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Introduction en Français

Le théorème de classification de Morley dans les années 60 est à l’origine du développe-

ment de la théorie de la stabilité, une branche moderne de la théorie des modèles.

Morley introduit alors la notion de théories totalement transcendantes. Ensuite, She-

lah considère la classe plus large des théories stables, les théories dont aucune formule

n’ordonne un ensemble infini [56]. Les exemples de structures bien connus qui admet-

tent une théorie stable sont celles des corps algébriquement clos, mais aussi des corps

séparablement clos ou différentiellement clos, des espaces vectoriels, et des groupes li-

bres. Shelah a introduit de nombreux concepts combinatoires [58] afin de classifier les

structures stables et il a été produit au fil des ans de nombreuses techniques et résul-

tats, qui ont trouvé ensuite des applications en géométrie algébrique et en théorie des

nombres. De plus, après le travaux de Hrushovski sur les corps pseudo-fini [30], Kim

et Pillay ont montré que plusieurs concepts introduits en stabilité peuvent être adaptés

et généralisés à la classe des théories simples [36, 35, 38]. Celle-ci inclue également les

corps aux différences génériques, les corps pseudo-finis, le graphe aléatoire.

L’étude d’une autre classe de théories, les théories dépendantes, a été en particulier

développée afin de considérer d’un point de vue modèle-théorique d’autres structures

mathématiques usuelles, telles que le corps des réels ou le corps des nombres p-adiques,

qui ne sont pas simples, mais dépendants. Notons que les théories stables sont exacte-

ment celles qui sont à la fois dépendantes et simples. Des travaux ont montré que de

nombreuses techniques développées pour les théories stables peuvent être adaptées aux

théories dépendantes. Par exemple, Kaplan, Scanlon etWagner ont généralisé le fait que

tout corps infini stable est Artin-Schreier clos à ce contexte plus large [34].

Récemment, plus d’attention a été apportée à une classe de théories englobant les

théories simples et les théories dépendantes, la classe des théories qui ne satisfont pas

la propriété de l’arbre du deuxième type (théories NTP2). Initialement introduite par

Shelah [57], ces théories ont été intensivement étudiées par Chernikov dans sa thèse de

doctorat [9]. Dans [11] Chernikov et Kaplan ont montré que la non déviation y a encore

de bonnes propriétés, ce qui suggère que d’autres résultats connus pour les théories

simples ou dépendantes pourraient être étendus à ce contexte. Chernikov, Kaplan et

Simon ont montré que tout corps NTP2 a au plus un nombre fini extensions d’Artin-

Schreier [12]. Certains corps algébriquement clos valués aux différences (Chernikov et

Hils [10]) et les corps pseudo réellement clos (Monténégro [48]) sont des corps NTP2,

qui ne sont ni simples ni dépendants.
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Dans cette thèse, nous nous explorons certaines propriétés des groupes et corps ayant

une théorie dépendante, simple ou seulement NTP2, c’est-à-dire dans le contexte de la

néostabilité.

Concernant les groupes, nous nous intéressons à la question de l’existence d’envelop-

pes définissables : étant donnés un groupe G et un sous-groupe H arbitraire qui est

de plus commutatif, nilpotent ou résoluble, peut-on trouver un sous-groupe définiss-

able de G contenant H ayant les mêmes propriétés algébriques. Exhiber un ensemble

définissable enveloppant un ensemble non définissable donné et satisfaisant des pro-

priétés similaires, est important en théorie des modèles et ses applications, car elle

transporte des objets qui sont a priori hors de sa portée, dans la catégorie de ces ob-

jets d’étude, celle des ensembles définissables. Au sujet des enveloppes définissables,

il y a eu des progrès remarquables au cours des dernières décennies pour des groupes

qui satisfont certaines propriétés modèle-théoriques, ainsi que pour des groupes dont

les centralisateurs satisfont certaines conditions de chaîne.

Les conditions de chaîne sur les sous-groupes uniformément définissables forment

l’un des résultats centraux concernant les groupes définissables dans l’une des théories

susmentionnées. Par exemple, dans un groupe stable, toute chaîne descendante d’inter-

sections de sous-groupes uniformément définissables se stabilise après un nombre fini

d’étapes. Les groupes dans lesquels les centralisateurs satisfont cette condition de chaîne

sont appelés Mc-groupes; les groupes stables sont ainsi des Mc-groupes. Historique-

ment, ils ont été d’un grand intérêt à la fois pour les théoriciens des groupes et pour

les théoriciens des modèles. Une des propriétés cruciales est que le centre de tout Mc-

groupe est égal au centralisateur d’un nombre fini d’éléments. Bryant montre dans [7]

que cette propriété est conservée aux quotients par tout centre itératif. Ce fait a ou-

vert la voie à d’autres résultats. Par exemple des enveloppes définissables existent pour

les sous-groupes abéliens et nilpotents. Alors que les enveloppes définissables pour les

sous-groupes abéliens sont faciles à trouver, le cas nilpotent, un résultat de Altinel et

Baginski [1], est beaucoup plus complexe. L’une des raisons est le fait qu’un quotient

d’un Mc-groupe par un sous-groupe distingué n’est pas nécessairement un Mc-groupe.

Ceci est un obstacle pour trouver des enveloppes définissables des sous-groupes résol-

ubles de Mc-groupes, une question qui reste toujours ouverte. Un autre objet d’intérêt

est le sous-groupe de Fitting, qui est le groupe engendré par tous les sous-groupes nilpo-

tents distingués. Bien qu’il soit toujours distingué dans le groupe ambiant, et nilpotent

pour les groupes finis, il pourrait ne pas être nilpotent pour certains groupes infinis.

Bryant a d’abord démontré que le sous-groupe de Fitting de toutMc-groupe périodique

est nilpotent [7]. En utilisant des techniques modèle-théoriques, Wagner a prouvé la

nilpotence du sous-groupe de Fitting d’un groupe stable dans [62] et plus tard Wagner

et Derakshan ont généralisé ce résultat aux Mc-groupes arbitraires [15].

Les sous-groupes uniformément définissables d’un groupe dont la théorie est sim-

ple, satisfont une condition de chaîne légèrement plus faible : toute chaîne descendante

d’intersections de sous-groupes uniformément définissables chacune ayant indice in-

fini dans son prédécesseur, stabilise après un nombre fini d’étapes. De plus, en utilisant

la compacité, on peut trouver pour toute famille donnée de sous-groupes uniformé-

ment définissables, des nombres naturels d et n d’une manière que toute chaîne de-



Introduction en Français vii

scendante d’intersections de cette famille, chacune ayant indice plus grand que d dans

son prédécesseur, a une longueur au plus n. Les groupes pour lesquels les centralisa-

teurs de toutes sections définissables satisfont cette condition de chaîne seront appelés

M̃c-groupes. Le fait que tout groupe G définissable dans une théorie simple est un M̃c-

group joue un rôle essentiel dans la preuve de Milliet montrant que tout sous-groupe

commutatif de G est contenu dans un sous-groupe définissable fini-par-abélien [47] et

que tout sous-groupe résoluble de G est contenu dans un nombre fini de translatés d’un

sous-groupe résoluble définissable [46]. Dans le même papier, pour obtenir le résultat

correspondant pour les sous-groupes nilpotents de G, il utilise d’autres outils modèle-

théoriques provenant des théories simples. Ensuite, Palacín et Wagner ont généralisé

ces résultats dans [50] aux groupes type-définissables dans une théorie simple, ce qui

leur a permis de montrer dans ce contexte la nilpotence du sous-groupe de Fitting, en

utilisant aussi bien la condition de chaîne sur les centralisateurs et des outils développés

pour les théories simples.

J’ai isolé les propriétés nécessaires dans les preuves de Palacín et Wagner sur les en-

veloppes définissables et le sous-groupe de Fitting dans les théories simples, puis j’ai

développé une approche purement groupe théorique. Ceci est présenté dans le chapitre

3 qui se consacre à l’étude des presque centralisateurs de sous-groupes. SiG est un groupe

et A un ensemble de paramètres, nous définissons pour des sous-groupes A-invariants

K , H et N , tels que H et K normalisent N , le presque centralisateur de H dans K modulo

N :

C̃K (H/N ) = {k ∈ K : [H : CH (k/N )] est borné}.1

On peut penser à cet objet comme l’ensemble des éléments de K qui commutent avec

presque tous les éléments de H modulo N . Notons que cet ensemble forme un sous-

groupe de K qui est stabilisé par tous les automorphismes qui fixent H , K et N comme

ensemble.

Dans le même esprit, on dit qu’un sous-groupe A-invariant H est presque contenu

dans un autre sous-groupe A-invariant K si l’intersection de H et K a indice borné dans

H . On note cette propriété H � K .

De manière analogue, pour des sous-groupes arbitraires H et K , on dit que H est

virtuellement contenu dans K si l’intersection de H et K a indice fini dans H .

Nous concentrons notre étude sur la classe des sous-groupes A-ind-définissables. C’est

une notion modèle théorique qui généralise les sous-groupes type-définissables et qui

tombe dans la classe des sous-groupes invariants. Plus précisément, dans cette thèse

un sous-groupe A-ind-définissable est l’union d’un système dirigé de sous-groupes A-

type-définissables. Étant donné un groupe G, nous disons que les deux sous-groupes

H et K de G normalisent fortement et simultanément un sous-groupe A-ind-définissable

L de G s’il existe un ensemble de sous-groupes A-type-définissables {Lα : α ∈ Ω} de G
chacun normalisé par H et K tel que L est égal à

⋃
α∈Ω Lα .

Les théorèmes ci-dessous résument les résultats principaux du Chapitre 3 (Théorème

3.13, Théorème 3.19, et Théorème 3.24).

1voir Notation on page 9 pour clarification
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TheoremA. Soit G un groupe et A un ensemble de paramètres. Pour trois sous-groupes

A-ind-définissables H , K et L de G , on obtient :

• (symétrie) Si N est un sous-groupe de G normalisé par H et K , qui est l’union

d’ensembles A-définissables, alors

H � C̃G(K/N ) si et seulement si K � C̃G(H/N ).

• (lemme des trois sous-groupes) Supposons que H , K et L normalisent fortement et

simultanément chacun des autres. Alors,

si H � C̃G(K/C̃G(L)) et K � C̃G(L/C̃G(H)) alors L� C̃G(H/C̃G(K)).

Theorem B (généralisation d’un théorème de Neumann). Soit G un groupe et soient H

et K deux sous-groupes de G. Nous supposons que

• H normalise K ;

• H ≤ C̃G(K);
• K ≤ C̃G(H), de plus il y a d ∈ ω tel que pour tout k dans K la classe de conjugaison

kH a cardinalité au plus d.

Alors, le groupe [K,H] est fini.

En utilisant ces propriétés, nous analysons les M̃c-groupes. Leur propriété centrale

est que le presque centralisateur de chaque sous-groupe est définissable, ce que nous

montrons dans la section 3.5. Ensuite, nous généralisons les résultats sur les enveloppes

définissables et le sous-groupe de Fitting dans les théories simples aux M̃c-groupes Pour

les énoncer, nous avons besoin d’introduire les versions approximatives des propriétés

de commutativité, nilpotence et résolubilité.

Les groupes qui sont presque abéliens, c.à.d. les groupes dans lesquels la classe de

conjugaison de chaque élément est fini (appelés aussi FC-groupes), remontent à Baer et

Neumann. De même, Haimo a introduit et étudié les généralisations d’autres propriétés

groupe-théoriques classiques. En remplaçant le centre par le FC-centre (qui est le FC-

centralisateur du groupe en lui-même) dans la définition des groupes nilpotents, et

abélien par presque abélien dans la définition des groupes résolubles, il a introduit la

notion de groupes FC-nilpotents ou presque nilpotents et respectivement de groupes FC-

résolubles ou presque résolubles. Ces objets correspondent à leurs analogues ordinaires

pour lesquelles les propriétés restent vraies «à indice fini près».

Nous obtenons des enveloppes définissables dans le contexte des M̃c-groupes (Pro-

postition 4.17, Théorème 4.19 et Théorème 4.24) et nilpotence de son sous-groupe de

Fitting (Théorème 5.9).

Theorem C. Soit G un M̃c-groupe et H un sous-groupe de G.
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1. Si H est presque abélien, il existe un sous-groupe définissable fini-par-abélien de

G qui contient H et qui est normalisé par NG(H).

2. Si H est presque nilpotent de classe n, il existe un sous-groupe définissable nilpo-

tent N de G de classe au plus 2n qui contient virtuellement H et qui est normalisé

par NG(H).

Notamment, siH est distingué dans G, le groupeHN est un sous-groupe définiss-

able, distingué et nilpotent de classe au plus 3n qui contiens H .

3. Si H est presque résoluble de classe n, il existe un sous-groupe définissable résol-

ubleN de G de classe au plus 2n qui contient virtuellementH et qui est normalisé

par NG(H).

Notamment, si H est distingué dans G, le groupe HS est un sous-groupe définiss-

able, distingué et résoluble de classe au plus 3n qui contiens H .

Theorem D. Le sous-groupe de Fitting d’un M̃c-groupe est nilpotent et définissable.

En outre, la notion d’un sous-groupe presque nilpotent étant introduite, on peut na-

turellement considérer le sous-groupe de Fitting approximatif, c.à.d. le groupe engendré

par tous les sous-groupes presque nilpotents distingués. Nous montrons que le sous-

groupe presque Fitting d’un M̃c-groupe est presque résoluble. (Notons que la première

étape pour démontrer la nilpotence du sous-groupe de Fitting est la preuve de résolu-

bilité.)

Pour les groupes dépendants, Shelah amontré dans [59] que tout sous-groupe abélien

est contenu dans un sous-groupe abélien définissable (dans une extension saturée) et

Aldama a généralisé ce résultat aux sous-groupes nilpotents [14]. Dans le cas résoluble,

Aldama ne l’a montré pour l’instant que pour les sous-groupes distingués dans une

extension suffisamment saturée.

Il se trouve que les presque centralisateurs et leurs propriétés présentées dans cette

thèse sont utiles pour analyser les enveloppes définissables des sous-groupes abéliens,

nilpotents ou résolubles distingués d’un groupe NTP2. Avec Onshuus, nous avons

généralisé les résultats sur les enveloppes définissables dans ce contexte. Ceci est présenté

dans la section 4.2 et fait partie de l’article [24] qui est accepté pour publication dans

«Israel Journal of Mathematics» :

Theorem E. Soit G un groupe définissable dans un théorie NTP2 et H un sous-groupe

de G tel que G est |H |+-saturé.

1. Si H est abélien, alors il existe un sous-groupe définissable fini-par-abélien A de

G qui contient H . De plus, si H est distingué dans G, le sous-groupe A peut être

choisi également distingué dans G.

2. Si H est nilpotent de classe n, alors il existe un sous-groupe définissable nilpotent

N de G de la classe au plus 2n qui contient virtuellement H .
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De plus, si H est distingué dans G, le groupe N peut être choisi également dis-

tingué dans G, et le sous-groupe HN est nilpotent définissable de classe au plus

3n.

3. Si H est résoluble de classe n et distingué dans G, alors il existe un sous-groupe

définissable résoluble distingué S de G de classe au plus 2n qui contient virtuelle-

ment H . De plus, le sous-groupe HS est définissable, résoluble de classe au plus

3n et distingué dans G.

Par analogie avec le presque centralisateur, donné deux sous-groupe A-ind-définis-

sable H et K d’un groupe quelconque, nous définissons une notion de presque commuta-

teur, noté [̃H,K ]̃ , et nous établissons ses propriétés de base. La definisabilité du presque

centralisateur d’un sous-groupe d’un M̃c-groupes, permet de montrer l’interaction at-

tendue entre le presque commutateur et le presque centralisateur : [̃H,K ]̃ est trivial si

et seulement si H � C̃G(K). Cette correspondance nous permet de prouver le Corollaire

6.18, une version d’un critère de nilpotence de Hall pour des sous-groupes presque

nilpotents d’un M̃c-groupe:

Theorem F. Soit N un sous-groupe A-ind-définisable et distingué d’un M̃c-groupe G.

Si N est presque nilpotent de classe m et G/ [̃N,N ]̃A est presque nilpotent de classe n,

alors G est presque nilpotent de classe au plus
(m+1

2

)
n− (n2)+1.

Les structures dépendantes sont le premier niveau d’une hiérarchie stricte de struc-

tures, les structures n-dépendantes (le n-hypergraphe aléatoire est n-dépendant, mais

n’est pas (n−1)-dépendant). Nousmontrons que le groupe équipé d’une forme bilinéaire

suivant est 2-dépendant :

Soit (G,Fp,0,+, ·) la structure où Fp est le corps fini de cardinalité p, G est le groupe⊕
ωFp, la constante 0 est l’élément neutre, + est l’addition dans G et · est la forme

bilinéaire (ai )i · (bi )i =∑i aibi de G à Fp.

Cet exemple, dans le cas p est égal à 2 a été étudié par Wagner dans [63, Exemple

4.1.14]. Il montre qu’il est simple et que la composante connexe G0
A pour tout ensemble

de paramètres A est égal à {g ∈ G :
⋂
a∈A g · a = 0}. Par conséquent, il devient de plus en

plus petit en élargissant A. Ceci est le premier exemple non combinatoire connu d’une

structure 2-dépendante qui n’est pas dépendante et il illustre le fait que la composante

connexe, qui est absolu pour un groupe dépendant, peut dépendre des paramètres pour

un groupe seulement 2-dépendant.

Rappelons que Kaplan, Scanlon et Wagner ont prouvé que tout corps dépendant in-

fini est Artin-Schreier clos [34] et Duret a montré que tout corps pseudo algébriquement

clos (PAC) non séparablement clos ne fait pas partie de la classe des théories dépen-

dants [16]. Nous généralisons ces résultats à la classe des théories n-dépendantes. Ces

résultats se trouvent dans le chapitre 7 et font l’objet d’un article [23] accepté pour

publication dans le revue «Mathematical Logic Quarterly»:



Introduction en Français xi

Theorem G. Tout corps infini n-dépendant est Artin-Schreier clos.

Theorem H. Pour tout nombre naturel n, aucun corps PAC non separablement clos est

n-dépendant.

Dans le cas particulier des corps pseudofinis ou, plus généralement, les corps PAC

e-libres, le Théorème H est une conséquence d’un résultat de Beyarslan prouvé dans [4]

qui dit qu’on peut interpréter les n-hypergraphes dans un tel corps.

La pertinence du fait que des corps PAC non separablement clos ne sont n-dépendants

pour aucun n réside dans la conjecture que les (purs) corps supersimples sont précisé-

ment les corps PAC parfaits bornés. Ainsi, la conjecture implique que tout (pur) corps

supersimple n-dépendant est séparablement clos et donc stable.

Le dernier chapitre est consacré à l’étude des corps gauches. L’une des questions

naturelles sur les corps gauches d’un point de vue modèle théorique, est de savoir s’il

existe ou non des corps non commutatifs définissables dans des structures ayant cer-

taines propriétés. Par un résultat de Pillay, Scanlon et Wagner, il est connu que tout

corps gauche supersimple est commutatif. Plus tard, Milliet a démontré dans [45] que

tout corps gauche de caractéristique positive ayant une théorie simple est de dimension

finie sur son centre. Cette question est en général ouverte en caractéristique nulle. Sous

certaines conditions, nous avons prouvé avec Palacín la commutativité de tout corps

gauche ayant une théorie simple (Théorème 8.17) :

Theorem I. Un corps gauche définissable dans une théorie simple avec un générique de

poids 1 est commutatif.

En outre, nous avons analysé les corps gauches de fardeaux finis (Théorème 8.20,

Corollaire 8.21) :

Theorem J. Tout gauche corps de fardeau n a dimension au plus n sur son centre et de

plus sur tout sous corps commutatif définissable et infini.

Sous ces hypothèses, on ne peut espérer améliorer le résultat, car le corps gauche

non-commutatif des quaternions est définissable dans les réels et est de fardeau fini.
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Model theory is a branch of mathematics which concentrates on classifying first order

theories of mathematical objects and on studying their definable sets. The classification

theorem of Morley in the 1960’s and the introduction of totally transcendental theories

started the development of stability theory. Afterwards, Shelah considered the larger

class of stables theories, i. e. theories which do not encode a linear order [56]. Well known

examples of structures whose theories are stable are algebraically closed fields as well

as differentially and separably closed fields, vector spaces over infinite fields and free

groups. Shelah introduced numerous combinatorial concepts to study stable structures

[58], and over the years, a large catalog of techniques and results has been produced

which has found many applications in algebraic geometry and number theory. More-

over, after the work of Hrushovski on pseudo-finite fields [30], Kim and Pillay showed

that many of these concepts developed for stable theories can be adapted and general-

ized to the wider class of simple theories [36, 35, 38]. They include generic difference
fields, the random graph and pseudo-finite fields.

The aim to study other relevant mathematical examples, such as the reals or the p-

adics, which are not simple but whose definable sets have a certain combinatorial prop-

erty, led to the investigation of the class of dependent theories. Note that stable theories

are exactly those which are both dependent and simple. Recent effort has shown that

many techniques from stability theory can be adapted as well to dependent theories.

For example, Kaplan, Scanlon andWagner generalized the fact that infinite stable fields

are Artin-Schreier closed to this wider framework [34].

Recently, an even wider class of theories including both simple and dependent the-

ories has attracted more attention: theories which do not satisfy the tree property of

the second kind (NTP2 theories). Originally introduced by Shelah [57], such theories

have been intensively studied by Chernikov in his PhD thesis [9]. One important result,

proven in a collaboration with Kaplan in [11], is that forking independence is still well-

behaved. This gives hope to extend other results known for simple as well as dependent

theories to this context. Moreover, Chernikov, Kaplan and Simon have shown that an

NTP2 field has at most finitely many Artin-Schreier extensions [12]. Examples of NTP2

fields, which are neither simple nor dependent, are certain algebraically closed valued

difference field, as shown by Chernikov and Hils [10] and pseudo real closed fields, as

shown by Montenegro [48].

The aim of this thesis is to analyze certain properties of groups and fields having a

dependent, simple or NTP2 theory, which we summarize as having a neo-stable theory.
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Regarding groups, one is for example interested if given a group G and an arbitrary

subgroup H which is abelian, nilpotent or solvable, can one find a definable envelope of

H , that is a definable subgroup of G containing H with the same algebraic properties.

In the past decades there has been remarkable progress on groups fulfilling model the-

oretic properties as well as on groups satisfying certain chain conditions on centralizers

which will ensure the existence of definable envelopes. Finding definable sets around

non-definable objects admiting similar properties becomes essential as it brings objects

outside of the scope of model theory into the category of definable sets. Furthermore, it

is interesting not only from a purely model theoretic point of view but also an important

tool for applications.

Some of the central results dealing with groups definable in any of the aforemen-

tioned theories are chain conditions on uniformly definable subgroups. For example in

groups with a stable theory, any descending chain of intersections of uniformly defin-

able subgroups stabilizes after finitely many steps. Groups which satisfy this condition

for centralizers are called Mc-groups and hence stable groups are Mc-groups. Histor-

ically, they have been of great interest to both group and model theorists. One of the

crucial properties is that the center of anyMc-group is equal to the centralizer of finitely

many elements. Bryant shows in [7] that this property is preserved under taking quo-

tients by any iterated center. This fact paved the way to further results. For example

definable envelopes exist for abelian and nilpotent subgroups of Mc-groups. Whereas

the definable envelopes for abelian subgroups are easy to find, the nilpotent case, due

to Altinel and Baginski [1], is much more elaborate. One of the reasons is the fact that

quotients ofMc-groups are not necessarilyMc-groups. This is as well an obstacle to find

definable envelopes for solvable subgroups ofMc-groups, a question which still remains

open. Another object of interest is the Fitting subgroup, that is, the group generated by

all normal nilpotent subgroups. While it is always normal in the ambient group and

nilpotent for finite groups, it might not be nilpotent for infinite groups. In the case of

Mc-groups, Bryant first showed that the Fitting subgroup of any periodic Mc-group is

nilpotent [7]. Using model theoretic techniques, Wagner proved in [62] nilpotency of

the Fitting subgroup of any group whose theory is stable and laterWagner together with

Derakshan generalized this result to arbitrary Mc-groups in [15].

In groups with a simple theory a slightly weaker chain condition holds, namely any

descending chain of intersections of uniformly definable subgroups each having infinite

index in its predecessor, stabilizes after finitely many steps. Moreover, using compact-

ness, one can find natural numbers d and n in a way that any such descending chain

of subgroups each having index greater than d in its predecessor has length at most n.

We refer to groups which satisfy this chain condition on centralizers in any definable

section as M̃c-groups. The fact that any group G definable in a simple theory is an M̃c-

group plays an essential role in the proof of Milliet showing that an arbitrary abelian

subgroup of G is contained in a definable finite-by-abelian subgroup [47] and that any

solvable subgroup of G is contained in the union of finitely many translates of a defin-

able solvable subgroup [46]. To obtain the corresponding result for nilpotent subgroups

of G which can also be found in [46], he uses as well other model theoretic tools coming

from simple theories. Moreover, Palacín and Wagner generalized these results in [50] to
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type-definable groups in a simple theory which enabled them, making use as well of the

chain condition on centralizers and model theoretic machinery from simple theories, to

show nilpotency of the Fitting subgroup for groups type-definable in a simple theory.

