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Abstract

Kokok

This thesis aims at developing simulation tools and a design method for hybrid
beam-columns subjected to combined axial force, bending and shear. The thesis
is divided in four main parts and comprises 6 chapters. In the first part, we
develop a new finite element formulation based on the exact stiffness matrix for
the linear elastic analysis of hybrid beam-columns in partial interaction taking
into account the shear deformability of the encasing component. This element
relies on the analytical solution of a set of coupled system of differential equa-
tions in which the primary variables are the slips and the shear deformation of
the encasing beam. The latter is derived by combining the governing equations
(equilibrium, kinematics, constitutive laws) and solved for a specific element with
arbitrary boundary conditions and loading. Special care has been taken while
dealing with the constants of integration. The second part of the thesis addresses
a new finite element formulation for a large displacement analysis of elastic hy-
brid beam-columns taking into account the slips that occur at each steel-concrete
interface. The co-rotational method is adopted in which the movement of the
element is divided into a rigid body motion and a deformable portion in the lo-
cal co-rotational frame which moves and rotates continuously with the element
but does not deform with it. Appropriate selection of local kinematic variables
along with corresponding transformation matrices allows transforming the linear
finite element developed in Part 1 into a nonlinear one resulting in an efficient
locking-free formulation. In Part 3, we derive a finite element formulation for

materially nonlinear analysis of hybrid beam-columns with shear deformable en-
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casing component, in partial interaction and subjected to the combined shear and
bending. The fiber model is adopted with condensation of the 3D stress-strain
relations which allow to account for confinement in a rigorous manner as well as
the effect of the stirrups. Part 4 examines the adequacy of the moment mag-
nification method given in Eurocode 2 and 4 to provide an accurate estimation
of the ultimate load of hybrid columns subjected to a combination of axial load
and uniaxial bending moment. The developed finite element model with a shear
rigid encasing component is used to conduct a parametric study comprising 1140
cases to cover the various possible situations. The predictions of the model are
compared against the values given by the simplified methods of Eurocode 2 and
Eurocode 4. It is shown that these simplified methods does not give satisfactorily
results. Based on the analysis of larger number of cases (2960 configurations),

the moment magnification method has been calibrated for hybrid columns.

Keywords: hybrid steel-concrete columns, partial interaction, concrete confine-

ment, co-rotational, interaction M-N, instability, moment magnification method.
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Résumé

Kokok

Le travail de cette these a pour but de développer des outils de simulation et une
méthode de dimensionnement pour les poteaux hybrides soumis a des chargements
combinés. La these est composée de 4 parties essentielles et comprend 6 chapitres.
Dans la premiere partie, nous développons un élément fini poutre/poteau hybride
élastique en interaction partielle avec matrice de raideur exacte. Cet élément fini
découle de la solution analytique du systeme d’équations différentielles couplées
obtenues en combinant les équations de champs (équilibre, cinématique et com-
portement). Les inconnues fondamentales sont les glissements aux interfaces et
la déformation de cisaillement de 1’élément principal. Ces équations sont résolues
pour des conditions de chargement et des conditions aux limites arbitraires en ac-
cordant un soin particulier a la détermination des constantes d’intégration. Dans
la seconde partie de cette these, nous proposons une formulation d’élément fini
originale pour 'analyse en grand déplacement des poutres hybrides avec prise
en compte des glissements qui se produisent a chaque interface acier-béton. La
méthode co-rotationnelle est retenue. Dans cette approche, le mouvement de
I’élément se décompose en un mouvement de corps rigide et en une partie dé-
formable définie dans un repere co-rotationnel local qui se déplace de maniere
continue avec ’élément mais qui ne se déforme pas avec ce dernier. Un choix
judicieux des variables cinématiques locales accompagné des matrices de trans-
formation correspondantes permet de transposer I’élément linéaire développé en
partie 1 en un élément géométriquement non-linéaire performant. La partie 3

est consacrée a ’analyse non linéaire matérielle par élément finis de poutres hy-
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brides en interaction partielle et soumise aux forces combinées de flexion et de
cisaillement. Dans la formulation élément fini proposée, nous adoptons la dis-
crétisation par fibres et une modele 3D de comportement du béton avec prise
en compte des états plans ce qui permet de reproduire rigoureusement l'effet du
confinement et ’action des étriers. En partie 4, nous évaluons la pertinence de la
méthode d’amplification des moments proposées dans I’Eurocode 2 et 4 a évaluer
la charge ultime de poteaux hybrides soumis a une combinaison de charge axiale
et de moment de flexion uni-axial. Dans un premier temps, nous conduisons une
étude paramétrique sur 1140 cas différents de poteaux hybrides; étude destinés a
couvrir les différentes typologies possibles, afin de disposer d'une base de résul-
tats permettant d’évaluer la pertinence des méthodes simplifiées de I'Eurocode
2 et de 'Eurocode 4 pour de tels éléments. Cette étude a été réalisée a ’aide
d’un élément fini non-linéaire (géométrique et matériel), avec une hypothese de
Bernouilli pour tous les composants du poteau hybride. Il ressort de cette étude
que ces méthodes simplifiées ne peuvent étre appliquées aux poteaux hybrides.
Sur base de I'analyse d’'un nombre de cas plus important (2960 configurations),

la méthode d’amplification des moments est calibrée pour les poteaux hybrides.

Mots clés : Poteaux hybrides acier-béton, interaction partielle, confinement du
béton, co-rotationnel, interaction M-N, instabilité, méthode d’amplificatin des

moments.
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Introduction

Kokok

A short overview of the high-rise
building history and its
construction and design

alternative.
The objective and the

organization of the thesis.

1.1 High-rise building

High-rise buildings have long played a role in the perception of modern urbanized
cities. The courage of building high is like to build the transcontinental railroad,
discover the North Pole, scale Everest, or land on the moon which struggles to not
only deepen the understanding but also to show the national and/or economic
pride. The construction of high rise buildings is also influenced by ambition, ego,
and other non-economic factors [I]. Constructing high-rise building remarkably
boosts the research development. Throughout subsequent history there have been
some tall structures like pyramids, towers, castle and cathedrals, but it was not
until the middle of the nineteenth century that the skyscraper was born [2]. It is
well known that modern high-rise buildings were originally invented in Chicago

in 1885 with only 10 storeys, 55 meters high. It was regarded as the first high-rise

Pisey Keo 1



1. INTRODUCTION

building in the world. Hereafter, with the development of economy and technol-
ogy, many aspects of high-rise building have been improved. Those improvements
include building height, style, architectural function, structural system and land-
scape art. As a result, the number of various high-rise buildings are growing
rapidly around the world because of the great achievements in the construction

economy and the science and technology.

1.2 Construction and design

The construction industry has a history of constant innovation as engineers and
researchers strive to increase the safety, economy, and performance of our built
environment. Engineers soon realized that combining different materials and/or
methods of construction could produce a structure with enhanced strength, stiff-
ness, ductility and fire protection. Over the past several decades, composite
steel-concrete structural systems have gained popularity among the designers.
The driving force behind employing composite steel-concrete systems is to com-
bine the best attributes of steel and concrete to improve structural performance,
erection time, economy of construction and occupant satisfaction in a way that
might not be possible using only one of the materials and its associated construc-
tion techniques. On the one hand, reinforced concrete is inexpensive, massive and
stiff with a fairly good ability to resist compressive actions in spite of its poor
behavior in tension. On the other hand, steel members are lightweight, easy to
assemble, strong under tensile forces and endowed with a long-span capability;
but they have a low buckling and fire resistance. The most common examples of
steel-concrete composite members are composite floor systems, composite beams

and composite columns.

Composite steel-concrete constructions, as briefly described above, are just a part
of a wider array of construction types involving concrete and steel. Over nearly a
century, Steel Reinforced Construction (SRC) consisting of steel structural fram-

ing partially or totally encased in concrete has been adopted by engineers. Indeed,
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1.2 Construction and design

the practice of encasing structural steel shapes in reinforced concrete columns or
filling a tubular section of hot-rolled steel with concrete is common, mainly in
the USA and Japan and dates back to the beginning of the 20th century. Vari-
ous types of steel cross-section have been used such as H-shaped, I-shaped and a
combination of angle and flat bars. The advantages of SRC over RC construction
are: greater ductility, more compact cross-section, reduced creep deformation,
and faster concrete casting [3]. Those over Steel construction are: multiple roles
of concrete as structural, fireproofing and buckling-restraining elements, higher
stiffness, and greater damping. Modern SRC members (hybrid members) com-
monly have extensive transverse and longitudinal reinforcement, and some use

shear connectors between steel section and the surrounding concrete [4]. A wide

Figure 1.1: Structural arrangement of the IFC2 at Hong Kong.

variety of hybrid/mixed construction can be found in actual high-rise buildings
such as structural systems involving steel framing partially or totally encased in

concrete with reinforced concrete core or shear walls, for example the Interna-
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tional Financial Center Tower 2 at Hong Kong (see|[Fig. 1.1land |[Fig. 1.2| by Wong

[5]). In mixed structural systems, the reinforced concrete core wall provides the

Figure 1.2: Composite columns encased with load-taking reinforced concrete,
IFC2.

strength and stiffness for resisting lateral loads, while the steel frame is designed
to resist gravity loads and provide the necessary ductility to absorb seismic ener-
gies. For buildings containing only concrete core wall to withstand the effects of
the lateral load, the weight of the building would be heavy. In order to decrease
the heavy weight of the building, the majority of that diminution has to be found
in a reduction of the thickness of the concrete shear walls. This reduction could
be achieved only by decreasing the wind-and earthquake-induced lateral forces
resisted by those walls. As a result, to minimize the magnitude of the resultant
lateral force acting on the core walls, the stiffness of the steel perimeter frame has
to be increased so that it can absorb more loads. To combine the structural sys-
tem of the core walls and perimeter frame, outriggers are introduced for high-rise
building. The outriggers (belt trusses) are rigid horizontal structures connecting

the building core to the perimeter columns. By making use of outrigger trusses
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coupled to the columns of the mega-structure, an additional reduction would be
realized. The lateral load transfer can be explained as follows. When the shear
core tries to bend, the belt trusses act as lever arms that directly transfer axial
stresses into the perimeter columns. The columns, in turn, act as struts to resist
the lateral deflection of the core. This means that the core can fully develop
the horizontal shear and then the belt trusses transfer the vertical shear from
the core to the outrigger frame. Thus, the building is made to act as a unit
that is very similar to a cantilever tube. These conceptual changes made possible
the ability to design an efficient and economical structural system. However, it
is worth mentioning that the core walls with reduced thickness as well as the
perimeter columns may suffer the concentrated stresses and require well-detailed
concentrated reinforcement to develop the necessary stiffness and/or buckling re-
sistance. This often results in congestion in these heavily reinforced members,
resulting in a laborious construction. To achieve strength and stiffness whilst
restricting the size of the wall or column, the use of high strength construction
materials is an option. In fact, increased demand on stiffness and strength dic-
tates that the modulus of elasticity of the material should be as high as possible
in order to limit small amplitude elastic displacements. Moreover, the need for
rapid construction requires early age strength gain, a feature that may be offered
readily by high strength concrete. On the other hand, the use of high strength
reinforcing bars in structural members has several practical advantages, including
reduction of congestion in heavily reinforced members, improved concrete place-
ment, and savings in the cost of labor, reduction of construction time and, in some
cases, enhanced resistance to corrosion [6]. The earthquake forces being directly
proportional to the weight of the structure, the use of high strength concrete will
produce lower seismic loads. The main disadvantage is the material cost and in
some situations (very heavily loaded structures) it is no longer an effective solu-

tion and other alternatives must be found.

To overcome this issue, composite steel-concrete shear walls (CSW) where the

steel sections serve as longitudinal reinforcement bars are used in replacement
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of standard reinforced concrete walls. It was found that CSW can mitigate the
disadvantages of RC and take advantage of the best properties of steel can offer
[7]. Dan et al. [§] described the theoretical study and the experimental tests on
CSW with several encased steel profiles and came to the following conclusions:
composite steel-concrete shear walls have an important plastic resistance to com-
pression, combined compression and bending and shear resistance; the amount
of steel in composite wall cross-sections influences the value of ultimate shear
force; the deformation ductility is similar for CSW with the same amount of the
steel sections. For the same heavily loaded situation, the use of Steel Reinforced
Concrete columns with multiple steel shapes seems to be a viable alternative con-

sidering the flexibility that one has in designing such members.

It must be stressed that significant variations in the behavior of composite mem-
bers may be observed according to the range of relative proportions of steel and
reinforced concrete. Some composite members are concrete-dominant and will
more likely behave as a reinforced concrete member where steel sections act as
reinforcement while others are steel-dominant and will more likely behave as struc-
tural steel members with concrete being placed in compressive zone to increase

strength and stiffness, local stability or just used as fireproofing means.

The overall behavior of such member strongly depends on the stress transfer
mechanisms between the steel and the concrete encasement, which may be ac-
complished by either bond, friction, shear connectors or plate bearings. Many
factors influence the bond strength. In general, the latter reaches its capacity
when the chemical adherence between the steel and the surrounding concrete is
broken. It was observed that the amount of confining reinforcement affects the
bond stress capacity only after significant slip has taken place [9, 10]. In most
composite construction designs, the longitudinal shear strength at steel-concrete
interface provided by bond and/or friction is mostly ignored. Thus, the force
transfer from steel to concrete (or reverse) in SRC members is assumed to de-

pend on mechanical transfer devices. Flexible shear studs are the most common
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devices used to connect concrete to steel members but in some situations other
types of shear connectors can be used. Rigid shear connectors develop full com-
posite action between the components. Consequently, conventional principles of
analysis of composite members can be employed. In most cases, connectors are
flexible and relative displacements may occur at the interface of the two materi-

als, resulting a so-called partial interaction.

Although a number of researches have focused on various aspects of hybrid struc-
tures, no design guidance exists for concrete structures reinforced locally by steel
profiles or sections reinforced by several steel profiles. Gaps in knowledge are
mostly related to the problem of force transfer between concrete and embedded
steel profiles, a situation in which it is neither known how to combine the resis-
tances provided by bond, by stud connectors and by plate bearings, nor how to
reinforce the transition zones between classical reinforced concrete and concrete

reinforced by steel profiles. Other elements of the same type exist:

- Connections of flat slabs to columns by shear keys comprised of metal pro-
files;

- Steel elements embedded in concrete in general, and particularly steel rein-
forcement around openings in the central cores, reinforcements of concrete
columns with a steel profile on one level, reinforcements in walls in areas of

discontinuity, and others.

To address these aspects, a research project called SMARTCoCo was mounted
at European level bringing together the University of Liege, Imperial College
London, INSA Rennes, ArcelorMittal and a Belgian company named BESIX. It
aims to establish a design guide of hybrid elements. To do so, experimental tests

and refined simulations have been conducted.
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1.3 Objective and organization of the thesis

The main goal of this thesis is to develop simulation tools for concrete beam-
columns reinforced by several embedded steel sections, so-called hybrid beam-
columns. One of its main objectives is a part of the European project SMART-
CoCo which is to formulate a design method for hybrid columns with more than
one encased steel profile subjected to combined compression and bending. Those
hybrid columns are neither RC columns in the sense of EN 1992-1-1 [11], nor
composite columns in the sense of EN 1994-1-1 [12] where the design rules are
provided only for a single encased steel profile. It is legitimate to raise the follow-
ing question: can we use design rules given in Eurocode 2 or Eurocode 4 to design
such columns? To answer this question, the present research work is carried out

and reported in this thesis.

A brief description of the thesis layout is given in the following to provide a
brief overview of what will be discussed. presents an analytical solu-
tion and a new FE formulation for the analysis of hybrid beam-columns in partial
interaction based on the exact stiffness matrix derived from the governing equa-
tions of the problems. The exact solution is based on solving the coupled system
of differential equations where the slips and the shear deformation of the con-
crete component are considered as primary variables. This exact stiffness matrix
can be used in a displacement-based procedure for the elastic analysis of hybrid
beam-columns in partial interaction with arbitrary loading and support condi-
tions. To illustrate the effects of shear deformability of the concrete component,
the analyses based on both shear-rigid and shear-flexible models for the concrete
component are carried out. highlights a new FE formulation for a
large displacement analysis of hybrid planar beam-columns taking into account
the slips occurring at each steel-concrete interface. The co-rotational framework
is adopted and the motion of the element is decomposed into a rigid body mo-
tion and a deformation part using a local co-rotational frame, which continuously

translates and rotates with the element but does not deform with it. The analysis
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of the performance and the accuracy of the new formulation is carried out consid-
ering several meaningful examples calculated in an elastic range. The constitutive

modeling and time integration of the steel and concrete material as well as the

shear connection are presented in [Chapter 4] |(Chapter 5| outlines a nonlinear FE

formulation for an analysis of hybrid planar beam-columns in partial interaction
subjected to combined bending moment and shear force, based on a fiber model
considering the triaxial stress state in the concrete component. The plane stress
condition for the concrete component is enforced in order to condense the 3d
formulation, derived from a 3d plastic model of the concrete material, into a 2d
beam model. To assess the capability of the proposed formulation in reproducing
the nonlinear behavior of hybrid beams subjected to combined loads, the exper-
imental tests on the hybrid beams under 3-point flexural bending, conducted at
Laboratory of Civil and Mechanical Engineering of INSA Rennes are selected to
be compared against the results of the proposed model. deals with
numerical investigations on second-order effects in slender hybrid columns sub-
jected to combined axial load and uniaxial bending moment about its strong axis.
The first objective of this latter chapter is to point out that a straightforward
application of the bending moment magnification method proposed in Eurocode 2
and Eurocode 4 to hybrid columns may lead to unsafe results. To remain consis-
tent with the Eurocodes, a new version of bending moment magnification method
for slender hybrid columns is proposed. To do so, the results of FE model will
serve as references for a parametric study (1140 data sets) in which the simpli-
fied methods proposed in EC2 and EC4 are evaluated in case of hybrid columns.
Based on an extended parametric study with 2960 data sets, new expressions for
the moment magnification and the equivalent moment factor are proposed. The
outcomes of this chapter has been contributed and published in the international

scientific journal [13].
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Geometrically Linear Elastic

Behavior
*okosk

Analysis of partially connected
hybrid beams with several
embedded steel sections.
Derwation of the exact stiffness

matriz.

2.1 Introduction

The analysis of members consisting of semi-rigidly connected layers is compli-
cated due to the partial transfer of shear force at the interface. Over the years,
there has been a great deal of research conducted on the subject of elastic two-
layered composite beams in partial interaction. The first contribution is com-
monly attributed to Newmark et al. [I4] who investigated the behavior of a
two-layered beam considering that both layers are elastic and deform according
to Euler-Bernoulli kinematics. In their paper, a closed-form solution is provided
for a simply supported elastic composite beam. Since then, numerous analytical

models were developed to study different aspects of the composite behavior of
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2. GEOMETRICALLY LINEAR ELASTIC BEHAVIOR

two-layered composite beams under more complicated situations. Several ana-
lytical formulations to investigate the behavior of elastic two-layered beams were
proposed [15H23]. Significant development beyond that available from Newmark
et al.’s paper [14] has been made in [22] by considering Timoshenko’s kinematic
assumptions for both layers. Beside these analytical works, several numerical
models, mostly FE formulations have been developed to investigate the nonlinear
behavior of both Bernoulli and Timoshenko two-layered beams with interlayer
slip [24H35]. Most of the papers on layered beams in partial interaction are re-
stricted to the case of two-layered beams, and multi-layered beams as well as
hybrid beams reinforced by several embedded sections have received less atten-
tion. Chui and Barclay [36] and Schnabl et al. [37] proposed an exact analytical
model for the case of three-layered beam where the thickness as well as the mate-
rial of the individual layers are arbitrary. Sousa et al. [38] developed an analytical
solution for statically determinate multi-layered beams with the assumption that
the cross-section rotation is the same even if the shear-flexible components with
different shear modulus are considered. The governing equations describing the
behavior of such multi-layered beams consist of a coupled system of differential
equations in which the slips are considered as the primary variables. Skec et al.
[39] proposed mathematical models with analytical solutions for the analysis of
linear elastic Reissner multi-layered beams. The models take into account the
interlayer slip and the uplift of the adjacent layers, different material properties,
independent transverse shear deformations, and different boundary conditions
for each layer. Ranzi [40] proposed two types of displacement-based elements to
analyse locking problems of multi-layered beams in partial interaction based on
Euler-Bernoulli kinematics. For classical polynomial shape functions, it is shown
that the element with internal node well characterizes the partial interaction be-
havior of multi-layered beams, while the element without internal node suffers

from the curvature locking problems.

A formulation based on the exact stiffness matrix offers the possibility of gener-

ating a locking-free model. These elements are highly attractive due to their pre-
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cision, computational efficiency and mesh independency. Heinisuo [41] proposed
a finite element formulation using exact stiffness matrix for uniform, straight,
linearly elastic beams with two faces and one core and with three symmetric
faces and two identical cores. Sousa [42] developed the analytical formulation
and derived the exact stiffness for partially connected multi-layered beams with
the assumption that both the transverse displacement and cross-section rotation
are the same for all layers. The model is based on the derivation of a flexibility

matrix obtained from a statically determinate system.

The purpose of this chapter is to present an analytical solution and a new ex-
act FE formulation for the analysis of shear-rigid (Euler-Bernoulli beam for all
constituents) and shear-deformable (Euler-Bernoulli beam for embedded steel el-
ement and Timoshenko beam for encasing concrete component) hybrid beam-
column in partial interaction based on the exact stiffness matrix derived from
the governing equations of the problem. Due to the fact that the development of
the analytical solution for shear-rigid hybrid beam-columns is a particular case
of the shear-deformable one, in the following we present only the development
of the analytical solution for shear-deformable hybrid beam-columns. The one
for shear-rigid hybrid beam-columns can be found in detail in Appendix [A] The
features of the formulation presented in this chapter are as follows: (i) longitudi-
nal partial interactions between the components are considered which provide a
general description of the stresses and strains in the components; (ii) shear defor-
mation of encasing concrete is considered for the shear-deformable hybrid beam
model; (iii) exact stiffness matrix is used which provides accurate and stable re-
sults. The present models provide, therefore, an efficient tool for linear elastic
analysis of shear-rigid and shear-deformable hybrid beam-columns with arbitrary

supports and loading conditions.

The rest of the chapter is organized as follows. deals with the field
equations containing the kinematic relations and the equilibrium equations of the
problems. In the derivation of the governing equation is presented,
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followed by the closed-form solution in and the derivation of exact
stiffness matrix in [Section 2.5 Numerical examples are presented in

in order to assess the performance of the formulation and to support the conclu-

sions drawn in [Section 2.7

2.2 Fundamental equations

The field equations describing the behavior of a linear elastic hybrid beam-column
with "n” embedded steel sections in partial interaction are briefly outlined in this
Section. All variables subscripted with ”c¢” belong to the encasing concrete and
those with subscript ”s” belong to the embedded steel section. Quantities with
subscript "sc” are associated with the shear connection. The following assump-

tions are commonly accepted in the models to be discussed in this work:

- connected components are made out of elastic, homogenous and isotropic

materials;

- the cross-sections of all embedded sections remain plane and orthogonal to

beam axis after deformation (Euler-Bernoulli);

- for the shear-deformable model, the cross-section of encasing concrete re-
mains plane and not necessarily orthogonal to beam axis after deformation
(Timoshenko);

- relative slip can develop along the interface between concrete component
and embedded steel section and is considered at the centroid of the embed-

ded cross-section;

- the lateral deflection v is assumed to be the same for all components (no
uplift); and

- discretely located shear connectors are regarded as continuous.
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2.2 Fundamental equations

2.2.1 Equilibrium

The equilibrium equations are derived by considering the free body diagram of
a differential element dx located at an arbitrary position x in the hybrid beam-

column, see [Fig. 2.1l The interface connection between the embedded sections

Py
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Figure 2.1: Equilibrium of a hybrid beam-column.

and the concrete component is modeled by continuously distributed spring. The
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equilibrium conditions result in the following set of equations:

ON, + D,.. =0, i=12---n (2.1)

ON.—Y D, =0 (2.2)
j=1

OM,+T.+ > hjDy, =0 (2.3)

j=1

OM, +T, =0, i=12--n (2.4)

OT,+» 0T, +p, =0 (2.5)
j=1

where
- Je =de /dux;

M0,

- N,,: normal force acting on the embedded section "i”;

- N,.: normal force acting on the concrete beam;

99,299,
1

- Ms,,: bending moments acting on the embedded section
- M,: bending moment acting on the concrete beam;

- T,: shear force acting on the concrete beam;
772‘77;

- Ty,: shear force acting on the embedded section

M 0.

- Dy, interface shear stress at centroid of the embedded section ””; and

- hi = ys; —ye (1 = 1,2,---n): the distance between the centroid of the
embedded section "i” and the concrete beam, see [Fig. 2.2
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Combining Egs. (2.342.5)), one can rewrite the equilibrium equations as:

ON,, + Dy, =0, i=12---n (2.6)
ON, — Xn: Dy, =0 (2.7)
j=1
OM,+ OM,+ T + zn: hjDge; =0 (2.8)
j=1
ol +p, =0 (2.9)
where

M, = i M, (2.10)

j=1
T—iTSj + T, (2.11)

j=1

2.2.2 Compatibility

With the above assumptions, kinematic equations relating the displacement com-
ponents (u;, v, ;) to the corresponding strain components (e;, 0;, 7., ;) are de-
rived for each component of the hybrid beam-column (see [Fig. 2.2)) as follows:

€; = Ou; i = 81,89, ,8p,C (2.12)
0. = 0v — . (2.13)
ke = 00, (2.14)
0, = v i=1,2,--.n (2.15)
Ky, = 00, i=1,2-.n (2.16)

in which ~. is the shear deformation of the concrete component. The slip cor-
responds to the difference between the axial displacement of the embedded steel

section and of the concrete beam which is expressed as:

Gi = U — ug, — h,, 1=1,2,---,n (2.17)
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Figure 2.2: Displacement field of a hybrid beam-column.

2.2.3 Constitutive relationships

The generalized stress-strain relationships are simply obtained by integrating the

appropriate uniaxial constitutive model over each cross-section. For a linear elas-
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tic material, these relationships lead to the following set of equations:

Ny = /A o dA; = (BA); (2.18)
M; = —/A yodA; = (El); k; (2.19)
T, = / TdA, = (GA)ce (2.20)
where
- 1=251,52,""",8p,C

- (FA); = E; A; is the axial stiffness of each component;
- (EI); = E; I; is the flexural stiffness of each component;

- (GA), = k.G, A, is the shear stiffness of the concrete beam in which k. is

the shear correction factor.

FE;, G;, A; and I; are elastic modulus, shear modulus, area of cross-section and

99,299
[

second moment of area of cross-section of the component "i”; respectively. The

above relationships must be completed by the one between the longitudinal shear
force Dy, and the slip g;. The assumption of linear and continuous shear connec-
tion can be expressed by the following simple relationship between slip and shear

flow:
Dsci = ksci g, 1= 1,27"‘ ,n (221)

where k., is the shear connection stiffness.

2.3 Derivation of the governing equations

The relationships introduced in are now combined to derive the equa-

tions governing the behavior of a hybrid beam in partial interaction. Combining

the kinematic relations Eqs. (2.12H2.14]) with the elastic behavior Eqgs. ([2.18{2.21])
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and inserting the outcome into the equilibrium equations Eqgs. (2.642.8) produce

the following set of differential equations:

(BA),, Pug, = —kser 9y i=1,2,---,n (2.22)

(EA)C 82uc - Z ksci 9; (223)
=1

(EDo 0% = =T = ke, gi hi + (EI). 0% (2.24)

i=1
The expression (E1), denotes the sum of the flexural stiffness of each component
ie. (EI)g = (EI)s + E.I. in which (EI), =>"" | E, I,.

Taking the derivative of the slip distribution[Eq. (2.17)/and making use of|[Eq. (2.13)
and Eqs. (2.2212.24)), one arrives at the following equation:

Ese, = 1 hi h; GA).
g = —=_ g, + Z ke, {(E J } g; + hiu ~ (2.25)
j=1

(EA),, A), (B, (ED). "

Inserting Eqs. (2.1942.21)) into [Eq. (2.3)| and making use of Eqs. (2.1342.14) and
Fq (227]) one gets

R s (ED)o(GA), T
%= 2 (En. " EDED, " (D, (2.26)

j=1

Combining [Eq. (2.25)|and |[Eq. (2.26)], one arrives at the following coupled second-

order system of differential equations where the primary unknown variables are

the slip distribution and the shear deformation of the concrete beam:

d*s—As=h (2.27)
where
s=[g g g Y| (2.28)
and
T
h = — T 2.2
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2.3 Derivation of the governing equations

The components of the matrix A are given by

i 1 hihs 1 hiha hi (GA)e ]
ks(:l |:(EA + (EI) :| k's-('Q |:(EA) + (ElI)Zi| e ksz:n {(EA) + (El,l) } l(EI)L
k + hiho k + h3 k + hohn ha (GA).
sel (EA) (EDo se2 (EA) (EDo (EA) (ED)o (ED).
A= : : : :
. hihn 1 hohn 1 h2 hn (GA).
et { @A, T @)J Fisco [<EA)C + <E21>o} v Faen [<EA>W + <E1>a} ®D.
hikse1 ho ksc2 . hon ksen (EI)o(GA).
L (ED)e (ET)e (ET)c (ED)c(ET)s
(2.30)
in which,
1 1 1 .
+ i=1,2,---,n (2.31)

(EA)w  (EA). " (BA),
It is worth mentioning that for shear-rigid model, the primary unknown variables
in the coupled differential equations are only slip distributions since the shear

deformation of concrete component is supposed negligible.

A diagonalization of the matrix A will uncouple the above system of differential

equations and produce a set of n 4 1 second-order ordinary equations.
Let A, and A, respectively be the matrix collecting the eigenvectors and the

eigenvalues of A. Then, we have the following relationship:
Ay=A'AA,. (2.32)

Subsequently, we insert the vector s obtained by pre-multiplying the vector s by
the matrix A,

s=A,S (2.33)
into and make use of [Eq. (2.32)[ to produce an uncoupled differential

equation system:

’s—A,s=h (2.34)
where h = A, 'h. By noting that the inverse matrix A,' can be written as
a11 iz Qi)
ATl a1 agr - a2(r'z+1) (2.35)
| G411 G(n1)2 0 Q(nt1)(n41) |
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2. GEOMETRICALLY LINEAR ELASTIC BEHAVIOR

the components i of vector h can be written as:

- _ T

b=~ g = L2t (2:36)

Consequently, the system of differential equation (Eq. (2.34)) can be written as a

set of n 4+ 1 uncoupled ordinary differential equations in variables §; as follows:

. . _ T ,
823i—/\isi: —ai(n+1) m, 1= ]_,27"' ,’I’L—’—]. (237)

where )\; is the i eigenvalue of matrix A.

2.4 Closed-form solution of the governing equa-

tions

In this section, we provide the analytical solution of the governing equations for
the general case of the shear connection that is 0 < k,., < oco. The governing dif-
ferential equation involves the single unknown variable 8. It is worth mentioning
that the exact solution of the governing differential equation (Eq. (2.37)|) requires
the distribution of the shear force T'(x) to be known. In order to simplify the
development of the solution, we assume that the external distributed load on the
element is uniform. As a result, the distribution of the shear force must be linear
to ensure the overall transverse equilibrium .

T(x) = —pyx + Conts (2.38)

where Cy, g is the shear force at the left hand side of the beam and is considered
to be a constant of integration. The kinematic variables can be determined once
the expressions of §; are found by solving the differential equation. The general

solution of §; (i =1,2,--- ,n+ 1) is given by

-For \; >0

> e iz =V @i(n+1)
S; = Cgifle\/r + CQie Vi + m(anJrg — Dy x) (239)
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2.4 Closed-form solution of the governing equations

- For \; <0
5; = Cy;_1 coS \/—_)\Za: + Cy; sin \/—_)\21: + %(szs —pyz) (240
-For \; =0 _ 2 3
§; = Coi1 + Coyx — C(Lg;):) (O2n+8% — Dy %) (2.41)

The solution of §; in case A\; > 0 involves exponential terms which may take a
very large value. To avoid numerical ill-conditioning of the stiffness matrix, we
replace the actual expressions of the constants of integration with the following
ones:

CN’Qi_l = e_\/r"L CQi—lv 1= ]_, 2, s N+ 1 (242)

CQi:CQi, Z:1,27 ,n+1 (243)

in which L is the length of the element.

All §; are collected in a vector so the analytical solution can be written in a

matrix form as follows:

§ =X;C+7Z; (2.44)

with
§=1[51 52 5n41]" (2.45)

and
C=[C, CyConis]" (2.46)

The components of matrix Xz and Z; are dependent on the eigenvalues of A and
the external load p,, respectively. In case A is positive definite i.e. \; > 0, we

obtain the following expression for X; and Z; with a; = /.

@ (3=L) - 0 0o .- 0 0 00000

e

0 0 et2(@—L) g-azz . 0 0 000O0O
X, — Ao (ET)s

A (n+1)(n+1)
Ang1 (ET), |

(2.47)

0 0 0 0 oo el egmannz g0 0 0 0
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and
z o Dy Ain+1)  Q2n41)  Q(nt1)(n+1) T (2.48)
TUED, | M N Aot '
Substituting [Eq. (2.44)| into [Eq. (2.33)| one gets
s=X,C+7Z, (2.49)
in which
X, = A,X; Z, = AZ; (2.50)

The vector Z, as well as the matrix X, is decomposed into two sub-vectors and
sub-matrices, respectively in order to separate the distribution of slips g; from the
shear deformation of concrete beam ~.. The first bloc collects the slip distribution

g; and the second one gathers the shear deformation ~,:

g=X,C+Z, (2.51)
Ye =X, C+Z, (2.52)

where X, = [ X; X [Tand Z,=[2Z, Z, "

Ye

2.4.1 Determination of displacement fields

To determine the axial displacement of the concrete component and the deflec-
tion of the beam, we use the relationships in which the kinematic variables are
expressed as a function of slip and shear deformation distribution Eqs. ([2.23H2.24])

developed in [Section 2.3| Inserting Egs. (2.51H2.52)) into [Eq. (2.24)| one obtains:

1 1
O =g, (Tlonss = Xy + (BN 0"Xs.) O+ o (py o — 02y + (B1)e 025, )
(2.53)
where
0= [ hl kscl h2 kSCQ e hn kscn ] (254)
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2.4 Closed-form solution of the governing equations

By making use of Eqgs. (2.1342.14)), the curvature, the cross-section rotation and
the deflexion can be derived by a successive integration of [Eq. (2.53)]

ks = X,..C + Z,,. (2.55)

0s = Xy,C + Zy, (2.56)

v=X,C+Z, (2.57)

where
1
Xy = / [_H2n+8 — 0Xy + (EI). 32X%] dz + Ton+s (2.58)
(ET)o
X@s = /Xﬁsdﬁf + H2n+4 (259)
X, = /XQSdZC + ]I2n+5 (260)
1
2 = / by« — 0Z, + (ED).8°Z,] da (2.61)
Zo.= [ 2.0 (2.62)
a:/@m (2.63)
2n + 2
—t—

Iopis=[0 0 --- 01 0 0 0 0 O] (2.64)
Iopisa=10 0 001000 0] (2.65)
Ionis=[0 0 000100 0] (2.66)
Ioni6=[0 0 000010 0] (2.67)
Ioni7 =10 0O 0000O0T1O0] (2.68)
Ionis=[0 0 000O0O0GO0 1] (2.69)

Substituting [Eq. (2.51)| into [Eq. (2.23)| and integrating twice the outcome, one

gets the axial displacement of the concrete beam as follow:

ue = X,,C+ Z,, (2.70)
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where

' 1
<.~/ ((m) oo e B XQ) dx} b e e
(2.71)

Z = / / (ﬁ [k; Kooy - k} zg) dx] dz (2.72)

At this point, we have 2n + 8 constants of integration which correspond to the

number of degrees of freedom: 2n + 2 axial displacements of each component,
2 cross-section rotations of the encasing component, 2 cross-section rotations of
embedded components and 2 verticals displacement. Consequently, the remaining
kinematic variables must be determined by using the kinematic relations. By
inserting [Eq. (2.52) and [Eq. (2.57)|into [Eq. (2.13) the cross-section rotation of

the concrete beam is obtained:

0, = Xac C+ Z@c (273)

where

Xy, = 0X, — X, Zy, = 074, — Z,, (2.74)
We get the expression of the axial displacement of the embedded steel sections
by inserting |Eq. (2.51), [Eq. (2.70)[ and [Eq. (2.73)|into [Eq. (2.17)[ and solving for

U,

7

Us, :Xusic‘{'Zusn 1=1,2,---,n (275)

where

X, = X, — X,

K3

- hz XQC Zusi — ZuC - Zg - h,Z Z9c (276)
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2.5 Exact stiffness matrix

2.4.2 Determination of internal forces

Once the displacement fields are defined, one can use the linear elastic relationship

Egs. (2.1842.19)) to obtain the nodal forces.

