Chap. 6

Chap. 4

Chap. 7

Chap. 4

Figure 9.1 � A summary of our contributions for the creation of plastic MR user interfaces. We
also give the associated Chapter for each of these contributions.

Improvement of association between logical drivers and device units
The accurate description of our device model aims to avoid not suitable alignments between devices
capabilities and logical driver needs. In some cases this may not be enough to match the user needs.
Indeed, the user may prefer to use other devices units for a given logical driver. Even if our meta-
user interface provides a solution to modify these associations it can be tedious to do it each time
the application is launched. A solution for future work could consist in using the interaction models
proposed by Avouac et al. [Avouac et al., 2012] in order to pre-de�ne the associations between some
identi�ed devices and one logical driver. To do so, an interaction model could be integrated in our
user model. It would be included in the user preferences part of our mode. In order to update it, we
could just save the modi�cations of associations that the user performs in the meta-user interface.

Considering system-intended redistribution
In D3PART presented in Chapter 6, for now the redistribution process is only user-initiated with
the help of the meta-user interface. As perspective of work, we want to explore the automation
of the redistribution process. Our goal is to obtain also system-initiated redistribution or mixed-
initiated redistribution. For instance, it could consist in �nding the right platform or the right user
for each task according to the platforms capabilities and the user preferences. Our scoring system
could be used to do so, for example by applying no longer locally, but instead by applying it on all
available platforms. Another possibility to trigger automatically the redistribution process could
be to analyze the user behaviour with the monitoring information of the user included in the user
model presented in Chapter 7. For instance, in the use case presented in Section 6.5, if the user
drops his/her tablet before entering in Immersia, we could initiate a full migration of the application
from the mobile platform to the immersive one. Conversely, if the user enters in Immersia with the
tablet, a partial migration could be intended in order to combine both platforms. The main issues
here is user actions recognition that would require advanced computer vision algorithms such as

146 CHAPITRE 9. CONCLUSION AND PERSPECTIVES

the work presented by Chéron et al. [Chéron et al., 2015].
Generalization of the machine learning approach for user preferences detection

In Chapter 7, we present a machine learning approach in order to detect the preferences of a user
for a selection task. As detailed, the results of using such an approach are encouraging and we think
that we larger a database of participants we would be able to precisely detect the preferences of
a new user. Nevertheless, this approach also su�ers from generalization. Indeed, it can only detect
the adapted technique between three interaction technique for a selection task and for the two
given setups. As future work, it could be possible to use machine learning in order to predict global
characteristics from the user pro�le or from a preliminary test and then match these characteristics
with the properties of some interaction techniques. An example that we have given in Chapter 7
could be to detect automatically a novice user with low skill and propose him/her automatically
3D menus with bigger icons and an assistive selection technique such as the 3D Bentray. The main
di�culty of this perspective of work is to construct an experiment that would let us extract high
level characteristics of users that can be matched with a wide variety of interaction techniques.

Considering LOD
On of the main bottlenecks for MR user interfaces concern the times to render complex 3D models.
As keeping a low latency is essential for MR user interfaces, a particular attention has to be
given to impact of the 3D models on performances. As each platform may not have all the same
computation capabilities, the rendering of the assets could be handled di�erently. In some cases it
would be necessary to consider adaptive assets (with level of details). To solve this issue, we plan
�rst to integrate information about the computing power of the platforms into the device model
described in Chapter 4. Second, we plan to give the possibility to parametrize the choice of an asset
according to the computation capabilities of the target platform. This parametrization could be
directly integrated in our data model detailed in Chapter 8. Then the adaptation process would be
able to dynamically choose the adapted assets according to the platform capabilities. In the same
way, in the redistribution process, during the virtual environment replication, only the assets that
correspond to the distant platform computation capabilities would be transmitted.

3DPlasticToolkit completion
In order to be used by other developers 3DPlasticToolkit has to be completed in order to really bring
an added value for the development of MR user interfaces. First the number of built-in high level
tasks and built application components needs to be increased. Indeed, more interaction techniques
need to be integrated as well as more visual e�ects and more data visualization metaphors. To
simplify the creation of these components, as proposed in Chapter 4, a MDE approach could be used
for the creation of the di�erent classes and to automatically connect their di�erent functions. Then,
more devices must be integrated in 3DPlasticToolkit. Indeed, as demonstrated in this thesis with
our di�erent examples it already supports common devices such as HMDs, trackers, stereoscopic
screen, depth sensors, etc. Nevertheless, our device model can also describe other kinds of devices
that are less common such as haptic devices, wind output devices or temperature output devices.
For now, our software solution does not include natively such devices. To continue, for now, our
solution mainly focuses on helping developers for the creation of plastic MR user interfaces. Our
goal is to also make it available for designers. Some authoring tools have been developed but they
are not ready to use yet by designers. More work has to be done on these authoring tools if we
want to fully cover R7 and make our solution easy to use for designers.

3DPlasticToolkit validation
Once our software solution completed it has to be evaluated in order to investigate its e�ciency.
For developers and designers two aspects must be veri�ed. First, we must verify if our solution is
easy to use and e�cient for the development of a new MR applications. To do so, feedbacks from
developers and designers have to be collected about how easy are the con�guration of a device,
the con�guration of the tasks and the use of the di�erent authoring tools. Second, we must also
investigate if the solution is easy to extend. For instance, we have to evaluate the capacity of
developers to integrate new devices, to create new interaction techniques or to develop new scoring
modules. We must also evaluate the impact of using 3DPlasticToolkit on the end-user. Indeed,
multiple questions need to be answered regarding the integration of our plasticity mechanisms in a
MR user interfaces. For instance, how do they react when the application is automatically adapted?
Are the meta-user interface and the redistribution process are easy to understand and to use for
the end-user? Do they always feel that usability continuity is ensured?

9.4. CONCLUSION 147

9.4 Conclusion

To conclude, in this thesis we propose di�erent models integrated in 3DPlasticToolkit in order
to create plastic MR user interfaces. Our contributions make it possible to take into account the
users, the data and the devices as adaptations sources. These three adaptation sources can be
taken into account in order to adapt the interaction techniques and the content visualization.
The adaptations can be static and dynamic and controlled by the system, the end-user and the
developer. Two adaptations means are supported: recasting and redistribution. We can say that
our solution covers the di�erent requirements of the design space problem of plasticity for MR user
interfaces. A summary of our contributions according to this design space problem is illustrated in
Figure 9.1.

3DPlasticToolkit already integrates a lot of display and interaction devices. As well it also
proposes built-in interaction techniques, visualization metaphors and visual e�ects. Some authoring
tools are also provided to con�gure the toolkit. Therefore, 3DPlasticToolkit is ready-to-use for any
developer who wants to develop a MR user interface and who wants to bene�t from the advantages
of Plasticity. The di�erent applications detailed in this thesis illustrate its e�ciency. Furthermore,
other applications based on 3DPlasticToolkit are still in development.

The proposition of these models o�ers a lot of perspectives of work in order to enhance, validate
and complete them.

148 CHAPITRE 9. CONCLUSION AND PERSPECTIVES

Publications

Refereed Conference Papers

• Dealing with frame cancellation for stereoscopic displays in 3D user interfaces, Jérémy La-
coche, Morgan Le Chénéchal, Sébastien Chalmé, Jérôme Royan, Thierry Duval, Valérie Gou-
ranton, Eric Maisel, Bruno Arnaldi, in Proceedings of IEEE Symposium on 3D User Interfaces
(3DUI), p73-80, Arles, France, March 2015.

• Plasticity for 3D user interfaces: new models for devices and interaction techniques, Jérémy
Lacoche, Thierry Duval, Bruno Arnaldi, Eric Maisel, Jérôme Royan, in Proceedings of the
ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS), p28-33,
Duisburg, Germany, June 2015.

• D3PART: A new Model for Redistribution and Plasticity of 3D User Interfaces, Jérémy La-
coche, Thierry Duval, Bruno Arnaldi, Eric Maisel, Jérôme Royan, in Proceedings of IEEE
Symposium on 3D User Interfaces (3DUI), p23-26, Arles, France, March 2016.

Workshop Papers

• A survey of plasticity in 3D user interfaces, Jérémy Lacoche, Thierry Duval, Bruno Arnaldi,
Eric Maisel, Jérôme Royan, in Proceedings of the IEEE Interaction Workshop on Software
Engineering and Architectures for Realtime Interactive Systems (SEARIS), p19-26, Minnea-
polis, USA, March 2014.

• When the Giant meets the Ant An Asymmetric Approach for Collaborative and Concurrent
Object Manipulation in a Multi-Scale Environment, Morgan Le Chénéchal Jérémy Lacoche,
Jérôme Royan, Thierry Duval, Valérie Gouranton, Bruno Arnaldi, in Proceedings of IEEE
International Workshop on Collaborative Virtual Environments (3DCVE), GreenVille, USA,
March 2016.

Demonstration Papers

• Laying out Spaces with Virtual Reality, Morgan Le Chénéchal Jérémy Lacoche, Cyndie Mar-
tin, in Proceedings of IEEE Symposium on Virtual Reality (VR), p337-338, Arles, France,
March 2015.

• When the Giant meets the Ant An Asymmetric Approach for Collaborative Object Manipu-
lation, Morgan Le Chénéchal Jérémy Lacoche, Jérôme Royan, Thierry Duval, Valérie Gou-
ranton, Bruno Arnaldi, Contest Demonstration at IEEE Symposium on 3D User Interfaces
(3DUI), GreenVille, USA, March 2016.

149

150 PUBLICATIONS

Submitted Journal Papers

• 3DPlasticToolkit: Plasticity for 3D User Interfaces, Jérémy Lacoche, Thierry Duval, Bruno
Arnaldi, Eric Maisel, Jérôme Royan, in IEEE Transactions on Visualization and Computer
Graphics (TVCG).

• Providing Plasticity and Redistribution for 3D User Interfaces using the D3PART Model,
Jérémy Lacoche, Thierry Duval, Bruno Arnaldi, Eric Maisel, Jérôme Royan, in Journal on
Multimodal User Interfaces (JMUI).

Informal National Communications

• Redistribution et Plasticité pour les Interfaces Utilisateurs 3D: un Modèle Illustré, Jérémy
Lacoche, Thierry Duval, Bruno Arnaldi, Eric Maisel, Jérôme Royan Présentation à la 10 �me

édition des journées de l'AFRV, Bordeaux, France, Octobre 2015.

Appendix A: Frame Cancellation

E�ects Evaluation

In this Appendix, we present the evaluation of the di�erent e�ects presented in Section 5.3 for
dealing with Frame Cancellation. This part is not included in the thesis as they are not correlated
directly with plasticity.

In order to verify the e�ciency of our two methods, we have evaluated both of them. The
evaluation had two main objectives: �rst, to compare and evaluate our two visual e�ects PSCVC
and VABW with SCVC [Ardouin et al., 2011], which seems to be the best state of the art approach.
All e�ects have been compared to a simple rendering in order to see if displaying a treatment is really
necessary to deal with frame cancellation. Then, we evaluated the avoidance of frame cancellation
with collision detection in a manipulation task. To do so, we compared the technique with a non-
constrained one in a basic scenario. The two experiments have been made by the same group of
participants.

Participants

Our experimental group consisted of 21 subjects aged from 20 to 48 (age: M=34, SD=8). There
were 14 males and 7 females. They had little knowledge about rendering techniques and had very
limited experience with stereoscopy. The subjects have various backgrounds: PhD students, R&D
engineers, managers and assistants.

The Simulator Sickness Questionnaire

We applied a Simulator Sickness Questionnaire (SSQ) at the beginning and end of the experiment
[Kennedy et al., 1993]. The SSQ contains 16 physical symptoms rated on a categorical labeled scale
(none, slight, moderate, severe). A factor analysis revealed that these symptoms can be placed into
three general categories: oculomotor, disorientation, and nausea [Kennedy et al., 1993]. Weights
are assigned to each of the categories and summed together to obtain a single score. The SSQ mean
score was greater at the end than at the beginning of the experiment (start: M=5.7, SD=1.2; end:
M=6.4, SD=1.3) mainly due to oculomotor symptoms. This increase was not signi�cant. As the
SSQ scores were low, we assumed that our VE did not produce strong cybersickness symptoms.