I isolate the necessary results in the proofs of Palacín and Wagner on definable en-

velopes and nilpotency of the Fitting group in simple theories and give a purely group

theoretical approach. This is presented in Chapter 3 which is dedicated to the study

of the almost centralizer of subgroups. Let G be a group and A be a parameter set. For

A-invariant subgroups K , H and N , such that H and K normalize N , we define:

C̃K (H/N ) = {k ∈ K : [H : CH (k/N )] is bounded}.2

This group is called the almost centralizer of H in K modulo N . One may think of this

object as the set of elements of K which commute with almost all elements ofH modulo

N . Note that this set forms a subgroup of K which is stabilized by all automorphisms

which fix H , K and N setwise.

In the same spirit as the almost centralizer, one can define that an A-invariant sub-

group H is almost contained in another A-invariant subgroup K , i. e. the intersection of

H and K has bounded index in H . We denote this by H � K .

Analogously, for arbitrary subgroups H and K , we say that H is virtually contained in K

if the intersection of H and K has finite index in H .

We concentrate our study on the class of A-ind-definable subgroups. It is a model

theoretic notion which generalizes type-definable subgroups and which falls into the

class of invariant subgroups. More precisely, in this thesis an A-ind-definable subgroup

is the union of a directed system of A-type-definable subgroups. Given a group G,

we say that two subgroups H and K of G simultaneously strongly normalize an A-ind-

definable subgroup L of G if there is a set of A-type-definable subgroups {Lα : α ∈Ω} of
G each normalized by H and K such that L is equal to

⋃
α∈Ω Lα .

The two theorems below summarize the main results of Chapter 3:

Theorem A. Let G be a group and let A be a parameter set. For H , K and L three

A-ind-definable subgroups of G, we obtain the following:

• (symmetry) If N is a subgroup of G which is the union of some A-definable sets

and normalized by H and K , then

H � C̃G(K/N ) if and only if K � C̃G(H/N ).

• (almost three subgroups lemma) Suppose H , K and L simultaneously strongly nor-

malize each other.

If H � C̃G(K/C̃G(L)) and K � C̃G(L/C̃G(H)) then L� C̃G(H/C̃G(K)).

Theorem B (generalized Neumann theorem). Let G be a group and let H and K be two

subgroups of G. Suppose that

2see Notation on page 9 for clarification
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• H normalizes K ;

• H ≤ FCG(K);

• K ≤ FCG(H), moreover there is d ∈ ω such that for all k in K the set of conjugates

kH has size at most d.

Then the group [K,H] is finite.

Using these properties, we are able to analyze M̃c-groups. Their crucial property

is that the almost centralizer of any invariant subgroup is definable which we prove in

Section 3.5. Afterwards, we generalize the results on definable envelopes and the Fitting

group in simple theories to M̃c-groups. To state them, we need to introduce generalized

notions of being abelian, nilpotent and solvable.

Groups which are almost abelian, i. e. are groups in which the conjugacy class of any

element is finite (also referred to as FC-groups), date back to Baer and Neumann. Sim-

ilarly, Haimo introduced and studied generalizations of other classical group theoretic

properties. By replacing center by FC-center (that is the FC-centralizer of the group in

itself) in the definition of nilpotent groups and abelian by almost abelian in the defini-

tion of solvable groups, he introduced the notion of an FC-nilpotent or almost nilpotent

group and respectively an FC-solvable or almost solvable group. These objects correspond

to their ordinary analogs in which the required properties hold “up to finite index”.

We obtain definable envelopes in M̃c-groups (Proposition 4.17, Theorem 4.19, Theo-

rem 4.24) and nilpotency of their Fitting subgroups (Theorem 5.9):

Theorem C. Let G be an M̃c-group and H be a subgroup of G. Then the following hold:

1. If H is almost abelian, then there exists a definable finite-by-abelian subgroup of

G which contains H and which is normalized by NG(H).

2. If H is almost nilpotent of class n, then there is a definable nilpotent subgroup N

of G of class at most 2n which is normalized by NG(H) and virtually contains H .

In particular, ifH is normal in G, we have thatHN is a definable normal nilpotent

subgroup of G of class at most 3n which contains H .

3. If H is almost solvable of class n, then there exists a definable solvable subgroup

S of G of class at most 2n which is normalized by NG(H) and virtually contains H .

In particular, if H is normal in G, the group HS is a definable normal solvable

subgroup of G of class at most 3n which contains H .

Theorem D. The Fitting group of any M̃c-group is nilpotent and definable.

Moreover, given the notion of an almost nilpotent subgroup, one can naturally con-

sider the almost Fitting subgroup, namely the group generated by all normal almost

nilpotent subgroups. We shall show that the almost Fitting subgroup of an M̃c-group is

almost solvable. Note, that proving solvablity of the Fitting subgroup for M̃c-groups is

the first step to prove its nilpotency.
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For groups with a dependent theory, Shelah showed in [59] that any abelian subgroup

is contained in a definable abelian subgroup (in a saturated extension) and Aldama

generalized this result to nilpotent subgroups [14]. In the solvable case, also due to

Aldama, for now, this is only possible if we work in a sufficiently saturated elementary

extension in which the solvable subgroup is normal.

Together with Onshuus, we generalized the results on definable envelopes to groups

with an NTP2 theory. This is presented in Section 4.2 and forms part of the article [24]

which is accepted for publication in the Israel Journal of Mathematics:

Theorem E. Let G be a group definable in an NTP2 theory, H be a subgroup of G and

suppose that G is |H |+-saturated. Then the following holds:

1. IfH is abelian, then there exists a definable finite-by-abelian subgroup of G which

contains H .

Furthermore, if H is normal in G, the definable finite-by-abelian subgroup can be

chosen to be normal in G as well.

2. If H is nilpotent of class n, then there exists a definable nilpotent subgroup N of

G of class at most 2n which virtually contains H .

Moreover, if H is normal in G, the group N can be chosen to be normal in G as

well and HN is a definable nilpotent group of class at most 3n which contains H .

3. IfH is solvable of class nwhich is normal inG, then there exists a definable normal

solvable subgroup S of G of class at most 2n which virtually contains H .

In particular, the group HS is a definable solvable subgroup of G of class at most

3n which contains H .

In analogy to the almost centralizer, given two A-invariant subgroups H and K of

some group, we define the almost commutator of H and K , denoted by [̃H,K ]̃, and estab-

lish its basic properties. As a consequence of the almost centralizer being definable for

M̃c-groups, the almost centralizer and the almost commutator interact in the expected

way, namely [̃H,K ]̃ is trivial if and only if H � C̃G(K). This correspondence enables

us to prove Corollary 6.18, a version of Hall’s nilpotency criteria for almost nilpotent

subgroups of M̃c-groups:

Theorem F. Let N be an A-ind-definable normal subgroup of an M̃c-group G. If N is

almost nilpotent of classm and G/ [̃N,N ]̃A is almost nilpotent of class n then G is almost

nilpotent of class at most
(m+1

2

)
n− (n2)+1.

Dependent structures are the first level of a strict hierarchy of structures, called n-

dependent, for which the random n-hypergraph is n-dependent but it is not (n − 1)-

dependent. We shall show that the following non dependent group equipped with a

bilinear form is 2-dependent:
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Let (G,Fp,0,+, ·) be the structure where Fp is the finite field with p elements, G is the

group
⊕

ωFp, 0 is the neutral element, + is addition in G, and · is the bilinear form

(ai )i · (bi )i =∑i aibi from G to Fp.

This example in the case p equals 2 has been studied byWagner in [63, Example 4.1.14].

He shows that it is simple and that the connected componentG0
A for any parameter setA

is equal to {g ∈ G :
⋂
a∈A g ·a = 0}. Hence, it is getting smaller and smaller while enlarging

A. This is the first known non combinatorial example of such a structure which is not

dependent and it illustrates that the connected component, which is absolute in any

dependent group, might depend on parameters in 2-dependent groups.

Kaplan, Scanlon andWagner proved that any infinite dependent field is Artin-Schreier

closed [34] and Duret showed in [16] that any non separably closed pseudo algebraically

closed (PAC) field does not belong to the class of dependent theories. We generalized

these results to the wider class of n-dependent theories. This can be found in Chapter 7

of this thesis and forms part of the article [23] which is accepted for publication in the

Mathematical Logic Quarterly:

Theorem G. Any infinite n-dependent field is Artin-Schreier closed.

Theorem H. For any natural number n, any non separably closed PAC field is not n-

dependent.

In the special case of pseudofinite fields or, more generally, e-free PAC fields, The-

orem H is a consequence of a result of Beyarslan proved in [4], namely that one can

interpret the n-hypergraph in any such field. The relevance of the fact that non sepa-

rably closed PAC fields are not n-dependent for any n lies in the conjecture that (pure)

supersimple fields are precisely the bounded perfect PAC fields. Thus, the conjecture

implies that any pure n-dependent supersimple field is separably closed and therefore

stable.

The last chapter is dedicated to the study of division rings. One of the natural ques-

tions to ask about division rings from a model-theoretic point of view, is whether or

not non-commutative division rings definable in structures with certain properties ex-

ist. Due to Pillay, Scanlon and Wagner it is known that any supersimple division ring

is commutative. Later, Milliet showed in [45] that any division ring of positive char-

acteristic with a simple theory is finite dimensional over its center. But less is known

for division rings of characteristic zero. Together with Palacín, we have proved com-

mutativity of division rings with a simple theory under certain conditions which can be

found as Theorem 8.17:

Theorem I. A definable division ring in a simple theory with a generic type of weight 1

is a field.

Moreover, we analyzed division rings of finite burden (Theorem 8.20, Corollary 8.21):

Theorem J. Any infinite division ring of burden n has dimension at most n over its

center and moreover over any infinite definable subfield.
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In this setup, one cannot hope to improve the statement, as the non-commutative

division ring of the quaternions is definable in the reals and thus has finite burden.





1Preliminaries

1.1 Classification theory

In this section we introduce the different model theoretic frameworks considered within

this thesis.

There are multiple equivalent definitions for the different model theoretical classes

we introduce. Some of them have their origins in forbidden combinatorial configura-

tions of definable sets, others are linked to the space of types or the behavior of non-

forking. For each theory, we first give the combinatorial definition as it provides the

right setup to prove the different chain conditions of uniformly definable subgroups

which play an essential role in this thesis. Afterwards, we point out some of the equiv-

alent characterizations.

Stability theory has its origins in Morley’s proof of Łoś conjecture in the 60’s:

Fact 1.1 (Morley’s theorem). [27, Theorem 12.2.1] Let T be a first-order theory in a count-

able language which is categorical for an uncountable cardinal. Then it is categorical in all

uncountable cardinalities.

Later on, Morley discovered that such theories must be ω-stable, namely for any

countable set A, the set of complete types over A is countable. Afterwards, Shelah took

this step further and tried to describe, given a complete first order theory T , the function

whichmaps a cardinal κ to the number of models of T of size κ. Morley conjectured that

for any complete theory, this function is nondecreasing for uncountable cardinals. The

main philosophical idea to analyze these functions was to isolate certain combinatorial

patterns such that any theory which “encodes” such a pattern has a maximal number of

models. For theories failing to encode this pattern, one takes a closer look at their space

of types. Shelah showed that a meaningful dividing line lies in between theories with

a small space of types, which we call stable theories (introduced below), and unstable

theories. This marked the beginning of stability theory. The techniques he developed

allowed him to affirm Morley’s conjecture and further work by Hart, Hrushovski and

Laskowski [22] led to a complete description of the possibilities for the aforementioned

function.

So let us now give one of the precise definitions of a stable theory:

Definition 1.2 (stable theories). Let T be a theory. A formula φ(x̄; ȳ) has the order prop-

erty if there are a sequences of tuples (āi : i ∈ ω) and (b̄j : j ∈ ω) in some model M of T

such that

M |= φ(āi ; b̄j ) if and only if i < j.
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A formula is called stable, if it does not have the order property and a theory T is stable

if any formula is stable.

Equivalently a theory is stable if for some infinite cardinal κ and any parameter set A

of size κ, the space of complete types over A has size at most κ.

A third characterization of stable theories is that any type is definable, i. e. for any

complete type p(x) over a model M and any formula φ(x; ȳ) there is a formula ψp,φ(ȳ)

with parameters in M such that for any b̄ in M
φ(x; b̄) ∈ p ⇔ M |= ψp,φ(b̄).

Important examples of stable theories are algebraically closed fields, separably closed

fields, differentially closed fields, vector spaces over infinite fields, free groups and pla-

nar graphs.

A well know generalization of stable theories are simple theories. They were in-

troduced by Shelah in [57] while studying the saturation spectrum. Their importance

came to light through the work of Kim and Pillay [36, 35, 38], in which they general-

ized purely model theoretic properties of stable theories to this wider context, as well

as Hrushovski’s results on pseudofinite fields [30] where he proved, in particular, that

their theory is simple.

Definition 1.3 (simple theories). Let T be a theory. A formula φ(x̄; ȳ) has the tree prop-

erty if there exists a parameter set {āμ : μ ∈ ω<ω} and k ∈ ω such that

• {φ(x̄; āμ�i ) : i < ω} is k-inconsistent for any μ ∈ ω<ω;
• {φ(x̄; ās�n) : n ∈ ω} is consistent for any s ∈ ωω.

A theory is simple if no formula has the tree property.

x = x

φ(x, a0) φ(x, a1) k-incon.. . . φ(x, an) . . .

φ(x, a00) φ(x, a01) k-incon.. . . φ(x, a0m) . . . φ(x, a10) k-incon.. . . φ(x, an0) k-incon.. . .

k-incon.. . . k-incon.. . .
. . . k-incon.. . .

. . . k-incon.. . .
. . . k-incon.. . .

. . .

︸ ︷︷ ︸

all consistent
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The class of simple theories includes, in addition to stable structures, pseudofinite

fields, generic difference fields and the random graph. It can also be characterized using

forking independence:

Definition 1.4. Let k be a natural number. A formula ϕ(x,a) k-divides over a set A if

there is a sequence (ai : i ∈ ω) of realizations of tp(a/A) such that {ϕ(x,ai ) : i ∈ ω} is
k-inconsistent. A partial type π(x) divides over A if there is some formula ϕ(x,a) and

natural number k such that φ(x,a) k-divides over A and π(x) � ϕ(x,a).
A formula ϕ(x,a) forks over A if there are ψi(x,bi ) and ki ∈ ω for i < n such that

ϕ(x,a) �
∨
i<n

ψi(x,bi )

and for each i < n, the formula ψi(x,bi ) ki-divides over A. We say that a partial type π(x)

forks over A if there is some formula ϕ(x,a) which forks over A and π(x) � ϕ(x,a).
A type p over B which does not fork over a subset A of B is called a non-forking extension

of p � A.

In an arbitrary first-order theory forking and dividingmay not agree, but Kim showed

in [35] that in simple theories these two notions coincide.

Using the combinatorial notion of forking, we define forking independence as a ternary

relation denoted by |	 among small sets of the monster model C such that for all small

subsets A, B, C of C , we have that

A |	
C

B⇔ for any enumeration ā of A, tp(ā/BC) does not fork over C.

Kim and Pillay showed that forking independence satisfies the following list of axioms

which initiated the study of abstract independence relations [35, 37].

Fact 1.5. Let T be a simple theory, C be a monster model of T and M be an arbitrary model

of T . For any small subsets A, B, C and D of C and a, a1, a2, b1 and b2 finite tuples, forking

independence |	 satisfies:

1. Invariance under Aut(C ): if A |	C
B and f ∈ Aut(C ), then f (A) |	f (C)

f (B).

2. Finite character: A |	C
B if and only if for all finite A0 ⊆ A and B0 ⊆ B, A0 |	C

B0.

3. Symmetry: A |	C
B if and only if B |	C

A.

4. Transitivity: A |	C
BD if and only if A |	C

B and A |	CB
D.

5. Extension: If a |	C
B and D ⊇ B, then there is some a′ ≡CB a such that a′ |	C

D.

6. Local character: There is some E ⊆ B with |E| ≤ |T | such that a |	E
B.

7. Strictness: If A |	C
A, then A ⊆ acl(C).

8. Independence Theorem over models: if a1 ≡M a2, ai |	M bi for i = 1,2 and b1 |	M b2,

then there is some a ≡Mbi ai for i = 1,2 such that a |	M b1b2.
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Conversely, any theory that admits an abstract ternary relation which satisfies 1 - 8 is simple

and this independence relation coincides with forking independence.

Many results for simple theories whose proof makes use of this forking calculus

turned out to be true for o-minimal structures. These are ordered structures in which

every definable subset is the finite union of points and intervals. They lie outside the

class of simple theories. For such theories one can find an independence relation, which

differs from forking independence, satisfying 1-7. This led to the study of the wider

class of rosy theories, which are exactly those which admit an abstract ternary indepen-

dence relation satisfying 1-7. These include all simple as well as all o-minimal struc-

tures.

Recently another generalization of stable theories, namely dependent theories, has

attracted much interest. The original definition, due to Shelah is the following:

Definition 1.6 (dependent theories). Let T be a theory. A formula φ(x̄; ȳ) has the inde-

pendence property if there are tuples (āi : i ∈ ω) and (b̄I : I ⊆ ω) in some model M of T

such that

M |= φ(āi ; b̄I ) if and only if i ∈ I
A formula is called dependent if it does not have the independence property, and a theory

is dependent if any formula is dependent.

Examples of dependent theories are ordered abelian groups, the reals, the p-adics and

algebraically closed valued fields.

Dependent theories are often referred to as NIP theories in the literature. Intuitively

they are theories in which one cannot define all subsets of an infinite set by instances of

a fixed formula.

An equivalent and very useful characterization of dependent theories is given by in-

discernible sequences. One can show that a theory T is dependent if in no modelM of

T one can find an indiscernible sequence (āi )i∈ω and a formula φ(x̄; b̄) such that φ(āi ; b̄)

holds inM if and only if i is odd. This can be found in [61].

Another description of dependent theories via VC-dimensions of families of defin-

able sets was given by Laskowski in [43]:

Definition 1.7. Let X be a set, S be a family of subsets of X, and let A be a subset of X.

• We say that S shatters A if for every A′ ⊆ A there is a set S in S such that S∩A = A′.

• The family S has VC-dimension at n, denoted by VC(S ) = n, if there is no subset

of X of cardinality n+1 which is shattered by S but there is a subset of X of size n

that is shattered by S .
If for each n we can find a subset of X of cardinality n that is shattered by S , then
we say that S has infinite VC-dimension, denoted by VC(S ) =∞.

Laskowski shows that a theory is dependent if and only if for any formula φ, any

family of φ-definable sets has finite VC-dimension.
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There is a natural generalization of dependent theories to higher dimensions, namely

those in which one cannot define all subsets of ωn for some natural number n. Formally

we obtain the following definition given by Shelah in [60, Definition 2.4].

Definition 1.8 (n-dependent theories). Let T be a theory and n be a natural number.

We say that a formula ψ(ȳ0, . . . , ȳn−1; x̄) in T has the n-independence property (IPn) if there

exists some parameters (ā
j
i : i ∈ ω,j ∈ n) and (b̄I : I ⊂ ωn) in some model M of T such

that

M |= ψ(ā0i0 , . . . , ān−1in−1 , b̄I ) if and only if (i0, . . . , in−1) ∈ I .
A formula is said to be n-dependent if it does not have IPn. A theory is n-dependent if

every formula is n-dependent.

It is easy to see that any theory with the (n + 1)-independence property has as well

the n-independence property. On the other hand, the classes of n-dependent theories

form a proper hierarchy as for any natural number n the random (n + 1)-hypergraph is

(n+1)-dependent but has the n-independence property [13, Example 2.2.2]. Addition-

ally, since all random hypergraphs are simple, the previous examples show that there

are theories which are simple and n-dependent but which are not dependent.

The facts below are useful in order to prove that a theory is n-dependent as they

reduce the complexity of the formulas one has to consider. The first one is stated as [60,

Remark 2.5] and afterwards proved in detail as [13, Theorem 6.4].

Fact 1.9. A theory T is n-dependent if and only if every formula φ(ȳ0, ..., ȳn−1;x) with |x| = 1

is n-dependent.

Fact 1.10. [13, Corollary 3.15] Let φ(ȳ0, ..., ȳn−1; x̄) and ψ(ȳ0, ..., ȳn−1; x̄) be n-dependent for-
mulas. Then so are ¬φ, φ ∧ψ and φ ∨ψ.

Remark 1.11. Note that a formula with at most n free variables cannot witness the

n-independence property. Thus, from the previous fact it is easy to deduce that the

random n-hypergraph is n-dependent. In fact, more generally any theory in which any

formula of more than n free variables is a boolean combination of formulas with at most

n free variables is n-dependent.

Last but not least, we introduce the class of theories without the tree property of the

second kind.

Definition 1.12. A theory has the tree property of the second kind (referred to as TP2) if

there exists a formula ψ(x̄; ȳ), an array of parameters (āi,j : i, j ∈ ω), and k ∈ ω such that:

• {ψ(x̄; āi,j ) : j ∈ ω} is k-inconsistent for every i ∈ ω;

• {ψ(x̄; āi,f (i)) : i ∈ ω} is consistent for every f : ω→ ω.

A theory is called NTP2 if it does not have the TP2.
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φ(x, a11) φ(x, a12) φ(x, a13) · · · φ(x, a1n) · · · k-incon.

φ(x, a21) φ(x, a22) φ(x, a23) · · · φ(x, a2n) · · · k-incon.

φ(x, a31) φ(x, a32) φ(x, a33) · · · φ(x, a3n) · · · k-incon.

...
...

...
...

φ(x, am1) φ(x, am2) φ(x, am3) · · · φ(x, amn) · · · k-incon.

...
...

...
...

...

︸ ︷︷ ︸

all consistent

Chernikov and Kaplan have shown that forking and dividing coincide over models

for NTP2 theories [11].

Remark 1.13. By compactness, having the tree property of the second kind is equivalent

to the following finitary version:

A theory has TP2 if there exists a formula ψ(x̄; ȳ) and a natural number k such that

for any natural numbers n we can find an array of parameters (āi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ n)
satisfying the following properties:

• {ψ(x̄; āi,j ) : j ≤ n} is k-inconsistent for every i;
• {ψ(x̄; āi,f (i)) : i ≤ n} is consistent for every f : {1, . . . ,n} → {1, . . . ,n}.

Note that the triangle-free random graph has TP2 [9, Example 3.4.13]. On the other

hand as it is a Fraïssé limit in a relational language, it eliminates quantifiers [27, Theo-

rem 7.4.1]. Hence, with the same argument as for the random graph, the triangle-free

random graph is 2-dependent. More on the triangle-free random graph can be found in

[25].

In general, we shall say that a structure has one of the above properties if its theory

does. Moreover, we say stable (simple, dependent, . . . ) group (field, division ring) for

any group (field, division ring) whose theory is stable (simple, dependent, . . . ).

1.2 Model theory of groups and fields

For this section we fix a theory T and a model M of T and let A0 be a parameter set.

Definition 1.14. An A0-definable group G in the theory T is given by a formula φ(x̄)

over A0, a definable binary function ψ(x̄, ȳ, z̄) over A0 with |x̄| = |ȳ| = |z̄| and an element

e satisfying φ(x̄) such that ψ(x̄, ȳ, z̄) defines a group structure on G = φ(M) with neutral

element e.
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An A0-type-definable group G in the theory T is given by a type π(x̄) over A0, a definable

binary function ψ(x̄, ȳ, z̄) over A0 with |x̄| = |ȳ| = |z̄| and an element e satisfying π(x̄) such

that ψ(x̄, ȳ, z̄) defines a group structure on G = π(N ) with neutral element e for any

elementary extension N of M.

We might omit the parameter set and just say definable or type-definable group. By

the previous definition, an A0definable group is given by a formula over A0 and hence

any automorphism of M fixing A0 induces an automorphism of the definable group.

Moreover, observe that G has a natural interpretation in elementary extension of M,

namely ψ(x̄, ȳ, z̄) remains a binary function which defines a multiplication on the set

of elements satisfying φ(x). Thus we may consider G in any elementary extension of

the given model M. So for some cardinal κ, a κ-saturated or κ-homogeneous extension

of G is the interpretation of G in an κ-saturated or κ-homogeneous extension of the

model in which the group is defined. Sometimes we refer to a definable group seen

in an κ-saturated (respectively κ-homogeneous) model of the theory as an κ-saturated

(respectively κ-homogeneous) group.

Remark 1.15. Definability for fields or division rings is given analogously, and we use

the same terminology.

Definition 1.16. Let G be a A0-definable group in the theory T , H be a subgroup of G

and A be a parameter set containing A0. We say that H is

• A-definable if there is a formula ψ(x̄) with parameters in A such that H = ψ(G).

• A-type-definable if there is a type π(x̄) over A such that H = π(G).

• A-invariant if H is fixed by all automorphisms of M which fixes A point-wise.

If G is a type-definable group, we say that a subgroup H is relatively definable if there is

a formula ψ(x̄) such that H equals ψ(G).

