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Men nearly always follow the tracks
made by others and proceed in their
affairs by imitation.
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ABSTRACT

In this work three different models for describing some socio-economic
scenarios are presented. First, a cross-diffusion system modelling the
information herding of individuals has been studied; the second model
describes the dynamics of agents in a large market depending on the
estimated asset value of a product and the rationality of the agents
using a kinetic inhomogeneous Boltzmann-type equation. The third
model describes the influence of knowledge and wealth in a society
where the agents interact with the others through binary interactions
via a Boltzmann equation.

The entropy structure of the cross-diffusion system gives us the
global-in-time existence of weak solutions and the exponential decay
to the constant steady state. Moreover, we investigate local bifurcations
from homogeneous steady states analytically and this analysis shows
that generically there is a gap in the parameter regime between the
entropy approach validity and the first local bifurcation.
In the second model, a nonlinear nonlocal Fokker-Planck equation

with anisotropic diffusion is derived. The existence of global-in-time
weak solutions to the Fokker-Planck initial-boundary-value problem is
proved using the entropy approach.

For the third model we prove the existence of weak solutions for the
Boltzmann equation.
For each model studied several numerical simulations has been

implemented: for the cross-diffusion system we used numerical con-
tinuation methods to track the bifurcating non-homogeneous steady
states globally and to determine non-trivial herding solutions. We find
that the main boundaries in the parameter regime are given by the first
local bifurcation point, the degeneracy of the diffusion matrix and a
certain entropy decay validity condition.
In the second model, numerical simulations for the Boltzmann

equationhighlight the importance of the reliability of public information
in the formation of bubbles and crashes. The use of Bollinger bands in
the simulations shows how herding may lead to strong trends with low
volatility of the asset prices, but eventually also to abrupt corrections.

In the last model we implement the Boltzmann equation. The kinetic
code shows the possibility of cluster formation, using certain specific
threshold.

vii



viii



ZUSAMMENFASSUNG

In dieser Arbeit werden drei verschiedene Modelle zur Beschreibung
einiger sozioökonomischer Szenarien vorgestellt. Zunächst wird ein
Kreuzdiffusionssystem untersucht, welches das Herdenverhalten von
Individuen modelliert. Das zweite Modell beschreibt die Dynamik von
Agenten in einem großen Markt in Abhängigkeit von dem geschätzten
Vermögenswert eines Produkts und der Rationalität der Agenten. Dies
wird mit einer kinetischen inhomogenen Boltzmann-Gleichung mod-
elliert. Das dritte Modell beschreibt den Einfluss von Wissen und
Wohlstand in einer Gesellschaft, in der die Agenten miteinander durch
binäre Wechselwirkungen gemäß einer Boltzmann-Gleichung inter-
agieren.

Die Entropiestruktur des Kreuzdiffusionssystems liefert die Existenz
von zeitlich globalen schwachen Lösungen und den exponentiellen
Abfall zu einem konstanten stationären Zustand. Darüber hinaus
untersuchen wir analytisch lokale Abzweigungen von homogenen
stationären Zuständen. Diese Analyse zeigt, dass im Allgemeinen
eine Lücke existiert zwischen jenem Parameterberich, in dem der
Entropieansatz gültig ist, und jenem, in dem die erste lokale Bifurkation
liegt.

Im zweitenModell wird eine nicht lineare nicht lokale Fokker-Planck-
Gleichung mit anisotroper Diffusion hergeleitet. Die Existenz von
zeitlich globalen schwachen Lösungen für das Fokker-Planck-Anfangs-
Randwertproblem wird mit Hilfe eines Entropieansatzes bewiesen.
Für das dritte Modell beweisen wir die Existenz von Lösungen für

die Boltzmann-Gleichung.
Für alle Modelle wurden verschiedene numerische Verfahren imple-

mentiert: für das Kreuzdiffusionssystem verwenden wir numerische
Fortsetzungsmethoden, um bifurkierende inhomogene stationäre Zu-
stände global zu verfolgen, und um nicht triviale Herdenlösungen zu
bestimmen. Wir haben festgestellt, dass die Hauptgrenzen im Paramet-
erbereich durch den ersten lokalen Bifurkationspunkt, die Entartung
der Diffusionsmatrix und eine gewisse Gültigkeitsbedingung für den
Abfall der Entropie gegeben sind.

ImzweitenModell stellennumerische Simulationen fürdieBoltzmann-
Gleichung die Bedeutung der Zuverlässigkeit der öffentlichen Informa-
tion bei der Bildung von Spekulationsblasen und Crashs heraus. Die
Verwendung von Bollinger-Bändern in den Simulationen zeigt, wie
Herdenverhalten zu starken Preistrends führen kann, aber letztendlich
auch zu abrupten Korrekturen.
Im letzten Modell implementieren wir die Boltzmann-Gleichung.

Der kinetische Code zeigt die Möglichkeit der Clusterbildung unter
Verwendung von bestimmten Schwellenwerten für Wissen und Wohl-
stand.
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INTRODUCTION 1
Socio-economics is a relatively new science which studies the rela-
tionship between the social processes and the economy [BM00, DY00,
MS00, Lux98]. It analyses in particular the influence of specific social
relationship on the formation of groups, economic systems and institu-
tions [Gra85]. It involves different fields such as sociology, economics,
psychology which cooperate in order to understand better, describe
and explain the social, economic and political reality.

Due to this wide range of concepts and methods, there is no unique
approach to this science and there are several options to investigate the
interactions between the processes involved.

Together with the socio-economics, another field of science inspired
this work. In the early eighties Galam, Gefen and Shapir introduced
the term socio-physics for describing the idea of using the tools of
statistical mechanics to model the social behaviour [GGS82, Wei71].
Socio-physics attempts to address a wide range of problems such as
social networks, population dynamics, voting, formation of coalitions,
opinion dynamics.
This work attempts to merge socio-economics and socio-physics

with a model of several socio-economical scenarios. It consists in
describing and modelling from a mathematical point of view some
socio-economical scenarios using kinetic and diffusion equations.

Since the social behaviour of a community shows averyhighdegree of
complexity and does not represent a physical system, any mathematical
model would introduce some limitations and would not be an exact
reproduction of the reality.
Nevertheless, a mathematical model also allows studying subjects

apparently away from mathematics such as the sociological dynamics.
This work consists of three mathematical models, describing the

interactions between individuals in amarket and addresses twodifferent
scenarios: the herding in financial market and the wealth distribution
in a closed society.

1.1 the two scenarios: herding and wealth distribution

The first scenario described in this work is the herding in financial
markets.

Herding in economic markets is characterized by a homogenization
of the actions of the market participants, which behave at a certain
time in the same way. Herding may lead to strong trends with low
volatility of asset prices, but eventually also to abrupt corrections,
so it promotes the occurrence of bubbles and crashes. Numerous
socio-economic papers [Ban92, Bru01, DJH+09, RRF09, Roo06] and
research in biological sciences [ARNn+05, Ham71] show that herding
interactions play a crucial role in social scenarios. Herding behaviour is
often irrational because people are not basing their decision on objective
criteria. It is driven by emotions and usually occurs because of the
social pressure of conformity and the belief that it is unlikely that a

1



2 introduction

large number of people could be wrong. A market participant might
follow the herd in spite of another opinion.
We can observe herding not only in the financial market but also in

every day life situations and in panic situations.
One problem in describing herding (or other human behaviour) arises

from the fact that the behaviour of every individual in a group has
local interactions without centralized coordination, but the global effect
can be observed on a macro scale, when we observe all the population.
A full understanding of herding behaviour would need the ability to
understand both levels: the microscopical one which considers each
individual of the crowd separately; and the macroscopic level which
deals with all the group of individual, i.e. the herd. The first case
usually represents the individual as a particle; the latter one is often
represented with a density function depending (continuously) on space
and time [BMP11b].

There are many historical examples of herding behaviour in financial
and commodity markets, from the so-called Dutch tulip bulb mania in
1637 to the recent credit crunch in the US housing market in 2007. In
the last two decades, herding behaviour started to play an increasing
role in scientific research although this phenomenon has been studied
from a variety of perspectives and at distinct levels of analysis since the
XVIII century. Indeed, herding can be seen from a psychological and
sociological point of view, but it has also application in medicine and
political science.
In 1759 Adam Smith in “The Theory of Moral sentiments” [Smi59]

described herding as motor mimicry. More than 100 years later, in 1895,
Gustave Le Bon introduced the idea of herding as a form of irrational
and unconscious social contagion [LB95]. Veblen, American economist
and sociologist, studied sudden shifts in consumers behaviour and in
his book “The Theory of the Leisure Class” (1899) he introduced the
idea of “conspicuous consumption” in which people engage in actions
by making comparison with people who are similar but also slightly
better with the goal to express their strength better. But it was only
in 1908 that the doctor Wilfred Trotter introduced the phrase “herd
behaviour” [Tro06] as an explanatory principle of crowd psychology
starting from the work of Le Bon. In 1935 John Maynard Keynes,
an English economist, described herding as a contagious “animal
spirit” which moves the market [Key36]. For decades the study of this
behaviour in social psychology and sociology had a broad description
and analysis, but it is in the analysis of the stockmarket that herding has
receivedmost of the recent attention in the social sciences. Everett Roger
introduced two research directions [Rog03]: one related to diffusion
of innovations and one related to social network analysis. He defined
diffusion as “the process by which an innovation is communicated
through certain channels over time among the members of a social
system”. His work found application not only in economics but also in
psychology and sociology.

In 1992, two papers have been published which showed that people
could follow others even if private information and motivations sug-
gested doing otherwise.The first work by Banerjee [Ban92] describes a
situation where the individuals focus more on the behaviour of the oth-
ers than on their own information, and another work by Bikhchandani,
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Hirshleifer and Welch [BHW92], which used the concept of “informa-
tion cascades”. Abrahamson and Rosenkopf also took into account the
fact that usually the individuals don’t have equal access to the same
information [AR97], which implies that the position of the individuals
in a social network influences the strength of pressure on others to
follow. All these models were based on rational actors. This is what
Veblen called a „hedonistic-associational psychology“ and a „hedonistic
calculus“ in which „human conduct is conceived of and interpreted as
a rational response to the exigencies of the situation in which mankind
is placed“ [Veb09].

Psychologists and economists agree on the definition of herding
but there are theoretical and methodological differences. From the
theoretical point of view there are twomain issues [Bad10]: economists’
approach focuses on the existence of rational actors while psychologists
consider a bounded rationality [Sim55]. Psychologists assume that
human limitations lead people to satisfying solutions instead to optimal
solution and the simpler solution relies on phrases like “the majority is
always right”. A second point is the existence of complete information
which would always allow individuals to make rational and optimal
decisions. But, as Abrahamson and Rosenkopf showed, herding is
caused by incomplete and ambiguous information [AR93, AR97]. Also
at the methodology level there are different approaches: economics
usually focuses on questions like „how much“ (how to deal with herd
behaviour, how much to benefit from it), while psychology is more
interested in questions like „why“ and „when“ (why and when herding
occurs).

The second scenario addressed in this work is the wealth distribution.
As for the herding description, there is the microscopic level and the
macroscopic one: each individual owns a certain wealth but it is more
interesting to focus on the distribution of the money in the whole
society.
The so-called socio-physics has been used for analysing this phe-

nomenon.
The term “Social physics” was introduced by Quetelet in 1835 in his

book “Sur l’homme et le développement de ses facultés, ou Essai de
physique sociale” (in English “Treatise on Man”) where he described
the social physics concept of the “average man” who is characterized by
themean values ofmeasured variables that follow a normal distribution.
His goal was to understand the statistical laws behind the phenomena
such as crime rates, marriage rates or suicide rates. The term “social
physics”was also used fromComte, a French political philosopher, who,
in 1842, defined it as the study of the laws of society. Only afterwards
this term became sociology due to his disagreement with Quetelet’s
collection of statistics.
Later on, Maxwell developed the kinetic theory of gases and in

1876 he claimed that the experiences of “social physicists” gave him
confidence that the statistical approach could extract order from the
microscopic chaos. So physics became statistical and as Boltzmann said
“Molecules are like many individuals, having the most various states
of motion, and the properties of gases only remain unaltered because
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the number of these molecules which on average have a given state of
motion is constant” [Bol09].

But the step from microscopic to macroscopic level has been done by
two physicists W. Lenz and E. Ising and an economist, T. Schelling. The
two physicists simulated different phenomena with the Ising model
which had in common the presence of individual components which
were interacting in pairs producing collective effects, while Schelling
showed that simple agent rules can create complex global patterns or
emergent behaviour [Sch71].
As already pointed out the access to the information plays a funda-

mental role and it should be taken into account. It is complicated to
model the way in which individuals learn, however various aspects of
learning has been studied in these last years [BdO04, dFC06, GAEM+11,
LMM13].

Thismicro-macro approach has been employed both in Chapter 3 and
Chapter 4 where we respectively studied the herding behaviour and the
wealth distribution starting from binary collision between individuals.
In particular, in Chapter 3 a variable which represents the rationality
of the individuals has been taken into account, while in Chapter 4 we
have considered a knowledge variable.

1.2 models for herding and wealth distribution

The first question is “how could we model herding?”. We consider
two different herding models: a cross-diffusion system (Chapter 2) and
a kinetic model (Chapter 3). In Chapter 2 we tried to obtain herding
non-constant solutions; in Chapter 3 we tried to address and answer to
the question “is it possible to obtain a model that would allow us to
prevent herding?”. In Chapter 4 we tried to reproduce mathematically
and simulate the reciprocal influence between knowledge and wealth.

In Chapter 2 we study the following cross-diffusion system:

∂t u1 � div(∇u1 − g(u1)∇u2), (1.1)
∂t u2 � div(δ∇u1 + κ∇u2) + f (u1) − αu2 , (1.2)

where u1 � u1(t , x), u2 � u2(t , x) for (t , x) ∈ [0, T) ×Ω, T > 0 is the
final time,Ω ⊂ Rd (d ≥ 1) is a bounded domainwith sufficiently smooth
boundary,∇ denotes the gradient, div � ∇· is the divergence and ∂t �

∂
∂t

denotes the partial derivative with respect to time. The equations are
supplemented by no-flux boundary conditions and suitable initial
conditions

(∇u1 − g(u1)∇u2) · ν � 0 on ∂Ω, t > 0,
(δ∇u1 + κ∇u2) · ν � 0 on ∂Ω, t > 0,

u1(0, x) � u0
1 , in Ω,

u2(0, x) � u0
2 in Ω

(1.3)

where ν denotes the outer unit normal vector to ∂Ω. The function
u1(x , t) ∈ [0, 1] represents the density of individuals with information
variable x ∈ Ω at time t ≥ 0, and u2(x , t) is an influence function which
modifies the information state of the individuals and possibly may lead
to a herding (or aggregation) behaviour of individuals. The influence
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function acts through the term g(u1)∇u2 in (1.1). The non-negative
bounded function g(u1) is assumed to vanish only at u1 � 0 and u1 � 1,
which provides the bound 0 ≤ u1 ≤ 1 if 0 ≤ u1(0, x) ≤ 1. In particular,
we assume that the influence becomesweak if the number of individuals
at fixed x ∈ Ω is very low or close to the maximal value u1 � 1, i.e.
g(0) � 0 and g(1) � 0, which may enhance herding behaviour. The
influence function is assumed to be modified by diffusive effects also
due to the random behaviour of the density of the individuals with
parameter δ > 0, by the non-negative source term f (u1), relaxation
with time with rate α > 0, and diffusion with coefficient κ > 0.

If δ � 0, equations (1.1)-(1.2) can be interpreted as a nonlinear variant
of the chemotaxis Patlak-Keller-Segel model [KS70], where the function
u2 corresponds to the concentration of the chemoattractant. The model
with nonlinear mobility g(u1) was first analysed by Hillan and Painter
[HP02], even for more general mobilities of the type u1β(u1)χ(u2).
Generally, the mobility g(u1) � u1(1 − u1) models finite-size exclusion
and prevents blow-up phenomena [Wrz04], which are known in the
original Keller-Segelmodel. The convergence to equilibriumwas shown
in [JZ09]. Suchmodelswere also employed to describe evolution of large
human crowds driven by the dynamic field u2 [BMP11a]. Although of
high interest in the mathematical community, we will not analyse this
case but assume that δ , 0.
System (1.1)-(1.2) represents one possible model to describe the

dynamics of information herding in a macroscopic setting. There exist
other approaches tomodel herding behaviour, for instance using kinetic
equations (as in [DL14] and in Chapter 3) or agent-based models [LS08].
The focus in this model is to understand the influence of the parameters
δ and α on the solution behaviour from a mathematical viewpoint, i.e.,
to investigate the interplay between cross-diffusion and damping.
Equations (1.1)-(1.2) with δ > 0 can be derived from an interacting

“particle” system modelled by stochastic differential equations, at least
in the case g(u1) � const. (see [GS14]). One expects that this derivation
can be extended to the case of nonconstant g(u1) but we do not discuss
this derivation here. The above system with g(u1) � u1 was analysed
in [HJ11] in the Keller-Segel context. The additional cross diffusion
with δ > 0 in (1.2) was motivated by the fact that it prevents the blow
up of the solutions in two space dimensions, even for large initial
densities and for arbitrarily small values of δ > 0. The motivation to
introduce this term in ourmodel is different since the nonlinearmobility
g(u1) allows us to conclude that u1 ∈ [0, 1], thus preventing blow up
without taking into account the cross-diffusion term δ∆u1. Our aim is
to investigate the behaviour of the solutions to (1.1)-(1.2) for all values
for δ, thus allowing for destabilizing cross-diffusion parameters δ < 0.
One starting point to investigate the dynamics is to consider the

functional structure of the equation. In this context entropy methods
are a possible tool [Jün15]. The entropy structure can frequently be used
to establish the existence of (weak) solutions. Furthermore, it is helpful
for a quantitative analysis of the large-time behaviour of solutions
for certain reaction-diffusion systems; see, e.g., [DF07]. The method
quantifies the decay of a certain functional with respect to a steady state.
An advantage is that the entropy approach can work globally, even for
initial conditions far away from steady states. Moreover, the entropy
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structure may be formulated in the variational framework of gradient
flows which allows one to analyse the geodesic convexity of their
solutions [LM13, ZM15]. However, this global view indicates already
that we may not expect that the approach is valid for all parameters in
general nonlinear systems. Indeed, in many situations, global methods
onlywork for a certain range of parameters occurring in the system. The
question is what happens for parameter values outside the admissible
parameter range and near the validity boundary.
One natural conjecture is that upon variation of a single parameter,

there exists a single critical parameter value associated to a first local
bifurcation point δb beyond which a global functional approach does
not extend. In particular, the homogeneous steady state upon which
the entropy is built, could lose stability and new solution branches may
appear in parameter space. Another possibility is that global bifurcation
branches in parameter space are an obstruction. In our context, the
generic situation is different from the two natural conjectures.
In the context of (1.1)-(1.2), the main distinguished parameter we are

interested in is δ. Here we shall state our results on an informal level.
Carrying out the existence of weak solutions and the global decay to
homogeneous steady states u∗ � (u∗1 , u

∗

2) via an entropy approach, we
find the following results:

(M1) Using the entropy approach, one may prove the existence of weak
solutions to (1.1)-(1.2) in certain parameter regimes.

(M2) The global entropy decay to equilibrium does not extend to
arbitrary negative δ. Suppose we fix all other parameters, then
there exists a critical δe (to be defined later) such that global decay
occurs only for δ > δe (δ , 0).

(M3) If we consider the limit α → +∞ then we can extend the global
decay up to

δ∗ :� −κ/γ < 0, where γ :� max
v∈[0,1]

g(v),

i.e., global exponential decay to a steady state occurs for all
δ > δ∗(δ , 0) if α is large enough.

(M4) In the limit α → 0, we find that δe → +∞. In particular, the
entropy method breaks down in this limiting regime.

We stress that the results for the global decay (M2)-(M4) may not
be sharp, in the sense that one could potentially improve the validity
boundary δe. Interestingly, we shall prove that (M3) is indeed sharp
for certain steady states, i.e., no improvement is possible in this limit.
The proofs of (M1)-(M4) provide a number of technical challenges,
which are discussed in more detail in Section 2.1.1 and Section 2.2. We
also note that the entropy method definitely does not extend to any
negative δ. It is clear that a global decay to steady state is impossible if
bifurcating non-homogeneous steady state solutions exist in addition to
homogeneous steady states. We use analytical local bifurcation theory
for the stationary problem, based upon a modification of Crandall-
Rabinowitz theory [Kie04], to prove the following:
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(M5) The bifurcation approach for homogeneous steady states can be
carried out as long as

δ , δd :� −κ/g(u∗1).

On a generic open and connected domain, local bifurcations of
simple eigenvalues occur for

δn
b � δd +

1
µn

[
f ′(u∗1) −

α
g(u∗1)

]
,

where µn are the eigenvalues of the negative Neumann Laplacian.

(M6) If α > 0 is sufficiently large and fixed, δ∗ > δd > δn
b and the

bifurcation points accumulate at δd.

(M7) If α > 0 is sufficiently small and fixed, δd < δn
b and the bifurcation

points again accumulate at δd as long as δ∗ , δd.

Although these results are completely consistent with the global
decay of the entropy functional, they do not yield global information
about the bifurcation curves. In general, this is not possible analytically
for arbitrary nonlinear systems. Therefore, we consider numerical
continuation of the non-homogeneous steady-state solution branches
(for spatial dimension d � 1). The continuation is carried out using
AUTO [DCD+07]. Our numerical results show the following:

(M8) We regularize the numerical problem using a small parameter
ρ to avoid higher-dimensional bifurcation surfaces due to mass
conservation.

(M9) The non-homogeneous steady-state bifurcation branches starting
at the local bifurcation points extend in parameter space and
contain multi-bump solutions, which deform into more localized
herding states upon changing parameters.

(M10) A second continuation run considering ρ → 0 yields non-trivial
herding solutions for the original problem. In particular, solutions
may have multiple transition layers (respectively concentration
regions) and the ones with very few layers occupy the largest
ranges in δ-parameter space.

Combining all the results we conclude that we have the situations in
Figure 1(a)-(b) for generic fixed parameter values and a generic fixed
domain. These two main cases of interest are:

(C1) α > 0 sufficiently large: in this limit, the entropy validity boundary,
the analytical bifurcation approach, and the numerical methods
are organized around the singular limit at δ � δ∗. Indeed, note
that

δ∗ � δd , if u � u∗1 maximizes g(u) on [0, 1],

and we show in Section 2.1.1 that δe → δ∗ as α → +∞. The
generic picture for a homogeneous steady state so that u∗1 does not
maximize g and α is moderate and fixed is given in Figure 1(a).
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(C2) α > 0 sufficiently small: in this case, the generic picture is shown in
Figure 1(b). The entropy decay only occurs for very large values
δe. Interestingly, the approaches do not seem to collapse onto one
singular limit in this case.

We remark that the condition κ , −δg(u1) does not only occur
in the numerical continuation analysis but also in the context of the
entropy method as well as the analytical bifurcation calculation. It
is precisely the condition for the vanishing of the determinant of the
diffusion matrix that prevents pushing existence and decay techniques
based upon global functionals further and it is also a condition where
the analytical bifurcation theory does not work because the linearised
problem does not yield a Fredholm operator. In some sense, this
explain the singular limit as α → +∞ from (C1). Although (C1) is quite
satisfactory from a mathematical perspective, one drawback is that the
forward problem may not be well-posed in a classical sense if δ < δd;
of course, the stationary problem is still well-defined.

δeδd δ∗ δ δd δ∗ δe δ

‖u‖ ‖u‖(a) (b)1-front
2-front

1-front
2-front

Figure 1: Sketch of the different bifurcation scenarios; for more detailed
numerical calculations see Section 2.4. Only the main parameter δ is varied, a
homogeneous branch is shown in black and bifurcation points and branches
in blue (dots and curves). Only the first two nontrivial branches are sketched
which contain solutions with one transition layer. (a) Case (C1) with α > 0
sufficiently large; for a suitable choice of u∗ and α → +∞ all three vertical
dashed red lines collapse onto one line. (b) Case (C2) with α > 0 sufficiently
small.

