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Abstract

***

This thesis aims at developing simulation tools and a design method for hybrid

beam-columns subjected to combined axial force, bending and shear. The thesis

is divided in four main parts and comprises 6 chapters. In the first part, we

develop a new finite element formulation based on the exact stiffness matrix for

the linear elastic analysis of hybrid beam-columns in partial interaction taking

into account the shear deformability of the encasing component. This element

relies on the analytical solution of a set of coupled system of differential equa-

tions in which the primary variables are the slips and the shear deformation of

the encasing beam. The latter is derived by combining the governing equations

(equilibrium, kinematics, constitutive laws) and solved for a specific element with

arbitrary boundary conditions and loading. Special care has been taken while

dealing with the constants of integration. The second part of the thesis addresses

a new finite element formulation for a large displacement analysis of elastic hy-

brid beam-columns taking into account the slips that occur at each steel-concrete

interface. The co-rotational method is adopted in which the movement of the

element is divided into a rigid body motion and a deformable portion in the lo-

cal co-rotational frame which moves and rotates continuously with the element

but does not deform with it. Appropriate selection of local kinematic variables

along with corresponding transformation matrices allows transforming the linear

finite element developed in Part 1 into a nonlinear one resulting in an efficient

locking-free formulation. In Part 3, we derive a finite element formulation for

materially nonlinear analysis of hybrid beam-columns with shear deformable en-
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casing component, in partial interaction and subjected to the combined shear and

bending. The fiber model is adopted with condensation of the 3D stress-strain

relations which allow to account for confinement in a rigorous manner as well as

the effect of the stirrups. Part 4 examines the adequacy of the moment mag-

nification method given in Eurocode 2 and 4 to provide an accurate estimation

of the ultimate load of hybrid columns subjected to a combination of axial load

and uniaxial bending moment. The developed finite element model with a shear

rigid encasing component is used to conduct a parametric study comprising 1140

cases to cover the various possible situations. The predictions of the model are

compared against the values given by the simplified methods of Eurocode 2 and

Eurocode 4. It is shown that these simplified methods does not give satisfactorily

results. Based on the analysis of larger number of cases (2960 configurations),

the moment magnification method has been calibrated for hybrid columns.

Keywords: hybrid steel-concrete columns, partial interaction, concrete confine-

ment, co-rotational, interaction M-N, instability, moment magnification method.
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Résumé

***

Le travail de cette thèse a pour but de développer des outils de simulation et une

méthode de dimensionnement pour les poteaux hybrides soumis à des chargements

combinés. La thèse est composée de 4 parties essentielles et comprend 6 chapitres.

Dans la première partie, nous développons un élément fini poutre/poteau hybride

élastique en interaction partielle avec matrice de raideur exacte. Cet élément fini

découle de la solution analytique du système d’équations différentielles couplées

obtenues en combinant les équations de champs (équilibre, cinématique et com-

portement). Les inconnues fondamentales sont les glissements aux interfaces et

la déformation de cisaillement de l’élément principal. Ces équations sont résolues

pour des conditions de chargement et des conditions aux limites arbitraires en ac-

cordant un soin particulier à la détermination des constantes d’intégration. Dans

la seconde partie de cette thèse, nous proposons une formulation d’élément fini

originale pour l’analyse en grand déplacement des poutres hybrides avec prise

en compte des glissements qui se produisent à chaque interface acier-béton. La

méthode co-rotationnelle est retenue. Dans cette approche, le mouvement de

l’élément se décompose en un mouvement de corps rigide et en une partie dé-

formable définie dans un repère co-rotationnel local qui se déplace de manière

continue avec l’élément mais qui ne se déforme pas avec ce dernier. Un choix

judicieux des variables cinématiques locales accompagné des matrices de trans-

formation correspondantes permet de transposer l’élément linéaire développé en

partie 1 en un élément géométriquement non-linéaire performant. La partie 3

est consacrée à l’analyse non linéaire matérielle par élément finis de poutres hy-
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brides en interaction partielle et soumise aux forces combinées de flexion et de

cisaillement. Dans la formulation élément fini proposée, nous adoptons la dis-

crétisation par fibres et une modèle 3D de comportement du béton avec prise

en compte des états plans ce qui permet de reproduire rigoureusement l’effet du

confinement et l’action des étriers. En partie 4, nous évaluons la pertinence de la

méthode d’amplification des moments proposées dans l’Eurocode 2 et 4 à évaluer

la charge ultime de poteaux hybrides soumis à une combinaison de charge axiale

et de moment de flexion uni-axial. Dans un premier temps, nous conduisons une

étude paramétrique sur 1140 cas différents de poteaux hybrides; étude destinés à

couvrir les différentes typologies possibles, afin de disposer d’une base de résul-

tats permettant d’évaluer la pertinence des méthodes simplifiées de l’Eurocode

2 et de l’Eurocode 4 pour de tels éléments. Cette étude a été réalisée à l’aide

d’un élément fini non-linéaire (géométrique et matériel), avec une hypothèse de

Bernouilli pour tous les composants du poteau hybride. Il ressort de cette étude

que ces méthodes simplifiées ne peuvent être appliquées aux poteaux hybrides.

Sur base de l’analyse d’un nombre de cas plus important (2960 configurations),

la méthode d’amplification des moments est calibrée pour les poteaux hybrides.

Mots clés : Poteaux hybrides acier-béton, interaction partielle, confinement du

béton, co-rotationnel, interaction M-N, instabilité, méthode d’amplificatin des

moments.
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8.2 Méthodes de calcul d’amplification des moments de l’Eurocode 2

et 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
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Introduction

***

A short overview of the high-rise

building history and its

construction and design

alternative.

The objective and the

organization of the thesis.

1.1 High-rise building

High-rise buildings have long played a role in the perception of modern urbanized

cities. The courage of building high is like to build the transcontinental railroad,

discover the North Pole, scale Everest, or land on the moon which struggles to not

only deepen the understanding but also to show the national and/or economic

pride. The construction of high rise buildings is also influenced by ambition, ego,

and other non-economic factors [1]. Constructing high-rise building remarkably

boosts the research development. Throughout subsequent history there have been

some tall structures like pyramids, towers, castle and cathedrals, but it was not

until the middle of the nineteenth century that the skyscraper was born [2]. It is

well known that modern high-rise buildings were originally invented in Chicago

in 1885 with only 10 storeys, 55 meters high. It was regarded as the first high-rise
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building in the world. Hereafter, with the development of economy and technol-

ogy, many aspects of high-rise building have been improved. Those improvements

include building height, style, architectural function, structural system and land-

scape art. As a result, the number of various high-rise buildings are growing

rapidly around the world because of the great achievements in the construction

economy and the science and technology.

1.2 Construction and design

The construction industry has a history of constant innovation as engineers and

researchers strive to increase the safety, economy, and performance of our built

environment. Engineers soon realized that combining different materials and/or

methods of construction could produce a structure with enhanced strength, stiff-

ness, ductility and fire protection. Over the past several decades, composite

steel-concrete structural systems have gained popularity among the designers.

The driving force behind employing composite steel-concrete systems is to com-

bine the best attributes of steel and concrete to improve structural performance,

erection time, economy of construction and occupant satisfaction in a way that

might not be possible using only one of the materials and its associated construc-

tion techniques. On the one hand, reinforced concrete is inexpensive, massive and

stiff with a fairly good ability to resist compressive actions in spite of its poor

behavior in tension. On the other hand, steel members are lightweight, easy to

assemble, strong under tensile forces and endowed with a long-span capability;

but they have a low buckling and fire resistance. The most common examples of

steel-concrete composite members are composite floor systems, composite beams

and composite columns.

Composite steel-concrete constructions, as briefly described above, are just a part

of a wider array of construction types involving concrete and steel. Over nearly a

century, Steel Reinforced Construction (SRC) consisting of steel structural fram-

ing partially or totally encased in concrete has been adopted by engineers. Indeed,
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the practice of encasing structural steel shapes in reinforced concrete columns or

filling a tubular section of hot-rolled steel with concrete is common, mainly in

the USA and Japan and dates back to the beginning of the 20th century. Vari-

ous types of steel cross-section have been used such as H-shaped, I-shaped and a

combination of angle and flat bars. The advantages of SRC over RC construction

are: greater ductility, more compact cross-section, reduced creep deformation,

and faster concrete casting [3]. Those over Steel construction are: multiple roles

of concrete as structural, fireproofing and buckling-restraining elements, higher

stiffness, and greater damping. Modern SRC members (hybrid members) com-

monly have extensive transverse and longitudinal reinforcement, and some use

shear connectors between steel section and the surrounding concrete [4]. A wide

Construction zone 
for core wall

Core wall and building 
frame lapping zone

Building frame 
erection zone

6/F-8/F     
Transfer Truss

Overall structural/construction 
arrangement of the IFC 2

Figure 1.1: Structural arrangement of the IFC2 at Hong Kong.

variety of hybrid/mixed construction can be found in actual high-rise buildings

such as structural systems involving steel framing partially or totally encased in

concrete with reinforced concrete core or shear walls, for example the Interna-

Pisey Keo 3



1. INTRODUCTION

tional Financial Center Tower 2 at Hong Kong (see Fig. 1.1 and Fig. 1.2 by Wong

[5]). In mixed structural systems, the reinforced concrete core wall provides the

Various forms of composite columns

Figure 1.2: Composite columns encased with load-taking reinforced concrete,

IFC2.

strength and stiffness for resisting lateral loads, while the steel frame is designed

to resist gravity loads and provide the necessary ductility to absorb seismic ener-

gies. For buildings containing only concrete core wall to withstand the effects of

the lateral load, the weight of the building would be heavy. In order to decrease

the heavy weight of the building, the majority of that diminution has to be found

in a reduction of the thickness of the concrete shear walls. This reduction could

be achieved only by decreasing the wind-and earthquake-induced lateral forces

resisted by those walls. As a result, to minimize the magnitude of the resultant

lateral force acting on the core walls, the stiffness of the steel perimeter frame has

to be increased so that it can absorb more loads. To combine the structural sys-

tem of the core walls and perimeter frame, outriggers are introduced for high-rise

building. The outriggers (belt trusses) are rigid horizontal structures connecting

the building core to the perimeter columns. By making use of outrigger trusses
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coupled to the columns of the mega-structure, an additional reduction would be

realized. The lateral load transfer can be explained as follows. When the shear

core tries to bend, the belt trusses act as lever arms that directly transfer axial

stresses into the perimeter columns. The columns, in turn, act as struts to resist

the lateral deflection of the core. This means that the core can fully develop

the horizontal shear and then the belt trusses transfer the vertical shear from

the core to the outrigger frame. Thus, the building is made to act as a unit

that is very similar to a cantilever tube. These conceptual changes made possible

the ability to design an efficient and economical structural system. However, it

is worth mentioning that the core walls with reduced thickness as well as the

perimeter columns may suffer the concentrated stresses and require well-detailed

concentrated reinforcement to develop the necessary stiffness and/or buckling re-

sistance. This often results in congestion in these heavily reinforced members,

resulting in a laborious construction. To achieve strength and stiffness whilst

restricting the size of the wall or column, the use of high strength construction

materials is an option. In fact, increased demand on stiffness and strength dic-

tates that the modulus of elasticity of the material should be as high as possible

in order to limit small amplitude elastic displacements. Moreover, the need for

rapid construction requires early age strength gain, a feature that may be offered

readily by high strength concrete. On the other hand, the use of high strength

reinforcing bars in structural members has several practical advantages, including

reduction of congestion in heavily reinforced members, improved concrete place-

ment, and savings in the cost of labor, reduction of construction time and, in some

cases, enhanced resistance to corrosion [6]. The earthquake forces being directly

proportional to the weight of the structure, the use of high strength concrete will

produce lower seismic loads. The main disadvantage is the material cost and in

some situations (very heavily loaded structures) it is no longer an effective solu-

tion and other alternatives must be found.

To overcome this issue, composite steel-concrete shear walls (CSW) where the

steel sections serve as longitudinal reinforcement bars are used in replacement
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of standard reinforced concrete walls. It was found that CSW can mitigate the

disadvantages of RC and take advantage of the best properties of steel can offer

[7]. Dan et al. [8] described the theoretical study and the experimental tests on

CSW with several encased steel profiles and came to the following conclusions:

composite steel-concrete shear walls have an important plastic resistance to com-

pression, combined compression and bending and shear resistance; the amount

of steel in composite wall cross-sections influences the value of ultimate shear

force; the deformation ductility is similar for CSW with the same amount of the

steel sections. For the same heavily loaded situation, the use of Steel Reinforced

Concrete columns with multiple steel shapes seems to be a viable alternative con-

sidering the flexibility that one has in designing such members.

It must be stressed that significant variations in the behavior of composite mem-

bers may be observed according to the range of relative proportions of steel and

reinforced concrete. Some composite members are concrete-dominant and will

more likely behave as a reinforced concrete member where steel sections act as

reinforcement while others are steel-dominant and will more likely behave as struc-

tural steel members with concrete being placed in compressive zone to increase

strength and stiffness, local stability or just used as fireproofing means.

The overall behavior of such member strongly depends on the stress transfer

mechanisms between the steel and the concrete encasement, which may be ac-

complished by either bond, friction, shear connectors or plate bearings. Many

factors influence the bond strength. In general, the latter reaches its capacity

when the chemical adherence between the steel and the surrounding concrete is

broken. It was observed that the amount of confining reinforcement affects the

bond stress capacity only after significant slip has taken place [9, 10]. In most

composite construction designs, the longitudinal shear strength at steel-concrete

interface provided by bond and/or friction is mostly ignored. Thus, the force

transfer from steel to concrete (or reverse) in SRC members is assumed to de-

pend on mechanical transfer devices. Flexible shear studs are the most common
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devices used to connect concrete to steel members but in some situations other

types of shear connectors can be used. Rigid shear connectors develop full com-

posite action between the components. Consequently, conventional principles of

analysis of composite members can be employed. In most cases, connectors are

flexible and relative displacements may occur at the interface of the two materi-

als, resulting a so-called partial interaction.

Although a number of researches have focused on various aspects of hybrid struc-

tures, no design guidance exists for concrete structures reinforced locally by steel

profiles or sections reinforced by several steel profiles. Gaps in knowledge are

mostly related to the problem of force transfer between concrete and embedded

steel profiles, a situation in which it is neither known how to combine the resis-

tances provided by bond, by stud connectors and by plate bearings, nor how to

reinforce the transition zones between classical reinforced concrete and concrete

reinforced by steel profiles. Other elements of the same type exist:

- Connections of flat slabs to columns by shear keys comprised of metal pro-

files;

- Steel elements embedded in concrete in general, and particularly steel rein-

forcement around openings in the central cores, reinforcements of concrete

columns with a steel profile on one level, reinforcements in walls in areas of

discontinuity, and others.

To address these aspects, a research project called SMARTCoCo was mounted

at European level bringing together the University of Liège, Imperial College

London, INSA Rennes, ArcelorMittal and a Belgian company named BESIX. It

aims to establish a design guide of hybrid elements. To do so, experimental tests

and refined simulations have been conducted.
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1.3 Objective and organization of the thesis

The main goal of this thesis is to develop simulation tools for concrete beam-

columns reinforced by several embedded steel sections, so-called hybrid beam-

columns. One of its main objectives is a part of the European project SMART-

CoCo which is to formulate a design method for hybrid columns with more than

one encased steel profile subjected to combined compression and bending. Those

hybrid columns are neither RC columns in the sense of EN 1992-1-1 [11], nor

composite columns in the sense of EN 1994-1-1 [12] where the design rules are

provided only for a single encased steel profile. It is legitimate to raise the follow-

ing question: can we use design rules given in Eurocode 2 or Eurocode 4 to design

such columns? To answer this question, the present research work is carried out

and reported in this thesis.

A brief description of the thesis layout is given in the following to provide a

brief overview of what will be discussed. Chapter 2 presents an analytical solu-

tion and a new FE formulation for the analysis of hybrid beam-columns in partial

interaction based on the exact stiffness matrix derived from the governing equa-

tions of the problems. The exact solution is based on solving the coupled system

of differential equations where the slips and the shear deformation of the con-

crete component are considered as primary variables. This exact stiffness matrix

can be used in a displacement-based procedure for the elastic analysis of hybrid

beam-columns in partial interaction with arbitrary loading and support condi-

tions. To illustrate the effects of shear deformability of the concrete component,

the analyses based on both shear-rigid and shear-flexible models for the concrete

component are carried out. Chapter 3 highlights a new FE formulation for a

large displacement analysis of hybrid planar beam-columns taking into account

the slips occurring at each steel-concrete interface. The co-rotational framework

is adopted and the motion of the element is decomposed into a rigid body mo-

tion and a deformation part using a local co-rotational frame, which continuously

translates and rotates with the element but does not deform with it. The analysis
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of the performance and the accuracy of the new formulation is carried out consid-

ering several meaningful examples calculated in an elastic range. The constitutive

modeling and time integration of the steel and concrete material as well as the

shear connection are presented in Chapter 4. Chapter 5 outlines a nonlinear FE

formulation for an analysis of hybrid planar beam-columns in partial interaction

subjected to combined bending moment and shear force, based on a fiber model

considering the triaxial stress state in the concrete component. The plane stress

condition for the concrete component is enforced in order to condense the 3d

formulation, derived from a 3d plastic model of the concrete material, into a 2d

beam model. To assess the capability of the proposed formulation in reproducing

the nonlinear behavior of hybrid beams subjected to combined loads, the exper-

imental tests on the hybrid beams under 3-point flexural bending, conducted at

Laboratory of Civil and Mechanical Engineering of INSA Rennes are selected to

be compared against the results of the proposed model. Chapter 6 deals with

numerical investigations on second-order effects in slender hybrid columns sub-

jected to combined axial load and uniaxial bending moment about its strong axis.

The first objective of this latter chapter is to point out that a straightforward

application of the bending moment magnification method proposed in Eurocode 2

and Eurocode 4 to hybrid columns may lead to unsafe results. To remain consis-

tent with the Eurocodes, a new version of bending moment magnification method

for slender hybrid columns is proposed. To do so, the results of FE model will

serve as references for a parametric study (1140 data sets) in which the simpli-

fied methods proposed in EC2 and EC4 are evaluated in case of hybrid columns.

Based on an extended parametric study with 2960 data sets, new expressions for

the moment magnification and the equivalent moment factor are proposed. The

outcomes of this chapter has been contributed and published in the international

scientific journal [13].
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Geometrically Linear Elastic

Behavior

***

Analysis of partially connected

hybrid beams with several

embedded steel sections.

Derivation of the exact stiffness

matrix.

2.1 Introduction

The analysis of members consisting of semi-rigidly connected layers is compli-

cated due to the partial transfer of shear force at the interface. Over the years,

there has been a great deal of research conducted on the subject of elastic two-

layered composite beams in partial interaction. The first contribution is com-

monly attributed to Newmark et al. [14] who investigated the behavior of a

two-layered beam considering that both layers are elastic and deform according

to Euler-Bernoulli kinematics. In their paper, a closed-form solution is provided

for a simply supported elastic composite beam. Since then, numerous analytical

models were developed to study different aspects of the composite behavior of
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two-layered composite beams under more complicated situations. Several ana-

lytical formulations to investigate the behavior of elastic two-layered beams were

proposed [15–23]. Significant development beyond that available from Newmark

et al.’s paper [14] has been made in [22] by considering Timoshenko’s kinematic

assumptions for both layers. Beside these analytical works, several numerical

models, mostly FE formulations have been developed to investigate the nonlinear

behavior of both Bernoulli and Timoshenko two-layered beams with interlayer

slip [24–35]. Most of the papers on layered beams in partial interaction are re-

stricted to the case of two-layered beams, and multi-layered beams as well as

hybrid beams reinforced by several embedded sections have received less atten-

tion. Chui and Barclay [36] and Schnabl et al. [37] proposed an exact analytical

model for the case of three-layered beam where the thickness as well as the mate-

rial of the individual layers are arbitrary. Sousa et al. [38] developed an analytical

solution for statically determinate multi-layered beams with the assumption that

the cross-section rotation is the same even if the shear-flexible components with

different shear modulus are considered. The governing equations describing the

behavior of such multi-layered beams consist of a coupled system of differential

equations in which the slips are considered as the primary variables. Skec et al.

[39] proposed mathematical models with analytical solutions for the analysis of

linear elastic Reissner multi-layered beams. The models take into account the

interlayer slip and the uplift of the adjacent layers, different material properties,

independent transverse shear deformations, and different boundary conditions

for each layer. Ranzi [40] proposed two types of displacement-based elements to

analyse locking problems of multi-layered beams in partial interaction based on

Euler-Bernoulli kinematics. For classical polynomial shape functions, it is shown

that the element with internal node well characterizes the partial interaction be-

havior of multi-layered beams, while the element without internal node suffers

from the curvature locking problems.

A formulation based on the exact stiffness matrix offers the possibility of gener-

ating a locking-free model. These elements are highly attractive due to their pre-
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cision, computational efficiency and mesh independency. Heinisuo [41] proposed

a finite element formulation using exact stiffness matrix for uniform, straight,

linearly elastic beams with two faces and one core and with three symmetric

faces and two identical cores. Sousa [42] developed the analytical formulation

and derived the exact stiffness for partially connected multi-layered beams with

the assumption that both the transverse displacement and cross-section rotation

are the same for all layers. The model is based on the derivation of a flexibility

matrix obtained from a statically determinate system.

The purpose of this chapter is to present an analytical solution and a new ex-

act FE formulation for the analysis of shear-rigid (Euler-Bernoulli beam for all

constituents) and shear-deformable (Euler-Bernoulli beam for embedded steel el-

ement and Timoshenko beam for encasing concrete component) hybrid beam-

column in partial interaction based on the exact stiffness matrix derived from

the governing equations of the problem. Due to the fact that the development of

the analytical solution for shear-rigid hybrid beam-columns is a particular case

of the shear-deformable one, in the following we present only the development

of the analytical solution for shear-deformable hybrid beam-columns. The one

for shear-rigid hybrid beam-columns can be found in detail in Appendix A. The

features of the formulation presented in this chapter are as follows: (i) longitudi-

nal partial interactions between the components are considered which provide a

general description of the stresses and strains in the components; (ii) shear defor-

mation of encasing concrete is considered for the shear-deformable hybrid beam

model; (iii) exact stiffness matrix is used which provides accurate and stable re-

sults. The present models provide, therefore, an efficient tool for linear elastic

analysis of shear-rigid and shear-deformable hybrid beam-columns with arbitrary

supports and loading conditions.

The rest of the chapter is organized as follows. Section 2.2 deals with the field

equations containing the kinematic relations and the equilibrium equations of the

problems. In Section 2.3, the derivation of the governing equation is presented,
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2. GEOMETRICALLY LINEAR ELASTIC BEHAVIOR

followed by the closed-form solution in Section 2.4 and the derivation of exact

stiffness matrix in Section 2.5. Numerical examples are presented in Section 2.6

in order to assess the performance of the formulation and to support the conclu-

sions drawn in Section 2.7.

2.2 Fundamental equations

The field equations describing the behavior of a linear elastic hybrid beam-column

with ”n” embedded steel sections in partial interaction are briefly outlined in this

Section. All variables subscripted with ”c” belong to the encasing concrete and

those with subscript ”s” belong to the embedded steel section. Quantities with

subscript ”sc” are associated with the shear connection. The following assump-

tions are commonly accepted in the models to be discussed in this work:

- connected components are made out of elastic, homogenous and isotropic

materials;

- the cross-sections of all embedded sections remain plane and orthogonal to

beam axis after deformation (Euler-Bernoulli);

- for the shear-deformable model, the cross-section of encasing concrete re-

mains plane and not necessarily orthogonal to beam axis after deformation

(Timoshenko);

- relative slip can develop along the interface between concrete component

and embedded steel section and is considered at the centroid of the embed-

ded cross-section;

- the lateral deflection v is assumed to be the same for all components (no

uplift); and

- discretely located shear connectors are regarded as continuous.
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2.2 Fundamental equations

2.2.1 Equilibrium

The equilibrium equations are derived by considering the free body diagram of

a differential element dx located at an arbitrary position x in the hybrid beam-

column, see Fig. 2.1. The interface connection between the embedded sections

py
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Figure 2.1: Equilibrium of a hybrid beam-column.

and the concrete component is modeled by continuously distributed spring. The
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2. GEOMETRICALLY LINEAR ELASTIC BEHAVIOR

equilibrium conditions result in the following set of equations:

∂Nsi +Dsci = 0, i = 1, 2, · · ·n (2.1)

∂Nc −
n∑

j=1

Dscj = 0 (2.2)

∂Mc + Tc +
n∑

j=1

hjDscj = 0 (2.3)

∂Msi + Tsi = 0, i = 1, 2, · · ·n (2.4)

∂Tc +
n∑

j=1

∂Tsj + py = 0 (2.5)

where

- ∂• = d • /dx;

- Nsi : normal force acting on the embedded section ”i”;

- Nc: normal force acting on the concrete beam;

- Msi : bending moments acting on the embedded section ”i”;

- Mc: bending moment acting on the concrete beam;

- Tc: shear force acting on the concrete beam;

- Tsi : shear force acting on the embedded section ”i”;

- Dsci : interface shear stress at centroid of the embedded section ”i”; and

- hi = ysi − yc (i = 1, 2, · · ·n): the distance between the centroid of the

embedded section ”i” and the concrete beam, see Fig. 2.2.
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2.2 Fundamental equations

Combining Eqs. (2.3-2.5), one can rewrite the equilibrium equations as:

∂Nsi +Dsci = 0, i = 1, 2, · · ·n (2.6)

∂Nc −
n∑

j=1

Dscj = 0 (2.7)

∂Mc + ∂Ms + T +
n∑

j=1

hjDscj = 0 (2.8)

∂T + py = 0 (2.9)

where

Ms =
n∑

j=1

Msj (2.10)

T =
n∑

j=1

Tsj + Tc (2.11)

2.2.2 Compatibility

With the above assumptions, kinematic equations relating the displacement com-

ponents (ui, v, θi) to the corresponding strain components (εi, θi, γc, κi) are de-

rived for each component of the hybrid beam-column (see Fig. 2.2) as follows:

εi = ∂ui i = s1, s2, · · · , sn, c (2.12)

θc = ∂v − γc (2.13)

κc = ∂θc (2.14)

θsi = ∂v i = 1, 2, · · · , n (2.15)

κsi = ∂θsi i = 1, 2, · · · , n (2.16)

in which γc is the shear deformation of the concrete component. The slip cor-

responds to the difference between the axial displacement of the embedded steel

section and of the concrete beam which is expressed as:

gi = uc − usi − hiθc, i = 1, 2, · · · , n (2.17)
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Figure 2.2: Displacement field of a hybrid beam-column.

2.2.3 Constitutive relationships

The generalized stress-strain relationships are simply obtained by integrating the

appropriate uniaxial constitutive model over each cross-section. For a linear elas-
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tic material, these relationships lead to the following set of equations:

Ni =

∫

Ai

σ dAi = (EA)i εi (2.18)

Mi = −
∫

Ai

y σ dAi = (EI)i κi (2.19)

Tc =

∫

Ac

τ dAc = (GA)c γc (2.20)

where

- i = s1, s2, · · · , sn, c

- (EA)i = EiAi is the axial stiffness of each component;

- (EI)i = Ei Ii is the flexural stiffness of each component;

- (GA)c = kcGcAc is the shear stiffness of the concrete beam in which kc is

the shear correction factor.

Ei, Gi, Ai and Ii are elastic modulus, shear modulus, area of cross-section and

second moment of area of cross-section of the component ”i”, respectively. The

above relationships must be completed by the one between the longitudinal shear

force Dsci and the slip gi. The assumption of linear and continuous shear connec-

tion can be expressed by the following simple relationship between slip and shear

flow:

Dsci = ksci gi, i = 1, 2, · · · , n (2.21)

where ksci is the shear connection stiffness.

2.3 Derivation of the governing equations

The relationships introduced in Section 2.2 are now combined to derive the equa-

tions governing the behavior of a hybrid beam in partial interaction. Combining

the kinematic relations Eqs. (2.12-2.14) with the elastic behavior Eqs. (2.18-2.21)
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2. GEOMETRICALLY LINEAR ELASTIC BEHAVIOR

and inserting the outcome into the equilibrium equations Eqs. (2.6-2.8) produce

the following set of differential equations:

(EA)si ∂
2usi = −ksci gi, i = 1, 2, · · · , n (2.22)

(EA)c ∂
2uc =

n∑

i=1

ksci gi (2.23)

(EI)0 ∂
3v = −T −

n∑

i=1

ksci gi hi + (EI)c ∂
2γc (2.24)

The expression (EI)0 denotes the sum of the flexural stiffness of each component

i.e. (EI)0 = (EI)s + Ec Ic in which (EI)s =
∑n

i=1 Esi Isi .

Taking the derivative of the slip distribution Eq. (2.17) and making use of Eq. (2.13)

and Eqs. (2.22-2.24), one arrives at the following equation:

∂2gi =
ksci

(EA)si
gi +

n∑

j=1

kscj

[
1

(EA)c
+

hi hj
(EI)c

]
gj + hi

(GA)c
(EI)c

γc (2.25)

Inserting Eqs. (2.19-2.21) into Eq. (2.3) and making use of Eqs. (2.13-2.14) and

Eq. (2.24), one gets

∂2γc =
n∑

j=1

hj kscj
(EI)c

gj +
(EI)0(GA)c
(EI)c(EI)s

γc −
T

(EI)s
(2.26)

Combining Eq. (2.25) and Eq. (2.26), one arrives at the following coupled second-

order system of differential equations where the primary unknown variables are

the slip distribution and the shear deformation of the concrete beam:

∂2s−A s = h (2.27)

where

s = [ g1 g2 · · · gn γc ]T (2.28)

and

h = [ 0 0 · · · 0 − T

(EI)s
]T (2.29)
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The components of the matrix A are given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ksc1

[
1

(EA)sc1
+

h2
1

(EI)0

]
ksc2

[
1

(EA)c
+ h1h2

(EI)0

]
· · · kscn

[
1

(EA)c
+ h1hn

(EI)0

]
h1 (GA)c
(EI)c

ksc1

[
1

(EA)c
+ h1h2

(EI)0

]
ksc2

[
1

(EA)sc2
+

h2
2

(EI)0

]
· · · kscn

[
1

(EA)c
+ h2hn

(EI)0

]
h2 (GA)c
(EI)c

...
...

. . .
...

...

ksc1

[
1

(EA)c
+ h1hn

(EI)0

]
ksc2

[
1

(EA)c
+ h2hn

(EI)0

]
· · · kscn

[
1

(EA)scn
+ h2

n

(EI)0

]
hn (GA)c
(EI)c

h1 ksc1
(EI)c

h2 ksc2
(EI)c

· · · hn kscn
(EI)c

(EI)0(GA)c
(EI)c(EI)s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.30)

in which,
1

(EA)sci
=

1

(EA)c
+

1

(EA)si
, i = 1, 2, · · · , n (2.31)

It is worth mentioning that for shear-rigid model, the primary unknown variables

in the coupled differential equations are only slip distributions since the shear

deformation of concrete component is supposed negligible.

A diagonalization of the matrix A will uncouple the above system of differential

equations Eq. (2.27) and produce a set of n+ 1 second-order ordinary equations.

Let Av and Aλ respectively be the matrix collecting the eigenvectors and the

eigenvalues of A. Then, we have the following relationship:

Aλ = A−1
v A Av. (2.32)

Subsequently, we insert the vector s obtained by pre-multiplying the vector s̃ by

the matrix Av

s = Avs̃ (2.33)

into Eq. (2.27) and make use of Eq. (2.32) to produce an uncoupled differential

equation system:

∂2 s̃−Aλ s̃ = h̄ (2.34)

where h̄ = A−1
v h. By noting that the inverse matrix A−1

v can be written as

A−1
v =




ā11 ā12 · · · ā1(n+1)

ā21 ā22 · · · ā2(n+1)

...
...

. . .
...

ā(n+1)1 ā(n+1)2 · · · ā(n+1)(n+1)




(2.35)
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the components i of vector h̄ can be written as:

h̄i = −āi(n+1)
T

(EI)s
, i = 1, 2, · · · , n+ 1 (2.36)

Consequently, the system of differential equation (Eq. (2.34)) can be written as a

set of n+ 1 uncoupled ordinary differential equations in variables s̃k as follows:

∂2 s̃i − λi s̃i = −āi(n+1)
T

(EI)s
, i = 1, 2, · · · , n+ 1 (2.37)

where λi is the ith eigenvalue of matrix A.

2.4 Closed-form solution of the governing equa-

tions

In this section, we provide the analytical solution of the governing equations for

the general case of the shear connection that is 0 < ksci <∞. The governing dif-

ferential equation involves the single unknown variable s̃. It is worth mentioning

that the exact solution of the governing differential equation (Eq. (2.37)) requires

the distribution of the shear force T (x) to be known. In order to simplify the

development of the solution, we assume that the external distributed load on the

element is uniform. As a result, the distribution of the shear force must be linear

to ensure the overall transverse equilibrium Eq. (2.9).

T (x) = −py x+ C2n+8 (2.38)

where C2n+8 is the shear force at the left hand side of the beam and is considered

to be a constant of integration. The kinematic variables can be determined once

the expressions of s̃i are found by solving the differential equation. The general

solution of s̃i (i = 1, 2, · · · , n+ 1) is given by

- For λi > 0

s̃i = C̃2i−1e
√
λix + C̃2ie

−√λix +
āi(n+1)

λi (EI)s
(C2n+8 − py x) (2.39)
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- For λi < 0

s̃i = C2i−1 cos
√
−λix+ C2i sin

√
−λix+

āi(n+1)

λi (EI)s
(C2n+8 − py x) (2.40)

- For λi = 0

s̃i = C2i−1 + C2i x−
āi(n+1)

(EI)s
(C2n+8

x2

2
− py

x3

6
) (2.41)

The solution of s̃i in case λi > 0 involves exponential terms which may take a

very large value. To avoid numerical ill-conditioning of the stiffness matrix, we

replace the actual expressions of the constants of integration with the following

ones:

C̃2i−1 = e−
√
λiLC2i−1, i = 1, 2, · · · , n+ 1 (2.42)

C̃2i = C2i, i = 1, 2, · · · , n+ 1 (2.43)

in which L is the length of the element.

All s̃i are collected in a vector so the analytical solution can be written in a

matrix form as follows:

s̃ = Xs̃C + Zs̃ (2.44)

with

s̃ = [ s̃1 s̃2 · · · s̃n+1 ]T (2.45)

and

C = [C1 C2 · · ·C2n+8 ]T (2.46)

The components of matrix Xs̃ and Zs̃ are dependent on the eigenvalues of A and

the external load py, respectively. In case A is positive definite i.e. λi > 0, we

obtain the following expression for Xs̃ and Zs̃ with αi =
√
λi.

Xs̃ =Xg̃ =




eα1 (x−L) e−α1 x 0 0 · · · 0 0 0 0 0 0 0
ā1(n+1)

λ1 (EI)s

0 0 eα2 (x−L) e−α2 x · · · 0 0 0 0 0 0 0
ā2(n+1)

λ2 (EI)s
...

...
...

...
. . .

...
...

...
...

...
...

...
...

0 0 0 0 · · · eαn+1 (x−L) e−αn+1 x 0 0 0 0 0
ā(n+1)(n+1)

λn+1 (EI)s




(1)

1

(2.47)
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and

Zs̃ = − py x

(EI)s

[
ā1(n+1)

λ1

ā2(n+1)

λ2

· · · ā(n+1)(n+1)

λn+1

]T

(2.48)

Substituting Eq. (2.44) into Eq. (2.33), one gets

s = XsC + Zs (2.49)

in which

Xs = AvXs̃ Zs = AvZs̃ (2.50)

The vector Zs as well as the matrix Xs is decomposed into two sub-vectors and

sub-matrices, respectively in order to separate the distribution of slips gi from the

shear deformation of concrete beam γc. The first bloc collects the slip distribution

gi and the second one gathers the shear deformation γc:

g = XgC + Zg (2.51)

γc = XγcC + Zγc (2.52)

where Xs = [ XT
g XT

γc ]T and Zs = [ ZT
g Zγc ]T.

2.4.1 Determination of displacement fields

To determine the axial displacement of the concrete component and the deflec-

tion of the beam, we use the relationships in which the kinematic variables are

expressed as a function of slip and shear deformation distribution Eqs. (2.23-2.24)

developed in Section 2.3. Inserting Eqs. (2.51-2.52) into Eq. (2.24), one obtains:

∂3v =
1

(EI)0

(
−I2n+8 − %Xg + (EI)c ∂

2Xγc

)
C +

1

(EI)0

(
py x− %Zg + (EI)c ∂

2Zγc
)

(2.53)

where

% = [ h1 ksc1 h2 ksc2 · · · hn kscn ] (2.54)
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By making use of Eqs. (2.13-2.14), the curvature, the cross-section rotation and

the deflexion can be derived by a successive integration of Eq. (2.53).

κs = XκsC + Zκs (2.55)

θs = XθsC + Zθs (2.56)

v = XvC + Zv (2.57)

where

Xκs =
1

(EI)0

∫ [
−I2n+8 − %Xg + (EI)c ∂

2Xγc

]
dx+ I2n+3 (2.58)

Xθs =

∫
Xκsdx+ I2n+4 (2.59)

Xv =

∫
Xθsdx+ I2n+5 (2.60)

Zκs =
1

(EI)0

∫ [
py x− %Zg + (EI)c ∂

2Zγc
]

dx (2.61)

Zθs =

∫
Zκdx (2.62)

Zv =

∫
Zθsdx (2.63)

I2n+3 = [

2n+ 2︷ ︸︸ ︷
0 0 · · · 0 1 0 0 0 0 0 ] (2.64)

I2n+4 = [ 0 0 · · · 0 0 1 0 0 0 0 ] (2.65)

I2n+5 = [ 0 0 · · · 0 0 0 1 0 0 0 ] (2.66)

I2n+6 = [ 0 0 · · · 0 0 0 0 1 0 0 ] (2.67)

I2n+7 = [ 0 0 · · · 0 0 0 0 0 1 0 ] (2.68)

I2n+8 = [ 0 0 · · · 0 0 0 0 0 0 1 ] (2.69)

Substituting Eq. (2.51) into Eq. (2.23) and integrating twice the outcome, one

gets the axial displacement of the concrete beam as follow:

uc = XucC + Zuc (2.70)
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where

Xuc =

∫ [∫ (
1

(EA)c

[
ksc1 ksc2 · · · kscn

]
Xg

)
dx

]
dx+ xI2n+6 + I2n+7

(2.71)

Zuc =

∫ [∫ (
1

(EA)c

[
ksc1 ksc2 · · · kscn

]
Zg

)
dx

]
dx (2.72)

At this point, we have 2n + 8 constants of integration which correspond to the

number of degrees of freedom: 2n + 2 axial displacements of each component,

2 cross-section rotations of the encasing component, 2 cross-section rotations of

embedded components and 2 verticals displacement. Consequently, the remaining

kinematic variables must be determined by using the kinematic relations. By

inserting Eq. (2.52) and Eq. (2.57) into Eq. (2.13), the cross-section rotation of

the concrete beam is obtained:

θc = Xθc C + Zθc (2.73)

where

Xθc = ∂Xv −Xγc Zθc = ∂Zv − Zγc (2.74)

We get the expression of the axial displacement of the embedded steel sections

by inserting Eq. (2.51), Eq. (2.70) and Eq. (2.73) into Eq. (2.17) and solving for

usi :

usi = XusiC + Zusi , i = 1, 2, · · · , n (2.75)

where

Xusi = Xuc −Xgi − hi Xθc Zusi = Zuc − Zg − hi Zθc (2.76)
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2.4.2 Determination of internal forces

Once the displacement fields are defined, one can use the linear elastic relationship

Eqs. (2.18-2.19) to obtain the nodal forces.