As definable subgroups are also definable groups they have a natural interpretation

in any elementary extension of M as mentioned above. An A-type-definable subgroup

has obviously a setwise analog in any elementary extension of M as well. However,

observe that if the model M is not |A|+-saturated, an A-type-definable group might

coincide with the trivial element in M but not necessarily in all elementary extensions.

Thus, while working with A-type-definable subgroups, we want to place ourselves in an

|A|+-saturated model. Then, again any interpretation of an A-type-definable subgroup

in an elementary extension forms a group. Last but not least, anA-invariant subgroup of

any |A|+-saturated and |A|+-homogeneous group is setwise the union of type-definable

sets. Hence an A-invariant subgroup H of G, as a set, has a canonical interpretation

in any elementary extension G of G (the set of realizations in G of the family of types

which define H). By saturation, this set forms again an A-invariant subgroup of G and

we denote it by H(G).
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So from now on, an A-invariant subgroup of G, is the trace of an A-invariant sub-
group of an |A|+-saturated and |A|+-homogeneous extension of G. Thus, they have a

canonical interpretation in any model of the theory.

Remark 1.17. Let H and K be two A-invariant subgroups of an |A|+-saturated and |A|+-
homogeneous group G and G be an elementary extension of G. By saturation and ho-

mogeneity, the normalizer of H in K is the trace in K of the normalizer of H(G) in K(G).
Moreover, if H is normalized by K , the group H(G) is normalized by K(G).

Now we want to analyze the index of a (relatively) definable or type-definable H of

a given definable or type-definable group G as well as the index of an A-invariant sub-

group H in another A-invariant subgroup K .

If H and G are both A-definable and the index of H in G is finite in some model con-

taining A, then this index does not depend on the model we chose. If not, it is infinite

and always at least as big as the saturation of the chosen model we are working in.

If G is A-type-definable, H is A-relatively definable and we work in an |A|+-saturated
modelM, then either the index ofH inG is finite and its value does not depend onM or

the index is infinite and it may be as large as we want if we pass to a suitable elementary

extension of M.

The case where G as well as H are A-type-definable, we have two options regarding the

index of H in G: it is either bounded, i. e. it does not grow bigger than a certain cardinal

while enlarging the model, or for any given cardinal κ, we can find a model such that

the index is larger than κ. Then we say that the index is unbounded. Note that if the

index is bounded it is indeed bounded by
(
2|T (A)|)+.

The same dichotomy holds for two A-invariant subgroups H and K of any A-type-

definable group G.

Definition 1.18. Let G be a definable group and A be a parameter set.

• G is connected if it has no proper definable subgroups of finite index.

• TheA-connected component ofG, denoted byG0
A, is the intersection of allA-definable

subgroups of finite index.

• The A-type-connected component of G, denoted by G00
A , is the intersection of all

A-type-definable subgroups of bounded index.

• The A-∞-connected component of G, denoted by G∞
A , is the intersection of all A-

invariant subgroups of bounded index.

We say that the connected component exists if for all small parameter sets B, we have

that G0
B = G0

∅ and denote this subgroup by G0. Similarly, we define the existence of the

type-connected component G00 and the ∞-connected component G∞.

The terminology originates in algebraic geometry. The model theoretic connected

component exists in any group definable in an algebraic closed field. These are ex-

actly the algebraic groups as pointed out in the introduction. Furthermore, they have
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a connected component when seen as an algebraic variety. So, in fact the connected

component which contains the neutral element of the variety coincides with the model

theoretic connected component of G. Moreover, for any group G definable in a stable

theory, the model theoretic connected component exists. Additionally, in such a group

G we have that G0 equals G00, as any type-definable group can be written as a intersec-

tion of definable groups.

For groups definable in dependent theories, the three connected component exist.

In other frameworks such as simple and NTP2 none of the connected components exists

necessarily.

Notation

Let G be a group andH , K and L be three subgroups and g be an element of G. By [H,K]

we denote the subgroup generated by all commutators [h,k] = h−1k−1hk with h inH and

k in K .

Second, by [H,K,L] we denote the group [[H,K],L].

Third, we may inductively define [H,n g] and H
(n) for any natural number n:

[H,1 g] = [H,g] and [H,n+1 g] = [[H,n g], g] for n >0,

H (1) =H and H (n+1) = [H (n),H (n)] for n >0.

Moreover, if K is normalized by H , we set H/K to be H/H ∩K .
If g is an element of NG(N ), we let CH (g/N ) the subgroup of H which contains all ele-

ments h in H such that hg ·N = gh ·N .

We say that H contains a subgroup K up to finite index, if [K :H ∩K] is finite.
For two element a and b in G, we write ab for b−1ab.
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Groupes

11





2Chain conditions on subgroups

2.1 Uniformly definable subgroups

For this section, we fix a group G definable in some model M of a theory T and let M

be the underlying set of M.

We say that a family of subgroups of G is uniformly definable if any member of this

collection is of the form φ(G; ā) for a fixed formula φ(x; ȳ) and some tuple ā in M . The

ordinary descending chain condition on intersection of uniformly definable subgroups

states that an arbitrary intersections of such subgroups is equal to a finite subinter-

section. This condition does not necessary hold in groups definable outside of stable

theories but one can find suitable modifications of such a chain condition in more gen-

eral frameworks. These have been a key tool for finding definable envelopes of arbitrary

subgroups which are abelian, nilpotent or solvable as well as analyzing algebraic prop-

erties of the given structures. In this chapter we recall the chain conditions which are

known for families of uniformly definable subgroups in groups definable in stable, de-

pendent or simple theories as well as generalize these to wider classes of theories. To do

so, let φ(x; ȳ) be a formula such that for any tuple b̄ inM the set

Hb̄ = φ(G; b̄)

defines a subgroup of G.

In the case that T is a stable theory, we obtain the ordinary descending chain condi-

tion on intersections of uniformly definable subgroups:

Fact 2.1 (ICC). If T is a stable theory, then there is a natural number nφ such that for every

parameter set A ⊂ M |ȳ| there exists a finite subset A0 of A of size at most nφ such that the

intersection
⋂
ā∈AHā is equal to the finite subintersection

⋂
ā∈A0

Hā.

Using the ICC, it is easy to see that any abelian subgroup of any stable group is con-

tained in a definable abelian subgroup. Furthermore, given an arbitrary nilpotent or

solvable subgroup, Poizat proved that one can find a definable nilpotent or respectively

solvable group of the same nilpotency class or respectively derived length which con-

tains the given group [52].

Another result treated by Wagner in [62] using the ICC is that the Fitting subgroup,

namely the subgroup generated by all normal nilpotent subgroups, is nilpotent. Finally,

Scanlon used this chain condition to prove that an infinite field of positive characteristic

which is definable in a stable theory is Artin-Schreier closed [54].

In the case of simple theories one obtains a chain condition up to finite index:
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Fact 2.2 (ICC0). [63, Theorem 4.2.12] If T is a simple theory, then there are natural numbers

nφ and dφ such that for every parameter set A ⊂M |ȳ|, there exists a finite subset A0 of size at

most nφ such that for all b̄ in A, the index of
⋂
ā∈A0∪{b̄}Hā in

⋂
ā∈I Hā is less than dφ .

Proof. Suppose there exists a set of parameters {b̄i : i ∈ ω} such that

Hb̄0 > Hb̄0 ∩Hb̄1 > · · · >
⋂
i≤n

Hb̄i > . . .

is an infinite descending chain of intersection of subgroups each having infinite index in

its predecessor. Thus, for every natural number nwemay choose a set of representatives

{hn,j : j ∈ ω} of different cosets of
⋂
i≤nHb̄i in

⋂
i<nHb̄i . Now, for any finite sequence

η = (i0, . . . , in) of natural numbers, we let āη = (b̄n,
∏n
j=0hj,ij ) and consider the formula

θ(z; ȳ, v) = ∃w (φ(w; ȳ) ∧ z = v ·w).
So θ(z; āη ) defines the coset

∏n
j=0hj,ij ·Hb̄n . Thus for finite sequence of natural numbers

η say of length n and two distinct natural numbers i and j , we have that θ(z; āη�i ) and

θ(z; āη�j ) define two distinct cosets of Hb̄n in G and thus they are inconsistent. On the

other hand, the finite conjunction
∧
i≤n θ(z; āη�i ) for some η = (i0, . . . , in) ∈ ωn is satisfied

by any element in the set
∏n
j=0hj,ij ·

⋂n
i=0Hb̄n which is nonempty. Thus, by compactness

we have that for any infinite sequence s of natural numbers, the set {θ(z; ās�i ) : i ∈ ω} is
consistent. This yields a contradiction to T being a simple theory and the statement is

established.

Using the ICC0 in groups with a simple theory, one has to slightly adapt the notion of

definable envelopes of subgroups to obtain a result. In fact, Milliet proved in [47] that

any abelian subgroup of a group with a simple theory is contained in a definable finite-

by-abelian subgroup. Moreover, in [46] he showed that for any nilpotent or solvable

subgroup of class n one can find a definable nilpotent or respectively solvable subgroup

of class at most 2n which contains the given group up to finite index. Using the exis-

tence of definable envelopes up to finite index, Palacín and Wagner proved nilpotency

of the Fitting subgroup for any group type-definable in a simple theory [50]. Our aim

in Section 4.3 is to generalize these results to groups in which every definable section

satisfies the ICC0 merely for centralizers.

One can reformulate the proof of the ICC0 in simple theories in terms of forking inde-

pendence and the corresponding D-rank (see section 4.2 in [63]). Doing so, one realizes

that the ICC0 holds in any theory that admits an independence relation satisfying all

properties of forking independence, except possibly the Independence Theorem. Thus

in the wider class of rosy theories, one obtains the same result.

Fact 2.3. If T is a rosy theory, then there are natural numbers nφ and dφ such that for every

parameter set A ⊂M |ȳ|, there exists a finite subset A0 of size at most nφ such that for all b̄ in

A, the index of
⋂
ā∈A0∪{b̄}Hā in

⋂
ā∈I Hā is less than dφ .

Now, we analyze uniformly definable subgroups of another generalization of stable

theories, namely dependent theories. Note again, that any theory which is dependent as

well as simple is indeed stable and recall that φ(x, b̄) defines a subgroup of G for every
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choice of b̄ which we denote by Hb̄. In the case of dependent theories one obtains a

slightly a weaker chain condition known as the Baldwin-Saxl Condition. Moreover, if

any uniformly definable family of subgroups of G satisfies the ICC0 and the Baldwin-

Saxl condition, one can derive the full ICC (Fact 2.5).

Fact 2.4 (Baldwin-Saxl Condition [3]). If T is dependent then there is some natural number

nφ such that for any finite parameter set A ⊂M |ȳ| there exists A0 ⊆ A of size less or equal to

nφ such that ⋂
ā∈A0

Hā =
⋂
ā∈A

Hā

Proof. Assume that the statement is false and let n be an arbitrary natural number. Then

there exists a parameter set A of size at least n such that for every b̄ ∈ A
⋂

ā∈A\{b̄}
Hā �
⋂
ā∈A

Hā

Hence, we can choose gb̄ ∈⋂ā∈A\{b̄}Hā \Hb̄ for every b̄ ∈ A. For B ⊂ A, we define gB to be∏
b̄∈B gb̄. As gb̄ ∈ Hā if and only if ā � b̄, it is easy to see that gB ∈ Hā if and only if ā � B.

Thus, we can conclude by compactness that the formula φ(x, ȳ) is not dependent.

Note that we index nφ by φ to emphasize that nφ only depends on the formula φ.

Fact 2.5. Suppose that any family of uniformly definable subgroups ofG satisfies the Baldwin-

Saxl condition and the ICC0. Then they satisfy the ICC.

Proof. Let H = {Hā = φ(G; ā) : ā ∈ A} be a family of uniformly definable subgroups of G.

Consider the following collection of definable subgroups of G:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⋂
ā∈A0

φ(G; ā) : A0 is a finite subset of A

⎫⎪⎪⎪⎬⎪⎪⎪⎭
By the Baldwin-Saxl condition, each of these intersection is equal to a sub-intersection

of size at most n for some fixed natural number n. Hence this set forms a uniformly

definable family of subgroups of G and satisfies the ICC0. So we can find a finite subset

A0 of A and a natural number d such that for any finite subset A1 of A we have that

⎡⎢⎢⎢⎢⎢⎢⎣
⋂
ā∈A0

φ(G; ā) :
⋂

ā∈A0∪A1

φ(G; ā)

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ d

Therefore we can find a finite subset A2 of A such that this index is maximal and thus

any bigger intersection of subgroups in H has to be equal to
⋂
ā∈A2

φ(G; ā). Hence

⋂
ā∈A2

φ(G; ā) =
⋂
ā∈A

φ(G; ā)

and we obtain the ICC for H.
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As in the case of stable theories, Shelah used the Baldwin-Saxl condition to show

the existence of definable envelopes of abelian subgroups in some sufficiently saturated

extension [59]. Secondly, this chain condition was one of the key tools in the proof

of Kaplan, Scanlon and Wagner showing that an infinite field of positive characteristic

which is definable in a dependent theory is Artin-Schreier closed [34].

In Chapter 7 of this thesis, we want to study groups and fields in n-dependent theo-

ries (Definition 1.8). One of the key tools is to find a suitable version of the Baldwin-Saxl

condition for n-dependent formulas which can be found below. In this case, we have to

work with a different family of uniformly definable subgroups as the formula has to be

of a different shape.

Proposition 2.6. Suppose that ψ(ȳ0, . . . , ȳn−1;x) is an n-dependent formula for which the set

ψ(b̄0, . . . , b̄n−1;G) defines a subgroup of G for any parameters b̄0, . . . , b̄n−1. Then there exists a

natural number mψ such that for any d ≥mψ and any array (āi,j : i < n, j ≤ d) of tuples with
āi,j of length |b̄i |, there is ν ∈ dn such that

⋂
η∈dn

Hη =
⋂

η∈dn,η�ν
Hη

where Hη = ψ(ā0,i0 , . . . , ān−1,in−1 ;G) for η = (i0, . . . , in−1).

Proof. Suppose, towards a contradiction, that for an arbitrarily large natural number m

one can find a finite array (āi,j : i < n, j ≤m) of parameters such that
⋂
η∈mn Hη is strictly

contained in any of its proper subintersections. Hence, for every ν ∈ mn there exists cν
in
⋂
η�ν Hη \⋂η Hη .

Now, for any subset J ofmn, we let cJ :=
∏
η∈J cη . Note that cJ ∈Hν whenever ν ∈mn\J .

On the other hand, if ν is an element of J , all factors of the product except for cν belong

to Hν , whence cJ � Hν . By compactness, one can find an infinite array of parameters

(āi,j : i < n, j ≤ ω) and elements {cJ : J ⊂ ωn} such that cJ belongs to Hν if and only

if ν � J . Hence, the formula ¬ψ(ȳ0, . . . , ȳn−1;x) has the n-independence property and

whence the original formula ψ(ȳ0, . . . , ȳn−1;x) has the n-independence property as well

contradicting the assumption.

As we have pointed out in the introduction, the class of NTP2 theories contains all

dependent as well as simple theories and seems to be the right generalization of the

two. As a chain condition, one expects that a certain amalgamation of the two chain

conditions which were found in dependent theories and simple theories will hold for

NTP2 theories. In fact, Chernikov, Kaplan and Simon proved the following:

Fact 2.7 (Chernikov, Kaplan, Simon [12]). If T is an NTP2 theory and for any b̄ the set Hb̄
defines a normal subgroup of G, then there are some natural numbers nφ and dφ such that

for all finite sets A ⊂M |ȳ| of size bigger than nφ there exists b̄ ∈ A such that

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⋂

ā∈A\{b̄}
Hā :
⋂
ā∈A

Hā

⎤⎥⎥⎥⎥⎥⎥⎥⎦ < dφ
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Proof. Assume it is false. Thus, for all natural numbers n and d, we find a parameter set

A = {ā0, . . . , ān−1} of size n such that for all i < n, the index [
⋂
ā∈A\{āi }Hā :

⋂
ā∈AHā] > d.

Set H =
⋂
ā∈AHā and Hi =

⋂
j�i Hāj . Then for each i ∈ n, we can find hij ∈ Hi for j < d

such that {hij ·H : j < d} are pairwise distinct cosets of H in Hi .

• Hence, for j � k, we have hijHāi ∩ hikHāi = ∅ as otherwise, h−1ij hik ∈ Hāi , whence

h−1ij hik ∈H which leads to a contradiction by the choice of the hij ’s.

• We claim that for every f : n → n, the intersection
⋂
i∈n hif (i)Hāi is non-empty.

Multiplying by h−1
0f (0) · . . . · h−1nf (n) on the right and using that each Hāi is a nor-

mal subgroup of G, this is equivalent to
⋂
i∈nHāi being non-empty which trivially

holds.

Now, we let θ(x; ȳ, z) := ∃w(φ(w, ȳ) ∧ x = z ·w), so θ(x; āi ,hi,j ) defines the coset hi,jHāi .

Compactness yields that θ has TP2 and we can conclude.

Corollary 2.8 (Chernikov, Kaplan, Simon [12]). If T is an NTP2 theory and for any b̄ the

set φ(G; b̄) defines a normal subgroup of G, then there is a natural number nφ such that for

any finite parameter set A ⊂M |ȳ| there exists some A0 ⊂ A of size less or equal to nφ such that

⎡⎢⎢⎢⎢⎢⎢⎣
⋂
ā∈A0

Hā :
⋂
ā∈A

Hā

⎤⎥⎥⎥⎥⎥⎥⎦ < ω.

Proof. Let nφ be the natural number given by Fact 2.7. If |A| < nφ , take A itself. If not,

there exists b̄0 ∈ A such that ⎡⎢⎢⎢⎢⎢⎢⎢⎣
⋂

ā∈A\{b̄0}
Hā :
⋂
ā∈A

Hā

⎤⎥⎥⎥⎥⎥⎥⎥⎦ < ω.

Iterating this process, we can find b̄i ∈ A \ {b̄j : j < i} for i < |A| −nφ such that

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⋂

ā∈A\{b̄j :j≤i}
Hā :

⋂
ā∈A\{b̄j :j<i}

Hā

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ < ω.

Setting A0 := A \ {b̄i : i < |A| −nφ}, we can conclude.

We can strengthen their chain condition, namely one can find nφ and dφ as above

such that for any finite parameter set A one can not only find one element of A such

that the index is bounded but find a subset A0 of size nφ such that for all b̄ ∈ A,
⎡⎢⎢⎢⎢⎢⎢⎢⎣
⋂
ā∈A0

Hā :
⋂

ā∈A0∪{b̄}
Hā

⎤⎥⎥⎥⎥⎥⎥⎥⎦ < dφ.

Observe that for uniformly definable normal subgroups, this is exactly the combination

of the chain conditions which hold in dependent and simple theories.
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Proposition 2.9. If T is an NTP2 theory and for any b̄ the set φ(G; b̄) defines a normal
subgroup of G, then there exists nφ, dφ ∈ ω such that for every finite parameter set A ⊂M |ȳ|
there exists A0 ⊆ A with |A0| ≤ nφ such that for all b̄ ∈ A

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⋂
ā∈A0

Hā :
⋂

ā∈A0∪{b̄}
Hā

⎤⎥⎥⎥⎥⎥⎥⎥⎦ < dφ.

Proof. So let us assume that the contrary holds. Thus, suppose that for all n, d ∈ ω there

exists a finite set A such that for all A0 ⊆ A with |A0| ≤ n there is b̄ ∈ A such that

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⋂
ā∈A0

Hā :
⋂

ā∈A0∪{b̄}
Hā

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ≥ d.

Let nφ be as in Corollary 2.8 and let n0 and d be two arbitrary natural numbers greater

than 0. We fix a finite set A which satisfies the above for n = n0 +nφ and d. Define:

θ(x; ȳ, z) := ∃u(φ(u, ȳ)∧ x = zu).

So for ā ∈ A and h ∈ G, the formula θ(G; ā,h) defines the coset h ·Hā. The aim is to

construct an n0 × d array (āij ,hij )i∈d,j∈n0 for which {θ(xi ; āij ,hij )}j∈d is 2-inconsistent for

all i ∈ n0 and {θ(xi ; āiji ,hiji )}i∈n0 is consistent for every choice of (j0, . . . , jn0−1) ∈ dn0 . Thus,
by compactness the formula θ(x; ȳ, z) has TP2 which contradicts the assumption.

By Corollary 2.8, we can find a subset A0 of A of cardinality nφ such that

⎡⎢⎢⎢⎢⎢⎢⎣
⋂
ā∈A0

Hā :
⋂
ā∈A

Hā

⎤⎥⎥⎥⎥⎥⎥⎦ < ω.

Choose B′ ⊂ A of cardinality n−1 containing A0 such that the index [
⋂
ā∈A0

Hā :
⋂
ā∈B′ Hā]

is maximal, let’s say equal to m. By the choice of A, there is x̄ ∈ A such that

⎡⎢⎢⎢⎢⎢⎢⎣
⋂
ā∈B′

Hā :
⋂

ā∈B′∪{x̄}
Hā

⎤⎥⎥⎥⎥⎥⎥⎦ ≥ d.

Define B to be the union B′ ∪ {x̄}. Let b̄ be an arbitrary element which belongs to B \A0.

As the index of
⋂
ā∈B′ Hā in

⋂
ā∈A0

Hā was chosen to be maximal, we obtain the following

diagram. ⋂
ā∈A0

Hā

≥md

≤m m

⋂
ā∈B\b̄

Hā
⋂
ā∈B′

Hā

≥d⋂
ā∈B
Hā
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It implies that for all b ∈ B \A0, the index [
⋂
ā∈B\{b̄}Hā :

⋂
ā∈BHā] is greater or equal to d.

Now, let B \A0 = {ā0, . . . , ān0−1}. For every b̄ ∈ B \A0 we can choose {hb̄0, . . . ,hb̄d−1} a set

of representatives of the different cosets of
⋂
ā∈B\{b̄}Hā in

⋂
ā∈BHā. Then

• For all b̄ ∈ B \A0 and k, j ∈ d with k � j , we have hb̄j Hb̄ ∩ hb̄kHb̄ = ∅;

• Let j0, . . . , jn0−1 ∈ d. Set h = hā0j0 · . . . · hān0−1
jn0−1 . As hāiji ∈Hāk for k � i and Hāk is normal

in G, we have that h ∈ hāiji Hāi for all i ∈ n0.

Hence the array (āij ,hij ) with āij = āi and hij = h
āi
j for i ∈ n0 and j ∈ d is as desired.

2.2 Centralizers

A related field of study are groups in which chain conditions hold merely for centraliz-

ers.

Definition 2.10. A group G is called an Mc-group if for any parameter set (ai : i ∈ ω),
the intersection

⋂
i∈ωCG(ai ) is equal to a finite subintersection.

This is equivalent to any proper descending chain of centralizers stabilizing after

finitely many steps or the existence of a natural number n such that
⋂n
i=0CG(ai ) is con-

tained in CG(aj ) for all natural numbers j . Using this chain condition on centralizers,

one still obtains definable envelopes for abelian and nilpotent groups [1] as well as

nilpotency of the Fitting subgroup [15].

Similarly to Mc-groups, we define groups satisfying the ICC0 merely for centraliz-

ers. One crucial difference to Mc-groups is that we demand that the ICC0 passes onto

definable sections and saturated extensions.

Definition 2.11. A group G is called M̃c-group if for any two definable subgroups H

and N , such that N is normalized by H , there exists natural numbers nHN and dHN
such that any chain of centralizers

CH/N (h0N ) ≥ . . . ≥ CH/N (h0N,. . . ,hmN ) ≥ . . . (hi ∈H)

each having index at least dHN in its predecessor has length at most nHN .

To investigate the properties of M̃c-groups forms a big part of this thesis.

Remark 2.12. Note that any definable subgroup, any definable quotient and any ele-

mentary extension of and M̃c-group is again an M̃c-group.





3Almost centralizer

In the next chapters, we want to study M̃c-groups. Examples are definable groups in

simple theories, such as the theory of perfect bounded PAC-fields, (group theoretically)

simple pseudofinite groups [64], or the extra special p-group (Example 4.3), as well as

groups definable in rosy theories.

A useful notion in this context is the following: For a subgroup H of a group G, the

FC-centralizer of H in G contains all elements of G whose centralizer in H has finite

index in H . It was introduced by Haimo in [20]. We define a suitable version of this

object for A-invariant subgroups of G which we call almost centralizer, and establish

their basic properties.

Moreover, some of the results turn out to be key tools in finding definable envelopes

for nilpotent subgroups of groups definable in an NTP2 theory presented in Section 4.2.

3.1 Preliminaries

Let us first give the original definition of an FC-centralizer and related objects given by

Haimo.

