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Abstract

Over the past twenty years empirical evidence has shown that the dynamics in liquids close to the glass transition temperature is strongly heterogeneous, on the scale of ξ ∼ 3 -5 nm. A model for the dynamics of non-polar amorphous polymers, based on percolation of slow domains, has been developed and solved by 3D numerical simulations 1 . This so-called PFVD model succeeds in explaining many features observed in glassy polymers: the heterogeneous nature of the dynamics, the violation of the Stokes law observed for small probes, ageing and rejuvenation asymmetry, the shift of glass transition temperature in thin films.

Schema of the coarse-grained model for glass transition in polymers. Above T g , on the left, slow domains (green) form small clusters surrounded by fast regions (grey). On the right, with the appearance of slow percolating clusters below T g , the elastic modulus increases from 10 5 Pa to about 10 9 Pa. This manuscript presents recent extensions to the PFVD model which aim at providing a unified physical description of the mechanical and dynamical properties of polymers under applied strain, from the onset of plasticity to the strain-hardening regime. In particular, three main topics are treated:

1. Plasticization mechanism. Experiments show that, under applied deformation, polymers undergo yield at strains of a few percent and stresses of some 10 MPa. It follows a quick drop in stress and plastic flow, namely the strain-softening. The widely applied phenomenological Eyring model for yield, assumes that stress reduces energy barriers. Here, we propose that the elastic energy stored at the scale of dynamical heterogeneities effectively reduces the free energy barriers between configurations and accelerates local dynamics. Yield stresses of a few 10 MPa are obtained at a few percent of deformation, without any additional adjustable parameter than the length scale ξ.

Simulations show that the yield stress varies logarithmically with respect to ageing time and strain rate. Distributions of relaxation times reveal that stress-induced relaxation events involve mostly the intermediate times, affecting less significantly long time scales.

2.

Local dynamics in the plastic regime. It has been observed, both by dielectric and by optical probe reorientation measurements, that dynamics becomes faster and more homogeneous close to yield. Bending et al. 2 show that the average mobility attains a stationary value after yield, which is related to strain rate by a linear relation. It 1 Dequidt A., Long D.R., Sotta P., Sanséau O., Eur. Phys. J. E 2012, 35, 61 2 Bending B., Christison K., Ricci J., and Ediger M.D., Macromolecules 2014, 47 (2), 800-806 iii has been proposed3 that both reorganization of monomers at fixed local density and monomer diffusion from slow domains into fast ones contribute to the α-relaxations (facilitation mechanism). We propose that, under applied strain, stress-induced acceleration of the dynamics enhances the diffusion processes and results in a cutoff at intermediate time scales, which effectively narrows the distribution of relaxation times.

We thus introduce the facilitation mechanism in out-of-equilibrium conditions, at the scale ξ. Fitting the average decay function with the KWW stretched exponential reveals that local dynamics reaches a stationary state after yield. In addition, mobility is found to be nearly proportional to the strain rate and the distribution of relaxation times becomes narrower at yield, in agreement with experimental data.

3. Onset of strain-hardening. At large strains, strain-hardening is observed in highly entangled and cross-linked polymers 4 . The stress increases with increasing strain, with a characteristic slope (hardening modulus) of order 10 7 -10 8 Pa well below the glass transition. Theories involving the entropic rubbery elasticity cannot explain these orders of magnitude, nor the increase of hardening modulus with cooling. Analogously to a recent theory 5 , we assume that local deformation orients monomers in the drawing direction. Interactions between monomers get intensified in very deformed regions and mobility at the scale of dynamical heterogeneities is slowed-down. Large amplitude compression simulations show hardening moduli of order 10 7 -10 8 Pa below T g , decreasing with temperature. We compare our results with different fractions of cross-linkers and at different strain rates to experiments. In addition, strain-hardening is found to have a stabilizing effect over strain localization and shear banding.

Deformation induces monomer orientation at the scale ξ. As a consequence, intermolecular interactions are intensified and local mobility is reduced.

True stress -true strain plots during compression at constant true strain rate, from 10 -2 s -1 (black) to 3 s -1 (red), at T g -25 K. Plastic regime is followed by strain-softening and then strain-hardening.

The physics we propose at the microscopic scale reproduces several features of polymer glasses and the measured quantities are comparable with experimental data. Successive developments might rely on a detailed analysis of localized dynamics at large strains, or on a deeper inquiry about a feasible retarding role of monomer orientation over failure in longchain polymers.
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Résumé

Au cours des vingt dernières années, l'expérience a démontré que la dynamique dans les liquides près de la transition vitreuse est fortement hétérogène, à l'échelle ξ ∼ 3 -5 nm. Un modèle pour la dynamique de polymères apolaires amorphes, basé sur la percolation de domaines lents, a été développé et résolu par simulation numérique en 3D 1 . Ce modèle, nommé modèle PFVD, réussit à expliquer maintes propriétés des polymères vitreux : la nature hétérogène de la dynamique, la violation de la loi de Stokes observée pour des sondes de petites tailles, l'asymétrie entre vieillissement et rajeunissement, le décalage de température de transition vitreuse dans les films minces.

Ce manuscrit présente des récentes extensions au modèle PFVD qui ont la finalité de fournir une description physique unifiée des propriétés mécaniques et dynamiques des polymères soumis à déformation plastique, du commencement des non-linéarités jusqu'à l'écrouissage (strain-hardening). En particulier, trois sujets principaux sont traités :

• Le mécanisme de plastification. L'expérience montre que, sous déformation, les polymères atteignent le seuil de plasticité (yield) avec une déformation de quelques pourcents et une contrainte de quelques dizaines de MPa. Il suit l'adoucissement sous déformation (strain-softening), c'est-à-dire une chute abrupte de contrainte suivie par écoulement plastique. Le très répandu modèle phénoménologique d'Eyring pour la plasticité, adopte l'hypothèse que le stress baisse les barrières d'énergie. Ici, nous proposons que l'énergie élastique absorbée à l'échelle des hétérogénéités dynamiques diminue efficacement les barrières d'énergie libre entre les configurations et accélère la dynamique locale. Contraintes ultimes (yield stresses) de quelques dizaines de MPa sont ainsi obtenues à quelques pourcents de déformation, sans aucun paramètre ajustable autre que l'échelle de longueur ξ. Les simulations montrent que la contrainte ultime varie de façon logarithmique par rapport au temps de vieillissement et au taux de cisaillement. Les distributions des temps de relaxation révèlent que les évènements de relaxation induits par la contrainte concernent surtout les temps intermédiaires, sans influencer significativement les temps longs.

• La dynamique locale dans le régime plastique. Il a été observé, par mesures diélectriques et par réorientation de sondes optiques, que la dynamique devient plus rapide et homogène au niveau du seuil de plasticité. Bending et collab. 2 montrent que pendant l'écoulement la mobilité moyenne atteint une valeur stationnaire, liée au taux de déformation par une relation linéaire. Il a été proposé 3 que soit les réorganisations de monomères à densité constante, soit la diffusion des monomères de domaines lents à ceux rapides contribuent aux relaxations α (mécanisme de facilitation).

Nous proposons que, sous déformation, l'accélération de la dynamique induite par la contrainte stimule les processus de diffusion, ayant comme conséquence une limite 
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General context

Polymers are macromolecules which are made of a repeated sequence of the same basic subunit, the monomer. Despite the high chemical diversity of monomers, large length scales are characterized by nearly universal features. In addition, the enormous amount of different polymers, existing or not, makes these systems a fascinating and inextinguishable source of scientific interest, both for fundamental research and industrial applications. Also, it makes them an extremely complex subject of investigation. This manuscript focuses essentially on the study of non-polar, amorphous glassy polymers. The absence of specific chemical interactions and of internal large scale organised structures makes these systems an ideal object of study for statistical physics-based modelling which leaves aside atomic scale details. The difficulty to model polymer systems resides mainly in the multi scale nature of polymer chains. Typical length scales go from beneath the ångström at the atomistic level, to several hundreds of nanometres, which are typical of macromolecular structures. Associated time scales range from the picoseconds for the vibrational motion of monomers to several hours and even days for α-relaxations. This fact explains the increasingly active role of multi-scale or coarse-grained approaches in the field of polymer science, as no computational power or simulation technique is even close to being able to cover such a wide range of time scales. Amorphous polymeric materials consist essentially of randomly packed polymers which undergo the so-called 'kinetic glass transition' upon a fast enough cooling below a critical glass transition temperature T g . Glass, because the final state is characterized by a very complex energy landscape with a huge number of local minima, and it takes an equivalently large amount of time for the system to attain the global minimum. Transition, because massive changes of physical and mechanical properties occur in the range of few tens of Kelvin. Kinetic, because these changes are nevertheless smooth and no true phase transition has never been connected to the glass transition. However, whether or no a real phase transition underlies the glass transition is still a matter of debate. The physical origin of glass transition represents indeed one the most challenging open questions of modern physics.

Basic features of glassy polymers

A defining feature of glassy polymers is their mechanical and dynamical properties. Usually, the glass transition temperature T g is arbitrarily defined as the temperature at which the viscosity reaches 10 12 Pa • s in simple liquids, or at which the dominant relaxation time τ α becomes larger than a macroscopic time scale, here 10 2 s [1,2]. When lowering the temperature from T g + 20 K to T g -20 K, the elastic modulus increases from typically 10 5 Pa to a few 10 9 Pa [3]. The viscosity and, equivalently, the dominant relaxation time are empirically described by the Williams-Landel-Ferry (WLF) law, also called VFT law [1,4,5]:

Log τ α (T) τ α (T 0 ) = - C 1 (T -T 0 ) C 2 + T -T 0 = α T (1) 
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where Log = log 10 and C 1 and C 2 are constants which depend on the considered polymer.

T 0 is a reference temperature close to T g , so that the relaxation time τ α (T 0 ) is approximatively 10 2 s. The WLF law is plotted in Figure 3. When the temperature is about T g -10 K, the dominant relaxation times τ α is of order 10 4 s, which is accessible during experiments. Lowering further the temperature, τ α becomes too long for the system to reach thermodynamical equilibrium during experimental time scales. Even if equation ( 1) predicts a divergence of τ α when approaching the Vogel temperature T ∞ = T 0 -C 2 ≈ T 0 -50 K, it has recently been shown that it is not the case [6,7].

Figure 3: α T as a function of T -T 0 (here T -T s ), from the WLF law [4].

Another important feature of glass transition is the strongly heterogeneous nature of the dynamics close to T g [8,9,10], which has been proved experimentally over the past twenty years using NMR [11,12,13], fluorescence recovery after photo-bleaching (FRAP) [14,16,15,17,18], dielectric hole-burning [19,20] or solvation dynamics [21]. These studies have demonstrated the coexistence of domains with distribution of relaxation times spread over more than 4 decades at temperatures typically 20 K above T g . The diffusion dynamics of molecular probes about 1 nm in diameter has also been measured, showing that the Stokes law is essentially valid in the high temperature range, but breaks down below T g + 20 K [14].

This has been one of the earlier indication of the spatial nature of dynamical heterogeneities and has provided an estimate of their size ξ. The characteristic size ξ has been estimated by NMR [12,22] to be 3 -4 nm at T g + 20 K (in the case of van der Waals liquids), whereas it is as small as 1 nm in glycerol [13].

Dynamical heterogeneities might be related to some kind of structural organizations on a microscopic scale. However, no structural transition has been observed when lowering temperature or increasing the pressure in glass formers, over the whole WLF regime of these liquids [23]. If such a transition existed, it could be observed by X-ray or neutron scattering, or it could be deduced by a discontinuity in thermodynamical quantities such as the bulk
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modulus as a function of temperature or pressure. None of these observations has been achieved yet. Experimental evidence indicates therefore that no structural change occurs when cooling a polymer glass below its T g .

Dynamical heterogeneities are more likely to be due to some kind of fluctuating quantity. In van der Waals liquids, both decreasing the temperature and increasing the density lead to a slowdown of the dynamics [24,25]. Thus, two different kinds of fluctuations, of temperature or of density, may be considered on a microscopic scale for explaining dynamical heterogeneities. However, thanks to high frequency phonons, unrelated to α-relaxation, temperature fluctuations can relax in less than 1 ns [26], typically on the nanometre scale.

These fluctuations are thus short-lived compared to the glass transition time scales and cannot be related to the spatial nature of dynamical heterogeneities. Thus, there is no other clear candidate than long-lived density fluctuations for explaining the physical origin of dynamical heterogeneities [27].

Mechanical properties of glasses have also been studied by molecular dynamics (MD) simulations [28,29,30,31,32,33,34]. In particular, Leonforte et al. [29] and Riggleman et al. [30,34] have shown that mechanical properties are heterogeneous. When submitted to an applied strain, the deformation field is non affine. Riggleman et al. have shown that the elastic modulus is heterogeneous on a scale of order 1 nm, with some regions having negative moduli. The possible link between dynamical heterogeneities and these mechanical heterogeneities, has been discussed by Dequidt et al. [35], where the stress and strain fields are analysed in the case of thin confined polymer films submitted to shear deformation.

Plastic behaviour and Eyring model

When applying a deformation below T g , one observes a yield stress at deformation amplitude of a few percents, which corresponds to a peak in the stress-strain curve. Beyond the yield point, stress displays a plateau at a value slightly lower than the peak: the polymer undergoes plastic flow. In the bulk, yield occurs at strains comprised between 3 -4 and 10 %, whereas it becomes as small as 0.1 % in confined systems [36].

One of the most widely employed (and oldest) models for describing plastic yield is the phenomenological Eyring (or Ree-Eyring) model [START_REF] Haward | The Physics of Glassy Polymers[END_REF][START_REF] Eyring | [END_REF]. It assumes that the macroscopic relaxation time τ α is accelerated by the applied stress σ. Energy barriers ΔE between configurations are reduced by the mechanical work on a representative volume V *

ΔE(σ) = ΔE(0) -V * • σ (2) 
An Arrenhius-like interpretation of α-relaxations leads to

τ α (σ) = τ α (0) exp - V * • σ k B T (3) 
Defining the yield stress σ y as the value of the stress at which the time scale associated to
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strain rate, γ-1 , equals τ α (σ y ), leads to

σ y = k B T V * ln γτ α (0) (4) 
Equation ( 4) predicts successfully the logarithmic dependence of the yield stress with respect to strain rate, γ [39,40,41], and macroscopic relaxation time at rest, τ α (0) [42,43]. However, several factors raise doubts about the physical relevance of the Eyring model. First of all, the parameter V * (activation volume), of order 10 nm 3 , has unclear physical origins [44,45] and does not correlate unambiguously with any microscopic property of polymers [START_REF] Haward | The Physics of Glassy Polymers[END_REF]. Furthermore, equation ( 4) suggests that the strain rate dependence becomes weaker when lowering the temperature, while the opposite trend is usually observed. Post-yield mobility measurements from Lee et al. [46] disagree with an acceleration of the dynamics linear with the stress,

showing the substantial inapplicability of the Eyring model after yield (Figure 4).

Figure 4: Predictions on mobility from the Eyring model diverge with respect to experimental observation [47].

Other models of plasticity assume a stress-induced reduction of the energy barriers. For example, the 'Soft Glass Rheology' (SGR) model [48] proposes a quadratic decrease of the energy barriers, while the Frenkel model assumes

E(σ) = E(0) [1 -(σ/σ c )] 3/2 .
All of these models, however, are constitutive or phenomenological models and do not account for the spatial nature of polymer glasses, omitting dynamical heterogeneities and mechanical coupling.

Anyway, the idea that plastic flow results from a stress-induced acceleration of the dynamics has been supported by several recent experiments [46,47,49,50,51]. Loo et al. [49] have studied by NMR the dynamics in the amorphous phase of polyamide under stress.

Kalfus et al. [50] have studied dielectric relaxation during plastic flow. They observed that secondary relaxations are not significantly affected during deformation, whereas the α-relaxation is modified: an increase of tan δ is indeed observed in the low frequency domain.

Lee et al. [46,47] and Bending et al. [51] have shown that small probe diffusion is accelerated
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under applied deformation. Consistently with these results, a monomer scale constitutive model for polymer glasses which reproduces many interesting features of yield has been developed [44,45,52,53]. In spite of the success of this Non-Linear Langevin (NLE) model in describing plastic deformation, a detailed spatial description of the mechanisms ongoing during plastic yield is still lacking.

Dynamics in polymer glasses during plastic strain

Dynamical and mechanical properties are intrinsically connected in polymer glasses. Recent experimental results involve the optical probe reorientation technique, which has been shown to be a reliable method to measure polymer dynamical features during deformation [47,54]. See [14] 

The average rotational correlation time τ c is defined as 

τ c = ∞ 0 CF(t )d t ≈ ∞ 0 e -t τ K β d t (6)
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Lee et al. [46,47] and Bending et al. [51] have observed that the anisotropy decay function related to the relaxation of probe molecules indicates an acceleration of the dynamics at yield. During post-yield and before the onset of strain-hardening, τ c is found to become nearly constant (Figure 5a), despite the drop of stress. Different experimental [51] and theoretical results [55,56] suggest that the attained value is nearly linear with the strain rate. On the other hand, β is found to increase rapidly from a value of 0.3 at rest to a constant value comprised between 0.4 and 0.5, after a small peak at yield (Figure 5b). These results confirm that segmental motion is accelerated during plastic yield, (nearly) proportionally with respect to the strain rate. In addition, they show that the distribution of relaxation times becomes narrower in the plastic regime and that even regions with local dynamics slower than ˙ -1 (˙ local strain rate) are perturbed by stress. This homogenisation mechanism remains without a satisfactory physical understanding.

Strain-hardening

The response of polymers to large strains plays a key role in determining their failure mode and mechanical performance. At some 10 % deformation amplitude after yield, stress is observed to increase roughly linearly with increasing strain (Figure 6a). This 'strain-hardening' makes it more difficult to deform regions that have already yielded, it spreads deformation to new regions and acts as a stabilizing agent over localization phenomena, like shear banding and brittle fracture. The rate of stress increase, or hardening modulus G R , is observed to augment when cooling the system, starting from negligible values close to the glass transition temperature and reaching values of order 10 7 -10 8 Pa well below T g [START_REF] Haward | The Physics of Glassy Polymers[END_REF]57,58,59,60,61].

The hardening modulus has been found to correlate to the strain rate [61] and the flow stress [62,63].

Strain-hardening has for a long time been attributed to the entropic elasticity of the entangled or cross-linked rubbery network [58,60,64,65]. Classic theories have been supported by experiments showing the strengthening of strain-hardening with increasing entanglement or cross-linking densities [57], like in Figure 6b. These models can qualitatively reproduce the functional form of the stress-strain curves, but can't explain the orders of magnitude of the hardening modulus. Assuming a cross-linking density comparable with that in the melt, G R is predicted to be of order 10 5 Pa, i.e. two orders of magnitude lower than the experimental one. In addition, the entropic elasticity would imply an increase of the hardening modulus G R with increasing temperature [57,58,66], which is not the case. The need to recur to non-physical values of the fitting parameters as well as the anti-entropic nature of strain-hardening raise serious concerns about the validity of these theories.

Strain-hardening appears instead to originate from mechanisms taking place at the scale of a few nanometres, rather than from network large scale effects. MD simulations by Hoy and Robbins [63,67,68] show that strain-hardening is correlated to the amount of local plastic rearrangements and of non-affine deformation, supporting the idea that the origin of strain-hardening is local and related to glassy dynamical events. It has been ob- served by NMR [69] that affine deformation and anisotropic conformation occur beyond a length scale of order 3 -4 nm, while under applied deformation PMMA's structure remains nearly isotropic, at large scales. Simultaneous mechanical and thermal (heat release) measurements of polycarbonate [70] support the idea that contributions to the onset of strainhardening are both inter-chain -plastic events and local rearrangements of monomers-and intra-chain -bond stretching and bond angle distortion. Chen and Schweizer [71] have developed a theory which succeeds in explaining several aspects related to strain-hardening.

They propose that macroscopic deformation results in configurations with highly oriented chain, modifies the monomer packing and reduces the free volume available for segmental relaxation. Deformation increases the activation barrier between different configurations and slows down the dynamics at scale of the monomers. This is the leading point of view presented in this manuscript.

A model for the mechanical relaxation in glassy polymers

Here, we briefly introduce a model for the dynamics in the bulk developed in the last ten years. This so-called 'Percolation of Free Volume Distribution' (PFVD) model [72] aims at providing a unified physical description for the dynamics of non-polar amorphous polymer glasses, both in the bulk and in thin confinement [73,74,75,76,77]. It has been used to reproduce and explain various features of polymers close to the glass transition [72,78,79],

such as the heterogeneous nature of the dynamics [73], the violation of the Stokes law observed for small probes [74], ageing and rejuvenation phenomena [77], the shift of glass transition at interfaces [73,76,35] and the dependence of the dynamics as a function of pressure [25]. A recent extension [35] describes the stress and strain fields on the scale of

INTRODUCTION dynamical heterogeneities.
The PFVD model is a mesoscale coarse-grained model, with spatial resolution of the size of the dynamical heterogeneities, ξ. The details of the physics on smaller spatial scales are included in a few adjustable parameters, related to the thermodynamical properties of the considered polymer and incorporated in the phenomenological WLF law (1). This allows to reach larger spatial scales and longer time scales as compared to MD simulations [28,29,30,31,32,33,34].

The leading point of view is that the mechanical response of polymers in the vicinity of the glass transition is essentially driven by the local dynamics at the scale ξ ∼ 3 -5 nm. The mechanical response is described by a low frequency, rubbery modulus, a high frequency, glassy modulus, and by the distribution of relaxation times associated to the dynamical heterogeneities. The stress and strain fields and the dynamical state are described at the scale ξ.