Nsi = YNsiC +RNsi , i = 1, 2, · · ·n (2.77)

Nc = YNcC +RNc (2.78)

Ms = YMsC +RMs (2.79)

Mc = YMcC +RMc (2.80)

T = YTC +RT (2.81)

where

YNsi = (EA)si ∂Xusi RNsi = (EA)si ∂Zusi , i = 1, 2, · · ·n (2.82)

YNc = (EA)c ∂Xuc RNc = (EA)c ∂Zuc (2.83)

YMs = (EI)s Xκs RMs = (EI)s Zκs (2.84)

YMc = (EI)c ∂Xθc RMc = (EI)c Zθc (2.85)

YT = I2n+8 RT = −py x (2.86)

Ms =
n∑

j=1

Msj (2.87)

2.5 Exact stiffness matrix

The direct stiffness method is used to derive the exact stiffness of the hybrid

beam-column with n embedded sections. It can be obtained starting from the

general expressions of the internal forces and the displacement fields. Let a hybrid

beam-column element of length L be considered. Since the same transverse dis-

placement is assumed, this element has (2n+ 8) degrees of freedom, see Fig. 2.3.

Applying the kinematic boundary conditions at x = 0 and x = L leads to the

relationship between the vector of constants of integration C and the vector of

nodal displacements q as follows:

q = X C + Z (2.88)
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where

q = [ us1,0 · · · uc,0 vc,0 θs,0 θc,0 us1,L · · · uc,L vc,L θs,L θc,L ] T

(2.89)

X = [ Xus1,0 · · · Xθs,0 Xθc,0 Xus1,L · · · Xθs,L Xθc,L ] T (2.90)

Z = [ Zus1,0 · · · Zθs,0 Zθc,0 Zus1,L · · · Zθs,L Zθc,L ] T (2.91)

The nodal displacements being independent, so the matrix X is invertible. Thus,

the constants Ci are obtained as a function of the nodal displacements qi.

C = X−1(q− Z) (2.92)

The nodal forces can be expressed in compact form as:

Q = Y C + R (2.93)

where,

Q = [ −Ns1,0 · · · −Mc,0 Ns1,L · · · Mc,L ] T (2.94)

Y = [ −YNs1,0
· · · −YMc,0 YNs1,L

· · · YMc,L
] T (2.95)

R = [ −RNs1,0
· · · −RMc,0 RNs1,L

· · · RMc,L
] T (2.96)

Inserting Eq. (2.92) into Eq. (2.93), one obtains:

K q = Q + Q0 (2.97)

where

K = Y X−1 (2.98)

represents the exact stiffness of the element and

Q0 = K Z−R (2.99)

represents the nodal force due to the uniform external load py.
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Figure 2.3: Nodal forces and displacements of hybrid beam element.

2.6 Numerical applications

The purpose of this section is to assess the capability of the proposed formulation

in reproducing the linear elastic behavior of shear-rigid and shear-deformable hy-

brid beam-columns in partial interaction and to investigate the influence of the

shear connection stiffness and span-to-depth ratio on mechanical responses of the

beam-columns. To do so, the predictions of the exact finite element model for hy-

brid beam-columns with shear-rigid assumption are compared against the results

obtained with the present exact model. The investigation is carried out con-

sidering three examples: simply supported sandwich beam, clamped-free hybrid

column/shear-wall and two-span continuous hybrid beam.

2.6.1 Simply supported steel-reinforced concrete beam sub-

jected to uniformly distributed load

Consider a concrete beam of breadth of 10 cm and depth of 20 cm (see Fig. 2.4)

reinforced by two steel plates of equal thickness 2 cm attached, using shear con-

nectors, to the top and bottom surfaces of the concrete beam. The latter is

subjected to a uniformly distributed load py of intensity 10 kN/m. The elastic
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y

x

py = 

Ec=34.5 GPa
Es1=Es2=200 GPa
Ksc1= 40 MPa
Ksc2= 5 MPa

Figure 2.4: Sandwich beam with transversal loads (dimension in [m]).

Table 2.1: Numerical results.

EB-Model T-model

[42] Present [42] Present

||vmax|| (mm) 10.87796015 10.87796014 10.91156269 10.93670002

||g1|| (mm) 0.77821848 0.77821849 0.77821848 0.78028991

||g2|| (mm) 1.00207365 1.00207366 1.00207365 1.00475539

modulus adopted for steel and concrete are 200 000 MPa and 34 500 MPa, re-

spectively. The Poisson’s ratio for the concrete core is taken equal to 0.2; and

the value of shear correction factor is assumed to be equal to 1. The stiffness of

the shear connection is taken equal to 40 MPa for the top layer and 5 MPa for

the bottom layer. Such a distribution of the shear connection stiffness breaks the

symmetry of the problem. The geometrically linear analysis of this beam problem

was performed by Sousa Jr [42] using the exact flexibility matrix. To assess the

capabilities of our formulation we perform a linear analysis with two exact finite

elements. The exact stiffness is derived based on a linear shear force distribution

(replacing T with −pyx + C2n+8 in Eq. (2.38)) so that the distributed load is

considered without any approximation. A good agreement for the geometrically

linear analysis with the results in [42] is obtained. The maximum deflection vmax

occurring at mid-span of the beam along with the slips at the beam ends are
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tabulated in Table 2.1 for both shear-rigid model (EB-model) and shear-flexible

model (T-model).

2.6.2 Hybrid column/shear-wall

Consider a hybrid column/shear-wall consisting of a cross-section with breadth of

25 cm and depth of 90 cm reinforced by three embedded steel profiles, HEB100.

The column/shear-wall is clamped at its base and free at its top. Equally spaced

shear stud connectors are welded on both side of each web of steel sections. As a

result, the shear connector stiffness ksc for each sliding plane is equal. The shear

correction factor for this example is taken equal to unity. The position of the cen-

troid of the steel profile at mid-height of the hybrid cross-section coincides with

the centroid of the concrete section. The geometrical and material characteris-

tics of the column/shear-wall are reported in Fig. 2.5. The column/shear-wall is

L

25 cm

90
 c

m

2x
 2

8 
cm

H

a a

Section a-a

17
17

Es =210 GPa; Ec =39 GPa; c =0.2
4x 100 kN

250 kN

Figure 2.5: Hybrid column/shear-wall (dimension in [cm]).

subjected to a lateral load of 250 kN at the top and to equally distributed axial

loads of 100 kN at the centroids of each component. The column/shear-wall is

modeled using one element, which is the smallest number needed for this prob-

lem. It is worth mentioning that since the model is based on the exact stiffness
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Figure 2.6: Deflection v as a function of shear connector stiffness with L/H = 5.

0 2 4 6 8 10 12 14 16 18 20
0.8

1

1.2

1.4

1.6

1.8

L/H

δ T
im

os
he

nk
o/ δ

B
er

no
ul

li

 

 
k
sc

=1 MPa

k
sc

=102 MPa

k
sc

=103 MPa

k
sc

=106 MPa

2.95 3 3.05
1.065

1.07

1.075

1.08

 

 

Figure 2.7: Lateral deflection ratio versus span-to-depth ratio for different shear

connection stiffness.

matrix, considering more elements does not improve the results. The role of

shear flexibility of the concrete component can be analyzed by comparing the

mechanical response obtained with the shear-flexible model (T-model) against

the corresponding response predicted by the shear-rigid model (EB-model). In

particular, the comparison is carried out in terms of the lateral displacement (δ)

evaluated by means of the two above-mentioned models. The degree of shear

connection for a case where the span-to-depth ratio L/H = 5 is illustrated in

Fig. 2.6 from which one can consider the shear connection as a loose connec-

tion for ksc = 1 MPa and a full connection for ksc = 106 MPa. Besides, one

can observe from Fig. 2.6 that the distributions of the lateral displacement as a

function of the shear connection stiffness for both models are almost ”parallel”.

Pisey Keo 32



2.6 Numerical applications

Fig. 2.7 shows the lateral deflection ratio obtained with both models as a function

of the span-to-depth ratios (L/H) for a different shear connection stiffness (ksc).

As expected, the deflection predicted by shear-flexible model is larger than the

corresponding deflection evaluated using the shear-rigid model for any value of

the ratio L/H. Moreover, the deflection ratio tends to infinity when the span-

to-depth ratio tends to zero, and to unity when the span-to-depth ratio goes to

infinity. It can be seen that the shear connection stiffness has almost no influence

on the ratio between the lateral deflection obtained with the shear-flexible model

and with the shear-rigid model. For both loose connection and full interaction,

the deflection ratio as a function of the span-to-depth ratio are almost the same.

Further comparisons are also proposed in terms of end slips (see Fig. 2.8 and
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Figure 2.8: End beam slip strain ratio versus span-to-depth ratio for different

shear connection stiffness.

Fig. 2.9). It is worth mentioning that by symmetry the slip g2 at centroid of

concrete cross-section is equal for both models. As a result, only distributions

of g1 and g3 are discussed here. In contrast to the lateral deflection ratio that is

influenced by the ratio L/H, one can observe that the slip ratio of both models

does not vary significantly as a function of both L/H and ksc. Due to the com-

bination of the bending moment (depends on L/H ratio) and the axial force, the

slip g3 changes its sign at a specific value of L/H in partial interaction (low value
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Figure 2.9: End beam slip ratio versus span-to-depth ratio for different shear

connection stiffness.

of ksc). At that specific value of L/H, the slip ratio tends to infinity and leads to

discontinuity of the curve. As the result, the difference between the end slips of

both models is provided.

2.6.3 Two-span continuous hybrid beam

Consider a concrete beam of 25 cm breadth and 90 cm depth (see Fig. 2.10)

reinforced by two steel profiles HEB100 embedded in the concrete beam. The

beam is subjected to a uniformly distributed load whose intensity is 100 kN/m.

The elastic modulus adopted for steel and concrete are 200 000 MPa and 34 500

MPa, respectively. The Poisson’s ratio for the surrounding concrete is taken

equal to 0.2; and the unity value of shear correction factor is adopted. The

shear connection stiffness is 50 MPa for the top connection between the concrete

component and the embedded steel section and is 10 MPa for the bottom one.

Such distribution of the shear connection stiffness breaks the symmetry of the

problem. The values of end slips, transverse displacement at mid-span and the

bending moment at the intermediate support are compared against those obtained

with Euler-Bernoulli beam theory. The linear analysis with four elements using

the exact stiffness matrix for both models is implemented and the results are

presented in Table 2.2 for L = 8 m. One can see that the transverse displacement
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Figure 2.10: Two-span continuous hybrid beam (dimension in [cm]).

and the end slips obtained with the shear-flexible model (T-model) are greater

than the ones from the shear-rigid model (EB-model). Nevertheless, the negative

bending moment obtained from the T-model are smaller than the ones in the EB-

model. Fig. 2.11 shows the influence of the degree of shear connection of both

Table 2.2: Numerical results

EB-model T-model

vmax(mm) 4.08807722 4.38853225

g1 (mm) 0.35319143 0.35644706

g2 (mm) −0.49879217 −0.50751066

Mmax (kN.m) −795.62367844 −789.17254192

T-model and EB-model for the case where the span-to-depth ratio L/H = 5 and

the same shear connection stiffness ksc for both sliding planes. From Fig. 2.11,

we can assume that for ksc = 0.1 MPa we have a loose shear connection (without

interaction) and for ksc = 105 MPa we have a full interaction. Furthermore, the

Pisey Keo 35



2. GEOMETRICALLY LINEAR ELASTIC BEHAVIOR

10−6 10−4 10−2 100 102 104 106 108
0.35

0.4

0.45

0.5

0.55

k
sc

 [MPa]

v m
ax

 [
m

m
]

 

 
T−model
EB−model

Figure 2.11: Deflection vmax as a function of shear connection stiffness with

L/H=5.

ratio of the deflection at mid-span and the ratio of the bending moment at the

intermediate support obtained with both T-model and EB-model are provided as

a function of the longitudinal shear connection stiffness ksc for four different values

of the span-to-depth ratio L/H. The interface shear connection stiffness ksc is

considered as equal for both slipping planes. The curves illustrated in Fig. 2.12

confirm the important role of shear flexibility in the case of a low L/H ratio and a

full connection. One can observe that the deflection ratio significantly increases,
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Figure 2.12: Mid-span deflection ratio versus shear connection stiffness for differ-

ent span-to-depth ratios.

particularly for a low value of L/H ratio, when the value of ksc varies from 0.1
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MPa (almost no interaction) to 105 MPa (nearly full interaction). Nevertheless,

increasing the value of ksc has small effect on the deflection ratio for large values

of L/H. For the latter case, the shear flexibility of the concrete component can

be ignored which results an almost identical response of both models regardless

of any value of shear connection stiffness. On the other hand, the comparison

in terms of the bending moment at the intermediate support is also performed

(Fig. 2.13). The four curves tend to a clear asymptotic value as ksc approaches
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Figure 2.13: Bending moment ratio at intermediate support versus shear connec-

tion stiffness for different span-to-depth ratios.

infinity. Such limit values could be derived by analyzing the same hybrid beam

adopted to Timoshenko and Bernoulli kinematic assumptions in full interaction.

As expected, the beam is more flexible with the shear-flexible model than with

the shear-rigid model (lower bending moment) for a short beam (L/H = 5) and

the bending moment ratio tends to unity while the beam length gets larger.

2.7 Conclusion

In this chapter, the exact expression of the stiffness matrix has been developed

for the hybrid beam-columns in partial interaction where the shear deformability

of the encasing concrete component is taken into account. The exact stiffness

matrix has been obtained by deriving a closed-form solution of the governing
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equations of the problem. The exact solution is based on solving the coupled

system of differential equations where the slips and the shear deformation of the

concrete component are considered as primary variables. The proposed exact

stiffness matrix can be used in a displacement-based procedure for the elastic

analysis of shear-deformable hybrid beam-columns in partial interaction with ar-

bitrary loading and support conditions.

The influence of the shear flexibility and the partial interaction on the overall be-

havior of the hybrid beam-columns has been investigated. A parametric analysis

considering various values of the length-to-depth ratio and of the shear connection

stiffness has been performed. It has been found out that transverse displacements

are more affected by the shear flexibility than the slip. Indeed, the ratio of the

deflection obtained from the shear-flexible model to the one obtained from the

shear-rigid model varies slightly with the shear connection stiffness varying from

low to high one value. On the other hand, the slenderness of the cross-section and

the partial interaction have no significant effect on the slip ratio of both models.
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A new co-rotational finite

element for a large displacement

analysis of hybrid beam-columns.

3.1 Introduction

In contrast with a large body of literature devoted to mechanically nonlinear but

geometrically linear problems of two-layered beam-columns in partial interaction,

only a limited number of contributions have addressed the geometrically nonlinear

behavior of layered beams. Assuming Euler-Bernoulli kinematics for each layer,

linearized buckling loads have been computed by Girhammar and Gopu [15] us-

ing a modified second-order theory for two-layered beams with longitudinal slips.

Hereafter, Girhammar and Pan [19] derived the exact expressions for buckling

length coefficients of elastic composite beams with particular boundary condi-

tions. A fully nonlinear analysis of steel-concrete composite beams and columns

has been proposed by Pi et al. [43] considering Bernoulli kinematics for each layer.

They proposed a monolithic element where an additional degree of freedom to
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the deformed beam axis was added in order to describe small interlayer slips.

Ranzi et al. [44] proposed a fully nonlinear kinematical model for planar compos-

ite beams including longitudinal partial interaction as well as vertical uplift. The

co-rotational framework approach was considered by Battini et al. [32] and Hjiaj

et al. [35] for the development of shear-rigid [32] and shear-deformable [35] beam-

column element using the exact local elastic stiffness matrix. Sousa Jr et al. [45]

developed a materially nonlinear displacement-based finite element model based

on a total Lagrangian description considering large displacements, small strains

and moderate rotations. A large displacement FE model for two-layered beam-

column based on shear-rigid Reissner beam theory has been proposed by Hozjan

et al. [46]. The latter model takes into account the exact geometrical and material

nonlinearities as well as finite slip between the layers. Recently, Nguyen et al. [47]

have presented a novel finite element model for the fully material and geometrical

nonlinear analysis of shear-deformable two-layered composite planar beams with

interlayer slip, using the co-rotational approach.

This chapter aims to present a new nonlinear finite element formulation for the

large displacement analysis of hybrid planar beam-columns with several encased

steel profiles taking into account the slips occurring at each steel-concrete in-

terface. The co-rotational framework is adopted and the motion of the element

is decomposed into a rigid body motion and a deformational part using a local

co-rotational frame, which continuously translates and rotates with the element,

but does not deform with it [48]. In comparison with the total and the updated

Lagrangian formulations, a co-rotational element formulation has several relative

advantages: (1) the co-rotational formulation is accurate and has good conver-

gence properties for problems with large displacements and large rotations but

small strains; and (2) the treatment of geometric nonlinearity is effectively un-

dertaken at the level of discrete nodal variables with the transformation matrix

between the local and global nodal entities being independent of the assumptions

made for the local element. Thus many existing high-performance elements can

be reused at the core of a co-rotational element formulation, and the resulting
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formulation can be employed to solve large displacement and large rotation prob-

lems.

In the present work, the exact stiffness matrix derived from the analytical so-

lution of the governing equations for hybrid beams developed in Chapter 2 will

be used for the local formulation. As a result, internal nodes used to avoid the

locking problem encountered in low order polynomial finite elements are not re-

quired. Therefore, this formulation is consistent with the co-rotational format.

The features of the formulation presented in this chapter are as follows: (i) lon-

gitudinal partial interactions of the components are considered which provide a

general description of the stresses and strains in the members; (ii) the small strain

and large rotation formulation is developed which is an accurate representation

of most structural behavior; (iii) exact local stiffness matrices are used, which

provide accurate and stable results. The present model provides, therefore, an

efficient tool for elastic nonlinear analyses of hybrid beam-columns with arbitrary

support and loading conditions.

The rest of the chapter is organized as follows. Section 3.2 deals with the co-

rotational framework, the derivation of the transformation matrices and issues

related to eccentric nodes and forces. Five numerical examples are presented in

Section 3.4 in order to assess the performance of the formulation and support the

conclusions drawn in Section 3.5.

3.2 Co-rotational framework

We consider a hybrid beam with n embedded sections experiencing arbitrarily

large displacements and rotations with respect to the global frame but strains are

assumed to remain small. The main ingredients of a co-rotational formulation are:

(i) the choice of co-rotating frame, (ii) the derivation of the relationships between

the local variables and the global ones, and (iii) a variationally consistent internal

force vector and the tangent stiffness matrix.
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3.2.1 Beam kinematics

The co-rotational description of the motion of a deformable body finds its roots in

the polar decomposition theorem [49] which states that the total deformation of

a continuous body can be decomposed into a rigid body motion and a pure defor-

mation part. In finite element implementations, this decomposition is performed

by defining a local reference system attached to the element, which translates

and rotates with the element but does not deform with it. With respect to the

moving frame, local deformational displacements are defined and the geometrical

nonlinearity induced by element large rigid-body motion is incorporated into the

transformation matrix relating local and global displacements.

The origin of the co-rotational frame is taken at the node ci which corresponds

to the centroid of the concrete cross-section, see Fig. 3.1. The xl-axis of the local

coordinate system is defined by the line connecting ci and cj. The yl-axis is or-

thogonal to the xl-axis so that the result is right handed orthogonal coordinate

system. The motion of the element from the original undeformed configuration

to the actual deformed one can thus be separated into two parts. The first one,

which corresponds to the rigid motion of the local frame, is the translation of

the node ci and the rigid rotation α of the xl-axis. The second one refers to the

deformations in the co-rotational element frame which remain small with respect

to local frame. The strains and internal nodal forces of the element are calculated

from these relative deformations. As a consequence, the linear beam theory de-

fined in Chapter 2 can be used for describing the relative deformations, endowing

the method with significant advantages in computational speed and programming

simplicity.

The notations used in this chapter are defined in Fig. 3.1 and Fig. 3.2. All

variables subscripted with ”sk” belong to the embedded steel element ”sk” and

those with ”c”belong to the encasing concrete component. The coordinates of the
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Figure 3.1: Co-rotational kinematic: slips.
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Figure 3.2: Co-rotational kinematic: displacement and rotations.

nodes ci and cj in the global coordinate system (x, y) are (xci , yci) and (xcj , ycj),

respectively. The element has 2(n + 4) degrees of freedom: global displacements

and rotations of the nodes (ci and cj) and slips (gki, gkj) between the embedded

steels ”sk” and the encasing concrete component ”c” at both ends of the element.

As the steel elements are surrounded by the concrete component, uplift cannot
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occur. Thus, the rotations of each steel cross-section at the end nodes are equal

(Bernoulli’s assumption) and the slips (gki, gkj) are perpendicular to the end cross-

sections of the steel components.

The vectors of global and local displacements are respectively defined by Eq. (3.1)

and Eq. (3.2)

pg = [uci vci θci θsi g1i g2i · · · gni ucj vcj θcj θsj g1j g2j · · · gnj] T (3.1)

pl = [ūs1i ūs2i · · · ūsni ūci v̄ci θ̄si θ̄ci ūs1j ūs2j · · · ūsnj ūcj v̄cj θ̄sj θ̄cj]
T (3.2)

The rigid rotation of the xl-axis, α is obtained using the geometrical relation:

sinα = co s− so c (3.3)

cosα = co c+ so s (3.4)

with

co = cos βo =
1

lo
(xcj − xci) (3.5)

so = sin βo =
1

lo
(ycj − yci) (3.6)

c = cos β =
1

ln
(xcj + ucj − xci − uci) (3.7)

s = sin β =
1

ln
(ycj + vcj − yci − vci) (3.8)

lo and ln being the element length in initial and deformed configuration, respec-

tively:

lo = [(xcj − xci)
2 + (ycj − yci)

2]1/2 (3.9)

ln = [(xcj + ucj − xci − uci)
2 + (ycj + vcj − yci − vci)

2]1/2 (3.10)
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Based on the definition of the co-rotating frame, the components of the local

displacements pl are computed according to:

ūci = 0 (3.11)

v̄i = 0 (3.12)

v̄j = 0 (3.13)

ūcj = ln − lo (3.14)

θ̄si = θsi − α (3.15)

θ̄ci = θci − α (3.16)

θ̄sj = θsj − α (3.17)

θ̄cj = θcj − α (3.18)

ūski = −ḡki − hk θ̄ci (3.19)

ūskj = −ḡkj + ūcj − hk θ̄cj (3.20)

where local slips ḡkl are defined in local element formulation (see Section 3.4) and

determined by

ḡkl = gkl cos θ̄sl, l = i, j; k = 1, 2, · · ·n (3.21)

3.2.2 Element formulation

A key step in the the co-rotational method is to establish the relationship between

the local variables and the global ones. This is accomplished by performing a

change of variables between the global quantities and the local ones. The second

stage is to remove the rigid body motions from the element displacement field

which is achieved by calculating the local displacements using Eqs. (3.11-3.21).

Let us consider two different coordinate systems with subscript i and j. Assume

that the internal force vector fi and tangent stiffness matrix Ki are consistent

with the displacement vector pi such that

δfi = Ki δpi (3.22)

Pisey Keo 45



3. GEOMETRICALLY NONLINEAR ELASTIC BEHAVIOR

Consider now that pi is related to the displacement vector pj through

δpi = Bij δpj (3.23)

Then, by equating the virtual work in both systems, the internal force vector fj

consistent with pj is defined by

fj = BT
ij fi (3.24)

The expression of the tangent stiffness matrix Kj, consistent with pj is obtained

by differentiating Eq. (3.24) and combining the outcome with Eq. (3.22) and

Eq. (3.23):

Kj = BT
ij Ki Bij + Hij Hij =

∂(BT
ij fi)

∂pj

∣∣∣∣∣
fi

(3.25)

From the idea described above, the element formulation can be obtained using

three consecutive changes of variables and four different displacement vectors as

follows:

pl = [ūs1i ūs2i · · · ūsni ūci v̄ci θ̄si θ̄ci ūs1j ūs2j · · · ūsnj ūcj v̄cj θ̄sj θ̄cj]
T (3.26)

pe = [ θ̄si θ̄ci ūcj θ̄sj θ̄cj ḡ1i ḡ2i · · · ḡni ḡ1j ḡ2j · · · ḡnj ] T (3.27)

pa = [ θ̄si θ̄ci ūcj θ̄sj θ̄cj g1i g2i · · · gni g1j g2j · · · gnj ] T (3.28)

pg = [uci vci θci θsi g1i g2i · · · gni ucj vcj θcj θsj g1j g2j · · · gnj] T (3.29)

For the sake of clarity in representing the transformation matrices, we present

in the following the formulations of hybrid beam-column with three embedded

steel sections. Nevertheless, the concepts are also applicable to general case of

n embedded steel sections. The first change of variables between pl and pe is

based on the linear equations (Eqs. (3.11-3.13 and Eqs. (3.19-3.20)). Then,

the transformation matrices giving fe and Ke as function of fl and Kl are easily
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obtained:

Ble =




0 −h1 0 0 0 −1 0 0 0 0 0

0 −h2 0 0 0 0 −1 0 0 0 0

0 −h3 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 −h1 0 0 0 −1 0 0

0 0 1 0 −h2 0 0 0 0 −1 0

0 0 1 0 −h3 0 0 0 0 0 −1

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0




(3.30)

Consequently,

Hle = 0 (3.31)

For the second change of variables from pe to pa, the transformation matrices

giving fa and Ka as function of fe and Ke are derived using Eq. (3.21).

Bea =




1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

−g1i sin θ̄si 0 0 0 0 cos θ̄si 0 0 0 0 0

−g2i sin θ̄si 0 0 0 0 0 cos θ̄si 0 0 0 0

−g3i sin θ̄si 0 0 0 0 0 0 cos θ̄si 0 0 0

0 0 0 −g1j sin θ̄sj 0 0 0 0 cos θ̄sj 0 0

0 0 0 −g2j sin θ̄sj 0 0 0 0 0 cos θ̄sj 0

0 0 0 −g3j sin θ̄sj 0 0 0 0 0 0 cos θ̄sj




(3.32)
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Then,

HT
ea =

[
Hea(1) · · · Hea(11)

]
(3.33)

where the non-zero components are

Hea(1)T =




−
3∑

k=1

gkife(5 + k) cos θ̄si

0

0

0

0

− sin θ̄si fe(6)

− sin θ̄si fe(7)

− sin θ̄si fe(8)

0

0

0




; Hea(4)T =




0

0

0

−
3∑

k=1

gkjfe(8 + k) cos θ̄sj

0

0

0

0

− sin θ̄sj fe(9)

− sin θ̄sj fe(10)

− sin θ̄sj fe(11)




(3.34)

Hea(6)T = [ − sin θ̄si fe(6) 0 0 0 0 0 0 0 0 0 0 ] (3.35)

Hea(7)T = [ − sin θ̄si fe(7) 0 0 0 0 0 0 0 0 0 0 ] (3.36)

Hea(8)T = [ − sin θ̄si fe(8) 0 0 0 0 0 0 0 0 0 0 ] (3.37)

Hea(9)T = [ 0 0 0 − sin θ̄sj fe(9) 0 0 0 0 0 0 0 ] (3.38)

Hea(10)T = [ 0 0 0 − sin θ̄sj fe(10) 0 0 0 0 0 0 0 ] (3.39)

Hea(11)T = [ 0 0 0 − sin θ̄sj fe(11) 0 0 0 0 0 0 0 ] (3.40)

with

fT
e = [fe(1) fe(2) · · · fe(11)] (3.41)

The third change of variables from pa to pg is performed using Eqs. (3.14-3.18).

After some algebraic manipulations (see e.g. [48]), the transformation matrices

giving fg and Kg as function of fa and Ka are obtained. The transformation
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matrices are given as follows.

Bag =




−s/ln c/ln 0 1 0 0 0 s/ln −c/ln 0 0 0 0 0

−s/ln c/ln 1 0 0 0 0 s/ln −c/ln 0 0 0 0 0

−c −s 0 0 0 0 0 c s 0 0 0 0 0

−s/ln c/ln 0 0 0 0 0 s/ln −c/ln 0 1 0 0 0

−s/ln c/ln 0 0 0 0 0 s/ln −c/ln 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1




(3.42)

and

Hag = fa(3)
z zT

ln
+ (fa(1) + fa(2) + fa(4) + fa(5))

r zT + z rT

l2n
(3.43)

where

zT = [s − c 0 0 0 0 0 − s c 0 0 0 0 0] (3.44)

rT = [−c − s 0 0 0 0 0 c s 0 0 0 0 0] (3.45)

fT
a = [fa(1) fe(2) · · · fe(11)] (3.46)

and c, s defined in Eqs. (3.7) and (3.8).

3.2.3 Eccentric nodes and forces

The boundary conditions for composite and hybrid beams may be complicated

to define and depend strongly on how the member is connected to the rest of the

structure. In general, one could distribute the external load among the differ-

ent constituent according to some rules among which, the relative stiffness. This

would lead to the same axial displacement of each constituent at the beginning of

the load step. Another option is to assume no slip at the beam end and the load
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is applied at an arbitrary point within the cross-section. This section presents

the possibility to deal with those options in the proposed formulation.

The choice of the slips as the degrees of freedom is indispensable for the ro-

bustness of the formulation. Due to this choice (see Eq. (3.1)) the boundary

conditions require a special treatment in case external concentrated loads are not

applied to the node located at the centroid of the beam cross-section (origin of

the local frame) but somewhere else on the cross-section.

0

0
x

y

z

si

c
i

c
i

i
m

ki
g

ks i

md

Figure 3.3: Eccentric nodes and forces.

3.2.3.1 Eccentric nodes

Let us first consider (see Fig. 3.3) that prescribed displacement or rotation are

applied at node mi. This situation requires a rigid link between the nodes ci and

mi and a change of degrees of freedom from pg to pm with

pm = [umi vmi θci θsi g1i g2i · · · gni ucj vcj θcj θsj g1j g2j · · · gnj] T (3.47)

The displacements of the node mi can easily be obtained as
[
umi

vmi

]
=

[
uci

vci

]
+

[
cos θci − 1 − sin θci

sin θci cos θci − 1

][
− sin βo

cos βo

]
dm (3.48)
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which, after differentiation, gives

[
δumi

δvmi

]
=

[
δuci

δvci

]
−
[

cos(βo + θci)

sin(βo + θci)

]
dm δθci (3.49)

The internal force vector and tangent stiffness matrix consistent with pm are then

obtained, see Section 3.2.2, using the transformation matrix Bgm. This gives

δpg = Bgm δpm fm = BT
gm fg Km = BT

gm Kg Bgm + Hgm (3.50)

with

Bgm (k,k) = 1 k = 1, 2, · · · , 2n+ 8 (3.51)

Bgm (1,3) = cos(βo + θci) dm (3.52)

Bgm (2,3) = sin(βo + θci) dm (3.53)

and the only non zero term in the matrix Hgm is

Hgm (3,3) = − sin(βo + θci) dm fg(1) + cos(βo + θci) dm fg(2) (3.54)

3.2.3.2 Eccentric forces

Let us now consider that two external force vectors fci and fski defined by

fci = [ fci(1) fci(2) fci(3) ] T; fski = [ fski(1) fski(2) fski(3) ] T (3.55)

are applied at the nodes ci and ski. fci(1), fski(1) are horizontal forces (in the local

frame); fci(2), fski(2) are vertical forces and fci(3), fski(3) are moments. These

loads require a special treatment since the degrees of freedom of the element are

pm, see Eq. (3.47). The idea is to calculate the loads applied at node mi which

perform the same external virtual work.

For the load fmi, it gives

[ δumi δvmi δθci ] fmi = [ δuci δvci δθci ] fci (3.56)
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Using Eq. (3.49), one gets

fmi =




1 0 0

0 1 0

cos(βo + θci) dm sin(βo + θci) dm 1


 fci (3.57)

Differentiating Eq. (3.57) gives the stiffness correction term Ksm associated to

[umi vmi θci ], which must be subtracted from the tangent stiffness matrix of the

structure, as

Ksm =




0 0 0

0 0 0

0 0 A


 ; A = − sin(βo + θci) dm fci(1) + cos(βo + θci) dm fci(2)

(3.58)

In the case external loads are applied to an embedded section fski, the calculations

are more complicated since the slip gki is involved. Equating the external virtual

work performed by both force vectors gives

[ δumi δvmi δθci δθsi δgki ] fmi = [ δuski δvski δθsi ] fski (3.59)

The displacements of the node ski can be obtained as (see Fig. 3.3)

[
uski

vski

]
=

[
umi

vmi

]
+

[
cos θci − 1 − sin θci

sin θci cos θci − 1

][
− sin βo

cos βo

]
hm

+

[
cos(βo + θsi)

sin(βo + θsi)

]
gki (3.60)

with hm = hk − dm. After differentiation, it gives

[
δuski

δvski

]
=

[
δumi

δvmi

]
−
[

cos(βo + θci)

sin(βo + θci)

]
hm δθci −

[
sin(βo + θsi) gki

− cos(βo + θsi) gki

]
δθsi

+

[
cos(βo + θsi)

sin(βo + θsi)

]
δgki (3.61)
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By inserting Eq. (3.61) into Eq. (3.59), one obtains

fmi =




1 0 0

0 1 0

− cos(βo + θci)hm − sin(βo + θci)hm 0

− sin(βo + θsi) gki cos(βo + θsi) gki 1

cos(βo + θsi) sin(βo + θsi) 0




fski (3.62)

Differentiating Eq. (3.62) gives the stiffness correction term Kssk associated to

[umi vmi θci θsi gki], which must be subtracted from the tangent stiffness matrix of

the structure, as

Kssk =




0 0 0 0 0

0 0 0 0 0

0 0 A 0 0

0 0 0 B C

0 0 0 C 0




(3.63)

with

A = fski(1)hm sin(βo + θci)− fski(2)hm cos(βo + θci) (3.64)

B = −fski(1) gki cos(βo + θsi)− fski(2) gki sin(βo + θsi) (3.65)

C = fski(2) cos(βo + θsi)− fski(1) sin(βo + θsi) (3.66)

3.3 Local linear element

During the past decades, several finite element formulations for two-layered beams

have been proposed, see for instance [17, 18, 20, 22, 27, 28, 32, 35, 41, 45]. It has

been found that the locking phenomena occur in low order displacement-based

finite element models particularly for a short element with a stiff shear connection.

In order to avoid locking problem in two-nodes beam element, the stiffness matrix

Kl in the local coordinate system for shear-flexible as well as shear-rigid model

which is constructed based on the exact solution of the governing equations of a

hybrid beam with deformable shear connectors (see Chapter 2) can be used.
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3.4 Numerical examples

The purpose of this section is to assess the capability of the proposed formulation

in reproducing the nonlinear behavior of hybrid beams in partial interaction and

to investigate the influence of the shear connection stiffness on the geometric

nonlinear effects. The analysis of the performance and the accuracy of the present

formulation is carried out by considering four numerical examples. To study the

effect of shear deformability of the concrete element, the numerical analysis results

obtained from the present model (T-model) are compared to the ones obtained

from the shear-rigid model (EB-model), see Appendix B, in which the exact

stiffness matrix developed in Appendix A is used for the local frame.

3.4.1 Buckling of a shear deformable beam-column

The buckling load of a column depicted in Fig. 3.4 is studied here by considering a

300

30
12

12

6

10

3
3

P

Ec=Es1=Es2=34.5 GPa
=0.2
ksci= 1000 GPa

y

x

y

z

2
2

Figure 3.4: Buckling of a shear deformable column (dimension in [cm]).

high shear connection stiffness ksc = 106 MPa. Restraints are applied in order to
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avoid bucking about the y-axis. The buckling loads of the column obtained with

different meshes are presented in Table 3.1. A very good agreement compared to

Table 3.1: Numerical results.

Number of elements 2 4 8 16 20

Pcr/Pcr,T 1.2319 1.0672 1.0274 1.0173 1.0158

the analytical solution, Engesser’s buckling load [50]

Pcr,T =
π2EI/L2

1 +
π2EI/L2

GA

,

is obtained. A further investigation on the effect of the shear connection stiffness

on the critical load has been carried out. The critical load is obtained by per-

forming a nonlinear analysis using 20 elements. It can be seen from Fig. 3.5 that

the critical load obtained from the FE analysis using the proposed formulation

(Pcr) is lower than Euler’s critical load (Pcr,T ) for low shear connection stiffness.

The magnitude of Pcr increases with increasing value of shear connection stiff-

ness. However, Pcr remains constant for a shear connection stiffness ksc beyond

a critical value (about 104 MPa) where the full interaction can be assumed.

10−2 100 102 104 106
0.850

0.875

0.900

0.925

0.950

0.975

1.000

1.025

1.050

k
sc

 [MPa]

P cr
/P

cr
,T

Figure 3.5: Ratio between the predicted ultimate load and the Engesser’s buckling

load in function of shear connection stiffness.
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3.4.2 Simply supported steel-reinforced concrete beam sub-

jected to uniformly distributed load

Consider a sandwich beam (see Fig. 3.6) subjected to a uniformly distributed

y

x

py = 

Ec=34.5 GPa
Es1=Es2=200 GPa
Ksc1= 40 MPa
Ksc2= 5 MPa

Figure 3.6: Three-layered beam with transversal loads (dimension in [m]).

load py of intensity 10 kN/m. The elastic modulus adopted for steel and concrete

are 200 000 MPa and 34 500 MPa, respectively. The Poisson coefficient for the

concrete core is taken equal to 0.2; and the unity value of shear correction factor

is adopted. The stiffness of the shear connection is taken equal to 40 MPa for the

top layer and 5 MPa for the bottom layer. A large displacement analysis with 20

elements is performed in which the distributed load is replaced with concentrated

nodal forces. As expected larger slips occur at the interface between the bottom

steel plate and the core beam (see Fig. 3.7 for distributed load py = 10 kN/m).

The maximum deflection vmax occurring at the mid-span of the beam along with

the slips at the beam ends are tabulated in Table 3.2 for both shear-rigid model

(EB-model) and shear-flexible model (T-model). For the present case where the

sandwich beam can be considered as a slender beam, the results given by both

EB-model and T-model are not significantly distinct. Nonlinear analyses with

a large amplitude of distributed load are performed in order to capture the ge-

ometrically nonlinear behavior of the sandwich beam. It can be seen that the
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Figure 3.7: Slips between concrete and steel beams.

Table 3.2: Numerical results.