Definition 3.1. Let G be a group and H , K and N be three subgroups of G such that N

is normalized by H . We define:

• The FC-centralizer of H in K modulo N :

FCK (H/N ) = {k ∈NK (N ) : [H : CH (k/N )] is finite}

• Suppose that N ≤ H ≤ K . Then, the nth FC-centralizer of H in K modulo N is

defined inductively on n as the following:

FC0
K (H/N ) = N

FCn+1K (H/N ) = FCH (H/ FC
n
K (H/N ))∩

n⋂
i=0

NK (FC
i
K (H/N ))

• The nthFC-center of H :

FCn(H) = FCnH (H)

Remark 3.2. The abbreviation FC stand for finite conjugation. This is related to the fact

that an element g of a group G is in the FC-centralizer of a subgroup H of G if and only

if the set of conjugates of g by elements in H is finite.
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Definition 3.3. Let H and K be two arbitrary subgroups of G. We say that H is virtually

contained in K , denoted by H ≤v K if the index of H ∩K in H is finite. We say that H

and K are commensurable, denoted by H =v K , if H is virtually contained in K and K is

virtually contained in H .

We want to generalize these notions to suitable versions of these objects and relations

regarding A-invariant subgroups of G. For two such groupsH ≤ K , we have two options

regarding the index of H in K : it is either bounded, i. e. it does not grow bigger than a

certain cardinal while enlarging the ambient model, or for any given cardinal κ we can

find an ambient model such that the index is larger than κ. Then we say that the index

is unbounded. Note that if the index is bounded it is indeed bounded by
(
2|T (A)|)+. This

leads to the definition below.

Definition 3.4. LetH and K be two A-invariant subgroups of G. We say thatH is almost

contained in K , denoted by H � K , if the index of H ∩K in H is bounded. We say that

H and K are commensurate, denoted by H ∼ K , if H is almost contained in K and K is

almost contained in H .

Let H and K be two A-invariant subgroups. Observe that H � K does not depend on

the model we choose. ThusH � K remains true in any elementary extension. Moreover,

if H and K are definable, bounded can be replaced by finite and hence being virtually

contained and being almost contained coincide. Observe that being almost contained

is a transitive relation and being commensurate is an equivalence relation among A-

invariant subgroups of G. Furthermore, we have the following property:

Lemma 3.5. Let G be a group and let H , K , and L be three A-invariant subgroups of G such

that H normalizes K . If H � L and K � L then HK � L.

Proof. We assume thatG is sufficiently saturated. By assumption, we have that the index

of L∩H inH as well as the index of L∩K in K are bounded by some cardinal κH and κK
respectively which are smaller than (2|T (A)|)+. Take IH = {hi : i < κH } and IK = {ki : i < κK }
representatives of the cosets of L∩H in H and of L∩K in K respectively. Then the set

IH · IK has at most size 2|T (A)| and as H normalizes K , it contains a set of representatives

of the cosets of L∩ (HK) inHK . Hence the index of L∩ (HK) inHK is bounded in G and

so HK � L.

Definition 3.6. Let H , K and N be three A-invariant subgroups of G such that N is

normalized by H . We define:

• The almost centralizer of H in K modulo N :

C̃K (H/N ) = {g ∈NK (N ) :H ∼ CH (g/N )}

• The almost center of H :

Z̃(H) = C̃H (H)

To prove the different properties of the almost centralizer, we make use of the Erdős-
Rado theorem. To state it, let us first introduce the following notation:
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Notation. Let κ be a cardinal. Then we define inductively:

exp0(κ) = κ and expr+1(κ) = 2expr (κ) for r ≥ 0.

Moreover for cardinal κ, λ, δ and θ, we write

κ −→ (λ)θδ

if for any coloring of the subsets of cardinality θ of a set of cardinality κ, in δ many

colors, there is a homogeneous set of cardinality λ (a set, all whose subsets of cardinality

θ get the same color).

Fact 3.7 (Erdős-Rado). [33, Theorem 9.6] Let n be a natural number and κ be an infinite

cardinal, then

expn(κ)
+ −→ (κ+)n+1κ .

Properties 3.8. Let H , H ′, K , L and L′ be A-invariant subgroups of G such that H and

H ′ normalize L and L′.

1. C̃K (H) and Z̃(H) are A-invariant subgroups.

2. CG(H) ≤ C̃G(H) and Z(G) ≤ Z̃(G).
3. IfH is definable, bounded can be replaced by finite and the almost centralizer and

FC-centralizer coincide.

4. C̃H ′ (H/L) = C̃G(H/L)∩H ′.

5. C̃G(H) is fixed by all definable automorphisms of G (in the pure language of

groups) which fix H . Thus it is normalized by the normalizer of H and in par-

ticular by H . Furthermore, Z̃(H) is a definably-characteristic subgroup of H (i.e.

fixed by all definable automorphism which fix H).

6. If H �H ′ as well as L� L′ and NG(L) ≤NG(L′), we have that

C̃G(H
′/L) ≤ C̃G(H/L′)

In particular,

• C̃G(H
′) ≤ C̃G(H)

• C̃G(H/L) ≤ C̃G(H/L′)

7. Moreover, if H ∼H ′ as well as L ∼ L′ and NG(L) =NG(L′), we have that

C̃G(H
′/L) = C̃G(H/L′)

In particular,

• C̃G(H
′) = C̃G(H)

• C̃G(H/L) = C̃G(H/L
′)



24 3.1. Preliminaries

8. Suppose that H is the union of A-type-definable subgroups Hα with α ∈Ω. Then

C̃G(H) =
⋂
α∈Ω

C̃G(Hα).

9. If L is the intersection of A-definable subgroups Lα of G with α ∈Ω, we have that

C̃G(H/L)∩
⋂
α∈Ω

NG(Lα) =
⋂
α∈Ω

C̃G(H/Lα)

10. If L is the intersection of A-definable subgroups Lα of G with α ∈Ω all normalized

by K and H ,

H � C̃G(K/L) if and only if H � C̃G(K/Lα) for all α ∈Ω.

Proof. 1. till 7. are obvious.

8. Observe first, that there are at most 2|T (A)| many types over the fixed parameter

set A and so the set Ω is bounded. Thus, if the centralizer of some element g in G has

unbounded index in H by Erdős-Rado (Fact 3.7) there exists also an α in Ω such that

CHα (g) has unbounded index in Hα . Hence g does not belong to C̃G(Hα). The converse

is obvious.

9. The inclusion from left to right holds trivially. Now suppose that g is an element

of
⋂
α∈Ω C̃G(H/Lα). Then g belongs to NG(Lα) by definition of the almost centralizer

and gH intersects only boundedly many cosets of Lα in H for all α in Ω. As the map

xL �→ (xLα : α ∈ Ω) is injective, the conjugacy class gH of g intersects only boundedly

many cosets of L and thus g ∈ C̃G(H/L).
10. is an immediate consequence of (9).

As for any normal subgroup N of H , we have that C̃G(H/N ) is normalized by H , the

following definition of the iterated almost centralizers is well defined.

Definition 3.9. Let H and K be two A-invariant subgroups of G such that H ≤ K and N

be a normal A-invariant subgroup of H , then

• The nth almost centralizer of H in K modulo N is defined inductively on n by:

C̃0
K (H/N ) = N

C̃n+1K (H/N ) = C̃K (H/C̃
n
K (H/N )) ∩

n⋂
i=0

NK (C̃
i
K (H/N ))

• The nth almost center of H is defined as Z̃n(H) = C̃nH (H).

Note that if H and N are normal subgroups of K , the definition of the nth almost

centralizer of H in K modulo N simplifies to:

C̃0
K (H/N ) =N and C̃n+1K (H/N ) = C̃K (H/C̃

n
K (H/N ))
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Properties 3.10. Let G be a group, H � K be two A-invariant subgroups of G and let

n ∈ ω. Then we have that

C̃nK (H) = C̃nG(H)∩K.

Proof. We prove this by induction on n. For n equal to 1, this is Properties 3.8 (4). So

suppose that C̃nK (H) = C̃nG(H)∩K. Now we have that

C̃n+1K (H) = C̃K (H/C̃
n
K (H))

ind
=
hyp

C̃K (H/C̃
n
G(H)∩K)

=
H�K

{
k ∈ K :H ∼ CH

(
k/(C̃nG(H)∩K)

)}
=

3.8(4)

{
k ∈NG

(
C̃nG(H)

)
:H ∼ CH

(
k/C̃nG(H)

)}
∩K

= C̃G(H/C̃
n
G(H))∩K

= C̃n+1G (H)∩K.

In the rest of the section, we show properties of the almost centralizer of ind-definable

subgroups of G. It is a model theoretic notion which generalizes type-definable sub-

groups and which falls into the class of invariant subgroups.

Definition 3.11. Let G be a group and A be a parameter set. An A-ind-definable sub-

group H of G is the union of a directed system of A-type-definable subgroups of G, i. e.

there is a family {Hα : α ∈Ω} of A-type-definable subgroups of G such that for all α and

β in Ω there is γ in Ω such that Hα ∪Hβ ≤Hγ and H is equal to
⋃
α∈ΩHα .

3.2 Symmetry

Observe that for two subgroups H and K of a group G, we have trivially that H ≤ CG(K)
if and only if K ≤ CG(H). In the case of FC-centralizers and virtual containment, we

will see that this is not true for arbitrary subgroups in non-saturated models. However,

we obtain the same symmetry condition replacing the centralizer by the almost central-

izer and containment by almost containment for ind-definable subgroups. In case, the

ambient theory is simple, this was proven by Palacín and Wagner in [50].

We use the following fact due to B. Neumann.

Fact 3.12. [49, Lemma 4.1] A group cannot be covered by finitely many cosets of subgroups

of infinite index.

Theorem 3.13 (Symmetry). Let G be a group,H and K be two A-ind-definable subgroups of

G and letN be a subgroup of G which is a union of A-definable sets. SupposeN is normalized

by H and by K . Then

H � C̃G(K/N ) if and only if K � C̃G(H/N ).
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Proof. Let κ be equal to 2|T (A)| and assume that G is (2κ)+-saturated. We suppose that K

is not almost contained in C̃G(H/N ). We want to show that H is not almost contained

in C̃G(K/N ). By assumption, there is a set of representatives {ki : i ∈ (2κ)+} in K of

different cosets of C̃K (H/N ) in K as G is sufficiently saturated. Note that H is the union

of type-definable subgroups Hα with α in an index set Ω of cardinality at most κ. Thus

for every i different than j in (2κ)+, there is α(i,j) in Ω such that the centralizer of the

element k−1i kj /N has unbounded index inHα(i,j)
. By Erdős-Rado (Fact 3.7), we can find a

subset I0 of (2
κ)+ of cardinality κ+ and α in Ω such that for all distinct i and j in I0, we

have that α(i,j) is equal to α and thus the centralizer CHα (k
−1
i kj /N ) has infinite index in

Hα . Hence, Hα can not be covered by finitely many cosets of these centralizers by Fact

3.12. As additionally the complement of N is type-definable the following partial type

is consistent:

π(xn : n ∈ κ+) =
{
[x−1n xm,k−1i kj ] �N : n �m ∈ κ+, i � j ∈ I0

}
∪ {xn ∈Hα : n ∈ κ+}

As G is sufficiently saturated, one can find a tuple h̄ in G which satisfies π(x̄). Fix

two different elements n and m in κ+. Then, we have that k−1i kj � CK (h−1n hm/N ) for all

i � j in I0. Hence, the subgroup CK (h
−1
n hm/N ) has unbounded index in K witnessed by

(kj : j ∈ I0), and whence the element h−1n hm does not belong to C̃H (K/N ). So C̃H (K/N )

has unboudedly many Hα-translates and therefore unbounded index in H . Thus, the

group H is not almost contained in C̃G(K/N ) which finishes the proof.

We obtain the following useful corollary.

Corollary 3.14. Let G be an ℵ0-saturated group and H and K be two definable subgroups of

G. Then

H ≤v C̃H (K) if and only if K ≤v C̃K (H)

Proof. Since almost containment and the almost centralizer satisfies symmetry, it is

enough to show that for definable subgroups H and K of an ℵ0-saturated group, we

have that

H ≤v C̃H (K) if and only if H � C̃H (K).

So suppose first that H ≤v C̃H (K) and fix representatives h1, . . . ,hn of the distinct classes

of C̃H (K) in H . Let Hd be the definable set {h ∈ H : [K : CK (h)] < d}. As K is definable,

we have that C̃H (K) =
⋃
d∈ωHd . Thus

H =

n⋃
i=1

hi ·
⋃
d∈ω

Hd.

By ℵ0-saturation, this remains true in any elementary extension of G and soH � C̃H (K).

On the other hand, if H �≤v C̃H (K), then for any cardinal κ the type

π(xi : i ∈ κ) = {xi ∈H} ∪ {x−1i xj �Hd : i � j,d ∈ ω}
is consistent. Hence, H �� C̃H (K).

In the general context, we may ask if symmetry holds for FC-centralizers. We will

give a positive answer in the case that the ambient group is an Mc-group. Afterwards,

we give a counter-example which shows that it does not hold in general.
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Proposition 3.15. Let G be an Mc-group and H and K be subgroups of G. Then

H ≤v FCG(K) if and only if K ≤v FCG(H).

Proof. Suppose that H ≤v FCG(K). So the group FCH (K) has finite index in H and is

obviously contained in FCG(K). Note that by the former the FC-centralizer of FCH (K)

in K is equal to the one of H in K . Since G is an Mc-group, we can find elements

h0, . . . ,hn in FCH (K) such that CG(FCH (K)) is equal to the intersection of the centralizers

of the hi ’s. As each hi is contained in the FC-centralizer of K in H , this intersection

and hence CK (FCH (K)) has finite index in K . In other words, K is virtually contained

in CK (FCH (K)) which, on the other hand, is trivially contained in FCK (FCH (K)). As

FCK (FCH (K)) coincides with FCK (H) as mentioned before we can conclude.

The next example was suggested by F. Wagner.

Example 1. LetG be a finite non-commutative group, K be
∏
ωG andH be the subgroup⊕

ωG of K . The support of an element (ki )i∈ω in K , denoted by supp((ki )i∈ω), is the set
of indices i ∈ ω such that ki is non trivial. As any element h̄ of H has finite support

and G is finite, any element of H has finitely many conjugates in K , namely at most

|G||supp(h̄)| many. Thus its centralizer has finite index in K . Hence H is contained in the

FC-centralizer of K . On the other hand, fix an element g of G which is not contained in

the center of G. Let k̄0 be the neutral element of K and for n ≥ 1 we define:

k̄n = (ki )i∈ω such that

⎧⎪⎪⎨⎪⎪⎩
ki = g if i ≡ 0 (mod n)

ki = 1 else

Now fix some distinct natural numbers n and m. We have that the element k̄−1n k̄m is

a sequence of the neutral element of G and infinitely many g ’s or g−1’s. Now, we can

choose an element h in G which does not commute with g and for any j in the support

of k̄−1n k̄m we define the following elements of H :

l̄j = (li )i∈ω such that

⎧⎪⎪⎨⎪⎪⎩
li = h if i = j

li = 1 else

These elements witness that the set of conjugates (k̄−1n k̄m)H is infinite and, as the n and

m were chosen arbitrary, the k̄n’s are representatives of different cosets of FCK (H) in

K . Thus K is not virtually contained in the FC-centralizer of H in K which contradicts

symmetry.

The previous example demonstrates that symmetry does not hold for the FC-centralizer

of arbitrary subgroups in non-saturated models but the following question still remains

open:

Question 1. LetH and K be two A-invariant subgroups of a group G. Then, do we have

that

H � C̃G(K) if and only if K � C̃G(H) ?
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3.3 The almost three subgroups lemma

For subgroups H , K and L of some group G we have that

[H,K,L] = 1 and [K,L,H] = 1 imply [L,H,K] = 1,

which is known as the three subgroups lemma. We want to generalize this result to

our framework. As we have not yet introduced an “almost” version of the commutator,

observe that, if H , K , and L normalize each other, we have that [H,K,L] = 1 if and only

if H ≤ CG(K/CG(L)). Thus we may state the three subgroups lemma as follows:

H ≤ CG(K/CG(L)) and K ≤ CG(L/CG(H)) imply L ≤ CG(H/CG(K)).

This statement, replacing all centralizers and containment by almost centralizers and

almost containment, can be deduced from the lemma proven below in the case of ind-

definable subgroups if they normalize each other in the following sense:

Definition 3.16. Let H , K and L be three A-ind-definable subgroups of G. We say that

• H strongly normalizes L if there is a set of A-type-definable subgroups {Lα : α ∈ Ω}
of G each normalized by H such that L is equal to

⋃
α∈Ω Lα .

• H and K simultaneously strongly normalize L if there is a set of A-type-definable

subgroups {Lα : α ∈ Ω} of G each normalized by H and K such that L is equal to⋃
α∈Ω Lα .

• L is a strongly normal subgroup of G if G strongly normalizes L.

Note that if L is a type-definable group, it is strongly normalized by H (or respec-

tively simultaneously strongly normalized by H and K) if and only if H normalizes L

(respectively H and K normalize L).

Lemma 3.17. Let H , K and L be three A-ind-definable subgroups of G. If H and K simulta-

neously strongly normalize L, then the following is equivalent:

• H �� C̃G
(
K/C̃G(L)

)
.

• For any cardinal κ, there exists an elementary extension G of G and elements (hi : i ∈ κ)
in H(G), (kn : n ∈ κ) in K(G) and (ls : s ∈ κ) in L(G) such that

[[h−1i hj ,k
−1
n km], l

−1
s lt] � 1 ∀i, j,n,m,s, t ∈ κ, i � j,n �m,s � t.

Proof. Let {Lα : α ∈ΩL} be a set of A-type-definable subgroups of G each normalized by

H and K such that L is equal to
⋃
α∈ΩL

Lα and {Kβ : β ∈ΩK } be a set of A-type-definable
subgroups of G such that K is equal to

⋃
β∈ΩK

Kβ . Assume first that H �� C̃G(K/C̃G(L)).

Note that as K andH normalize L, they normalize as well C̃G(L). So C̃G(K/C̃G(L)) is well

defined and for any h � C̃H (K/C̃G(L)), we have that [K : CK (h/C̃G(L))] is unbounded by

the definition of the almost centralizer.
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Let κ be a given cardinal greater than (2|T (A)|)+. Assume that G is (2(2
κ))+-saturated.

The goal is to find elements (hi : i ∈ κ) in H , (kn : n ∈ κ) in K and (ls : s ∈ κ) in L which

satisfy the second condition of the Lemma.

By saturation of G, one can find a sequence (hi : i ∈ (2(2
κ))+) of elements in H such

that for non equal ordinals i and j , the element h−1i hj does not belong to C̃G(K/C̃G(L))

or equivalently

K �� CK (h
−1
i hj /C̃G(L)). (∗)

Claim. There is a subset I of (2(2
κ))+ of size κ+, β ∈ΩK and α ∈ΩL such that for all distinct

elements i and j in I , we have that Kβ �� CKβ (h
−1
i hj /C̃G(Lα)).

Proof of the claim. Let i and j be two different arbitrary ordinal numbers less than (2(2
κ))+.

By (∗) there exists a sequence (k
(i,j)
n : n ∈ (2κ)+) of elements in K such that for non iden-

tical ordinals n and m less than (2κ)+, we have[
h−1i hj , (k

(i,j)
n )−1k(i,j)m

]
� C̃G(L).

As K is the bounded union of A-type-definable subgroups Kβ , by the pigeon hole prin-

ciple we can find subset Ji,j of (2
κ)+ of size (2κ)+ and βi,j in ΩK such that for all n in Ji,j ,

the element k
(i,j)
n is an element of Kβi,j . To simplify notation we may assume that Ji,j is

equal to (2κ)+. Now, by Erdős-Rado (Fact 3.7), we can find a subset I of (2(2
κ))+ of size

(2κ)+ and β ∈ΩK such that for i different from j in I , we have that βi,j is equal β. Again

for convenience we assume that I equals (2κ)+.

To summarize, we have now found β in ΩK , a sequence of elements (hi : i ∈ (2κ)+) in

H and for any i different than j in (2κ)+ a sequence (k
(i,j)
n : n ∈ (2κ)+) in Kβ such that

[
h−1i hj , (k

(i,j)
n )−1k(i,j)m

]
� C̃G(L).

Fix again two distinct ordinal numbers i and j in (2κ)+. By Properties 3.8 (8), we have

that the almost centralizer of L in G is the intersection of the almost centralizers of the

Lα ’s in G. So for any non equal n and m in (2κ)+ one can find α
(i,j)
(n,m)

in ΩL such that

[
h−1i hj , (k

(i,j)
n )−1k(i,j)m

]
� C̃G
(
L
α
(i,j)
(n,m)

)
.

Now, we apply Erdős-Rado (Fact 3.7) to the sequences of the k
(i,j)
n ’s. Doing so, we obtain

a subset I(i,j) of (2
κ)+ of cardinality at least κ+ and α(i,j) in ΩL such that for all non

identical n and m in I(i,j), we have[
h−1i hj , (k

(i,j)
n )−1k(i,j)m

]
� C̃G
(
Lα(i,j)

)
.

Next, we apply Erdős-Rado (Fact 3.7) to the hi ’s. So, there exists a subset I of (2
κ)+ of

cardinality at least κ+ and α in ΩL such that α(i,j) is equal to α for i different than j in I
and thus for any such tuples we have[

h−1i hj , (k
(i,j)
n )−1k(i,j)m

]
� C̃G (Lα) .
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Thus, as for all non equal i and j in I , the index set I(i,j) is of cardinality κ
+ > (2|T (A)|)+,

we conclude that the centralizer of the element h−1i hj /C̃G(Lα) has infinite index in Kβ

(witnessed by the k
(i,j)
n ’s). Hence, for all distinct i and j in the index set I of cardinality

κ+, we have that Kβ �� CKβ (h
−1
i hj /C̃G(Lα)) and the claim is established. claim

The claim together with Fact 3.12 yield that the group Kβ/C̃G(Lα) can not be covered

by finitely many translates of these centralizers.

Now, observe that since Lα is a type-definable group, any relatively definable sub-

group of Lα has either finite or unbounded index, whence the group C̃G(Lα) is equal to

the union of the following definable sets

Sφ,d =

⎧⎪⎪⎪⎨⎪⎪⎪⎩g ∈ G : ∀l0, . . . , ld
d∧
i=0

φ(li )→
∨
i�j

l−1i lj ∈ CG(g)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

where φ(x) ranges over the formulas in the type πLα (x) which defines Lα and d over all

natural numbers.

By the two previous paragraphs, we conclude that the partial type below is consistent.

π(xn : n ∈ κ) = {[h−1i hj ,x−1n xm] � Sφ,d : n �m ∈ κ, i � j ∈ I , d ∈ ω,φ ∈ πLα }
∪{xn ∈ Kβ : n ∈ κ}

Take k̄ which satisfies π(x̄). By construction we have that [h−1i hj ,k−1n km] � C̃G(Lα). Hence,

Lα �� CLα ([h
−1
i hj ,k

−1
n km]). So Lα cannot be covered by finitely many translates of these

centralizers. So the partial type below is again consistent.

π′(xs : s ∈ κ) = {[[h−1i hj ,k−1i kj ],x−1s xt] � 1 : s � t ∈ κ, n �m ∈ κ, i � j ∈ I , }
∪{xs ∈ Lα : s ∈ κ}

As Lα is a subgroup of L, a realization of this type together with the (hi : i ∈ I ) and
(kn : n ∈ κ) satisfies the required properties.

On the other hand, suppose that for any cardinal κ, there exists an extension G of G

and elements (hi : i ∈ κ) in H(G), (kn : n ∈ κ) in K(G), and (ls : s ∈ κ) in L(G) such that

[[h−1i hj ,k
−1
n km], l

−1
s lt] � 1 ∀i, j,n,m,s, t ∈ κ, i � j,n �m,s � t.

So let κ be greater than 2|T (A)|. If H � C̃G(K/C̃G(L)) then one can find i � j such that

h−1i hj is an element of C̃G(K/C̃G(L)). So the index of CK (h
−1
i hj /C̃G(L)) in K is bounded.

Once more this implies that one can find n �m such that k−1n km ∈ CG(h−1i hj /C̃G(L)). Thus
[h−1i hj ,k−1n km] is an element of C̃G(L) or equivalently the index of CL([h

−1
i hj ,k

−1
n km]) has

bounded index in L. Thus there exists s � t such that [[h−1i hj ,k−1n km], l−1s lt] = 1 which

contradicts our assumption and the Lemma is established.

Now we are ready to prove the almost three subgroups lemma. We use additionally

Witt’s identity:

Fact 3.18 (Witt’s identity). [31, Satz 1.4] Let G be a group and x,y,z be elements of G. Then

[x,y−1, z]y · [y,z−1,x]z · [z,x−1, y]x = 1.
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In particular, if [z,x−1, y] is non trivial then either [x,y−1, z] or [y,z−1,x] is non trivial as

well.

Theorem 3.19 (almost three subgroup lemma). Let G be a group and H , K and L be three

ind-definable subgroups of G which simultaneously strongly normalize each other. If

H � C̃G
(
K/C̃G(L)

)
and K � C̃G

(
L/C̃G(H)

)
then L� C̃G

(
H/C̃G(K)

)
.

Proof. Assume towards a contradiction that L �� C̃G(H/C̃G(K)) and let κ be equal to

(2|T (A)|)+. By the previous lemma we can find (ls : s ∈ exp5(κ)
+) in L, (kn : n ∈ (exp5(κ)

+)

in K and (hi : i ∈ exp5(κ)
+) in H in a sufficiently saturated extension of G such that

[[l−1s lt ,h
−1
i hj ], k

−1
n km] � 1 ∀i, j,n,m,s, t ∈ (2κ)+, i � j,n �m,s � t.