Hereafter we explain the physical picture of the glass transition. As we have already discussed, dynamics is strongly heterogeneous in supercooled liquids, with relaxation times spanning many decades, up to 8 as measured by dielectric spectroscopy [21]. Slow regions coexist with fast ones on a scale of a few nanometres. The contribution of very fast regions is negligible because it relaxes at a rate faster than the experimental sampling time. Fast relaxation times contribute to the short time scales response. Very slow subunits are rare and surrounded by faster subunits. The stress they bear is relaxed before their own internal relaxation has taken place, because the relatively faster environment transmits such stress during shorter time scales. Therefore, their internal relaxation time is not probed in mechanical experiments neither.

Accordingly, it has been proposed [73,76] that the longest relaxation time probed in mechanical experiments corresponds to a percolation threshold, p c . As schematically represented in Figure 7, domains with relaxation time equal or longer than 10 2 s don't contribute to the macroscopic mechanical response until their volume fraction attains p c . The time scale corresponding to the percolation threshold appears thus as an upper cutoff in the distribution of relaxation times. As a consequence, the distribution of relaxation times is given by the 'bare distribution' p(τ), with an effective cutoff at long times τ p c defined as

∞ τ p c p(τ) d τ = p c ( 7 
)
This is this time scale which controls the macroscopic relaxation of the stress. Much shorter time scales relax too quickly and longer time scales are not probed, because they are too rare.

As a consequence, at equilibrium the macroscopic relaxation time τ α is equivalent to τ p c .

Note that, even tough percolation is a key feature of the model, glass transition is not associated to a 'percolation transition'. As a matter of fact, there is no exact dichotomy between slow and fast regions, like is the case, e.g., of the model of Grest and Gohen [80]. In their model, the liquid is made of either fluid or truly rigid units, while in the PFVD model the relaxation times of the subunits cover several decades but are finite, according to the INTRODUCTION Figure 7: Schematic view of the heterogeneous dynamics of bulk polymer above T g (left) and below T g (right). The green heterogeneities have a relaxation time longer than 10 2 s and behave essentially like a rigid solid. Grey heterogeneities have a relaxation time shorter than 10 2 s. They behave essentially like a fluid or a rubber. Above T g (on the left), the volume fraction of glassy subunits is lower than p c , and the stress they bear is relaxed by the fast environment. Below T g (on the right), the volume fraction of slow regions is higher than p c , and they percolate.

dynamical nature of density fluctuations.
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Objectives

The PFVD model has succeeded in describing several properties of polymer glasses, in the linear regime of deformation. In the past years we have been working on extending the PFVD model in order to account for various feature related to the non-linear regime of deformation. In particular, we have focused on the mechanical properties from the plastic yield to the onset of the strain-hardening regime. The evolution of the dynamical properties at the scale of the dynamical heterogeneities has been treated as well, with a special attention to the yield and post-yield regimes. These topics are still object of stimulating debates and of an intense research activity.

In each of the following chapters, after a brief introductory section to the subjects discussed, we outline the specific physics proposed and the numerical implementation of the model. In order to avoid redundancy, we don't explain, in every chapter, all the model, dealing only with the new features introduced and referring to previous chapters, where necessary. Then, we try to show and interpret the results of the numerical simulations with objectivity and by situating them in a wider scientific context. The discussion is organised as follows:

• In chapter 1 plastic yield is treated. The leading point of view is that applied stress can effectively accelerate local dynamics by lowering free energy barriers between configurations. In this chapter, we try to understand whether and in which way this mechanism can induce strain localization and non-affinities, by carrying a spatial analysis of the microscopic rearrangements occurring at the scale ξ.

• Chapter 2 tries to get a deeper understanding of how the applied deformation affects the relaxation dynamics at the scale of monomers, and why. In particular, we focus on the recent experimental data coming from optical probe reorientation measurements.

While it is generally accepted that the acceleration of the dynamics is due to the applied stress, the narrowing of the distribution of relaxation times has not yet a clear and explanation. The facilitation mechanism is introduced during out-of-equilibrium conditions and can capture the many of the experimentally observed features [51].

• In chapter 3 we show the most recent results concerning mechanical properties of polymer glasses at large strains. The onset of strain-hardening and the stabilization of localized failures observed in highly entangled polymers is modelled. Analogously to the picture proposed by Chen et Schweizer [72], deformation-induced local anisotropy is viewed as the triggering agent of strain-hardening. As in the other chapters, a spatial analysis of the mechanism ongoing at the scale of heterogeneities are discussed. Chapter 1

Polymer plasticity

The man who moves a mountain begins by carrying away small stones. 

CONFUCIUS, The Analects

Introduction

The aim of this chapter is to illustrate the PFVD model, together with a recent extension to the case of plastic deformation. The model had been initially developed in order to propose an interpretation both for thin film experiments and for the heterogeneous dynamics in the bulk [1,2,3,4], in the case of van der Waals liquids. It is based on the assumption that the dynamics in the bulk is controlled by the percolation of slow domains, or subunits, corresponding to upwards density fluctuations on the scale of a few nanometres. It provides an expression for the characteristic size ξ of the dynamical heterogeneities as a function of temperature, equivalently expressed as a number of monomers N c . This size is derived thanks to the 'facilitation mechanism' [5], which is described in the next chapter and detailed in [2].

N c is a decreasing function of temperature and is found to be typically 10 2 -10 3 monomers close to T g and a few tens at T g + 80 K [2,6].

In addition, we propose that plastic flow in glassy polymers derives from an acceleration of the dynamics at the scale of the dynamical heterogeneities. Applied stress, by lowering free energy barriers between different configurations, can reduce the local relaxation time and trigger plasticization events. We focus on the onset of plastic flow, up to a few tens of percent of deformation, before the strain-hardening regime takes place [7]. A main focus will be given to the spatial modification of the distribution of relaxation times by the applied strain and the ensuing relaxation processes. A similar approach as that described here regarding volume relaxation has been proposed recently by Medvedev and Caruthers [8], which emphasizes also the role of dynamical heterogeneities in these relaxation mechanisms.

The chapter is organized as follows. In section 1.2 we present the main modification of the physical model in order to take non-linear effects into account, as compared to the description discussed in [9]. In this section, we show semi-quantitatively that this model allows for calculating yield stress without additional adjustable parameters than the scale ξ of dynamical heterogeneities. In section 1.3 we present the numerical method which has been developed in order to solve the physical model. The same numerical model was also discussed in [9]. In section 1.4 we consider the plastic behaviour of glassy polymers as calculated from the numerical model, as regards the macroscopic behaviour, e.g. yield as a function of temperature or strain rate. In sections 1.5 and 1.6 we analyse the physical mechanisms which take place on a scale of a few nanometres during plastic deformation, in particular how the distribution of relaxation times is modified as compared to the linear regime, and the appearance of shear bands.

Description of the model

We describe here the physical ingredients of the model [9]. The existence of a broad distribution of relaxation times is supported experimentally by dielectric [10] and mechanical experiments [11]. The underlying assumption of the model is that the wide distribution of relaxation times is created by density fluctuations on scale ξ ∼ 3 -5 nm [2,6]. Each dynamical heterogeneities on scale ξ is described by a high frequency elastic modulus G 0 ∼ 10 9 Pa, and a local relaxation time. When considering entangled or cross-linked polymers, they also possess a low frequency modulus G ∞ of order 10 5 Pa. A schematic representation of the model is drawn in Figure 1.1 in which we represent subunits with different relaxation times. A similar picture has been given in Merabia et al. [3] and in Dequidt et al. [9]. Mechanical experiments do not probe the internal relaxation times of the slowest subunits because they relax stress according to the relaxation time of the surrounding environment, which is shorter than their own.

Figure 1.1: The coarse-grained model for the glass transition in polymers. We represent subunits (ξ ∼ 3 -5 nm) with different relaxation times: in grey fast (low density) ones, in green the slow (high density) ones. The elastic energy stored in the slow subunits does not relax by internal slow processes, but by rotation within a faster environment. On the left, the picture above T g , where slow clusters are relatively small. On the right, slow clusters percolate and determine the macroscopic viscosity, below T g .

In the physical model, the elementary objects (degrees of freedom) are interacting dynamical subunits of size ξ ∼ 3 nm. The couplings between neighbouring subunits are supposed to have finite relaxation times. When a local coupling relaxes, the local stress vanishes, or equivalently, the elastic energy stored in the contact between the neighbouring subunits is released and dissipated. This process is the main source of viscous dissipation in the real system close to T g . Macroscopic relaxation occurs as a result of random microscopic relaxation of subunits.

Plasticity in glassy polymers

It is experimentally known [12] that, by applying a stress large enough on a glassy material, one can induce relaxation at a rate faster than the equilibrium rate τ -1 α . This implies that the local relaxation time cannot be a function of the local density only, but must also depend on the local stress. We assume that on a microscopic scale, the relaxation time follows an Eyring like picture. It has been proposed that α-relaxation is a collective effect which takes place on a cooperative scale ξ [13]. Merabia and Long have proposed [2] that this length scale results from two competing relaxation mechanisms: internal reorganisation within a slow subunit at fixed local density and monomer diffusion from slow into fast domains. They show that this 'facilitation mechanism' [5] results in a temperature-dependent dominant length scale ξ of order 3 -5 nm close to T g [2,6]. Note that the Merabia and Long facilitation mechanism has been discussed and used by Tito et al. [14] for studying T g shifts in suspended films. A more detailed explanation will be given in the next chapter.

According to the free volume picture, the α-relaxation process results from the packing of N c ≈ ξ 3 /a 3 monomers, where a is the typical size of a monomer and a volume of order a 3 is made available for one particular monomer to move (see e.g. reference [15]). The packing of the other monomers results in an increase of the free energy δ f per monomer. The total free energy barrier for the α-relaxation is thus N c δ f (which is of order 30k B T close to T g ). In the presence of an applied stress, the excess of free energy of each of the monomers during packing is modified into δ fa 3 σ:σ 2G 0 where σ is the local (deviatoric) stress tensor, the operator ':' represents the Frobenius product and thus a 3 σ:σ 2G 0 is a measure of the energy stored, per monomer. The free energy barrier on the scale of the dynamical heterogeneity is thus mod-

ified into N c δ f -a 3 σ:σ 2G 0 = N c δ f -ξ 3 σ:σ 2G 0 .
To account for the effect of the local stress on the relaxation time, we deduce that the activation energy ΔF ‡ for a local change of configuration decreases like

ΔF ‡ = ΔF ‡ eq - ξ 3 2 σ : σ G 0 (1.1)
and that the local relaxation time τ is accelerated according to

τ(σ) = τ(0) exp - ξ 3 2 k B T σ : σ G 0 (1.2)
where τ(0) is the relaxation time that the dynamical heterogeneity would have in the absence of the applied stress. Here, we express the relaxation time τ as a function of the applied stress alone, but it depends on the local density as well.

In the linear regime, i.e. when σ:σ 2k B T G 0 /ξ 3 , τ(σ) ≈ τ(0) and relaxation occurs according to the equilibrium distribution of relaxation times. However, in the non-linear regime, when the stress becomes locally high, the distribution of relaxation times starts to deviate from the equilibrium one and mechanical rejuvenation is induced. This is the case when ξ 3 σ:σ 2k B TG 0 ∼ 1. Let us assume 2k B T ≈ 10 -20 J, G 0 ≈ 3 × 10 9 Pa, ξ 3 ≈ 10 -25 m 3 (which corresponds to ξ = 5 nm). Then, for σ = 3 × 10 7 Pa, this ratio is equal to 3. Thus, a typical value of a few 10 7 Pa for stress-induced softening is obtained without additional adjustable parameters. Equations (1.1) and (1.2) are the main theoretical extensions to the model described in [9]. They have been obtained with the purpose of qualitatively understanding the stressinduced acceleration, and should not be considered as an exact numerical estimation. They nevertheless allow for a simple mean-field calculation of the yield stress.

Estimation of the yield stress

When a large deformation is applied, plastic flow is observed and the stress reaches a plateau.

Immediately before it, at yield, one has

σ y = G 0 γτ α (σ y ) (1.3)
where τ α (σ y ) is the macroscopic relaxation time at yield. At a qualitative level, one can apply the locally defined equation (1.2) to the macroscopic time τ α (σ), obtaining:

τ α (σ y ) = τ α exp - σ 2 y ξ 3 2G 0 k B T (1.4)
Combining with equation (1.3) and taking the logarithm, one gets

σ 2 y = 2G 0 k B T ξ 3 ln γτ α -ln σ y G 0 (1.5) ≈ 2G 0 k B T ξ 3 ln γτ α + 1 2 ln G 0 ξ 3 2 k B T
The last approximation is valid for γτ α > 1. In a range of a few decades, σ y as a function of ln γτ α can be linearised as

σ y a + b ln γτ α (1.6) with a = G 0 k B T ξ 3 ln G 0 ξ 3 2 k B T 1/2 (1.7) b = 1 ln G 0 ξ 3 2 k B T G 0 k B T ξ 3 ln G 0 ξ 3 2 k B T 1/2
Equation (1.5) is a classical feature of yield of polymers (see e.g. [16]). If we assume that V * where V * is the so-called activation volume, which is an adjustable parameter without clear meaning, except that it has the dimension of a volume. With the values of the parameters used here, one finds V * ≈ 2.5 nm 3 whereas one has ξ 3 ∼ 100 nm 3 close to T g . The model thus provides an expression for the activation volume V * without additional adjustable parameters as compared to those used for describing linear mechanical properties [9], T g shifts in thin films and violation of the Stokes law [1,2]. Our prediction is that V * ∝ ξ 3/2 (see (1.7)), apart from logarithmic corrections. However, their orders of magnitude are different.

The evolution of the characteristic length scale ξ of polystyrene as calculated in [2] is plotted in Figure 1.2. From the temperature dependence of ξ and the WLF law, one can calculate the yield stress of the considered polymer (polystyrene). The stress during plastic flow as calculated from (1.5) is plotted in Figure 1 ) and the evolutions of τ α (T) (WLF law) and of ξ(T) (Figure 1.2), for different strain rates: 10 -2 s -1 (blue curve), 10 -1 s -1 (red curve), 1 s -1 (green curve), 10 s -1 (black curve), 10 2 s -1 (turquoise curve) This phenomenological description amounts to consider that the elastic energy stored at the scale ξ is available for crossing the internal free energy barriers in the liquid. Note that in this description, no specific polymer effect is taken into account, which limits this model to deformations of moderate amplitudes. Beyond deformations of about 20 %, effects such as strain-hardening take place (see e.g. [17]). Let us consider now how this model can be solved in 3D for calculating plastic flow with the resolution corresponding to the scale of dynamical heterogeneities.

Numerical model

The basic units of the numerical model are dynamical heterogeneities of size ξ ∼ 3 nm. They are represented by glassy springs of stiffness k 0 and finite relaxation time. The extremities of the glassy springs are located at nodes, with no precise physical meaning. Nodes interact through a repulsive potential, which models incompressibility. The corresponding force is:

F HS ( r ) = 12 u 0 d r 12 ûr
r + f r eg (r ) ûr ; for r < r HS (1.8) with r vector distance between nodes, ûr = r /r and d ∼ ξ. Incompressibility is attained through a Lennard-Jones repulsive potential regularized by an harmonic term, f r eg , so that the force and the energy are continuous and smooth at the cutoff r HS (see appendix 1.A).

The number of nodes is particularly high, ∼ V/ξ 3 (V volume of the box), in order to attain a typical distance between nodes of order ξ. The cutoff is slightly larger than ξ and u 0 is small enough so that its contribution to the stress tensor is negligible when compared to the glassy contribution.

Very loose, permanent springs account for rubbery elasticity in cross-linked or entangled polymers:

F R ( r ) = -k ∞ (r -l 0 ) ûr (1.9)
where l 0 ∼ ξ, and k ∞ ∼ G ∞ ξ is the low frequency elastic constant corresponding to rubber elasticity. The average number of glassy springs per node is an adjustable parameter of the numerical model, with negligible influence in the range of temperature of interest.

The force exerted by glassy springs accounts for the high frequency part of the elastic modulus, and reads

F g ( r ) = -k 0 ( r -r 0 ) (1.10)
where k 0 ∼ G 0 ξ k ∞ , so that the glassy term is the dominant contribution to the stress tensor, for temperature close to T g . The reference state r 0 corresponds to the relative positions of the subunits when the last relaxation event occurred. The probability of relaxing per unit time, d P rel /d t, is given by

d P rel (t , σ) = d t τ(t , σ) (1.11)
where τ(t , σ) is the local relaxation time of the glassy spring, as a function of its age t (time elapsed since the last relaxation event) and the local stress σ. The ageing of the glassy springs (which represent the dynamical heterogeneities) is detailed in the following subsection. After a relaxation event, the stress a glassy spring bears is released (as r 0 = r ) and the age t is set to zero, but the spring is not erased. It keeps 'existing', starting from an uncharged configuration, in a sort of death and rebirth process.

Relaxation and ageing mechanism

In order to account for the acceleration of the dynamics upon heating the sample, we assume that the only effect of increasing the temperature in our systems is to shift the equilibrium distribution of relaxation times, p eq (Log(τ)), towards longer time scales. For the distribution of τ, a log-Gaussian distribution of central value τ α and width Δ has been chosen

p eq (Log(τ)) = 1 πΔ exp - Log 2 (τ/τ α ) Δ 2 (1.12)
with Log = log 10 . A constant Δ = 4 accounts for the wide nature of the distribution, neglecting the broadening of it upon cooling. The value 4 has been chosen in order to be consistent with dielectric spectra and with experimental data concerning the moduli G and G , as functions of temperature and frequency [11]. τ α is given by the empirical WLF law (1): the dependence on temperature of the distribution of relaxation times is implicit in τ α . The parameters of the WLF law used are those of PMMA.

Ageing and relaxation dynamics of heterogeneities is attained through the following algorithm. At each time step d t, a glassy spring relaxes with a probability given by equation (1.11). If it does, then the age t of spring is set to zero and the rest position r 0 is set to r , which relaxes the glassy constraint. Otherwise, the spring ages of d t. A probability d P rel (t , σ) of having a relaxation event is set, as a function of the age t and of the local stress.

In the absence of applied stress, the probability d P rel (t , 0) must be such that the distribution of relaxation times in the system converges towards the theoretical equilibrium distribution (1.12). d P rel (t , 0) is equal to the probability of reaching the age t + d t knowing that the age of the spring is t :

d P rel (t ,0) = P t + d t | t = 1 - p alive (t + d t) p alive (t ) - dln p alive (τ) dτ τ=t d t - dln p eq (τ) dτ τ=t d t (1.13)
where p alive (t ) ∼ p eq (t ) represents the probability of reaching age t . For broad distributions of relaxation times like those we use, p eq (τ) ∼ 1 τ over a wide range and equation (1.11) reduces to τ(t ,0) ∼ t . This procedure allows for modelling quenching, annealing and ageing of glassy polymers [9]. As examples, we show relaxation time distributions of systems that have been quenched (Figure 1.4a) at various temperatures and aged for 10 3 s, or that have aged at 394 K for various waiting times (Figure 1.4b).

Combining equations (1.2), (1.11) and (1.13) gives the probability of rupture in the presence of applied stress

d P rel (t , σ) = d P rel (t ,0)exp ξ 3 2 k B T σ : σ G 0 d P rel (t ,0) e λ F 2 g • d t (1.14)
(a) Distributions of relaxation times at rest for different temperatures between 384 K and 418 K.

The system have aged at the considered temperature for 10 3 s.

(b) Distributions of relaxation times at rest at 394 K, for different ageing times from 10 -3 s to 10 3 s. We see that the distributions of ages converge towards the equilibrium one (dashed).

Figure 1.4: Examples of systems aged according to the algorithmic equation (1.11). The dashed curves correspond to the equilibrium distributions at the considered temperatures given by equation (1.12). Since τ(t ,0) ∼ t , in absence of stress the distributions of ages and of relaxation times are nearly identical.

where F g , as defined in equation (1.10), represents the glassy component of the local stress σ and is its dominant contribution. The value of the parameter λ ≈ ξ 3 2k 2 0 k B T is consistent with the estimation given in section 1.2. Indeed, the argument in the exponential becomes of order one for a strain close to 3 %.

Plastic behaviour at the macroscopic scale 1.4.1 Yield stress

Let us first consider the evolution of the stress as a function of the deformation amplitude for systems which are sheared at a constant shear rate γ. At temperatures well above T g , one expects a linear evolution of the stress, with a slope corresponding to the rubbery modulus of the polymer. In the glassy regime, the experimental stress-strain curve has a much larger slope at small deformation amplitudes, because the elastic modulus is 3 to 4 orders of magnitude larger than in the rubbery regime. The slope at small deformation is of order 1 GPa, as it is expected to be, and becomes smaller when heating the system.

Experiments show that the stress attains a peak of typically a few tens of MPa for temperatures close to and below the glass transition temperature. In Figure 1.5, an overshoot is indeed observed below T g . This overshoot becomes less pronounced when approaching T g and disappears completely in Figure 1.5a. No yield stress can be clearly defined above the glass transition temperature, and the system smoothly reaches the flow regime.