EB-Model T-model

||vmax|| (m) 0.0109 0.0111

||g1|| (mm) 0.7759 0.7817

||g2|| (mm) 1.0000 1.0224

sandwich beam behaves linearly below 600 kN/m. Beyond that load, the non-

linear behavior become significantly apparent. One can observe that for a large

amplitude of the loading, the magnitude of the transverse displacement given by

the geometrically nonlinear analysis is significantly below the one predicted by a

geometrically linear analysis. This behavior is similar to what has been observed

in a non-linear bending of simply supported beams with a constant homogenous

cross-section carrying uniformly distributed load (see [51]). In such a problem,

the large displacement produces axial forces which increase the stiffness of the

system requiring larger loads for the same displacement. To illustrate this be-

havior, the nonlinear load-deflection curve (GNA) is compared to the linear one

(GLA) (see Fig. 3.8) where vmax is the transverse displacement at the mid-span.

Furthermore, the effect of cross-section slenderness is investigated by consider-
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Figure 3.8: Load-deflection curve with L/H=16.67.

ing a large depth of the concrete core with a value of 60 cm. Both geometrically

nonlinear analyses of EB-model and T-model are performed. It can be observed

from Fig. 3.9 that the shear deformability of the concrete core influences signifi-

cantly the response of the short beam with a slender cross-section.
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Figure 3.9: Load-deflection curve with L/H=6.25.
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3.4.3 Hybrid Beam with 3 embedded sections subjected

to axial and transversal loads

Consider a pinned hybrid beam consisting of a concrete beam of breadth b = 0.25

m and depth h = 0.80 m (see Fig. 3.10) reinforced by three steel profiles. Equally

spaced stud connectors are welded on both side of each steel beam flanges. The

details of the geometrical and material characteristics are reported in Fig. 3.10.

The Poisson coefficient for the concrete component is taken equal to 0.15; and the

L=12 m

Pc;Ps

a

a

Ec=39 GPa
Es1=Es2=Es3=210 GPa
Ksci= 50 MPa

y

Ps

Ps

Ps

Ps

Ps=Pc=100 kN
py=100 kN/m

0.26 m

0.26 m
0.80 m

0.25 m

Section a-a

HEB120

y

x

Figure 3.10: Beam with axial and transversal loads.

value of shear correction factor is assumed to be equal to 1. The beam is subjected

to both axial and transversal loads. Each layer of the hybrid beam is loaded by

an axial force. The position of the centroid of the steel beam at mid-height of the

hybrid section coincides with the centroid of the concrete section. However, those

centroid nodes are distinct in the FE formulation. For this problem, a nonlinear

analysis is required in order to take into account the second-order effect induced

by the axial loads. The degree of shear connection for the shear-flexible model is

evaluated by analyzing the deflection at the mid-span with the variation of the

shear connection stiffness ksc, see Fig. 3.11. For a shear connection stiffness ksc
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lower than 103 MPa, the beam is in partial interaction. The numerical results
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Figure 3.11: Degree of shear connection.

for the slips at the beam end and the deflection at the mid-span are provided

in Table 3.3 for both shear-rigid model (EB-model) and shear-flexible model (T-

Table 3.3: Numerical results.

EB-model T-model

||vC,max|| (mm) 60.8698 61.4415

g1 (mm) 2.8225 2.8225

g2 (mm) 0.7447 0.7432

g3 (mm) -1.3331 -1.3361

model) considering ksc = 50 MPa. These results have been obtained with a mesh

consisting of 20 elements. The slip distributions between the encasing concrete

and the steel beams are illustrated in Fig. 3.12. One can observe that although

the hybrid section is symmetric, the slip distribution at top steel profile is not

symmetric with respect to the one at bottom steel profile. As a result of the

interaction between bending moment and normal forces, the slip at the mid-height

of the cross-section is not equal to zero. Indeed, two axial forces are applied at

each cross-section centroid (at mid-height), one at the steel section (steel node)

and another one at the concrete section (concrete node). These two axial forces
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Figure 3.12: Slips between concrete and steel beams.

accompanied by the bending moment produce different axial displacements of

both nodes which result the non-zero slip (g2) along the beam length. On the

other hand, the deformed shapes of the hybrid beam obtained from both models

are depicted in Fig. 3.13. As expected, the deflection obtained from T-model is
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Figure 3.13: Deformed shape of the beam.

slightly greater than the one from EB-model. It is worth mentioning that the

responses of the T-model is almost identical to the ones of EB-model. This is

due to the relatively large length-to-depth ratio of the considered beam setup

L/H = 15.
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3.4.4 Uniform bending of cantilever beam

To highlight the performance of the co-rotational formulation dealing with a large

displacement analysis, we consider a classical problem where three cantilever steel

beams (si) are embedded in the concrete beam (c) and freely deform in their longi-

tudinal axis (without shear connection), see Fig. 3.14. Those beams are subjected

to an end moment M such that the deformed shape of the beam (c) is a quarter

of circle. For that reason, the results obtained from the co-rotational model are

compared against the analytical solutions in which the shear deformability of the

concrete beam is ignored. The analytical end moment required to deform the

RcRc

Rs3
Rs2

Rs1

90°
Ec=34 GPa
Es1=Es2=Es3=210 GPa
ksci= 0 GPa

0.26 m

0.26 m
0.80 m

0.25 m

L=12 m

a

a Section a-a

1

2

3

Figure 3.14: Uniform bending of cantilever beam.

beam (c) is

Mc =
(EI)c
Rc

, Rc =
2L

π
(3.67)

The beams (si) have to bend into the concentric arcs, which require the end

moments

Msi =
(EI)si
Rsi

, Rsi = Rc − hi i = 1, 2, 3 (3.68)

The required total moment is therefore M = Mc +Ms1 +Ms2 +Ms3 and the slip

between those beams at the free end are

gi = −(Rc − hi)
(Rc −Rsi)L

RcRsi

i = 1, 2, 3 (3.69)

Pisey Keo 62
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Table 3.4: Numerical results.

Analytical FE model FE/Analytical

vC (m) 7.6394 7.6473 1.0010

uC (m) −4.3606 −4.3527 0.9982

g1 (m) −0.4084 −0.4097 1.0031

g2 (m) 0.0000 −7.2905 · 10−18 −
g3 (m) 0.4084 0.4097 1.0031

M (MN.m) 45.7204 45.7202 1.0000

max ‖ V (x) ‖ (N) 0.0000 9.4995 · 10−7 −
max ‖ N(x) ‖ (N) 0.0000 1.6075 · 10−6 −

The results of the FE analysis obtained with 10 elements are presented in Ta-

ble 3.4. A very good agreement with analytical solution is obtained.

3.5 Conclusion

In this chapter, a new finite element formulation for a large displacement analysis

of hybrid beam-columns with several encased steel profiles in partial interaction

has been presented. To describe the geometrical nonlinearity, the co-rotational

framework was adopted and the motion of the element decomposed into a rigid

body motion and a deformational part using a local co-rotational frame, which

continuously translates and rotates with the element but does not deform with

it. The treatment of geometric nonlinearity is effectively undertaken at the level

of discrete nodal variables with the transformation matrix between the local and

global nodal entities being independent of the assumptions made for the local

element. To avoid locking problems encountered in two-node element (low order

elements), the exact stiffness matrix was used for the local formulation. The

performance of the formulation has been illustrated in four numerical examples.

It was shown that the proposed formulation provides a robust and reliable option

for a large displacement analysis of hybrid beam-columns.
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4.1 Introduction

In general, the inelastic analysis of framed structures can be categorized into two

main types: (1) concentrated plasticity and (2) distributed plasticity. For the

former, the nonlinear behavior of a beam-column element is lumped in nonlinear

springs typically at the extremities of a linear-elastic element. In most lumped

plasticity models, the axial force, shear force and bending moment relationships

are described by a yield surface for the stress resultants and an associated flow

rule according to the classical plasticity theory. The drawback of plastic hinge

methods is that the axial force, shear force and bending moment interaction is

separated from the element behavior. Consequently, it often does not well rep-

resent frame response. On the other hand, distributed plasticity models account

for the nonlinear interaction of the internal forces along the entire element by

numerically integrating force-deformation response at a finite number of control

sections. The nonlinear behavior at these sections is derived by subdividing the

cross-section into fibers and integrating the material constitutive model. The
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distributed inelasticity models are computationally more demanding. This is be-

cause the detailed coupling between bending, axial and shear deformations due

to partial cross-section plasticity is difficult to capture by distributed plasticity

models.

This chapter presents the nonlinear constitutive models for the steel material,

the concrete material and the shear connection, as required for material non-

linear analysis. For the reinforcing bar as well as the embedded steel section,

shear deformations are ignored (Bernoulli kinematic assumptions); as a result, a

uniaxial stress-strain relationship is employed. The longitudinal shear transfer

mechanisms by bond and by shear stud connector are recalled. The behavior of

shear stud connector is described through three existing models in literature: (1)

an elastic-perfectly plastic model; (2) the model by Ollgaard et al. [52] and (3)

the model by Salari [24]. For the concrete material, the 3d plasticity model and

the uniaxial stress-strain relationship are highlighted.

4.2 Uniaxial behavior of steel material

Engineering materials (like steel and concrete) have their qualitatively distinct

mechanical responses. However, those materials share some important features

of their phenomenological behavior that make them possible to be modeled by

the theory of plasticity. To illustrate such common features, a uniaxial tensile

test where a steel coupon is loaded monotonically in a quasi-static manner up to

failure is discussed in this section. The response of the steel material is typically

depicted in Fig. 4.1, where the axial stress, σ, is plotted against the axial strain,

ε. Some important phenomenological properties of this response can be described

as the following:

• The linear elastic range: During the initial stage of loading, the stress

varies linearly with the strain up to a proportional limit referred to as the

elastic limit. In this region, the stress is proportional to the strain with

the constant of proportionality being the modulus of elasticity or Young
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4.2 Uniaxial behavior of steel material

modulus, denoted E. As strain is increased, steel material deviates from

this linear proportionality to enter the non-linear reversible domain up to

the yield point, σy, where plasticity starts to develop.

• The yield plateau: For strain demand exceeding the the yielding strain

εy, the stress is maintained at the yield stress value for a moderate increase

in strain. At yield point, the evolution of plastic strains (plastic flow) takes

place.

• The strain-hardening range: At the end of the yield plateau, the stress

starts to increase again with increasing value of the total strain. In this

region, an evolution of the yield stress is observed. This phenomenon is

known as hardening.

Figure 4.1: Effect of prior tensile loading on tensile stress-strain behavior.

The phenomenological characteristics observed in steel material above is also dis-

covered in a wide variety of materials such as concrete, rocks, soils and many

others. These phenomenological behaviors can be described with sufficient ac-

curacy by the mathematical theory of plasticity that will be discussed in the
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following.

After the steel coupon is loaded beyond its yield limit and subsequently, com-

pletely unloaded, there still remains a deformation that is not recoverable in the

steel coupon. This unrecoverable deformation is called plastic strain, εp. During

the reloading state, the behavior of the steel coupon is considered to be linear

elastic and the uniaxial stress corresponding to a configuration with total strain

ε is given by

σ = E (ε− εp) (4.1)

It is worth to mention that the difference between the total strain and the current

plastic strain is fully reversible; that is, upon complete unloading, ε− εp is fully

recovered without further evolution of plastic strains. In this manner, the total

strain, ε, can be decomposed into the sum of an elastic (or reversible) strain, εe,

and a plastic (or permanent) strain, εp at restrictions to small strains:

ε = εe + εp (4.2)

where the elastic strain has been defined as

εe = ε− εp (4.3)

Following the above definition of the elastic axial strain, the constitutive law for

the axial stress can be expressed as

σ = E εe. (4.4)

This relation is also known as Hooke’s law for linear elastic behavior. For plastic

material behavior, no more explicit relation between stress and strain is given

since the strain state is also dependent on the loading history. In spite of that,

the plastic material behavior can be described by a yield condition, a flow rule

and a hardening law.
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4.2 Uniaxial behavior of steel material

By assuming that the yield stress, σy is identical in the tensile and compres-

sive regime, the elastic domain delimited by the yield stress can be expressed

as

|σ| − σy < 0 (4.5)

in which no change in plastic strain takes place, i.e., ε̇p = 0. A change in εp can

take place only if the relevant body is under plastic loading where

|σ| − σy = 0 (4.6)

It is worth mentioning that, at any stage, no stress level is allowed above the

current yield stress, i.e. plastically admissible stresses lie either in the elastic

domain or on the yield limit. The following notation is introduced to designate

the set of admissible stresses :

Eσ = {σ ∈ R | f(σ, σy) = |σ| − σy ≤ 0} (4.7)

Then, the yield condition that enables one to determine whether the relevant

material suffers only elastic or also plastic strains at a certain stress state is:

f(σ, σy) = |σ| − σy ≤ 0 (4.8)

4.2.1 Flow rule

In the plastic range, the relevant body experiences the plastic strain rate. Let

λ̇ ≥ 0 be the absolute value of the plastic strain rate (it is also called as plastic

multiplier or consistency parameter). Then the preceding physical assumption

takes the form

ε̇p = λ̇ sign(σ) (4.9)

which is the plastic flow rule for the uniaxial model. sign is the signum function

defined as

sign(σ) =





+1 if σ > 0

0 if σ = 0

−1 if σ < 0

(4.10)
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4.2.2 Loading/unloading conditions

With the observation made above, the yield condition defines not only the set of

permissible stresses, but also the conditions for which plastic deformations can

continue to occur. Whereas all elastic stress states are located inside the yield

surface and defined uniquely by the elastic strain i.e. λ̇ = 0 and f(σ, σy) < 0,

plastic deformations can occur as long as the stress point is located on the yield

surface i.e. λ̇ > 0 and f(σ, σy) = 0. It follows that

λ̇ f(σ, σy) = 0 (4.11)

This condition goes by the name of Kuhn-Tucker condition. Thus the load-

ing/unloading conditions of the elasto-plastic model are defined as follows:

f(σ, σy) ≤ 0, λ̇ ≥ 0, λ̇ f(σ, σy) = 0 (4.12)

In addition to above conditions, λ ≥ 0 satisfies the consistency requirement below:

λ̇ ḟ(σ, σy) = 0 (4.13)

In classical literature, conditions (4.12) and (4.13) go by the names loading/unloading

and consistency conditions, respectively.

4.2.3 Hardening law

The complete characterisation of the uniaxial model is achieved with the intro-

duction of the hardening law which allows the consideration of the influence of

material hardening on the yield condition and the flow rule. As remarked in the

experimental test of steel coupon, an evolution of the yield stress accompanies

the evolution of the plastic strain in strain-hardening range. Whereas for perfect

plasticity the closure of the elastic range Eσ remains unchanged, Eσ expands with

the amount of plastic flow in the system for the strain hardening model. This

expansion can be incorporated into the uniaxial model by simply assuming that

the yield stress σy is a given function

σy = σy(ζ) (4.14)
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4.2 Uniaxial behavior of steel material

of the internal variable. In this case the accumulated axial plastic strain, ζ is

defined as

ζ =

∫ t

0

|ε̇p|dt (4.15)

It is straightforward that in a monotonic tensile test, we have

ζ = |εp| (4.16)

which, in view of the plastic flow rule, gives

ζ̇ = λ̇ (4.17)

The relations (4.14) and (4.17) define the hardening law of the material subjected

to the monotonic loading.

4.2.4 Tangent elasto-plastic modulus

The consistency condition enables us to solve explicitly for λ̇ and relate stress

rates to strain rates as follows. By taking the time derivative of the yield function

and making use of Eq. (4.8), (4.9) and (4.16), along with the elastic stress-strain

relationship Eq. (4.1), we have

ḟ =
∂f

∂σ
σ̇ +

∂f

∂ζ
ζ̇

= sign(σ)E (ε̇− ε̇p)−H ε̇p sign(σ)

= sign(σ)E ε̇− λ̇ [E +H] (4.18)

where H is called the hardening modulus, or hardening slope, and is defined as

H = H(ζ) =
dσy
dζ

(4.19)

The consistency condition (Eq. (4.13)) implies that the rate of f vanishes when-

ever plastic yielding occurs. Then the plastic multiplier, λ̇, is uniquely determined

during plastic yielding as

λ̇ =
E

H + E
ε̇ sign(σ) (4.20)
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Then the rate form of the elastic relationship Eq. (4.1) along with Eq. (4.20)

yields

σ̇ =




E ε̇ if λ̇ = 0,
E H

E +H
ε̇ if λ̇ > 0.

(4.21)

in which the quantity EH/(E +H) is called the elasto-plastic tangent modulus.

4.3 Constitutive modeling with internal variables:

multi axial stress-strain models

For elastic body, the strain at any point of the body is defined by the current

stress. On the contrary, the current strain or stress in inelastic body depends not

only on the current value of state variables but also on the past history through

the present value of a set of internal state variables which account for the internal

restructuring taking place during the dissipative process. These phenomena were

well observed in one-dimensional tensile test described in the previous section.

In this section, we apply the straightforward extension of the one-dimensional

model into two- and three-dimensional situations. The notations used here are

the following.

• The symmetric second-order tensors are represented as six-dimensional vec-

tors and denoted by bold letters.

• A set of numbers are denoted by the capital doubled letter.

• The rate of an internal variable, also called velocity, is denoted by a super-

imposed dot.

The following set of state variables is assumed for the thermodynamic state at

any time t:

{ε, εp, ζ}
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where ε is total strain vector, εp plastic strain vector and ζ is a set of internal

variables containing, in general, entities of scalar, vectorial and tensorial nature

associated with dissipative mechanisms. The number and the mathematical na-

ture (tensor, vector or scalar) of the internal variables depend on the model under

consideration.

4.3.1 State equations

In the framework of thermodynamics, the constitutive equations are generally

developed in order to prevent violation of physical principles. They consist mostly

of a state equation and evolution equations. The state equation describes the

relationship between the stress σ, total strain ε, plastic strain εp, temperature T

and state variable ζ, which represents the microstructural state of the material.

We assume that the temperature remains constant with time and is uniform in

space so that it will not be considered hereafter. The material state may then be

quantified in terms of (ε, εp, ζ) as follow:

σ = σ(ε, εp, ζ) (4.22)

In the definition of the state variables characterizing the state of the system, we

refer only to the so-called strain-like variables (kinematic variables) whereas the

corresponding stress-like variables are obtained by duality. The state equations

defining the relationship between static and kinematic internal variables can be

formally written as:

σ = σ(εe) , Z = Z(ζ) (4.23)

where Z is the dual of ζ. Assuming linear elasticity and strictly positive hard-

ening with no coupling, the above relation can be equivalently written as follows:

σ =
∂ψe
∂εe

and Z =
∂ψp
∂ζ

(4.24)

where ψe(ε
e) is the stored energy due to elastic strain and ψp(ζ) is the unrecov-

erable stored energy due the internal variables describing hardening. Under the

aforementioned assumptions, ψe(ε
e) and ψp(ζ) are both proper strictly convex
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functions. The sum of the two (ψe(ε
e) and ψp(ζ)) give the so-called Helmholtz

energy function:

ψ(εe, ζ) = ψe(ε
e) + ψp(ζ) (4.25)

The potential form of the state law (4.24) will ensure that the Clausius-Duhem

is fulfilled for any admissible thermodynamic process, i.e.:
(
σ − ∂ψe

∂εe

)
· εe + σ · ε̇p −Z · ζ̇ > 0 (4.26)

4.3.2 Elastic domain and yield criterion

Recall that in the uniaxial yield criterion, the plastic flow takes place when the

uniaxial stress attains a critical value. This phenomenon could be expressed by

means of a yield function which is negative or zero. Herein, we extend this concept

to the three-dimensional case by defining the yield function f : S×Rm → R and

constraining the admissible state {σ, Z} ∈ S × Rm in stress space to lie in the

set Eσ defined as:

Eσ := {(σ, Z) ∈ S× Rm | f(σ,Z) ≤ 0} (4.27)

where the scalar yield function, f , is now a function of the stress vector and a set

of internal stress-like variables, Z which are functions of ζ. We denote int(Eσ)

the interior of Eσ defined as

int(Eσ) := {(σ, Z) ∈ S× Rm | f(σ,Z) < 0} (4.28)

which describes the elastic domain. The set of stresses for which plastic yielding

may occur is the boundary of the elastic domain, denoted by ∂Eσ as follow:

∂Eσ := {(σ, Z) ∈ S× Rm | f(σ,Z) = 0}. (4.29)

4.3.3 Evolution rules

While the evolution of the strain can be controlled externally, the internal vari-

ables evolve according to some additional rules called evolution laws which com-

plement the state equations. These laws, which describe the evolution of the
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internal modifications, establish relationships between the rate of change of each

internal variable Ξ (generalized velocity) and each generalized stress Σ.

For standard plasticity models with an associative flow rule, the rate formula-

tion is the most popular. In this formulation, the direction of the velocity vector

is given by the gradient to the yield surface expressed in the generalized stresses

space and its magnitude by the plastic multiplier:

Ξ̇ = λ̇
∂f

∂Σ
(4.30)

Then, the flow rule and hardening law are defined respectively as the following

ε̇p = λ̇N (4.31)

ζ̇ = λ̇H (4.32)

where the vector

N =
∂f

∂σ
(4.33)

is termed the flow vector and the function

H = − ∂f
∂Z (4.34)

is the generalised hardening modulus which defines the evolution of the hardening

variables. The plastic multiplier is required to satisfy the following complemen-

tarity relations which are the same as Eq. (4.11-4.13) but σy is replaced by Z in

this case:

f(σ, Z) ≤ 0 , λ̇ ≥ 0 , λ̇f(σ, Z) = 0. (4.35)

In addition to conditions (4.35) above, λ̇ ≥ 0 satisfies the consistency requirement

as below:

λ̇ ḟ(σ, Z) = 0 (4.36)
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4.4 Steel stress-strain explicit 1D model

A number of researchers have proposed models to characterize the response of

steel under monotonic/cyclic loading. The simplest and most computationally

efficient model for predicting the steel behavior is based on the aforementioned

plasticity theory. Based on the results of experimental reversed cyclic loading

tests, the plastic deformation and an unloading stiffness, approximately equal to

the initial elastic material stiffness, are accumulated. The phenomenon that char-

acterizes the increased strength under increasing plastic strain can be described

by the isotropic strain hardening. Furthermore, the premature yielding associ-

ated with the Bauschinger effect may be characterized by a plasticity model that

incorporates a kinematic strain hardening.

A uniaxial constitutive model developed based on the plasticity theory with lin-

ear isotropic and kinematic strain hardening is defined by the following set of

equations:

f(σ, ζ) = |σ − χ| − σy(ζ) ≤ 0 (4.37)

ε̇p = λ̇ sign(σ − χ) (4.38)

ζ̇ = λ̇ (4.39)

χ = λ̇ H sign(σ − χ) (4.40)

σy(ζ) = σy +K ζ (4.41)

where ζ, K and H are the back stress, the isotropic and kinematic hardening

parameters, respectively.

A more representative model for steel stress-strain behavior can be achieved

through the use of phenomenological models in which nonlinear stress-strain re-

lationships are calibrated based on the experimental data such as the well-known

Ramberg-Osgood model. The model proposed by Ramberg and Osgood [53] uses

a single nonlinear relation to describe the observed curvilinear response of rein-

forcing steel under monotonic loading. This model defines the normalized strain
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to be a function of the normalized stress. Various other models have been devel-

oped to characterize the behavior of reinforcing steel. Menegotto and Pinto [54]

propose a model in which the steel behavior is defined by the following nonlinear

equation:

σ̄ = b ε̄+
(1− b)ε̄

(1 + ε̄R)1/R
(4.42)

where ε̄ is the effective strain defined by

ε̄ =
ε− εr
ε0 − εr

(4.43)

and σ̄ is the effective stress given by

σ̄ =
σ − σr
σ0 − σr

(4.44)

The constant b is the ratio of the initial to final tangent stiffness and R is a

parameter that defines the shape of the unloading curve which takes the following

form:

R = R0 −
a1 ξ

a2 + ξ
(4.45)

where ξ is updated following a strain reversal; R0 the value of the parameter

R during first loading; and a1, a2 are experimentally determined parameters to

be defined together with R0. The Menegotto-Pinto steel model is represented in

Fig. 4.2. Let us consider the transition of two branches with asymptote line (a)

and (b). σ0 and ε0 are the stress and strain at the point where the two asymp-

totes meet (point B); similarly, σr and εr are the stress and strain at the point

where the last strain reversal with stress of equal sign took place (point A). As

indicated in Fig. 4.2, (σ0, ε0) and (σr, εr) are updated after each strain reversal.

A number of models have been developed based on the work done by Menegotto

and Pinto [54]. Stanton and McNiven [55] proposed a steel model which im-

proves the computational efficiency of Menegotto-Pinto model by assuming that

the reference curves for steel subjected to cyclic loading follows the monotonic

envelope. Filippou et al. [56] observed that Menegotto-Pinto model prohibits its
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Figure 4.2: Menegotto-Pinto steel model.

failure from allowing the isotropic hardening. To take into account this draw-

back, they proposed a stress shift in linear yield asymptote as a function of the

maximum plastic strain as follow:

σst = a3

[
εmax
εy
− a4

]
σy (4.46)

where εmax is the absolute maximum strain at the instant of strain reversal; εy

and σy are respectively the strain and stress at yield point; and a3 and a4 are

experimentally determined parameters.

In the model code for concrete structures, CEB-FIP 2010 [57], the stress-strain di-

agram used for modeling the steel material can be adopted to the one provided by

manufacturer. In some design codes, the steel constitutive model is considerably

simple. EN 1992-1-1 [11] proposes a bilinear stress-strain diagram with isotropic

hardening for modeling the reinforcing steel bar whilst EN 1993-1-1 [58] recom-

mends to adopt an appropriate stress-strain curve for structural steel members

but the elastic perfectly plastic stress-strain diagram may be used.
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4.5 Concrete constitutive model

Concrete is a common engineering composite material which is made of cement,

water and aggregates. Experimental tests show that concrete is a highly nonlinear

material under uniaxial compression stress. The stress-strain curve observed from

the compressive experimental test, has a nearly linear form up to about 30 percent

of the maximum compressive strength, f ′c. For stress beyond this limit, the curve

shows a gradual increase up to about 0.75f ′c to 0.90f ′c. At stress above this

point, the curve bends more sharply before approaching the peak stress f ′c beyond

which the concrete undergoes strain softening described by a descending branch

of the curve until the failure point at some ultimate strain εu. When concrete

is under uniaxial tensile stress, the similar characteristic of stress-strain curve

as the one under uniaxial compression has been observed. However, the tensile

strength of the concrete material is significantly low compared to the compressive

one. The constitutive behavior of concrete under biaxial or triaxial states of

stress is different from the constitutive behavior under uniaxial loading conditions.

Richart et al. [59] and Balmer [60] conducted trial tests at low to high volumetric

compression (or confining) stress levels. The results showed that concrete can act

as a quasi-brittle, plastic-softening, or plastic-hardening material depending on

the confining stress. Moreover, the maximum compressive strength of concrete

increases with increasing confining pressure.

4.5.1 Concrete plasticity model

Plasticity theory has been successfully applied to model the concrete behavior.

Several plasticity models have been developed to characterize the behavior of con-

crete under multi-axial loading [61–69]. The main characteristics of the concrete

plasticity models include pressure sensitivity, associative or non-associative flow

rule, work or strain hardening and limited tensile strength. These main charac-

teristics lead to different numbers of model parameters and different the shape

of the yield surface in principal stress space. One parameter model of the maxi-

mum tensile stress criterion of Rankine, dating from 1876, is generally accepted
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today to determine whether a tensile or a compressive type of failure has occurred

for concrete. According to this criterion, brittle fracture of concrete takes place

when the maximum principal stress at a point inside the material reaches a value

equal to the tensile strength of the material as found in a simple tension test,

regardless of the normal or shearing stresses that occur on other planes through

the point. This surface is generally referred to as a tension cutoff surface. Mohr-

Coulomb and Drucker-Prager failure surfaces are two-parameter models which

take into account the pressure dependence on the failure criterion of concrete.

The shortcoming of these surfaces are the linear relationship between
√
J2 and

I1 and the independence of the deviatoric section on the Lode angle θ. However,

the experimental results have showed that the relationship between
√
J2 and I1 is

nonlinear and the trace of the failure surface on deviatoric sections is not circular

but depends on the Lode angle θ. William and Warnke [61] proposed three- and

five-parameter model for concrete in the multi axial stress state. Both models

have non circular cross sections but straight meridians for three-parameter model

and curved meridians for five-parameter model. Ottosen [62] suggested a failure

surface with a four-parameter criterion where the meridians are nonlinear curve

and cross section is not circular. The modern development of concrete model

have been addressed to a cap model [70, 71]. The cap model to be discussed in

the following is elasto-perfectly plastic with an associated flow rule and a smooth

yield surface that closes in the hydrostatic compression. The shortcoming of the

cap model is that it can represent the concrete behavior in the hydrostatic com-

pression. The envelope failure surface function of the smooth cap model is defined

as

Ff (I1) = α− θI1 (4.47)

where I1 is the first invariant of the stress tensor, I1 = Trace(σ), and α and θ

are model parameters.

The cap surface of the model is based on the non-dimensional functional form
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given by Pelessone [72] as:

Fc = 1− (I1 − k0)(−|I1 − k0|+ I1 − k0)

2(X0 − k0)2
(4.48)

where X0 = k0 − RFf (k0), k0 and R are material parameters. The function Fc,

is unity for I1 less than k0 and elliptical for k0 > I1 > X0.

The smooth cap model, shown in Fig. 4.3, is formed by multiplying the en-

velop failure and cap surface functions to form a smoothly varying (continuous

derivative) function given by

f1(I1, J2) = J2 − F 2
f Fc (4.49)

where J2 is the second invariant of the deviatoric stress tensor, J2 =
1

2
sTs with

s = σ − I1

3
1 and 1 = [1, 1, 1, 0, 0, 0]T. One can observe that the yield criterion
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Figure 4.3: Smooth cap yield surface.

of concrete is defined by Drucker-Prager yield surface when the concrete is under

the stress state where its first invariant is greater than k0, see Fig. 4.3, beyond

that hydrostatic compression point, the yield criterion of concrete is controlled

by the cap surface. To characterize the tensile failure of the concrete, the tension

cutoff surface may be considered. However, the yield function on the intersection

point of the latter surface with the envelop yield surface is not smooth and one
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has to deal with a so-called corner region. It has been recognized that this region

can cause both numerical and material instabilities [73]. In the present work,

this problem is solved by introducing an elliptical surface on the tension side

which is chosen to smoothly intersect the failure envelope. This tension surface

is expressed as:

f2 =
(I1 − a)2

R2
t

+ J2 − b2 (4.50)

where a = fct − Rt b; Rt is the aspect ratio of the ellipse; b corresponds to the

ellipse vertical radius; and fct is a material constant referred to as the tensile

strength. The ellipse radius b and intersection point I1,t of the tension elliptical

surface and the failure envelope curve are given by

b =
α− θ fct√

θ2R2
t + 1− θ Rt

(4.51)

I1,t =
α θ R2

t + fct −Rt b

θ2R2
t + 1

(4.52)

4.5.1.1 Material constants

The envelop yield surface (Drucker-Prager yield function) as viewed in three-

dimensional principal-stress space, is a cone with the space diagonal as its axis,

while the Mohr-Coulomb criterion is a pyramid with an irregular hexagonal base

and the space diagonal as its axis. Two of the most common approximations used

to match the Drucker-Prager yield surface with the Mohr-Coulomb surface are

outer edges fitting and inner edges fitting. The coincidence at the outer edges is

obtained when

θ =
2 sinφ√

3(3− sinφ)
, α =

6 c cosφ√
3(3− sinφ)

, (4.53)

whereas, coincidence at the inner edges is given by

θ =
2 sinφ√

3(3 + sinφ)
, α =

6 c cosφ√
3(3 + sinφ)

(4.54)

in which φ and c are the angle of internal friction and the cohesion, respectively.

Moreover, we can match the two criteria with the simple tensile strength fct
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and the simple compressive strength f ′c of the concrete material. The material

constants α and θ of Drucker-Prager for this case are determined as:

θ =
1√
3

sinφ, α =
2√
3
c cosφ (4.55)

where the parameters φ and c have to be chosen as:

φ = sin−1

(
f ′c − fct
f ′c + fct

)
, c =

f ′c fct
f ′c − fct

tanφ. (4.56)

However, there have been several discussion on how to determine accurately the

concrete cohesion c while using the finite element analysis. Chen [74] adopted

the cohesion of the concrete block as c = f ′c/4 to verify the nonlinear finite

element analysis. Doran et al. [75] proposed the following equation to determine

the cohesion of concrete after calibrating the results of several finite element

applications to concrete:

c = 0.231 ln(Ec d
2
max)− 0.60 (4.57)

where Ec [MPa] is the elastic modulus of concrete and dmax [mm] represents the

maximum aggregate size in the concrete mix. A thorough investigation on the

concrete cohesion has been carried out by Arslan [76]. The following equation to

determine the concrete cohesion is proposed [76]:

c =





4.35(f ′c)
0.31(

a

d
)−1.33 exp(0.12ρ)(

d

dmax
)−0.30, for a/d < 2.5

2
3
(f ′c)

0.31(
a

d
)0.75 exp(0.12ρ)(

d

dmax
)−0.30, for a/d ≥ 2.5

[MPa]

(4.58)

where a is the shear span; d is the depth of the cross-section; and ρ is the tensile

steel reinforcement.

In this thesis, we adopt Eq. (4.58) to determine the cohesion of concrete and

for the cap parameter X0, the following equation is used [77]:

X0 = 8.769178.10−3(f ′c)
2 − 7.3302306.10−2(f ′c) + 84.85 [MPa] (4.59)
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4.5.1.2 Integration algorithm of concrete constitutive law-Return map-

ping algorithm

The return mapping algorithm basically consists of two major steps, the formu-

lation of the elastic trial stress σtr
n+1, also referred to as an elastic predictor and

the return mapping to the yield surface, which can be interpreted as a closest

point projection of the trial stress onto the yield surface, also referred to as a

plastic corrector. This strategy involves an implicit approximation of the govern-

ing equations, leading to a nonlinear system of algebraic equations in the stresses

and updated internal variables. Details can be found in the following section,

with complete accounts presented in several textbooks existing already on the

subject, see [78–80] among others. For multi-surface plasticity application of an

implicit backward Euler integration scheme on the generalized flow rule yields the

following return mapping algorithm

εpn+1 = εpn + ∆εpn+1 = εpn +
2∑

i=1

∆λi,n+1∂σfi,n+1 (4.60)

σtr
n+1 = C (εn+1 − εpn) (4.61)

σn+1 = C (εn+1 − εpn+1) = σtr
n+1 −C ∆εpn+1 (4.62)

where ∆λi,n+1 = λ̇i∆t and C is the elastic stiffness matrix. Eq. (4.62) can be

expanded as

I1,n+1 = I tr1,n+1 − 3K ∆Īp1,n+1 (4.63)

sn+1 = strn+1 − 2G∆epn+1 (4.64)

where Īp1,n+1, ∆epn+1, K and G are respectively first invariant of plastic strain,

deviatoric plastic strain, bulk modulus and shear modulus.

The next step is to determine the active part of the yield surface. On the basis

of the elastic trial stress state, we can distinguish three possibilities:

1. Stress point lies inside the yield surface - elastic state.

2. Stress point lies on the smooth cap surface - plastic state.

3. Stress point lies on the tension elliptical surface - plastic state.
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4.5.1.3 Loading on the smooth cap surface mode

Loading on the smooth cap surface is characterized by f tr1,n+1 > 0, ∆λ1,n+1 > 0

and ∆λ2,n+1 = 0 or in the numerical implementation (I tr1 < I1,t, f
tr
1,n+1 > 0,

√
J tr2 >

1

θ
I tr1 − (θ +

1

θ
) fct + α). From the flow rule, we have

∆εpn+1 = ∆λ1,n+1∂σf1,n+1. (4.65)

Substituting Eq. (4.65) into Eq. (4.62), we get:

σn+1 = σtr
n+1 −∆λ1,n+1 C ∂σf1,n+1. (4.66)

In the plastic regime, the solution of above equation (4.66) involves the intro-

duction of an additional variable which is the incremental consistency parameter

∆λ1,n+1. Hence we need an additional equation to solve the system of equations,

and that is the yield function evaluated at time tn+1

f1,n+1 = 0. (4.67)

To solve this system of equations, functions are evaluated at time tn+1. This

system is typically solve by a Newton-Raphson type iteration. The unknown

variables are cast into one vector which is

x = [σn+1 ∆λ1,n+1]T . (4.68)

The residual vector is defined as

r =

[
rσ

rf

]
=

[
σn+1 − σtr

n+1 + ∆λ1,n+1 C ∂σf1,n+1

fn+1

]
. (4.69)

Solving the linearized equations, we get at (k + 1)th iteration:

x(k+1) = x(k) + ∆x (4.70)

where ∆x = −
(
∂r
∂x
|(k)
)−1

r(k). The solution can be written as the following.

∆2λ
(k)
1 =

r
(k)
f − ∂σf

T (k)
1,n+1 Ξ1,n+1 C−1 r

(k)
σ

∂σf
T (k)
1,n+1 Ξ1,n+1 ∂σf

(k)
1,n+1

(4.71)

∆σ(k) = −Ξ1,n+1

(
∂σf

(k)
1,n+1 ∆2λ

(k)
1 + C−1 r(k)

σ

)
(4.72)
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where Ξ1,n+1 =
[
I + ∆λ

(k)
1,n+1 C ∂2

σσf
(k)
1,n+1

]−1

C and I is unity matrix. Hence, the

next iteration step is given by

∆λ
(k+1)
1,n+1 = ∆λ

(k)
1,n+1 + ∆2λ

(k)
1 (4.73)

σ
(k+1)
n+1 = σ

(k)
n+1 + ∆σ(k) (4.74)

4.5.1.4 Loading on the tensile elliptical surface

Loading is on the tensile elliptical surface while f tr2,n+1 > 0, ∆λ2,n+1 > 0 and

∆λ1,n+1 = 0 or in the numerical implementation (I tr1 ≥ I1,t, f
tr
2,n+1 > 0,

√
J tr2 <

1

θ
I tr1 − (θ+

1

θ
) fct +α). The computation algorithm for this case is similar to the

previous one.

4.5.1.5 Consistent tangent operator

Use of tangent operator, consistent with the integration algorithm is essential

in order to preserve the quadratic rate of convergence that characterizes New-

ton methods. In contrast to continuum elasto-plastic tangent operator, which is

obtained by enforcing the consistency condition on the continuum problem, con-

sistent algorithmic tangent operator is obtained by enforcing consistency on the

discrete algorithmic problem.

4.5.1.5.1 Consistent tangent operator for smooth cap yield surface

Differentiation of the elastic stress-strain relationship Eq. (4.62) and the discrete

flow rule Eq. (4.60) yields

dσn+1 = C
(
dεn+1 − dεpn+1

)
(4.75)

dεpn+1 = d (∆λ1,n+1) ∂σf1,n+1 + ∆λ1,n+1∂
2
σσf1,n+1dσn+1 (4.76)

Combining these two equations gives

dσn+1 = Ξ1,n+1 (dεn+1 − d (∆λ1,n+1) ∂σf1,n+1) (4.77)
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where Ξ1,n+1 = [I + ∆λ1,n+1 C ∂2
σσf1,n+1]

−1
C. The coefficient d (∆λ1,n+1) in Eq.