For (C2), we cannot prove sharp global decay via an entropy func-
tional. However, the first nontrivial branch of locally stable stationary
herding solutions can be reached in forward time, and not just by
adiabatic parameter variation as in (C1). Although we postpone the
detailed mathematical study of the the limit α → 0 to future work, the
observations raise several interesting problems, which we discuss in
the outlook in Chapter 5.
In summary, we study the interplay between three different tech-

niques available for reaction-diffusion systems with cross-diffusion:
entropy methods, analytical local bifurcation and numerical global
bifurcation theory. Furthermore, for each technique, we have to use,
improve, and apply the previously available methods to the herding
model problem (1.1)-(1.3). Our results lead to clear insight on the
subdivision of parameter space into regimes, where each method is
particularly well-suited to describe the system dynamics. We identify
two interesting singular limits and provide a detailed analysis for
the limit of large damping. Furthermore, we compute via numerical
continuation several solutions that are of interest for applications to
herding behaviour using a two-parameter homotopy approach to desin-
gularize the mass conservation. From an application perspective, we
identify herding states with clustering of individuals in one, or just
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a few, distinct regions, as the ones occupying the largest parameter
ranges. Hence, we expect applications to be governed by homogeneous
stationary and relatively simple heterogeneous herding states.
There seem to be very few works [Gab12, AAN96] studying the

parameter space interplay between global entropy-structure methods
in comparison to local analytical and global numerical bifurcation
approaches. This work seems to be, to the best of our knowledge, the
first analysis combining and comparing all three methods, and also
the first to consider the global-functional and bifurcations interaction
problem for cross-diffusion systems. In fact, our analysis suggests a
general paradigm to improve our understanding of global methods
for nonlinear spatio-temporal systems, i.e., one major goal is to de-
termine the parameter space validity boundaries between differentmethods.

While most approaches to herding in the literature are based on agent
models [LM99], in Chapter 3 we use techniques from kinetic theory,
similar to opinion-formationmodels [BS09,DMPW09, Tos06]. Up to our
knowledge, the first kinetic models in social sciences were developed
by Helbing [Hel93b, Hel93a] to study the social behaviour dynamics of
a population, and by Cordier, Pareschi and Toscani [CPT05] to describe
a simple market economy. For more details, the reader can refer to
[NPT10], in particular [CMPP10, BS10], and the very complete book by
Pareschi and Toscani [PT13]. Binary collisions between gas molecules
are replaced by interactions of market individuals, and the phase-space
variables are interpreted as socio-economic variables in our case: the
rationality x ∈ R and the estimated asset value w ∈ R+ :� [0,∞),
assigned to the asset by an individual. When x > 0, we say that the
agent behaves rational, otherwise irrational. We refer to the review
[DW96] for a discussion of rational herding models.

Denoting by f (x , w , t) the distribution of the agents at time t ≥ 0, its
time evolution is given by the inhomogenous Boltzmann-type equation

∂t f +[Φ(x , w) f ]x � Q̃I ( f )+Q̃H ( f , f ), (x , w) ∈ R×R+ , t > 0, (1.4)

with the boundary condition f � 0 at w � 0 and initial condition f � f0
at t � 0. The first term on the right-hand side describes an interaction
that is soley based on economic fundamentals. After the interaction, the
individuals change their estimated asset value influenced by sources of
public information such as financial reports, balance sheet numbers, etc.
The second term describes binary interactions of the agents modelling
the exchange of information and possibly leading to herding and
imitation phenomena.
When the asset value lies within a certain range around the “fair”

prize, determined by fundamentals, the agents may suffer from psycho-
logical biases like overconfidence and limited attention [Hir01], and we
assume that they behave more irrational. This means that the drift field
Φ(x , w) is negative in that range. When the asset value becomes too low
or too large compared to the “fair” prize the asset values are believed to
be driven by speculation. We assume that the market agents recognize
this fact at a certain point and are becoming more rational. In this case,
the drift field Φ(x , w) is positive. We expect that the estimated asset
value will in average be not too far from the “fair” price, and we confirm
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this expectation by computing the moment of f (x , w , t) with respect to
w in Section 3.1.2. For details on the modelling, we refer to Section 3.1.

Let usdiscuss howour study relates topreviousworks in the literature.
The first paper on kinetic models including herding in markets seems to
be [MP12], while earlier articles are concerned with opinion-formation
modelling; see, e.g., [Tos06]. Our setting is strongly influenced by the
models investigated by Toscani [Tos06] andDelitala and Lorenzi [DL14].
Toscani [Tos06] described the interaction of individuals in the context of
opinion formation, and we employ ideas from [Tos06] to model public
information and herding. The idea to include public information and
herding is due to [DL14]. In contrast to [DL14], we allow for the drift
field Φ(x , w), leading to the inhomogeneous Boltzmann-type equation
(1.4). Such equations were also studied in [DW15] but using a different
drift field. The relationship of rational herd behaviour and asset values
was investigated in [AZ98] but no dynamics were analysed. The novelty
of the present work is the combination of dynamics, transport, public
information, and herding.

Our main results are as follows. We derive formally in the grazing
collision limit (as in [Tos06]) the nonlinear Fokker-Planck equation

∂t g + [Φ(x , w)g]x � (K[g]g)w + (H(w)g)w + (D(w)g)ww , (1.5)
g(x , 0, t) � 0, g(x , w , 0) � g0(x , w), (x , w) ∈ R × R+ , t > 0.

(1.6)

Here, K[g] is a nonlocal operator related to the attitude of the agents to
change their mind because of herding mechanisms, H(w) is an average
of the compromise propensity, and D(w) models diffusion, which can
be interpreted as a self-thinking process, and satisfies D(0) � 0. Again,
we refer to Section 3.1 for details. A different herding diffusion model
in the context of crowd motion was derived and analysed in [BMP11b].
Other kinetic and macroscopic crowd models were considered in
[DARM+13].

Equation (1.5) is nonlinear, nonlocal, degenerate in w, and anisotropic
in x (incomplete diffusion). It is well known that partial diffusion
may lead to singularity formation [HPW13], and often the existence
of solutions can be shown only in the class of very weak or entropy
solutions [AN03, EVZ94]. Our situation is better than in [AN03, EVZ94],
since the transport in x is linear. Exploiting the linear structure, we
prove the existence of global weak solutions to (1.5)-(1.6). However,
we need the assumption that D(w) is strictly positive to get rid of the
degeneracy in w. Unfortunately, our estimates depend on inf D(w) and
become useless when D(0) � 0.

Moreover, we present some numerical experiments for the inhomo-
geneous Boltzmann-type equation (1.4) using a splitting scheme. The
collisional part (i.e. (1.4) with Φ � 0) is approximated using the inter-
action rules and a modified Bird scheme. The transport part (i.e. (1.4)
with Q̃I � Q̃H � 0) is discretized using a combination of an upwind
and Lax-Wendroff scheme. The numerical experiments highlight the
importance of the reliability of public information in the formation of
bubbles and crashes. The use of Bollinger bands in the simulations
shows how herding may lead to strong trends with low volatility of the
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asset prices, but eventually also to abrupt corrections.

Also in Chapter 4 we used the tools of statistical mechanics for the
study of the collective behaviour of the wealth distribution.
The advantage of the kinetic formulation is that it allows to study

the dynamic effects for a sufficiently large number of people where no
one has a dominant role compared to the others [BS09, Tos06].
The model we mathematically and numerically investigate here is

quite simple. It may lack some realism, because it involves simpli-
fied models with respect to [Tos06, BS09, PT14], to provide a neat
mathematical framework. It also allows to recover clustering effects
highlighted in [DNAW00, HK02], for example. The main idea relies on
the same kind of assessment as [MP12, DL14, PT14, BT15]: the wealth
exchanges are also driven by the knowledge/beliefs of each agent in
the population. For instance, in [PT14], the population interacts with
a fixed, time-dependent background of common knowledge, which
behaves like an information mean field which does not depend on
the population itself. This background can then be understood as
the media. In [MP12], the population is divided into two groups, the
chartists and the fundamentalists, whose interactions allow to steer the
price formation of a specific good.
The point of view we here choose is different. We assume that

all the exchanges, knowledge or wealth, are of binary kind, inside a
homogeneous closed community. The wealth is described with a one-
dimensional positive real variable v and we suppose that the trading
mechanisms leave the total mean wealth unchanged. The knowledge
variable x is also positive and real and it does not have an upper bound
since the agents can always learn more and more. The microscopic
wealth exchange mechanism between two agents is very similar to the
one from [PT14]: it depends on the knowledge of each agent. In the
same way, the microscopic knowledge exchange takes into account the
dependence with respect to the agents’ wealth, with the quite natural
idea that an agent may consider as more trustworthy another agent
who owns more than himself. In other words, knowledge plays a
fundamental role to improve the social condition, so that we can safely
suppose that the more we know, the more we can earn and, at the same
time we can imagine that who owns more is because he/she has a
higher knowledge.
For the wealthy exchanges, we only take into account the personal

saving propensity, and forget, for the time being, the risk perception
of the individuals as described in [PT14]. We consider that each agent
can use his own personal knowledge to reduce the risk in a trade.
Denoting by f (x , v , t) the distribution of the individuals at time

t ≥ 0, its time evolution is given by the Boltzmann-type equation

∂t f � QK ( f , f ) + QW ( f , f ), (x , v) ∈ R+ × R+ , t > 0, (1.7)

with initial condition f � f0 at t � 0. The first term on the right-
hand side describes binary interactions of the individuals modelling
the exchange of knowledge, while the second term describes binary
interactions of the agents modelling the exchange of wealth.

We focused on theBoltzmann equation andweproved the existence of
weak solutions. In the numerical section we presented some interesting
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behaviour obtained by introducing thresholds for the collisional rules
and studying the two operators independently.



ENTROPY AND BIFURCATION IN 2
CROSS -D IFFUS ION HERDING

The chapter is organised in the following way: in Section 2.1, we
state our main results and provide an overview of the strategy for the
proofs respectively the numerical methods employed. In particular, the
entropy method results are considered in Section 2.1.1, the analytical
local bifurcation in Section 2.1.2, and the numerical global bifurcation
results in Section 2.1.3. The following sections contain the full details for
the main results. The proofs using the entropy method are contained
in Section 2.2, where the weak solution construction is carried out in
Section 3.2.1 and the global decay is proved in Section 2.2.2. Section 2.3
proves the existence of local bifurcation points to non-trivial solutions
upon decreasing δ. The details for the global numerical continuation
results are reported in Section 2.4.

2.1 main results

We describe the main results, obtained by either the entropy method or
local analytical and global numerical bifurcation analysis.

2.1.1 Entropy Method

First, we show the global existence of weak solutions and their large-
time decay to equilibrium. We observe that the diffusion matrix of
system (1.1)-(1.2) is neither symmetric nor positive definite which
complicates the analysis. Local existence of (smooth) solutions follows
from Amann’s results [Ama89] if the system is parabolic in the sense of
Petrovskii, i.e., if the real parts of the eigenvalues of the diffusion matrix
are positive. A sufficient condition for this statement is δ ≥ δd � −κ/γ.
The challenge here is to prove the existence of global (weak) solutions.

The main challenge of (1.1)-(1.2) is that the diffusion matrix of the
system is neither symmetric nor positive definite. The key idea of our
analysis, similar as in [HJ11], is to define a suitable entropy functional.
The entropy is a special Lyapunov functional which provides suitable
gradient estimates. Compared to Lyapunov functional techniques
like in [Hor11, Wol02] (used for the case δ � 0), the entropy method
provides explicit decay rates and, in our case, L∞ bounds without the
use of a maximum principle. (Note that in the system at hand, the L∞

bounds can be obtained by the standard maximum principle but there
are systems where this can be achieved by using the entropy method
only; see [Jün15].) For this, we introduce the entropy density

h(u) � h0(u1) +
u2

2
2δ0

, u � (u1 , u2)> ∈ [0, 1] × R,

where h0 is defined as the second anti-derivative of 1/g,

h0(s) :�
∫ s

m

∫ σ

m

1
g(t)

dt dσ, s ∈ (0, 1), (2.1)

13
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where 0 < m < 1 is a fixed number, and

δ0 :� δ if δ > 0, δ0 :� κ/γ if − κ/γ < δ < 0.

It turns out that the so-called entropy variables w � (w1 , w2)> with
w1 � h′0(u1) and w2 � u2/δ0 make the diffusion matrix positive semi-
definite for all δ > δ∗ :� −κ/γ, δ , 0. We remark that for δ � 0 the
method does not work andwe do not cover this case. In the w-variables,
we can formulate (1.1)-(1.2) equivalently as

∂t u � div(B(w)∇w) + F(u),

where u � u(w), F(u) � (0, f (u1) − αu2)> and

B(w) �
(

g(u1) −δ0 g(u1)
δg(u1) δ0κ

)
. (2.2)

The invertibility of themapping w 7→ u(w) is guaranteed byHypothesis
(H3) below. We show in Lemma 4 below that B(w) is positive semi-
definite if δ > δ∗, δ , 0. The global existence is based on the fact that
the entropy

H(u(t)) �
∫
Ω

(
h0(u1(t)) +

u2(t)2

2δ0

)
dx (2.3)

is bounded on [0, T] for any T > 0; note that we write u � u(t) here to
emphasize the time dependence of H. A formal computation, which is
made rigorous in Section 3.2.1, shows that

dH
dt

� −

∫
Ω

(
|∇u1 |

2

g(u1)
+

(
δ
δ0
− 1

)
∇u1 · ∇u2 +

κ
δ0
|∇u2 |

2
)
dx (2.4)

+
1
δ0

∫
Ω

( f (u1) − αu2)u2 dx.

The terms in the first bracket define a positive definite quadratic form
if and only if δ > δ∗. The second integral is bounded since f (u1) is
bounded. This shows that for some ε1(δ) > 0,

dH
dt
≤ −ε1(δ)

∫
Ω

*
,
|∇u1 |

2

g(u1)
+
|∇u2 |

2

δ2
0

+
-
dx + c , (2.5)

where the constant c > 0 depends on Ω, f , and α. These gradient
bounds are essential for the existence analysis.
Before we state the existence theorem, we make our assumptions

precise:

(H1) Ω ⊂ Rd with ∂Ω ∈ C2, α > 0, κ > 0, h(u0) ∈ L1(Ω) with
u0

1 ∈ (0, 1) a.e.

(H2) f ∈ C0([0, 1]) is nonnegative.

(H3) g ∈ C2([0, 1]) is positive on (0, 1), g(0) � g(1) � 0, g(u) ≤ γ for
u ∈ [0, 1], where γ > 0, and

∫ m
0 ds/g(s) �

∫ 1
m ds/g(s) � +∞ for

some 0 < m < 1.
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The condition g(u) ≤ γ in [0, 1] in (H3) implies that (u0
1−m)2/(2γ) ≤

h0(u0
1) and hence, h(u0) ∈ L1(Ω) in (H1) yields u0

1 ∈ L2(Ω) and
u0

2 ∈ L2(Ω). Hypothesis (H3) ensures that the function h0 defined in
(2.1) is well defined and of class C4 (needed in Lemma 5). Its derivative
h′0 is strictly increasing on (0, 1) with rangeR, thus being invertible with
inverse (h′0)−1 : R→ (0, 1). For instance, the function g(s) � s(1 − s),
s ∈ [0, 1], satisfies (H3) and h0(s) � s log s + (1 − s) log(1 − s), where
log denotes the natural logarithm. A more general class of functions
fulfilling (H3) is g(s) � sa (1 − s)b with a, b ≥ 1.

Theorem 1 (Global existence). Let assumptions (H1)-(H3) hold and let
δ > −κ/γ. Then there exists a weak solution to (1.1)-(1.3) satisfying
0 ≤ u1 ≤ 1 in Ω, t > 0 and

u1 , u2 ∈ L2
loc(0,∞; H1(Ω)), ∂t u1 , ∂t u2 ∈ L2

loc(0,∞; H1(Ω)′).

The initial datum is satisfied in the sense of H1(Ω;R2)′.

We provide a brief overview of the proof. First, we discretize
the equations in time using the implicit Euler scheme, which keeps
the entropy structure. Since we are working in the entropy-variable
formulation, we need to regularize the equations in order to be able
to apply the Lax-Milgram lemma for the linearised problem. The
existence of solutions to the nonlinear problem then follows from the
Leray-Schauder theorem, where the uniform estimate is a consequence
of the entropy inequality (2.5). This estimate also provides bounds
uniform in the approximation parameters. A discrete Aubin lemma in
the version of [DJ12] provides compactness, which allows us to perform
the limit of vanishing approximation parameters.

Although the proof is similar to the existence proofs in [HJ11, Jün15],
the results presented here are not directly applicable since our situation
is more general than in [HJ11, Jün15]. The main novelties of our
existence analysis are the new entropy (2.3) and the treatment of
destabilizing cross diffusion (δ < 0).
For the analysis of the large-time asymptotics, we introduce the

constant steady state u∗ � (u∗1 , u
∗

2), where

u∗1 � u0
1 , u∗2 �

f (u∗1)
α

, with u0
j :� 1

m(Ω)

∫
Ω

u0
j (x) dx , j ∈ {1, 2},

andm(Ω) denotes the Lebesgue measure ofΩ. Furthermore, we define
the relative entropy

H(u |u∗) �
∫
Ω

h(u |u∗) dx

with the entropy density

h(u |u∗) � h0(u1 |u∗1) +
1

2δ0
(u2 − u∗2)2 , (2.6)

where h0(u1 |u∗1) � h0(u1) − h0(u∗1).

Note that u1 conservesmass, i.e. u1(t) :� m(Ω)−1
∫
Ω

u1(t) dx is constant
in time and u1(t) � u∗1 for all t > 0. Thus, by Jensen’s inequality,
h0(u1 |u∗1) ≥ 0.
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Theorem 2 (Exponential decay). Let assumptions (H1)-(H3) hold, letΩ be
convex, let f be Lipschitz continuous with constant cL > 0, and let

δ0ε1(δ) >
γ

α
c2

LcS , (2.7)

where ε1(δ) > 0 and cS > 0 are defined in Lemmas 4 and 5, respectively.
Then, for t > 0,

H(u(t) |u∗) ≤ e−χ(δ)t H(u0
|u∗), (2.8)

where χ(δ) :� min



ε1(δ)
cS
−
γc2

L

αδ0
, α



> 0.

Moreover, it holds for t > 0,

‖u1(t)−u∗1‖L2(Ω)+‖u2(t)−u∗2‖L2(Ω) ≤ 2
√

max{γ, δ}H(u0 |u∗)e−χ(δ)t/2.

(2.9)

Recall that δ0 � κ/γ if δ < 0 and δ0 � δ if δ > 0. The values for
δ0ε1(δ) are illustrated in Figure 2. It turns out that (2.7) is fulfilled if
either the additional diffusion δ > 0 is sufficiently large or if γ/α is
sufficiently small. The latter condition means that the influence of the
drift term g(u1)∇u2 is “small” or that the relaxation −αu2 is “strong”.
The theorem states that in all these cases, the diffusion is sufficiently
strong to lead to exponential decay to equilibrium. For all parameters
fixed, except δ, we conclude from the condition (2.7) that there exists a
δe such that exponential decay holds for δ > δe (δ , 0) and we see that

lim
α→+∞

δe � δ
∗
� −κ/γ

as a singular limit already discussed above. We remark that the
exclusion of the decay for δ � 0 seems to be purely technical and we
conjecture that exponential decay also holds for δ � 0. On the contrary,
extensions to α → 0 are highly nontrivial and we can currently not
cover this degenerate limiting case using entropy methods.

-4 -3 -2 -1 0 10

0.5

1

1.5

δ

δ � δ∗

δ 0
ε 1

(δ
)

Figure 2: Illustration of δ0ε1(δ) for κ � 1 and δ �
1
4 (black curves). The

corresponding singular limit δ∗ � −κ/γ � −4 is also marked (grey dashed
vertical line).
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Theorem 2 is proved by differentiating the relative entropy H(u |u∗)
with respect to time, similar as in (2.4). Wewish to estimate the gradient
terms from below by a multiple of H(u |u∗). The convex Sobolev
inequality from Lemma 5 shows that the L2-norm of g(u1)1/2

∇u1 is
estimated from below by

∫
Ω

h0(u1 |u∗1) dx, up to a factor. The L2-norm
of ∇u2 is estimated from below by a multiple of

∫
Ω

(u2 − u2)2 dx, using
the Poincaré inequality. However, the variable u2 generally does not
conserve mass and in particular, u2 , u∗2. We exploit instead the
relaxation term in (1.2) to achieve the estimate

H(u(t) |u∗) + χ(δ)
∫ t

0
H(u(s) |u∗) ds ≤ 0.

Then Gronwall’s lemma gives the result. The difficulty is the estimate
of the source term f (u1). This problem is overcome by controlling
the expression involving f (u1) by taking into account the contribution
coming from the convex Sobolev inequality. However, we need that δ
is sufficiently large, i.e., cross diffusion has to dominate reaction.

The above arguments hold on a formal level only. A second difficulty
is to make these arguments rigorous since we need the test function
h′0(u1)−h′0(u∗1), which is undefined if u1 � 0 or u1 � 1 (since h′0(0) � −∞
and h′0(1) � +∞ by Hypothesis (H3)). The idea is to perform a
transformation of variables in terms of so-called entropy variables
which ensure that 0 < u1 < 1 in a time-discrete setting. Passing from
the semi-discrete to the continuous case, the variable u1 may satisfy
0 ≤ u1 ≤ 1 in the limit.

2.1.2 Analytical Bifurcation Analysis

As outlined in the introduction, the first natural conjecture for the failure
of the entropy method is to study bifurcations of the homogeneous
steady states u∗ � (u∗1 , u

∗

2), which solve

0 � div(∇u1 − g(u1)∇u2),
0 � div(δ∇u1 + κ∇u2) + f (u1) − αu2 ,

(2.10)

with the no-flux boundary conditions (1.3). To study the bifurcations
of u∗ under variation of δ we use the right-hand side of (2.10) to define
a bifurcation function and apply the theory of Crandall-Rabinowitz
[CR71, Kie04]. The problem is that u∗ is not an isolated bifurcation
branch as a function of δ since fixing any initial mass yields a different
one-dimensional family of homogeneous steady states with

u∗1 �
1

m(Ω)

∫
Ω

u1(x) dx ≥ 0. (2.11)

Hence, the standard approach has to be modified and we follow
arguments that can be found in [CKWW12, SW09, WX13]. It is helpful
to introduce some notations first. For p > d, let

X :� {u ∈ W2,p (Ω) : ∇u · ν � 0 on ∂Ω},
Y :� Lp (Ω),
Y0 :�

{
u1 ∈ Lp (Ω) :

∫
Ω

u1(x) dx � 0
} (2.12)
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where the space X includes standard Neumann boundary conditions.
Due to the Sobolev embedding theorem we know that W2,p (Ω) is
continuously embedded in C(1+θ) (Ω̄) for some θ ∈ (0, 1). If Neumann
boundary conditions hold, then our original boundary conditions (1.3)
hold as well. However, the converse is only true if we can invert the
diffusion matrix, i.e., as long as δ , δd � −

κ
g(u1) . In particular, we shall

always assume for the local bifurcation analysis of homogeneous steady
states that

δ , δd � −
κ

g(u∗1)
. (2.13)

This implies that wemay not find all possible bifurcations and the single
point when the diffusion matrix vanishes has to be treated separately;
we leave this as a goal for future work.

Next, we define the mapping F : X ×X × R −→ Y0 ×Y × R by

F (u1 , u2 , δ) :�
*..
,

div(∇u1 − g(u1)∇u2)
δ∆u1 + κ∆u2 − αu2 + f (u1)∫

Ω
u1(x) dx −m(Ω)u∗1

+//
-
. (2.14)

The first two terms are the usual bifurcation functions one would
naturally define, the third term is used to isolate the bifurcation branch
for the mapping F , i.e., to avoid the problem with mass conservation,
while the last two terms take into account the boundary conditions. We
know that there exists a family of homogeneous steady state solutions

F (u∗1 , u
∗

2 , δ) � 0

for each δ ∈ R. The goal is to find the parameter values δb such that
at δ � δb a non-trivial (or non-homogeneous) branch of steady states
is generated at the bifurcation point; see also Figure 1. We are going
to check that F is C1-smooth and the Fréchet derivative DuF with
respect to u at a point ũ � (ũ1 , ũ2) is given by

Aδ (ũ)
(
U1
U2

)
:�DuF (ũ , δ)

(
U1
U2

)

�
*..
,

∆U1 − div[g′(ũ1)(∇ũ2)U1 + g(ũ1)∇U2]
δ∆U1 + κ∆U2 − αU2 + f ′(ũ1)U1∫

Ω
U1(x) dx

+//
-

(2.15)

where (U1 ,U2)> ∈ X × X andAδ : X ×X → Y0 ×Y × R. We already
know from Theorem 2 that for all δ > δe (δ , 0), the homogeneous
steady state u∗ is globally stable. Clearly this implies local stability
as well and this fact can also be checked by studying the spectrum
of Aδ (u∗). From the structure of the cross-diffusion equations (1.1)-
(1.2) one does expect destabilization of the homogeneous state upon
decreasing δ.