First step: Rendering techniques evaluation

For this �rst part of the evaluation, the application showed to the user di�erent spheres of 15cm in
diameter. The application background was blue and the spheres color was red, as shown in Figure
5.5. These colors were chosen in order to reduce the ghosting e�ect for the target display screen.
Each sphere was di�erent from the others only by the e�ect applied close to the screen edges. For
the evaluation, four e�ects were compared, SCVC [Ardouin et al., 2011], PCVC, VABW and a last
e�ect, which applied no speci�c treatment. During the evaluation, these spheres moved on a plane
that was one meter in front of the screen and parallel to it. This distance was chosen in order
to be included in the comfortable viewing zone for the current display setup with respect to the
recommendations given by Chen et al. [Chen et al., 2011]. The sphere velocity (0.2m/s) was chosen
according to subjective pre-test results. The user was positioned seated with his head aligned with

151

152 APPENDIX A: FRAME CANCELLATION EFFECTS EVALUATION

the screen center at about 2.80m distance to the screen. No head tracking was performed in order
to modify the camera parameters; therefore, eyes were considered as X-aligned.

For the hardware con�guration, we used a FaceLAB 5 eye-tracker system developed by Seeing
Machines 1. This system allowed us to track head and eyes in real time. This data was not analyzed
in real-time, but collected for analysis after the evaluation. It operated non-intrusively, with no
head-mounted device. This was advantageous as the subjects had to wear polarized 3D glasses
and sometimes their corrective glasses. The display screen was a Planar LCD, 2.08m diagonal,
4K with passive stereoscopy. Moreover, an Xbox wireless controller was used to interact with the
application.

For the procedure, the experiment started with a questionnaire and a Miles test [Miles, 1930]
to evaluate dominant eye if unknown. In this test the observer creates a small opening with his
hands. With both eyes, he looks at a distant object through this opening. The observer then
alternates closing the eyes. The dominant eye is the one viewing the object. After this test, we
calibrated the eye-tracker in precision mode for each subject.

Afterwards, for each side, the subjects saw each e�ect one after the other. Then, the subjects
saw each e�ect for another side, and so on, one side after the other. They only had to visually
follow the 3D sphere that moved about 1.80m in front of their face.

We applied a counterbalancing design with two between-groups variables: order of the side and
order of the e�ects. Order of the sides: counterbalancing the order of the four sides leads to 24
orders. Each subject was assigned to a di�erent order. For example [Down, Right, Down, Left]
was assigned to subject 2. The participants did not know the order. Order of the e�ects: we called
�series� an order of four e�ects. Counterbalancing the order of the four e�ects leads to 24 series.
These series were assigned to the subjects. For example, the �rst series of subject 2 was [SCVC,
NT, PSCVC, VABW], the forth series of this participant was [VABW, PSCVC, NT, SCVC], and
the �rst series of subject 16 was [NT, PSCVC, VABW, SCVC]. The participants did not know the
series assigned.

After each series, each subject was requested to �ll out a subjective questionnaire to evaluate
the e�ects. To do so, the subject remained free to see the e�ects again, once again one by one. The
subject used the Xbox wireless controller. Each of the four buttons A, B, X, and Y of the controller
allowed the subject to switch between the four e�ects. A corresponded to No Treatment (NT), B
to Stereo Compatible Volume Clipping (SCVC), X to Progressive SCVC (PSCVC), and Y to the
Virtual Alpha Blended Window (VABW). The name-e�ect relations were identical during all of
the experiment and for all subjects. The participants were just told about the e�ects' letters and
did not know their names and speci�cities.

Regarding the data collection, in the subjective questionnaire, participants had to grade
the four e�ects using a Likert-scale, from 1 (very low appreciation) to 7 (very high appreciation)
according to �ve subjective criteria. They were de�ned by Ardouin et al. ([Ardouin et al., 2011]):
(a) Global appreciation, (b) Aesthetic, (c) Eye strain perceived, (d) Relief quality not at borders,
and (e) Relief quality at borders. The participants could choose NA (no answer). To facilitate the
comparisons, we calculated the score of eyestrain such that the lower the eyestrain the higher the
score. We called this new variable; �comfort according to eye strain perceived�. To compare the �ve
criteria, we calculated a weighted average for each subjective criterion. As some participants choose
NA, we divided each weighted average by its theoretical maximum score (7 points multiplied by
number of numeric answers).

Although the FaceLAB system tracked many head and gaze variables, for the purposes of this
paper, we analyzed the gaze �xation point. The �xation point was computed automatically by
FaceLAB as the intersection between the uni�ed gaze ray and the work plane (the planar screen),
de�ned relative to the screen coordinate system. This coordinate system was de�ned by the screen
bottom left corner: point (0,0) and the top right one: point (1,1). We analyzed the relative distances
(Dx = Gx − Ox, Dy = Gy − Oy) between the gaze �xation point (Gx, Gy) and the 3D object
positions (Ox, Oy) in the same coordinates system. If the absolute value of this relative distance
was up to a �xed limit (equal to 0.2), we considered that the subjects de�ected attention away
from the object. We also measured the ratio of de�ected �xations which is the number of de�ected
�xations divided by the total number of �xations (de�ected and non-de�ected).

1http://www.seeingmachines.com/

153

Our hypothesis was that our two visual e�ects, PSCVC and VABW, should give better results
than the two other approaches, NT and SCVC e�ects:

• H1: Regarding Likert subjective questionnaire, we expect improved qualitative appreciations
for the methods PSCVC and VABW. In particular, the global appreciation would be greater,
and eyestrain would be lower.

• H2: The subjects could track the moving 3D objects close to the screen edges in a more
comfortable manner with the methods PSCVC and VABW than the others. In others words,
the subjects would be able to follow the 3D objects longuer at he screen edges with the
methods PSCVC and VABW than the other ones. Regarding speci�c variable, the ratio of
de�ected �xations just at the screen edges would be less for PSCVC and VABW e�ects than
for NT and SCVC e�ects.

Regarding the subjective results, Figure 9.2 shows the results concerning the grades (Likert-
scale) obtained by the four di�erent e�ects for each of the subjective criteria. The results for right
and left sides were not signi�cantly di�erent as well as for top and bottom sides. Thus, only two
graphics illustrate results.

Global&
apprecia,on&

Relief&quality¬&
at&borders&

Aesthe,c&
Confort&according&

to&Eye&strain&
perceived&

Relief&quality&at&
borders&

Le#andRight$sides$

NT&(No&treatment)&

SCVC&

PSCVC&(progressive&
SCVC)&

VABW&(virtual&alpha&
blended&window)&&

100%&

0%&

Global&
apprecia,on&

Relief&quality¬&
at&borders&

Aesthe,c&
Confort&according&

to&Eye&strain&
perceived&

Relief&quality&at&
borders&

TopandBo)om$sides$

NT&(No&treatment)&

SCVC&

PSCVC&(progressive&
SCVC)&

VABW&(virtual&alpha&
blended&window)&&

100%&

0%&

Figure 9.2 � Results for the subjective questionnaire for the four di�erent techniques (1) Control
(blue), (2) SCVC (red), and our two new methods (3) PSCVC (grey), and (4) VABW (purple)
with respect to Likert-scale grading

The analysis of the subjects' responses gave two main results:

• For left and right sides: SCVC was the worst e�ect, VABW the best one,

• For up and bottom sides: NT, SCVC and PSCVC are equivalent and VABW was the worst
e�ect.

For left and right sides, as we can see in Table 9.1, signi�cant di�erences between the e�ects were
found. SCVC was the worst e�ect for all the participants. SCVC was globally the least appreciated,
the worst aesthetic e�ect, and presented the poorest relief quality at borders. A signi�cant di�erence
between the e�ects SCVC and VABW was found: SCVC provided stronger eyestrain than VABW.
For top and bottom sides, few signi�cant di�erences between the e�ects were found; in particular,
VABW was globally less appreciated, as shown in Table 9.1. Regarding the order of preference, for
each side, the participants were asked to order the e�ects from �rst to last place. Di�erent e�ects
could be equally placed. We analyzed the ranking order, in particular the frequency of e�ects
chosen in the �rst two places. Signi�cant di�erence between e�ects in the �rst two places was
found (χ2 = 18, df = 9, p < .05). In comparison to the empirical probability distribution applied
in the χ2 test, SCVC was less preferred for right and left sides and PSCVC and VABW were more
preferred for these two sides.

We calculated, for each side, the percent of times the participants ordered each e�ect in the
�rst two places as shown in Figure 9.3.

154 APPENDIX A: FRAME CANCELLATION EFFECTS EVALUATION

SCVC PSCVC VABW SCVC PSCVC VABW

NT p<.001/
(16,22)

NS NS NS NS
p<.001/
(21,52)

SCVC p<.001/
(20,91)

p<.001/
(25,54)

NS p<.001/
(23,81)

PSCVC NS p<.001/
(21,52)

NT p<.001/
(21,2)

NS NS NS NS NS

SCVC p<.001/
(25,55)

p<.001/
(33,59)

NS NS

PSCVC NS NS

NT NS NS NS NS NS NS

SCVC NS p<.05/////
(8,5)

NS NS

PSCVC NS NS

NT p<.05/////
(7,6)

NS NS NS NS p<.01/
(13,62)

SCVC p<.01//
(9,66)

p<.01/
(10,72)

NS p<.01/
(13,62)

PSCVC NS p<.01/
(11,19)

Relief/quality/
Not/at/borders

All/effects

TopandBottom$sidesRight$and$Left$sides

NS NS

Global/
appreciation

Aesthetisc

Eye/strain/
perceived

Relief/quality/at/
borders

χ2$Test
Df/=/2;////p/value/(χ2/value)///////

NS=/No/Significative/difference/

Table 9.1 � Statistical results (χ2 test) to compare the four methods

For right and left sides, PSCVC and VABW were the most appreciated e�ects. For top and
bottom sides, NT and SCVC were the most appreciated. We observed a gap between PSCVC,
SCVC and NT for top and bottom but this gap was not signi�cant. Indeed, the virtual object
aspect was the same for the three e�ects on these sides.

To continue, concerning the eye-tracking results, we compared, for each side, the ratio of
de�ected �xations. We used R software and applied a mixed model to analyze this ratio just at
the screen edges. Regarding our hypothesis, the ratio of de�ected �xations just at the screen edges
would be less for the PSCVC and VABW e�ects than for NT and SCVC e�ects.

For the right side, we obtained a signi�cant di�erence between e�ects (F (3, 60) = 3.24, p < .05).
The ratio of de�ected �xations was smaller with VABW than with the other e�ects. For left, top
and bottom sides, we did not obtain any signi�cant di�erence between methods.

For top and bottom sides, the result was not surprising. Indeed, as users' head rotation was
not taken into account in the stereoscopic camera model, they did not perceive vertical parallax.
Thus NT, SCVC and PSCVC e�ects were visually similar for top and bottom sides. The result for
left and right sides was more surprising. Considering the subjective appreciations, we hoped for a
larger di�erence between the e�ects. To understand the reason for these results, we analyzed the
e�ect of the dominant eye.

Signi�cant di�erence between dominant eyes was found at the screen edges (F (1, 312) =
14.344, p < .001). The ratio of de�ected �xations was higher with left-eye dominant participants
(M=0.50, SD=0.08) than with right-eye dominant (M=0.25, SD=0.06). The di�erence concerning
each side is given in Figure 9.4. As a bit less than 2/3 of the participants (16) were right-eye
dominant and 1/3 left-eye dominant (5), the e�ect of the dominant eye cannot be more discussed.