(4.77) can be obtained by differentiating f1,n+1 = 0

∂σf
T
1,n+1 dσn+1 = 0 (4.78)

Substituting Eq. (4.77) into Eq. (4.78) and solving for d (∆λ1,n+1), we get

d (∆λ1,n+1) =
∂σf

T
1,n+1 Ξ1,n+1 dεn+1

∂σfT
1,n+1 Ξ1,n+1 ∂σf1,n+1

(4.79)

Inserting Eq. (4.79) into Eq. (4.77), we obtain the consistent tangent operator

as below

Cep
n+1 = Ξ1,n+1 −

Ξ1,n+1 ∂σf1,n+1 ⊗ ∂σf
T
1,n+1 Ξ1,n+1

∂σfT
1,n+1 Ξ1,n+1 ∂σf1,n+1

(4.80)

where ⊗ is vectorial product operation of two vectors.

4.5.1.5.2 Consistent tangent operator for tensile elliptical yield sur-

face

The procedure determining the consistent tangent operator is the same as pre-

viously described in Section 4.5.1.5.1. In this case, the following expressions are

obtained.

d (∆λ2,n+1) =
∂σf

T
2,n+1 Ξ2,n+1 dεn+1

∂σfT
2,n+1 Ξ2,n+1 ∂σf2,n+1

(4.81)

Cep
n+1 = Ξ2,n+1 −

Ξ2,n+1 ∂σf2,n+1 ⊗ ∂σf
T
2,n+1 Ξ2,n+1

∂σfT
2,n+1 Ξ2,n+1 ∂σf2,n+1

(4.82)

4.5.2 Concrete stress-strain explicit 1D model

Many different explicit stress-strain models exist to describe the unconfined and

confined concrete stress-strain behavior. Popovics [81] proposed a stress-stain

model of unconfined concrete requiring three material parameters to control the

entire pre and post peak behavior of concrete. Popovics model represents ad-

equately the behavior of most normal-strength concrete (f ′c < 50 MPa), but it
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is short of a necessary control over the slope of the post-peak branch for high-

strength concrete. Thorenfeldt et al. [82] modified the Popovics model to take

into account the high-strength concrete behavior after the post-peak where the

descending branch drop off more sharply. Mander et al. [83] adopted a failure

criteria based on a 5-parameter model of William and Warnke [61] along with

data from Schickert and Winkler [84] to define the confined compressive strength

of concrete and adopted the 3-parameter equation proposed by Popovics [81] to

describe the entire uniaxial stress-strain curve they. Bing et al. [85] proposed

a three branch stress-strain model for high strength concrete confined by either

normal or high-yield strength transverse reinforcement based on the experimen-

tal tests conducted by the same authors [86]. One model which is often used in

nonlinear elasticity is the Kent and Park [87] model, later modified by Scott et al.

[88] to include the strength and ductility enhancement due to confinement effects

and the effect of strain rate. The stress-strain relationship of the modified Kent

and Park concrete model is as follow:

σc =




K f ′c

[
2εc

0.002K
−
( εc

0.002K

)2
]

for εc ≤ 0.002K

K f ′c [1− Zm (εc − 0.002K)] ≥ 0.2K f ′c for εc > 0.002K

(4.83)

For a low strain rate the coefficients K and Zm are defined as

K = 1 +
ρs fyh
f ′c

(4.84)

Zm =
0.5

3 + 0.29f ′c
145f ′c − 1000

+
3

4
ρs

√
h′′

sh
− 0.002K

(4.85)

and for a high strain rate,

K = 1.25

[
1 +

ρs fyh
f ′c

]
(4.86)

Zm =
0.625

ε50c − 0.002K
(4.87)

where ρs is the ratio of volume of rectangular steel hoop to volume of concrete

core measured to the outside of the peripheral hoop, h′′ the width of concrete core

measured to the outside of the peripheral hoop, sh the center to center spacing of
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hoop sets, fyh the yield strength of the hoop reinforcement, ε50c strain at 0.5f ′c on

falling branch of stress-strain curve for confined concrete, and f ′c is the cylinder

compressive strength in MPa.

For nonlinear analysis of reinforced concrete structures, EN 1992-1-1 [11] pro-

poses the following stress-strain relationship for normal strength concrete:

σc
fcm

=

k

(
εc
εc1

)
−
(
εc
εc1

)2

1 + (k − 2)

(
εc
εc1

) (4.88)

where εc1 is the deformation at pick stress and k is determined by

k =
1.1Ecm εc1

fcm
(4.89)

in which fcm is the mean value of concrete cylinder compressive strength and

Ecm is the relative secant modulus calculated conventionally at a stress of 0.4fcm.

Upon the ultimate strain, εcu, the model proposed by EN 1992-1-1 [11] gives no

expression of stress-strain curve and is not adapted to a high strength concrete

which shows a more ductile behavior than normal concrete. For confined concrete,

EN 1992-1-1 [11] proposes a parabolic-rectangular stress-strain curve where the

increased characteristic strength and strains are defined by

fck,c =





fck

(
1.000 + 5.0

σ2

fck

)
for σ2 ≤ 0.05fck

fck

(
1.125 + 2.5

σ2

fck

)
for σ2 > 0.05fck

(4.90)

εc2,c = εc2

(
fck,c
fck

)2

(4.91)

εcu2,c = εcu2 + 0.2
σ2

fck
(4.92)

in which fck is the characteristic compressive cylinder strength of concrete at 28

days, σ2(= σ3) the effective lateral compressive stress due to confinement and εc2

and εcu2 are defined by EN 1992-1-1 [11].
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4.6 Constitutive law for shear connection

The overall behavior of the composite steel-concrete member strongly depends

on the stress transfer mechanism between the steel and the concrete encasement

which may be accomplished by three main mechanisms: a) chemical bonding

(bond between the cement paste and the surface of the steel: b) friction (assumed

proportional to the normal force at the interface): c) mechanical interaction (due

to embossments, ribs or shear stud connectors). The role of shear connection is

essential, without them, there is no collaboration between the steel and concrete

material. They limit the slip that may occur along the steel-concrete interface.

Thus ensuring a resumption of longitudinal shear, they allow to obtain a com-

posite section with two components working together. However, superposition

of force transfer mechanisms is not generally permitted as the experimental data

indicate that direct bearing or shear connection often does not initiate until after

direct bond interaction has been breached, and little experimental data is avail-

able regarding the interaction of direct bearing and shear connection via steel

anchors.

4.6.1 Shear transfer by bond strength between the steel

and concrete component

At low loads, most longitudinal shear stresses are transferred by the chemical

bond at the interface of steel-concrete whilst the chemical bond breaks down and

cannot be restored [89] at high load. In general, the bond strength is a function

of the normal confining pressure exerted by the surrounding concrete on the steel

surface which is known as the friction mechanism. The bond stress capacity is

commonly evaluated as the maximum average bond stress, which is the maximum

load transferred between the steel and concrete, divided by the total surface area

of steel cross-section embedded in the concrete. Experimental tests of compos-

ite structures without mechanical connector devices [90–92] have shown that the

bond stress distribution is not necessarily uniform over the entire cross-section.
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The earliest push-out tests by Bryson and Mathey [90] studied the effect of the

steel surface condition on the bond stress capacity. The surfaces of the embedded

steel beams were either freshly sandblasted, sandblasted and allowed to rust, or

left with normal rust and mill scale. The steel surfaces that were sandblasted

and allowed to rust, developed a larger maximum average bond stress than those

with mill scale. It has been observed that once the slip was produced at the steel-

concrete interface, the post slip bond stress was similar for all surface conditions.

Later, Hawkins [91] examined the position of concrete casting and the relative

size of reinforcement. The test results showed that specimens cast in the horizon-

tal position had smaller bond capacity than those cast in the vertical position.

This was attributed to the segregation of aggregate and accumulation of water

under the lower flange of the horizontal steel section. On the other hand, the

amount of confining reinforcement did not consistently affect the bond strength

prior to significant slip, but an increase in confining reinforcement increased the

bond resistance after slip. Moreover, the size of the steel cross-section had no

effect on the bond behavior for specimens with the same ratio of the embedment

length to the steel core depth. Another push-out test by Roeder [92] considered

the distribution of bond stress over the member length. It has been discovered

that the bond stress is primarily contributed by the flanges and the maximum

bond stress is a function of the concrete strength. Based on the results of the

tests, the value of the allowable load for the encased shape can be estimated by

Psl =
3.6 bf (0.09 f ′c − 95) le

k
, (in lb) (4.93)

where bf is steel flange width of encased shape (in.), f ′c concrete compressive

strength (psi), le encased length of steel shape (in.) and k is a constant equal to

5. Converting to an average ultimate bond stress using only the flange surfaces

as being effective and applying a safety factor of five as reported in the tests, one

obtains:

τmax = 0.9 (0.09 f ′c − 95), (in psi) (4.94)

Hamdan and Hunaiti [93] examined the effects of the concrete strength, steel sur-

face condition, and the tie reinforcement on the maximum average bond stress.
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According to the test results, the concrete strength had no effect on the bond

strength but the maximum average bond stress increases by adding tie reinforce-

ment to specimens with sandblasted steel surfaces. The same conclusions have

been made by Hotta et al. [94]. Wium and Lebet [95] examined encased compos-

ite columns. They postulated that bond stress can be separated into two stages.

The first stage occurs prior to complete slip and is governed by adhesion or chem-

ical bonding between the cement paste and the steel. The second stage occurs

after complete slip and is characterized as a purely frictional phenomenon. The

tests showed that an increase in flange cover from 50 mm to 150 mm (2-6 in.)

increased the force transfer after chemical debonding by 50%. They suggested to

use only the bond stress due to friction in the design and analysis of composite

structures. This bond strength depends on four major parameters: thickness of

the concrete cover, amount of hoop reinforcement, size of the steel section (depth

of section) and concrete shrinkage. Lam et al. [96] conducted the pullout tests on

the steel plate embedded in reinforced concrete beam. The results showed that

the maximum bond stress that could be developed in the specimens was about

0.6 MPa. It was observed that the bond stress dropped slowly as the interface slip

increased, and the value could be maintained at slightly above 0.5 MPa at large

slips. In some design codes for encased composite members [97, 98], the shear

transfer between the steel and concrete is based entirely on the direct bearing. No

allowance is made for natural bond between the steel and concrete. EN 1994-1-1

[12] permits the use of natural bond of 0.3 MPa for encased composite members,

over the entire perimeter of the section.

For natural bond condition, the experimental results tested by Roeder et al. [99]

indicated that the bond stress can be determined by using the following equation

in which the maximum average bond stress was reduced by 2 standard deviations

providing an estimated confidence of 97.7%:

fs(2σ) = 2.52− 0.39
L

d
− 19.12ρ, (in MPa) (4.95)

where L and d are the length and depth of the steel section; ρ = As
At

; As and

At are the areas of the steel section to the total cross section of the composite
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member. Eq. (4.95) indicates that no bond is available when the L/d ratio is

greater than approximately 6 or when ρ is greater than 0.125. It is tempting to

use the longest bond length, but this will not necessarily produce the largest load

transfer capacity. An optimization of the maximum load capacity computed from

Eq. (4.95) found that the maximum capacity will occur when:

L

d
= 3.22− 24.52 ρ (4.96)

In practice, nearly all columns will use this critical length for defining their bond

stress capacity, and therefore Eq. (4.96) can be introduced into Eq. (4.95) for

these practical applications. Then,

fs(2σ) = 1.26− 9.54 ρ, (in MPa) (4.97)

At the ultimate load performance level, this bond stress can be uniformly dis-

tributed over the perimeter of the section and a length equal to the lesser of

either the column length or the length defined by Eq. (4.96). The tests reported

that under cyclic loading the interface is deteriorated after the initial slip between

the steel and concrete occurs. Thus, at the serviceability performance level, it is

proposed that the triangular bond stress distribution to be used over the length

of the member is equal to two times the depth of the encased sections. The max-

imum average bond stress defined in Eq. (4.95) is also used for the serviceability

limit state, because it leads to a conservative estimation of the serviceability be-

havior.

According to the experimental tests [99], the concrete confinement did not have a

dramatic effect on the maximum average bond stress, but it affected the post-slip

deterioration. The observations during the experimental tests suggested that a

minimum confinement is necessary to assure satisfactory post slip behavior, but

that large amounts of confining steel are not needed to achieve a good bond per-

formance. Further, these experiments supported the observations that the bond

stress is distributed exponentially over the column length under service load, and

the distribution approaches a uniform value for loads approaching the maximum
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capacity. In spite of the individual previous studies suggesting that the surface

condition of the steel affected the bond stress capacity, it is still recommended by

Roeder et al. [99] that the bond stress should be employed only with blast cleaned

surface. Moreover, the bond stress capacity does not appear to be related to the

strength of the concrete.

4.6.2 Shear transfer by shear stud connector

Headed steel stud connectors welded to a steel section and encased in concrete

have been the most common mechanical devices for transferring forces between

the steel and concrete materials in composite construction [100]. This type of

connectors has been investigated by numerous researchers worldwide, starting in

the 1950s. The critical load of the stud was presented on the basis of push-out

tests (see Fig. 4.4) which are commonly used to determine the load-slip behavior of

the shear connectors. The shear connection capacity is assumed to be the failure

load divided by the number of connectors. The first push-out test was conducted

by Viest [101] who carried out 12 experimental tests with varying ratios of the

effective depth-to-stud diameter (h/d), where h is the stud height from its base

to the underside of the stud head. Three types of failure were observed: steel

failures, where the stud diameter reached its yield point and failed; concrete

failures, where the concrete surrounding the headed stud crushed; and mixed

failures that included failure of both materials. Moreover, the first formulas to

assess the shear strength of headed studs of composite structures was proposed

as follow:

Pu =





5.25 d2 f ′c

√
4000
f ′c

if d < 1 in.

5 d f ′c

√
4000
f ′c

if d > 1 in.
(4.98)

where f ′c is the cylinder compressive strength of the concrete (psi) and Pu is stud

shear bearing capacity (lbf). Driscoll and Slutter [102] observed that the total

depth-to-stud diameter, h/d for studs embedded in normal-weight concrete should

be equal to or larger than 4.2 if the full shear strength of the anchor had to be

developed. As a consequence, they proposed a modification of Viest’s equation
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as follow.

Pu =





932 d2
√
f ′c if h/d > 4.2 in.

222h d
√
f ′c if h/d < 4.2 in.

, (kips) (4.99)

The following equations in EN 1994-1-1 [12] state the design strength of the stud

shear connectors while welded automatically:

Pu = min





0.8 fu π d
2/4

γv
0.29α d2

√
f ′cEc

γv

(4.100)

with:

α = 0.2

(
h

d
+ 1

)
for 0 ≤ h/d ≤ 4 (4.101)

α = 1 for h/d > 4 (4.102)

where γv is the partial factor with recommended value of 1.25 and fu is the speci-

fied ultimate tensile strength of the material of the stud but not greater than 500

N/mm2.

Other researchers performed push-out tests to investigate the behavior of small

headed studs in a composite beam with a solid slab and with/without profile

steel sheeting. Chinn [103] and Valente and Cruz [104] carried out push-out tests

to evaluate the behavior of shear connection between steel and lightweight con-

crete. The connection behavior was analysed in term of its load-slip relation and

the failure modes were identified. Davies [105] studied group effects for several

headed studs in push-out tests. Mainston and Menzies [106] carried out tests

on 83 push-out specimens covering the behavior of headed anchors under both

static and fatigue loads. Hawkins and Mitchell [107] conducted 13 push-out tests

to study the behavior of headed stud shear connectors in composite beams with

profiled steel sheeting perpendicular to the beam. An and Cederwall [108] pre-

sented push-out tests of studs in normal and high strength concrete. Topkaya
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Load

Steel beam

Concrete slab

Reinforced steel

Figure 4.4: Push-out test specimen.

et al. [109] tested 24 specimens in order to describe the behavior of headed studs

at early concrete ages. In brief, from the results of the experimental tests shear

stud connectors are influenced by several parameters, with major factors cate-

gorized into shank diameter, height and tensile strength of studs, compressive

strength and elastic modulus of concrete, reinforcement detailing, and direction

of concrete casting.

In the high shear areas of steel girder bridge, many studs with typical diameter

(< 25 mm) should be welded to the top flanges to satisfy the design requirements.

However, this relatively large number of studs may have several disadvantages

[110–112]. Among them are 1) long installation time; 2) difficult deck removal

that may damage the studs as well as the girder top flange; and 3) little room

on the top flange for the construction workers to walk, which raises safety con-

cerns. For this reason, the use of large studs, which are larger than 25 mm in

diameter, in composite beams can simplify the structure, save the construction

time and make steel and concrete work together better. Several researchers have
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investigated the behavior of shear stud connectors with large diameter. Badie

et al. [110] conducted push-off tests on large studs of 31.8 mm in diameter and

provided information on the development, welding, quality control, and the appli-

cation of large studs. Shim et al. [111] and Lee et al. [112] investigated the static

and fatigue behavior of large stud shear connectors up to 30 mm in diameter,

which were beyond the limitation of current design codes. The ultimate strength

of the shear connection showed that the design shear strength in Eurocode 4 gives

conservative values for large studs.

With regard to the law of a welded shear stud connector behavior, Ollgaard

et al. [52] proposed, following a series of 48 push-out tests in lightweight and

normal-weight concrete with an effective embedment depth ratio (h/d) of 3.26,

the explicit shear-slip relationship as follow (see Fig. 4.5a):

δ δ

P P

uP uP
1 u0.95P P=

2 fu1.05P P=
fuP

uδ 1δ 2δ

( ) 2

u 11 exp
c

P P c δ= −⎡ ⎤⎣ ⎦

(a) (b)

0E
0E

Figure 4.5: Shear stud constitutive law: (a) Ollgaard-model; (b) Salari-model.

P = Pu
(
1− e−c1|δ|

)c2
(4.103)

where Pu is the ultimate strength of shear connector, δ is the slip in mm, c2 = 0.4,

and c1 = 0.7 mm−1. This model became the basis of several design methods in

codes. Aribert and Labib [113] provided a combination of c2 = 0.8, c1 = 0.7

mm−1, while Johnson et al. [114] presented values of c2 = 0.558, c1 = 1.0 mm−1,

and also c2 = 0.989, c1 = 1.535 mm−1. An improvement was given by Gattesco

and Giuriani [115] to simulate the actual behavior of the connectors, Eq. (4.104)
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with c2 = 0.97, c1 = 1.3 mm−1 and c3 = 0.0045 mm−1.

P = Pu

[
c2

(
1− e

−c1|δ|
c2

)0.5

+ c3 |δ|
]

(4.104)

More recently, Salari [116] proposed an explicit model of the nonlinear behavior

of cyclic studs. This model is capable of taking into account the loss of strength

and stiffness of the connector during cyclic loading (see Fig. 4.5b). The envelope

curve is given by the following formulas.

P = Puα1δ exp
(
−α2δ

α3
)

for 0 ≤ δ =
δ

δu
≤ 1 (4.105)

P = Puβ1 exp
(
−β2

(
δ − 1

)β3)
+ Pfu for δ =

δ

δu
> 1 (4.106)

with:

α1 =
E0δu
Pu

β1 = 1− Pu
Pfu

α2 = Ln(α1) β2 = − Ln(R1)

(δ1 − 1)β3

α3 =
1

α2

β3 =
Ln(R1)− Ln(R2)

Ln(δ1 − 1)− Ln(δ2 − 1)

Ri =
Pi − Pfu
Pu − Pfu

δi =
δi
δu
, i = 1, 2

In these formulas, we denote by:

• δu the slip corresponding to the ultimate force Pu;

• Pfu is the adhesive strength related to the friction;

• δ1 is the slip corresponding to the force P1 = 0.95Pu after peak;

• δ2 is the slip corresponding to the force P2 = 1.05Pfu after peak;

Another shear-slip relationship of the shear stud connector, which is fairly simple,

is elastic perfectly plastic model, (Fig. 4.6).
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P

δ

δ

P

uP

0E

0E

Figure 4.6: Elastic-perfectly plastic shear stud model.

4.7 Conclusion

In this thesis, the concrete plastic Cap model is adopted for characterizing the 3D

stress state of concrete in the shear-flexible model. The outcome of the cap model

is that it can represent the concrete behavior in the hydrostatic compression that

can arrive for highly confined concrete. For structural steel shape and reinforce-

ment bar, the elastic perfectly plastic and elasto-plastic with linear hardening

constitutive law are adopted, respectively. The shear connection is modeled as a

distributed spring in this thesis. The equivalent distributed shear strength and

stiffness are calculated by dividing the strength and stiffness of a single row of

shear studs by their spacing along the beam length. The elastic perfectly plastic

constitutive law is adopted for shear connection. This adoption in the forthcom-

ing numerical model may give a more flexible response of the beam compared to

the model with a nonlinear constitutive law of shear connection. However, both

constitutive law may give the same ultimate.
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displacement-based approach.

5.1 Introduction

In comparison to the case of the hybrid member under combined compression

and bending, the nonlinear behavior of hybrid member under high shear stresses

has not been extensively investigated. Indeed, the classical fiber beam element

model considering only the axial stresses acting on the cross-section is not ca-

pable to accurately describe the response of the structural member under the

coupling between shear, axial and bending action. Over the years, there has

been a great deal of research on the development of the fiber element model to

overcome this limitation by adopting the Timoshenko beam theory or even the

exact beam theory. The differences between the models proposed in the literature

are related to the shear kinematic assumptions taken at the sectional level, the

type of multi-axial constitutive relations and also to the FE formulation based on
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the stiffness or flexibility approach [117–126]. Vecchio and Collins [117] adopted

the smeared crack approach and proposed the modified compression field the-

ory (MCFT) which assumes the cracked concrete in reinforced concrete can be

treated as a new material with empirically defined uniaxial stress-strain behav-

ior, representing the average stress versus strain constitutive laws in the element.

This model includes an additional set of equilibrium equations designed to satisfy

the longitudinal equilibrium of each fiber which enables to determine numeri-

cally the shear strain profile. Bentz et al. [118] then improves upon this model

and entitled it the Simplified Modified Compression Field Theory (SMCFT) by

providing an accurate shear calculation while making the overall shear design

method less complicated. Ranzo and Petrangeli [119] adopted the nonlinear truss

model to identify the monotonic shear response of the reinforced concrete beam

(a hysteretic stress-strain relationship) and then implemented the latter straight-

forwardly into the classical fiber element model. Thereafter, Petrangeli et al.

[120] adopted the micro-plane theory to model the shear mechanism at each con-

crete fiber of the cross-section by imposing the equilibrium between the concrete

and the transverse steel reinforcement to determine the transverse strains. A

contribution by Guner and Vecchio [123] is quite similar in terms of the shear

strain distribution and the assumption of zero clamping stresses in the transverse

direction. Recently, Navarro-Gregori et al. [126] presented a model based on Tim-

oshenko beam theory with a variable shear strain distribution on the cross-section

in order to effectively capture the phenomenon of diagonal cracking. Apart from

the assumption of the shear strain distribution on the cross-section, a sectional

model based upon a displacement field to take into account the effects of warping

and distortion in the cross-section has been proposed by Bairan and Mari [121]

and Mohr et al. [124]. A further modeling strategy attempting to capture the

mechanics of the phenomena is addressed to the triaxial constitutive model of

the concrete coupling with/without the damage mechanic model. Saritas and

Filippou [122] developed a beam element model by condensing the 3d formu-

lation derived from a 3d plastic-damage material model with the plane stress

conditions. Likewise, a force-based Timoshenko-type 3d beam element with the
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softened membrane constitutive model was developed by Mullapudi and Ayoub

[125] to analyze concrete members subjected to combined loadings including tor-

sion. They emphasized the accuracy of the model in representing both global and

local behavior of concrete member parameters as well as the proper failure mode.

This chapter aims to develop a new finite element formulation based on a fiber

model considering the triaxial stress state in the concrete component, motivated

by a large range of the research on the shear failure of reinforced concrete mem-

bers as cited above. The plane stress condition for the concrete component is

applied in order to condense the 3d formulation, derived from a 3d plastic model

of the concrete material, into a 2d beam model. To do so, we apply the strategy

proposed by Klinkel and Govindjee [127] where the stresses that need to be set

equal to zero on the 3d material model are linearized. Consequently, the out-of-

plane strain components are updated. This allows a quadratic convergence rate

in the local iteration scheme. The consistent tangent stiffness are provided by the

standard static condensation of the 3d material tangent stiffness. To take into

account the contribution of the transverse reinforcement on confinement effects

of the concrete material, we extend this algorithm by imposing the transversal

equilibrium between the concrete fiber and the transverse steel.

The organization of this chapter is as follows. In Section 5.2, the equilibrium and

the kinematic equations are introduced in matrix forms. Next, the development

of the displacement-based finite element formulation is presented in Section 5.3.

Section 5.4 is devoted to the sectional formulation where the procedure of de-

termining the consistent tangent stiffness is highlighted. Finally, the numerical

applications are presented in Section 5.5 to assess and illustrate the performance

of the developed formulations.
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5.2 Equation field

The field equations in matrix form describing the behavior of hybrid beam with

n embedded sections in partial interaction are briefly outlined in this section.

All variables with subscript c belong to the encasing component (concrete) and

those with subscript s belong to the embedded element (steel). Quantities with

subscript sc are associated with the shear connection.

5.2.1 Kinematic relations

From the kinematic relations Eqs. (2.12-2.16), the vector ê denoting the general-

ized sectional strain is related to the displacement field by the kinematic relations

as follow:

ê = ∂̂d (5.1)

where

êT = [εs1 εs2 · · · εsn κs εc κc γc g1 g2 · · · gn] , (5.2)

dT = [us1 us2 · · · usn uc v θc] (5.3)

and the expression of ∂̂ is given by

∂̂T =




∂ 0 · · · 0 0 0 0 0 −1 0 · · · 0

0 ∂ · · · 0 0 0 0 0 0 −1 · · · 0
...

...
. . .

...
...

...
...

...
...

...
. . .

...

0 0 · · · ∂ 0 0 0 0 0 0 · · · −1

0 0 · · · 0 0 ∂ 0 0 1 1 · · · 1

0 0 · · · 0 ∂2 0 0 ∂ 0 0 · · · 0

0 0 · · · 0 0 0 ∂ −1 −h1 −h2 · · · −hn




(5.4)

The superscript •T denotes matrix transposition.
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5.2.2 Equilibrium relations

The equilibrium equations (Eqs. (2.1-2.5)) can be cast in compact form as follow:

∂̃D + Pe = 0 (5.5)

in which

DT = [Ns1 Ns2 · · ·Nsn Ms Nc Mc Tc Dsc1 Dsc2 · · ·Dscn ] , (5.6)

PT
e = [0 0 · · · 0 0 py 0] (5.7)

and the expression of ∂̃ is as follow:

∂̃ =




∂ 0 · · · 0 0 0 0 0 1 0 · · · 0

0 ∂ · · · 0 0 0 0 0 0 1 · · · 0
...

...
. . .

...
...

...
...

...
...

...
. . .

...

0 0 · · · ∂ 0 0 0 0 0 0 · · · 1

0 0 · · · 0 0 ∂ 0 0 −1 −1 · · · −1

0 0 · · · 0 −∂2 0 0 ∂ 0 0 · · · 0

0 0 · · · 0 0 0 ∂ 1 h1 h2 · · · hn




(5.8)

5.2.3 Variational formulation

For the sake of simplicity, the element distributed loads (body forces) are omitted.

The variational formulations of equilibrium equations are then as follow:
∫

L

δdT ∂̃D dx = 0 (5.9)

Applying integration by parts, the above equation is rewritten as
∫

L

δêT D dx = δqT Q (5.10)

The left hand side is the virtual works of internal forces while the right one is of

external forces. The latter can be written as

δqTQ =

[
n∑

j=1

δusj Nsj + δucNc + δθsMs + δθcMc + δv T

]L

0

(5.11)
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in which T = Tc +
n∑
i=1

Tsi is the total shear force at the considered point on the

directrix of the beam.

The consistent matrix formulations are obtained by using Newton-Raphson it-

erative procedure. In the interval of (i− 1)th to ith iteration, the linear behavior

is assumed which gives:

Di = Di−1 + ki−1∆ê (5.12)

where ki−1 is the linear tangent stiffness matrix of the section at the (i − 1)th

iteration.

At the ith iteration, Eq. (5.10) is rewritten as:
∫

L

(
δêT

(
Di−1 + ki−1∆ê

))
dx = δqTQ (5.13)

5.3 Displacement based formulation

Let the hybrid beam be divided into finite number of elements. The continuum

displacement vector within an element is discretized such that

d =
α∑

i=1

Ni qi (5.14)

where Ni is the shape function of node i; α is number of nodes in an element

and qi is the generalized displacement vector corresponding to the ith node of an

element. The above relation is expressed in matrix form as

d = N q (5.15)

where N is element shape function matrix and q is element nodal displacement

vector, see Fig. 5.1. The deformation field, ê can be expressed in terms of nodal

displacement vector, q as

ê = B q (5.16)
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L

y

x

1 1;  q Q

2 2;  q Q

;  n nq Q

1 1;  n nq Q  2 2;  n nq Q 

3 3;  n nq Q 

4 4;  n nq Q 

5 5;  n nq Q 

6 6;  n nq Q 

2 4 2 4;  n nq Q 

2 5 2 5;  n nq Q 
2 6 2 6;  n nq Q 

2 7 2 7;  n nq Q 

2 8 2 8;  n nq Q 

2 9 2 9;  n nq Q 

2 10 2 10;  n nq Q 

2 11 2 11;  n nq Q 

2 12 2 12;  n nq Q 
2 13 2 13;  n nq Q 

Figure 5.1: Nodal forces and displacements of hybrid beam element.

where B = ∂̂N(x). By substituting Eq. (5.16) back into Eq. (5.13), one obtains:

δqT

∫

L

[
BT
(
Di−1 + ki−1B∆q

)]
dx = δqTQ, ∀δq (5.17)

which must hold for any kinematically admissible variations δq. Therefore, this

equation may be simplified in the following form

∫

L

[
BT
(
Di−1 + ki−1 B∆q

)]
dx = Q (5.18)

which can be rewritten as

Ki−1∆qi = Qi −Qi−1
R (5.19)

where Ki−1 =
∫
L

BT ki−1 B dx is element tangent stiffness matrix and Qi−1
R =

∫
L

BT Di−1 dx is the nodal forces due to the lack of equilibrium at the element level.

In the present work, we adopt Hermite polynomial function for the transversal

displacement v and the quadratic interpolation functions for axial displacement

ui of each constituent and for sectional rotation θc of encasing component. Such

shape functions will prohibit the analysis result from the shear locking problem.

The shape function, N used for interpolation of displacement field is defined as

follow.

NT =
[
NT
us1

NT
us2
· · · NT

usn NT
uc NT

v NT
θc

]
(5.20)
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where

Nus1 =
[
Au 0 · · · 0 0 0 0 0 Bu 0 · · · 0 0 0 0 0 Cu 0 · · · 0 0 0

]

Nus2 =
[
0 Au · · · 0 0 0 0 0 0 Bu · · · 0 0 0 0 0 0 Cu · · · 0 0 0

]

Nusn =
[
0 0 · · · Au 0 0 0 0 0 0 · · · Bu 0 0 0 0 0 0 · · · Cu 0 0

]

Nuc =
[
0 0 · · · 0 Au 0 0 0 0 0 · · · 0 Bu 0 0 0 0 0 · · · 0 Cu 0

]

Nv =
[
0 0 · · · 0 0 Av Aθs 0 0 0 · · · 0 0 Bv Bθs 0 0 0 · · · 0 0 0

]

Nθc =
[
0 0 · · · 0 0 0 0 Aθc 0 0 · · · 0 0 0 0 Bθc 0 0 · · · 0 0 Cθc

]

(5.21)

in which

Au(x) = Aθc(x) = 1− 3x

L
+

2x2

L2
Bu(x) = Bθc(x) = −x

L
+

2x2

L2

Av(x) = 1− 3x2

L2
+

2x3

L3
Bv(x) =

3x2

L2
− 2x3

L3

Aθs(x) = x− 2x2

L
+
x3

L2
Bθs(x) = −x

2

L
+
x3

L2

Cu = Cθc =
4x

L
− 4x2

L2

(5.22)

5.4 Section formulation

The nonlinear behavior of a hybrid beam subjected to a combined load largely

depends on the hypotheses made for the stress and strain distribution on the cross-

section. It is here assumed that the longitudinal reinforcing bar and steel sections

are subjected to only axial stresses whereas the concrete component is under

generalized 3d stress field. As a consequence, a uniaxial stress-strain relationship

for the longitudinal reinforcing bar and the steel profile can be used and a 3d

constitutive model of concrete has to be adopted. Because of the complexity of

the latter, the following section is only devoted to the description of the concrete

component.
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5.4.1 Fibre state determination

In the framework of the sectional level, the two translations of any point on the

cross-section of concrete component d
T

i = [ui vi] are related to the generalized

displacements at the reference point of the cross-section by the following expres-

sions.

uc(x, y) = uc(x)− yθc(x)

vc(x, y) = vc(x) = v(x)
(5.23)

Given the generalized sectional strain vector êc = [εc, κc, γc]
T, the fiber longitu-

dinal strains (parallel to the beam axis) and shear strains of concrete component

can be found using suitable shape functions. In particular, for the longitudinal

strain field, the plane section hypothesis has to be retained, whereas for the shear

strain field different shear shape functions can be used. Another fashion of an

analytical procedure is to approximate the shear stress distributions. Despite

no guarantee of compatibility between fibers, it gives a satisfactory approximate

analysis that allows for a better computational speed in sectional level, see [117].

Comparing the numerical results of both uniform shear stress and parabolic shear

strain assumption against the results of a rigorous procedure, Vecchio and Collins

[117] showed that using the former assumption led to a conservative value of the

ultimate load and the latter resulted in an un-conservative value of the failure

load. For the sake of simplicity and computational efficiency for implementing

and applying the concrete plasticity model, in this study a uniform shear strain

distribution γcxy along the concrete section is assumed in spite of the fact that

this assumption may overestimate the ultimate load:

γcxy = γc (5.24)

In this manner, the plane section hypothesis is restrained. By these means and

using the equilibrium, compatibility and constitutive equations, the complete 2d

stress-strain state and the stiffness matrix of the fiber are determined.
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5.4.1.1 Plane stress

The constitutive equations of 2d stress-strain state for concrete fiber are obtained

by prescribing the in-plane strains and enforcing the plane beam constraint on the

3d constitutive law, and then obtaining, as a result, the active stresses and out-of-

plane strains. In the transverse direction (y-direction as well as z-direction), the

transversal reinforcement is assumed to be uniformly distributed in the concrete

with a volumetric ratio ρst. This assumption is made in order to take into account

the confinement effects in the concrete. When imposing the equilibrium between

concrete and steel in transverse direction, we can choose the solution within two

extreme options [120] which are 1) impose equilibrium at each fiber separately

and 2) impose equilibrium over the whole cross-section. The former option is

more advantageous from a computational point of view because the iterations are

carried out separately at each fiber, according to the degree of nonlinearity of

the fiber behavior. Therefore, the total number of fiber state determinations are

reduced to a minimum, avoiding iteration of the whole cross-section (option 2),

when highly nonlinear behavior takes place in only a few fibers. Moreover, within

option 1, it is possible to define a different effective transverse steel area for each

fiber, depending on the stirrup configuration. Hence, the option 1 is adopted in

this study. Compatibility requirements impose that the transverse strain εcy and

lateral strain εcz in concrete is equal to the strain in the transversal reinforcement

εsty and εstz , respectively, see Fig. 5.2. The resultant stresses along the y-direction

Concrete fiber

Transverse 
reinforcement

c
y

c
y

c
x

c
xy

Figure 5.2: Concrete fiber mechanics.
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and z-direction are the additions of the axial stresses in the transversal steel σsty

and σstz to the axial stresses in concrete σcy and σcz, respectively:

σy = σcy + ρsty σ
st
y (5.25)

σz = σcz + ρstz σ
st
z (5.26)

where ρstα = Astα
bα sst

; σstα = Est
α ε

c
α; Est

α = ∂σstα
∂εstα

; Astα the area of transversal steel; bα

the width/height of the cross-section with α = y, z and sst is the longitudinal

spacing of the stirrups. Therefore, the 3d stress-strain relationship from the 3d

problem can be written as:



σcx

σy

σz

τ cxy




=







Cep
11 Cep

12 Cep
13 Cep

14

Cep
21 Cep

22 Cep
23 Cep

24

Cep
31 Cep

32 Cep
33 Cep

34

Cep
41 Cep

42 Cep
43 Cep

44




+




0 0 0 0

0 ρsty E
st
y 0 0

0 0 ρstz E
st
z 0

0 0 0 0










εcx

εcy

εcz

γcxy




(5.27)

where Cep is the 3d consistent tangent stiffness of the concrete section.

In the following, the nested Newton return-mapping iteration for plane beam

enforcement is restricted to for the reason that the original three-dimensional al-

gorithm can be used without modification. In order to describe the procedure, it

is convenient to employ the matrix notation of active stresses and in-plane strains

as follows:

σσσc =
[
σcx τ

c
xy

]T
(5.28)

εεεc =
[
εcx γ

c
xy

]T
(5.29)

During a typical equilibrium iteration, the in-plane displacements are prescribed

and so is the in-plane strain array εεεc. Instead of giving εεεc as the input of an

augmented algebraic system, we proceed as follows. Firstly, we define some initial

guesses for the unknown out-of-plane strains (εεεcp = [εcy, ε
c
z]

T). One possible guess

can be the previously (equilibrium) converged out-of-plane strains, i.e. we can

set

εεεcp = εεεcp,0. (5.30)

Pisey Keo 111



5. NONLINEAR FINITE ELEMENT ANALYSIS

Next, we use the augmented strain array
[
εεεc,T, εεεc,Tp

]T
as the input of the integra-

tion algorithm for the 3d case i.e. for ε̂εεc =
[
εcx ε

c
y ε

c
z γ

c
xy

]T
case. After application

of the 3d return-mapping procedure, the corresponding routine will return the

augmented stress array
[
σσσc,T σσσT

p

]T
where σσσT

p = [σy σz]. If ‖σσσp‖ = 0 (or, in com-

putational terms, ‖σσσp‖ ≤ Tol) then the guesses εεεcp indeed solves the plane beam

problem, and the solution obtained by the 3d problem is the one we are looking

for. Otherwise, we apply a Newton-Raphson correction to obtain another guess

εεεcp = εεεcp −C−1
pp σσσp (5.31)

where Cpp is the component of the modified 3d consistent tangent matrix obtained

from Eq. (5.27) as follows:
[
σσσc

σσσp

]
=

[
Cmm Cmp

Cpm Cpp

][
εεεc

εεεcp

]
. (5.32)

We repeat this process until we find the out-of-plane strains εεεcp that, together with

the in-plane strains kinematically prescribed by the global equilibrium iteration,

results in zeros (or sufficiently small) the non-active stresses σσσp upon application

of the 3d algorithm.