Theorem 3. Let u∗ � (u∗1 , u
∗

2) be a homogeneous steady state, consider the
generic parameter case with −κ , δg(u∗1) and suppose all eigenvalues µn of
the negative Neumann Laplacian on Ω are simple. Then the following hold:

(R1) DuF (ũ , δ) : X ×X → Y0 ×Y × R is a Fredholm operator with index
zero;
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(R2) there exists a sequence of bifurcation points δ � δn
b such that

dim
(
N[DuF (u∗ , δn

b )]
)
� 1, whereN[·] denotes the nullspace;

(R3) there exist simple real eigenvalues λn (δ) of Aδ (u∗), which satisfy
λn (δn

b ) � 0. Furthermore, λn (δ) crosses the imaginary axis at δn
b with

non-zero speed, i.e., DδuF(u∗ , δn
b )en

b < R[Aδn
b
], where R[·] denotes the

range and span[en
b ] � N[Aδn

b
].

The results from (R1)-(R3) hold quite generically (i.e., for δ , δd
and for generic domains [Uhl72]) and yield, upon applying a standard
result by Crandall-Rabinowitz [CR71, CR73, Kie04], the existence of
branches of non-trivial solutions

(u1[s], u2[s], δ[s]) ∈ X × X × R, (u1[0], u2[0], δ[0]) � (u∗1 , u
∗

2 , δ
n
b ),

where s ∈ [−s0 , s0] parametrizes the steady-state branch locally for some
small s0 > 0, and (u1[s], u2[s], δ[s]) , (u∗1 , u

∗

2 , δ
n
b ) for s ∈ [−s0 , 0) ∪

(0, s0]. Slightly more precise information about the branch can be
obtained using the eigenfunction eb and we refer to Section 2.3 for the
details. Themain conclusion of the bifurcation theorem is that we know
that the entropy method cannot show the decay to steady state for all
parameter regions. However, to track the non-trivial solution branches
in parameter space, it is usually not possible to compute the global
shape of all bifurcation branches analytically. In this case, numerical
bifurcation analysis is extremely helpful.

2.1.3 Numerical Bifurcation Analysis

The results from Section 2.1.1-2.1.2 do not provide a full exploration
of the dynamical structure of the solutions for the parameter regime
δ < δ∗. To understand this regime better we study the bifurcations of
(2.10) numerically for

f (s) � s(1− s), g(s) � s(1− s), s ∈ Ω � [0, l] ⊂ R. (2.16)

for some interval length l > 0. Note that this yields a boundary-
value problem (BVP) involving two second-order ordinary differential
equations (ODEs)

0 �
d
dx

(
du1
dx
− g(u1)

du2
dx

)
, (2.17)

0 � δ
d2u1
dx2 + κ

d2u2
dx2 − αu2 + f (u1). (2.18)

with boundary conditions

0 �
du1
dx

(0) − g(u1(0))
du2
dx

(0), 0 � δ
du1
dx

(0) + κ
du2
dx

(0),(2.19)

0 �
du1
dx

(1) − g(u1(1))
du2
dx

(1), 0 � δ
du1
dx

(1) + κ
du2
dx

(1).(2.20)

An excellent available tool to study the problem (2.17)-(2.20) is the
software AUTO [DCD+07] for numerical continuation of BVPs; for other
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possible options and extensions we refer to the discussion in Chapter 5.
AUTO is precisely designed to deal with BVPs for ODEs of the form

dz
dx

� F(z; p), x ∈ [0, 1], G(w(0), w(1)) � 0 (2.21)

where F : RN
×RP

→ RN , G : RN
×RN

→ RN and p ∈ RP are parameters
and z � z(x) ∈ RN is the unknown vector. It is easy to re-write (2.17)-
(2.20) as a system in the form (2.21) of four first-order ODEs, i.e., we
get N � 4, consider the scaling x̃ � x/l to normalize the interval length
to one, then drop the tilde for x again, and let

p1 :� δ, p2 :� κ, p3 :� α, p4 :� l ,

so P � 4 with primary bifurcation parameter δ. For more background
on AUTO and on numerical continuation we refer to [KOGV07, Kel77,
Gov87]. In the setup (2.21) one can numerically continue the family of
homogeneous solutions

(u∗ , δ) � (u∗1 , u
∗

2 , δ)

as a function of δ, i.e., to compute u∗ � u∗(·; δ) for δ in some specified
parameter interval. Although this calculation yields bifurcation points
for some δ values, it is not straightforward to use the formulation
(2.17)-(2.18) to switch onto the non-homogeneous solution branches
generated at the bifurcation point. The problem is due to the mass
conservation since

u1 � m(Ω)−1
∫
Ω

u1 dx � u∗1 , u∗2 �
f (u∗1)
α

is a solution for every positive initial mass u0
1. In particular, the branch

of solutions is not isolated and there exist parametric two-dimensional
families of solutions. There are multiple ways to deal with this problem;
see also Chapter 5. One possibility is to resolve the degeneracy of the
problem via a small parameter 0 < ρ � 1 and consider

0 �
d
dx

(
du1
dx
− g(u1)

du2
dx

)
− ρ(u1 − u1), (2.22)

0 � δ
d2u1
dx2 + κ

d2u2
dx2 − αu2 + f (u1). (2.23)

for a fixed positive parameter u1 > 0. In particular, upon setting

z1 :� u1 , z2 :� u2 , z3 :� du1
dx

, z4 :� du2
dx

,

as well as
p5 :� u1 , p6 :� ρ, P � 6,

we end up with a problem of the form (2.21) by transforming the two
second-orderODEs to four first-orderODEs and re-labellingparameters.
The vector field for the ODE-BVP we study numerically is then given
by
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F(z; p) �
*.....
,

p4z3
p4z4

p4
Dg

[−g(z1) f (z1) + p3 g(z1)z2 + p2 g′(z1)z3z4 + p2p6(z1 − p5)]
p4
Dg

[− f (z1) + p3z2 − p1 g′(z1)z3z4 − p1(z1 − p5)p6]

+/////
-

(2.24)

where Dg :� p2 + p1 g(z1) and the detailed choices for the free
parameters are discussed in Section 2.4. Observe that the system
(2.24) becomes singular if Dg � 0, which is precisely the condition
δ , −κ/g(u1) already discovered above. Therefore, we would need
also for the numerical analysis a re-formulation (or de-singularization)
of the problem to deal with this singularity and we postpone this
problem to future work. As mentioned above, the primary bifurcation
parameter we are going to be interested in is δ � p1. The main results
of the numerical bifurcation analysis, which are presented in full detail
in Section 2.4, are the following:

(B1) As predicted by the analytical results, we find the existence of local
bifurcation points on the branch of homogeneous steady states
in the parameter region with δ < δd for the case of sufficiently
large α and for δ > δd for the case of sufficiently small α. At
each bifurcation point on the homogeneous branch, a simple
eigenvalue crosses the imaginary axis.

(B2) The non-trivial (i.e. non-homogeneous) solution branches consist
of solutions of multiple ’interfaces’ or ’layers’; branches origin-
ating further away from δd contain less layers. The branches
can acquire sharper layers upon variation of further parameters
which is important for information herding.

(B3) At the local bifurcation points, we observe the emergence of two
symmetric branches of solutions for the case when the nonlinearit-
ies are identical quadratic nonlinearities of the form s 7→ s(1 − s).

(B4) We also construct non-homogeneous solutions for ρ � 0 by
a homotopy continuation step first continuing onto the non-
trivial branches in δ and then decreasing ρ to zero in a second
continuation step.

(B5) Furthermore, we also study the shape deformation of non-trivial
solutions upon variation of κ and the domain length l. The
numerical results show that the main interesting structures of the
problem have already been obtained by just varying δ and α.

2.2 entropy method – proofs

2.2.1 Proof of Theorem 1

First, we prove that the new diffusion matrix B(w), defined in (2.2), is
positive semi-definite if δ is not too negative.
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Lemma 4. Assume (H3) and δ > −κ/γ, δ , 0. Then the matrix B(w)
is positive semi-definite, and there exists ε1(δ) > 0 such that for all z �

(z1 , z2)> ∈ R2, w ∈ R2:

z>B(w)z ≥ ε1(δ)(g(u1)z2
1 + z2

2).

It holds ε1(δ) → 0 as δ ↘ 0 and δ ↘ −κ/γ (see Figure 3).

-4 -3 -2 -1 0 10

0.5

1

δ

δ � δ∗
ε 1

(δ
)

Figure 3: Illustration of ε1(δ) for κ � 1 and δ �
1
4 (black curves). The

corresponding singular limit δ∗ � −κ/γ � −4 is also marked (grey dashed
vertical line).

For later use, we note that the lemma implies that

∇w : B(w)∇w ≥ ε1(δ) *
,
|∇u1 |

2

g(u1)
+
|∇u2 |

2

δ2
0

+
-
, (2.25)

where w � (w1 , w2) � (h′0(u1), u2/δ0) are the entropy variables intro-
duced in the introduction and A : B �

∑
i , j Ai jBi j for two matrices

A � (Ai j), B � (Bi j).

Proof. Let z � (z1 , z2)> ∈ R2. Then

z>B(w)z � g(u1)z2
1 − (δ0 − δ)g(u1)z1z2 + δ0κz2

2 .

If δ > 0, then δ0 � δ and the mixed term vanishes, showing the claim
for ε1(δ) � min{1, δκ}. If −κ/γ < δ < 0, we have δ0 � κ/γ. We make
the (non-optimal) choice

ε0 � ε0(δ) �
1
2


1 − 1

4

(
1 −

γδ

κ

)2
> 0.

Then ε0 < 1−(1−γδ/κ)2/4,which is equivalent to (κ−γδ)2 < 4(1−ε0)κ2.
Thus, using g(u1) ≤ γ (see assumption (H3)),

z>B(w)z � g(u1)z2
1 −

(
κ
γ
− δ

)
g(u1)z1z2 +

κ2

γ
z2

2

� ε0 g(u1)z2
1 + (1 − ε0)g(u1)

(
z1 −

(κ − γδ)z2

2γ(1 − ε0)

)2

+
1
γ

(
κ2
−

(κ − γδ)2

4γ(1 − ε0)
g(u1)

)
z2

2
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≥ ε0 g(u1)z2
1 +

1
γ

(
κ2
−

(κ − γδ)2

4(1 − ε0)

)
z2

2 .

In view of the choice of ε0, the bracket on the right-hand side is positive,
and the claim follows after choosing ε1(δ) � min{ε0(δ), [κ2

− (κ −
γδ)2/(4(1 − ε0(δ)))]/γ} > 0 for −κ/γ < δ < 0. �

The proof of Theorem 1 is based on the solution of a time-discrete
and regularized problem.

Step 1: Solution of an approximate problem. Let T > 0, N ∈ N, τ � T/N ,
ε > 0, and n ∈ N such that n > d/2. Then Hn (Ω;R2) ↪→ L∞(Ω;R2).
Let wk−1

∈ L∞(Ω;R2) be given. If k � 1, we define w0 � h′(u0). We
wish to find wk

∈ Hn (Ω;R2) such that

1
τ

∫
Ω

(u(wk ) − u(wk−1)) · φ dx +

∫
Ω

∇φ : B(wk )∇wk dx (2.26)

+ ε

∫
Ω

( ∑
|β |�n

Dβwk
· Dβφ + wk

· φ
)
dx �

∫
Ω

F(u(wk )) · φ dx

for all φ ∈ Hn (Ω;R2), where β ∈ Nn
0 is a multi-index, Dβ is the

corresponding partial derivative, u(w) � (h′)−1(w) for w ∈ R, and we
recall that F(u) � (0, f (u1) − αu2)>. By definition of h0, we find that
u1(w) ∈ (0, 1), thus avoiding any degeneracy at u1 � 0 or u1 � 1.

The existence of a solution to (2.26) will be shown by a fixed-point
argument. In order to define the fixed-point operator, let y ∈ L∞(Ω;R2)
and η ∈ [0, 1] be given. We solve the linear problem

a(w , φ) � G(φ) for all φ ∈ Hn (Ω;R2), (2.27)

where

a(w , φ) �
∫
Ω

∇φ : B(y)∇w dx + ε

∫
Ω

*.
,

∑
|β |�n

Dβw · Dβφ + w · φ+/
-
dx ,

G(φ) � −
η

τ

∫
Ω

(
u(y) − u(wk−1)

)
dx + η

∫
Ω

F(u(y)) · φ dx.

The forms a and G are bounded on Hn (Ω;R2). Moreover, in view of
the positive semi-definiteness of B(y) and the generalized Poincaré
inequality (see Chap. II.1.4 in [Tem97]), the bilinear form a is coercive:

a(w ,w) ≥ ε
∫
Ω

( ∑
|β |�n

|Dβw |2 + |w |2
)
dx ≥ εc‖w‖Hn (Ω)

for w ∈ Hn (Ω;R2). By the Lax-Milgram lemma, there exists a unique
solution w ∈ Hn (Ω;R2) ↪→ L∞(Ω;R2) to (2.27). This defines the
fixed-point operator S : L∞(Ω;R2) × [0, 1]→ L∞(Ω;R2), S(y , η) � w.

By construction, S(y , 0) � 0 for all y ∈ L∞(Ω;R2), and standard
arguments show that S is continuous and compact, observing that the
embedding Hn (Ω;R2) ↪→ L∞(Ω;R2) is compact. It remains to prove
a uniform bound for all fixed points of S(·, η). Let w ∈ L∞(Ω;R2) be
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such a fixed point. Then w solves (2.27) with y replaced by w. With
the test function φ � w, we find that

η

τ

∫
Ω

(u(w) − u(wk−1)) · w dx +

∫
Ω

∇w : B(w)∇w dx (2.28)

+ ε

∫
Ω

( ∑
|β |�n

|Dβw |2 + |w |2
)
dx � η

∫
Ω

F(u(w)) · w dx.

Since h′′0 � 1/g > 0 on (0, 1), h0 is convex. Consequently, h0(x)−h0(y) ≤
h′0(x)(x − y) for all x, y ∈ [0, 1]. Choosing x � u(w) and y � u(wk−1)
and using h′0(u(w)) � w, this gives

η

τ

∫
Ω

(u(w) − u(wk−1)) · w dx ≥
η

τ

∫
Ω

(
h(u(w)) − h(u(wk−1))

)
dx.

Since u1 � u1(w) ∈ (0, 1) and f is continuous, there exists fM �

maxs∈[0,1] f (s) and thus,∫
Ω

F(u(w)) · w dx ≤
∫
Ω

( fM − αu2)u2 dx ≤ c f ,

where c f > 0 only depends on fM and α. Hence, (3.20) can be estimated
as follows:

η

∫
Ω

h(u(w)) dx + τ

∫
Ω

∇w : B(w)∇w dx (2.29)

+ ετ

∫
Ω

( ∑
|β |�n

|Dβw |2 + |w |2
)
dx ≤ ητc f + η

∫
Ω

h(u(wk−1)) dx.

This yields an Hn bound for w uniform in η (but not uniform in τ
or ε). The Leray-Schauder fixed-point theorem shows the existence
of a solution w ∈ Hn (Ω;R2) to (2.27) with y replaced by w and with
η � 1, which is a solution to (2.26). Step 2: Uniform bounds. Let wk be
a solution to (2.26). Set w (τ) (x , t) � wk (x) and u (τ) (x , t) � u(wk (x))
for x ∈ Ω and t ∈ ((k − 1)τ, kτ], k � 1, . . . ,N. At time t � 0, we set
w (τ) (·, 0) � h′0(u0) and u (τ) (0) � u0. We introduce the shift operator
(στu (τ))(t) � u(wk−1) for t ∈ ((k − 1)τ, kτ], k � 1, . . . ,N. Then u (τ)

solves

1
τ

∫ T

0

∫
Ω

(u (τ)
− στu (τ)) · φ dx dt +

∫ T

0

∫
Ω

∇φ : B(w (τ))∇w (τ) dx dt

+ ε

∫ T

0

∫
Ω

( ∑
|β |�n

Dβw (τ)
· Dβφ + w (τ)

· φ
)
dx dt

�

∫ T

0

∫
Ω

F(u (τ)) · φ dx dt (2.30)

for piecewise constant functions φ : (0, T) → Hn (Ω;R2). By density,
the weak formulation also holds for all L2(0, T; Hn (Ω;R2)).

We have shown in Step 1 that the solution w � wk satisfies the entropy
estimate (2.29). By (2.25), we obtain the gradient estimate∫
Ω

∇wk : B(wk )∇wk dx ≥ ε1(δ) min{γ−1 , δ−2
0 }

∫
Ω

(|∇uk
1 |

2
+ |∇uk

2 |
2) dx ,
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since g(uk
1 ) ≤ γ. Thus, we obtain from (2.29) the following entropy

inequality:∫
Ω

h(uk ) dx + c0τ

∫
Ω

(|∇uk
1 |

2
+ |∇uk

2 |
2) dx (2.31)

+ ετ

∫
Ω

( ∑
|β |�n

|Dβwk
|
2
+ |wk

|
2
)
dx

≤ c f τ +

∫
Ω

h(uk−1) dx ,

where c0 � ε1(δ) min{γ−1 , δ−2
0 }. Adding these inequalities leads to

∫
Ω

h(uk ) dx + c0τ
k∑

j�1

∫
Ω

(|∇u j
1 |

2
+ |∇u j

2 |
2) dx

+ ετ
k∑

j�1

∫
Ω

( ∑
|β |�n

|Dβwk
|
2
+ |wk

|
2
)
dx

≤ c f kτ +
∫
Ω

h(u0) dx.

Since∫
Ω

h(uk ) dx �

∫
Ω

*
,

h0(uk
1 ) +

(uk
2 )2

2δ0
+
-
dx ≥

1
2δ0

∫
Ω

(uk
2 )2 dx ,

the above estimate shows the following uniform bounds:

‖u (τ)
1 ‖L∞(0,T;L∞(Ω)) + ‖u

(τ)
2 ‖L∞(0,T;L2(Ω)) ≤ c , (2.32)

‖u (τ)
1 ‖L2(0,T;H1(Ω)) + ‖u

(τ)
2 ‖L2(0,T;H1(Ω)) ≤ c , (2.33)

√
ε‖w (τ)

‖L2(0,T;Hn (Ω)) ≤ c , (2.34)

where c > 0 denotes here and in the following a constant which is
independent of ε or τ (but possibly depending on T).

In order to derive a uniform estimate for the discrete time derivative,
let φ ∈ L2(0, T; Hn (Ω)). Then, setting QT � Ω × (0, T),

1
τ

�����

∫ T

τ

∫
Ω

(u (τ)
1 − στu (τ)

1 )φ dx dt
�����

≤
(
‖∇u (τ)

1 ‖L2(QT ) + ‖g(u (τ)
1 )‖L∞(QT ) ‖∇u (τ)

2 ‖L2(QT )
)

× ‖∇φ‖L2(QT ) + ε‖w
(τ)
1 ‖L2(0,T;Hn (Ω)) ‖φ‖L2(0,T;Hn (Ω))

≤ c
√
ε‖φ‖L2(0,T;Hn (Ω)) + c‖φ‖L2(0,T;H1(Ω)) ,

1
τ

�����

∫ T

τ

∫
Ω

(u (τ)
2 − στu (τ)

2 )φ dx dt
�����

≤
(
δ‖∇u (τ)

1 ‖L2(QT ) + κ‖∇u (τ)
2 ‖L2(QT )

)
‖∇φ‖L2(QT ) (2.35)

+ ε‖w (τ)
1 ‖L2(0,T;Hn (Ω)) ‖φ‖L2(0,T;Hn (Ω))

+
(
‖ f (u (τ)

1 )‖L2(QT ) + α‖u
(τ)
2 ‖L2(QT )

)
‖φ‖L2(QT )

≤ c
√
ε‖φ‖L2(0,T;Hn (Ω)) + c‖φ‖L2(0,T;H1(Ω)) ,
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which shows that

τ−1
‖u (τ)

− στu (τ)
‖L2(0,T;(Hn (Ω))′) ≤ c. (2.36)

Step 3: The limit (ε, τ) → 0. The uniform estimates (2.33) and (2.36)
allow us to apply the discrete Aubin lemma in the version of [DJ12],
showing that, up to a subsequencewhich is not relabelled, as (ε, τ) → 0,

u (τ)
→ u strongly in L2(0, T; L2(Ω)) and a.e. in QT , (2.37)

u (τ) ⇀ u weakly in L2(0, T; H1(Ω)),

τ−1(u (τ)
− στu (τ)) ⇀ ∂t u weakly in L2(0, T; (Hn (Ω))′),

εw (τ)
→ 0 strongly in L2(0, T; Hn (Ω)).

Because of the L∞ bound (2.32) for (u (τ)
1 ), we have

g(u (τ)
1 ) ⇀∗ g(u1), f (u (τ)

1 ) ⇀∗ f (u1) weakly* in L∞(0, T; L∞(Ω))

(and even strongly in Lp (QT ) for any p < ∞). Thus, we can pass to the
limit (ε, τ) → 0 in (2.30) to obtain a solution to∫ T

0
〈∂t u1 , φ〉 dt +

∫ T

0

∫
Ω

(∇u1 − g(u1)∇u2)φ dx dt � 0,∫ T

0
〈∂t u2 , φ〉 dt +

∫ T

0

∫
Ω

(δ∇u1 + κ∇u2)φ dx dt

�

∫ T

0

∫
Ω

( f (u1) − αu2)φ dx dt

for all φ ∈ L2(0, T; Hn (Ω)). In fact, performing the limit ε → 0 and
then τ → 0, we see from (2.35) that ∂t u ∈ L2(0, T; (H1(Ω))′) and hence,
the weak formulation also holds for all φ ∈ L2(0, T; H1(Ω)). It contains
the no-flux boundary conditions (1.3). Moreover, the initial conditions
are satisfied in the sense of (H1(Ω;R2))′; see Step 3 of the proof of
Theorem 2 in [Jün15]. This finishes the proof.

2.2.2 Proof of Theorem 2

We recall first the following convex Sobolev inequality which is used to
estimate the gradient terms in the entropy inequality.

Lemma 5. Let Ω ⊂ Rd (d ≥ 1) be a convex domain and let φ ∈ C4 be a
convex function such that 1/φ′′ is concave. Then there exists cS > 0 such that
for all integrable functions u with integrable φ(u) and φ′′(u) |∇u |2,

1
m(Ω)

∫
Ω

φ(u) dx − φ
( 1
m(Ω)

∫
Ω

u dx
)
≤

cS

m(Ω)

∫
Ω

φ′′(u) |∇u |2 dx ,

where m(Ω) denotes the measure of Ω.

Proof. The lemma is a consequence of Prop. 7.6.1 in [BGL14] after choos-
ing the probability measure dµ � dx/m(Ω) on Ω and the differential
operator L � ∆− x · ∇, which satisfies the curvature condition CD(1,∞)
since Γ2(u) �

1
2 (|∇2u |2 + |∇u |2) ≥ 1

2 |∇u |2 � Γ(u). Another proof can
be found in [AMTU01, Section 3.4]. �
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Step 1: Uniform bound for the L1 norm of uk
1 . The L1 norm of uk

1 is not
conserved but we are able to control its L1 norm. For this, let wk

∈

Hn (Ω;R2) be a solution to (2.26) and set uk
1 � u1(wk ). We introduce

the notation v � m(Ω)−1
∫
Ω

v(x) dx for any integrable function v. This
implies that u∗1 � u0

1. Employing the test function φ � (1, 0) in (2.26),
we find that uk

1 � uk−1
1 − ετwk

1. Solving the recursion gives

uk
1 � u0

1 − ετ
k∑

j�1
w j

1 � u∗1 − ετ
k∑

j�1
w j

1 ,

and by (2.34), we conclude that

|u (τ)
1 (t) − u∗1 | ≤ ε‖w

(τ)
1 ‖L1(0,t;L1(Ω)) ≤

√
εc ,

where u (τ)
1 (t) � uk

1 for t ∈ ((k − 1)τ, kτ]. Consequently, as (ε, τ) → 0,
the convergence (2.37) shows that u1(t) � u∗1 for t > 0.