Ns, = YN, C + Rys,, 1=1,2,---n (2.77)

N.=Yn.C+ Ry, (2.78)

M; =Y, C+ Ry, (2.79)

M. =Y. C+ Ry, (2.80)

T=YrC+ Ry (2.81)

where
Yys, = (EA)s, 0Xys; Ry, = (EA)s, 0Z,s,, 1=1,2,---mn (2.82)
Y. = (BA). 0K, By, = (BA)c 02 (2.83)
Y, = (B1)s X, Ry, = (E1)s Zs, (2.84)
Y, = (E1). 09X, Ry, = (EI)c Zo, (2.85)
Yr=1I.s Ry =—pyx (2.86)
M, = i M, (2.87)
j=1

2.5 Exact stiffness matrix

The direct stiffness method is used to derive the exact stiffness of the hybrid
beam-column with n embedded sections. It can be obtained starting from the
general expressions of the internal forces and the displacement fields. Let a hybrid
beam-column element of length L be considered. Since the same transverse dis-
placement is assumed, this element has (2n + 8) degrees of freedom, see .
Applying the kinematic boundary conditions at x = 0 and x = L leads to the
relationship between the vector of constants of integration C and the vector of

nodal displacements q as follows:

q=XC+7Z (2.88)

Pisey Keo 27
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where
q=| Us 0 " Ueo Veo Uso Oco usyn - Uer Ver O Oer ]T
(2.89)
X=[Xuso - Xoo Xpo Xusp - Xoo Xoor]" (2.90)
Z=1[Zus0o ' Zoo Zoo Zus,r - Zo.r Zor]" (2.91)
The nodal displacements being independent, so the matrix X is invertible. Thus,
the constants C; are obtained as a function of the nodal displacements g;.
C=XYq-2) (2.92)
The nodal forces can be expressed in compact form as:
Q=YC+R (2.93)
where,
Q=[-Ngyo -+ =My Nyp -+ Mp]" (2.94)
Y=[-Yn,, Yo, Yn, ., Y, 1" (2.95)
R=[-Ry,, —Ruy., Ry, -+ Ra, 1" (2.96)
Inserting [Eq. (2.92)|into [Eq. (2.93), one obtains:
Kq=Q+Q (2.97)
where
K=YX" (2.98)
represents the exact stiffness of the element and
Q,=KZ-R (2.99)
represents the nodal force due to the uniform external load p,.
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—
-
Y

Figure 2.3: Nodal forces and displacements of hybrid beam element.

2.6 Numerical applications

The purpose of this section is to assess the capability of the proposed formulation
in reproducing the linear elastic behavior of shear-rigid and shear-deformable hy-
brid beam-columns in partial interaction and to investigate the influence of the
shear connection stiffness and span-to-depth ratio on mechanical responses of the
beam-columns. To do so, the predictions of the exact finite element model for hy-
brid beam-columns with shear-rigid assumption are compared against the results
obtained with the present exact model. The investigation is carried out con-
sidering three examples: simply supported sandwich beam, clamped-free hybrid

column /shear-wall and two-span continuous hybrid beam.

2.6.1 Simply supported steel-reinforced concrete beam sub-

jected to uniformly distributed load

Consider a concrete beam of breadth of 10 cm and depth of 20 cm (see |Fig. 2.4)
reinforced by two steel plates of equal thickness 2 cm attached, using shear con-
nectors, to the top and bottom surfaces of the concrete beam. The latter is

subjected to a uniformly distributed load p, of intensity 10 kN/m. The elastic
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y
Py, = 10 kN/m
Y YV Y YVYYYVYYYYYVYYYYVYYVYVYY

L=4m
10002
T B E.=34.5 GPa
E,=E,=200 GPa
0.20 Ke;= 40 MPa
l teho, K= 5 MPa

*

Figure 2.4: Sandwich beam with transversal loads (dimension in [m]).

Table 2.1: Numerical results.

EB-Model T-model
[42] Present [42] Present
|| Vmaz|| (mm) | 10.87796015 10.87796014 | 10.91156269 10.93670002
l|g1|| (mm) | 0.77821848  0.77821849 | 0.77821848  0.78028991
|g2]] (mm) | 1.00207365  1.00207366 | 1.00207365  1.00475539

modulus adopted for steel and concrete are 200 000 MPa and 34 500 MPa, re-
spectively. The Poisson’s ratio for the concrete core is taken equal to 0.2; and
the value of shear correction factor is assumed to be equal to 1. The stiffness of
the shear connection is taken equal to 40 MPa for the top layer and 5 MPa for
the bottom layer. Such a distribution of the shear connection stiffness breaks the
symmetry of the problem. The geometrically linear analysis of this beam problem
was performed by Sousa Jr [42] using the exact flexibility matrix. To assess the
capabilities of our formulation we perform a linear analysis with two exact finite
elements. The exact stiffness is derived based on a linear shear force distribution
(replacing 7" with —p,x + Capys in so that the distributed load is
considered without any approximation. A good agreement for the geometrically
linear analysis with the results in [42] is obtained. The maximum deflection v,

occurring at mid-span of the beam along with the slips at the beam ends are
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tabulated in [Table 2.1 for both shear-rigid model (EB-model) and shear-flexible
model (T-model).

2.6.2 Hybrid column /shear-wall

Consider a hybrid column/shear-wall consisting of a cross-section with breadth of
25 cm and depth of 90 cm reinforced by three embedded steel profiles, HEB100.
The column /shear-wall is clamped at its base and free at its top. Equally spaced
shear stud connectors are welded on both side of each web of steel sections. As a
result, the shear connector stiffness k. for each sliding plane is equal. The shear
correction factor for this example is taken equal to unity. The position of the cen-
troid of the steel profile at mid-height of the hybrid cross-section coincides with
the centroid of the concrete section. The geometrical and material characteris-
tics of the column/shear-wall are reported in [Fig. 2.5 The column/shear-wall is

4x 100 kN
250 kN i E, =210 GPa; E, =39 GPa; v, =0.2
N Y
A T
N~
—
H
5§ |e
HNh& |8
L & |°
H
~
—
f—
© © 25cm
L |
_V_— Section a-a
<«—H—

Figure 2.5: Hybrid column/shear-wall (dimension in [cm)]).

subjected to a lateral load of 250 kN at the top and to equally distributed axial
loads of 100 kN at the centroids of each component. The column/shear-wall is
modeled using one element, which is the smallest number needed for this prob-

lem. It is worth mentioning that since the model is based on the exact stiffness
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Figure 2.6: Deflection v as a function of shear connector stiffness with L/H = 5.
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Figure 2.7: Lateral deflection ratio versus span-to-depth ratio for different shear

connection stiffness.

The role of

shear flexibility of the concrete component can be analyzed by comparing the

matrix, considering more elements does not improve the results.

mechanical response obtained with the shear-flexible model (T-model) against
the corresponding response predicted by the shear-rigid model (EB-model). In
particular, the comparison is carried out in terms of the lateral displacement (¢)
evaluated by means of the two above-mentioned models. The degree of shear
connection for a case where the span-to-depth ratio L/H = 5 is illustrated in
from which one can consider the shear connection as a loose connec-
tion for k,. = 1 MPa and a full connection for k;, = 105 MPa. Besides, one
can observe from that the distributions of the lateral displacement as a

function of the shear connection stiffness for both models are almost "parallel”.

Pisey Keo 32
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shows the lateral deflection ratio obtained with both models as a function
of the span-to-depth ratios (L/H) for a different shear connection stiffness (k).
As expected, the deflection predicted by shear-flexible model is larger than the
corresponding deflection evaluated using the shear-rigid model for any value of
the ratio L/H. Moreover, the deflection ratio tends to infinity when the span-
to-depth ratio tends to zero, and to unity when the span-to-depth ratio goes to
infinity. It can be seen that the shear connection stiffness has almost no influence
on the ratio between the lateral deflection obtained with the shear-flexible model
and with the shear-rigid model. For both loose connection and full interaction,

the deflection ratio as a function of the span-to-depth ratio are almost the same.

Further comparisons are also proposed in terms of end slips (see [Fig. 2.8 and

1.00015
_ 100010 | e S 1
_8 - —p T e e ==
£ 1.00005 | PRI '
< AR N T A
' 1.00000 | o EEEXEE

\_% " ,\ wwwwwwwwwwwwwwwwww k =1 MPa

099995 | - 4" _
E [ S A k,=10” MPa
- 0.99990 [y~ 1
& 't - = =k =10°MPa
099985 |- F H
: ——k=10°MPa
0.99980 : : ‘ i i :
0 2 4 6 8 10 12 14 16 18 20

L/H

Figure 2.8: End beam slip strain ratio versus span-to-depth ratio for different

shear connection stiffness.

Fig. 2.9). It is worth mentioning that by symmetry the slip g» at centroid of
concrete cross-section is equal for both models. As a result, only distributions
of g; and g3 are discussed here. In contrast to the lateral deflection ratio that is
influenced by the ratio L/H, one can observe that the slip ratio of both models
does not vary significantly as a function of both L/H and k.. Due to the com-
bination of the bending moment (depends on L/H ratio) and the axial force, the

slip g3 changes its sign at a specific value of L/H in partial interaction (low value
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Figure 2.9: End beam slip ratio versus span-to-depth ratio for different shear

connection stiffness.

of ks.). At that specific value of L/H, the slip ratio tends to infinity and leads to
discontinuity of the curve. As the result, the difference between the end slips of

both models is provided.

2.6.3 Two-span continuous hybrid beam

Consider a concrete beam of 25 cm breadth and 90 cm depth (see
reinforced by two steel profiles HEB100 embedded in the concrete beam. The
beam is subjected to a uniformly distributed load whose intensity is 100 kN /m.
The elastic modulus adopted for steel and concrete are 200000 MPa and 34 500
MPa, respectively. The Poisson’s ratio for the surrounding concrete is taken
equal to 0.2; and the unity value of shear correction factor is adopted. The
shear connection stiffness is 50 MPa for the top connection between the concrete
component and the embedded steel section and is 10 MPa for the bottom one.
Such distribution of the shear connection stiffness breaks the symmetry of the
problem. The values of end slips, transverse displacement at mid-span and the
bending moment at the intermediate support are compared against those obtained
with Euler-Bernoulli beam theory. The linear analysis with four elements using
the exact stiffness matrix for both models is implemented and the results are

presented in for L = 8 m. One can see that the transverse displacement
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Figure 2.10: Two-span continuous hybrid beam (dimension in [cm]).

and the end slips obtained with the shear-flexible model (T-model) are greater
than the ones from the shear-rigid model (EB-model). Nevertheless, the negative
bending moment obtained from the T-model are smaller than the ones in the EB-

model. shows the influence of the degree of shear connection of both

Table 2.2: Numerical results

EB-model T-model
Umaz (M) 4.08807722 4.38853225
g1 (mm) 0.35319143 0.35644706
g2 (mm) —0.49879217 —0.50751066

Mppar (kN.m) —795.62367844 —789.17254192

T-model and EB-model for the case where the span-to-depth ratio L/H =5 and
the same shear connection stiffness k. for both sliding planes. From [Fig. 2.11]
we can assume that for k,. = 0.1 MPa we have a loose shear connection (without

interaction) and for ky. = 105 MPa we have a full interaction. Furthermore, the
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Figure 2.11: Deflection v,,,, as a function of shear connection stiffness with
L/H=5.

ratio of the deflection at mid-span and the ratio of the bending moment at the
intermediate support obtained with both T-model and EB-model are provided as
a function of the longitudinal shear connection stiffness k. for four different values
of the span-to-depth ratio L/H. The interface shear connection stiffness k. is
considered as equal for both slipping planes. The curves illustrated in
confirm the important role of shear flexibility in the case of a low L/H ratio and a

full connection. One can observe that the deflection ratio significantly increases,

1.35 , ' ‘ ‘
13k | L/H=5 = =" L/H=75 = = = |/H=10 '+ ' L/H=20|
3 1250 : i
f=
& —
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g ____________________
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10t 10° 10t 13 13 1 e
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Figure 2.12: Mid-span deflection ratio versus shear connection stiffness for differ-

ent span-to-depth ratios.

particularly for a low value of L/H ratio, when the value of k. varies from 0.1
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MPa (almost no interaction) to 10> MPa (nearly full interaction). Nevertheless,
increasing the value of k. has small effect on the deflection ratio for large values
of L/H. For the latter case, the shear flexibility of the concrete component can
be ignored which results an almost identical response of both models regardless
of any value of shear connection stiffness. On the other hand, the comparison
in terms of the bending moment at the intermediate support is also performed

(Fig. 2.13]). The four curves tend to a clear asymptotic value as k. approaches

1.005 : : : :
| LH=5 = =" LH=7.5 = = = L/H=10 '+ L/H=20 |
Al ]
T O PR
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R it TS S A
o
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10" 10 10t 100 10° 10' 10
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Figure 2.13: Bending moment ratio at intermediate support versus shear connec-

tion stiffness for different span-to-depth ratios.

infinity. Such limit values could be derived by analyzing the same hybrid beam
adopted to Timoshenko and Bernoulli kinematic assumptions in full interaction.
As expected, the beam is more flexible with the shear-flexible model than with
the shear-rigid model (lower bending moment) for a short beam (L/H = 5) and

the bending moment ratio tends to unity while the beam length gets larger.

2.7 Conclusion

In this chapter, the exact expression of the stiffness matrix has been developed
for the hybrid beam-columns in partial interaction where the shear deformability
of the encasing concrete component is taken into account. The exact stiffness

matrix has been obtained by deriving a closed-form solution of the governing
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equations of the problem. The exact solution is based on solving the coupled
system of differential equations where the slips and the shear deformation of the
concrete component are considered as primary variables. The proposed exact
stiffness matrix can be used in a displacement-based procedure for the elastic
analysis of shear-deformable hybrid beam-columns in partial interaction with ar-

bitrary loading and support conditions.

The influence of the shear flexibility and the partial interaction on the overall be-
havior of the hybrid beam-columns has been investigated. A parametric analysis
considering various values of the length-to-depth ratio and of the shear connection
stiffness has been performed. It has been found out that transverse displacements
are more affected by the shear flexibility than the slip. Indeed, the ratio of the
deflection obtained from the shear-flexible model to the one obtained from the
shear-rigid model varies slightly with the shear connection stiffness varying from
low to high one value. On the other hand, the slenderness of the cross-section and

the partial interaction have no significant effect on the slip ratio of both models.
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Geometrically Nonlinear

Elastic Behavior

Kokok

A new co-rotational finite
element for a large displacement

analysis of hybrid beam-columns.

3.1 Introduction

In contrast with a large body of literature devoted to mechanically nonlinear but
geometrically linear problems of two-layered beam-columns in partial interaction,
only a limited number of contributions have addressed the geometrically nonlinear
behavior of layered beams. Assuming Euler-Bernoulli kinematics for each layer,
linearized buckling loads have been computed by Girhammar and Gopu [15] us-
ing a modified second-order theory for two-layered beams with longitudinal slips.
Hereafter, Girhammar and Pan [19] derived the exact expressions for buckling
length coefficients of elastic composite beams with particular boundary condi-
tions. A fully nonlinear analysis of steel-concrete composite beams and columns
has been proposed by Pi et al. [43] considering Bernoulli kinematics for each layer.

They proposed a monolithic element where an additional degree of freedom to
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the deformed beam axis was added in order to describe small interlayer slips.
Ranzi et al. [44] proposed a fully nonlinear kinematical model for planar compos-
ite beams including longitudinal partial interaction as well as vertical uplift. The
co-rotational framework approach was considered by Battini et al. [32] and Hjiaj
et al. [35] for the development of shear-rigid [32] and shear-deformable [35] beam-
column element using the exact local elastic stiffness matrix. Sousa Jr et al. [45]
developed a materially nonlinear displacement-based finite element model based
on a total Lagrangian description considering large displacements, small strains
and moderate rotations. A large displacement FE model for two-layered beam-
column based on shear-rigid Reissner beam theory has been proposed by Hozjan
et al. [46]. The latter model takes into account the exact geometrical and material
nonlinearities as well as finite slip between the layers. Recently, Nguyen et al. [47]
have presented a novel finite element model for the fully material and geometrical
nonlinear analysis of shear-deformable two-layered composite planar beams with

interlayer slip, using the co-rotational approach.

This chapter aims to present a new nonlinear finite element formulation for the
large displacement analysis of hybrid planar beam-columns with several encased
steel profiles taking into account the slips occurring at each steel-concrete in-
terface. The co-rotational framework is adopted and the motion of the element
is decomposed into a rigid body motion and a deformational part using a local
co-rotational frame, which continuously translates and rotates with the element,
but does not deform with it [48]. In comparison with the total and the updated
Lagrangian formulations, a co-rotational element formulation has several relative
advantages: (1) the co-rotational formulation is accurate and has good conver-
gence properties for problems with large displacements and large rotations but
small strains; and (2) the treatment of geometric nonlinearity is effectively un-
dertaken at the level of discrete nodal variables with the transformation matrix
between the local and global nodal entities being independent of the assumptions
made for the local element. Thus many existing high-performance elements can

be reused at the core of a co-rotational element formulation, and the resulting

Pisey Keo 40



3.2 Co-rotational framework

formulation can be employed to solve large displacement and large rotation prob-

lems.

In the present work, the exact stiffness matrix derived from the analytical so-
lution of the governing equations for hybrid beams developed in will
be used for the local formulation. As a result, internal nodes used to avoid the
locking problem encountered in low order polynomial finite elements are not re-
quired. Therefore, this formulation is consistent with the co-rotational format.
The features of the formulation presented in this chapter are as follows: (i) lon-
gitudinal partial interactions of the components are considered which provide a
general description of the stresses and strains in the members; (ii) the small strain
and large rotation formulation is developed which is an accurate representation
of most structural behavior; (iii) exact local stiffness matrices are used, which
provide accurate and stable results. The present model provides, therefore, an
efficient tool for elastic nonlinear analyses of hybrid beam-columns with arbitrary

support and loading conditions.

The rest of the chapter is organized as follows. deals with the co-
rotational framework, the derivation of the transformation matrices and issues
related to eccentric nodes and forces. Five numerical examples are presented in

in order to assess the performance of the formulation and support the
conclusions drawn in

3.2 Co-rotational framework

We consider a hybrid beam with n embedded sections experiencing arbitrarily
large displacements and rotations with respect to the global frame but strains are
assumed to remain small. The main ingredients of a co-rotational formulation are:
(i) the choice of co-rotating frame, (ii) the derivation of the relationships between
the local variables and the global ones, and (iii) a variationally consistent internal

force vector and the tangent stiffness matrix.
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3.2.1 Beam kinematics

The co-rotational description of the motion of a deformable body finds its roots in
the polar decomposition theorem [49] which states that the total deformation of
a continuous body can be decomposed into a rigid body motion and a pure defor-
mation part. In finite element implementations, this decomposition is performed
by defining a local reference system attached to the element, which translates
and rotates with the element but does not deform with it. With respect to the
moving frame, local deformational displacements are defined and the geometrical
nonlinearity induced by element large rigid-body motion is incorporated into the

transformation matrix relating local and global displacements.

The origin of the co-rotational frame is taken at the node c; which corresponds
to the centroid of the concrete cross-section, see [Fig. 3.1 The x-axis of the local
coordinate system is defined by the line connecting ¢; and c;. The y;-axis is or-
thogonal to the z;-axis so that the result is right handed orthogonal coordinate
system. The motion of the element from the original undeformed configuration
to the actual deformed one can thus be separated into two parts. The first one,
which corresponds to the rigid motion of the local frame, is the translation of
the node c¢; and the rigid rotation « of the x;-axis. The second one refers to the
deformations in the co-rotational element frame which remain small with respect
to local frame. The strains and internal nodal forces of the element are calculated
from these relative deformations. As a consequence, the linear beam theory de-
fined in can be used for describing the relative deformations, endowing
the method with significant advantages in computational speed and programming

simplicity.

The notations used in this chapter are defined in [Fig. 3.1| and [Fig. 3.2l  All

Y

variables subscripted with ”s;” belong to the embedded steel element ”s;” and

those with ”¢” belong to the encasing concrete component. The coordinates of the

Pisey Keo 42



3.2 Co-rotational framework

Uci UC].
ey Lzl A,

Figure 3.2: Co-rotational kinematic: displacement and rotations.

nodes c; and c; in the global coordinate system (z,y) are (z.,,yc;) and (zc;, ¥c; ),
respectively. The element has 2(n + 4) degrees of freedom: global displacements
and rotations of the nodes (¢; and c¢;) and slips (gx;, gxj) between the embedded
steels 7s;” and the encasing concrete component "¢’ at both ends of the element.

As the steel elements are surrounded by the concrete component, uplift cannot
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occur. Thus, the rotations of each steel cross-section at the end nodes are equal
(Bernoulli’s assumption) and the slips (g, gx;) are perpendicular to the end cross-

sections of the steel components.

The vectors of global and local displacements are respectively defined by |[Eq. (3.1)]
and

Py = [uci Vei Oi Osi 916 G2+ Gni Ucj Vcy ch 9sj gij 925 - gnj]T (3.1)

_ _ _ . _ 5 A - _ _ . _ a3 A 1T
Pr = [Us1; Us2i * -+ Usni Ui Vi Osi Oci Us1j Uszj -+ Usnj Ucj Vej Osj Ocjl (3.2)

The rigid rotation of the x;-axis, « is obtained using the geometrical relation:

sina = ¢,8—8,¢ (3.3)
COSQ = CoC+ Sp58 (3.4)
with

1

¢, = cosf, = T (Tej — Tei) (3.5)
. 1

o = o= oy ) 30
1

c = cosf= N (:ch T Uej — Tei — Uci) (3.7)
1

s = sinf= l_ (ycj + Vej — Yei — Uci) (3-8)

l, and [, being the element length in initial and deformed configuration, respec-

tively:

lo, = [(‘TCj - xci)Q + (ij - yci)2]1/2 (3.9)
ln - [('ch + ucj — T — uci>2 + (ij + ch — Yei — Uci)2]1/2 (310)
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Based on the definition of the co-rotating frame, the components of the local

displacements p; are computed according to:

lie; = 0 (3.11)
v; = (3.12)
v, =0 (3.13)

Uej = by — 1, (3.14)
Oy = O — (3.15)
i = 0 — (3.16)
O = b5 — (3.17)

Ocj = Ocj — (3.18)

Ugli Gii — P O (3.19)
lgj = —Gij + Uej — i, Oy (3.20)

where local slips g, are defined in local element formulation (see [Section 3.4)) and
determined by

G = g cos Oy, I =1,j; k=1,2,---n (3.21)

3.2.2 Element formulation

A key step in the the co-rotational method is to establish the relationship between
the local variables and the global ones. This is accomplished by performing a
change of variables between the global quantities and the local ones. The second
stage is to remove the rigid body motions from the element displacement field
which is achieved by calculating the local displacements using Eqs. .

Let us consider two different coordinate systems with subscript ¢ and j. Assume
that the internal force vector f; and tangent stiffness matrix K; are consistent

with the displacement vector p; such that
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Consider now that p; is related to the displacement vector p; through

Then, by equating the virtual work in both systems, the internal force vector f;

consistent with p; is defined by
f; =B f (3.24)

The expression of the tangent stiffness matrix K;, consistent with p; is obtained

by differentiating and combining the outcome with [Eq. (3.22)[ and

Eq. (3.23)
d(BL f)

J fl

From the idea described above, the element formulation can be obtained using

three consecutive changes of variables and four different displacement vectors as

follows:
[ sl us?z Tt ﬂsni ﬂci T)ci ési éci ﬂslj ﬂs?j Tt ﬁsnj acj @Cj ésj écj]T (326)
=[ 6 _ci U O Ocj Gui Goi -+ Gni G1j Goj -+ Gnj |- (3.27)
=0y O Uj Oy O G 92 - Gui G5 Goj - Gnj ) (3.28)
[ucz Uci ch HS’L 91i 92i *°° Gni ucj ch ch esj glj ng e gnj]T (329)

For the sake of clarity in representing the transformation matrices, we present
in the following the formulations of hybrid beam-column with three embedded
steel sections. Nevertheless, the concepts are also applicable to general case of
n embedded steel sections. The first change of variables between p; and p, is
based on the linear equations (Egs. (3.11 and Eqs. (3.1943.20)). Then,

the transformation matrices giving f. and K, as function of f; and K, are easily
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obtained:
[ 0
0
0
0
0
1
B = ’
0
0
0
0
0
0
| 0
Consequently,

|
>
=

—hy
—hs

S O O O O o o = O O O

00 0 -1
00 0 0
00 0 0
00 0 0
00 0 0
00 0 0
00 0 0
10 —h O
1 0 —hy O
1 0 —hy O
10 0 0
00 0 0
01 0 O
00 1 0

H,,

=)
—_

O O O O O O O o o o o o

=0

l o O
—_

SO O O O O O o o o o o

o O O O o o o

o O O o o o

o O O O O o o o

|
—_

o O O O O

O O O O O o o o o

|
—

o O O O

(3.30)

(3.31)

For the second change of variables from p. to p,, the transformation matrices
giving f, and K, as function of f, and K. are derived using [Eq. (3.21),

! 0 0 0 0 0 0 0 0 0 0

0 10 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

B.. = | —giisinfy; 0 0 0 0 cosfby; 0 0 0 0 0
—goisinfy; 0 0 0 0 0  cosfy 0 0 0 0
—gs3isinfy; 0 0 0 0 0 0 cos f; 0 0 0

0 0 0 —gisinfy; 0 0 0 0  cosfy 0 0

0 0 0 —gojsinfs; 0 0 0 0 cosf; 0

0 0 0 —gg;sinfs; 0 0 0 0 0  cosfy,

(3.32)
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Then,
H,, = [ H, (1) H,,(11) ] (3.33)
where the non-zero components are
- . ) ) i
— > Grife(b+ k) cos by
k=1 0
0 0
0 3 _
— > grjfe(8+ k) cosby;
0 k=1
T 0 . 0
Hea(l) = —sin ési fe(6) ) Hea (4) = 0
—sin 9_51' f€(7) 0
—sinfg; f.(8) 0
0 —sinfy; fe(9)
0 —sinésj fe(10)
i 0 ] i —sinfy; fo(11) ]
(3.34)
H.,(6)" =[ —sinf, f.(6) 0 0 0000000 0] (3.35)
H.,(")" =[ —sinf, f.(7) 00 00 00000 0] (3.36)
H.,(8)" =[ —sinf, f.(8) 000000000 0] (3.37)
H.,(9)"=[0 0 0 —sinf;f(9) 00000 0 0] (3.38)
H.,(10)"=[0 0 0 —sinfy; f.(10) 0 0 0 0 0 0 0] (3.39)
H.,(1)"=[0 0 0 —sinff.(11) 0 0 0 0 0 0 0] (3.40)
with
£5 = [fe(1) fo(2) -+ fo(11)] (3.41)

The third change of variables from p, to p, is performed using Eqgs. (3.1443.18]).

After some algebraic manipulations (see e.g. [48]), the transformation matrices

giving f; and K, as function of f, and K, are obtained. The transformation
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matrices are given as follows.

[ s/l ¢/l, 01000 s/l, —¢/l, 0000 0|
—s/l, ¢/l, 1.0 0 0 0 s/l, —c/l, 0 0 0 0 O
—c —s 00 000 ¢ s 0 00O0O0
—s/l, ¢/l, 00 0 0 0 s/l, —c/l, 0 1 0 0 0
—s/l, ¢/l, 00 0 00 s/l, —¢/l, 1 00 0 0
B, = 0 0 00100 0 0 00000 (3.42)
0 0 00010 O 0 00000
0 0 00001 0 0 00000
0 0 000O0O0 O 0 00100
0 0 000O0O0 O 0 00010
0 0 000O0O0 O 0 00001
and
zz" rz' +zr"
Hog = fa(3) 77— + (fa1) + fa(2) + fald) + fu(5)) ——p—— (3.43)
where
z' =[s —c00000 —s5c00000] (3.44)
r'=[—c —-500000cs00000] (3.45)
fo = [fa(1) fe(2) -~ fe(11)] (3.46)

and ¢, s defined in Egs. (3.7) and (3.8§]).

3.2.3 Eccentric nodes and forces

The boundary conditions for composite and hybrid beams may be complicated
to define and depend strongly on how the member is connected to the rest of the
structure. In general, one could distribute the external load among the differ-
ent constituent according to some rules among which, the relative stiffness. This
would lead to the same axial displacement of each constituent at the beginning of

the load step. Another option is to assume no slip at the beam end and the load
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is applied at an arbitrary point within the cross-section. This section presents

the possibility to deal with those options in the proposed formulation.

The choice of the slips as the degrees of freedom is indispensable for the ro-
bustness of the formulation. Due to this choice (see the boundary
conditions require a special treatment in case external concentrated loads are not
applied to the node located at the centroid of the beam cross-section (origin of

the local frame) but somewhere else on the cross-section.

Figure 3.3: Eccentric nodes and forces.

3.2.3.1 Eccentric nodes

Let us first consider (see [Fig. 3.3 that prescribed displacement or rotation are
applied at node m;. This situation requires a rigid link between the nodes ¢; and

m; and a change of degrees of freedom from p, to p,, with

P = [Umi Vmi Oci Osi 91i Goi ** Gni Uej Vej Ocj Oj G1j G2+ Gnjl ™ (3.47)

The displacements of the node m; can easily be obtained as

Ui Ui cosb.; —1 —sinf, —sin f3,
= + dw  (3.48)
Vpni Vei sin 0; cosf.; — 1 cos B,
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which, after differentiation, gives

Oumi | | Ouci | | cos(Bo+ Oci)
Svmi || 6vg sin (B, + Oc;)

The internal force vector and tangent stiffness matrix consistent with p,, are then

Ao 30c; (3.49)

obtained, see Section [3.2.2} using the transformation matrix By,,. This gives

0Py = Byn 6pm £, =B f, K, =Bl K,B,, +H,, (3.50)
with
By = 1 k=12 ,2n+48 (3.51)
Bgm (1,3) — COS(/BO + ecz) dm (352)
Bynz = sin(f, + 0ci) dm (3.53)

and the only non zero term in the matrix Hg,, is

Hy,, 33 = —sin(Bo + 0ci) din fo(1) 4 cos(Bo + Oc;) d f4(2) (3.54)

3.2.3.2 Eccentric forces

Let us now consider that two external force vectors f.; and fy; defined by

fo=[ fu(l) fu(2) fau(3) ]T; fai = [ faai(1) faa(2)  faa(3) ]T (3.55)

are applied at the nodes ¢; and sy;. fei(1), fai(1) are horizontal forces (in the local
frame); fe;(2), fai(2) are vertical forces and fe;(3), fui(3) are moments. These
loads require a special treatment since the degrees of freedom of the element are

Pm, see [Eq. (3.47)] The idea is to calculate the loads applied at node m; which

perform the same external virtual work.

For the load f,;, it gives

[5umi 5Umi 59@ ] fmi = [5uc7, (SUCi 5902 ] fci (356)
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Using [Eq. (3.49)] one gets

1 0 0
fi= 0 1 0| f (3.57)
cos(By + 0ci) dmy sin(B, + 6ci) dy 1

Differentiating [Eq. (3.57)| gives the stiffness correction term K, associated to
[ Ui Vmi Oci |, which must be subtracted from the tangent stiffness matrix of the

structure, as

s

3

Il
o o o
o o o

0
0 ; A - _Sin(ﬁo'i_eci) dm fcz(l) +COS(60+0&’) dm fcz(2)
A

(3.58)
In the case external loads are applied to an embedded section f,;, the calculations
are more complicated since the slip gy; is involved. Equating the external virtual

work performed by both force vectors gives
[ 5umi 5Umi 5901 5957, 5gkz ]fmz = [ 5uski 5Uski 5952 ]fski (359)

The displacements of the node sy; can be obtained as (see [Fig. 3.3])

[uski]:[umi]+
Usks Umi

cosfl; —1 —sinf, ][—sin&,]h

sin 0, cosf.,; —1 cos B,
cos(f, + 0
: (5 ) Jxi (3.60)
sin(B, + 0s;)

with h,, = hy — dp,. After differentiation, it gives
cos(By + 0c;)

5uski - 5umi
OVski Vs sin(B, + 0;)
o esi
N cos(f, + 0si)
Sin(ﬁo + 951)

i o esi ()
o 00 — | S0P H O g g
—c08(B, + 0si) g

O (3.61)
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By inserting [Eq. (3.61)|into [Eq. (3.59)} one obtains

1 0 0
0 1 0
fmi = | —cos(B, 4 Oci) by —sin(By 4 Oci) by 0 | fai (3.62)
—sin(B, +0si) gi  co8(Bo 4+ 0si) i 1
cos(B, + 0si) sin(8, +0s) 0 |

Differentiating [Eq. (3.62)| gives the stiffness correction term Ky associated to
[ Ui Vmi Oci Osi gis], which must be subtracted from the tangent stiffness matrix of

the structure, as

(000 0 0]
00 0 0 O
Kiar=]100 A4 0 0 (3.63)
00 0 B C
i 00 0 C O |
with
A = faui(1) by, sin(By 4 0ci) — fski(2) han cos(B, + 6) (3.64)
B = —fai(1) g cos(Bo + Osi) — foxi(2) gus sin(Bo + bs;) (3.65)
C = fai(2) cos(By + Osi) — faxi(1) sin(S, + O;) (3.66)

3.3 Local linear element

During the past decades, several finite element formulations for two-layered beams
have been proposed, see for instance [17, [18 20, 22, 27, 28, 32 35, 41l 45]. It has
been found that the locking phenomena occur in low order displacement-based
finite element models particularly for a short element with a stiff shear connection.
In order to avoid locking problem in two-nodes beam element, the stiffness matrix
K, in the local coordinate system for shear-flexible as well as shear-rigid model

which is constructed based on the exact solution of the governing equations of a

hybrid beam with deformable shear connectors (see [Chapter 2)) can be used.
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3.4 Numerical examples

The purpose of this section is to assess the capability of the proposed formulation
in reproducing the nonlinear behavior of hybrid beams in partial interaction and
to investigate the influence of the shear connection stiffness on the geometric
nonlinear effects. The analysis of the performance and the accuracy of the present
formulation is carried out by considering four numerical examples. To study the
effect of shear deformability of the concrete element, the numerical analysis results
obtained from the present model (T-model) are compared to the ones obtained
from the shear-rigid model (EB-model), see Appendix , in which the exact

stiffness matrix developed in Appendix [A]is used for the local frame.

3.4.1 Buckling of a shear deformable beam-column

The buckling load of a column depicted in is studied here by considering a

y
P X
300
y
6
o <> w
| - E.=Es=E;,=34.5 GPa
i~ 1=0.2
N
|$> ==
10 @
<~

Figure 3.4: Buckling of a shear deformable column (dimension in [cm]).

high shear connection stiffness k,. = 10° MPa. Restraints are applied in order to
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avoid bucking about the y-axis. The buckling loads of the column obtained with
different meshes are presented in [Table 3.1 A very good agreement compared to

Table 3.1: Numerical results.

Number of elements ‘ 2 4 8 16 20
P../P.,r ‘1.2319 1.0672 1.0274 1.0173 1.0158

the analytical solution, Engesser’s buckling load [50]
> E1/L?
2EI/L?’
1+ %
GA
is obtained. A further investigation on the effect of the shear connection stiffness

Pcr,T -

on the critical load has been carried out. The critical load is obtained by per-
forming a nonlinear analysis using 20 elements. It can be seen from that
the critical load obtained from the FE analysis using the proposed formulation
(P.) is lower than Euler’s critical load (P,..r) for low shear connection stiffness.
The magnitude of P.. increases with increasing value of shear connection stiff-
ness. However, P,.. remains constant for a shear connection stiffness k,. beyond

a critical value (about 10* MPa) where the full interaction can be assumed.

1.050
1.025r
1.000
0.9751
0.950F
0.9251-
0.9001
0.875[

0.85() 1 1 1 1
1072 10 10 1¢* 10°

k. [MPa]

T

cr cr

P /P

Figure 3.5: Ratio between the predicted ultimate load and the Engesser’s buckling

load in function of shear connection stiffness.
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3.4.2 Simply supported steel-reinforced concrete beam sub-

jected to uniformly distributed load

Consider a sandwich beam (see [Fig. 3.6) subjected to a uniformly distributed

y
py = 10 kN/m
Y Y Y Y¥YYVYYVYYYVYYVYYVYYVYYVYYVYVYY¥YYVY

- L=4m >
D002
T B E.=34.5 GPa
E,=E,=200 GPa
0.20 Ke;= 40 MPa
l . K= 5 MPa

*

Figure 3.6: Three-layered beam with transversal loads (dimension in [m]).

load p, of intensity 10 kN/m. The elastic modulus adopted for steel and concrete
are 200 000 MPa and 34 500 MPa, respectively. The Poisson coefficient for the
concrete core is taken equal to 0.2; and the unity value of shear correction factor
is adopted. The stiffness of the shear connection is taken equal to 40 MPa for the
top layer and 5 MPa for the bottom layer. A large displacement analysis with 20
elements is performed in which the distributed load is replaced with concentrated
nodal forces. As expected larger slips occur at the interface between the bottom
steel plate and the core beam (see for distributed load p, = 10 kN/m).
The maximum deflection v,,,, occurring at the mid-span of the beam along with
the slips at the beam ends are tabulated in for both shear-rigid model
(EB-model) and shear-flexible model (T-model). For the present case where the
sandwich beam can be considered as a slender beam, the results given by both
EB-model and T-model are not significantly distinct. Nonlinear analyses with
a large amplitude of distributed load are performed in order to capture the ge-

ometrically nonlinear behavior of the sandwich beam. It can be seen that the
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Slip q [mm]

-2 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4

Along the beam length [m]

Figure 3.7: Slips between concrete and steel beams.