To obtain the tangent operator consistent with the above nested iteration al-

gorithm, we first differentiate the residual equation σσσp = 0 of the plane beam

enforcement loop. This together with Eq. (5.32) gives

dσσσp = Cpm dεεεc + Cpp dεεεcp = 0, (5.33)

which renders

dεεεcp = −C−1
pp Cpm dεεεc. (5.34)

Substitution of above equation into Eq. (5.32) results in the following consistent

tangent relation between the active stresses and strains components

dσσσc

dεεεc
= k

c
(5.35)

where k
c

= Cmm −CmpC
−1
pp Cpm.
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5.4.1.2 Plane strain

In case the lateral deformations of concrete are restrained, the plane strain con-

ditions can be used. The original three-dimensional algorithm can be then used

without modification by imposing the out-of-plan strains equal to zero. From the

3d problem, we have the 3d stress-strain relationship as follows:




σcx

σcy

σcz

τ cxy




=




Cep
11 Cep

12 Cep
13 Cep

14

Cep
21 Cep

22 Cep
23 Cep

24

Cep
31 Cep

32 Cep
33 Cep

34

Cep
41 Cep

42 Cep
43 Cep

44







εcx

0

0

γcxy




(5.36)

The consistent tangent stiffness of the concrete fiber for the plane strain conditions

is then:

k
c

=

[
Cep

11 Cep
14

Cep
41 Cep

44

]
. (5.37)

5.4.2 Section response

The relation between internal forces D and generalized strains ê depends on

the material properties and the cross-section geometry of the beam. For hybrid

beam in partial interaction with nonlinear material behavior, this relation can be

expressed in general form as

D = Ω(ê) (5.38)

where Ω represents a general function that permits the computation of internal

forces for given generalized strains. The linearization of Eq. (5.38) gives the

tangent stiffness matrix of the section k which is

k =




ks 0 0

0 kc 0

0 0 ksc


 (5.39)
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The components of the consistent tangent stiffness of the section are:

ks =




EAs1 0 · · · 0 −ESs1
0 EAs2 · · · 0 −ESs2
...

...
. . .

...
...

0 0 · · · EAsn −ESsn
−ESs1 −ESs2 · · · −ESsn EIs



, (5.40)

kc =




∫
Ac
k
c

11dA+ EAsl −
∫
Ac

(y − yc)k
c

11dA− ESsl

∫
Ac
k
c

12dA

−
∫
Ac

(y − yc)k
c

11dA− ESsl

∫
Ac

(y − yc)2k
c

11dA+ EIsl
∫
Ac

(y − yc)k
c

12dA∫
Ac
k
c

21dA −
∫
Ac

(y − yc)k
c

21dA
∫
Ac
k
c

22dA


 ,

(5.41)

and

ksc =




ksc1 0 · · · 0

0 ksc2 · · · 0
...

...
. . .

...

0 0 · · · kscn




(5.42)

where EAα =
∫
Aα
Eα,tdA, ESα =

∫
Aα
Eα,t (y−yα)dA, EIα =

∫
Aα
Eα,t (y−yα)2dA

for α = s1, · · · , sn with the Young’s tangent modulus Eα,t =
∂σα
∂εα

, EAsl =
∫
Asl

Esl,tdA, ESsl =
∫
Asl

Esl,t (y − yc)dA, and EIsl =
∫
Asl

Esl,t (y − yc)2dA with

the Young’s tangent modulus Esl,t =
∂σsl
∂εsl

in which the contribution of the longi-

tudinal reinforcement in concrete component is explicitly considered.

5.5 Numerical application

The purpose of this section is to assess the capability of the proposed formulation

in reproducing the nonlinear behavior of hybrid beams subjected to combined

loads and to investigate the influence of the partial interaction on the general

behavior of the members. The Gauss integration method (5 Gauss-Lobatto inte-

gration points) is used to integrate the resultant section forces and section stiffness

along the element, while the return mapping algorithm is employed to integrate

the stresses and material stiffness within the fiber of the concrete cross-section.
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5.5.1 Beams under three-point flexural bending

The experimental tests consisting of two hybrid beams under 3-point flexural

bending, conducted at Laboratory of Civil and Mechanical Engineering of INSA

Rennes [128] are selected in order to assess the accuracy of the proposed model.

The hybrid-beam specimens (CW and CWHC) are reinforced by three HEB100

steel profiles totally encased in the RC cross-section reinforced with eight 20

mm diameter longitudinal reinforcing bars. All specimens had a length of 5

m and a 25 × 90 cm2 rectangular cross-section. The transverse reinforcement

consisting of 14 mm reinforcing bars was made in form of stirrups. The stud

connectors (Nelson H3L16) with spacing 20 cm are welded at both sides of the

web of the steel section ensuring the force transfer between the concrete and the

steel profile. The reinforcing bar arrangement is the same in all specimens except

the stirrup spacing (10 cm for CW and 20 cm for CWHC). The geometry and

reinforcement of the beams are represented in Fig. 5.3 and the main characteristics

of the experimental tests are summarized in Table 5.1 in which the cylinder

Table 5.1: Main characteristic of the materials.

Concrete Long. bar Stirrup Steel

Specimen fcm Ecm fs Es fst Est fy Ey

CW 32.00 31187 383.91 210740 633.26 207460 462.7 214450

CWHC 31.63 31078 383.91 210740 633.26 207460 462.7 214450

in MPa

strength of concrete is measured at the day of test and the elastic modulus of

concrete is determined using the EC2 formulation. The specimens were supported

by two pins at point A and B (62.5 cm from the right and left extremity of the

beam, respectively) and were loaded at mid-span until failure under displacement

controlled conditions. The response of the beams was monitored as schematically

represented in Fig. 5.4: deflection displacements were measured at five points; two

concrete strain gauges were pasted to the top concrete surface; twenty two strain
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Figure 5.3: Cross-section of the CW and CWHC specimens.

gauges were pasted to reinforcement steel and nine rosette strain gauges composed

of 0, 45 and 90 degree were pasted to steel profiles. For the numerical simulation,

the specimens are modeled by implementing the present FE model into the co-

rotational frame, developed in Chapter 3, using 12 elements. The degrees of

freedom corresponding to the internal nodes in the local frame are statically

condensed out to obtain the local displacement vector containing only the degrees

of freedom at the element ends. The self-weight of the beams are considered

through the distributed loads applied at the element level, see Eq. (5.5). In an

analysis step with the displacement control, the vertical displacement at mid-span

was incrementally applied in the model up to failure. Concerning the constitutive

law, we adopt the following stress-strain relationship: the cap model is adopted for

concrete; and the elastic-perfectly plastic for the structural steel, the reinforcing
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A B

Figure 5.4: Detailed arrangement of measuring devices.

bar and the shear connection. The parameters used in the concrete cap model

are presented in Table 5.2 in which the parameters for envelop curve is fitted with

Table 5.2: Concrete cap model parameters.

Specimen α† θ X†0 R f †t

CW 1.3789 0.4729 -91.4840 5 2.0630

CWHC 1.3740 0.4729 -91.3046 5 2.0470

† in MPa

Mohr-Colomb model (matched with a simple tensile and compressive strength)
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and the concrete Poisson’s ratio of 0.15 is adopted. For the reason of the lack of

experimental test on the shear stud behavior used in the hybrid beams, we adopt

the formulation provided by EC4 [12] to determine the ultimate shear strength

of the connector in which the partial factor is assumed to be equal to 1; and we

assume that the slip at the ultimate shear strength of the connector is 2 mm.

The load-displacement curves obtained from the FE models, compared against

the ones obtained from the experimental tests are depicted in Fig. 5.5 and Fig. 5.6

for CW and CWHC, respectively. The confined concrete zone in the FE models is

divided into three zones as illustrated in Fig. 5.3. Four FE models are considered:

• the model with the confined concrete zone defined in Fig. 5.3 (FE1);

• the model without the highly confined concrete zone (FE2);

• the model without confinement (FE3);

• and the Euler-Bernoulli beam model (EB-Model, see Appendix B).

The parabolic rectangular model for concrete (with limited concrete strain at

crushing strength) is adopted in the latter FE model. The curves of the exper-
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Figure 5.5: Load-displacement curve at mid-span of CW specimen.

Pisey Keo 118



5.5 Numerical application

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

Mid−span deflection [mm]

Lo
ad

 [k
N

]

 

 

CWHC−EXP

CWHC−FE1

CWHC−FE2
CWHC−FE3

EB−Model

Figure 5.6: Load-displacement curve at mid-span of CWHC specimen.

imental results show that the specimens can deform with a large displacement

showing their ductile behavior while subjected to a monotonic loading. The ulti-

mate loads of CW and CWHC predicted by FE analysis (FE1 model) agree well

with those of the experimental results (1.0461 and 0.9737 for CW and CWHC,

respectively). It can be observed that there is a slight effect of the highly confined

concrete zone (considered in the FE1 model) on the response of the beam when

compared with the response of FE2 model. Otherwise, when considering the

plane stress condition on the concrete cross-section without taking into account

the effects of the transverse reinforcement (FE3 model), the predicted ultimate

load of the beam drops significantly. Nevertheless, the ultimate loads predicted

by the FE3 model agree well with those of EB-model. It is worth mentioning

that the ultimate load in EB-model is defined by the crushing of concrete. After

concrete crushing occurs, the softening response is observed. This is due to the

brutal decreasing of tangent stiffness of concrete cross-section. It is noteworthy to

mention that the steel sections have not completely reached their limit elasticity

while the crushing of concrete occurs.
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5.5.2 Effects of partial interaction

A hybrid beam under three-point bending (see Fig. 5.4) with the same cross-

section configuration as CW specimen is considered, but in this case there is no

shear connector placed at the interface of the steel and the concrete component.

The force transfer mechanism between the concrete and the steel component is

based on the bond strength which is a function of the normal confining pressure

exerted by the encasing concrete on the steel surface. Most of the design codes

provide the ultimate strength of the bond stress between the concrete and steel

interface rather than the stiffness. The design longitudinal shear strength by fric-

tion is assumed to be equal to 0.3 MPa in EN 1994-1-1:6.7.4.3(3) for a completely

concrete encased steel section. For a C30 concrete, the design value of the ul-

timate bond stress between a ribbed bar and concrete component according to

EN 1992-1-1:8.2 is seven times (about 2.1 MPa) greater than the one of the steel

embedded section in EC4. However, according to EN 1994-1-1:6.7.4.3(4) a higher

value of bond strength of steel embedded section may be used for a concrete

cover greater than 40 mm and with an adequate reinforcement. In this case, the

bond strength is 0.75 MPa for the present cross-section configuration. The corre-

sponding ultimate longitudinal distributed shear force is then 420 N/mm. In this

study, four values of shear connection stiffness are considered in the finite element

model. This specimen is denoted by BW with the stirrup spacing of 20 cm along

the beam length. The material characteristics of the specimen are reported in

Table 5.3 and the parameters used in the concrete cap model are presented in

Table 5.3: Main characteristic of the materials.

Concrete Long. bar Stirrup Steel

Specimen fcm Ecm fy Ey fyst Eyst fs Es

BW 31.50 31040 383.91 210740 633.26 207460 462.7 214450

in MPa

Table 5.4 in which the parameter for envelop curve is fitted with Mohr-Colomb

Pisey Keo 120



5.5 Numerical application

Table 5.4: Concrete cap model parameters.

Specimen α† θ X†0 R f †t

BW 1.3722 0.4729 -91.2422 5 2.0414

† in MPa

model (matched with a simple tensile and compressive strength) and the concrete

Poisson coefficient of 0.15 is adopted.

Fig. 5.7 shows the comparisons between the load-deflection curve obtained from
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Figure 5.7: Load-displacement curve at mid-span of the BW specimen.

the experimental test [128] and the FE analysis with several values of the shear

connection stiffness (1000, 500, 250 and 50 MPa denoted by BW-1000, BW-500,

BW-250 and BW-50, respectively). It can be seen that the shear connection stiff-

ness plays a crucial role in the flexibility of the hybrid beam. With a low shear

connection stiffness, the hybrid beam is more flexible compared to the one with

a high shear connection stiffness. However, all cases of shear connection stiffness

used in the FE model lead to the same ultimate load of the beam which agrees

well with the experimental result. Nevertheless, the FE model fails to capture
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the softening part of the beam behavior which is observed in the experimental

test. This softening part is due to the failure of the bond strength. To reproduce

this descending part, the softening laws of the shear bond strength has to be

employed.

5.6 Conclusion

In this chapter, the nonlinear FE model of hybrid beam under combined load

has been developed based on the fiber beam model where the shear deformability

of the concrete component is considered. To take into account the confinement

effects, the 3d constitutive law for the encasing concrete component is adopted.

Then, the plane stress condition for the concrete component is applied in order

to condense the 3d formulation, derived from a 3d plastic model of the concrete

material, into the 2d beam model. The developed FE model is implemented

into the local frame of the co-rotational framework developed in Chapter 3. The

static condensation has been applied in order to obtain the consistent tangent

matrix in the local co-rotational formulation. The FE model has been validated

by comparing its predictions against the experimental results of the hybrid beams

conducted at Laboratory of Civil and Mechanical Engineering of INSA Rennes.

Moreover, the influence of the partial interaction on the overall behavior of the

hybrid beams has been investigated. It has been found that the ultimate loads

predicted by FE analysis agree well with those of the experimental results and

that the shear connection stiffness plays an important role in the flexibility of the

hybrid beam. The proposed formulation can thus provide a robust and reliable

option for determining the ultimate load in a large displacement analysis of hybrid

beam-columns subjected to combined loads.
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***

Numerical investigations on

second-order effects in slender

hybrid columns subjected to

combined axial load and uniaxial

bending moment. Comparison

between the results obtained with

FE analysis and Eurocode

simplified methods. New

expressions for the correction

factors involved in the

determination of the effective

flexural stiffness EI.

6.1 Introduction

Hybrid structures composed of steel members encased in reinforced concrete have

been used at an increasing rate for mid-to-high rise buildings as they effectively
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combine structural steel and reinforced concrete members to their best advantage.

For instance, composite columns have significant economic advantages over either

pure structural steel or reinforced concrete (RC) alternatives. For a given cross

sectional dimension, composite columns also have higher strength and stiffness

therefore leading to reduced slenderness and increased buckling resistance. In the

early time of hybrid construction, these systems were built by first erecting a steel

skeleton and selected columns or entire bays of the steel framing were encased in

reinforced concrete to increase, at minimal cost, their strength, stiffness as well as

their fire resistance. Sooner these systems became very popular in seismic prone

area and nowadays it is commonly accepted within the engineering community

that composite and hybrid systems offer an economical method to develop the

required strength and stiffness. Several hybrid systems have been developed and

for some design rules need to be devised.

In high-rise buildings, slender RC columns containing multiple encased profiles

as reinforcement are often used to resist horizontal loads by bending about their

strong axes when standard reinforcement with rebars is not sufficient to sustain

such extreme loads. Those composite steel-concrete columns are called ”hybrid

columns” because they are neither RC columns in the sense of EC2 [11], nor

composite columns in the sense of EC4 [12] where the design rules are provided

only for a single encased steel profile. Nevertheless, it is legitimate to raise the

following question: can we use design rules given in EC2 or EC4 to design such

column? For columns being sensitive to instability, both EC2 and EC4 propose

simplified design methods based on moment magnification approach. The latter

can be written in general form as MEd,2 = kMEd,1 where MEd,2 is second-order

bending moment; MEd,1 is first-order bending moment; and k is the so-called

moment magnification factor. Different expressions for the factor k have been

proposed (see for example [11, 12, 97, 129, 130]). A large number of expres-

sions for k proposed in the technical literature can be (re)written in the following

form: k = β/(1 − NEd/Ncr) where NEd is the design axial load; Ncr is the elas-

tic critical normal force; and β is the equivalent uniform moment factor. The
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accuracy of moment magnification method strongly depends on, as included in

Ncr, the effective flexural stiffness EI which depends on, among other factors,

the nonlinearity of the concrete stress-strain curve, the creep and the cracking

along the column length, and on the factor β. The expression for EI used to

design reinforced concrete and composite columns has been studied for decades.

There is a vast amount of expressions for the effective flexural stiffness EI in the

literature. Mavichak and Furlong [131] considered the relative normal force as a

single parameter in their expression for EI. Mirza [132] suggested to take into

account the eccentricity, the slenderness ratio, and the creep factor related to the

sustained load. The latter was further enhanced by Tikka and Mirza [133–136]

taking into account the reinforcement ratio in their proposed EI equation. The

above-mentioned factors including the strength of concrete are also considered in

[129, 137]. Bonet et al. [130] extended their work to propose a new EI equa-

tion valid for arbitrary cross-section shape. Similarly, many authors proposed an

expression for the equivalence uniform moment factor β. The most adopted ex-

pression by the codes was proposed by Austin [138] in linear form of eccentricity

ratio (rm) at the extremities of the column. It was deduced from the solution of

linear elastic analysis. Robinson et al. [139] proposed other formula in quadratic

form of (rm). Trahair [140] and Duan et al. [141] considered eccentricity ratio

and axial force level in their expression for β. Sarker and Rangan [142] explained

that the expression provided by Austin [138] is unsafe for columns of low and

medium slenderness and they proposed another expression for β which is valid

for short-term load and for normal to high strength concrete. Tikka and Mirza

[143] maintained that the expression proposed by Austin [138] which is used in

ACI-318 [97] is safe. ACI-318 [97] proposes β equal to 1.0 for column subjected

to transverse load, and EC2 [11] does not define the β factor explicitly.

This chapter deals with numerical investigations on second-order effects in slender

hybrid columns reinforced by several steel sections subjected to combined axial

load and uniaxial bending moment about strong axis. The first objective of this

study is to point out that a straightforward application of the bending moment
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magnification method proposed in EC2 and EC4 to hybrid columns may lead to

unsafe results. To remain consistent with the Eurocodes, a new version of bending

moment magnification method for slender hybrid columns is proposed. To do so,

our FE model is used in which the geometrical/material nonlinearities, the geo-

metrical imperfections, the residual stresses in steel profiles as well as the partial

interaction effect between steel profiles and the surrounding concrete are taken

into account. Since slender hybrid columns subjected to combined axial load and

bending moment are considered, the effects of shear deformability of concrete

component can be ignored. As the result, Euler-Bernoulli beam kinematics and

the uniaxial stress-strain behavior for each component (steel and concrete) of

the hybrid beam-column element are adopted. Moreover, the developed model

based on Euler-Bernoulli kinematic assumption is consistent with the finite ele-

ment model proposed in the general methods of Eurocodes (EC2 and EC4) for

designing a column subjected to combined axial load and bending moment. The

developed FE model, see Appendix B, is validated through the comparison with

the experimental results of standard composite columns (due to lack of exper-

imental results of hybrid columns) and will serve as references for an extensive

parametric study (1140 data sets) in which the simplified methods proposed in

EC2 and EC4 are evaluated in case of hybrid columns. Based on the extended

parametric study with 2960 data sets, new expressions for the coefficient k and β

are proposed. The organization of this chapter is as follows. The recommenda-

tions for the design of columns in EC2 and EC4 are briefly recalled in Section 6.2.

Section 6.3 is devoted to the parametric study in which the hypotheses considered

for material laws and geometrical and material imperfections are deduced from

Eurocode recommendations for FE analysis and from the background of these

methods. Finally, the design method for slender hybrid column is proposed and

validated based on the results obtained from FE analysis in Section 6.4.
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6.2 Eurocode design methods for slender columns

In the design of slender structures, the second-order effect needs to be considered.

Eurocodes provide guidance on how to consider these effects in structural analysis

using either a first-order analysis with appropriate amplification factors or a more

precise second-order analysis. Nevertheless, second-order effects may be ignored if

they are significantly less than the corresponding first-order ones, for instance less

than 10% as stated in EN 1992-1-1: 5.8.2(6) and in EN 1994-1-1: 5.2.1(3). This

implies that the designer would first check the second-order effects before ignoring

them. EC2 and EC4 provide simplified criteria to verify if a global second-order

analysis of the structure must be carried out in global structural analysis. If the

answer to the question is ”yes”, EC2 refers to its Appendix H for the evaluation of

the global second-order effects using magnified horizontal forces, where the rigid-

ity of bracing elements is determined by taking into account concrete cracking.

Members sensitive to second-order effects will then be checked separately using

the internal forces given by the global structural analysis. EN 1994-1-1: 5.2.2(3)

states that individual stability checks of composite columns can be ignored if their

individual imperfection and their reduced stiffness are fully accounted for in the

global structural analysis.

Once the second-order effects (including cracking, material nonlinearity and creep)

need to be accounted for, EC2 and EC4 propose both a simplified method, called

”Moment Magnification Method”, in which the first-order bending moment MEd is

modified by a magnification factor k to obtain the second-order bending moment.

The factor k largely depends on the flexural stiffness and the equivalent moment

distribution. Hence, the procedure involves two steps. The first stage is to com-

pute the effective stiffness EI and the second one is to estimate the first-order

moment magnification factor based on the shape of bending moment diagram. In

general, not only the factors mentioned previously influence the flexural stiffness

of the columns but also the column slenderness, the eccentricity, the magnitude

of normal force and the reinforcement ratio. The expression of EI can be written
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in the following form:

EI = KcEcIc +KsEsIs +KaEaIa (6.1)

where the contribution of concrete, rebars and steel sections with subscript c, s

and a respectively are multiplied by a correction factor and summed up. The cor-

rection factors Kc, Ks and Ka can be calibrated using more or less sophisticated

models, to give the agreement between the proposed method and FE analysis.

6.2.1 The Moment Magnification Method in Eurocode 2

According to EC2, the second-order bending moment can be obtained using two

different simplified methods. The first one, based on the nominal stiffness, can

be applied in all situations. The second one is based on the nominal curvature

and is primarily suitable for isolated members with constant normal force. Since

EC4 also proposes an approach based on the nominal stiffness for the moment

magnification method, therefore this method seems to be a good candidate for

hybrid column design.

The total design moment, including second order moment, may be determined

by multiplying the first-order moment including the effect of imperfections by the

magnification factor k (EN1992-1-1: 5.8.7.3(1)) which is expressed as

k = 1 +
β

NB

NEd

− 1
(6.2)

where

• β is a factor which depends on distribution of 1st and 2nd order moments.

For isolated columns with constant cross section and axial load, β = 1.233

for a constant first order moment distribution, 1.028 for a parabolic distri-

bution and 0.822 for a symmetric triangular distribution;

• NEd is the design value of the axial load; and
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• NB =
π2EI

l20
is the buckling load based on nominal stiffness EI defined by

the following expressions (EN 1992-1-1: 5.8.7.2(1))

EI = KcEcdIc +KsEsIs (6.3)

in which l0 is the effective length of the column; Kc is a factor for effects of crack-

ing, creep and material nonlinearity; and Ks is a factor related to the contribution

of reinforcement. Provided the geometric reinforcement ratio is greater than 0.2%,

they are determined by the following expressions (EN 1992-1-1: 5.8.7.2(2)):

Kc =

√
fck
20

min

(
NEd

Acfcd

λ

170
; 0.2

)
1

1 + ϕef
and Ks = 1 (6.4)

where ϕef is the effective creep ratio and λ is the slenderness ratio.

6.2.2 The Moment Magnification Method in Eurocode 4

According to EC4, the second-order effects in composite columns can be ac-

counted for by multiplying the largest first-order design bending moment MEd by

a magnification factor k given by:

k =
β

1− NEd

Ncr,eff

(6.5)

where

• β = 1 if MEd is the maximum bending moment within the column length

ignoring the second-order effect (the column is subjected to the lateral load).

Otherwise β = max (0.66 + 0.44 rm; 0.44) in which rm is the ratio between

bending moments acting at the column extremities (−1 ≤ rm ≤ 1);

• NEd is the total design normal force;

• Ncr,eff is the buckling load computed with the effective stiffness (EI)eff,II

defined by the following expression (EN 1994-1-1: 6.7.3.4(2))

(EI)eff,II = 0.9(EaIa + EsIs) + 0.45EcmIc (6.6)
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In order to take into account the influence of long-term effects on the effective

elastic flexural stiffness, EC4 proposes to reduce the modulus of elasticity of

concrete Ecm to the value Ec,eff in accordance with the following expression:

Ec,eff = Ecm
1

1 + (NG,Ed/NEd)ϕt
(6.7)

where ϕt is the creep coefficient; and NG,Ed is the part of total design normal

force NEd that is permanent.

6.2.3 Plastic resistance of hybrid cross-sections

The plastic resistance of the hybrid cross-section is required to be verified against

the second-order bending moment obtained from the application of the moment

magnification method. However, nowadays no design standard provides the guid-

ance on how to determine properly the plastic resistance of reinforced concrete

with more than one embedded steel profile. For reinforced concrete, a classical

approach in reproducing the bending moment-axial force interaction curve is the

pivot method. This method is similar to the simplified method proposed by EC4

in determining the interaction curve for classical composite sections. Due to this

similarity, Bogdan et al. [144] proposed the pivot method to compute the plastic

resistance of the hybrid cross-sections by making the following assumptions:

- plane section remains plane;

- slip occurred at the steel and concrete interface is ignored;

- parabola rectangle stress-strain relationship of concrete is adopted as pro-

posed by EC2; and

- bilinear law of steel is used.

Fig. 6.1 shows the possible strain distribution in ultimate limit state of a hybrid

cross-section with three pivots named A, B and C. The pivot A represents the

strain distribution where the reinforcement bars at the bottom reach their limit

strain in tension. The point where the top fiber of concrete reaches its ultimate
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Figure 6.1: Possible strain distribution in ultimate limit state of a hybrid cross-

section.

limit strain in compression defines the pivot B. The last pivot C is treated to the

strain limit in pure compression of concrete. The assessment of the pivot method

was carried out by Bogdan et al. [144]. It was shown that this method provides

sufficient accuracy in determining the interaction curve of hybrid cross-sections.

6.3 Parametric study and assessment of simpli-

fied methods of EC2 and EC4

In this section, the developed FE model which was successfully validated above

is used to conduct an extensive parametric study in order to assess the appli-

cability of moment magnification methods of EC2 and EC4 for hybrid column

design. To do so, the ultimate load of slender hybrid columns with different types

of cross-sections are computed using the proposed FE model and also calculated
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using Eurocode simplified methods. The obtained results of calculation methods

are compared against each other to assess the applicability of Eurocode simplified

methods to hybrid column designs. Five different hybrid cross-section configu-

rations (HSRCC1-5) are considered. The cross-sections HSRCC1 and HSRCC2

are built with 3 steel profiles HEB120. In the first configuration (HSRCC1) the

weak-axis of the profiles is parallel to the bending axis whereas in the second con-

figuration (HSRCC2) they are orthogonal to the bending axis (see Fig. 6.2a and

Fig. 6.2b). Hybrid cross-sections HSRCC3 and HSRCC5 correspond to the so-

called mega-column which contains 4 steel profiles, HD400x1086, located at each

corner of the cross-section (see Fig. 6.2c and Fig. 6.2d). The last hybrid cross-

section (HSRCC4) has also 3 steel profiles but with larger steel cross-section,

HEB200. For cross-sections HSRCC1, HSRCC2 and HSRCC5, the diameter

of the reinforcement rebar is 20 mm whereas 32 mm and 12 mm for HSRCC3

and HSRCC4 respectively. Due to symmetry, only half-section of mega-column

(HSRCC3 and HSRCC5) is modeled. For all cases considered in this study, the

limit of elasticity for steel profile is restricted to 355 MPa and for reinforcement

bar is 500 MPa. Three classes of concrete strength C35, C60 and C90 are con-

sidered. Note that hybrid columns HSRCC4 and HSRCC5 with a significantly

high value of steel contribution ratio δ, are modeled with concrete class C35. Al-

though the hybrid column HSRCC4 is not totally realistic, it is considered here

for maximizing the ratio δ.

In high-rise buildings, there is a significant amount of long term loads (approx-

imately 75% of total loads). Therefore, the effect of sustained loads has to be

considered. In this work, the effective creep ratio is taken equal to 1.5. As a

consequence, the concrete stress-strain curve is modified following EC2 recom-

mendation. For columns subjected to axial compression and bending moment,

three different relative slenderness λ̄ are considered for each cross-section con-

figuration with or without taking into account the creep effect. The relative

slenderness λ̄ is determined according to the EC4 formulation. From the value
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Figure 6.2: Cross-sections considered in parametric study.

of relative slenderness and geometry of the cross-section, the column length can

be deduced. For columns subjected to compressive load only, the whole range of

possible relative slenderness is covered. The parametrical study is summarized in

Table 6.1.

In this study, bending is considered to take place about the strong axis. This

situation corresponds to the case where the extreme load produced by wind or
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Table 6.1: Summary of case-studies.

Section S1; S2; S3; S4; S5

Concrete C35/45; C60/75; C90/105

fsk 500 MPa

fy 355 MPa

λ̄ 0.5; 1.0; 2.0

e
h

0.0-3.0

δ 0.2-0.62

ϕef 0; 1.5

seismic load in that direction and the motion of the column is restrained on the

other direction.

6.3.1 Material laws

In order to evaluate the accuracy of the safety level when applying the simplified

design methods proposed in EC2 and EC4 for hybrid column design, the general

design methods (using nonlinear FE analysis) suggested by the Eurocodes should

be adopted. Nonlinear material models as well as the safety format have to be

properly described. The comparison of the results provided by the simplified

method of EC2 against FE analysis is readily achieved by using the stress-strain

relationship based on the design values of the constitutive model parameters as it

is clearly defined in EN 1992-1-1: 5.8.6. Regarding the safety format for nonlinear

FE analysis, the Eurocode for composite structures recommends to use the stress-

strain relationships defined in EC2 and EC3 as stated in EN 1994-1-1: 6.7.2(8).

Therefore, the material constitutive laws and the partial factors recommended by

EC2 and EC3 are adopted. The descriptions of the stress-strain relationships are

recalled in the following.
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EN 1992-1-1: 5.8.6(3) recommends to use the concrete stress-strain relationship

expressed by Eq. (6.8) (EN 1992-1-1: 3.1.5(1)) where the tension part of concrete

is ignored. The bilinear stress-strain relationship for reinforcing bar is suggested

by the code.
σc
fcm

=
kη − η2

1 + (k − 2)η
(6.8)

where

- η = εc/εc1;

- εc1 is the strain at peak stress according to EN 1992-1-1; and

- k = 1.05Ecm |εc1|/fcm(fcm according to EN 1992-1-1).

Eq. (6.8) is valid for 0 < |εc| < |εcu1| where εcu1 is the nominal ultimate strain.

According to EN 1992-1-1: 5.8.6(4), creep can be taken into account by multiply-

ing all strain values in the concrete stress-strain diagram with a factor (1 + ϕef ),

where ϕef is the effective creep ratio. According to EN 1994-1-1: 3.2(2), the

design value of the modulus of elasticity Es of reinforcing rebar may be taken

equal to the value for structural steel given in EN 1993-1-1: 3.2.6.

Incremental FE model based on fiber discretization requires appropriate uniaxial

stress-strain relationships for each material with the design values of strengths.

This requirement is consistent with the stress-strain relationship given by the

code. The stiffness of the element is then derived from these stress-strain curves.

Ecd=Ecm/1.2

c

c

fcd=fck/1.5

0.4fcd

c1 cu1

fsd=fsk/1.15
Es/300

Es

s

s

sd sud

Ea
s

fyd=fy/1.0

y yu

s

a) Concrete b) Reinforcing rebar c) Steel profile

Figure 6.3: Stress-strain relationship used for FE analysis.
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Since there is dependency between strength and stiffness in FE analysis, the

partial factors for concrete, rebar reinforcement and steel profile are taken re-

spectively equal to 1.5, 1.15 and 1; and the partial factor for design modulus of

elasticity of concrete is taken equal to 1.2 (following EN 1992-1-1: 5.8.6(3)). The

design stress-strain curves for each material are illustrated in Fig. 6.3.

6.3.2 Geometric imperfection and residual stresses

Second-order analysis requires the definition of an imperfection. Those imper-

fections found their sources in both the geometric imperfection as well as the

residual stresses. The definition of this initial deformed shape strongly affects

the behavior of slender columns. For concrete columns, EC2 recommends to con-

sider a geometric imperfection equal to l0/400 whereas for steel columns EC3 not

only suggests to adopt a geometric imperfection equal to l0/1000 but also to take

into account the effects of the residual stress distribution. The imperfect shape

of composite columns is governed by the steel component and therefore by the

residual stress distribution within this component (see Fig. 6.4). Accordingly, an

Ea

s

s

-0.5fy*

0.5fy*

0.5fy*

-0.5fy*

0.5fy*

-0.5fy*

h/b≤1.2   
fy*=235MPa

h

b

Ea

s

s

fy fyd=fy/1.0

Figure 6.4: Residual stress distribution of steel profile.

initial imperfection l0/1000 has to be considered and the geometric effects of the

residual stress distribution must be considered. To simplify the calculation, EC4

suggests to replace the residual stresses by an equivalent initial bow imperfection.

However, Bergmann and Hanswille [145] have shown that this simplification pro-

duces an approximate value of the ultimate resistance in axial compression. The
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hybrid column being built as a concrete column; to ensure the best accuracy of

the results we adopt an initial imperfection in parabolic shape with an amplitude

of w0 equal to l0/400, combined with an explicit representation of the residual

stress distribution. The admitted parabolic shape is more detrimental to column

resistance than imperfection randomly distributed over column length; hence the

approximation is conservative in terms of column safety.

6.3.3 Shear connection

Eurocode 4 design rules for composite columns assume full interaction between

the steel section and the surrounding concrete, i.e. the slips at steel-concrete

interfaces can be ignored. To remain consistent with Eurocode rules, the same

assumption is retained for hybrid columns although the latter may be viewed as

a fairly strong assumption for both composite and hybrid columns, particularly

with deformable shear connectors. The consequence of this assumption on the

ultimate load of hybrid columns will be evaluated by carefully analyzing the effect

of the connection stiffness on the ultimate load using the nonlinear finite element

model developed in B which takes into account the partial interaction.

The shear connection stiffness Ksc can be determined by Ksc = ksc0/d where

ksc0 is the stiffness of a shear stud and d is spacing between the connectors. It

is varied from low to high stiffness. For a certain value of the stiffness, the load-

bearing capacity does not vary with increasing value of the connection stiffness

and slips become very small so that we can assume full interaction. The value

of this critical stiffness will be used for the parametric study in order to remain

consistent with EC4.

The investigation on the effect of the stiffness Ksc and the interlayer slip dis-

tribution has been carried out on the pinned-pinned hybrid column, particularly

the one with cross-section illustrated in Fig. 6.2a. Three different lengths corre-

sponding to three different values of the relative slenderness λ̄ (0.5, 1 and 2) are

considered. The column is subjected to an eccentric load causing a symmetric

Pisey Keo 137



6. SIMPLIFIED DESIGN METHOD FOR SLENDER HYBRID
COLUMNS

single curvature bending about the strong axis of the cross-section. The eccen-

tricity ratio e/h is equal to 0.3 at both column extremities. It is worth to mention

that the axial load is applied through an eccentric node linked rigidly to concrete

node. The material properties are summarized in Table 6.2. In this case, a lin-

Table 6.2: Material properties.

Concrete

fck = 60 MPa Ecm = 39.10 GPa ϕef = 1.5

γc = 1.5 γcE = 1.2

Reinforcing rebar

fsk = 500 MPa Es = 210 GPa γs = 1.15

Steel profile

fy = 355 MPa Ea = 210 GPa γa = 1.0

Connector Stiffness

Ksc = 8 MPa Ksc = 800 MPa Ksc = 3000 MPa

Ksc = 7000 MPa Ksc =∞ MPa

ear elastic behavior of the connector is considered; the confinement of concrete

is ignored and the residual stress distribution in the steel section is assumed to

follow the diagram given in Fig. 6.4. The column is supposed to have an initial

geometrical imperfection of l0/400. The ultimate design capacity of the column is

obtained by performing a nonlinear analysis using appropriate material laws and

safety concept described in Section 6.3.1. The finite element results with a mesh

consisting of 10 elements are shown in Table 6.3. The ratio between the bearing

capacity of the column in partial interaction Pu and the one in full interaction

Pu,∞ is computed considering several values of connection stiffness Ksc and rela-

tive slenderness λ̄. Regarding the boundary conditions for the interlayer slip at

the column ends, two cases have been considered. In case A, interlayer slips are

permitted at both ends of the column whereas in case B, the slips are prevented.

It can be observed from Table 6.3 that when the interlayer slips at extremities
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are prohibited (case B), the ultimate load in full interaction can be achieved for

a moderate shear connection stiffness. However, with a low value of Ksc and no

slips at the column ends (case B) the ultimate load is slightly below the one in

full interaction. On the contrary, the ultimate load drops significantly for a col-

umn with low slenderness ratio and free slips at the column ends. In both cases

(A and B), the ultimate load in full interaction can be achieved for columns with

medium-to-high relative slenderness within a moderate shear connection stiffness.

Table 6.3: The ratio of bearing capacity of the column Pu to Pu,∞.

Pu
Pu,∞

Case A Case B

λ̄ = 0.5 λ̄ = 1 λ̄ = 2 λ̄ = 0.5 λ̄ = 1 λ̄ = 2

Ksc = 8 MPa 0.72 0.72 0.76 0.98 0.96 0.92

Ksc = 800 MPa 0.90 0.99 1.00 1.00 1.00 1.00

Ksc = 3000 MPa 0.95 1.00 1.00 1.00 1.00 1.00

Ksc = 7000 MPa 1.00 1.00 1.00 1.00 1.00 1.00

6.3.4 Assessment of the EC2 version of moment magnifi-

cation method

In the present section, the applicability of the EC2 version of the moment mag-

nification method to hybrid columns is assessed by comparing its predictions

against FE analysis results for hybrid column with cross-section HSRCC1 (see

Fig. 6.2a). The concrete class is C60 and the effect of creep is taken into account

(ϕef = 1.5). It can be seen from Fig. 6.5a that in case of pure compression, the

moment magnification method of EC2 gives unsafe results for low-to-moderate

relative slenderness whereas the method provides conservative results for high

relative slenderness. For columns subjected to single curvature bending and re-

gardless of the load eccentricity (see Fig. 6.5b and Fig. 6.5c), the EC2 method
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Figure 6.5: Comparison of simplified method of EC2 against FE analysis results.

overestimates the ultimate load for low-to-moderate relative slenderness (λ̄ = 0.5

to 1.0). The same conclusion applies for columns bent in double curvature under

antisymmetric bending moment (see Fig. 6.5d) except for very high load eccen-

tricities (close to pure bending). For high relative slenderness, EC2 method gives

safe results except for columns bent in single curvature under large bending mo-

ment. Since this simplified method is based on the effective stiffness of the column

EI, it can be concluded that the expression for the effective stiffness proposed by

Pisey Keo 140



6.3 Parametric study and assessment of simplified methods of EC2
and EC4

EC2 cannot be applied in a straightforward fashion to hybrid column design. This

effective stiffness should be modified by adjusting the factor Kc (see Eq. (6.4))

which depends on the relative slenderness of the column so that it becomes appli-

cable to hybrid column. Moreover, the factor Ks which is applied to the stiffness

can also be modified in order to account for the plastification of the steel section.