Step 2: Estimate of the relative entropy. We employ the test function

φ � (h′0(uk
1 ) − h′0(u∗1), (uk

2 − u∗2)/δ0) � (wk
1 − h′0(u∗1), wk

2 − u∗2/δ0)

in (2.26) to obtain

0 �
1
τ

∫
Ω

(
(uk

1 − uk−1
1 )(h′0(uk

1 ) − h′0(u∗1)) +
1
δ0

(uk
2 − uk−1

2 )(uk
2 − u∗2)

)
dx

+

∫
Ω

∇wk : B(wk )∇wk dx + ε

∫
Ω

( ∑
|β |�n

|Dβwk
|
2
+ wk

1 (wk
1 − h′0(u∗1))

(2.38)

+ wk
2 (wk

2 − u∗2)/δ0)
)
dx −

1
δ0

∫
Ω

( f (uk
1 ) − αuk

2 )(uk
2 − u∗2) dx

�: I1 + · · · + I4.

For the first integral, we employ the convexity of h0:

(uk
1 − uk−1

1 )(h′0(uk
1 ) − h′0(u∗1)) ≥ (h0(uk

1 ) − h0(uk−1
1 )) − h′0(u∗1)(uk

1 − uk−1
1 ),

(uk
2 − uk−1

2 )(uk
2 − u∗2) ≥

1
2
(
(uk

2 − u∗2)2
− (uk−1

2 − u∗2)2) ,
which yields

I1 ≥
1
τ

∫
Ω

(h0(uk
1 ) − h0(uk−1

1 )) dx −
h′0(u∗1)
τ

∫
Ω

(uk
1 − uk−1

1 ) dx

+
1

2δ0τ

∫
Ω

(
(uk

2 − u∗2)2
− (uk−1

2 − u∗2)2) dx.

By (2.25), it follows that

I2 ≥ ε1(δ)
∫
Ω

*
,

|∇uk
1 |

2

g(uk
1 )

+
|∇uk

2 |
2

δ2
0

+
-
dx

� ε1(δ)
∫
Ω

*
,

h′′0 (uk
1 ) |∇uk

1 |
2
+
|∇uk

2 |
2

δ2
0

+
-
dx.
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Lemma 5 then shows that

I2 ≥
ε1(δ)

cS

∫
Ω

(h0(uk
1 ) − h0(uk

1)) dx +
ε1(δ)
δ2

0

∫
Ω

|∇uk
2 |

2 dx.

The third integral in (2.38) is estimated by using Young’s inequality:

I3 ≥
ε
2

∫
Ω

(
(wk

1 )2
+ (wk

2 )2
− h′0(u∗1)2

− δ−2
0 (u∗2)2) dx

≥ −
ε
2

∫
Ω

(
h′0(u∗1)2

+ δ−2
0 (u∗2)2) dx.

Summarizing these estimates, we infer from (2.38) that∫
Ω

(h0(uk
1 ) − h0(uk−1

1 )) dx − h′0(u∗1)
∫
Ω

(uk
1 − uk−1

1 ) dx

+
1

2δ0

∫
Ω

(
(uk

2 − u∗2)2
− (uk−1

2 − u∗2)2) dx

+
ε1(δ)τ

cS

∫
Ω

(h0(uk
1 ) − h0(uk

1)) dx +
ε1(δ)τ
δ2

0

∫
Ω

|∇uk
2 |

2 dx

≤
ετ
2

∫
Ω

(
h′0(uk

1)2
+ δ−2

0 (u∗2)2) dx

+
τ
δ0

∫
Ω

( f (uk
1 ) − αuk

2 )(uk
2 − u∗2) dx.

Adding these equations over k and using the notation as in the proof
of Theorem 1 for u (τ)

i , we obtain∫
Ω

(h0(u (τ)
1 (t)) − h0(u0

1)) dx − h′0(u∗1)
∫
Ω

(u (τ)
1 (t) − u0

1) dx

+
1

2δ0

∫
Ω

(
(u (τ)

2 (t) − u∗2)2
− (u0

2 − u∗2)2) dx (2.39)

+
ε1(δ)

cS

∫ t

0

∫
Ω

(
h0(u (τ)

1 ) − h0(u (τ)
1 )

)
dx ds

+
ε1(δ)
δ2

0

∫ t

0

∫
Ω

|∇u (τ)
2 |

2 dx ds

≤
ε
2

∫ t

0

∫
Ω

(
h′0(u (τ)

1 )2
+ δ−2

0 (u∗2)2) dx ds

+
1
δ0

∫ t

0

∫
Ω

( f (u (τ)
1 ) − αu (τ)

2 )(u (τ)
2 − u∗2) dx ds .

Step 3: The limit (ε, τ) → 0. Because of the L∞ bound for (u (τ)
1 ), it

follows that, for a subsequence, u (τ)
1 ⇀∗ u1 weakly* in L∞(0, T; L1(Ω))

and thus, as (ε, τ) → 0,∫
Ω

(u (τ)
1 (t) − u0

1) dx �

∫
Ω

(u (τ)
1 (t) − u∗1) dx →

∫
Ω

(u1(t) − u∗1) dx � 0,

since u1(t) � u∗1 for t > 0, by Step 1. The weak convergence of (∇u (τ)
2 )

to ∇u2 in L2(0, T; L2(Ω)) implies that

lim inf
τ→0

∫ t

0

∫
Ω

|∇u (τ)
2 |

2 dx ds ≤
∫ t

0

∫
Ω

|∇u2 |
2 dx ds .
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Furthermore, by the strong convergence u (τ)
1 → u1 in L2(0, T; L2(Ω)),

up to a subsequence, u (τ)
1 → u1 a.e. in QT � Ω × (0, T) and h0(u (τ)

1 ) →
h0(u1) a.e. in QT . Then the L∞ bound of (u (τ)

1 ) implies that h0(u (τ)
1 ) →

h0(u1) strongly in Lp (0, T; Lp (Ω)) for any p < ∞. Furthermore, we
know that u (τ)

2 → u2 strongly in L2(0, T; L2(Ω)), see (2.37). Therefore,
the limit (ε, τ) → 0 in (2.39) leads to∫

Ω

(h0(u1(t)) − h0(u0
1)) dx +

1
2δ0

∫
Ω

(
(u2(t) − u∗2)2

− (u0
2 − u∗2)2) dx

+
ε1(δ)

cS

∫ t

0

∫
Ω

(
h0(u1) − h0(u∗1)

)
dx ds +

ε1(δ)
δ2

0

∫ t

0

∫
Ω

|∇u2 |
2 dx ds

≤
1
δ0

∫ t

0

∫
Ω

( f (u1) − αu2)(u2 − u∗2) dx ds .

Now, we estimate the right-hand side. Because of f (u∗1) � αu∗2 and
the Lipschitz continuity of f with Lipschitz constant cL > 0, we infer
that (recall (2.6) for the definition of h0(u1 |u∗1))∫

Ω

(
h0(u1(t) |u∗1) dx − h0(u1(0) |u∗1)

)
dx

+
1

2δ0

∫
Ω

(
(u2(t) − u∗2)2

− (u2(0) − u∗2)2) dx

+
ε1(δ)

cS

∫ t

0

∫
Ω

h0(u1(s) |u∗1) dx ds

≤
1
δ0

∫ t

0

∫
Ω

( f (u1) − f (u∗1))(u2 − u∗2) dx ds

−
α
δ0

∫ t

0

∫
Ω

(u2 − u∗2)2 dx ds

≤
1

2δ0α

∫ t

0

∫
Ω

( f (u1) − f (u∗1))2 dx ds

−
α

2δ0

∫ t

0

∫
Ω

(u2 − u∗2)2 dx ds

≤
c2

L

2αδ0

∫ t

0

∫
Ω

(u1 − u∗1)2 dx ds

−
α

2δ0

∫ t

0

∫
Ω

(u2 − u∗2)2 dx ds .

Since u1 � u∗1, a Taylor expansion and the assumption 1/h′′0 (u1) �

g(u1) ≤ γ give∫ t

0

∫
Ω

h0(u1 |u∗1) dx ds �

∫ t

0

∫
Ω

(h0(u1) − h0(u∗1) dx ds

�

∫ t

0

∫
Ω

(
h′0(u∗1)(u1 − u∗1) +

1
2 h′′0 (ξ)(u1 − u∗1)2

)
dx ds (2.40)

≥
1

2γ

∫ t

0

∫
Ω

(u1 − u∗1)2 dx ds ,

where ξ is a number between u1 and u∗1. We conclude that∫
Ω

h0(u1(t) |u∗1) dx +
1

2δ0

∫
Ω

(u2(t) − u∗2)2 dx
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+ *
,
ε1(δ)

cS
−
γc2

L

αδ0
+
-

∫ t

0

∫
Ω

h0(u1(s) |u∗1) dx ds

+
α

2δ0

∫ t

0

∫
Ω

(u2 − u∗2)2 dx ds

≤

∫
Ω

h0(u1(0) |u∗1) dx +
1

2δ0

∫
Ω

(u2(0) − u∗2)2 dx ,

and recalling the notation h(u |U) � h0(u1 |u∗1) + (u2 − u∗2)2/(2δ0),∫
Ω

h(u(t) |U) dx+min



ε1(δ)
cS
−
γc2

L

αδ0
, α




∫ t

0
h(u |U) ds ≤

∫
Ω

h(u(0) |U) dx.

Then Gronwall’s lemma implies that

H(u(t) |U) �
∫
Ω

h(u(t) |U) dx ≤ e−χ(δ)t H(u(0) |U), t ≥ 0,

where χ(δ) is defined in (2.8). Finally, taking into account (2.40), we
estimate

h(u |U) ≥
1

2γ (u1 − u∗1)2
+

1
2δ (u2 − u∗2)2 ,

which shows (2.9) and finishes the proof.

2.3 analytical bifurcation analysis – proofs

In this section, we are going to prove Theorem 3. The proofs follow
closely ideas presented for similar systems in [CKWW12, SW09,WX13],
which are fundamentally based upon an application of results of
Crandall and Rabinowitz [CR71, CR73]; see also [Kie04] for a detailed
exposition of the these results. Recall that we defined the spaces X,Y,
Y0 in (2.12) and the mapping

F : X ×X × R→ Y0 ×Y × R

in (2.14). A first step is to investigate the Fredholm and differentiability
properties of F .

Lemma 6. The mapping F satisfies the following properties:

(L1) F (u∗ , δ) � 0 for all δ ∈ R.

(L2) F (u1 , u2 , δ) � 0 implies that (u1 , u2) solves (2.10).

(L3) F is C1-smooth with Fréchet derivative DuF given by (2.15).

(L4) If ũ(x) ≡ (ũ1 , ũ2) is a homogeneous state and δg(ũ1) , −κ then
DuF (ũ1 , ũ2 , δ) is a Fredholm operator with index zero.

Proof. For (L1) recall that u∗ � (u∗1 , u
∗

2) was the notation for a homogen-
eous steady state. Regarding (L2), observe that the first two components
of F are just the steady state equations (2.10). Statement (L3) follows
from a direct calculation. The problem is to show (L4). We follow the
argument given in [CKWW12, WX13] and consider

DuF (ũ1 , ũ2 , δ)(U1 ,U2)> � B1(U1 ,U2)> + B2(U1 ,U2)> , (2.41)
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where B1 : X ×X → Y0 ×Y × R is defined by

B1

(
U1
U2

)
�

*..
,

∆U1 − div[g′(ũ1)(∇ũ2)U1 + g(ũ1)∇U2]
δ∆U1 + κ∆U2 − αU2 + f ′(ũ1)U1

0

+//
-
, (2.42)

and the mapping B2 : X ×X → Y0 ×Y × R is given by

B2

(
U1
U2

)
�

*..
,

0
0∫

Ω
U1(x) dx

+//
-
. (2.43)

We observe easily that B2 : X × X → Y0 × Y × R is linear and com-
pact. We need an ellipticity condition and B1 should satisfy Agmon’s
condition [SW09]. We have ellipticity for B1 (in the sense of Pet-
rovskii [Jan98, SW09]) if

det
[(

1 −g(ũ1)
δ κ

)
ξ · ξ

]
, 0, (2.44)

for all ξ � (ξ1 , ξ2 , . . . , ξd) ∈ Rd
\{0}. Computing the determinant this

condition just yields

0 , (ξ2
1 + · · · + ξ

2
d)(κ + δg(ũ1)) if and only if − κ , δg(ũ1)

and ellipticity in the sense of Petrovskii follows. Moreover we need to
verify Agmon’s condition at a fixed angle θ ∈ [−π, π). Using [SW09,
Remark 2.5] with θ � π/2, one verifies computing a shifted determinant
similar to the previously computed one in (2.44) that Agmon’s condition
holds for all values of κ. In particular, the ellipticity condition gives
a restriction on the parameters for the bifurcation analysis and not
Agmon’s condition. By applying [SW09, Thm. 3.3] we infer that

B1 : X ×X → Y ×Y × {0}

is a Fredholm operator of index zero. HenceY0 ×Y × {0} � R(B1) ⊕W ,
where R(B1) is the range of B1 and W is a closed subspace of Y ×
Y × R with dim W � dimN (B1) < ∞. Consequently, since the first
component of B1 is inY0, we have

Y0 ×Y × R � R(B1) ⊕W0 ⊕ span{(0, 0, 1)>}

where W0 � {(H1 ,H2 ,H3) ∈ W |
∫ L

0 H1(x)dx � 0} and W � W0 +

span{(1, 0, 0)}. Then dim W � dim W0 + 1. Thus the codimension
of R(B1) in Y0 × Y × R is equal to dim W � dimN (B1). Hence,
B1 : X × X → Y0 × Y × R is a Fredholm operator of index zero for
δg(ũ1) , −κ. Therefore, DuF is a Fredholm operator of index zero
as B2 is a compact perturbation. Hence, the result (R1) in Theorem 3
follows. �

It seems difficult to improve the result to include the degenerate
cases when κ � −δg(u∗1) as this would require to deal with bifurcation
problems with non-elliptic operators. The next goal is to apply [SW09,
Thm. 4.3]. To do so, we need some additional properties of F . In
particular, in order that bifurcations occur from the homogeneous
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steady state u∗ � (u∗1 , u
∗

2) we need that the implicit function theorem
fails. For the following lemma we need to be in the case where each
eigenvalue µn of the negative Neumann Laplacian on Ω eigenvalue
is simple. For the one-dimensional case this always holds, while for
generic d-dimensional domains the eigenvalues are also simple [Uhl72].

Lemma 7. Suppose the eigenvalues of the negative Neumann Laplacian on
Ω ⊂ Rd are simple and δg(u∗1) , −κ. Then there exist bifurcation points at
δ � δn

b such that the map F satisfies the following properties:

(L5) the null space N[DuF (u∗ , δn
b )] is one-dimensional, i.e., span[en

b ] �
N[DuF (u∗ , δn

b )];

(L6) the non-degenerate crossing condition holds, i.e.,

DδuF (u∗ , δn
b )en

b < R[DuF (u∗ , δn
b )]. (2.45)

Proof. We start by proving (L5). By (2.42), the null space of DuF (u∗ , δ)
consists of solutions for

∆U1 − g(u∗1)∆U2 � 0,
δ∆U1 + κ∆U2 − αU2 + f ′(u∗1)U1 � 0,∫

Ω

U1(x) dx � 0,
(2.46)

with no-flux conditions on ∂Ω. For any pair u � (u1 , u2) ∈ X × X, we
can expand u1 and u2 as a series of mutually orthogonal eigenfunctions
of the following system{

−∆u � µu in Ω,
∂u
∂ν � 0 on ∂Ω,

(2.47)

multiplied by constants vectors. Let µn > 0 be a simple eigenvalue
of (2.47) and eµn is the eigenfunction corresponding to µn normalized
by

∫
Ω

(eµn )2 dx � 1. Then we define

Ū1 :�
∫
Ω

u1(x)eµn (x) dx , Ū2 :�
∫
Ω

u2(x)eµn (x) dx.

We obtain∫
Ω

eµn∆u1 dx � −µn

∫
Ω

u1eµn dx � −µnŪ1 ,∫
Ω

eµn∆u2 dx � −µn

∫
Ω

u2eµn dx � −µnŪ2.
(2.48)

Now, by multiplying the first two equations of (2.46) by eµn and integ-
rating over Ω, using the boundary condition and (2.48), we arrive at
the following algebraic system for Ū1 and Ū2:

Ū1 − g(u∗1)Ū2 � 0,
(κµn + α)Ū2 − ( f ′(u∗1) − δµn)Ū1 � 0.

(2.49)

If δ > f ′(u∗1)/µn then the system (2.49) has only the zero solution. In
this case, we would have N[DuF (u∗ , δ)] � 0 for all δ. In order to
have existence of a non-homogeneous solution we necessarily require
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δ ≤ f ′(u∗1)/µn . In this case the system (2.49) has a non-zero solution if
and only if

δ �: δn
b � −

κ
g(u∗1)

+
1
µn

[
f ′(u∗1)−

α
g(u∗1)

]
� δd+

1
µn

[
f ′(u∗1)−

α
g(u∗1)

]
.

(2.50)

Taking δ � δn
b , we can rewrite the first two equations of (2.46) as the

system:(
∆U1
∆U2

)
�

1
κ + δn

b g(u∗1)

(
−g(u∗1) f ′(u∗1) g(u∗1)α
− f ′(u∗1) α

) (
U1
U2

)
�: A

(
U1
U2

)
(2.51)

Using (2.50) and computing the determinant and the trace of the matrix
A we find that its eigenvalues are λ1 � 0 and λ2 � −µn , where µn > 0
is a single eigenvalue of the problem (2.47). Let T be the matrix whose
columns are the eigenvectors corresponding to λ1 and λ2 respectively:

T �

(
α g(u∗1)

f ′(u∗1) 1

)
.

We have

T−1AT �

(
0 0
0 µn

)
.

Then, by considering the transformation(
p
q

)
� T−1

(
U1
U2

)
, (2.52)

it follows that the first two equations of (2.46) can be uncoupled and
we find that

∆p � 0 in Ω,
∆q � µn q in Ω,

α

∫
Ω

p(x) dx + g(u∗1)
∫
Ω

q(x) dx � 0,

∇p · ν � ∇q · ν � 0 on ∂Ω,

(2.53)

where the genericity condition −κ , δn
b g(u∗1) is used to obtain zero

Neumann boundary conditions. Recall that µn is a simple eigenvalue
of (2.47) with eigenfunction eµn . Observe that

∫
Ω

eµn (x) dx � 0, which
implies that p � 0 and q � Ceµn for some constant C are the solutions
of (2.53). Therefore, it follows that

(U1 ,U2)> � Ceµn (g(u∗1), 1)>. (2.54)

This shows that N[DuF (u∗ , δn
b )] � span[eµn (g(u∗1), 1)>] �: span[en

b ].
In particular, the nullspace is one-dimensional and the result (L5)
follows.
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To prove (L6), we argue by contradiction and suppose that (2.45) is
not satisfied. Hence, by computing DδuF (u∗ , δn

b ), it follows there exists
(p , q) such that

∆p − g(u∗1)∆q � µn g(u∗1)eµn in Ω,
κ∆q + δn

b∆p − αq + f ′(u∗1)p � 0 in Ω,∫
Ω

p(x) dx � 0,

∇p · ν � ∇q · ν � 0 on ∂Ω.

(2.55)

As in the first part of the proof, it is helpful to consider a suitable
projection and we define P and Q as

P :�
∫
Ω

p(x)en
b (x) dx , Q :�

∫
Ω

q(x)en
b (x) dx.

Multiplying the first two equations (2.55) by en
b and integrating over Ω

and using boundary conditions one obtains an algebraic system for P
and Q given by{

P − g(u∗1)Q � −g(u∗1),
( f ′(u∗1) − δn

bµn)P − (κµn + α)Q � 0. (2.56)

By the definition of δn
b , the determinant of the matrix of coefficients

on the left-hand side of the system (2.56) is zero. This implies that the
inhomogeneous linear system has no solution. Hence the system (2.55)
has no solutions and the result (2.45) in (L6) follows. �

Note that (L5)-(L6) are just the results (R2)-(R3) claimed in Theorem 3.
By applying [SW09, Thm. 4.3] we obtain the existence of a non-trivial
branch of solutions. Therefore, the local dynamics of the problem
already shows that the entropy method cannot provide exponential
decay to a distinguished steady state for all parameter values.

2.4 numerical bifurcation analysis – continuation results

In Section 2.1.1 we proved the existence of a weak solution for δ > δ∗ �
−κ/δ as well as global convergence to a steady state for δ > δe (δ , 0);
in addition, δe converges to δ∗ � −κ/γ as α → +∞ and δe converges to
+∞ as α → 0. In Section 2.1.2 we showed the existence of non-trivial
solutions for δ � δn

b where δn
b is defined in (2.50) and in particular δn

b
could be bigger or smaller than δd � κ/g(u∗1) depending on α.
The numerical continuation results presented in this section aim

to augment and extend these results. To simplify the comparison to
numerical results, we focus on the case

κ � 1, g(s) � s(1 − s), f (s) � s(1 − s),

which yields the condition δ > δ∗ � −4 for the validity of the entropy
method for α → +∞. As already mentioned, the values for δn

b depend
on α, so we are going to study a case with α sufficiently large (Sec-
tion 2.4.2) and the case with α sufficiently small (Section 2.4.3). Below
we are going to define the meaning of sufficiently large and sufficiently
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small. First, we want to compare the values that we obtain for δn
b with

the numerical results. The analytical problem did not include the small
parameter ρ and the introduction of this term has the effect of shifting
the bifurcation points.

2.4.1 Comparison between the values of δn
b

The formula for δn
b given in the equation (2.50) does not consider the

additional term ρ. Introducing this term, we get a new formula which
reads

δn
b �

f ′(u∗1)
µ
−

(κµ + α)(µ + ρ)
g(u∗1)µ2 � δd+

1
µ

[
f ′(u∗1)−

κρ + α

g(u∗1)
−

αρ

g(u∗1)µ

]
.

(2.57)

We observe that the formulas (2.50) and (2.57), due to the presence of
the term ρ, will not give the same values δn

b but the two equations
correspond if we take ρ � 0. We fix the following parameter values

(κ, α, l , ū1 , ρ) � (1, 0.2, 20, 0.594, 0.05).

We are interested in computing the values of δn
b and to observe how

the parameter ρ shifts the bifurcation branches.

n 1 2 3 4 5 6 7 8
(2.50) -45.38 -14.45 -8.73 -6.72 -5.80 -5.29 -4.99 -4.79
(2.57) -121.89 -20.81 -10.50 -7.51 -6.24 -5.58 -5.19 -4.94
AUTO -121.89 -20.81 -10.50 -7.51 -6.24 -5.58 -5.19 -4.94

Table 1: Comparison between the analytical and numerical bifurcation values.
The last two rows compare the numerical and analytical solutions with
0 < ρ � 1.

In Table 1 we reported the bifurcation points δn
b for n ∈ {1, 2, . . . , 8}

computed with the two formulas (2.50) and (2.57) in comparison to
the numerical continuation results using AUTO. The values detected
using AUTO precisely correspond to the values computed with the
formula (2.57) as expected while the points are shifted in comparison
to the values for ρ � 0.

2.4.2 Case 1: α sufficiently large

Recall the formula for δn
b given in (2.50):

δn
b � δd +

1
µn

[
f ′(u∗1) −

α
g(u∗1)

]
.