Table 3.2: Numerical results.

EB-Model T-model
[Umaz|| (m) | 0.0109  0.0111
lg1]| (mm) | 0.7759 0.7817
llg2]| (mm) |  1.0000 1.0224

sandwich beam behaves linearly below 600 kN/m. Beyond that load, the non-
linear behavior become significantly apparent. One can observe that for a large
amplitude of the loading, the magnitude of the transverse displacement given by
the geometrically nonlinear analysis is significantly below the one predicted by a
geometrically linear analysis. This behavior is similar to what has been observed
in a non-linear bending of simply supported beams with a constant homogenous
cross-section carrying uniformly distributed load (see [51]). In such a problem,
the large displacement produces axial forces which increase the stiffness of the
system requiring larger loads for the same displacement. To illustrate this be-
havior, the nonlinear load-deflection curve (GNA) is compared to the linear one
(GLA) (see where vy, is the transverse displacement at the mid-span.

Furthermore, the effect of cross-section slenderness is investigated by consider-
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Figure 3.8: Load-deflection curve with L/H=16.67.

ing a large depth of the concrete core with a value of 60 cm. Both geometrically
nonlinear analyses of EB-model and T-model are performed. It can be observed
from that the shear deformability of the concrete core influences signifi-

cantly the response of the short beam with a slender cross-section.
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Figure 3.9: Load-deflection curve with L/H=6.25.
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3.4 Numerical examples

3.4.3 Hybrid Beam with 3 embedded sections subjected

to axial and transversal loads

Consider a pinned hybrid beam consisting of a concrete beam of breadth b = 0.25
m and depth A = 0.80 m (see reinforced by three steel profiles. Equally
spaced stud connectors are welded on both side of each steel beam flanges. The
details of the geometrical and material characteristics are reported in [Fig. 3.10]

The Poisson coefficient for the concrete component is taken equal to 0.15; and the

y py(x) a
p I EEEEEEEEEEEEERERE p
s )
| PPl
]
P, == == »,
L=12m L-a
Hélzﬂzo I E.=39 GPa
026m  E,=E,=E,=210 GPa
0.80m || | K= 50 MPa
0.26m
H
P.=P.=100 kN
0.25m p,=100 kN/m
Section a-a

Figure 3.10: Beam with axial and transversal loads.

value of shear correction factor is assumed to be equal to 1. The beam is subjected
to both axial and transversal loads. Each layer of the hybrid beam is loaded by
an axial force. The position of the centroid of the steel beam at mid-height of the
hybrid section coincides with the centroid of the concrete section. However, those
centroid nodes are distinct in the FE formulation. For this problem, a nonlinear
analysis is required in order to take into account the second-order effect induced
by the axial loads. The degree of shear connection for the shear-flexible model is
evaluated by analyzing the deflection at the mid-span with the variation of the

shear connection stiffness k., see |Fig. 3.11l For a shear connection stiffness k,,.
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lower than 103 MPa, the beam is in partial interaction. The numerical results

0
e
% 651 : 4
g
= 60}
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1072 10 107 1¢* 10°

kSC[M Pa]

Figure 3.11: Degree of shear connection.

for the slips at the beam end and the deflection at the mid-span are provided
in [Table 3.3| for both shear-rigid model (EB-model) and shear-flexible model (T-

Table 3.3: Numerical results.

EB-model T-model

|V maz|| (mm)  60.8698  61.4415

a1 (mm) 2.8225 2.8225
g2 (mm) 0.7447 0.7432
g3 (mm) -1.3331 -1.3361

model) considering k,. = 50 MPa. These results have been obtained with a mesh
consisting of 20 elements. The slip distributions between the encasing concrete
and the steel beams are illustrated in One can observe that although
the hybrid section is symmetric, the slip distribution at top steel profile is not
symmetric with respect to the one at bottom steel profile. As a result of the
interaction between bending moment and normal forces, the slip at the mid-height
of the cross-section is not equal to zero. Indeed, two axial forces are applied at
each cross-section centroid (at mid-height), one at the steel section (steel node)

and another one at the concrete section (concrete node). These two axial forces
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Figure 3.12: Slips between concrete and steel beams.

accompanied by the bending moment produce different axial displacements of
both nodes which result the non-zero slip (g2) along the beam length. On the
other hand, the deformed shapes of the hybrid beam obtained from both models
are depicted in [Fig. 3.13 As expected, the deflection obtained from T-model is

T-model
= =0= : EB-model

_10,

_20,

_50,

Deflection of the beam [mm]
8

Along the beam length [m]

Figure 3.13: Deformed shape of the beam.

slightly greater than the one from EB-model. It is worth mentioning that the
responses of the T-model is almost identical to the ones of EB-model. This is
due to the relatively large length-to-depth ratio of the considered beam setup
L/H = 15.
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3.4.4 Uniform bending of cantilever beam

To highlight the performance of the co-rotational formulation dealing with a large
displacement analysis, we consider a classical problem where three cantilever steel
beams (s;) are embedded in the concrete beam (c) and freely deform in their longi-
tudinal axis (without shear connection), see[Fig. 3.14] Those beams are subjected
to an end moment M such that the deformed shape of the beam (c) is a quarter
of circle. For that reason, the results obtained from the co-rotational model are
compared against the analytical solutions in which the shear deformability of the

concrete beam is ignored. The analytical end moment required to deform the

E.=34 GPa
Ea=E»=E=210 GPa
ksi= 0 GPa

HEB120

o
0.80 H
"I

H
0.25m
R a—

0.26 m
0.26m

Section a-a

Figure 3.14: Uniform bending of cantilever beam.

beam (c) is
(ET), 2L
MC = I—— RC _ 367
R - (3.67)
The beams (s;) have to bend into the concentric arcs, which require the end
moments
El) ,
MSi_(R? , Rg=R.—N 1=1,2,3 (3.68)

The required total moment is therefore M = M.+ My + My + M,z and the slip
between those beams at the free end are

R.— Ry)L

( .
= —(R,. — h; =12 .
gi (Re. — hy) R R, ? 2,3 (3.69)
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Table 3.4: Numerical results.

Analytical FE model FE/Analytical

ve (m) 7.6394 7.6473 1.0010
uc (m) —4.3606 —4.3527 0.9982
g1 (m) —0.4084 —0.4097 1.0031
ga (m) 0.0000  —7.2905 - 10~1% -
g5 (m) 0.4084 0.4097 1.0031
M (MN.m) 45.7204 45.7202 1.0000

mazx || V(z) || (N) 0.0000 9.4995 - 1077 —
max || N(x) || (N) 0.0000 1.6075 - 1076 —

The results of the FE analysis obtained with 10 elements are presented in
[ble 3.4l A very good agreement with analytical solution is obtained.

3.5 Conclusion

In this chapter, a new finite element formulation for a large displacement analysis
of hybrid beam-columns with several encased steel profiles in partial interaction
has been presented. To describe the geometrical nonlinearity, the co-rotational
framework was adopted and the motion of the element decomposed into a rigid
body motion and a deformational part using a local co-rotational frame, which
continuously translates and rotates with the element but does not deform with
it. The treatment of geometric nonlinearity is effectively undertaken at the level
of discrete nodal variables with the transformation matrix between the local and
global nodal entities being independent of the assumptions made for the local
element. To avoid locking problems encountered in two-node element (low order
elements), the exact stiffness matrix was used for the local formulation. The
performance of the formulation has been illustrated in four numerical examples.
It was shown that the proposed formulation provides a robust and reliable option

for a large displacement analysis of hybrid beam-columns.

Pisey Keo 63



3. GEOMETRICALLY NONLINEAR ELASTIC BEHAVIOR

Pisey Keo

64



Constitutive Modeling

Material laws adopted in the

thesis.

4.1 Introduction

In general, the inelastic analysis of framed structures can be categorized into two
main types: (1) concentrated plasticity and (2) distributed plasticity. For the
former, the nonlinear behavior of a beam-column element is lumped in nonlinear
springs typically at the extremities of a linear-elastic element. In most lumped
plasticity models, the axial force, shear force and bending moment relationships
are described by a yield surface for the stress resultants and an associated flow
rule according to the classical plasticity theory. The drawback of plastic hinge
methods is that the axial force, shear force and bending moment interaction is
separated from the element behavior. Consequently, it often does not well rep-
resent frame response. On the other hand, distributed plasticity models account
for the nonlinear interaction of the internal forces along the entire element by
numerically integrating force-deformation response at a finite number of control
sections. The nonlinear behavior at these sections is derived by subdividing the

cross-section into fibers and integrating the material constitutive model. The
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4. CONSTITUTIVE MODELING

distributed inelasticity models are computationally more demanding. This is be-
cause the detailed coupling between bending, axial and shear deformations due
to partial cross-section plasticity is difficult to capture by distributed plasticity

models.

This chapter presents the nonlinear constitutive models for the steel material,
the concrete material and the shear connection, as required for material non-
linear analysis. For the reinforcing bar as well as the embedded steel section,
shear deformations are ignored (Bernoulli kinematic assumptions); as a result, a
uniaxial stress-strain relationship is employed. The longitudinal shear transfer
mechanisms by bond and by shear stud connector are recalled. The behavior of
shear stud connector is described through three existing models in literature: (1)
an elastic-perfectly plastic model; (2) the model by Ollgaard et al. [52] and (3)
the model by Salari [24]. For the concrete material, the 3d plasticity model and

the uniaxial stress-strain relationship are highlighted.

4.2 Uniaxial behavior of steel material

Engineering materials (like steel and concrete) have their qualitatively distinct
mechanical responses. However, those materials share some important features
of their phenomenological behavior that make them possible to be modeled by
the theory of plasticity. To illustrate such common features, a uniaxial tensile
test where a steel coupon is loaded monotonically in a quasi-static manner up to
failure is discussed in this section. The response of the steel material is typically
depicted in where the axial stress, o, is plotted against the axial strain,
€. Some important phenomenological properties of this response can be described

as the following:

e The linear elastic range: During the initial stage of loading, the stress
varies linearly with the strain up to a proportional limit referred to as the
elastic limit. In this region, the stress is proportional to the strain with

the constant of proportionality being the modulus of elasticity or Young
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4.2 Uniaxial behavior of steel material

modulus, denoted E. As strain is increased, steel material deviates from
this linear proportionality to enter the non-linear reversible domain up to

the yield point, o,, where plasticity starts to develop.

e The yield plateau: For strain demand exceeding the the yielding strain
€y, the stress is maintained at the yield stress value for a moderate increase
in strain. At yield point, the evolution of plastic strains (plastic flow) takes

place.

e The strain-hardening range: At the end of the yield plateau, the stress
starts to increase again with increasing value of the total strain. In this
region, an evolution of the yield stress is observed. This phenomenon is

known as hardening.

Elastic
range Plastic (inelastic) range

Yield-point elongation | Strain-hardening range

Increase in yield
point caused by
strain hardening

Stress —»

: \ i
7 +  Second unlcading
First unloading * / and reloading

and reloading -

Strain —=
Ductility after
Residual ‘ | second reloading

; |
strain J Ductility after first reloading ——

Ductility of virgin material ——————

Figure 4.1: Effect of prior tensile loading on tensile stress-strain behavior.

The phenomenological characteristics observed in steel material above is also dis-
covered in a wide variety of materials such as concrete, rocks, soils and many
others. These phenomenological behaviors can be described with sufficient ac-

curacy by the mathematical theory of plasticity that will be discussed in the
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following.

After the steel coupon is loaded beyond its yield limit and subsequently, com-
pletely unloaded, there still remains a deformation that is not recoverable in the
steel coupon. This unrecoverable deformation is called plastic strain, e?. During
the reloading state, the behavior of the steel coupon is considered to be linear
elastic and the uniaxial stress corresponding to a configuration with total strain

€ is given by
o=F(e—¢P) (4.1)

It is worth to mention that the difference between the total strain and the current
plastic strain is fully reversible; that is, upon complete unloading, ¢ — &P is fully
recovered without further evolution of plastic strains. In this manner, the total
strain, e, can be decomposed into the sum of an elastic (or reversible) strain, &,

and a plastic (or permanent) strain, e at restrictions to small strains:
e=¢e"+¢€f (4.2)
where the elastic strain has been defined as
ef=eg—¢€f (4.3)

Following the above definition of the elastic axial strain, the constitutive law for

the axial stress can be expressed as
o= Fe°. (4.4)

This relation is also known as Hooke’s law for linear elastic behavior. For plastic
material behavior, no more explicit relation between stress and strain is given
since the strain state is also dependent on the loading history. In spite of that,
the plastic material behavior can be described by a yield condition, a flow rule

and a hardening law.
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4.2 Uniaxial behavior of steel material

By assuming that the yield stress, o, is identical in the tensile and compres-
sive regime, the elastic domain delimited by the yield stress can be expressed

as
lo| =0, <0 (4.5)

in which no change in plastic strain takes place, i.e., € = 0. A change in £ can

take place only if the relevant body is under plastic loading where
lo| —o, =0 (4.6)

It is worth mentioning that, at any stage, no stress level is allowed above the
current yield stress, i.e. plastically admissible stresses lie either in the elastic
domain or on the yield limit. The following notation is introduced to designate

the set of admissible stresses:
E, = {0 € R| f(0,0,) = o] — 7, < 0} (.7

Then, the yield condition that enables one to determine whether the relevant

material suffers only elastic or also plastic strains at a certain stress state is:

flo,0y) = o] =0y <0 (4.8)

4.2.1 Flow rule

In the plastic range, the relevant body experiences the plastic strain rate. Let
A > 0 be the absolute value of the plastic strain rate (it is also called as plastic
multiplier or consistency parameter). Then the preceding physical assumption

takes the form
P = \sign(o) (4.9)

which is the plastic flow rule for the uniaxial model. sign is the signum function
defined as

+1 if 6>0
sign(c) =<0 if c=0 (4.10)
-1 ifo<O
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4.2.2 Loading/unloading conditions

With the observation made above, the yield condition defines not only the set of
permissible stresses, but also the conditions for which plastic deformations can
continue to occur. Whereas all elastic stress states are located inside the yield
surface and defined uniquely by the elastic strain i.e. A = 0 and f (0,04) <0,
plastic deformations can occur as long as the stress point is located on the yield
surface i.e. A > 0 and f(o,0,) = 0. It follows that

A f(o,0,) =0 (4.11)

This condition goes by the name of Kuhn-Tucker condition. Thus the load-

ing/unloading conditions of the elasto-plastic model are defined as follows:
flo,0,) <0,  A>0, Af(o,0,)=0 (4.12)
In addition to above conditions, A > 0 satisfies the consistency requirement below:
A f(o,0,) =0 (4.13)

In classical literature, conditions (4.12)) and (4.13)) go by the names loading/unloading

and consistency conditions, respectively.

4.2.3 Hardening law

The complete characterisation of the uniaxial model is achieved with the intro-
duction of the hardening law which allows the consideration of the influence of
material hardening on the yield condition and the flow rule. As remarked in the
experimental test of steel coupon, an evolution of the yield stress accompanies
the evolution of the plastic strain in strain-hardening range. Whereas for perfect
plasticity the closure of the elastic range [E, remains unchanged, E, expands with
the amount of plastic flow in the system for the strain hardening model. This
expansion can be incorporated into the uniaxial model by simply assuming that

the yield stress o, is a given function

o, = 0,(() (4.14)
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4.2 Uniaxial behavior of steel material

of the internal variable. In this case the accumulated axial plastic strain, ( is
defined as

t
(= / |eP|dt (4.15)
0
It is straightforward that in a monotonic tensile test, we have
¢ = |e7) (4.16)
which, in view of the plastic flow rule, gives
C=A (4.17)

The relations (4.14]) and (4.17)) define the hardening law of the material subjected

to the monotonic loading.

4.2.4 Tangent elasto-plastic modulus

The consistency condition enables us to solve explicitly for A and relate stress

rates to strain rates as follows. By taking the time derivative of the yield function

and making use of [Eq. (4.8)] (4.9) and (4.16)), along with the elastic stress-strain

relationship [Eq. (4.1) we have

. Of . Of
f = % o+ 8_C
=sign(o) F (¢ — €P) — H €Psign(o)
—sign(o) E¢ — A[E + H] (4.18)

where H is called the hardening modulus, or hardening slope, and is defined as
_ doy,
=K
The consistency condition (Eq. (4.13)) implies that the rate of f vanishes when-

ever plastic yielding occurs. Then the plastic multiplier, A, is uniquely determined

H=H(C) (4.19)

during plastic yielding as

E

=
H+FE

ésign(o) (4.20)
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Then the rate form of the elastic relationship |[Eq. (4.1) along with [Eq. (4.20)
yields

Eé it A\=0,

c=\ EH . (4.21)
:if .
E+H€ ifA>0

in which the quantity £ H/(E + H) is called the elasto-plastic tangent modulus.

4.3 Constitutive modeling with internal variables:

multi axial stress-strain models

For elastic body, the strain at any point of the body is defined by the current
stress. On the contrary, the current strain or stress in inelastic body depends not
only on the current value of state variables but also on the past history through
the present value of a set of internal state variables which account for the internal
restructuring taking place during the dissipative process. These phenomena were
well observed in one-dimensional tensile test described in the previous section.
In this section, we apply the straightforward extension of the one-dimensional
model into two- and three-dimensional situations. The notations used here are

the following.

e The symmetric second-order tensors are represented as six-dimensional vec-

tors and denoted by bold letters.
e A set of numbers are denoted by the capital doubled letter.

e The rate of an internal variable, also called velocity, is denoted by a super-

imposed dot.

The following set of state variables is assumed for the thermodynamic state at

any time t:

{e, €, ¢}
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where € is total strain vector, € plastic strain vector and ¢ is a set of internal
variables containing, in general, entities of scalar, vectorial and tensorial nature
associated with dissipative mechanisms. The number and the mathematical na-
ture (tensor, vector or scalar) of the internal variables depend on the model under

consideration.

4.3.1 State equations

In the framework of thermodynamics, the constitutive equations are generally
developed in order to prevent violation of physical principles. They consist mostly
of a state equation and evolution equations. The state equation describes the
relationship between the stress o, total strain €, plastic strain €, temperature T'
and state variable ¢, which represents the microstructural state of the material.
We assume that the temperature remains constant with time and is uniform in
space so that it will not be considered hereafter. The material state may then be

quantified in terms of (€, €?, ¢) as follow:
o=o(e €, () (4.22)

In the definition of the state variables characterizing the state of the system, we
refer only to the so-called strain-like variables (kinematic variables) whereas the
corresponding stress-like variables are obtained by duality. The state equations
defining the relationship between static and kinematic internal variables can be
formally written as:

oc=o0(e) , Z2=2(() (4.23)

where Z is the dual of {. Assuming linear elasticity and strictly positive hard-

ening with no coupling, the above relation can be equivalently written as follows:

_ Y. _ 9%
= Jee and Z—ac

where 1. (€°) is the stored energy due to elastic strain and v,(¢) is the unrecov-

o

(4.24)

erable stored energy due the internal variables describing hardening. Under the

aforementioned assumptions, ¢.(e°) and ,(¢) are both proper strictly convex
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functions. The sum of the two (¢.(€°) and ,(¢)) give the so-called Helmholtz

energy function:
¥(€, ) = 1e(€) + Up(C) (4.25)
The potential form of the state law (4.24])) will ensure that the Clausius-Duhem

is fulfilled for any admissible thermodynamic process, i.e.:

(a—gwe)-ee+a'-ép—z-¢>0 (4.26)
66

4.3.2 Elastic domain and yield criterion

Recall that in the uniaxial yield criterion, the plastic flow takes place when the
uniaxial stress attains a critical value. This phenomenon could be expressed by
means of a yield function which is negative or zero. Herein, we extend this concept
to the three-dimensional case by defining the yield function f: S x R™ — R and
constraining the admissible state {o, Z} € S x R™ in stress space to lie in the

set E, defined as:
E, :={(o, 2) e SxR"| f(o,2Z) <0} (4.27)

where the scalar yield function, f, is now a function of the stress vector and a set
of internal stress-like variables, Z which are functions of . We denote int(E,)

the interior of E, defined as
int(E,) :={(o, Z2) e SxR"| f(o, Z) < 0} (4.28)

which describes the elastic domain. The set of stresses for which plastic yielding

may occur is the boundary of the elastic domain, denoted by OE, as follow:

OE, :={(o, Z2) e SxR"| f(o, 2) = 0}. (4.29)

4.3.3 Evolution rules

While the evolution of the strain can be controlled externally, the internal vari-
ables evolve according to some additional rules called evolution laws which com-

plement the state equations. These laws, which describe the evolution of the
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internal modifications, establish relationships between the rate of change of each

internal variable 2 (generalized velocity) and each generalized stress 3.

For standard plasticity models with an associative flow rule, the rate formula-
tion is the most popular. In this formulation, the direction of the velocity vector
is given by the gradient to the yield surface expressed in the generalized stresses
space and its magnitude by the plastic multiplier:

WO
>

—
— —
— —

(4.30)

Then, the flow rule and hardening law are defined respectively as the following

€ = AN (4.31)
¢=A\H (4.32)
where the vector
of
N=—*= 4.33
e (4.33)

is termed the flow vector and the function

of

H=—
0Z

(4.34)

is the generalised hardening modulus which defines the evolution of the hardening

variables. The plastic multiplier is required to satisfy the following complemen-
tarity relations which are the same as Eq. (4.114.13)) but o, is replaced by Z in

this case:

fle,Z2)<0,A>0, \f(o, Z)=0. (4.35)

In addition to conditions 1} above, A > 0 satisfies the consistency requirement

as below:

Ao, 2) = (4.36)
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4.4 Steel stress-strain explicit 1D model

A number of researchers have proposed models to characterize the response of
steel under monotonic/cyclic loading. The simplest and most computationally
efficient model for predicting the steel behavior is based on the aforementioned
plasticity theory. Based on the results of experimental reversed cyclic loading
tests, the plastic deformation and an unloading stiffness, approximately equal to
the initial elastic material stiffness, are accumulated. The phenomenon that char-
acterizes the increased strength under increasing plastic strain can be described
by the isotropic strain hardening. Furthermore, the premature yielding associ-
ated with the Bauschinger effect may be characterized by a plasticity model that

incorporates a kinematic strain hardening.

A uniaxial constitutive model developed based on the plasticity theory with lin-

ear isotropic and kinematic strain hardening is defined by the following set of

equations:
flo, Q) =lo = x| —ay(¢) <0 (4.37)
eV = Asign(o — x) (4.38)
C=A (4.39)
X = A Hsign(o — x) (4.40)
oy(¢) =0y + K¢ (4.41)

where (, K and H are the back stress, the isotropic and kinematic hardening

parameters, respectively.

A more representative model for steel stress-strain behavior can be achieved
through the use of phenomenological models in which nonlinear stress-strain re-
lationships are calibrated based on the experimental data such as the well-known
Ramberg-Osgood model. The model proposed by Ramberg and Osgood [53] uses
a single nonlinear relation to describe the observed curvilinear response of rein-

forcing steel under monotonic loading. This model defines the normalized strain
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to be a function of the normalized stress. Various other models have been devel-
oped to characterize the behavior of reinforcing steel. Menegotto and Pinto [54]

propose a model in which the steel behavior is defined by the following nonlinear

equation:
g=0b&+ (1(;% (4.42)
where ¢ is the effective strain defined by
F= ;__i (4.43)
and o is the effective stress given by
G = 50__‘; (4.44)

The constant b is the ratio of the initial to final tangent stiffness and R is a
parameter that defines the shape of the unloading curve which takes the following
form:

ar §
as +¢§

R=R,— (4.45)

where £ is updated following a strain reversal; Ry the value of the parameter
R during first loading; and a;, ay are experimentally determined parameters to
be defined together with Ry. The Menegotto-Pinto steel model is represented in
Let us consider the transition of two branches with asymptote line (a)
and (b). g and gy are the stress and strain at the point where the two asymp-
totes meet (point B); similarly, o, and ¢, are the stress and strain at the point
where the last strain reversal with stress of equal sign took place (point A). As
indicated in [Fig. 4.2} (09, €¢) and (o,, €,) are updated after each strain reversal.
A number of models have been developed based on the work done by Menegotto
and Pinto [54]. Stanton and McNiven [55] proposed a steel model which im-
proves the computational efficiency of Menegotto-Pinto model by assuming that
the reference curves for steel subjected to cyclic loading follows the monotonic

envelope. Filippou et al. [56] observed that Menegotto-Pinto model prohibits its
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—

Effective stress

0
Effective strain

Figure 4.2: Menegotto-Pinto steel model.

failure from allowing the isotropic hardening. To take into account this draw-
back, they proposed a stress shift in linear yield asymptote as a function of the

maximum plastic strain as follow:

Os = a3 {6"“” — a4] gy (4.46)

where €4, is the absolute maximum strain at the instant of strain reversal; ¢,
and o, are respectively the strain and stress at yield point; and a3 and a4 are

experimentally determined parameters.

In the model code for concrete structures, CEB-FIP 2010 [57], the stress-strain di-
agram used for modeling the steel material can be adopted to the one provided by
manufacturer. In some design codes, the steel constitutive model is considerably
simple. EN 1992-1-1 [11] proposes a bilinear stress-strain diagram with isotropic
hardening for modeling the reinforcing steel bar whilst EN 1993-1-1 [58] recom-
mends to adopt an appropriate stress-strain curve for structural steel members

but the elastic perfectly plastic stress-strain diagram may be used.
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4.5 Concrete constitutive model

Concrete is a common engineering composite material which is made of cement,
water and aggregates. Experimental tests show that concrete is a highly nonlinear
material under uniaxial compression stress. The stress-strain curve observed from
the compressive experimental test, has a nearly linear form up to about 30 percent
of the maximum compressive strength, f.. For stress beyond this limit, the curve
shows a gradual increase up to about 0.75f. to 0.90f.. At stress above this
point, the curve bends more sharply before approaching the peak stress f. beyond
which the concrete undergoes strain softening described by a descending branch
of the curve until the failure point at some ultimate strain €,. When concrete
is under uniaxial tensile stress, the similar characteristic of stress-strain curve
as the one under uniaxial compression has been observed. However, the tensile
strength of the concrete material is significantly low compared to the compressive
one. The constitutive behavior of concrete under biaxial or triaxial states of
stress is different from the constitutive behavior under uniaxial loading conditions.
Richart et al. [59] and Balmer [60] conducted trial tests at low to high volumetric
compression (or confining) stress levels. The results showed that concrete can act
as a quasi-brittle, plastic-softening, or plastic-hardening material depending on
the confining stress. Moreover, the maximum compressive strength of concrete

increases with increasing confining pressure.

4.5.1 Concrete plasticity model

Plasticity theory has been successfully applied to model the concrete behavior.
Several plasticity models have been developed to characterize the behavior of con-
crete under multi-axial loading [61H69]. The main characteristics of the concrete
plasticity models include pressure sensitivity, associative or non-associative flow
rule, work or strain hardening and limited tensile strength. These main charac-
teristics lead to different numbers of model parameters and different the shape
of the yield surface in principal stress space. One parameter model of the maxi-

mum tensile stress criterion of Rankine, dating from 1876, is generally accepted
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today to determine whether a tensile or a compressive type of failure has occurred
for concrete. According to this criterion, brittle fracture of concrete takes place
when the maximum principal stress at a point inside the material reaches a value
equal to the tensile strength of the material as found in a simple tension test,
regardless of the normal or shearing stresses that occur on other planes through
the point. This surface is generally referred to as a tension cutoff surface. Mohr-
Coulomb and Drucker-Prager failure surfaces are two-parameter models which
take into account the pressure dependence on the failure criterion of concrete.
The shortcoming of these surfaces are the linear relationship between +/J, and
I; and the independence of the deviatoric section on the Lode angle 6. However,
the experimental results have showed that the relationship between v/J5 and I; is
nonlinear and the trace of the failure surface on deviatoric sections is not circular
but depends on the Lode angle . William and Warnke [61] proposed three- and
five-parameter model for concrete in the multi axial stress state. Both models
have non circular cross sections but straight meridians for three-parameter model
and curved meridians for five-parameter model. Ottosen [62] suggested a failure
surface with a four-parameter criterion where the meridians are nonlinear curve
and cross section is not circular. The modern development of concrete model
have been addressed to a cap model [70, [71]. The cap model to be discussed in
the following is elasto-perfectly plastic with an associated flow rule and a smooth
yield surface that closes in the hydrostatic compression. The shortcoming of the
cap model is that it can represent the concrete behavior in the hydrostatic com-
pression. The envelope failure surface function of the smooth cap model is defined

as

Fy(I}) = o — 61, (4.47)

where [ is the first invariant of the stress tensor, Iy = Trace(o), and « and 0

are model parameters.

The cap surface of the model is based on the non-dimensional functional form

Pisey Keo 80



4.5 Concrete constitutive model

given by Pelessone [72] as:

(11 — ko)(—|I1 — ko| + I, — ko)
2(Xo — ko)?

Fo=1- (4.48)

where Xy = ko — R Fy(ky), ko and R are material parameters. The function £,
is unity for I less than kg and elliptical for ky > I; > Xj.

The smooth cap model, shown in |Fig. 4.3 is formed by multiplying the en-
velop failure and cap surface functions to form a smoothly varying (continuous

derivative) function given by

filly, Jp) = Jo — F} F, (4.49)

1
where J, is the second invariant of the deviatoric stress tensor, Jy = ésTs with

1
s=0— 31 land 1=[1,1,1,0,0, 0. One can observe that the yield criterion

Figure 4.3: Smooth cap yield surface.

of concrete is defined by Drucker-Prager yield surface when the concrete is under
the stress state where its first invariant is greater than kg, see beyond
that hydrostatic compression point, the yield criterion of concrete is controlled
by the cap surface. To characterize the tensile failure of the concrete, the tension
cutoff surface may be considered. However, the yield function on the intersection

point of the latter surface with the envelop yield surface is not smooth and one
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has to deal with a so-called corner region. It has been recognized that this region
can cause both numerical and material instabilities [73]. In the present work,
this problem is solved by introducing an elliptical surface on the tension side
which is chosen to smoothly intersect the failure envelope. This tension surface

is expressed as:

fo= % +Jy— b (4.50)
where a = f, — Ry b; R; is the aspect ratio of the ellipse; b corresponds to the
ellipse vertical radius; and f. is a material constant referred to as the tensile
strength. The ellipse radius b and intersection point /;; of the tension elliptical

surface and the failure envelope curve are given by

O‘_gfct

b= (4.51)
VPRI +1—-0R,
O R?+ f. — Ryb

1, = @08t e = B (4.52)

T PPRI+1

4.5.1.1 Material constants

The envelop yield surface (Drucker-Prager yield function) as viewed in three-
dimensional principal-stress space, is a cone with the space diagonal as its axis,
while the Mohr-Coulomb criterion is a pyramid with an irregular hexagonal base
and the space diagonal as its axis. Two of the most common approximations used
to match the Drucker-Prager yield surface with the Mohr-Coulomb surface are
outer edges fitting and inner edges fitting. The coincidence at the outer edges is

obtained when

B 2sin ¢ ~ 6bcceoso
=BG e © T VG sne) 439)

whereas, coincidence at the inner edges is given by
0— QSing.b = 6¢c cos‘¢ (4.54)
V/3(3 4+ sin ¢) V3(3 + sin ¢)
in which ¢ and c are the angle of internal friction and the cohesion, respectively.

Moreover, we can match the two criteria with the simple tensile strength f.
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and the simple compressive strength f. of the concrete material. The material

constants a and 0 of Drucker-Prager for this case are determined as:

1 . 2
9—%sm¢, a—\/gccos¢ (4.55)

where the parameters ¢ and ¢ have to be chosen as:

¢ =sin"! (ﬁé 4__ ;Ct> , = f‘,fcl_fc} tan ¢. (4.56)

However, there have been several discussion on how to determine accurately the

concrete cohesion ¢ while using the finite element analysis. Chen [74] adopted
the cohesion of the concrete block as ¢ = f!/4 to verify the nonlinear finite
element analysis. Doran et al. [75] proposed the following equation to determine
the cohesion of concrete after calibrating the results of several finite element

applications to concrete:

c=0.231 In(E, d?

max

) — 0.60 (4.57)

where E,. [MPa] is the elastic modulus of concrete and d,q, [mm] represents the
maximum aggregate size in the concrete mix. A thorough investigation on the
concrete cohesion has been carried out by Arslan [76]. The following equation to

determine the concrete cohesion is proposed [76]:

d
4.35( fé)ﬂﬁl(%)—l-% exp(0.129) (—) ", for a/d < 2.5
c = max

%(f’)0-31(%)0'75 exp(O.lQp)(dL)o'?’o, for a/d > 2.5

C
max

[MPa]

(4.58)

where a is the shear span; d is the depth of the cross-section; and p is the tensile

steel reinforcement.

In this thesis, we adopt to determine the cohesion of concrete and

for the cap parameter X, the following equation is used [77]:

Xo = 8.769178.10%(f/)* — 7.3302306.10(f’) + 84.85 [MPa] (4.59)
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4.5.1.2 Integration algorithm of concrete constitutive law-Return map-

ping algorithm

The return mapping algorithm basically consists of two major steps, the formu-
lation of the elastic trial stress o/ ;, also referred to as an elastic predictor and
the return mapping to the yield surface, which can be interpreted as a closest
point projection of the trial stress onto the yield surface, also referred to as a
plastic corrector. This strategy involves an implicit approximation of the govern-
ing equations, leading to a nonlinear system of algebraic equations in the stresses
and updated internal variables. Details can be found in the following section,
with complete accounts presented in several textbooks existing already on the
subject, see [78-80] among others. For multi-surface plasticity application of an
implicit backward Euler integration scheme on the generalized flow rule yields the

following return mapping algorithm

2
€Z+1 = Eﬁ + AEfLJrl = GZ + Z A)\i’n_;_laa-fi’n_ﬂ (460)
=1
o1 = C(€n1 — €}) (4.61)
o1 =C(enr1 — € ) =0, —CAey, (4.62)

where AN, 11 = MAt and C is the elastic stiffness matrix. [Eq. (4.62)| can be

expanded as
L1 = I{fnﬂ —3K Affjnﬂ (4.63)
Sni1 = So i —2G Ael (4.64)

where 17, ., Aep ., K and G are respectively first invariant of plastic strain,

deviatoric plastic strain, bulk modulus and shear modulus.

The next step is to determine the active part of the yield surface. On the basis

of the elastic trial stress state, we can distinguish three possibilities:
1. Stress point lies inside the yield surface - elastic state.
2. Stress point lies on the smooth cap surface - plastic state.

3. Stress point lies on the tension elliptical surface - plastic state.
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4.5.1.3 Loading on the smooth cap surface mode

Loading on the smooth cap surface is characterized by ff’"n 41 >0, ANy >0

and Ay = 0 or in the numerical implementation (I{" < I, f{’,,, > 0,

1 1
Jir > 7 I —(6+ 5) fet + @). From the flow rule, we have

A€n+1 A)‘l,n—&—laa'fl,n—f—l' (465)

Substituting [Eq. (4.65)|into [Eq. (4.62), we get:

Ont1 = O' A)\l n+1 C 8 f1 n+1- (466)

In the plastic regime, the solution of above equation (4.66) involves the intro-
duction of an additional variable which is the incremental consistency parameter
AN ;+1. Hence we need an additional equation to solve the system of equations,

and that is the yield function evaluated at time ¢,

fl,n+1 =0. (467)

To solve this system of equations, functions are evaluated at time ¢,,;. This
system is typically solve by a Newton-Raphson type iteration. The unknown

variables are cast into one vector which is
X = [Gn+1 A)\l’n_i_l]T . (468)

The residual vector is defined as

r, Opi1 — 07 4+ AN i1 COsfin
r— - T Ot a1 © o frinst (4.69)
Ty fn+1
Solving the linearized equations, we get at (k + 1) iteration:
xH) = xb) 4 Ax (4.70)
where Ax = — (g—;|(k))71 r(®). The solution can be written as the following.
— 0, T (k) = n C-! ( )
AP = - Q ’f el (4.71)
8 fl n+1 =1 n+1 a fl,n+1
Aa(k) - _El,n—i-l (aa'fl,n+1 A2)‘gk) + C_l Tz(Tk)) (472>
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-1
where By 11 = []I + A)\%H C 83,0]”1(7’2“ C and I is unity matrix. Hence, the

next iteration step is given by

ANED = AP A (4.73)
o™ — g 4 Ag® (4.74)

4.5.1.4 Loading on the tensile elliptical surface

Loading is on the tensile elliptical surface while f§, ,; > 0, AXypq1 > 0 and

AXi g1 = 0 or in the numerical implementation (Ij” > Iy, f§,,; > 0, \/J5" <

1 1
i I — (6 + 5) fet + ). The computation algorithm for this case is similar to the

previous one.

4.5.1.5 Consistent tangent operator

Use of tangent operator, consistent with the integration algorithm is essential
in order to preserve the quadratic rate of convergence that characterizes New-
ton methods. In contrast to continuum elasto-plastic tangent operator, which is
obtained by enforcing the consistency condition on the continuum problem, con-
sistent algorithmic tangent operator is obtained by enforcing consistency on the

discrete algorithmic problem.