To sum up these results: our hypotheses were not all veri�ed.
For the �rst hypothesis H1: PSCVC and VABW improve qualitative appreciations. We found

that participants clearly preferred PSCVC and VABW for right and left sides. In particular for
global appreciation. For top and bottom sides, we found that the participants preferred NT and
SCVC, but di�erences between the four e�ects were low. As shown in Figure 9.2, PSCVC and
VABW di�er signi�cantly from NT and SCVC for right and left sides. For top and bottom sides,
in Figure 9.2 we also observe a little di�erence between VABW and the three other e�ects. These
two observations can be explained by binocular rivalry only present at the vertical edges in our
experiment. Indeed, as our two e�ects were preferred on the vertical edges and no treatment was
preferred on the horizontal ones, we can deduce that in order to deal with frame cancellation,

155

26%$

20%$

27%$

27%$

9%$

7%$

27%$

27%$

34%$

41%$

24%$

25%$

32%$

32%$

22%$

21%$

0%$ 10%$ 20%$ 30%$ 40%$ 50%$

Right$(Σ=100%)$

Le7$(Σ=100%)$

Top$(Σ=100%)$

Down$(Σ=100%)$

Figure 9.3 � For each side, percent of times the participants ordered each e�ect in the �rst two
places

0,00	

0,10	

0,20	

0,30	

0,40	

0,50	

0,60	

0,70	

0,80	

Right	 side	 Le5	 side	

RIGHT	 master	 eye	

LEFT	 master	 eye	

Figure 9.4 � Ratio of de�ected �xations

binocular rivalry has to be especially considered. This consideration was done by the two e�ects we
introduced and by the SCVC method. Regarding the results, the smooth aspect of our solutions
seems to be preferred over the rough one proposed by SCVC. It is di�cult to explain why NT was
preferred over SCVC on the vertical edges because it contradicts the results obtained by Ardouin
et al. [Ardouin et al., 2011]. We assume that the too rough clipping created a more disturbing e�ect
than binocular rivalry and frame cancellation. However, this result could also be explained by the
di�erence between our experimental setup and the one used by Ardouin et al. [Ardouin et al.,
2011]. More work could be done in that way to compare the impact of di�erent display setups and
di�erent VEs.

For the second hypothesis H2: PSCVC and VABW improve 3D object tracking at the screen
edges. The number of de�ected �xations just at the screen edges for right side was smaller for
VABW. Thus, the participants could track the moving 3D objects close the screen's right edge
in a more comfortable manner. We found that VABW was better than the other e�ects for right
side. But, we did not obtain other signi�cant results without taking into account the dominant eye.
Indeed, the dominant eye played an important role in the de�ecting movement. Left-eye dominant
participants showed more de�ected �xations than the others. We did not control eye dominance
as an independent variable in the experiment, but our initial results suggest e�ects regarding the
physiological reactions to 3D moving objects at the screen edges, which warrant future studies in
this direction.

156 APPENDIX A: FRAME CANCELLATION EFFECTS EVALUATION

Figure 9.5 � The four masterpieces separated from the pedestals by a wall

Second step: Interaction technique evaluation

In the second experiment, the application displayed four artworks, four pedestals and a wall as
shown in Figure 9.5. The goal was to put each artwork on its corresponding pedestal with a 3D-
ray based manipulation technique. This technique is implemented as described by Bowman and
Hodges [Bowman and Hodges, 1997] where a light ray extends from the user's hand detected by
a 6-DoF tracker. When the ray intersects a scene object and the user presses a selection button,
this object is attached to the ray extremity. The pedestals were aligned horizontally. Each artwork
was identi�ed by a number at its base. To �nd the corresponding pedestal of each one, the user
had to sort them in ascending order. The lowest number corresponded to the leftmost pedestal,
the highest to the rightmost one. In order to make sure that situations with frame cancellation
occurred, we designed the experiment such that users had to bring the objects close to themselves
during the trials. First, the wall was placed between the pedestal and the initial position of the
artwork. It was a physical barrier that forced the user to move the objects in front of it to put
them in the pedestals (the height of the wall was virtually in�nite but not entirely represented in
order to avoid an initial frame cancellation situation). Its length allowed us to control the minimal
popping-out distance. Second, the numbers written on the bases of the artworks had two digits
and were so small that they needed to be really close to the user to be well read.

As hardware for this experiment we used the zSpace interactive system which is composed of
a passive stereo display (24-inches) with head tracking for co-location, and a stylus which provided
a 6-Dof tracking and buttons that were used for object grabbing. Moreover, we added a numeric
keypad to this system. At any time, a subject could use a key of this device to reset the position
of the virtual objects, for example, when an object got lost. We did not use a stylus key for this
feature in order to avoid accidental actions for novice users.

For the procedure, the experiment started with a training phase. For �ve minutes, the user
trained himself how to move the virtual objects with the 3D-ray and how to place them on the
di�erent pedestals. Once this step was over, the participant performed two trials to compare our
approach called Con�ict-Free (CF) mode with the non-constrained one called Liberty (L) mode.
We applied a counterbalanced design: 2modes × 2 series. Modes: Half of the participants began
with CF, half with L. The users were not told about the names and the characteristics of the two
modes. Series: we de�ned two series of numbers on the artworks. Each subject was assigned to one
of the four conditions. For example, the �rst subject followed L mode with series 1 then CF mode
with series 2. After the two trials, each subject was requested to express their subjective impression
in terms of usability and visual comfort.

Regarding the data collection, we collected the following data: number of manipulations, time
to success, time and number of manipulations to put the �rst object in the pedestals, time and
number of manipulations to put the fourth object in the pedestals (the �rst try).

Since CF constraints the object motion to keep it in a con�ict-free area, we made two hypo-
thesis:

• H1: Conversely to L mode, the participants in CF mode could not up-scale an object too
much in front of them and could not generate frame-cancellation situations. We hoped that
users would express more visual comfort with CF mode.

157

• H2: The participants in CF mode could not lose a part of an object culled by the cameras
frustums so the performance should be better.

Regarding the results, only one signi�cant di�erence between the two modes was found: the
number of manipulations to put the fourth object in the pedestals (F (1, 40) = 42, p < 0.05).
The participants in CF made fewer manipulations (M=10.3, SD=2.1) than in L mode (M=12.1,
SD=3.9). Thus, participants could complete their task in the same manner in the two modes. The
L mode did not constrain the interaction of the participants. In contrast, the CF mode optimized
the number of manipulations until the �rst try.

Even if the di�erence of number of manipulations to put the fourth object in the pedestals
was signi�cant, the participants did not express it often in the questionnaire at the end of the
experiment. 2/3 of the participants (14) did not notice any functional di�erences between the two
modes. In the 1/3 of the participants (7), a few did not appreciate the co-located manipulation
technique without constraint because the objects did pop out too quickly: �The object becomes too
big too fast�. In contrast, a few participants did not appreciate the CF mode for the inverse reason;
they were not able to pop out the virtual objects enough: �It is less easy to pull the object in this
mode�.

To sump up, the performances have improved a little with this mode (H2 veri�ed). We assume
that the CF mode helped and guided the users to complete the manipulation task. Future work
may focus on comparing the two modes in another scenario in order to con�rm the results on the
interaction performances. Regarding H1, the participants did not express more visual comfort in
CF mode in the qualitative results (H1 not veri�ed). These results might be explained by the short
duration (5-10 minutes) of the experiment. We assume that we would have found clearer results
with a longer duration. Indeed, with a longer a duration, the participants would have generate
more frame cancellation situations and observe visual comfort di�erences. More work should be
done to evaluate the impact of the duration on the visual comfort with the two modes.

158 APPENDIX A: FRAME CANCELLATION EFFECTS EVALUATION

Bibliography

[Achibet et al., 2015] Achibet, M., Girard, A., Talvas, A., Marchal, M., and Lécuyer, A. (2015).
Elastic-arm: Human-scale passive haptic feedback for augmenting interaction and perception in
virtual environments. In Virtual Reality (VR), 2015 IEEE, pages 63�68. IEEE.

[Agrawala et al., 1997] Agrawala, M., Beers, A. C., McDowall, I., Fröhlich, B., Bolas, M., and
Hanrahan, P. (1997). The two-user responsive workbench: support for collaboration through
individual views of a shared space. In Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, pages 327�332. ACM Press/Addison-Wesley Publishing Co.

[Aguerreche et al., 2009] Aguerreche, L., Duval, T., and Lécuyer, A. (2009). Short paper: 3-hand
manipulation of virtual objects. In JVRC 2009, pages 4�p.

[Alliez and Gotsman, 2005] Alliez, P. and Gotsman, C. (2005). Recent advances in compression of
3d meshes. In Advances in multiresolution for geometric modelling, pages 3�26. Springer.

[Arch, 1992] Arch, A. (1992). A metamodel for the runtime architecture of an interactive system:
The uims tool developers workshop. SIGCHI Bull., 24(1):32�37.

[Ardouin et al., 2011] Ardouin, J., Lécuyer, A., Marchal, M., and Marchand, E. (2011). Design
and Evaluation of Methods to Prevent Frame Cancellation in Real-Time Stereoscopic Rendering.
In IEEE Symposium on 3D User Interfaces, 3DUI 2011, pages 95�98, Singapore, Singapore.

[Autodesk, 2008] Autodesk (2008). Stereoscopic �lmmaking whitepaper, The Business and Tech-
nology of Stereoscopic Filmmaking.

[Avouac et al., 2012] Avouac, P.-A., Lalanda, P., and Nigay, L. (2012). Autonomic management of
multimodal interaction: DynaMo in action. In EICS 2012, pages 35�44, Copenhagen, Denmark.
ACM New York, NY, USA.

[Azuma, 1997] Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators and
virtual environments, 6(4):355�385.

[Bach et al., 2014] Bach, B., Pietriga, E., and Fekete, J.-D. (2014). Visualizing dynamic networks
with matrix cubes. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 877�886. ACM.

[Badam and Elmqvist, 2014] Badam, S. K. and Elmqvist, N. (2014). Polychrome: A cross-device
framework for collaborative web visualization. In Proceedings of the Ninth ACM International
Conference on Interactive Tabletops and Surfaces, pages 109�118. ACM.

[Bandelloni and Paternò, 2004] Bandelloni, R. and Paternò, F. (2004). Migratory user interfaces
able to adapt to various interaction platforms. International journal of human-computer studies,
60(5):621�639.

[Bechhofer, 2009] Bechhofer, S. (2009). Owl: Web ontology language. In Encyclopedia of Database
Systems, pages 2008�2009. Springer.

[Behr et al., 2009] Behr, J., Eschler, P., Jung, Y., and Zöllner, M. (2009). X3dom: a dom-based
html5/x3d integration model. In Proceedings of the 14th International Conference on 3D Web
Technology, pages 127�135. ACM.

159

160 BIBLIOGRAPHY

[Bierbaum et al., 2005] Bierbaum, A., Hartling, P., Morillo, P., and Cruz-Neira, C. (2005). Imple-
menting immersive clustering with vr juggler. In Computational Science and Its Applications�
ICCSA 2005, pages 1119�1128. Springer.

[Bilasco et al., 2007] Bilasco, I. M., Villanova-Oliver, M., Gensel, J., and Martin, H. (2007).
Semantic-based rules for 3d scene adaptation. In Proceedings of the twelfth international confer-
ence on 3D web technology, page 97�100.

[Bolt, 1980] Bolt, R. A. (1980). �Put-that-there�: Voice and gesture at the graphics interface,
volume 14. ACM.

[Bonis et al., 2009] Bonis, B., Stamos, J., Vosinakis, S., Andreou, I., and Panayiotopoulos, T.
(2009). A platform for virtual museums with personalized content. Multimedia tools and appli-
cations, 42(2):139�159.

[Bosca et al., 2007] Bosca, A., Bonino, D., Comerio, M., Grega, S., and Corno, F. (2007). A
reusable 3d visualization component for the semantic web. In Proceedings of the twelfth inter-
national conference on 3D web technology, pages 89�96. ACM.