We observe that if α > f ′(u∗1)g(u∗1) then δn
b < δd and the branches will

approach the limit value δd for n →∞. Since we are using (2.57), the
condition on α is

α > µn
[ f ′(u∗1)g(u∗1) − κρ

ρ + µn

]
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and, in the case of an interval we can compute the eigenvalues µ. So, α
sufficiently large means

α >
(nπ

l

)2 [ f ′(u∗1)g(u∗1) − κρ
ρ + ( nπ

l )2

]
. (2.58)

Figure 4 shows a continuation calculation for fixed parameters

(κ, α, l , ū1 , ρ) � (p2 , p3 , p4 , p5 , p6) � (1, 0.2, 12, 0.594, 0.05)

using δ as the primary bifurcation parameter. We observe that the
condition on α is satisfied since the right-hand side of (2.58) is negative
for all n ∈ N and α � 0.2. The steady state we start the continuation
with is given by

(u∗1 , u
∗

2) � (ū1 , f (ū1)/α).
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Figure 4: Continuation calculation for the system (2.21) with parameter val-
ues (κ, α, l , ū1 , ρ) � (p2 , p3 , p4 , p5 , p6) � (1, 0.2, 20, 0.594, 0.05) and primary
bifurcation parameter δ. (a) Bifurcation diagram in (δ, ‖z‖L2 )-space showing
the parameter on the horizontal axis and the solution norm on the vertical axis.
Some of the detected bifurcation points are marked as circles (magenta). The
last branch point (blue circle) is not a true bifurcation point but results from the
degeneracy δ � −κ/g(u∗1) �: δd. At the other branches points (magenta, filled
circles) non-homogeneous solution branches (blue, cyan, magenta, green...)
bifurcate via single eigenvalue crossing. The value δ∗ � −κ/γ � −4 is marked
by a vertical grey dashed line. (b) Solutions are plotted for (x , u1 � u1(x)) at
certain points on the non-homogeneous branches; the solutions are marked in
(a) using crosses.

Webegin the continuation at δ � −25 andwefindonly one bifurcation
point when δ is decreasing, i.e. for δ < −25. This result is expected
since δ1

b � −121.889 is the value corresponding to the first eigenvalue.
Moreover, we do not detect any bifurcations for δ > −4 � δ∗. The
interesting results in the bifurcation calculation in Figure 4 occur when
we increase the primary bifurcation parameter δ. In this case, several
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branch points are detected, in particular the closer we are to the value
δd, the more bifurcation points are found. In Figure 4, we have shown
the first six branch points detected obtained upon increasing δ. The
point detected at δ � −20.8116 corresponds to the second non-trivial
bifurcation branch. There are more and more points as we get closer
to δd. The last point detected (in blue) is not a bifurcation point but
corresponds to the degeneracy at

κ/g(u∗1) � −1/(0.594(1 − 0.594)) ≈ −4.1466.

The remaining detected branch points in Figure 4 are true bifurcation
points. This numerical result is in accordance with the analytical
results on the existence of bifurcations in Theorem 3. In fact, one can
carry out the same calculation as in Section 2.3. At each bifurcation
point, a simple eigenvalue crosses the imaginary axis. One can use
the branch switching algorithm implemented in AUTO to compute
the non-homogeneous families of solutions as shown for four points
in Figure 4(a). In Figure 4(b), we show a representative solution
u1 � u1(x) on each of the four solution families. The solutions are
non-homogeneous steady states and have interface-like behaviour in
the spatial variable. Each family has a characteristic number of these
interfaces. There are families with even more interfaces than the one
shown in Figure 4(b4), which can be found upon increasing δ even
further; we are not interested in these highly oscillatory solutions here.
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Figure 5: Continuation calculation for the system (2.21) as in Figure 4 with
a focus on the second bifurcation point (filled circle, magenta). One can
show that by using two different local branching directions that two different
non-homogeneous solution branches (red) bifurcate via single eigenvalue
crossing but the two branches contain solutions with identical L2-norm for
the same parameter value. This is a result of a symmetry in the problem. (b)
Three different solutions plotted in (x , u1 � u1(x))-space at the parameter
value δ � −21.8819. The three solutions are marked in (a) using crosses.

Another observation regarding the continuation run in Figure 4 is
reported in more detail in Figure 5 with a focus on the second bifurca-
tion point. It is shown that there are actually two different branches
bifurcating at the same point with families of non-homogeneous solu-
tions that are symmetric. In particular, one non-trivial solution branch



38 entropy and bifurcation in cross-diffusion herding

can be transformed into the other by considering u 7→ 1 − u; as an
illustration we refer to three representative numerical solutions on the
three branches originating at the second bifurcation point as shown in
Figure 5(b).

2.4.3 Case 2: α sufficiently small

As specified in (M7) in Chapter 1 when α < f ′(u∗1)g(u∗1) then δn
b > δd

and this means that the branches will approach the limit value δd from
the right. As pointed out in Section 2.4.1, the condition on α is more
complicated since our model contains ρ. The condition on α becomes

0 < α < µn
[ f ′(u∗1)g(u∗1) − κρ

ρ + µn

]
,

i.e. we must choose an α which satisfied the inequality for each single
µn . We fix

(κ, α, l , ū1 , ρ) � (1, 0.001, 50, 0.211325, 0.05)

for the numerical continuation in this section.
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Figure 6: Continuation calculation for the system (2.21) with parameter
values (κ, α, l , ū1 , ρ) � (p2 , p3 , p4 , p5 , p6) � (1, 0.0001, 50, 0.211325, 0.05) and
primary bifurcation parameter δ. (a) Bifurcation diagram in (δ, ‖z‖L2 )-space
showing the parameter on the horizontal axis and the solution norm on the
vertical axis. The detected bifurcation points are marked as circles (magenta).
At the three branch points (magenta, filled circles) non-homogeneous solution
branches (blue, cyan, magenta) corresponding to δ3

b , δ
4
b , δ

5
b bifurcate via single

eigenvalue crossing. The value δ∗ � −κ/γ � −4 is marked by a vertical grey
dashed line. (b) Solutions are plotted for (x , u1 � u1(x)) at certain points on
the non-homogeneous branches; the solutions are marked in (a) using crosses.
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With these values the condition on α is given by 0 < α < 0.0033827
which is satisfied. We also find that with our choices

δd < δ
n
b < δ

∗ < δ5
b < δ

4
b < δ

3
b < δ

2
b < δ

1
b < δe , n ≥ 6,

i.e. there are some bifurcation points which are bigger than δ∗ and
some which are smaller but all of them are bigger than δd. We begin
the continuation at δ � 3 and we detect only two more branches when
we increase δ at δ � 43.4851 and δ � 9.98041 which correspond to δ1

b
and δ2

b. We focus on the branches for n ∈ {1, 2, 3, 4, 5} such that δn
b > δ

∗.
This case is represented in Figure 6.
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Figure 7: Continuation calculation for the system (2.21) with parameter
values (κ, α, l , ū1 , ρ) � (p2 , p3 , p4 , p5 , p6) � (1, 0.0001, 50, 0.211325, 0.05) and
primary bifurcation parameter δ. (a) Bifurcation diagram in (δ, ‖z‖L2 )-space
showing the parameter on the horizontal axis and the solution norm on the
vertical axis. Some of the detected bifurcation points are marked as circles
(magenta). The last branch point (blue circle) is not a true bifurcation point
but results from the degeneracy δ � −κ/g(u∗1) �: δd. At the other branch
points (magenta, filled circles) non-homogeneous solution branches (green,
blue, cyan) bifurcate via single eigenvalue crossing. The value δ∗ � −κ/γ � −4
is marked by a vertical grey dashed line. (b) Solutions are plotted for
(x , u1 � u1(x)) at certain points on the non-homogeneous branches; the
solutions are marked in (a) using crosses.

Numerically we observe that all the branches stop when they reach
the critical value δ∗. Next, we consider n ≥ 6 such that δd < δn

b < δ
∗ as

reported in Figure 7. In this case there are two critical values: δ∗ � −4
(dashed line) and δd � −6 (blue circle). The branches detected for a δ
close to δ∗ have the same direction as the branches detected for δ > δ∗;
but starting from a certain n, in this case n � 8, we notice that the
branches change the direction. Probably this behaviour is due to the
fact that the branches cannot cross the value δ � δd. We do no detect
any branch for δ < δd.

In the range between δd and δ∗ the branches do not seem to overlap.
Numerically, one observes that the branches get shorter and shorter due
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to the numerical continuation breaking down as the branches approach
δd. Looking at the shape of the solutions in the different branches we
can observe that they have more and more interfaces as we approach
the limiting value δd. Moreover, the solutions inside a fixed branch get
sharper and sharper peaks along the branch (see for example the cyan
branch).

2.4.4 Continuation in ρ

The next question is if we can find non-homogeneous steady states also
for the original problem with ρ � 0. This can be achieved by using a
homotopy-continuation idea.
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Figure 8: Continuation calculation for the system (2.21) starting with the
same basic parameter values as in Figure 4 but with ρ � 0.001. We stop the
continuation at the solution points for a certain δ (as done in Figure 4(a))
and change from δ as a primary continuation parameter to ρ as a primary
parameter with the goal to decrease the parameter to ρ � 0. The values for δ
are δ � −16 for the red branch, δ � −9.4 for the green branch and δ � −7 for
the blue one. (a1)-(a3) Bifurcation diagrams in (ρ, ‖z‖L2 )-space. The starting
point for the continuation is at the right boundary where ρ � 0.001 and then
ρ is decreased. (b1)-(b3) Solutions obtained on the bifurcation branches above
at the point ρ � 0 (points are marked with squares in (a1)-(a3)). (c1)-(c3)
Solutions obtained on the bifurcation branches for the initial system with
ρ � 0.001. We can observe that also for ρ � 0 the solutions have a non-trivial
herding-type profile.

First, we continue theproblem in δ andcompute thenon-homogeneous
solution branches. Thenwepick a steady state on the non-homogeneous
branch and switch to continuation in ρ while keeping δ fixed. The
results of this strategy are shown in Figure 8 (for α � 0.2) and in Figure 9
(for α � 0.001). For the first three solutions shown in Figure 4(b), this
strategy works if we start from a very small ρ. Figure 8(c) shows the
solution in the branch for a ρ , 0: we notice that the solutions for the
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case ρ � 0 keep the non-constant profile as for ρ , 0 yielding relevant
herding solutions for applications.
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Figure 9: Continuation calculation for the system (2.21) starting with the same
parameter value and as in Figure 6. We stop the continuation at δ � −9 (as
done in Figure 6(a)) and change from δ as a primary continuation parameter
to ρ as a primary parameter with the goal to decrease the parameter to
ρ � 0. (a) Bifurcation diagram in (ρ, ‖z‖L2 )-space. The starting point for the
continuation is at the right boundary where ρ � 0.05 and then ρ is decreased.
(b) Solution on the second branch δ2

b of non-homogeneous steady states at
ρ � 0 (point is marked with squares in (a)).

In the case with α sufficiently small, the strategy works better and
we indeed find non-homogeneous steady states for ρ � 0 as shown in
Figure 9(b). Moreover we can also obtain herding solutions. We use
the starting parameter values

(κ, α, l , ū1 , ρ) � (1, 0.001, 50, 0.211325, 0.05).

We start from δ � 10 and the first branchwe detect is δ2
b � 9.98041. Once

we are in this branch, we continue in ρ for a fixed δ (in this case δ � −9).
For information herding models, solutions which are of particular
importance are those with sharp interfaces between the endstates, i.e.,
the solution is near zero and near one in certain regions with sharp
interfaces in between. These solutions represent a herding effect in the
sense of sharply split opinions. More precisely, they indicate for which
values of the information variable x we observe a herding behaviour,
i.e. a concentration of individuals (u ≈ 1) at certain values of x. Figure
9(b) shows herding in the interval [0, 0.2] ∪ [0.8, 1], while only a few
individuals adopt the information value in [0.3, 0.7].

2.4.5 Solutions and other parameters

In this section we focus on the case with α sufficiently small. We are
interested in studying, how the solutions change depending on the
other parameters κ and l. We fix as starting parameters

(κ, α, l , ū1 , ρ) � (1, 0.001, 50, 0.211325, 0.05)
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and consider the branch δ2
b. We study the solutions depending on the

different parameters. In Figure 10 we show changes along the branch
(which bifurcates at δ � 9.98041). We observe that the shape is the
same along the branch but the interfaces sharpen as δ is decreased.
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Figure 10: Solutions along the branch δ2
b for the system (2.21) with parameter

values (κ, α, l , ū1 , ρ) � (p2 , p3 , p4 , p5 , p6) � (1, 0.001, 50, 0.211325, 0.05). (a)
Solution of non-homogeneous steady states at δ � 8.72901. (b) Solution of non-
homogeneous steady states at δ � 5.76477. (c) Solution of non-homogeneous
steady states at δ � 1.548.

In Figure 11 we show how the solution changes with the length of
the domain. We consider l � 20, l � 50 and l � 100. The branch δ2

b
is detected at δ � −3.28144, 9.98041, 43.4851 respectively. Since we
consider the same branch, the shape does not change and length of the
domain shifts the bifurcation points and just scales the solution.
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Figure 11: Solutions in the branch δ2
b for the system (2.21) with parameter

values (κ, α, ū1 , ρ) � (p2 , p3 , p5 , p6) � (1, 0.001, 0.211325, 0.05). (a) Solution
of non-homogeneous steady states at δ � −3.5154, l � 20. (b) Solution
of non-homogeneous steady states at δ � 8.93964, l � 50. (c) Solution of
non-homogeneous steady states at δ � 37.9117, l � 100.
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Figure 12: Solutions in the branch δ2
b for the system (2.21) with parameter

values (α, l , ū1 , ρ) � (p3 , p4 , p5 , p6) � (0.001, 50, 0.211325, 0.05). (a) Solution
of non-homogeneous steady states at δ � 8.72901, κ � 1. (b) Solution of
non-homogeneous steady states at δ � −92.2877, κ � 5. (c) Solution of
non-homogeneous steady states at δ � −220.578, κ � 10.

When we change the parameter κ the bifurcation points are also
simply shifted. We consider κ � 1, κ � 5 and κ � 10. The branch δ2

b
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is detected at δ � 9.98041,−92.2877,−214.999 respectively. Moreover,
for the first case the branches approach the value δd from the right,
while in the other two cases from the left. As for the previous case we
consider three different solutions with (almost) the same norm (163.863
for the case (a), 163.872 for (b) and 163.911 for (c)).

In summary, we conclude that κ and l do not seem to be the paramet-
ers of primary importance in our context as we can re-obtain similar
solutions and similar bifurcation structures for different values of κ
and l upon varying δ, α as primary parameters.



A KINET IC EQUATION FOR ECONOMIC VALUE3
EST IMATION WITH IRRAT IONALITY AND
HERDING

This chapter is organized as follows. In Section 3.1, the kinetic model
is detailed and the grazing collision limit is performed. The resulting
Fokker-Planck model (1.5)-(1.6) is analysed in Section 3.2. Furthermore,
we discuss the time evolution of the moments of g(x , w , t) in some
specific examples. The numerical results are presented in Section 3.3.

3.1 modeling

The aim of this chapter is to propose and investigate a kinetic model
describing irrationality and herding of market agents, motivated by
the works of Toscani [Tos06] and Delitala and Lorenzi [DL14], i. e.we
model the evolution of the distribution of the number of agents in a
large market using a kinetic approach.

3.1.1 Public information and herding

Wedescribe the behaviour of themarket agents bymeans ofmicroscopic
interactions among the agents. The state of the market is assumed
to be characterized by two continuous variables: the estimated asset
value w ∈ R+ :� [0,∞) and the rationality x ∈ R. We say that the
agent has a rational behaviour if x > 0 and an irrational behaviour if
x < 0. The changes in asset valuation are based on binary interactions.
We take into account two different types: the interaction with public
sources, which characterizes a rational agent, and the effect of herding,
characterizing an irrational agent. In the following, we define the
corresponding interaction rules.
Let w be the estimated asset value of an arbitrary agent before the

interaction and w∗ the asset value after exchanging information with
the public source. Given the background W � W (t), which may be
interpreted as a “fair” value, the interaction is given, similarly as in
[CDCT09], by

w∗ � w − αP(|w −W |)(w −W ) + ηd(w). (3.1)

The function P measures the compromise propensity and takes values
in [0, 1], and the parameter α > 0 is a measure of the strength of this
effect. Furthermore, the function d with values in [0, 1] describes the
modification of the asset value due to diffusion, and η is a random
variable with distribution µ with variance σ2

I and zero mean taking
values on R, i.e. 〈w〉 �

∫
R

wdµ(w) � 0 and 〈w2
〉 �

∫
R

w2dµ(w) � σ2
I .

An example for P is [Tos06]

P(|w −W |) � 1{|w−W |<r} ,

where r > 0 and 1A denotes the characteristic function on the set A.
Thus, if the estimated asset value is too far from the value available

44
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from public sources (the “fair” value), the effect of public information
will be discarded (selective perception). The idea behind (3.1) is that if a
market agent trusts an information source, he/she will update his/her
estimated asset value to make it closer to the one suggested by the
public information. We expect that a rational investor follows such a
strategy.

The interaction rule (3.1) has to ensure that the post-interaction value
w∗ remains in the intervalR+. We have to require that diffusion vanishes
at the border w � 0, i.e. d(0) � 0. In the absence of diffusion, it follows
thatw∗ � w−αP(|w−W |)(w−W ) ≥ w−α(w−W ) � (1−α)w+αW ≥ 0 if
w > W and w∗ � w+αP(|w−W |)(W−w) ≥ w ≥ 0 if w ≤ W . Therefore,
the post-interaction value w∗ stays in the domain R+.

The second interaction rule aims to model the effect of herding, i.e.,
we take into account the interaction between a market agent and other
investors. We suggest the interaction rule, similarly as in [Tos06],

w∗ � w − βγ(v , w)(w − v) + η1d(w),
v∗ � v − βγ(v , w)(v − w) + η2d(v).

(3.2)

The pairs (w , v) and (w∗ , v∗) denote the asset values of two arbitrary
agents before and after the interaction, respectively. In (3.2), β ∈ (0, 1/2]
is a constant which measures the attitude of the market participants
to change their mind because of herding mechanisms. Furthermore,
η1, η2 are random variables, modelling diffusion effects, with the same
distribution with variance σ2

H and zero mean, and, to simplify, the
function d is the same as in (3.1). The function γ with values in
[0, 1] describes a socio-economic scenario where individuals are highly
confident in the asset. An example, taken from [DL14], reads as

γ(v , w) � 1{w<v}v f (w), (3.3)

where f is nonincreasing, f (0) � 1, and limw→∞ f (w) � 0. If an agent
has an asset value w smaller than v, the function γ will push this agent
to assume a higher value w∗ than that one before the interaction. This
means that the agent trusts other agents that assign a higher value.
If w is larger than v, the agent hesitates to lower his asset value and
nothing changes. Agents that assign a small value w tend to herd
with a higher rate, i.e. f is nonincreasing. Another choice is given by
γ(v , w) � 1{|w−v |<rH } [DL14]. In this case, the interaction occurs only
when the two interacting agents have asset values which are not too
different from each other.

The interaction does not take place if w∗, v∗ are negative. In the
absence of diffusion, adding both equations in (3.2) gives w∗+v∗ � v+w
which means that the total momentum is conserved. Subtracting both
equations in (3.2) yields w∗ − v∗ � (1 − 2βγ(v , w))(w − v). Since
1 − 2βγ(v , w) ∈ [0, 1) (observe that 0 < β ≤ 1/2), the post-interaction
difference w∗ − v∗ in the asset values is smaller than the pre-interaction
difference w − v. We infer that w∗, v∗ remain nonnegative.

When diffusion is taken into account, we need to specify the range
of values the random variables η1, η2 in (3.2) can assume. This clearly
depends on the choice of d(w), and we refer to [DMPW09, page 3691]
for a more detailed discussion.
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3.1.2 The kinetic equation

Instead of calculating the value x and w for each market agent, we
prefer to investigate the evolution of the distribution f (x , w , t) of the
estimated value and the rationality of the market participants. The
integral

∫
B f (x , w , t)dz with z � (x ,w) represents the number of agents

with asset value and rationality in B ⊂ R×R+ at time t ≥ 0. In analogy
with classical kinetic theory of rarefied gases, we may identify the
position variable with the rationality and the velocity with the asset
value. Using standard methods of kinetic theory, f (x , w , t) evolves
according to the inhomogeneous Boltzmann equation

∂t f +[Φ(x , w) f ]x �
1
τI

QI ( f )+
1
τH

QH ( f , f ), (x , w) ∈ R×R+ , t > 0.

(3.4)

Here,Φ(x , w) is the drift term, QI and QH are interaction integrals mod-
elling the public information and herding, respectively, and 1/τI > 0,
1/τH > 0 describe the interaction frequencies. This equation is supple-
mented by the boundary condition f (x , 0, t) � 0 (nobody believes that
the asset has value zero) and the initial condition f (x , w , 0) � f0(x , w)
for (x , w) ∈ R × R+.

A simple model for Φ can be introduced as follows. If an agent gives
an asset value that is much larger than the “fair” value W , he/she will
recognize that the value is overestimated and it is believed that he/she
will become more rational. The same holds true when the estimated
value is too low compared to W . In this regime, the drift function
Φ(x , w) should be positive since agents drift towards higher rationality
x > 0. When the estimated value is not too far from the value W , agents
may behave more irrational and drift towards the region x < 0, so the
drift function is negative. An example for such a function is

Φ(x , w) �
{
−δκ for |w −W | < R,
κ for |w −W | ≥ R,

(3.5)

where δ, κ, R > 0. The constant R fixes the range |w −W | < R in which
bubbles and crashes do not occur. More realistic models are obtained
when R depends on time, and we consider such a case in Section
3.3. An alternative is to employ the mean asset value

∫
R

∫
R+

f wdwdx
instead of w in |w −W | < R to distinguish the ranges.

Next, we detail the choice of the interaction integrals. As pointed out
in [CDCT09], the existence of a pre-interaction pair which returns the
post-interaction pair (w∗ , v∗) through an interaction of the type (3.1) is
not guaranteed, because of the boundary constraint. Therefore, we will
give the interaction rule in the weak form. Let φ(w) :� φ(x , w) be a
regular test function and set Ω � R × R+, z � (x , w). The weak form
reads as∫
Ω

QI ( f )φ(w)dz �

〈∫
R+

∫
Ω

(
φ(w∗) − φ(w)

)
M(W ) f (x , w , t)dzdW

〉
,

(3.6)

where 〈·〉 is the expectation value with respect to the random variable
η in (3.1) and M(W ) ≥ 0 represents the fixed background satisfying
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∫
R+

M(W )dW � 1. The Boltzmann equation for this operator, ∂t f �

QI ( f )/τI , becomes in the weak form

∂t

∫
Ω

f (x , w , t)φ(w)dz �
1
τI

〈∫
R+

∫
Ω

(
φ(w∗)−φ(w)

)
M(W ) f (x , w , t)dzdW

〉
.

Choosing φ(w) � 1, the right-hand side vanishes, which expresses
conservation of the number of agents, ∂t

∫
Ω

f (x , w , t)dz � 0. By
taking φ(w) � w, a computation shows that the mean asset value
mw ( f ) �

∫
Ω

f wdz is nonincreasing.

The operator QH ( f , f ) models the binary interaction of the agents
and, similarly as in [Tos06], we define∫

Ω

QH ( f , f )φ(w)dz �

〈∫
R+

∫
Ω

(
φ(w∗)−φ(w)

)
f (x , w , t) f (x , v , t)dzdv

〉
,

(3.7)

where (w , v) is the pre-interaction pair that generates via (3.2) the post-
interaction pair (w∗ , v∗). Choosing φ � 1 in the Boltzmann equation
∂t f � QH ( f , f ), we see that this operator also conserves the number
of agents. Taking φ(w) � w and using a symmetry argument, the
interaction rule (3.2), and the fact that the random variables η1 and η2
have zero mean, a computation shows that ∂t mw ( f ) � 0., i.e., mean
asset value is conserved. This is reasonable as the crowd may tend to
any direction depending on the herding.

3.1.3 Grazing collision limit

The analysis of the Boltzmann equation (3.4) is rather involved, and it
is common in kinetic theory to investigate certain asymptotic leading
to simplified models of Fokker-Planck type. Our aim is to perform the
formal limit (α, β, σ2

H , σ
2
I ) → 0 (in a certain sense made precise below),

where α, β appear in the interaction rules (3.1) and (3.2) and σ2
H , σ2

I are
the variances of the random variables in these rules. Since the formal
limit is very similar to that one in [CPT05, Tos06], we sketch it only.

Set k � β/α, ts � αt, xs � αx, and introduce the functions g(xs , w , ts ) �
f (x , w , t), Φs (xs , w) � Φ(x , w). After the change of variables (x , w) 7→
(xs , ts ) and setting zs � (xs , w), the weak form of (3.4) reads as

∂
∂ts

∫
Ω

g(xs , w , ts )φ(w)dzs +

∫
Ω

∂
∂xs

(
Φs (xs , w)g(xs , w , ts )

)
φ(w)dzs

�
1
ατI

∫
Ω

QI ,s (g)φ(w)dzs +
1
ατH

∫
Ω

QH,s (g , g)φ(w)dzs , (3.8)

where QI ,s (g) � QI ( f ), QH,s (g , g) � QH ( f , f ) are defined in weak
form in (3.6), (3.7), respectively. In the following, we omit the index s.