6.3.5 Assessment of the EC4 variant of the moment mag-

nification method

In this section we pursue our study by an assessment of the performance of

the EC4 version of the moment magnification method when applied to hybrid

columns. Again a comparison of the predictions of the EC4 method against FE

analysis results for hybrid column with cross-section HSRCC1 (see Fig. 6.2a) is

carried out. The concrete class and effective creep ratio are the same as previous

case (C60 and ϕef = 1.5). Quite surprisingly, the EC4 version of the moment

magnification method seems to perform less well. Indeed, for a hybrid column

subjected to pure compression (see Fig. 6.6a) where the ultimate load of the col-

umn is characterized by the resistance in axial compression, the simplified method

of EC4 gives safe results regardless of column relative slenderness. Apart from

the later case, this method gives unsafe results for a large number of cases. For

low load eccentricity, the ultimate load given by EC4 formulation is safe regard-

less of column relative slenderness (see Fig. 6.6b to Fig. 6.6d). For moderate

load eccentricity, the EC4 method always overestimates the ultimate load. Under

large bending moment, the EC4 method gives safe results, particularly for column

under symmetric single curvature bending in the zone nearly pure bending. The

conservative nature of the results can be attributed to the equivalent moment

factor β, which, in the present case, is equal to 1.1.

Since this moment magnification method is based on the effective stiffness of

the column EI, it can also be concluded that EC4 proposes an expression for

effective stiffness that cannot be applied in a straightforward fashion to hybrid
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Figure 6.6: Comparison of simplified method of EC4 against FE analysis results.

column design. This effective stiffness should be modified by reformulating the

factor Ke,II as well as K0. These factors should be minimized to reduce the value

of the effective stiffness and as a result the ultimate load will be decreased. This

modification is proposed in Section 6.4.
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6.3.6 Results of the parametric study

The ultimate load for isolated hybrid columns with five different cross-section con-

figurations (see Fig. 6.2) has been evaluated using both the finite element model

and the moment magnification method proposed in EC2 and EC4. The accuracy

of moment magnification method should be evaluated according to Appendix D

of EN 1990 [146]. The application of the method given in this Appendix is rather

straightforward provided that a large number of ultimate loads are available with

the magnitude of the latter being influenced by a single parameter. It is much

more complicated to apply this method for members subjected to axial load and

bending moment where additionally, a large number of key parameters have to

be taken into account. Because of this difficulty, an exact implementation of EN

1990-Appendix D cannot be rigorously followed while assessing the moment mag-

nification method of EC2 and EC4. To evaluate the EC3 variant of the method

for steel beam-column member, the ratio of the experimental or numerical failure

load to the corresponding theoretical load has been used in [147]. Similarly, the

ratio between the first order bending moment obtained via numerical simulation

(M1)FE and the ones obtained with the simplified method (M1)SM was used to

calibrate the simplified method of EC2 in [148]. However, this procedure is not

appropriate in case the column is subjected to axial load only which leads this ra-

tio to infinity. To overcome this difficulty, the ratio R expressed in Eq. (8.64) has

been selected by Bonet et al. [130] as a reference value to evaluate the accuracy

of their own proposal. This ratio is also adopted in our investigation.

R =
RFE

RSM

(6.9)

where: RFE =

√(
NFE
Npl,Rd

)2

+
(

MFE

Mpl,Rd

)2

and RSM =

√(
NSM
Npl,Rd

)2

+
(
MSM

Mpl,Rd

)2

.

Table 6.4 gives a summary of the results obtained with both EC2 and EC4 version

of the moment magnification approach which are compared against FE analyses.

In order to evaluate the contribution of the various parameters governing the

ultimate load, the R ratio is first computed for all the considered cases (1140
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data sets). The value of the R ratio is given as a function of each key variables:

relative slenderness λ̄, eccentricity e/h, steel contribution ratio δ, reinforcement

ratio ρ, concrete characteristic strength fck, effective creep ratio φef and the ratio

rm between the bending moment applied at the column ends. For every value of

each parameter all corresponding values of R are given as discrete points.

To analyze the relative performance of the EC2 and EC4 variants of the moment

magnification method, the graphs for the R ratio computed for each method for

a given parameter are put as a pair. Regarding the contribution of the relative

slenderness on variant of the method, two different graphs are provided. The first

graph is for columns subjected to pure compression and the other for columns

subjected combined compression and bending. The statistical distribution of R is

represented along with its mean value r and the interval (r+s and r−s) where s is

the standard deviation. Both simplified methods show a rather wide discrepancy

compared to FE analysis results. The most significant parameters are the slen-

derness of the column, the steel section contribution to the cross-section strength

under pure compression δ as well as the geometrical reinforcement ratio ρ. Ta-

ble 6.4 shows that for columns subjected to an axial load only (zero eccentricity),

both simplified methods give unsafe results for low relative slenderness. In case

the latter is moderate, the predictions of EC2 moment magnification method are

unsafe while the EC4 one gives conservative results. Nevertheless, EC2 method

provides reasonable results compared to EC4 method for high relative slender-

ness. For columns subjected to combined compression and bending moment, both

codes provide unsafe results in most cases. In particular, the interaction curve

given by EC2 moment magnification method without considering the creep effect

(ϕef = 0) is close to FE analysis results. However, EC2 becomes un-conservative

if creep is considered (ϕef = 1.5). Considering all cases, it was found that the

mean value r and the standard deviation s are respectively equal to 0.996 and

0.104 for EC2 simplified method and 1.010 and 0.112 for EC4 simplified method.

The percentage of R below 0.97 is 41.84% and 34.86% for EC2 and EC4 simplified

method, respectively. As a general conclusion, it can be pointed out that mean
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Table 6.4: Results of parametric study of EC2 and EC4 version of moment mag-

nification method.
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Table 6.4 – continued from previous page

V
a
ri

a
b
le

EC2 simplified method EC4 simplified method

3.
S
te

el
co

n
tr

.
ra

ti
o

0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50

0.20 0.30 0.40 0.50 0.60 0.70
δ

R

����
����
����
����
����
����
����
����
����

���� ���� ���� ���� ���� ����
�

R

4.
G

eo
m

.
re

in
f.

ra
ti

o

0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50

0.05 0.075 0.1 0.125 0.15 0.175 0.2
ρ

R

0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50

0.05 0.075 0.1 0.125 0.15 0.175 0.2
ρ

R

5.
C

on
cr

et
e

st
re

n
gt

h

0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50

20 40 60 80 100

R

0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50

20 40 60 80 100

R

6.
E

ff
ec

ti
ve

cr
ee

p
ra

ti
o

0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50

0.00 0.50 1.00 1.50

R

0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50

0.00 0.50 1.00 1.50

R

Continued on next page

Pisey Keo 146



6.4 Proposal of a moment magnification design method for hybrid
columns

Table 6.4 – continued from previous page
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estimations of both design codes seem to be correct but that their shortcomings

lead to a large scatter of the results.

6.4 Proposal of a moment magnification design

method for hybrid columns

6.4.1 Further insight into the physical behavior of hybrid

columns

Before suggesting new expressions for correction factors involved in the moment

magnification method for hybrid column design, some effects are analyzed to get

further insight into the physical behavior of hybrid columns.

6.4.1.1 Effect of sustained loads

The reduction of the load-bearing capacity due to creep is illustrated in Fig. 6.7a

and Fig. 6.7b for different load eccentricities. The interaction curve of hybrid

column with cross-section HSRCC1 subjected to eccentric load and bent in a

symmetric single curvature is depicted in Fig. 6.7c where Npl,Rd0 stands for the

plastic design normal force and Mpl,Rd0 for the plastic bending moment of the
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cross-section, both being considered without creep effect. Two values of the

effective creep ratio are considered (ϕef = 0 and ϕef = 1.50). The concrete

strength used in this study is C35. It can be seen that the plastic design moment

of the cross-section with ϕef = 1.50 is larger than that with ϕef = 0. This

difference comes from the ductility of the concrete which allows the compressed

part of the steel section to yield before concrete crushes.
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Figure 6.7: Illustration of creep effect on slender hybrid column.
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6.4.1.2 Effect of the residual stresses in the steel section

The buckling behavior of steel members is strongly influenced by the residual

stresses. The distribution of the latter is shown in Fig. 6.4 for standard I-sections.

The hybrid column with cross-section HSRCC1-3 are considered as well as the

hybrid column with two steel profiles (HEB120) that are very close to each other

(see Fig. 6.11a). The diameter of the rebar used for this column is φ12. The

columns are modeled with concrete strength C35, structural steel yield stress 355

MPa and reinforcement yield stress 500 MPa. The columns were discretized using

20 elements. This discretization is sufficient to represent the imperfect parabolic

shape of the columns. The column is subjected to the same eccentric loads at both

ends. Residual stresses are incorporated in the model as a state of self-equilibrated

initial stresses. The comparison of buckling and interaction curves considering

and disregarding the residual stresses is given in Fig. 6.8 to Fig. 6.11b. The
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Figure 6.8: Effect of residual stress in buckling behavior of HSRCC1.

dash line (– ◦ –) corresponds to the interaction curve when the residual stresses

within the steel profile are not considered whereas the solid line (—) corresponds

to the interaction curve with residual stresses. It can be seen that the residual

stresses have a marginal effect on the behavior of hybrid columns and they can
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Figure 6.9: Effect of residual stress in buckling behavior of HSRCC2.
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Figure 6.10: Effect of residual stress in buckling behavior of HSRCC3.

be ignored. Therefore, it can be concluded that the structural steels behave as

large rebars. Considering the above comments, it can be concluded that the new

method for hybrid columns should be inspired from the EC2 variant rather than

from the EC4 version.
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(a) Hybrid cross-section HSRCC6.
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tion curve.

Figure 6.11: Effect of residual stress in buckling behavior of hybrid column where

the cross-section has two steel profiles very close to each other.

6.4.2 A proposal for the expression of the flexural stiff-

ness EI applicable to hybrid columns subjected to

combined axial load and uniaxial bending

The parametric study with 1140 data sets presented previously shows that both

EC2 and EC4 version of the moment magnification method lead to unsafe results

in half of case-studies (Table 6.1). It means that the effective flexural stiffness

EI given in EC2 and EC4 are not appropriate for slender hybrid column design.

Based on the outcome of the parametric study with 2960 cases including differ-

ent yield stress of steel section, new expressions for β and the correction factors

(Ks, Ka, Kc) involved in the definition of the effective flexural stiffness EI are

proposed. By doing so, we are able to make the moment magnification method

given in Eurocodes suitable for hybrid column design. The proposed simplified

method based on moment magnification approach is summarized in the following.

The total design moment is determined by multiplying the first-order moment

(including the effect of geometric imperfection) by the magnification factor k
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which is defined as

k =
β

1− NEd
Ncr

(6.10)

where β = 0.6rm + 0.4 ≥ 0.4; and Ncr is the buckling load which is calculated by

using the following expression for the flexural stiffness EI

EI = KcEcdIc +KsEsIs +KaEaIa (6.11)

with

Kc = k1k2/(1 + ϕef ) (6.12)

Ks = 1 (6.13)

Ka =
0.76

(
fy
fck

)0.0124

1 + 105ϕefexp(−0.078λ)
6 1 (6.14)

k1 =

√
fck
20

(6.15)

k2 = n
λ

170
6 0.2 (6.16)

n =
NEd

Npl,Rd

(6.17)

where the expressions of the correction factors Kc and Ks recommended in EC2

have been used. Further, since there is no steel profile in a reinforced concrete

section, the correction factor Ka does not exist in EC2. If one compares these

correction factors to those in EC4, they are totally different. In fact, due to com-

pressive creep strains, as shown in Section 6.4.1.2, longitudinal steel compressive

strains can exceed the yield strain. This implies that the steel modulus that

collaborates in the effective stiffness EI of the hybrid column could not be the

elastic modulus but should rather be the secant modulus which varies with con-

crete creep. Moreover, for slender columns, plastification in the compression zone

of the steel section may not develop before instability. Hence, the secant modulus

of steel should be a function of the creep coefficient ϕef and the geometric slen-

derness λ. For higher values of the creep coefficient, the value of secant modulus

of the steel section will be rather lower. However, for higher values of slenderness

this modulus will be higher. Therefore, in addition to the previous cases already
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analyzed, we need to investigate the effect of the steel yield stress on the ultimate

load of hybrid columns. All cases previously analyzed with fy = 355MPa are now

recalculated with fy = 235MPa and fy = 460MPa. The objective is to study

the effect of plastification of the steel sections, particularly for low yield stress.

As a result, the correction factor Ka of EC4 is modified to take into account the

effect of plastification of the steel section. This factor is calibrated based on the

results of a parametric study with 2960 parameter sets (cross-sections, column

effective slenderness and creep coefficient) performed by using the developed FE

model.

The procedure employed to establish the expression of Ka is as follows. Let

us consider a slender hybrid column with an initial imperfection w0 subjected to

axial loads and uniaxial bending, bent in a symmetric single curvature (rm = 1),

the ultimate first-order bending moment MEd,1 can be obtained with a nonlinear

FE analysis for a particular axial load NEd. Likewise, it is also possible to com-

pute the ultimate bending moment Mpl,N,Rd of the cross-section of the column for

the same axial force. By equating the second-order bending moment calculated

with the moment magnification method to the ultimate bending moment of the

column cross-section, the moment magnification factor k can be obtained. Fi-

nally, by making use of the critical buckling load formulation and the proposed

form of effective stiffness expression, the correction factor Ka can be derived.

This procedure has also been adopted in [130].

• First, the magnification factor is obtained:

k =
Mpl,N,Rd

MEd,1

(6.18)

• This value allows the critical buckling load of the column to be computed:

Ncr =
NFE

1− MEd,1

Mpl,N,Rd

(6.19)

• The flexural stiffness of the column can be computed from

EI =
NcrL

2

π2
(6.20)
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• Finally, the calibration factor Ka can be obtained as

Ka =
EI −KcEcdIc + EsIs

EaIa
(6.21)

6.4.3 Comparisons between proposed simplified method

and FEA

In order to evaluate the contribution of the various parameters governing the

ultimate load, the R ratio has been computed for all the considered cases (2960

data sets). The value of the R ratio is given as a function of the main variables:

eccentricity e/h, geometric slenderness ratio λ and relative slenderness λ̄, the

latter being calculated according to EC4 formulation. For every value of each

parameter all corresponding value of R are given as discrete points. In Fig. 6.12c,

R is given with the mean value r, r+ s and r− s, where s is standard deviation.

It can be seen that despite the wide dispersion at high relative slenderness ratio,

the proposed formulation gives a relatively low scatter compared to FE analysis

results. The standard deviations are equal to 0.0147, 0.0325 and 0.0712 for relative

slenderness ratio λ̄ equal to 0.5, 1 and 2 respectively. The frequency histogram

shown in Fig. 6.12d was constructed using the proposed formulation. With a 0.005

precision, the percentage of the R ratio equal to 1 is 50.9%, and less than 1 is

cumulatively 23.72% as can be seen on the histogram. The percentage of R below

0.97 is 10.34%. Its overall variability gives a good estimation of the mean value

of the ultimate load with relatively small deviation. The mean value r and the

standard deviation s provided by the proposed simplified method are respectively

equal to 1.0022 and 0.0459 which have been improved compared to the ones given

by EC2 simplified method (r = 0.996, s = 0.104) and EC4 simplified method

(r = 1.010, s = 0.112). Based on these numerical results, we can conclude

that the developed method gives the ultimate load of a slender hybrid column

subjected to combined axial force and bending moment with sufficient precision.
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Figure 6.12: Performance of the results given by the new simplified method.

6.5 Conclusion

Numerical investigations on the second-order effects in slender hybrid column sub-

jected to combined axial load and uniaxial bending moment have been performed.

One of the main objectives of this study was to evaluate the bending moment

magnification method proposed in EC2 and EC4 when applied to hybrid columns.

To do so, a FE model has been developed in which the geometrical/material non-

linearities as well as the partial interaction effect between the steel profiles and the

surrounding concrete are taken into account. The FE model has been validated

by comparing its predictions against experimental results for standard composite

columns. To thoroughly analyze the applicability of EC2 and EC4 variants of

the moment magnification method to hybrid columns, an extensive parametric

study with 1140 data sets (cross-sections, column effective slenderness and creep
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coefficient) has been carried out. The comparison between the results obtained

with Eurocode simplified methods and with FEA shows that simplified methods

of EC2 and EC4 lead to a wide scatter where the percentage of the ratio R lesser

than 1 is cumulatively larger than 5%. It means that the proposed effective flex-

ural stiffness EI of EC2 and EC4 are not appropriate for slender hybrid column

design. It was observed that the secant modulus of compressed part of the steel

section varies as a function of the creep coefficient ϕef and the geometric slender-

ness λ. Therefore, in addition to the previous cases already analyzed, a further

investigation of the effect of the steel yield stress on the ultimate load of hybrid

columns has been carried out. This latter investigation was based on an extensive

numerical parametric study with 2090 data sets. A simplified method has been

proposed for hybrid column design. This method is developed within the context

of Eurocodes, i.e. moment magnification approach. In the proposed method, new

expressions for the correction factors (for the determination of effective flexural

stiffness (EI)) are proposed in order to take into account the creep effect and the

effect of plastification of the steel profiles. The comparisons between proposed

simplified method and FE analyzes shows that the developed method provides

the ultimate load for typical slender hybrid columns with an adequate accuracy.

The lack of the residual stress effects on the ultimate load of the hybrid columns

as well as the destination of the method, which will occur in reinforced concrete

buildings rather than in metal structures, led to development of this new for-

mulation to be based on Eurocode 2 formulations. The proposed formulation

is applicable for reinforced concrete columns (without an embedded steel shape)

with respect to Eurocode 2 regulations. It notes, however, that by applying this

method to a classical composite section, it gives a conservative result and more

conservative than the one obtained from Eurocode 4 formulations. It can there-

fore lead to a consistency between the different formulations as the following.

The ”hybrid” approach (proposed formulation) can handle both reinforced con-

crete and hybrid columns, since it is developed based on Eurocode 2 formulations;

and it can also be used for classical composite columns, while leading to less fa-
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vorable ultimate load in the specific case of the only one embedded steel section

for which a more precise formulation can be found in Eurocode 4.
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General conclusions and

perspectives

***

7.1 Summary and concluding remarks

The development of a design guide for hybrid columns with several embedded steel

profiles, subjected to combined loads is the objective of this thesis. Therefore,

a FE model has been developed in which the geometrical/material nonlinearities

as well as the partial interaction between the steel profiles and the surrounding

concrete are taken into account. The results of the FE model have served as ref-

erences in developing a new design method for hybrid columns. The development

of the FE formulation was begun with the geometrically linear elastic analysis in

which the exact expression of the stiffness matrix has been developed for the elas-

tic hybrid beam-column in partial interaction. Both shear-rigid and shear-flexible

model have been developed based on the exact stiffness matrix. The influences

of shear flexibility of the encasing concrete component and the partial interaction

on the overall behavior of the hybrid beam-column have been investigated by

performing the analyses and comparing the results of both models. It has been

found that the transverse displacement is more affected by shear flexibility than

partial interaction. The deflection ratio of both model varies slightly following

the increasing shear connection stiffness from low to high value.

Pisey Keo 159



7. GENERAL CONCLUSIONS AND PERSPECTIVES

To describe the geometrical nonlinearity, the co-rotational framework has been

adopted and the motion of the element is decomposed into a rigid body motion

and a deformational part using a local co-rotational frame, which continuously

translates and rotates with the element but does not deform with it. The treat-

ment of geometric nonlinearity is effectively undertaken at the level of discrete

nodal variables with the transformation matrix between the local and global nodal

entities being independent of the assumptions made for the local element.

The nonlinear FE model of hybrid beams under combined load has been devel-

oped based on the fiber beam model where the shear deformability of the concrete

component is considered. To take into account the confinement effects, the 3d

constitutive law for the encasing concrete component is adopted. Then, the plane

stress condition for the concrete component is applied in order to condense the

3d formulation, derived from a 3d plastic model of the concrete material, into

the 2d beam model. The developed FE model is implemented into the nonlinear

geometry formulation by adopting the co-rotational framework. The static con-

densation has been applied in order to obtain the consistent tangent matrix in

local co-rotational system. The FE model has been validated by comparing its

predictions against experimental results of the hybrid beams conducted at Lab-

oratory of Civil and Mechanical Engineering of INSA Rennes. Furthermore, the

influence of the partial interaction on the overall behavior of the hybrid beams

has been investigated. It has been found that the ultimate loads predicted by FE

analysis agree well with those of the experimental results and that the shear con-

nection stiffness plays a crucial role on the flexibility of the hybrid beam. From

the numerical applications, it has been shown that the developed formulation

provides a robust and reliable option in determining the ultimate load of hybrid

beam-columns subjected to combined axial load, bending moment and shear force

in a large displacement analysis.

Besides, numerical investigations on the second-order effects in slender hybrid
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columns subjected to combined axial load and uniaxial bending moment have

been performed. One of the main objectives of this study is to evaluate the

bending moment magnification method proposed in EC2 and EC4 when applied

to hybrid columns. To do so, a FE model is developed in which the geomet-

rical/material nonlinearities, the geometrical imperfections, the residual stresses

in steel profiles as well as the partial interaction effect between steel profiles

and the encasing concrete are taken into account. Since slender hybrid columns

subjected to combined axial load and bending moment are considered, the ef-

fects of shear deformability of concrete component can be ignored. As a result,

Euler-Bernoulli beam kinematics and the uniaxial stress-strain behavior for each

component (steel and concrete) of the hybrid beam-column element are adopted.

Moreover, the developed model based on Euler-Bernoulli kinematic assumption is

consistent with the finite element model proposed in the general methods of Eu-

rocodes (EC2 and EC4) for designing a column subjected to combined axial load

and bending moment. The comparison between the results obtained with Eu-

rocode simplified methods (moment magnification method) and with FE analysis

shows that simplified methods of EC2 and EC4 lead to a wide scatter where the

unsafe factor ratio is cumulatively larger than 5%. It means that the proposed

effective flexural stiffness EI of EC2 and EC4 are not appropriate for slender

hybrid column design. As a result, a new simplified method has been proposed

for slender hybrid column design within the context of Eurocodes, i.e. moment

magnification approach. The proposed method is developed based on an insight

into the physical behavior of slender hybrid columns. It has been observed that

the secant modulus of compressed part of the steel section varies as a function of

the creep coefficient ϕef and the geometric slenderness λ. Consequently, in the

proposed method, new expressions for the correction factors (for the determina-

tion of effective flexural stiffness (EI)) are proposed in order to take into account

the creep effect and the effect of yielding in the steel profiles. The comparisons

between proposed simplified method and FE analyses shows that the proposed

method provides the ultimate load for typical slender hybrid columns with an

adequate accuracy. To make the proposed simplified method more accessible for
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designers, a simple design tool has been developed based on Matlab Compiler

Runtime platform which is presented in Appendix C. The program is capable to

perform a nonlinear analysis as well as a simplified analysis, based on moment

magnification method, of reinforced concrete column with several embedded steel

profiles subjected to combined axial load and uniaxial bending moment.

7.2 Perspectives

The FE model developed in Chapter 5 may serve as a primary reference in produc-

ing a design guide for hybrid beams subjected to combined loads (M-V). However,

an insight into the physical behavior of hybrid beams under combined loads is

required. Those requirements find their root in modeling the 3d constitutive law

of concrete (with softening behavior) in which the hardening law and the damage

plasticity model have to be introduced, variation of shear deformation over the

depth of the concrete cross-section after cracking occurs, nonlinear distribution

of axial deformation and other kinematic assumptions. The latter can be dealt

with by adopting a more advanced beam theory which considers a nonlinear dis-

tribution of the kinematic variables.

While the thorough investigation on the second-order effects in hybrid columns

has been performed in Chapter 6 to provide the design method for hybrid columns

subjected to combined axial load and uniaxial bending moment, there are sev-

eral factors that have not been considered. Among those factors are the biaxial

bending and the lateral torsional buckling that may occur for a slender cross-

section. Therefore, a 3d finite element model of the hybrid beam element has to

be developed.
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Geometrically elastic linear

shear-rigid hybrid beam model

***

A.1 Fundamental equations

The governing equations describing the geometrically linear behavior of an elastic

shear-rigid hybrid beam with n embedded sections in partial interaction are briefly

outlined in this section. All variables subscripted with c belong to the encasing

beam and those with subscript s belong to the embedded section. Quantities with

subscript sc are associated with the shear connectors. The following assumptions

are commonly accepted in all models to be discussed in this paper:

- connected members are made out of elastic, homogenous and isotropic mate-

rials;

- the cross-sections of all components remain plane and orthogonal to beam axis

after deformation, though relative slips can develop along their interface;

- the lateral deflection v is assumed to be the same for all components;

- discretely located shear connectors are regarded as continuous.
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A.1.1 Compatibility

Based on the above assumptions, kinematic equations relating the displacement

components (ui, v, θ) to the corresponding strain components (εi, θ, κ (Fig. A.1))

are derived for each component of the hybrid beam as follows:

εi = ∂xui, i = s1, s2, · · · , sn, sc (A.1)

vc = vsi = v (A.2)

θ = ∂xv (A.3)

κ = ∂2
xv (A.4)

The interlayer slip corresponds to the difference between axial displacements of

embedded sections and of the encasing beam at the interface which is expressed

as:

gi = uc − usi − hi θ, i = 1, 2, · · · , n (A.5)

where hi = ysi−yc is the distance between centroid of the embedded sections and

the encasing element; i represents each embedded section.

A.1.2 Equilibrium

The equilibrium equations are derived by considering the free body diagrams of

a differential elements dx located at an arbitrary position x (see Fig. A.2) in the

hybrid beam. The interface connection between the embedded sections and the

encasing beam is modeled by continuously distributed spring. The equilibrium

conditions result in the following set of equations:

∂xNsi = −Dsci, i = 1, 2, · · · , n (A.6)

∂xNc =
n∑

j=1

Dscj (A.7)

∂xM = −V −
n∑

j=1

Dscjhj (A.8)

where
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Figure A.1: Kinematic of shear-rigid hybrid beam-column.

- ∂ix• = di • /dxi

- hi = ysi − yc (i = 1, 2, · · ·n) is the distance between the centroid of the kth

embedded section and the one of encasing beam cross-section;

- Ni, Vi, Mi (i = s1, s2, · · · sn, c) are the axial forces, the shear forces and bending

moments at the centroid of component ”i”;

- Dsci (i = 1, 2, · · ·n) are the slip forces per unit length at the interface of the

kth embedded section and the encasing beam;

- V =
∑
Vi is the sum of shear forces of each component;

- M =
∑
Mi is the sum of bending moments at centroid of each component.
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Figure A.2: Free body diagrams of an element at an arbitrary position x.

A.1.3 Constitutive relations

The generalized stress-strain relationships are simply obtained by integrating the

appropriate uniaxial constitutive model over each cross-section. For a linear elas-

tic material, these relationships lead to the following set of equations:

Ni =

∫

Ai

σ dAi = (EA)i εi, i = s1, s2, · · · , sn, c (A.9)

Mi = −
∫

Ai

y σ dAi = (EI)i κ (A.10)

where

- (EA)i = EiAi is the axial stiffness of each component;

- (EI)i = Ei Ii is the flexural stiffness of each component.

The parameters Ei, Ai and Ii are respectively the elastic modulus, the area and

the second moment of area of the component ”i”. The above relations must

be completed by the relationship between the shear bond force Dsck and the
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interlayer slip gk. The assumption of linear and continuous shear connection can

be expressed by the following simple relationship between interface slips and shear

flow:

Dsci = ksci gi, i = 1, 2, · · · , n (A.11)

where ksck is the shear bond stiffness.

A.2 Derivation of the governing equations

The relationships introduced in Section A.1 are now combined to derive the equa-

tions governing the behavior of a hybrid beam with partial interaction. Combining

the kinematic relations Eqs. (A.2-A.4) with the elastic law Eqs. (A.9-A.11) and

inserting the outcome into the equilibrium equations Eqs. (A.6-A.8) produce the

following set of differential equations:

(EA)si ∂
2
xusi = −ksci gi (A.12)

(EA)c ∂
2
xuc =

n∑

j=1

kscj gj (A.13)

(EI)0 ∂
3
xv = −V (x)−

n∑

k=1

ksck gk hk (A.14)

The expression (EI)0 stands for the sum of the flexural stiffness of each component

i.e.
(
EI)0 =

∑n
j=1 Esj Isj + Ec Ic

)
. Taking the derivative of the slip distribution

relation Eq. (A.5) and making use of Eqs. (A.12-A.14), one arrives at the following

coupled second-order system of differential equations where the unknown variables

are the slip distribution at each interface:

∂2
xg− Λg =

V (x)

(EI)0

h (A.15)

The components of the matrix Λ are given by

Λkk = ksck

[
1

(EA)sck
+

h2
k

(EI)0

]
(A.16)

Λkl = kscl

[
1

(EA)c
+

hkhl
(EI)0

]
(A.17)
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in which,
1

(EA)sck
=

1

(EA)c
+

1

(EA)sk
, k, l = 1, 2, · · ·n (A.18)

A diagonalization of the matrix Λ will uncouple the above system of differential

equations Eq. (A.15) and produce a set of n second-order ordinary equations.

Let Λv and Λλ respectively be the matrix collecting the eigenvectors and the

eigenvalues of Λ. Then, we have the following relationship:

Λλ = Λ−1
v ΛΛv. (A.19)

Subsequently, we insert the vector g obtained by pre-multiplying the vector g̃ by

the matrix Λv

g = Λvg̃ (A.20)

into Eq. (A.20) and make use of Eq. (A.19) to produce an uncoupled differential

equation system:

∂2
xg̃− Λλ g̃ =

V (x)

(EI)0

h̄ (A.21)

where h̄ = Λ−1
v h which gives the ordinary differential equation in n variables g̃k

as follow:

g̃i = C2i−1 e
√
λix + C2i e

−√λix + Pi, i = 1, 2, · · · , n (A.22)

A.3 Closed-form solution of the governing equa-

tions

In this section, we provide only the analytical solution of the governing equations

for the general case of the interface connection (which means that 0 < ksck <

∞). The governing differential equation involves the single unknown variable

g̃. It is noteworthy that the exact solution of the governing differential equation

Eq. (A.22) is contingent upon the distribution of the shear force V (x). In order to

simplify the development of the solution, we assume that the external distributed

load on the element is constant. It results that the distribution of shear force is
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linear, following the overall transverse equilibrium equation:

V (x) = −py x+ C2n+6 (A.23)

where C2n+6 is the shear force at the left hand side of the beam and is considered

to be a constant of integration. The kinematic variables will be known while g̃k is

found by solving the differential equation Eq. (A.22). Let Pk(x) be the particular

solution for non homogeneous differential equation Eq. (A.22). Hence, the general

solution of g̃k is given by

• For λi > 0

g̃i = C2i−1e
√
λkx + C2ie

−√λix + Pi(x), i = 1, 2, · · · , n (A.24)

• For λi < 0

g̃i = C2i−1 cos
√
−λix+C2i sin

√
−λix+ Pi(x), i = 1, 2, · · · , n (A.25)

• For λi = 0

g̃i = C2i−1 + C2ix+ Pi(x), i = 1, 2, · · · , n (A.26)

The particular solution of Eq. (A.22) is given by:

• For λi 6= 0

Pi(x) = (−C2n+6 + pyx)
h̄i

λk(EI)0

, i = 1, 2, · · · , n (A.27)

• For λi = 0

Pi(x) =

(
C2n+6

x2

2
− py

x3

6

)
h̄i

(EI)0

, i = 1, 2, · · · , n (A.28)

All g̃i are collected in a vector so the analytical solution can be written in a matrix

form as follow:

g̃ = Xg̃C + Zg̃ (A.29)
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with

g̃ = [ g̃1 g̃2 · · · g̃n ]T (A.30)

and

C = [C1 C2 · · ·C2n+6 ]T (A.31)

The components of matrix Xg̃ and Zg̃ are respectively dependent on eigenvalues

of Λ and external load py. In case Λ is positive definite i.e. λk > 0, we obtain the

following expression of Xg̃ and Zg̃ with αk =
√
λk.

Xg̃ =




eα1x e−α1x 0 0 · · · 0 0 0 0 0 0 0 − h̄1

λ1(EI)0

0 0 eα2x e−α2x · · · 0 0 0 0 0 0 0 − h̄2

λ2(EI)0
...

...
...

...
. . .

...
...

...
...

...
...

...
...

0 0 0 0 · · · eαnx e−αnx 0 0 0 0 0 − h̄n
λn(EI)0




(A.32)

and

Zg̃ =
pyx

(EI)0

[
h̄1

λ1

h̄2

λ2

· · · h̄n
λn

]T

(A.33)

Substituting Eq. (A.30) into Eq. (A.20), one gets

g = XgC + Zg (A.34)

in which

Xg = ΛvXg̃; Zg = ΛvZg̃ (A.35)

A.3.1 Determination of displacement fields

We use the relations of kinematic variables in function of interlayer slip developed

in Section A.2 to determine the displacement fields. Inserting the expression of

shear force and Eq. (A.34) into Eq. (A.14), one obtains:

∂3
xv = − 1

(EI)0

I2n+6C− χXgC +
pyx

(EI)0

− χZg (A.36)
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where

χ =
1

(EI)0

[h1ksc1 h2ksc2 · · ·hnkscn ] (A.37)

The curvature, rotation and deflexion can be derived by consequently once, twice

and thrice integrating Eq. (A.36).

κ = XκC + Zκ (A.38)

θ = XθC + Zθ (A.39)

v = XvC + Zv (A.40)

where

Xκ =

∫ [
− 1

(EI)0

I2n+6 − χXg(x)

]
dx+ I2n+1 (A.41)

Xθ =

∫
Xκdx+ I2n+2 (A.42)

Xv =

∫
Xθdx+ I2n+3 (A.43)

Zθ =

∫
Zκdx (A.44)

Zκ =

∫ [
pyx

(EI)0

− χZg

]
dx (A.45)

Zv =

∫
Zθdx (A.46)

I2n+1 = [0 0 · · · 0 0 0 · · · 0 1 0 0 0 0 0] (A.47)

I2n+2 = [0 0 · · · 0 0 0 · · · 0 0 1 0 0 0 0] (A.48)

I2n+3 = [0 0 · · · 0 0 0 · · · 0 0 0 1 0 0 0] (A.49)

I2n+4 = [0 0 · · · 0 0 0 · · · 0 0 0 0 1 0 0] (A.50)

I2n+5 = [0 0 · · · 0 0 0 · · · 0 0 0 0 0 1 0] (A.51)

I2n+6 = [0 0 · · · 0 0 0 · · · 0 0 0 0 0 0 1] (A.52)

The axial displacement of concrete element can be determined from Eq. (A.13).

It gives

∂2
xuc =

1

(EA)c

[
ksc1 ksc2 · · · kscn

]
g (A.53)
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Integrating twice Eq. (A.53), one gets

uc = XucC + Zuc (A.54)

where

Xuc =

∫ [∫ (
1

(EA)c

[
ksc1 ksc2 · · · kscn

]
Xg

)
dx

]
dx+ xI2n+4 + I2n+5

(A.55)

Zuc =

∫ [∫ (
1

(EA)c

[
ksc1 ksc2 · · · kscn

]
Zg

)
dx

]
dx (A.56)

The axial displacements of steel section can be determined by using the interlayer

slip Eq. (A.5).

usi = uc − gi − hiθ, i = 1, 2, · · ·n (A.57)

Introducing Eq. (A.34), Eq. (A.39) and Eq. (A.54) into Eq. (A.57) leads to

usi = XusiC + Zusi (A.58)

where

Xusi = Xuc −Xgi − hiXθ (A.59)

Zusi = Zuc − Zg − hiZθ (A.60)

A.3.2 Determination of internal forces

Once the displacement fields are defined, one can use the linear elastic relationship

(Eq. (A.9)-Eq. (A.10)) to obtain the nodal forces.

Nsi = YNsiC +RNsi , i = 1, 2, · · ·n (A.61)

Nc = YNcC +RNc (A.62)

M = YMC +RM (A.63)

V = YV C +RV (A.64)
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where

YNsi = (EA)si∂xXusi, i = 1, 2, · · ·n (A.65)

YNc = (EA)c∂xXuc(x) (A.66)

YM = (EI)0Xκ (A.67)

YV = I2n+6 (A.68)

RNsk = (EA)sk∂xZusk, k = 1, 2, · · ·n (A.69)

RNc = (EA)c∂xZuc (A.70)

RM = (EI)0Zκ (A.71)

RV = −pyx (A.72)

A.4 Exact stiffness matrix

The direct stiffness method is used to derive the exact stiffness of the hybrid beam

with n embedded sections. It can be obtained starting from the general expres-

sions of the internal force and displacement fields. Let a hybrid beam element of

length L be considered. Since the same transverse displacement is assumed, this

element has (2n + 6) degrees of freedom, see Fig. A.3. Applying the kinematic

boundary conditions at x = 0 and x = L leads to the relationship between the

vector of constants of integration C and the vector of nodal displacements q as

follows:

q = X C + Z (A.73)

where,

q = [ us1,0 · · · uc,0 vc,0 θ0 us1,L · · · uc,L vc,L θL ] T (A.74)

X = [ Xs1,0 · · · Xθ,0 Xs1,L · · · Xθ,L ] T (A.75)

Z = [ Zs1,0 · · · Zθ,0 Zs1,L · · · Zθ,L ] T (A.76)
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Figure A.3: Nodal forces and displacements of shear-rigid hybrid beam element.

The nodal displacements are independent, so the matrix X is reversible. Thus,

the constants Ci are obtained in function of the nodal displacements qi.

