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Summary 
 
To decipher the potential mechanisms linking increased CD8+ T cell infiltrations with an adverse 

clinical outcome in ccRCC, in this study we determined: 1) the prognosis associated with the expression 

of immune checkpoints and its coordination with dendritic cell (DC) and CD8+ cell infiltration, and 2) 

the phenotypic traits of tumor infiltrating lymphocytes (TIL). The prognosis associated with CD8+ and 

DC infiltrations, in addition to the expression of immune checkpoints were investigated in a cohort of 

135 ccRCC by quantitative immunohistochemistry. We found that the densities of CD8+, PD-1+ and 

LAG-3+ cells were closely correlated, and independently associated with decreased PFS and OS. In 

addition, patients whose tumors presented both high densities of PD-1+ cells and PD-L1+ and/or L2+ 

tumor cells (>5% positive cells), displayed the worst clinical outcome. High densities of immature DC 

isolated in the tumour stroma were associated with high expression of immune checkpoints and patients’ 

poor clinical outcome. In contrast, the presence of mature DC within Tertiary Lymphoid Structures 

identified, among the tumours with high CD8+ TIL densities, those with low expression of immune 

checkpoints and prolonged survival. To functionally characterize the CD8+ T cell infiltrates, we 

investigated the phenotype of freshly isolated TIL in 21 ccRCC by flow cytometry. We found a group of 

tumors (8/21) characterized by the over-expression of inhibitory receptors (PD-1 and TIM-3) and 

activation markers (CD69 and CD38), the expansion of the effector memory cell subpopulation (CCR7-

CD45RA-), and a trend toward more aggressive features. In summary, we demonstrated that the 

infiltration with CD8+ TIL in ccRCC is accompanied by the enhanced expression of immune 

checkpoints and a poorly coordinated immune response in a subgroup of aggressive tumors. This 

immune profile defines a poor prognosis group of patients that should be suitable to receive immune 

checkpoint inhibitors. 
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Introduction 
 

 

Chapter 1 - The Anti-Tumour Immune Response 
 
 

Bullet points 

 A chronic inflammatory microenvironment promotes the development of cancer.  

 Once a tumour has emerged, an inflammatory microenvironment also promotes malignant 

cells growth, tumour spread and metastasis.  

 The adaptive immune response controls tumour growth and elimination.  

 The major cellular mediators of the anti-tumour immune response identified so far are the 

CD8+ T cells and Th1-oriented CD4+ lymphocytes, and their increased densities are 

associated with good clinical outcome in most tumours.  

 There are few exceptions to this rule, including Renal Cell Carcinoma and Hodgkin 

Lymphoma, where an increased CD8+ cell infiltration has been associated with patient’s 

poor prognosis.  

 Tumour cell often develop mechanisms that modulate and/or inhibit the immune response, 

which are associated with patient’s poor prognosis.  

 

Inflammation and Cancer 

Several lines of evidence have established an association between chronic inflammation and 

cancer (1). First, approximately 20% of the tumours are linked to inflammation-inducing infectious 

organisms (2), including Helicobacter pylori and gastric cancer (3), Hepatitis B and C viruses and 

hepatocellular carcinoma (4) and human papilloma virus and cervical and head/neck cancers (5) (6). 

Second, chronic noxious stimuli or inflammatory diseases can favor neoplasia, such as cigarette smoke 

and asbestos/silica for lung carcinoma (7), gastroesophageal reflux for cancer of the esophagus (8), 

inflammatory bowel disease for colorectal cancer (CRC) (9), chronic pancreatitis for pancreatic cancer 

(10) and pelvic inflammatory disease for ovarian cancer (11). Third, the chronic intake of nonsteroidal 

anti-inflammatory drugs inversely correlate with CRC incidence, and recent studies indicate a negative 

effect of aspirin consumption on tumour growth (12). Finally, the neutralization of inflammatory 
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mediators (e.g. cytokines and pro-inflammatory transcription factors) decreases the incidence and spread 

of tumours both in mice and in humans (13) (14). Table 1 lists cancers where a chronic inflammation has 

been implicated in their pathophysiology.  

Table 1. Cancers associated with chronic inflammatory conditions 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mechanisms directing inflammation-induced tumourigenesis are well known. DNA damage 

and extra cellular matrix disruption by inflammatory mediators [e.g. through the production of reactive 

oxygen species (15) and matrix metalloproteinases (16), respectively], in addition to the stimulation of 

tumour cell growth by cytokines [e.g. IL-1B for gastric carcinoma (17) and IL-8 for melanoma (18)], are 

the main recognized tumour-promoting mechanisms.  

In several situations in which the pre-cancerous stages can be studied, a shift from an 

immunological pattern with a Th1 orientation to a pro-inflammatory tumour microenvironment (TME) 

has been reported. It is illustrated in cervical carcinoma in which high expression of genes encoding Th1 

cytokines is found in cervical in-situ neoplasia (CIN), whereas IFN-γ expression is lost, and the 

expression of pro-inflammatory cytokine-genes and macrophage infiltration is high in invasive and 

aggressive cervical carcinoma (19) (20). A similar shift has been described in pancreatic cancer, where 

there is a decrease in the density of CD8+ T cells and mature (DC) cells from low-grade premalignant 

lesions into invasive ductal adenocarcinoma and also during transformation of benign to malignant head 

and neck cancer (21). In cervical cancer, a change towards a Th2-type cytokine pattern has also been 

Inflammatory	Process Associated	neoplasia

Human	Papilloma	Virus Cervical	Cancer	and	Head/Neck	Cancer

Hepatitis	B	and	C	virus Hepatocellular	Carcinoma

Epstein-Barr	virus Nasopharynx	Cancer	and	Lymphoma

Human	herpes	virus	type	8 Kaposi's	Sarcoma

Helicobacter	pylori Gastric	Cancer

Schistosoma	haematobium	 Bladder	Cancer

Opisthorchis	viverrini	and	Clonorchis	sinensis Hepatocellular	Carcinoma

Tobacco	smoke Lung	Cancer,	Esophageal	Cancer,		etc.	

Silica Lung	Cancer

Asbestos Mesothelioma

Alcohol	intake Esophageal	Cancer

Chronic	pelvic	inflammatory	disease Ovarian	Cancer

Aflatoxins Hepatocellular	Carcinoma

Gastroesophageal	reflux	and	Barret's	metaplasia Esophageal	Cancer

Type	A	Gastritis Gastric	Cancer

Chronic	Pancreatitis Pancreatic	Cancer

Inflammatory	Bowel	Disease Colorectal	Cancer

Chronic	Osteomyelitis Bone	Cancer

Hashimoto's	thyroiditis	 Thyroid	Lymphoma

Thyroiditis	 Papillary	Thyroid	Cancer

NASH,	Hemochromatosis	 Hepatocellular	Carcinoma

Infectious	Etiology

Chronic	Noxious	Stimuli

Chronic	Inflammatory	diseases
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reported in the evolution from intraepithelial neoplasia to invasive carcinoma (Bais 2005). 

Not surprisingly, once a tumour has emerged, an inflammatory microenvironment can also 

promote malignant cells growth, resulting in neo-angiogenesis, acquisition of new mutations, 

extracellular matrix disruption, tumour cell migration and finally metastasis (22). The main cellular 

mediators of this process are macrophages (and to less extent neutrophils) that are, by far, the major 

immune cellular component of tumour infiltrates (23). These cells produce high quantities of IL-1β, IL-

6, IL-23 and TNF-α, the key cytokines mediating the inflammatory-induced tumour igenesis (reviewed 

in (22) and (23)).   

 

Immune Control and Tumour Escape 

In addition to the link between inflammation and tumourigenesis, other cellular and molecular 

mediators of the immune system can contribute to control of tumour growth and elimination. Several 

epidemiological observations support this fact, including scarce reports of spontaneous cancer 

regression (24), the augmented incidence of cancer in immunosuppressed individuals (25) and the 

association between increased tumour infiltrating T cell (TIL) and favorable clinical outcome (26) (27). 

The fact that tumour cells express antigens encoded by mutated genes (28) often renders them 

targets of the immune cells. Indeed, autologous TIL can induce tumour cell lysis in vitro and in vivo (29) 

and tumour-specific lymphocytes are often detected in patients with cancer. This phenomenon has been 

well characterized in colorectal cancers, where microsatellite instability (MSI, a genetic defect that 

impedes DNA mismatch repair) fosters the expression of thousands of new antigens on tumour cells. 

Characteristically, MSI+ tumours have a prominent CD8+ T cell infiltration and are associated with 

favorable clinical outcome (30).  

The major cellular mediators of the anti-tumour immune response are the CD8+ T cells, in 

addition to the Th1-oriented CD4+ lymphocytes. The first are in charge of the elimination of tumour 

cells through the production of apoptosis-inducing molecules or cytotoxic granules (e.g. granzymes, 

perforin and granulysin) (31), while the latter can provide help to the CD8+ T cells and foster the anti-

tumour response by the secreting major cytokines, including IFN-γ (32). Several lines of evidence 

suggest that mature dendritic cells (DC) orchestrate the T and B cells anti-tumour immune response. 

Characteristically, these cells are present in highly organized peri-tumour immune cellular aggregates, 

called Tertiary Lymphoid Structures (TLS) (33) (discussed in next section).  

The major antitumour immune response cytokines and chemokines are IFN-γ, IL-12, CXCL9 

and CXCL10, mainly involved in CD8+ T cell recruitment (CXCL9 and CXCL10) and activation (IL-12 

and IFN-γ) (34) (35).  
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All these processes submit tumour cells to a significant selective pressure. In fact, tumour cells 

can develop mechanisms that modulate and/or inhibit the immune response, including: first, the 

production of immunosuppressive molecules (e.g. IL-10 and TGF-β) that hamper the cytotoxic and 

proliferative capacity of T cells (36); and, second, the expression of ligands for inhibitory receptors 

expressed on the TIL (37). Of particular relevance, PD-1 is a molecule expressed on activated and 

exhausted T cells that diminishes the strength of the cellular immune response upon binding to its 

ligands (PD-L1 and PD-L2) (38). Under physiological conditions, the expression of PD-L1 and PD-L2 

is highly regulated and it is limited to dendritic cells, macrophages, activated T cells (PD-L1 only) (39) 

and certain tissues where immunomodulation is required (e.g. syncytiotrophoblast in the placenta). 

Nevertheless, certain tumour cells can express these ligands, and subsequently inhibit T cell activity. 

Similar mechanisms have been reported, including the expression of the ligands for TIM-3 and LAG-3, 

two additional inhibitory receptors expressed on T cells (reviewed in (37)). Ultimately, this 

microenvironment induces the development of suppressive immune cells, including regulatory T cells 

CD4+ (Treg) and myeloid derived suppressor cells (36), that sustain self-tolerance against tumour 

antigens.  

This complex interconnected network of myeloid and lymphoid cells, endothelial and lymphatic 

vessels and stromal cells –named the tumor microenvironment (TME) (26) (40)– has been largely 

studied in the last decade. Its influence on patient’s clinical outcome and tumour progression has been 

of particular interest: patients with tumours that develop immunosuppressive mechanisms have the 

worst prognosis, and their tumours will often display a higher histologic grade characterized by 

dedifferentiation, neo-vascularization and an inflammatory infiltrate.  

 

The Immune Microenvironment as a Prognostic Tool 

Many studies have described the distribution of the inflammatory and immune infiltrate within 

different tumours. Overall, the macrophages, mast cells and granulocytes are mostly found infiltrating or 

surrounding the tumour nests both in the invasive margin and the core of the tumour. On the contrary, 

the lymphoid infiltration is more precisely distributed, and some locations are enriched in certain cell 

types: NK cells are mostly found in the stroma and are not in contact with tumour cells; B cells are 

mostly found in the invasive margin (IM) of the tumours within lymphoid aggregates; and T cells, 

particularly CD8+ T cells, are mainly located in the IM, but can also infiltrate the tumour core (26) (41).  

The analysis of the immune microenvironment in retrospective cohorts across different tumours 

has established a clear correlation between the density of infiltrating immune cell and patient’s clinical 

outcome.  
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Tumour associated macrophages 
 

Several studies have found that the clinical outcome associated with increased numbers of 

Tumor Associated Macrophages (TAM) is mainly determined by their functional orientation, and is 

heterogeneous across tumor types (42). In fact, while the augmented densities of this population are 

associated with favorable clinical outcome in colorectal (43) (44) (45) (46) (47), gastric (48), non-small 

cell lung cancer (NSCLC) (49) (50) (51) (52), hepatocellular carcinoma (HCC) (53) (54), prostate (55) and 

cervical cancer (56), it has the opposite association in endometrial (57), esophageal (58), gastric (59) (60) 

(61) (62), urothelial (63), oral (64) (65), HCC (66) (67), melanoma (68), breast (69) (70) (71) (72) (73) 

(74), ovarian (75), bladder (76) (77), NSCLC (78), thyroid (79), pancreatic neuroendocrine (80) and 

endometrial (81) tumours.  

The heterogeneous association between TAM densities and the clinical outcome across different 

tumours might reflect the plasticity of this immune population. Overall, two different subtypes of 

macrophages have been described (82) (83):  

1. M1: activated by Toll-like receptor ligands [e.g. Lipopolysaccharide, (LPS)] and IFN-γ; they 

preferentially express pro-inflammatory cytokines in addition to inducible nitric-oxide synthase, 

an overall they potentiate the inflammatory and immune response.  

2. And M2: stimulated by IL-4 or IL-13; they express arginase 1, CD206, IL-4r, TGF-β1 and 

PDGF. This population is rather implicated in wound repair, promoting fibroblast proliferation 

and extracellular matrix deposition.  

 

A protective role in tumourigenesis has been proposed for M1 macrophages (through 

mechanisms including the activation of the Th1 response and by antagonizing the suppressive activities 

of regulatory immune cells), while M2 have shown to promote tumour growth, invasion, metastasis, 

stroma remodeling and angiogenesis (84).  

The absence of M1 and M2 specific markers has been the major obstacle in the assessment of 

the clinical impact of each of theses subtypes. Up to date, this task has been accomplished using CD11c 

or NOS2 for M1 TAM, and CD163, CD204 or CD206 for M2 TAM. Interestingly, increased M1 TAM 

densities seem to be associated with a favorable clinical outcome in NSCLC (51) (52), ovarian (85), 

colorectal (86) and gastric cancer (87), while those of M2 are linked to poor prognosis in several 

tumours, including: NSCLC (88) (89) (90), mesothelioma (91), esophageal (92), gastric cancer (61) (93), 

pancreatic (94) (95) (96) (97) (98) (99), CRC (100), HCC (101), Hodgkin lymphoma (102), renal (103) 

(104) (105), urothelial (106), breast (107), endometrial (108), ovarian (109), melanoma (68), and 

squamous oral carcinoma (110). Additionally, some studies have demonstrated that, when associated 

with poor clinical outcome, CD68+ cells are often correlated with the tumour microvessel density, in 
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addition to HIF, VEGF (63) and matrix metalloproteinases expression (62) (69) (111) (112) (76), 

suggesting they might have an M2 phenotype.  

Although not yet conclusive, the evidence linking the infiltration with TAM and the patient’s 

clinical outcome suggests that high densities of M2-oriented cells are associated with more advanced 

tumour stages and patient’s poor prognosis. In addition, it also indicates that the biological value of 

measuring the sole densities of CD68+ cells should be revisited, as it does not provide information of 

the TAM function or polarization.  

 

NK cells 
Natural Killer cells is another major cellular population mediating the anti-tumour immune 

response (113). These cells express an array of receptors (including activating, inhibitory, adhesion and 

cytokine receptors) that enable them to identify tumour cells. Overall, the integration of these signals 

determines whether or not NK cells become activated, and eliminate its target. The two most important 

mechanisms of cancer cell recognition by NK cells is the down-regulation of major histocompatibility 

complex (MHC) class I and the expression of stress-induced ligands to NK activation receptors (e.g. 

MICA or MICB, which bind to NKG2D expressed on the NK cell) by tumour cells.  