When plotting the yield stress σ y as a function of the strain rate (Figure 1.6), we observe a logarithmic dependence. This fact has also been described in the literature and is one of the defining features of glassy polymers [16]. Yield stress is plotted in Figure 1.7 as a function of

(a) γ = 10 -1 s -1 . (b) γ = 1s -1 .
Figure 1.5: Stress-strain curves at different temperatures, during shear simulations at constant shear rate γ. The temperatures are T = 388 K (red curve), T = 394 K ≈ T g (green curve) and T = 418 K (blue curve). At temperatures above T g , the stress is nearly linear with respect to the strain amplitude γ. A non-linear behaviour is observed at lower temperatures close to and below T g . Figure 1.6: Yield stress as a function of the strain rate, at different temperatures T between 386 K and 409 K with a increment of about 4 K. A logarithmic dependence is observed. The lower the temperature, the higher the yield stress. The ageing time for all curves is 10 2 s. Figure 1.7: Yield stress as a function of the ageing time before shearing, at different temperatures T between 386 K and 394 K with an increment of about 4 K. The yield stress depends logarithmically on the ageing time. Note that at temperatures higher than 394 K, no stress overshoot is observed. The lower the temperature, the higher the yield stress. The shear rate is 0.1 s -1 .

the ageing time as well (after a temperature quench). We also observe a linear dependence of the yield stress as a function of the logarithm of the ageing time. Note that in both Figures 1.6 and 1.7 the slopes can be considered nearly independent (or very weakly dependent) with respect to temperature. In this respect, simulations reveal themselves in a good agreement with prediction (4) from the Eyring model (briefly outlined in the Introduction).

However, the slopes presented by the yield stress in Figures 1.6 and 1.7 have different values, which is not what one would expect. We propose the following explanation. During ageing, τ α evolves as a function of the waiting time, t w , following the Struik's law [18] 

τ α ∼ t ν w (1.15)
The experimental value of the exponent ν is close to 1 [18]. According to equations ( 4) and (1.15), the yield stress is given by σ y = k B T V * ln γ + ν ln t w . The slope of σ y versus Log t w , divided by the slope of σ y versus Log γ, constitutes a numerical estimation of the value of the exponent ν of the Struik's law. It is between 0.5 and 0.6 for almost all of the temperatures.

In [9], Dequidt et al., by simulating quenching with the same ageing algorithm, obtained ν ≈ 0.6. The result of their quenching simulations is shown in Figure 1.8. Our results appear thus to be consistent with equation ( 4), as long as one accepts that the different slopes are due uniquely to the ageing process, which gives a sub-linear dependence of τ α with respect to t w . Figure 1.8: Evolution of the relaxation time of a system quenched from high temperature, as a function of the waiting time t w . The simulation approximately follows Struik's power law, but with an exponent smaller than 1. Data from [9].

According to equation (1.2), the relaxation of the dynamical heterogeneities is locally accelerated when submitted to deformation. Some slow subunits relax. The local stress is then transferred to the surrounding non-relaxed heterogeneities, which are then more likely to undergo non-linear yield. The successive occurrences of local non-linear yield events make the global stress decrease and reach a quasi stationary value. The overshoot is the result of a retarding effect between the local relaxation time under stress and the effective relaxation (Poisson processes) of individual subunits. At too high temperatures, or too low shear rates, no overshoot is observed because non-linear breaking is marginal.

Elastic and dissipative moduli at large amplitude deformations

We consider here the mechanical response of the system during sinusoidal shears of various amplitudes, from the linear regime up to large deformations. The samples are submitted to an oscillatory deformation γ(t ) = γ sin(ωt ) at pulsation ω = 10 rad • s -1 . After a short transient regime, the steady state takes place. G and G are defined respectively as the real and imaginary part of the first harmonic.

In Figure 1.9 we have plotted the elastic modulus G as a function of temperature, for different strain amplitudes between 0.01 and 0.2. Small deformations are characterized by the typical glass transition behaviour and the linear elastic modulus G (T) is obtained: at low temperatures, the modulus varies slowly and has a typical value of 1 GPa. When increasing the temperature, the modulus decreases down to a rubbery value, which is of order 1 MPa here. The typical temperature range of this transition is about 20 K. At larger amplitudes, we observe a decrease of the elastic modulus at temperatures below T g : the bulk polymer gets plasticized under strain. This non-linear effect disappears at temperatures higher than T g . At low temperatures, the elastic modulus drops from about 1 GPa down to a few tens of MPa for deformation amplitude of 0.2. This is a typical value of the stress of plasticized glassy polymers.

The dissipative modulus G as a function of temperature for deformation amplitudes between 0.01 and 0.2 is shown in Figure 1.10. Here also we observe the variation of the linear dissipative modulus at small deformation amplitudes. A shallow maximum of order 10 8 Pa may be observed a few tens of Kelvin below T g for the linear dissipative modulus. Above this temperature, G decreases when increasing the temperature. Note that the value of G in the high temperature regime depends on the detail of the considered elastomers (density of cross-links, dangling chains, etc...) which are not considered here. Below T g , G decreases as a function of the strain amplitude γ. At low temperatures, the dissipative modulus drops by about a factor of 3 at deformation amplitude 0.2 as compared to the linear value. The amplitude of the effect is smaller as compared to the change of elastic modulus. Figure 1.11 shows the evolution of G and G as a function of the strain amplitude γ for temperatures between 370 K and 460 K (same data as in Figures 1.9 and 1.10). G decreases as a function of strain at low temperatures, whereas at high temperatures, it does not depend on the strain. Regarding G , we observe a shallow maximum at deformations of about 0.05 for samples in the glassy state, which corresponds to the yield. At higher strain, G is a decreasing function of the strain amplitude. At higher temperatures, the dissipative modulus does not depend on the strain.

The evolutions of G and G plotted in Figure 1.11 are similar to the so-called Payne effect Figure 1.9: G as a function of temperature for different deformation amplitudes γ between 0.01 and 0.2. For small γ, the linear modulus is measured. For deformations larger than 0.05, a non-linear response is observed. Same data as in Figures 1.9 and 1.10. At high temperatures, both moduli are strain independent. At low temperatures G is a decreasing function of γ, whereas G exhibits a small maximum at a strain amplitude close to 0.05. observed in filled elastomers [19,20]. This effect is characterized by a decrease of the elastic modulus as a function of strain amplitude, whereas the dissipative modulus may display in some cases a maximum at intermediate deformations of order 0.1. This effect in bulk polymers has been observed only recently in polymer mixtures, and is extremely similar to the one predicted by our model [11].

In Figure 1.12 we have plotted tan δ = G /G for the same data as shown in Figures 1.9

and 1.10. tan δ shows a maximum close to T g . Below T g , the curves are shifted upwards upon increasing the strain amplitude, as a result of the larger decrease of G than of G and of a more pronounced dissipation. Figure 1.12: tan δ as a function of temperature, for different strain amplitudes, indicating more dissipation around glass transition.

Plastic behaviour and distribution of relaxation times

We consider here how the distribution of the local stress modifies the distribution of relaxation times. This is a complex process, because the local stress is very heterogeneous. Indeed, it depends on the history of the deformation and internal relaxation processes, which themselves are stress dependent. The stress on a local scale in very slow subunits may also relax by the individual relaxations of the relatively faster neighbouring subunits, on the time scale of the surrounding environment. Thus, the local relaxation time and stress are coupled in a complex way and are strongly history dependent [21].

Both spontaneous internal mechanisms and the relaxation of the surrounding subunits allow local stress relaxation. To analyse these processes, we study in this section the evolution of the distribution of ages as a function of the strain amplitude in simple shear experiments up to deformations of 30 %, for different temperatures (above and below T g ) and for different shear rates between 10 -2 and 10 2 s -1 . Without any applied stress, the age of a subunit is approximatively equal to its relaxation time. Under applied stress, it isn't any more, as a consequence of the acceleration of the dynamics. The age of the subunit is thus a measure of its 'intrinsic mobility', the one we would observe if the dynamics weren't modified by the external mechanical loading, or if the applied stress were released. At high temperature, we expect the distribution of ages to be poorly accelerated by the applied deformation.

Upon decreasing the temperature or increasing the shear rate, the stress increases and the distribution of ages gets modified.

In Figure 1.13a, we have plotted the cumulative distributions of ages for different temperatures T between 388 K and 418 K and increasing shear deformation, with γ = 0.1 s -1 . Indeed, the distributions are poorly modified by the applied shear at high temperatures (418 K and 402 K). Upon decreasing the temperature, the distributions are more and more affected. The strongest modification occurs for intermediate ages, which is clearly visible on the T = 388 K bundle of curves. The long and short time parts of these distributions appears less affected.

In Figure 1.13b we have plotted the cumulative distribution of ages for different shear rates and at 394 K, close to T g . For the lowest shear rate (black curve), the cumulative distributions are nearly not modified. At γ = 0.1 s -1 , the distribution is slightly modified. At the highest shear rate (red curve), the distribution is strongly modified for ages shorter than 10 -2 s. To summarize, at low shear rates or high temperatures, the bundles are narrow: the distribution of ages is not or slightly modified by the applied deformation, while at high shear rates or low temperatures, the bundles increasingly broaden on the short time side: the distributions of ages are modified by the applied deformation.

We do observe indeed that the distribution of ages is affected by shear at low temperatures or high shear rates, due to the non-linear breaking of the springs. Note that it has been observed experimentally that the mobility is accelerated in actively deformed polymers close to the glass transition [22]. Interestingly, the springs most sensitive to non-linear yield are the ones of age similar to γ-1 . Indeed, the long time part of the bundles of curves remains narrow in all cases, indicating that subunits with high intrinsic mobility relax much less. Even tough (a) Different temperatures are considered: 388 K (green curves), 394 K (blue), 402 K (purple) and 418 K (red). The samples have aged for 10 3 s before deformation and the shear rate is γ =0.1 s -1 .

(b) T = 394 K, ageing time 10 2 s. Different shear rates γ are considered: 10 -2 s -1 (black), 10 -1 s -1 (purple), 1 s -1 (blue), 10 s -1 (green) and 10 2 s -1 (red). Figure 1.13: Bundles of cumulative distributions of ages. Each curve of a bundle corresponds to a given deformation, i.e. to a given time during the applied simple shear deformation. A bundle is made of these different curves for increasing deformations between 0 and 30 % (from bottom to top). A very narrow bundle corresponds to distributions which are poorly modified by the applied deformation. these subunits may not relax during deformation, the stress they bear might relax anyway as a consequence of the relaxation of all the surrounding environment. As a consequence, the non-linear acceleration of the dynamics is less effective for inducing internal relaxation of the very slow subunits because the surrounding subunits relax first. Figure 1.14: Example of a distribution of ages modified by the applied deformation. Ageing time is 10 2 s, shear rate 10 2 s -1 , strain 14 % and temperature 386 K. The distribution of ages after shear is bimodal when the non-linear effect is significant. The behaviour shown here is similar to the one observed for the cumulative distributions of ages in Figure 1.13a. The distribution is indeed mostly affected in the intermediate range of relaxation times.

In Figure 1.14 we have plotted an example of a distribution of ages for a temperature and shear rates for which it is strongly modified by the applied deformation. Applying a stress induces a hole in the distribution of ages around the time scale of the applied deformation.

As a result, the distribution after shear is bimodal.

Localization of the dynamics 1.6.1 Stored elastic energy under applied stress

Under applied stress, elastic energy is stored heterogeneously at a microscopic level. In order to illustrate this feature we have plotted a cross section of the relaxation times (Figure 1.15) and of the stored elastic energy (Figure 1.16). The polygons are a rough representation of the volume surrounding a dynamical heterogeneity and have no further significance. In Figures 1.15a and 1.16a the system is at rest after having aged for 10 3 s. In Figures 1.15b and 1.16b the system has been deformed by 8 % and is close to yield point.

Note that the any change is difficult to visualize in this representation, consistently with Figure 1.14. This illustrates the fact that mechanical relaxation requires only a small amount of local yields to occur, in this temperature range not too far below T g and on the considered deformation time scales (a few seconds). In Figure 1.16b it is observed that dynamical heterogeneities result in a huge heterogeneity of stored elastic energy under applied deformation, on the scale of a few nanometres. White regions have released the energy they stored, as a consequence of relaxation processes. Dark regions store a relatively big amount of energy and thus they are highly deformed. The relation between stored energy and age is not straightforward: while regions with large stored energy have large ages as well, not all the subunits with long ages store a big amount of energy. This implies that the strain field is not homogeneous, the system being deformed differently in different points. In the next section we will analyse this matter in more details. 

Reorganizations under strain

As discussed above, non-affine reorganizations play a key role in yield mechanisms. The aim of this section is to quantify these non-affine reorganizations which are the consequence of the intrinsic heterogeneities (distributions of relaxation times) of the system. The relaxed state just before the applied deformation is chosen as reference state. For a given bead, the non-affine displacement is defined at any time as

δ r = Γ -1 r -r (0) (1.16)
where r and r (0) are respectively the actual and the initial (reference) position of the bead and Γ the deformation matrix, so that Γ -1 r would be the current position of the bead in the reference system if it had moved affinely. The root-mean-square non-affine displacement is also defined by

d na = 〈δ r 2 〉 (1.17)
Brackets denote the average over all the beads. Note that δ r increases whenever an event resulting in heterogeneous or non-affine local behaviour happens. In our description, such an event is represented by a local relaxation or rejuvenation.

The evolution of d na as a function of the strain γ is shown in Figure 1.17. d na increases linearly at small strain, where deformation is essentially linear. Above T g , it increases linearly for the whole deformation range. At temperatures close to or below T g , a change of slope occurs at deformation 5 -7 % which corresponds to the yield point. The lower the temperature, the larger the increase of d na as a function of the applied deformation. We interpret this result as a consequence of the increase of localized relaxations occurring during plastic yield, which is reflected in the microscopic reorganizations at the scale of the dynamical heterogeneities.

Figure 1.17: Root-mean-squared non-affine displacement d na as a function of the strain amplitude for different temperatures: 388 K (black curve), 394 K (red), 402 K (green), 418 K (blue). Shear rate is 0.1 s -1 and waiting time 10 2 s. d na rises linearly with strain. Below T g , the yield point is identified by a change of the slope: non-affine displacements becomes more pronounced in the plastic regime.

We also calculated the average velocity profile in the direction normal to the applied shear. The velocity profiles are plotted at different deformations for temperatures above T g (Figure 1.18) and below T g (Figure 1.19). The velocity profile is affine above T g for the two considered snapshots (1 % and 7 % deformations respectively). Below T g it is affine at deformation 1 % (elastic regime), whereas two shear bands are observed above the yield point at deformation 7 %. Note that in sets of simulations performed in similar conditions (temperatures, strain rates, ageing time), the number of shear bands varied between 1 and 3. Again, this shows directly that yield results in localized phenomena which impact dynamics at the scale ξ. At low temperatures and strain amplitudes of a few percent, a local accumulation of the heterogeneously distributed stored energy results in relaxation of the Figure 1.19: Same as in Figure 1.18, but below T g (T = 388 K). In the elastic regime (a), the velocity profile is essentially affine; while at 7 % (b) deformation, the velocity profile becomes non-affine. Three blocks moving rigidly separated by two shear bands can be observed.

stress. Neighbouring heterogeneities being coupled, this local event manage to propagate and local rejuvenation is induced along a 'crack'. When deforming further, the regions which have rejuvenated cannot bear high values of stress any more. Such regions, in Figure 1.19, can be identified as those where the velocity profile jumps to higher values. Consequently, the other regions of the system, which have not rejuvenated during yield, don't do it now, as stress and elastic energy drop to too small values. They appear thus very rigid with respect to the rejuvenated 'crack', and shear bands appear.

Conclusions

We have extended the PFVD model with an Eyring-like hypothesis for the local mechanical

properties. The PFVD model is a mesoscopic model that accounts for the dynamical heterogeneities of a polymer glass, and which allows to calculate the mechanical properties of polymers close to and below the glass transition. As discussed in [9], the main features observed with the PFVD model seem to be consistent with the results regarding mechanical heterogeneities obtained by molecular dynamics simulations [23,24,25]. We thus describe the stress field, the strain field and the dynamical state of each subunit, at the scale of 3 -5 nm. The model, studied by numerical simulation, allows to reach macroscopic time scales.

This chapter has been focused on describing the non-linear and plastic behaviours of glassy polymers close to the glass transition. We have proposed that the elastic energy stored on the scale of the dynamical heterogeneities effectively reduces the free energy barriers present for internal relaxation. Measuring plastic properties of glassy polymers, and the yield stress in particular, amounts to probe the scale of dynamical heterogeneities.

Regarding the temperature range and ageing times under study ( i.e. temperatures close to T g and ageing times of order 10 3 s), yield appears as the result of an acceleration of the dynamics of subunits with relaxation time of the same order of magnitude as the time scale of the experiment. Consistently with the percolation picture of the model, subunits with very long relaxation times are less perturbed by the applied deformation. Mechanical loading, indeed, induces a relatively small number of relaxation events at long time scales, and creates a large amount of fast regions by accelerating the dynamics. According to the picture proposed in this chapter, the distribution of 'intrinsic' relaxation times becomes wider as a consequence of deformation. Lee et al. [26] and Bending et al. [27] have shown that the distribution of relaxation times, as studied by small probe diffusion, gets narrower under stress. More precisely, the Kolhrausch exponent β increases as compared to the system at rest. From our simulations, it appears the opposite trend, as a big fraction of long-lived density fluctuations don't relax during plastic yield. This effect will be studied in chapter 2.

Our simulations allowed for describing the onset of plastic behaviour and the reorganizations at the scale of dynamical heterogeneities. Upon decreasing the temperature, the fraction of slow subunits increases. The elastic and dissipative moduli as a function of strain amplitude and temperature have been calculated. We have shown that G decreases by more than one order of magnitude at large deformation amplitudes as compared to the linear regime, whereas G decreases by a factor of about 3 only. These predictions are consistent with very recent mechanical measurements [11].

Simulations predict the appearance of shear bands on the scale of about 10 nm at yield and beyond. This result, event tough very eloquent concerning the mechanisms ongoing during plastic yield, is not verified by experiments. On the contrary, in the post-yield regime the stabilizing strain-hardening takes place and avoids massive localized phenomena as those we have observed. In addition, it implies an increase of the stress-strain characteristic that we do not see. This points will be discussed in chapter 3.

Appendix 1.A Numerical algorithm

The elementary objects are beads interacting through elastic potentials -springs-and hard core repulsion (1.8). Two types of springs are considered: 'rubbery' springs (1.9) model the elastic response of cross-linked or entangled polymers at far above T g and glassy springs (1.10) are responsible for the high modulus below the glass transition temperature T g . The unit length in the simulation is naturally defined as ξ = 3 nm. The simulated system has periodic boundary conditions in the x y plane with size 10 ξ × 10 ξ (30 nm × 30 nm). In the z direction, the system is about 12 ξ thick (36 nm) with no-slip boundary conditions. Simple shear deformation is applied, with the velocity gradient along z.

Before running any simulation, the systems are prepared by iteratively relaxing the velocities of the beads and the deviatoric stress tensor σ. The former is achieved by letting the system evolve and the velocities decrease because of the viscous friction. The latter is attained by applying a series of small deformations at constant volume, of the kind [28]

1 3 + d Γ = 1 3 -C • σ det 1/3 (1 3 -C • σ)
where σ = σ -P1 Stress is computed trough the Irving-Kirkwood formula [29]. The numerical procedure used is detailed in Appendix B.

The low frequency rubbery response is elastic with a low modulus G ∞ ∼ 0.1 MPa. The rubbery network is made of permanent rubbery springs of average connectivity 12. For each bead the minimum connectivity is 7, so that the network of rubbery springs is homogeneous enough. The interaction potential of the rubbery springs is given by:

U R = 1 2 k ∞ (r -l 0 ) 2 (1.18)
l 0 is taken as the average distance to the 12 nearest neighbours in a cubic lattice of parameter ξ. The rubbery stiffness k ∞ = G ∞ ξ is the same for all springs.

The beads repel each other with the following interaction potential:

U HS (r ) = u 0 d r 12 + U r eg (r ) (1.19)
where u 0 scales the energy and d ∼ ξ the interaction range. This potential is cut off at a distance r HS = 1.08 ξ and regularized through the harmonic term U r eg , so that U HS (r HS ) = The high frequency response is modelled by glassy springs. The corresponding potential reads:

U g = 1 2 k 0 ( r -r 0 ) 2 (1.22)
where r 0 is the reference position of the spring and k 0 = G 0 ξ k ∞ is the glassy spring stiffness, which is the same for all springs. Glassy springs are created during the preparation of the system, with a cutoff tuned in order to attain an average connectivity of 7.

At each simulation time step d t = 10 -5 s, glassy springs are likely to relax by breaking.

A breaking event occurs randomly with a probability d P rel (t , σ) computed through equation (1.14). After relaxation the age of the spring is set to 0 and the rest position r 0 = r , so that the glassy constraint instantaneously vanishes.

When the system undergoes deformation, all beads are firstly displaced affinely. Beads are then iteratively displaced towards the position of minimum energy during a time step d t. Integration of the equation of motion is attained through the modified midpoint method (MMM), with a secondary time step d 2 t = d t/10. The equation of motion for a bead i , in the overdumped limit, reads:

d 2 r i = 1 ζ F i d 2 t (1.23)
where F i is the sum of the forces acting on the bead. Round brackets are put around those physical quantity which correspond to some numerical value used in simulation, but without a particular physical computation. More specifically, u 0 is set so that the contribution to the stress tensor of the hard-sphere repulsion is much smaller than the glassy one. l 0 is a convenient average distance for the given connectivity, with a very negligible influence over the behaviour of the system, close to T g . 

Introduction

As we have seen in the Introduction, dynamics on the scale of the dynamical heterogeneities has been found to become more rapid and homogeneous during plastic yield. Experimental evidence comes, for example, from the work of Lee et al. [1,2] and Bending et al. [3], who have indeed observed an augmentation of the stretching exponent β and a steep decay of the correlation time τ c at yield. In agreement with the work of Chen et al. [4], they propose that the acceleration of the probe relaxation is a consequence of the stress-induced acceleration of the mobility of the monomers [3], while no precise interpretation is given for the homogenization of the dynamics.