By the Witt’s identity (Fact 3.18), for every tuple i < j < n < m < s < t < exp5(κ)
+ either

[[h−1j hi ,k
−1
m kn], l

−1
s lt] � 1 or [[k−1n km, l−1t ls],h

−1
j hi ] � 1.

By Erdős-Rado (Fact 3.7) we can find a subset I of cardinality κ+ such that for all i < j <

n < m < s < t in I the same inequality of the two holds, say [[h−1j hi ,k−1m kn], l−1s lt] � 1. Now

let λ be the order-type of I and note that it is greater or equal to κ+. Identify I with λ.

Thus

[[h−1j hi ,k
−1
m kn], l

−1
s lt] � 1 for 0 ≤ i < j ≤ κ < n < m ≤ 2κ < s < t ≤ 3κ (3.1)

Furthermore, by assumption we have that H � C̃G(K/C̃G(L)). Hence, we can find two

ordinal numbers i and j with i < j < κ and such that h−1j hi is an element of C̃G(K/C̃G(L)).

So the index of CK (h
−1
j hi /C̃G(L)) in K is bounded. Once more this implies that there

are two ordinal numbers n and m with κ < n < m ≤ 2κ and such that k−1m kn belongs to

CG(h
−1
j hi /C̃G(L)). Thus [h−1j hi ,k−1m kn] is an element of C̃G(L) or equivalently the index

of CL([h
−1
j hi ,k

−1
m kn]) has bounded index in L. Thus there exists another two ordinal

numbers s and t with 2κ < s < t ≤ 3κ and such that [[h−1j hi ,k−1m kn], l−1s lt] = 1. Finally, this

contradicts (3.1) and the theorem is established.

3.4 Generalized Neumann theorem

We want to generalize a classical group theoretical result due to B. H. Neumann. To do

so, let us first introduce the following notions.

Definition 3.20. A group G is finite-by-abelian if there exists a normal finite subgroup

F of G such that G/F is abelian.

Observe that G being finite-by-abelian is equivalent to its derived group [G,G] being

finite.

Definition 3.21. A group G is almost abelian if the centralizer of any of its elements has

finite index in G. If there is a natural number d such that the index of the centralizer of

any element of G in G is smaller than d, we say that G is a bounded almost abelian group.
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Remark 3.22. If we consider a definable almost abelian subgroup of an ℵ0-saturated

group, we can always bound the index of the centralizers by some natural number d by

compactness. Hence, any definable almost abelian subgroup of any ℵ0-saturated group

is a bounded almost abelian group. Additionally, note that the almost center of any group

is always an almost abelian group.

Now, we can state the fact:

Fact 3.23. [49, Theorem 3.1]. Let G be a bounded almost abelian group. Then its derived

group is finite and thus G is finite-by-abelian.

We realized that the main tool in the beginning of the proof is the existence of a

natural number which bounds the size of the set of conjugates of any element of H in

H . Secondly, it seems not to be of importance that one considers conjugates of H by

itself, actually it works for two groups H and K such that H is contained in the almost

centralizer ofK and there is some natural number that bounds the number of conjugates

of each element of K by H . This leads to the following theorem and corollary.

Theorem 3.24. Let G be a group and let H and K be two subgroups of G. Suppose that

• H normalizes K ;

• H ≤ FCG(K);

• K ≤ FCG(H), moreover there is d ∈ ω such that for all k in K the set of conjugates kH

has size at most d.

Then the group [K,H] is finite.

Remark 3.25. Let G be a bounded almost abelian group. So letting H and K be equal to

G in the previous theorem, all assumption are met. Thus, we obtain that [G,G] is finite

and recover the theorem of Neumann.

In the proof, we use the following fact:

Fact 3.26. [2, 53] Let G be a group and let K and H be two subgroups of G such that H

normalizes K . If the set of commutators

{[k,h] : k ∈ K,h ∈H}
is finite, then the group [K,H] is finite.

Proof of Theorem 3.24. Let d be the minimal bound for the size of conjugacy classes of

elements of K by H . Fix some element k of K for which the conjugacy class of k in H

has size d and let 1,h2, . . . ,hd be a set of right coset representatives of H modulo CH (k).

Thus

k1 = k, k2 = k
h2 , . . . , kd = k

hd

are the d distinct conjugates of k byH . We let C be equal to the centralizer CK (h2, . . . ,hd ).

As H is contained in FCG(K), the group C has finite index in K . Choose some represen-

tatives a1, . . . , an of right cosets of K modulo C. Note that their conjugacy classes by H
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are finite by assumption. Let F be the finite set kH ∪ aH1 ∪ · · · ∪ aHn and let E be the set

{x0 · x1 · x2 · x3 : xi ∈ F ∪F−1, i < 4} which is finite as well. Note that K is equal to CF.

Now, we want to prove that E contains the set

D := {[g,h] : g ∈ K,h ∈H}.

So let g ∈ K and h ∈H be arbitrary elements. Choose c in C, f in F, such that g = cf . We

have that

[g,h] = [cf ,h] = [c,h]f [f ,h] = f −1[c,h] · f h

As f −1 belongs to F−1 and f h belong to F, it remains to show that [c,h] can be written as

a product of two elements in F ∪F−1.

Let w = ck. As c commutes with h2, . . . ,hd the conjugates

w = ck, wh2 = ck2, . . . , w
hd = ckd

are all different. As d was chosen to be maximal, these have to be all conjugates of w by

H . So there are i and j less or equal than d, such that

h−1wh = cki and h−1kh = kj .

We obtain that

[c,h] = c−1h−1ch = c−1(h−1ckh)(h−1k−1h) = c−1ckik−1j = kik
−1
j .

As all ki ’s belong to F, we can conclude that D is a subset of E and therefore finite.

Hence [K,H] is finite by Fact 3.26.

Corollary 3.27. Let G be an ℵ0-saturated group and letH and K be two definable subgroups

of G such that H normalizes K . Suppose that

K ≤ C̃G(H) and H ≤ C̃G(K).

Then the group [K,H] is finite.

Proof. As G is ℵ0-saturated, the fact that K ≤ C̃G(H) implies that there is d ∈ ω such that

for all k in K the set of conjugates kH has size at most d. So all hypotheses of Theorem

3.24 are satisfied and we can conclude.

3.5 M̃c-groups

One of the crucial properties of subgroups of an M̃c-group G is that the iterated almost

centralizers are definable which we prove below.

Proposition 3.28. Let G be an M̃c-group, let H be a subgroup of G and let N be a definable

subgroup of G which is contained in and normalized by H .

1. Then all iterated FC-centralizers FCnG(H/N ) are definable.
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2. If H is an A-invariant group, then all iterated almost centralizers C̃nG(H/N ) are defin-

able.

Proof. The proofs for the two cases are identical just replacing the iterated almost cen-

tralizers by the iterated FC-centralizers and bounded by finite. We give the proof using

the notion C̃nG(H/N ).

For n equals to 0 there is nothing to show as N is definable by assumption.

Now, let n ∈ ω and assume that C̃iG(H/N ) is definable for all i ≤ n. This yields that⋂n
i=0NG(C̃

i
G(H/N )) is a definable subgroup of G and thus an M̃c-group as well. More-

over, as C̃n+1G (H/N ) only contains elements which belong to this intersection we may re-

place G by this intersection and assume that C̃nG(H/N ) is a normal subgroup. Since G is

an M̃c-group, there are g0, . . . , gm ∈ C̃n+1G (H/N ) and d ∈ ω such that for all h ∈ C̃n+1G (H/N ):

⎡⎢⎢⎢⎢⎢⎣
i=m⋂
i=0

CG
(
gi /C̃

n
G(H/N )

)
:

i=m⋂
i=0

CG
(
gi /C̃

n
G(H/N )

)
∩CG
(
h/C̃nG(H/N )

)⎤⎥⎥⎥⎥⎥⎦ < d

Let D be equal to the definable group
⋂i=m
i=0 CG(gi /C̃

n
G(H/N )) and let

S :=
{
g ∈ G :

[
D : CD(g/C̃

n
G(H/N ))

]
< d
}

We show that the definable set S is equal to C̃n+1G (H/N ). The inclusion C̃n+1G (H/N ) ⊂ S
is obvious by choice of the gi ’s and d. So let g ∈ S . To prove the inverse inclusion, we

may compute:

[H : CH (g/C̃
n
G(H/N ))] ≤ [H :H ∩D] ·

[
H ∩D : CH∩D(g/C̃nG(H/N ))

]
≤ [H :H ∩D] ·

[
D : CD(g/C̃

n
G(H/N ))

]
< ∞ (i. e. finite for 1. and bounded for 2.)

Thus g belongs to C̃n+1G (H/N ). Hence C̃n+1G (H/N ) is equal to S , and whence definable.

Remark 3.29. Note that all iterated almost centralizers of H in G are stabilized by any

definable automorphism which fixes H set wise. So, if H is an A-invariant group, all its

iterated almost centralizers are indeed definable over A. Moreover, for any (type-, ind-)

definable (resp. A-invariant) subgroup H , the iterated almost centers of H are (type-,

ind-) definable (resp. A-invariant).
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As pointed out in the introduction, finding definable sets around non-definable objects

becomes very important, since it “brings” objects outside the scope of model theory into

the category of definable sets.

In that sense, an ongoing line of research consists of finding “definable envelopes”.

Specifically, one can ask if for a definable group G and a given abelian, nilpotent, or

solvable subgroup of G, can one find a definable abelian, nilpotent, or solvable subgroup

of G which contains the given subgroup. This is always possible in stable theories (see

[52]), and one obtains slightly weaker results for simple and dependent theories.

In this chapter, we analyze arbitrary abelian, nilpotent and (normal) solvable sub-

groups of groups definable in NTP2 theories and M̃c-groups. We prove the existence of

definable envelopes up to finite index (if the ambient group is sufficiently saturated for

NTP2-theories), which is inspired by the result in simple theories (as well as the one in

dependent theories).

4.1 Prelimaries

Let G be a group definable in a dependent theory, letH be a subgroup of G and suppose

that G is |H |+-saturated. The following two results summarize what we know about

envelopes of H . The first was proven by Shelah in [59] and the second by de Aldama in

[14].

Fact 4.1. If H is abelian, then there exists a definable abelian subgroup of G which contains

H .

Fact 4.2. If H is a nilpotent (respectively normal solvable) subgroup of G of class n, then

there exists a definable nilpotent (respectively normal solvable) subgroup ofG of class n which

contains H .

We now turn to the simple theory context. As the following remark shows, it is im-

possible to get envelopes in the same way one could achieve them in the stable and

dependent case, and one must allow for some “finite noise”.

Remark 4.3. (see [46, 5.15-5.22]) Let T be the theory of an infinite vector space over

Fp with p > 2 together with a non-degenerate skew symmetric bilinear form. Then T

is supersimple of SU-rank 1 and in any model of T one can define an “extraspecial p-

group” G, i. e. G is infinite, every non-trivial element of G has order p, the center of

G is cyclic of order p and is equal to the derived group of G. This group has SU-rank

1 [46, Corollary 5.22]and as any centralizer has finite index, one can find an infinite
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abelian subgroup A. On the other hand, suppose that there is an abelian subgroup B of

G which has finite index in G and let g0, . . . , gn be representatives of the different cosets
of B in G. As the centralizer of any element of G has finite index in G, we conclude

that CB(g0, . . . , gn) virtually contains G. Hence CB(g0, . . . , gn) is infinite and by the choice

of B and g0, . . . , gn, it has to be contained in the center which is finite by assumption.

Thus there are no abelian subgroups of finite index in G. However, if G had a definable

abelian subgroup B which contains A, that abelian group would have SU-rank 1, hence

would be of finite index in G, a contradiction.

A model theoretic study of extra special p-groups can be found in [17].

So one has to modify the notion of definable envelopes which is adapted to the new

context. In the abelian case, it is the following result proven by Milliet as [47, Proposi-

tion 5.6.].

Fact 4.4. Let G be a group definable in a simple theory and let H be an abelian subgroup of

G. Then there exists a definable finite-by-abelian subgroup of G which contains H .

In the nilpotent and solvable case one must additionally take into account a “by fi-

nite” phenomenon which leads to the fact below also due to Milliet [46]:

Fact 4.5. Let G be a group definable in a simple theory and let H be a nilpotent (respectively

solvable) subgroup of G of class n. Then one can find a definable nilpotent (respectively

solvable) subgroup of class at most 2n which virtually contains H .

Note that if H is an abelian subgroup it is as well a nilpotent subgroup of class 1. So

on the one hand, by Fact 4.4 we obtain that there is a definable finite-by-abelian group

A which contains H . In fact the proof of Milliet gives even more: we have that [A,A] is

contained in the FC-center of A. Thus CA([A,A]) is definable nilpotent group of class at

most 2 which has finite index in A and thus virtually contains H . Thus in the case H is

abelian, Fact 4.4 implies Fact 4.5.

By the following theorem due to Fitting, we obtain a stronger result for normal nilpo-

tent subgroups:

Fact 4.6 (Fitting’s Theorem). [18] Let G be a group and H and K be two normal nilpotent

subgroups of class n and m respectively. Then HK is a normal nilpotent subgroup of class at

most n+m.

So, assume that the nilpotent subgroup H of class n is additionally normal in the

group G which has a simple theory. Then one can ask for the definable subgroup N ,

which virtually contains H , to be normal in G as well. Hence, the product of these

two subgroups NH is a normal nilpotent subgroup of G of class at most 3n by Fitting’s

theorem and it obviously contains H . Moreover, it is definable as it is the finite union

of translates of N by elements of H .

To find envelopes in the simple theory context, Milliet makes use of the definable

version of a result proven by Schlichting in [55], which can be found in [63, Theorem

4.2.4]. It deals with families of uniformly commensurable subgroups.
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Definition 4.7. A family H of subgroups is uniformly commensurable if there exists a

natural number d such that for each pair of groups H and K from H the index of their

intersection is smaller than d in both H and K .

Fact 4.8 (Schlichting’s theorem). Let G be a group and H be a family of definable uniformly

commensurable subgroups. Then there exists a definable subgroup N of G which is commen-

surable with all elements of H and which is invariant under any automorphisms of G which

stabilizes H setwise. Moreover, the group N is a finite extension of a finite intersection of

elements in H.

We also make use of this fact both in the NTP2 as well as the M̃c context.

4.2 NTP2 theories

The purpose of this section is to extend the results above to NTP2 groups. This is joint

work with Alf Onshuus.

Theorem 4.9. Let G be a group definable in an NTP2 theory, H be a subgroup of G and

suppose that G is |H |+-saturated. Then the following holds:

1. If H is abelian, then there exists a definable finite-by-abelian subgroup of G which con-

tains H .

Furthermore, if H is normal in G, the definable finite-by-abelian subgroup can be cho-

sen to be normal in G as well.

2. If H is solvable of class n which is normal in G, then there exists a definable normal

solvable subgroup S of G of class at most 2n which virtually contains H .

In particular, the group HS is a definable solvable subgroup of G of class at most 3n

which contains H .

3. If H is nilpotent of class n, then there exists a definable nilpotent subgroup N of G of

class at most 2n which virtually contains H .

Moreover, if H is normal in G, the group N can be chosen to be normal in G as well

and HN is a definable nilpotent group of class at most 3n which contains H .

Question 2. Is there an NTP2 groupG and an abelian, nilpotent or normal solvable sub-

groupH of size strictly larger than the saturation of G which does not admit a definable

envelope in the sense of Theorem 4.9?

It there an NTP2 group G and a solvable subgroup H such that G is |H |+-saturated and

H does not admit a definable envelope in the sense of Theorem 4.9?

In the abelian and solvable case we follow some of the ideas already present in the

proof of de Aldama. Similarly to his proof and unlike the proof of Milliet in simple

theories, we do not rely on a chain condition for intersections of uniformly definable

subgroups, but we look to prove the result directly from the non existence of the array

described in Definition 1.12. In the nilpotent case, we use additionally some properties

of the almost centralizer which were shown in the previous chapter. They turn out
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to be the same tools needed to prove the corresponding result in M̃c-groups which is

presented in the next section.

The following is the key lemma for the abelian case and it is used in the nilpotent

case as well.

Lemma 4.10. Let G be a group with an NTP2 theory, let H be a subgroup of G and suppose

that G is |H |+-saturated. Let φ(x,y) be the formula xy = yx. Consider the following partial

types:

πZ(H)(x) = {φ(x,g) : Z(H) ≤ φ(G,g), g ∈ G}
πH (x) = {φ(x,g) :H ≤ φ(G,g), g ∈ G}.

Then there exists a natural number n such that

πZ(H)(x0)∪ · · · ∪πZ(H)(xn)∪πH (y) �
∨
i�j

φ(x−1i xj ,y).

Proof. Suppose that the lemma is false. Then for arbitrary large n ∈ ω one can find a

sequence of tuples (a�,0, . . . , a�,n−1, b�)�<ω in G such that for all � ∈ ω
(ā�,b�) |= πZ(H)(x0)∪ · · · ∪πZ(H)(xn−1)∪πH (y) � dcl(H ∪ {āk ,bk : k < �})

and for all 0 ≤ i < j < n we have that a−1�,i a�,j � CG(b�). We show that:

1. For all i < n and all natural numbers k � �, we have that a�,i ∈ CG(bk);
2. For all i, j < n and all k < � < ω we have that a�,i ∈ CG(bak,jk ).

To do so, we let k < � < ω and i, j < n be arbitrary and we prove that a�,i ∈ CG(bk) as
well as ak,i ∈ CG(b�) and a�,i ∈ CG(bak,jk ).

For any element z in Z(H), we have that H ≤ CG(z). Hence φ(x,z) ∈ πH (x) � H . As bk
satisfies this partial type, we obtain that

Z(H) ≤ CG(bk).
So φ(x,bk) belongs to πZ(H)(x) � {bk}. Since the element a�,i satisfies π(x)Z(H) � H ∪ {bk},
we get that a�,i belongs to CG(bk).

On the other hand, if we take a ∈ H we have that Z(H) is a subgroup of CG(a) and

thus φ(x,a) ∈ πZ(H)(x) �H . As ak,i satisfies πZ(H)(x) �H , we obtain that

H ≤ CG(ak,i ).
So φ(x,ak,i ) ∈ πH (x) � {ak,i}. As the element b� satisfies π(x)H � H ∪ {ak,i}, we get that the

element ak,i belongs to CG(b�) which together with the previous paragraph yields (1).

As seen above, we have Z(H) ≤ CG(bk) and H ≤ CG(ak,i ). So Z(H) ≤ CG(bak,jk ). Hence

φ(x,b
ak,j
k ) belongs to πZ(H)(x) � dcl(bk,ak,j ). Since a�,i satisfies π(x)Z(H) � dcl(bk,ak,j ), we

obtain that a�,i belongs to CG(b
ak,j
k ), which yields (2).

Letψ(x;y,z) be the formula that defines the coset y ·CG(z). We claim that the following

holds:
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• {ψ(x;a�,i , b�} : i < n} is 2-inconsistent for any � ∈ ω;
• {ψ(x;a�,f (�), b�} : � ∈ ω} is consistent for any function f : ω→ n+1.

The first family is 2-inconsistent as every formula defines a different coset of CG(b�)
in G. For the second we have to show that for all natural numbers m and all tuples

(i0, . . . , im) ∈ nm the intersection

a0,i0CG(b0)∩ · · · ∩ am,imCG(bm)
is nonempty. Using (1) and (2) and multiplying by a−10,i0 · · · · · a−1m,im on the right, this is

equivalent to CG(b
a0,i0
0 )∩ · · · ∩CG(bam,imm ) being nonempty which is trivially true.

Compactness yields a contradiction to the fact that the group G has an NTP2 theory

and we obtain the result.

Using compactness as well, we obtain the following immediate corollary.

Corollary 4.11. LetG be a group with an NTP2 theory, letH be a subgroup of G and suppose

that G is |H |+-saturated. Then there are finite tuples ā and b̄ in G and a natural number m

such that

• Z(H) ≤ CG(ā),
• H ≤ CG(b̄),
•
∧
i<m xi ∈ CG(ā)∧ y ∈ CG(b̄) �∨i�j x−1i xj ∈ CG(y).

Abelian subgroups

Proof of Theorem 4.9(1). By Corollary 4.11, we can find finite tuples ā and b̄ in G and a

natural number n such that Z(H) ≤ CG(ā), H ≤ CG(b̄) and∧
i<m

xi ∈ CG(ā)∧ y ∈ CG(b̄) �
∨
i�j

x−1i xj ∈ CG(y). (∗)

Since H is abelian, the definable subgroup CG(ā, b̄) of G contains H , and by (∗) this is a
bounded almost abelian group. Thus, its commutator subgroup is finite by Fact 3.23,

which yields the first assertion of Theorem 4.9(1). Moreover, if H is normal in G, the

group CG(ā
G, b̄G) is a definable normal subgroup of G which still contains H and which

is as well almost abelian. This completes the proof.

Solvable subgroups

To prove the solvable case of Theorem 4.9 we introduce the following notations:

Definition 4.12. A groupG is almost solvable if there exists a normal almost abelian series

of finite length, i. e. a finite sequence

{1} = G0 � G1 � · · ·� Gn = G

of normal subgroups of G such that Gi+1/Gi is an almost abelian group for all i ∈ n. The
least such natural number n ∈ ω is called the almost solvable class of G.
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Definition 4.13. Let G be a group and S be a definable almost solvable subgroup. We

say that S admits a definable almost abelian series of length n if there exists a family of

definable normal subgroups {Si : i ≤ n} of S such that Sn is the trivial group, S0 is equal

to S and Si/Si+1 is almost abelian and normalized by S .

In an arbitrary group, a priori not every almost solvable group admits a definable

almost abelian series.

By the following Lemma we only need to concentrate on building a definable almost

abelian series. The proof is analogous to the one of Corollary 4.12 in [46] (although

it is done there in the context of a simple theory, the proof is exactly the same in our

context).

Lemma 4.14. Let G be an ℵ0-saturated group and H be an almost solvable subgroup of G

which admits a definable almost abelian series

H =H0 �H1 � . . .�Hn = {1}

of length n. Then H has a definable subgroup of finite index which is solvable of class at most

2n and which is normalized by
⋂
i NG(Hi ).

Proof. As the Hi are normalized by H , we may replace G by the definable
⋂
i NG(Hi )

and suppose that all Hi are normal in G. So, we need to find a definable finite index

subgroup of H which is normal in G and solvable of class at most 2n.

By compactness and saturation, we have that Hi/Hi+1 are bounded almost abelian

groups. Now, add the parameters needed to define the Hi to the language.

Using Fact 3.23 we deduce that the quotient group [Hi,Hi ]/Hi+1 is finite. More-

over, as all Hi ’s are normal subgroups of G, the group [Hi,Hi ]/Hi+1 is normalized by

G. Hence, any h in [Hi,Hi ] has finitely many conjugates inH/Hi+1, i. e. the set (h/Hi+1)
H

is finite. Thus the index of CH (h/Hi+1) in H is finite. Hence, the definable group

CH ([Hi,Hi ]/Hi+1) is the finite intersection of centralizers which have finite index in H

and whence it has finite index in H as well. Moreover, it is normalized by G as H , Hi
andHi+1 are normal subgroups of G. We conclude that it contains the intersection of all

definable G-normalized subgroups of H which have finite index in H which we denote

by H0. This implies that

[[Hi,Hi ],H
0] ≤Hi+1.

Now, we show by induction on k that

(H0)(2k) ≤Hk.

Let k be equal to 1. We obtain that

(H0)(2) = [[H0,H0], [H0,H0]] ≤ [[H0,H0],H0] ≤H1.

Suppose the statement is true for k. Then we compute:

(H0)(2k+2) = [[(H0)(2k), (H0)(2k)], [(H0)(2k), (H0)(2k)]] ≤ [[Hk,Hk],H
0] ≤Hk+1



4. Chapter: Definable envelopes of subgroups 41

This finishes the induction.

Hence (H0)(2n) is a subgroup of the trivial group Hn, whence it is trivial as well and

therefore H0 is solvable of class at most 2n. This can be expressed by a formula. So it

is implied by finitely many of the formulas defining H0. As H0 is the intersection of

a directed system definable subgroups, this also has to be true in one of those groups.

Thus, one can find a definable solvable group of class at most 2n which has finite index

in H and which is normal in G.

Proposition 4.15. Let G be a group definable in an NTP2 theory, H be a normal solvable

subgroup of G of class n and suppose that G is |H |+-saturated. Then there exists a definable

normal almost solvable subgroup S of G of class n containing H . Additionally, S admits a

definable almost abelian series of length n such that all of its members are normal in G.

Proof. We prove this by induction on the derived length n of H . If n is equal to 1 this is

a consequence of the abelian case, Theorem 4.9(1). So let n > 1, and consider the abelian

subgroup H (n−1) of H . It is a characteristic subgroup of H and hence, as H is normal

in G, it is normal in G as well. So again by the abelian case, there exists a definable

normal almost abelian subgroup A of G which contains H (n−1). Replacing G by G/A, we

have that the derived length of HA/A is at most n − 1 and we may apply the induction

hypothesis which finishes the proof.