The prognostic impact of NK infiltration has been studied in some tumours, and their increased 

densities have been consistently associated with favorable clinical outcome. This association has been 

demonstrated in CRC (114) (115) (116), gastric (117) (118) (119), vulvar squamous cell (120), esophageal 

(121), renal (122) (123), HCC (124), NSCLC (125) (126) (127), in addition to CRC and RCC lung 

metastases (128). Nevertheless, other studies in NSCLC have not found an association between NK 

infiltration and prognosis (129), where they display an inhibited phenotype and decreased functional 

capacities (130) (129). More studies assessing the prognostic impact associated with NK infiltration are 

needed.  

 

Dendritic cells 
Upon encounter with an antigen and in the presence of danger signals, immature DC go through 

a process called maturation, that allows them to migrate into the lymph node, where they can prime 

naïve CD4+ and CD8+ T cells. The phenotype of the mature DC plays an important role in 

determining the orientation and strength of the subsequent immune response, and it is determined by 

the cytokine microenvironment, in addition to the type of antigen being processed (131). The TME 

takes advantage of the DC plasticity, and can induce a pro-inflammatory and/or tolerogenic DC, or 

block their maturation at different stages.  
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Due to the plasticity and heterogeneous DC phenotype, the quantification of infiltrating DC has 

been a difficult task. The more relevant markers that have been used for their quantification are S-100, 

CD83, DC-LAMP or CD1a, in addition to CD207 for Langerhans cells, and their clinical impact has 

been reported in a variety of human solid tumours. Overall, several studies support that the augmented 

infiltration with DC is associated with increased overall survival in many tumours types, including 

melanoma (132) (133) (134) (135), HCC (136) (137), gallbladder (138) (139), oral (140), esophageal (141) 

(142) (143), gastric (144) (145) (146) (119), NSCLC (147) (127) (148), colorectal (149) (150) (151) (152), 

bladder (153), breast (154) (155) (155) (156) (157), endometrial (158) (159) and ovarian cancer (160) 

(161). Nevertheless, the infiltration with CD123+ plasmacytoid DC has been associated with shorter 

overall survival in breast cancer (162) (163), as for the presence of CD208+ and CD1a+ DC in 

colorectal (164) and gastric cancer (165).  

 

Tertiary lymphoid structures and associated mature dendritic cells 
 

Interestingly, lymphoid aggregates can be detected in the invasive margin of most tumours. 

Some of them exhibit properties of active immune sites that resemble those arising in other tissues upon 

infection, or secondary to autoimmune or chronic inflammatory diseases (33). Characteristically, they 

exhibit a T cell zone (composed mainly of CD4+/CD62L+/CD45RO+ CM an in less extend 

CD8+/CD62L+/CD45RA+ naïve T lymphocytes) with embedded mature DC, germinal centers with 

proliferating B cells and they are surrounded by high endothelial venules (166). In addition, laser 

microdissection of these structures reveled they are enriched in genes associated with T cell 

chemoattraction molecules, such as CCL19, CXCL13, CCL21, IL16, CCL22 and CCL17 (166).  

In view of their similarities with germinal centers in lymph nodes, it has been hypothesized that 

these Tertiary Lymphoid Structures (TLS) represent a site where in situ antigen presentation and 

lymphocyte activation can occur under a protected environment (33). Indeed, studies in primary 

melanoma and NSCLC have correlated the densities of mature DC (DC-Lamp+) within TLS with a 

strong infiltration with activated T cells and a Th1-oriented response, respectively (132) (167). Moreover, 

the higher densities of these structures correlated with favorable clinical outcome in NSCLC (168) (167) 

(169), colorectal (151) (170), melanoma (171) and breast cancer (172).  The mechanisms underlying the 

neogenesis of these structures are still unclear in human tumours.  

 

CD4+ and CD8+ T cells 
Overall, a high infiltration by CD8+ T lymphocytes is associated with good clinical outcome in 

many tumour types, including lung, liver, stomach, CRC, breast, esophageal, bladder, melanoma, ovarian 

and prostate cancers (reviewed in (26)). However, there are exceptions to this rule, including diffuse 
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large B cell lymphoma (173), Hodgkin lymphoma (174), RCC (175) and potentially head and neck cancer 

(176), where high densities of tumour-infiltrating CD8+ T and/or Th1 cells have been associated with 

poor prognosis. Overall, Th1 CD4+ T cells show a similar clinical impact to that of CD8+ T cells; 

nevertheless, there are again exceptions to this rule, including head and neck cancer (177) and RCC (178) 

(179). The infiltration by other T cell subsets (Th2, Th17 and Treg) is less clear, and seems to be 

dependent on the cancer type (26).  

In view of the clinical impact of infiltrating CD8+ T cells in cancer, sustained efforts are being 

made to validate and promote their quantification in the routine clinical setting; this approach that has 

been called Immunoscore (180). The development of automatized software that quantify the densities of 

immune cells after immunohistochemical staining is promoting the gradual change from semi-

quantitative approaches to quantitative, and more powerful, methods.  

B lymphocytes 
Evidence assessing the clinical impact of tumour infiltrating B cells is scarce. In inflammatory 

settings other than cancer, B cells enhance T cell responses by producing antibodies, stimulatory 

cytokines and chemokines, serving as local APCs, and organizing the formation of tertiary lymphoid 

structures that sustain the immune response. Although studied in less detail, the potential mechanisms of 

action of B cell in tumours have been divided into a direct (antibodies production and direct cytolitic 

activity) and an indirect (by presenting antigens to T cells or activating them) (181) effect. In addition, 

recent evidence suggests that tumor-infiltrating B cells can play an immunomodulatory role through the 

production of IL-10, among other cytokines (182). Indeed, the role of B cells in cancer is suggested by 

the fact that the majority of human cancer patients mount tumour-specific antibody responses (183), 

they often are organized within TLS where they undergo somatic hypermutation (184) (185) (186) (169), 

and they often correlate with the functionality of T cells (187) (188) (116).  

In accordance with this presumption, several studies have reported a positive correlation 

between the B cell densities and the clinical outcome in different cancers, including NSCLC (189) (169), 

primary cutaneous melanoma (190), breast cancer (185) (191) (72) and  ovarian cancer (192).  

 

 

The Immune Microenvironment and Other Histopathologic Features 

The link between the tumour immune infiltrate and other pathology/clinical parameters has 

been assessed in independent studies, and there is not yet a consensus on this matter. Overall, tumours 

poorly infiltrated with CD8+ T cells often display a higher histologic grade, characterized by 

dedifferentiation, prominent vascularization and inflammation. Two independent studies in large cohorts 

of melanoma lesions established a correlation between an increased lymphocyte infiltration (known as 
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higher TIL grade) and thinners lesions (Clark level), smaller radial growth phase, lower stage and 

negative sentinel lymph nodes (193) (194) (195). A similar picture has been described in CRC, where 

there is an inverse correlation between the CD8+ and CD45RO+ (memory T lymphocytes) cell 

densities and the tumour stage (196) and perineural invasion (197). Moreover, the density of innate cells 

increases, whereas that of most other T cell subsets decreased along with tumour progression in this 

pathology (116).  

Nevertheless, this is not the case for all tumour types. Breast cancer deserves particular attention, 

because in the basal subtype an increased lymphocytic infiltration has been related with advanced 

histologic grades (198) (199) (200).  

 

Therapies that modulate the tumour microenvironment 

In view of the important immune processes taking place within tumours, many therapies to 

boost the local immune response and diminish the inflammatory or suppressor molecules are been 

currently developed.   

One of the first successful immunotherapies used in the clinical setting was recombinant IL-2, 

whose aim was to activate and expand the intra-tumour T lymphocyte (201). The treatment of thousands 

of patients in the late 80s and 90s established that only metastatic melanoma and metastatic RCC 

responded to this therapy, and complete response rate was limited to 10% (201). Because of the high 

rate of adverse effects, this therapy was replaced over the years, but it set a precedent for the 

development of other immunotherapies: boosting the T cell response could mediate complete 

destruction of large, vascularized and invasive cancers in humans.  

Other immunotherapies used in similar clinical scenarios are IFN-α and anti-angiogenic drugs 

(e.g. Sunitinib and Bevacizumab). In metastatic RCC, Sunitinib as monotherapy has shown high 

objective response rates (up to 50%) and currently is the first-line treatment option for metastatic RCC 

patients (202). In addition to normalizing the tumour vascularization, this drug promote anti-tumour 

immunity through different mechanisms (203).  

New therapies based on the recent understanding of the immune-suppressive cells and T cell 

inhibitor pathways are being tested. The term checkpoint blockade describes the injection of 

monoclonal antibodies specific for inhibitory receptors expressed on the surface of lymphocytes (anti-

PD-1, anti-CTLA-4 and anti-LAG-3), or their ligands on tumour or other suppressive immune cells 

(PD-L1 and PD-L2) (37) (204). Several trials on increasing number of malignancies are ongoing; overall 

they have shown exceptional results in some cancer including melanoma (205) (206), RCC (207) (208) 

(209), lung cancer (207), Hodgkin lymphoma (210) and bladder cancer (211).  
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Indeed, the analysis of the TME is becoming a powerful tool to predict the response to 

immunotherapies. Interestingly, preliminary data from clinical trials of PD-1 blockade suggest that the 

presence of: 1) infiltrating CD8+ or PD-1+ T cells (212) and/or 2) PD-L1+ tumour (213) (207) (210) or 

immune cells (211) (214), are the more sensitive parameters to predict the patients’ response to 

treatment (215).  

 

  



Introduction 
 

22 

 

Chapter 2 - Renal Cell Carcinoma 
 

 

Bullet points 

 RCC is the 13th most prevalent tumours worldwide, and the clear cell RCC (ccRCC) histological 

subtype accounts for 70% of cases.  

 70% of the ccRCC displays a lost of function of the von Hippel-Lindau (VHL) gene, which 

induces the expression of molecules related to cellular hypoxia.  

 Patients bearing advanced-stage tumours display a very poor clinical outcome (less than 20% for 

stage IV).  

 RCC is resistant to chemo and radiotherapy, and currently surgical excision is the first-line 

treatment for localized disease.  

 In turn, Target Therapies (TT) are the first-line treatment for advanced RCC, but all tumours 

will eventually develop resistance. 

 Checkpoint blockade is becoming a promising treatment for advanced RCC, but no theranostic 

markers to predict patient’s response are currently available.   

 

Epidemiology and Pathophysiology 

Renal cell carcinoma is the 13th most prevalent tumour worldwide (with an estimated incidence 

of 209 000 new cases and 102 000 deaths per year), and represents approximately 2.5% of all neoplasias 

(216). The identified risk factors for developing this cancer are obesity (body max index >30), active or 

passive cigarette smoking and hypertension. Other factors not conclusively associated are end-stage renal 

failure, acquire renal cystic disease, exposure to asbestos or trichloroethylene and some dietary habits 

(216). The risk is similar throughout all races, but it is slightly higher in males than females and the peak 

of incidence is between the 6th and 7th decade of life (217).  

Approximately 2-3% of the RCCs are familiar and expressed as a dominant trait. Notably, the 

von Hippel-Lindau syndrome is the most prevalent hereditary RCC (1/36 000) and is characterized by 

the development of several vascular tumours including ccRCC, hemangioblastoma of the central 

nervous system and pheochromocytoma. In most of the cases, the mutation has been localized in the 

VHL gene. Physiologically, VHL targets hypoxia inducible factor 1 (HIF-1, a transcription factor 

involved in the cell response to low oxygen microenvironments) and induces its degradation. The loss of 
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function of the VHL protein promotes the intra-cellular accumulation of HIF-1, and the subsequent 

transcription of several hypoxia-related molecules such as Vascular Endothelial Growth Factor (VEGF), 

Platelet-Derived Growth Factor (PDGF), Transforming Growth Factor alfa (TGF-α) and Glucose 

Transporter 1 (GLUT-1). More than 300 different mutations have been described in the hereditary form 

of VHL disease (218).  

The rest of the RCC cases (97-98%) are sporadic. The analysis of more than 400 RCC by the 

TGCA group (219) confirmed that between 55-82% have mutations in the VHL gen (220) (219) (221), 

while genetic abnormalities on the PBRM1 and SETD2 accounted for 33% and 11% of cases, 

respectively (219).  

Classification 

Histologically, RCC has been divided in 6 entities, each deriving from different parts of the 

nephron and possessing distinct genetic abnormalities (217). The most common –accounting for 70-

80% of cases– is the clear cell disease (ccRCC), characterized by the accumulation of lipids in tumour 

cell cytoplasm that, upon being dissolved during histological preparation, leaves an empty (clear) space. 

This tumour type often displays a deletion of the chromosome segment 3p, inactivation of the VHL 

promoter by mutations or hypermethylation or, less frequently, a gain of chromosome 5q (222).  

The second most common variant is the papillary subtype that has a frequency of 10-15% among RCC 

tumours. The lesions with this histology frequently display genetic abnormalities related to trisomy of 

chromosomes 7 and 17, duplications involving the gene MET or lost of chromosome Y. It has an 

overall good prognosis (222).   

In order of frequency these two phenotypes are followed by the chromophobe, oncocytoma and 

collecting duct carcinoma (217).  

 

Clear cell renal cell carcinoma 
 

ccRCC probably arises form proximal tubular epithelial cells, as suggested by the shared 

expression of CD10, villin and intracellular adhesion molecule by tumour and tubular cells (223). 

Recently, it has been proposed that ccRCC cancer cells arise from primitive regenerating epithelial 

tubular cells that display a dedifferentiation towards a mesenchymal origin (Vimentin+, E-cadherine) 

(224). Metabolically, ccRCC tumour cell in ccRCC are characterized by over-active glycolytic and 

glycogenic pathways, in addition to a deficient lipolysis, that lead to the accumulation of glycogen and 

lipids in the cell cytoplasm (225). Biallelic loss of VHL function occurs in 90% of the ccRCC, and 

several other mutations have been reported. The deletion of the 3p locus tumour suppressor gene 
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cluster (containing, among others, the VHL, PBRM1 and BAP1 genes) is the most common origin of 

VHL lost in ccRCC (225).  

The comprehensive genome-scale mutational and epigenetic analyses of ccRCC have 

demonstrated that there are at least 4 molecular subtypes of ccRCC (226) (219), with different impacts in 

patients‘ prognosis. Nevertheless, there is not yet a published consensus on the molecular sub-

classification of ccRCC.  

 

Diagnosis  

The classic presentation of RCC is hematuria, flank pain and palpable abdominal mass. 

Nevertheless, this clinical triad is rarely present (around 10% of patients), and currently more that 50% 

of patients with RCC are incidentally detected when abdominal imaging studies for other pathologies are 

being carried out. When advanced, this tumour can often cause symptoms derived from paraneoplastic 

syndromes including hyperparathyroidism, hypereninism and erythrocytosis (217). Currently, the 

diagnosis is mainly made through computed tomography (enhancing renal mass). Urinalysis, on the 

other hand, has shown a limited utility.  

The staging of RCC masses follows the next parameters (217) (227):  

 T1: Tumours ≤ 7cm and confined to the kidney.  

 T2: Tumours >7cm and confined to the kidney.  

 T3: Tumour invades the adrenal gland (3a), the renal vein (3b) or into the vena cava (3c), 

but no beyond Gerota’s Fascia. 

 T4: Tumour invades beyond Gerota’s Fascia.  

 

 N1: Metastasis in one regional lymph node.  

 N2: Metastasis in more than one regional lymph node. 

 

 M1: Distant metastasis present.  

 

Stage I and II (including T1/T2, N0 and M0) are associated with good clinical outcome, with a 

5-year survival of 95% and 88%, respectively. Stage III (T3N0/1M0, or T1/2N1M0) is associated with a 

59% 5-year survival. Finally, stage IV RCC (T4NxMx or TxNxM1) is associated with very poor clinical 

outcome, with a 5-year survival inferior to 20% (222) (AJCC Cancer staging Manual. 7th Edition. 2010).  
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Treatment 

Nephrectomy and other surgical approaches 
RCC is highly resistant to chemotherapy, with only a 4-6% response rate (228). This is probably 

due to the expression of multidrug resistant transporter in proximal-tubule cells (cells from which clear-

cell and papillary renal-cell carcinoma may originate).  