4.5.1.5.1 Consistent tangent operator for smooth cap yield surface
Differentiation of the elastic stress-strain relationship Eq. (4.62) and the discrete

flow rule Eq. (4.60) yields

doi1 = C (deysq — déb ) (4.75)
deb ;= d (AN nt1) Op finst + AN 1024 finr1do (4.76)

Combining these two equations gives

dopi1 = Eip1 (d€pir — d (AN 1) Op fin41) (4.77)
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where By 11 = [[4+ AN 41 C (9gaf1,n+1]_1 C. The coefficient d (A ,41) in Eq.
(4.77)) can be obtained by differentiating fi 41 =0

Oo f1ns1dops1 =0 (4.78)

Substituting Eq. (4.77) into Eq. (4.78)) and solving for d (AA; ,+1), we get

T r—
aa'fl’n_H |='1,n+1 d€n+1

d (AN, =
( b +1) aG'flT,nJrl Elm—f—l aa'fl,n-{—l

(4.79)

Inserting Eq. (4.79) into Eq. (4.77]), we obtain the consistent tangent operator

as below

p—
=
d

T e
1,n+1 aa'fl,nJrl & aafl,n.t,_l ':‘1,n+1

CPr

n+1

—
——C)
T

(4.80)

I,n+1 — T pu—
aafl,n+1 '='1,n+1 8afl,n—i—l

where ® is vectorial product operation of two vectors.

4.5.1.5.2 Consistent tangent operator for tensile elliptical yield sur-
face

The procedure determining the consistent tangent operator is the same as pre-
viously described in Section [4.5.1.5.1] In this case, the following expressions are

obtained.

aasz +1 Eont1dengy
d (A)\Q’n+1) — il

- 8G'fQT,nJrl E2,'rL—i—1 ao'f2,n—l—1

(4.81)

= r B
Eont1 95 font1 ® 05 fopi1 B2ntt

4.82
aa'fg;n-t,-l EQ,nJrl a¢7'f2,n+1 ( )

4.5.2 Concrete stress-strain explicit 1D model

Many different explicit stress-strain models exist to describe the unconfined and
confined concrete stress-strain behavior. Popovics [81] proposed a stress-stain
model of unconfined concrete requiring three material parameters to control the
entire pre and post peak behavior of concrete. Popovics model represents ad-

equately the behavior of most normal-strength concrete (f. < 50 MPa), but it
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is short of a necessary control over the slope of the post-peak branch for high-
strength concrete. Thorenfeldt et al. [82] modified the Popovics model to take
into account the high-strength concrete behavior after the post-peak where the
descending branch drop off more sharply. Mander et al. [83] adopted a failure
criteria based on a 5-parameter model of William and Warnke [61] along with
data from Schickert and Winkler [84] to define the confined compressive strength
of concrete and adopted the 3-parameter equation proposed by Popovics [81] to
describe the entire uniaxial stress-strain curve they. Bing et al. [85] proposed
a three branch stress-strain model for high strength concrete confined by either
normal or high-yield strength transverse reinforcement based on the experimen-
tal tests conducted by the same authors [86]. One model which is often used in
nonlinear elasticity is the Kent and Park [87] model, later modified by Scott et al.
[88] to include the strength and ductility enhancement due to confinement effects
and the effect of strain rate. The stress-strain relationship of the modified Kent
and Park concrete model is as follow:
2¢e, Ee 2
5 — K. [0.002}( - <o.002K> ] for g < 0002 (4.83)
K fl[1—2Z,(.—0.002K)] > 0.2K f/ for e, > 0.002K

For a low strain rate the coefficients K and Z,, are defined as

Ps fyh

K=1+ 17 (4.84)
In = 000 (;5 n (4.85)
m + Zps\/?—h —0.002K
and for a high strain rate,
K =125 [1 + psf{yh} (4.86)
0.625
D = T 0.002K (4.87)

where p, is the ratio of volume of rectangular steel hoop to volume of concrete
core measured to the outside of the peripheral hoop, h” the width of concrete core

measured to the outside of the peripheral hoop, s;, the center to center spacing of
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hoop sets, f,; the yield strength of the hoop reinforcement, e5. strain at 0.5, on
falling branch of stress-strain curve for confined concrete, and f/ is the cylinder

compressive strength in MPa.

For nonlinear analysis of reinforced concrete structures, EN 1992-1-1 [11] pro-

poses the following stress-strain relationship for normal strength concrete:

o " <<:_1) - <§_1)2 (4.88)

Jon 1 4 k= 2) <5—)

Ecl

where ¢, is the deformation at pick stress and k is determined by

B 1.1 Ecm Eecl

k
Jem

(4.89)

in which f., is the mean value of concrete cylinder compressive strength and
E.,, is the relative secant modulus calculated conventionally at a stress of 0.4f,,,.
Upon the ultimate strain, &, the model proposed by EN 1992-1-1 [I1] gives no
expression of stress-strain curve and is not adapted to a high strength concrete
which shows a more ductile behavior than normal concrete. For confined concrete,
EN 1992-1-1 [11] proposes a parabolic-rectangular stress-strain curve where the

increased characteristic strength and strains are defined by

o  1.000 + 5.0}’—2 for gy < 0.05f
feke = UC; (4.90)
fck 1.125 + 25f— for o9 > 005fck
ck
2
€c2,c = €2 (fck,c) (491)
fck
Ecu2,c = Ecu2 + 022 (492)
fck

in which f. is the characteristic compressive cylinder strength of concrete at 28

days, oa2(= 03) the effective lateral compressive stress due to confinement and €.
and €., are defined by EN 1992-1-1 [11].
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4.6 Constitutive law for shear connection

The overall behavior of the composite steel-concrete member strongly depends
on the stress transfer mechanism between the steel and the concrete encasement
which may be accomplished by three main mechanisms: a) chemical bonding
(bond between the cement paste and the surface of the steel: b) friction (assumed
proportional to the normal force at the interface): ¢) mechanical interaction (due
to embossments, ribs or shear stud connectors). The role of shear connection is
essential, without them, there is no collaboration between the steel and concrete
material. They limit the slip that may occur along the steel-concrete interface.
Thus ensuring a resumption of longitudinal shear, they allow to obtain a com-
posite section with two components working together. However, superposition
of force transfer mechanisms is not generally permitted as the experimental data
indicate that direct bearing or shear connection often does not initiate until after
direct bond interaction has been breached, and little experimental data is avail-
able regarding the interaction of direct bearing and shear connection via steel

anchors.

4.6.1 Shear transfer by bond strength between the steel

and concrete component

At low loads, most longitudinal shear stresses are transferred by the chemical
bond at the interface of steel-concrete whilst the chemical bond breaks down and
cannot be restored [89] at high load. In general, the bond strength is a function
of the normal confining pressure exerted by the surrounding concrete on the steel
surface which is known as the friction mechanism. The bond stress capacity is
commonly evaluated as the maximum average bond stress, which is the maximum
load transferred between the steel and concrete, divided by the total surface area
of steel cross-section embedded in the concrete. Experimental tests of compos-
ite structures without mechanical connector devices [90H92] have shown that the

bond stress distribution is not necessarily uniform over the entire cross-section.
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The earliest push-out tests by Bryson and Mathey [90] studied the effect of the
steel surface condition on the bond stress capacity. The surfaces of the embedded
steel beams were either freshly sandblasted, sandblasted and allowed to rust, or
left with normal rust and mill scale. The steel surfaces that were sandblasted
and allowed to rust, developed a larger maximum average bond stress than those
with mill scale. It has been observed that once the slip was produced at the steel-
concrete interface, the post slip bond stress was similar for all surface conditions.
Later, Hawkins [91] examined the position of concrete casting and the relative
size of reinforcement. The test results showed that specimens cast in the horizon-
tal position had smaller bond capacity than those cast in the vertical position.
This was attributed to the segregation of aggregate and accumulation of water
under the lower flange of the horizontal steel section. On the other hand, the
amount of confining reinforcement did not consistently affect the bond strength
prior to significant slip, but an increase in confining reinforcement increased the
bond resistance after slip. Moreover, the size of the steel cross-section had no
effect on the bond behavior for specimens with the same ratio of the embedment
length to the steel core depth. Another push-out test by Roeder [92] considered
the distribution of bond stress over the member length. It has been discovered
that the bond stress is primarily contributed by the flanges and the maximum
bond stress is a function of the concrete strength. Based on the results of the

tests, the value of the allowable load for the encased shape can be estimated by

3.6b; (0.00 f/ — 95) 1,
sl — L ) (1

n 1b) (4.93)

where by is steel flange width of encased shape (in.), f. concrete compressive
strength (psi), [, encased length of steel shape (in.) and k is a constant equal to
5. Converting to an average ultimate bond stress using only the flange surfaces
as being effective and applying a safety factor of five as reported in the tests, one

obtains:
Tmaz = 0.9(0.09 f/ —95), (in psi) (4.94)

Hamdan and Hunaiti [93] examined the effects of the concrete strength, steel sur-

face condition, and the tie reinforcement on the maximum average bond stress.
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According to the test results, the concrete strength had no effect on the bond
strength but the maximum average bond stress increases by adding tie reinforce-
ment to specimens with sandblasted steel surfaces. The same conclusions have
been made by Hotta et al. [94]. Wium and Lebet [95] examined encased compos-
ite columns. They postulated that bond stress can be separated into two stages.
The first stage occurs prior to complete slip and is governed by adhesion or chem-
ical bonding between the cement paste and the steel. The second stage occurs
after complete slip and is characterized as a purely frictional phenomenon. The
tests showed that an increase in flange cover from 50 mm to 150 mm (2-6 in.)
increased the force transfer after chemical debonding by 50%. They suggested to
use only the bond stress due to friction in the design and analysis of composite
structures. This bond strength depends on four major parameters: thickness of
the concrete cover, amount of hoop reinforcement, size of the steel section (depth
of section) and concrete shrinkage. Lam et al. [96] conducted the pullout tests on
the steel plate embedded in reinforced concrete beam. The results showed that
the maximum bond stress that could be developed in the specimens was about
0.6 MPa. It was observed that the bond stress dropped slowly as the interface slip
increased, and the value could be maintained at slightly above 0.5 MPa at large
slips. In some design codes for encased composite members [97, O8], the shear
transfer between the steel and concrete is based entirely on the direct bearing. No
allowance is made for natural bond between the steel and concrete. EN 1994-1-1
[12] permits the use of natural bond of 0.3 MPa for encased composite members,

over the entire perimeter of the section.

For natural bond condition, the experimental results tested by Roeder et al. [99]
indicated that the bond stress can be determined by using the following equation
in which the maximum average bond stress was reduced by 2 standard deviations

providing an estimated confidence of 97.7%:
L
fs(20) = 2.52 — 0.395 —19.12p, (in MPa) (4.95)

where L and d are the length and depth of the steel section; p = ’j—j; A, and

A, are the areas of the steel section to the total cross section of the composite
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member. [Eq. (4.95)| indicates that no bond is available when the L/d ratio is
greater than approximately 6 or when p is greater than 0.125. It is tempting to
use the longest bond length, but this will not necessarily produce the largest load

transfer capacity. An optimization of the maximum load capacity computed from
found that the maximum capacity will occur when:

L
—=3.22-2452 (4.96)

In practice, nearly all columns will use this critical length for defining their bond

stress capacity, and therefore can be introduced into [Eq. (4.95)| for

these practical applications. Then,
fs20) = 1.26 — 9.54p, (in MPa) (4.97)

At the ultimate load performance level, this bond stress can be uniformly dis-
tributed over the perimeter of the section and a length equal to the lesser of
either the column length or the length defined by [Eq. (4.96)] The tests reported
that under cyclic loading the interface is deteriorated after the initial slip between
the steel and concrete occurs. Thus, at the serviceability performance level, it is
proposed that the triangular bond stress distribution to be used over the length
of the member is equal to two times the depth of the encased sections. The max-
imum average bond stress defined in is also used for the serviceability
limit state, because it leads to a conservative estimation of the serviceability be-

havior.

According to the experimental tests [99], the concrete confinement did not have a
dramatic effect on the maximum average bond stress, but it affected the post-slip
deterioration. The observations during the experimental tests suggested that a
minimum confinement is necessary to assure satisfactory post slip behavior, but
that large amounts of confining steel are not needed to achieve a good bond per-
formance. Further, these experiments supported the observations that the bond
stress is distributed exponentially over the column length under service load, and

the distribution approaches a uniform value for loads approaching the maximum
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capacity. In spite of the individual previous studies suggesting that the surface
condition of the steel affected the bond stress capacity, it is still recommended by
Roeder et al. [99] that the bond stress should be employed only with blast cleaned
surface. Moreover, the bond stress capacity does not appear to be related to the

strength of the concrete.

4.6.2 Shear transfer by shear stud connector

Headed steel stud connectors welded to a steel section and encased in concrete
have been the most common mechanical devices for transferring forces between
the steel and concrete materials in composite construction [I00]. This type of
connectors has been investigated by numerous researchers worldwide, starting in
the 1950s. The critical load of the stud was presented on the basis of push-out
tests (see[Fig. 4.4) which are commonly used to determine the load-slip behavior of
the shear connectors. The shear connection capacity is assumed to be the failure
load divided by the number of connectors. The first push-out test was conducted
by Viest [101] who carried out 12 experimental tests with varying ratios of the
effective depth-to-stud diameter (h/d), where h is the stud height from its base
to the underside of the stud head. Three types of failure were observed: steel
failures, where the stud diameter reached its yield point and failed; concrete
failures, where the concrete surrounding the headed stud crushed; and mixed
failures that included failure of both materials. Moreover, the first formulas to
assess the shear strength of headed studs of composite structures was proposed

as follow:

5.25d% fi\ /¥ it d < lin.
P, = ‘ (4.98)

5d fun 550 if d> lin.

where f! is the cylinder compressive strength of the concrete (psi) and P, is stud
shear bearing capacity (Ibf). Driscoll and Slutter [102] observed that the total
depth-to-stud diameter, h/d for studs embedded in normal-weight concrete should
be equal to or larger than 4.2 if the full shear strength of the anchor had to be

developed. As a consequence, they proposed a modification of Viest’s equation
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as follow.

93242 \/f if h/d > 4.2in.

C

P, = ,  (kips) (4.99)
222hd~\/f, if h/d < 4.2in.

The following equations in EN 1994-1-1 [12] state the design strength of the stud

shear connectors while welded automatically:

0.8 f,md?*/4
— i Yo
Pu = min 029@d2 \/ﬁ (4100)
Yo
with:

h
a=0.2 (E—{—l) for 0 < h/d <4 (4.101)
a=1 for h/d > 4 (4.102)

where 7, is the partial factor with recommended value of 1.25 and f, is the speci-
fied ultimate tensile strength of the material of the stud but not greater than 500
N /mm”.

Other researchers performed push-out tests to investigate the behavior of small
headed studs in a composite beam with a solid slab and with/without profile
steel sheeting. Chinn [I03] and Valente and Cruz [104] carried out push-out tests
to evaluate the behavior of shear connection between steel and lightweight con-
crete. The connection behavior was analysed in term of its load-slip relation and
the failure modes were identified. Davies [105] studied group effects for several
headed studs in push-out tests. Mainston and Menzies [106] carried out tests
on 83 push-out specimens covering the behavior of headed anchors under both
static and fatigue loads. Hawkins and Mitchell [I07] conducted 13 push-out tests
to study the behavior of headed stud shear connectors in composite beams with
profiled steel sheeting perpendicular to the beam. An and Cederwall [I08] pre-

sented push-out tests of studs in normal and high strength concrete. Topkaya

Pisey Keo 95



4. CONSTITUTIVE MODELING

Load

Steel beam

Concrete slab

Reinforced steel

Figure 4.4: Push-out test specimen.

et al. [I09] tested 24 specimens in order to describe the behavior of headed studs
at early concrete ages. In brief, from the results of the experimental tests shear
stud connectors are influenced by several parameters, with major factors cate-
gorized into shank diameter, height and tensile strength of studs, compressive
strength and elastic modulus of concrete, reinforcement detailing, and direction

of concrete casting.

In the high shear areas of steel girder bridge, many studs with typical diameter
(< 25 mm) should be welded to the top flanges to satisfy the design requirements.
However, this relatively large number of studs may have several disadvantages
[TT0HIT2]. Among them are 1) long installation time; 2) difficult deck removal
that may damage the studs as well as the girder top flange; and 3) little room
on the top flange for the construction workers to walk, which raises safety con-
cerns. For this reason, the use of large studs, which are larger than 25 mm in
diameter, in composite beams can simplify the structure, save the construction

time and make steel and concrete work together better. Several researchers have
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investigated the behavior of shear stud connectors with large diameter. Badie
et al. [110] conducted push-off tests on large studs of 31.8 mm in diameter and
provided information on the development, welding, quality control, and the appli-
cation of large studs. Shim et al. [I11] and Lee et al. [I12] investigated the static
and fatigue behavior of large stud shear connectors up to 30 mm in diameter,
which were beyond the limitation of current design codes. The ultimate strength
of the shear connection showed that the design shear strength in Eurocode 4 gives

conservative values for large studs.

With regard to the law of a welded shear stud connector behavior, Ollgaard
et al. [52] proposed, following a series of 48 push-out tests in lightweight and
normal-weight concrete with an effective embedment depth ratio (h/d) of 3.26,

the explicit shear-slip relationship as follow (see Fig. |4.5h):

(a) (b)
AP A P
k F P, = 0.95P,
. b, =1.05E,
P = Pu I:]_ - eXp (615)] ? Pfu E * . \
0
S5 5.0, O, B

Figure 4.5: Shear stud constitutive law: (a) Ollgaard-model; (b) Salari-model.

P=P,(1—cl)® (4.103)

where P, is the ultimate strength of shear connector, ¢ is the slip in mm, ¢y = 0.4,
and ¢; = 0.7 mm~!. This model became the basis of several design methods in
codes. Aribert and Labib [I13] provided a combination of ¢ = 0.8, ¢; = 0.7
mm !, while Johnson et al. [I14] presented values of ¢, = 0.558, ¢; = 1.0 mm™*,
and also c; = 0.989, ¢; = 1.535 mm~!. An improvement was given by Gattesco

and Giuriani [115] to simulate the actual behavior of the connectors, [Eq. (4.104)
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with ¢, = 0.97, ¢; = 1.3 mm~! and ¢3 = 0.0045 mm™~!.

0.5
—c118]
o <1—e €2 ) + ¢35 19|

More recently, Salari [116] proposed an explicit model of the nonlinear behavior

P=P, (4.104)

of cyclic studs. This model is capable of taking into account the loss of strength
and stiffness of the connector during cyclic loading (see Fig. [4.5b). The envelope

curve is given by the following formulas.

P = P,a16exp (—a25a3> for 0<6= g <1 (4.105)
< B3 N 0
P = P,B exp (—52 G-1) ) + P, for =5 >1 (4100
with:
Eyd, P,
a1 = ][;u bi=1- P_fu
. - Ln(Rl)
Qg = Ln(ozl) BQ = —W
1 LH(R1> - LH(RQ)
Qa3 = — fs = = =
Qi Ln(d; — 1) —Ln(dy — 1)
f)i - Pfu < 51
= = = — =1,2
R’L Pu o Pfu 51 5u Y ? 9

In these formulas, we denote by:
e 0, the slip corresponding to the ultimate force P,;
e Py, is the adhesive strength related to the friction;
e 0 is the slip corresponding to the force P, = 0.95P, after peak;

® ) is the slip corresponding to the force P, = 1.05P, after peak;

Another shear-slip relationship of the shear stud connector, which is fairly simple,

is elastic perfectly plastic model, (Fig. 4.6)).
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A P
u j\EO
=
i ucap.
E, ]

5

Figure 4.6: Elastic-perfectly plastic shear stud model.

4.7 Conclusion

In this thesis, the concrete plastic Cap model is adopted for characterizing the 3D
stress state of concrete in the shear-flexible model. The outcome of the cap model
is that it can represent the concrete behavior in the hydrostatic compression that
can arrive for highly confined concrete. For structural steel shape and reinforce-
ment bar, the elastic perfectly plastic and elasto-plastic with linear hardening
constitutive law are adopted, respectively. The shear connection is modeled as a
distributed spring in this thesis. The equivalent distributed shear strength and
stiffness are calculated by dividing the strength and stiffness of a single row of
shear studs by their spacing along the beam length. The elastic perfectly plastic
constitutive law is adopted for shear connection. This adoption in the forthcom-
ing numerical model may give a more flexible response of the beam compared to
the model with a nonlinear constitutive law of shear connection. However, both

constitutive law may give the same ultimate.

Pisey Keo 99



4. CONSTITUTIVE MODELING

Pisey Keo 100



Nonlinear Finite Element

Analysis

Nonlinear analysis of hybrid
beam-column using

displacement-based approach.

5.1 Introduction

In comparison to the case of the hybrid member under combined compression
and bending, the nonlinear behavior of hybrid member under high shear stresses
has not been extensively investigated. Indeed, the classical fiber beam element
model considering only the axial stresses acting on the cross-section is not ca-
pable to accurately describe the response of the structural member under the
coupling between shear, axial and bending action. Over the years, there has
been a great deal of research on the development of the fiber element model to
overcome this limitation by adopting the Timoshenko beam theory or even the
exact beam theory. The differences between the models proposed in the literature
are related to the shear kinematic assumptions taken at the sectional level, the

type of multi-axial constitutive relations and also to the FE formulation based on
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the stiffness or flexibility approach [117-126]. Vecchio and Collins [117] adopted
the smeared crack approach and proposed the modified compression field the-
ory (MCFT) which assumes the cracked concrete in reinforced concrete can be
treated as a new material with empirically defined uniaxial stress-strain behav-
ior, representing the average stress versus strain constitutive laws in the element.
This model includes an additional set of equilibrium equations designed to satisfy
the longitudinal equilibrium of each fiber which enables to determine numeri-
cally the shear strain profile. Bentz et al. [118] then improves upon this model
and entitled it the Simplified Modified Compression Field Theory (SMCFT) by
providing an accurate shear calculation while making the overall shear design
method less complicated. Ranzo and Petrangeli [119] adopted the nonlinear truss
model to identify the monotonic shear response of the reinforced concrete beam
(a hysteretic stress-strain relationship) and then implemented the latter straight-
forwardly into the classical fiber element model. Thereafter, Petrangeli et al.
[120] adopted the micro-plane theory to model the shear mechanism at each con-
crete fiber of the cross-section by imposing the equilibrium between the concrete
and the transverse steel reinforcement to determine the transverse strains. A
contribution by Guner and Vecchio [123] is quite similar in terms of the shear
strain distribution and the assumption of zero clamping stresses in the transverse
direction. Recently, Navarro-Gregori et al. [126] presented a model based on Tim-
oshenko beam theory with a variable shear strain distribution on the cross-section
in order to effectively capture the phenomenon of diagonal cracking. Apart from
the assumption of the shear strain distribution on the cross-section, a sectional
model based upon a displacement field to take into account the effects of warping
and distortion in the cross-section has been proposed by Bairan and Mari [121]
and Mohr et al. [124]. A further modeling strategy attempting to capture the
mechanics of the phenomena is addressed to the triaxial constitutive model of
the concrete coupling with/without the damage mechanic model. Saritas and
Filippou [122] developed a beam element model by condensing the 3d formu-
lation derived from a 3d plastic-damage material model with the plane stress

conditions. Likewise, a force-based Timoshenko-type 3d beam element with the
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softened membrane constitutive model was developed by Mullapudi and Ayoub
[125] to analyze concrete members subjected to combined loadings including tor-
sion. They emphasized the accuracy of the model in representing both global and

local behavior of concrete member parameters as well as the proper failure mode.

This chapter aims to develop a new finite element formulation based on a fiber
model considering the triaxial stress state in the concrete component, motivated
by a large range of the research on the shear failure of reinforced concrete mem-
bers as cited above. The plane stress condition for the concrete component is
applied in order to condense the 3d formulation, derived from a 3d plastic model
of the concrete material, into a 2d beam model. To do so, we apply the strategy
proposed by Klinkel and Govindjee [127] where the stresses that need to be set
equal to zero on the 3d material model are linearized. Consequently, the out-of-
plane strain components are updated. This allows a quadratic convergence rate
in the local iteration scheme. The consistent tangent stiffness are provided by the
standard static condensation of the 3d material tangent stiffness. To take into
account the contribution of the transverse reinforcement on confinement effects
of the concrete material, we extend this algorithm by imposing the transversal

equilibrium between the concrete fiber and the transverse steel.

The organization of this chapter is as follows. In[Section 5.2] the equilibrium and
the kinematic equations are introduced in matrix forms. Next, the development
of the displacement-based finite element formulation is presented in [Section 5.3|
is devoted to the sectional formulation where the procedure of de-
termining the consistent tangent stiffness is highlighted. Finally, the numerical
applications are presented in to assess and illustrate the performance

of the developed formulations.
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5.2 Equation field

The field equations in matrix form describing the behavior of hybrid beam with
n embedded sections in partial interaction are briefly outlined in this section.
All variables with subscript ¢ belong to the encasing component (concrete) and
those with subscript s belong to the embedded element (steel). Quantities with

subscript sc are associated with the shear connection.

5.2.1 Kinematic relations

From the kinematic relations Eqgs. (2.1212.16)), the vector € denoting the general-

ized sectional strain is related to the displacement field by the kinematic relations

as follow:
é=0dd (5.1)
where
el = [€s; €sy **° €5, Ks €c Ke Ve G192 *** Gn) s (5.2)
dt = [us, us, -+ us, ue v 0] (5.3)
and the expression of d is given by
[0 0 0 0 -1 0 |
0 0 0 0 0 0 0 -1 0
=10 o 8 0 00 0 0 0 1 (5.4)
0 0 0 0 0 0 0 1
0 0 0 02 0 0 0O 0 o --- 0
[0 0 0 0 00 —1 —hy —hy -+ —hy]

The superscript o denotes matrix transposition.
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5.2.2 Equilibrium relations

The equilibrium equations (Egs. (2.142.5])) can be cast in compact form as follow:

D+ P, =0 (5.5)

in which
D" =[Ny, Ny -+ Ny, My No M, T, Dy, Dye, -+ Dy, ], (5.6)
P/ =1[00---00p, 0] (5.7)

and the expression of d is as follow:

o 0 ---0 0 000 1 0 --- 0
09 -0 0 00 0
d=10 0 8 0 000 0 0 1 (5.8)
0 0 0 0 900 —1 —1 -1
0 0 0 -8 000 0 0
0 0 0 0 00 1 h he hn |

5.2.3 Variational formulation

For the sake of simplicity, the element distributed loads (body forces) are omitted.

The variational formulations of equilibrium equations are then as follow:

/ §d" 0D dz =0 (5.9)
L

Applying integration by parts, the above equation is rewritten as

/5éT Ddz =d6q" Q (5.10)
L

The left hand side is the virtual works of internal forces while the right one is of

external forces. The latter can be written as
L

> " Sug, Ny, + due N + 66, M, + 66 M, + 60T (5.11)

Jj=1 0

6q'Q =
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in which T = T, + ) T, is the total shear force at the considered point on the
i=1
directrix of the beam.

The consistent matrix formulations are obtained by using Newton-Raphson it-
erative procedure. In the interval of (i — 1) to i" iteration, the linear behavior

is assumed which gives:
D'=D"' + k' Ae (5.12)

where ki1 is the linear tangent stiffness matrix of the section at the (i — 1)

iteration.

At the i*" iteration, [Eq. (5.10)|is rewritten as:
/ (66" (D' + k' A¢)) dz =4dq"Q (5.13)

L

5.3 Displacement based formulation

Let the hybrid beam be divided into finite number of elements. The continuum

displacement vector within an element is discretized such that
d=> Nigq, (5.14)
i=1

where N; is the shape function of node i; « is number of nodes in an element
and q, is the generalized displacement vector corresponding to the it node of an

element. The above relation is expressed in matrix form as
d=Nq (5.15)

where N is element shape function matrix and q is element nodal displacement
vector, see [Fig. 5.1, The deformation field, € can be expressed in terms of nodal

displacement vector, q as

é=Bq (5.16)
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y
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Figure 5.1: Nodal forces and displacements of hybrid beam element.

where B = ON(z). By substituting [Eq. (5.16)| back into [Eq. (5.13)| one obtains:

5qT / [B" (D' + k" 'BAq)] dz = 4q"Q, Véq (5.17)
L

which must hold for any kinematically admissible variations dq. Therefore, this

equation may be simplified in the following form

/ [B" (D' +k"'BAq)] dz=Q (5.18)

L

which can be rewritten as
K™'Aq' = Q' - QR (5.19)

where K'™' = [BTk"'Bdz is element tangent stiffness matrix and Qf "' =
i3

Ik BT D! dz is the nodal forces due to the lack of equilibrium at the element level.
fn the present work, we adopt Hermite polynomial function for the transversal
displacement v and the quadratic interpolation functions for axial displacement
u; of each constituent and for sectional rotation 6. of encasing component. Such
shape functions will prohibit the analysis result from the shear locking problem.
The shape function, IN used for interpolation of displacement field is defined as
follow.

NT- NI NI, o NIONTONT NG (5.20)

us1 us2
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where
Nuys, = |A, 0 0O 00O0O0OB, 0 000O0OTC C,O0 00
Nys, = |0 A, 000 00 0 B, 000 0O0O0 C, 0 0
Nus, =10 0 A, 0O OOO0OO0OO - B, 0OO0OO0OO0OO0---C, 0
Nye=100 ---0 4, 00000 ---0 B, 0O0O0O0O0 ---0 C,
Ny=100 --- 00 A, A, 000 --- 00 B, B, 000 --- 0
No.=10 0 --- 00 00 A@C 00 0000 By, 00 --- 00
' (5.21)
in which
3r 222 x 22
Ay(z) = A, (1) =1 — T + Tz By(x) = By, (x) = I + Tz
32 223 32 23
A=l Blr) =T =
(5.22)
A 2r2 a3 x? 2
es(f)—ﬁ—f T2 Bes(iﬂ)_—f T2
dr  4x?
Co=C.=7

5.4 Section formulation

The nonlinear behavior of a hybrid beam subjected to a combined load largely
depends on the hypotheses made for the stress and strain distribution on the cross-
section. It is here assumed that the longitudinal reinforcing bar and steel sections
are subjected to only axial stresses whereas the concrete component is under
generalized 3d stress field. As a consequence, a uniaxial stress-strain relationship
for the longitudinal reinforcing bar and the steel profile can be used and a 3d
constitutive model of concrete has to be adopted. Because of the complexity of
the latter, the following section is only devoted to the description of the concrete

component.
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5.4.1 Fibre state determination

In the framework of the sectional level, the two translations of any point on the
cross-section of concrete component H;f = [u; v;] are related to the generalized
displacements at the reference point of the cross-section by the following expres-

sions.

(7, y) = uc(x) — ybe(z) (5.23)

e(2,y) = ve(x) = v(x)

Given the generalized sectional strain vector &, = [e., K, %]T, the fiber longitu-
dinal strains (parallel to the beam axis) and shear strains of concrete component
can be found using suitable shape functions. In particular, for the longitudinal
strain field, the plane section hypothesis has to be retained, whereas for the shear
strain field different shear shape functions can be used. Another fashion of an
analytical procedure is to approximate the shear stress distributions. Despite
no guarantee of compatibility between fibers, it gives a satisfactory approximate
analysis that allows for a better computational speed in sectional level, see [117].
Comparing the numerical results of both uniform shear stress and parabolic shear
strain assumption against the results of a rigorous procedure, Vecchio and Collins
[117] showed that using the former assumption led to a conservative value of the
ultimate load and the latter resulted in an un-conservative value of the failure
load. For the sake of simplicity and computational efficiency for implementing
and applying the concrete plasticity model, in this study a uniform shear strain
distribution ~;, along the concrete section is assumed in spite of the fact that

this assumption may overestimate the ultimate load:

In this manner, the plane section hypothesis is restrained. By these means and
using the equilibrium, compatibility and constitutive equations, the complete 2d

stress-strain state and the stifflness matrix of the fiber are determined.
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5.4.1.1 Plane stress

The constitutive equations of 2d stress-strain state for concrete fiber are obtained
by prescribing the in-plane strains and enforcing the plane beam constraint on the
3d constitutive law, and then obtaining, as a result, the active stresses and out-of-
plane strains. In the transverse direction (y-direction as well as z-direction), the
transversal reinforcement is assumed to be uniformly distributed in the concrete
with a volumetric ratio p**. This assumption is made in order to take into account
the confinement effects in the concrete. When imposing the equilibrium between
concrete and steel in transverse direction, we can choose the solution within two
extreme options [120] which are 1) impose equilibrium at each fiber separately
and 2) impose equilibrium over the whole cross-section. The former option is
more advantageous from a computational point of view because the iterations are
carried out separately at each fiber, according to the degree of nonlinearity of
the fiber behavior. Therefore, the total number of fiber state determinations are
reduced to a minimum, avoiding iteration of the whole cross-section (option 2),
when highly nonlinear behavior takes place in only a few fibers. Moreover, within
option 1, it is possible to define a different effective transverse steel area for each
fiber, depending on the stirrup configuration. Hence, the option 1 is adopted in
this study. Compatibility requirements impose that the transverse strain €; and
lateral strain € in concrete is equal to the strain in the transversal reinforcement

ezt and €%, respectively, see [Fig. 5.2, The resultant stresses along the y-direction

c

&
Concrete fiber I
\ yxy

Transverse
reinforcement ¢
y

Figure 5.2: Concrete fiber mechanics.
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and z-direction are the additions of the axial stresses in the transversal steel O';t

and o' to the axial stresses in concrete oy and o¢, respectively:

oy =0y +p; oy (5.25)
o, =0, + pit ot (5.26)
where pf = b:‘—it = EsteS; B8 = aest’ A3t the area of transversal steel; b,

the width/height of the cross-section with a = y, 2z and sy is the longitudinal
spacing of the stirrups. Therefore, the 3d stress-strain relationship from the 3d

problem can be written as:

o e dNe Mo Mo/ 0 0 0 0 €

o | _| |Gt o c a0 B 00 e

o, cr oL o o 0 0 ptET 0 :

e, ce oL CR C 0 0 0 0 %,
(5.27)

where C? is the 3d consistent tangent stiffness of the concrete section.

In the following, the nested Newton return-mapping iteration for plane beam
enforcement is restricted to for the reason that the original three-dimensional al-
gorithm can be used without modification. In order to describe the procedure, it

is convenient to employ the matrix notation of active stresses and in-plane strains

as follows:
o = [o¢ T:ﬁy}T (5.28)
€ =[e %’jy}T (5.29)

During a typical equilibrium iteration, the in-plane displacements are prescribed
and so is the in-plane strain array €°. Instead of giving € as the input of an
augmented algebraic system, we proceed as follows. Firstly, we define some initial
guesses for the unknown out-of-plane strains (€ = [e, €¢]*). One possible guess
can be the previously (equilibrium) converged out-of-plane strains, i.e. we can

set

e =2, (5.30)
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Next, we use the augmented strain array [EC’T, el

> ]T as the input of the integra-

tion algorithm for the 3d case i.e. for € = [€¢ €, €5 vgy}T case. After application
of the 3d return-mapping procedure, the corresponding routine will return the
augmented stress array [T E;]T where ) = [0y 0.]. If |7,/ = 0 (or, in com-
putational terms, ||o,|| < Tol) then the guesses €, indeed solves the plane beam
problem, and the solution obtained by the 3d problem is the one we are looking

for. Otherwise, we apply a Newton-Raphson correction to obtain another guess
—c = 11—
€,=¢,—C o, (5.31)

where C,, is the component of the modified 3d consistent tangent matrix obtained

from [Eq. (5.27)| as follows:
[ ‘ ] . (5.32)
€

e

We repeat this process until we find the out-of-plane strains €, that, together with

Cmm Cmp
Cpm CPP

the in-plane strains kinematically prescribed by the global equilibrium iteration,
results in zeros (or sufficiently small) the non-active stresses @, upon application
of the 3d algorithm.

To obtain the tangent operator consistent with the above nested iteration al-

gorithm, we first differentiate the residual equation ¢, = 0 of the plane beam

enforcement loop. This together with gives
do, = Cp, de® + Gy, de, = 0, (5.33)
which renders
de; = —C,) C,p, de”. (5.34)

Substitution of above equation into [Eq. (5.32)| results in the following consistent
tangent relation between the active stresses and strains components
do®
dec

(5.35)

where k™ = Cyun — CpC,,) Cpm.
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5.4.1.2 Plane strain

In case the lateral deformations of concrete are restrained, the plane strain con-
ditions can be used. The original three-dimensional algorithm can be then used
without modification by imposing the out-of-plan strains equal to zero. From the

3d problem, we have the 3d stress-strain relationship as follows:

ot cy on o Cf €
o e oo oog e || oo
v | — (5.36)
o° cr o oo oo || o
ey cy ol cE of Ve

The consistent tangent stiffness of the concrete fiber for the plane strain conditions

is then:

€ep ep
Ol 1 C(1 4

(5.37)
c

5.4.2 Section response

The relation between internal forces D and generalized strains € depends on
the material properties and the cross-section geometry of the beam. For hybrid
beam in partial interaction with nonlinear material behavior, this relation can be

expressed in general form as
D =Q(e) (5.38)

where (2 represents a general function that permits the computation of internal
forces for given generalized strains. The linearization of gives the

tangent stiffness matrix of the section k which is

k, O
k=[0 k.
0

0
0 (5.39)
0 k

SC

Pisey Keo 113



5. NONLINEAR FINITE ELEMENT ANALYSIS

The components of the consistent tangent stiffness of the section are:

[ FA,, 0 -+ 0 —FES,]
0o FA, - 0 —ES,
ks = : : : : , (5.40)
0 0 .-~ FEA, -ES,,
%S, -ES, - -E5, FIL
Ja. k1 dA + EAy = Jaly - ye)k1,dA — ES Ja. kypdA
kC = |~ fAC (y - yc)EildA - Eissl fAc (y - yc)2EildA + ﬁsl fAc (y - yc)E(I’QdA )
fAc kgldA - fAC (y — yc)kgldA fAc k;sz
(5.41)
and
kse, 0
0 ke --- O
Kee=| (5.42)
0 0o --- kscn

Wherema:an ardA, ES, —fA at (Y—Ya)dA, FEI, fA ot y Ya)?dA

for « = s1,---,s, with the Young’s tangent modulus F,; = , FA, =

fA sl tdA ESSZ = fA slt )dA and E]sl = fA slt y — yC)QdA with

the Young’s tangent modulus Ey; = 294 ; in which the contribution of the longi-
€sl

tudinal reinforcement in concrete component is explicitly considered.