Proof of Theorem 4.9(2). Applying Proposition 4.15 to the normal solvable subgroup H

of G of class n gives us a definable almost solvable subgroup K of G of class n containing

H which admits a definable almost abelian series of length n for which each member of

the definable almost abelian series is normal in G. By Lemma 4.14, the group K has a

definable subgroup S of finite index which is normal in G and solvable of class at most

2n.

Nilpotent subgroups

The following is an immediate consequence of Corollary 4.11

Corollary 4.16. Let G be a group definable in an NTP2 theory, let H be a subgroup of G

and suppose that G is |H |+-saturated. Then one can find definable subgroups A and K and a

natural number m such that

• the cardinality of the conjugacy class kA for all elements k in K is bounded by m;

• A is almost abelian and contains Z(H);

• K contains H and A.

If H is additionally normal in G, one can choose A and K to be normal in G as well.

Proof. Let ā, b̄ and m be as in Corollary 4.11. Then A = CG(ā, b̄) and K = CG(b̄) are as

required. Moreover, if H is additionally normal, letting A = CG(ā
G, b̄G) and K = CG(b̄

G)

gives the desired normal subgroups of G.
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Proof of Theorem 4.9(3). Note that if H is finite, the result holds trivially. So we may

assume that H is infinite and so G is at least ℵ0-saturated. For the second part of the

theorem, we assume additionally that H is normal in G.

We prove by induction on the nilpotency class n of H that there exists a definable

nilpotent subgroup N of G of class at most 2n and a sequence of subgroups:

{1} =N0 ≤N1 ≤N2 ≤ · · · ≤N2n =N

such that H ≤v N and for all 0 ≤ i < 2n, we have that

• Ni is definable and normal in N ;

• [Ni+1,N ] ≤Ni .

If H is normal in G, we ask each Ni to be normal in G as well.

Let n be equal to 1. Then H is abelian, and by Theorem 4.9(1) there exists a definable

almost abelian subgroup A of G which contains H . Note that the centralizer of any

element of A has finite index in A. As the group [A,A] is finite by Fact 3.23, we can put

N = N2 = CA([A,A]) and N1 = Z([A,A]). If H is normal in G, we may choose A to be

normal in G as well. Since CA([A,A]) and Z([A,A]) are characteristic subgroups of A,

they are also normal in G which provides the second part of the theorem.

Now, let n (the nilpotency class of H) be strictly greater than 1 and assume that for

any nilpotent subgroup of a definable group in an NTP2 theory of class less than n,

one can find a sequence as described above. The strategy is to find a definable sub-

group N ∗ of G such that N ∗ virtually contains H and Z2(N
∗) contains N ∗ ∩Z(H). Then

(H ∩N ∗)Z2(N
∗)/Z2(N

∗) has nilpotency class strictly smaller than n and we may apply

the induction hypothesis. Thus, we would be able to find a definable nilpotent subgroup

N2n/Z2(N
∗) of G/Z2(N

∗) which virtually contains N ∗/Z2(N
∗) and therefore H/Z2(N

∗).
Taking the pullback to N ∗ together with its first and second center yields the desired

properties.

We first show the following:

Claim. There are definable subgroups A and K of G such that:

• A is a normal subgroup of K ;

• Z(H) ≤v A and H ≤ K ;
• K ≤ C̃K (A)
• A ≤ Z̃(K);
• [A,K] is finite and contained in Z̃(K).

Proof. First, by Corollary 4.16 we can find definable subgroupsA0 and K ofG andm ∈ ω
such that
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1. the cardinality of the conjugacy class kA0 for all elements k in K is bounded by m;

2. A0 is almost abelian and contains Z(H);

3. K contains H and A0.

The next step to prove the claim is to replaceA0 by a commensurable subgroup which

is definable and additionally normal in K .

By (1) we deduce that for any element k in K , the index [A0 : CA0
(k)] is bounded by

m. So for k0 and k1 in K , we have that

[Ak00 : Ak10 ] = [A0 : A
k1k

−1
0

0 ] ≤ [A0 : CA0
(k1k

−1
0 )] ≤m

Hence,

F = {A0
k : k ∈ K}

is a uniformly definable and uniformly commensurable family of subgroups of K . By

Schlichting Theorem (Fact 4.8) one can find a definable subgroup A1 of K which is

commensurable with all groups in F , in particular with A0, and which is stabilized by

all automorphisms which stabilize the family setwise. Thus A1 is normal in K .

As A1 is commensurable with A0, we have that K ≤ C̃K (A1). By symmetry of the

almost centralizer (Corollary 3.14), we obtain that A1 is virtually contained in Z̃(K), but

A1 need not be a subgroup of Z̃(K). Let A = A1 ∩ Z̃(K); this is still a normal subgroup

of K and has finite index in A1. Since the almost center of a definable group is not

necessary definable in an NTP2 theory, it is left to show that this intersection is indeed

definable, as A and K satisfy all other properties of the claim (which will be explain in

detail later).

Since A has finite index in A1, the definable subgroup A1 is a finite union of distinct

cosets of A, say A1 =
⋃k
i=1 aiA for some ai ∈ A1. Furthermore, we have that A is the union

of the definable sets

Ad := φd(x) = {x ∈ A1 : [K : CK (x)] < d}.
But then we have that

A1 =

k⋃
i=1

⋃
d∈ω

aiAd

so by compactness and saturation of G this is equal to a finite subunion. Additionally,

as {Ad}d∈ω was a chain of subsets of A each contained in the next we have that

A1 =

k⋃
i=1

aiAd

for some fixed d. Hence A is equal to Ad and whence it is a definable normal subgroup

of K . Moreover, the group A is commensurable with A0, so it virtually contains Z(H)

and K is still contained in C̃G(A). Additionally, A is contained in C̃G(K) and normal in

K . By Corollary 3.27, we have that the group [A,K] is finite. As A is normal in K , we

obtain that

[A,K] ≤ A ≤ Z̃(K).
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Let A and K be as in the claim. In particular, the index [Z(H) : A ∩ Z(H)] is finite.

Take a set H0 := {h0, . . . ,hn} of representatives of each coset of A∩Z(H) in Z(H), so that

Z(H) = h0 (A∩Z (H))∪ h1 (A∩Z (H))∪ · · · ∪ hn (A∩Z (H)).

Let K ′ := CK (h0, . . . ,hn) and A′ := A∩K ′.

Claim. The following conditions hold:

• [A′ ,K ′] is finite and contained in Z̃(K ′).

• H ≤ K ′.

• Z(H)∩A = Z(H)∩A′, so that Z(H) ≤v A′.

Proof. We have that Z(H)∩A′ ⊆ Z(H)∩A and [A′ ,K ′] ≤ [A,K]. Since [A,K] is finite and

contained in C̃G(K), so is [A′ ,K ′]. Furthermore, as K ′ is a subgroup of K , we have that

C̃G(K) is a subgroup of C̃G(K
′). Moreover, since A′ is a subgroup of K ′, the commutator

group [A′ ,K ′] belongs to K ′, which yields the first item of the claim.

All of the hi ’s inH0 belong toZ(H) andH is a subgroup ofK , soH ≤ K ′ = CK (h0, . . . ,hn).

Finally, let h be an element of Z(H) ∩ A. We have that h belongs as well to K ′ and
hence to A′. This completes the proof of the claim.

Notice that in particular Z(H)∩A ≤ A′.

We can now define N ∗ as mentioned at the beginning of the proof. Let X be equal to

[A′ ,K ′]. Then we define:

N ∗ := CK ′ (X).

Claim. The following conditions hold:

1. N ∗ is a subgroup of K ′ of finite index, and thus H ∩N ∗ has finite index in H .

2. Z(H)∩N ∗ ≤ Z2(N
∗).

Proof. Since X is contained in Z̃(K ′), the centralizer CK ′ (x) has finite index in K ′ for all
x in X. As X is additionally finite, we obtain that N ∗ has finite index in K ′. Since H is a

subgroup of K ′, we have as well that H ∩N ∗ has finite index in H , which proves (1).

To prove (2), observe first that since N ∗ is equal to CK ′ (X), we obtain immediately

that X ∩N ∗ is contained in Z(N ∗). Second, it is enough to show that

{[z,n] : z ∈ Z(H)∩N ∗, n ∈N ∗} ≤ Z(N ∗).

This will imply that [Z(H)∩N ∗,N ∗] is a subgroup of Z(N ∗) which yields that Z(H)∩N ∗
is contained in Z2(N

∗).

As

Z(H) =
⋃
hi∈H0

hi (A∩Z (H)) =
⋃
hi∈H0

hi (A
′ ∩Z (H)) ,



4. Chapter: Definable envelopes of subgroups 45

we can write z as a product of an element hi ∈H0 and a ∈ A′. Thus

[z,n] = [hi · a,n] = [hi ,n]
a · [a,n]

As n belongs to N ∗ which is a subgroup of K ′ = CK (H0), the first factor is trivial and we

obtain that:

[z,n] = [a,n] ∈ [A′ ,K ′] ≤ X
Moreover, as z and n both belong to N ∗, their commutator does as well. Thus we obtain

finally that [z,n] is an element of X ∩N ∗ which is a subgroup of Z(N ∗) as shown above.

So Z(H)∩N ∗ is contained in Z2(N
∗) which finishes the claim.

We are finally ready to prove the theorem, using the induction hypothesis. By the

previous claim, we have that Z(H)∩N ∗ ≤ Z2(N
∗). Hence

(H ∩N ∗) /Z2(N
∗)∩ (H ∩N ∗) � (H ∩N ∗)Z2(N

∗)/Z2(N
∗)

is a quotient of (H ∩N ∗) / (Z (H)∩N ∗). We obtain that the nilpotency class of

(H ∩N ∗)Z2(N
∗) / Z2(N

∗)

is at most the nilpotency class of H/Z(H) which is strictly smaller than the one of H .

Furthermore, it is contained in the group N ∗/Z2(N
∗) which is definable in an NTP2

theory.

By induction hypothesis, we can find a sequence of subgroups of N ∗/Z2(N
∗)

Z2(N
∗)/Z2(N

∗) ≤N3/Z2(N
∗) ≤ · · · ≤N2n/Z2(N

∗)

such that

(H ∩N ∗)Z2(N
∗)/Z2(N

∗) ≤v N2n/Z2(N
∗)

and for all 2 ≤ i ≤ 2n we have that

• Ni/Z2(N
∗) is definable and normal in N2n/Z2(N

∗);

• [Ni+1,N2n] ≤Ni .

AsN2n is a subgroup ofN ∗ we have that Z(N ∗)∩N2n ≤ Z(N2n) and [Z2(N
∗),N2n] ≤ Z(N ∗).

Note that the group H ∩N ∗ is virtually contained in N2n as well. As H ∩N ∗ and H are

commensurable, the same holds for H . So

{1} =N0 ≤ Z(N2n) ≤ Z2(N2n) ≤N3 · · · ≤N2n

is an ascending central series of N2n with the desired properties.

Now we treat the “moreover” part of Theorem 4.9(3). IfH is normal in G, we may as-

sume that K and A found in the first claim are normal in G. Thus, we can find definable

normal subgroups A and K of G such that:
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• Z(H) ≤v A and H ≤ K ;
• K ≤ C̃K (A)
• A ≤ Z̃(K);
• [A,K] is finite and contained in Z̃(K).

Then we find as above a set of representatives {h0, . . . ,hn} of the distinct cosets ofA∩Z(H)

in Z(H) and we let K ′ be equal to CK (h
G
0 , . . . ,h

G
n ) and A

′ be equal to K ′ ∩A. These are

both definable normal subgroups of G and we have as well that

• [A′ ,K ′] is finite and contained in Z̃(K ′).

• H ≤ K ′.

• Z(H)∩A = Z(H)∩A′, so that Z(H) ≤v A′.

Now we defineN ∗ to be the definable normal subgroup CK ′ ([A′ ,X ′]) which has by the

above the following properties:

• N ∗ is a subgroup of K ′ of finite index, and thus H ∩N ∗ has finite index in H .

• Z(H)∩N ∗ ≤ Z2(N
∗).

The rest of the proof is exactly as the previous one, since our induction hypothesis

now allows us to find all groups in the sequence to be normal in G.

4.3 M̃c-groups

Wewant to prove the existence of definable envelopes for M̃c-group. For this, the crucial

property of subgroups of M̃c-groups is that the iterated almost centralizers are defin-

able.

Abelian groups

We first investigate the abelian case. It uses notions and results presented in Chapter

3. The proof is inspired by the one of the corresponding theorem for simple theories in

[47].

Proposition 4.17. Every almost abelian subgroup H of an M̃c-group is contained in a defin-

able finite-by-abelian subgroup which is additionally normalized by NG(H).

Proof. Let H be an almost abelian subgroup of the M̃c-group G and assume that G is

ℵ0-saturated. As G is an M̃c-group there are elements h0, . . . ,hn−1 in H and a natural

number d such that for every element h in H , the index [C : C ∩CG(h)] is smaller than d

for C :=
⋂n−1
i=0 CG(hi ). Observe additionally thatH is virtually contained in C. Moreover,

the following set

F = {Ch : h ∈NG(H)}
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is a family of uniformly commensurable definable subgroups of G. Thus applying

Schlichting’s theorem 4.8 to this family of subgroups, we obtain a definable subgroup

D which is normalized by NG(H) and commensurable with C. So D virtually contains

H and thus DH is a finite extension of D and thus definable. Note that:

• Z̃(DH) is a definable almost abelian group since DH is a definable subgroup of an

M̃c-group and so Z̃(DH) coincides with the almost abelian group FC(DH).

• H ≤ Z̃(DH) as DH is commensurable with C and thus the centralizer of any ele-

ment of H has finite index in DH and as pointed out.

• Z̃(DH) is normalized by NG(H) as both D and H are.

So the definable almost abelian (thus finite-by-abelian) group Z̃(DH) contains H and is

normalized by NG(H).

Solvable groups

We prove first that any almost solvable subgroup of G is contained in a definable almost

solvable subgroup which admits a definable almost abelian series. From this result,

we deduce the existence of solvable envelopes up to finite index for almost solvable

subgroups.

Proposition 4.18. Let H be an almost solvable subgroup of class n of an M̃c-group G . Then

there exists a definable almost solvable subgroup of class n which is normalized byNG(H) and

admits a definable almost abelian series containing H .

Proof. Let {1} = H0 ≤ · · · ≤ Hn = H be an almost abelian series for H . We construct

recursively a definable almost abelian series

{1} = S0 ≤ · · · ≤ Sn

such that for all i ≤ n, we have that Hi ≤ Si and Si is normalized by NG(H).

As S0 is the trivial group, we may suppose that Si−1 has been constructed for 0 < i < n.

Since Si−1 is definable and normalized byNG(H), we can replace G by the definable sec-

tion Gi = NG(Si−1)/Si−1. Note that this is an M̃c-group and that Hi/Si−1 is an almost

abelian subgroup. Thus by the almost abelian case (Proposition 4.17), there exists a de-

finable almost abelian subgroup Si of Gi which is normalized by NGi
(Hi/Si−1) contain-

ing Hi/Si−1. As Hi is a characteristic subgroup of H and Si−1 is normalized by NG(H),

the normalizer of Hi/Si−1 and thus of Si contains NG(H)/Si−1. Now defining Si to be the

pullback of Si in G, we conclude.

Theorem 4.19. Let G be an M̃c-group andH be an almost solvable subgroup of class n. Then

there exists a definable solvable group S of class at most 2n which is normalized by NG(H)

and virtually contains H .
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Proof. Wemay assume that G is ℵ0-saturated. Then, we can apply Proposition 4.18 toH

which yields a definable almost solvable group K of class n containing H which admits

a definable almost abelian series for which each member is normalized by NG(H). By

Lemma 4.14, the group K has a definable subgroup S of finite index which is solvable

of class at most 2n and which is normalized by NG(H).

Nilpotent groups

Definition 4.20. A group H is almost nilpotent if there exists an almost central series of

finite length, i. e. a sequence of normal subgroups of H

{1} ≤H0 ≤H1 ≤ · · · ≤Hn =H

such that Hi+1/Hi is a subgroup of FC(H/Hi ) for every i ∈ {0, . . . ,n− 1}. We call the least

such n ∈ ω, the almost nilpotency class of H .

Remark 4.21. The iterated FC-centers of any almost nilpotent group H of class n form

an almost central series of length n.

In this section we prove that any almost nilpotent subgroup of class n is virtually con-

tained in a definable nilpotent group of class at most 2n. To do so, we need the following

consequence of symmetry of the almost centralizer (Theorem 3.13) and Corollary 3.27.

Corollary 4.22. Let G be a M̃c-group and H be an A-ind-definable subgroup of G. Then

H � C̃G(C̃G(H))

Proof. Trivially, we have that C̃G(H) ≤ C̃G(H). As G is an M̃c-group and so C̃G(H) is

definable, we obtain the result using symmetry.

Proposition 4.23. Let G be an M̃c-group. Then the commutator [Z̃(G), C̃G(Z̃(G))] is finite.

Proof. We may assume that G is ℵ0-saturated. As G is an M̃c-group, the normal sub-

groups Z̃(G) and C̃G(Z̃(G)) are definable. As trivially C̃G(Z̃(G)) is contained in itself

and

Z̃(G) = C̃G(G) ≤ C̃G(C̃G(Z̃(G))),
we may apply Corollary 3.27 to these two subgroups and obtain the result.

Theorem 4.24. Let G be an M̃c-group and let H be an almost nilpotent subgroup of G of

class n. Then there exists a definable nilpotent subgroup N of G of class at most 2n which is

normalized by NG(H) and virtually contains H .

Proof. We construct inductively on i ≤ n the following subgroups of G:

In the ith step we find a definable subgroup Gi of G and two definable normal sub-

groups N2i−1 and N2i of Gi all normalized by NG(H) such that:

1. H ≤v Gi ;
2. FCi(H)∩Gi ≤N2i ;
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3. [N2i−1,Gi ] ≤N2(i−1);

4. [N2i ,Gi ] ≤N2i−1;

5. Gi ≤ Gi−1.

Once the construction is done, we letN be equal to the definable groupN2n and consider

the following sequence of definable subgroups:

{1} =N0 ∩Gn ≤N1 ∩Gn ≤ · · · ≤N2n ∩Gn.
By the above, we have for all j ≤ 2n that

[Nj ∩Gn,N ]
(5)≤ [Nj,G� j2 �]∩Gn

(3) or (4)≤ Nj−1 ∩Gn.
So N is a definable nilpotent subgroup of G of class at most 2n which is witnessed by

the sequence above. Moreover N is normalized by NG(H) and

H = FCn(H)
(1)≤v FCn(H)∩Gn

(2)≤ N.

Thus N virtually contains H . Hence, it remains to show the existence of such Ni ’s and

Gi ’s.

Now, assume that i > 0 and that for j < i and k < 2i − 1 the groups Nk and Gj have

been constructed. We work in the quotient G = Gi−1/N2(i−1) which is an M̃c-group and

we let H = (H ∩Gi−1)/N2(i−1) which is obviously normalized by NG(H). The first step

is to replace G by a definable subgroup C which virtually contains H and such that

FCG(H) = Z̃(C). Observe that the preimage of FCG(H) in Gi−1 contains FCi(H)∩Gi−1 as
FCi−1(H)∩Gi−1 is contained in N2(i−1).

If there is g0/N2(i−1) ∈ FCG(H) \ Z̃(G), we consider the family

H = {CG(g
h
0 /N2(i−1)) : h ∈NG(H)}

Note that asH is normalized byNG(H), all members ofH virtually containH. Moreover,

as G is an M̃c-group there exists a finite intersection F of groups in H such that for any

K in H we have that the index [F : F∩K] is at most d. Thus the family

{Fh : h ∈NG(H)}
is uniformly commensurable. So, by Schlichting’s theorem (Fact 4.8) there is a definable

subgroupC0 ofGwhich is invariant under all automorphismswhich stabilize the family

setwise, thus normalized by NG(H), and commensurable with F. Moreover F ∩ H is

commensurable with CH(g0/N2(i−1)) as g0/N2(i−1) belongs to FCG(H). Over all we obtain

that

C0 ∩H =v H and C0 ≤v CG(g0/N2(i−1)). (∗)
If now, there is g1/N2(i−1) ∈ C̃C0

(H∩C0) \ Z̃(C0), we can redo the same construction and

obtain a C1. By (∗) and g1 not belonging to Z̃(C0), we have that CG(g0/N2(i−1), g1/N2(i−1))
has infinite index in CG(g0/N2(i−1)). Then we can iterated this process. It has to stop
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after finitely many steps, as for every j the index of CG(g0/N2(i−1), . . . , gj+1/N2(i−1)) in
CG(g0/N2(i−1), . . . , gj /N2(i−1)) is infinite by construction, contradicting the fact that G is

an M̃c-group. Letting C be equal to
⋂
iCi , we found a definable subgroup of G (thus an

M̃c-group), such that FCC(H) = Z̃(C). Additionally, the group C is normalized byNG(H)

and its intersection with H has finite index in H.

The next step is to define Gi , N2i−1 and N2i . As C is an M̃c-group, Proposition 4.23

yields that the commutator Z = [Z̃(C), C̃C(Z̃(C))] is finite. Since Z̃(C) and C̃C(Z̃(C)) are
characteristic subgroups of C, we have that Z is normalized by NG(H) and contained in

Z̃(C). Note additionally that the group C̃C(Z̃(C)) has finite index in C by Corollary 4.22.

Thus Gi = C̃C(Z̃(C))∩CC(Z) has finite index in C. We let N1 = Z∩Gi , a finite subgroup

of the center of Gi , and N2 = Z̃(C)∩Gi = Z̃(Gi ), which is contained in Z(Gi /N1). Note

that all groups used to define Gi , N1 and N2 are characteristic subgroups of C and thus

Gi , N1 and N2 are normalized by NG(H). Moreover, N1 and N2 are normal subgroups

of Gi . Let Gi , N2i−1 and N2i be the preimages of Gi , N1 and N2 in G respectively. They

satisfy all requirements, finishing the construction and therefore the proof.

Corollary 4.25. If H is a normal nilpotent subgroup of G of class n, there is a definable

normal nilpotent subgroup of G that contains H of class at most 3n.

Proof. By the previous proposition, we can find a definable normal nilpotent subgroup

N of G of class at most 2n that virtually contains H . Thus, the group HN is a finite

union of cosets of the definable subgroup N in G. Therefore, we have that HN contains

H and is a definable normal nilpotent subgroup which has nilpotency class at most 3n

by Fitting’s theorem (Fact 4.6).



5Fitting subgroup of an M̃c-group

In this chapter we analyze the Fitting subgroup F(G) (Definition 5.1) and the almost

Fitting subgroup of an M̃c-group. Note that F(G) is always normal in G. Moreover,

as the product of any two normal nilpotent subgroups is again nilpotent by Fitting’s

Theorem (Fact 4.6), we can conclude that F(G) is locally nilpotent. It is even nilpotent if

G is finite. On the other hand, ifG is infinite its Fitting subgroupmight not be nilpotent.

For Mc-groups, nilpotency of F(G) was shown by Bryant [7] for G periodic, by Wag-

ner [62] in the stable case and in general by Derakhshan andWagner [15]. Furthermore,

it has been recently generalized by Palacín and Wagner [50] to groups type-definable in

simple theories. One of the main ingredients, other than the chain condition on cen-

tralizers, is that any nilpotent subgroup has a definable envelope up to finite index. As

we establish this result for M̃c-groups in Section 4.3 we are able to prove nilpotency of

the Fitting subgroup for M̃c-groups in this chapter. Afterwards, we analyze the approx-

imate version of the Fitting group, which is the group generated by all normal almost

nilpotent subgroups. We show that for M̃c-groups, this group is almost solvable. In the

end, we analyze locally nilpotent M̃c-groups.

5.1 (Almost) Fitting subgroup

Let us first give the precise definition of the Fitting subgroup:

Definition 5.1. Let G be a group. The Fitting subgroup of G, denoted by F(G), is the

group generated by all normal nilpotent subgroups of G.

We make use of the following fact due to Ould Houcine:

Fact 5.2. [28] For any ℵ0-saturated group, nilpotency of the Fitting subgroup implies its

definability.

The first step is to show that any locally nilpotent subgroup of an M̃c-group, thus in

particular the Fitting subgroup, is solvable.

Proposition 5.3. Any locally nilpotent subgroup of an M̃c-group is solvable.

The proof is inspired by the corresponding result for type-definable groups in simple

theories [50, Lemma 3.6]. For sake of completeness we give a detailed proof.

Proof. We may assume as usual that G is ℵ0-saturated and thus any definable almost

abelian group is a bounded almost abelian group.
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LetK be a locally nilpotent subgroup of an M̃c-groupG. Letm be theminimal natural

number such that each descending chain of intersection of centralizers inG with infinite

indexes has length at most m. We consider all sequences of the form

G = CG(g1) > · · · > CG(g1, . . . gn)
such that each centralizer has infinite index in its predecessor and let S be the collection

of such tuples ḡ = (g1, . . . , gn). Note that n is at most m and that the first element of any

tuple in S is an element of the center of G. We prove that CK (g1, . . . gm−i ) is solvable for
any tuple ḡ = (g1, . . . gm−i ) in S of length m− i by induction on i.