[Boser et al., 1992] Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm
for optimal margin classi�ers. In Proceedings of the �fth annual workshop on Computational
learning theory, pages 144�152. ACM.

[Bowman and Hodges, 1997] Bowman, D. A. and Hodges, L. F. (1997). An evaluation of techniques
for grabbing and manipulating remote objects in immersive virtual environments. In Proceedings
of the 1997 Symposium on Interactive 3D Graphics, I3D '97, pages 35��., New York, NY, USA.
ACM.

[Bowman et al., 2004] Bowman, D. A., Kruij�, E., LaViola, J. J., and Poupyrev, I. (2004). 3D
User Interfaces: Theory and Practice. Addison Wesley Longman Publishing Co., Inc., Redwood
City, CA, USA.

[Bowman and McMahan, 2007] Bowman, D. A. and McMahan, R. P. (2007). Virtual reality: how
much immersion is enough? Computer, 40(7):36�43.

[Brooks Jr et al., 1990] Brooks Jr, F. P., Ouh-Young, M., Batter, J. J., and Jerome Kilpatrick, P.
(1990). Project gropehaptic displays for scienti�c visualization. In ACM SIGGraph computer
graphics, volume 24, pages 177�185. ACM.

[Brusilovsky, 1996] Brusilovsky, P. (1996). Methods and techniques of adaptive hypermedia. User
modeling and user-adapted interaction, 6(2-3):87�129.

[Brusilovsky, 2001] Brusilovsky, P. (2001). Adaptive hypermedia. User modeling and user-adapted
interaction, 11(1-2):87�110.

[Bryson and Levit, 1991] Bryson, S. and Levit, C. (1991). The virtual windtunnel: An environment
for the exploration of three-dimensional unsteady �ows. In Proceedings of the 2Nd Conference
on Visualization '91, VIS '91, pages 17�24, Los Alamitos, CA, USA. IEEE Computer Society
Press.

[Burdea, 1996] Burdea, G. (1996). Force and touch feedback for virtual reality. Wiley New York.

[Burdea and Coi�et, 2003] Burdea, G. C. and Coi�et, P. (2003). Virtual Reality Technology. John
Wiley & Sons, Inc., New York, NY, USA, 2 edition.

[Buxton, 1983] Buxton, W. (1983). Lexical and pragmatic considerations of input structures.
SIGGRAPH Comput. Graph., 17(1):31�37.

[Calvary, 2007] Calvary, G. (2007). Plasticité des Interfaces Homme-Machine. PhD thesis. Thèse
Habilitation à Diriger des Recherches préparée au Laboratoire d'Informatique de Grenoble (LIG),
Université Joseph Fourier.

BIBLIOGRAPHY 161

[Calvary et al., 2004a] Calvary, G., Coutaz, J., Dâassi, O., Balme, L., and Demeure, A. (2004a).
Towards a new generation of widgets for supporting software plasticity: the� comet�. In Engi-
neering Human Computer Interaction and Interactive Systems, pages 306�324. Springer.

[Calvary et al., 2004b] Calvary, G., Coutaz, J., Daassi, O., Balme, L., and Demeure, A. (2004b).
Towards a new generation of widgets for supporting software plasticity: the 'comet'. In EHCI-
DSVIS'04, pages 306�323. Hamburg, Germany.

[Calvary et al., 2002a] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Souchon, N., Bouillon,
L., and Vanderdonckt, J. (2002a). Plasticity of user interfaces : A revised reference framework.
In First International Workshop on Task Models and Diagrams for User Interface Design TA-
MODIA'2002, Bucarest, pages 127�134.

[Calvary et al., 2002b] Calvary, G., Coutaz, J., Thevenin, D. B., L., Florins, M., Limbourg, Q.,
Souchon, N., Vanderdonckt, J., Marucci, L., Paterno, F., and Santoro, C. (2002b). The
CAMELEON Reference Framework. Deliverable D1.1.

[Card et al., 1983] Card, S. K., Newell, A., and Moran, T. P. (1983). The Psychology of Human-
Computer Interaction. L. Erlbaum Associates Inc., Hillsdale, NJ, USA.

[Carey and Bell, 1997] Carey, R. and Bell, G. (1997). The annotated VRML 2.0 reference manual.
Addison-Wesley Longman Ltd.

[Cashion et al., 2013] Cashion, J., Wingrave, C., and LaViola, J. (2013). Optimal 3d selection
technique assignment using real-time contextual analysis. In 3D User Interfaces (3DUI), 2013
IEEE Symposium on, pages 107�110.

[Castaneda and Navab, 2011] Castaneda, V. and Navab, N. (2011). Time-of-�ight and kinect imag-
ing. Kinect Programming for Computer Vision.

[Celentano et al., 2004] Celentano, A., Nodari, M., and Pittarello, F. (2004). Adaptive interaction
in web3d virtual worlds. In Proceedings of the Ninth International Conference on 3D Web
Technology, Web3D '04, page 41�50, New York, NY, USA. ACM.

[Cellary and Walczak, 2012] Cellary, W. and Walczak, K. (2012). Interactive 3D MultiMedia Con-
tent. Springer.

[Chang and Lin, 2011] Chang, C.-C. and Lin, C.-J. (2011). Libsvm: a library for support vector
machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27.

[Chen et al., 2000] Chen, G., Kotz, D., et al. (2000). A survey of context-aware mobile computing
research. Technical report, Technical Report TR2000-381, Dept. of Computer Science, Dart-
mouth College.

[Chen et al., 2011] Chen, W., Fournier, J., Barkowsky, M., and Le Callet, P. (2011). New stereo-
scopic video shooting rule based on stereoscopic distortion parameters and comfortable viewing
zone. In Stereoscopic Displays and Applications XXII, SPIE 2011, pages SPIE 7863, 78631O,
San Francisco, United States.

[Chéron et al., 2015] Chéron, G., Laptev, I., and Schmid, C. (2015). P-cnn: pose-based cnn fea-
tures for action recognition. In Proceedings of the IEEE International Conference on Computer
Vision, pages 3218�3226.

[Chevaillier et al., 2012] Chevaillier, P., Trinh, T.-H., Barange, M., De Loor, P., Devillers, F., Soler,
J., and Querrec, R. (2012). Semantic modeling of virtual environments using MASCARET. In
Software Engineering and Architectures for Realtime Interactive Systems (SEARIS), 2012 5th
Workshop on, page 1�8.

[Chittaro et al., 2002] Chittaro, L., Ranon, R., Arti�cial, I. S., and Realities, V. (2002). Dynamic
generation of personalized VRML content: a general approach and its application to 3d e-
commerce. In In Proceedings of Web3D 2002: 7th International Conference on 3D Web, page
145�154. Press.

162 BIBLIOGRAPHY

[Claude et al., 2015] Claude, G., Gouranton, V., and Arnaldi, B. (2015). Roles in collaborative vir-
tual environments for training. In International Conference on Arti�cial Reality and Telexistence
Eurographics Symposium on Virtual Environments (2015), pages 1�8.

[Claude et al., 2014] Claude, G., Gouranton, V., Bouville Berthelot, R., and Arnaldi, B. (2014).
#SEVEN, a Sensor E�ector Based Scenarios Model for Driving Collaborative Virtual Environ-
ment. In ICAT-EGVE.

[Cobb et al., 2008] Cobb, S., D'Cruz, M., Day, A., David, P., Gardeux, F., Broek, v. d. E., Voort,
M., Meijer, F., Izkara, J. L., and Mavrikios, D. (2008). How is vr used to support training in
industry? the intuition network of excellence working group on education and training.

[Co�ey et al., 2011] Co�ey, D., Malbraaten, N., Le, T., Borazjani, I., Sotiropoulos, F., and Keefe,
D. F. (2011). Slice wim: A multi-surface, multi-touch interface for overview+detail exploration
of volume datasets in virtual reality. In Symposium on Interactive 3D Graphics and Games, I3D
'11, pages 191�198, New York, NY, USA. ACM.

[Coutaz, 1987] Coutaz, J. (1987). PAC, on object oriented model for dialog design. In Interact'87.
6 pages.

[Cruz-Neira et al., 1992] Cruz-Neira, C., Sandin, D. J., DeFanti, T. A., Kenyon, R. V., and Hart,
J. C. (1992). The CAVE: Audio Visual Experience Automatic Virtual Environment. Commun.
ACM, 35(6):64�72.

[Cutler et al., 1997] Cutler, L. D., Fröhlich, B., and Hanrahan, P. (1997). Two-handed direct
manipulation on the responsive workbench. In Proceedings of the 1997 symposium on Interactive
3D graphics, page 107�114.

[Dachselt et al., 2006] Dachselt, R., Hinz, M., and Pietschmann, S. (2006). Using the AMACONT
architecture for �exible adaptation of 3d web applications. In Proceedings of the Eleventh In-
ternational Conference on 3D Web Technology, Web3D '06, page 75�84, New York, NY, USA.
ACM.

[De Sa and Zachmann, 1999] De Sa, A. G. and Zachmann, G. (1999). Virtual reality as a tool for
veri�cation of assembly and maintenance processes. Computers & Graphics, 23(3):389�403.

[Demeure et al., 2005] Demeure, A., Balme, L., and Calvary, G. (2005). CamNote: A plastic
slides viewer. Plastic Services for Mobile Devices (PSMD), Workshop hel in conjunction with
Interact'05, Rome, 12 Septembre 2005.

[Demeure et al., 2008] Demeure, A., Sottet, J.-S., Calvary, G., Coutaz, J., Ganneau, V., and Van-
derdonckt, J. (2008). The 4c reference model for distributed user interfaces. In Autonomic
and Autonomous Systems, 2008. ICAS 2008. Fourth International Conference on, pages 61�69.
IEEE.

[Dey, 2001] Dey, A. K. (2001). Understanding and using context. Personal Ubiquitous Comput.,
5(1):4�7.

[dos Santos and Osorio, 2004] dos Santos, C. T. and Osorio, F. S. (2004). AdapTIVE: An in-
telligent virtual environment and its application in e-commerce. In Computer Software and
Applications Conference, 2004. COMPSAC 2004. Proceedings of the 28th Annual International,
page 468�473.

[dos Santos and Osório, 2004] dos Santos, C. T. and Osório, F. S. (2004). An intelligent and
adaptive virtual environment and its application in distance learning. In Proceedings of the
working conference on Advanced visual interfaces, page 362�365.

[Dragicevic and Fekete, 2001] Dragicevic, P. and Fekete, J.-D. (2001). Input device selection and
interaction con�guration with ICON. In People and Computers XV�Interaction without Fron-
tiers, page 543�558. Springer.

BIBLIOGRAPHY 163

[Dubois et al., 1999] Dubois, E., Nigay, L., Troccaz, J., Chavanon, O., and Carrat, L. (1999).
Classi�cation space for augmented surgery. an augmented reality case study. In Humancom-
puter interaction, INTERACT'99: IFIP TC. 13 International Conference on Human-Computer
Interaction, 30th August-3rd September 1999, Edinburgh, UK, volume 1, page 353.

[Dupont et al., 2010] Dupont, F., Duval, T., Fleury, C., Forest, J., Gouranton, V., Lando, P.,
Laurent, T., Lavoué, G., and Schmutz, A. (2010). Collaborative scienti�c visualization: the
collaviz framework. In JVRC 2010 (2010 Joint Virtual Reality Conference of EuroVR-EGVE-
VEC).

[Duval et al., 2014] Duval, T., Blouin, A., and Jézéquel, J.-M. (2014). When model driven en-
gineering meets virtual reality: Feedback from application to the collaviz framework. In 7th
Workshop SEARIS.

[Echtler et al., 2004] Echtler, F., Sturm, F., Kindermann, K., Klinker, G., Stilla, J., Trilk, J., and
Naja�, H. (2004). The intelligent welding gun: Augmented reality for experimental vehicle
construction. In Virtual and augmented reality applications in manufacturing, pages 333�360.
Springer.

[Elmqvist, 2011] Elmqvist, N. (2011). Distributed user interfaces: State of the art. In Distributed
User Interfaces, pages 1�12. Springer.