Overall the treatment of most renal masses is surgical excision (through partial or total 

nephrectomy), although is currently accepted to follow a conservative treatment with masses smaller that 

3cm, understanding that surgery can carry serious short and long-term complications. In fact, some 

studies have found that only 20% of the small renal masses (<4cm) are potential aggressive tumours 

(229) (230). Additionally, in very selected cases –such as small tumours in patients that cannot be 

candidate for conventional surgery– thermal ablation is gaining acceptance in clinical setting.  

Regarding the choice of the surgical procedure, partial nephrectomy is preferred over total 

nephrectomy because it carries less risk of chronic kidney disease in the long term (231). Partial 

nephrectomy is therefore recommended in all tumours measuring between 4-7cm. For local advanced 

disease, a “radical extirpate” surgery is strongly recommended, with the aim to achieve total tumour 

surgical excision. With this aggressive approach, up to 40-60% of patients will display a durable tumour 

remission (232) (233) (234). In addition, complete resection of either synchronous or metachronous 

solitary metastases from RCC is justified and can contribute to a long-term survival in a selected group 

of patients (235).  

 

Therapeutic approaches in locally advanced and metastatic RCC 

Target therapies 

Medical therapies are also generally recommended for locally advanced or metastatic RCC, and 

those tumours where surgery is not advisable. The growing understanding of the physiopathological 

mechanisms of RCC has allowed the development of drugs that interfere with specific molecules 

involved in tumours spread and progression (TT). Until now, therapies targeting the VHL–VEGF 

pathway have been the main focus of clinical research. Three main categories have been tested in the 

clinical setting: 1) Tyrosine kinase inhibitors (TKI), 2) mTOR inhibitors and 3) monoclonal antibodies 

against VEGF. 

Apart VEGF receptor 1-3, TKI have multiple targets, including PDGF-receptor, c-KIT, and FLT-3. 

Four of these drugs are currently available in the United States, including Sunitinib, Sorafenib, 

Pazopanib, and Axitinib. Sunitinib is the molecule more frequently used in the clinical practice, and 

multiple clinical trials have shown a significantly benefit on PFS as compared to interferon alpha (202) 
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(236). Currently, it is the first-line treatment in advanced and stage IV RCC (237). The survival impact of 

other inhibitors of the VEGF pathway has been analyzed in clinical trials and overall has shown a 

benefit on OS (238). 

The second class of TT used in RCC are the inhibitors of mammalian target of rapamycin 

(mTOR), a signaling pathway regulating cell growth, proliferation, metabolism and angiogenesis. The 

currently available mTOR inhibitors include Everolimus and Temsirolimus. A phase 3 trial established 

the benefit of Everolimus as mono-therapy over placebo in patients with advanced RCC after 

progression on Sunitinib and/or Sorafenib (239), and it is approved for Sunitinib/Sorafenib resistant 

tumours. Also noteworthy, a phase III clinical trial found a beneficial effect on OS and PFS for patients 

treated with Temsirolimus (another inhibitor of mTOR pathway named) alone versus interferon in 

advanced ccRCC (240). This agent is currently recommended as therapy for poor prognosis RCC (237).  

Finally, Bevacizumab is a humanized anti-VEGF monoclonal antibody that has shown a benefit 

on OS and PFS in different clinical trials, and is another first-line therapy option, rarely used in clinics 

(241) (242) (243) (244). 

It is worth noting that targeted therapies are not cytotoxic but cytostatic and all tumours will 

eventually develop resistance and progress. This fact highlights the necessity to develop curative 

therapies for advanced RCC.  

Immunotherapies 

The high frequency of chemo/radio-resistant RCC encouraged the development of other 

therapies to treat the advanced disease. The first medications that displayed a significant impact on 

tumour recurrence and overall survival in metastatic RCC were IL-2 and IFN-α. The treatment of 

thousands of patients in the late 80s and 90s with high-dose IL-2 established that complete response rate 

was limited to 10% patients (201). Because of the high rate of adverse effects, this therapy was replaced 

over the years. Similarly, treatment of advanced RCC with IFN-α reported response to treatment in up 

to 14-29% of cases, and an improvement of survival of 3.8 months (245) (222), with a median duration 

of six months. Currently, it is the drug of choice to use in combination with other agents in experimental 

approaches, and is recommend as first-line therapy in combination with Bevacizumab. 

New therapies based on the recent understanding of the immune-suppressive cells and T-cell 

inhibition pathways in cancer are being designed, with the ultimate aim of breaking tolerance and 

boosting anti-tumour immunity.  

The term checkpoint blockade describes the administration of monoclonal antibodies that are 

specific for inhibitory receptors expressed on the surface of lymphocytes (e.g. anti-PD-1, anti-CTLA-4 

and anti-LAG-3) or the PD-1 ligands expressed on tumour or other immune cells (PD-L1 and PD-L2) 

(37) (204). Metastatic RCC has been one of the tumours that have shown high response rates to 
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checkpoint blockade, specifically with antibodies blocking the PD-1 axis. In a phase 1 study, 9 out of 33 

patients (27%) with advanced RCC receiving anti-PD1 antibody (nivolumab 0.1 to 10.0mg every 2 

weeks, up to 12 cycles) had an objective response (complete of partial). Of the 8 patients under 

treatment for 1 year or more, 5 had a sustained response (207). A phase I dose escalating trial with an 

anti-PD-L1 antibody (BMS-936559) was also recently conducted on 17 RCC, from whom 2 had an 

objective response with a duration of 4 and 17 months (208). Several ongoing clinical trials are 

evaluating the efficacy of PD-1 blockade in metastatic RCC (https://www.clinicaltrials.gov/). 

 

Theranostic markers 
TT and checkpoint blockade are becoming the mainstay of treatment for advanced RCC. 

Nevertheless, the efficacy of to these therapies is highly heterogeneous across patients, and no markers 

to predict the response to treatment are currently available.  

Although several studies have assessed the utility of different biomarkers to predict the response 

to TT (reviewed in (246)), there is not yet a consensus on which should be used in the clinical setting.  

Nevertheless, the analysis of the TME is becoming a powerful tool to predict the response to 

checkpoint blockade. Indeed, preliminary data from clinical trials of PD-1 blockade suggest that the 

presence of: 1) infiltrating CD8+ or PD-1+ T cells (212) and/or 2) PD-L1 expression on tumour (213) 

(207) (210) or immune cells (211) (214), are the more sensitive parameters to predict the patients’ 

response to treatment (215).  

 

  

https://www.clinicaltrials.gov/


Introduction 
 

28 

 

Chapter 3 - The Tumour Microenvironment in Renal Cell Carcinoma 
 
 

Bullet points 

 RCC often displays prominent inflammatory microenvironment that is associated with tumour 

progression and metastasis.  

 The inflammatory features in RCC are probably driven by the tumour cells, and amplified in a 

second instance by tumour-associated macrophages, and probably other innate immune cells.  

 The adaptive immune response in RCC is characterized by functional defects in dendritic-cell 

and T-lymphocytes, presumably related to the inflammatory TME.  

 The T cell dysfunction in RCC is characterized by exhaustion rather than defective recruitment.  

 Scarce publications had reported an association between increased infiltrations of CD45RO+, 

CD4+, non-proliferating CD8+ T cell and poor clinical outcome in RCC. 

 The characteristics of the immune microenvironment associated with a Th1 and CTL immune 

response in RCC and their impact on patient’s clinical outcome remains poorly understood.  

 

Renal cell carcinoma: an inflammatory neoplasia 

A large amount of evidence indicates that RCC often displays prominent inflammatory features, 

characterized by the presence of almost all types of chemokines, cytokines and other inflammatory 

mediators. The strongest evidence supporting this notion comes from gene expression studies in large 

cohorts of RCC-bearing patients, which have highlighted the central role of molecules such as IL-6, C1q, 

C1r, GRO1 and MMP9 in the initiation of an intra-tumour inflammatory cascade (247) (248) (249). The 

presence of several of these cytokines in the supernatant of RCC primary cultures (in addition to IL-8, 

IL-10, TGF-β, GM-CSF, TNF-α and VEGF) suggests that tumour cells probably orchestrate the 

inflammatory environment (250) (251) (252) (253) (254). In addition, the fact that some of them can be 

found in the serum of RCC-bearing patients (e.g. TGF-β, IL-1β, TNF-α and MCP-1), and not healthy 

individuals (255) (256), supports their active production throughout RCC natural history.  

The genetic/epigenetic background inducing the expression of inflammatory mediators by RCC 

tumour cells is poorly understood. Nonetheless, as the VHL mutation (found in almost 70% of RCC) 

causes the overexpression of VEGF, PDGF and TGF-α, it seems plausible that it could also promote 

the transcription of other inflammatory molecules by direct or indirect means (257). Additionally, some 

studies have suggested that tubular cells (RCC origin cell) have the tendency to acquire a mesenchymal 
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and highly pro-inflammatory phenotype under stressful conditions (258), a characteristic that tumour 

cells could possibly retain (259) (260) (261).  

Interestingly, the production of inflammatory cytokines in RCC is clinically relevant. Thus, the 

presence of an inflammatory gene signature in RCC (247) (248) and the plasma concentration of C-

reactive protein in RCC-bearing patients (262) (263) (264) (265) (266) (267), are linked to a higher 

tumour grade, positive metastatic status at diagnosis and poor prognosis. Other markers of systemic 

inflammation also predict poor survival in patients with RCC, including an augmented erythrocyte 

sedimentation rate, leukocytosis and thrombocytosis, in addition to the increased plasmatic 

concentrations of IL-6 and TNF-α (268) (269) (270) (271) (272) (273) (274) (275). In vitro studies 

reinforce this concept, since several pro-inflammatory cytokines (e.g. IL-6, TNF-α, hypoxia-inducible 

factor-α and matrix metalloproteinase-2) are preferentially produced by the RCC cell lines exhibiting the 

highest malignant potential (276) (277) (277) (260). 

In view of the correlation between inflammation and adverse clinical outcome in RCC-bearing 

patients, various clinical trials using drugs that target key molecules in the inflammatory cascade have 

been carried out. Two sequential Phase II trials using Infliximab (anti-TNF-α monoclonal antibody) 

after progression with cytokine treatment were conducted in 2007, and induced a partial response or 

stable disease in 41% of the patients (278), indicating that TNF-α might be implicated in RCC growth 

and pathogenesis. Nevertheless, the combination of this drug with Sorafenib did not increase the 

efficacy of Sorafenib alone (279), and therefore clinical trials using this antibody were discontinued. 

Similarly, a phase I/II clinical trial using Siltuximab (an anti-IL-6 monoclonal antibody) showed 

response rates of >50% in previously progressive metastatic RCC (280), but similarly no clinical trials 

assessing its efficacy are currently being conducted.  

The mechanisms of tumour promotion associated with the RCC inflammatory cascade are 

diverse, and similar to those described in other types of cancer [discussed in the section “Cancer and 

Inflammation” (Page 13)]. Other mechanisms specifically described in RCC include: 1) the TNF-α and 

CSF-1 induction of tumour cell proliferation/migration (281) and Epithelial-Mesenchymal Transition 

(EMT) (277) (282); 2) the IL-1β-dependent up-regulation of metalloproteinases (283); 3) the IL-6 and 

IL-8 promotion of angiogenesis; and 4) the TGF-β-dependent stimulation of tumour cell migration and 

invasion (284). The autocrine effect of tumour-produced molecules in RCC is depicted in Figure 1. 

 

 

 



Introduction 
 

30 

 

 

 

 

  

 

 

 

 

 

Figure 1. The autocrine and paracrine effects of tumor secreted molecules in RCC 
microenvironment. Cartoon depicting the inter-talk between the tumour cells, dendritic cells and 
macrophages in ccRCC. In the right, the tumour cells can express molecules that induce the infiltration 
with monocytes; once inside of the tumour, the monocytes/TAM can express a wide arrange of 
molecules that amplify the inflammatory cascade and promote tumour cell growth and invasion. In the 
left, several molecules produced by the tumour cells can also render the infiltrating DC tolerogenic, 
inhibitory and pro-tumoral. In the bottom, distinct cytokines secreted by the tumor cells can have an 
autocrine effect inducing cell proliferation and spreading.  

 

Tumour associated macrophages 

RCC tumour cells produce a wide range of molecules with monocyte-chemoattractive properties 

(e.g. CCL2, CCL3 and CCL5); not surprisingly, these tumours are often infiltrated with copious amounts 

of monocytes/TAM (285) (286) (285) (247) (287) (288) (289). In addition, several studies have described 

that the RCC microenvironment can prompt the differentiation of TAM into highly pro-inflammatory 

cells, characterized by the production of IL-1, IL-6, IL-8, IL-10, TNF-α, CCL2, CCL3, VEGFA and 

eicosanoids (290) (291) (292). The mechanisms skewing the RCC TAM into this phenotyope are 

probably related with the tumour cell expression of TNF, PTGS2, IL-6 and VEGF-A (293). 

The overactive monocyte recruitment and activation in RCC turns into a vicious cycle that 

ultimately promotes tumour inflammation, growth and spreading. A recent work by Chittezhath et al. 

described the molecular profile of monocytes/TAM in RCC-bearing patients (293); overall, both 
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peripheral blood (PB) monocytes and TAM exhibited highly inflammatory characteristics (e.g. over-

expression of TNF, IL1A, IL1B, IL6, CCL3, CCL5 and CCL20), produced tumour-promoting 

molecules (e.g. COX2, IL8, VEGFA, MMP10 and CXCR4) and induced angiogenesis (293). In other 

studies, and consistently with these findings, increased RCC TAM densities have been associated with 

higher plasma VEGF levels (294), increased tumour microvessels densities (295) (69) (296), presence of 

necrosis, advanced tumour stages (297) and poor prognosis (104) (298).  Altogether these data provide 

strong evidence supporting the role of RCC monocytes and macrophages in tumour promotion and 

spreading.  

RCC TAM are also capable of producing a series of immunomodulatory molecules that can 

hamper the cytotoxic anti-tumour immune response. In fact, some studies suggest that RCC TAM are 

skewed towards an M2-phenotype, characterized by the expression of CD163, interferon regulatory 

factor 4, fibronectin 1 and IL-10 (103) (104) (299). This phenotype could induce Treg expansion (292), 

in addition to PD-1 and TIM-3 expression on T lymphocytes (104).  

The interaction between the TAM and tumour cells in RCC is depicted in Figure 1. 

 

Myeloid derived suppressor cells 
 

Myeloid derived suppressor cells (MDSC) represent a heterogeneous and complex population of 

immune cells. Although their function and phenotype has been mainly investigated in animal models, it 

is now well accepted that they infiltrate human tumours, and play an important role in hampering the T 

cell responses (300). Several mechanisms of immunoregulation by MDSC have been described, including 

the depletion of nutrients necessary for T cell function, the production of reactive oxygen species (ROS), 

the obstruction of T cell trafficking into lymph nodes and the induction of Treg (300). MDSCs originate 

from immature myeloid circulating cells, and their recruitment is induced by several molecules, including 

VEGF, TGF-β, GM-CSF, IL-6, IL-10, gangliosides and prostaglandins (300).  

Despite the fact that most of the molecules that induce the accumulation of MDSC are abundant 

in the RCC microenvironment (301), very few studies have assessed the role of this population in the 

anti-tumour immune response inhibition in this pathology. Nevertheless, evidence suggesting that 

Sunitinib and other TKI inhibitors induce tumour regression by a mechanism related to the MDSC 

depletion (discussed below) highlights the possible relevance of this population in RCC pathogenesis. 