In the previous chapter, we have treated the acceleration of the dynamics induced by stress. The PFVD model has been adapted by taking into account a diminution of the local relaxation time proportional to the Boltzmann factor of the glassy energy stored at the scale of the dynamical heterogeneities. Even though we have observed that this effect succeeds in reproducing several features of glassy polymers close to yield, the distribution of ages widen during plastic yield and indicate that dynamics becomes more heterogeneous.

It has been proposed by Merabia and Long [5] that the relaxation of the dynamical heterogeneities derives from two competing mechanisms occurring on the scale ξ: reorganisation of monomers at fixed local density and collective monomer diffusion from more dense to less dense regions. The first mechanism interests preferably fast, low density domains, while the second one is responsible for melting slow domains, where the constrained dynamics makes it difficult for monomers to reorganise spontaneously. This 'facilitation mechanism' [4,6,7] has been applied in [5] in order to estimate the length scale of the dynamical heterogeneities.

Furthermore, it explains temporal asymmetry between heating and cooling [8,9,10,11] and allows to calculate the coefficients for small probe diffusion and to reproduce memory effects [12]. Note that the Merabia and Long's facilitation mechanism has been discussed and used by Tito et al. [13] for studying T g shifts in suspended films.

The main aim of this chapter is to transpose the facilitation mechanism on the scale of the dynamical heterogeneities and under applied deformation. After verifying that mechanical properties from the linear to the plastic regimes are still qualitatively comparable with experimental data, we analyse the dynamical behaviours in our systems. Simulations at T g -20 K show that the characteristic time scales decrease of several orders of magnitude with the onset of non-linearities, reaching a stationary state in the post-yield regime. Furthermore, the β exponent is found to increase rapidly close to yield, attaining a constant value during strain-softening. An analysis of the distributions of relaxation times confirms that the homogenisation of the dynamics is indeed a consequence of the diffusion of monomers from slow regions to fast ones.

The chapter is organized as follows. Section 2.2 outlines the physical principles behind the facilitation mechanism and recalls some of the predictions it allowed to make in previous works. In section 2.3, we describe the numerical procedure applied in order to solve the model by 3D simulations. Section 2.4 shows the mechanical properties of our systems with the physics newly introduced, verifying the substantial consistency with previous works and with experimental data and comparing to the same results obtained without considering the facilitation mechanism. Furthermore, we analyse the evolution of some characteristic time scales and of the distributions of relaxation times, in order to better understand when and how the facilitation mechanism is effective. In section 2.5, after explaining how we extract informations about mobility from our simulations, we show the main results concerning the acceleration of the dynamics at yield and the homogenisation of the dynamics, and we compare them to experimental results.

The facilitation mechanism

The understanding of how the facilitation mechanism works requires a clear idea of what α-relaxations are, from the microscopic point of view. α-relaxations correspond to some reorganisation of monomers or molecules, occurring on the scale of the dynamical heterogeneities. Not all of such reorganisations contribute to α-relaxations: according to the percolation picture, only the 10 % (∼ p c ) of the slowest regions bring an effective contribution [12].

Other relaxation events affect, e.g., diffusion and transport phenomena, or dissipation of mechanical energy, but not the relaxation of mechanical stress. Due to the large width of the distribution of relaxation times, knowing which time or length scales are effectively probed is an important and non-trivial matter.

It has long been proposed that α-relaxations are a collective effect which takes place on a cooperative scale ξ [14]. Merabia and Long have proposed [5] that the microscopic reorganisations leading to local relaxation result from two competing relaxation mechanisms:

• internal reorganisations within a slow subunit at fixed local density, or self-diffusion [4].

This relaxation process occurs on a time scale which we denote τ s . Free-volume theories offer a physical interpretation and estimation of τ s which depends solely on local density and on some molecular parameters, and is linked to the amount of (free) volume available for individual monomer jumps. In this sense, such relaxation process occurs equivalently at fixed local free volume. τ s corresponds also to the time scale relative to local molecular motion, which is linked to the amount of free volume as well.

• Collective relaxation of density fluctuations involving diffusion of the densest subunit in the more mobile surroundings, as exemplified in Figure 2.1. The corresponding time scale is given by

τ d ∼ N 2/3 c τ f (2.1)
where N 2/3 c is the typical surface of a dynamical heterogeneity, expressed in number of monomers N c and τ f sets the time scale for the fast regions. In order to ensure the diffusion of the densest regions, fast regions must have a sufficiently high volume fraction q c , which sets the cutoff of the fast melting environment:

τ f 0 p(τ s )d τ s = q c (2.2)
where p is the distribution of the monomeric time scale τ s at any time. q c represents the fraction of subunits needed to ensure that most of the slowest regions are surrounded by subunits of internal relaxation time at most τ f , and therefore that densest regions diffuse in a time N 2/3 c τ f . τ f ({τ s }) and τ d ({τ s }) are functions of the set {τ s } of all the times τ s relative to the local mobility at the scale ξ. It follows that α-relaxations can occur in two distinct ways. One corresponds to a 'jump' at fixed local free volume on a time τ s . By that, we mean that there is no reallocation of free volume on a scale larger that aN 1/3 c , a size of a monomer, on a considered time scale. This is the dominant process in relatively fast subunits, because there is a large amount of free volume available for monomer hopping. The second one is the dominant one in very slow subunits, where the local free volume is too small for allowing a molecular jump. Local reorganization of the free volume is too slow and the process of dissolution by diffusion in faster neighbouring subunits (τ d ) is much faster.

The time scale relative to a local relaxation, τ, results from the fastest between the two mechanisms. As proposed in [12],

τ = min{τ s , τ d } (2.3)
Note that τ d , as defined in (2.1), depends on the whole distribution of relaxation times and thus sets a macroscopic cutoff for the α-relaxations, while τ s is a purely locally defined quantity. Even if in principle the facilitation mechanism involves only the neighbouring environment, here we are applying a sort of mean-field estimation which interests all the system. If a slow region were surrounded only by regions much slower than the cutoff τ d , than equation (2.3) would probably underestimate τ. The low probability of such an event, the relatively high value of q c and the large size of the systems we simulate (see appendix 2.A) allow us to assume that the approximation is reasonable.

Here a clarification has to be made, about the meaning of τ, τ s and τ d . τ s is strictly related to the local segmental motion of the monomers and gives us direct access to segmental dynamics. It is thus the relaxation time which is directly accelerated by applied stress, giving an equation equivalent to (1.2):

τ s (σ) = τ s (0) exp - ξ 3 2 k B T σ : σ G 0 (2.4)
The diffusion time τ d depends on all the times {τ s }, and is thus indirectly affected by applied stress as well. τ is the time it takes for a given subunit to relax, by either of the two described mechanisms. It gives access to the time scale corresponding to stress relaxation and typical life-times of density fluctuations. Practically speaking, FRAP measurements are governed by the distribution of the τ s , while mechanical tests probe the distribution of τ. By means of a Fokker-Plank equation for the ageing of the distribution of relaxation times, involving the facilitation mechanism, Merabia and Long [12] reproduced with good accuracy the evolution of the distribution of relaxation times during ageing or rejuvenat-ing processes. In particular, they managed to estimate the value of the threshold for fast subunits, q c , by comparing results from heating simulations with experimental data from Kovacs [8]. As shown in Figure 2.2b, q c = 0.3 is the value which gives the best fit with experiments. The larger the value of q c , the longer τ f , the longer it takes for melting slow subunits. In addition, they explained the existence of a 'Kovacs memory effect' and the temporal asymmetry between downward and upward temperature jumps during ageing experiments [9,10,11]. An analytical estimation of N c had been previously carried [5] (b) Volume during a temperature down-jump from T g + 5 K down to T g and during a temperature upjump from T g -5 K to T g as obtained in [12]. The different heating curves correspond to different choices of the parameter q c : 20, 30 and 40 %. By comparing their data with those of Kovacs [8], they found that q c = 30 % provides the best agreement.

α-relaxations

Figure 2.2: Merabia and Long have estimated, analytically and numerically, the parameters N 2/3 c and q c for the facilitation mechanism, in the framework of free volume theories.

The introduction of equation (2.3) on the scale of the dynamical heterogeneities and in out-of-equilibrium situations is the main extension brought by the present work. Even though the facilitation mechanism was first introduced long ago, it has been applied only for theoretical or mean-field computations. We believe nevertheless that it might have a determining role in the phenomenology of the out-of-equilibrium distribution of relaxation times. As a matter of fact, stress-induced acceleration of segmental dynamics, presumed to be the key mechanism at play during plasticization, implies a widening of the distribution of relaxation times, when applied alone. The eventuality of diffusion of slow regions into a growing volume fraction of fast regions is expected to result in narrowing the distribution of relaxation times by cutting off long time scales, in the vicinity of the onset of plasticity, which would explain the empirical evidence.

Numerical model

The main structure of the simulating method is the same as the one shown in section 1.3. Some changes in the algorithm used for ageing the system have been brought in order to account for the facilitation mechanism. Hereafter we outline them.

Ageing

A log-Gaussian probability distribution of central value τ and width Δ has been assigned to the relaxation times τ s , at equilibrium:

p eq (Log(τ s )) = 1 πΔ exp - Log 2 (τ s /τ) Δ 2 (2.6)
with Log = log 10 . The only effect of decreasing the temperature in our systems is to shift p eq towards longer time scales, slowing down the dynamics. The central value τ is computed through the equation

∞ Logτ α p eq Logτ s d Logτ s = p c (2.7)
which characterizes the percolation assumption, p c ≈ 0.11 being the percolation threshold [15]. The dependence of p eq on temperature is incorporated in τ, via τ α , as shown in Relaxation dynamics is attained through the following algorithm. 

τ(t , σ,{τ s }) = min { τ s (t , σ), τ d ({τ s }) } (2.9)

Computation of the relaxation probability

The computation of the relaxation time τ from equation (2.9) requires computing τ s and τ d .

τ s (t , σ) is computed according to equation (1.11) and the procedure described in section 1.3. where λ =

ξ 3 2G 0 k B T ≈ 10 -3 MPa -2
, for PS. Instead of the glassy force F g , the deviatoric component of the stress σ appears in the exponential. It is defined as

σ 2 dev = 1 2 (σ 1 -σ 2 ) 2 + (σ 2 -σ 3 ) 2 + (σ 3 -σ 1 ) 2 (2.12)
where σ 1 , σ 2 , σ 3 are the eigenvalues of σ. σ 2 dev has been chosen because it is the only stress tensor-dependent quantity which is isotropic, quadratic, invariant by rotation and zero when the stress is zero. The prefactor is 1/2 so that, if only one eigenvalue of the stress is non-zero, then σ dev is equal to that eigenvalue. Equation (2.11) is equivalent to Von Mises rupture criterion. The argument in the exponential becomes of order one for a stress of a few tens of MPa and a strain of a few percent. Equation (2.10) implies that, given the set of all the ages, {t }, and the one of all the local stresses, {σ}, one can obtain the set of all the relaxation times {τ s }. At any time, the q c -th lowest value in {τ s } sets the fast cutoff τ f ({τ s }). The diffusion time is thus given by equation (2.1), i.e. τ d ({τ s }) = N 2/3 c τ f ({τ s }). Finally, the probability d P rel for a given spring to relax the stress is

d P rel (t , σ,{τ s }) = d t τ(t , σ,{τ s }) = d t min { τ s (t , σ), τ d ({τ s }) } (2.13)
Figure 2.4 shows that the facilitation mechanism effectively imposes a cutoff for τ, for q c = 0.3 and N 2/3 c = 10 3 . Figure 2.5 shows the distribution of relaxation times τ s after ageing 10 4 s with this algorithm. 

Mechanical properties

Hereafter we study the mechanical properties of systems that are simulated according to what described in the previous section 2. 3. Constant true strain rate compression tests have been effectuated for three-dimensional systems, where 3D boundary conditions were applied. The Poisson coefficient is 0.3, so that the volume is not constant. The WLF parameters C 1 , C 2 and T 0 are those relative to polystyrene (PS).

In Figure 2.6 we compare the true stress -true strain curves for two systems: one where the cutoff given by the diffusion time τ d is considered (continuous line), and another where it is not (dashed line). The elastic regime is negligibly affected by the facilitation mechanism: at equilibrium, the diffusion time τ d concerns relatively long time scales. For temperature below T g (∼ 370 K), the slope at small strains is of the order of the GPa.

While at small strains the mechanical properties are nearly the same, some effects are observable at the onset of the plastic regime. A peak of stress of some tens of MPa is attained below T g , at deformations of a few percent. Comparing continuous and dashed lines shows that both yield stress and yield strain decrease slightly when facilitation mechanism is included. In addition, strain-softening is more pronounced when considering the facilitation mechanism, resulting in values of the flow stress much lower than those obtained without the facilitation mechanism.

Figure 2.7 shows that yield stress remains linearly proportional with respect to the deformation rate. The values attained by stress at yield are slightly higher than those shown in Figure 1.6, as a consequence of the different kind of deformation applied. In addition, when comparing the slopes observed in Figures 1.6 and 2.7, the slope lower when applying the facilitation mechanism. This is better comparable with known experimental results [16,17,18,19], where yield stress increases of 10 -15 MPa every 2 decades of shear rate. A different situation is observed for the continuous lines, below T g (red and green continuous lines). Up to strains of about 2 -3 %, τ p c drops slightly, comparably to the one observed in absence of the facilitation mechanism. Afterwards, it doesn't stabilize but rather decreases during the entire range of deformation. We understand this effect as the result of the quick fall of τ d to values much smaller than τ p c , observed in Figure 2.8: the shift of the diffusion time is effectively 'melting' slow subunits. A similar effect is not observable at higher temperature, where τ d is generally higher than τ p c and diffusion is negligible. τ p c , then keeps nearly constant during deformation. The increase at small deformations for the purple curve (370 K) is a consequence of the ongoing ageing process. ics of all the subunits with relaxation time higher than τ d is thus accelerated. Relaxations become more frequent and start involving also very slow heterogeneities, resulting in a decrease of τ p c during the entire range of deformation. Mechanical properties are reduced as compared to when facilitation mechanism is not considered. In addition, consistently with the percolation picture, the increased amount of relaxation events triggers an earlier plasticization.

Distributions of relaxation times

Figures 2.10 and 2.11 show the distributions of relaxation times during the applied deformation, respectively without and with the facilitation mechanism. Two temperatures are considered, 355 and 360 K. In Figure 2.10 the distributions of relaxation times remain wide until a deformation amplitude of 10 %. The shift towards shorter time scales, even at small deformations, is due to the effect of the exponential acceleration induced by stress. A relatively small fraction of very slow subunits relax under the applied stress, whereas the dynamics of many among them is simply accelerated by stress.

On the contrary, in Figure 2.11 a cutoff in the distribution of relaxation times appears at deformations of 2 -3 %. All the regions with relaxation times τ s longer than τ d are more likely to relax. This process happens in the same way for all the slow subunits, and they gradually disappear after relaxation events: the distribution becomes nearly flat at long time scales. A cutoff can be roughly identified and it corresponds to τ d , as plotted in Figure 2.8.

At 360 K, it is roughly constant and equal to 1 s. Lowering the temperature, at 355 K, it becomes smaller than 1 s at 2 % strain and then it gradually increases with increasing strain.

It is a consequence of the drop of stress during strain-softening and of the ensuing ageing process. At 1 % of strain amplitude, on the other hand, no clear cutoff can be identified, as the facilitation mechanism is not yet effective and τ d has not dropped down. 

Dynamics under applied strain 2.5.1 Probing segmental dynamics

In this section we compare our simulations with experimental data obtained by optical probe reorientation method, as outlined in the Introduction. Anisotropy data constitute a measure of the average segmental mobility at the scale of a few nanometres. The function CF(t )

probes the relaxation properties related to the distribution of τ s (see section 2.2). The reorientation dynamics of the probe molecules is mainly controlled by slow subunits, whereas the contribution of fast regions is much less effective. It results that there exists a lower cutoff for which subunits with smaller relaxation times do not effectively contribute to the reorientation dynamics. According to our model it is given by the fraction of fast regions which (statistically) cannot percolate around a probe molecule. For molecules of dimension close to ξ, this fraction corresponds roughly to q c , and the cutoff is thus set by τ f [12]. The relaxation function, representative of the average mobility at the scale of the dynamical heterogeneities, is given by

F(t ) = 〈e -t /τ s 〉 {τ s >τ f } = ∞ τ f e -t /τ s p(τ s )τ s ≈ 1 N {τ s >τ f } e -t /τ s (2.14)
where {τ s > τ f } is the set of subunits with relaxation time larger than τ f , and its cardinality N = #{τ s > τ f } is the number of such subunits.

Like it has been done with CF(t ), the function F(t ) is fitted with the KWW function, so that

F(t ) ≈ e -(t /τ K ) β (2.15)
where the KWW parameters β and τ K measure, respectively, the width of the distribution of relaxation times and an average. Here we assume that the fitting parameters obtained with this method are a good measure of those obtained by experiments.

The average correlation time τ c , defined in equation ( 6), is computed as

τ c = ∞ 0 F(t )d t ≈ τ K Γ β -1 β (2.16)
The β-dependent factor converges to 1 for β = 1 and increases when lowering β, up to ≈ 10 for β = 0.3 or ≈ 22 for β = 0.2. We will see later that, during simulation, 0.2 < β < 1, so that τ c and τ K differ of at most one order of magnitude.

The relaxation function F(t ) can be computed for the theoretical distribution of relaxation times, for systems at rest: with F eq (t ) the equilibrium value of F(t ) and p eq (τ s ) given by equation (2.6). This represents the limit of systems which have aged for extremely long times. The KWW parameters corresponding to F eq (t ) are plotted in Figure 2.13. The fitted β is approximatively Figure 2.13: The values of τ K and τ c as computed from fitting the function F(t ) with the KWW function, at the theoretical equilibrium. They are compared to τ α and τ. Temperatures vary from 351 K to 379 K. The fitted β is constant and equal to about 0.17, as the width parameter Δ is kept constant and equal to 4. τ K is close to the central value of the distribution of relaxation times, τ, while τ c is roughly the same as τ α . The big difference between τ c and τ K is due to the particularly small value of β.

F eq (t ) = ∞ τ f e -t /τ s p eq (τ s )d τ s (2.

Homogenization of the dynamics during deformation

As we have seen in the previous chapter, in absence of the facilitation mechanism the distribution of relaxation times widens when deforming the system. unity. So high strain rates are not achieved during experiments, it is thus hard to compare with known data. For slower deformations the curves are instead straightforwardly compared to experience. Note that, when comparing Figures 2.15 and 2.16, the latter shows an earlier increase of β: this is understood as a consequence of the fact that the diffusion of monomers becomes effective at smaller deformations. Moreover, the value attained by β after yield increases when lowering the temperature or increasing strain rate, as confirmed by recent experimental data from Hebert et al. [20].

Mobility during deformation

Let us consider how mobility changes during the same compression simulations as those of the previous subsection. Figure 2.20, in appendix 2.B, shows the fitted τ K and Figures 2.17 law [21] given in equation (1.15), τ c ∼ τ α ∼ t w , in our simulations τ α evolute sub-linearly with respect to t w (see section 1.4). For this reason, it is not surprising that τ c is lower than the ageing time.

τ c decreases with ongoing deformation of several orders of magnitudes, until deformations comprised between 6 and 10 %, i.e., slightly above yield strain. It then attains a steady value, as well as β. However, at small deformations, τ c decreases by almost one order of magnitude; it then increases before dropping again. Lee et al. [1] report a quick drop of τ c immediately after applying deformation, which is not reported in their data as happening faster than their sampling rate. [1], theory [22] and simulations [23] have obtained similar results, giving -1 the first, -0.86 the second. The average mobility τ -1 c is found to be (nearly) linear with respect to the strain rate. Moreover, by extrapolating data to strain rates out of our simulation range, we obtain values of τ c that are of the same order of those obtained by Bending et al. More precisely, applying the relations above for γ = 10 -4 -10 -5 s -1 gives τ c ≈ 10 2 -10 3 s, which is comparable with the experimental data shown in Figure 5a.

A characteristic mechanical relaxation time, τ m , can be defined from the yield stress

τ m = σ y G 0 γ (2.18)
Knowing the logarithmic dependence of the yield stress with respect to the strain rate, one can infer

τ m = σ 0 y + Δ y Logγ G 0 γ = γ-1 • σ 0 y G 0 + Δ y G 0 Logγ (2.19)
This equation means that the quantity Logτ -1 m is expected to depend slightly sub-linearly with respect to the strain rate, as a consequence of the logarithmic correction in the equation above. Fitting Logτ -1 m with the data given in Figure 2.7 one obtains Logτ -1 m ∼ 0.9591 Logγ at 350 K, and Logτ -1 m ∼ 0.9281 Logγ. Indeed, these values are close to those found for τ c . 

Conclusions

In this chapter we have dealt with non-equilibrium dynamical properties in polymer glasses.

We rely on a coarse-grained model developed for studying the mechanical and dynamical properties in non-polar amorphous polymers, close to their glass transition temperature.

The elementary units of the PFVD model are thermally-induced density fluctuations whose relaxation dynamics is supposed to be controlled by two competing mechanisms: reorganisation of free volume at fixed local density and collective diffusion of monomers from high density to low density regions. We have extended this facilitation mechanism to out-ofequilibrium systems, with the spatial resolution of the dynamical heterogeneities, 3 -5 nm.

Simulations show that typical time scales associated to the dynamics in dynamical heterogeneities drop by several orders of magnitude at plastic yield. In the strain-softening regime, characteristic time scales are found to remain nearly constant, indicating that dynamics has reached a stationary condition. The values of these time scales are (nearly) inversely proportional with respect to the strain rate, meaning that mobility is (nearly) proportional to the rate of deformation. In addition, the stretching exponent β is found to increase rapidly close to yield, attaining a constant value after a small peak. These results are in agreement with the experimental data from Bending et al. [3] and Lee et al. [1] and with the theory of Chen and Schweizer [4], which are outlined in the Introduction.