C = X−1(q− Z) (A.77)

The nodal forces can be expressed in compact form as:

Q = YC + R (A.78)

where,

Q = [ −Ns1,0 · · · −Nc,0 −V0 −M0 Ns1,L · · · Nc,L VL ML ] T (A.79)

Y = [ −YNs1,0 · · · −YNc,0 −YV0 −YM0 YNs1,L · · · YNc,L YVL YML
] T

(A.80)

R = [ −RNs1,0 · · · −RNc,0 −RV0 −RM0 RNs1,L · · · RNc,L RVL RML
] T

(A.81)

Introducing Eq. (A.77) in Eq. (A.78), one obtains:

K q = Q + Q0 (A.82)

where

K = Y X−1 (A.83)

represents the exact stiffness of the element and

Q0 = KZ−R (A.84)

represents the nodal force due to the uniform external load py.
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A.5 Treatment on boundary conditions

Due to the choice of each cross-section centroid as the degree of liberty, the bound-

ary conditions require a special treatment in the case concentrated external loads

are applied elsewhere on the cross-section. Let us first consider that prescribed

displacement or rotation are applied at node mi on the encasing beam cross-

section with the distance dm from its centroid node ci. This situation requires a

rigid link between the nodes ci and mi and a change of degrees of freedom from

q to p with

q = [ us1,0 · · · uc,0 v0 θ0 us1,L · · · uc,L vL θL ] T (A.85)

and

p = [ us1,0 · · · um,0 vm,0 θ0 us1,L · · · uc,L vc,L θL ] T (A.86)

The displacements of the node mi can easily be obtained as
[
um,0

vm,0

]
=

[
uc,0

v0

]
+

[
cos θ0 − 1 − sin θ0

sin θ0 cos θ0 − 1

][
− sin β0

cos β0

]
dm (A.87)

which gives the following expression for small rotation:
[
um,0

vm,0

]
=

[
uc,0

v0

]
+

[
0 −θ0

θ0 0

][
− sin β0

cos β0

]
dm (A.88)

Differentiation of Eq. (A.88) gives
[
δum,0

δvm,0

]
=

[
δuc,0

δv0

]
−
[

cos β0

sin β0

]
dm δθ0 (A.89)

The internal force vector Q and tangent stiffness matrix K are consistent with

the displacement vector q such that

δQ = K δq (A.90)

Consider now that q is related to the displacement vector p through

δq = Bqp δp (A.91)
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Then, by equating the virtual work in both systems, the internal force vector P

consistent with p is defined by

δpT P = δqT Q (A.92)

which, using Eq. (A.91), gives

P = BT
qp Q (A.93)

where the non zero terms in the matrix Bqp are

Bqp (k,k) = 1 k = 1, 2, · · · , 2n+ 6 (A.94)

Bqp (n+1,n+3) = cos β0 dm (A.95)

Bqp (n+2,n+3) = sin β0 dm (A.96)

A.6 Numerical application

A.6.1 Simply supported sandwich beam subjected to uni-

formly distributed load

A simply supported sandwich beam of length 4, 000 mm subjected to a uniformly

distributed load of identity py = 10 kN/m, see Fig. A.4, has been modeled using

the direct stiffness approach within one element. The cross-section of the beam

consists of a concrete core of rectangular cross-section having a width of 100 mm

and a depth of 200 mm, reinforced by two steel plates of 20 mm thickness attached

to the top and bottom surfaces of the concrete. The composite action between the

concrete core and the steel plates is provided by shear connectors. The deforma-

bility of those shear connectors postulates the partial shear interaction behavior

of the sandwich beam. The elastic modulus of concrete and steel plates consid-

ered in this example are respectively Ec = 34.5 kN/mm2 and Es = 200 kN/mm2.

The distributions of the interlayer slips are shown in Fig. A.5 using shear con-

nector stiffness ksc1 = 40 MPa and ksc2 = 5 MPa respectively at top and bottom
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Figure A.4: Simply supported sandwich beam 4 m long subjected to a uniformly

distributed load.
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Figure A.5: Distributions of interlayer slips along the beam length.

surface of concrete core. An excellent agreement with the results of [42] is ob-

tained. Furthermore, the effect of the degree of interaction has been investigated

by considering different levels of the shear connector stiffness expressed in terms

of dimensionless parameters k1 and k2 given by the following expression:

ki =

√
ksci

(
1

(EA)sci
+

h2
i

(EI)0

)
L, i = 1, 2 (A.97)

where the subscript ”i = 1” represents the interface at top surface of concrete and

”i = 2” for the one at bottom surface. Fig. A.6 and Fig. A.7 presents respectively

the slip distributions at top and at bottom interface of the concrete core along

the beam for a variety of dimensionless stiffness of the shear connections. As
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expected, the interlayer slip decreases when its corresponding stiffness increases.

The vertical displacement for all cases of shear connector stiffness is depicted in

Fig. A.8. It can be seen that for the cases (k1 = 1; k2 = 50) and (k1 = 50;

k2 = 1), the vertical displacements for each case are shown in the same curve.

This is due to the symmetry of the system. The vertical displacement increases

virtually with the decreasing connector stiffness.
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Figure A.6: Interlayer slip distribution for various shear connection stiffness.
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Figure A.7: Interlayer slip distribution for various shear connection stiffness.
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Figure A.8: Vertical displacement for various shear connection stiffness.

A.6.2 Hybrid column subjected to shear force

For this example, the analysis of elastic behavior of the concrete column with

length of 10 m, having a width of 200 mm and a depth of 400 mm, reinforced

by two steel profiles HEB100, see Fig. A.9, is performed using the direct stiffness

approach within two elements based on the formulation developed in Section A.5.

The column is subjected to a lateral load of 20 kN and compression axial force

of 200 kN at free-end. The axial force is evenly distributed to concrete and steel

sections through theirs axial stiffness. Two cases of the intermediate support are

considered: one at the centroid of the concrete section (case A) and another one

at the (outside) surface of the concrete section (case B). For case B, the eccentric

node where the support is situated is linked rigidly to concrete node at centroid

of the concrete cross-section. The composite behavior of the column in partial

shear interaction is postulated by the deformability of shear connectors placed at

the interfaces between those two materials. The elastic modulus of concrete and

steel profiles considered in this example are respectively Ec = 34.5 kN/mm2 and

Es = 210 kN/mm2 and the shear connector stiffness ksc1 = ksc2 = 3.87 MPa are

used at both interfaces. One can observe from Fig. A.10 that the position of the

intermediate support influences the lateral deflection of the column. The column

deflects more in case B where the support is located at the outside surface of the

Pisey Keo 179



A. GEOMETRICALLY ELASTIC LINEAR SHEAR-RIGID
HYBRID BEAM MODEL

5 m

5 m

0.20 m

0.40 m

@0.10 m

Figure A.9: Hybrid column with intermediate support.
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Figure A.10: Lateral displacement along the column length for each case.

cross-section. Nevertheless, the rotation and interlayer slip g2 at free end in case

B are reduced significantly comparing to case A, see respectively Fig. A.11 and

Fig. A.12. This is due to the change of axial displacement of concrete component

while the intermediate support is placed at outside surface, see Fig. A.13.
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Figure A.11: Rotation along the column length for each case.
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Figure A.12: Interlayer slips along the column length for each case.
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Figure A.13: Axial displacement of concrete component along the column length

for each case.
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Geometrically nonlinear

shear-rigid hybrid beam model

***

B.1 Introduction

In order to analyze the behavior of slender hybrid columns, a planar beam-column

finite element formulation was developed based on Euler-Bernoulli kinematics and

fiber cross-section discretisation. The co-rotational approach is adopted to take

into account the geometry nonlinearity of the problem. The developed FE model

is capable to consider the following aspects: a cross-section with more than one

steel section in partial interaction; geometrical and material nonlinearities; initial

imperfection; residual stresses; and concrete confinement. For the sake of clarity

the FE formulation is presented for the case of hybrid column with two encased

steel profiles. However, the concepts are also applicable to general case of several

encased steel profiles. A more detailed deduction can be found in [149].

Let us consider a planar element with two steel sections fully encased in concrete

and including shear connectors at the contact interface uniformly distributed

along the element length. It is assumed that the interlayer slip can occur at the

interface but there is no uplift. For the present case, the element has 10 global

degrees of freedom in the fixed global coordinate system: global displacements
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and rotation of the nodes (ci and cj) and slips (gki, gkj) between the steel node sk

and concrete node ci;j. Since all component are bent according to Euler-Bernoulli

kinematics, the rotation of all components (steel sections and concrete section)

at the end nodes are equal and that the slips (gki, gkj) are perpendicular to the

end cross-sections. The vector of global nodal displacements is defined by

pg = [uci vci θi g1i g2i ucj vcj θj g1j g2j]
T (B.1)

Due to the presence of the three rigid body modes in the global coordinate system,

the corresponding element stiffness matrix is singular. Therefore, the linear local

element is derived in the local system (xl, yl) without rigid body modes. The

latter translates and rotates with the element as the deformation proceeds. In

this local system, the element has seven degrees of freedom and the vector of local

displacements is defined as

pl = [ūs1i ūs2i θ̄i ūs1j ūs2j ūcj θ̄j] (B.2)

B.2 Co-rotational formulation

The origin of the local coordinate system is taken at node ci and the xl-axis of

the local coordinate system is defined by the line connecting the nodes ci and cj.

These nodes are chosen to be at the centroid of concrete section in order to easily

derive the kinematic relationships between the global nodal displacements and

the local ones. The yl-axis is perpendicular to the xl-axis so that the result is a

right-handed orthogonal coordinate system. The motion of the element from the

original undeformed configuration to the actual deformed one can thus be sepa-

rated in two parts. The first one, which corresponds to the rigid motion of the

local frame, is described by the translation of the node ci and the rigid rotation

of the axes. The deformational part of the motion is always small in the local

coordinate system and a geometrical linear element will be used.

According to the notations defined in Fig. B.1, the components of the local
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Figure B.1: Degrees of freedom and co-rotational kinematics.

displacement vector pl can be computed from those of the global vector pg as

ūcj = ln − lo (B.3)

θ̄i = θi + βo − β (B.4)

θ̄j = θj + βo − β (B.5)

ūski = gki cos θ̄i − hk θ̄i with k = 1 or 2 (B.6)

ūskj = gkj cos θ̄j − hk θ̄j with k = 1 or 2 (B.7)

where

cos βo =
1

lo
(xcj − xci) (B.8)

sin βo =
1

lo
(ycj − yci) (B.9)

cos β =
1

ln
(xcj + ucj − xci − uci) (B.10)

sin β =
1

ln
(ycj + vcj − yci − vci) (B.11)

and lo and ln being the element length in initial and deformed configuration,

respectively:

lo =
√

(xcj − xci)2 + (ycj − yci)2 (B.12)

Pisey Keo 185



B. GEOMETRICALLY NONLINEAR SHEAR-RIGID HYBRID
BEAM MODEL

ln =
√

(xcj + ucj − xci − uci)2 + (ycj + vcj − yci − vci)2 (B.13)

As can be seen from Eqs. (B.3) to (B.7), the local displacement vector pl can be

expressed as functions of the global one pg, i.e.:

pl = pl(pg) (B.14)

Then, pl is used to compute the internal force vector fl and the tangent

stiffness matrix Kl in the local system. Note that fl and Kl depend only on the

definition of the local strains and not on the particular form of Eq. (B.14). The

transformation matrix Blg between the local and global displacements is defined

by:

δpl = Blgδpg (B.15)

and is obtained by differentiation of Eq. (B.14). The global internal force vector

fg and the global tangent stiffness matrix Kg, consistent with pg, can be obtained

by equating the internal virtual work in both the global and the local system, i.e.:

fg = BT
lgfl Kg = BT

lgKlBlg + Hlg Hlg =
∂(BT

lgfl)

∂pg

∣∣∣∣∣
fl

(B.16)

BT
lg =




−s λ1i
ln

−s λ2i
ln

−s
ln

c
ln

−s λ1i
ln
− c −c −s

ln
c λ1i
ln

c λ2i
ln

c λ1i
ln
− s c λ2i

ln
− s c λ1i

ln
− s −s c

ln

λ1i λ2i 1 0 0 0 0

− cos(θi−α) 0 0 0 0 0 0

0 − cos(θi−α) 0 0 0 0 0
s λ1i
ln

s λ2i
ln

s
ln

s λ1j
ln

+ c s λ2i
ln

+ c c s
ln

−c λ1i
ln

−c λ2i
ln

−c
ln

−c λ1j
ln

+ s
−c λ2j
ln

+ s s −c
ln

0 0 0 λ1j λ1j 0 1

0 0 0 − cos(θj−α) 0 0 0

0 0 0 0 − cos(θj−α) 0 0




(B.17)

Hlg =
ω1 z

T

ln
+ ω2 r

T + ω3 t
T
1i + ω3 t

T
2i + ω5 t

T
1j + ω6 t

T
2j + ω7 IT

3 + ω8 IT
8 (B.18)
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where

ω1 = [ ξ1 ξ2 0 − sin(θi−α) fl(1) − sin(θi−α) fl(2) −ξ1 −ξ2 0 − sin(θi−α) fl(4) − sin(θi−α) fl(5) ]

(B.19)

ω2 = [ ξ1 ξ2 0 0 0 ξ1 ξ2 0 0 0 ] (B.20)

ω3 = [ − s
ln

c
ln

1 0 0 s
ln
− c
ln

0 0 0 ] fl(1) (B.21)

ω4 = [ − s
ln

c
ln

1 0 0 s
ln
− c
ln

0 0 0 ] fl(2) (B.22)

ω5 = [ − s
ln

c
ln

0 0 0 s
ln
− c
ln

1 0 0 ] fl(4) (B.23)

ω6 = [ − s
ln

c
ln

0 0 0 s
ln
− c
ln

1 0 0 ] fl(5) (B.24)

ω7 = [ 0 0 0 sin(θi − α) fl(1) sin(θi − α) fl(2) 0 0 0 0 0 ] (B.25)

ω8 = [ 0 0 0 0 0 0 0 0 sin(θj − α) fl(4) sin(θj − α) fl(5) ] (B.26)

t1i = [ 0 0 g1i cos(θi−α) sin(θi−α) 0 0 0 0 0 0 ]−g1i cos(θi−α) z
ln

(B.27)

t2i = [ 0 0 g2i cos(θi−α) 0 sin(θi−α) 0 0 0 0 0 ]−g2i cos(θi−α) z
ln

(B.28)

t1j = [ 0 0 0 0 0 0 0 g1j cos(θj−α) sin(θi−α) 0 ]−g1j cos(θj−α) z
ln

(B.29)

t2j = [ 0 0 0 0 0 0 0 g2j cos(θj−α) 0 sin(θi−α) ]−g2j cos(θj−α) z
ln

(B.30)

z = [ s −c 0 0 0 −s c 0 0 0 ] (B.31)

r = [ −c −s 0 0 0 c s 0 0 0 ] (B.32)

I3 = [ 0 0 1 0 0 0 0 0 0 0 ] (B.33)

I8 = [ 0 0 0 0 0 0 0 1 0 0 ] (B.34)

The choice of the slips as the degrees of freedom is indispensable for the robust-

ness of the FE formulation. Due to this choice (see Eq. (B.1)) the boundary

conditions require a special treatment in case external concentrated loads are not

applied to the node located at the centroid of the column cross-section (origin of

the local frame) but somewhere else on the cross-section.

Let us consider (see Fig. B.2) that prescribed displacement or rotation is ap-

plied at node mi. This situation requires a rigid link between the nodes ci and
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Figure B.2: Eccentric nodes in co-rotational frame.

mi and a change of degrees of freedom from pg to pm with

pm = [ umi vmi θi g1i g2i ucj vcj θj g1j g2j ] T (B.35)

The internal force vector and tangent stiffness matrix consistent with pm are then

obtained by using the transformation matrix Bgm. This gives

δpg = Bgm δpm fm = BT
gm fg Km = BT

gm Kg Bgm + Hgm (B.36)

with

Bgm (k,k) = 1 with k = 1, 2, · · · , 10 (B.37)

Bgm (1,3) = cos(βo + θi) dm (B.38)

Bgm (2,3) = sin(βo + θi) dm (B.39)

and the only non zero term in the matrix Hgm is

Hgm (3,3) = − sin(βo + θi) dm fg(1) + cos(βo + θi) dm fg(2) (B.40)

B.3 Local displacement-based element

The geometrically linear element is derived in the local system (xl, yl). The local

element has ten degrees of freedom (see Fig. B.3). The transverse displacement v̄
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is approximated using cubic Hermite interpolations. In order to avoid the curva-

ture locking, three internal nodes (one for each component) are added in order to

use quadratic shape function for axial displacement interpolation. However, for

saving the calculation time, three degrees of freedom corresponding to the internal

nodes will be statically condensed out thereafter to obtain the local displacement

vector containing only the degrees of freedom at the element ends. The material

L

s1 s1,  i iN u

s2 s2,  i iN u s2 s2,  j jN u

s1 s1,  j jN u

,  j jM ,  i iM 
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Figure B.3: Degree of freedoms of local linear element with two encased steel

profiles.

(a) Hybrid column with three encased

steel profiles.

(b) Mega column with four encased

steel profiles.

Figure B.4: Fiber discretization of sections.

non-linearity is taken into account by adopting the distributed plasticity model
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with fiber section discretization (see Fig. B.4). Each fiber is fed with a uniaxial

constitutive model.

B.4 Comparison against the experimental re-

sults

To the best of our knowledge, there is no available experimental results for buck-

ling test on RC column with multi-embedded steel profiles (hybrid columns) in

technical literature. Nevertheless, a couple of experimental compression-bending

tests on steel-concrete shear walls with vertical steel encased profiles was con-

ducted by Dan et al. [8] and by Zhou et al. [7]. The dimensions of the tested

specimens are such that they cannot be considered as slender columns. There-

fore, the developed finite element model is validated by comparing its predic-

tion against ten test results of eccentrically loaded slender composite columns

[150, 151] and six test results of short composite columns [152]. For the sake

of clarity, in this study we denote seven specimens tested by Al-Shahari et al.

[150] as CESC1-CESC7, three specimens tested by Morino et al. [151] as CESC8-

CESC10, and six concrete encased steel composite short columns tested by Chen

and Yeh [152] as SCESC1-SCESC6. The geometrical and material properties of

the above-mentioned specimens are summarized in Table B.1 .

All composite column specimens are pinned at both ends. The columns CESC1-

CESC10 are loaded with the same eccentricity at both extremities. The concrete

region is subdivided into three parts as suggested by Mirza and Skrabek [153].

The highly confined concrete zone is taken from the web of the steel section to

each flange, and the partially confined concrete zone is from the parabolic border

of the highly confined concrete zone to the centerlines of the transverse rein-

forcement as illustrated in Fig. B.5. The confinement factor for highly confined

concrete varied from 1.10 to 1.97 and for partially confined concrete varied from
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Table B.1: Specimen dimensions and material properties.

Specimen B×D kL Structural Long. e/D fc fy fs
(mm) (mm) steel bar (MPa) (MPa) (MPa)

CESC1 230×230 2000 H100×96×5×8 4φ12 0.3 20.5a 337 459
CESC2 230×230 2000 H100×96×5×8 4φ12 0.3 13.7a 337 459
CESC3 230×230 2000 H140×133×5.5×8 4φ12 0.3 20.5a 307 459
CESC4 230×230 2000 H140×133×5.5×8 4φ12 0.3 28.2a 307 459
CESC5 230×230 3000 H140×133×5.5×8 4φ12 0.3 28.2a 307 459
CESC6 230×230 3000 H100×96×5×8 4φ12 0.17 20.5a 337 459
CESC7 230×230 3000 H100×96×5×8 4φ12 0.17 13.7a 337 459

CESC8 160×160 960 H100×100×6×8 4φ6 0.25 21.1a 345 460
CESC9 160×160 2400 H100×100×6×8 4φ6 0.25 23.4a 345 460
CESC10 160×160 3600 H100×100×6×8 4φ6 0.25 23.3a 345 460

SCESC1 280×280 1200 H150×150×7×10 12φ16 0.0 29.5b 296 350
SCESC2 280×280 1200 H150×150×7×10 12φ16 0.0 28.1b 296 350
SCESC3 280×280 1200 H150×150×7×10 12φ16 0.0 29.8b 296 350
SCESC4 280×280 1200 H150×75×5×7 12φ16 0.0 28.1b 303 350
SCESC5 280×280 1200 H150×75×5×7 12φ16 0.0 26.4b 303 350
SCESC6 280×280 1200 H150×75×5×7 12φ16 0.0 29.8b 303 350
aConcrete cube strength
bConcrete cylinder strength
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Longitudinal bar Steel section Stirrup

Unconfined 
concrete

Partially 
confined 
concrete

Highly 
confined 
concrete

(a) Specimen CESC1-CESC10.

B
cy cy

D
c z

c z

(b) Specimen SCESC1-SCESC6.

Figure B.5: Specimen dimension and regions for unconfined, partially confined

and highly confined concrete.

1.08 to 1.50 depending on spacing of the stirrups, as given by [154]. The concrete

outside the ties is not confined. The effect of residual stresses in structural steel
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is included and the initial imperfection is taken equal to l0/1000 in which l0 is

the effective length.

For all numerical simulations, the modified concrete stress-strain model proposed

by Kent and Park [87] in compression is adopted. For concrete in tension, linear

stress-strain relationship up to tensile strength and linear tensile softening with

fracture energy 0.12 N/mm are assumed. The stress-strain relationships of struc-

tural steel recommended by EC3 [58] and reinforcing bar recommended by EC2

[11] are adopted. All test specimens are modeled with the developed FE model

using 6 elements. In Table B.2, the predictions of the model are compared against

test results. A good agreement between numerical and experimental results can

be observed. Indeed, the mean value of numerical-experimental load capacity ra-

tio for sixteen cases is very close to 1 and the corresponding standard deviation is

only 6%. Furthermore, it is worth to mention that, in most cases, the FE model

predictions are on the safe side.
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B.4 Comparison against the experimental results

Table B.2: Comparison between tests and finite element results.

Specimen λ̄ PTest [kN] PFE [kN] PFE/PTest

CESC1[150] 0.36 654 641 0.98

CESC2[150] 0.34 558 553 0.99

CESC3[150] 0.34 962 813 0.85

CESC4[150] 0.36 949 924 0.97

CESC5[150] 0.55 900 822 0.91

CESC6[150] 0.54 813 764 0.94

CESC7[150] 0.51 704 646 0.92

CESC8[151] 0.25 740 600 0.81

CESC9[151] 0.63 504 493 0.98

CESC10[151] 0.95 412 378 0.92

SCESC1[152] 0.19 4220 4261 1.01

SCESC2[152] 0.19 4228 4239 1.00

SCESC3[152] 0.19 4399 4641 1.06

SCESC4[152] 0.19 3788 3606 0.95

SCESC5[152] 0.18 3683 3615 0.98

SCESC6[152] 0.19 3893 3873 0.99

Mean - - - 0.95

Cov - - - 0.06
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Simple design tool - HBCol

***

C.1 Description of the program

A freeware program accessible at http://hybridcolumnstruc.weebly.com/, HB-

Col is a simple design tool capable to perform the nonlinear analysis of hybrid

column reinforced by several embedded steel profiles subjected to combined axial

load and uni-axial bending moment. The users are also able to carry out a new

design method proposed by the author to accurately predict the ultimate load of

hybrid columns. Moreover, a nonlinear analysis of reinforced concrete column is

also available by choosing ”Without Steel Section” in Steel Section Panel/Choose

Box.

In this program, co-rotational framework is used for a large displacement anal-

ysis. The advantage of using the co-rotational approach is that the geometrical

linear finite element formulation can be reused and automatically be transformed

into geometrical nonlinear formulation. In local frame, the hybrid column with

three encased steel profiles is divided into 4 sub-elements: 3 for structural steel

profiles and 1 for reinforced concrete. This division leads to 16 degrees of free-

dom for one element where the internal nodes for axial displacement have been

introduced to avoid shear locking problem. Eurocode 2 and 4 material laws for

steel profile, rebar as well as concrete are adopted to take into account the non-
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Figure C.1: Interface of HBCol program.

linear material effect. The residual stresses in steel profiles are considered. In

this first version, the slips between steel and concrete component at extremities

of the member are constraint to zero and the full interaction is assumed by pro-

viding relatively high rigidity of the connector. The relatively high rigidity of the

connector is determined by:

ksc =
EcmAg
b l

(C.1)

where Ecm, Ag, b and l are respectively elastic modulus of concrete, area of cross-

section, width of cross-section and column height.

The new design method is developed within the context of Eurocodes, i.e. moment

magnification approach. In the new method, new expressions for the correction

factors (for the determination of effective flexural stiffness EI of the column) are

proposed, see Section 6.4.2 in order to take into account the creep effect and the
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C.2 Input data

effect of plastification of steel profiles.

C.2 Input data

The program requires some basic input data like geometry of the column, the

arrangement of reinforcing bar, steel section, material properties and parameters

for the analysis, see Fig. C.1. Besides, the user may also define steel shapes by

fibers for the simplified analysis. However, the steel shapes defined by fibers are

not considered in the nonlinear FE analysis.
 

 

  Figure C.2: Message box.

 

  

Figure C.3: Load-displacement curve.
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Figure C.4: M-N interaction.

C.3 Result of analysis

Whilst the nonlinear FE analysis is performed, the message box Fig. C.2 is ap-

peared stating that the analysis is being executed. The nonlinear FE analysis

is terminated if the non convergence is occurred or the imposed displacement

step reaches a certain number after the peak load. Then, the load-displacement

curve is provided, see Fig. C.3. Fig. C.4 shows the result of simplified method.

Two curves are provided. The black one corresponds to the plastic resistance of

hybrid/rc cross-section using pivot method. The blue one represents the M-N

interaction curve provided by the new design method.

C.4 Report of analysis

When the analysis of hybrid column has been performed, the user is able to

generate the report file given in the form of html format.
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Résumé en français

***

A short summary of the thesis

in french.

8.1 Introduction

Dans les immeubles de grande hauteur en béton armé, les poteaux et les murs sont

souvent renforcés par plusieurs profils acier noyés dans le béton car le renforce-

ment traditionnel par les barres d’armature n’est plus suffisant. Ces éléments,

qualifiés d’hybrides, ne peuvent être traités par les règlements relatifs aux struc-

tures en béton armé tels que l’Eurocode 2 [11], ni par les règlements dédiés aux

structures mixtes comme l’Eurocode 4 [12] qui couvrent le cas des éléments con-

tenant un seul profil métallique.

Dès lors, bien que de tels éléments soient utilisés régulièrement, les praticiens

ne disposent d’aucun règlement applicable pour leur dimensionnement. Le projet

de recherche Européen RFCS SMART COmposite COnstruction a pour objectif

de combler ce vide, par la rédaction d’un guide de dimensionnement pour les

éléments hybrides en s’appuyant sur une recherche théorique et expérimentale.

Le travail de cette thèse s’inscrit dans ce projet d’envergure et apporte une con-

tribution au volet théorique et numérique de cette recherche. Ce travail a but
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de développer un outil de simulation et une méthode de dimensionnement dédiée

aux poteaux hybride soumis à un chargement combiné (charge critique). Pour

atteindre cet objectif, nous développons des modèles théoriques et numériques de

complexité croissante.

Dans la première partie de cette thèse, les équations fondamentales (cinéma-

tique, équilibre, comportement) d’une poutre hybride élastique en l’interaction

partielle sont présentées. Les équations du problème en déplacement sont dévelop-

pées et résolues par une technique de décomposition en valeurs propres. Une at-

tention particulière est apportée à la détermination des constantes d’intégration.

La solution analytique ainsi obtenue sert à construire la matrice de raideur ex-

acte pour l’analyse élastique linéaire d’une poutre hybride en interaction partielle.

Dans la seconde partie de cette thèse, nous proposons une nouvelle formulation

élément fini pour le calcul non linéaire en grande déplacement d’un poteau hy-

bride en tenant compte des glissements qui se produisent à chaque interface acier-

béton. Pour ce faire, nous considérons l’approche co-rotationnelle dans laquelle

le mouvement de l’élément se décompose en un mouvement de corps rigide et en

une partie déformable décrite dans le repère co-rotationnel local qui se déplace

de manière continue et tourne avec l’élément mais qui ne se déforme pas avec

celui-ci. Cette méthode bien connue permet de transposer en non-linéaire, les

éléments développés dans un contexte géométriquement linéaire. La matrice de

raideur exacte développée dans la première partie est utilisée pour l’élément local.

Dans la troisième partie de cette thèse, nous abordons le comportement matérielle-

ment non-linéaire des poutres/poteaux hybrides en interaction partielle soumis à

l’action combinée d’un effort compression, d’un moment de flexion et d’un effort

de cisaillement. Le modèle de fibre est adopté dans lequel l’état de contrainte tri-

axiale du béton est considéré. Un critère de type « Cap Model » ne dépendant que

du premier et second invariant est considéré pour le béton. Le confinement créé

par les cadres est pris en compte dans le modèle. Le schéma implicite est retenu
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et une stratégie de condensation permet d’éliminer les deux contraintes normales

non-nulles qui sont dans le plan de la section. Cette technique de condensation

permet de passer d’une formulation en plasticité 3D au modèle de comportement

de type poutre 2D.

Dans la dernière partie de cette thèse, les outils précédemment développés

sont utilisés pour évaluer la pertinence des méthodes simplifiées de l’Eurocode 2

et 4, dans le cas spécifique des poteaux hybrides soumis à un effort normal et à un

de moment de flexion uni-axial. Dans un premier temps, l’élément fini développé

est modifié en considérant la cinématique d’Euler-Bernoulli pour chacun des com-

posants. Ensuite, cet élément fini est utilisé pour traiter 1140 cas différents de

poteaux hybrides, destinés à couvrir les différentes typologies possibles et afin

de disposer d’une base de données suffisamment large qui permet de jauger de

la pertinence des méthodes simplifiées de l’Eurocode 2 et de l’Eurocode 4. Les

résultats indique clairement que la méthode d’amplification du moment (version

EC2 et EC4) ne sont pas satisfaisante. Dans un second temps, la base de données

est étendue à 2960 configurations, ce qui permet de calibrer une nouvelle version

de la méthode d’amplification du moment. Cette nouvelle méthode sera proposée

aux organismes de normalisation.

8.2 Modélisation d’une poutre hybride dans le

domaine élastique

La grande majorité des articles scientifiques sur les poutres mixtes multicouches

en interaction partielle traite du cas des poutres à deux couches [14, 22, 24, 27, 30]

; si bien que la littérature technique sur les poutres multicouches voire les poutres

hybrides renforcées par plusieurs profils est nettement moins abondante. Chui et

Barclay [36] et Schnabl et al. [37] ont proposé un modèle analytique exact pour la

poutre élastique à trois couches, où l’épaisseur ainsi que le module de Young des

couches sont arbitraires. Sousa et al. [38] a développé une solution analytique

pour les poutres multicouches isostatiques en supposant que la rotation de la
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section transversale est identique pour chacune des couches. Skec et al. [39] ont

proposé des modèles mathématiques avec des solutions analytiques pour l’analyse

de poutres multicouches en élasticité linéaire. Ranzi [40] a proposé deux types

d’éléments finis de type « déplacement » pour objectif d’évaluer le comportement

de ces éléments finis de poutre multicouche en interaction partielle face au ver-

rouillage. Pour les fonctions de formes polynomiales classiques, il est montré que

l’élément avec nœud interne caractérise bien le comportement de la poutre en

interaction partielle alors que l’élément sans nœud interne souffre des problèmes

de verrouillage.

Une formulation élément fini reposant avec matrice de rigidité exacte offre la

possibilité de générer un élément fini sans verrouillage. Ces éléments sont très

attrayants en raison de leur précision, l’efficacité de calcul et l’indépendance de

la solution vis-à-vis de la discrétisation spatiale. Heinisuo [41] a proposé une

formulation élément fini utilisant la matrice de rigidité exacte pour les poutres

droites, linéairement élastiques avec trois et cinq couches. Sousa [42] a développé

une formulation analytique et a déduit l’expression de la matrice de rigidité ex-

acte pour les poutres multicouches partiellement connectés avec l’hypothèse que

le déplacement transversal ainsi que la rotation de la section droite est le même

pour toutes les couches.

Dans cette section, nous étendons les travaux de Sousa [42] en considérant que

la rotation des sections droites est différente pour chacune des couches. Nous dé-

duisons la solution analytique et une nouvelle formulation « élément fini » pour

l’analyse des poutres hybrides en interaction partielle sur la base de la matrice de

rigidité exacte dont l’expression est déduite de la solution analytique.

8.2.1 Equation d’équilibre

Les équations d’équilibre sont obtenues en considérant l’état équilibre d’un élé-

ment de longueur infinitésimal dx soumis à une charge répartie py, voir Fig. 8.1.

La connexion à l’interface entre le profil acier et le béton est modélisée par un
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ressort distribué continu. Les conditions d’équilibre se traduisent par l’ensemble

d’équations suivantes :

py
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1s
M

1 1
d s sM M

1 1
d s sN N
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Figure 8.1: Élément infinitésimal d’une poutre hybride.

∂Nsi +Dsci = 0, i = 1, 2, · · ·n (8.1)

∂Nc −
n∑

j=1

Dscj = 0 (8.2)

∂Mc + ∂Ms + T +
n∑

j=1

hjDscj = 0 (8.3)

∂T + py = 0 (8.4)

où ∂• = d • /dx, Ms =
n∑
j=1

Msj et T =
n∑
j=1

Tsj + Tc.
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8.2.2 Relations cinématiques

En considérant que pour l’élément enrobant (qui en pratique est en béton) de

la poutre hybride, la section droite reste plane mais n’est pas nécessairement

normale à l’axe neutre, voir Fig. 8.2, on obtient les relations suivantes :

εi = ∂ui i = s1, s2, · · · , sn, c (8.5)

θc = ∂v − γc (8.6)

κc = ∂θc (8.7)

θsi = ∂v i = 1, 2, · · · , n (8.8)

κsi = ∂θsi i = 1, 2, · · · , n (8.9)

Les éléments enrobés se déforment selon les hypothèses cinématique d’Euler-

Bernoulli. Les glissements se produisent aux interfaces acier-béton qui résultent

des déplacements relatifs. Les rotations étant petites, on peut assimiler la tan-

gente à l’angle, ce qui fournit :

gi = uc − usi − hiθc, i = 1, 2, · · · , n (8.10)

8.2.3 Loi de comportement

Le champ des contraintes se déduit du champ de déformation à l’aide de la relation

de comportement des matériaux. Par définition, les efforts internes résultent de

l’intégration du champ de contrainte sur la section droite :

Ni =

∫

Ai

σ dAi = (EA)i εi (8.11)

Mi = −
∫

Ai

y σ dAi = (EI)i κi (8.12)

Tc =

∫

Ac

τ dAc = (GA)c γc (8.13)

Dsci = ksci gi, i = 1, 2, · · · , n (8.14)

où Ei, Gi, Ai et Ii sont respectivement le module élastique de Young, le module

de cisaillement, l’aire de la section et le moment d’inertie de la section ”i”; ksci

désigne la rigidité de la connexion.
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y

x

z

us1

us2

uc

usn

s

c

sn

h
1

h
2

h
n

v

s1

s1

c

Figure 8.2: Cinématique de la poutre hybride.

8.2.4 Solution analytique et matrice de rigidité exacte

dans le cas élastique linéaire

Les relations(8.1-8.14) sont maintenant combinées pour établir les équations gou-

vernant le comportement d’une poutre hybride en l’interaction partielle. En com-

binant les équations cinématiques (8.5-8.7) avec les équations du comportement

élastique (8.11-8.14) et en insérant le résultat dans les équations d’équilibre (8.1-
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8.3) se produit l’ensemble des équations différentielles suivantes :

(EA)si ∂
2usi = −ksci gi, i = 1, 2, · · · , n (8.15)

(EA)c ∂
2uc =

n∑

i=1

ksci gi (8.16)

(EI)0 ∂
3v = −T −

n∑

i=1

ksci gi hi + (EI)c ∂
2γc (8.17)

où (EI)0 = (EI)s + EcIc et (EI)s =
n∑
i=1

Esi Isi . En combinant les relations

cinématiques, d’équilibre et de loi du comportement avec les équations (8.15-

8.17), on obtient un system des équations différentielles couplées où les variables

sont les glissements aux interfaces et la déformation de cisaillement collectée dans

le vecteur s :

∂2s−A s = h (8.18)

dans laquelle la matrice A est composée de paramètres provenant de la géométrie

et de la rigidité de la section ; et le vecteur h dépend de l’effort tranchant total

sur la section transversale.

Le system d’équations différentielles couplées (8.18) peut être résolu en diago-

nalisant la matrice A, ce qui conduit à un système de n équations différentielles

ordinaires du second-ordre.

Il est à noter que la solution exacte de (8.18) requiert la connaissance de la

distribution de l’effort tranchant T (x). Pour simplifier le développement de la so-

lution, on suppose que la charge extérieure est répartie et constante sur l’élément

de la poutre hybride. Par conséquence, la distribution de l’effort tranchant est

linéaire suivant l’équilibre transversal de la section. On a donc :

T (x) = −py x+ C2n+8 (8.19)

où C2n+8 est l’effort tranchant à l’extrémité gauche de la poutre et est considéré

comme une constant d’intégration dont la valeur sera fixée par les conditions aux
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limites. En résolvant le system d’équations différentielles (8.18), on obtient :

g = XgC + Zg (8.20)

γc = XγcC + Zγc (8.21)

où la matrice X contient des fonctions exponentielles de x et Z est une fonction

de la charge répartie py.

En introduisant (8.20-8.21) dans (8.15-8.17) et résolvant pour chaque variable

cinématique, on obtient les relations suivantes :

v = XvC + Zv (8.22)

θs = XθsC + Zθs (8.23)

θc = Xθc C + Zθc (8.24)

uc = XucC + Zuc (8.25)

usi = XusiC + Zusi , i = 1, 2, · · · , n (8.26)

Une fois que les déplacements sont déterminés, on peut utiliser la loi de com-

portement élastique linéaire (8.11-8.13) pour déterminer les efforts nodaux.

Nsi = YNsiC +RNsi , i = 1, 2, · · ·n (8.27)

Nc = YNcC +RNc (8.28)

Ms = YMsC +RMs (8.29)

Mc = YMcC +RMc (8.30)

T = YTC +RT (8.31)

où la matrice Y se décompose des fonctions exponentielle de x and R est une fonc-

tion de la charge répartie py. Comme nous avons le même déplacement transversal

sur la section transversale, l’élément de la poutre hybride avec n sections noyées

dans le béton a (2n+ 8) degrés de liberté, voir Fig. 8.3. Considérons un élément

de la poutre hybride de longueur L, en appliquant les conditions aux limites en

x = 0 et x = L, on obtient une relation entre les déplacements nodaux et les

constantes d’intégration:

q = X C + Z (8.32)
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où

q = [ us1,0 · · · uc,0 vc,0 θs,0 θc,0 us1,L · · · uc,L vc,L θs,L θc,L ]T,

Z = [ Zus1,0 · · · Zθs,0 Zθc,0 Zus1,L · · · Zθs,L Zθc,L ]T et

X = [ Xus1,0 · · · Xθs,0 Xθc,0 Xus1,L · · · Xθs,L Xθc,L ]T.

L

1 1,0 ,0,  s sN u

2 2,0 ,0,  s sN u

,0 ,0,  
n ns sN u

,0 ,0,  c cN u
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,L ,L,  s sM 

y

x

Figure 8.3: Degrés de liberté de l’élément de la poutre hybride.

Les forces nodales peuvent être exprimées par :

Q = Y C + R (8.33)

où

Q = [ −Ns1,0 · · · −Mc,0 Ns1,L · · · Mc,L ]T,

Y = [ −YNs1,0
· · · −YMc,0 YNs1,L

· · · YMc,L
]T et

R = [ −RNs1,0
· · · −RMc,0 RNs1,L

· · · RMc,L
]T.

En combinant (8.32) avec (8.33), on a :

K q = Q + Q0 (8.34)

où K = YX−1 représente la matrice de rigidité exacte d’un élément et Q0 = KZ−
R représente les forces nodales équivalent à la charge extérieure uniformément

répartie py.
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déplacement

8.3 Modélisation d’une poutre hybride élastique

en grand déplacement

Afin d’analyser l’effet des non-linéarités géométriques sur le comportement d’une

poutre hybride, nous proposons un élément fini spécifique de poutre plane con-

struit dans un contexte co-rotationnel. Dans cette approche, la configuration

déformée de l’élément est définie par un mouvement « corps rigide » de la con-

figuration initiale superposé à une déformation de la poutre dans un repère local.

Dans ce repère, les déplacements sont petits et donc la relation entre les relations

cinématiques sont linéaires.