Currently, the only two described mechanisms of MDSC-induced immunosuppression in human RCC 

are the depletion of L-arginine (302) (303) (304) and the overproduction of ROS (305).  
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Dysfunctional dendritic cells and defects in T cell priming 

Upon encounter with an antigen (and in the presence of danger signals), immature DC go 

through a process called maturation, in which significant phenotypic and morphological changes occur, 

including the lose of endocytic activity, the up-regulation of MHC–peptide complexes and costimulatory 

molecules and the acquisition of migratory capacity towards the regional lymph nodes. Once there, 

mature DC activate naïve CD4+ and CD8+ T cells, and induce their expansion and differentiation 

(131). Many cytokines present in the TME (particularly IL-6, GM-CSF and VEGF) can impair the 

process of DC differentiation/maturation (306) (290) (307) (308), or render them inhibitory and 

protumoural (309) (131). Since most of these cytokines are enriched in RCC microenvironment, it is not 

unreasonable to suspect that this milieu could easily induce an abnormal maturation of the intra-tumour 

DC. 

Several studies have assessed the DC biology in RCC, and some agree that these cells can be 

found in two main locations: isolated in the tumour stroma or within immune aggregates in the invasive 

margin of the tumour (310). Interestingly, the two types of DC display different phenotypes and 

capacities of T cell priming, presumably due to the distinctive microenvironments in which they develop. 

On the one hand, isolated/tumour stroma DC display an immature phenotype (CD80-, CD86-, CD83- 

and DC-Lamp-) (310) (311), express molecules that potentially promote tumour development (e.g. TNF-

α and MMP-9) (312) and are unable to activate lymphocytes in vitro (313) (312). On the other hand, DC 

within immune aggregates express maturation and activation markers (310) (314), and can potentially 

prime T cells in situ.  

The facts that the phenotypic abnormalities of DC are: 1) restricted to those cells embedded in 

the tumour stroma, and 2) potentially reversible when cells are removed from the tumour, strongly 

suggest that RCC microenvironment is enriched in molecules that hamper DC activity and maturation. 

Indeed, conditioned media from RCC primary cultures or cell lines can induce in vitro tolerogenic and 

dysfunctional DC (HLA-DRdim, CD80-/CD86-, IL-10+/TGF-β+) (315) (316) (317) by mechanisms 

dependent on IL-6, IL-8 and VEGF (313) (312). The dysregulation of DC maturation and migration 

might be responsible of the low density of TLS in RCC in comparison to other tumour types (128), and 

could be involved in the dysfunctional priming of T cells and defective elimination of tumour cells in 

RCC. The interaction between infiltrating DC, the tumour cells and T lymphocytes in RCC is depicted in 

Figure 1.  

 

T Lymphocytes: Rather a functional defect 

In other neoplasias, similar inflammatory mechanisms as those described for RCC have been 

associated with three main alterations in T cell function, namely: dysfunctional priming, deficient 
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recruitment and diminished cytotoxic/proliferative potential (318). The deleterious impact of the three 

phenomena has been demonstrated in numerous neoplasias, where they have been linked with poor 

tumour control and adverse clinical outcome. Nevertheless, the defective tumour cell elimination in 

RCC is probably not related to defects in T-cell recruitment; in fact, those tumours with the highest T 

cell densities usually display more malignant features and are often associated with patient’s worst clinical 

outcome. Consequently, in RCC the dysfunctional T cell responses must originate either from defects in 

the T cell priming and/or their direct inhibition.  

 

The clinical impact of T cell infiltration and activation in RCC 
RCC express a wide range of molecules that no only attract inflammatory cells but also T 

lymphocytes into the tumour. Between the T cells chemoattractants produced by RCC cell lines it is 

worth noting CCL4, CCL5, CXCL9-11 and CXCL16 (319) (320) (321), since their respective receptors 

(CCR5, CXCR3 and CXCR6) are commonly expressed by RCC TIL (322) (319) (323). Once T cells have 

breach into the tumour, they become activated, as suggested by the overrepresentation of cells with an 

effector memory phenotype expressing activation markers (CD69, HLA-DR and FAS-L) on TIL, when 

compared to PBL (324) (200) (325) (326) (327) (328) (104).  

Although abundant and often displaying an activated phenotype, the biologic consequences of 

an augmented T-cell recruitment in RCC has been enigmatic, because contrary to most tumours where 

increased densities Th1 and CD8+ TIL are associated with a favorable clinical outcome (26), few studies 

have described the opposite association in RCC. Nakano et al. studied a cohort of 233 RCC, and 

reported that high CD8+ TIL densities were associated with poor prognosis by univariate, but not by 

multivariate, analysis (175). Interestingly, in the same cohort, increased infiltrations with CD8+/Ki67+ 

double-positive cells were associated with the opposite clinical outcome (175). More recently, Hotta et 

al. described that the increased densities of CD45RO+ cells in RCC were correlated with advanced 

TNM stages, increased CRP plasma concentrations, and higher risk of patient’s progression or death 

(329). Nevertheless, in the latter and similar studies (178) (179), only the increased densities of CD4+ 

TIL (and not those of CD8+ TIL) have been associated with poor clinical outcome.  

Although conflicting regarding the prognostic significance of CD8+ TIL infiltration, all these 

studies agree in two things: first, they have consistently found a positive correlation between the 

densities of CD8+ TIL and the tumour nuclear grade (330) (175) (329); and second, they agreed in that 

the T-cell infiltration is not associated with improved survival in RCC. Nevertheless, whenever 

proliferating, augmented densities of CD8+ cell could be potentially associated with good prognosis. 

And, although this result needs confirmation, it indicates that only when CD8+ RCC TIL are poorly 
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functional (either due to their direct inhibition or to defects in their priming/activation) they could 

predict an adverse clinical outcome. 

In order to determine if the neutral or poor prognosis associated with increased CD8+ TIL 

densities in RCC depended on the organ where the neoplasia developed (the soil) or it was related to an 

effect of the tumour cells (the seed) on the CTL recruitment/inhibition, our group assessed the 

prognosis associated with the CD8+ TIL infiltration in a cohort of 52 RCC lung metastases (RCC-LM) 

(128). In the latter, increased densities of CD8+ T cells correlated with shorter overall survival (contrary 

to colorectal cancer-LM), suggesting that RCC tumour cells induce a dysfunctional CTL response, 

independently of the organ where they develop. Interestingly, we also found that the infiltration with 

CD8+ T cells RCC-LM correlated with the expression of genes associated with chronic inflammation, 

angiogenesis and CTL suppression (128).  

 

The RCC TIL dysfunction: priming, recruitment or inhibition? 
 

Some studies have found that the T cell responses in RCC are characterized by a low amount of 

expanded clones (326) (331) (332) (333). Whether this finding is associated with 1) a dysfunctional T cell 

priming, 2) a recruitment of low-affinity T cells (with a subsequent impairment in the T cell expansion) 

or 3) the inhibition of T cell activation/proliferation, is currently unknown but it seems feasible that the 

three mechanisms could be playing a role. The phenotypic abnormalities of the infiltrating DC 

(discussed above), the virtual absence of central memory TIL and TLS (334) (335) (128) and the studies 

demonstrating that TIL clones isolated from RCC are characterized by poor antitumour cytotoxic 

function (336) (326), support the first two hypotheses.  

Supporting the third hypothesis, there is solid evidence demonstrating that RCC TIL display a 

highly inhibited phenotype and function. The first well documented defect in RCC TIL was their 

diminished proliferative capacity (337) (338), that is related to alterations in the production of IL-2 (339) 

(340) (341) (338) and its intracellular signaling pathway (252) (253) (342) (343) (344) (345) (338) (346) 

(347) (347) (348) (348) (349) (350) (350). Other defects in RCC TIL have been described, and include 

their diminished cytotoxic potential (325) (351) (352), the poor development of polyfunctional responses 

after PMA-ionomycin activation (334), and the increased expression of inhibitory receptors (immune 

checkpoints).  
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The PD-1/PD-L1 axis in RCC 

PD-1 
PD-1 is an inhibitory receptor of the CD28/B7 superfamily, upregulated on lymphocytes upon 

TCR or BCR engagement or γ-chain cytokine-mediated activation (353) (354) (355). This molecule is 

normally downregulated during the contraction phase of the primary immune response. However, its 

expression remains elevated in pathologic conditions characterized by persistent antigen stimulation 

(356), such as chronic infections and cancer; in these contexts, PD-1+ cells often exhibit alterations in 

the production of several cytokines (e.g. IL-2, IFN-γ and TNF-α) and defective proliferative capacities 

(39), a phenomenon known as ‘T lymphocyte exhaustion’. Recently, this concept has been challenged 

since evidence suggests that PD-1+ T cells probably fulfill specialized functions in the anti-tumour 

immune response (204). For instance, CD8+PD-1+ TIL in melanoma are enriched in clones capable of 

lysing autologous tumour cell lines (357) as compared to CD8+PD-1– cells. In addition, the fact that a 

strong anti-tumour immune response can be restored by blocking the interaction between PD-1 and its 

ligands in some tumours (207), reinforces the concept that these cell are circumstantially inhibited rather 

than exhausted, and could potentially fulfill an important role in the anti-tumour immune responses. In 

addition, studies in chronic infectious models have demonstrated that PD-1+ lymphocytes express 

similar or increased levels of cytotoxic molecules (but not IFN-γ or TNF-α) (358) (359) when compared 

to their PD-1– counterparts.  

A relevant amount of evidence has implicated the expression of PD-1 and their ligands in the 

RCC pathogenesis. Indeed, RCC TME is often enriched in PD-1-expressing T cells (333) (104) (360), 

and their increased densities are associated with a higher nuclear grade, advanced TNM stage and 

patient’s poor prognosis (361) (362). Similarly, the increased percentages of PB CD4+/PD-1+ and 

CD8+/PD-1+ T cells correlate with advanced tumour stages (363). Our understanding of the 

mechanisms inducing the PD-1 up-regulation in RCC TIL is limited, and it is still unclear if it could be 

related to a TCR-dependent activation in the context of low affinity interactions (354), or if it could be 

the consequence of the abundant inflammatory cytokines in the RCC microenvironment (355). 

PD-L1 and PD-L2 
Two ligands for PD-1 have been identified (PD-L1 and PD-L2). PD-L1 has a more wide range 

of expression, not only restricted to immune cells (including APC, macrophages and lymphocytes), but 

also comprising nonhematopoietic tissues (e.g. placenta), and it has been classically described to be 

induced by type I and II IFN (364). In turn, the expression of PD-L2 is restricted to activated DC and 

macrophages (39), and it can be induced by IFN-γ, GM-CSF and IL-4 (365).  

To date, the role of the PD-1 ligands in RCC pathogenesis has mainly focused on the expression 

of PD-L1 by tumour cells. Some studies have found that approximately 20-30% of the primary ccRCC 
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express this molecules (using 5% as cut-off) (366) (367) (368) (369), and compared to their negative 

counterparts, these tumours present higher TNM stages and nuclear grades, and are associated with 

patient’s poor survival (366) (367) (368).  

Three main mechanisms of PD-L1 induction have been proposed in RCC: 1) a VEGF-

dependent mechanism, as suggested by the diminution of PD-L1 expression after VEGF-targeted 

therapy in metastatic ccRCC (320); 2) a cytokine-induced mechanism, under the rationale that some of 

most abundant molecules in RCC microenvironment (e.g. TNF-α, IFN-γ and IL-4) can induce PD-L1 

expression in other tumours (370) (371) (320) (369); and 3) a hypoxia-induced mechanism, insinuated by 

some studies where PD-L1 expression can be induced in RCC cell lines under hypoxic conditions trough 

a HIF-α-dependent pathway (372) (373).  

Although studied in less detail, some reports have also implicated the expression of PD-L1 by 

immune cells in the inhibition of T cell responses in RCC (366) (367) (368) (369).  

In contrast to PD-L1, the role of PD-L2 expression in RCC has not been studies in detail. 

Nevertheless, a couple of observations from clinical trials support that other PD-1 ligands besides of 

PD-L1 could be expressed in RCC: on the one hand, the response rates among patients with advanced 

RCC goes from 10% when using drugs inhibiting just PD-L1 (208) to 25% when inhibiting the PD-1 

receptor (207); and, on the other hand, although very few, there are PD-L1 negative tumours that 

respond to anti-PD-1 treatment (207). To date, only one study has assessed the expression of PD-L2 in 

RCC, and found that its expression was limited to 1 out of 6 tumours. The biological function of PD-L2 

in RCC is still to be determined (213).  

 

Other inhibitory receptors 
The role of other inhibitory receptors in RCC TIL has not been assessed in detail. Similarly to 

PD-1, few studies haves demonstrated an expansion of the TIL expressing TIM-3 and/or LAG-3 

compared to autologous PBL (333) (104). The role of other immune checkpoint, including CTLA-4, 

CD137, OX40 and A2aR in RCC has not been assessed to date. Nevertheless, a phase II clinical trial 

with Ipilimumab (anti-CTLA-4 antibody) in metastatic RCC showed a partial response of approximately 

10% of patients (374), suggesting the potential role of this molecule in tumour development.  

 

CD4+ T-cell orientation in RCC: Th2 and Treg 
 CD4+ T helper cells are divided into different subtypes, including Th1, Th2, Th17 and Treg; 

each sub-population accomplishes specific roles in the anti-tumour immune response. Overall, a Th1-

oriented response antagonizes the tumour growth and is often associated with good clinical outcome. 

The role of Th2, Th17 and Treg is less clear, but are often associated with poor prognosis in different 
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tumours (26). Multiple studies have a demonstrated that the RCC-infiltrating CD4+ T cell compartment 

often acquires functional orientations that obstruct or inhibit the anti-tumour immune response. 

 

Th2 cells 
Some studies have found that RCC-infiltrating CD4+ T cells preferentially express cytokines 

associated with a Th2 response (e.g. IL-10 and IL-4) (336) (375) (325) (376) (377) (378) (379) (380). 

Indeed, it has been suggested that the high concentrations of TGF-β, IL-6, IL-4, COX2-PGE2 and 

gangliosides in the RCC microenvironment could be implicated in the preferential development of Th2 

responses (381) (348) (382). In addition, the fact that primary RCC tumour supernatants can inhibit the 

expression of IFN-γ in T cells, but not the production of type 2 cytokines (e.g. IL-4, IL-5, and IL-10) 

(347) (348), suggests the central role of the tumour cells in this phenomenon.  

The clinical relevance of the Th2 skewing in RCC is currently unknown. Nevertheless, a small 

study by Cozar et al. (n=24) suggested that CD4+ TIL preferentially display a Th1 orientation in early-

stage RCC, while they exhibited a Th2 skewing in more advanced disease (383).  

 

Regulatory T cells 
 

Treg are a subpopulation of CD4+ T lymphocytes that mediate peripheral tolerance and help in 

the maintenance of the immune homeostasis. They exert this effect by suppressing the effector cell 

responses through different mechanisms, including: 1) the production of inhibitory cytokines (e.g. IL-10, 

TGF-β and IL-35); 2) the direct cytolysis of CD8+ T cells (through the secretion of granzyme A and 

perforin); 3) the disruption of the metabolic microenvironment (e.g. by cytokine deprivation or 

adenosine production); and 4) the suppression of DC development and maturation (384).  

Some studies have implicated the Treg subpopulation in the CTL inhibition in RCC (385) (319) 

(362).  Their recruitment and in situ expansion seem to be induced by the CCL22/CCR4 and TGF-

β/VEGF-A axes (386) (387) (388). Interestingly, the expansion of Treg subpopulation within PBL and 

TIL in RCC-bearing patients has been associated with advanced TNM stages (104) (256) (389), denser 

tumour microvascularization (390) and poor survival (391) (392) (393) (362).  

 

NK cells 

NK lymphocytes contribute to tumour elimination by detecting the MHC I down-regulation 

and/or the expression of NK-activation ligands on the tumour cells. This is one of the few immune 

populations in RCC whose presence has been correlated with a favorable clinical outcome (383) (394) 
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(123) (128). Often, these cells represent a relevant percentage of the RCC TIL (325) (383), and they 

express activation (CD69+) (325) (395) and inhibitory markers (CD94/NKG2A) (396). Although they 

exhibit diminished cytolytic capacities compared to PB NK cells (395), some RCC-infiltrating NK 

lymphocytes are still capable of lysing MHC Class I negative tumour cell lines after a short-term 

activation with IL-2 (396).  