For i = 0, the group CG(g1, . . . gm) is a definable almost abelian group. Using Fact 3.23

we obtain that its derived group is finite. As CK (g1, . . . gm) is a subgroup of CG(g1, . . . gm),

its derived group is finite as well and additionally a subgroup of the locally nilpotent

group K . Hence it is nilpotent and whence CK (g1, . . . gm) is solvable.

Nowwe assume that for any tuple in S of length at leastm−i the induction hypothesis

holds. Let ḡ = (g1, . . . gm−i−1) be a tuple in S of length m − (i +1). We consider the group

CK (g1, . . . gm−i−1). By the induction hypothesis, we know that for any g in G for which

CG(g) has infinite index in CG(g1, . . . gm−i−1), the group CK (g1, . . . gm−i−1, g) is solvable.

Therefore, lettingH be equal to the locally nilpotent group CK (g1, . . . gm−i−1) and replac-

ing G by CG(g1, . . . gm−i−1) (which is still an M̃c-group as it is a definable subgroup of an

M̃c-group) yields that for any g such that CG(g) has infinite index in G, the centralizer

CH (g) is solvable.

As Z̃(G) is a definable normal subgroup of the M̃c-group G, we can find some natural

numbers n and d such that each descending chain of centralizers inGmodulo Z̃(G) with

index greater than d has length at most n.

If H is contained in the definable almost abelian group Z̃(G), the same argument as

for i equal to 1 shows that H is solvable. Thus, we may suppose that H is not contained

in the almost center of G. As H is locally nilpotent, we can find a nilpotent subgroup

H0 of H for which this holds, i. e. the group H0/Z̃(G) is non-trivial. As H0 is nilpotent,

the group Z(H0/Z̃(G)) is non-trivial as well and hence CH0
(H0/Z̃(G)) strictly contains

Z̃(G) ∩H0. Take an element h0 in their difference. If CH (h0/Z̃(G)) has index greater

than d in H , let g0, . . . , gd in H be representative of distinct cosets and note that they

are not contained in Z̃(G). As H is locally nilpotent, one can find a nilpotent subgroup

H1 of H containing g0, . . . , gd . Hence CH1
(h0/Z̃(G)) has index greater than d in H1 as

well and H1/Z̃(G) is non-trivial. Choose again an element h1 in CH1
(H1/Z̃(G))\Z̃(G),

so CH (h1/Z̃(G)) contains H1 and thus CH (h0/Z̃(G),h1/Z̃(G)) has index greater than d in

CH (h1/Z̃(G)). If CH (h1/Z̃(G)) has as well index greater than d in H we can iterate this

process. By the choice of n and d this has to stop after at most n times and so we may

find an element h in H \ Z̃(G) for which the group CH (h/Z̃(G)) has finite index in H . As

h does not belong to the almost center of G, we have that CG(h) has infinite index in G

and therefore CH (h) is solvable by assumption.

Let N be equal to the derived group of C̃H (G) ≤ Z̃(G). Since it is finite and contained

in H it is nilpotent. Consider the map from CH (h/N ) to N sending x to [h,x]. This map

has as kernel the solvable subgroup CH (h) and as image the nilpotent group N . So the
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subgroup CH (h/N ) is solvable as well. The second step is to consider the map from

CH (h/C̃H (G)) to C̃H (G)/N which maps x to [h,x]/N . Note that again the kernel CH (h/N )

is solvable and the image C̃H (G)/N is abelian. So CH (h/C̃H (G)) is a solvable subgroup

of finite index in H , say m. Using that G acts on G/H by left translation and that the

kernel of the induced group morphism ν : G → Sm is the intersection of all conjugates

of H , we obtain that ker(ν) is a normal subgroup of CH (h/C̃H (G)) of finite index in H .

As any finite quotient of a locally nilpotent group is nilpotent, the group H is solvable.

This finishes the induction.

Taking a maximal tuple (g1, . . . , gm) in S and letting i be equal to m−1, we obtain that

CK (g1) is solvable. As K is equal to CK (g1), this finishes the proof.

Corollary 5.4. The Fitting subgroup of an M̃c-group is solvable.

In the next lemma we deal with a definable section of some M̃c-group acting via con-

jugation on another definable section. We recall and introduce some facts and notations:

Let G be a group that acts on an abelian group A by automorphisms. Then, one can

naturally extend the action to the group ring Z[G], namely for an arbitrary element∑
i<n zigi of Z[G] and a in A, we set⎛⎜⎜⎜⎜⎜⎝

∑
i<n

zigi

⎞⎟⎟⎟⎟⎟⎠ · a =
∏
i<n

(gi · a)zi .

Moreover, we use the following notation:
If B is a subgroup of A and g an element of G we denote by CB(g) the group of elements

b in B on which g acts trivially, i. e. gb = b. Furthermore, if H is a subgroup of G and a

an element of A, we denote by CH (a) all elements h in H which act trivially on a. This

yields the natural definition of an almost centralizer via this group action, namely for

any subgroup B of A and H of G, we have that

C̃B(H) = {b ∈ B : [H : CH (b)] is finite}
C̃H (B) = {h ∈H : [B : CB(h)] is finite}

Note that this group action defines a semidirect product A�G. Within this group, the

above defined almost centralizer C̃B(H) (respectively C̃H (B)) corresponds to the pro-

jection of C̃B�1(1 � H) to its first coordinate (respectively C̃1�H (B � 1) to its second

coordinate). So one obtains immediately the following symmetry for the above almost

centralizer using Theorem 3.13 for A�G.

Lemma 5.5. Let G be a group that acts on an abelian group A by automorphisms. Let H be

a definable subgroup of G and B be a definable subgroup of A, then we have that

H � C̃G(B) if and only if B� C̃A(H).

Definition 5.6. Let G be a group and K , A, N andM be subgroups of G such that:

M � K and N � A.

We say that the quotient K/M acts by conjugation on A/N if the action by K/M on A/N

via conjugation is well-defined, i. e.



54 5.1. (Almost) Fitting subgroup

• K ≤NG(A)∩NG(N );

• M ≤ CG(A/N ).

Lemma 5.7. Let K and A be quotients of definable subgroups of an M̃c-group G such that K
acts by conjugation on A. Then the C̃K(A) and C̃A(K) are definable.

Proof. The lemma is an immediate consequence of the following claim:

Claim. There are natural numbers n and d (respectively n′ and d ′) such that any descending

chain of centralizers

CA(k0) ≥ CA(k0,k1) ≥ · · · ≥ CA(k0, . . . ,km) ≥ . . . (ki ∈ K)
(
resp. CK(a0) ≥ CK(a0,a1) ≥ · · · ≥ CK(a0, . . . ,am) ≥ . . . (ai ∈ A)

)
each of index greater than d (resp. d ′) in its predecessor is of length at most n (resp. n′).

Proof of the claim. Suppose that the claim is false. Then, by compactness there exists an

infinite descending chains of centralizer

CA(k0) ≥ CA(k0,k1) ≥ · · · ≥ CA(k0, . . . ,kn) ≥ . . . (ki ∈K)

(
resp. CK(a0) ≥ CK(a0,a1) ≥ · · · ≥ CK(a0, . . . ,am) ≥ . . . (ai ∈A)

)
each of infinite index its predecessor. Let A, N , L and M be definable subgroups of G

such that

A = A/N and K = K/M

and ki in K such that ki is equal to ki /M as well as ai in A such that ai is equal to ai/N .

Then

CA(ki ) = {a/N ∈ A/N : ki /M · a/N = a/N }
= {a/N ∈ A/N : aki /N = a/N }
= {a ∈ A : aki /N = kia/N }/N
= CA(ki /N )/N

(
resp. CK(ai ) = {k/M ∈ K/M : k/M · ai/N = ai/N }

= {k ∈ K : aki /N = ai/N }/M
= CK (ai/N )/M

)
Thus the above infinite descending chains of centralizer each of infinite index its pre-

decessor translates to

CA(k0/N ) ≥ CA(k0/N,k1/N ) ≥ · · · ≥ CA(k0/N, . . . , kn/N ) ≥ . . .
(
resp. CK (a0/N ) ≥ CK (a0/N,a1/N ) ≥ · · · ≥ CA(a0/N, . . . , an/N ) ≥ . . .

)
.

These are infinite descending chains of centralizer each of infinite index its predecessor

in the definable section NG(N )/N of the M̃c-group G which is impossible. claim
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So, we can choose k0, . . . ,kn in C̃K(A) (resp. a0, . . . ,an′ in C̃A(K)) such that for all k in

C̃K(A) (resp. a in C̃A(K)),

[CA(k0, . . . ,kn) : CA(k0, . . . ,kn,k) < d](
resp. [CK(a0, . . . ,an) : CK(a0, . . . ,an,a) < d

′]
)
.

Thus,

C̃K(A) =
{
k ∈K : [CA(k0, . . . ,kn) : CA(k0, . . . ,kn,k) < d]

}
(
resp. C̃A(K) =

{
a ∈A : [CK(a0, . . . ,an) : CK(a0, . . . ,an,a) < d

′]
})

The proof of [50, Lemma 3.8] which is stated for groups type-definable in a simple

theory uses only symmetry of the almost centralizer and that they are definable. Hence

it remains true for M̃c-groups.

Lemma 5.8. Let K and A be definable sections of an M̃c-group G such that A is abelian and

K acts by conjugation on A. Suppose that H is an arbitrary abelian subgroup of K and that

there are a tuple h̄ = (hi : i < �) in H and natural numbers (mi : i < �) such that

• (hi − 1)miA is finite ∀i < �;
• for any h in H the index of CA(h̄,h) in CA(h̄) is finite.

Then there is a definable subgroup L of K which contains H and a natural number m such

that C̃mA (L) has finite index in A.

Proof. Let

L = C̃CK(h̄)(CA(h̄)) = {k ∈ CK(h̄) : [CA(h̄) : CA(h̄,k)] <∞}
with h̄ given by the statement (note that CK(h̄) denotes the centralizer within the group

K and CA(h̄) denotes the centralizer given by the group action of K on A). Observe that

L contains H by assumption and that it is definable by Lemma 5.7.

Letm be equal to 1+
∑�−1
i=0(mi−1) and fix an arbitrary tuple n̄ = (n0, . . . ,nm−1) in �×m. By

the pigeonhole principle and the choice of m there is at least one i less than � such that

at least mi many coordinates of n̄ are equal to i. As the group ring Z(H) is commutative

and (hi − 1)miA is finite for all i less than � by assumption, we have that

(hn0 − 1)(hn1 − 1) . . . (hnm−1 − 1)A

is finite.

Claim. Let k be an element of K and B be a subgroup of A. Then we have that the set (k−1)B
is finite if and only if B� CA(k).

Proof. Suppose that B �� CA(k). Then there is a set of representatives {bi : i ∈ ω} of
cosets of Bmodulo CA(k), i. e. for i different than j we have that bi −bj does not belong
to CA(k). Thus

(k− 1)bi � (k− 1)bj
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which contradicts that (k− 1)B is finite.

On the other hand if B � CA(k) then there exists elements b0, . . . ,bp in B such that

for all b in B there exists i less or equal to p such that b − bi belongs to CA(k), i. e.
(k−1)b = (k−1)bi . Hence the set (k−1)B is equal to (k−1){b0, . . . ,bp}, whence finite.

So, applying the claim to B = (hn1 − 1) . . . (hnm−1 − 1)A, for all i ≤ n we obtain that

(hn1 − 1) . . . (hnm−1 − 1)A� CA(hi ).

Thus

(hn1 − 1) . . . (hnm−1 − 1)A� CA(h̄).

Since for all k0 in L, we have that CA(h̄)� CA(k0), we have as well that

(hn1 − 1) . . . (hnm−1 − 1)A� CA(k0)

and again by the claim we deduce that

(k0 − 1)(hn1 − 1) . . . (hnm−1 − 1)A

is finite. As L is contained in the centralizer of h̄, the previous line is equal to

(hn1 − 1) . . . (hnm−1 − 1)(k0 − 1)A.

We repeat the previous processm times and we obtain that for anym-tuple (k0, . . .km−1)
in L we have that the set

(km−1 − 1) . . . (k1 − 1)(k0 − 1)A

is finite. As the tuple is arbitrary, we have that for any k in L the group

(km−2 − 1) . . . (k1 − 1)(k0 − 1)A

is almost contained in the centralizer CA(k), i. e.

L ≤ C̃K((km−2 − 1) . . . (k1 − 1)(k0 − 1)A).

By symmetry we have that

(km−2 − 1) . . . (k1 − 1)(k0 − 1)A� C̃A(L).

By Lemma 5.7, we have that C̃A(L) is definable. Thus we may work modulo this group

as A is abelian and obtain that

(km−2 − 1) . . . (k1 − 1)(k0 − 1)A/C̃A(L)

is finite for all choices of an (m − 1)-tuple (k0, . . . ,km−2) in L. Thus as before we obtain

by the claim and symmetry that

(km−3 − 1) . . . (k1 − 1)(k0 − 1)A� C̃A(L/C̃A(L)) = C̃
2
A(L)

Repeating this process m times yields that A� C̃mA (L).

Theorem 5.9. The Fitting subgroup of an M̃c-group is nilpotent and definable.
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Proof. Let G be an M̃c-group. Note first, that the Fitting subgroup F(G) of G is solvable

by Corollary 5.4. So there exists a natural number r such that the rth derived subgroup

F(G)(r) of F(G) is trivial, hence nilpotent. Nowwe will show that if F(G)(n+1) is nilpotent,

then so is F(G)(n). So, suppose that F(G)(n+1) is nilpotent. As it is additionally normal

in G, using Corollary 4.25 we can find a definable normal nilpotent subgroup N of G

containing F(G)(n+1). Moreover, note that the central series

{1} =N0 < N1 < · · · < Nk =N

with Ni = Zi(N ) consists of definable normal subgroups of G such that [N,Ni+1] ≤Ni .
Observe that it is enough to show that F(G)(n) is almost nilpotent: If F(G)(n) is almost

nilpotent it has a normal nilpotent subgroup F of finite index by Theorem 4.24. As

F(G)(n) is a subgroup of the Fitting subgroup, any finite subset is contained in a normal

nilpotent subgroup of G. Thus, there is a normal nilpotent subgroup that contains a set

of representatives of cosets of F in F(G)(n). Hence the group F(G)(n) is a product of two

normal nilpotent subgroups, whence nilpotent by Fitting’s Theorem (Fact 4.6).

As F(G)(n)/N is abelian and G/N is an M̃c-group, by Proposition 4.17 one can find a

definable subgroup A′ of G which contains F(G)(n) such that A′/N is an FC-group, i. e.

A′ ≤ C̃G(A′/N ). Moreover, the group A′/N is normalized by the normalizer of F(G)(n)/N

and thus A′ is normal in G. The next step is to find a definable subgroup A of A′ which

still contains F(G)(n) and a natural numberm for whichN ≤ C̃mG (A). This will imply that

A ≤ C̃G(A/N ) ≤ C̃G(A/C̃mG (A)) = C̃m+1
G (A). As A contains F(G)(n), the group F(G)(n) would

be nilpotent by the above.

Fix now some i > 0. For any g in F(G)(n) there is some normal nilpotent subgroup Hg
which contains g . So NiHg is nilpotent by Fitting’s theorem (Fact 4.6). Therefore, we

can find a natural number mg such that [Ni ,mg
g] = {1} or seen with the group action as

in Lemma 5.8

(g − 1)mgNi = {1}.
Additionally, as G is an M̃c-group, we can find a finite tuple ḡ in F(G)(n) such that

for any g ∈ F(G)(n) the index [CNi (ḡ/Ni−1) : CNi (ḡ/Ni−1, g/Ni−1)] is finite. So we may

apply Lemma 5.8 to G/N acting on Ni/Ni−1 and the abelian subgroup F(G)(n)/N . Thus,

there is a natural number mi and a definable group Ki that contains F(G)
(n) such that

Ni � C̃mi
G (Ki/Ni−1). Then the finite intersection A = A′ ∩⋂i Ki is a definable subgroup of

G which still contains F(G)(n). As for A′, we have that A ≤ C̃G(A/N ). Additionally:

Ni � C̃mi
G (Ki/Ni−1) ≤ C̃mi

G (A/Ni−1)

and inductively

N � C̃
mk
G (A/Nk−1)

≤ C̃
mk
G (A/(C

mk−1
G (A/Nk−2))) = C

mk+mk−1
G (A/Nk−2)

≤ . . . ≤ C
mk+···+m1

G (A)

Using that A ≤ C̃G(A/N ), we obtain that A ≤ C̃mG (A) for m =mk + · · ·+m1 + 1.
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Overall, we get that F(G)(n) is nilpotent for all n. In particular, the Fitting subgroup

F(G) of G is nilpotent. And finally by Fact 5.2 we deduce that it is definable as well.

Now, we want to study the almost Fitting subgroup:

Definition 5.10. The almost Fitting subgroup of a group G is the group generated by all

its normal almost nilpotent subgroups. We denote this subgroup by F̃(G).

Hickin and Wenzel show in [26] that the product of two normal almost nilpotent

subgroups is again a normal almost nilpotent subgroup. Hence the almost Fitting sub-

group of any group G is locally almost nilpotent but it might not be almost nilpotent.

For M̃c-groups we show the following:

Proposition 5.11. The almost Fitting subgroup of an M̃c-group is almost solvable.

Proof. Let G be an M̃c-group and g be an element of its almost Fitting subgroup. Then

there is a normal almost nilpotent subgroupH of G which contains g . By Theorem 4.24,

we deduce that H has a nilpotent subgroup of finite index which is normal in G. Thus,

the quotientH/F(G) is finite. Since additionallyH is a normal subgroup ofG, we deduce

that any element of H has finitely many conjugates modulo F(G). Hence the group H

and therefore F̃(G) are contained in C̃G(G/F(G)). As F(G) is nilpotent by Theorem 5.9

and C̃G(G/F(G))/F(G) is almost abelian, we deduce that C̃G(G/F(G)) is almost solvable.

As any subgroup of an almost solvable group is almost solvable, we conclude that F̃(G)

is almost solvable which finishes the proof.

5.2 Locally nilpotent M̃c-groups

We finish this chapter with two proposition about locally nilpotent M̃c-group.

Proposition 5.12. Let G be a locally nilpotent ℵ0-saturated M̃c-group. Then G is nilpotent-

by-finite.

Proof. Note first of all, that it is enough to show that G is almost nilpotent as any almost

nilpotent subgroup of an M̃c-group is nilpotent-by-finite by Theorem C(2).

As G is locally nilpotent, it is solvable by Proposition 5.3. So, we may inductively

assume that G′ is almost nilpotent. Thus G′ is virtually contained in a definable normal

nilpotent subgroupN of G by Theorem C(2). We claim that it is enough to show that for

some natural number n, the group N is contained in Z̃n(G): If so, we have that G/Z̃n(G)

is an almost abelian group as G/N is an almost abelian group and thus G is contained

in Z̃n+1(G).

Now, we prove inductively that for every natural number i ≤m, we can find a natural

number j such that Zi(N ) is contained in Z̃j (G).

For i equals 0 this is trivially true. Thus, suppose that for Zi(N ) we have found j such

that Zi(N ) is contained in Z̃j (G). We work in G = G/Z̃j (G) which is again an M̃c-group.

We set

N :=NZ̃j (G)/Z̃j (G) and Ni+1 := Zi+1(N )Z̃j (G)/Z̃j (G).
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As

[Zi+1(N ),N ] ≤ Zi(N ) ≤ Z̃j (G),
we have that [Ni+1,N] = 1. Moreover, since G/N is an almost abelian group, so is G/N.

We fix additionally the following notation:

For any subgroup H of G, by H∗ we denote H/N and for any element h of H we write h∗

for its class modulo N. So, the group G∗ acts on Ni+1 by conjugation and we may regard

Ni+1 as an G∗-module as [Ni+1,N ] = 1.

Since G is an M̃c-group, we can find a finite tuple ḡ = (g0, . . . ,gm) of elements in G
such that for any g in G the index [CG(ḡ) : CG(ḡ,g)] is finite. Let K be equal to CG(ḡ/N)

which has finite index in G as G/N is almost abelian. For any a ∈Ni+1, we have that the

group generated by a and ḡ is a finitely generated subgroup of a locally nilpotent group

and must be nilpotent. Thus for a given a inNi+1 there is a choice h0, . . . ,hda of elements

all belonging to the tuple ḡ such that

(h∗
0 − 1)(h∗

1 − 1) . . . (h∗
da

− 1)a = 0.

As Ni+1 is definable and G is ℵ0-saturated, there is an upper bound for the choice of

da which we denote by d.

Thus, for any choice of h0, . . . ,hd each being an element of the tuple ḡ and any element

a of Ni+1 we have in the right module notation

(h∗
0 − 1)(h∗

1 − 1) . . . (h∗
d − 1)a = 0.

As a was arbitrary in Ni+1, we obtain that

(h∗
0 − 1)(h∗

1 − 1) . . . (h∗
d − 1)Ni+1 = 0.

Moreover, since h0 is an arbitrary element of ḡ, the previous equation yields that

(h∗
1 − 1) . . . (h∗

d − 1)Ni+1 ≤ CG(ḡ).

Let k0 be any element of K, by the choice of ḡ, we obtain that

(h∗
1 − 1) . . . (h∗

d − 1)Ni+1 � CG(k0)

or in other words

(k∗
0 − 1)(h∗

1 − 1) . . . (h∗
d − 1)Ni+1 is finite.

As k0 is an element of CG(ḡ/N) and Ni+1 is commutative, this finite set equals

(h∗
1 − 1) . . . (h∗

d − 1)(k∗
0 − 1)Ni+1

Iterating this process, we obtain that for any tuple of elements (k0, . . . ,kd ) in K we have

that

(k∗
d − 1) . . . (k∗

1 − 1)(k∗
0 − 1)Ni+1 is finite.

Since the tuple was taken arbitrary, we have that for any k in K the group

(k∗
d−1 − 1) . . . (k∗

1 − 1)(k∗
0 − 1)Ni+1



60 5.2. Locally nilpotent M̃c-groups

is almost contained in the centralizer CNi+1
(k), i. e.

K ≤ C̃G((k∗
d−1 − 1) . . . (k∗

1 − 1)(k∗
0 − 1)Ni+1)

By symmetry we have that

(k∗
d−1 − 1) . . . (k∗

1 − 1)(k∗
0 − 1)Ni+1 � C̃Ni+1

(K)

As Ni+1 is an M̃c-group, the group C̃Ni+1
(K) is definable, thus we may work modulo

C̃Ni+1
(K) and obtain that

(k∗
d−1 − 1) . . . (k∗

1 − 1)(k∗
0 − 1)Ni+1/C̃Ni+1

(K)

is finite for all choices of an d − 1 tuple (k0, . . . ,km−2) in K. Thus as before we obtain by

symmetry that

(k∗
d−2 − 1) . . . (k∗

1 − 1)(k∗
0 − 1)Ni+1 � C̃Ni+1

(K/C̃Ni+1
(K)) = C̃2

Ni+1
(K).

Repeating this process m many times yields that Ni+1 � C̃dNi+1
(K) = C̃dNi+1

(G) ≤ Z̃d(G).

Thus Zi+1(N ) � C̃dG(G/Z̃j (G)) = Z̃d+j (G). As N and thus Zi+1(N ) are normal in G, this

yields immediately that Zi+1(N ) ≤ Z̃d+j+1(G) which finishes the proof.

Proposition 5.13. Let G be a locally nilpotent M̃c-group such that G/Z̃k(G) has finite expo-

nent for some natural number k. Then G is nilpotent-by-finite.

Proof. First of all note, that it is enough to show that G/Z̃k(G) is almost nilpotent, as this

implies that G is almost nilpotent and any almost nilpotent subgroup of an M̃c-group

is nilpotent-by-finite by Theorem 4.24. So let us replace G by G/Z̃k(G) which is as well

an M̃c-group by definition, locally nilpotent and of finite exponent.

The rest of the proof is analogous to the previous one. Using the same notation as

before, the only difference is the way to find the bound d such that for any choice of

h0, . . . ,hd each being an element of the tuple ḡ and any element of Ni+1 we have in the

right module notation that

(h∗0 − 1)(h∗1 − 1) . . . (h∗d − 1)a = 0.

In this context, we know that G has finite exponent, say e. Thus, the group generated

by ḡ has finite order, say f . So for any a ∈Ni+1, the group generated by a and ḡ has order

at most d = ef · f and as it is a finitely generated subgroup of a locally nilpotent group,

it is nilpotent. Thus it is nilpotent of class at most d which gives the bound.



6Almost commutator and almost nilpotent
subgroups

In Chapter 3 we introduced the almost centralizer which is a centralizer “up to finite in-

dex”. Thus one might ask, if there exists a corresponding notion of an “almost commu-

tator”. The main goal is to introduce such a notion and to establish its basic properties.

Even though this notion might not have the desired properties in the general context,

it has once we work in M̃c-groups. This allows us to generalize a result on nilpotent

subgroups to almost nilpotent subgroups of M̃c-groups.

For the rest of the chapter we fix a parameter set A and let G be an |A|+-saturated
and |A|+-homogeneous group.