8.3.1 Cinématique de l’élément de poutre hybride en de-

scription co-rotationnelle

Dans le repère global, l’élément possède deux nœuds pour la partie béton aux

extrémités de l’élément. La cinématique des profils acier est définie en supposant

qu’il n’y a pas de mouvement transversal relatif acier-béton ; il n’y a dès lors, à

chaque extrémité de l’élément, qu’un seul degré de liberté spécifique représentant

le glissement entre le profil acier et le béton. Dans le repère local, la matrice

de rigidité exacte peut être utilisée. En conséquence, les nœuds intermédiaires

utilisés pour éviter le problème de verrouillage numérique, rencontré dans les élé-

ments finis polynomiaux d’ordre inférieur, ne sont pas nécessaires. Les notations

utilisées sont définies sur Fig. 8.4 et Fig. 8.5. Les coordonnées des nœuds ci et cj

dans le repère global (x, y) sont (xci, yci) et (xcj, ycj), respectivement.

L’élément a 2(n + 4) de degrés de liberté : les déplacements et les rotations

globales des nœuds (ci and cj) et les glissements (gki, gkj). La rotation de chaque

profil à l’extrémité est la même (hypothèse de Bernoulli) et les glissements (gki,

gkj) dans le repère global sont perpendiculaires aux sections transversales des

profils.
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Figure 8.4: Glissements dans la poutre hybride en grande déplacement.
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Figure 8.5: Déplacement et rotation de section.

8.3.2 Formulation de l’élément de poutre hybride en de-

scription co-rotationnelle

Une étape clé dans la méthode de co-rotationnel est d’établir la relation entre

les variables locales et globales. Celle-ci est accomplie en effectuant un change-
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ment des variables entre les quantités globales et locales. La deuxième étape

consiste à supprimer les mouvements « corps rigide » du champ de déplacement

de l’élément. Cette étape est réalisée en calculant les déplacements locaux en

utilisant les relations cinématiques linéaires.

Considérons deux systèmes de coordonnées différents repéré par l’indice i et j.

Supposons que le vecteur force interne fi et la matrice de rigidité tangente Ki

sont compatibles avec le vecteur de déplacement pi de telle sorte que

δfi = Ki δpi (8.35)

Considérons maintenant que le vecteur pi est lié au vecteur de déplacement pj

par

pi = Bij pj (8.36)

En égalant le travail virtuel dans les deux systèmes, le vecteur de la force interne

fj conforme à pj est défini par

δfj = BT
ij δfi (8.37)

L’expression de la matrice tangente de rigidité Kj, cohérente à pj est obtenue en

différenciant l’équation (8.37) et en combinant le résultat avec (8.35) et (8.36) :

Kj = BT
ij Ki Bij + Hij Hij =

∂(BT
ij fi)

∂pj

∣∣∣∣∣
fi

(8.38)

De l’idée décrite ci-dessus, la formulation de l’élément de la poutre co-rotationnelle

peut être obtenue en utilisant trois changements consécutifs de variables et quatre

vecteurs de déplacement différents suivants :

pl = [ūs1i ūs2i · · · ūsni ūci v̄ci θ̄si θ̄ci ūs1j ūs2j · · · ūsnj ūcj v̄cj θ̄sj θ̄cj]
T (8.39)

pe = [ θ̄si θ̄ci ūcj θ̄sj θ̄cj ḡ1i ḡ2i · · · ḡni ḡ1j ḡ2j · · · ḡnj ] T (8.40)

pa = [ θ̄si θ̄ci ūcj θ̄sj θ̄cj g1i g2i · · · gni g1j g2j · · · gnj ] T (8.41)

pg = [uci vci θci θsi g1i g2i · · · gni ucj vcj θcj θsj g1j g2j · · · gnj] T (8.42)
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8.4 Modélisation du comportement non-linéaire

d’une poutre hybride

L’élément fini de poutre classique ne considère que les contraintes axiales agis-

sant sur la section transversale et n’est pas en mesure de décrire précisément la

réponse de l’élément de structure sous l’effet du couplage entre le cisaillement,

la compression et le moment de flexion. Au cours des dernières décennies, il y a

eu un effort de recherche pour surmonter cette limitation en adoptant la théorie

de poutre de Timoshenko ou même la théorie de poutre exacte. Les différences

entre les modèles proposés dans la littérature sont liées aux hypothèses cinéma-

tiques de la déformation de cisaillement prises au niveau de la section, au type de

relations constitutives multiaxiales et aussi à la formulation élément fini basées

sur l’approche de la rigidité ou la flexibilité [117, 122, 124–126]. Egalement, la

stratégie d’intégration des lois d’évolutions élastoplastiques est un élément dif-

férentiant.

Cette partie vise à développer une nouvelle formulation éléments fini basée

sur un modèle de fibre en considérant un critère 3D pour le béton enrobant et

en prenant en compte l’effet de confinement provoqué par les étriers. Le pseudo-

état plan de contraintes pour l’élément en béton est appliqué afin de condenser

la formulation 3D pour obtenir les relations constitutives reliant les variables

cinématiques dans le plan aux efforts généralisés caractérisant la poutre 2D. Pour

ce faire, nous appliquons la stratégie proposée par Klinkel et Govindjee [127] pour

l’état plan de contraintes dans lequel les contraintes agissantes dans le plan de la

section doivent être mises à zéro. La rigidité tangente cohérente est fournie par

la condensation statique standard de la matrice de rigidité tangente matérielle

3D. Pour tenir compte de la contribution de l’armature transversale sur les effets

de confinement du béton, nous étendons cet algorithme en imposant l’équilibre

transversal entre la fibre béton et l’acier transversal.
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8.4.1 Équations fondamentales

Des relations cinématiques (8.5-8.10), on note le vecteur des déformations général-

isées de la section ê lié aux déplacements par les relations cinématiques suivantes

:

ê = ∂̂d (8.43)

où

êT = [εs1 εs2 · · · εsn κs εc κc γc g1 g2 · · · gn] , (8.44)

dT = [us1 us2 · · · usn uc v θc] (8.45)

et

∂̂T =




∂ 0 · · · 0 0 0 0 0 −1 0 · · · 0

0 ∂ · · · 0 0 0 0 0 0 −1 · · · 0
...

...
. . .

...
...

...
...

...
...

...
. . .

...

0 0 · · · ∂ 0 0 0 0 0 0 · · · −1

0 0 · · · 0 0 ∂ 0 0 1 1 · · · 1

0 0 · · · 0 ∂2 0 0 ∂ 0 0 · · · 0

0 0 · · · 0 0 0 ∂ −1 −h1 −h2 · · · −hn




(8.46)

Les équations d’équilibre (8.1-8.4) peuvent être exprimées sous la forme compacte

suivante :

∂̃D + Pe = 0 (8.47)

dans laquelle

DT = [Ns1 Ns2 · · ·Nsn Ms Nc Mc Tc Dsc1 Dsc2 · · ·Dscn ] , (8.48)

PT
e = [0 0 · · · 0 0 py 0] (8.49)
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et

∂̃ =




∂ 0 · · · 0 0 0 0 0 1 0 · · · 0

0 ∂ · · · 0 0 0 0 0 0 1 · · · 0
...

...
. . .

...
...

...
...

...
...

...
. . .

...

0 0 · · · ∂ 0 0 0 0 0 0 · · · 1

0 0 · · · 0 0 ∂ 0 0 −1 −1 · · · −1

0 0 · · · 0 −∂2 0 0 ∂ 0 0 · · · 0

0 0 · · · 0 0 0 ∂ 1 h1 h2 · · · hn




(8.50)

La formulation faible (variationnelle) des équations d’équilibre est donc donnée

par ∫

L

δdT ∂̃D dx = 0 (8.51)

dans laquelle la force volumique est ignorée. En développant cette équation, on

a : ∫

L

δêT D dx = δqT Q (8.52)

où

δqTQ =

[
n∑

j=1

δusj Nsj + δucNc + δθsMs + δθcMc + δv T

]L

0

(8.53)

La méthode de Newton-Raphson est adoptée pour résoudre l’équation (8.52). La

matrice de rigidité tangente de l’élément à l’itération i− 1, est déterminée par

Ki−1 =

∫

L

BT ki−1 B dx (8.54)

et le vecteur des forces nodales hors-équilibre au cours de l’itération est

Qi−1
R =

∫

L

BT Di−1 dx (8.55)

où B = ∂̂N(x), k = ∂D
∂ê

et N(x) est la fonction d’interpolation du champ de

déplacement.
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8.4.2 Comportement non-linéaire de la section

Le comportement non linéaire d’une poutre hybride soumise à un chargement

combiné dépend largement des hypothèses faites sur la distribution de la con-

trainte et de déformation sur la section transversale. Il est supposé ici que les

sections transversales des profils acier sont soumises uniquement à des déforma-

tions axiales alors que la déformation de l’élément en béton produit déforma-

tions axiales et des déformations de cisaillement. En conséquence, une relation

contrainte-déformation uni-axiale pour la barre d’armature longitudinale et le

profilé peut être utilisée et un modèle 3D du béton avec une stratégie de conden-

sation doit être adopté. En raison de la complexité de ce dernier, ce qui suit est

seulement consacré à la description de l’élément en béton.

Les équations constitutives de l’état 2D de contrainte-déformation de la fibre

de béton sont obtenues en écrivant les déformations dans le plan et en appliquant

l’état plan de contrainte sur la loi du comportement 3D. Par conséquent, les con-

traintes actives et les déformations hors-plan sont obtenues. Dans la direction

transversale (direction y, ainsi que z), les armatures transversale sont supposées

être distribuées uniformément avec un rapport volumétrique ρst. Cette hypothèse

est faite dans le but de prendre en compte les effets de confinement dans le béton.

Les exigences de compatibilité imposent que la déformation verticale εcy et latérale

εcz dans le béton est égale à la déformation transversale εsty et latérale εstz dans les

armatures, respectivement. Les contraintes résultantes le long de la direction y et

z sont obtenues en additionnant les contraintes axiales dans l’armature transver-

sal σsty et σstz aux contraintes axiales dans le béton σcy et σcz, respectivement. En

conséquence, la relation contrainte-déformation 3D du problème peut être écrite

comme suit :



dσcx

dσy

dσz

dτ cxy




=







Cep
11 Cep

12 Cep
13 Cep

14

Cep
21 Cep

22 Cep
23 Cep

24

Cep
31 Cep

32 Cep
33 Cep

34

Cep
41 Cep

42 Cep
43 Cep

44




+




0 0 0 0

0 ρsty E
st
y 0 0

0 0 ρstz E
st
z 0

0 0 0 0










dεcx

dεcy

dεcz

dγcxy




(8.56)
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où Cep est la rigidité tangente cohérente dans le problème de la section de béton.

Pour obtenir l’opérateur tangent cohérent, qui répond à la condition particulière

des contraintes du modèle poutre, la tangente matérielle doit être condensée. En

introduisant σ̄T
p = [σy σz] = 0 dans l’équation (8.56), on a

dσσσp = Cpm dεεεc + Cpp dεεεcp = 0, (8.57)

D’où,

dεεεcp = −C−1
pp Cpm dεεεc. (8.58)

où ε̄c,T =
[
εcx γ

c
xy

]
, ε̄c,Tp =

[
εcy ε

c
z

]
, Cpm =

[
Cep

21 Cep
24

Cep
31 Cep

34

]
, et

Cpp =

[
Cep

23 + ρsty E
st
y Cep

23

Cep
32 Cep

33 + ρstz E
st
z

]
. Le remplacement de l’équation (8.58)

dans (8.56) conduit à la relation tangente cohérente entre les contraintes actives

et les déformations dans le plan du béton comme suit :

k
c

= Cmm −CmpC
−1
pp Cpm (8.59)

La matrice de rigidité tangente de la section de poutre hybride est donc :

k =




ks 0 0

0 kc 0

0 0 ksc


 (8.60)

dont ses composantes sont

ks =




EAs1 0 · · · 0 −ESs1
0 EAs2 · · · 0 −ESs2
...

...
. . .

...
...

0 0 · · · EAsn −ESsn
−ESs1 −ESs2 · · · −ESsn EIs



, (8.61)

kc =




∫
Ac
k
c

11dA+ EAsl −
∫
Ac

(y − yc)k
c

11dA− ESsl

∫
Ac
k
c

12dA

−
∫
Ac

(y − yc)k
c

11dA− ESsl

∫
Ac

(y − yc)2k
c

11dA+ EIsl
∫
Ac

(y − yc)k
c

12dA∫
Ac
k
c

21dA −
∫
Ac

(y − yc)k
c

21dA
∫
Ac
k
c

22dA


 ,

(8.62)
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et

ksc =




ksc1 0 · · · 0

0 ksc2 · · · 0
...

...
. . .

...

0 0 · · · kscn




(8.63)

8.4.3 Applications numériques

Trois essais expérimentaux de poutres hybrides soumises à la flexion en 3 points,

réalisés au Laboratoire de Génie Civil et Génie Mécanique de l’INSA de Rennes

sont sélectionnés afin d’évaluer l’exactitude du modèle proposé. Le spécimen a

une longueur de 5 m et une section rectangulaire de 25 cm x 90 cm, renforcée par

huit barres d’armature longitudinales de 20 mm de diamètre, voir la Figure 6.

Les armatures transversales (étriers) composées barres d’armature de 14 mm de

diamètre. Les spécimens (BW, CW et CWHC) sont renforcés par trois HEB100

profilés en acier totalement enrobés dans la section en béton armé. Pour les spéci-

mens CW et CWHC, les connecteurs (goujons Nelson H3L16) avec un espacement

de 20 cm sont soudés à l’âme du profilé assurant le mécanisme de transfert de

force entre le profil d’acier et le béton. Les barres d’armatures sont placées de

la même façon dans tous les spécimens, sauf l’écartement de l’étrier. Les carac-

téristiques du matériau en MPa sont données dans Tableau 8.1. La simulation

numérique des essais est conduite en discrétisant les spécimens sont modélisés en

12 éléments. Le poids propre est considéré comme une charge répartie appliquée

au niveau de l’élément. Le déplacement vertical à mi-portée est appliqué de façon

incrémentielle (déplacement contrôlé) jusqu’à la rupture. En ce qui concerne la loi

de comportement, nous considérons la relation contrainte-déformation suivante :

le cap modèle est retenu pour le béton; et la loi en élastique parfaitement plastique

pour les aciers profilés, les armatures et les connexions de cisaillement longitudi-

nal. Les courbes de force-déplacement obtenues à partir du modèle élément fini

développé, sont comparées à celles obtenues à partir des essais expérimentaux
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Figure 8.6: Section transversale des spécimens.

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

Flèche à mi−portée [mm]

C
ha

rg
e 

[k
N

]

 

 

BW−EXP
CW−EXP

CWHC−EXP

BW−FE

CW−FE
CWHC−FE

Figure 8.7: Comparaison des courbes de force-déplacement.
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Fig. 8.7. Les courbes des résultats expérimentaux montrent que la déformation

des spécimens est accompagnée de grands déplacements, ce qui montre leur com-

portement ductile quand soumis à un chargement monotone. Les charges ultimes

de BW, CW et CWHC prédites par l’analyse numérique correspondent bien à

celles des résultats expérimentaux.

Tableau 8.1: Caractéristiques des matériaux.

Béton Armature long. Armature Trans. Profilé

Spécimen fcm Ecm fs Es fst Est fy Ey

BW 31.50 31040 383.91 210740 633.26 207460 462.7 214450

CW 32.00 31187 383.91 210740 633.26 207460 462.7 214450

CWHC 31.63 31078 383.91 210740 633.26 207460 462.7 214450

in MPa

8.5 Dimensionnement des poteaux hybrides en

instabilité

Cette partie présente une étude numérique sur les effets du second-ordre dans les

poteaux hybrides. Afin d’analyser le comportement non linéaire des poteaux hy-

brides, une formulation spécifique d’élément fini de poutre plane de type Bernoulli

en description co-rotationnelle totale est utilsée. Dans le repère local, des nœuds

intermédiaires sont utilisés pour l’interpolation quadratique du déplacement axial.

Les efforts et les déplacements à ces nœuds sont statiquement condensés au niveau

local pour être compatible au champ de déplacement dans le repère global. L’état

de déformation, les contraintes et les efforts internes sur la section sont obtenus

par une discrétisation multi-fibres de la section. Les détails du développement

de l’élément fini, ainsi que de la validation par rapport à des résultats d’essai,

peuvent être trouvés dans [13]. L’élément fini permet de traiter une connexion

acier-béton partielle ; à ce stade la méthode simplifiée a été développée pour une

connexion totale. Les simulations qui vont suivre ont donc été faites en adop-
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tant une raideur de connexion importante qui annule à une tolérance près tout

glissement. Il est à noter cependant que des travaux préliminaires montrent que

cette connexion complète n’est pas toujours nécessaire pour optimiser la charge

de ruine. Cet élément fini est utilisé pour traiter 1140 cas différents de poteaux

hybrides, destinés à couvrir les différentes typologies possibles, afin de disposer

d’une base d’évaluation de la pertinence des méthodes simplifiées de l’Eurocode

2 et de l’Eurocode 4 pour de tels éléments. Enfin, ces méthodes simplifiées ne

donnant pas satisfaction, la base de données est étendue à 2960 configurations,

afin de servir au calibrage d’une nouvelle méthode simplifiée.

8.5.1 Méthodes de dimensionnement en instabilité des poteaux

des Eurocodes 2 et 4

Pour dimensionner en instabilité un poteau, tant l’Eurocode 2 que l’Eurocode 4

permettent de recourir à une analyse non linéaire géométrique et matérielle. Les

hypothèses et coefficients de sécurité des deux normes sont cohérents, et servi-

ront par la suite de base à la définition des modèles éléments finis de l’étude

paramétrique. Toutefois, cette méthode est lourde à mettre en œuvre, et les deux

Eurocodes proposent des méthodes simplifiées. Dans l’Eurocode 4 une seule méth-

ode de dimensionnement est proposée. Le moment du second ordre est obtenu

à partir du moment du premier ordre multiplié par le facteur d’amplification

k = β/(1−NEd/Ncr). Ensuite, la résistance de la section sous l’effet combiné de

l’effort normal et du moment du second ordre doit être vérifiée. Dans l’expression

de k, β dépend de la forme du diagramme de moments, et l’expression de Ncr est

établie en prenant en compte la fissuration et le fluage du béton. L’Eurocode 2

propose deux méthodes de dimensionnement des poteaux en béton armé, appelées

respectivement la méthode de la rigidité nominale et de la courbure nominale. La

première repose sur le même principe d’amplification des moments que l’Eurocode

4. Dans la mesure où les éléments hybrides sont intermédiaires entre les poteaux

en béton armé et les poteaux mixtes, il a été décidé de n’étudier que la méthode

de la rigidité nominale, afin de faciliter la synthèse entre les deux normes.
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Les expressions mathématiques des méthodes de l’Eurocode 2 et de l’Eurocode 4

sont résumées dans Tableau 8.2.

Tableau 8.2: Méthodes de calcul d’amplification des moments de l’Eurocode 2 et

4.

Moment du second ordre : MEd,2 = kMEd,1

Raideur effective : EI = KcEcdIc +KsEsIs+KaEaIa

EC2 EC4

k = 1 +
β

Ncr

NEd
− 1

, β =
π2

c0
k = 1 +

β

1− NEd

Ncr,eff

Ncr =
π2EI

L2
; k1 =

√
fck
20

; k2 = n
λ

70
≤ 0, 2; β = 0, 66 + 0, 44rm ≥ 1,

n =
NEd

Acfcd
; Kc =

k1k2
1 + φef

; Ks = Kc = 1; Ncr,eff =
π2EI

L2

w0 = L/400 Kc = 0, 45; Ks = Ka = 0, 9

w0 selon la section

8.5.2 Évaluation des méthodes EC2 et EC4 pour les poteaux

hybrides : étude paramétrique

8.5.2.1 Description de l’échantillon utilisé

Le modèle élément fini a été utilisé pour effectuer une étude paramétrique exten-

sive, afin de vérifier l’applicabilité des méthodes de l’Eurocode 2 et 4 décrites au

paragraphe précédent aux éléments hybrides. La charge ultime de 1140 poteaux

différents a été calculée par les éléments finis, et comparée à celle obtenue par les

méthodes simplifiées. 5 sections différentes, notées HSSRC1-5, ont été étudiées

(Fig. 8.8).

Dans l’étude paramétrique, la limite élastique de l’acier des profils et des ar-

matures est considérée constante, l’effet du ratio de résistance du béton par rap-

port à résistance de l’acier étant pris en compte en faisant varier la classe de

béton. Les variables de l’étude paramétrique sont résumées au Tableau 8.3. Trois
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valeurs d’élancement réduit λ̄ différentes et trois classes de béton, sont consid-

érées. L’étude porte sur trois formes de diagrammes de moment : constant,

triangulaire ou bitriangulaire, défini par le ratio entre les moments d’extrémité

rm (rm = 1 ; 0 ; −1). Le moment maximal est défini par un excentrement de

l’effort normal noté e, pour lequel une valeur variant de 0 à 3 fois la hauteur de la

section est considérée. Le coefficient de fluage effectif est considéré soit avec une

valeur nulle, soit avec une valeur de 1,5 correspondant au ratio classique entre les

charges à court terme et à long terme. Le rapport δ entre la résistance axiale de

la section acier, et la résistance totale de la section, varie de 0.2 à 0.62, ce dernier

ratio important étant obtenu grâce à la section HSRCC4.

Tableau 8.3: Résumé des variables de l’étude paramétrique.

Section S1; S2; S3; S4; S5

Béton C35/45; C60/75; C90/105

fsk 500 MPa

fy 355 MPa

λ̄ 0.5; 1.0; 2.0

e
h

0.0-3.0

δ 0.2-0.62

ϕef 0; 1.5

8.5.2.2 Définition du modèle numérique

Le comportement matériel du béton et de l’acier a été défini en conformité avec

les règles de l’Eurocode 2 et de l’Eurocode 4. Les lois adoptées sont représentées

sur la Figure 10. Le module de l’acier a été pris égal à 210 000 MPa. Les valeurs

de Ecm, εc1, εcu1, ont été choisies selon les prescriptions de l’Eurocode 2.
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Figure 8.8: Cross-sections considered in parametric study.

Le calcul numérique prend en compte les contraintes résiduelles existant dans

les profils métalliques (Figure 11), ainsi qu’une imperfection géométrique sinusöı-

dale dont son amplitude diffèrent selon les normes. Pour des profils métalliques,

une valeur de L/1000 est proposée par l’Eurocode 3, alors que l’Eurocode 2 pro-

pose une valeur de L/400 pour les poteaux en béton. Dans la mesure où le mode

constructif, qui fixe la précision de la forme générale des poteaux hybrides, et de
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la position des profils métalliques, est de type béton, il a été décidé d’adopter une

imperfection géométrique avec une amplitude de L/400. Comme annoncé, une

Ecd=Ecm/1.2

c

c

fcd=fck/1.5

0.4fcd

c1 cu1

fsd=fsk/1.15
Es/300

Es

s

s

sd sud

Ea
s

fyd=fy/1.0

y yu

s

a) Concrete b) Reinforcing rebar c) Steel profile

Figure 8.9: Lois constitutives utilisées dans le modèle élément fini.

connexion complète est imposée, à l’instar des recommandations de l’Eurocode

4.

Ea

s

s

-0.5fy*

0.5fy*

0.5fy*

-0.5fy*

0.5fy*

-0.5fy*

h/b≤1.2   
fy*=235MPa

h

b

Ea

s

s

fy fyd=fy/1.0

Figure 8.10: Distribution de contraintes résiduelles considérée dans le calcul.

8.5.2.3 Résultat des comparaisons

A titre d’illustration, les résultats obtenus pour différents élancements et cas de

chargements pour la section HSRCC1 sont dessinés sur la Figure 12 et 13. La

classe de béton adoptée est C60, et le coefficient de fluage effectif 1,5. Fig. 8.11, les

prédictions de la méthode simplifiée de l’Eurocode 2 sont comparées aux résultats
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2

N
E

d
/N

p
lR

d

MEd/MplRd

FE λ=26 EC2 λ=26
FE λ=52 EC2 λ=52
FE λ=104 EC2 λ=104FEA  2.0 EC4  2.0

EC2  0.5
EC2  1.0
EC2  2.0

l

l

l

=

=

=

FEA  0.5
FEA  1.0
FEA  2.0

l

l

l

=

=

=
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−1).

Figure 8.11: Comparaison de la méthode simplifiée Eurocode 2 aux résultats

d’éléments finis – section HSRCC1.

de la méthode d’éléments finis. Fig. 8.11a, dans le cas de la compression pure,

il apparait que la méthode simplifiée de l’Eurocode 2 est insécuritaire pour les

faibles élancements. Fig. 8.11b et Fig. 8.11c, dans le cas des colonnes soumises

à une flexion avec une courbure, de nouveau l’Eurocode 2 donne des résultats

insécuritaires pour les élancements faibles à modérés ( λ̄ = 0, 5 à 1 Des résultats

similaires sont observés en cas de flexion avec double courbure, sauf pour les cas
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proches de la flexion pure (Fig. 8.11d), où la méthode EC2 donne de bons résul-

tats.

Fig. 8.12, la même comparaison est effectuée pour la méthode simplifiée de

l’Eurocode 4. Les prévisions de l’Eurocode 4 sont globalement moins bonnes.

Sous compression pure (Fig. 8.12a), la formulation de l’Eurocode 4 donne glob-

alement les résultats sécuritaires. Dans les autres cas (Fig. 8.12b à Fig. 8.12d),

l’EC4 donne des résultats conservatifs pour les faibles et les fortes excentricités.

Par contre, pour les cas intermédiaires, les résultats sont insécuritaires, parfois

largement. Afin d’évaluer de façon globale la qualité des résultats obtenus par les

méthodes simplifiées pour les 1140 cas de l’analyse paramétrique, pour chaque

cas, le ratio R suivant a été établi :

R =
RFE

RSM

(8.64)

avec RFE =

√(
NFE
Npl,Rd

)2

+
(

MFE

Mpl,Rd

)2

et RSM =

√(
NSM
Npl,Rd

)2

+
(
MSM

Mpl,Rd

)2

où

(NFE, MFE) étant le couple sollicitant à la ruine dans le calcul par éléments fi-

nis, (NSM , MSM) celui obtenu par l’analyse simplifiée, et Npl,Rd, Mpl,Rd l’effort

normal et le moment de résistance correspondante. Lorsque R est supérieur à

1, l’approche simplifiée est sécuritaire. Les histogrammes de R obtenus pour les

deux méthodes simplifiées sont dessinés sur Fig. 8.13.

Les moyennes des deux distributions sont proches de 1 : 0.996 pour la méth-

ode Eurocode 2, 1.01 pour la méthode Eurocode 4. Les écarts types sont proches,

0.104 pour l’EC2 et 0.112 pour l’EC4. Le pourcentage de cas amenant à une

insécurité notable est estimé par le nombre de cas pour lequel R est inférieur à

0.97. Il est de 41.84 % pour l’Eurocode 2, et 34.86 % pour l’Eurocode 4. Ces

pourcentages importants montrent que les méthodes simplifiées des deux normes

en vigueur en Europe ne sont pas applicables aux poteaux hybrides.
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Figure 8.12: Comparison of simplified method of EC4 against FE analysis results.

8.5.3 Proposition d’une nouvelle méthode simplifiée

8.5.3.1 Analyses complémentaires

Afin de déterminer comment définir la méthode simplifiée la plus adaptée, l’effet

de différents paramètres a été étudié dans le détail. Le résultat le plus remar-

quant porte sur l’effet des contraintes résiduelles. Il apparait que celles-ci n’ont

pas d’effet sur la charge ultime. Les profils étant excentrés par rapport au centre

Pisey Keo 227
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Figure 8.13: Histogrammes du ratio R pour les méthodes simplifiées de l’Eurocode

2 et 4.

de gravité de la section du béton, ils sont soumis à un effort normal important

qui diminue l’effet des contraintes résiduelles, et l’on peut en conclure qu’ils se

comportent plus comme des armatures, que comme des profilés fléchis. Par con-

séquent, il est plus pertinent de développer la nouvelle méthode simplifiée sur base

de la méthode EC2, plutôt que de l’EC4, puisque l’EC4 intègre explicitement, au

travers de la définition d’imperfections équivalentes, l’effet des contraintes résidu-

elles, alors qu’elles apparaissent négligeables pour les poteaux hybrides.

Ensuite, l’étude paramétrique générale a été portée à 2964 cas, en faisant varier

la limite d’élasticité des profils. Des cas complémentaires ont été ajoutés avec des

profils en S235 et S355. Il a été montré qu’une forte dépendance de l’état des

profils à la ruine à l’élancement du poteau, au coefficient de fluage et au rapport

des résistances du béton et de l’acier. En effet, le fluage conduit à une plasti-

fication partielle des profilés en augmentant la déformation du béton, et donc

à une diminution de leur raideur. Cet effet est moins prononcé pour les forts

élancements, pour lesquels les déformations, lorsque l’instabilité se déclenche,

sont limitées, et donc dans ce cas le profil n’est pas plastifié.

8.5.3.2 Nouvelle méthode simplifiée

Partant des constatations précédentes, et en s’inspirant des travaux de Bonet et

al. [130], une nouvelle méthode d’amplification des moments a été développée.
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Le moment du second ordre, qui devra être comparé au moment résistant de

la section compte tenu de l’effort normal appliqué Mpl,N,Rd, est obtenu en mul-

tipliant le moment du premier ordre par :

k =
β

1− NEd
Ncr

(8.65)

où β = 0, 6rm+0, 4 ≥ 0, 4 ; et Ncr est l’effort critique élastique calculé en utilisant

l’expression de la rigidité en flexion efficace suivante :

EI = KcEcdIc +KsEsIs +KaEaIa (8.66)

avec

Kc = k1k2/(1 + ϕef ) (8.67)

Ks = 1 (8.68)

Ka =
0.76

(
fy
fck

)0.0124

1 + 105ϕefexp(−0.078λ)
6 1 (8.69)

k1 =

√
fck
20

(8.70)

k2 = n
λ

170
6 0.2 (8.71)

n =
NEd

Npl,Rd

(8.72)

8.5.3.3 Validation de la méthode simplifiée

L’histogramme du ratioR calculé pour la nouvelle méthode simplifiée est représenté

sur Fig. 8.14. La moyenne de la distribution vaut 1,0022 avec son écart type

0,0459. Le fractile à 5% est obtenu pour R = 0, 93. Afin d’être sécuritaire, les

valeurs de ratio R devraient donc être pondérées par un coefficient de sécurité de

1,07.
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Figure 8.14: Histogramme de fréquence du ratio R pour la nouvelle méthode

simplifiée.

8.6 Conclusion

Le développement d’outil de simulation numérique et de guide de dimension-

nement pour les colonnes hybrides avec plusieurs profils en acier noyés dans le

béton, soumises aux charges combinées a été l’objectif de cette thèse. Un mod-

èle « élément fini » a été développé dans lequel la non-linéarité géométrique et

matérielle ainsi que l’interaction partielle entre les profilés acier et le béton sont

prises en compte. Les résultats du modèle élément fini ont été servis comme des

références dans le développement d’une nouvelle méthode de dimensionnement

pour les colonnes hybrides. La construction de ce modèle s’est faite graduelle-

ment en commençant par construire la matrice de raideur élastique exacte pour

les poutres/poteaux hybrides. Ensuite ; l’approche co-rotationnelle nous a permis

d’étudier ces même structures dans un contexte de grands déplacements. Enfin,

une analyse fine nous a conduits à construire une stratégie numérique nous perme-

ttant de construire une loi de comportement élasto-plastique à partir des modèle

3D et surtout en prenant en compte l’influence des étriers. Tous ces outils ont

été validés en comparant les prédictions du modèle aux résultats expérimentaux.

Enfin, nous avons mené une étude numérique sur les effets de second ordre dans

les colonnes hybrides élancés soumis à un chargement combiné de compression

axiale et moment de flexion. Un des principaux objectifs de cette étude était

de définir et valider une méthode de dimensionnement en instabilité applicable

aux poteaux hybrides. Pour ce faire, le modèle « élément fini » développé dans
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lequel la non-linéarité géométrique et matérielle, les imperfections géométriques,

les contraintes résiduelles dans les profils d’acier ainsi que l’effet d’interaction

partielle entre des profilés acier et le béton sont prises en compte a été utilisé à

cette fin. En outre, le modèle mis au point avec la cinématique d’Euler-Bernoulli

est compatible avec le modèle élément fini proposé dans les méthodes générales

des Eurocodes (EC2 et EC4) pour le dimensionnement d’une colonne en béton

armé et mixte. La comparaison entre les résultats obtenus avec des méthodes

simplifiée de l’Eurocode (méthode d’amplification du moment) et avec l’analyse

par éléments finis montre que la méthode simplifiée de l’EC2 et l’EC4 conduit

à une grande dispersion où la moitié des cas sont insécuritaires. Cela signifie

que les rigidités à la flexion en vigueur proposées par l’EC2 et l’EC4 ne sont

pas appropriées pour le dimensionnement de la colonne hybride élancée. En con-

séquence, une nouvelle méthode simplifiée a été proposée dans le contexte des

Eurocodes, à savoir l’approche d’amplification du moment. La méthode proposée

est développée sur la base d’une étude approfondie sur le comportement physique

de la colonne hybride. L’analyse des résultats ayant montré que les profils se

comportent comme des armatures, et que les contraintes résiduelles ont un rôle

négligeable - alors qu’elles sont un paramètre central de la méthode de l’Eurocode

4. Au vu de ces observations, la nouvelle méthode proposée est développée comme

une extension de la méthode de l’Eurocode 2. La continuité par rapport à ce rè-

glement est dès lors assurée ; il a par ailleurs été montré que la nouvelle méthode

donne des résultats conservatifs, quoique moins précis que la méthode de l’EC4,

pour les poteaux mixtes au sens de l’Eurocode 4. On peut donc affirmer que cette

nouvelle méthode s’insère de façon cohérente dans la normalisation existante.

Pisey Keo 231
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Résumé 

 
Le travail de cette thèse a pour but de développer des outils de 
simulation et une méthode de dimensionnement pour les 
poteaux hybrides soumis à des chargements combinés. La 
thèse est composée de 4 parties essentielles et comprend 6 
chapitres. Dans la première partie, nous développons un 
élément fini poutre/poteau hybride élastique en interaction 
partielle avec matrice de raideur exacte. Cet élément fini 
découle de la solution analytique du système d’équations 
différentielles couplées obtenues en combinant les équations 
de champs (équilibre, cinématique et comportement). Les 
inconnues fondamentales sont les glissements aux interfaces et 
la déformation de cisaillement de l'élément principal. Ces 
équations sont résolues pour des conditions de chargement et 
des conditions aux limites arbitraires en accordant un soin 
particulier à la détermination des constantes d'intégration. Dans 
la seconde partie de cette thèse, nous proposons une 
formulation d'élément fini originale pour l'analyse en grand 
déplacement des poutres hybrides avec prise en compte des 
glissements qui se produisent à chaque interface acier-béton. 
La méthode de co-rotationnelle est retenue. Dans cette 
approche, le mouvement de l'élément se décompose en un 
mouvement de corps rigide et en une partie déformable définie 
dans un repère co-rotationnel local qui se déplace de manière 
continue avec l'élément mais qui ne se déforme pas avec ce 
dernier. Un choix judicieux des variables cinématiques locales 
accompagné des matrices de transformation correspondantes 
permet de transposer l'élément linéaire développé en partie 1 
en un élément géométriquement non-linéaire performant. La 
partie 3 est consacrée à l'analyse non linéaire matérielle par 
élément finis de poutres hybrides en interaction partielle et 
soumise aux forces combinées de flexion et de cisaillement. 
Dans la formulation élément fini proposée, nous adoptons la 
discrétisation par fibres et une modèle 3D de comportement du 
béton avec prise en compte des états plans ce qui permet de 
reproduire rigoureusement l'effet du confinement et l'action des 
étriers. En partie 4, nous évaluons la pertinence de la méthode 
d'amplification des moments proposées dans l'Eurocode 2 et 4 
à évaluer la charge ultime de poteaux hybrides soumis à une 
combinaison de charge axiale et de moment de flexion uni-
axial. Dans un premier temps, nous conduisons une étude 
paramétrique sur 1140 cas différents de poteaux hybrides; 
étude destinés à couvrir les différentes typologies possibles, 
afin de disposer d'une base de résultats permettant d'évaluer la 
pertinence des méthodes simplifiées de l'Eurocode 2 et de 
l'Eurocode 4 pour de tels éléments. Cette étude a été réalisée à 
l'aide d'un élément fini non-linéaire (géométrique et matériel), 
avec une hypothèse de Bernouilli pour tous les composants du 
poteau hybride. Il ressort de cette étude que ces méthodes 
simplifiées ne peuvent être appliquées aux poteaux hybrides. 
Sur base de l'analyse d'un nombre de cas plus important (2960 
configurations), la méthode d'amplification des moments est 
calibrée pour les poteaux hybrides. 
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Abstract 

 
This thesis aims at developing simulation tools and a design 
method for hybrid beam-columns subjected to combined axial 
force, bending and shear. The thesis is divided in four main 
parts and comprises 6 chapters. In the first part, we develop a 
new finite element formulation based on the exact stiffness 
matrix for the linear elastic analysis of hybrid beam-columns in 
partial interaction taking into account the shear deformability of 
the encasing component. This element relies on the analytical 
solution of a set of coupled system of differential equations in 
which the primary variables are the slips and the shear 
deformation of the encasing beam. The latter is derived by 
combining the governing equations (equilibrium, kinematics, 
constitutive laws) and solved for a specific element with 
arbitrary boundary conditions and loading. Special care has 
been taken while dealing with the constants of integration. The 
second part of the thesis addresses a new finite element 
formulation for a large displacement analysis of elastic hybrid 
beam-columns taking into account the slips that occur at each 
steel-concrete interface. The co-rotational method is adopted in 
which the movement of the element is divided into a rigid body 
motion and a deformable portion in the local co-rotational frame 
which moves and rotates continuously with the element but 
does not deform with it. Appropriate selection of local kinematic 
variables along with corresponding transformation matrices 
allows transforming the linear finite element developed in Part 1 
into a nonlinear one resulting in an efficient locking-free 
formulation. In Part 3, we derive a finite element formulation for 
materially nonlinear analysis of hybrid beam-columns with shear 
deformable encasing component, in partial interaction and 
subjected to the combined shear and bending. The fiber model 
is adopted with condensation of the 3D stress-strain relations 
which allow to account for confinement in a rigorous manner as 
well as the effect of the stirrups. Part 4 examines the adequacy 
of the moment magnification method given in Eurocode 2 and 4 
to provide an accurate estimation of the ultimate load of hybrid 
columns subjected to a combination of axial load and uniaxial 
bending moment. The developed finite element model with a 
shear rigid encasing component is used to conduct a parametric 
study comprising 1140 cases to cover the various possible 
situations. The predictions of the model are compared against 
the values given by the simplified methods of Eurocode 2 and 
Eurocode 4. It is shown that these simplified methods does not 
give satisfactorily results. Based on the analysis of larger 
number of cases (2960 configurations), the moment 
magnification method has been calibrated for hybrid columns. 
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