 

Cytokines shaping the RCC immune microenvironment 

As described above, RCC microenvironment is characterized by the presence of copious 

amounts of cytokines and chemokines. But, contrary to other scenarios where a delicate balance between 

the immune activation and counterregulation allows the antigen elimination without major collateral 

damage, RCC often displays a disorganized immune contexture, enriched in cytokines that hamper the 

immune function.  

 

IL-10 
IL-10 is conspicuously found in the RCC microenvironment. In physiological conditions, this 

cytokine has been implicated in T cell dysfunction by indirect mechanisms involving: 1) the inactivation 

of macrophages and DC, with a consequent inhibition the expression of MHC class II and co-

stimulatory molecules (397); 2) activation of tolerogenic pathway in DC through the up-regulation of IL-

1RA, TGF-β and HLA-G; and 3) promotion of Treg differentiation and survival (398).  

In RCC, the overproduction of IL-10 has been related to M2-macrophage polarization (298) 

(292), the development of dysfunctional DC (290), the expansion of Treg (317) and abortive activation 

of naïve T cells (399). Three different sources of IL-10 in this pathology have been described: 1) the 

tumour cells (253), 2) the Treg/Th2 CD4+ TIL (400) (401) (341) (401) (402) (334) (104) and 3) 

TAM/DC (290) (291) (292) (293).  

Regarding the clinical impact of the increased expression of IL-10 in RCC, scattered studies have 

found a correlation between its in situ expression, poor tumour differentiation and increased metastasis 

risk (403) (404). A similar picture has been described when analyzing the PB of RCC-bearing patients, 

where the IL-10 serum concentrations have been linked with higher tumour grades (341) (405).  

 

TGF-β 

TGF-β is another molecule that has been widely implicated in the inhibition of the DC and T-

cell responses in RCC (250) (251) (252) (253) (254) (315) (317) (256). In physiological conditions, TGF-β 

regulates T cell homeostasis by promoting survival of low-affinity T cells and by inhibiting TCR-driven 
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activation of high-affinity T cells (406). In addition, it inhibits the differentiation, activation and effector 

functions of Th1, Th2 and cytotoxic T cells, while it promotes the development of Treg and Th17 cells 

(407). In RCC, the elevated concentration of TGF-β (probably originating in tumour cells or DC) has 

proven to induce the development of dysfunctional DC (290) and the expansion of Treg (317), among 

others. Not surprisingly, some studies have described an association between the expression of TGF-β, 

advanced tumour stages and poor prognosis in this pathology (408) (409) (410). 

 

CCL2 and CCL5  
CCL2 and CCL5 are chemokines extensively produced by RCC tumour cells. In addition to their 

implication in macrophage recruitment, it has been proposed that these cytokines can also promote the 

tumour growth and immune-suppression by different mechanisms, including the induction of an 

inflammatory microenvironment, the promotion of angiogenesis, and the generation of metastatic sites 

(411).  

 

Other mechanisms of immunomodulation: MHC Class I and II 

One of important mechanisms of immunomodulation in cancer is the lack of the tumour 

recognition by CTLs through the down-regulation of MHC class I in the neoplastic cells (412). 

Nevertheless, this phenomenon has never been confirmed in RCC, and in fact the majority of these 

tumours express high quantities of MHC class I and II molecules as compared to many other neoplasias 

(413) (414). The biological significance of this phenomenon is still poorly understood. In fact, some 

works have shown that the overexpression of MHC by tumour cells does not necessarily translate into 

an efficient antigen presentation, since all the processing machinery is dysfunctional (415) (416). In 

addition, it has been suggested that the overexpression of MHC class I molecules could also be skewed 

towards inhibitory molecules (e.g. HLA-G and HLA-E) (417) (418) (419), and in addition it could 

suppress the tumour recognition by NK cells (420) (421).  

A similar picture has been described for MHC Class II molecules in RCC (422) (423) (424), with 

the interesting observation that the peptidome analysis of the tumour cells displayed the enrichment of 

MHC class II-restricted peptides (425) (426). Whether the increased expression of these molecules 

translates into an effective presentation of tumour-associated MHC-peptides to CD4+ cells, and how it 

coordinates with the expression of homolog MHC class II molecules, such as PD-L1 and PD-L2, also 

remains elusive.  
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Shaping the RCC immune microenvironment: Lessons we have learned from immunotherapies?  

 
The widespread use of immunotherapies in RCC-bearing patients has helped us to comprehend 

the relevance of different immune pathways and cellular populations in the tumour growth and 

spreading. Numerous clinical trials have shown that the response to many of these therapies is 

heterogeneous among patients, and could be determined by the delicate balance between the induction 

of an anti-tumour and pro-tumour immune response (427) (428) (429).  

 

rIL-2 and IFN-α 
The first immunotherapy ever used in patients with advanced RCC was rIL-2, a treatment 

associated with a response rate of 10-20% and a high incidence of adverse effects (201). Although its 

efficacy is restricted, rIL-2 treatment has induced a complete tumour regression in dozens of patients 

with advanced RCC (430) (201). Extensive efforts were made in order to understand the mechanism of 

action of rIL-2, as well as the immune features preferentially induced in the responder patients. The 

clinical studies using rIL-2 in advanced RCC showed that this treatment induced the infiltration with 

activated-mature DC and functionally active CD8+ T cells (431) (427) (432) (433), but also could 

increase the densities of MDSC (434) and Treg (429).  

Similarly, IFN-α has also been used in the treatment of advanced RCC, based of the same 

rationale of boosting the otherwise inhibited immune response. In RCC-bearing patients, IFN-α also 

induces the shrinkage of the Treg (as well as most other immune populations, except CD8+ T cells) and 

concomitantly promotes the diminution of the VEGF intra-tumour concentrations (435). 

Our understanding of the mechanisms inducing a strong anti-tumour immune response in RCC 

with cytokines-based treatment is still limited. Some studies suggest that the response to these agents 

largely depends on the pre-therapy patient’s immune status. Remarkably, individuals with higher 

densities of tumour infiltrating dendritic cells and low percentages of PB Treg were more likely to 

response to rIL-2 and IFN-α treatment, respectively (76) (436) (437). On the contrary, increased plasma 

concentrations of IL-6 and TNF-α could predict poor responses (438). In addition, the response to 

treatment also seems to depend on the expansion of activated immune cell populations after the 

treatment administration (439) (440). 

These findings provide strong evidence supporting the central role of a dysfunctional CTL 

response in the RCC pathogenesis. Furthermore, it highlights the importance of the balance between the 

anti-tumour and pro-tumour immune response, which could be potentially skewed with these 

therapeutic approaches. The major problematic behind the cytokine-based therapies in RCC was their 

unpredictable effect, and unfeasibility to generalize a regimen due to the inter-patients heterogeneity and 
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the intra-tumour complexity. With evidence showing the poor specificity of these treatments in addition 

to their side effects, rIL-2 and IFN-α have been steadily abandoned from the clinical practice.  

 

Target Therapy 
The first line therapy for advanced RCC are drugs named TT, named like that as they interfere 

with specific molecules involved in tumour growth, spread and progression. Sunitinib (a TKI inhibitor) 

is the molecule more frequently used in the clinical practice, holding partial or complete response rates 

of almost 50%.  

Studies in mouse models have suggested that, beside of inducing normalization of the 

vasculature, this molecule can potentially modulate the immune microenvironment by reducing the 

amount of infiltrating MDSC and Treg, and therefore enhance the Th1 responses (441) (442) (443) 

(444). It has also been described that the treatment of tumour-bearing mice induces a down-regulation 

immune checkpoint (CTLA-4 and PD-1) expression in T cells, and its ligands (PD-L1) in MDSCs and 

DC (441) (445) (320).  

In humans, the treatment with Sunitinib in RCC induces a reduction in peripheral blood MDSC 

and Treg, and increases the Th1 and CTL responses (436) (446) (443). In addition, some studied suggest 

that the extent of shrinkage of the myeloid DC and Treg populations correlate with the overall survival 

after Sunitinib therapy (447) (448) (449).  Similar studies evaluating the immune parameters after 

treatment with other anti-angiogenic drugs such as Sorafenib (388) (386), Pazopanib (450), Imatinib and 

Dasatinib (451)and Bevacizumab (452) have displayed similar results. These results provide solid 

evidence suggesting that the myeloid compartment, and probably the Treg, play an important role in the 

pathogenesis and natural history of advanced RCC.   

So far, little is known about the effect of TT on T cell responses in RCC. An interesting study 

quantitatively measuring the number of T cell clones in different tumour regions after Everolimus 

treatment vs. placebo, determined that this drug induced the intra-tumour clonal expansion of T cells, 

and augmented the inter-regional heterogeneity of T cell clones (332), suggesting that this drug could 

boost the tumour-specific T cell response.   

 

 



Objectives 
 

42 

 

Objectives 
 
 
 

In the view of the potential poor prognosis associated with high densities of CD8+ T cell and a 

Th1 immune response in RCC, we designed a project to solve the next question:  

 

 

What are the characteristics of the immune microenvironment associated with a Th1 

and CTL immune response and how do they predict the patients’ clinical 

outcome in ccRCC? 

 

 

To unravel this question, we established two main objectives in the project: 

I. To determine whether the density and location of ccRCC infiltrating mature DC and 

CD8+ T cells predict patient’s clinical outcome.  

II. To determine the expression pattern of PD-1, LAG-3, PD-L1 and PD-L2 in tumours with 

high and low densities of CD8+ T cells, and their significance as prognostic markers.  

 

Our hypothesis was that, if associated with a poor clinical outcome, CD8+T cells would display 

a suppressed phenotype (characterized by the expression of immune checkpoint), in addition to signs of 

a dysfunctional immune response; simultaneously, the TME would provide the appropriate 

microenvironment to induce this phenotype.  

In the first part of our work, we could determine that the increased densities of CD8+ T cells 

were associated with poor clinical outcome, but interestingly this link was largely modulated by the 

expression of the immune checkpoints and the localization of mature DC in the TME. The tumours 

associated with worst prognosis were characterized by a suppressive microenvironment, characterized by 

the expression of immune checkpoints and the absence of functional mature DC and TLS.  

These results lead us to characterize in detail the cellular immune response and TME of ccRCCs 

with a “suppressive-like” contexture. Therefore, the third objective of this work was the next:  

III. To characterize the phenotype of ccRCC TIL, and its relation with the expression of 

immunomodulatory molecules in the TME.  
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Results 
 
 

Article 1: <<Orchestration and Prognostic Significance of Immune Checkpoints 

in the Microenvironment of Primary and Metastatic Renal Cell Cancer>> 
Nicolas A. Giraldo, Etienne Becht, Franck Pages, Georgios Skliris,  Virginie Verkarre, Yann Vano, 
Arnaud Mejean, Nicolas Saint-Aubert, Laetitia Lacroix, Ivo Natario, Audrey Lupo, Marco Alifano, 
Diane Damotte,   Aurelie Cazes, Frederic Triebel, Gordon J. Freeman, Marie-Caroline Dieu-Nosjean, 
Stephane Oudard, Wolf H. Fridman, and Catherine Sautes-Fridman.  

 

This article tries to solve the first two objective of my thesis, and was published in Clinical 

Cancer Research in February 2015. 

 

Summary of the results in Article 1:  

Contrary to most tumours, few studies had reported an association between the increased 

infiltration of CD8+ T cells and poor clinical outcome in primary ccRCC.  In this article, we collected a 

retrospective cohort of 135 primary ccRCC and 51 ccRCC lung metastases, with their respective 

pathological and clinical characteristics and follow-up. The prognosis associated with CD8+ and DC 

infiltrations, in addition to the expression of immune checkpoints was investigated by quantitative 

immunohistochemistry (IHC). We confirm some of the results using the gene expression dataset 

published by the TCGA group on 496 ccRCC primary tumours.  

As reported previously in the literature, increased densities of CD8+ TIL were linked with poor 

clinical outcome in ccRCC. Interestingly, this correlation was largely modulated by the localization and 

phenotype of DC in the TME; while the intra-tumour DC were associated with a poor clinical outcome, 

high densities of DC within lymphoid aggregates (TLS-DC) identified a group of patients with 

prolonged survival and increased CD8+ TIL densities. The association of CD8+ T cells and poor 

prognosis was further confirmed by gene expression analyses, since increased CTL- and Th1-associated 

transcripts were correlated with shorter OS in the TCGA cohort.  

In view of the high sensitivity of RCC to PD-1 blockade therapies, we hypothesized that the 

expression of inhibitory receptors in TIL could modulate the prognosis associated with CD8+ TIL 
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infiltration. To probe this hypothesis, we analyzed the expression of immune checkpoint in the tumour 

with the highest CD8+ T cell densities (n=40) as compared to those with lowest (n=40). The densities 

of PD-1+ and LAG-3 were closely associated with the CD8+ infiltration grade, and we could confirm 

be IF that several CD8+ T cells co-expressed both receptors. Nevertheless, we demonstrated that 

patients whose tumours exhibited both high densities of PD-1+ lymphocytes and PD-L1+ and/or PD-

L2+ tumour cells had the worst prognosis.  
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Article 1 
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Supplementary data 
 

Supplementary Tables 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S1. Demographic and clinical characteristics of the analyzed patients are depicted (Mean {plus 
minus} SD)  
 

 

 

 

 

 

Number	of	Patients 135

Males	-No.	(%) 98	(73%)

Age	(years) 61	±	14

Overall	survival	time	(months) 47	±	21

Disease	Free	Survival	(months) 40	±	40

Tumor	size	major	axis	(cm) 5.1	±	3.1

Sarcomatoid	variant 18	(13%)

I 49	(36%)

II 10	(7%)

III 53	(39%)

IV 20	(15%)

Unclassified 3	(2%)

				I 5	(4%)

				II 33	(24%)

				III 78	(58%)

				IV 19	(14%)

Number	of	Patients 51

Males	-No.	(%) 42	(82%)

Age	(years) 64	±	10

Overall	survival	time	(months) 42	±	32

				I 4	(8%)

				II 22	(33%)

				III 23	(37%)

				IV 12	(21%)

Primary	ccRCC

ccRCC	Lung	Metastases

Fuhrman	Grade

TNM	Stage

Fuhrman	Grade
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Table S2. Antibodies used for the IHC and IF studies. Antibodies and conditions used for the IHC and 
IF studies  
 

 

 

  
Table S3. Survival analysis according to various cut-offs. Log-rank test p-values for CD8+, PD-1+ and 
LAG-3+ cell densities at the optimal, median and third quartile cut-offs 
 

 

 

 

 

 

 

 

 

Antibody Specie Clone Source Concentration	(ug/mL) pH	Antigen	Retrival Secondary	Antibody

CD8 Mouse	IgG1 C8/144B Dako 3.14 High

CD68 Mouse	IgG3 PG-M1 Dako 0.6 Low

Alpha	Smooth	Muscle	Actin Mouse	IgG2a 1A4 Dako 0.7 Low

CD34 Mouse	IgG1 Qbend-10 Dako 0.24 Low

Anti-mouse	EnVision	FLEX/HRP	labeled	polymer

Cell	population Cut-off	 Cut-off	values	(cells	per	mm2) P	value	DFS P	value	OS

Minimum	P	value 630 0.0001* 0.001*

Median 371 0.17 0.23

1st-3rd	quartile	vs	4th	quartile 892 0.0003 0.01

Minimum	P	value 6.1 0.006* <0.0001*

Median 0.79 0.13 0.09

1st-3rd	quartile	vs	4th	quartile 2.19 0.01 0.002

Minimum	P	value 626 0.0005* 0.03*

Median 235 0.48 0.94

1st-3rd	quartile	vs	4th	quartile 519 0.0016 0.012

Minimum	P	value 156 0.02* 0.07*

Median 10.7 0.81 0.88

1st-3rd	quartile	vs	4th	quartile 70.9 0.08 0.04

Cell	population Cut-off	 Cut-off	values	(cells	per	mm2) P	value	DFS P	value	OS

Minimum	P	value 490 NA 0.001*

Median 278 NA 0.02

1st-3rd	quartile	vs	4th	quartile 581 NA 0.0003

Minimum	P	value 172 NA 0.008*

Median 24.3 NA 0.78

1st-3rd	quartile	vs	4th	quartile 172 NA <0.0001

Minimum	P	value 121 NA 0.048*

Median 1.70 NA 0.76

1st-3rd	quartile	vs	4th	quartile 21.9 NA 0.02

*	Corrected	for	multiple-comparisons

CD8+	cells	IM

PD-1+	cells	IM

LAG-3+	cells	IM

Primary	ccRCC

CD8+	cells	IM

NTLS	DC

PD-1+	cells	IM

LAG-3+	cells	IM

Metastatic	ccRCC	Cohort
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Table S4. Univariate Cox regression analysis for OS and DFS in primary and metastatic ccRCC. P-
values and HR of significant variables are highlighted in bold font.  
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Supplementary Figures 
 

 
Figure S1. Test of the specificity of anti-immune checkpoints : Immunohistochemical staining of 
immune checkpoints on sections from paraffin embedded cell pellets of untransfected and transfected 
cell lines used as negative and positive controls respectively and from paraffin embedded tonsils and 
placenta.  
 