In the light of other interpretations [3] and of our results, we understand our observa- 1. The algorithm for ageing the glassy springs is modified to correspond to the one described in section 2.3. Thus, the relaxation probability is computed according to equation (2.13). In order to do so, τ d ({τ s }) is computed at every time step d t. The distribution of relaxation times {τ s } is derived from the distributions of ages and of local stress.

If N g is the number of glassy springs in the system, the relaxation time situated at the position N g • q c after sorting the set {τ s } is taken as the diffusion time τ f .

2. The exponential factor accounting for the stress-induced acceleration of the dynamics depends on the local stress tensor σ, via its deviatoric component (section 2.3). The local value of σ is computed thanks to the Irving-Kirkwood formula [24], when neglecting any contribution of the fluid medium, applied to a volume of order 2ξ 3 around the glassy spring (see Appendix B).

3. The no-slip periodic boundary conditions along the z-axis is substituted by periodic boundary conditions, so that the box is entirely in the bulk. The simulated box has been enlarged and its sides have been set to 15ξ × 15ξ × 15ξ = 45 nm × 45 nm × 45 nm.

4. The age of the glassy springs is not set to zero after a relaxation event, but to a temperature dependent t mi n . t mi n is set to the extremity of the left wing of the distribution p eq (τ s ). More precisely, it is set to the 3 % of the fastest times, so that the relation

t mi n 0
p eq (τ s )d τ s = 0.03 holds. This choice is motivated by the relation, at equilibrium, τ ∼ t . When ageing towards the equilibrium distribution, values of the ages lower than t mi n would imply values of the relaxation times too low with respect to the distribution chosen.

5. The cutoff length for the glassy springs is suppressed, and the glassy springs become permanent springs. When deforming to sufficiently large strains, simulation beads connected by a glassy spring might get quite far apart, leaving some empty space in between. It has been observed that even highly stretched regions of the polymer can vitrify. Removing the cutoff allows to take this effect into account. Note that, however, the effects of such modification are nearly negligible in the linear regime, and anyway small at large deformations. Round brackets are put around those physical quantity which correspond to some numerical value used in simulation, but without a particular physical computation. More specifically, u 0 is set so that the contribution to the stress tensor of the hard-sphere repulsion is much smaller than the glassy one. l 0 is a convenient average distance for the given connectivity, with a very negligible influence over the behaviour of the system, close to T g .

2.B τ K as a function of strain

Hereafter we report τ K at 350 and 355 K during compression, varying constant engineering strain rate.

(a) τ K at 350 K, as corresponds to Figures 2.15 

2.C Shear banding

In 

2.D The elastic modulus

Hereafter we plot the elastic moduli as obtained from compression and shear simulations, run in presence (blue line) and in absence (black line) of the facilitation mechanism. The observed features are nearly the same, except for a smaller value observed for the shear modulus. G drops to small values, close to G ∞ , close to the glass transition temperature T g ≈ 375 K. Some tens of kelvins below T g , the elastic modulus is nearly constant and equal to some 10 3 MPa.

Note that the transition here is more abrupt and less smooth than then one observed in Figure 1.9, for PMMA. It is due to the fact that, when lowering the temperature, τ α (T) increases much more rapidly for PS than for PMMA, according to the WLF law. Consequently, the glass transition in PS takes place on a temperature range much narrower than in PMMA.

These curves are qualitatively in agreement with data present in literature, like those of van Melick et al. [19]. At higher temperatures, G (T) attains a plateau, which is a consequence of the permanent rubbery network of our simulations. 

Introduction

The present chapter aims at presenting a further advance at the PFVD model, extending the range of deformation to large strains, as discussed in the Introduction. The physics presented in the previous chapters provides a description of mechanical and dynamical properties of glassy polymers close to and below their glass transition temperature, from the linear regime up to plastic yield. Anyway, other important structural changes may occur when deforming polymers to large strains. These changes can counteract localization and enhance an improvement in the mechanical properties of polymers [1,2].

The onset of strain-hardening is determined by the increase of stress with increasing deformation at large strains. The hardening modulus G R decreases linearly as a function of temperature, reaching values of order 10 7 -10 8 Pa well below T g [3,4,5,6,7,8,9]. Strain rate [10] and density of cross-linkers [4,11] have been shown to affect strain-hardening.

Qualitatively reproducing these basic features is the main objective of our description, together with, of course, obtaining a deeper understanding of the complex mechanisms ongoing during deformation.

Analogously to the model of Chen and Schweizer [12], we assume that affine anisotropic deformation at the length scale ξ orients the monomers and slows down local dynamics by strengthening correlations between monomers. A numerical solution of the model shows that this assumption results indeed in strain-hardening along with many of the striking features related. A main focus of our description is the spatial modification of the distribution of relaxation times, induced by monomer orientation, and the ensuing stabilization process. In particular, we show that a further ageing process can be enhanced in those regions which had previously yielded, avoiding phenomena issued from strain localization, like shear banding or fragile rupture. Such ageing happens in domains which have been highly oriented and were local dynamics is strongly slowed down.

In the following discussion we describe our advances in the description of strain-hardening, in the context of the PFVD model. The model has been developed independently on the one outlined in the previous chapter. Therefore, the model for strain-hardening presented hereafter does not account for the facilitation mechanism. The development of a model including both the mechanism for strain-hardening and the facilitation mechanism is being studied. Because of the complexity of the problem, we will not carry an exhaustive treatment in the present manuscript, saying just a few words more in the Conclusion.

Anyway, in an imminent article we will propose a full description.

The chapter is organized as follows. In section 3.2 we present in detail the modifications brought to the model in order to account for monomer orientation and section 3.3

shows how the numerical simulations have been adapted after such changes. Section 3.4

reports the large amplitude mechanical behaviour as calculated from 3D simulation for different kind of deformations: uniaxial compression, uniaxial elongation and simple shear. In section 3.5 we investigate the microscopic mechanisms, on the scale of the dynamical heterogeneities, which are responsible for enhancing ageing even at large strains, resulting in strain-hardening. In addition, we analyse non-affine displacements at large strains, observing that the model implies the stabilization of shear bands observed in the previous chapters.

Physical model for strain-hardening

Monomer orientation

It has been observed by NMR [9] that affine deformation and anisotropic conformation occur beyond a length scale of order 3 -4 nm. The same experiment shows that under applied deformation PMMA's structure is nearly isotropic, on larger scales. To make this concept quantitative, the nematic order parameter is used

q û = 1 2 3cos 2 θ û -1 het (3.1)
where, θ û is the angle formed between monomer local axis and a preferential direction û (also called 'local director'). The average is carried over all the monomers of a given dynamical heterogeneity. As the local glassy constraint F g is the dominant force, then one can assume û F g F g . In the following discussion, the subscript û is implicit. In Figure 3.2, an heterogeneity of linear size ξ is extended of δu during a very small time step δt . Since deformation at small scales is affine [9], the quadratic term cos 2 θ het is multiplied by the factor 1 + δu ξ 2 during this small deformation. Its relative variation is then

1 + δu ξ 2 -1 , which is approximatively 2δu
ξ in the reasonable case δu ξ. Therefore, the equation for the variation of q, δq, reads

δq = 1 + δu ξ 2 -1 • 3 2 〈cos 2 θ〉 het 2δu ξ q + 1 2 δu ξ (3.2)
where the further approximation q 1 intervenes. Its validity will be verified a posteriori, analysing simulation data (see Figure 3.17).

Figure 3.2: Monomers i and their angles θ i with respect to the direction of local deformation, û. q assumes the value of 0 if monomers are randomly oriented, 1 if they are all oriented in the direction of the glassy force.

A dynamical equation for the orientation parameter

The forces acting on a domain of linear dimension ξ under applied (unidimensional) deformation in the direction û are:

• the local constraint σ, deriving from the interaction with the neighbouring domains.

As shown in Figure 3.3, the corresponding force acting on a dynamical heterogeneity is approximativelys σξ 2 . As this is the local force responsible for deforming the glassy region, it sets the local director û for monomer orientation.

• the entropic force F L , in the direction û and opposite to the external force σξ 2 , responsible for setting monomer orientation in random directions after deformation. ζ sets the time scale of the dynamic equations for u and q. In the previous chapter we have made a distinction between two local relaxation times, τ and τ s . Here, as no facilitation mechanism is considered, they are uniquely denoted as τ. 

F L = ξ a 2 k B T a M -1 q (3.4)
where a ≈ 0.5 nm is the monomer length, ξ a 2 approximates the number of chains per subunit and M(x

) = 1 + 3 x 2 -3 coth x x .
M -1 q is null when the nematic parameter is zero and diverges when it approaches the fully oriented configuration, i.e. when q = 1. For small values of q, M -1 q ∼ 15q. In Figure 3.4, M -1 is compared to the inverse of the better known Langevin function.

Combining equations (3.2) to (3.4) leads to

d q d t = 1 τ(σ, q) σ G 0 - 1 μ M -1 q (3.5)
The local relaxation time τ, that in equation (2.4) is modified only by the local stress, is now affected by the local orientation parameter q as well. A following discussion will clarify its dependence on q. Equation (3.5) is, strictly speaking, a unidimensional equation introduced in a three-dimensional system. We consider this formulation adequate for the kind of defor-Figure 3.4: M -1 (x) (continuous line) as compared to the inverse Langevin function L -1 (x) (dashed line). Both the inverse functions have no analytic expression. M -1 (x) behaves like 15x for x ∼ 0 + and positively diverges for x → 1 -. The relation M(x)

+ 3 x L(x) = 1 holds.
mations we apply in our simulations, at our level of approximation, although one could in principle use a tensorial form, which would allow for more complicated mechanical tests.

The dimensionless quantity μ = a 3 G 0 k B T ≈ 60 is the ratio between the confinement entropy and van der Waals interactions which controls the bulk modulus G 0 , and the entropic elasticity due to monomer orientation from which the Rouse model derives. When extrapolated to a single monomer, the high frequency elastic modulus of the Rouse model is G R ≈ k B T/a 3 ≈ 4 × 10 7 Pa. The bulk modulus is typically of order 2 × 10 9 Pa. The ratio μ is thus of order 50.

The dimensionless quantity μ characterizes the ratio between the driving forces which tends to align the monomers under plastic deformation, and the restoring force of entropic nature which tends to randomly reorient the monomers. At a qualitative level, one can consider σ ≈ G 0 , with the local deformation. This allows for rewriting equation (3.5) in the following way

d q d t = 1 τ(σ, q) - 1 μ M -1 q (3.6)
which amounts to considering that local orientation can be interpreted, equivalently, as a consequence of the local glassy constraint or of the local deformation.

At small deformations, the term into brackets is small and τ large, and q remains negligible. With ongoing deformation, if the heterogeneity is slow enough it will not relax, but it will store elastic energy. As a consequence, τ will decrease under the acceleration induced by local stress and the term into brackets will increase, being positive. It has been seen in chapter 1 that stress-induced acceleration of the dynamics is effective close to yield, so that we expect to see some effects in the vicinity of the post-yield regime.

Then, two possibilities are conceivable. Either the heterogeneity yields, either the local orientation slows it down enough so that it can bear more and more load. In the first case, both the glassy constraint and the local relaxation time τ drop to small values. Monomers composing the heterogeneity loose part of their alignment. Then one must see if the orien-tation left can counteract rejuvenation and enhance a further ageing process or not.

Increase of local glass transition temperature

Strain-hardening has been proposed to be a consequence of this deformation-induced process occurring at the scale ξ, which is responsible for intensifying glassy dynamical constraints via a slowing down of the dynamics [12]. As a matter of fact, the cooperative reorganizations of monomers responsible for relaxation strongly depend on intermolecular correlations at the scale of a few nanometres. The strengthening of monomer-monomer interactions, induced by the local configuration change, is thus supposed to effectively inhibit density fluctuations.

It is known that glass transition temperature T g strongly depends on the interactions at the molecular scale. We thus introduce the assumption that the slowdown of the dynamics is a consequence of the increase of the local glass transition temperature, induced by the strengthening of the interactions between oriented monomers. Glass transition temperature is, in this sense, interpreted as a local quantity. Its variation is a function of the local nematic order, for which we propose the phenomenological equation

T g (q) = T g + Δ g • q (3.7)
where T g is the glass transition temperature when monomers are randomly oriented (linear regime) and Δ g is an adjustable parameter. Looking at the limiting case of a perfectly oriented configuration, i.e. q = 1, we expect the shift of local glass transition temperature to be lower than T g and of the same order of magnitude. Δ g is thus expected to be of order 100 K for PS, whose T g is 375 K.

In order to take the shift of glass transition temperature into account, we assume that the macroscopic relaxation time τ α at T g is an invariant of this 'transformation'. As a matter of fact, T g is defined as the temperature at which τ α is 100 s. As a consequence, shifting the glass transition temperature is equivalent to shifting the WLF law. We thus propose the following generalization of the WLF law Log τ α T, q

τ α (T 0 ,0) = - C 1 T -Δ g • q -T 0 C 2 + T -Δ g • q -T 0 (3.8)
where τ α (T, q) depends on both temperature T and nematic order parameter q. This equation implies that τ α T, q = τ α T -Δ g • q,0 , which means that a positive shift of T g is equivalent to a decrease of temperature of the same value Δ g • q. The slowdown of the dynamics is thus introduced by shifting locally the WLF law, or, equivalently, by lowering locally the temperature.

Ansatz (3.7) aims at introducing the physics under assumption, in the easiest possible way: the glass transition temperature is unaffected in the random coil configuration, and increases with increasing nematic order. Future developments of the model might employ more refined and physics-based formulations, but it will not be the case of the present manus-cript. Here, the main purpose is verifying that a slowdown of the local dynamics can effectively counterbalance stress-induced rejuvenation, resulting in strain-hardening.

Numerical model

The numerical implementation of the model is similar to the one described in section 2.3.

The dynamical heterogeneities are modelled by glassy springs characterized by a relaxation time τ, a high frequency elastic modulus G 0 and, in addition, a local nematic order parameter q. This parameter varies during simulation according to equation (3.5). The force exerted by the glassy springs F g is the same as the one given by equation (1.10) and we deliberately choose not to take into account the internal force F L . At an approximative level, F L is generally smaller than F g . If, after a relaxation event, the local parameter q is high enough that F L becomes larger than F g , then this contribution vanishes rapidly as the negative term in the dynamic equation for q (3.5) is important too and q relaxes to small values. Thus, if F L became bigger than F g , then this would just be transitory.

Analogously to equation (1.11), the probability for relaxing d P rel , is given by

d P rel (t , σ, q) = d t τ(t , σ, q) ( 3.9) 
where τ(t , σ, q) is the local relaxation time of the glassy spring, now a function of its age t (time elapsed since the last breaking event), the local stress σ and the local orientation q.

• The dependence on σ is introduced by d P rel t , σ, q = d P rel (t ,0, q)e λσ 2 dev (3.10) with λ = ξ 3 2k 2 0 k B T the plasticizing parameter.

• The dependence on the age of the glassy spring, t , derives from the formula (1.13) and is d P rel (t ,0, q) -dln p eq (τ)

dτ

τ=t d t (3.11)
where the equilibrium distribution p eq (Logτ) = 1 πΔ exp -

Log 2 (τ/τ) Δ 2
. The width Δ is equal to 4, while τ is computed so that the percolation time scale τ p c is equal to τ α at equilibrium (see equation ( 7)).

• Both τ α and τ are functions of both temperature and local nematic parameter q, via the generalized WLF law given in equation (3.8). As a consequence, the dependence of the rupture probability d P rel on q is implicit in the computation of τ, reiterated at each time step.

The evolution of the nematic parameter during time is done by integrating equation (3.5), rewritten in the form

d q d t = 1 τ t , σ, q F g k g - 1 μ M -1 q (3.12)
This equation is based on the fact than the main contribution to the local constraint is given by the glassy force F g . The direction of F g determines also the preferential direction of orientation.

Mechanical behaviour at large strains

Strain-hardening during compression tests

Les us consider the true strain-true stress curves during uniaxial compression simulations of PS, at constant logarithmic strain rate 0.1 s -1 . The strain-hardening mechanism is introduced, with a value of the parameter Δ g of 100 K. Figure 3.5 shows that below T g ≈ 370 K the linear regime is followed by a peak of a few tens of MPa, at a few percent of deformation amplitude. At higher temperatures, no yield is observed. During the ensuing strain-softening, stress decreases of some tens of MPa to the so-called flow stress. Linear and plastic regimes are marginally affected by the orientation dynamics we introduced.

At larger deformation amplitudes, different behaviours are observed at different temperatures. Above T g -20 K, the curve keeps constant once it has reached the flow stress, without

showing any strain-hardening. Instead, at the lowest temperatures a positive slope G R ∼ 10 7 -10 8 Pa is observed after strain-softening, starting from strains of 15 to 30 %. This behaviour is qualitatively consistent with experimental data present in literature. G R is null close to T g and increases when we lower the temperature, reaching values of about 100 MPa far below the glass transition temperature. In addition, the curves where G R is larger show a lower drop of stress during strain-softening, in agreement with experimental results as well.

Figure 3.5: True stress -true strain during uniaxial compression, at different temperatures between T g -25 K and T g + 15 K and constant true strain rate of 0.1 s -1 . We can observe the onset of strainhardening at strain amplitudes of 15 to 30 %. The hardening modulus increases when temperature decreases, in agreement with experimental evidence. As mentioned in section 3.2, the parameter Δ g is expected to be of order 100 K. In figure 3.7 the hardening modulus G R is plotted as a function of temperature and for different values of Δ g . For values of Δ g lower than 50 K, small effects are observed. When Δ g approaches the value of 100 K, G R shows a linear dependence on temperature well below T g .

Close to T g , the hardening modulus is characterized by a transient phase, above which it becomes negligibly small. Such behaviour is qualitatively comparable with data in literature, either experimental [4] or numerical [12].

From a quantitative point of view, one would expect G R to increase less rapidly when cooling down the system, like in Figure 6b. Anyway, given the level of approximation, our main purpose is to show that the orientation-induced slowdown of the dynamics can explain strain-hardening in most of its peculiar features. The crucial point is that stabilization of strain-softening occurs on the scale of the dynamical heterogeneities, whereas large scale network effects play a secondary role.

Figure 3.8 suggests a first lecture of the mechanisms ongoing in our simulations and leading to the observed strain-hardening. At temperatures above T g , the average of the orientation parameter q has very low values, or even doesn't increase at all, due to the fact that local relaxation time is fast and stress low, so that monomers keep randomly oriented. At about T g -10 K, the average monomer orientation starts to reach values of almost one percent, Figure 3.7: G R as a function of temperature, from T g -25 K to T g -5 K, for different values of the adjustable parameter Δ g . For Δ g ≤ 50 K, G R is (negligibly) small. Simulations have been run in uniaxial compression at a constant true strain rate of 0.1 s -1 .

as dynamics is slower and stress higher. When cooling further, 〈q〉 reaches a steady value of order 10 -2 at about 20 %, which is approximatively the strain amplitude at which strainhardening begins. In Figure 3.8 we also plot the value of this steady value, showing that it decreases monotonically when heating.

Figure 3.8: Average of q as a function of strain amplitude. The highest values of the orientation parameter are observed at low temperatures, as a consequence of the higher level of constraint and of the reduced mobility. High temperature, instead, show no orientation at all. On the right, 〈q〉 as computed at 50 % deformations is plotted.

At small strains, monomer orientation is not yet large enough to affect significantly macroscopic mechanical properties, even though at very low temperatures 〈q〉 attains values of about 0.3 % already at 5 % deformation. It results in a slightly augmented yield stress or slightly reduced strain-softening, but this effect is secondary and does not affect qualitatively the linear and plastic properties. The average shift of T g relative to 〈q〉 ∼ 10 -2 amounts to a few kelvins: such a small order of magnitude doesn't justify the drastic change of mechanical behaviour. The mechanisms taking place on the scale of the dynamical heterogeneities have to be investigated in order to fully understand the onset of strain-hardening. It will be done in section 3.5.

Other mechanical tests

Hereafter we report some results of mechanical properties obtained through uniaxial elongation and simple shear. These simulations have been run at constant strain (shear) rate of 0.1 s -1 , for different temperatures below T g . The value of the parameter Δ g is set to 100 K.

Differently to the simulations relative to Figure 3.5, in the previous subsection, the plasticizing parameter λ is set to one fourth of its previous value. This amounts to considering smaller heterogeneities, of linear dimension 2 nm instead of 3 nm. This change is motivated by the lower value of yield stress obtained in Figure 3.5 with respect to those observed, e.g., in Figure 6a. This modification and its results are relative of this subsection uniquely. 

Cross-linking

We approached the problem of the effect of cross-linking at large strains. Van Melick et al. [4] have observed that adding cross-linkers intensifies strain-hardening, reducing strainsoftening and increasing the hardening modulus G R . Cross-linking is introduced in our model by considering that in cross-linked nodes interactions are very strong and dynamics is quenched. Consequently, local free energy barriers available for reorganisations of monomers will be higher, and density fluctuations strongly reduced.

This effect appears analogous to the one proposed for strain-hardening, so that we introduce it by assigning a higher local glass transition temperature to cross-linked regions. The increase in T g is permanent, independent on monomer orientation, and equal to ΔT x g for all cross-linked domains. Cross-linking is thus coarse-grained on the scale of a few nanometres and characterized by the adjustable parameter ΔT x g , supposed to be of the order of some tens of kelvins. The chosen volume fraction of cross-linked regions is supposed to be of the order of some percent, up to 8 %. Figures 3.12 and 3.13 show the true stress -true strain curves obtained during compression simulations, in cross-linked systems, for two different values of the parameter ΔT x g and varying the fraction of regions containing cross-linkers. In both cases, the effects in the linear regions are negligible, whereas a small effect is observed with the onset of plasticity. Crosslinking increases slightly the yield stress. Some more relevant effects are observable in the post-yield regime. With ongoing deformation, the systems with a higher fraction of cross-linkers present a reduced strain-softening.