Now, we rewrite the collision integrals in (3.8) using a Taylor expan-
sion of φ(w∗) − φ(w) and the properties 〈η〉 � 0, 〈η2

〉 � σ2
I , leading

to

1
ατI

∫
Ω

QI (g)φ(w)dz

� −
1
τI

∫
R+

∫
Ω

φ′(w)P(|w −W |)(w −W )M(W )g(x , w , t)dzdW



48 kinetic equation with irrationality and herding

+
1

2τI

∫
R+

∫
Ω

φ′′(w̃)
(
αP(|w −W |)2(w −W )2

+
σ2

I

α
d(w)2

)
M(W )g(x , w , t)dzdW

� −
1
τI

∫
Ω

φ′(w)H(w)g(x , w , t)dz + R(α, σI )

+
1

2τI

∫
R+

∫
Ω

φ′′(w)
(
αP(|w −W |)2(w −W )2

+
σ2

I

α
d(w)2

)
M(W )g(x , w , t)dzdW,

where R(α, σI ) is some remainder term with the property R(α, σI ) → 0
as (α, σI ) → 0 [Tos06, Section 4.1], and

H(w) �
1
τI

∫
R+

P(|w −W |)(w −W )M(W )dW. (3.9)

Then, in the limit α → 0 and σI → 0 such that λI :� σ2
I /α is fixed,

lim
(α,σI )→0

1
ατI

∫
Ω

QI (g)φ(w)dz

�
1
τI

∫
Ω

(
− φ′(w)H(w) +

λI

2 d(w)2φ′′(w)
)

g(x , w , t)dz

�

∫
Ω

(
(H(w)g)w +

λI

2τI
(d(w)2 g)ww

)
φ(w)dz ,

where in the last step we integrated by parts. The boundary integrals
vanish since g � 0 at w � 0 and d(0) � 0 imply that (d(w)2 g)w |w�0 �

d′(0)g |w�0 + d(0)gw |w�0 � 0.

The limit (α, σH ) → 0 in the last term of (3.8) is performed in a similar
way. Using a Taylor expansion and (3.2), we can show that

1
ατH

∫
Ω

QH (g , g)dz

�

∫
Ω

(
− K[g](x , w , t)φ′(w) +

σ2
H

2ατH
d(w)2ρφ′′(w)

)
g(x , w , t)dz

+
αk2

2τH

∫
R+

∫
Ω

γ(v , w)2(v − w)2 g(x , v , t)g(x , w , t)φ′′(w)dzdw

+ R(α, σH ),

where R(α, σH ) is another remainder term, ρ �
∫
Ω

f dz, and

K[g](x , w , t) �
k
τH

∫
∞

0
γ(v , w)(v.w)g(x , v , t)dv.

Keeping λH � σ2
H/α fixed, the limit (α, σH ) → 0 gives

lim
(α,σH )→0

1
ατH

∫
Ω

QH (g , g)dz �

∫
Ω

(
(K[g]g)w +

λHρ

2τH
(d(w)2 g)ww

)
φ(w)dz.

Summarizing, we obtain in the limit the weak form of the Fokker-
Planck-type equation

∂t g+(Φ(x , w)g)x � (K[g]g+H(w))w+
1
2

(
λI

τI
+
λHρ

τH

)
(d(w)2 g)ww (3.10)



3.2 analysis 49

for (x , w) ∈ R × R+, t > 0. This equation is supplemented by the
boundary condition g � 0 at w � 0 and the initial condition g(0) � g0
in Ω.

3.2 analysis

The aim of this section is to analyse the Fokker-Planck-type equation
derived in the previous section. To this end, we set

Γ(v , w) :� k
τH
γ(v , w)(v−w), D(w) :� 1

2

(
λI

τI
+
λHρ

τH

)
d(w)2 , Ω � R×R+.

Then (3.10) simplifies to

∂t g + [Φ(x ,w)g]x � (K[g]g + H(w)g)w + [D(w)g]ww (3.11)

with
K[g] �

∫
∞

0
Γ(v , w)g(v)dv.

3.2.1 Existence of weak solutions

We wish to show the existence of weak solutions to (3.11)–(1.6) under
the following hypotheses:

(H1) Φ ∈ W2,∞(Ω), H ∈ W1,∞(R+), D ∈ W2,∞(R+), and there exists
δ > 0 such that D(w) ≥ δ > 0 for w ∈ (0,∞).

(H2) Γ ∈ L2((R+)2), Γ ≥ 0, and Γw (v , w) ≤ 0 for all v, w ≥ 0.

(H3) g0 ∈ H1(Ω) and 0 ≤ g0 ≤ M0 for some M0 > 0.

Remark 8. We discuss the above assumptions. The strict positivity of
D(w) (and consequently of d(w)) is needed for technical reasons since
we cannot handle the degeneracy d(0) � 0 which was assumed in the
modelling part. One may interpret our assumption as a regularization
for “small” δ > 0. Condition Γw (v ,w) ≤ 0 is satisfied for regularized
versions of (3.3) since both w 7→ γ(v , w) and w 7→ v − w are nonin-
creasing functions on R+. The remaining hypotheses are regularity
conditions needed for the mathematical analysis. �

Then the main result reads as follows.

Theorem 9. Let Hypotheses H1-H3 hold. Then there exists a weak solution
g to (1.5)-(1.6) satisfying 0 ≤ g(x , w , t) ≤ M0eλt for (x , w) ∈ Ω, t > 0,
where λ > 0 depends on Φ, H and D, and it holds g ∈ L2(0, T; H1(Ω)),
∂t g ∈ L2(0, T; H1(Ω)′).

The idea of the proof is to regularize equation (1.5) by adding a
second-order derivative with respect to x, to truncate the nonlinearity,
and to solve the equation in the finite interval w ∈ (0, ρ). Then we pass
to the deregularization limit. The key step of the proof is the derivation
of uniform H1 estimates allowing for the compactness argument. These
estimates are derived by analysing the differential equation satisfied by
h :� gx and by making crucial use of the boundary conditions.
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Proof of Theorem 9. Let ρ > 0, 0 < ε < 1, M > 0, set

KM[g](x , w , t) �
∫ ρ

0
Γ(v ,w)(g)M (x , v , t)dv

(g)M � max{0,min{M, g}},

where g is an integrable function, and introduce Ωρ � (−ρ, ρ) × (0, ρ).
We split the boundary ∂ΩR into two parts:

∂Ωρ � ∂ΩD ∪ ∂ΩN , where
∂ΩD � {(x , w) : x ∈ [−ρ, ρ], w � 0, ρ},
∂ΩN � {(x , w) : x � ±ρ, w ∈ (0, ρ)}.

Finally, we set g+ � max{0, g}. Consider the approximated nonlinear
problem

∂t g + [Φ(x , w)g+]x (3.12)
�

[
(KM[g] + H(w) + D′(w))g+

]
w + [D(w)gw]w + εgxx ,

g � 0 on ∂ΩD , gx � 0 on ∂ΩN , g(x , w , 0) � 0 in Ωρ .
(3.13)

We introduce the space H1
D (Ωρ) consisting of those functions v ∈

H1(Ωρ) which satisfy v � 0 on ∂ΩD , and we set H−1
D (Ωρ) � (H1

D (Ωρ))′.
The weak formulation of (3.12)-(3.13) reads as:

for all v ∈ L2(0, T; H1
D (Ωρ)),∫ T

0
〈∂t g , v〉dt (3.14)

� −

∫ T

0

∫
Ωρ

(
(Φx (x , w)g+

+Φ(x , w)g+
x )v

+
(
KM[g] + H(w) + D′(w)

)
g+vw + d(w)gw vw + εgx vx

)
dzdt ,

where 〈·, ·〉 is the dual product between H−1
D (Ωρ) and H1

D (Ωρ).
We wish to apply the Leray-Schauder fixed-point theorem. For this,

we split the proof in several steps.

Lemma 10. Given T > 0, g̃ ∈ L2(0, T; L2(Ω)), and η ∈ [0, 1], there exists
a weak solution to the linearised problem

∂t g + η
(
Φ(x , w)x g̃+

+Φ(x , w)gx
)

� η
(
(KM[ g̃] + H(w) + D′(w)) g̃+

)
w + (D(w)gw)w + εgxx ,

g � 0 on ∂ΩD , gx � 0 on ∂ΩN , g(x , w , 0) � 0 in ΩR .

Proof. We introduce the forms

a(g , v) �
∫
Ωρ

(
ηΦ(x , w)gx v + D(w)gw vw + εgx vx

)
dz , (3.15)

g , v ∈ H1
D (Ωρ),

F(v) � −η
∫
Ωρ

(
Φx (x , w) g̃+v + (KM[ g̃] + H(w) + D′(w)) g̃+vw

)
dz.

(3.16)
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Since KM[ g̃] is bounded, it is not difficult to see that a is bilinear and
continuous on H1

D (Ωρ)2 and F is linear and continuous on H1
D (Ωρ).

Furthermore, using Young’s inequality and D(w) ≥ δ > 0, it follows
that, for some Cε > 0,

a(g , g) ≥
1
2

∫
Ωρ

(
δg2

wdz + ε(g2
x + g2)

)
dz − (Cε + ε)

∫
Ωρ

g2dz

≥ min{δ, ε}‖g‖2H1(Ωρ ) − (Cε + ε)‖g‖2L2(Ωρ ) .

By Corollary 23.26 in [Zei90], there exists a unique solution
g ∈ L2(0, T; H1

D (Ωρ)) ∩ H1(0, T; H−1
D (Ωρ)) to

〈∂t g , v〉 + a(g , v) � F(v), t > 0, g(0) � ηg0. (3.17)

finishing the proof. �

This defines the fixed-point operator S : L2(0, T; L2(Ωρ)) × [0, 1]→
L2(0, T; L2(Ωρ)), S( g̃ , η) � g, where g solves (3.17). This operator
satisfies S( g̃ , 0) � 0. Standard arguments show that S is continuous
(employing H1 estimates depending on ε). Since L2(0, T; H1

D (Ωρ)) ∩
H1(0, T; H−1

D (Ωρ)) is compactly embedded in L2(0, T; L2(Ωρ)), the
operator is also compact. In order to apply the fixed-point theorem
of Leray-Schauder, we need to show uniform estimates, which are
provided by the following lemma.

Lemma 11. Let g be a fixed point of S(·, η), i.e., g solves (3.17) with g̃ � g.
Then, for some λ > 0 independent of ε and R, it holds that 0 ≤ g ≤ M0eλt

in (0, T)

Proof. We choose v � g− :� min{0, g} ∈ L2(0, T; H1
D (ΩR)) as a test

function in (3.17) and integrate over (0, t). Since g+g− � 0 and g−(0) �
g−0 � 0, we have

a(g , g−) �
∫
ΩR

(
D(w)(g−w)2

+ ε(g−x )2)dz ≥ 0, F(g−) � 0,

which shows that

1
2

∫
Ωρ

g−(t)2dz �
1
2

∫
Ωρ

g−(0)2dz −
∫ t

0
a(g , g−)ds ≤ 0.

This yields g− � 0 and g ≥ 0 in Ωρ, t > 0. In particular, we may write
g instead of g+ in (3.15)-(3.16).
For the upper bound, we choose the test function v � (g −M)+ ∈

L2(0, T; H1
D (Ωρ)) in (3.14), where M � M0eλt for some λ > 0whichwill

be determined later. By Hypothesis H3, (g −M)+(0) � (g0 −M0)+ � 0.
Observing that ∂t M � λM, (g −M)(g −M)+w �

1
2 [((g −M)+)2]w and

integrating by parts in the integrals involving KM[g] + H(w) + D′(w),
we find that

1
2

∫
Ωρ

(g −M)+(t)2dz � −λ

∫ t

0

∫
Ωρ

M(g −M)+dzds

− η

∫ t

0

∫
Ωρ

(
Φx (x , w)((g −M) + M) +Φ(x , w)(g −M)+x

)
(g −M)+dzds

− η

∫ t

0

∫
Ωρ

(KM[g] + H(w) + D′(w))((g −M) + M)(g −M)+wdzds
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−

∫ t

0

∫
Ωρ

(
D(w)((g −M)+w )2

+ ε((g −M)+x )2)dzds

� −η

∫ t

0

∫
Ωρ

(Φx (x , w) + λ)M(g −M)+dzds

− η

∫ t

0

∫
Ωρ

Φx (x , w)((g −M)+)2dzds

− η

∫ t

0

∫
Ωρ

Φ(x , w)(g −M)+x (g −M)+dzds

+
η

2

∫ t

0

∫
Ωρ

(
KM[g]w + H′(w) + D′′(w)

)
((g −M)+)2dzds

+ η

∫ t

0

∫
Ωρ

(
KM[g]w + H′(w) + D′′(w)

)
M(g −M)+dzds

−

∫ t

0

∫
Ωρ

(
D(w)((g −M)+w )2

+ ε((g −M)+x )2)dzds .

The third integral on the right-hand side can be estimated by Young’s
inequality,

− η

∫ t

0

∫
Ωρ

Φ(x , w)(g −M)+x (g −M)+dzds

≤
η

2ε ‖Φ‖
2
L∞ (Ω)

∫ t

0

∫
Ωρ

((g −M)+)2dzds +
ε
2

∫ t

0

∫
Ωρ

((g −M)+x )2dzds .

Then, collecting the integrals involving M(g −M)+ and ((g −M)+)2

and observing that Γw ≤ 0 implies that KM[g]w ≤ 0, it follows that

1
2

∫
Ωρ

(g −M)+(t)2dz

≤ η

∫ t

0

∫
Ωρ

(
−Φx (x , w) + H′(w) + D′′(w) − λ

)
M(g −M)+dzds

+
η

2

∫ t

0

∫
Ωρ

( 1
ε
‖Φ‖2L∞ (Ω) − 2Φx (x , w) + H′(w) + D′′(w)

)
((g −M)+)2dzds

−

∫ t

0

∫
Ωρ

(
D(w)((g −M)+w )2

+
ε
2 ((g −M)+x )2

)
dzds .

Choosing λ ≥ ‖Φx ‖L∞(Ω) + ‖H′‖L∞(0,∞) + ‖D′′‖L∞(0,∞) , the first integral
on the right-hand side is nonpositive. The last integral is nonpositive
too, and the second integral can be estimated by some constant Cε > 0.
We conclude that∫

Ωρ

(g −M)+(t)2dz ≤ Cε

∫ t

0

∫
Ωρ

((g −M)+)2dzds .

Then Gronwall’s lemma implies that (g −M)+ � 0 and g ≤ M in Ωρ,
t > 0. �

In particular, we can write K[g] instead of KM[g] in (3.14). The
L∞ bound provides the desired bound for the fixed-point operator in
L2(0, T; L2(ΩR)), yielding the existence of a weak solution to (3.14). We
need more a priori estimates. The following lemma is the key step in
the proof.
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Lemma 12. Let g be a weak solution to (3.14). Then there exists C > 0
independent of ε and R such that ‖g‖L2(0,T;H1(ΩR )) ≤ C.

Proof. We choose first the test function v � g ∈ L2(0, T; H1
D (Ωρ)) in

(3.14) (replacing T by t ∈ (0, T)):

1
2

∫
Ωρ

g(t)2dz

� −

∫ t

0

∫
Ωρ

Φx (x , w)g2dzds −
∫ t

0

∫
Ωρ

Φ(x , w)gx gdzds

−
1
2

∫ t

0

∫
Ωρ

(
K[g] + H(w) + D′(w)

)
(g2)wdzds

−

∫ t

0

∫
Ωρ

(
D(w)g2

w + εg2
x
)
dzds +

1
2

∫
Ωρ

g2
0dz.

Applying Young’s inequality to the second integral on the right-hand
side, integrating by parts in the third integral, and observing that g � 0
at w ∈ {0, ρ} yields, for some constant C1 > 0 which depends on the
L∞ norms of Φx , H′, and D′′ (we use again that K[g]w ≤ 0),

1
2

∫
Ωρ

g(t)2dzdt (3.18)

≤ C1

∫ t

0

∫
Ωρ

g2dzds + C1

∫ T

0

∫
Ωρ

g2
xdzds

−

∫ T

0

∫
Ωρ

(
δg2

w + εg2
x
)
dzds +

1
2

∫
Ωρ

g2
0dz.

Since C1 > ε is possible, this does not give an estimate, and we need a
further argument.

Next, we differentiate (3.12) with respect to x in the sense of distribu-
tions and set h :� gx :

∂t h +
[
Φx (x , w)g +Φ(x , w)h

]
x (3.19)

� (K[h]g)w +
[
(K[g] + H(w) + D′(w))h

]
w

+ (D(w)hw)w + εhxx in Ωρ , t > 0.

We observe that the boundary condition g � 0 on ∂ΩD implies that also
gx � 0 holds on ∂ΩD and so, gx � 0 on ∂Ωρ. Hence, equation (3.19)
is complemented with homogeneous Dirichlet boundary conditions.
Furthermore, h(x , w , 0) � g0,x (x , w). The weak formulation of (3.19)
reads as∫ T

0
〈∂t h , v〉dt

� −

∫ T

0

∫
Ωρ

((
Φxx (x , w)g + 2Φx (x , w)h +Φ(x , w)hx

)
v

+ K[h]gvw +
(
K[g] + H(w) + D′(w)

)
hvw + D(w)hw vw + εhx vx

)
dzdt

for all v ∈ L2(0, T; H1
0 (Ωρ)). This is a linear nonlocal problem for h,

with given g, and we verify that there exists a solution
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h ∈ L2(0, T; H1
0 (Ωρ)) ∩ H1(0, T; H−1(Ωρ)), using similar arguments as

above. Therefore, we can choose v � h as a test function in (3.19):

1
2

∫
Ωρ

h(t)2dz

� −

∫ t

0

∫
Ωρ

(
(Φxx (x , w)gh + 2Φx (x , w)h2

+
1
2Φ(x , w)(h2)x

)
dzds

−

∫ t

0

∫
Ωρ

(
K[h]ghw

+
1
2
(
K[g] + H(w) + D′(w)

)
(h2)w + D(w)h2

w + εh2
x

)
dzds

+
1
2

∫
Ωρ

gx (0)2dz.

We integrate by parts and employ the inequalities K[g]w ≤ 0, D(w) ≥ δ:

1
2

∫
Ωρ

h(t)2dzds (3.20)

≤ −

∫ t

0

∫
Ωρ

(
Φxx (x , w)gh +

3
2Φx (x , w)h2

)
dzds

−

∫ t

0

∫
Ωρ

K[h]ghwdzds +
1
2

∫ t

0

∫
Ωρ

(
H′(w) + D′′(w)

)
h2dzds

−

∫ t

0

∫
Ωρ

(
δh2

w + εh2
x
)
dzds +

1
2

∫
Ωρ

gx (0)2dz.

The first integral on the right-hand side is estimated by using Young’s
inequality:∫ t

0

∫
Ωρ

(
Φxx (x , w)gh+

3
2Φx (x , w)h2

)
dzds

≤
1
2 ‖Φxx ‖L∞(Ω)

∫ t

0

∫
Ωρ

(g2
+ h2)dzds

+
3
2 ‖Φx ‖L∞(Ω)

∫ t

0

∫
Ωρ

h2dzds .

For the second integral on the right-hand side of (3.20), we observe that
0 ≤ g ≤ M and ‖K[h]‖L2(Ωρ ) ≤ CΓ‖h‖L2(Ωρ ) , where
C2
Γ
�

∫
∞

0

∫
∞

0 Γ(v , w)2dvdw. Thus,

−

∫ t

0

∫
Ωρ

K[h]ghwdzds ≤ M
∫ t

0
‖h‖L2 (Ωρ ) ‖hw ‖L2 (Ωρ )ds

≤
δ
2

∫ t

0

∫
Ωρ

h2
wdzds +

M
2δ

∫ t

0

∫
Ωρ

h2dzds .

This shows that, for some C2(δ) > 0,

1
2

∫
Ωρ

h(t)2dz ≤ C2(δ)
∫ t

0

∫
Ωρ

(g2
+ h2)dzds −

δ
2

∫ t

0

∫
Ωρ

h2
wdzds

− ε

∫ t

0

∫
Ωρ

h2
xdzds +

1
2

∫
Ωρ

gx (0)2dz. (3.21)



3.2 analysis 55

We add (3.18) and (3.21) to find that, for some C3(δ) > 0,∫
Ωρ

(g2
+ h2)(t)dz +

∫ t

0

∫
Ωρ

(
δg2

w + εh2
+ εh2

x
)
dzds

≤ C3(δ)
∫ t

0

∫
Ωρ

(g2
+ h2)dzds +

1
2

∫
Ωρ

(g2
0 + g2

0,x)dz.

Gronwall’s lemma provides uniform estimates for g and gx � h:

‖g‖L∞(0,T;L2(Ωρ )) + ‖gx ‖L∞(0,T;L2(Ωρ )) + ‖gw ‖L2(0,T;L2(Ωρ )) ≤ C, (3.22)

where C > 0 depends on δ, M, and the L∞ bounds for Φ, H, D′ and
their derivatives, but not on R and ε. �

Lemma 13. There exists a weak solution g to

∂t g +Φx (x , w)g +Φ(x , w)gx

�
(
(KM[g] + H(w) + D′(w))g+

)
w + (D(w)gw)w ,

g � 0 on ∂ΩD , gx � 0 on ∂ΩN , g(x ,w , 0) � 0 in ΩR .

Proof. The lemma follows after passing to the limit ε → 0 in (3.12).
Let gε :� g be a solution to (3.12)-(3.13) with K[g] � KM[g]. First, we
estimate ∂t gε:

‖∂t gε‖L2(0,T;H−1
D (Ωρ )) (3.23)

≤ ‖Φ(x , w)gε‖L2(0,T;L2(Ωρ ))

+ ‖K[gε] + H(w) + D′(w)‖L∞(0,T;L∞(Ωρ )) ‖gε‖L2(0,T;L2(Ωρ ))

+
(
‖D‖L∞(0,T;L∞(Ωρ )) + 1

)
‖gε‖L2(0,T;H1(Ωρ )) ≤ C,

where C > 0 does not depend on ε and ρ (since K[gε] is uniformly
bounded). Estimates (3.22) and (3.23) allow us to apply the Aubin-Lions
lemma to conclude the existence of a subsequence of (gε), which is not
relabelled, such that as ε → 0,

gε → g strongly in L2(0, T; L2(Ωρ)),

gε ⇀ g weakly in L2(0, T; H1(Ωρ)),

∂t gε ⇀ ∂t g weakly in L2(0, T; H−1
D (Ωρ)).

By the Cauchy-Schwarz inequality, this shows that

‖K[gε] − K[g]‖L2 (0,T;L2 (Ωρ ))

≤

( ∫ ρ

0

∫
∞

0
Γ(v , w)2dvdw

) ∫ T

0

∫ ρ

0

∫ ρ

−ρ
(gε − g)2(x , w , t)dxdwdt

≤ CΓ‖gε − g‖L2 (0,T;L2 (Ωρ )) → 0 as ε → 0.

We infer that

K[gε]gε → K[g]g strongly in L1(0, T; L1(Ωρ)).
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Since (K[gε]gε) is bounded, this convergence holds in Lp for any p < ∞.
Consequently, we may perform the limit ε → 0 in (3.14) (with g+ � g
and KM[g] � K[g]) to obtain for all v ∈ L2(0, T; H1

D (Ωρ)),∫ T

0
〈∂t g , v〉 � −

∫ T

0

∫
Ωρ

(
(Φx (x ,w)g +Φ(x , w)gx)v (3.24)

+
(
K[g] + H(w) + D′(w)

)
gvw + D(w)gw vw

)
dzdt

which finishes the proof. �

To finish the proof of Theorem 9, it remains to perform the limit
R →∞. This limit is based on Cantor’s diagonal argument. We have
shown that there exists a weak solution gn to (3.24) with gn (0) � g0 in
the sense of H−1

D (Ωn), where n ∈ N. In particular, (gn) is bounded in
L2(0, T; H1(Ωm)) for all n ≥ m. We can extract a subsequence (gn ,m) of
(gn) that converges weakly in L2(0, T; H1(Ωm)) to some g (m) as n →∞.
Observing that the estimates in Step 4 are independent of ρ � n, we
obtain even the strong convergence gn ,m → g (m) in L2(0, T; L2(Ωm))
and a.e. in Ωm × (0, T). This yields the diagonal scheme

g1,1 , g2,1 , g3,1 , . . . → g (1)
� u |Ω1×(0,T) ,

g2,2 , g3,2 , . . . → g (2)
� u |Ω2×(0,T) ,

g3,3 , . . . → g (3)
� u |Ω3×(0,T) ,

. . .
...