5.5 Numerical application

The purpose of this section is to assess the capability of the proposed formulation
in reproducing the nonlinear behavior of hybrid beams subjected to combined
loads and to investigate the influence of the partial interaction on the general
behavior of the members. The Gauss integration method (5 Gauss-Lobatto inte-
gration points) is used to integrate the resultant section forces and section stiffness
along the element, while the return mapping algorithm is employed to integrate

the stresses and material stiffness within the fiber of the concrete cross-section.
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5.5.1 Beams under three-point flexural bending

The experimental tests consisting of two hybrid beams under 3-point flexural
bending, conducted at Laboratory of Civil and Mechanical Engineering of INSA
Rennes [128] are selected in order to assess the accuracy of the proposed model.
The hybrid-beam specimens (CW and CWHC) are reinforced by three HEB100
steel profiles totally encased in the RC cross-section reinforced with eight 20
mm diameter longitudinal reinforcing bars. All specimens had a length of 5

2 rectangular cross-section. The transverse reinforcement

m and a 25 x 90 cm
consisting of 14 mm reinforcing bars was made in form of stirrups. The stud
connectors (Nelson H3LL16) with spacing 20 cm are welded at both sides of the
web of the steel section ensuring the force transfer between the concrete and the
steel profile. The reinforcing bar arrangement is the same in all specimens except
the stirrup spacing (10 cm for CW and 20 cm for CWHC). The geometry and
reinforcement of the beams are represented in[Fig. 5.3|and the main characteristics

of the experimental tests are summarized in in which the cylinder

Table 5.1: Main characteristic of the materials.

‘ Concrete ‘ Long. bar ‘ Stirrup ‘ Steel
Specimen | fur B | 1 E. | f«  Ba |1, B,
CW 32.00 31187 | 383.91 210740 | 633.26 207460 | 462.7 214450
CWHC 31.63 31078 | 383.91 210740 | 633.26 207460 | 462.7 214450

in MPa

strength of concrete is measured at the day of test and the elastic modulus of
concrete is determined using the EC2 formulation. The specimens were supported
by two pins at point A and B (62.5 cm from the right and left extremity of the
beam, respectively) and were loaded at mid-span until failure under displacement
controlled conditions. The response of the beams was monitored as schematically
represented in[Fig. 5.4} deflection displacements were measured at five points; two

concrete strain gauges were pasted to the top concrete surface; twenty two strain
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Figure 5.3: Cross-section of the CW and CWHC specimens.

gauges were pasted to reinforcement steel and nine rosette strain gauges composed
of 0, 45 and 90 degree were pasted to steel profiles. For the numerical simulation,
the specimens are modeled by implementing the present FE model into the co-
rotational frame, developed in [Chapter 3| using 12 elements. The degrees of
freedom corresponding to the internal nodes in the local frame are statically
condensed out to obtain the local displacement vector containing only the degrees
of freedom at the element ends. The self-weight of the beams are considered
through the distributed loads applied at the element level, see . In an
analysis step with the displacement control, the vertical displacement at mid-span
was incrementally applied in the model up to failure. Concerning the constitutive
law, we adopt the following stress-strain relationship: the cap model is adopted for

concrete; and the elastic-perfectly plastic for the structural steel, the reinforcing
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Figure 5.4: Detailed arrangement of measuring devices.

bar and the shear connection. The parameters used in the concrete cap model
are presented in [Table 5.2in which the parameters for envelop curve is fitted with

Table 5.2: Concrete cap model parameters.

Specimen af 0 X g R fl
CwW 1.3789 0.4729 -91.4840 5 2.0630
CWHC 1.3740 0.4729 -91.3046 5 2.0470
T in MPa

Mohr-Colomb model (matched with a simple tensile and compressive strength)
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and the concrete Poisson’s ratio of 0.15 is adopted. For the reason of the lack of
experimental test on the shear stud behavior used in the hybrid beams, we adopt
the formulation provided by EC4 [12] to determine the ultimate shear strength
of the connector in which the partial factor is assumed to be equal to 1; and we
assume that the slip at the ultimate shear strength of the connector is 2 mm.

The load-displacement curves obtained from the FE models, compared against

the ones obtained from the experimental tests are depicted in[Fig. 5.5|and [Fig. 5.6]
for CW and CWHC, respectively. The confined concrete zone in the FE models is
divided into three zones as illustrated in[Fig. 5.3] Four FE models are considered:

e the model with the confined concrete zone defined in (FE1);
e the model without the highly confined concrete zone (FE2);

e the model without confinement (FE3);

e and the Euler-Bernoulli beam model (EB-Model, see Appendix .

The parabolic rectangular model for concrete (with limited concrete strain at

crushing strength) is adopted in the latter FE model. The curves of the exper-
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Figure 5.5: Load-displacement curve at mid-span of CW specimen.
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Figure 5.6: Load-displacement curve at mid-span of CWHC specimen.

imental results show that the specimens can deform with a large displacement
showing their ductile behavior while subjected to a monotonic loading. The ulti-
mate loads of CW and CWHC predicted by FE analysis (FE1 model) agree well
with those of the experimental results (1.0461 and 0.9737 for CW and CWHC,
respectively). It can be observed that there is a slight effect of the highly confined
concrete zone (considered in the FE1 model) on the response of the beam when
compared with the response of FE2 model. Otherwise, when considering the
plane stress condition on the concrete cross-section without taking into account
the effects of the transverse reinforcement (FE3 model), the predicted ultimate
load of the beam drops significantly. Nevertheless, the ultimate loads predicted
by the FE3 model agree well with those of EB-model. It is worth mentioning
that the ultimate load in EB-model is defined by the crushing of concrete. After
concrete crushing occurs, the softening response is observed. This is due to the
brutal decreasing of tangent stiffness of concrete cross-section. It is noteworthy to
mention that the steel sections have not completely reached their limit elasticity

while the crushing of concrete occurs.
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5.5.2 Effects of partial interaction

A hybrid beam under three-point bending (see with the same cross-
section configuration as CW specimen is considered, but in this case there is no
shear connector placed at the interface of the steel and the concrete component.
The force transfer mechanism between the concrete and the steel component is
based on the bond strength which is a function of the normal confining pressure
exerted by the encasing concrete on the steel surface. Most of the design codes
provide the ultimate strength of the bond stress between the concrete and steel
interface rather than the stiffness. The design longitudinal shear strength by fric-
tion is assumed to be equal to 0.3 MPa in EN 1994-1-1:6.7.4.3(3) for a completely
concrete encased steel section. For a C30 concrete, the design value of the ul-
timate bond stress between a ribbed bar and concrete component according to
EN 1992-1-1:8.2 is seven times (about 2.1 MPa) greater than the one of the steel
embedded section in EC4. However, according to EN 1994-1-1:6.7.4.3(4) a higher
value of bond strength of steel embedded section may be used for a concrete
cover greater than 40 mm and with an adequate reinforcement. In this case, the
bond strength is 0.75 MPa for the present cross-section configuration. The corre-
sponding ultimate longitudinal distributed shear force is then 420 N/mm. In this
study, four values of shear connection stiffness are considered in the finite element
model. This specimen is denoted by BW with the stirrup spacing of 20 cm along
the beam length. The material characteristics of the specimen are reported in
and the parameters used in the concrete cap model are presented in

Table 5.3: Main characteristic of the materials.

‘ Concrete ‘ Long.  bar ‘ Stirrup ‘ Steel
SpeCimen fcm Ecm fy Ey fyst Eyst fs Es
BW 31.50 31040 | 383.91 210740 | 633.26 207460 | 462.7 214450
in MPa

in which the parameter for envelop curve is fitted with Mohr-Colomb
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Table 5.4: Concrete cap model parameters.

Specimen  af 0 X{ R ff
BW 1.3722 04729 -91.2422 5 2.0414
T in MPa

model (matched with a simple tensile and compressive strength) and the concrete

Poisson coefficient of 0.15 is adopted.

shows the comparisons between the load-deflection curve obtained from
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Figure 5.7: Load-displacement curve at mid-span of the BW specimen.

the experimental test [128] and the FE analysis with several values of the shear
connection stiffness (1000, 500, 250 and 50 MPa denoted by BW-1000, BW-500,
BW-250 and BW-50, respectively). It can be seen that the shear connection stiff-
ness plays a crucial role in the flexibility of the hybrid beam. With a low shear
connection stiffness, the hybrid beam is more flexible compared to the one with
a high shear connection stiffness. However, all cases of shear connection stiffness
used in the FE model lead to the same ultimate load of the beam which agrees

well with the experimental result. Nevertheless, the FE model fails to capture
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the softening part of the beam behavior which is observed in the experimental
test. This softening part is due to the failure of the bond strength. To reproduce
this descending part, the softening laws of the shear bond strength has to be
employed.

5.6 Conclusion

In this chapter, the nonlinear FE model of hybrid beam under combined load
has been developed based on the fiber beam model where the shear deformability
of the concrete component is considered. To take into account the confinement
effects, the 3d constitutive law for the encasing concrete component is adopted.
Then, the plane stress condition for the concrete component is applied in order
to condense the 3d formulation, derived from a 3d plastic model of the concrete
material, into the 2d beam model. The developed FE model is implemented
into the local frame of the co-rotational framework developed in [Chapter 3] The
static condensation has been applied in order to obtain the consistent tangent
matrix in the local co-rotational formulation. The FE model has been validated
by comparing its predictions against the experimental results of the hybrid beams
conducted at Laboratory of Civil and Mechanical Engineering of INSA Rennes.
Moreover, the influence of the partial interaction on the overall behavior of the
hybrid beams has been investigated. It has been found that the ultimate loads
predicted by FE analysis agree well with those of the experimental results and
that the shear connection stiffness plays an important role in the flexibility of the
hybrid beam. The proposed formulation can thus provide a robust and reliable
option for determining the ultimate load in a large displacement analysis of hybrid

beam-columns subjected to combined loads.

Pisey Keo 122



Simplified Design Method for
Slender Hybrid Columns

Kokok

Numerical investigations on
second-order effects in slender
hybrid columns subjected to
combined axial load and uniazial
bending moment. Comparison
between the results obtained with
FE analysis and Eurocode
simplified methods. New
expressions for the correction
factors involved in the

determination of the effective
flexural stiffness E1.

6.1 Introduction

Hybrid structures composed of steel members encased in reinforced concrete have

been used at an increasing rate for mid-to-high rise buildings as they effectively
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combine structural steel and reinforced concrete members to their best advantage.
For instance, composite columns have significant economic advantages over either
pure structural steel or reinforced concrete (RC) alternatives. For a given cross
sectional dimension, composite columns also have higher strength and stiffness
therefore leading to reduced slenderness and increased buckling resistance. In the
early time of hybrid construction, these systems were built by first erecting a steel
skeleton and selected columns or entire bays of the steel framing were encased in
reinforced concrete to increase, at minimal cost, their strength, stiffness as well as
their fire resistance. Sooner these systems became very popular in seismic prone
area and nowadays it is commonly accepted within the engineering community
that composite and hybrid systems offer an economical method to develop the
required strength and stiffness. Several hybrid systems have been developed and

for some design rules need to be devised.

In high-rise buildings, slender RC columns containing multiple encased profiles
as reinforcement are often used to resist horizontal loads by bending about their
strong axes when standard reinforcement with rebars is not sufficient to sustain
such extreme loads. Those composite steel-concrete columns are called "hybrid
columns” because they are neither RC columns in the sense of EC2 [I1], nor
composite columns in the sense of EC4 [12] where the design rules are provided
only for a single encased steel profile. Nevertheless, it is legitimate to raise the
following question: can we use design rules given in EC2 or EC4 to design such
column? For columns being sensitive to instability, both EC2 and EC4 propose
simplified design methods based on moment magnification approach. The latter
can be written in general form as Mgqo = k Mgy where Mpg o is second-order
bending moment; Mpgq; is first-order bending moment; and £ is the so-called
moment magnification factor. Different expressions for the factor k£ have been
proposed (see for example [11l 12, 07, 129, [130]). A large number of expres-
sions for k proposed in the technical literature can be (re)written in the following
form: k = /(1 — Ngq/N,.) where Ngy is the design axial load; N, is the elas-

tic critical normal force; and [ is the equivalent uniform moment factor. The
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accuracy of moment magnification method strongly depends on, as included in
N, the effective flexural stiffness £ which depends on, among other factors,
the nonlinearity of the concrete stress-strain curve, the creep and the cracking
along the column length, and on the factor 5. The expression for EI used to
design reinforced concrete and composite columns has been studied for decades.
There is a vast amount of expressions for the effective flexural stiffness E'I in the
literature. Mavichak and Furlong [I31] considered the relative normal force as a
single parameter in their expression for FI. Mirza [132] suggested to take into
account the eccentricity, the slenderness ratio, and the creep factor related to the
sustained load. The latter was further enhanced by Tikka and Mirza [133-136]
taking into account the reinforcement ratio in their proposed EI equation. The
above-mentioned factors including the strength of concrete are also considered in
[129, 137]. Bonet et al. [I30] extended their work to propose a new EI equa-
tion valid for arbitrary cross-section shape. Similarly, many authors proposed an
expression for the equivalence uniform moment factor 8. The most adopted ex-
pression by the codes was proposed by Austin [I3§] in linear form of eccentricity
ratio (r,,) at the extremities of the column. It was deduced from the solution of
linear elastic analysis. Robinson et al. [139] proposed other formula in quadratic
form of (r,,). Trahair [140] and Duan et al. [I41] considered eccentricity ratio
and axial force level in their expression for 5. Sarker and Rangan [142] explained
that the expression provided by Austin [I3§] is unsafe for columns of low and
medium slenderness and they proposed another expression for § which is valid
for short-term load and for normal to high strength concrete. Tikka and Mirza
[143] maintained that the expression proposed by Austin [138] which is used in
ACI-318 [97] is safe. ACI-318 [97] proposes /3 equal to 1.0 for column subjected
to transverse load, and EC2 [I1] does not define the g factor explicitly.

This chapter deals with numerical investigations on second-order effects in slender
hybrid columns reinforced by several steel sections subjected to combined axial
load and uniaxial bending moment about strong axis. The first objective of this

study is to point out that a straightforward application of the bending moment
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magnification method proposed in EC2 and EC4 to hybrid columns may lead to
unsafe results. To remain consistent with the Eurocodes, a new version of bending
moment magnification method for slender hybrid columns is proposed. To do so,
our FE model is used in which the geometrical/material nonlinearities, the geo-
metrical imperfections, the residual stresses in steel profiles as well as the partial
interaction effect between steel profiles and the surrounding concrete are taken
into account. Since slender hybrid columns subjected to combined axial load and
bending moment are considered, the effects of shear deformability of concrete
component can be ignored. As the result, Euler-Bernoulli beam kinematics and
the uniaxial stress-strain behavior for each component (steel and concrete) of
the hybrid beam-column element are adopted. Moreover, the developed model
based on Euler-Bernoulli kinematic assumption is consistent with the finite ele-
ment model proposed in the general methods of Eurocodes (EC2 and EC4) for
designing a column subjected to combined axial load and bending moment. The
developed FE model, see Appendix [B] is validated through the comparison with
the experimental results of standard composite columns (due to lack of exper-
imental results of hybrid columns) and will serve as references for an extensive
parametric study (1140 data sets) in which the simplified methods proposed in
EC2 and EC4 are evaluated in case of hybrid columns. Based on the extended
parametric study with 2960 data sets, new expressions for the coefficient k& and 5
are proposed. The organization of this chapter is as follows. The recommenda-
tions for the design of columns in EC2 and EC4 are briefly recalled in Section
Section [6.3]is devoted to the parametric study in which the hypotheses considered
for material laws and geometrical and material imperfections are deduced from
Eurocode recommendations for FE analysis and from the background of these
methods. Finally, the design method for slender hybrid column is proposed and
validated based on the results obtained from FE analysis in Section [6.4]
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6.2 Eurocode design methods for slender columns

In the design of slender structures, the second-order effect needs to be considered.
Eurocodes provide guidance on how to consider these effects in structural analysis
using either a first-order analysis with appropriate amplification factors or a more
precise second-order analysis. Nevertheless, second-order effects may be ignored if
they are significantly less than the corresponding first-order ones, for instance less
than 10% as stated in EN 1992-1-1: 5.8.2(6) and in EN 1994-1-1: 5.2.1(3). This
implies that the designer would first check the second-order effects before ignoring
them. EC2 and EC4 provide simplified criteria to verify if a global second-order
analysis of the structure must be carried out in global structural analysis. If the
answer to the question is "yes”, EC2 refers to its Appendix H for the evaluation of
the global second-order effects using magnified horizontal forces, where the rigid-
ity of bracing elements is determined by taking into account concrete cracking.
Members sensitive to second-order effects will then be checked separately using
the internal forces given by the global structural analysis. EN 1994-1-1: 5.2.2(3)
states that individual stability checks of composite columns can be ignored if their
individual imperfection and their reduced stiffness are fully accounted for in the

global structural analysis.

Once the second-order effects (including cracking, material nonlinearity and creep)
need to be accounted for, EC2 and EC4 propose both a simplified method, called
"Moment Magnification Method”, in which the first-order bending moment Mg is
modified by a magnification factor & to obtain the second-order bending moment.
The factor k largely depends on the flexural stiffness and the equivalent moment
distribution. Hence, the procedure involves two steps. The first stage is to com-
pute the effective stiffness E1 and the second one is to estimate the first-order
moment magnification factor based on the shape of bending moment diagram. In
general, not only the factors mentioned previously influence the flexural stiffness
of the columns but also the column slenderness, the eccentricity, the magnitude

of normal force and the reinforcement ratio. The expression of EI can be written
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in the following form:
El=K.E.I + K,E,I,+ K,E,1, (6.1)

where the contribution of concrete, rebars and steel sections with subscript ¢, s
and a respectively are multiplied by a correction factor and summed up. The cor-
rection factors K., K, and K, can be calibrated using more or less sophisticated

models, to give the agreement between the proposed method and FE analysis.

6.2.1 The Moment Magnification Method in Eurocode 2

According to EC2, the second-order bending moment can be obtained using two
different simplified methods. The first one, based on the nominal stiffness, can
be applied in all situations. The second one is based on the nominal curvature
and is primarily suitable for isolated members with constant normal force. Since
EC4 also proposes an approach based on the nominal stiffness for the moment
magnification method, therefore this method seems to be a good candidate for

hybrid column design.

The total design moment, including second order moment, may be determined
by multiplying the first-order moment including the effect of imperfections by the
magnification factor £ (EN1992-1-1: 5.8.7.3(1)) which is expressed as

(6.2)

where

e (3 is a factor which depends on distribution of 1% and 2"¢ order moments.
For isolated columns with constant cross section and axial load, g = 1.233
for a constant first order moment distribution, 1.028 for a parabolic distri-

bution and 0.822 for a symmetric triangular distribution;

e Npq is the design value of the axial load; and
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2 El

e Ng = Bl is the buckling load based on nominal stiffness £ defined by
0

the following expressions (EN 1992-1-1: 5.8.7.2(1))

Bl = K,Eql, + K,E,I, (6.3)

in which [ is the effective length of the column; K. is a factor for effects of crack-
ing, creep and material nonlinearity; and K is a factor related to the contribution
of reinforcement. Provided the geometric reinforcement ratio is greater than 0.2%,
they are determined by the following expressions (EN 1992-1-1: 5.8.7.2(2)):

fck . NEd )\
K, = /1% LAY
¢ 20 M 710!

and K, =1 6.4
1 + Pef ( )

where ¢, is the effective creep ratio and A is the slenderness ratio.

6.2.2 The Moment Magnification Method in Eurocode 4

According to EC4, the second-order effects in composite columns can be ac-
counted for by multiplying the largest first-order design bending moment Mg, by

a magnification factor k£ given by:

(6.5)

where

o § =1 if Mgq is the maximum bending moment within the column length
ignoring the second-order effect (the column is subjected to the lateral load).
Otherwise § = max (0.66 + 0.44 r,,;0.44) in which r,, is the ratio between

bending moments acting at the column extremities (—1 < r,, < 1);
e Npgg4 is the total design normal force;

e N, s is the buckling load computed with the effective stiffness (ET)es 11
defined by the following expression (EN 1994-1-1: 6.7.3.4(2))

(EDegar = 0.9(E I, + E,I,) + 0.45E,,1. (6.6)
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In order to take into account the influence of long-term effects on the effective
elastic flexural stiffness, EC4 proposes to reduce the modulus of elasticity of

concrete E,, to the value E..r¢ in accordance with the following expression:

1
Ece = Ecm
el 1+ (Ng.gd/ NEga) et

where ¢, is the creep coefficient; and Ng gq is the part of total design normal

(6.7)

force Ng, that is permanent.

6.2.3 Plastic resistance of hybrid cross-sections

The plastic resistance of the hybrid cross-section is required to be verified against
the second-order bending moment obtained from the application of the moment
magnification method. However, nowadays no design standard provides the guid-
ance on how to determine properly the plastic resistance of reinforced concrete
with more than one embedded steel profile. For reinforced concrete, a classical
approach in reproducing the bending moment-axial force interaction curve is the
pivot method. This method is similar to the simplified method proposed by EC4
in determining the interaction curve for classical composite sections. Due to this
similarity, Bogdan et al. [144] proposed the pivot method to compute the plastic

resistance of the hybrid cross-sections by making the following assumptions:

plane section remains plane;

slip occurred at the steel and concrete interface is ignored;

parabola rectangle stress-strain relationship of concrete is adopted as pro-
posed by EC2; and

bilinear law of steel is used.

ig. 6.1 shows the possible strain distribution in ultimate limit state of a hybrid
cross-section with three pivots named A, B and C. The pivot A represents the
strain distribution where the reinforcement bars at the bottom reach their limit

strain in tension. The point where the top fiber of concrete reaches its ultimate
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Figure 6.1: Possible strain distribution in ultimate limit state of a hybrid cross-

section.

limit strain in compression defines the pivot B. The last pivot C is treated to the
strain limit in pure compression of concrete. The assessment of the pivot method
was carried out by Bogdan et al. [I44]. It was shown that this method provides

sufficient accuracy in determining the interaction curve of hybrid cross-sections.

6.3 Parametric study and assessment of simpli-

fied methods of EC2 and EC4

In this section, the developed FE model which was successfully validated above
is used to conduct an extensive parametric study in order to assess the appli-
cability of moment magnification methods of EC2 and EC4 for hybrid column
design. To do so, the ultimate load of slender hybrid columns with different types

of cross-sections are computed using the proposed FE model and also calculated
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using Furocode simplified methods. The obtained results of calculation methods
are compared against each other to assess the applicability of Eurocode simplified
methods to hybrid column designs. Five different hybrid cross-section configu-
rations (HSRCC1-5) are considered. The cross-sections HSRCC1 and HSRCC2
are built with 3 steel profiles HEB120. In the first configuration (HSRCC1) the
weak-axis of the profiles is parallel to the bending axis whereas in the second con-
figuration (HSRCC2) they are orthogonal to the bending axis (see and
Fig. 6.2b)). Hybrid cross-sections HSRCC3 and HSRCC5 correspond to the so-
called mega-column which contains 4 steel profiles, HD400x1086, located at each

corner of the cross-section (see |[Fig. 6.2c| and |Fig. 6.2d)). The last hybrid cross-

section (HSRCC4) has also 3 steel profiles but with larger steel cross-section,
HEB200. For cross-sections HSRCC1, HSRCC2 and HSRCC5, the diameter
of the reinforcement rebar is 20 mm whereas 32 mm and 12 mm for HSRCC3
and HSRCC4 respectively. Due to symmetry, only half-section of mega-column
(HSRCC3 and HSRCC5) is modeled. For all cases considered in this study, the
limit of elasticity for steel profile is restricted to 355 MPa and for reinforcement
bar is 500 MPa. Three classes of concrete strength C35, C60 and C90 are con-
sidered. Note that hybrid columns HSRCC4 and HSRCC5 with a significantly
high value of steel contribution ratio 9, are modeled with concrete class C35. Al-
though the hybrid column HSRCC4 is not totally realistic, it is considered here

for maximizing the ratio o.

In high-rise buildings, there is a significant amount of long term loads (approx-
imately 75% of total loads). Therefore, the effect of sustained loads has to be
considered. In this work, the effective creep ratio is taken equal to 1.5. As a
consequence, the concrete stress-strain curve is modified following EC2 recom-
mendation. For columns subjected to axial compression and bending moment,
three different relative slenderness A are considered for each cross-section con-
figuration with or without taking into account the creep effect. The relative

slenderness A is determined according to the EC4 formulation. From the value

Pisey Keo 132



6.3 Parametric study and assessment of simplified methods of EC2
and EC4

Na e _°. ° _°_° e ° N& ° ° ° ° ° ° °
: e ® 2 ® H H Ho
II& [ _._ L _._ [ 7_. llg ® Y ® ® ® ® ®
60 260 260 = 60 260 260 u
800 800
(a) Cross-section HSRCC1. (b) Cross-section HSRCC2.

.................................. 2}

500—~

1000

a0,

1000
+—500—*—500—+—500—*—500—=
2000

I

S
LeLlrLIIIIIIIIIIIIIIIIiIIiine #I ::::::::::::::::::::::::::::::::::i
sl
500 1000 1000 500—— +—500—+—500—+—500—+—500—+

3000 2000

(c) Cross-section HSRCC3.

(d)
Fz .| .I o I.|
.

Cross-section HSRCC5.

° 0
Io
° o
31

—

L]
L]
AL 260

800

(e) Cross-section HSRCCA4.

Figure 6.2: Cross-sections considered in parametric study.

of relative slenderness and geometry of the cross-section, the column length can
be deduced. For columns subjected to compressive load only, the whole range of

possible relative slenderness is covered. The parametrical study is summarized in

[Table 6.11

In this study, bending is considered to take place about the strong axis. This

situation corresponds to the case where the extreme load produced by wind or
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Table 6.1: Summary of case-studies.

Section S1; S2; S3; S4; S5

Concrete C35/45; C60/75; C90/105

for 500 MPa
fy 355 MPa

A 0.5; 1.0; 2.0
£ 0.0-3.0

) 0.2-0.62
Pef 0; 1.5

seismic load in that direction and the motion of the column is restrained on the

other direction.

6.3.1 Material laws

In order to evaluate the accuracy of the safety level when applying the simplified
design methods proposed in EC2 and EC4 for hybrid column design, the general
design methods (using nonlinear FE analysis) suggested by the Eurocodes should
be adopted. Nonlinear material models as well as the safety format have to be
properly described. The comparison of the results provided by the simplified
method of EC2 against FE analysis is readily achieved by using the stress-strain
relationship based on the design values of the constitutive model parameters as it
is clearly defined in EN 1992-1-1: 5.8.6. Regarding the safety format for nonlinear
FE analysis, the Eurocode for composite structures recommends to use the stress-
strain relationships defined in EC2 and EC3 as stated in EN 1994-1-1: 6.7.2(8).
Therefore, the material constitutive laws and the partial factors recommended by
EC2 and EC3 are adopted. The descriptions of the stress-strain relationships are

recalled in the following.
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EN 1992-1-1: 5.8.6(3) recommends to use the concrete stress-strain relationship
expressed by (EN 1992-1-1: 3.1.5(1)) where the tension part of concrete
is ignored. The bilinear stress-strain relationship for reinforcing bar is suggested
by the code.
Te kn —n?
fom — 1+ (k—2)n

(6.8)

where
- N =ecfea;
- €. is the strain at peak stress according to EN 1992-1-1; and
- k=1.05E., |€c1|/ fem(fem according to EN 1992-1-1).

Eq. (6.8)]is valid for 0 < |e.| < |€cu1| Where €, is the nominal ultimate strain.
According to EN 1992-1-1: 5.8.6(4), creep can be taken into account by multiply-
ing all strain values in the concrete stress-strain diagram with a factor (14 @),
where .y is the effective creep ratio. According to EN 1994-1-1: 3.2(2), the
design value of the modulus of elasticity F, of reinforcing rebar may be taken

equal to the value for structural steel given in EN 1993-1-1: 3.2.6.

Incremental FE model based on fiber discretization requires appropriate uniaxial
stress-strain relationships for each material with the design values of strengths.
This requirement is consistent with the stress-strain relationship given by the

code. The stiffness of the element is then derived from these stress-strain curves.

G¢ Cs O
LI L F— ‘ fy=fy/1.0 |----
ok R A | ! !
' EJ300 | i |
| | | i
7 H |
0.4fg | _ : | i |
Ecd:Ecm/g.z 6. Esl . Eai | N
€1 Eeun Esd Esud €y Eyu
a) Concrete b) Reinforcing rebar c) Steel profile

Figure 6.3: Stress-strain relationship used for FE analysis.
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Since there is dependency between strength and stiffness in FE analysis, the
partial factors for concrete, rebar reinforcement and steel profile are taken re-
spectively equal to 1.5, 1.15 and 1; and the partial factor for design modulus of
elasticity of concrete is taken equal to 1.2 (following EN 1992-1-1: 5.8.6(3)). The

design stress-strain curves for each material are illustrated in [Fig. 6.3

6.3.2 Geometric imperfection and residual stresses

Second-order analysis requires the definition of an imperfection. Those imper-
fections found their sources in both the geometric imperfection as well as the
residual stresses. The definition of this initial deformed shape strongly affects
the behavior of slender columns. For concrete columns, EC2 recommends to con-
sider a geometric imperfection equal to l5/400 whereas for steel columns EC3 not
only suggests to adopt a geometric imperfection equal to l5/1000 but also to take
into account the effects of the residual stress distribution. The imperfect shape
of composite columns is governed by the steel component and therefore by the
residual stress distribution within this component (see . Accordingly, an

0.5f,*

-0.56 7 NJ0.56,*

0.5f,*

% ‘ } -0.5f,*
b 0.5,*
W/bs<1.2
f,*=235MPa

Figure 6.4: Residual stress distribution of steel profile.

initial imperfection l5/1000 has to be considered and the geometric effects of the
residual stress distribution must be considered. To simplify the calculation, EC4
suggests to replace the residual stresses by an equivalent initial bow imperfection.
However, Bergmann and Hanswille [145] have shown that this simplification pro-

duces an approximate value of the ultimate resistance in axial compression. The
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hybrid column being built as a concrete column; to ensure the best accuracy of
the results we adopt an initial imperfection in parabolic shape with an amplitude
of wy equal to lp/400, combined with an explicit representation of the residual
stress distribution. The admitted parabolic shape is more detrimental to column
resistance than imperfection randomly distributed over column length; hence the

approximation is conservative in terms of column safety.

6.3.3 Shear connection

Eurocode 4 design rules for composite columns assume full interaction between
the steel section and the surrounding concrete, i.e. the slips at steel-concrete
interfaces can be ignored. To remain consistent with Eurocode rules, the same
assumption is retained for hybrid columns although the latter may be viewed as
a fairly strong assumption for both composite and hybrid columns, particularly
with deformable shear connectors. The consequence of this assumption on the
ultimate load of hybrid columns will be evaluated by carefully analyzing the effect
of the connection stiffness on the ultimate load using the nonlinear finite element

model developed in |B| which takes into account the partial interaction.

The shear connection stiffness K . can be determined by K. = kg/d where
kseo is the stiffness of a shear stud and d is spacing between the connectors. It
is varied from low to high stiffness. For a certain value of the stiffness, the load-
bearing capacity does not vary with increasing value of the connection stiffness
and slips become very small so that we can assume full interaction. The value
of this critical stiffness will be used for the parametric study in order to remain
consistent with EC4.

The investigation on the effect of the stiffness K,. and the interlayer slip dis-
tribution has been carried out on the pinned-pinned hybrid column, particularly
the one with cross-section illustrated in Three different lengths corre-
sponding to three different values of the relative slenderness A (0.5, 1 and 2) are

considered. The column is subjected to an eccentric load causing a symmetric
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single curvature bending about the strong axis of the cross-section. The eccen-
tricity ratio e/h is equal to 0.3 at both column extremities. It is worth to mention
that the axial load is applied through an eccentric node linked rigidly to concrete
node. The material properties are summarized in In this case, a lin-

Table 6.2: Material properties.

Concrete
fer = 60 MPa Eon =39.10 GPa @ = 1.5
Ye =15 Yer = 1.2

Reinforcing rebar
fs& = 500 MPa E, =210 GPa v = 1.15

Steel profile
fy = 355 MPa E, =210 GPa Yo =1.0

Connector Stiflness
K,. =8 MPa K,. = 800 MPa K,. = 3000 MPa
K,. = 7000 MPa K,. = oo MPa

ear elastic behavior of the connector is considered; the confinement of concrete
is ignored and the residual stress distribution in the steel section is assumed to
follow the diagram given in [Fig. 6.4 The column is supposed to have an initial
geometrical imperfection of [5/400. The ultimate design capacity of the column is
obtained by performing a nonlinear analysis using appropriate material laws and
safety concept described in Section [6.3.1] The finite element results with a mesh
consisting of 10 elements are shown in [Table 6.3] The ratio between the bearing
capacity of the column in partial interaction P, and the one in full interaction
P, is computed considering several values of connection stiffness K. and rela-
tive slenderness A. Regarding the boundary conditions for the interlayer slip at
the column ends, two cases have been considered. In case A, interlayer slips are
permitted at both ends of the column whereas in case B, the slips are prevented.

It can be observed from that when the interlayer slips at extremities
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are prohibited (case B), the ultimate load in full interaction can be achieved for
a moderate shear connection stiffness. However, with a low value of K. and no
slips at the column ends (case B) the ultimate load is slightly below the one in
full interaction. On the contrary, the ultimate load drops significantly for a col-
umn with low slenderness ratio and free slips at the column ends. In both cases
(A and B), the ultimate load in full interaction can be achieved for columns with

medium-to-high relative slenderness within a moderate shear connection stiffness.

Table 6.3: The ratio of bearing capacity of the column P, to P, .

P, Case A Case B
P A=05 A=1 A=2[A=05 A=1 A=2
K,.= 8 MPa 0.72 0.72  0.76 0.98 0.96  0.92

K. = 800 MPa 0.90 0.99  1.00 1.00 1.00  1.00
Ks. = 3000 MPa | 0.95 1.00  1.00 1.00 1.00  1.00
Ky = 7000 MPa | 1.00 1.00  1.00 1.00 1.00  1.00

6.3.4 Assessment of the EC2 version of moment magnifi-

cation method

In the present section, the applicability of the EC2 version of the moment mag-
nification method to hybrid columns is assessed by comparing its predictions
against FE analysis results for hybrid column with cross-section HSRCC1 (see
. The concrete class is C60 and the effect of creep is taken into account
(pef = 1.5). It can be seen from that in case of pure compression, the
moment magnification method of EC2 gives unsafe results for low-to-moderate
relative slenderness whereas the method provides conservative results for high

relative slenderness. For columns subjected to single curvature bending and re-

gardless of the load eccentricity (see [Fig. 6.5b| and |Fig. 6.5¢|), the EC2 method
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Figure 6.5: Comparison of simplified method of EC2 against FE analysis results.

overestimates the ultimate load for low-to-moderate relative slenderness (A = 0.5
to 1.0). The same conclusion applies for columns bent in double curvature under
antisymmetric bending moment (see except for very high load eccen-
tricities (close to pure bending). For high relative slenderness, EC2 method gives
safe results except for columns bent in single curvature under large bending mo-
ment. Since this simplified method is based on the effective stiffness of the column

FE1, it can be concluded that the expression for the effective stiffness proposed by
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EC2 cannot be applied in a straightforward fashion to hybrid column design. This
effective stiffness should be modified by adjusting the factor K. (see
which depends on the relative slenderness of the column so that it becomes appli-
cable to hybrid column. Moreover, the factor K, which is applied to the stiffness

can also be modified in order to account for the plastification of the steel section.