[Esnault et al., 2010] Esnault, N., Royan, J., Cozot, R., and Bouville, C. (2010). A �exible frame-
work to personalize 3d web users experience. In Proceedings of the 15th International Conference
on Web 3D Technology, Web3D '10, page 35�44, New York, NY, USA. ACM.

[Fernandes and Feiner, 2016] Fernandes, A. S. and Feiner, S. K. (2016). Combating vr sickness
through subtle dynamic �eld-of-view modi�cation. In 2016 IEEE Symposium on 3D User Inter-
faces (3DUI), pages 201�210.

[Fischer, 2001] Fischer, G. (2001). User modeling in human�computer interaction. User modeling
and user-adapted interaction, 11(1-2):65�86.

[Fleury et al., 2010] Fleury, C., Duval, T., and Gouranton, V. (2010). Architectures and mecha-
nisms to maintain e�ciently consistency in collaborative virtual environments. In SEARIS 2010
(IEEE VR 2010 Workshop on Software Engineering and Architectures for Realtime Interactive
Systems).

[Fleury et al., 2012] Fleury, C., Duval, T., Gouranton, V., and Steed, A. (2012). Evaluation of Re-
mote Collaborative Manipulation for Scienti�c Data Analysis. In VRST 2012 - 18th Symposium
on Virtual Reality Software and Technology, pages 129�136, Toronto, Canada. ACM.

[Florens et al., 2007] Florens, J.-L., Hulin, T., Gil, J. J., and Davy, P. (2007). Force feedback
device / force properties. In Enaction and enactive interfaces : a handbook of terms, pages
106�108. Enactive Systems Books.

[Foxlin et al., 2002] Foxlin, E. et al. (2002). Motion tracking requirements and technologies. Hand-
book of virtual environment technology, 8:163�210.

[Fuchs et al., 2003] Fuchs, P., Arnaldi, B., and Tisseau, J. (2003). La réalité virtuelle et ses appli-
cations. Le traité de la réalité virtuelle - 2eme édition, pages 3�51.

[Fuchs et al., 2011] Fuchs, P., Moreau, G., and Guitton, P. (2011). Virtual Reality: Concepts and
Technologies. CRC Press, Inc., Boca Raton, FL, USA, 1st edition.

[Gaucher et al., 2013] Gaucher, P., Argelaguet, F., Royan, J., and Lécuyer, A. (2013). A novel 3d
carousel based on pseudo-haptic feedback and gestural interaction for virtual showcasing. In 3D
User Interfaces (3DUI), 2013 IEEE Symposium on, pages 55�58. IEEE.

[Golemati et al., 2006] Golemati, M., Halatsis, C., Vassilakis, C., Katifori, A., and Lepouras, G.
(2006). A context-based adaptive visualization environment. In Information Visualization, 2006.
IV 2006. Tenth International Conference on, pages 62�67. IEEE.

164 BIBLIOGRAPHY

[Gonzalez-Calleros et al., 2009] Gonzalez-Calleros, J., Vanderdonckt, J., and Muoz-Arteaga, J.
(2009). A structured approach to support 3d user interface development. In Advances in
Computer-Human Interactions, 2009. ACHI '09. Second International Conferences on, pages
75�81.

[Green and Lo, 2004] Green, M. and Lo, J. (2004). The grappl 3d interaction technique library.
In Proceedings of the ACM symposium on Virtual reality software and technology, pages 16�23.
ACM.

[Gregory, 2009] Gregory, J. (2009). Game engine architecture. CRC Press.

[Grolaux et al., 2001] Grolaux, D., Roy, P. V., and Vanderdonckt, J. (2001). QTk: An integrated
model-based approach to designing executable user interfaces. In DEPT. OF COMPUTER
SCIENCE, UNIV. OF GLASGOW, page 77�91. Springer Verlag.

[Guinan et al., 2000] Guinan, T., O'Hare, C., and Doikov, N. (2000). Enter: The personalisation
and contextualisation of 3-dimensional worlds. In Parallel and Distributed Processing, 2000.
Proceedings. 8th Euromicro Workshop on, page 142�148.

[Han et al., 2012] Han, S., Han, J.-J., Kim, J. D. K., and Yeong Kim, C. (2012). Connecting users
to virtual worlds within MPEG-v standardization. Signal Processing: Image Communication.

[Hand, 1997] Hand, C. (1997). A survey of 3d interaction techniques. In Computer graphics forum,
volume 16, page 269�281.

[Haouchine et al., 2013] Haouchine, N., Dequidt, J., Peterlik, I., Kerrien, E., Berger, M.-O., and
Cotin, S. (2013). Image-guided simulation of heterogeneous tissue deformation for augmented
reality during hepatic surgery. In Mixed and Augmented Reality (ISMAR), 2013 IEEE Interna-
tional Symposium on, pages 199�208. IEEE.

[Hatala et al., 2004] Hatala, M., Kalantari, L., Wakkary, R., and Newby, K. (2004). Ontology and
rule based retrieval of sound objects in augmented audio reality system for museum visitors. In
Proceedings of the 2004 ACM symposium on Applied computing, page 1045�1050.

[Henry et al., 2012] Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. (2012). Rgb-d
mapping: Using kinect-style depth cameras for dense 3d modeling of indoor environments. The
International Journal of Robotics Research, 31(5):647�663.

[Hirata and Sato, 1992] Hirata, Y. and Sato, M. (1992). 3-dimensional interface device for vir-
tual work space. In Intelligent Robots and Systems, 1992., Proceedings of the 1992 lEEE/RSJ
International Conference on, volume 2, pages 889�896. IEEE.

[Hirota et al., 1996] Hirota, G., Chen, D. T., Garrett, W. F., Livingston, M. A., et al. (1996).
Superior augmented reality registration by integrating landmark tracking and magnetic tracking.
In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques,
pages 429�438. ACM.

[Hoppe, 1996] Hoppe, H. (1996). Progressive meshes. In Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques, page 99�108. ACM.

[Hu et al., 2008] Hu, S.-Y., Huang, T.-H., Chang, S.-C., Sung, W.-L., Jiang, J.-R., and Chen,
B.-Y. (2008). Flod: A framework for peer-to-peer 3d streaming. In INFOCOM 2008. The 27th
Conference on Computer Communications. IEEE. IEEE.

[Iwata et al., 2004] Iwata, H., Yano, H., Uemura, T., and Moriya, T. (2004). Food simulator: A
haptic interface for biting. In Virtual Reality, 2004. Proceedings. IEEE, pages 51�57. IEEE.

[Jorgensen et al., 2000] Jorgensen, C., Wheeler, K., Stepniewski, S., and Norvig, P. (2000). Bio-
electric control of a 757 class high �delity aircraft simulation.

[Julier et al., 2002] Julier, S., Baillot, Y., Brown, D., and Lanzagorta, M. (2002). Information
�ltering for mobile augmented reality. IEEE Comput. Graph. Appl., 22(5):12�15.

BIBLIOGRAPHY 165

[Julier et al., 2000] Julier, S., Lanzagorta, M., Baillot, Y., Rosenblum, L., Feiner, S., Hollerer, T.,
and Sestito, S. (2000). Information �ltering for mobile augmented reality. In Augmented Reality,
2000.(ISAR 2000). Proceedings. IEEE and ACM International Symposium on, page 3�11.

[Kanbara and Yokoya, 2002] Kanbara, M. and Yokoya, N. (2002). Geometric and photometric
registration for real-time augmented reality. In Mixed and Augmented Reality, 2002. ISMAR
2002. Proceedings. International Symposium on, page 279�280.

[Kennedy et al., 1993] Kennedy, R. S., Lane, N. E., Berbaum, K. S., and Lilienthal, M. G. (1993).
Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The
international journal of aviation psychology, 3(3):203�220.

[Kim et al., 2004] Kim, H., Joslin, C., Di Giacomo, T., Garchery, S., and Magnenat-Thalmann, N.
(2004). Adaptation mechanism for three dimensional content within the mpeg-21 framework. In
Computer Graphics International, 2004. Proceedings, page 462�469.

[Klokmose and Beaudouin-Lafon, 2009] Klokmose, C. N. and Beaudouin-Lafon, M. (2009). VIGO:
Instrumental Interaction in Multi-surface Environments. CHI 2009, pages 869�878, New York,
NY, USA. ACM.

[Kobsa, 1993] Kobsa, A. (1993). User modeling: Recent work, prospects and hazards. Human
Factors in Information Technology, 10:111�111.

[Kobsa, 1995] Kobsa, A. (1995). Supporting user interfaces for all through user modeling. Advances
in Human Factors/Ergonomics, 20:155�157.

[Kobsa, 2001] Kobsa, A. (2001). Generic user modeling systems. User modeling and user-adapted
interaction, 11(1-2):49�63.

[Lacoche et al., 2014] Lacoche, J., Duval, T., Arnaldi, B., Maisel, E., and Royan, J. (2014). A
survey of plasticity in 3d user interfaces. In Software Engineering and Architectures for Realtime
Interactive Systems (SEARIS), 2014 IEEE 7th Workshop on, pages 19�26. IEEE.

[Lacoche et al., 2015a] Lacoche, J., Duval, T., Arnaldi, B., Maisel, E., and Royan, J. (2015a).
Plasticity for 3d user interfaces: new models for devices and interaction techniques. In EICS
2015: 7th ACM SIGCHI Symposium on Engineering Interactive Computing Systems, pages 28�
33. ACM.

[Lacoche et al., 2016] Lacoche, J., Duval, T., Arnaldi, B., Maisel, É., and Royan, J. (2016). D3part:
A new model for redistribution and plasticity of 3d user interfaces. In 3DUI 2016: IEEE
symposium on 3D User Interfaces Summit, pages 23�36. IEEE.

[Lacoche et al., 2015b] Lacoche, J., Le Chénéchal, M., Chalmé, S., Royan, J., Duval, T., Gouran-
ton, V., Maisel, É., and Arnaldi, B. (2015b). Dealing with frame cancellation for stereoscopic
displays in 3d user interfaces. In IEEE Symposium on 3D User Interfaces, 3DUI 2015, pages
73�80. IEEE.

[Latoschik, 2002] Latoschik, M. E. (2002). Designing transition networks for multimodal VR-
interactions using a markup language. In Proceedings of the 4th IEEE International Conference
on Multimodal Interfaces, ICMI '02, page 411�, Washington, DC, USA. IEEE Computer Society.

[Latoschik, 2005] Latoschik, M. E. (2005). A user interface framework for multimodal VR inter-
actions. In Proceedings of the 7th International Conference on Multimodal Interfaces, ICMI '05,
page 76�83, New York, NY, USA. ACM.

[Le Chenechal et al., 2015] Le Chenechal, M., Lacoche, J., Martin, C., and Royan, J. (2015). Lay-
ing out spaces with virtual reality. In Virtual Reality (VR), 2015 IEEE, pages 337�338. IEEE.

[Le Chénéchal et al., 2016a] Le Chénéchal, M., Lacoche, J., Royan, J., Duval, T., Gouranton, V.,
and Arnaldi, B. (2016a). When the giant meets the ant an asymmetric approach for collaborative
and concurrent object manipulation in a multi-scale environment. In 3DCVE 2016: International
Workshop on Collaborative Virtual Environments, pages 1�4. IEEE.

166 BIBLIOGRAPHY

[Le Chénéchal et al., 2016b] Le Chénéchal, M., Lacoche, J., Royan, J., Duval, T., Gouranton, V.,
and Arnaldi, B. (2016b). When the giant meets the ant an asymmetric approach for collaborative
object manipulation. In IEEE Symposium on 3D User Interfaces, 3DUI 2016. IEEE.

[Lechner, 2013] Lechner, M. (2013). Arml 2.0 in the context of existing ar data formats. In Software
Engineering and Architectures for Realtime Interactive Systems (SEARIS), 2013 6th Workshop
on, pages 41�47. IEEE.