The ensuing strain-hardening regime begins at lower strains and the hardening modulus is higher in more cross-linked systems. Note that increasing the value of ΔT x g weakly affects the stress, which becomes larger, and the hardening regime, which begins at lower strains. The glass transition temperature of the former is permanently increased by a fixed value ΔT x g , while that of the latter is unvaried. The increase of T g due to cross-linking and the one due to monomer orientation are independent and additive. stress is constant, a stationary equilibrium between ageing-relaxation of heterogeneities has been attained. The same distributions with the strain-hardening mechanism (Figure 3.14), in turn, are still evolving: the system is cumulating few (but relevant) subunits with very long relaxation times, at 10 4 s. Their fraction increases with increasing strain. Note that this fraction is larger than the fraction of subunits with long ages (small region between 10 3 -10 4 s), implying that some subunits which have previously relaxed (and thus have short age) now show a very slow dynamics. The distribution of ages, in addition, indicates a further ageing process, enhanced by local orientation: during deformation monomers have oriented, slowing down and stabilising localization of the dynamics.

An analogous ageing cannot be found in Figure 3.15. The distributions of ages differ by the fact that they miss both the small fraction which have never relaxed, and the ageing process. The distributions of relaxation times, above, do not show the small fraction of subunits with very slow dynamics. Also in Figure 3.16, at 365 K and with the strain-hardening mechanism, the picture is different from the one observed in Figure 3.14. At this temperature, dynamics is too fast for allowing monomers to orient. Consequently, the nematic ordering is not achieved and the onset of strain-hardening is not observed.

In Figure 3.14, the fraction of regions with very slow relaxation times is particularly small. This might appear in contradiction with the percolation picture proposed by the model, and raises thus a fundamental clarification. In the percolation picture, macroscopic mechanical properties are determined by the 10 % (≈ p c ) slowest regions, in the linear regime. This is because slow regions are randomly located, the distribution of relaxation times being homogeneous all over the system. When applying deformation, and more exactly at the onset of non-linearities, localization is induced. This means that the distribution of relaxation times is not homogeneous any more. This is why a relatively small amount of local yields can result in macroscopic yield, and why, analogously, a relatively small amount of very slow regions results in strain-hardening. Their location is not random, in this regime.

Figure 3.17 confirms that, at 350 K, monomer orientation increases as the system is deformed. The orientation dynamics exhibits a widely distributed behaviour, with a few subunits with a shift of local T g ≈ 20 K. The distribution at 350 K suggests that we can distinguish three 'populations': one very oriented, one moderately oriented, one showing no orientation at all. Whereas the last one is obviously present, the existence of the other two is less straightforward. We interpret them as the evidence that two 'orientating movements' occur during deformation. The first interests those regions that have been strongly oriented by the large values of stress typical of yield. It corresponds to the peak comprised between 0.2 and 0.3. The second one occurs in the post-yield regime, and corresponds to lower values of q (comprised between 0.1 and 0.15) as it lasted less and with lower values of local stress. It is a consequence of the ageing process induced by monomer orientation. Finally, the distributions of q at 365 K show that the local dynamics is very fast and that q rarely attains values larger than 0.1.

Figure 3.17: Distributions of the parameter q, at 350 K and at 365 K, at different strain amplitudes. The orientation dynamics exhibits a widely distributed behaviour, with a few subunits with a shift of local T g ≈ 20 K. At 365 K local dynamics is relatively fast and monomers remain randomly oriented. Note that only a small fraction of subunits show a q higher than 0.15, which validates the approximation done in equation (3.2).

Spatial distributions of stored energy and q

In order to better understand the mechanisms taking place on the scale of the dynamical heterogeneity, a spatial visualization of the evolution of stored energy and monomer orientation during deformation, can be very helpful. Below, representative sections of the system at different strains are reported, with a spatial resolution equal to ξ, at 350 K and 365 K (like in the previous section). Figures 3.18 and 3.19 show the glassy energy stored, as defined in equation (1.22), and the value of the orientation parameter q, on the scale of the dynamical heterogeneities. Like the previous subsection, two temperatures are considered, 350 K, where strain-hardening is observed, and 365 K, where no strain-hardening is observed.

The situation in the linear regime and at yield is the one already introduced in chapter 1.

In the linear regime, stress appears to be nearly homogeneously distributed. When increasing deformation, the amount of regions with very low energy, i.e. regions which have relaxed under the effect of stress, is increasing, and becomes important close to 5 % strain. On its behalf, the local orientation is still relatively low, but increasing, and at yield we can see some regions with q of order 5 -10 % (at the two temperatures).

At higher strains, two different behaviours are observed. At 350 K, the distribution of energy becomes wider and wider: some regions cannot bear stress any more (as they have rejuvenated), some other are getting more and more charged, reaching values of order 10 3 k B T g .

In Figure 3.18b, we see that these subunits are highly oriented (q ∼ 0.2 -0.3): their dynamics is dramatically slowed down, as a consequence of monomer orientation, and they don't relax.

At 365 K, instead, subunits cannot bear stress and relax when further deformation is applied. As a matter of fact, the local orientation parameter is rarely bigger than 0.05, meaning that local dynamics is not enough slowed down to counteract stress-induced acceleration.

When looking at high deformations in Figure 3.19 (black circles) some subunits which store a large amount of energy and that are (relatively) highly oriented can relax. Note how, after relaxation at 30 % strain, the energy stored by neighbouring subunits increases of several orders of magnitude: the heterogeneity which have just relaxed has 'distributed' stress to the surroundings. The opposite can happen as well (white circles), with regions which start bearing stress and orienting. Energies are expressed as in k B T g units. Black circles denote a region which never relaxed and is that gradually oriented, attaining a large value of q. White circles remark a region which oriented during yield, becoming highly oriented as well.

White and black circles in Figure 3.18 show two possible histories of a highly oriented region. Black circles follow a region which has never relaxed under the effect of stress, and whose orientation parameter q has increased over all the deformation. White circles, instead, show the history of an oriented region which has relaxed with the onset of plasticity.

Between 5 and 10 % deformation, the value of the stored energy is decreased by almost two orders of magnitude, whereas q is increased from a negligibly small value to more than 0.1.

With ongoing deformation, this region remains highly oriented and does not relax any more.

It represents the example of what, without the strain-hardening mechanism, would have been a rejuvenated area which could not have born large amount of stress. When considering monomer orientation, instead, localization phenomena are stabilized.

Non-affine displacements

In this subsection we discuss how much the proposed mechanism for strain-hardening can actually stabilize stress-induced localization, by effectuating a study similar to the one of section 1.5. The non-affine displacements, denoted d na , are defined as in equation (1.17). In We also calculated the average velocity profiles in the direction normal to the applied shear, which are plotted at different deformations for 360 K. Again, we compare the veloc-ity profiles including or not monomer orientation in our simulations. Coherently with the results of chapter 1, shear banding is observed in the first plot (no monomer orientation).

The z where velocity increases abruptly are the planes where the system has rejuvenated and cannot bear stress. Introducing orientation-induced slowing down of the dynamics, at the same temperature, the velocity profile becomes linear. The flow becomes homogeneous, strain-hardening stabilizes stress-induced softening in the system, avoiding localization phenomena. 

Conclusions

The further extension of the PFVD model presented in this chapter accounts for non-linear effects at large strain amplitudes. We have proposed that macroscopic deformation modifies interchain packing, orients monomers and intensifies the intermolecular glassy constraint.

Thus, deformation is supposed to effectively prolong monomer relaxation times and slow down local dynamics. This effect is modelled via a nematic order parameter computed on the scale of the dynamical heterogeneities, 3 -5 nm, which remain the basic units of the model. The slowdown of the local dynamics is equivalently seen as an increase of the local glass transition temperature T g . For temperatures below and close to T g , we observe that the hardening modulus G R is of order 10 7 -10 8 Pa and decreases when heating the system, in qualitative agreement with experiments [4,6,8]. The true stress-true strain curves at different strain rates or cross-linking fractions are in good agreement with experimental data as well [10,4], showing that strain-hardening is not necessarily due to the entropic elasticity of the rubbery network. In particular, cross-linkers strengthen the hardening response at large strains by suppressing density fluctuations, rather then by reducing the number of monomers between the reticulation nodes of the rubbery network.

Monomer orientation concerns a relatively small fraction of subunits and affects the distributions of relaxation times at long time scales. Mechanical properties in the linear regime and at yield are thus negligibly affected by monomer orientation. Strain-hardening derives from local phenomena, which interest those slow domains of the polymer which have been highly deformed. Instead of rejuvenating under the effect of stress, such regions bear a large amount of stress, as their dynamics is highly constrained. The local nature of strainhardening has also been investigated by studying the energies and the values of the parameter q in sections perpendicular to the axis of compression. Again, this analysis confirms that few units very oriented are heavily charged. The stabilizing nature of strain-hardening avoids the appearance of large regions which have rejuvenated. As a consequence, shear banding, which was present in chapter 

3.B Computation of the entropic force from the Langevin model

The Langevin model associates the energy

E i = -cos θ i a f
to the work spent by the force f to orient the monomer i in the direction û = f f . a is the length of the monomer, f the intensity of f , cos θ i the angle between monomer i and û.

The total energy associated to orienting the monomer chain is E

= -a f i cos θ i = = -k B Tx i cos θ i , where x = a f k B T . The associated partition function Z is Z = N i =1 Z i = N i =1 2π 0 π 0 exp (cos θ i x) sin θ i dθ i dφ = 4π sinh x x N
The first and second moments of cos θ i are:

〈cos θ i 〉 = 1 Z i ∂Z i ∂x = ∂ ln Z i ∂x = coth x - 1 x = L(x) (3.13) cos 2 θ i = 1 Z i ∂ 2 Z i ∂x 2 = 1 -2 coth x x + 2 x 2 = 1 - 2 x L(x) (3.14) 
The average length R and the mean monomer orientation q in the û direction are given by R =

N i =1 〈a cos θ i 〉 = aNL(x) (3.15) q = 3 2 1 N i cos 2 θ i - 1 3 = 1 - 3 x L(x) = M(x) (3.16) 
The force f = k B T a x for one chain of monomers is:

f = k B T a L -1 R Na = k B T a M -1 q (3.17)
The inverse of the Langevin function and of the M-function have no analytic expression.

Anyway, their polynomial (Taylor) approximations can be computed, at the point y = 0, and read L -1 y = 3y + 

Conclusions and perspectives

And I was having too much fun to stop now.

JEFF LINDSAY, Darkly Dreaming Dexter

In the present manuscript we have proposed an extension of the PFVD model, in order to describe the dynamical and mechanical features of polymer glasses at large amplitudes of deformation. The PFVD model was originally developed for understanding the dynamical properties of non-polar amorphous polymers close to and below the glass transition, in the context of the free volume theories. The physics at the core of the model is based on the dynamical features at the scale ξ ∼ 3 -5 nm, which is the unit length of the model. Details at smaller spatial scales are coarse-grained in a few adjustable parameters. The model succeeds in reproducing many features of polymer glasses: the heterogeneous nature of the dynamics, the violation of the Stokes law observed for small probes, ageing and rejuvenation phenomena, the shift of glass transition at interfaces, the dependence of the dynamics as a function of pressure, the stress and strain fields on the scale of the dynamical heterogeneities.

In our picture, mechanical properties of polymer systems are controlled by the dynamical heterogeneities, which are the elementary units. Their dynamics is determined by a complex balance between a stress-induced acceleration, and a monomer orientation-induced slowdown. More precisely, the former acts instantaneously when applying a stress, whereas monomer orientation is gradually induced when deforming the system. Stress-induced acceleration of the dynamics is imputed of being the leading mechanism at play during plasticization and strain-softening. Taking place at larger strains, monomer orientation is instead responsible for the onset of strain-hardening. More in detail, the onset of plasticity is introduced with an Eyring-like hypothesis for the local mechanical properties, on the scale ξ of the dynamical heterogeneities. We propose that stress effectively reduces the free energy barriers between local configurations, accelerating the dynamics of the heterogeneities. This assumption is translated into the relation

τ(X, σ) = τ(X, 0)e - ξ 3 2 k B T σ:σ G 0
where τ(X, σ) is the local relaxation time, function of the set of variables X and of the stress tensor σ. k B T is the thermal energy and G 0 the bulk modulus. Our description depends on no adjustable parameter other than the length scale ξ, so that measuring plastic properties of glassy polymers, and the yield stress in particular, is a way to probe the scale of the dynamical heterogeneities.

The mechanism concerning the orientation of monomers had previously been introduced by Chen and Schweizer. They proposed that the applied deformation modifies the interchain packing, orients monomers and intensifies the intermolecular glassy constraint.

Analogously, we assume that deformation effectively prolongs monomer relaxation times and slows down local dynamics, by orienting monomers and thus strengthening intermolecular interactions. A nematic order parameter, q, defined on the scale of the dynamical heterogeneities, incorporates the effect of macroscopic deformation and its evolution is computed without any adjustable parameter. It depends on a balance between local constraint, which orients monomers by inducing deformation, and the entropic restoring force which wants monomers to be randomly oriented. The ratio between these two actions is estimated to be of order 60, which is high enough to have monomer orientation in our systems.

The slowdown of the local dynamics is modelled via a shift of the local glass transition temperature. On this purpose, we propose a generalization of the WLF law for the relaxation times τ α :

Log τ α T, q τ α (T 0 ) = - C 1 T -Δ g • q -T 0 C 2 + T -Δ g • q -T 0
where C 1 , C 2 and T 0 are material-specific constants, q is the local nematic order parameter, T the temperature. Δ g is the only adjustable parameter of the model for strain-hardening. It has been fixed to the value of 100 K, which has been found to be the good order of magnitude: for lower values strain-hardening is too weak, for higher values the hardening modulus is found to be too large.

Our simulations allow for describing the onset of plastic behaviour in glass formers. The yield stress is found to depend linearly upon the shear rate and the macroscopic relaxation time τ α , in agreement with the predictions of the Eyring theory and experimental evidence.

Other features of the plastic regime are also verified, like the decrease of the elastic and dissipative moduli under applied deformation. Consistently with recent mechanical experiments, G decreases by more than one order of magnitude whereas G by a factor 3 only.

For temperatures below T g , our simulations show that the hardening modulus G R is of order 10 7 -10 8 Pa and decreases when heating the system, consistently with experiments.

Different kind of applied deformations (compression, elongation, shear) give coherent results. The true stress -true strain curves at different strain rates or cross-linking fractions are in good agreement with experimental data as well. In particular, the effect of cross-linkers on strain-hardening has sometimes been thought to be a proof in favour of classical theories involving the entropic elasticity of the rubbery network. Our results show that it is not necessarily the case.

When probing the dynamics at the microscopic scale, our model confirms that strainhardening effectively stabilizes localized rejuvenation. The non-affine behaviour of our sys-tems changes abruptly according to if the mechanism of monomer orientation is considered or not. Without it, non-affine displacements are very important and localization results in macroscopic shear banding. With it, displacements are essentially affine over the entire range of deformation.

According to our description, yield behaviour appears as a consequence of a relatively small amount of yields on the scale of the dynamical heterogeneities. When applying strains of a few percent, the energy stored by dynamical heterogeneities can trigger a large number of relaxation events, with consequent local rejuvenation and release of stress. This phenomenon has been observed to interest mainly subunits with short and intermediate relaxation times, affecting long time scales to a smaller extent. The physical picture we propose is the following: under applied strain, load-bearing regions might relax as a consequence of the stress-induced acceleration of their dynamics. If so, the large amount of elastic energy they store is partially dissipated, partially redistributed in the neighbouring regions (a typical example of such mechanism is shown in Figure 3.19a). The dynamics of these close regions is therefore accelerated, and they might relax as well, consequently. During plastic yield, the propagation of the rejuvenated regions is found to be responsible for the weakening of the material.

The orientation of monomers, which was negligible in the linear regime and during plastic yield, becomes relevant at deformations between 10 and 20 %. A small fraction of regions which have been submitted to a large amount of mechanical load now show a high local nematic parameter (or monomer orientation). Instead of rejuvenating under the effect of stress, such regions are able to bear a large amount of stress, their relaxation times being very large and their dynamics being highly constrained. The orientation of monomers on the scale of few nanometres can thus counterbalance the propagation of rejuvenated domains, avoiding large scale localization, like shear banding, and resulting in a further increase of the mechanical modulus. This is denoted by a further ageing process taking place at large strains. This ageing process occurs only for those systems which show strainhardening, where the dynamics is relatively slow and stress is high enough to induce a relevant monomer orientation. Similarly to plasticization, strain-hardening is a local phenomenon which interests a few highly deformed regions. The former induces localization of the dynamics, the latter counteracts it.

The considerations above represent by themselves a considerable advance in the PFVD model, and provide a unified physical description of the mechanical properties of polymer glasses, from the linear regime to large strains. Anyway, they basically imply that dynamics, during plastic yield, becomes more heterogeneous, as some very slow regions don't relax whereas a large amount of fast domains appear, contradicting different experimental data by Ediger and co-workers showing that with the onset of plasticity dynamics becomes more homogeneous. During plastic yield, very slow subunits are poorly affected by the applied stress, and most of them do not relax, their dynamics being too constrained.

We introduced Merabia and Long's facilitation mechanism, which takes into account the diffusion of monomers between neighbouring heterogeneities. Very dense, slow subunits may thus relax because they 'diffuse' in the fast environment. A mean-field cutoff τ d , for the dynamics of all the subunits, has been introduced

τ d = τ f N 2/3 c
where N 2/3 c is the typical surface of a dynamical heterogeneity, expressed in number of monomers N c , and τ f sets the time scale for the fast environment. It is computed from the distribution of relaxation times, as the cutoff at the 30 % shortest times. When deforming the system, stress induces the acceleration of the dynamical heterogeneities, by lowering the free energy barriers between different configurations. The large number of fast regions which are therefore created contribute to the fast environment surrounding very slow heterogeneities. Consequently, it enhances the diffusion of monomers by effectively reducing the fast cutoff τ f . Proportionally, the diffusion time scale τ d decreases as well and the lifetimes of very slow subunits reduces to a few seconds, becoming comparable with the duration of our simulation. These regions start to relax, because of monomer diffusion. The shift of the cutoff τ d towards short time scales reduces the width of the distribution of relaxation times, resulting in a homogenization of the dynamics.

Simulations show that typical time scales associated to the dynamics of the heterogeneities drop by several orders of magnitude at plastic yield. In the strain-softening regime, typical time scales are found to remain nearly constant, indicating that dynamics has reached a stationary condition. The values of these time scales at post-yield are inversely proportional with respect to the strain rate, meaning that mobility is proportional to the rate of deformation. In addition, the stretching exponent β is found to increase rapidly close to yield, attaining a constant value after a small peak. These results are in agreement with the experimental data from Bending et al. and with the theory of Chen and Schweizer.

The model and the results we have shown represent how far our work has been carried and tested. We think that it might lead to a lot of interesting research, both of fundamental and practical interest. As a matter of fact, the mechanism of monomer orientation have been observed to have striking stabilizing properties. Getting a deeper insight over the stabilizing properties of nematic ordering, at different length scales, might lead to some applicable scientific advance.

In this manuscript we have not treated how the facilitation mechanism acts at large strains. This is mostly due to the fact that the model for strain-hardening and the facilitation mechanism have been studied separately. It would appear nevertheless that both of these mechanisms are of fundamental importance in the understanding of polymer glasses: both dynamical and mechanical properties of polymer systems are intrinsically and indissolubly connected.

Therefore, we have approached the problem of 'joining' the two mechanisms in one unique model. It is not straightforward. As a matter of fact, in our picture strain-hardening is due to a small fraction of regions with long relaxation times, whereas the facilitation mechanism wants these regions to be 'melted'. However, in Figure 2.8 we have seen that, below T g and after yield, the diffusion of monomers becomes less important, as a consequence of the drop of stress. The cutoff τ d increases of more than one order of magnitude after yield.

When considering the orientation-induced slowdown of the dynamics, it is conceivable that this inhibition of the facilitation mechanism can be even more important, as a consequence of the ageing process induced by the local shift in glass transition temperature. If so, the cutoff τ d could increase to relatively long time scales, allowing ageing. 

Conclusions en français

Dans ce manuscrit nous avons proposé une extension du modèle PFVD, afin de décrire les propriétés dynamiques et mécaniques des polymères vitreux à grandes amplitudes de déformation. Le modèle PFVD avait été développé originellement pour comprendre les propriétés dynamiques de polymères apolaires amorphes près et en-dessous de la transition vitreuse, dans le contexte des théories de volume libre. La physique sur laquelle le modèle se fonde, est basée sur les propriétés dynamiques à l'échelle ξ ∼ 3 -5 nm, qui est aussi l'unité de longueur du modèle. Les détails relatifs aux échelles spatiales plus petites sont incorporés dans peu de paramètres ajustables. Le modèle réussit à reproduire maintes propriétés des polymères vitreux : la nature hétérogène de la dynamique, la violation de la loi de Stokes observée pour des petites molécules sondes, les phénomènes de vieillissement et de rajeunissement, le décalage de la température de transition vitreuse aux interfaces, la dépendance de la dynamique en fonction de la pression, les champs de contrainte et de déformation à l'échelle des hétérogénéités dynamiques.