6.3.5 Assessment of the EC4 variant of the moment mag-

nification method

In this section we pursue our study by an assessment of the performance of
the EC4 version of the moment magnification method when applied to hybrid
columns. Again a comparison of the predictions of the EC4 method against FE
analysis results for hybrid column with cross-section HSRCC1 (see is
carried out. The concrete class and effective creep ratio are the same as previous
case (C60 and ¢.; = 1.5). Quite surprisingly, the EC4 version of the moment
magnification method seems to perform less well. Indeed, for a hybrid column
subjected to pure compression (see where the ultimate load of the col-
umn is characterized by the resistance in axial compression, the simplified method
of EC4 gives safe results regardless of column relative slenderness. Apart from
the later case, this method gives unsafe results for a large number of cases. For

low load eccentricity, the ultimate load given by EC4 formulation is safe regard-

less of column relative slenderness (see |[Fig. 6.6b| to |[Fig. 6.6d). For moderate

load eccentricity, the EC4 method always overestimates the ultimate load. Under
large bending moment, the EC4 method gives safe results, particularly for column
under symmetric single curvature bending in the zone nearly pure bending. The
conservative nature of the results can be attributed to the equivalent moment

factor 3, which, in the present case, is equal to 1.1.

Since this moment magnification method is based on the effective stiffness of
the column KT, it can also be concluded that EC4 proposes an expression for

effective stiffness that cannot be applied in a straightforward fashion to hybrid
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Figure 6.6: Comparison of simplified method of EC4 against FE analysis results.

column design. This effective stiffness should be modified by reformulating the
factor K. ;r as well as K. These factors should be minimized to reduce the value
of the effective stiffness and as a result the ultimate load will be decreased. This

modification is proposed in Section
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6.3.6 Results of the parametric study

The ultimate load for isolated hybrid columns with five different cross-section con-
figurations (see has been evaluated using both the finite element model
and the moment magnification method proposed in EC2 and EC4. The accuracy
of moment magnification method should be evaluated according to Appendix D
of EN 1990 [146]. The application of the method given in this Appendix is rather
straightforward provided that a large number of ultimate loads are available with
the magnitude of the latter being influenced by a single parameter. It is much
more complicated to apply this method for members subjected to axial load and
bending moment where additionally, a large number of key parameters have to
be taken into account. Because of this difficulty, an exact implementation of EN
1990-Appendix D cannot be rigorously followed while assessing the moment mag-
nification method of EC2 and EC4. To evaluate the EC3 variant of the method
for steel beam-column member, the ratio of the experimental or numerical failure
load to the corresponding theoretical load has been used in [I47]. Similarly, the
ratio between the first order bending moment obtained via numerical simulation
(M1)pp and the ones obtained with the simplified method (M1)gy, was used to
calibrate the simplified method of EC2 in [148]. However, this procedure is not
appropriate in case the column is subjected to axial load only which leads this ra-
tio to infinity. To overcome this difficulty, the ratio R expressed in has
been selected by Bonet et al. [I30] as a reference value to evaluate the accuracy

of their own proposal. This ratio is also adopted in our investigation.

Rpp
= 6.9
Reons (6.9)

2 2 2 2
. _ NrE MrEg _ Nsm Msm
wheres Rpp = 1/ ()" 4 (o) ana s = [ ()" (i)’

gives a summary of the results obtained with both EC2 and EC4 version

of the moment magnification approach which are compared against FE analyses.

R

In order to evaluate the contribution of the various parameters governing the

ultimate load, the R ratio is first computed for all the considered cases (1140
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data sets). The value of the R ratio is given as a function of each key variables:
relative slenderness A, eccentricity e/h, steel contribution ratio §, reinforcement
ratio p, concrete characteristic strength f., effective creep ratio ¢.; and the ratio
rn between the bending moment applied at the column ends. For every value of

each parameter all corresponding values of R are given as discrete points.

To analyze the relative performance of the EC2 and EC4 variants of the moment
magnification method, the graphs for the R ratio computed for each method for
a given parameter are put as a pair. Regarding the contribution of the relative
slenderness on variant of the method, two different graphs are provided. The first
graph is for columns subjected to pure compression and the other for columns
subjected combined compression and bending. The statistical distribution of R is
represented along with its mean value r and the interval (r+s and r—s) where s is
the standard deviation. Both simplified methods show a rather wide discrepancy
compared to FE analysis results. The most significant parameters are the slen-
derness of the column, the steel section contribution to the cross-section strength
under pure compression 0 as well as the geometrical reinforcement ratio p.
ble 6.4/ shows that for columns subjected to an axial load only (zero eccentricity),
both simplified methods give unsafe results for low relative slenderness. In case
the latter is moderate, the predictions of EC2 moment magnification method are
unsafe while the EC4 one gives conservative results. Nevertheless, EC2 method
provides reasonable results compared to EC4 method for high relative slender-
ness. For columns subjected to combined compression and bending moment, both
codes provide unsafe results in most cases. In particular, the interaction curve
given by EC2 moment magnification method without considering the creep effect
(pef = 0) is close to FE analysis results. However, EC2 becomes un-conservative
if creep is considered (¢.; = 1.5). Considering all cases, it was found that the
mean value r and the standard deviation s are respectively equal to 0.996 and
0.104 for EC2 simplified method and 1.010 and 0.112 for EC4 simplified method.
The percentage of R below 0.97 is 41.84% and 34.86% for EC2 and EC4 simplified

method, respectively. As a general conclusion, it can be pointed out that mean

Pisey Keo 144



6.3 Parametric study and assessment of simplified methods of EC2

and EC4

nification method.

Table 6.4: Results of parametric study of EC2 and EC4 version of moment mag-
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Table 6.4 — continued from previous page
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'Variable

=
o
(e

(<2}

Frequency (Percentage)
[$)]

Frequency (Percentage)
NS

Oidl

o
B
o

7. Histogram

0.8 1 12 14 16 0.8 1 12 14

16

estimations of both design codes seem to be correct but that their shortcomings

lead to a large scatter of the results.

6.4 Proposal of a moment magnification design

method for hybrid columns

6.4.1 Further insight into the physical behavior of hybrid

columns

Before suggesting new expressions for correction factors involved in the moment
magnification method for hybrid column design, some effects are analyzed to get

further insight into the physical behavior of hybrid columns.

6.4.1.1 Effect of sustained loads

The reduction of the load-bearing capacity due to creep is illustrated in
and for different load eccentricities. The interaction curve of hybrid
column with cross-section HSRCC1 subjected to eccentric load and bent in a
symmetric single curvature is depicted in where Ny rao stands for the

plastic design normal force and M, rqo for the plastic bending moment of the
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cross-section, both being considered without creep effect.

Two values of the

effective creep ratio are considered (¢.y = 0 and ¢, = 1.50). The concrete

strength used in this study is C35. It can be seen that the plastic design moment

of the cross-section with ¢,y =

1.50 is larger than that with ¢.; = 0. This

difference comes from the ductility of the concrete which allows the compressed

part of the steel section to yield before concrete crushes.

6000
e/ h=0.00
5000
e/h=0.06
4000 /—x’i
= —025 =
& 3000 - e~
= x
2000 X concrete crushing
1000 %y =02
————p, = 1.5
. ,
0 002 0.04 0.06 000 005 010 015

displacement [m] displacement [m]

(a) Reduction of ultimate load due to

creep for slenderness ratio A = 1.0. creep for slenderness ratio A = 2.0.
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(c) Interaction curve.

Figure 6.7: Hlustration of creep effect on slender hybrid column.

0.20

(b) Reduction of ultimate load due to
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6.4.1.2 Effect of the residual stresses in the steel section

The buckling behavior of steel members is strongly influenced by the residual
stresses. The distribution of the latter is shown in for standard I-sections.
The hybrid column with cross-section HSRCC1-3 are considered as well as the
hybrid column with two steel profiles (HEB120) that are very close to each other
(see [Fig. 6.11a). The diameter of the rebar used for this column is ¢12. The
columns are modeled with concrete strength C35, structural steel yield stress 355
MPa and reinforcement yield stress 500 MPa. The columns were discretized using
20 elements. This discretization is sufficient to represent the imperfect parabolic
shape of the columns. The column is subjected to the same eccentric loads at both
ends. Residual stresses are incorporated in the model as a state of self-equilibrated

initial stresses. The comparison of buckling and interaction curves considering

and disregarding the residual stresses is given in |[Fig. 6.8| to [Fig. 6.11b,  The
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(a) Buckling curve. (b) Interaction curve.

Figure 6.8: Effect of residual stress in buckling behavior of HSRCC1.

dash line (—o—) corresponds to the interaction curve when the residual stresses
within the steel profile are not considered whereas the solid line (—) corresponds
to the interaction curve with residual stresses. It can be seen that the residual

stresses have a marginal effect on the behavior of hybrid columns and they can
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Figure 6.9: Effect of residual stress in buckling behavior of HSRCC2.
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Figure 6.10: Effect of residual stress in buckling behavior of HSRCC3.

be ignored. Therefore, it can be concluded that the structural steels behave as

large rebars. Considering the above comments, it can be concluded that the new

method for hybrid columns should be inspired from the EC2 variant rather than

from the EC4 version.
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Figure 6.11: Effect of residual stress in buckling behavior of hybrid column where

the cross-section has two steel profiles very close to each other.

6.4.2 A proposal for the expression of the flexural stiff-
ness EI applicable to hybrid columns subjected to

combined axial load and uniaxial bending

The parametric study with 1140 data sets presented previously shows that both
EC2 and EC4 version of the moment magnification method lead to unsafe results
in half of case-studies . It means that the effective flexural stiffness
ET given in EC2 and EC4 are not appropriate for slender hybrid column design.
Based on the outcome of the parametric study with 2960 cases including differ-
ent yield stress of steel section, new expressions for 5 and the correction factors
(K, K,, K.) involved in the definition of the effective flexural stiffness ET are
proposed. By doing so, we are able to make the moment magnification method
given in Eurocodes suitable for hybrid column design. The proposed simplified

method based on moment magnification approach is summarized in the following.

The total design moment is determined by multiplying the first-order moment

(including the effect of geometric imperfection) by the magnification factor k
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which is defined as

B

N,
1 _ Ed
Ner

where 8 = 0.6r,, + 0.4 > 0.4; and N, is the buckling load which is calculated by

using the following expression for the flexural stiffness ET

k:

(6.10)

EI = K.E4l, + K,E I, + K,E,I, (6.11)
with

KC = k’lk’g/(l + (,OEf) (612)

K,=1 (6.13)

0.0124
0.76 (]f—)
ck

a = < 6.14

1 4 105¢. rexp(—0.078) (6.14)
fck

_ e 1
b=y 22 (6.15)
by = n— <02 (6.16)
T ‘

Nga

Nyl ra (6.17)

where the expressions of the correction factors K. and K, recommended in EC2
have been used. Further, since there is no steel profile in a reinforced concrete
section, the correction factor K, does not exist in EC2. If one compares these
correction factors to those in EC4, they are totally different. In fact, due to com-
pressive creep strains, as shown in Section longitudinal steel compressive
strains can exceed the yield strain. This implies that the steel modulus that
collaborates in the effective stiffness EI of the hybrid column could not be the
elastic modulus but should rather be the secant modulus which varies with con-
crete creep. Moreover, for slender columns, plastification in the compression zone
of the steel section may not develop before instability. Hence, the secant modulus
of steel should be a function of the creep coefficient ¢.; and the geometric slen-
derness A. For higher values of the creep coefficient, the value of secant modulus
of the steel section will be rather lower. However, for higher values of slenderness

this modulus will be higher. Therefore, in addition to the previous cases already
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analyzed, we need to investigate the effect of the steel yield stress on the ultimate
load of hybrid columns. All cases previously analyzed with f, = 355M Pa are now
recalculated with f, = 235M Pa and f, = 460M Pa. The objective is to study
the effect of plastification of the steel sections, particularly for low yield stress.
As a result, the correction factor K, of EC4 is modified to take into account the
effect of plastification of the steel section. This factor is calibrated based on the
results of a parametric study with 2960 parameter sets (cross-sections, column
effective slenderness and creep coefficient) performed by using the developed FE

model.

The procedure employed to establish the expression of K, is as follows. Let
us consider a slender hybrid column with an initial imperfection wy subjected to
axial loads and uniaxial bending, bent in a symmetric single curvature (1, = 1),
the ultimate first-order bending moment Mg, can be obtained with a nonlinear
FE analysis for a particular axial load Ng,. Likewise, it is also possible to com-
pute the ultimate bending moment M, x rq of the cross-section of the column for
the same axial force. By equating the second-order bending moment calculated
with the moment magnification method to the ultimate bending moment of the
column cross-section, the moment magnification factor £ can be obtained. Fi-
nally, by making use of the critical buckling load formulation and the proposed
form of effective stiffness expression, the correction factor K, can be derived.

This procedure has also been adopted in [130].

e First, the magnification factor is obtained:

f = 2 (6.18)

e This value allows the critical buckling load of the column to be computed:
Nrg

Ne = 1_—MEd,1 (6.19)
Mpi,N,Rd
e The flexural stiffness of the column can be computed from
N, L?
El = - (6.20)
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e Finally, the calibration factor K, can be obtained as

_ EI— K.Eql. + E,
N E,l,

K, (6.21)

6.4.3 Comparisons between proposed simplified method
and FEA

In order to evaluate the contribution of the various parameters governing the
ultimate load, the R ratio has been computed for all the considered cases (2960
data sets). The value of the R ratio is given as a function of the main variables:
eccentricity e/h, geometric slenderness ratio A and relative slenderness A, the
latter being calculated according to EC4 formulation. For every value of each
parameter all corresponding value of R are given as discrete points. In
R is given with the mean value r, 7 + s and r — s, where s is standard deviation.
It can be seen that despite the wide dispersion at high relative slenderness ratio,
the proposed formulation gives a relatively low scatter compared to FE analysis
results. The standard deviations are equal to 0.0147, 0.0325 and 0.0712 for relative
slenderness ratio A equal to 0.5, 1 and 2 respectively. The frequency histogram
shown in[Fig. 6.12d]was constructed using the proposed formulation. With a 0.005
precision, the percentage of the R ratio equal to 1 is 50.9%, and less than 1 is
cumulatively 23.72% as can be seen on the histogram. The percentage of R below
0.97 is 10.34%. Its overall variability gives a good estimation of the mean value
of the ultimate load with relatively small deviation. The mean value r and the
standard deviation s provided by the proposed simplified method are respectively
equal to 1.0022 and 0.0459 which have been improved compared to the ones given
by EC2 simplified method (r = 0.996, s = 0.104) and EC4 simplified method
(r = 1.010, s = 0.112). Based on these numerical results, we can conclude
that the developed method gives the ultimate load of a slender hybrid column

subjected to combined axial force and bending moment with sufficient precision.
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Figure 6.12: Performance of the results given by the new simplified method.

6.5 Conclusion

Numerical investigations on the second-order effects in slender hybrid column sub-
jected to combined axial load and uniaxial bending moment have been performed.
One of the main objectives of this study was to evaluate the bending moment
magnification method proposed in EC2 and EC4 when applied to hybrid columns.
To do so, a FE model has been developed in which the geometrical /material non-
linearities as well as the partial interaction effect between the steel profiles and the
surrounding concrete are taken into account. The FE model has been validated
by comparing its predictions against experimental results for standard composite
columns. To thoroughly analyze the applicability of EC2 and EC4 variants of
the moment magnification method to hybrid columns, an extensive parametric

study with 1140 data sets (cross-sections, column effective slenderness and creep
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coefficient) has been carried out. The comparison between the results obtained
with Eurocode simplified methods and with FEA shows that simplified methods
of EC2 and ECA4 lead to a wide scatter where the percentage of the ratio R lesser
than 1 is cumulatively larger than 5%. It means that the proposed effective flex-
ural stiffness E'I of EC2 and EC4 are not appropriate for slender hybrid column
design. It was observed that the secant modulus of compressed part of the steel
section varies as a function of the creep coefficient ¢.s and the geometric slender-
ness A. Therefore, in addition to the previous cases already analyzed, a further
investigation of the effect of the steel yield stress on the ultimate load of hybrid
columns has been carried out. This latter investigation was based on an extensive
numerical parametric study with 2090 data sets. A simplified method has been
proposed for hybrid column design. This method is developed within the context
of Eurocodes, i.e. moment magnification approach. In the proposed method, new
expressions for the correction factors (for the determination of effective flexural
stiffness (E1)) are proposed in order to take into account the creep effect and the
effect of plastification of the steel profiles. The comparisons between proposed
simplified method and FE analyzes shows that the developed method provides

the ultimate load for typical slender hybrid columns with an adequate accuracy.

The lack of the residual stress effects on the ultimate load of the hybrid columns
as well as the destination of the method, which will occur in reinforced concrete
buildings rather than in metal structures, led to development of this new for-
mulation to be based on Eurocode 2 formulations. The proposed formulation
is applicable for reinforced concrete columns (without an embedded steel shape)
with respect to Eurocode 2 regulations. It notes, however, that by applying this
method to a classical composite section, it gives a conservative result and more
conservative than the one obtained from Eurocode 4 formulations. It can there-
fore lead to a consistency between the different formulations as the following.
The "hybrid” approach (proposed formulation) can handle both reinforced con-
crete and hybrid columns, since it is developed based on Eurocode 2 formulations;

and it can also be used for classical composite columns, while leading to less fa-
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vorable ultimate load in the specific case of the only one embedded steel section

for which a more precise formulation can be found in Eurocode 4.
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7.1 Summary and concluding remarks

The development of a design guide for hybrid columns with several embedded steel
profiles, subjected to combined loads is the objective of this thesis. Therefore,
a FE model has been developed in which the geometrical /material nonlinearities
as well as the partial interaction between the steel profiles and the surrounding
concrete are taken into account. The results of the FE model have served as ref-
erences in developing a new design method for hybrid columns. The development
of the FE formulation was begun with the geometrically linear elastic analysis in
which the exact expression of the stiffness matrix has been developed for the elas-
tic hybrid beam-column in partial interaction. Both shear-rigid and shear-flexible
model have been developed based on the exact stiffness matrix. The influences
of shear flexibility of the encasing concrete component and the partial interaction
on the overall behavior of the hybrid beam-column have been investigated by
performing the analyses and comparing the results of both models. It has been
found that the transverse displacement is more affected by shear flexibility than
partial interaction. The deflection ratio of both model varies slightly following

the increasing shear connection stiffness from low to high value.
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To describe the geometrical nonlinearity, the co-rotational framework has been
adopted and the motion of the element is decomposed into a rigid body motion
and a deformational part using a local co-rotational frame, which continuously
translates and rotates with the element but does not deform with it. The treat-
ment of geometric nonlinearity is effectively undertaken at the level of discrete
nodal variables with the transformation matrix between the local and global nodal

entities being independent of the assumptions made for the local element.

The nonlinear FE model of hybrid beams under combined load has been devel-
oped based on the fiber beam model where the shear deformability of the concrete
component is considered. To take into account the confinement effects, the 3d
constitutive law for the encasing concrete component is adopted. Then, the plane
stress condition for the concrete component is applied in order to condense the
3d formulation, derived from a 3d plastic model of the concrete material, into
the 2d beam model. The developed FE model is implemented into the nonlinear
geometry formulation by adopting the co-rotational framework. The static con-
densation has been applied in order to obtain the consistent tangent matrix in
local co-rotational system. The FE model has been validated by comparing its
predictions against experimental results of the hybrid beams conducted at Lab-
oratory of Civil and Mechanical Engineering of INSA Rennes. Furthermore, the
influence of the partial interaction on the overall behavior of the hybrid beams
has been investigated. It has been found that the ultimate loads predicted by FE
analysis agree well with those of the experimental results and that the shear con-
nection stiffness plays a crucial role on the flexibility of the hybrid beam. From
the numerical applications, it has been shown that the developed formulation
provides a robust and reliable option in determining the ultimate load of hybrid
beam-columns subjected to combined axial load, bending moment and shear force

in a large displacement analysis.

Besides, numerical investigations on the second-order effects in slender hybrid
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columns subjected to combined axial load and uniaxial bending moment have
been performed. One of the main objectives of this study is to evaluate the
bending moment magnification method proposed in EC2 and EC4 when applied
to hybrid columns. To do so, a FE model is developed in which the geomet-
rical /material nonlinearities, the geometrical imperfections, the residual stresses
in steel profiles as well as the partial interaction effect between steel profiles
and the encasing concrete are taken into account. Since slender hybrid columns
subjected to combined axial load and bending moment are considered, the ef-
fects of shear deformability of concrete component can be ignored. As a result,
Euler-Bernoulli beam kinematics and the uniaxial stress-strain behavior for each
component (steel and concrete) of the hybrid beam-column element are adopted.
Moreover, the developed model based on Euler-Bernoulli kinematic assumption is
consistent with the finite element model proposed in the general methods of Eu-
rocodes (EC2 and EC4) for designing a column subjected to combined axial load
and bending moment. The comparison between the results obtained with Eu-
rocode simplified methods (moment magnification method) and with FE analysis
shows that simplified methods of EC2 and EC4 lead to a wide scatter where the
unsafe factor ratio is cumulatively larger than 5%. It means that the proposed
effective flexural stiffness K1 of EC2 and EC4 are not appropriate for slender
hybrid column design. As a result, a new simplified method has been proposed
for slender hybrid column design within the context of Eurocodes, i.e. moment
magnification approach. The proposed method is developed based on an insight
into the physical behavior of slender hybrid columns. It has been observed that
the secant modulus of compressed part of the steel section varies as a function of
the creep coefficient ¢.; and the geometric slenderness A. Consequently, in the
proposed method, new expressions for the correction factors (for the determina-
tion of effective flexural stiffness (F1)) are proposed in order to take into account
the creep effect and the effect of yielding in the steel profiles. The comparisons
between proposed simplified method and FE analyses shows that the proposed
method provides the ultimate load for typical slender hybrid columns with an

adequate accuracy. To make the proposed simplified method more accessible for
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designers, a simple design tool has been developed based on Matlab Compiler
Runtime platform which is presented in Appendix [C] The program is capable to
perform a nonlinear analysis as well as a simplified analysis, based on moment
magnification method, of reinforced concrete column with several embedded steel

profiles subjected to combined axial load and uniaxial bending moment.

7.2 Perspectives

The FE model developed in may serve as a primary reference in produc-
ing a design guide for hybrid beams subjected to combined loads (M-V). However,
an insight into the physical behavior of hybrid beams under combined loads is
required. Those requirements find their root in modeling the 3d constitutive law
of concrete (with softening behavior) in which the hardening law and the damage
plasticity model have to be introduced, variation of shear deformation over the
depth of the concrete cross-section after cracking occurs, nonlinear distribution
of axial deformation and other kinematic assumptions. The latter can be dealt
with by adopting a more advanced beam theory which considers a nonlinear dis-

tribution of the kinematic variables.

While the thorough investigation on the second-order effects in hybrid columns
has been performed in[Chapter 6] to provide the design method for hybrid columns
subjected to combined axial load and uniaxial bending moment, there are sev-
eral factors that have not been considered. Among those factors are the biaxial
bending and the lateral torsional buckling that may occur for a slender cross-
section. Therefore, a 3d finite element model of the hybrid beam element has to

be developed.
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A.1 Fundamental equations

The governing equations describing the geometrically linear behavior of an elastic
shear-rigid hybrid beam with n embedded sections in partial interaction are briefly
outlined in this section. All variables subscripted with ¢ belong to the encasing
beam and those with subscript s belong to the embedded section. Quantities with
subscript sc are associated with the shear connectors. The following assumptions

are commonly accepted in all models to be discussed in this paper:

- connected members are made out of elastic, homogenous and isotropic mate-

rials;

- the cross-sections of all components remain plane and orthogonal to beam axis

after deformation, though relative slips can develop along their interface;
- the lateral deflection v is assumed to be the same for all components;

- discretely located shear connectors are regarded as continuous.
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A.1.1 Compatibility

Based on the above assumptions, kinematic equations relating the displacement
components (u;, v, #) to the corresponding strain components (¢;, 0, x (Fig. A.1]))

are derived for each component of the hybrid beam as follows:

€; = O0pu;, i=s1,82,---,8n,sc (A.1)
Ve = Vgj = U (A.2)
0 =0,v (A.3)
K= 0% (A.4)

The interlayer slip corresponds to the difference between axial displacements of
embedded sections and of the encasing beam at the interface which is expressed
as:

i = Ue — Ug; — h; 0, i=1,2,---.,n (A.5)

where h; = ys — y. is the distance between centroid of the embedded sections and

the encasing element; ¢ represents each embedded section.

A.1.2 Equilibrium

The equilibrium equations are derived by considering the free body diagrams of
a differential elements dx located at an arbitrary position x (see in the
hybrid beam. The interface connection between the embedded sections and the
encasing beam is modeled by continuously distributed spring. The equilibrium

conditions result in the following set of equations:

asti = _Dsci7 Z = 1,2,"' ,n (AG)
anNc = Z Dscj (A?)
j=1
0.M ==V = " Dy, (A.8)
j=1

where
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Figure A.1: Kinematic of shear-rigid hybrid beam-column.

-0le=d'e /da!
- hi = Ysi — Yo (i = 1,2,---n) is the distance between the centroid of the k"

embedded section and the one of encasing beam cross-section;

99,299,
(2

- N;, Vi, M; (i = s1,s2,- - sn, c) are the axial forces, the shear forces and bending

moments at the centroid of component
Dy (i = 1,2,---n) are the slip forces per unit length at the interface of the

k" embedded section and the encasing beam;

- V' =>"V; is the sum of shear forces of each component;

- M =" M; is the sum of bending moments at centroid of each component.
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Figure A.2: Free body diagrams of an element at an arbitrary position z.

A.1.3 Constitutive relations

The generalized stress-strain relationships are simply obtained by integrating the
appropriate uniaxial constitutive model over each cross-section. For a linear elas-

tic material, these relationships lead to the following set of equations:

N; = / cdA; = (FA); ¢, i =sl,82,---,8n,c (A.9)
A4

3

A

1

where
- (FA); = E; A; is the axial stiffness of each component;
- (EI); = E; I; is the flexural stiffness of each component.

The parameters F;, A; and I; are respectively the elastic modulus, the area and

the second moment of area of the component ””. The above relations must

be completed by the relationship between the shear bond force D,., and the
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interlayer slip gx. The assumption of linear and continuous shear connection can
be expressed by the following simple relationship between interface slips and shear

flow:
Dsci = ksci 9i, i = 1727 N (All)

where k.. is the shear bond stiffness.

A.2 Derivation of the governing equations

The relationships introduced in Section are now combined to derive the equa-
tions governing the behavior of a hybrid beam with partial interaction. Combining
the kinematic relations Eqgs. with the elastic law Egs. and
inserting the outcome into the equilibrium equations Eqgs. (A.6HA.8) produce the

following set of differential equations:

(BA)gi O2ug = —ksei i (A.12)
(EA)C ag%uc = Z kscj g; (A].?))
j=1
(EDo v ==V (2) =) kot g1 b (A.14)
k=1

The expression (E1)q stands for the sum of the flexural stiffness of each component
ie. (EJ)O — Y, Byl +E. Ic>. Taking the derivative of the slip distribution
relationand making use of Egs. , one arrives at the following
coupled second-order system of differential equations where the unknown variables

are the slip distribution at each interface:

V(z)
g — Ag = h A.15
&= A8 = 5y, (A.15)
The components of the matrix A are given by
1 h?

A = ke + } A.16
b s A0

B 1 hihy
Akl - kscl [(EA)C + (EI)0:| <A17>
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in which,
1 1 n 1
(EA)ser  (FA). (EA)g’

A diagonalization of the matrix A will uncouple the above system of differential

equations [Eq. (A.15) and produce a set of n second-order ordinary equations.
Let A, and A, respectively be the matrix collecting the eigenvectors and the

kl=1,2-n (A.18)

eigenvalues of A. Then, we have the following relationship:
Ay = ATAA,. (A.19)

Subsequently, we insert the vector g obtained by pre-multiplying the vector g by

the matrix A,

g=A\g (A.20)

into and make use of [Eq. (A.19)| to produce an uncoupled differential

equation system:

h (A.21)

where h = A;'h which gives the ordinary differential equation in n variables g

as follow:

gi = Co 4 eV 4 Co; e~V P, 1=1,2,---.n (A.22)

A.3 Closed-form solution of the governing equa-

tions

In this section, we provide only the analytical solution of the governing equations
for the general case of the interface connection (which means that 0 < kg <
o0). The governing differential equation involves the single unknown variable
g. It is noteworthy that the exact solution of the governing differential equation
[Eq. (A.22)]is contingent upon the distribution of the shear force V(z). In order to
simplify the development of the solution, we assume that the external distributed

load on the element is constant. It results that the distribution of shear force is
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linear, following the overall transverse equilibrium equation:
V(z) = —pya + Conye (A.23)

where (9, ¢ is the shear force at the left hand side of the beam and is considered
to be a constant of integration. The kinematic variables will be known while gy, is
found by solving the differential equation . Let Py(z) be the particular
solution for non homogeneous differential equation Hence, the general

solution of g, is given by

e For \; >0
gi = Czi—1€mx + CQie_mx + Pi(x), =12, .n (A.24)
e For >‘z <0

G; = Cyi_1 cos \/—\ix + Co;sin /= Nz + Pi(x), i=1,2,---,n (A.25)
e For \; =0

Gi = Coi_1 + Coiz + Py(x), i=1,2,---,n (A.26)

The particular solution of [Eq. (A.22)|is given by:

e For \; #0
PA) = (—=Comse £ pyt) —1 . = 1,2 (A.27)
X)) = 2n+6 by )\k(EI)O’ t=1,2, y .
e For )\ZZO
x? x3 h;
P, = — = | — , =1,2,--- A2
z(x) <O2n+62 py6) (EI)O’ 1 ) 4y , ( 8)

All g; are collected in a vector so the analytical solution can be written in a matrix

form as follow:

g =X;C+7; (A.29)
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with
E=[g1 G2 Gnl" (A.30)
and
C=[C,Cy - Chnig]" (A.31)

The components of matrix X; and Zj are respectively dependent on eigenvalues
of A and external load p,. In case A is positive definite i.e. A\; > 0, we obtain the

following expression of X; and Z; with ag, = v/ Ay.

hy
eMT el 0 0 0 0 00000 ————
A (ET)o
0 0 e e~ 0 0 00000 i
6 2T 6 a2 e .
X; = Ao (ET)o
0 0 0 0 nT o=@ () () 0 0 0 — L
i © (BT,
(A.32)
and
pyx [hy h h1"
Y 1 2 n
= O B ) A.33
Y (EDo [N A A (4.33)
Substituting [Eq. (A.30)|into [Eq. (A.20), one gets
g=X,C+7Z, (A.34)
in which
Xg = AUX§, Zg = AUZ§ (A35)

A.3.1 Determination of displacement fields

We use the relations of kinematic variables in function of interlayer slip developed
in to determine the displacement fields. Inserting the expression of
shear force and [Eq. (A.34)into [Eq. (A.14), one obtains:

1 Dy T
OPv=———Ih,16C — xX,C + (Ey—])o — XZ,

BT, (A.36)
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where

1
= ——— [Miksa haksea -+~ hnksen A.37
X = gy, ik hakic | (A.37)

The curvature, rotation and deflexion can be derived by consequently once, twice

and thrice integrating [Eq. (A.36)]

Kk =X,C+ 7, (A.38)
6 — X,C + 7, (A.39)
v=X,C+ 7, (A.40)
where
1
XH = / [_mIanFG — XXQ(ZE) dx + H2n+1 <A41>
Xg = /X,{dl' + ]12n+2 (A42>
Xv = /X@dl‘ + H2n+3 <A43>
Ty = / Z,.dx (A.44)
Dy
Z, = —x4Z,| d A4
[ L, ] o (A4)
Z, = / Zyda (A.46)
Topsr =[00---000---010000 0] (A.47)
Topso =[00---000---001000 0] (A.48)
Iop13=100---000---000100 0] (A.49)
Topss =[00---000---000010 0] (A.50)
Topis =[00---000---0000010] (A51)
Topsg =[00---000---000000 1] (A.52)

The axial displacement of concrete element can be determined from [Eq. (A.13)|
It gives

1
2 = — 0.
axuc - (EA)C kscl kch kscn] g <A53>
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Integrating twice [Eq. (A.53), one gets

u. = X, C+ Z,, (A.54)

where
1
Xy, = / / ((EA) [kscl koo - kscn] Xg) d:}j] dr + xlopig + Iopas
(A.55)

T = / / (ﬁ [/gsd koo - kn] zg) da:] dz (A.56)

The axial displacements of steel section can be determined by using the interlayer

slip [Eq- (A.5]

Ug; :uc—gi—hzﬂ, 1=1,2,---n (A-57)

Introducing [Eq. (A.34)| [Eq. (A.39)[and [Eq. (A.54)|into |[Eq. (A.57)|leads to

Uugi = X, C+ 2y, (A.58)

where
Xusi = Xuc - Xgi - thG (A59)
Ly = Ly, — Lg — hiZy (A.60)

A.3.2 Determination of internal forces

Once the displacement fields are defined, one can use the linear elastic relationship
(Eq. (A.9)HEq. (A.10)]) to obtain the nodal forces.

Ni=Yn,C+Ry,, i=12-n (A.61)
N.=YnC+ Ry, (A.62)
M =Y,C+ Ry (A.63)

V =Y,C+ Ry (A.64)
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where

YN,- = EA)siaa:Xusia 1= 17 2a T

(
(
(
Yy =1Ibne
(
(
(

A.4 Exact stiffness matrix

— EA)ska:vZusk:7 k= 17 27 T

The direct stiffness method is used to derive the exact stiffness of the hybrid beam

with n embedded sections. It can be obtained starting from the general expres-

sions of the internal force and displacement fields. Let a hybrid beam element of

length L be considered. Since the same transverse displacement is assumed, this
element has (2n + 6) degrees of freedom, see [Fig. A.3] Applying the kinematic

boundary conditions at z = 0 and x = L leads to the relationship between the

vector of constants of integration C and the vector of nodal displacements q as

follows:
q=XC+7Z (A.73)

where,
a=[us10 " U0 Vo G0 Usi,p 0 Uer Ver Or (A.74)
X=[Xga0 -+ Xgo Xar - Xor]" (A.75)
Z=1[Zao - Zoo Zar - Zor]" (A.76)
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_Ns1,ov usl,o‘ ‘ Nsl,L' Usy
N0 Uggo] | Ny Uy
_Nc,OY uc,O _\_/ovllo _______________ V |__| Vhég—,\hb uc,L
Mo, 6, M., 6
_Nsn,O’ usn,O Nsn.L' usn,L
—x‘p ——————————————————— |

L
<t =

Figure A.3: Nodal forces and displacements of shear-rigid hybrid beam element.

The nodal displacements are independent, so the matrix X is reversible. Thus,

the constants C; are obtained in function of the nodal displacements g;.
C=X"'q-2) (A.77)

The nodal forces can be expressed in compact form as:

Q=YC+R (A.78)
where,
Q=[-Nao -+ —Neg —Vo =My Nayg -+ Nep Vi Mp]" (A.79)
Y = [ _YNs1,o _YNc,o _YVO _YMO YNsl,L YNC,L YVL YML ]T
(A.SO)
R = [ _RNsl,o e _RNc,o _RVO _RMO RNSI,L RNC,L RVL RML ]T
(A.81)

Introducing [Eq. (A.77)|in [Eq. (A.78)| one obtains:

Kq=Q+Q, (A.82)

where

K=YX" (A.83)
represents the exact stiffness of the element and
Q,=KZ-R (A.84)

represents the nodal force due to the uniform external load p,.
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A.5 Treatment on boundary conditions

Due to the choice of each cross-section centroid as the degree of liberty, the bound-
ary conditions require a special treatment in the case concentrated external loads
are applied elsewhere on the cross-section. Let us first consider that prescribed
displacement or rotation are applied at node m; on the encasing beam cross-
section with the distance d,, from its centroid node ¢;. This situation requires a

rigid link between the nodes ¢; and m; and a change of degrees of freedom from

q to p with

a=1[ U0 - Ueo Vo G0 Usip - Uep VL GL]T (A.85)
and

P=[U10 " Uno Umo 00 Usp ‘0 Uer Ver Op " (A.86)

The displacements of the node m; can easily be obtained as
Unmo | _ | Ueo N cosby—1 —sinby, — sin fy i (A.87)
U 0 o sin 6, cosfy — 1 cos By
which gives the following expression for small rotation:
m c O _9 — si
B0 ey ° o | (A.88)
Um,0 o 0y O cos [y
Differentiation of gives
Uy U
[ “70]:[ “’Ol_lcosﬁoldmaeo (A.89)

5Um70 5’00 sin 60

The internal force vector Q and tangent stiffness matrix K are consistent with

the displacement vector q such that
0Q = Kiq (A.90)
Consider now that q is related to the displacement vector p through

0q =B, 0p (A.91)
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Then, by equating the virtual work in both systems, the internal force vector P

consistent with p is defined by

sp'P=0q"Q (A.92)
which, using [Eq. (A.91)] gives
T
P-B!Q (A.93)

where the non zero terms in the matrix B, are

By = 1 k=12 2n+6 (A.94)
qu (n+1,n+3) — COS ﬁO A (A95)
qu (n+2,n+3) — sin ﬁO dm (A96)

A.6 Numerical application

A.6.1 Simply supported sandwich beam subjected to uni-
formly distributed load

A simply supported sandwich beam of length 4, 000 mm subjected to a uniformly
distributed load of identity p, = 10 kN/m, see has been modeled using
the direct stiffness approach within one element. The cross-section of the beam
consists of a concrete core of rectangular cross-section having a width of 100 mm
and a depth of 200 mm, reinforced by two steel plates of 20 mm thickness attached
to the top and bottom surfaces of the concrete. The composite action between the
concrete core and the steel plates is provided by shear connectors. The deforma-
bility of those shear connectors postulates the partial shear interaction behavior
of the sandwich beam. The elastic modulus of concrete and steel plates consid-
ered in this example are respectively E,. = 34.5 kN/mm? and E, = 200 kN/mm?.