This means that there exists a subsequence (gn ,1) of (gn) that con-
verges strongly in L2(0, T; H1(Ω1)) to some g (1) . From this sub-
sequence, we can select a subsequence (gn ,2) that converges strongly
in L2(0, T; H1(Ω1)) to some g (2) such that g (2)

|Ω1×(0,T) � g (1) , etc. The
diagonal sequence (gn ,n) converges to some g ∈ L2(0, T; H1(Ω)) which
is a solution to (1.5)-(1.6). �

3.2.2 Asymptotic behaviour of the moments

We analyse the time evolution of the macroscopic moments

mw (g) �
∫
Ω

g(x , w , t)wdz , mx (g) �
∫
Ω

g(x , w , t)xdz ,

where g is a (smooth) solution to (1.5)-(1.3), in the special situation that
P � 1 and Φ(x , w) is given by (3.5). We assume that the number of
agents is normalized,

∫
Ω

gdz � 1.

Proposition 14 (Convergence of the first moment mw (g)). Let P � 1 and
letΦ be given by (3.5). Then mw (g(t)) →W as t →∞, and the convergence
is exponentially fast.

Proof. Assumption P � 1 implies that (recall (3.9))

H(w) � w −W, where W �

∫
∞

0
ωM(ω)dω.
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The parameter W may be the same as in the definition of Φ(x , w) in
(3.5). Using g � 0 at w � 0 and integrating by parts with respect to w,
we obtain

∂t mw (g) � −
∫
Ω

(
K[g]g+H(w)g

)
dz ≤ −

∫
Ω

(w−W )gdz � −mw (g)+W,

where we have taken into account that K[g] ≥ 0. By Gronwall’s
lemma, mw (g(t)) converges exponentially fast to the mean value W as
t →∞. �

Proposition 15 (Convergence of the variance). Let P � 1, Γ(v , w) � Γ0,
D(w) � w, and let Φ be given by (3.5). Then Vw (g(t)) :�

∫
Ω

g(t)(w −
W )2dz →W as t →∞, and the convergence is exponentially fast.

Proof. We compute

∂tVw (g) � −2
∫
Ω

(K[g] + H(w))(w −W )gdz + 2
∫
Ω

D(w)gdz.

Since Γ(v , w) � Γ0 and D(w) � w, we find that K[g] � Γ0ρ and

∂tVw (g) � −2
∫
Ω

(
Γ0ρ(w −W )g + (w −W )2 g

)
dz + 2

∫
Ω

gwdz

� 2(1 − Γ0)mw (g) + 2Γ0W − 2Vw (g)
� 2(mw (g) − Vw (g)) + 2Γ0(W − mw (g)).

We infer from mw (g(t)) →W that the variance Vw (g(t)) converges to
W as t →∞. �

Finally, we compute ∂t mx (g). Then

∂t mx (g) �
∫
R
Φ(x , w)gdw

� −δκ

∫
R

∫
{|w−W |<R

gdwdx + κ

∫
R

∫
{|w−W |≥R

gdwdx.

This expression explains the role of the parameter δ. Indeed, assume
that in some time interval, the number of agents with estimated asset
value around W (|w −W | < R) is of the same order as those with asset
value which differs significantly from W (|w −W | ≥ R). Then, for
δ � 1, the mean rationality is decreasing, and if δ � 1, it is increasing.
Thus, δ is a measure for the expected mean rationality.

3.3 numerical simulations

We illustrate the behaviour of the solution to the kinetic model derived
in Section 3.1.2 by numerical simulations.

3.3.1 The numerical scheme

The kinetic equation (3.4) is originally posed in the unbounded spatial
domain (x , w) ∈ R × R+. Numerically, we consider instead a bounded
domain, similarly as for the approximate equation (3.12) in the existence
analysis. Since the first moment with respect to w is conserved along
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the evolution, we can normalize the maximal possible asset value to
one and thus consider w ∈ I � [0, 1]. For the rationality variable, we
approximate the whole line R by a bounded interval x ∈ [−1, 1]. This
means that agentswith x � −1 are completely irrational and individuals
with x � 1 are completely rational. A scaling argument shows that we
may also choose x ∈ [−R, R] for any R > 0. By our existence analysis,
the solution on [−R, R] for sufficiently large R converges to the solution
on R. Thus, the reduction to the finite interval [−1, 1] will not destroy
the qualitative behaviour of the solution. Thanks to the interaction rules
(3.1)-(3.2), we do not need to impose any boundary conditions. Indeed,
if we start with a value w ∈ I, the post-interaction value w∗ stays in this
interval. We choose uniform subdivisions (x0 , . . . , xN ) for the variable
x and (w0 , . . . ,wM) for the variable w. We take N � M � 70 in the
simulations. The function f (x , w , tk ) is approximated by f k

i j , where
x ∈ (xi , xi+1), w ∈ (w j , w j+1), and tk � k4t, where 4t is the time step
size (we choose 4t � 10−5).
For the numerical approximation, we make an operator splitting

ansatz, i.e., we split the Boltzmann equation (3.4) into a collisional part
and a drift part. The collisional part

∂t f � QI ( f ) or ∂t f � QH ( f , f )

is numerically solved by using the interaction rules (3.1) or (3.2), respect-
ively, and a slightly modified Bird scheme [Bir95]. First, we describe
the choice of the interaction rule. The stochastic process η is a point
process with η � ±0.06 with probability 0.5. The total number of
agents is normalized to one. We introduce the number of irrational
agents Iirr(w , t) �

∫ 0
−1 f (x , w , t)dx and the number of rational agents

Irat(w , t) �
∫ 1

0 f (x ,w , t)dx. If for fixed (w , t), themajority of the agents
is rational (Irat > 0.6), we select the herding interaction rule (3.2). If the
majority of the market participants is irrational (Irat < 0.4), we choose
the interaction rule (3.1). In the intermediate case, the choice of the
interaction rule is random. Clearly, this choice could be refined by
relating it to the value of the ratio Irat/Iirr. The pairs of individuals that
interact are chosen randomly and at each step all the agents interactwith
the background and with another randomly chosen agent, respectively.

After the interaction part, we need to distribute the function f on the
grid. The distribution at w∗ is defined by f (w∗) � f (w) − f (v). Then
the part f (w∗) is distributed proportionally to the neighbouring grid
points w j and w j+1. In order to avoid that the post-interaction values
become negative, some restriction on the random variables are needed;
we refer to [DW15, Section 2.1] for details.

At each time step, we solve the transport part

∂t f � (Φ(x , w) f )x

using a flux-limited Lax-Wendroff/upwind scheme. More precisely, let
4x � 1/N be the step size for the rationality variable, and recall that
4t � 10−5 is the time step size. The value f (xi , w j , tk ) is approximated
by f k

i for a fixed w j . We recall that the upwind scheme reads as

f k+1
i �

{
f k
i −

4t
4xΦ(xi , w j)( f k

i − f k
i−1) if Φ(xi , w j) > 0,

f k
i −

4t
4xΦ(xi , w j)( f k

i+1 − f k
i ) if Φ(xi , w j) ≤ 0,
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and the Lax-Wendroff scheme is given by

f k+1
i � f k

i −
4t

24x
Φ(xi , w j)( f k

i+1− f k
i−1)+

(4t)2

2(4x)2Φ(xi , w j)2( f k
i+1−2 f k

i + f k
i−1).

The Lax-Wendroff scheme has the advantage that it is of second order,
while the first-order upwind scheme is employed close to discontinuities.
The choice of the scheme depends on the smoothness of the data.
In order to measure the smoothness, we compute the ratio θk

i of
the consecutive differences and introduce a smooth van-Leer limiter
functionΨ(θk

i ), defined by

Ψ(θk
i ) �

|θk
i | + θ

k
i

1 + |θk
i |
, where θk

i �
f k
i − f k

i−1

f k
i+1 − fi

.

Our final scheme is defined by

f k+1
i � f k

i −
4t
4x
Φ(xi , w j)(Fk

i+1 − Fk
i ), where

Fk
i �

1
2 ( f k

i−1 − f k
i )

−
1
2sgn(Φ(xi , w j))

(
1 −Ψ(θi)

(
1 − 4t
4x
|Φ(xi , w j) |

))
( f k

i − f k
i−1).

3.3.2 Choice of functions and parameters

We still need to specify the functions used in the simulations. We take
τH � τI � 1,

P(|w −W |) � 1, d(w) � 4w(1 − w), γ(v , w) � 1{w<v}v(1 − w),

and Φ(x , w) is given by (3.5). The values of the parameters α, β, R,
W , δ, and κ are specified below. With the simple setting P � 1, the
interaction rule (3.1) becomes w∗ � (1−α)w+αW +ηd(w). This means
that α measures the influence of the public source: if α � 1, the agent
adopts the asset value W , being the background value; if α � 0, the
agent is not influenced by the public source. The random variables η is
normally distributed with zero mean and standard deviation 0.06.
The diffusion coefficient d(w) is chosen such that it vanishes at the

boundary of the domain of definition of w, i.e. at w � 0 and w � 1, and
that its maximal value is one.
The choice of γ(v , w) is similar to that one in [DL14, Formula (11)],

and we explained its structure already in Section 3.1.1. In (3.3), we have
chosen f (w) � 1 − w. This means that agents do not change their asset
value due to herding when w is close to its maximal value. When the
asset value is very low, w ≈ 0, we have w∗ ≈ βv + η1d(w), and the agent
adopts the value βv.

3.3.3 Numerical test 1: constant R, constant W

We choose R � 0.025 and W � 0.5. The aim is to understand the
occurrence of bubbles and crashes depending on the parameters α,
β, and κ. We say that a bubble (crash) occurs at time t if the mean
asset value mw ( f (t)) is larger than W + R (smaller than W − R). This
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definition is certainly a strong simplification. However, there seems
to be no commonly accepted scientific definition or classification of
a bubble. Shiller [Shi00, page 2] defines “a speculative bubble as a
situation in which news of price increases spurs investor enthusiasm,
which spreads by psychological contagion from person to person”. Our
definition may be different from the usual perception of a bubble or
crash in real markets.
Figure 13 (left) presents the percentage of bubbles and crashes for

different values of α. More precisely, we count how often the mean
asset value is larger than W + R (smaller than W − R) and how often it
lies in the range [W −R,W +R]. The quotient defines the percentage of
bubbles (crashes). The simulations were performed 200 times and the
mean asset value is then averaged. We observe that bubbles occur more
frequently when α is close to zero. This may be explained by the fact
that α represents the reliability of the public information, and when
this quantity is small, the agents do not trust the public source. If α is
close to one, all the market participants rely on the public information.
This means that they assume an asset value close to the “fair” prize W .
This corresponds to a herding behaviour, and the herding interaction
rule, which tends to higher values, applies, leading to bubble formation.
A market that does neither overestimate nor underestimate public
information leads to the smallest bubble percentage, here with α being
around 0.5. Interestingly, the results vary only slightly with respect to
the parameter β.
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Figure 13: Left: Percentage of bubbles (left) and crashes (right) depending on
the choice of α and β. The parameters are R � 0.025, W � 0.5, δ � κ � 1.

The percentage of crashes is depicted in Figure 13 (right). Qualit-
atively, the percentage is small for values α not too far from 0.5, but
the shape of the curves is more complex than those for bubbles. For
instance, there is a local maximum at α � 0.1 and a local minimum at
α � 0.85. The percentage of crashes is largest for α close to one. Again,
the dependence on the parameter β is very weak.
In the above simulations, we have assumed a constant value for

α, i.e., all market participants have the same attitude to change their
mind when interacting with public sources. We wish to show that
nonconstant values lead to similar conclusions. For this, we generate α
from a normal distribution with standard deviation 0.45 and various
means 〈α〉. The result is shown in Figure 14 for β � 0.25 and β � 0.5.
For comparison, the percentages for constant α and β � 0.05 are also
shown. It turns out that the results for nonconstant or constant α are
qualitatively similar which justifies the use of constant α.
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Figure 14: On the left: percentage of bubbles for varying α (β � 0.25) and
constant α (β � 0.5 and β � 0.05); on the right: in blue is represented the
probability distribution function for the logarithmic return, in magenta the
normal distribution with same mean and variance as the return.

In Figure 14 (on the right) we show an empirical distribution function
for the logarithmic return rt which has been computed in the following
way:

rt � ln
( mw (t)

mw (t − ∆t)

)
, ∆t � 50, t ∈ [0, 2500].

The first moment mw (t) has been computed choosing the parameters
α � 0.35, β � 0.25, and δ � 2. The return distribution has a mean very
close to zero and variance 0.0037. A normal distribution (in magenta)
with the same mean and the same variance as the return is also shown
for comparison. The returns are negatively skewed (skewness −0.1104)
and leptokurtic (kurtosis 3.2743). These features are consistent with
characteristics of real financial time series.

3.3.4 Numerical test 2: constant R, time-dependent W (t)

Now, we chose R � 0.025 and

W (t) � 0.1 + 0.05
(

sin t
5004t

+
1
2 exp t

15004t

)
, t ≥ 0.

The time evolution of the first moment mw ( f (t)) �
∫
Ω1

f (x , w , t)wdz
is shown in Figure 15. We see that the mean asset value stays within
the range [W (t) − R,W (t) + R] if α is small (except for increasing “fair”
prices) and it has the tendency to take values larger than W (t) if α is
large.

Figure 16 illustrates the influence of the parameter δ which describes
the strength of the drift in the region |w −W (t) | < R. The background
value W (t) models a crash: it increases up to time t � 0.2 then decreases
abruptly, and stays constant for t > 0.2. For small values of δ, the mean
asset value decreases slowly while it adapts to W (t) more quickly when
δ is large. Interestingly, we observe a (small) time delay for small δ
although the equations do not contain any delay term. The delay is
only caused by the slow drift term. The same phenomenon can be
reproduced for abruptly increasing W (t).



62 kinetic equation with irrationality and herding

0.1 0.2 0.3
0.1

0.15

0.2

0.25

0.3

0.35

0.4

time

m
e
a
n
 a

s
s
e
t 
v
a
lu

e

0.1 0.2 0.3
0.1

0.15

0.2

0.25

0.3

0.35

0.4

time

m
e
a
n
 a

s
s
e
t 
v
a
lu

e

Figure 15: Mean asset value mw ( f (t)) versus time t for α � 0.5 (right) and
α � 0.05 (left). The function W (t) is represented by the solid line in between
the dashed lines which represent the functions W (t) + R and W (t) − R. The
parameters are β � 0.25, R � 0.025, δ � 2, κ � 1.
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Figure 16: Mean asset value mw ( f (t)) versus time for δ � 0.01 (left) and
δ � 100 (right) with α � 0.25, β � 0.2, R � 0.025, κ � 1.

3.3.5 Numerical test 3: time-dependent R(t)

The final numerical test is concerned with time-dependent bounds
R(t). We distinguish the upper and lower bound and accordingly the
boundaries w � W (t) + R+(t) and w � W (t) − R−(t). The functions
R±(t) are defined as the Bollinger bands which are volatility bands
above and below a moving average. They are employed in technical
chart analysis although its interpretationmay be delicate. The definition
reads as

R±(tk ) � Mn (tk ) ± kσ(tk ),

where Mn (tk ) is the n-period moving average (we take n � 30), k is
a factor (usually k � 2), and σ(tk ) is the corrected sample standard
deviation,

Mn (tk ) �
1
n

n∑
`�1

mw ( f (tk−`)),

σ(tk ) �
( 1

n − 1

n∑
`�1

(
mw ( f (tk−`)) −Mn (tk−`)

)2
)1/2

.

Figure 17 shows the time evolution of the mean asset value and the
Bollinger bands for two different values of α and constant W . One may
say that the market is overbought (or undersold) when the asset value is
close to the upper (or lower) Bollinger band. For small values of α, the
market participants are not much influenced by the public information
and they tend to increase their estimated asset value due to herding.
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Figure 17: Mean asset value mw ( f (t)) and Bollinger bands R±(t) versus time
for α � 0.2 (right) and α � 0.05 (left). The parameters are β � 0.25, W � 0.5,
δ � 1, κ � 1.

The mean asset value and the corresponding Bollinger bands for a
discontinuous background value W (t) is displayed in Figure 18 (left
column). We have chosen d(w) � w(1 − w) and η � ±0.06 (upper row)
or η � ±0.18 (lower row).

The value W (t) abruptly decreases at time t � 0.2. We are interested
in the difference of the upper and lower Bollinger bands, more precisely
in the Bollinger bandwidth B(t) � 100(R+(t)−R−(t))/W (t), measuring
the relative difference between the upper and lower Bollinger bands.
According to chart analysts, falling (increasing) bandwidths reflect
decreasing (increasing) volatility. In our simulation, the jump of W (t)
gives rise to a peak of the Bollinger bandwidth at t � 0.2; see Figure 18
(right column). Another small peak can be observed at t ≈ 0.38 (upper
right figure) when η � ±0.06. For larger values of η (lower right figure),
the fluctuations in the Bollinger bandwidth are larger.
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Figure 18:Mean asset value mw ( f (t)) (left column) and Bollinger bands R±(t)
(right column) versus time. The function W (t) has a jump at t � 0.2. The
parameters are α � 0.05, β � 0.25, R � 0.025, δ � κ � 1. Upper row: η � ±0.06,
lower row: η � ±0.18.



BOLTZMANN EQUATION FOR WEALTH AND4
KNOWLEDGE EXCHANGES

The chapter is organised as follow. Section 4.1 is dedicated to the
presentation of the microscopic and kinetic models of wealth and
knowledge exchange processes. Section 4.1.3 gives a proper mathem-
atical framework of the model. In Section 4.2, we provide numerical
experiments, including a study of the quasi-invariant knowledge case.

4.1 kinetic model

We want to foresee the time evolution of a population of agents who
are described thanks to two characteristics: their wealth and their
knowledge. Using the formalism of kinetic theory, we are led to
introduce an unknown distribution function f : R+ × R∗+ × R∗+ → R+,
(t , x , v) 7→ f (t , x , v), where t ≥ 0 is the time variable, x > 0 the
knowledge and v > 0 the wealth. Then the quantity f (t , x , v) dx dv
can be understood as the fraction of agents of the population inside an
elementary volume of the phase space (in both knowledge and wealth
variables) centred at (x , v) and of measure dx dv.

We first need to describe themicroscopicmechanisms between agents
for both knowledge and wealth to be able to define the associated
mesoscopic collision operators of Boltzmann type, and eventually write
the kinetic equation governing the time evolution of f .
In what remains, for the sake of simplicity, when we write “agent

(x , v)”, that means that we deal with an agent of knowledge x and
wealth v.

4.1.1 Microscopic exchanges of knowledge and wealth

An agent in the population can interact with any other one. We here
assume that those interactions are of binary type, i.e. we suppose that
the interactions involving three individuals or more can be seen as
the “sum” of binary exchanges between agents. Moreover, the wealth
and knowledge exchanges are chosen to be independent. That means
that an agent does not interact with another one for both wealth and
knowledge at the same time.

Let us first describe the knowledge binary exchange process, and
consider two agents (x , v) and (y , w). Their knowledges x′ and y′

are updated thanks to the following collision (with the kinetic theory
vocabulary) rule{

y′ � y + κ(v)(x − y) � κ(v)x + [1 − κ(v)]y ,
x′ � x + κ(w)(y − x) � [1 − κ(w)]x + κ(w)y ,

(4.1)

where κ : R∗+ → [α, 1/2) is a non-decreasing function of the wealth
variable, with 0 < α � 1/2. For instance, we can choose κ constant or
satisfying κ(v) � [1 − (1 − 2α)e−2v]/2. The previous mechanism (4.1)
implies that the knowledge change for an individual depends on the

64
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wealth of the other agent involved in the interaction. More precisely, κ
can be considered as a confidence function, in the sense that the bigger v
is with respect to w, the more agent (y , w) trusts agent (x , v). Let us
point out that this rule is quite similar to the one presented in [Tos06].
As a matter of fact, the post-collisional knowledge x′ is computed from
x, contrary to [BS09] where the average opinion was used, by adding a
quantity involving the relative knowledge x − y and a coefficient κ(w)
depending on the wealth of the other agent. The dependence of this
coefficient is a new feature, since it was previously related to x and
not w in [Tos06]. We must also emphasize that the main difference
with [PT14] lies in the fact that we allow interaction between agents for
the exchange of information, whereas Pareschi and Toscani used the
interaction a given background of information with a mean-field point
of view.
Since x′ and y′ are clearly convex combinations of x and y, the

knowledge bounds are preserved at the microscopic level, i.e. [x′, y′] ⊂
[x , y]. There should eventually be a knowledge concentration effect
inside the population, if there is no other phenomenon taken into
account for the knowledge variable. Note that, nevertheless, there are
no reasons for this concentration to go to the initial average knowledge.
Indeed, the microscopic post-collisional total knowledge

x′ + y′ � x + y + (κ(v) − κ(w))(x − y)

can be larger than x + y if we simultaneously have x > y and v > w,
ensuring that the exchange process is profitable to everyone when a
wealthy well-informed agent interacts with the rest of the population.

As we can see, this whole behaviour remains quite simplistic from
the modelling point of view, but it has the mathematical benefit that the
collision rule (4.1) is invertible: both x and y can be expressed in terms
of x′ and y′, since the Jacobian JK (v , w) of (4.1), which does not depend
on x and y, writes JK (v ,w) � κ(v) + κ(w) − 1, and clearly remains
negative for any v, w, by assumption on κ. We can also add to (4.1) a
threshold effect, which is probably more realistic. The model then relies
on a bounded-confidence assumption, i.e. the knowledge interaction is
forbidden between agents (x , v) and (y , w) when |v − w | ≤ ω, where
ω > 0 is given. This assumption is very common in the literature of
opinion dynamics, see [DNAW00, HK02] for instance.

Let us now focus on thewealth binary exchange process, and consider
again two agents (x , v) and (y , w). Their wealth values v′ and w′ after
interaction are given by the collision rule{

v′ � [1 −Ψ(x)γ]v +Ψ(y)γw ,
w′ � Ψ(x)γv + [1 −Ψ(y)γ]w , (4.2)

where γ ∈ (0, 1) is fixed and Ψ : R∗+ → (0, 1] is a non-increasing
continuous function of the knowledge variable, for instance, Ψ(x) �

(1 + x)−β, with β > 0. The collision rule (4.2) is exactly the one used
in [PT14] without the random risk parameter, and was first proposed
in a simplified version in [CPT05]. This is a real modelling choice,
since we believe that the saving and risk propensities of each agent
are directly linked. That is why we choose, in this work, to treat them
with the sole quantity γΨ(x), which can then be understood as the
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saving/risk-taking propensity of agent (x , v). The monotonicity ofΨ
implies that the more an agent has knowledge, the less risky is the
wealth exchange for him. Note that, for the well-posedness result
detailed in Section 4.1.3, we need a stronger assumption on the lower
bound ofΨ.
Moreover, it is clear that the microscopic total wealth is conserved

during the exchange process: v′ + w′ � v + w. We also emphasize that
v′ and w′ are not convex combinations of v and w, but satisfy some
relevant properties, such as the following one. Assuming that x > y,
which implies thatΨ(x) ≤ Ψ(y), we then have

v′ ≥ v + (w − v)Ψ(x)γ.

That ensures that the interaction of an agent with another one, richer
but less informed, is profitable to the first one. Of course, there is an
arguable situation when both y and w are respectively smaller than
x and v. In such a case, agent (x , v) may not want to interact with
(y ,w), since he would have nothing to win in the wealth exchange.
Consequently, a wealth threshold effect should also be investigated in
the latter case. This will be more precisely discussed in the numerical
experiments.
Eventually, we must point out a mathematical issue: the collision

rule (4.2) may not be invertible. Indeed, we can check that the Jacobian
JW of (4.2), which does not depend on v and w, satisfies, for any x, y,

JW (x , y) � 1 − γ(Ψ(x) +Ψ(y)) ∈ (1 − 2γ, 1).