Dans notre interprétation, les propriétés mécaniques des systèmes de polymères sont contrôlées par les hétérogénéités dynamiques, qui représentent les unités élémentaires. Leur dynamique est déterminée par une balance complexe entre l'accélération induite par la contrainte, et le ralentissement dû à l'orientation des monomères. Plus précisément, le premier agit instantanément lorsque l'on applique de la contrainte, tandis que l'orientation des monomères est graduellement induite en déformant le système. L'accélération de la dynamique induite par la contrainte est considérée comme le mécanisme déterminant pendant la plastification et l'adoucissement. L'orientation des monomères, qui concerne les grandes déformations, est, d'autre part, responsable de l'écrouissage. • Affine deformation. For every bead i , r * i (s) = [1 3 + d Γ(s)] r i (s).

• Integration step. For s = s, s + d 2 t , ..., s + d td 2 t :

-F i (s ) = F g ,i (s ) + F R,i (s ) + F HS,i (s ), for all the beads.

σ 2 dev,i j (s ) =1 2 (σ 1 -σ 2 ) 2 + (σ 2 -σ 3 ) 2 + (σ 3 -σ 1 ) 2 = 9 2 Trσ 2 i j (s ) -1 3 Tr 2 σ i j (s ) , where σ 1 , σ 2 , σ 3 are the eigenvalues of the local stress tensor σ i j (s ).

τ s,i j (s ) = t i j (s) 1 + 2 Log(t i j (s))-Log(τ(q i j (s ))) ln 10Δ 2 -1 e -λσ 2 dev,i j (s ) , for all the glassy springs.

-˙ r * i (s ) = 1 ζ F i (s ) -qi j (s ) = 1 ξτ s,i j (s ) F g ,i j (s ) k g -1 μ M -1 q i j (s ) -r * i (s + d 2 t ) = r * i (s ) + ˙ r * i (s )d 2 t
-q i j (s + d 2 t ) = q i j (s ) + qi j (s )d 2 t

• Final integration step. r i (s + d t) = r * i (s + d t).

• Ageing step:

-The formula τ s,i j (s+d t) = t i j (s) 1 + 2 Log(t i j (s))-Log(τ(q i j (s+d t))) ln 10Δ 2 τ i j (s+d t) . If so, t i j (s + d t) = t mi n , r 0,i j = r j (s + d t)r i (s + d t), q i j (s + d t) doesn't change.

Otherwise, the age increases: t i j (s + d t) = t i j (s) + d t.

• End.

The procedure is meant to include Euler integration. The quantity t mi n is the cutoff at the 3 % fastest times, in the theoretical (log-Gaussian) distribution of relaxation times. 

Computation of the stress tensor

Introduction' 7

 7 Begin at the beginning,' the King said, gravely, 'and go on till you come to an end; then stop.' LEWIS CARROLL, Alice in Wonderland Contents General context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Basic features of glassy polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Plastic behaviour and Eyring model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Strain-hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical relaxation of glassy polymers: quantitative description . . . . . . . . . 8 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

τ

  c represents a measure of the mechanical relaxation times. For very narrow distributions of relaxation times CF(t ) is expected to decay nearly exponentially, giving β ≈ 1. Wide distributions of relaxation times involve several decades: the decay is 'stretched' and β < 1. The parameter β quantifies the homogeneity in the system. (a) The correlation time τ c at a function of the local strain, for different strain rates from 3.7 × 10 -5 s -1 and 1.2 × 10 -4 s -1 . Two systems aged for different times are also considered. (b) Representative decay functions CF(t ), plotted at different strain amplitudes and fitted with the KWW function. The values of β as obtained from the fits are reported, for some strain amplitudes.

Figure 5 :

 5 Figure 5: Anisotropy decay data for PMMA, during constant engineering strain rate deformation, from Bending et al. [51].
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  (a) True stress-true strain curves for three very common polymer materials, during compression at constant true strain rate. (b) The hardening modulus G R as a function of temperature, for different PS/PPO blends. The T g varies from 378 K for the pure PS to 484 K for pure PPO.

Figure 6 :

 6 Figure 6: High molecular weight entangled polymers show great hardening properties at large strains. Data come from the work of van Melick et al. [57].

G 0 ≈ 3 ×

 3 10 9 Pa, k B T ≈ 4 × 10 -21 J and ξ 3 ≈ 10 -25 m 3 (which corresponds to ξ ≈ 5 nm), we obtain a ≈ 2 × 10 7 Pa and b ≈ 2 × 10 6 Pa, which are typical values. Note that in the standard Eyring model, a = E A V * and b = k B T

Figure 1 . 2 :

 12 Figure 1.2: Evolution of the length scale ξ of dynamical heterogeneities as a function of temperature as calculated for polystyrene in [2].

Figure 1 . 3 :

 13 Figure 1.3: Stress during plastic flow for PS calculated from equation (1.5) and the evolutions of τ α (T) (WLF law) and of ξ(T) (Figure1.2), for different strain rates: 10 -2 s -1 (blue curve), 10 -1 s -1 (red curve), 1 s -1 (green curve), 10 s -1 (black curve), 10 2 s -1 (turquoise curve)

Figure 1 .

 1 Figure 1.10: G as a function of temperature for different deformation amplitudes γ between 0.01 and 0.2.

Figure 1 .

 1 Figure1.11: G and G as a function of strain γ for different temperatures between 370 K and 460 K. Same data as in Figures 1.9 and 1.10. At high temperatures, both moduli are strain independent. At low temperatures G is a decreasing function of γ, whereas G exhibits a small maximum at a strain amplitude close to 0.05.

  (a) System at rest. (b) System at γ = 8%.

Figure 1 . 15 :

 115 Figure 1.15: Cross section of glassy spring ages at 0 and 8 % strain amplitude. T = 386 K, ageing time 10 3 s, shear rate 0.1 s -1 .

Figure 1 . 16 :

 116 Figure 1.16: Cross section of glassy spring energies at 0 and 8 % strain amplitude. T = 386 K, ageing time 10 3 s, shear rate 0.1 s -1 .

Figure 1 . 18 :

 118 Figure 1.18: Velocity profiles as a function of z (normal to the flow) for T = 418 K ≈ T g +25 K. Snapshots are taken at 1 (a) and 7 % (b) deformation. Error bars correspond to the standard deviation of bead velocities at a given altitude. The velocity profile remains essentially linear.

  3 and P = -Tr(σ)/3. C is a numeric constant which tunes how fast the algorithm goes. It is equal to c/ max {|σ 11 + P|, |σ 22 + P|, |σ 33 + P|, |σ 12 |, |σ 13 |, |σ 23 |}, with c = 10 -3 .
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 21 Figure 2.1: Schematic picture representing a slow (high density) heterogeneity and its faster (less dense) surrounding. The subunit can relax either by reorganization of free volume, either by free volume diffusion (or, equivalently, monomer diffusion). The first mechanism is the dominant one in fast, low density subunits, while the second one leads relaxation events in slow subunits.

Equation ( 2 . 3 )

 23 gives the local relaxation time τ, as given from the competition between microscopic reorganisations at fixed free volume and collective monomer diffusion. As explained in the Introduction, the bridge between local time scales and macroscopic time scales occurs by means of percolation of slow domains, determining the macroscopic dynamics measured in mechanical experiments. The quantity τ p c , defined in equation (7) as ∞ τ p c p(τ s )d τ s = p c , sets the macroscopic cutoff of the α-relaxations of these slow percolating paths. τ p c as a mechanical cutoff makes sense only in the absence of localization, when the percolation picture holds. The longest relevant time scale τ α is cut off, at long times, by both percolation and diffusive processes. In absence of localization, it is thus set by τ α = min{τ p c , τ d } (2.5) At equilibrium, τ d is of the order of τ p c and τ α follows the WLF law (1). When rejuvenating a polymer system, mechanically or thermically, the large amount of relaxation processes, induced by stress or by temperature-induced density fluctuations, can shift τ d towards time scales smaller than τ p c .

  within the free volume framework. It derives from the competition between the two processes and from the assumption that the dominant length scale is the one giving the longest lived density fluctuations. In Figure 2.2a we see the basic idea behind this estimation. ξ is found to be of order 3 -5 nm close to T g , which corresponds to N 2/3 c ∼ 10 2 -10 3 . (a) The black solid line represents the relaxation time τ d ∝ N 2/3 . The dashed-dotted line represents the lifetime of density fluctuations Logτ s ∼ N -1/2 . The intermediate length scale on which density fluctuations are long lived corresponds to N c . Domains of very different sizes are too short lived to be relevant.

Figure 2 . 3 .

 23 Figure 2.3. The constant value Δ = 4 has been maintained as in chapter 1.

Figure 2 . 3 :

 23 Figure 2.3: Above, equation (2.7) gives Log(τ α /τ) = Δ • erf -1 (1 -2p c ) ≈ 3.47. τ and τ α are plotted as a function of temperature, for PS. Below, the distribution of relaxation times for PS, from 370 K to 355 K, with a temperature step of 5 K. Characteristic times for T = 370 K are reported.

Figure 2 . 4 :

 24 Figure 2.4: Distribution of relaxation times after ageing 104 s, in blue, as compared to the reference log-Gaussian one, in red, at 355 K ≈ T g -20 K. We see that τ d after ageing 10 4 s interests only the slowest subunits, negligibly affecting the distribution of relaxation times. The continuous lines below give the reciprocal relaxation time τ -1 as a function of the age t of the subunit, as estimated from equation (2.9). Again, the blue line is the simulated one and the red line is the reference one, after infinite ageing and no applied stress. The parameters are q c = 0.3 and N 2/3 c = 10 3 .
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 25 Figure 2.5: Distribution of relaxation times at rest for different temperatures between 345 K and 365 K. The systems have aged at the considered temperature for 10 4 s. We see that, despite the cutoff τ d , at low temperatures the systems have regions with very slow dynamics.

Figure 2 . 6 :

 26 Figure 2.6: True stress -true strain curves obtained during compression tests at constant logarithmic strain rate 0.1 s -1, for samples where the facilitation mechanism is considered (continuous lines) or not (dashed lines), at different temperatures. The main difference stands in the reduced mechanical properties in the plastic regime, which is understood as a consequence of the stress-enhanced diffusion processes.
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 27 Figure 2.7: Yield stress as a function of strain rate, at different temperatures, when considering the facilitation mechanism. σ y is nearly proportional with respect to strain rate, over several decades.

Figure 2 . 9 :

 29 Figure 2.9: τ p c curves obtained during uniaxial compression tests at constant logarithmic strain rate 0.1 s -1 . Dashed lines are obtained without the facilitation mechanism, continuous lines with it.

Figures 2 .Figure 2 . 6 .

 226 Figures 2.8 and 2.9 suggest an interpretation of the mechanical properties observed in Figure 2.6. At small strains and below T g , the acceleration of the dynamics induced by stress affects mainly short and intermediate time scales, as τ d is still quite large and diffusion is not effective. As a matter of fact, mechanical properties with and without the facilitation mechanism are essentially the same. When approaching the plastic regime, the large amount of fast regions which have been created enhances the diffusion of monomers from slow to fast regions. τ f drops down and τ d is therefore shifted towards shorter time scales. The dynam-

Figure 2 . 10 :Figure 2 . 11 :

 210211 Figure 2.10: Distributions of relaxation times τ s obtained during uniaxial compression, for different strains from 0 to 10 %, without the facilitation mechanism.The logarithmic strain rate is 0.1 s -1 . Even at 1 % strain, the distributions of relaxation times are shifted towards shorter time scales, as a consequence of the acceleration induced by local stress. Anyway, the distributions remain wide even at relatively large deformations.

17

 17 

  )

Figure 2 . 12 :

 212 Figure 2.12: Example of a typical fit of the relaxation function F(t ) with the stretched exponential. The blue 'plus' signs are some values of F(t ) at different times t , the red line is the fitted curve. The corresponding parameters are β = 0.45 and τ K = 0.09 s, which give τ c = 0.22 s.

Figure 2 .

 2 14 shows this concept through the evolution of β with respect to strain, for systems where no facilitation mechanism in considered. β decreases monotonically over almost all the range of deformation. The relaxation of subunits with intermediate relaxation times creates two distinct populations, those with fast motion and those with slow motion, and the distribution of relaxation times widens.

Figure 2 . 14 :

 214 Figure 2.14: The parameter β as a function of strain, at 350 and 355 K and constant engineering strain rate 0.03 and 0.1 s -1 . Systems have been aged 10 5 s. Here, the facilitation mechanism is neglected.

and 2 . 16 .

 216 Before deformation, the value of β is higher than the equilibrium one, as the distribution of relaxation times has not achieved the equilibrium width yet (see Figure2.5). For the same reason, the value of β at rest and at 355 K is lower than the one at 350 K, while for the (theoretical) systems in Figure2.13 β is constant.At deformations of about 2 %, β decreases, as subunits with intermediate relaxation times relax and the amount of fast subunits increases. Then β remains constant for some percent of deformation, indicating that fast subunits are not sufficiently many to 'melt' very slow subunits. Slightly after yield, β increases quickly: subunits with very slow dynamics are starting to melt by the increasing number of fast regions. The distribution of relaxation times is thus becoming narrower, and the overall dynamics more homogeneous. Most of the curves show a small overshoot between 0.5 and 0.6 before reaching a steady state, in agreement with experimental data[3]. After strains of about 8 -13 % β remains nearly constant, with values comprised between 0.4 and 0.6, for the slowest deformations, comparable with the results from Bending et al. shown in Figure5b, within experimental error.For strain rates above 1 s -1 , the overshoot disappears and β reaches values close to the

Figure 2 . 15 :

 215 Figure 2.15: The parameter β as a function of strain, at 350 K and constant engineering strain rate from 0.01 s -1 to 3 s -1 . Systems have been aged 10 5 s. When considering the facilitation mechanism, β increases at yield, showing the narrowing of the distribution of relaxation times. The parameters used here are q c = 0.3 and N 2/3 c = 10 3 .

Figure 2 . 16 :

 216 Figure 2.16: Same as Figure 2.15, but at higher temperature T = 355 K. The increase of β occurs earlier, as a consequence of the yield taking place at smaller strains, and the value at large strains is smaller than the one observed in Figure 2.15.
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 2 18 shows τ c as computed from equation (2.16), both as a function of strain. Before deformation, both τ K and τ c are smaller than the equilibrium values given in Figure2.13. It is a consequence of the finite ageing time, t w = 10 5 s. Even though, according to the Struik's

Figure 2 .

 2 Figure 2.17: τ c at 350 K and constant engineering compression rate between 10 -2 s -1 and 3 s -1 . τ c attains a constant value in the post-yield regime, after having dropped by several orders of magnitude close to yield.

Figure 2 .

 2 Figure 2.18: τ c at 355 K and constant engineering compression rate between 10 -2 s -1 and 3 s -1 . The behaviour is similar to the one observed in Figure 2.17.

Figure 2 .

 2 Figure 2.19: τ c at 15 % strain amplitude, as a function of strain rate. Fit at 350 K: Logτ c = -2.0361 -0.8567Logγ. Fit at 355 K: Logτ c = -2.2129 -0.9218Logγ.

  tions in the following way. When deforming the system, stress induces acceleration of the dynamics on the scale of the dynamical heterogeneities, by lowering of the free energy barriers between different configurations. As discussed in chapter 1, the process results in localized regions of enhanced mobility and in plastic yield. Furthermore, mobility time scales decrease and reach a constant value where equilibrium between relaxations and recreation of slow zones occurs. The regions interested by these mechanisms are mainly those with intermediate relaxation times, as the very slow domains are very constrained. The creation of fast regions during plasticization enhances free volume diffusion. The cutoff τ d associated to the mechanism is shifted towards shorter time scales, leading to melting very slow subunits. The width of the distribution of relaxation times is therefore reduced by some decades, which can be measured and has been detected. These mechanisms have been observed during simulation by analysing the evolution of the diffusion time τ d , of the long time scale cutoff τ p c and of the distribution of relaxation times.At larger strains, Lee et al.[1] have observed a further reduction of segmental mobility, denoting the onset of strain-hardening. Strain-hardening is also presumed to induce stabilization over localization phenomena by slowing down the dynamics in regions which have yielded and making them more difficult to deform. It is a phenomenon concerning mainly long chain and highly entangled polymers, which therefore do not show fragile or localized behaviours like those we observe (Figure2.22), being characterized instead by an improvement of the mechanical properties at high deformation. It follows that the model presented and tested in this chapter is representative of short chain, fragile polymer glasses. Strainhardening will be the focus of the next chapter.

  and 2.17.(b) τ K at 355 K, as corresponds to Figures 2.16and 2.18.

Figure 2 . 20 :

 220 Figure 2.20: The parameter τ K at 350 and 355 K and constant engineering compression rate between 10 -2 s -1 and 3 s -1 . The systems have been aged 10 5 s.

  the following we show how localization of strain and non-affine behaviours are affected by the facilitation mechanism. The figures confirm what observed in the previous chapter, meaning that the diffusion of monomers marginally influences localization and shear banding.

Figure 2 . 21 :

 221 Figure 2.21: Root-mean-squared non-affine displacements with the facilitation mechanism as a function of strain, during shear deformation at constant shear rate 0.1 s -1 . Different temperatures from 355 to 375 K are considered. The results we observe are similar to those observed in chapter 1, meaning that strong non-affine behaviours persist when considering the facilitation mechanism.

Figure 2 . 22 :

 222 Figure 2.22: Velocity profiles during shear simulations at constant shear rate 0.1 s -1, with respect to an axis perpendicular to the direction of shear, are plotted for 360 K ≈ T g -15 K. We see that deformation induces localization and shear banding well below T g , meaning that the facilitation mechanism does not stabilize localized rejuvenation. On the contrary, non-affine behaviours appear intensified after yield, where τ d has a minimum and the facilitation mechanism is more effective.

Figure 2 . 23 :

 223 Figure 2.23: Velocity profiles during shear simulations at constant shear rate 0.1 s -1 , with respect to an axis perpendicular to the direction of shear, are plotted for 370 K. With ongoing deformation, the profiles remain nearly linear, indicating that close to T g deformation is affine.
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 224225 Figure 2.24

Figure 3 .

 3 2 represents this result: local deformation induces a preferential orientation at the scale of monomers while large scales still maintain a quasi random-coil configuration. At the scale of dynamical heterogeneities, typical relaxation times associated with internal reorganizations might be too large and prevent monomers to loose the orientation given by the applied deformation. As a consequence, anisotropy and molecular packing increase.

Figure 3 . 1 :

 31 Figure 3.1: Schema representing how deformation affects local configuration. At large length scales, polymers maintain their Gaussian structure. On the scale of the dynamical heterogeneities, segmental relaxation is too slow to re-orient and monomer keep a partial alignment in the direction of deformation. As a consequence, intermolecular interactions and correlations are intensified, reducing local mobility and slowing down the dynamics.

•

  the viscous friction ζ u, where ζ is the viscous friction coefficient and u the rate of local displacement. The equation governing the evolution of the local displacement u reads σξ 2 -F L -ζ u = 0 (3.3) According to a Maxwell-like model of viscoelasticity at the scale ξ, ζ is set to G 0 ξ 2 τ, where G 0 ∼ 3 × 10 9 Pa is the bulk modulus and τ the local relaxation time (see sections 1.3 and 2.2).

Figure 3 . 3 :

 33 Figure 3.3: Schema representing the force acting at the scale of a dynamics heterogeneity, with respect of the local director û.

Figure 3 .

 3 Figure 3.6 shows the same at Figure 3.5, but varying logarithmic strain rate. Analogously to experimental results [10], true stress increases when increasing true strain rate, over the all range of deformation. Here G R appears to be roughly proportional to the logarithm of the strain rate, whereas Wendlandt et al. find that the stress itself depends logarithmically on the strain rate.

Figure 3 . 6 :

 36 Figure 3.6: True stress -true strain curves during uniaxial compression, at temperature 345 K and different true strain rates. Above, centred, yield stress is shown to remain linear with respect to the strain rate.

Figures 3 .

 3 Figures 3.9 and 3.10 show true stress -true strain plots which qualitatively agree with the previous ones. The value of λ divided by 4 implies yield stresses multiplied by a factor close to 2. The onset of strain-hardening is observed at deformation amplitudes comprised between 15 and 35 %. The ensuing slope is of order 10 7 -10 8 Pa, and increases when lowering the temperature, in agreement with experimental data. Differently from the plots in Figure 3.5, strain-hardening is observed for temperatures closer to T g ≈ 370 K. It is probably due to the higher levels of stress attained in the plastic regime, which results in a increased local orientation of monomers, and thus in improved strain-hardening properties.

Figure 3 . 9 :

 39 Figure 3.9: True stress -true strain curves during elongation at true strain rate 0.1 s -1 and temperatures from 352 K to 360 K.

Figure 3 . 10 :

 310 Figure 3.10: True stress -true strain curves during shear at shear rate 0.1 s -1 and temperatures from 350 K to 360 K.

Figure 3 . 11 :

 311 Figure 3.11: On the left, some dynamical heterogeneities contain cross-linked nodes, and some don't.The glass transition temperature of the former is permanently increased by a fixed value ΔT x g , while that of the latter is unvaried. The increase of T g due to cross-linking and the one due to monomer orientation are independent and additive.

Figure 3 . 12 :

 312 Figure 3.12: True stress-true strain during uniaxial compression, at temperature 350 K and true strain rate 0.1 s -1 . The value of the parameter ΔT x g is 10 K. Increasing the fraction of cross-linked regions strengthens strain-hardening.

Figure 3 . 13 :

 313 Figure 3.13: Same as Figure 3.12, but for ΔT x g = 30 K. A similar behaviour is observed.
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 5351 Distribution of relaxation times after yield Distributions of ages and τ: orientation-enhanced ageing processHereafter, we analyse the dynamical behaviour during deformation by looking at the distributions of relaxation times and ages. The distributions of relaxation times give access directly to the dynamics of heterogeneities, including relaxation events, stress-induced acceleration of the dynamics and orientation-induced slowdown.