 

 
Figure S2. CD8+ and PD1+ cell density and Furhman Grade in primary ccRCC  
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Figure S3. Representative IHC staining of immune checkpoints in ccRCC : Immunohistochemical 
staining of immune checkpoints on sections from paraffin embedded ccRCC tumors illustrating highly 
and poorly PD-1 (A) and LAG-3 (B) infiltrated lesions and PD-L1 (C) and PD-L2 (D) positive and 
negative tumors  
 

 
Figure S4. Inverse relation between TLS and immune checkpoints in primary ccRCC : 
photomicrographs of immunohistochemistry staining of PD-L1(red)/hematoxylin and TLS structures as 
revealed by CD3(Blue)DC-Lamp(Red), CD21(Blue)/CD20(Red), and of CD8(red)/hematoxylin in PD-
L1+and/orPD-L2+ (A) and PD-L1-/PD-L2- (B) primary ccRCC  
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Article 2: << The immune contexture of primary and metastatic human 
tumours>> 
 
Nicolas A. Giraldo, Etienne Becht, Romain Remark, Diane Damotte, Catherine Sautes-Fridman and 
Wolf H. Fridman. 

 

This article is a comprehensive review of the literature on tumour immunology in primary and 

metastatic tumours, published in Current Opinion Immunology in April 2014. 

 

Summary of the results in Article 2:  

 
The topics addressed throughout the text were:  

1. The immune contexture as a tool to predict patient's clinical outcome. 

2. Chronic inflammation, cancer development and tumour growth. 

3. The few exceptions to the dogma that an adaptive immune response predicts longer survival in 

all cancer.  

4. The influence of tumour-originating factors on the immune contexture.  

5. The variations in the immune contexture from the primary to the metastatic lesions. 
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Article  2 
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Unpublished results 
 

We have been collecting data to accomplish the third objective of this project: 

3. To characterize the phenotype of ccRCC TIL, and its relation with the expression of 

immunomodulatory molecules in the TME.  

 

Summary of the Unpublished Results:  

 
To functionally characterize the CD8+ T cell infiltrates in ccRCC, we investigated the major phenotypic 

traits of freshly isolated lymphocytes from 21 tumours obtained by partial or radical nephrectomy. Non-

supervised analyses of the CD8+-TIL phenotype revealed two different types of tumours: The first 

group or “inhibited group” (7/21) was characterized by the over-expression of inhibitory receptors (PD-

1 and TIM-3) and activation markers (CD69 and CD38), and the expansion of the effector memory cell 

subpopulation (CCR7-CD45RA-) in the CD8+-TIL; the second group (13/21) was characterized by the 

expansion of the CD8+EMRA subpopulation (CCR7-CD45RA+) in addition to a reduced expression of 

activation or inhibitory receptors. Preliminary data suggest that the “inhibited group” of tumours is 

characterized by more advanced tumour stages, higher Fuhrman grades and increased CD8+ cell 

densities (as determined by IHC), and thus shares major characteristics with tumours associated with 

patients’ worst clinical outcome in the retrospective cohort.  

 

Material and Methods 

Patients 
A cohort of 21 primary ccRCC human tumours were collected between 01-2014 and 06-2015, 

from specimens of radical or partial nephrectomy, operated at the hospital Institut Mutualiste 

Montsouris (Paris, France). We obtained pre-operative peripheral blood samples (n=19) and adjacent 

non-tumour kidney tissue (n=19) in some patients. This research was conducted according to the 

recommendations outlined in the Helsinki declaration and approved by the medical ethics boards of all 

participating institutions, and with the agreement of the ethics committee (no. CEPAR- 2014-001). The 

demographic characteristics of the cohorts are depicted in Table 2.  
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Table 2. Demographic and clinical characteristics of the analyzed patients are depicted  

 
 

Tumour processing and surface staining 
Tumours were dilacerated and incubated for 1h at 4°C with Cell Recovery Solution (Fisher 

Scientific); mixtures were filtrated and TIL separated with Ficoll-Paque PLUS (GE Healthcare Life 

Science). TIL were then stained with the monoclonal antibodies: CD45RA-ECD (2H4, Beckman 

coulter), CD3-AF700 (UCHT1, BD), CD4-BV 605 (OKT4, Biolegend), CD8-BV 650 (RPA-T8, 

Biolegend), CD69-PE (FN50, BD), CD38-PercpeF710 (HB7, eBioscience), CD40L-APC-Cy7 

(Biolegend), ICOS-FITC (Isa-3, eBioscience), GITR-APC (AITR, eBioscience), PD-1-APC-Cy7 

(EH12.2H7, Biolegend), TIM 3-BV421 (F38-2E2, Biolegend), CTLA-4-APC (L3D10, Biolegend), LAG-

3-FITC (17B4, Enzo) and TIGIT-PercpeF710 (MBSA43, eBioscience). Samples were acquired in a 

FACS Fortessa cytometer with FACSDiva software (BD Bioscience), and data analyzed with FlowJo 

7.9.4 software (Tree Star, Inc. Ashland, OR, USA).  

Results 

CD4+ and CD8+ RCC TIL express higher but heterogeneous levels of activation markers and 
inhibitory receptors as compared to PBL 
We characterized the phenotype of CD4+ and CD8+ TIL from 21 primary tumours, and compared 

them that of autologous-PBL (n=19). We measured the cell surface expression of lineage markers CCR7 

and CD45RA, inhibitory receptors (InR) PD-1, TIM-3, LAG-3, GITR, CTLA-4 and TIGIT and 

activation markers (AM) CD69, CD38, ICOS and CD40L.  
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CD4+ TIL displayed lower frequencies of cells with a central memory (CM) and naïve phenotype, but 

higher fractions of effector memory (EM) cells in comparison to PBL (Figure 2A). In addition, CD4+ 

TIL exhibited an enhanced expression of AM (CD69, CD40L and ICOS) and InR (PD-1, TIM-3, LAG-

3 and GITR), but not CD38, CTLA-4 or TIGIT, as compared to PBL (Figure 2A). CD69 was the 

receptor most overexpressed in CD4+ TIL (35.0±17.4), followed by PD-1 (35.0±17.4), TIM-3 

(11.0±9.7) and GITR (10.4±10.4) (Figure 2A). Interestingly, the frequencies of CD4+ TIL expressing 

CD69 (3-62%), PD-1 (1-35), TIM-3 (1-34) and GITR (0-35%) were highly heterogeneous across 

tumours. The analysis of the co-expression of AM demonstrated a substantial expansion of CD4+ TIL 

co-expressing ≥2 AM (cumulative frequency 14.4±13.9) in comparison to PBL (0.8±0.9) (Figure 2C). 

Moreover, the fraction of CD4+ TIL co-expressing ≥2 InR was also higher than in PBL (5.3±5.0 vs. 

0.3±0.4) (Figure 2C). Among CD4+CD69+ TIL, 22±10% expressed PD-1 and 10±8% TIM-3 (Figure 

2D). At the same time, 51±24% and 21±15% of the CD4+PD1+ TIL expressed CD69 or TIM-3, 

respectively (Figure 2D). The expression of CD69, PD-1 or TIM-3 was enhanced in EM (38.7±4.5, 

17.5±2.3 and 26.5±5.5) and CM populations (21.7±3.48, 16.5±2.9 and 19.4±5.3, respectively), in 

comparison to naïve  (6.3±1.9, 6.3±4.7 and 2.8±1.1) and EMRA (10.9±2.4, 4.7±1.3 and 4.2±1.0) CD4+ 

TIL. The fraction of CD4+ TIL expressing AM and InR in relation to their differentiation status is 

depicted in Figure 2E. Representative density plots of the co-expression of AM and InR in CD4+ PBL 

and TIL are depicted in Figure 2B.  
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Figure 2. CD4+ ccRCC TIL exhibit particular phenotypic characteristics compared to PBL (A) 
Percentages of CD4+ PBL (black dots) and TIL (grey dots) expressing lineage, activation or inhibitory 
receptors (mean ± SD) in ccRCC-bearing patients (n=21). (B) Density plots on the co-expression of 
CD69, CD38 and PD-1 (upper panel), in addition to PD-1, TIM-3 and LAG-3 (lower panel) on the PBL 
and TIL from 1 representative patient. The cell percentage in each quadrant is displayed. (C) Percentages 
of PBL (black box) and TIL (grey box) expressing 0, 1 or ≥ 2 activation (up to 4, left panel) or inhibitory 
(right panel) markers. (D) Frequencies (mean and SD) of PD-1+, TIM-3+ and LAG-3+ cells among the 
CD4+CD69+ TIL (top); frequency of CD69+, TIM-3+ and LAG-3+ cells among the CD4+PD-1+ 
TIL (bottom). (E) Mean values (and SEM) of activation and inhibitory receptor expression in relation to 
the differentiation status of CD4+ TIL; colour code is displayed. **P < 0.01, ***P < 0.001, ***P < 
0.0001, Mann-Whitney or Kruskal-Wallis test. 
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CD8+ TIL displayed lower frequencies of cells with a CM and naïve phenotype, but higher fractions of 

EM cells than PBL (Figure 3A). In addition, CD8+ TIL exhibited an enhanced expression of AM 

(CD69, CD38, CD40L and ICOS) and InR (PD-1, TIM-3 and LAG-3) but not GITR, in comparison to 

PBL (Figure 3A). Interestingly, we found reduced percentages of CD8+/TIGIT+ among TIL as 

compared to PBL (Figure 3A). CD69 was the receptor most expressed in CD8+ TIL compared with 

PBL (43.0±22.5), followed by CD38 (34.6±24.5), PD-1 (31.7±26.4) and TIM-3 (23.3±22.6) (Figure 3A). 

The analysis of the co-expression of AM demonstrated a substantial expansion of CD8+ TIL co-

expressing ≥2 AM (cumulative frequency 25.1±20.8) in comparison to PBL (0.3±0.3) (Figure 3C). In 

addition, the fraction of CD8+ TIL co-expressing ≥2 InR was also higher than in PBL (46.3±28.4 vs. 

10.3±8.7) (Figure 3C). Among CD8+CD69+ TIL, 35±24% expressed PD-1, 23±19% TIM-3 and 

7.2±8.5% LAG-3 (Figure 3D). Meanwhile, 57±19%, 43±26% and 9.2±8.9% of the CD8+PD1+ TIL 

expressed CD69, TIM-3 or LAG-3, respectively (Figure 3D). The expression of CD69, CD38, PD-1 or 

TIM-3 was enhanced in EM (46.6±4.7, 37.6±5.5, 38.0±5.9 and 11.4±2.1) and CM populations 

(39.0±6.8, 31.9±6.7, 26.6±6.0 and 15.6±3.9, respectively), in comparison to naïve  (7.8±2.1, 19.5±6.3, 

0.6±0.3 and 3.7±1.7) and EMRA (15.9±2.6, 22.2±5.4, 4.0±0.9 and 11.1±3.4) CD8+ TIL. The fraction 

of CD8+ TIL expressing AM and InR in relation to their differentiation status is depicted in Figure 3E. 

Representative density plots of the co-expression of AM and InR in CD8+ PBL and TIL are depicted in 

Figure 3B. 

We also analyzed the phenotype of KL. As compared to PBL, KL displayed an expansion of the CD4+ 

T cells demonstrating an EM phenotype, a contraction of the CM and Naïve compartments, a 

overexpression of AM (CD69, CD40L and ICOS) and InR (PD-1, TIM-3, LAG-3 but not GITR). No 

major differences were found compared to CD4+ TIL. Consistently, the CD8+ T KL displayed an 

expansion of the EM, a diminution of the CM and Naïve cells, an overexpression of AM (CD69 and 

CD40L) and InR (PD-1 and TIM-3). Compared to CD8+ TIL, CD8+ KL displayed a sub-expression of 

TIM-3n (data not shown).  
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Figure 3. CD8+ ccRCC TIL exhibit particular phenotypic characteristics compared to PBL. (A) 
Percentages of CD8+ PBL (black dots) and TIL (grey dots) expressing lineage, activation or inhibitory 
receptors (mean ± SD) in ccRCC-bearing patients (n=21). (B) Density plots on the co-expression of 
CD69, CD38 and PD-1 (upper panel), in addition to PD-1, TIM-3 and LAG-3 (lower panel) on the and 
TIL from 1 representative ccRCC-bearing patient. The cell percentage in each quadrant is displayed. (C) 
Percentage of PBL (black box) and TIL (grey box) expressing 0, 1 or ≥ 2 activation (up to 4, left panel) 

or inhibitory (right panel) markers. (D) Frequencies (mean and SD) of PD-1+, TIM-3+ and LAG-3+ 
cells among the CD8+CD69+ TIL (top); frequency of CD69+, TIM-3+ and LAG-3+ cells among the 
CD8+PD-1+ TIL (bottom). (E) Mean values (and SEM) of activation and inhibitory receptor 
expression in relation to the differentiation status of CD8+ TIL; colour code is displayed. *P < 0.05, **P 
< 0.01, ***P < 0.001, ***P < 0.0001,  Mann-Whitney or Kruskal-Wallis test. 
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A sub-group of ccRCC TIL exhibits an enhanced expression of inhibitory receptors 
 
To further characterize the heterogeneous phenotype of the TIL in ccRCC we used an unsupervised 

approach including the fractions CD4+ and CD8+ TIL expressing the analyzed markers to sub-classify 

the tumours. We found two clusters of TIL, named ‘Cluster A’ (n=13, 61%) and ‘Cluster B’ (n=8, 39%) 

(Figure 4A). Principal component analysis revealed that while Cluster A shared major characteristics with 

KL, the TIL from Cluster B exhibited different traits compared to KL and PBL (Figure 4A). CD4+ or 

the CD8+ TIL from Cluster A did not displayed differences on the expression of the AM or InR when 

compared to KL, and thus were named KL-like (Figure 4B). When compared to autologous PBL, KL-

like TIL displayed an enhanced expression of AM (CD69 and ICOS), a down-regulation of CD40L, and 

no significant changes in the expression of InR (data not shown).  