The distributions of the interlayer slips are shown in using shear con-
nector stiffness kg, = 40 MPa and k..o = 5 MPa respectively at top and bottom
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g=10kN/m
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Figure A.4: Simply supported sandwich beam 4 m long subjected to a uniformly
distributed load.
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Coordinate along the beam length [m]

Figure A.5: Distributions of interlayer slips along the beam length.

surface of concrete core. An excellent agreement with the results of [42] is ob-
tained. Furthermore, the effect of the degree of interaction has been investigated
by considering different levels of the shear connector stiffness expressed in terms

of dimensionless parameters k; and ky given by the following expression:

1 h2
. v\ i=12 A.97
\/ (<EA>SC@- <Ef>o) (4.97)

where the subscript ”i = 1” represents the interface at top surface of concrete and

”i = 27 for the one at bottom surface. [Fig. A.6and [Fig. A.7| presents respectively

the slip distributions at top and at bottom interface of the concrete core along

the beam for a variety of dimensionless stiffness of the shear connections. As
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expected, the interlayer slip decreases when its corresponding stiffness increases.
The vertical displacement for all cases of shear connector stiffness is depicted in
[Fig. A.§ It can be seen that for the cases (k; = 1; ky = 50) and (k; = 50;
ks = 1), the vertical displacements for each case are shown in the same curve.
This is due to the symmetry of the system. The vertical displacement increases

virtually with the decreasing connector stiffness.

—O0— k=L k=1
—— k=1 k=50
—o— k=50; k=1
—+— k;=100; k,=100

Interlayer slip 9 [mm]

_1'l' | | | | | | |
0 0.5 1 15 2 2.5 3 3.5 4

Coordinate along the beam length [m]

Figure A.6: Interlayer slip distribution for various shear connection stiffness.

—o0— ki k=1

1| —8— k=1 k=50
—0—Kk=50; k=1
—— k1= 100; k2= 100

Interlayer slip g [mm]

[~ | |
JO 0.5 1 1.5 2 2.5 3 3.5 4
Coordinate along the beam length [m]

Figure A.7: Interlayer slip distribution for various shear connection stiffness.
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|
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0.5 1 15 2 25 3 35 4
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Figure A.8: Vertical displacement for various shear connection stiffness.

A.6.2 Hybrid column subjected to shear force

For this example, the analysis of elastic behavior of the concrete column with
length of 10 m, having a width of 200 mm and a depth of 400 mm, reinforced
by two steel profiles HEB100, see [Fig. A.9] is performed using the direct stiffness
approach within two elements based on the formulation developed in Section [A.5]
The column is subjected to a lateral load of 20 kN and compression axial force
of 200 kN at free-end. The axial force is evenly distributed to concrete and steel
sections through theirs axial stiffness. Two cases of the intermediate support are
considered: one at the centroid of the concrete section (case A) and another one
at the (outside) surface of the concrete section (case B). For case B, the eccentric
node where the support is situated is linked rigidly to concrete node at centroid
of the concrete cross-section. The composite behavior of the column in partial
shear interaction is postulated by the deformability of shear connectors placed at
the interfaces between those two materials. The elastic modulus of concrete and
steel profiles considered in this example are respectively £, = 34.5 kN/mm? and
Es, =210 kN/ mm? and the shear connector stiffness kq.y = koo = 3.87 MPa are
used at both interfaces.  One can observe from [Fig. A.10]that the position of the
intermediate support influences the lateral deflection of the column. The column

deflects more in case B where the support is located at the outside surface of the
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T T |0.20m
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Figure A.9: Hybrid column with intermediate support.
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Figure A.10: Lateral displacement along the column length for each case.

cross-section. Nevertheless, the rotation and interlayer slip go at free end in case
B are reduced significantly comparing to case A, see respectively and
Fig. A.12, This is due to the change of axial displacement of concrete component
while the intermediate support is placed at outside surface, see [Fig. A3
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Figure A.11: Rotation along the column length for each case.
2
= CaseA:g - — — CaseA:g —— CaseB:g - - — CaseB:g
1.5
E
[%2])
2
@
9]
>
©
8
£
-1 | | | | 1 | | | |
0 1 2 3 4 5 6 7 8 9 10
Coordinate along the column length [m]
Figure A.12: Interlayer slips along the column length for each case.
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Figure A.13: Axial displacement of concrete component along the column length

for each case.

Pisey Keo 181



A. GEOMETRICALLY ELASTIC LINEAR SHEAR-RIGID
HYBRID BEAM MODEL

Pisey Keo 182



(Geometrically nonlinear

shear-rigid hybrid beam model

Kokok

B.1 Introduction

In order to analyze the behavior of slender hybrid columns, a planar beam-column
finite element formulation was developed based on Euler-Bernoulli kinematics and
fiber cross-section discretisation. The co-rotational approach is adopted to take
into account the geometry nonlinearity of the problem. The developed FE model
is capable to consider the following aspects: a cross-section with more than one
steel section in partial interaction; geometrical and material nonlinearities; initial
imperfection; residual stresses; and concrete confinement. For the sake of clarity
the FE formulation is presented for the case of hybrid column with two encased
steel profiles. However, the concepts are also applicable to general case of several

encased steel profiles. A more detailed deduction can be found in [149].

Let us consider a planar element with two steel sections fully encased in concrete
and including shear connectors at the contact interface uniformly distributed
along the element length. It is assumed that the interlayer slip can occur at the
interface but there is no uplift. For the present case, the element has 10 global

degrees of freedom in the fixed global coordinate system: global displacements
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and rotation of the nodes (c; and ¢;) and slips (gx;, gxj) between the steel node s,
and concrete node c; ;. Since all component are bent according to Euler-Bernoulli
kinematics, the rotation of all components (steel sections and concrete section)
at the end nodes are equal and that the slips (gy;, gx;) are perpendicular to the

end cross-sections. The vector of global nodal displacements is defined by
P, = [Uci Vei 0; G1i 92i Uej Vej 05 g1j 92j] (B.1)

Due to the presence of the three rigid body modes in the global coordinate system,
the corresponding element stiffness matrix is singular. Therefore, the linear local
element is derived in the local system (x;,y;) without rigid body modes. The
latter translates and rotates with the element as the deformation proceeds. In
this local system, the element has seven degrees of freedom and the vector of local

displacements is defined as

Py = [Us1; Uspi O; TUg1j Uszj Uej 0] (B.2)

B.2 Co-rotational formulation

The origin of the local coordinate system is taken at node ¢; and the x;-axis of
the local coordinate system is defined by the line connecting the nodes ¢; and c;.
These nodes are chosen to be at the centroid of concrete section in order to easily
derive the kinematic relationships between the global nodal displacements and
the local ones. The y;-axis is perpendicular to the z;-axis so that the result is a
right-handed orthogonal coordinate system. The motion of the element from the
original undeformed configuration to the actual deformed one can thus be sepa-
rated in two parts. The first one, which corresponds to the rigid motion of the
local frame, is described by the translation of the node ¢; and the rigid rotation
of the axes. The deformational part of the motion is always small in the local

coordinate system and a geometrical linear element will be used.

According to the notations defined in the components of the local

Pisey Keo 184



B.2 Co-rotational formulation

Si

Sai Saj

¥ <

Figure B.1: Degrees of freedom and co-rotational kinematics.

displacement vector p; can be computed from those of the global vector p, as

Uej =l — 1, (B.3)
0, =0, + B, — 8 (B.4)
0;=0;+8,—p (B.5)
Uski = Gi; cos0; — i 0; with k=1 or 2 (B.6)
askj = 0gxj COS éj — hk H_j with k=1 or 2 (B 7)
where
1
cos 3, = T (Tej — Tei) (B.8)
) 1
sin ﬁo = l_ (ycj - yci) (B9>
1
cos 3 = = (@ej + Uej — T — Uc;) (B.10)
1
Sil’lﬁ = l_ (ycj + Vej — Yei — Uci) <B11>
and [, and [, being the element length in initial and deformed configuration,
respectively:
lO = \/(ij - $ci)2 + (ycj - yci)2 (B.12)
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ln - \/<ij + ucj — Tej — uci)z + (ycj + ch — Yei — Uci)2 (B13)

As can be seen from Egs. (B.3) to (B.7)), the local displacement vector p; can be

expressed as functions of the global one pg, i.e.:

P = pi(Py) (B.14)

Then, p; is used to compute the internal force vector f; and the tangent
stiffness matrix K; in the local system. Note that f; and K; depend only on the
definition of the local strains and not on the particular form of Eq. (B.14). The
transformation matrix By, between the local and global displacements is defined
by:

5pl = Blgépg (B15)

and is obtained by differentiation of Eq. (B.14]). The global internal force vector
f, and the global tangent stiffness matrix K, consistent with p,, can be obtained

by equating the internal virtual work in both the global and the local system, i.e.:

O(BLf)
f, = B,f K, = B,K,B;, + H,, Hyy = 8# (B.16)
Dy £
B
c; co; cAi; cAg; cA1j c
T 7l e A et A e A
Aii Aoi 1 0 0 0 0
—cos(f;—a) 0 0 0 0 0 0
BT . 0 —cos(0;—a) 0 0 0 0 0 B17
ln ln ln ln In l
S e
0 0 0 Aij ANy 01
0 0 0 —cos(0;—a) 0 0 0
i 0 0 0 0 —cos(f;—a) 0 0 i
w
ng_ ! +CU27’T+U.)3{11;+W3tr21;-+w§,trll;+w6t;+W7Ig+WSIg (B18)
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where

w1 = [51 &2 0 —sin(0;—a) fi(1) —sin(0i—a) fi(2) =& —€2 0 —sin(0;—a) fi(4) —sin(0;—a) fi1(5)]

wy = |
wy=[—F
wy=[—¢
ws =] —¢
we = —=
wr=[0 0
ws=1[0 0
=10 0
=10 0
=10 0
=100
=[s

[
[
[
[
[
[ -
[
[

C
ln

0 sin(6; —a) fi(1) sin(6;
000 O0O0 0 sin(¢;—a)fi(4

00 & -
00 = -
00 2 —
00 2

ln

00 0]A(1)
00 0]/i(2)
10 0]A(4)
10 0]A(G)
—a)fi(2) 00 0 0 0]
) sin(f; —a) fi(5) ]

g1icos(f;—a) sin(f;—a) 00 0O00O0 O]—glicos(ei—a)ﬁ

g2 cos(0;—a) 0 sin(6; —a) 0O 0 00 O]—ggicos(&-—a)i

In

0 00O0O0 g1j cos(fj—a) sin(6;—a) O]—gljcos(ejfa)i

00000 g2j cos(0;—c) 0 Sin(@i—a)]

—c 0 0 0 —s ¢

—s 0 0 0 ¢ s
001 0O0O0O0O 0
0O 000OO0O0OTU 01

0

0
0
0

gz cos(0j—a) =
0 0]

0 0]

0]

0]

(B.19

The choice of the slips as the degrees of freedom is indispensable for the robust-
ness of the FE formulation. Due to this choice (see [Eq. (B.1)) the boundary

conditions require a special treatment in case external concentrated loads are not

applied to the node located at the centroid of the column cross-section (origin of

the local frame) but somewhere else on the cross-section.

Let us consider (see [Fig. B.2)) that prescribed displacement or rotation is ap-

plied at node m;.

This situation requires a rigid link between the nodes c; and
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Figure B.2: Eccentric nodes in co-rotational frame.

m; and a change of degrees of freedom from py to p,, with
P = [Umi Vmi O Gu 92 U Ve 05 g1 go5 |7 (B.35)

The internal force vector and tangent stiffness matrix consistent with p,, are then

obtained by using the transformation matrix Bg,,. This gives

0pg =By 6pm £, =B,,f, K, =B K/B,, +H,, (B.36)

with
Bgm(1,3) = COS(ﬁO + ‘91) dm (B38)
Byn2s = sin(f, +6;)dn (B.39)

and the only non zero term in the matrix Hg,, is

Hy, (33 = —sin(Bo + 0;) du fo(1) + cos(B, + 0;) dm [4(2) (B.40)

B.3 Local displacement-based element

The geometrically linear element is derived in the local system (z;, ;). The local

element has ten degrees of freedom (see [Fig. B.3). The transverse displacement v
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is approximated using cubic Hermite interpolations. In order to avoid the curva-
ture locking, three internal nodes (one for each component) are added in order to
use quadratic shape function for axial displacement interpolation. However, for
saving the calculation time, three degrees of freedom corresponding to the internal
nodes will be statically condensed out thereafter to obtain the local displacement

vector containing only the degrees of freedom at the element ends. The material

Figure B.3: Degree of freedoms of local linear element with two encased steel

profiles.

e
Q |
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(a) Hybrid column with three encased (b) Mega column with four encased

steel profiles. steel profiles.

Figure B.4: Fiber discretization of sections.

non-linearity is taken into account by adopting the distributed plasticity model
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with fiber section discretization (see |Fig. B.4)). Each fiber is fed with a uniaxial

constitutive model.

B.4 Comparison against the experimental re-

sults

To the best of our knowledge, there is no available experimental results for buck-
ling test on RC column with multi-embedded steel profiles (hybrid columns) in
technical literature. Nevertheless, a couple of experimental compression-bending
tests on steel-concrete shear walls with vertical steel encased profiles was con-
ducted by Dan et al. [§] and by Zhou et al. [7]. The dimensions of the tested
specimens are such that they cannot be considered as slender columns. There-
fore, the developed finite element model is validated by comparing its predic-
tion against ten test results of eccentrically loaded slender composite columns
[150, 151] and six test results of short composite columns [152]. For the sake
of clarity, in this study we denote seven specimens tested by Al-Shahari et al.
[150] as CESC1-CESC?7, three specimens tested by Morino et al. [I51] as CESCS-
CESC10, and six concrete encased steel composite short columns tested by Chen
and Yeh [152] as SCESC1-SCESC6. The geometrical and material properties of

the above-mentioned specimens are summarized in Table :

All composite column specimens are pinned at both ends. The columns CESC1-
CESC10 are loaded with the same eccentricity at both extremities. The concrete
region is subdivided into three parts as suggested by Mirza and Skrabek [153].
The highly confined concrete zone is taken from the web of the steel section to
each flange, and the partially confined concrete zone is from the parabolic border
of the highly confined concrete zone to the centerlines of the transverse rein-
forcement as illustrated in [Fig. B.5 The confinement factor for highly confined

concrete varied from 1.10 to 1.97 and for partially confined concrete varied from
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Table B.1: Specimen dimensions and material properties.

Specimen  BxD kL Structural Long. e/D fe Iy fs
(mm)  (mm) steel bar (MPa) (MPa) (MPa)

CESC1  230x230 2000 H100x96x5x8 4912 0.3 20.5* 337 459
CESC2  230x230 2000 H100%x96x5%x8 4912 0.3 13.7® 337 459
CESC3  230x230 2000 H140x133x5.5x8 4912 0.3  20.5% 307 459
CESC4  230x230 2000 H140x133x5.5x8 4912 0.3  28.2° 307 459
CESC5  230x230 3000 H140x133x5.5x8 4912 0.3  28.2° 307 459
CESC6  230x230 3000 H100x96x5x8 4912 0.17  20.5% 337 459
CESCT7  230x230 3000 H100x96x5x8 4012 017  13.7° 337 459

CESC8  160x160 960 H100x100x6x8 496 0.25 21.1* 345 460
CESCY9  160x160 2400  H100x100x6x8 496 0.25  23.4* 345 460
CESC10 160x160 3600 H100x100x6x8 496  0.25 23.3* 345 460

SCESC1 280x280 1200 H150x150x7x10 12616 0.0  29.5° 296 350
SCESC2 280x280 1200 H150x150x7x10 12916 0.0  28.1° 296 350
SCESC3  280x280 1200 H150x150x7x10 12916 0.0  29.8" 296 350
SCESC4  280x280 1200 H150x75x5x7 12416 0.0  28.1° 303 350
SCESC5  280x280 1200 H150x75x5x7 12416 0.0  26.4° 303 350
SCESC6  280x280 1200 H150x75x5x7 12416 0.0  29.8° 303 350

#Concrete cube strength

b Concrete cylinder strength

Longitudinal bar ~ Steel section Stirrup
'aE
Unconfined \Q ® | ¥ @ @ @ ® |7
concrete
T %) ¢
Axis of bending A A
. ) o
Partially |
confined
concrete @) o N @ @ @ (] A,
v 4
< <y <y “Cy>
«-—— B> «— B ———»
(a) Specimen CESC1-CESCI10. (b) Specimen SCESC1-SCESCE.

Figure B.5: Specimen dimension and regions for unconfined, partially confined

and highly confined concrete.

1.08 to 1.50 depending on spacing of the stirrups, as given by [154]. The concrete

outside the ties is not confined. The effect of residual stresses in structural steel
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BEAM MODEL

is included and the initial imperfection is taken equal to lo/1000 in which [y is

the effective length.

For all numerical simulations, the modified concrete stress-strain model proposed
by Kent and Park [87] in compression is adopted. For concrete in tension, linear
stress-strain relationship up to tensile strength and linear tensile softening with
fracture energy 0.12 N/mm are assumed. The stress-strain relationships of struc-
tural steel recommended by EC3 [58] and reinforcing bar recommended by EC2
[11] are adopted. All test specimens are modeled with the developed FE model
using 6 elements. In[Table B.2] the predictions of the model are compared against
test results. A good agreement between numerical and experimental results can
be observed. Indeed, the mean value of numerical-experimental load capacity ra-
tio for sixteen cases is very close to 1 and the corresponding standard deviation is
only 6%. Furthermore, it is worth to mention that, in most cases, the FE model

predictions are on the safe side.
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B.4 Comparison against the experimental results

Table B.2: Comparison between tests and finite element results.

Specimen A Preg [kN]  Prpg [kN]  Prg/Preg
CESC1[I50] 0.36 654 641 0.98
CESC2[150] 0.34 558 553 0.99
CESC3[150] 0.34 962 813 0.85
CESCA[I50] 0.36 949 924 0.97
CESC5[I50]  0.55 900 822 0.91
CESC6[150] 0.54 813 764 0.94
CESCT7[150] 0.51 704 646 0.92
CESC8[I51] 0.25 740 600 0.81
CESCI9[I51] 0.63 504 493 0.98
CESC10[151] 0.95 412 378 0.92
SCESCI[I52] 0.19 4220 4261 1.01
SCESC2[152] 0.19 4228 4239 1.00
SCESC3[I52] 0.19 4399 4641 1.06
SCESCA4[152] 0.19 3788 3606 0.95
SCESC5[152] 0.18 3683 3615 0.98
SCESC6[152] 0.19 3893 3873 0.99
Mean - - - 0.95
Cov - - - 0.06
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Simple design tool - HBCol

Kokok

C.1 Description of the program

A freeware program accessible at http://hybridcolumnstruc.weebly.com/, HB-
Col is a simple design tool capable to perform the nonlinear analysis of hybrid
column reinforced by several embedded steel profiles subjected to combined axial
load and uni-axial bending moment. The users are also able to carry out a new
design method proposed by the author to accurately predict the ultimate load of
hybrid columns. Moreover, a nonlinear analysis of reinforced concrete column is
also available by choosing "Without Steel Section” in Steel Section Panel/Choose

Box.

In this program, co-rotational framework is used for a large displacement anal-
ysis. The advantage of using the co-rotational approach is that the geometrical
linear finite element formulation can be reused and automatically be transformed
into geometrical nonlinear formulation. In local frame, the hybrid column with
three encased steel profiles is divided into 4 sub-elements: 3 for structural steel
profiles and 1 for reinforced concrete. This division leads to 16 degrees of free-
dom for one element where the internal nodes for axial displacement have been
introduced to avoid shear locking problem. Eurocode 2 and 4 material laws for

steel profile, rebar as well as concrete are adopted to take into account the non-
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r_ 0l
[4] HBCal ESRic™ >
— Column Dimension — Steel Section
Width (B): | 0.25| m |HE 1008 - | A
Depth (H}: | 0.8/ m — Number of steel profiles—
Hight (L): | 6/ m () 1 stee! profile
Eccentriciy (g): | DEHZ m () 2 steel profiles
End ratio {rm}: | 1_05 @ 3 steel profies u
— Reinforcament . — Orientaticn
Detieer O par: L0022 (1 1 l-orientation
Number of rebars: 8 =2
- @ H-orientation
0.5
y | il 02
0.3800 = — Posttion of steel profiles from C.G of concrete section [m]l—
0.3000 2] 1 [ 2 ] 3 |
01300 o2z00 R -0.2800
0.1300 .
Steel sections defined by fibres |
— Materials
Concrete; fck:g 35 | MPa phief: Lo R T = .
fom: 43 MPa gci| 15 max. incre. steps: 1000 __Pht L
fed: 2333 WPa Ecd 284 GPa max. incre. disp.: .04 mm
Steet fy 355 |WPa  oa| 10 | imperfection (w0): L/| 200
Rebar: fs: 500 | MPa  gsi| 115 num. of ele; | 4
G . Simplified KM-N
‘ :;_ﬂ;'—{’;_:}:'ﬂ;m“ Developed by P. Keo, pisey. keo@insa-rennes.fr Tk
;‘:';",'ﬂ!:'u 20 avenue des buttes de coesmes, 35708 Rennes, France
LS P

Figure C.1: Interface of HBCol program.

linear material effect. The residual stresses in steel profiles are considered. In

this first version, the slips between steel and concrete component at extremities

of the member are constraint to zero and the full interaction is assumed by pro-

viding relatively high rigidity of the connector. The relatively high rigidity of the

connector is determined by:

Eon 4y
bl

where E,,,, Ay, b and [ are respectively elastic modulus of concrete, area of cross-

ksc = (Cl)

section, width of cross-section and column height.

The new design method is developed within the context of Eurocodes, i.e. moment
magnification approach. In the new method, new expressions for the correction
factors (for the determination of effective flexural stiffness I of the column) are

proposed, see Section [6.4.2] in order to take into account the creep effect and the
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C.2 Input data

effect of plastification of steel profiles.

C.2 Input data

The program requires some basic input data like geometry of the column, the
arrangement of reinforcing bar, steel section, material properties and parameters
for the analysis, see [Fig. C.I] Besides, the user may also define steel shapes by
fibers for the simplified analysis. However, the steel shapes defined by fibers are

not considered in the nonlinear FE analysis.

l@ msgcal | El_l_ﬂ:h

Imposed displacement step: 530 conv. 0.00411482 iter: 1
There is a crushing of concrete...

Figure C.2: Message box.

[£] Figure 1 (=] B [z

File

Force-displacement curve

8000

7000

6000

5000

4000

Force [kM]

3000

2000

1000

0
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
Displacement [m]

Figure C.3: Load-displacement curve.
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"Bl Figure 11 =B e
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Figure C.4: M-N interaction.

C.3 Result of analysis

Whilst the nonlinear FE analysis is performed, the message box is ap-
peared stating that the analysis is being executed. The nonlinear FE analysis
is terminated if the non convergence is occurred or the imposed displacement

step reaches a certain number after the peak load. Then, the load-displacement

curve is provided, see |[Fig. C.3| [Fig. C.4] shows the result of simplified method.

Two curves are provided. The black one corresponds to the plastic resistance of
hybrid/rc cross-section using pivot method. The blue one represents the M-N

interaction curve provided by the new design method.

C.4 Report of analysis

When the analysis of hybrid column has been performed, the user is able to

generate the report file given in the form of html format.
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Résumé en francais

Kokok

A short summary of the thesis

i french.

8.1 Introduction

Dans les immeubles de grande hauteur en béton armé, les poteaux et les murs sont
souvent renforcés par plusieurs profils acier noyés dans le béton car le renforce-
ment traditionnel par les barres d’armature n’est plus suffisant. Ces éléments,
qualifiés d’hybrides, ne peuvent étre traités par les reglements relatifs aux struc-
tures en béton armé tels que I'Eurocode 2 [11], ni par les reglements dédiés aux
structures mixtes comme I'Eurocode 4 [12] qui couvrent le cas des éléments con-

tenant un seul profil métallique.

Des lors, bien que de tels éléments soient utilisés régulierement, les praticiens
ne disposent d’aucun reglement applicable pour leur dimensionnement. Le projet
de recherche Européen RFCS SMART COmposite COnstruction a pour objectif
de combler ce vide, par la rédaction d’un guide de dimensionnement pour les
éléments hybrides en s’appuyant sur une recherche théorique et expérimentale.
Le travail de cette these s’inscrit dans ce projet d’envergure et apporte une con-

tribution au volet théorique et numérique de cette recherche. Ce travail a but
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de développer un outil de simulation et une méthode de dimensionnement dédiée
aux poteaux hybride soumis & un chargement combiné (charge critique). Pour
atteindre cet objectif, nous développons des modeles théoriques et numériques de

complexité croissante.

Dans la premiére partie de cette these, les équations fondamentales (cinéma-
tique, équilibre, comportement) d’une poutre hybride élastique en l'interaction
partielle sont présentées. Les équations du probleme en déplacement sont dévelop-
pées et résolues par une technique de décomposition en valeurs propres. Une at-
tention particuliere est apportée a la détermination des constantes d’intégration.
La solution analytique ainsi obtenue sert a construire la matrice de raideur ex-

acte pour I'analyse élastique linéaire d’une poutre hybride en interaction partielle.

Dans la seconde partie de cette these, nous proposons une nouvelle formulation
élément fini pour le calcul non linéaire en grande déplacement d'un poteau hy-
bride en tenant compte des glissements qui se produisent a chaque interface acier-
béton. Pour ce faire, nous considérons I'approche co-rotationnelle dans laquelle
le mouvement de I’élément se décompose en un mouvement de corps rigide et en
une partie déformable décrite dans le repere co-rotationnel local qui se déplace
de maniere continue et tourne avec 1’élément mais qui ne se déforme pas avec
celui-ci. Cette méthode bien connue permet de transposer en non-linéaire, les
éléments développés dans un contexte géométriquement linéaire. La matrice de

raideur exacte développée dans la premiere partie est utilisée pour I’élément local.

Dans la troisieme partie de cette these, nous abordons le comportement matérielle-
ment non-linéaire des poutres/poteaux hybrides en interaction partielle soumis a
I’action combinée d’un effort compression, d'un moment de flexion et d’un effort
de cisaillement. Le modele de fibre est adopté dans lequel I’état de contrainte tri-
axiale du béton est considéré. Un critere de type « Cap Model » ne dépendant que
du premier et second invariant est considéré pour le béton. Le confinement créé

par les cadres est pris en compte dans le modele. Le schéma implicite est retenu
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et une stratégie de condensation permet d’éliminer les deux contraintes normales
non-nulles qui sont dans le plan de la section. Cette technique de condensation
permet de passer d'une formulation en plasticité 3D au modele de comportement

de type poutre 2D.

Dans la derniere partie de cette these, les outils précédemment développés
sont utilisés pour évaluer la pertinence des méthodes simplifiées de I’Eurocode 2
et 4, dans le cas spécifique des poteaux hybrides soumis a un effort normal et & un
de moment de flexion uni-axial. Dans un premier temps, I’élément fini développé
est modifié en considérant la cinématique d’Euler-Bernoulli pour chacun des com-
posants. Ensuite, cet élément fini est utilisé pour traiter 1140 cas différents de
poteaux hybrides, destinés a couvrir les différentes typologies possibles et afin
de disposer d'une base de données suffisamment large qui permet de jauger de
la pertinence des méthodes simplifiées de I’Eurocode 2 et de I’Eurocode 4. Les
résultats indique clairement que la méthode d’amplification du moment (version
EC2 et EC4) ne sont pas satisfaisante. Dans un second temps, la base de données
est étendue a 2960 configurations, ce qui permet de calibrer une nouvelle version
de la méthode d’amplification du moment. Cette nouvelle méthode sera proposée

aux organismes de normalisation.

8.2 Modélisation d’une poutre hybride dans le

domaine élastique

La grande majorité des articles scientifiques sur les poutres mixtes multicouches
en interaction partielle traite du cas des poutres a deux couches [14], 221 24] 27, [30]
; si bien que la littérature technique sur les poutres multicouches voire les poutres
hybrides renforcées par plusieurs profils est nettement moins abondante. Chui et
Barclay [36] et Schnabl et al. [37] ont proposé un modele analytique exact pour la
poutre élastique a trois couches, ou I'épaisseur ainsi que le module de Young des
couches sont arbitraires. Sousa et al. [38] a développé une solution analytique

pour les poutres multicouches isostatiques en supposant que la rotation de la
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section transversale est identique pour chacune des couches. Skec et al. [39] ont
proposé des modeles mathématiques avec des solutions analytiques pour I'analyse
de poutres multicouches en élasticité linéaire. Ranzi [40] a proposé deux types
d’éléments finis de type « déplacement » pour objectif d’évaluer le comportement
de ces éléments finis de poutre multicouche en interaction partielle face au ver-
rouillage. Pour les fonctions de formes polynomiales classiques, il est montré que
I’élément avec nceud interne caractérise bien le comportement de la poutre en
interaction partielle alors que 1’élément sans noeud interne souffre des problemes

de verrouillage.

Une formulation élément fini reposant avec matrice de rigidité exacte offre la
possibilité de générer un élément fini sans verrouillage. Ces éléments sont tres
attrayants en raison de leur précision, 'efficacité de calcul et 'indépendance de
la solution vis-a-vis de la discrétisation spatiale. Heinisuo [41] a proposé une
formulation élément fini utilisant la matrice de rigidité exacte pour les poutres
droites, linéairement élastiques avec trois et cinq couches. Sousa [42] a développé
une formulation analytique et a déduit ’expression de la matrice de rigidité ex-
acte pour les poutres multicouches partiellement connectés avec I’hypothese que
le déplacement transversal ainsi que la rotation de la section droite est le méme

pour toutes les couches.

Dans cette section, nous étendons les travaux de Sousa [42] en considérant que
la rotation des sections droites est différente pour chacune des couches. Nous dé-
duisons la solution analytique et une nouvelle formulation « élément fini » pour
I’analyse des poutres hybrides en interaction partielle sur la base de la matrice de

rigidité exacte dont I'expression est déduite de la solution analytique.

8.2.1 Equation d’équilibre

Les équations d’équilibre sont obtenues en considérant 1’état équilibre d’un élé-
ment de longueur infinitésimal do soumis a une charge répartie p,, voir

La connexion a l'interface entre le profil acier et le béton est modélisée par un
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ressort distribué continu. Les conditions d’équilibre se traduisent par 1’ensemble

d’équations suivantes :

Py
M 2424241244444 42 24244
X Dscl C“\/lsl-i-'\/l51
E’ P Y B
N NN SN N {}stl+NSl
D
M. Ts| D so|dT, +T,
o 4—5024—4—4—4—4—4— SaM:"'MsZ
T, Do) aT, +T,
M 2 2 2
° dM, +M,
Ne < %chJch
T dT, +T,
M D, dM, +M,
P B B n h
YT N NN N N dN, +N,
T, DefdT, 47,
X . T s,

Figure 8.1: Elément infinitésimal d’une poutre hybride.

ON, +D,.. =0, i=12---n (8.1)
ON;— Y D, =0 (8.2)
j=1
OM,+OM;+T+> h;jDy =0 (8.3)
j=1
T 4+ p, =0 (8.4)

J

ot de=de /dx, My = M, et T =3 T, +1T..
j=1 =1
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8.2.2 Relations cinématiques

En considérant que pour 1’élément enrobant (qui en pratique est en béton) de
la poutre hybride, la section droite reste plane mais n’est pas nécessairement

normale a I'axe neutre, voir |[Fig. 8.2] on obtient les relations suivantes :

€ = Ouy i = 51,52, ,8n,C (8.5)
0. = 0v — . (8.6)
Ke = 00, (8.7)
05, = Ov 1=1,2,---,n (8.8)
Ks, = 00, i=1,2,---.,n (8.9)

Les éléments enrobés se déforment selon les hypotheses cinématique d’Euler-
Bernoulli. Les glissements se produisent aux interfaces acier-béton qui résultent
des déplacements relatifs. Les rotations étant petites, on peut assimiler la tan-

gente a l'angle, ce qui fournit :

gi = Ue — Ug, — hif,, i=1,2,---,n (8.10)

K3

8.2.3 Loi de comportement

Le champ des contraintes se déduit du champ de déformation a I’aide de la relation
de comportement des matériaux. Par définition, les efforts internes résultent de

I'intégration du champ de contrainte sur la section droite :

N = /A o dA; = (EA) e (8.11)
M, — —/A yodA;i = (B ki (8.12)
T, - / FdA, = (GA)r (8.13)
Dy, = ksc: Gis 1=1,2,---.n (8.14)

ou F;, G;, A; et I; sont respectivement le module élastique de Young, le module
M.,

de cisaillement, l'aire de la section et le moment d’inertie de la section "7”; k.

désigne la rigidité de la connexion.
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Figure 8.2: Cinématique de la poutre hybride.

8.2.4 Solution analytique et matrice de rigidité exacte

dans le cas élastique linéaire

Les relations(8.118.14]) sont maintenant combinées pour établir les équations gou-

vernant le comportement d’une poutre hybride en 'interaction partielle. En com-
binant les équations cinématiques (8.518.7)) avec les équations du comportement
élastique (8.1118.14)) et en insérant le résultat dans les équations d’équilibre (8.1]
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8.3)) se produit ’ensemble des équations différentielles suivantes :

(EA)Sz a2u3i = _ksci i, 1= 17 2; e, N (815)

(EA)C 82“0 = Z k:sci 9; (816)
=1

(EI)g0% = =T = ku, gi hi + (ET). 0%, (8.17)

=1

ou (El)y = (El)s + E.l. et (El)s = Y E,I;,. En combinant les relations
=1

1=

cinématiques, d’équilibre et de loi du comportement avec les équations (8.15
8.17)), on obtient un system des équations différentielles couplées ot les variables
sont les glissements aux interfaces et la déformation de cisaillement collectée dans

le vecteur s :

9’s—As=h (8.18)

dans laquelle la matrice A est composée de parametres provenant de la géométrie
et de la rigidité de la section ; et le vecteur h dépend de l'effort tranchant total

sur la section transversale.

Le system d’équations différentielles couplées (8.18) peut étre résolu en diago-
nalisant la matrice A, ce qui conduit a un systeme de n équations différentielles

ordinaires du second-ordre.

Il est a noter que la solution exacte de requiert la connaissance de la
distribution de leffort tranchant T'(z). Pour simplifier le développement de la so-
lution, on suppose que la charge extérieure est répartie et constante sur 1’élément
de la poutre hybride. Par conséquence, la distribution de 'effort tranchant est

linéaire suivant 1’équilibre transversal de la section. On a donc :
T(z) = —py & + Conys (8.19)

ol Cy, g est 'effort tranchant a 'extrémité gauche de la poutre et est considéré

comme une constant d’intégration dont la valeur sera fixée par les conditions aux
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limites. En résolvant le system d’équations différentielles (8.18)), on obtient :
g=X,C+7Z, (8.20)
7 =X, C+ Z,, (8.21)

ou la matrice X contient des fonctions exponentielles de z et Z est une fonction

de la charge répartie p,.

En introduisant (8.2018.21)) dans (8.1548.17)) et résolvant pour chaque variable

cinématique, on obtient les relations suivantes :

v=X,C+ 2, (8.22)

0, = X4.C + Zy, (8.23)

0. =Xy, C+ Zy, (8.24)
e = Xo.C + Z,, (8.25)

Us, = X, C+ Zuss,  i=1,2,-- .1 (8.26)

Une fois que les déplacements sont déterminés, on peut utiliser la loi de com-

portement élastique linéaire (8.11{8.13|) pour déterminer les efforts nodaux.

Ny, = Yns,C + Rys,, i=1,2--n (8.27)
N, =Yy.C+ Ry, (8.28)
M, =Yy C+ Ry, (8.29)
M, =Yn.C+ Ry, (8.30)

T=YrC+ Ry (8.31)

ol la matrice Y se décompose des fonctions exponentielle de  and R est une fonc-
tion de la charge répartie p,. Comme nous avons le méme déplacement transversal
sur la section transversale, I’élément de la poutre hybride avec n sections noyées
dans le béton a (2n + 8) degrés de liberté, voir Considérons un élément
de la poutre hybride de longueur L, en appliquant les conditions aux limites en
x = 0 et = L, on obtient une relation entre les déplacements nodaux et les

constantes d’intégration:

q=XC+Z (8.32)
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ou
q= [ Usy,0 **° Ueo Ve 95,0 90,0 Us,,L
7= [ Zusl,O Zes,o Zac,o Zusl,L
X = [ Xusl,O e XQS,O XGC,O Xusl,L
y

T
Ue, . Ue,L es,L QC,L] )
T
Zo,1 Zo. ] et

T
XBS,L XQC,L] :

Figure 8.3: Degrés de liberté de 1’élément de la poutre hybride.