Figures 3 .Figure 3 . 14 :

 3314 Figures 3.14 and 3.15 show the different behaviour of distributions of relaxation times at 350 K, respectively with and without the strain-hardening mechanism. Before deforming (deformation of 0 %), both stress and monomer orientation are negligible and, as a consequence, the distributions are equivalent. At small deformations (1 %), the whole distribution of relaxation times is accelerated by stress, which anyway is not yet high enough to trigger relaxation events (the distribution of ages is slightly affected). At yield (∼ 5 %), the acceleration of the dynamics has becomes very important and we can see that the distributions of relaxation times have clearly shifted towards short time scales. Long relaxation times are not populated any more, and only intermediate relaxation times are present. Looking at the distributions of ages, we understand that relaxation events interest mainly subunits with intermediate ages, the oldest subunits being less affected. In this regimes of deformation, the

Figure 3 . 15 :

 315 Figure 3.15: Distribution of relaxation times and ages, at 350 K, without the strain-hardening mechanism.Relaxation times reach a steady regime, cut off at about 0.1 s, as well as ages, which show no further ageing process. Dash-dotted ellipses evidence the most important differences with the distributions obtained with the strain-hardening mechanism.

Figure 3 . 16 :

 316 Figure 3.16: Same as Figure 3.14, but at 365 K.

  (a) Cross-sections representing the stored glassy energy Log E g k B T g , at 350 K. (b) Cross-sections representing the value of the orientation parameter, at 350 K.

Figure 3 . 18 :

 318 Figure3.18: Cross-sections of glassy energies and local orientation parameter, on a plane perpendicular to the axis of compression, at 350 K. Strain amplitudes are 0, 1, 5, 10, 20 and 30 %, from the left to the right and from the top to the bottom. Energies are expressed as in k B T g units. Black circles denote a region which never relaxed and is that gradually oriented, attaining a large value of q. White circles remark a region which oriented during yield, becoming highly oriented as well.

figure 3 .Figure 3 . 20 :

 3320 figure 3.20 we compare the evolution of d na with and without the orientation mechanism, as a function of strain, during shear simulations at different temperatures below T g and shear rate 0.1 s -1 . We see that, if we don't consider orientation-induced slowdown of the dynamics, d na has an inflection point in correspondence of the yield and of the appearance of shear banding, at 5 % shear amplitude. The lower the temperature, the larger the increase of nonaffine behaviour. d na becomes one order of magnitude lower once monomer orientation is taken into account, as the shear flow is much more stable. The linear behaviour is substituted by a continuously increasing slope, indicating that no unique localization threshold is present. The temperature dependence has changed trend, and non-affine displacements decrease when cooling.

Figure 3 . 21 :

 321 Figure 3.21: Evolution of the velocity profiles as functions of z (normal to the flow) at temperature T = 360 K, taken at different strain amplitudes. Velocity profiles are plotted without (above) and with (below) the monomer orientation mechanism. Error bars correspond to the standard deviation of bead velocities at a given altitude. We pass from two shear bands to a homogeneous flow.
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3 .C

 3 True stress -true strain curves at different strain rates (a) 350 K. (b) 355 K.

Figure 3 . 22 :

 322 Figure 3.22: True stress -true strain curves obtained from uniaxial compression at 350 and 355 K. Different true strain rates are considered, from 0.01 to 3 s -1 . Increasing strain rate can actually enhance strain-hardening.

3 .D

 3 Effect of cross-linking over strain-hardening (a) ΔT x g = 10 K. (b) ΔT x g = 30 K.

Figure 3 . 23 :

 323 Figure 3.23: True stress -true strain curves obtained from uniaxial compression at 355 K and strain rate 0.1 s -1 . Cross-linking is here considered, with two values of the local increase of glass transition temperature, ΔT x g = 10 and 30 K, and varying the fraction of cross-linkers. Strain-hardening becomes more important when increasing the volume fraction of cross-linkers, consistently with experimental data.

Figure C. 1

 1 Figure C.1 shows the true stress -true strain curves obtained during elongation at constant true strain rate 0.1 s -1 , and in Figure C.2 the relative evolution of τ d is plotted, as a function of strain. These plots can be considered as preliminary results concerning the concepts outlined above. First of all, we see that we can actually observe strain-hardening even when considering the facilitation mechanism. The diffusion time τ d , after dropping to small values at yield, increases in the post-yield regime. It attains a stationary state, comprised between 1 and 10 s, whereas in chapter 2, in absence of strain-hardening, τ d did not exceed 1 s. This problem deserves a deeper analysis, and will be the subject of a future work.

Figure C. 1 :

 1 Figure C.1: True stress -true strain curves obtained from uniaxial elongation simulations, for different temperatures and constant logarithmic strain rate 0.1 s -1 . The curves derive from the model, when including strain-hardening and facilitation mechanism together. After strain-softening, the stress increases again, showing that facilitation mechanism does not hinder strain-hardening.

Figure C. 2 :

 2 Figure C.2: The diffusion time τ d as obtained from the simulations of Figure C.1. τ d increases after yield, as a consequence of the drop of stress and of the ageing process induced by monomer orientation, allowing from strain-hardening.
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 23 figurations locales, accélérant ainsi la dynamique des hétérogénéités. Cette hypothèse est traduite dans la relation :

Figure C. 3 :

 3 Figure C.3: Courbes contrainte vraie -déformation vraie obtenues de simulations d'élongation uniaxiale, pour différentes températures et au taux de déformation vrai de 0.1 s -1 . Les courbes dérivent du modèle, lorsque l'on considère l'écrouissage et le mécanisme de facilitation ensemble. Après l'adoucissement, la contrainte augmente à nouveau, ce qui signifie que le mécanisme de facilitation n'empêche pas l'écrouissage.

Figure C. 4 :

 4 Figure C.4: Le temps de diffusion τ d obtenu des simulations relatives à la Figure C.3. τ d augmente après la saturation plastique, comme conséquence de la chute de la contrainte et du vieillissement induit par l'orientation des monomères, permettant ainsi l'écrouissage.
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 12 dev,i j(s+d t) gives the set of relaxation times {τ s } at time s + d t, given the sets of ages, stresses and nematic parameters.τ f (s + d t) = τ f ({τ s }) -τ d (s + d t) = N 2/3 c τ f (s + d t)τ i j (s + d t) = min{τ s,i j (s + d t), τ d (s + d t)} Each glassy springs i j relaxes with probability d P rel (s+ d t) = d t

10 M 3 x 2 -

 1032 Each component of the stress tensor, σ αβ , α, β = x, y, z, is computed through the Irving-Kirkwood formula 1σ αβ = 1 2V m,n F mn,α R mn,βLength of the rubbery springs, at restL(•), L -1 (•) Langevin function, defined as L(x) = coth x -M(•), M -1 (•) M-function M(x) = 1 + 3 coth x x ,and its inverse N N Number of subunits such that τ s > τ f , or number of monomers of a chain (in the Langevin model) defined from -Tr(σ)/3 d P rel (•) Local stress relaxation probability, per unit time d t P s (•) Relaxation probability, per unit time, associated to τ s Q q, q û Local nematic order parameter, with local direc-Age of a subunit, i.e. time elapsed since the last relaxation event, or time t mi n Lower cutoff for the ages t w Waiting, or ageing, time T Temperature T 0 , T s 375 -393 K Reference temperature in the WLF law T g 375 -393 K Glass transition temperature T ∞ T 0 -Time scale of the diffusive processes τ f Time scale of the fast percolating fraction, associated to q c τ K Parameter associated to the KWW fits τ p c Time scale associated to the p c longest times τ s Time scale associated to local mobility

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  for a detailed description of this technique. It extracts informations about the segmental mobility by means of the orientation autocorrelation function CF(t ).

	τ K -t	β

CF(t ) is fitted with the Kohlrausch-Williams-Watts (KWW) function CF(t ) ≈ e
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	Nous étendons le modèle PFVD pour décrire les propriétés mécaniques non-linéaires des
	polymères vitreux, jusqu'à 10 % de déformation. Nous proposons que l'énergie élastique
	emmagasinée à l'échelle des hétérogénéités dynamiques ξ ∼ 3 -5 nm réduise les barrières
	d'énergie libre présentes pour la relaxation interne. Ceci permet de calculer des contraintes
	ultimes de l'ordre de quelques dizaine de MPa, ce qui est cohérent avec les données expéri-
	mentales, sans aucun paramètre ajustable autre que l'échelle ξ. Par conséquence, étudier les
	mécanismes plastiques dans les polymères vitreux peut être considéré comme une façon de
	tester l'échelle des hétérogénéités dynamiques.
	La plasticité semble être le résultat de l'accélération des sous-unités de temps de relaxa-
	tion intermédiaires : de façon cohérente avec la description du modèle basée sur la percola-
	tion, les sous-unités de temps de relaxation très longs ne sont pas perturbées par la déforma-
	tion exercée. Nos simulations décrivent le commencement du comportement plastique et
	les réorganisations à l'échelle des hétérogénéités dynamiques. Elles permettent de calculer
	les modules élastique et dissipatif en fonction de l'amplitude de déformation et de la tem-
	pérature. Nous montrons que le module élastique décroit de plusieurs ordres de grandeur
	aux grandes déformations par rapport au régime linéaire. Le module dissipatif, quant à lui,
	décroit d'un facteur de trois seulement. Nos simulations prédisent l'apparition de bandes de
	cisaillement avec le commencement des non-linéarités, et l'élargissement de la distribution
	des temps de relaxation. Ces deux résultats n'ont pas d'analogues expérimentaux et seront
	traités dans les prochains chapitres.
	1.A	Numerical algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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  .3. It can be observed that the model provides results which are qualitatively consistent with experimental data.
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Table 1 .

 1 1: Table of the main simulation parameters and correspondence with physical quantities.

	Simulation parameter	Physical equivalence Numerical value
	Unit length ξ	3 nm	1
	Glassy stiffness k 0	G 0 ξ ∼ 3GPa • ξ	3000
	Cutoff for the glassy springs	3.26 nm	∼ 1.08
	Rubbery stiffness k ∞	G ∞ ξ ∼ 10 5 Pa • ξ	0.1
	Rubbery length at rest l 0	(4.5 nm)	1.5
	Average rubbery connectivity		12
	Excluded volume radius d	3 nm	1
	Excluded volume energy u 0 Plastifying parameter λ	(∼ 1 20 k B T) 10 -3 MPa -2	∼ 0.01 10 -3
	Time step d t	10 -5 s	1 0 -5
	Secondary time step d 2 t	10 -6 s	1 0 -6
	Friction coefficient ζ	(0.2 MPa • s)	0.04
	Shear rate	0.1 s -1	0.1
		C 1 = 9.34	9.34
	WLF parameters	C 2 = 32.5 K	32.5
		T 0 = 393.5 K	393.5
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  2.D The elastic modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dans le chapitre précédent nous avons montré que l'accélération de la dynamique due à la contrainte locale explique les propriétés mécaniques propres aux polymères vitreux, dans le régime plastique. Cependant, les distributions des temps de relaxation au cours de la

	déformation s'élargissent, en contradiction avec l'expérience empirique. L'étude de la réo-
	rientation de molécules sondes dans des polymères soumis à déformation plastique mon-
	tre que la dynamique accélère et devient plus homogène, atteignant un régime stationnaire
	pendant l'adoucissement. Dans ce chapitre, nous incluons la diffusion de monomères des
	hétérogénéités lentes à celles rapides, hors équilibre. Ceci devient un possible mécanisme de
	relaxation mécanique, en compétition avec celui induit par la réorganisation des monomères
	à densité constante. Ce 'mécanisme de facilitation' est accru lors du commencement des
	non-linéarités : l'accélération des domaines vitreux par la contrainte augmente la mobilité

monomérique et crée des régions rapides, qui font 'fondre' celles lentes.

Pendant les simulations de compression uniaxiale la durée de vie des régions très lentes est réduite et la distribution des temps de relaxation est, par conséquence, rétrécie. L'accélération des échelles typiques de temps montre un comportement similaire à celui observé expérimentalement. Quant à la mobilité locale, elle est approximativement proportionnelle au taux de déformation. L'analyse des distributions des temps de relaxation à différentes amplitudes de déformation montre directement l'évolution de la dynamique. Nos simulations montrent que les propriétés mécaniques de nos systèmes sont peu affectées par le mécanisme de facilitation et restent qualitativement cohérentes avec le chapitre précédent.

  , σ,{τ s }) assumes the highest value between two relaxation times, one related to internal reorganisations of monomer, τ s (t , σ), the other to the diffusion process, τ d ({τ s }):

	d t τ(t , σ,{τ s })	(2.8)
	Equation (2.3) implies that τ(t	

At each time step d t, a glassy spring relaxes with a probability d P rel (t , σ), function of the age t and of the local stress tensor σ. If it does, then the age t of spring is set to a lower cutoff t mi n and the rest position r 0 is set to r , which releases the glassy constraint. Otherwise, the spring ages of d t. d P rel (t , σ) is given, analogously to equation (1.11), by d P rel (t , σ,{τ s }) =

Table 2 .

 2 . The viscous friction coefficient appearing in equation(1.23) becomes a local parameter ζ i associated to the bead i , which depends on the local mobility through the relaxation time τ s,i . It is set, according to a Maxwell-like interpretation of local elasticity, to k 0 •τ s,i . The relaxation time of a bead is assumed to be equal to the highest of the relaxation times of all the glassy springs i j connected to i : τ s,i = max j τ s,i j . This means that the dominant contribution to the motion of a certain volume element is attributed to the slowest of the neighbouring domains.

	Simulation parameter	Physical equivalence Numerical value
	Thermal energy	∼ k B T g	∼ 0.18
	Unit length ξ	3 nm	1
	Fast percolating fraction q c	30 %	0.3
	Surface of a domain N 2/3 c	∼ 10 3 monomers	10 3
	Glassy stiffness k 0	G 0 ξ ∼ 3GPa • ξ	3000
	Rubbery stiffness k ∞	G ∞ ξ ∼ 10 5 Pa • ξ	0.1
	Rubbery length at rest l 0	(4.8 nm)	1.6
	Average rubbery connectivity		12
	Minimum rubbery connectivity		7
	Excluded volume radius d	ξ	1
	Excluded volume energy u 0	(∼ 1 20 k B T)	∼ 0.01
	Excluded volume cutoff r HS	(3.26 nm)	1.08
	Time step d t	10 -4 s	1 0 -4
	Secondary time step d 2 t	10 -5 s	1 0 -5
	Poisson coefficient ν	0.3	0.3
		C 1 = 12.0	12.0
	WLF parameters	C 2 = 50.0 K	50.0
		T 0 = 375.0 K	375.0

6. The equation of motion for the beads (1.23) is integrated through the Euler method instead of the MMM, in the overdumped limit. The time step of the integration algorithm remains d 2 t = d t/10. 71: Table of the main simulation parameters and correspondence with physical quantities.

Table 3 .

 3 1: Table of the main simulation parameters and correspondence with physical quantities.
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Evolution of the lower and upper cutoffs

The evolution of τ d = N 2/3 c τ f is representative of the overall amount of relaxation events, while the evolution of τ p c gives information about the fraction of slow subunits still present in the system.

In Figure 2.8, τ d is plotted as a function of the strain amplitude. At temperatures higher than T g , τ d keeps nearly constant when compressing the system. The amount of fast regions already present is so high that adding further fast regions does not affect significantly τ f , as defined in (2.2). Below T g , e.g. at 358 or 362 K, τ d varies strongly during compression. Starting from relatively high values before deformation, it decreases rapidly under applied strain, meaning that a large amount of relaxation events are taking place. For strain amplitudes corresponding approximatively to the yield, where the stress is maximum, τ d attains a minimum. This effect is clearly related to stress: as a matter of fact, the lower the temperature, the higher the yield stress, the lower τ d at yield. In the post-yield regime, τ d increases again in the systems which show a pronounced strain-softening (358 K, red line), as a consequence of the quick drop of the stress. In Figure 2.9 we plot τ p c as defined in equation (7). It represents the fraction p c = 0.11 of the subunits with longest relaxation times. τ p c is a mechanical time only when the percolation picture holds, i.e. when there is no localization. Otherwise, it simply indicates the time scale of slow subunits. We compare τ p c in simulations where the facilitation mechanism is considered (continuous lines) and in simulations where it is not (dashed line). We see that dashed lines are roughly constant in the whole range of deformation, except for a tiny decrease at small strains. Stress accelerates the dynamics of very slow subunits but not enough that many of them can relax during simulation time scales.

Appendix 2.A Parameters of the numerical algorithm

The simulation method is the same as the one described in the appendix 1.A in the previous chapter. Anyway, some changes have been carried. 18, but at 365 K. The stored energies and q are generally lower than those at 350 K, especially in the post-yield regime. Moreover, the circled areas show that subunits do not become enough oriented to bear large amounts of stress, as they relax. 

Appendix

3.A Numerical algorithm

State of the art of the PFVD model

The PFVD model is quite complex. Hereafter we propose a compact summary of all the main equations of the model.

Relaxation probability without facilitation mechanism nor strain-

where σ dev is the deviatoric component of the stress tensor and λ the plasticizing factor

p eq (τ) is the equilibrium distribution of relaxation times:

where τ(T) is computed from

It depends on temperature via the WLF law:

where, for PS, C 1 = 12, C 2 = 50 K, T 0 = T g = 375 K.

The facilitation mechanism

The relaxation times of the subunits is computed from the distributions of ages and of local deviatoric stresses. For a given subunit of given local stress σ and age t , the relaxation time τ s linked to local mobility is given by

From this distribution of relaxation times we define τ f ({τ s }) :

and τ d ({τ s })

with q c = 30 % and N 2/3 c = 10 3 .

Relaxation probability with the facilitation mechanism

The relaxation time when considering the facilitation mechanism is defined as

It sets the relaxation probability

Strain-hardening

The evolution of the nematic order parameter q follows the equation

where μ ≈ 60. q acts on the local dynamics via the generalized WLF law

with Δ g = 100 K. The distribution of relaxation times for the local mobility is the same log-Gaussian

τ(T, q) becomes a function of the nematic parameter as well.

Without the facilitation mechanism

Strain-hardening and facilitation mechanism together

Both τ f ({τ s }) and τ d ({τ s }) are defined as above. Anyway, the relaxation times for mobility of the subunits are now functions of the distribution of ages, local deviatoric stresses and local nematic parameters:

The mechanical relaxation time is given by

the relative relaxation probability reads

Simulation procedure

In this Appendix we outline how the physics underlying the model is translated into a numerical simulation.

Numerical algorithm during a deformation step

The simulation box is composed of beads, denoted by the subscript i or j , which are interact though glassy springs (glassy rigidity of the dynamical heterogeneities), rubbery springs (rubbery matrix) and hard-sphere repulsion (incompressibility).

The equations which describe the dynamics of the system are (the variable s representing the absolute time):

, equation of motion of the node of position r i , in the overdumped limit. F i j is the force acting from bead j on bead i and F i is the sum of the forces acting on the bead i .

, dynamical equation for the orientation parameter of the spring i j , connecting bead i and j . The relaxation time is given by the re-

dev,i j . This formula is obtained by simple derivation, and the dependence on temperature is implicit in τ.

• t i j (s

with probability 1d P rel t i j , σ i j , q i j , t i j (s + d t) = t mi n and r 0,i j (s + d t) unchanged, with probability d P rel t i j , σ i j , q i j .

When a deformation is applied to the system, all beads are firstly moved affinely, the let relax according to the equations of motion. Thus, naming d Γ the infinitesimal deformation occurring during the time step d t, the positions of the beads are updated to After integrating the dynamical equations, the glassy springs undergo ageing. In order to do so, the distribution {τ s }, of all the monomeric relaxation times τ s,i j t i j , σ i j , q i j , for each glassy spring i j is computed. This allows for estimating the diffusion time τ d ({τ s }), defined as the fraction q c (= 0.3) of fastest relaxation times (a sorting-like algorithm is used). The relaxation probability of the glassy spring i j is given by d P rel t i j , σ i j , q i j ,{τ s } = d t τ t i j , σ i j , q i j ,{τ s } (20)

The procedure detailed above is repeated at each time step d t. Resuming it sequentially, starting from time s and effectuating the time step d t, the system at time s + d t is obtained as

The sum runs over all the pairs of beads (m, n) and V is the volume of the box. F mn,α is αcomponent of the force exerted from the bead n on the bead m, R mn,β is the β-component of their distance vector. All contributions coming from the viscous medium are neglected.

When computing the local stress tensor on a bead i , the Irving-Kirkwood formula is restrained to a volume of order ξ around the bead i . It thus takes the form

where the sum runs over all the beads m interacting with i . The local stress tensor on a particular heterogeneity i j (equivalently, glass spring between beads i and j ) is defined as the average between σ i and σ j :

which amounts to applying the Irving-Kirkwood formula to a volume of order 2ξ 3 around the heterogeneity.

Initialisation of the simulation box

Before running any simulation, the systems are prepared by iteratively relaxing the velocities of the beads and the deviatoric stress tensor σ. Initially, every bead is randomly located, so that the relaxation of the velocities is compulsory. It is achieved by letting the system evolve and the velocities decrease because of the viscous friction. The relaxation of the deviatoric stress tensor is attained by applying a series of small deformations at constant volume, of the kind 2

where σ = σ -P1 Once relaxation is achieved, we reproduce the distribution of relaxation times of a system approaching equilibrium by letting the glassy springs (which represent the dynamical heterogeneities) age during a time laps t w ranging from 10 2 s to 10 5 s. 2