In contrast, CD4+ TIL from Cluster B exhibited an enhanced expression of both AM (CD69 and 

CD38) and InR (PD-1, TIM-3, CTLA-4, GITR and TIGIT) compared to KL-like tumours and KLs 

(Figure 4B and 5C). Likewise, CD8+ TIL from the same cluster displayed increased fraction of cell 

expressing AM (CD69, CD38 and ICOS) and InR (PD-1 and TIM-3) (Figure 4B and 4C). The analysis 

of the co-expression of AM and InR across the two clusters revealed that the fraction of cells co-

expressing AM and InR, in addition to those expressing InR and not AM, were augmented in Cluster B 

as compared to KL-like tumours; therefore, the former was named Inhibited-like (Figure 4D).  
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Figure 4. Two groups of TIL in ccRCC with distinct phenotypic traits (A) Unsupervised 
hierarchical clustering of the ccRCCs (right) and principal component analysis (left) based on the T cell 
phenotypes; TIL clusters (A blue and B orange squares and dots), KLs (black dots) and PBL (red dots). 
(B) Percentages of CD4+ and CD8+ T cells expressing activation or inhibitory receptors (mean ± SD) 
in KLs (black dots), Cluster A TIL (blue dots) and Cluster B TIL (orange dots) (n=21). (C) Radar chart 
displaying the percentages of CD4+ (upper panels) and CD8+ (lower panels) T cells expressing 
activation or inhibitory receptors among TIL (coloured lines), matched-KL (black lines) and PBL (red 
lines) in Cluster A (blue) and Cluster B (orange). (D) Dotplot displaying the fractions of CD8+ TIL co-
expressing activation and/or inhibitory receptors in Cluster A and B, and KLs. *P < 0.05, **P < 0.01, 
***P < 0.001, ***P < 0.0001, Mann-Whitney or Kruskal-Wallis test. 
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ccRCC shapes the phenotype of PBL 
 
To investigate whether the phenotype of circulating T lymphocytes are different in ccRCC patients and 

healthy individuals, we compared the expression on AM and InR on PBL from 19 ccRCC-bearing 

patients and 5 healthy controls (HC). PCA analysis demonstrated differences between PBL from HC 

and ccRCC-patients (Figure 5A). The detailed analysis of the CD4+ T cells phenotype demonstrated 

that PBL from ccRCC-patients display increased fractions of cells expressing AM (CD69) and InR (PD-

1, TIM-3, CTLA-4 and GITR) (Figure 5B). Similarly, in comparison to HC, CD8+ PBL from ccRCC-

patients displayed an expansion of the subpopulations expressing AM (CD69 and ICOS) and InR (PD-

1, TIM-3 and LAG-3) (Figure 5C). Interestingly, the expression of CD38 did not follow the same 

pattern, as it was enhanced in CD4+ (Figure 5B) and CD8+ (Figure 5C) PBL from HC compared to 

ccRCC-patients.  

To assess if these phenotypic traits were related to particular features of the ccRCC tumour immune 

microenvironment rather than an unspecific systemic inflammation induced by cancer, we compared the 

PBL phenotype between patients with ccRCC and other non-clear cell RCC (nccRCC n=8, 5 

oncocytomas, 2 papillary and 1 chromophobe tumour).  Interestingly, CD4+ and CD8+ PBL from 

ccRCC-patients displayed enhanced expressions of PD-1 compared to nccRCC-patients (data not 

shown).  

Finally, to assess how these phenotypic traits were modulated by the TME, we compared the phenotype 

of autologous PBL and TIL. We found that the percentages of TIL expressing AM or InR were 

positively correlated with those in PBL in the CD4+ (CD69, TIGIT, CD38 and PD-1) and CD8+ (PD-

1, GITR, TIGIT, CD40L, CD38 and ICOS) compartments (Figure 5D). Figure 5E displays the 

correlation between the fraction of T cells expressing PD-1 among PBL and TIL.  

Taking into account that ccRCC could shape the PBL’ phenotype, we next wondered if the patients 

from each Cluster displayed different PBL phenotype. Interestingly, we found that patients with 

Inhibited-like tumours exhibited increased fractions of PB CD4+/PD-1+ and CD8+/PD-1+ cells when 

compared to those with KL-like tumours; this correlation was not found for any other marker (Figure 

5F).  
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Figure 5. ccRCC shapes the phenotype of PBL. (A) Principal component analysis of the T cell 
phenotypes of PBL in HC (empty dots) and ccRCC-bearing patients (black dots). Percentages of CD4+ 
(B) and CD8+ (C) PBL expressing activation or inhibitory receptors (mean ± SD) in HC and ccRCC-
bearing patients. (D) Spearman’s R values for the correlation between the fractions of TIL and PBL 
expressing activation and inhibitory receptors. (E) Dot plot displaying the fractions of CD4+ (red dots) 
and CD8+ (grey dots) cells expressing PD-1 in the PBL (Y-axis) and TIL (X-axis) compartments; 
Spearman’s R value for each regression is displayed. (F) Dotplot displaying the fractions of CD4+ and 
CD8+ PBL expressing activation or inhibitory receptors in KL-like (blue dots) and Inhibited-like 
(orange dots) ccRCC-bearing patients. *P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.0001, Mann-
Whitney test. 
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Discussion Unpublished Results 
 

In this study we found an over-representation of the ccRCC-memory TIL expressing AM and 

InR as compared to autologous PBL. These results are consistent with previous studies reporting an 

expansion of the CD69+, HLA-DR+ (324) (200) (325) (326) (328) (104), PD-1+, TIM-3 or LAG-3+ 

(333) (104) TIL as compared to autologous PBL in RCC-patients. In addition, in this study we found 

some interesting results that extend our understanding of the T cell behavior in ccRCC.  

Regarding the ccRCC CD4+ TIL compartment, we found some unexpected phenotypic traits. 

First, we found an almost exclusive up-regulation of CD69 (early AM) and not of other AM such as 

CD38, CD40L and ICOS. The former result questions if CD4+ RCC-TIL have been activated through a 

TCR-dependent process, since multiples studies have suggested that the antigen-driven activated T cells 

express CD38 (453), while CD69 can be induced be several cytokines in the absence of TCR-activation 

(454). We also found a very limited expansion of the CD4+CD40L+ RCC TIL (2.5% of the 

population), which represents 20-fold less than CRC TIL (unpublished results). It seems possible that 

the dissociation between the expression of CD69 and CD40L in RCC CD4+ TIL reflects the lack of 

cytokines (e.g. IL-2 and IL-15) and co-stimulatory molecules (such as ICOSL) necessary for the 

induction/maintenance of the latter AM in the TME (455) (456) (457) (458). Furthermore, scarce studies 

have suggested that CD40 can be expressed by RCC tumour cells (459), and that could be a potential 

mechanism inducing the down-regulation of CD40L on CD4+TIL. This result is relevant since CD40L-

CD40 interactions are crucial for DC and B cell differentiation, and T cell priming in cancer (460) (461). 

In addition to a dysfunctional and possibly unspecific CD4+ TIL activation, we also found a significant 

expansion of the CD4+ T cells expressing PD-1, GITR, LAG-3 and ICOS, a phenotype compatible 

with Treg (462). Further studies to confirm if this particular phenotype corresponds to Treg should be 

followed. Altogether, these preliminary results suggest that RCC CD4+ TIL display features of a poorly 

coordinated, yet enhanced, activation and a possible skewing towards a Treg phenotype.  

 In the other side, the CD8+ TIL compartment displayed an enhanced co-expression of CD69, 

CD38, PD-1 and TIM-3. The simultaneous up-regulation of AM and InR in the CD8+TIL in ccRCC 

challenges the idea that the expression of PD-1 is an exclusive feature of the “exhausted” T cells. 

Although in the context of chronic antigenic stimulation PD-1 up-regulation has been indeed related to 

CD8+ T cell exhaustion (39), current evidence suggests that under other inflammatory conditions PD-1 

expression is not necessarily correlated with T-cell functional status (463); instead, it can be expressed at 

different stages of differentiation, from recently activated and highly cytotoxic (464) (465) (359) to 

exhausted and inhibited T lymphocytes (466). In this study we explored the co-expression of several InR 

(including PD-1 and TIM-3) and CD69 (an AM that is rapidly expressed and down-regulated upon T-

cell activation) by ccRCC-TIL, to get insights of the contribution of T-cell activation in the expression of 
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InR in ccRCC. We found that more than half of the EM CD8+/PD-1+ TIL expressed CD69 (similar to 

TIM-3+ TIL), suggesting that the up-regulation of this InR is probably related to CD8+ TIL activation 

(463). The functional and cytotoxic status of the CD8+/PD-1+/CD69+ is currently unknown, and 

further research is needed to address this question. In addition, it is still unclear if the enhanced 

expression of CD69 and/or PD-1 represents a TCR-dependent activation of TIL, since both molecules 

can be also induced by an inflammatory microenvironment in the absence of TCR activation (454) (354) 

(247) (248) (249). Interestingly, we found a sub-group of tumours (‘Inhibited-like’) characterized by the 

expansion of CD8+CD69−PD-1+ T cells, more advanced T stages and a trend towards higher Fuhrman 

grades, suggesting that this population could potentially represent the exhausted TIL (data not shown). 

The same group of tumours was characterized by enhanced percentages of CD4+GITR+LAG3+ TIL, 

suggesting a highly inhibitory microenvironment. Interestingly, a second sub-group of tumours was 

found, characterized this time by an expansion of the EMRA population, an enhanced expression of 

CD69 and ICOS, a lack of CD40L expression and no changes in the InR in TIL as compared to 

autologous PBL. This phenotype highly resembled that of KL, suggesting that these cells could 

represent resident memory T cells that probably were not subjected to an inhibitory microenvironment 

(467), and therefore could be associated with an efficient anti-tumour immune response.  

The virtual absence of CM CD4+ and CD8+ T cells in RCC (which is not found in other cancer 

such as CRC) and the lack of expression of CD40L in CD4+ (discussed above) and CD8+ TIL support 

a deficient TLS formation and T-cell priming in these tumours. Furthermore, recent evidence suggests 

that CD40L expression permits CD8+ T lymphocytes to execute immunologic helper functions (468), 

and the lack of expression of this AM in RCC as compared to other tumours (unpublished results) 

suggests this mechanism could be altered. The expansion of the EMRA population, particularly in the 

KL-like and KL, suggests that the kidney microenvironment could potentially induce a terminally 

differentiated phenotype on infiltrating T cell, that needs to be studied in detail.  

Another interesting finding in our study was that the fractions of TIGIT+ TIL in the tumour were 

decreased in comparison to autologous CD4+ and CD8+ PBL. This is a striking result since in other 

neoplasias (e.g. melanoma) this populations is expanded within the tumour, and it has been suggested 

that they represent the tumour-specific TIL (469). The dissociation between the expression of CD69, 

PD-1 and TIGIT is striking and highlights the necessity of studying the mechanisms of induction of 

these molecules during T-cell activation and differentiation, in order to understand the ccRCC TIL 

biology.  

Finally, a question that needs to be further addressed is the positive and strong correlation between 

the percentages of TIL and PBL expressing CD69, PD-1 and GITR. Although previous studies have 

reported that RCC patients displayed increased percentages of Treg and PD-1+ PBL (393) (363) (104) 
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(256) (389), it is still unknown known if these cells represent re-circulating TIL, or if they are induced by 

the systemic inflammatory response associated with cancer. 

In summary, our results suggest that a sub-group of RCC is characterized by the expansion of TIL 

displaying a poorly coordinated (yet enhanced) activation, a possible skewing towards a CD4+Treg 

phenotype and more advanced tumour stages. This research should follow to further characterize this 

group of tumours, and understand their origin and natural history.  
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Discussion 
 
 
 
 RCC is characterized by an inflammatory microenvironment that simultaneously promotes the 

tumour development and hampers the in situ immune response. This project aimed to characterize the 

immune microenvironment associated with a Th1 and CTL immune response and its relation with 

patients’ clinical outcome in ccRCC. This information was necessary to harmonize the gaps between 

several findings in RCC suggesting 1) a link between high densities of CD8+TIL, a Th1 gene signature 

and poor clinical outcome, 2) an altered function of the infiltrating DC and 3) a high sensitivity to anti–

PD-1 agents.  

 

Unifying the idea of increased CD8+ TIL densities and poor prognosis in ccRCC 
 

In this study we found that the increased numbers of infiltrating CD8+ TIL were associated with 

poor clinical outcome in three independent ccRCC cohorts by quantitative IHC or gene expression 

analyses. To our knowledge, this is the third study describing such an association (175) (128), and 

supporting a positive correlation between increased densities of CD8+ TIL and higher Fuhrman grades 

in RCC (330) (329).  

Previous studies have demonstrated that immune response in RCC is characterized by an 

enhanced infiltration CD8+ TIL (324) (200) (325) (326) (327) (328) (104) that, despite exhibiting an 

activated phenotype, are characterized by diminished proliferative capacities and lack of clonal expansion 

(337) (338) (326) (331) (332) (333). The current evidence suggests that the highly inflammatory RCC 

TME can be responsible of the enhanced T-cell infiltration (247) (248) (249), but simultaneously 

impedes the establishment of an effective anti-tumour immune response. Indeed, several studies have 

demonstrated that RCC tumour cells can express a wide range of molecules that attract T lymphocytes 

into the tumour (e.g. CCL4, CCL5, CXCL9-11 and CXCL16), among other immune cells (322) (319) 

(320) (321) (323). In addition, an inflammatory contexture in RCC has been linked with augmented T 

cell infiltrations; Beuselinck et al. analyzed the immune contexture of the four molecular sub-groups of 

ccRCC (ccrcc1-ccrcc4), and found that ccrcc4 tumours were associated with an inflammatory signature 

composed of genes associated with a CD8 and Th1 response, in addition to copious amounts of 

inflammatory/chemotactic/immunomodulatory transcripts (e.g. TNF, IRF family, IFNG, IL12, IL10, 

LAG3, PDCD1, PDL1 and PDL2) as well as genes associated with macrophages and blood vessels, and 
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the worst patients’ clinical outcome (470). These results were confirmed by IHC, since ccrcc4 tumours 

displayed the highest densities of CD8+ T cells (470). Furthermore, unpublished results form our group 

showed that the densities and gene-signatures of macrophages, B and T cell are positively correlated in 

RCC, which supports an inflammatory-driven recruitment of lymphocytes. Contrariwise, in CRC the 

immune profile characterized by increased infiltration of CD8+ T cells, NK cells and scarce 

macrophages, are associated with early TNM stages and longer overall survival (116); in this case where 

the densities of cytotoxic and memory T cells are negatively correlated with macrophage infiltration, a 

more controlled and orchestrated immune response is likely.  

 

Figure 6. Potential mechanisms inducing overactive but defective T cell responses in RCC. 
Cartoon depiction of the possible mechanisms inducing an enhanced, yet inhibited, CD8+ TIL 
infiltration in RCC. In the top, the expression of inflammatory and chemotactic molecules by RCC 
tumour cells could potentially recruit no tumor-specific CD8+ T cells directly from blood vessels (No. 
1). In the middle, the lack of TLS and mature DC impedes the T-cell priming and the expansion of 
tumour-specific high-affinity TIL clones (No. 2). Finally, T-cell activation under a highly 
inflammatory/inhibitory context could potentially induce the development of exhausted T cells (No. 3), 
that are associated with a poor clinical outcome.  

 

Altogether these results suggest that the inflammatory RCC microenvironment can contribute to 

the enhanced recruitment of potentially no tumor-specific T cells (Figure 6). Nevertheless, once inside 

the tumour, CD8+ TIL can acquire different phenotypes and functional orientations depending of the 

TME. Interestingly, Nakano et al. described that while high CD8+ TIL densities were associated with 
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poor prognosis in RCC, increased infiltrations with CD8+/Ki67+ double-positive cells were correlated 

with the opposite clinical outcome (175). These results support that increased infiltrations with CD8+ 

TIL can be associated with multiple contextures, and only when they are actively proliferating, they are 

associated with good clinical outcome. In the present study, we demonstrated that the prognosis 

associated with increased CD8+ TIL densities in RCC could be modulated by the phenotype and 

localization of the DC, as well as the expression of immune checkpoint by the tumour and immune cells.  

 

DC compartmentalization and orchestration of the immune response in ccRCC 
 

As previously reported in all sub-types of RCC (310) (311) (312), in this study we found two 

different populations of DC infiltrating ccRCC: the first, in the tumour core isolated from other immune 

cells [accounting for roughly 70% of the DC and named Non-TLS (NTLS-DC)]; and the second, 

embedded within the peri-tumour TLS (named TLS-DC). Previous reports have suggested that while the 

first population represents immature and probably tolerogenic DC, the second displays an activated and 

mature phenotype and is capable of priming T cells (310) (313) (314) (312).  