Les forces nodales peuvent étre exprimées par :

Q=YC+R
ol
Q - [ _Nsl,O e _MC,O Nsl,L
Y = [ _YNsl,O e _YMC,O YNsl,L
R = [ _RNsl,o _RMc,o RNsl,L
En combinant (8.32)) avec (8.33)), on a :
Kq=Q+Q

(8.33)
MC,L ]Ta
Y., T et
RMQL ]T‘
(8.34)

ou K = Y X! représente la matrice de rigidité exacte d’'un élément et Qy = KZ—

R représente les forces nodales équivalent a la charge extérieure uniformément

répartie p,.
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8.3 Modélisation d’une poutre hybride élastique en grand
déplacement

8.3 Modélisation d’une poutre hybride élastique

en grand déplacement

Afin d’analyser 'effet des non-linéarités géométriques sur le comportement d’une
poutre hybride, nous proposons un élément fini spécifique de poutre plane con-
struit dans un contexte co-rotationnel. Dans cette approche, la configuration
déformée de I'élément est définie par un mouvement « corps rigide » de la con-
figuration initiale superposé a une déformation de la poutre dans un repere local.
Dans ce repere, les déplacements sont petits et donc la relation entre les relations

cinématiques sont linéaires.

8.3.1 Cinématique de I’élément de poutre hybride en de-

scription co-rotationnelle

Dans le repere global, 1’élément possede deux nceuds pour la partie béton aux
extrémités de ’élément. La cinématique des profils acier est définie en supposant
qu’il n’y a pas de mouvement transversal relatif acier-béton ; il n’y a des lors, a
chaque extrémité de 1’élément, qu’un seul degré de liberté spécifique représentant
le glissement entre le profil acier et le béton. Dans le repere local, la matrice
de rigidité exacte peut étre utilisée. En conséquence, les nceuds intermédiaires
utilisés pour éviter le probleme de verrouillage numérique, rencontré dans les élé-

ments finis polynomiaux d’ordre inférieur, ne sont pas nécessaires. Les notations

utilisées sont définies sur [Fig. 8.4 et [Fig. 8.5] Les coordonnées des nceuds ¢; et c¢;

dans le repere global (z, y) sont (Zei, yei) €t (Z¢j, Yej), respectivement.

L’élément a 2(n + 4) de degrés de liberté : les déplacements et les rotations
globales des noeuds (¢; and c¢;) et les glissements (gx;, gx;). La rotation de chaque
profil & lextrémité est la méme (hypotheése de Bernoulli) et les glissements (g,
grj) dans le repere global sont perpendiculaires aux sections transversales des

profils.

Pisey Keo 209



8. RESUME EN FRANCAIS

Figure 8.5: Déplacement et rotation de section.

8.3.2 Formulation de I’élément de poutre hybride en de-

scription co-rotationnelle

Une étape clé dans la méthode de co-rotationnel est d’établir la relation entre

les variables locales et globales. Celle-ci est accomplie en effectuant un change-
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ment des variables entre les quantités globales et locales. La deuxieme étape
consiste a supprimer les mouvements « corps rigide » du champ de déplacement
de T'élément. Cette étape est réalisée en calculant les déplacements locaux en

utilisant les relations cinématiques linéaires.

Considérons deux systemes de coordonnées différents repéré par l'indice i et j.
Supposons que le vecteur force interne f; et la matrice de rigidité tangente K;

sont compatibles avec le vecteur de déplacement p; de telle sorte que

Considérons maintenant que le vecteur p; est lié au vecteur de déplacement p;
par

pi = Bi; p; (8.36)

En égalant le travail virtuel dans les deux systemes, le vecteur de la force interne

f; conforme a p; est défini par
of; = BZ-Tj of; (8.37)

L’expression de la matrice tangente de rigidité K;, cohérente a p; est obtenue en
différenciant I’équation (8.37) et en combinant le résultat avec (8.35) et (8.36]) :
O(BLE;)
K;=B/K;B;+H; H;= # (8.38)
i g,
De I'idée décrite ci-dessus, la formulation de I’élément de la poutre co-rotationnelle
peut étre obtenue en utilisant trois changements consécutifs de variables et quatre

vecteurs de déplacement différents suivants :

= [ts1; Uspi *** Usni Uei Vei Osi Oci Ug1j Us2j " Usnj Ucj Ucj e_sj e_cj]T (8.39)
=[ Oy tUej Osj Oci Gui Goi ~* Gni G1j Goj -+ Gnj |= (8.40)
= _bz Ug; ésj Q_Cj g1i 92i " Gni 915 G925 Onj ]T (8.41)

= [Uei Vei Oci Osi g1i Goi =+ Gui Uej Vej Ocj Osj 91j G =+ Gng] " (8.42)
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8.4 Modélisation du comportement non-linéaire

d’une poutre hybride

L’élément fini de poutre classique ne considere que les contraintes axiales agis-
sant sur la section transversale et n’est pas en mesure de décrire précisément la
réponse de 1’élément de structure sous l'effet du couplage entre le cisaillement,
la compression et le moment de flexion. Au cours des dernieres décennies, il y a
eu un effort de recherche pour surmonter cette limitation en adoptant la théorie
de poutre de Timoshenko ou méme la théorie de poutre exacte. Les différences
entre les modeles proposés dans la littérature sont liées aux hypotheses cinéma-
tiques de la déformation de cisaillement prises au niveau de la section, au type de
relations constitutives multiaxiales et aussi a la formulation élément fini basées
sur Papproche de la rigidité ou la flexibilité [117, 122, 124H126]. Egalement, la
stratégie d’intégration des lois d’évolutions élastoplastiques est un élément dif-

férentiant.

Cette partie vise a développer une nouvelle formulation éléments fini basée
sur un modele de fibre en considérant un critere 3D pour le béton enrobant et
en prenant en compte l'effet de confinement provoqué par les étriers. Le pseudo-
état plan de contraintes pour I’élément en béton est appliqué afin de condenser
la formulation 3D pour obtenir les relations constitutives reliant les variables
cinématiques dans le plan aux efforts généralisés caractérisant la poutre 2D. Pour
ce faire, nous appliquons la stratégie proposée par Klinkel et Govindjee [127] pour
I’état plan de contraintes dans lequel les contraintes agissantes dans le plan de la
section doivent étre mises a zéro. La rigidité tangente cohérente est fournie par
la condensation statique standard de la matrice de rigidité tangente matérielle
3D. Pour tenir compte de la contribution de 'armature transversale sur les effets
de confinement du béton, nous étendons cet algorithme en imposant 1’équilibre

transversal entre la fibre béton et 'acier transversal.
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8.4.1 Equations fondamentales

Des relations cinématiques (8.548.10f), on note le vecteur des déformations général-

isées de la section € lié aux déplacements par les relations cinématiques suivantes

é=0dd (8.43)
ol
et = e, €5, v € K € Ke Ve G192 0 Gnl, (8.44)
d" = [us, us, -+ U, ue v 0] (8.45)
et
(0 0 0 -1 0 ]
0 0 0 0 0 -1
=1oo0o.--9 000 0 0 0 - -1 (8.46)
0 0 00 00 0 1
0 0 08200 8 0 0 - 0
0 0 0 0 0 8 —1 —hy —hy - —hy

Les équations d’équilibre (8.148.4) peuvent étre exprimées sous la forme compacte

suivante :
dD+P,.=0 (8.47)
dans laquelle
D' =[N, N,,---N,, My N, M. T, Dy, Dy, D], (8.48)
P, =[00---00p, 0] (8.49)
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et
R 1 0 0]
09 - 0 0 1
d=10 0 9 0 000 0 0 - 1 (8.50)
0 0 0 0 900 -1 —1 1
0 0 0 -0 008 0 0 0
0 0 0 0 00 1 h hy - hyl

La formulation faible (variationnelle) des équations d’équilibre est donc donnée

par

/6dT dDdz =0 (8.51)
L
dans laquelle la force volumique est ignorée. En développant cette équation, on
a:
/ se"Ddz =4dqTQ (8.52)
L
ou
n L
0q"Q = |> 6uy, Ny, + due N, + 6605 M, + 66, M. + 60T (8.53)
j=1 0

La méthode de Newton-Raphson est adoptée pour résoudre 1'équation (8.52)). La

matrice de rigidité tangente de I’élément a 'itération ¢ — 1, est déterminée par
K™= / B k' 'Bdx (8.54)
L
et le vecteur des forces nodales hors-équilibre au cours de l'itération est

"= /BT D' dx (8.55)

L

ot B = IN(z), k = %—2 et N(z) est la fonction d’interpolation du champ de

déplacement.
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8.4.2 Comportement non-linéaire de la section

Le comportement non linéaire d’'une poutre hybride soumise a un chargement
combiné dépend largement des hypotheses faites sur la distribution de la con-
trainte et de déformation sur la section transversale. Il est supposé ici que les
sections transversales des profils acier sont soumises uniquement a des déforma-
tions axiales alors que la déformation de I’élément en béton produit déforma-
tions axiales et des déformations de cisaillement. En conséquence, une relation
contrainte-déformation uni-axiale pour la barre d’armature longitudinale et le
profilé peut étre utilisée et un modele 3D du béton avec une stratégie de conden-
sation doit étre adopté. En raison de la complexité de ce dernier, ce qui suit est

seulement consacré a la description de 1’élément en béton.

Les équations constitutives de 1’état 2D de contrainte-déformation de la fibre
de béton sont obtenues en écrivant les déformations dans le plan et en appliquant
I’état plan de contrainte sur la loi du comportement 3D. Par conséquent, les con-
traintes actives et les déformations hors-plan sont obtenues. Dans la direction
transversale (direction y, ainsi que z), les armatures transversale sont supposées
étre distribuées uniformément avec un rapport volumétrique p*. Cette hypothese
est faite dans le but de prendre en compte les effets de confinement dans le béton.
Les exigences de compatibilité imposent que la déformation verticale 7 et latérale
e¢ dans le béton est égale a la déformation transversale €5’ et latérale €3 dans les
armatures, respectivement. Les contraintes résultantes le long de la direction y et
z sont obtenues en additionnant les contraintes axiales dans I’armature transver-
sal 03! et 0%’ aux contraintes axiales dans le béton o, et o¢, respectivement. En
conséquence, la relation contrainte-déformation 3D du probleme peut étre écrite

comme suit :

do C Cy O O 0 0 0 0 ded
doy | _ o O o5 Gop | | 0 BP0 0 dec
do. Csi Cy Cs Cgf 0 0 ptET 0 de
drs, Cip Cp Cf Cf 0 0 0 0 v,
(8.56)
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ou C? est la rigidité tangente cohérente dans le probleme de la section de béton.
Pour obtenir 'opérateur tangent cohérent, qui répond a la condition particuliere

des contraintes du modele poutre, la tangente matérielle doit étre condensée. En

introduisant 5, = [0,0.] = 0 dans 'équation (8.56)), on a

4G, = C,,, dé° + C,, dé® = 0, (8.57)
D’ou,
de; = —C, ) C,,, de°. (8.58)
o1 Cof
N =, T __ Cc AC =, T _ c ~C —
ou zvT = [egne, ], & = [efes], Com = cor oo | et
C€p+ stEst Cep
Cpp = = ZD vy o 23t . Le remplacement de 1’équation (8.58
Csy 33 + i B2

dans (8.56) conduit a la relation tangente cohérente entre les contraintes actives

et les déformations dans le plan du béton comme suit :
k* = Cpm — CopC,, Cp (8.59)

La matrice de rigidité tangente de la section de poutre hybride est donc :

ki 0 O
k=[0 k. O (8.60)
0 0 kg
dont ses composantes sont
(EA, 0 ES,, |
O mSQ 0 _E_SSQ
k,=| P Co (8.61)
0 0o --- EA, —ES,,
|—ES,, —ES,, —-ES,, FI, |
Ja,FndA+ EAy = [, (- y)kndA=ESy [, FpdA
kc = - fAc (y - yc)EtljldA - Eszl fAu (y - yc)zgildA + Esl IAC (y - yc)EiQdA 9
fAC k;ldA - fAC (y— yc)k;dA fAC k§2dA
(8.62)
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et
_ksq . _
0 ke -+ O
k.. = ) ) . ) (8.63)
0 0 kse,

8.4.3 Applications numériques

Trois essais expérimentaux de poutres hybrides soumises a la flexion en 3 points,
réalisés au Laboratoire de Génie Civil et Génie Mécanique de 'INSA de Rennes
sont sélectionnés afin d’évaluer I'exactitude du modele proposé. Le spécimen a
une longueur de 5 m et une section rectangulaire de 25 cm x 90 cm, renforcée par
huit barres d’armature longitudinales de 20 mm de diametre, voir la Figure 6.
Les armatures transversales (étriers) composées barres d’armature de 14 mm de
diametre. Les spécimens (BW, CW et CWHC) sont renforcés par trois HEB100
profilés en acier totalement enrobés dans la section en béton armé. Pour les spéci-
mens CW et CWHC, les connecteurs (goujons Nelson H3L16) avec un espacement
de 20 c¢m sont soudés a ’ame du profilé assurant le mécanisme de transfert de
force entre le profil d’acier et le béton. Les barres d’armatures sont placées de
la méme facon dans tous les spécimens, sauf 1’écartement de I’étrier. Les carac-
téristiques du matériau en MPa sont données dans La simulation
numérique des essais est conduite en discrétisant les spécimens sont modélisés en
12 éléments. Le poids propre est considéré comme une charge répartie appliquée
au niveau de ’élément. Le déplacement vertical a mi-portée est appliqué de fagon
incrémentielle (déplacement controlé) jusqu’a la rupture. En ce qui concerne la loi
de comportement, nous considérons la relation contrainte-déformation suivante :
le cap modele est retenu pour le béton; et la loi en élastique parfaitement plastique
pour les aciers profilés, les armatures et les connexions de cisaillement longitudi-
nal. Les courbes de force-déplacement obtenues a partir du modele élément fini

développé, sont comparées a celles obtenues a partir des essais expérimentaux
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Figure 8.7: Comparaison des courbes de force-déplacement.
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Les courbes des résultats expérimentaux montrent que la déformation
des spécimens est accompagnée de grands déplacements, ce qui montre leur com-
portement ductile quand soumis a un chargement monotone. Les charges ultimes
de BW, CW et CWHC prédites par ’analyse numérique correspondent bien a

celles des résultats expérimentaux.

Tableau 8.1: Caractéristiques des matériaux.

Béton Armature long. | Armature Trans. Profilé
Spécimen | fon  Bem | fo Be | e Ex | f, B,
BW 31.50 31040 | 383.91 210740 | 633.26 207460 | 462.7 214450
CW 32.00 31187 | 383.91 210740 | 633.26 207460 | 462.7 214450
CWHC 31.63 31078 | 383.91 210740 | 633.26 207460 | 462.7 214450

in MPa

8.5 Dimensionnement des poteaux hybrides en
instabilité

Cette partie présente une étude numérique sur les effets du second-ordre dans les
poteaux hybrides. Afin d’analyser le comportement non linéaire des poteaux hy-
brides, une formulation spécifique d’élément fini de poutre plane de type Bernoulli
en description co-rotationnelle totale est utilsée. Dans le repere local, des nceuds
intermédiaires sont utilisés pour l'interpolation quadratique du déplacement axial.
Les efforts et les déplacements a ces nceuds sont statiquement condensés au niveau
local pour étre compatible au champ de déplacement dans le repere global. L’état
de déformation, les contraintes et les efforts internes sur la section sont obtenus
par une discrétisation multi-fibres de la section. Les détails du développement
de T’élément fini, ainsi que de la validation par rapport a des résultats d’essai,
peuvent étre trouvés dans [13]. L’élément fini permet de traiter une connexion
acier-béton partielle ; a ce stade la méthode simplifiée a été développée pour une

connexion totale. Les simulations qui vont suivre ont donc été faites en adop-
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tant une raideur de connexion importante qui annule a une tolérance pres tout
glissement. Il est a noter cependant que des travaux préliminaires montrent que
cette connexion complete n’est pas toujours nécessaire pour optimiser la charge
de ruine. Cet élément fini est utilisé pour traiter 1140 cas différents de poteaux
hybrides, destinés a couvrir les différentes typologies possibles, afin de disposer
d’une base d’évaluation de la pertinence des méthodes simplifiées de I’Eurocode
2 et de I'Eurocode 4 pour de tels éléments. Enfin, ces méthodes simplifiées ne
donnant pas satisfaction, la base de données est étendue a 2960 configurations,

afin de servir au calibrage d’une nouvelle méthode simplifiée.

8.5.1 Méthodes de dimensionnement en instabilité des poteaux

des Eurocodes 2 et 4

Pour dimensionner en instabilité un poteau, tant I’Eurocode 2 que I’Eurocode 4
permettent de recourir a une analyse non linéaire géométrique et matérielle. Les
hypotheses et coefficients de sécurité des deux normes sont cohérents, et servi-
ront par la suite de base a la définition des modeles éléments finis de 1’étude
paramétrique. Toutefois, cette méthode est lourde a mettre en ceuvre, et les deux
Eurocodes proposent des méthodes simplifiées. Dans I’Eurocode 4 une seule méth-
ode de dimensionnement est proposée. Le moment du second ordre est obtenu
a partir du moment du premier ordre multiplié par le facteur d’amplification
k = /(1 — Ngq/N,.). Ensuite, la résistance de la section sous 'effet combiné de
I’effort normal et du moment du second ordre doit étre vérifiée. Dans ’expression
de k, B dépend de la forme du diagramme de moments, et I’expression de N, est
établie en prenant en compte la fissuration et le fluage du béton. L’Eurocode 2
propose deux méthodes de dimensionnement des poteaux en béton armé, appelées
respectivement la méthode de la rigidité nominale et de la courbure nominale. La
premiere repose sur le méme principe d’amplification des moments que I’Eurocode
4. Dans la mesure ou les éléments hybrides sont intermédiaires entre les poteaux
en béton armé et les poteaux mixtes, il a été décidé de n’étudier que la méthode

de la rigidité nominale, afin de faciliter la synthese entre les deux normes.
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Les expressions mathématiques des méthodes de I’Eurocode 2 et de I’Eurocode 4
sont résumées dans [Tableau 8.2

Tableau 8.2: Méthodes de calcul d’amplification des moments de I’Eurocode 2 et
4.

Moment du second ordre : Mgq2 =k Mgq
Raideur effective : FI = K. Feql. + KsEsls+ K, Eo 1,

EC2 EC4
B ™ B
k=14 ———,08=— k=14 —————
+Ncr71,5 co +17 Nga
NEa Nereff
w2 EI fer A
NCT— 7k1_ 7k = 7§ 72; =Y, 744m21a
Iz 50 *2 n 0 0 8 =0,66 +(2) r
Ngq k1ka m2ET
= ; c = ;KS:KC::l; Nc’re = T 15
ACde7 1 +¢ef ) ff L2
wo = L/400 K.=0,45 K, =K, =0,9
wyp selon la section

8.5.2 Evaluation des méthodes EC2 et EC4 pour les poteaux

hybrides : étude paramétrique
8.5.2.1 Description de I’échantillon utilisé

Le modele élément fini a été utilisé pour effectuer une étude paramétrique exten-
sive, afin de vérifier 'applicabilité des méthodes de I'Eurocode 2 et 4 décrites au
paragraphe précédent aux éléments hybrides. La charge ultime de 1140 poteaux
différents a été calculée par les éléments finis, et comparée a celle obtenue par les
méthodes simplifiées. 5 sections différentes, notées HSSRC1-5, ont été étudiées
(Fig. 3.9).

Dans I’étude paramétrique, la limite élastique de 'acier des profils et des ar-
matures est considérée constante, l'effet du ratio de résistance du béton par rap-
port a résistance de 'acier étant pris en compte en faisant varier la classe de

béton. Les variables de I’étude paramétrique sont résumées au [lableau 8.3 Trois
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valeurs d’élancement réduit \ différentes et trois classes de béton, sont consid-
érées. L’étude porte sur trois formes de diagrammes de moment : constant,
triangulaire ou bitriangulaire, défini par le ratio entre les moments d’extrémité
Tm (rm = 1;0; —1). Le moment maximal est défini par un excentrement de
Ieffort normal noté e, pour lequel une valeur variant de 0 a 3 fois la hauteur de la
section est considérée. Le coefficient de fluage effectif est considéré soit avec une
valeur nulle, soit avec une valeur de 1,5 correspondant au ratio classique entre les
charges a court terme et a long terme. Le rapport 0 entre la résistance axiale de
la section acier, et la résistance totale de la section, varie de 0.2 a 0.62, ce dernier

ratio important étant obtenu grace a la section HSRCCA4.

Tableau 8.3: Résumé des variables de 1’étude paramétrique.

Section S1; S2; S3; S4; Sb

Béton  C35/45; C60,/75: C90,/105

fok 500 MPa
1y 355 MPa

A 0.5; 1.0; 2.0
£ 0.0-3.0

5 0.2-0.62
Pef 0; 1.5

8.5.2.2 Définition du modele numérique

Le comportement matériel du béton et de 'acier a été défini en conformité avec
les regles de I’Eurocode 2 et de I’Eurocode 4. Les lois adoptées sont représentées
sur la Figure 10. Le module de I'acier a été pris égal a 210 000 MPa. Les valeurs

de Ecm, €., €1, ont été choisies selon les prescriptions de I’Eurocode 2.
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Figure 8.8: Cross-sections considered in parametric study.

Le calcul numérique prend en compte les contraintes résiduelles existant dans
les profils métalliques (Figure 11), ainsi qu'une imperfection géométrique sinusoi-
dale dont son amplitude different selon les normes. Pour des profils métalliques,
une valeur de 1./1000 est proposée par 'Eurocode 3, alors que I’'Eurocode 2 pro-
pose une valeur de L /400 pour les poteaux en béton. Dans la mesure ot le mode

constructif, qui fixe la précision de la forme générale des poteaux hybrides, et de
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la position des profils métalliques, est de type béton, il a été décidé d’adopter une

imperfection géométrique avec une amplitude de L/400. Comme annoncé, une

G¢ Os Os
= f, d:f /1.0 {-——-
fad=fad 1.5 fi=fa/1.15 | - T Y | ;
| EJ300 | i i
|
i i | i
0.4fyq| _ ! | ! :
! } | |
&1 &cul Esd Esud &y Eyu
a) Concrete b) Reinforcing rebar c) Steel profile

Figure 8.9: Lois constitutives utilisées dans le modele élément fini.

connexion complete est imposée, a l'instar des recommandations de I’Eurocode

4.

0.36,*

05647 NJo.56*

[ S, *
T } -0.5f*
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0
——bh———

h/b<1.2
f,*=235MPa

Figure 8.10: Distribution de contraintes résiduelles considérée dans le calcul.

8.5.2.3 Résultat des comparaisons

A titre d’illustration, les résultats obtenus pour différents élancements et cas de
chargements pour la section HSRCC1 sont dessinés sur la Figure 12 et 13. La
classe de béton adoptée est C60, et le coefficient de fluage effectif 1,5. [Fig. 8.11] les

prédictions de la méthode simplifiée de I’'Eurocode 2 sont comparées aux résultats
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Figure 8.11: Comparaison de la méthode simplifiée Eurocode 2 aux résultats
d’éléments finis — section HSRCC1.

de la méthode d’éléments finis. dans le cas de la compression pure,

il apparait que la méthode simplifiée de I’'Eurocode 2 est insécuritaire pour les

faibles élancements. [Fig. 8.11b| et [Fig. 8.11c| dans le cas des colonnes soumises

a une flexion avec une courbure, de nouveau I’Eurocode 2 donne des résultats

insécuritaires pour les élancements faibles & modérés ( A = 0,5 a 1 Des résultats

similaires sont observés en cas de flexion avec double courbure, sauf pour les cas
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proches de la flexion pure (Fig. 8.11d)), ou la méthode EC2 donne de bons résul-
tats.

la méme comparaison est effectuée pour la méthode simplifiée de
I’Eurocode 4. Les prévisions de I'Eurocode 4 sont globalement moins bonnes.
Sous compression pure (Fig. 8.12a)), la formulation de I'Eurocode 4 donne glob-

alement les résultats sécuritaires. Dans les autres cas (Fig. 8.12b| a [Fig. 8.12d)),

I’EC4 donne des résultats conservatifs pour les faibles et les fortes excentricités.
Par contre, pour les cas intermédiaires, les résultats sont insécuritaires, parfois
largement. Afin d’évaluer de facon globale la qualité des résultats obtenus par les
méthodes simplifiées pour les 1140 cas de 'analyse paramétrique, pour chaque

cas, le ratio R suivant a été établi :

_ Beg
Rsu

2 2 2 2
_ NrE MrE _ Nsm M N
avec = ~ v et = — ou
RFE \/(Npl,Rd> + (Mpl,Rd> RSM \/(Npl,Rd + MpZ,Rd

(Npp, Mpg) étant le couple sollicitant a la ruine dans le calcul par éléments fi-

R (8.64)

nis, (Nsar, Mgar) celui obtenu par l'analyse simplifiée, et Ny ra, My ra effort
normal et le moment de résistance correspondante. Lorsque R est supérieur a

1, 'approche simplifiée est sécuritaire. Les histogrammes de R obtenus pour les

deux méthodes simplifiées sont dessinés sur |[Fig. 8.13|

Les moyennes des deux distributions sont proches de 1 : 0.996 pour la méth-
ode Eurocode 2, 1.01 pour la méthode Eurocode 4. Les écarts types sont proches,
0.104 pour I'EC2 et 0.112 pour 'EC4. Le pourcentage de cas amenant a une
insécurité notable est estimé par le nombre de cas pour lequel R est inférieur a
0.97. 11 est de 41.84 % pour I'Eurocode 2, et 34.86 % pour I'Eurocode 4. Ces
pourcentages importants montrent que les méthodes simplifiées des deux normes

en vigueur en Europe ne sont pas applicables aux poteaux hybrides.
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Figure 8.12: Comparison of simplified method of EC4 against FE analysis results.

8.5.3 Proposition d’une nouvelle méthode simplifiée

8.5.3.1 Analyses complémentaires

Afin de déterminer comment définir la méthode simplifiée la plus adaptée, 'effet

de différents parametres a été étudié dans le détail. Le résultat le plus remar-

quant porte sur 'effet des contraintes résiduelles. Il apparait que celles-ci n’ont

pas d’effet sur la charge ultime. Les profils étant excentrés par rapport au centre
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Figure 8.13: Histogrammes du ratio R pour les méthodes simplifiées de I’Eurocode
2 et 4.

de gravité de la section du béton, ils sont soumis a un effort normal important
qui diminue l'effet des contraintes résiduelles, et 1’on peut en conclure qu’ils se
comportent plus comme des armatures, que comme des profilés fléchis. Par con-
séquent, il est plus pertinent de développer la nouvelle méthode simplifiée sur base
de la méthode EC2, plutot que de 'EC4, puisque 'EC4 integre explicitement, au
travers de la définition d’imperfections équivalentes, ’effet des contraintes résidu-

elles, alors qu’elles apparaissent négligeables pour les poteaux hybrides.

Ensuite, ’étude paramétrique générale a été portée a 2964 cas, en faisant varier
la limite d’élasticité des profils. Des cas complémentaires ont été ajoutés avec des
profils en 5235 et S355. Il a été montré qu'une forte dépendance de 'état des
profils a la ruine a I’élancement du poteau, au coefficient de fluage et au rapport
des résistances du béton et de l'acier. En effet, le fluage conduit a une plasti-
fication partielle des profilés en augmentant la déformation du béton, et donc
a une diminution de leur raideur. Cet effet est moins prononcé pour les forts
élancements, pour lesquels les déformations, lorsque l'instabilité se déclenche,

sont limitées, et donc dans ce cas le profil n’est pas plastifié.

8.5.3.2 Nouvelle méthode simplifiée

Partant des constatations précédentes, et en s’inspirant des travaux de Bonet et

al. [130], une nouvelle méthode d’amplification des moments a été développée.
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Le moment du second ordre, qui devra étre comparé au moment résistant de
la section compte tenu de l'effort normal appliqué Mpl,N,Rd, est obtenu en mul-
tipliant le moment du premier ordre par :

B

_ Ngaq
1 Ner

k:

(8.65)

oupf =0,6r,+0,4>0,4;et N est I'effort critique élastique calculé en utilisant

I’expression de la rigidité en flexion efficace suivante :

EFl=K.FE, .+ KFEJI,+K,E,I, (8.66)
avec

KC = k’lk’Q/(l + gOef) (867)

K, =1 (8.68)

0.0124
fy
0.76 (H)

K, = < 8.69
1 4 105¢. rexp(—0.078) (8.69)
_ fck
k=150 (8.70)
by = N2 < 0.2 (8.71)
= NnN—- NS . .
27170
NEq
n= 8.72
Nyl ra (8.72)

8.5.3.3 Validation de la méthode simplifiée

L’histogramme du ratio R calculé pour la nouvelle méthode simplifiée est représenté
sur [Fig. 8.14 La moyenne de la distribution vaut 1,0022 avec son écart type
0,0459. Le fractile a 5% est obtenu pour R = 0,93. Afin d’étre sécuritaire, les
valeurs de ratio R devraient donc étre pondérées par un coefficient de sécurité de

1,07.
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Figure 8.14: Histogramme de fréquence du ratio R pour la nouvelle méthode

simplifiée.

8.6 Conclusion

Le développement d’outil de simulation numérique et de guide de dimension-
nement pour les colonnes hybrides avec plusieurs profils en acier noyés dans le
béton, soumises aux charges combinées a été 'objectif de cette these. Un mod-
ele « élément fini » a été développé dans lequel la non-linéarité géométrique et
matérielle ainsi que l'interaction partielle entre les profilés acier et le béton sont
prises en compte. Les résultats du modele élément fini ont été servis comme des
références dans le développement d'une nouvelle méthode de dimensionnement
pour les colonnes hybrides. La construction de ce modele s’est faite graduelle-
ment en commencant par construire la matrice de raideur élastique exacte pour
les poutres/poteaux hybrides. Ensuite ; 'approche co-rotationnelle nous a permis
d’étudier ces méme structures dans un contexte de grands déplacements. Enfin,
une analyse fine nous a conduits a construire une stratégie numérique nous perme-
ttant de construire une loi de comportement élasto-plastique a partir des modele
3D et surtout en prenant en compte l'influence des étriers. Tous ces outils ont
été validés en comparant les prédictions du modele aux résultats expérimentaux.
Enfin, nous avons mené une étude numérique sur les effets de second ordre dans
les colonnes hybrides élancés soumis a un chargement combiné de compression
axiale et moment de flexion. Un des principaux objectifs de cette étude était
de définir et valider une méthode de dimensionnement en instabilité applicable

aux poteaux hybrides. Pour ce faire, le modele « élément fini » développé dans
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lequel la non-linéarité géométrique et matérielle, les imperfections géométriques,
les contraintes résiduelles dans les profils d’acier ainsi que l'effet d’interaction
partielle entre des profilés acier et le béton sont prises en compte a été utilisé a
cette fin. En outre, le modele mis au point avec la cinématique d’Euler-Bernoulli
est compatible avec le modele élément fini proposé dans les méthodes générales
des Eurocodes (EC2 et EC4) pour le dimensionnement d’une colonne en béton
armé et mixte. La comparaison entre les résultats obtenus avec des méthodes
simplifiée de I’'Eurocode (méthode d’amplification du moment) et avec I'analyse
par éléments finis montre que la méthode simplifiée de 'EC2 et 'EC4 conduit
a une grande dispersion ou la moitié des cas sont insécuritaires. Cela signifie
que les rigidités a la flexion en vigueur proposées par 'EC2 et I'EC4 ne sont
pas appropriées pour le dimensionnement de la colonne hybride élancée. En con-
séquence, une nouvelle méthode simplifiée a été proposée dans le contexte des
Eurocodes, a savoir ’approche d’amplification du moment. La méthode proposée
est développée sur la base d'une étude approfondie sur le comportement physique
de la colonne hybride. L’analyse des résultats ayant montré que les profils se
comportent comme des armatures, et que les contraintes résiduelles ont un role
négligeable - alors qu’elles sont un parametre central de la méthode de I’Eurocode
4. Au vu de ces observations, la nouvelle méthode proposée est développée comme
une extension de la méthode de I'Eurocode 2. La continuité par rapport a ce re-
glement est des lors assurée ; il a par ailleurs été montré que la nouvelle méthode
donne des résultats conservatifs, quoique moins précis que la méthode de I'EC4,
pour les poteaux mixtes au sens de I’Eurocode 4. On peut donc affirmer que cette

nouvelle méthode s’insere de facon cohérente dans la normalisation existante.
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Résumé

Le travail de cette thése a pour but de développer des outils de
simulation et une méthode de dimensionnement pour les
poteaux hybrides soumis a des chargements combinés. La
thése est composée de 4 parties essentielles et comprend 6
chapitres. Dans la premiere partie, nous développons un
élément fini poutre/poteau hybride élastique en interaction
partielle avec matrice de raideur exacte. Cet élément fini
découle de la solution analytique du systéme d’équations
différentielles couplées obtenues en combinant les équations
de champs (équilibre, cinématique et comportement). Les
inconnues fondamentales sont les glissements aux interfaces et
la déformation de cisaillement de I'élément principal. Ces
équations sont résolues pour des conditions de chargement et
des conditions aux limites arbitraires en accordant un soin
particulier a la détermination des constantes d'intégration. Dans
la seconde partie de cette thése, nous proposons une
formulation d'élément fini originale pour l'analyse en grand
déplacement des poutres hybrides avec prise en compte des
glissements qui se produisent a chaque interface acier-béton.
La méthode de co-rotationnelle est retenue. Dans cette
approche, le mouvement de I'élément se décompose en un
mouvement de corps rigide et en une partie déformable définie
dans un repére co-rotationnel local qui se déplace de maniére
continue avec I'élément mais qui ne se déforme pas avec ce
dernier. Un choix judicieux des variables cinématiques locales
accompagné des matrices de transformation correspondantes
permet de transposer I'élément linéaire développé en partie 1
en un élément géométriquement non-linéaire performant. La
partie 3 est consacrée a l'analyse non linéaire matérielle par
élément finis de poutres hybrides en interaction partielle et
soumise aux forces combinées de flexion et de cisaillement.
Dans la formulation élément fini proposée, nous adoptons la
discrétisation par fibres et une modele 3D de comportement du
béton avec prise en compte des états plans ce qui permet de
reproduire rigoureusement l'effet du confinement et I'action des
étriers. En partie 4, nous évaluons la pertinence de la méthode
d'amplification des moments proposées dans |'Eurocode 2 et 4
a évaluer la charge ultime de poteaux hybrides soumis a une
combinaison de charge axiale et de moment de flexion uni-
axial. Dans un premier temps, nous conduisons une étude
paramétrique sur 1140 cas différents de poteaux hybrides;
étude destinés a couvrir les différentes typologies possibles,
afin de disposer d'une base de résultats permettant d'évaluer la
pertinence des méthodes simplifiées de I'Eurocode 2 et de
I'Eurocode 4 pour de tels éléments. Cette étude a été réalisée a
l'aide d'un élément fini non-linéaire (géométrique et matériel),
avec une hypothése de Bernouilli pour tous les composants du
poteau hybride. Il ressort de cette étude que ces méthodes
simplifiées ne peuvent étre appliquées aux poteaux hybrides.
Sur base de I'analyse d'un nombre de cas plus important (2960
configurations), la méthode d'amplification des moments est
calibrée pour les poteaux hybrides.

N° d’ordre : 15ISAR 30/ D15 - 30
Institut National des Sciences Appliquées de Rennes

Abstract

This thesis aims at developing simulation tools and a design
method for hybrid beam-columns subjected to combined axial
force, bending and shear. The thesis is divided in four main
parts and comprises 6 chapters. In the first part, we develop a
new finite element formulation based on the exact stiffness
matrix for the linear elastic analysis of hybrid beam-columns in
partial interaction taking into account the shear deformability of
the encasing component. This element relies on the analytical
solution of a set of coupled system of differential equations in
which the primary variables are the slips and the shear
deformation of the encasing beam. The latter is derived by
combining the governing equations (equilibrium, kinematics,
constitutive laws) and solved for a specific element with
arbitrary boundary conditions and loading. Special care has
been taken while dealing with the constants of integration. The
second part of the thesis addresses a new finite element
formulation for a large displacement analysis of elastic hybrid
beam-columns taking into account the slips that occur at each
steel-concrete interface. The co-rotational method is adopted in
which the movement of the element is divided into a rigid body
motion and a deformable portion in the local co-rotational frame
which moves and rotates continuously with the element but
does not deform with it. Appropriate selection of local kinematic
variables along with corresponding transformation matrices
allows transforming the linear finite element developed in Part 1
into a nonlinear one resulting in an efficient locking-free
formulation. In Part 3, we derive a finite element formulation for
materially nonlinear analysis of hybrid beam-columns with shear
deformable encasing component, in partial interaction and
subjected to the combined shear and bending. The fiber model
is adopted with condensation of the 3D stress-strain relations
which allow to account for confinement in a rigorous manner as
well as the effect of the stirrups. Part 4 examines the adequacy
of the moment magnification method given in Eurocode 2 and 4
to provide an accurate estimation of the ultimate load of hybrid
columns subjected to a combination of axial load and uniaxial
bending moment. The developed finite element model with a
shear rigid encasing component is used to conduct a parametric
study comprising 1140 cases to cover the various possible
situations. The predictions of the model are compared against
the values given by the simplified methods of Eurocode 2 and
Eurocode 4. It is shown that these simplified methods does not
give satisfactorily results. Based on the analysis of larger
number of cases (2960 configurations), the moment
magnification method has been calibrated for hybrid columns.
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