SinceΨ is continuous, the previous bounding of JW (x , y) can be zero if
γ > 1/2 for some values of x and y. This range of values of γ is realistic
at the microscopic level, see [PT14] for more details. Nevertheless, for
mathematical reasons, we choose γ ≤ 1/2 to ensure the invertibility of
(4.2).

Remark 16. The microscopic property [x′, y′] ⊂ [x , y] clearly implies that,
if f in has a compact support in the knowledge variable, so has f at any time.

4.1.2 Collision operators and governing equation

In order to take into account those microscopic collision rules (4.1)–(4.2)
in the time evolution of the distribution function f , we need to write
the related collision operators QK and QW . As we already stated, there
is a possible issue on the non-invertibility of (4.2). Moreover, the rules
may not diffeomorphisms from R∗+ onto itself. Then, to overcome
those difficulties, as explained in [BS09, p.511], the natural framework
consists in writing the collision operators under weak forms.

For a suitable test-function φ of (x , v), we write the weak form of the
collision operator QK ( f , f ), acting on the knowledge variable, as

〈QK ( f , f ), φ〉

� νK

"
R∗+

4
f (t , x , v) f (t , y , w)

(
φ(x′, v) − φ(x , v)

)
dx dy dv dw

�
νK

2

"
R∗+

4
f (t , x , v) f (t , y , w)
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(
φ(x′, v) + φ(y′, w) − φ(x , v) − φ(y , w)

)
dx dy dv dw , (4.3)

where νK > 0 denotes the interaction frequency in the population for
the knowledge exchange. Both expressions of QK ( f , f ) in (4.3) are
equal, thanks to the change of variables (x , y , v , w) 7→ (y , x , w , v),
whose Jacobian equals 1. In the same way, for the collision operator
QW ( f , f ), which acts on the wealth variable, we write, for any suitable
test-function φ,

〈QW ( f , f ), φ〉

� νW

"
R∗+

4
f (t , x , v) f (t , y ,w)

(
φ(x , v′) − φ(x , v)

)
dx dy dv dw

�
νW

2

"
R∗+

4
f (t , x , v) f (t , y , w)(

φ(x , v′) + φ(y , w′) − φ(x , v) − φ(y , w)
)
dx dy dv dw , (4.4)

where νW > 0 denotes the interaction frequency in the population for
the wealth exchange.

Let us set, for any w > 0,

DK (w) � {(x , x′) ∈ R2
| 0 < (1 − κ(w))x < x′} ⊂ R∗+

2

and, for any x > 0,

DW (x) � {(v , v′) ∈ R2
| 0 < (1 − γΨ(x))v < v′} ⊂ R∗+

2.

It is then easy to check that the transformations (x , y) 7→ (x , x′) for
a fixed w > 0 and (v , w) 7→ (v , v′) for a fixed x > 0 are bĳections,
respectively DK (w) → R∗+

2 and DW (x) → R∗+
2. Both weak forms (4.3)–

(4.4) can be written as the difference between the weak form of gain
terms Q+

K ( f , f ), Q+

W ( f , f ), and loss terms Q−K ( f , f ), Q−W ( f , f ), which
do not use the post-collisional variables at all. More precisely, we have,
for any test-function φ,

〈Q+

K ( f , f ), φ〉 �
"
R∗+

4

νK1DK (w) (x′, x)
κ(w)

(4.5)

f (t , x′, v) f
(
t ,

x − (1 − κ(w))x′

κ(w)
, w

)
φ(x , v) dx dx′ dw dv ,

〈Q+

W ( f , f ), φ〉 �
"
R∗+

4

νW1DW (x) (v′, v)
γΨ(y)

(4.6)

f (t , x , v′) f
(
t , y ,

v − ((1 − γΨ(x)))v′

γΨ(y)

)
φ(x , v) dv dv′ dy dx ,

〈Q−K ( f , f ), φ〉 � νK

"
R∗+

4
f (t , x , v) f (t , y , w)φ(x , v) dx dy dv dw ,

(4.7)

〈Q−W ( f , f ), φ〉 � νW

"
R∗+

4
f (t , x , v) f (t , y , w)φ(x , v) dx dy dv dw ,

(4.8)

where 1E denotes the characteristic function of any subset E of R∗+2.
The gain terms quantify the exchanges of knowledge/wealth between
individuals which produce, after the interaction with another agent, an
agent (x , v). The loss terms take into account the exchanges of know-
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ledge/wealth where an agent (x , v) is involved before the collisional
process.
Note that the collision rules and operators about the knowledge

variable do not imply the possibility of a time delay in the learning
process. The way how the agents gather knowledge is an intricate
process and modelling it remains difficult.

Let T > 0. The previous considerations allow to eventually write
down the integro-differential equation of Boltzmann type, satisfied, in
a weak sense, by the distribution function f , that is, for any suitable
test-function φ of (x , v) and almost every t ∈ [0, T],∫

R∗+
2
∂t f (t , x , v)φ(x , v) dx dv � 〈QK ( f , f ), φ〉+〈QW ( f , f ), φ〉, (4.9)

with initial condition f (0, ·, ·) � f in, where the nonnegative function
f in
∈ L1(R∗+

2) is given.
The conservation of the total number of agents in the population is a

straightforward consequence of the weak formulations (4.3)–(4.4). We
have the following

Proposition 17. Let f ∈ L∞(0, T; L1(R∗+
2)) solving (4.9). Then we have,

for a.e. t,
‖ f (t , ·, ·)‖L1(R∗+

2) � ‖ f in
‖L1(R∗+

2) .

Proof. We just have to choose φ ≡ 1 in (4.9) and use (4.3)–(4.4) for that
test-function. �

Some a priori estimates on the collision operators and the well-
posedness of the Boltzmann equation (4.9) is investigated in the follow-
ing Section.

4.1.3 Well-posedness of the problem

We first need a priori estimates on the collision operators.

Lemma 18. Assume that Ψ is lower-bounded by a constant δ > 0. Let
g ∈ L1(R∗+

2). Then Q±K (g , g) and Q±W (g , g) also lie in L1(R∗+
2), and the

following estimates hold:

‖Q+

K (g , g)‖L1(R∗+
2) ≤

νK

α
‖g‖2

L1(R∗+
2)
,

‖Q−K (g , g)‖L1(R∗+
2) ≤ νK ‖g‖2L1(R∗+

2)
,

‖Q+

W (g , g)‖L1(R∗+
2) ≤

νW

γδ
‖g‖2

L1(R∗+
2)
,

‖Q−W (g , g)‖L1(R∗+
2) ≤ νW ‖g‖2L1(R∗+

2)
.

Proof. This lemma is a straightforward consequence of (4.5)–(4.8) with
φ ≡ 1 and Prop. 17. �

Remark 19. The additional hypothesis on Ψ in Lemma 18 is not that
limiting. It is enough, for instance, to replace it by an assumption stating
that g is compactly supported in x, see Remark 16. That implies that Ψ is
straightforwardly lower bounded by δ on that compact support, since Ψ is
continuous.
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Theorem 20. Assume again that Ψ is lower-bounded by a constant δ > 0.
Let f in a nonnegative function in L1(R∗+

2). Then there exists a nonnegative
f ∈ L∞(0, T; L1(R∗+

2)) which weakly solves (4.9) for almost every t, with
initial datum f in.

Proof. We follow the same kind of strategy as in [BS09], but without
any diffusion term. Set

ρ �

∫
R∗+

2
f in(x , v) dx dv.

and define ( f n)n∈N by induction with f 0
≡ 0, solving, for any t ∈ [0, T],

∂t f n+1
+ σ f n+1

� Q+

K ( f n , f n) + Q+

W ( f n , f n), (4.10)

with the initial condition f n+1(0, ·, ·) � f in, where we set σ � ρ(νK +

νW ) > 0. Existence of solutions to (4.10) is straightforward, since f n+1

is not involved in the right-hand side of (4.10) (which we know is in
L1(R∗+

2)), and we also have f n+1
∈ C0([0, T]; L1(R∗+

2)).
Let us first prove by induction that f n is nonnegative for any n. It

is clear for n � 0. Assume now that f n
≥ 0. We want to prove that

f n+1
≥ 0. From (4.10), we immediately get∫

R∗+
2
∂t f n+1φ dx dv + σ

∫
R∗+

2
f n+1φ dx dv ≥ 0

for any nonnegative test-function φ. Multiplying by eσt allows to prove
that, for any nonnegative test-function φ,∫

R∗+
2

f n+1φ dx dv ≥ e−σt
∫
R∗+

2
f inφ dx dv ≥ 0,

which leads to the nonnegativity of f n+1.
In the same way, we can prove that ( f n) is non-decreasing. We of

course have f 1
≥ f 0

≡ 0. Suppose that f n
≥ f n−1, for a given n ≥ 0.

The difference f n+1
− f n satisfies the following equation, for any φ,∫

R∗+
2
∂t ( f n+1

− f n)φ dx dv + σ

∫
R∗+

2
( f n+1

− f n)φ dx dv

� 〈Q+

K ( f n , f n), φ〉 − 〈Q+

K ( f n−1 , f n−1), φ〉

+ 〈Q+

W ( f n , f n), φ〉 − 〈Q+

W ( f n−1 , f n−1), φ〉.

The right-hand side of the previous equality is nonnegative because
f n
≥ f n−1. Consequently, we can write, for any nonnegative φ,

d
dt

(
eσt

∫
R∗+

2
( f n+1

− f n)φ dx dv
)
≥ 0.

Noticing that the initial datum for f n+1
− f n is zero, that allows to

conclude that ( f n) is non-decreasing. In particular, that ensures that∫
R∗+

2
f n dx dv ≤

∫
R∗+

2
f n+1 dx dv. (4.11)
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We can then prove, by induction, that∫
R∗+

2
f n dx dv ≤ ρ. (4.12)

We can write, from (4.10), thanks to the invariance properties of
QK ( f n , f n) and QW ( f n , f n),

d
dt

(∫
R∗+

2
f n+1 dx dv

)
� (νK + νW )



(∫
R∗+

2
f n dx dv

)2

− ρ

∫
R∗+

2
f n+1 dx dv


.

Using (4.11) and the inductive hypothesis, we observe that the right-
hand side of the previous equality is non-positive, which allows to
recover (4.12) for f n+1.

Because of themonotonicity and the uniformbound (4.12) of ( f n), the
monotone convergence theoremensure the existenceof f ∈ L∞(0, T; L1(R∗+

2))
such that ( f n) converges towards f almost everywhere, and in L1(R∗+

2),
for almost every t.
We conclude that f solves (4.9) in the distributional sense in time

and in a weak sense in L1(R∗+
2), exactly in the same way as in [BS09].

�

Note that, in the numerical experiments, which are described in the
next section, we endeavour to keep this conservation property true.

4.2 numerical experiments

In this section, we briefly discuss the numerical method and the
computational tools. Then we present some numerical experiments
on the model on various situations, including the quasi-invariant
knowledge asymptotics.

4.2.1 Numerical values, computational strategy

The main issue here is to deal with both variables involved, wealth
and knowledge, i.e. to discretize a two-dimensional model. We use a
standard particle method [Bir95]. That means that f is approximated
as a sum of Dirac masses:

f (t , x , v) '
2N∑
p�1

δ(xp (t),vp (t)) (x , v),

where 2N is the total number of agents in the numerical simulation,
and xp (t), vp (t) are respectively the knowledge and wealth of an agent
p at time t. The set of agents p with 1 ≤ p ≤ 2N, is representative,
from a statistical viewpoint, of the population. In what follows, N
is chosen equal to 1000. As usual in a particle method, we have to
compute afterwards an average between M � 30 different simulations.
The final computational time T is chosen accordingly to the speed of
convergence of each experiment.

To define the microscopic collision rules (4.2)–(4.1), we need κ, γ and
Ψ: κ(v) � [1 − (1 − 2α)e−2v]/2 with α � 0.05 or κ constant, γ � 0.21
andΨ(x) � (1 + x)−β with β � 1.
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The initial data we investigate are chosen with compact supports in
both variables making a random selection from a uniform law.

For the knowledge variable, it is quite clear that it is possible to have
a compact support, since the post-collisional knowledge values are
bounded by the pre-collisional ones, as stated in 4.1.1. Therefore, we
assume that x lies in [0,X] with X � 1. It is not a restrictive hypothesis
from the computational viewpoint (although it is from the modelling
one). Indeed, in principle, we just have to select the M populations
and take the maximal possible value of x as the upper bound and
renormalize the knowledge variables so that they all lie in [0, 1]. We
proceed in the same way for the wealth variable, noticing that, this time,
the wealth is only conserved at the whole population level. Hence, the
initial data for v are chosen such that any wealth value lies in [0,V],
with V � 10. But in fact, at least after a few time steps, it is enough to
choose the maximal value of v equal to 2. Consequently, most graphics
presented below are shown for (x , v) ∈ [0, 1] × [0, 2]. Moreover we do
not need to impose any boundary conditions thanks to the collisional
rules. We use a regular subdivision (x0 , ..., xH ) for the variable x and
(v0 , ..., vK) for the variable v. In the simulation we fix H � K � 100.
Thus for each agent we get a certain value xp and vp for p � 1, ..., 2N
such that xp ∈ (xi , xi+1) and vp ∈ (v j , v j+1).

Since we normalised the total number of agents to one, the contri-
bution of each individual is 1/(2NM) and we want to distribute the
agents on the grid [0, 1]× [0, 2]. For each time step tn we check in which
cell (xi , xi+1) × (v j , v j+1) the value (xp , vp) is located and we add the
quantity 1/(2NM) in the corresponding cell:

f (tn , xi+1/2 , v j+1/2) �
2N∑
p�1

M∑
m�1

1
2NM

δ(xi ,xi+1)×(v j ,v j+1) (xp , vp).

In particular the time tn � n∆t, where ∆t is the time step size (and we
choose ∆t � min(1/νK , 1/νW )).

The collisions in x and v are independent, so the interactions for
the wealth and the knowledge can simultaneously happen, but involve
different agents, which are of course randomly chosen. Moreover, since
we are interested in the case when there is no predominance of one
kind of collision, we fix νK � νW � 1.

So, at each time step using a slightly modified Bird scheme [Bir95],
we solve the two collisional parts

∂t f � QK ( f , f ), and ∂t f � QW ( f , f )

according to the interaction rules (4.1)–(4.2).

After the collisions we obtain new values for the knowledge and the
wealth and for each time step we can always reconstruct f as before.

The whole computational strategy is embedded in a numerical code
written in C.

We can check that it exactly conserves the total number of agents,
recovering the property from Proposition 17.
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Figure 19: (a) Initial uniform distribution of 2000 agents on [0, 1] × [0, 1]; (b)
distribution at final time.

4.2.2 Basic tests

Let us first start with a constant κ � 0.34 and an initial datumwhich is
uniform with respect to to (x , v) on [0, 1] × [0, 1], as seen on Figure 19a.
The collision operators have a concentration effect which does not
depend on the initial datum. Consequently, if t is large enough, f (t , ·, ·)
should behave like a Dirac mass. Since κ is constant, the concentration
happens at the average values of x and v at initial time, which both equal
0.5, see Figure 19b. Note that if κ is not constant, the concentration also
happens, but not necessarily at the average value of x, since the collision
rule (4.1) for x does not conserve the total knowledge. It should be
possible to prove that f (t , ·, ·) converges to a Dirac mass exponentially
fast in time, when t goes to +∞. Nevertheless, this large-time result
is not realistic from the modelling viewpoint: a society where all the
individuals exactly share the same wealth and knowledge is utopian.
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Figure 20: Profile of f at final timewith only information exchanges: (a) agents
distributed along a vertical line (one draw); (b) averaged result.

In the same way, if we only consider one type of collisions, we
can observe the effect of the corresponding operator in the numerical
simulations. For instance, we take again the same initial datum as in
Figure 19a. The distribution at final time demonstrates a concentration
effect, but on a line (since the other variable has no influence).
The knowledge collision rules (4.1) induce concentrating the agents

at the average knowledge value, 0.5 on Figure 20, with no effect on the
wealth distribution. The situation with the wealth collision rule (4.2)
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is different, as shown on Figure 21. When time grows, all the agents
are on the same line, but they do not have the same wealth, because
the less informed agents become poorer, and the more informed richer,
which somehow seems more realistic.
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Figure 21: Profile of f at final time with only wealth exchanges: (a) agents
distributed along a non-horizontal line (one draw); (b) averaged result.

4.2.3 Thresholds and clusters

Let us now some more realistic situations. As we already explained,
interaction thresholds are often used in both knowledge and wealth ex-
changes, see [DNAW00, HK02, CCC07] for instance. Those thresholds
usually induce cluster formations.

Let us take a smooth initial datum, with a lot of individuals with low
values of knowledge and wealth, and a few agents with higher values
of knowledge and/or wealth, as seen on Figure 22.
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Figure 22: A more realistic initial datum for the distribution function.

For the threshold, we suppose that people usually interact with
other agents which have more or less the same level of wealth and/or
knowledge, for socio-professional networking reasons.
Hence, for this first experiment, we assume that a wealth exchange

between agents (x , v) and (y , w) can only occur when |v − w | ≤ 0.5,
while the information exchange only occurs if both agents have the
same level of knowledge and wealth. The first restriction has been
introduced because the interaction takes place between people who
have more or less the same cultural level, and the second one takes
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into account the fact that someone who owns a lot often does not want
to share what he knows. The distribution obtained at final time with
these thresholds is shown in Figure 23.
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Figure 23: Experiment 1 (with thresholds): distribution at final time for one
simulation (on the left), and averaged on 30 computations (on the right).

In the second experiment, with the same initial datum as in Figure 22,
we provide a simpler threshold effect, which was already discussed
in Subsection 4.1.1. Two agents (x , v) and (y , w) can only exchange
information when their respective wealth values are close, for instance
|v − w | < ω, with ω � 0.1. The distribution function at final time is
shown in Figure 24.
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Figure 24: Experiment 2 (with thresholds): distribution at final time for one
simulation (on the left), and averaged on 30 computations (on the right).

4.2.4 Quasi-invariant knowledge

The knowledge exchange seems to be the key mechanism of the whole
process, in the sense that there is no way to get significantly richer
without information. In this subsection, we consider the quasi-invariant
knowledge case, i.e. we assume that the function κ which appears in
the knowledge collision rule (4.1) is of order ε with 0 < ε � 1. That
means that κ is replaced in (4.1) by a function εκ̃, where κ̃ is of order 1
and has the same form as κ.
Let us first perform an experiment with a piecewise constant initial

datum f in. We choose γ � 0.21, α � 0.05 in the expression of κ̃, and
ε � 0.1. Figure 25 shows the evolution of the the distribution function
f for one numerical simulation.
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Figure 25: Quasi-invariant knowledge: time evolution of f at times (a) t � 0,
(b) t � 5, (c) t � 10, (d) t � 15.

0

0.5

1

0

1

2
0

1

2

x 10
5

xv

Figure 26: Quasi-invariant knowledge: distribution function at time t � 25
averaged on 30 simulations.

The average on 30 simulations at time t � 25 is presented in Figure 26.
We observe that f seems to be, when time grows, supported by a
straight line, as in Figure 21.

It is not really surprising. Indeed, when ε goes to 0, the term QK ( f , f )
becomes negligible with respect to QW ( f , f ). Choosing a test-function
φ(x , v) � ax + bv, where a, b ∈ R, allows to state that

d
dt

∫
R∗+

2
f (t , x , v)φ(x , v) dx dv � 0,

since both total knowledge and wealth are conserved in the wealth
exchange (4.2). That implies that any distribution function with a
straight line support solves the Boltzmann equation (with QW ( f , f )
only) in a distributional sense.



OUTLOOK5
In this last chapter we present the open questions and the further works
for each model we investigated.

5.1 cross-diffusion herding

So far, relatively little attention has been devoted to the study of
the parameter space interfaces of different mathematical methods.
We have analysed as an example a cross-diffusion herding model to
understand where, and how, the global nonlinear analysis approach via
entropy variables is connected to bifurcation analysis techniques from
dynamical systems. We have shown that both approaches encounter
similar problems regarding the degeneracy of the diffusion matrix and
we were able to cover different parameter regimes by combining the
results of the two methods.
The result presented in chapter 2 is only a first starting point. Here

we shall just mention a few ideas for future work.
The next step is to analyse the regime α → 0 and to check whether

the limitation in (2.8) on α can be improved, or not. In this regard,
one also has to consider in which sense the forward problem should
be interpreted for moderate and small values of α and for δ < δd.
Recent work [Lio15] suggests that one should not only use the notion of
Petrovskii ellipticity for the stationary problem [SW09] but also consider
it in the parabolic context; see the classical survey [AV64].
The next step is to expand the approach to other examples. In

particular, many reaction-diffusion systems as well as other classes
of PDEs have natural entropies, which can be used to study global
existence and convergence properties. In the nonlinear case, one
frequently can also employ approaches from dynamical systems to
understand the dynamics of the PDE. Using a similar approach as we
presented here could be illuminating for other examples. For example,
it is natural to conjecture that there are examples in applications, which
exhibit the following characteristics:

(Z1) There exists one fixed parameter region in which the entropy
method yields global decay. Upon variation of a single parameter,
the validity boundary of the entropy method coincides precisely
with an isolated local supercritical bifurcation point.

(Z2) There exists one fixed parameter region in which the entropy
method yields global decay. Upon variation of a single parameter,
the validity boundary of the entropy method does not coincide
with a local bifurcation point. Instead, the obstruction is a global
bifurcation branch in parameter space with a fold point precisely
at the validity boundary.

In this work, we apparently found a more complicated case as shown
in Figure 1. However, it seems plausible that the cases (Z1)-(Z2) should
occur even in classical problems without cross-diffusion, i.e. reaction-
diffusion equations with a diagonal positive-definite diffusion matrix.

76
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Determining whether this is true for several classical examples from
applications is an interesting open problem.

Regarding the entropy method [CJM+01, DF06], it would be interest-
ing to investigate in more detail parametric scenarios for its validity
regime. For example, the question arises whether it is possible to find
criteria for the validity range that are computable for entire classes of
PDEs. The entropy approach relies on upper bounds. Although the
bounds we present here turn out to be sharp in the sense of global
decay dynamics in a suitable singular limit, this may not always be
easy to achieve as demonstrated by the α → 0 case discussed above.
It would be relevant to estimate a priori, which regime in parameter
space one fails to cover if certain non-optimal upper bounds are used.
As above, carrying this out for several examples could already be very
illuminating.
Regarding the analytical and numerical bifurcation analysis, there

are multiple strategies to deal with the problem of mass conservation,
or more generally with higher-dimensional solution manifolds. For ex-
ample, onemay try to compute the entire solution family of steady states
parametrized by the mass numerically [Hen02, DS13], which yields
a numerical continuation problem for higher-dimensional manifolds
and not only curves. Furthermore, we have focused on the numerical
problem in the one-dimensional setup and computing the two- and
three-space dimension cases could be interesting [Kue14, UWR14].
Regarding analytical generalizations, a possible direction is to view δ∗

as a singular limit and phrase the problem as a perturbation problem
[Ni98, Fif73, AK15].

5.2 kinetic model for herding and rationality

In chart analysis, the bandwidth is employed to identify a band squeeze.
When the asset value leaves the interval [R− , R+], this situation may
indicate a change of direction of the prices. Clearly, this interpretation
cannot be directly applied to the situation presented in Chapter 3. On
the other hand, the Bollinger bands are an additional tool to identify
large changes in themean asset value, for instancewhen the background
value W (t) is no longer deterministic but driven by some stochastic
process. We leave this generalization for future work.

5.3 wealth distribution model

In the last part of Chapter 4, we proved that any distribution func-
tion with a straight line support solves the Boltzmann equation in a
distributional sense.

The straight lines depend on the initial datum, in a way we still have
to understand, but the numerical simulations from Figure 27, where f in

is chosen as constant on the indicated domain and zero elsewhere, show
an interesting behaviour: all the lines are concurring at the same point
(−1, 0) in Figure 27b. Unfortunately, for the time being, we still have
to understand how the equation of the straight line can be computed
from the data of the problem.
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Figure 27: Distribution functions obtained with different initial data with
large time.

Moreover it would be interesting to study the quasi invariant limit
obtaining a Fokker-Planck equation and compare the numerical results
that we obtained for the Boltzmann equation with the numerics for the
Fokker-Planck.
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