The quantification of NTLS-DC and TLS-DC allowed to identify tumours with different 

immune contextures but similar numbers of CD8+ TIL. Indeed, increased densities of TLS-DC 

identified a group of patients with high CD8+ TIL densities and low risk of recurrence and death. This 

finding suggests that the absence of TLS and mature DC impedes the intra-tumour T-cell priming and 

the development of an efficient immune response (33) (Figure 6). In favour of this hypothesis, we found 

that TLS-DC express high quantities of HLA-DR and CD83 and colocalize with PNAd+ vessels (HEV) 

suggesting they can indeed participate in the in situ T-cell education. Contrary to TLS-DC, NTLS-DC 

express low quantities of HLA-DR and CD83 and do not colocalize with PNAd+ vessels (HEV), 

suggesting they cannot participate in T-cell priming. Its seems feasible that NTLS-DC accumulation in 

RCC could be related to an inflammatory milieu given that previous reports described that the presence 

of inflammatory cytokines such as TNF, TGF-β, IL-6, IL-8 and VEGF can both recruit and induce 

tolerogenic DC in RCC (315) (313) (316) (312) (317). In this case, and as for CD8+ TIL, enhanced 

NTLS-DC infiltrations might denote an inflammatory milieu instead of a tumour-specific immune 

response. Previous studies have demonstrated that particular populations of RCC-infiltrating DC can 

express pro-tumour and CTL-inhibiting molecules (312). To get insights in the role of NTLS-DC in 

RCC development and spreading, it would be interesting to assess the functional and cytokine profile of 

the NTLS-DC as compared to TLS-DC. A cartoon depicting the phenotype, potential molecules 

associated with their development and clinical impact of the DC populations in RCC is illustrated in 

Figure 7.  
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As previously mentioned, HEV and conventional vessels can help discriminating between TLS-

DC and NTLS-DC. Compared to conventional blood vessels, HEV are more appropriate in T-cell 

recruitment due to the abundant expression of ICAM1, highly glycosylated/sulphated sialomucins and 

chemokines such as CCL19, CCL21, CXCL12 and CXCL13 (471). In tumours, there seem to be a 

symbiotic interaction between mature DC and HEV: in the one hand, HEV induce the recruitment and 

accumulation of mature DC through the secretion of diverse chemokine including CXCL13, CCL19 and 

CCL21; in the other hand, mature DC help maintaining the HEV phenotype (probably through 

mechanisms dependent of LTa) (472). Both type of cells efficiently induce the recruitment of naïve 

lymphocytes into the tumor.  

 

Figure 7. DC compartmentalization, T-cell priming and prognosis in RCC. Cartoon depiction of 
the two major types of DC in ccRCC. On the left, the expression of inflammatory molecules can induce 
the stromal accumulation of immature DC, characterized the production of pro-tumoural molecules and 
poorly effective T-cell priming capacities. On the right, the presence of CXCL13, CCL19 and CCL21 
can potentially promote the development of DC within TLS, exhibiting a mature phenotype and capable 
of inducing T-cell priming.  
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Immune checkpoints, CD8+ T cells and prognosis in ccRCC 
 
 In view of the elevated sensitivity of RCC to PD-1 blocking agents (207) (208), we also 

wondered how does the expression of immune checkpoints by TIL and tumour cells could modulate the 

prognosis associated with CD8+ lymphocyte infiltration in RCC. We demonstrated that RCC CD8+ 

TIL often co-express PD-1 and LAG-3, and that their expression was associated with poor clinical 

outcome. Interestingly, patients whose tumours exhibited both high densities of PD-1+ lymphocytes 

and PD-L1+ and/or PD-L2+ tumour cells had the worst prognosis. In addition, we found a 

dissociation between the infiltration with TLS-DC and the expression immune checkpoints.  

Previous studies have already demonstrated an association between the enhanced expressions of 

PD-1 or its ligands in RCC and patients’ poor clinical outcome (366) (367) (368) (361) (362). In addition 

to supporting these findings, this study increases our understanding of the mechanisms inhibiting the T 

cell responses in ccRCC in several ways:  

1. First, in 3 independent cohorts, we demonstrated through gene expression analysis, IHC and FC 

that relevant fractions of RCC CD8+ TIL express inhibitory receptors. Nevertheless, our data 

suggest that the sole expression of PD-1 on T cells is probably not sufficient to inhibit their anti-

tumour activity; instead, an inhibitory microenvironment characterized by the expression of PD-

1 ligands must be present for this purpose.  

2. Second, the densities of TLS-DC are higher in tumours that lack tumour expression of PD-1 

ligands. This result suggests that the expression of PD-L1 and L2 could have a common origin 

with the dysfunctional TLS development.   

3. And third, our results suggest a potential role of PD-L2 and LAG-3 expression in the inhibition 

of CD8+ TIL in ccRCC.  

 

 The mechanisms inducing the expression of PD-1 in the RCC TIL are poorly understood. While 

some works in melanoma suggest PD-1 is expressed in TIL upon TCR activation (204) (357), other 

studies suggest that its expression could be induced by the interaction of γ-chain cytokines or IFN-α 

with their receptors on T cells (354) (355). Interestingly, previous studies have demonstrated that the 

gene expression of PD-1, TGFB1-3, IL10 and TNF (and not IL-2 or IL-4) are highly correlated in 

ccRCC (470). Whether the expression of PD-1 in RCC TIL represents the activation of high-affinity 

tumour-specific lymphocytes within an inhibitory milieu, or the indirect action of an inflammatory 

microenvironment on T cells in the context of low-affinity TCR interactions, remains to be determined 

(Figure 6).  
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As for CD8+ TIL, increased densities of PD-1+ TIL can also be accompanied by different 

immune contextures in RCC. The group of tumours characterized by a high expression of PD-1 ligands 

in the absence of fully functional mature DC is associated with poor prognosis. A second group, 

displaying low or nonexistent expression of PD-1 ligands and abundant mature TLS-DC, exhibited a 

good clinical outcome. In addition to the phenotype and localisation of DC within the TME, the 

expression of PD-1 ligands in the TME seems to modulate the prognostic significance of PD-1+ and 

CD8+ cells in RCC.  

We did not investigate in detail the mechanisms responsible for the induction of the expression 

of PD-L1 and PD-L2 in RCC. Nevertheless, the strong correlation between the expression IFNG and 

PD-L2 genes suggests a potential mechanism of PD-L2 up-regulation in cancer that, to the best of our 

knowledge, has only be described in immune cells (473). The weaker correlation between IFNG and 

PD-L1 transcripts confirms that the latter molecule could be induced by other mechanisms, such as an 

hypoxic microenvironment (320) (372) (373). In addition, we did not investigated the expression of PD-

1 ligands in the myeloid cell compartment, and this is a question that need to be addressed in the future.  

Finally, our results suggest PD-L2 could play an important role in the inhibition of CTL 

responses, but this finding needs to be confirmed in larger cohorts. A couple of observations from 

clinical trials support PD-L2 could be expressed in RCC: on the one hand, the response rates among 

patients with advanced RCC goes from 10% when using drugs inhibiting just PD-L1 (208) to 25% when 

inhibiting the PD-1 receptor (207); and, on the other hand, although very few, there are PD-L1 negative 

tumours that respond to anti-PD-1 treatment (207). To date, only one additional study has assessed the 

expression of PD-L2 in RCC, and found that its expression was limited to 1 out of 6 tumours (213). In 

view of these results, efforts should be made in order to precisely characterize the expression of PD-L2 

in RCC, and confirm its role in the inhibition of CTL responses.  

 

Towards the identification of the tumours with a suppressive microenvironment in ccRCC 
 

All these results suggest that a sub-group of ccRCC is characterized by an enhanced and 

probably inflammatory-driven immune response, which is inefficient due to the expression of inhibitory 

molecules in the TME and/or the deficient orchestration of T cell priming. Our analysis in the 

retrospective cohort demonstrated that approximately 20-25% of primary and metastatic tumours 

display these characteristics. Consistently, the molecular sub-group displaying a similar immune profile 

(ccrcc4) represents 20% of all tumours (470). In addition, preliminary results on the ccRCC TIL 

phenotype suggest that a subgroup of tumours (representing roughly 35-40%) shares many of these 

features, including the over-expression of immune checkpoints, higher CD8+ TIL densities by IHC, 
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more advanced tumour and nuclear grades. Interestingly, a recent study suggested that an increased 

tumor cell expression of PD-L1 and high counts of CD8-positive T cells were associated with shorter 

survival in patients with metastatic RCC receiving VEGF-targeted agents (474). The potential three 

different immune contextures one can find in ccRCC are depicted in Figure 8.  

 

 
 

Figure 8. ccRCC immune contexture scenarios and personalized medicine for immunotherapy.  
Cartoon depiction of the major immune contexture scenarios for ccRCC. A strong immune response 
(left) can be induced by the presence of CX3CL1, CXCL9 and CXCL10 and is characterized by 
Th1/Cytotoxic T cells infiltration  and the presence of Tertiary Lymphoid Structures (TLS), while 
associated with a highest overall survival. In the other extreme, those tumours associated with high 
expression of IL-6, VEGF-A and STAT-3 induce a rather inflammatory and pro-angiogenic 
environment (right) associated with poor overall survival. Knowing the possible scenarios of the 
immune contexture allows to use the optimal immunotherapy treatment in each case, to lastly induce an 
appropriate immune response in the tumour microenvironment (475).  

 

 

Although preliminary, these results provide important clues to identify the sub-group of ccRCC 

characterized by an inflammatory and inhibited immune microenvironment, which can potentially help 

in predicting the patients’ clinical outcome and choosing the most suitable therapy. Interestingly, the 
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phase 1 studies on the effect of Anti-PD-1 treatment (nivolumab) on patients with advanced RCC have 

shown an objective response of approximately 30% (207). It seems feasible that the group of patients 

responding to checkpoint blockade is relevantly enriched in tumours displaying this inhibitory immune 

profile, and further efforts should be made to validate their clinical utility in larger and independent 

cohorts. In agreement with this hypothesis, preliminary data from clinical trials of PD-1 blockade in 

other cancers suggest that the presence of: 1) infiltrating CD8+ or PD-1+ T cells (212) and/or 2) PD-

L1+ tumour (213) (207) (210) or immune cells (211) (214), are the more sensitive parameters to predict 

the patients’ response to treatment (215).  

 Interestingly, the patients whose tumours exhibited an inhibitory immune profile also carried 

higher percentages of PD-1+ T cell in their PB. These preliminary results suggest that the 

immunophenotypic profile of PBL could be a potential tool to identify the patients with an inhibited 

tumour immune microenvironment. Consistently with our results, one study previously showed that the 

fractions of PD-1+ T cells are expanded in the PB of patients with RCC compared to HC, difference 

that is lost after tumourectomy (363). The analysis of the phenotype of other circulating immune cells in 

RCC-bearing patients has suggested that the tumour influences the circulating monocytes (293), and 

contribute to the expansion of CD4+ PB T cells with a Treg (104) (256) (389) or Th2 orientation (383). 

The expansion of all the aforementioned immune populations has been related with advanced tumours 

stages and poor prognosis.  

In addition, the origin of these circulating immune cells is poorly understood. In our study, 

although there is an expansion PBL expressing PD-1 in patients whose tumours present an inhibitory 

profile, the PD-1+ lymphocytes from PB and tumour TI display a different phenotype. It is likely that 

circulating PD-1+ cells could represent recirculating TIL, that under the influence of a different 

microenvironment, change their phenotype. These findings need further research.  

Revisiting the immunoscore 
 

The 'Immunoscore' (technique to quantify the in situ CD8+ and CD3+ cell infiltrate in cancer) 

has shown promising results in the prediction of the patients’ clinical outcome in several cancers (180). 

Nevertheless, our results invites to revise the general dogma that CD8+ T-cell infiltration is associated 

with a diminished risk of progression and death across all tumours (26). In this study we found that 

increased CD8+ TIL densities can be accompanied by strikingly different immune contextures, notably a 

bona fide or an inhibitory immune profile. We propose that the latter is overrepresented in RCC as 

compared to other tumours, biasing the prognostic significance of CD8+ TIL when they are analyzed 

out of their context. Interestingly, a similar picture has been described in NSCLC, where high CD8+ T 

cell infiltration accompanied with low density of TLS-DC are associated with patients’ poor prognosis 
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(167). In addition, other studies have also suggested that CTL or Th1-signatures could be associated 

with poor outcome in Hodgkin lymphoma (476) (174), also a pathology highly sensitive to anti-PD-1 

treatments (210).  

These data provide evidence supporting the complexity of the immune contextures in RCC, and 

the difficulties behind its one-dimensional analysis. The inclusion of more adapted parameters should be 

considered in the current routine analysis of the tumour immune contexture, comprising DC infiltration, 

the characterization of TLS and the expression of immune checkpoints, to correctly predict patients’ 

clinical outcome and response to immunotherapies.  
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Conclusions 
 

 

This work has allowed us to conclude that: 

I. Increased densities of CD8+ TIL are associated with patients’ poor clinical outcome in primary 

and metastatic ccRCC.  

II. The phenotype and localization of DC, as well as the expression of immune checkpoints (PD-1, 

LAG-3, PD-L1 and PD-L2) in the tumour microenvironment, modulate the prognosis 

associated with increased infiltrations with CD8+ TIL in ccRCC: 

a. While intra-tumour immature DC (NTLS-DC) were associated with poor clinical 

outcome, high densities of mature DC within lymphoid aggregates (TLS-DC) identify a 

group of patients with prolonged survival and high CD8+ TIL densities. 

b. Patients whose tumours exhibited both high densities of PD-1+ TIL and PD-L1+ 

and/or PD-L2+ tumour cells have the worst prognosis. 

III. Three main immune contextures with different clinical outcomes were found in primary ccRCC: 

a. The first, characterized by low densities of TIL and moderated expression of inhibition 

or activation molecules, was associated with early tumour stages and good clinical 

outcome.   

b. The second, characterized by increased numbers of CD8+ TIL, high densities of TLS-

DC and no expression of PD-1 ligands on tumour cells, was associated with early 

tumour stages and good clinical outcome.   

c. The third, characterized by increased numbers of CD8+ TIL, but low quantities of TLS-

DC and enhanced expression of immune checkpoints in TIL and PD-1 ligands on 

tumour cells, was associated with advanced tumour stages and poor clinical outcome.   
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Perspectives and Limitations of the Study 
 

 

This study is descriptive and provides modest insights into the mechanisms behind the inhibition of 

CTL response in ccRCC. Thus, several questions remind open and need to be further addressed.  

 

First, regarding the impact of TLS-DC infiltration in CD8+ T cell education in RCC: 

1. Is the functional and proliferative capacity of CD8+ TIL associated with the presence and 

phenotype of DC in RCC? Furthermore, does the clonality of T cells change in function of the 

infiltration with TLS-DC and an orchestrated immune response? 

 

Second, although we proposed diverse mechanisms triggering the compartmentalization of DC in RCC, 

there is a necessity to confirm: 

2. Which are the main mediators inducing an orchestrated immune response and the differentiation 

of DC into TLS-DC or NTLS-DC in RCC? 

3. And, which is the phenotype of NTLS-DC and its potential pro-tumour or inhibitory role in 

RCC.  

 

Third, recent evidence suggests that the expression of PD-1 in TIL can identify the tumour-specific 

lymphocytes in melanoma. This concept is consistent with the fact that the block of PD-1 receptor 

induces strong anti-tumour immune response in a sub-set of patients with RCC. Nevertheless, it is 

difficult to understand how PD-1+ cell could be associated with poor clinical outcome in RCC. This 

study makes evident the need to know:  

4. Which are the signals inducing an enhanced expression of PD-1 in TIL and PD-1 ligands in 

tumour cells, particularly PD-L2, and  

5. Whether the expression of PD-1 in RCC TIL represents the activation of high-affinity tumour-

specific lymphocytes within an inhibitory milieu, or the direct action of an inflammatory 

microenvironment on T cells in the context of low-affinity TCR interactions. 

 

Recent evidence also suggests that the expression of PD-1 ligands by myeloid-derived cells could play a 

central role in the inhibition of the CTL response in tumours. Therefore, it is relevant to determine:  
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6. Which is the role of the expression of PD-1 ligands by immune cells in the inhibition of the CTL 

responses in RCC?  

 

Finally, we characterized a group of ccRCC with a highly inhibited immune profile. We consider highly 

relevant to determine: 

7. The potential use of this immune profile as a potential biomarker for predicting the response to 

checkpoint blockade, particularly to anti-PD-1 treatments. 
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