[Lecuyer et al., 2000] Lecuyer, A., Coquillart, S., Kheddar, A., Richard, P., and Coi�et, P. (2000).
Pseudo-haptic feedback: can isometric input devices simulate force feedback? In Virtual Reality,
2000. Proceedings. IEEE, pages 83�90. IEEE.

[Lee and Green, 2005] Lee, W. L. and Green, M. (2005). A layout framework for 3d user interfaces.
In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST '05,
page 96�105, New York, NY, USA. ACM.

[Lee and Green, 2006] Lee, W. L. and Green, M. (2006). Automatic layout for 3d user interfaces
construction. In Proceedings of the 2006 ACM international conference on Virtual reality con-
tinuum and its applications, page 113�120.

[Limbourg et al., 2004] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., and López-
Jaquero, V. (2004). Usixml: a language supporting multi-path development of user interfaces.
EHCI/DS-VIS, 3425:200�220.

[Lindt, 2005] Lindt, I. (2005). Exchangeability of 3d interaction techniques. In Proceedings of the
IEEE Workshop on New Directions in 3D User Interfaces, page 93�94.

[Lindt, 2009] Lindt, I. (2009). Adaptive 3D-User-Interfaces. PhD thesis.

[Lipscomb and Pique, 1993] Lipscomb, J. S. and Pique, M. E. (1993). Analog input device physical
characteristics. SIGCHI Bull., 25(3):40�45.

[Lipton and Akka, 2010] Lipton, L. and Akka, B. (2010). Vertical surround parallax correction.
US Patent 7,679,641.

[Livingston et al., 2011] Livingston, M. A., Rosenblum, L. J., Brown, D. G., Schmidt, G. S., Julier,
S. J., Baillot, Y., Swan II, J. E., Ai, Z., and Maassel, P. (2011). Military applications of
augmented reality. In Handbook of augmented reality, pages 671�706. Springer.

[Lops et al., 2011] Lops, P., De Gemmis, M., and Semeraro, G. (2011). Content-based recom-
mender systems: State of the art and trends. In Recommender systems handbook, pages 73�105.
Springer.

[Lotte et al., 2013] Lotte, F., Faller, J., Guger, C., Renard, Y., Pfurtscheller, G., Lécuyer, A., and
Leeb, R. (2013). Combining BCI with Virtual Reality: Towards New Applications and Improved
BCI. In Allison, B. Z., Dunne, S., Leeb, R., Millán, J. D. R., and Nijholt, A., editors, Towards
Practical Brain-Computer Interfaces:. Springer.

[Lotte et al., 2008] Lotte, F., Renard, Y., and Lécuyer, A. (2008). Self-paced brain-computer
interaction with virtual worlds: A quantitative and qualitative study �out of the lab�. In 4th
international brain computer interface workshop and training course.

[Mackinlay et al., 1990] Mackinlay, J., Card, S. K., and Robertson, G. G. (1990). A semantic
analysis of the design space of input devices. Hum.-Comput. Interact., 5(2):145�190.

[Mackinlay et al., 1991] Mackinlay, J. D., Robertson, G. G., and Card, S. K. (1991). The perspec-
tive wall: Detail and context smoothly integrated. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 173�176. ACM.

[Marchal et al., 2011] Marchal, M., Pettr, J., and Lécuyer, A. (2011). Joyman: A human-scale
joystick for navigating in virtual worlds. In 3D User Interfaces (3DUI), 2011 IEEE Symposium
on, pages 19�26. IEEE.

BIBLIOGRAPHY 167

[Marcotte, 2010] Marcotte, E. (2010). Responsive web design. A list apart, 306.

[Margery et al., 2002] Margery, D., Arnaldi, B., Chau�aut, A., Donikian, S., and Duval, T. (2002).
Openmask:{Multi-Threaded| Modular} animation and simulation {Kernel| Kit}: a general in-
troduction. In VRIC, pages 101�110.

[Margery et al., 1999] Margery, D., Arnaldi, B., and Plouzeau, N. (1999). A general framework for
cooperative manipulation in virtual environments. Springer.

[Maynes-Aminzade, 2005] Maynes-Aminzade, D. (2005). Edible bits: Seamless interfaces between
people, data and food. In Conference on Human Factors in Computing Systems (CHI'05)-
Extended Abstracts, pages 2207�2210. Citeseer.

[Medeiros et al., 2013] Medeiros, D., Carvalho, F., Teixeira, L., Braz, P., Raposo, A., and Santos,
I. (2013). Proposal and evaluation of a tablet-based tool for 3D virtual environments. SBC,
4(2):31.

[Mekni and Lemieux, 2014] Mekni, M. and Lemieux, A. (2014). Augmented reality: Applications,
challenges and future trends. In Applied Computational Science�Proceedings of the 13th Inter-
national Conference on Applied Computer and Applied Computational Science (ACACOS `14)
Kuala Lumpur, Malaysia, pages 23�25.

[Melchior et al., 2009] Melchior, J., Grolaux, D., Vanderdonckt, J., and Van Roy, P. (2009). A
toolkit for peer-to-peer distributed user interfaces: concepts, implementation, and applications.
In Proceedings of the 1st ACM SIGCHI symposium on Engineering interactive computing sys-
tems, pages 69�78. ACM.

[Mercier-Ganady et al., 2014] Mercier-Ganady, J., Lotte, F., Loup-Escande, E., Marchal, M., and
Lécuyer, A. (2014). The Mind-Mirror: See Your Brain in Action in Your Head Using EEG and
Augmented Reality. In IEEE Virtual Reality (VR), Minneapolis, United States. IEEE.

[Mestre et al., 2006] Mestre, D., Fuchs, P., Berthoz, A., and Vercher, J. (2006). Immersion et
présence. Le traité de la réalité virtuelle. Paris: Ecole des Mines de Paris, pages 309�38.

[Miles, 1930] Miles, W. R. (1930). Ocular dominance in human adults. The journal of general
psychology, 3(3):412�430.

[Milgram and Kishino, 1994] Milgram, P. and Kishino, F. (1994). A taxonomy of mixed reality
visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12):1321�1329.

[Mine et al., 1995] Mine, M. et al. (1995). Virtual environment interaction techniques. UNC Chapel
Hill computer science technical report TR95-018, pages 507248�2.

[Mizell, 2001] Mizell, D. (2001). Boeing's wire bundle assembly project. Fundamentals of wearable
computers and augmented reality, 5.

[Mohri et al., 2012] Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012). Foundations of ma-
chine learning. MIT press.

[Mora and Odobez, 2012] Mora, K. A. F. and Odobez, J.-M. (2012). Gaze estimation from mul-
timodal kinect data. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2012
IEEE Computer Society Conference on, pages 25�30. IEEE.

[Motti et al., 2013] Motti, L. G., Vigouroux, N., and Gorce, P. (2013). Interaction techniques for
older adults using touchscreen devices : a literature review. In 25ème conférence francophone
sur l'Interaction Homme-Machine, IHM'13, Bordeaux, France. ACM.

[Mulder and Liere, 2000] Mulder, J. D. and Liere, R. V. (2000). Enhancing �sh tank vr. In In
Proceedings of Virtual Reality, pages 91�98. IEEE.

[Myers et al., 2000] Myers, B., Hudson, S. E., and Pausch, R. (2000). Past, present, and future
of user interface software tools. ACM Transactions on Computer-Human Interaction (TOCHI),
7(1):3�28.

168 BIBLIOGRAPHY

[Nahon et al., 2015] Nahon, D., Subileau, G., and Capel, B. (2015). Never blind vr: enhancing
the virtual reality headset experience with augmented virtuality. In Virtual Reality (VR), 2015
IEEE, pages 347�348.

[Nakamoto and Minh, 2007] Nakamoto, T. and Minh, H. P. D. (2007). Improvement of olfactory
display using solenoid valves. In Virtual Reality Conference, 2007. VR'07. IEEE, pages 179�186.
IEEE.

[Narumi et al., 2011] Narumi, T., Nishizaka, S., Kajinami, T., Tanikawa, T., and Hirose, M.
(2011). Augmented reality �avors: Gustatory display based on edible marker and cross-modal
interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI '11, pages 93�102, New York, NY, USA. ACM.

[Navab et al., 1999] Navab, N., Bani-Kashemi, A., and Mitschke, M. (1999). Merging visible and
invisible: Two camera-augmented mobile c-arm (camc) applications. In Augmented Reality,
1999.(IWAR'99) Proceedings. 2nd IEEE and ACM International Workshop on, pages 134�141.
IEEE.

[Octavia et al., 2011] Octavia, J., Raymaekers, C., and Coninx, K. (2011). Adaptation in virtual
environments: conceptual framework and user models. Multimedia Tools and Applications,
54(1):121�142.

[Octavia et al., 2009] Octavia, J. R., Raymaekers, C., and Coninx, K. (2009). A conceptual frame-
work for adaptation and personalization in virtual environments. In Database and Expert Systems
Application, 2009. DEXA'09. 20th International Workshop on, page 284�288.

[Ohlenburg et al., 2007] Ohlenburg, J., Broll, W., and Lindt, I. (2007). DEVAL�a device ab-
straction layer for VR/AR. In Universal Acess in Human Computer Interaction. Coping with
Diversity, page 497�506. Springer.

[Ohlenburg et al., 2004] Ohlenburg, J., Herbst, I., Lindt, I., Fröhlich, T., and Broll, W. (2004).
The MORGAN framework: enabling dynamic multi-user AR and VR projects. In Proceedings
of the ACM symposium on Virtual reality software and technology, pages 166�169.

[Panas et al., 2003] Panas, T., Berrigan, R., and Grundy, J. (2003). A 3d metaphor for software
production visualization. In null, page 314. IEEE.

[Pentenrieder et al., 2007] Pentenrieder, K., Bade, C., Doil, F., and Meier, P. (2007). Augmented
reality-based factory planning-an application tailored to industrial needs. In Mixed and Aug-
mented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposium on, pages
31�42. IEEE.

[Piekarski et al., 1999] Piekarski, W., Gunther, B., and Thomas, B. (1999). Integrating virtual
and augmented realities in an outdoor application. In Augmented Reality, 1999.(IWAR'99)
Proceedings. 2nd IEEE and ACM International Workshop on, pages 45�54. IEEE.

[Pierce et al., 1997] Pierce, J. S., Forsberg, A. S., Conway, M. J., Hong, S., Zeleznik, R. C., and
Mine, M. R. (1997). Image plane interaction techniques in 3d immersive environments. In
Proceedings of the 1997 symposium on Interactive 3D graphics, pages 39��. ACM.

[Pinho et al., 2002] Pinho, M. S., Bowman, D. A., and Freitas, C. M. (2002). Cooperative object
manipulation in immersive virtual environments: framework and techniques. In Proceedings of
the ACM symposium on Virtual reality software and technology, pages 171�178. ACM.

[Poupyrev et al., 1996] Poupyrev, I., Billinghurst, M., Weghorst, S., and Ichikawa, T. (1996). The
go-go interaction technique: non-linear mapping for direct manipulation in vr. In Proceedings of
the 9th annual ACM symposium on User interface software and technology, pages 79�80. ACM.

[Rauterberg et al., 1998] Rauterberg, M., Fjeld, M., Krueger, H., Bichsel, M., Leonhardt, U., and
Meier, M. (1998). Build-it: a planning tool for construction and design. In CHI 98 Cconference
Summary on Human Factors in Computing Systems, pages 177�178. ACM.

BIBLIOGRAPHY 169

[Reenskaug, 1979] Reenskaug, T. (1979). Models-views-controllers. Technical note, Xerox PARC,
32(55):6�2.

[Regenbrecht et al., 2004] Regenbrecht, H., Lum, T., Kohler, P., Ott, C., Wagner, M., Wilke,
W., and Mueller, E. (2004). Using augmented virtuality for remote collaboration. Presence:
Teleoperators and virtual environments, 13(3):338�354.

[Reitmayr and Schmalstieg, 2001] Reitmayr, G. and Schmalstieg, D. (2001). An open software
architecture for virtual reality interaction. In Proceedings of the ACM Symposium on Virtual
Reality Software and Technology, VRST '01, page 47�54, New York, NY, USA. ACM.

[Rekimoto, 1997] Rekimoto, J. (1997). Pick-and-drop: a direct manipulation technique for multiple
computer environments. In Proceedings of the 10th annual ACM symposium on User interface
software and technology, pages 31�39. ACM.

[Rekimoto and Nagao, 1995] Rekimoto, J. and Nagao, K. (1995). The world through the computer:
Computer augmented interaction with real world environments. In Proceedings of the 8th Annual
ACM Symposium on User Interface and Software Technology, UIST '95, pages 29�36, New York,
NY, USA. ACM.

[Renard et al., 2010] Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby, E., Delannoy, V.,
Bertrand, O., and Lécuyer, A. (2010). Openvibe: an open-source software platform to design,
test, and use brain-computer interfaces in real and virtual environments. Presence: teleoperators
and virtual environments, 19(1):35�53.

[Rickel and Johnson, 1999] Rickel, J. and Johnson, W. L. (1999). Animated agents for procedural
training in virtual reality: Perception, cognition, and motor control. Applied arti�cial intelli-
gence, 13(4-5):343�382.

[Riege et al., 2006] Riege, K., Holtkämper, T., Wesche, G., and Fröhlich, B. (2006). The bent pick
ray: An extended pointing technique for multi-user interaction. In 3D User Interfaces, 2006.
3DUI 2006. IEEE Symposium on, pages 62�65. IEEE.

[Rolland et al., 2001] Rolland, J. P., Davis, L., and Baillot, Y. (2001). A survey of tracking tech-
nology for virtual environments. Fundamentals of wearable computers and augmented reality,
1:67�112.

[Ross, 2000] Ross, E. (2000). Intelligent user interfaces: Survey and research directions. University
of Bristol, Bristol, UK.

[Royan et al., 2007] Royan, J., Gioia, P., Cavagna, R., and Bouville, C. (2007). Network-based
visualization of 3d landscapes and city models. IEEE Comput. Graph. Appl., 27(6):70�79.

[Sato et al., 2008] Sato, J., Ohtsu, K., Bannai, Y., and Okada, K.-i. (2008). Pulse ejection tech-
nique of scent to create dynamic perspective. In 18th International Conference on Arti�cial
Reality and Telexistence, pages 167�174. Citeseer.

[Schilit et al., 1994] Schilit, B., Adams, N., and Want, R. (1994). Context-aware computing appli-
cations. In Mobile Computing Systems and Applications, 1994. WMCSA 1994. First Workshop
on, page 85�90.

[Schön et al., 2004] Schön, B., O'Hare, C., Du�y, B. R., Martin, A. N., and Bradley, M. a. J. F.
(2004). An agent-based approach to adaptive navigational support within 3d-environments. In
Cybernetics and Intelligent Systems, 2004 IEEE Conference on, volume 1, pages 64�68. IEEE.

[Schroeder et al., 1992] Schroeder, W. J., Zarge, J. A., and Lorensen, W. E. (1992). Decimation
of triangle meshes. In ACM SIGGRAPH Computer Graphics, volume 26, page 65�70. ACM.

[Sherman and Craig, 2002] Sherman, W. R. and Craig, A. B. (2002). Understanding virtual reality:
Interface, application, and design. Elsevier.

170 BIBLIOGRAPHY

[Shilling and Shinn-Cunningham, 2002] Shilling, R. D. and Shinn-Cunningham, B. (2002). Virtual
auditory displays. Handbook of virtual environment technology, pages 65�92.

[Shotton et al., 2013] Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake,
A., Cook, M., and Moore, R. (2013). Real-time human pose recognition in parts from single
depth images. Communications of the ACM, 56(1):116�124.

[Slater, 2009] Slater, M. (2009). Place illusion and plausibility can lead to realistic behaviour in
immersive virtual environments. Philosophical Transactions of the Royal Society B: Biological
Sciences, 364(1535):3549�3557.

[Smith et al., 2013] Smith, N. G., Knabb, K., DeFanti, C., Weber, P., Schulze, J., Prudhomme,
A., Kuester, F., Levy, T. E., and DeFanti, T. A. (2013). Artifactvis2: Managing real-time
archaeological data in immersive 3d environments. In Digital Heritage International Congress
(DigitalHeritage), 2013, volume 1, pages 363�370. IEEE.

[Song and Norman, 1993] Song, D. and Norman, M. L. (1993). Cosmic explorer: A virtual real-
ity environment for exploring cosmic data. In Virtual Reality, 1993. Proceedings., IEEE 1993
Symposium on Research Frontiers in, pages 75�79. IEEE.

[Soukore� and MacKenzie, 2004] Soukore�, R. W. and MacKenzie, I. S. (2004). Towards a stan-
dard for pointing device evaluation, perspectives on 27 years of �tts' law research in hci. Inter-
national journal of human-computer studies, 61(6):751�789.

[Sparacino, 2003] Sparacino, F. (2003). Sto (ry) chastics: a bayesian network architecture for user
modeling and computational storytelling for interactive spaces. In UbiComp 2003: Ubiquitous
Computing, page 54�72.

[Stoakley et al., 1995a] Stoakley, R., Conway, M. J., and Pausch, R. (1995a). Virtual reality on
a WIM: interactive worlds in miniature. In Proceedings of the SIGCHI conference on Human
factors in computing systems, page 265�272. ACM Press/Addison-Wesley Publishing Co.

[Stoakley et al., 1995b] Stoakley, R., Conway, M. J., and Pausch, R. (1995b). Virtual reality on
a wim: interactive worlds in miniature. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 265�272. ACM Press/Addison-Wesley Publishing Co.

[Stricker et al., 2001] Stricker, D., Klinker, G., and Reiners, D. (2001). Augmented reality for
exterior construction applications. Fundamentals of wearable computers and augmented reality,
pages 379�427.

[Stuerzlinger and Smith, 2002] Stuerzlinger, W. and Smith, G. (2002). E�cient manipulation of
object groups in virtual environments. In Virtual Reality, 2002. Proceedings. IEEE, pages 251�
258. IEEE.

[Sutherland, 1968] Sutherland, I. E. (1968). A head-mounted three dimensional display. In Pro-
ceedings of the December 9-11, 1968, fall joint computer conference, part I, pages 757�764. ACM.

[Taylor et al., 2001] Taylor, II, R. M., Hudson, T. C., Seeger, A., Weber, H., Juliano, J., and
Helser, A. T. (2001). VRPN: A device-independent, network-transparent VR peripheral system.
In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST '01,
page 55�61, New York, NY, USA. ACM.

[Teler, 2001] Teler, E. (2001). Streaming of complex 3d scenes for remote walkthroughs. PhD thesis,
The Hebrew University of Jerusalem.

[Thevenin and Coutaz, 1999] Thevenin, D. and Coutaz, J. (1999). Plasticity of user interfaces:
Framework and research agenda. In Proceedings of INTERACT, volume 99, page 110�117.

[Valkov et al., 2012] Valkov, D., Bolte, B., Bruder, G., and Steinicke, F. (2012). Viargo - a generic
virtual reality interaction library. In 5th Workshop SEARIS.

[Valyus, 1966] Valyus, N. (1966). Stereoscopy. Focal library. Focal Press.

BIBLIOGRAPHY 171

[Van Krevelen and Poelman, 2010] Van Krevelen, D. and Poelman, R. (2010). A survey of aug-
mented reality technologies, applications and limitations. International Journal of Virtual Re-
ality, 9(2):1.

[Vanderdonckt et al., 2008] Vanderdonckt, J., Calvary, G., Coutaz, J., and Stanciulescu, A. (2008).
Multimodality for plastic user interfaces: Models, methods, and principles. In Multimodal User
Interfaces, pages 61�84. Springer.

[Vasudevan et al., 2010] Vasudevan, R., Zhou, Z., Kurillo, G., Lobaton, E., Bajcsy, R., and Nahrst-
edt, K. (2010). Real-time stereo-vision system for 3d teleimmersive collaboration. In Multimedia
and Expo (ICME), 2010 IEEE International Conference on, pages 1208�1213.

[Vogt et al., 2006] Vogt, S., Khamene, A., and Sauer, F. (2006). Reality augmentation for med-
ical procedures: System architecture, single camera marker tracking, and system evaluation.
International Journal of Computer Vision, 70(2):179�190.

[Ware and Fleet, 1997] Ware, C. and Fleet, D. (1997). Integrating �ying and �sh tank metaphors
with cyclopean scale. In Computer Graphics International, 1997. Proceedings, pages 39�46.
IEEE.

[Wartell et al., 1999] Wartell, Z., Ribarsky, W., and Hodges, L. (1999). Third-person navigation
of whole-planet terrain in a head-tracked stereoscopic environment. In Virtual Reality, 1999.
Proceedings., IEEE, pages 141�148.

[Wartell, 2002] Wartell, Z. J. (2002). Stereoscopic head-tracked displays: analysis and development
of display algorithms.

[Weinschenk and Barker, 2000] Weinschenk, S. and Barker, D. T. (2000). Designing E�ective
Speech Interfaces. John Wiley & Sons, Inc., New York, NY, USA.

[Wingrave et al., 2001] Wingrave, C. A., Bowman, D. A., and Ramakrishnan, N. (2001). A �rst
step towards nuance-oriented interfaces for virtual environments.

[Wingrave et al., 2002] Wingrave, C. A., Bowman, D. A., and Ramakrishnan, N. (2002). Towards
preferences in virtual environment interfaces. In Proceedings of the Workshop on Virtual En-
vironments 2002, EGVE '02, page 63�72, Aire-la-Ville, Switzerland, Switzerland. Eurographics
Association.

[Wiza et al., 2003] Wiza, W., Walczak, K., and Cellary, W. (2003). Ave�method for 3d visualiza-
tion of search results. In Web Engineering, pages 204�207. Springer.

[Wiza et al., 2004] Wiza, W., Walczak, K., and Cellary, W. (2004). Periscope: a system for adap-
tive 3d visualization of search results. In Proceedings of the ninth international conference on
3D Web technology, pages 29�40. ACM.

[Wolpaw et al., 2002] Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and
Vaughan, T. M. (2002). Brain�computer interfaces for communication and control. Clinical
neurophysiology, 113(6):767�791.

[Zhou et al., 2008] Zhou, F., Duh, H. B.-L., and Billinghurst, M. (2008). Trends in augmented
reality tracking, interaction and display: A review of ten years of ismar. In Proceedings of the
7th IEEE/ACM International Symposium on Mixed and Augmented Reality, ISMAR '08, pages
193�202, Washington, DC, USA. IEEE Computer Society.

[Zöllner et al., 2011] Zöllner, M., Jetter, H.-C., and Reiterer, H. (2011). ZOIL: A design paradigm
and software framework for post-WIMP distributed user interfaces. Springer.

172 BIBLIOGRAPHY

List of Figures

1.1 A timeline that presents VR and AR devices . 10

2.1 The virtuality continuum . 13
2.2 The "perception, cognition, action" loop . 15
2.3 The three I's of Virtual Reality [Burdea and Coi�et, 2003]: Immersion, Interaction

and Imagination. 15
2.4 Two examples of video games with 3D interaction capabilities 16
2.5 A collaborative Virtual Environment for learning neurosurgery procedures proposed

by Claude et al. [Claude et al., 2015] . 17
2.6 Collaborative data visualization . 17
2.7 Two examples of AR applications . 18
2.8 An AR system for hepatic surgery . 19
2.9 Two examples of AV applications . 20
2.10 The Xbox 360 gamepad . 21
2.11 A VICON tracking system . 22
2.12 The Microsoft Kinect . 23
2.13 Two examples of direct input devices . 24
2.14 Two examples of visual display devices used for MR user interfaces 26
2.15 Two examples of haptic output devices . 26
2.16 Three examples of 3D interaction techniques . 28
2.17 An X3D example . 30
2.18 The Unity3D visual editor . 32

3.1 Two examples of how the layout of an application can be adapted according to the
output capabilities of a given platform . 39

3.2 In [Bilasco et al., 2007], a 3D scene can be adapted according the semantic of each
element . 42

3.3 Interaction adaptations according to a user model in [Octavia et al., 2009] 43
3.4 Two examples of how the content of an application can be adapted to the context

of use . 44
3.5 The problem space for the development of plastic MR user interfaces 45

4.1 The focus of Chapter 4 is on adaptation to devices 50
4.2 The taxonomy of input devices proposed by Buxton [Buxton, 1983] 51
4.3 The hierarchy for input devices proposed by DEVAL [Ohlenburg et al., 2007] . . . 51
4.4 The extension of DEVAL [Ohlenburg et al., 2007] proposed by Lindt [Lindt, 2009] 52
4.5 The 3DPlasticToolkit overview . 55
4.6 A device is a set of inputs and outputs as well as a collection of physical objects for

its real representation. 57
4.7 The description of real value input with two entities: the "data description" and the

"technology". 58
4.8 The description of a force feedback output device 59
4.9 The graphical tool for creating and editing devices con�guration �les 59

173

174 LIST OF FIGURES

4.10 An example of logical driver that controls a �y navigation interaction technique with
joysticks . 63

4.11 The PAC agent of the 3D ray-based technique. This agent is compatible with three
concrete logical drivers and three rendering presentations. As shown each compati-
bility is ranked with a score. 64

4.12 An illustrative case of the possibilities o�ered by 3DPlasticToolkit 65
4.13 An example of high level task: selection and manipulation 66
4.14 A usage scenario of the furniture planning application developed with 3DPlasticToolkit 69
4.15 the user can change a device unit associated to a logical driver with the meta-user

interface . 72

5.1 An example of rented room that can be organized with furniture in our application. 76
5.2 The furniture planning application on three di�erent platforms 77
5.3 Asymmetric collaboration for the furniture planning application 79
5.4 Con�ict area of frame cancellation . 80
5.5 SCVC approach illustration . 81
5.6 Progressive SCVC applied to the virtual objects close the screen edges 83
5.7 Virtual alpha blended window e�ect applied to the virtual objects close the screen

edges . 84
5.8 The "FrameCancellationSolver" task and its compatible application components . 84
5.9 Merging of visual and interaction adaptations for dealing with frame cancellation . 86
5.10 Collaborative manipulation of a virtual object (here, a cube) based on an asymmetric

setting between two users who can be helped by two additional users 87
5.11 The Giant has a global view of the scene . 88
5.12 The Ant is placed inside the manipulated object 89
5.13 The Ant interaction characteristics . 90
5.14 The Ant direct interaction capabilities . 91
5.15 Peripheral visual e�ect for reducing cybersickness 92

6.1 The focus of Chapter 6 is on redistribution . 95
6.2 Four examples of distribution at di�erent levels . 98
6.3 The D3PART model . 99
6.4 D3PART redistribution process . 100
6.5 The extension of the meta-user interface for redistribution 102
6.6 The redistributed World-In-Miniature . 104
6.7 Redistribution for collaboration with D3PART . 106

7.1 The focus of Chapter 7 is on adaptation to users 109
7.2 Two software solutions for user adaptation . 111
7.3 ISO 9241-9 multi-directional pointing task . 114
7.4 The two device setups used for our user preferences study 115
7.5 The three interaction techniques compared in our user preferences study 116
7.6 Comparison of the preferences and performances results for the three techniques on

the two device setups . 117
7.7 Comparison of the global performances and of the global grades between the two

device setups . 119

8.1 The focus of Chapter 8 is on data adaptation . 131
8.2 Two examples of automatic creation of data visualization interfaces 133
8.3 The 3DPlasticToolkit data model . 134
8.4 The 3DPlasticToolkit data visualization process . 136
8.5 Two patrimonial elements taken from the Topic-Topos database 140
8.6 The Mercator map visualization metaphor . 140
8.7 The timeline visualization metaphor . 141
8.8 Cover�ow . 142

LIST OF FIGURES 175

9.1 A summary of our contributions for the creation of plastic MR user interfaces. . . 145

9.2 Subjective results for the four visual e�ects . 153
9.3 For each side, percent of times the participants ordered each e�ect in the �rst two

places . 155
9.4 Ratio of de�ected �xations . 155
9.5 The four masterpieces separated from the pedestals by a wall 156

176 LIST OF FIGURES

List of Tables

3.1 Classi�cation of user interfaces based on adaptation controller and adaptation time
from [Lindt, 2009] . 37

3.2 A classi�cation of software solutions for the creation of plastic MR user interfaces . 47

7.1 For each technique number of times they have been ranked as �rst, second or third
according to the preference or the performance . 118

7.2 Comparison of the prediction ratios obtained with SVMs for the Oculus rift. M
corresponds to the mean ratio of good predictions and SD to the standard deviation. 123

7.3 Comparison of the prediction ratios obtained with SVMs for the zSpace. M corre-
sponds to the mean ratio of good predictions and SD to the standard deviation. . . 123

9.1 Statistical results (χ2 test) to compare the four methods 154

177

178 LIST OF TABLES

Listings

4.1 An excerpt of the update function of the Razer Hydra device class 60
4.2 The function that updates the plug status for all Razer Hydra instances 61
4.3 A part of the Razer Hydra con�guration �le . 61
4.4 An excerpt of the XML �le where the developer or the designer can edit the com-

patibilities between tasks and application components 66
4.5 The task description in the 3DPlasticToolkit con�guration �le of the furniture plan-

ning application . 67
5.1 The XML task con�guration �le of the furniture planning application 77
5.2 The scores assigned to the visual e�ects that handle frame cancellation 85
6.1 The XML task con�guration �le of the furniture planning application 101
7.1 An example of user con�guration �le . 125
7.2 Three tasks associated with three di�erent scoring modules 126
7.3 The implementation of the user preferences scoring module 127
8.1 The data model con�guration in the 3DPlasticToolkit con�guration �le 135

179

180 LISTINGS

Résumé

Cette thèse s'intéresse à la plasticité des interfaces de Réalité Mixte (RM), c'est-à-dire les appli-
cations de Réalité Virtuelle (RV), Réalité Augmentée (RA) et de Virtualité Augmentée (AV). La
plasticité d'un système interactif est sa capacité à s'adapter aux contraintes matérielles et envi-
ronnementales dans le respect de son utilisabilité. La continuité de l'utilisabilité d'une interface
plastique est assurée quel que soit le contexte d'usage. Nous proposons ainsi des modèles et une
solution logicielle nommée 3DPlasticToolkit a�n de permettre aux développeurs de créer des in-
terfaces de réalité mixtes plastiques. Tout d'abord, nous proposons trois modèles pour modéliser
les sources d'adaptation : un modèle pour représenter les dispositifs d'interaction et les disposi-
tifs d'a�chage, un modèle pour représenter les utilisateurs et leurs préférences et un modèle pour
représenter la structure et la sémantique des données. Ces sources d'adaptation vont être prises
en compte par un processus d'adaptation qui va déployer dans une application les composants
applicatifs adaptés au contexte d'usage grâce à des mécanismes de notation. Le déploiement de ces
composants va permettre d'adapter à la fois les techniques d'interaction de l'application et égale-
ment la présentation de son contenu. Nous proposons également un processus de redistribution
qui va permettre à l'utilisateur �nal de changer la distribution des composants de son système
sur di�érentes dimensions : a�chage, utilisateur et plateforme. Ce processus va ainsi permettre à
l'utilisateur de changer de plateforme dynamiquement ou encore de combiner plusieurs plateformes.
L'implémentation de ces modèles dans 3DPlasticToolkit permet de fournir aux développeurs une
solution prête à l'usage qui peut gérer les périphériques actuels de réalité mixte et qui inclut un
certain nombre de techniques d'interaction, d'e�ets visuels et de métaphores de visualisation de
données.

Abstract

This PhD thesis focuses on plasticity for Mixed Reality (MR) User interfaces, which includes
Virtual Reality (VR), Augmented Reality (AR) and Augmented Virtuality (AV) applications.
Plasticity refers to the capacity of an interactive system to withstand variations of both the system
physical characteristics and the environment while preserving its usability. Usability continuity of
a plastic interface is ensured whatever the context of use. Therefore, we propose a set of software
models, integrated in a software solution named 3DPlasticToolkit, that allow any developer to
create plastic MR user interfaces. First, we propose three models for modeling adaptation sources:
a model for the description of display devices and interaction devices, a model for the description
of the users and their preferences, a model for the description of data structure and semantic.
These adaptation sources are taken into account by an adaptation process that deploys application
components adapted to the context of use thanks to a scoring system. The deployment of these
application components lets the system adapt the interaction techniques of the application of its
content presentation. We also propose a redistribution process that allows the end-user to change
the distribution of his/her application components across multiple dimensions: display, user and
platform. Thus, it allows the end-user to switch dynamically of platform or to combine multiple
platforms. The implementation of these models in 3DPlasticToolkit provides developers with a
ready to use solution for the development of plastic MR user interfaces. Indeed, the solution already
integrates di�erent display devices and interaction devices and also includes multiple interaction
techniques, visual e�ects and data visualization metaphors.

181

	Résumé en Français
	List of Acronyms
	Introduction
	Design Space of Mixed Reality User Interfaces
	Introduction
	Mixed reality User Interfaces
	Virtual Reality
	Augmented Reality
	Augmented Virtuality
	Analysis

	Interacting with MR user interfaces
	Input devices
	Output devices
	Interactions techniques
	Analysis

	Development tools
	Markup languages for embedded execution
	Game Engines
	VR and AR tools
	Analysis

	Global Analysis

	Plasticity for Mixed Reality User Interfaces
	Problematics and Motivations
	The Plasticity Concept
	Adaptation Sources
	Devices
	Users and their environment
	Data

	Adaptation Targets
	Interactions
	Content

	Objectives and challenges
	Current Software Solutions
	Conclusion

	Device Adaptation
	Introduction
	Related Work
	Device modeling
	Device adaptation solutions

	Overview
	A New Taxonomy for the Description of Interaction Devices
	A New Model for the representation of 3D Application Components
	The 3DPlasticToolkit task system
	Dynamic Recasting in 3DPlasticToolkit
	An Adaptation Process based on Scoring Mechanisms
	Meta-User Interface: User Control over the Adaptation Process

	Conclusion

	Use Cases and Results for Device Adaptation
	Introduction
	Adapting the Interaction Techniques: The Furniture Application Case Study
	Adapting the Visualization: The Frame-Cancellation Case Study
	Adapting both: the co-Manipulation Case Study
	Conclusion

	Device Adaptation: the Specific Case of Redistribution
	Introduction
	Definitions and Related Work
	Overview
	Add Redistribution to 3DPlasticToolkit: D3PART
	Redistribution for the furniture planning application
	Redistribution for platform switching
	Redistribution for platforms combination
	Redistribution for collaboration

	Perspectives
	Conclusion

	User Adaptation
	Introduction
	Related Work
	User Preferences for Mixed Reality User Interfaces: A Preliminary Study
	Comparing three selection techniques on two device setups
	Could we use Machine Learning to Detect User Preferences?

	Extension Of 3DPlasticToolkit for User Adaptation
	User Model Integration
	Scoring Module For User Adaptation

	Conclusion

	Data Adaptation
	Introduction
	Related Work
	An integration of data modeling
	Visualization metaphors deployments scores optimization
	The Topic-Topos Database Visualization Case Study
	The Topic-Topos database and one of its possible use cases
	A first proof of concept for Topic-Topos database visualization

	Conclusion

	Conclusion and Perspectives
	Summary
	Results
	Perspectives
	Conclusion

	Publications
	Appendix A: Frame Cancellation Effects Evaluation
	Bibliography
	List of Figures
	List of Tables
	Listings