6.1 Almost commutator

To simplify the notation in the next definition, we let G be the family of all A-definable

subgroups of G. Note that this family is stable under finite intersections.

Definition 6.1. For two A-ind-definable subgroups H and K of G, we define:

[̃H,K ]̃A :=
⋂

{L ∈ G : L = LNG(H) = LNG(K), H � C̃G(K/L)}

and call it the almost A-commutator of H and K . If A is the empty set we omit the index

and just say the almost commutator.

By Theorem 3.13 the almost commutator is symmetric, i. e. for two A-ind-definable

subgroups H and K , we have [̃H,K ]̃A = [̃K,H ]̃A. Moreover, it is the intersection of defin-

able subgroups of G. Note that the ordinary commutator of two A-ind-definable groups

is not necessary definable nor the intersection of definable subgroups, and hence one

cannot compare it with its approximate version, contrary to the almost centralizer.

Observe that the final results we obtain in this section only deal with normal sub-

groups of M̃c-groups. Thus, we restrict our framework from now on to normal sub-
groups. In this case, namely given two normal A-ind-definable subgroups H and K of

G, the subgroup [̃H,K ]̃ is the intersection of normal subgroups of G which simplifies

not only the definition but also many arguments and ambiguities in numerous proofs.

Note anyhow that all results in this section could be generalized to arbitrary subgroups.

So let from now on let F be the family of all A-definable normal subgroups of
G. Note that this family is still stable under finite intersections and additionally under

finite products.
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Then the definition of the almost commutator of two ind-definable normal subgroups

H and K of G simplifies to:

[̃H,K ]̃A :=
⋂

{L ∈ F : H � C̃G(K/L)}.

As H � C̃G(K/L) does not depend on the model we choose, the almost commutator

does not depend on G. In other words, in any elementary extension of G, it will corre-

spond to the intersection of the same A-definable groups.

In the rest of this section, we establish basic properties of the almost commutator of

ind-definable normal subgroups in arbitrary groups. To simplify notation, we add A as
constants to the language and thus for any two A-ind-definable subgroups H and K

of G, the almost commutator [̃H,K ]̃ and the A-almost commutator [̃H,K ]̃A in the new
language coincide. Therefore, we may omit A in the index in the rest of the section.

For two A-ind-definable normal subgroups H and K of G and L the intersection of

A-definable normal subgroups of G, we obtain immediately that

H � C̃G(K/L) implies [̃H,K ]̃ ≤ L.
The other implication is a consequence of the following result:

Lemma 6.2. For any A-ind-definable normal subgroups H and K of G, we have that

H � C̃G
(
K
/
[̃H,K ]̃

)
.

Moreover, [̃H,K ]̃ is the smallest intersection of A-definable normal subgroups for which this

holds.

Proof. We let L be the family of all A-definable normal subgroups L of G such that

H � C̃G(K/L). Suppose that H �� C̃G(K/ [̃H,K ]̃). As [̃H,K ]̃ is the intersection of the

normal subgroups L in L, Properties 3.8 (10) yields that there is an L in L such thatH ��
C̃G(K/L). This contradicts the choice of L and the first part of the lemma is established.

Now, let L be an intersection ofA-definable normal subgroups such thatH � C̃G(K/L).

Then, this holds for any of the definable subgroups in the intersection. Thus, those sub-

groups contain [̃H,K ]̃ and therefore L contains [̃H,K ]̃.

Using the previous lemma we obtain immediately the following corollaries.

Corollary 6.3. Let H and K be two A-ind-definable normal subgroups of G and L be an

intersection of A-definable normal subgroups of G. Then, we have that H � C̃G(K/L) if and

only if [̃H,K ]̃ ≤ L.
Corollary 6.4. For any almost commutator of two A-ind-definable normal subgroups H and

K and any intersection L of A-definable normal subgroups, we have that [̃H,K ]̃ � L if and

only if [̃H,K ]̃ ≤ L.

Proof. The implication from right to left is trivial. So suppose that [̃H,K ]̃ � L. Lemma

6.2 yields that H � C̃G(K/ [̃H,K ]̃). Furthermore, by assumption we have that the inter-

section of A-definable subgroups [̃H,K ]̃∩ L has bounded index in [̃H,K ]̃, i. e. we have
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that [̃H,K ]̃ ∩ L ∼ [̃H,K ]̃. So Properties 3.8 (7) yields that H � C̃G(K/([̃H,K ]̃ ∩ L)). As

[̃H,K ]̃ is the smallest subgroup for which this holds, we obtain the result.

The next lemma seems rather trivial but it is essential for almost any proof concerning

computations with almost commutators.

Lemma 6.5. Let H , K , N andM be A-ind-definable normal subgroups of G.

1. If N �H andM � K then [̃N,M ]̃ ≤ [̃H,K ]̃.

2. If H (resp. K) is an intersection of definable groups [̃H,K ]̃ is contained in H (resp. K).

Proof. 1. Let L be an arbitrary A-definable normal subgroup of G such that H is al-

most contained in C̃G(K/L). Since K ∩M is a subgroup of K , we have that H is

almost contained in C̃G(K ∩M/L) as well. As N is almost contained in H , we may

replace H by N and obtain that N is almost contained in C̃G(K ∩M/L). Addi-

tionally, the almost centralizer of two commensurate A-ind-definable subgroups

such as M and K ∩M coincides. Thus we conclude that N is almost contained

in C̃G(M/L) or in orther words [̃N,M ]̃ is a subgroup of L. As L was arbitrary, the

almost commutator [̃N,M ]̃ is contained in [̃H,K ]̃.

2. We have trivially thatH ≤ C̃G(K/H). So ifH is the intersection of definable groups,

we conclude that the almost commutator of H and K is contained in H .

Lemma 6.6. Let H and K be two A-type-definable normal subgroups of an |A|+-saturated
group G. Fix {Hi : i ∈ I } and {Ks : s ∈ S} two projective systems of A-definable sets such that

H =
⋂
i∈I Hi and K =

⋂
s∈S Ks (i. e. for any i, j in I and s, t in S there exists n in I and m in

S such that Hi ∩Hj ⊇Hn and Ks ∩Kt ⊇ Km). Then, we have that

HK =
⋂

(i,s)∈I×S
HiKs.

Proof. Inclusion from left to right is obvious. So take c in
⋂

(i,s)∈I×S HiKs. Thus for all

distinct i and I and s in S there exists elements hi of Hi and ks of Ks such that c is equal

to hiks. So the following type over A is consistent.

π(x,y) = {x ∈Hi : i ∈ I} ∪ {y ∈ Ks : s ∈ S} ∪ {c = xy}
By compactness and saturation of G, one can find h ∈⋂i∈I Hi = H and k ∈⋂s∈S Ks = K
such that c = hk.

Lemma 6.7. Let H , K , and L be A-ind-definable normal subgroups of G. Then we have

[̃HK,L]̃ ≤ [̃H,L]̃ · [̃K,L]̃.

Proof.

[̃H,L]̃ · [̃K,L]̃ =
⋂

{M ∈ F :H � C̃G(L/M)} ·
⋂

{N ∈ F : K � C̃G(L/N )}
6.6
=
⋂

{M ·N :M,N ∈ F , H � C̃G(L/M), K � C̃G(L/N )}
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As the product of two groups in F is again a subgroup which belongs to F , for M

and N in F such that H � C̃G(L/M) and K � C̃G(L/N ), by Properties 3.8 we have that

H � C̃G(L/MN ) and K � C̃G(L/MN ). So by Lemma 3.5 we obtain HK � C̃G(L/MN ).

Thus, the previous set contains the following one:

⊇
⋂

{P ∈ F :HK � C̃G(L/P)}
= [̃HK,L]̃

This finishes the proof.

Another useful interaction between the almost centralizer and the almost commuta-

tor is the following:

Lemma 6.8. Let H and K be two A-ind-definable normal subgroups of G and L be an inter-

section of A-definable normal subgroups of G. If [̃H,K ]̃ ≤ L then H ≤ C̃2
G(K/L).

Proof. Let [̃H,K ]̃ be contained in L. By Corollary 6.3, we have that H � C̃G(K/L). So

H/C̃G(K/L) is a bounded group and as H is normal in G, it contains hk · C̃G(K/L) for all
h in H and k in K . Hence the set {hk : k ∈ K}/C̃G(K/L) of conjugates of any element h in

H by K modulo C̃G(K/L) is bounded. As the size of this set corresponds to the index of

CK (h/C̃K (K/L)) in K , the groupH is contained in the almost centralizer C̃G(K/C̃K (K/L)),

i. e. the group H is contained in C̃2
G(K/L).

We would like to translate the approximate version of the three subgroups lemma

into the notation of almost commutators. The problem we are facing is that the almost

centralizer of a subgroup is not necessarily definable. This leads to our next section,

where we investigate normal nilpotent subgroups of M̃c-groups making use of the al-

most commutator.

6.2 Almost nilpotent subgroups of M̃c-groups

A consequence of the definability of the almost centralizer in M̃c-groups (Proposition

3.28) is that the almost commutator is “well behaved”. For example, we obtain the

lemma below:

Lemma 6.9. Let G be an M̃c-group and H be an A-ind-definable normal subgroup of G. For

any natural number n, we have that

[̃H,C̃nG(H)]̃ ≤ C̃n−1G (H)

Proof. We have that

[̃H,C̃nG(H)]̃ =
[̃
H,C̃G
(
H
/
C̃n−1G (H)

) ]̃
by definition of the almost centralizer. Moreover, the almost centralizer C̃n−1G (H) is an

A-definable subgroup of G since G is an M̃c-group. Thus[̃
H,C̃G
(
H
/
C̃n−1G (H)

) ]̃
≤ C̃n−1G (H)

as C̃G(H/C̃
n−1
G (H)) is trivially contained in itself and we obtain the result.
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The main goal is to show a version of Hall nilpotency criteria for almost nilpotent

M̃c-groups. The ordinary version is the following:

Fact 6.10. [21, Theorem 7] Let N be normal subgroup of G. If N is nilpotent of class m and

G/[N,N ] is nilpotent of class n then G is nilpotent of class at most
(m+1

2

)
n− (n2).

We first have to state the approximate three subgroups lemma in terms of the almost

commutator.

Notation. Let H , K and L be A-ind-definable normal subgroups of a given group G.

Recall that for the ordinary commutator, we write [H,K,L] for [[H,K],L]. Similarly, for

the almost commutator, we write [̃H,K,L]̃ for [̃[̃H,K ]̃,L]̃. Note that the group [̃H,K ]̃ is

an A-ind-definable normal subgroup of G and thus [̃[̃H,K ]̃,L]̃ is well defined.

Now, given an M̃c-groupG, we have that the almost centralizer of anyA-ind-definable

subgroup in G is definable. Thus for H , K and L such that H and K normalize L, we

have that H � C̃G(K/C̃G(L)) if and only if [̃H,K ]̃ ≤ C̃G(L) by Corollary 6.3. This again

is equivalent to [̃H,K,L]̃ being trivial. With this equivalence, we may phrase Theorem

3.19 for M̃c-groups as below.

Corollary 6.11. Let H , K and L be three A-ind-definable strongly normal subgroups of an

M̃c-group G. Then for anyM which is an intersection of A-definable normal subgroups of G,

we have that

[̃H,K,L]̃ ≤M and [̃K,L,H ]̃ ≤M imply [̃L,H,K ]̃ ≤M.

Proof. LetM be equal to the intersection of definable normal subgroupsMi with i < κ.

For any i less than κ, we may work in the group G moduloMi which is a quotient of an

M̃c-group by a definable normal subgroup and so an M̃c-group as well. Hence, Theorem

3.19 (working modulo the definable groupMi ) yields that

H � C̃G
(
K
/
C̃G(L/Mi )

)
and K � C̃G

(
L
/
C̃G(H/Mi )

)

imply

L� C̃G
(
H
/
C̃G(K/Mi )

)
.

We can translate this to

[̃H,K,L]̃ ≤Mi and [̃K,L,H ]̃ ≤Mi imply [̃L,H,K ]̃ ≤Mi

So the statement is true for anyMi and hence for the intersection.

Now, we want to define the notion of an almost lower central series and find a charac-

terization of being almost nilpotent via this series.

In literature the ordinary lower central series of a subgroup H of G is defined as

follows:

γ1H =H and γi+1H = [γiH,H].

Analogously, we introduce the following:
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Definition 6.12. We define the almost lower A-central series of an A-ind-definable sub-

group H of G as follows:

(γ̃1H)A =H and (γ̃i+1H)A = [̃γ̃iH,H ]̃A.

We also refer to (γ̃nH)A as the iterated nth almost commutator of H . Again, if A is the

empty set we omit the index.

As we have added A as constants to the language, we may omit it again in the
subscript of the iterated nth almost commutator for the rest of the chapter.

Remark 6.13. The almost lower center series is well-defined as [̃H,H ]̃ is the intersec-

tion of A-definable groups and hence A-type-definable. Thus, by induction we see that

γ̃i+1H = [̃γ̃iH,H ]̃ is again an A-type-definable subgroup.

To make the proofs more readable, we fix the following notation:

Notation. If K1, . . . ,Kn are A-ind-definable subgroups of G, let

γ̃n(K1, . . . ,Kn) := [̃ . . . [̃[̃K0,K1]̃,K2]̃, . . . ,Kñ].

If Ki, . . . ,Ki+j−1 are all equal to K we can replace the sequence by Kj , namely write

γ̃n(K1, . . . ,Kn) as γ̃n(K1, . . .Ki−1,Kj ,Ki+j , . . . ,Kn). Also,

γ̃i+0+j (K1, . . .Ki ,K
0,Ki+1, . . . ,Ki+j ) = γ̃i+j (K1, . . .Ki ,Ki+1, . . . ,Ki+j ).

Observe that γ̃n(H
n) is another way of writing γ̃nH .

We want to establish a connection between the triviality of the nth iterated almost

commutator of a normal subgroup H of G and the almost nilpotency class of H .

Lemma 6.14. If H is an A-ind-definable normal subgroup of an M̃c-group G and almost

nilpotent of class n, then γ̃n+1H is trivial. Conversely, if γ̃n+1H is trivial, then H is almost

nilpotent of class at most n+1.

Proof. To prove the first result, we show by induction on i ≤ n that the almost commu-

tator γ̃i+1H is contained in C̃n−iG (H). As H is almost nilpotent of class n, i. e. H ≤ C̃nG(H),

the inclusion is satisfied for i equals to zero. Now suppose it holds for all natural num-

bers smaller or equal to i. The induction hypothesis together with Lemma 6.5(1) implies

that γ̃i+2H = [̃γ̃i+1H,H ]̃ is contained in [̃C̃n−iG (H),H ]̃. Moreover, by Lemma 6.9 we have

that [̃C̃n−iG (H),H ]̃ is contained in C̃n−i−1G (H). Hence γ̃i+2H is also contained in C̃n−i−1G (H)

which finishes the induction. Letting i be equal to n, we obtain that γ̃n+1H is contained

in C̃0
G(H) which is the trivial group by definition.

For the second result, we first show the following inclusion by induction that for i

less or equal to n− 1:

γ̃(n+1)−iH ≤ C̃iG(H).
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For i = 0, the inequality holds by hypothesis. Now we assume, the inequality holds

for i < n − 1. Thus γ̃(n+1)−iH ≤ C̃iG(H) or in other words [̃γ̃(n+1)−(i+1)H,H ]̃ ≤ C̃iG(H). By

Corollary 6.3, we have that

γ̃(n+1)−(i+1)H � C̃G
(
H
/
C̃iG(H)

)
= C̃i+1G (H).

By Corollary 6.4, as (n+1)− (i +1) is at least 2, finally we obtain γ̃(n+1)−(i+1)H ≤ C̃i+1G (H)

which finishes the induction.

Now, we let i be equal to n− 1 and we obtain: [̃H,H ]̃ ≤ C̃n−1G (H). Then by Lemma 6.8

we have that H ≤ C̃n+1G (H) and hence H is almost nilpotent of class n+1.

The next three lemmas are the preparation to finally show the approximate version

of Hall’s nilpotency criteria.

Lemma 6.15. Let N be a normal subgroup of an M̃c-group G. Then for all positive natural

numbers n and m, we have that

[̃γ̃nN, γ̃mN ]̃ ≤ γ̃n+mN.

Proof. We proof this by induction on m > 0.

If m is equal to 1, we have immediately that for all n > 0,

[̃γ̃nN, γ̃1N ]̃ ≤ [̃γ̃nN,N ]̃ ≤ γ̃n+1N.
To continue the induction, suppose that for a given m > 1 and for all n > 0, we have that

[̃γ̃nN, γ̃mN ]̃ ≤ γ̃n+mN.
Let k be an arbitrary positive natural number. We want to show that

[̃γ̃kN, γ̃m+1N ]̃ ≤ γ̃k+m+1N.

We have that [̃
[̃γ̃kN,N ]̃, γ̃mN

]̃
= [̃γ̃k+1N,γ̃mN ]̃

hyp≤ γ̃k+m+1N

and [̃
[̃γ̃kN, γ̃mN ]̃,N

]̃ hyp≤
6.5(1)

[̃γ̃k+mN,N ]̃ ≤ γ̃k+m+1N.

As k +m ≥ 2, we have that the group γ̃k+m+1N is an intersection of normal definable

subgroups of G. Thus by the three subgroups lemma (Corollary 6.11) we have that

[̃
γ̃kN, γ̃m+1N

]̃
=
[̃
[̃γ̃mN,N ]̃, γ̃kN

]̃
≤ γ̃k+m+1N

and the lemma is established.

Lemma 6.16. Let N be an A-ind-definable normal subgroup of an M̃c-group G. Then, for

any natural numbers n ≥ 2, i and j we have that

[̃
γ̃nN, γ̃i+j (N

i,Gj )
]̃
≤ γ̃n+iN

where
[̃
γ̃nN, γ̃i+j (N

i,Gj )
]̃
for i = j = 0 equals γ̃nN .
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Proof. Note first that as n is at least 2, the group γ̃nN is an intersection of normal A-

definable groups. Thus for i equal to 0, we have that [̃γ̃nN, γ̃jG]̃ ≤ γ̃nN by Lemma

6.5(2).

Now, let i be equal to 1. Note first that by Lemma 6.5(1) +(2),

[̃
γ̃nN, γ̃1+j (N,G

j )
]̃
≤
[̃
γ̃nN, [̃N,G]̃

]̃
. (∗)

Furthermore, we have the following:

[̃
[̃γ̃nN,G]̃,N

]̃ 6.5(1)+(2)≤ [̃γ̃nN,N ]̃ = γ̃n+1N,

[̃
[̃γ̃nN,N ]̃,G

]̃ 6.5(2)≤ [̃γ̃nN,N ]̃ = γ̃n+1N.

Hence, as γ̃n+1N is the intersection of A-definable subgroups, the three subgroups

lemma (Corollary 6.11) yields that [̃γ̃nN, [̃N,G]̃]̃ is contained in γ̃n+1N . Now, by (∗)
we conclude for i equals to 1.

If i is greater than 1, we have that

[̃
γ̃nN, γ̃i+j (N

i,Gj )
]̃ 6.5(1)+(2)≤ [̃γ̃nN, γ̃iN ]̃.

By Lemma 6.15, we obtain that [̃γ̃nN, γ̃iN ]̃ is contained in γ̃n+iN which finishes the

proof.

The following lemma is [21, Lemma 7] generalized to our framework.

Lemma 6.17. Let N be a A-ind-definable normal subgroup of an M̃c-group G and suppose

that there exists a natural number m > 0 such that γ̃m+1(N,G
m) � [̃N,N ]̃. Then, for all

natural numbers r > 0 we have that

γ̃rm+1(N
r,Grm−r+1) ≤ γ̃r+1N.

Proof. We start this proof with the following claim.

Claim. Let X be an ind-definable normal subgroup of G. Then for any n > 0, we have that

γ̃n+2(X,N,G
n) ≤

n∏
i=0

[̃
γ̃i+1(X,G

i ), γ̃n−i+1(N,Gn−i )
]̃
. (6.1)

Proof of the claim. We prove the claim by induction on n > 0. Let n be equal to 1. Triv-

ially we have that

[̃N,G,X ]̃ ≤
[̃
X, [̃N,G]̃

]̃
·
[̃
[̃X,G]̃,N

]̃
and

[̃G,X,N ]̃ ≤
[̃
X, [̃N,G]̃

]̃
·
[̃
[̃X,G]̃,N

]̃
.

The three subgroups lemma (Corollary 6.11) insures that

[̃X,N,G]̃ ≤
[̃
X, [̃N,G]̃

]̃
·
[̃
[̃X,G]̃,N

]̃
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and so the claim holds for n = 1.

Now, assume the claim holds for some n > 0. We compute:

γ̃n+3(X,N,G
n+1) =

[̃
γ̃n+2(X,N,G

n),G
]̃

IH≤
6.5(1)

[̃ n∏
i=0

[̃
γ̃i+1(X,G

i ), γ̃n−i+1(N,Gn−i )
]̃
,G
]̃
.

As all factors are type-definable normal subgroups of G we may apply Lemma 6.7

finitely many times to the last expression and continue the computation:

≤
n∏
i=0

[̃[̃
γ̃i+1(X,G

i ), γ̃n−i+1(N,Gn−i )
]̃
,G
]̃
. (6.2)

To simplify notation, we let Xi = γ̃i+1(X,G
i ) and Nj = γ̃j+1(N,G

j ). Now, fix some i less

or equal to n. We obtain that[̃[̃
γ̃i+1(X,G

i ),G
]̃
, γ̃n−i+1(N,Gn−i )

]̃
=
[̃
γ̃i+2(X,G

i+1), γ̃n−i+1(N,Gn−i )
]̃

= [̃Xi+1,Nn−i ]̃

and [̃[̃
γ̃n−i+1(N,Gn−i ),G

]̃
, γ̃i+1(X,G

i )
]̃

=
[̃
γ̃n−i+2(N,Gn+1−i ), γ̃i+1(X,Gi )

]̃
= [̃Nn−i+1,Xi ]̃
= [̃Xi,Nn−i+1]̃.

As the groups on the right are intersections of definable subgroups of G, using the ap-

proximate three subgroups lemma (Corollary 6.11), we obtain the following inequation

for the ith factor of (6.2):[̃[̃
γ̃i+1(X,G

i ), γ̃n−i+1(N,Gn−i )
]̃
,G
]̃
≤ [̃Xi+1,Nn−i ]̃ · [̃Xi,Nn−i+1]̃.

Over all, we get that

γ̃n+3(X,N,G
n) ≤

n+1∏
i=0

[̃Xi,Nn−i+1]̃ =
n+1∏
i=0

[̃
γ̃i+1(X,G

i ), γ̃n+1−i+1(N,Gn+1−i )
]̃
.

claim

Now, we prove the Lemma by induction on r > 0. By Corollary 6.4, the almost in-

equality γ̃m+1(N,G
m) � [̃N,N ]̃ implies immediately γ̃m+1(N,G

m) ≤ [̃N,N ]̃. Thus, for r

equals to 1 the lemma holds trivially by the hypothesis. Assume that the result holds

for a given r greater or equal to 1. We want to prove that

γ̃(r+1)m+1(N
r+1,G(r+1)m−r ) ≤ γ̃r+2N.

Now consider equation (6.1) with n = (r+1)m− r and X replaced by γ̃rN
r . This gives us:

γ̃(r+1)m+1(N
r+1,G(r+1)m−r ) = γ̃((r+1)m−r)+2(γ̃rN,N,G(r+1)m−r ) (6.3)

≤
(r+1)m−r∏
i=0

[̃
γ̃i+1(γ̃rN,G

i ), γ̃n−i+1(N,Gn−i )
]̃
. (6.4)
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The group on the left hand side is the one we want to analyze. The goal is to prove that

all factors on the right hand side are contained in γ̃r+2N . So, we consider the factor

indexed by i.

Supoose first that i is greater than rm− r. By induction hypothesis, we have that

γ̃rm+1(N
r,Grm−r+1) ≤ γ̃r+1N.

As γ̃rm+1(N
r,Grm−r+1) is normal in G and an intersection of A-definable groups, using

Lemma 6.5 (2) we obtain that γ̃r+i(N
r,Gi ) ≤ γ̃r+1N and

[̃
γ̃i+1(γ̃rN,G

i ), γ̃n−i+1(N,Gn−i )
]̃ 6.5(1)≤

[̃
γ̃r+1N, γ̃n−i+1(N,Gn−i )

]̃
6.16≤ γ̃r+2N.

Now, assume that i ≤ rm−r. By the case r = 1, we have that γ̃m+1(N,G
m) ≤ [̃N,N ]̃. As n−i

is greater than or equal to m and γ̃m+1(N,G
m) is an intersection of normal subgroups of

G, we also have that γ̃n−i+1(N,Gn−i ) ≤ [̃N,N ]̃. So we may compute:

[̃
γ̃i+1((γ̃rN

r ),Gi ), γ̃n−i+1(N,Gn−i )
]̃ 6.5(1)≤

[̃
γ̃i+r(N

r,Gi ), [̃N,N ]̃
]̃

6.16≤ γ̃r+2N.

Hence all factors, and therefore γ̃(r+1)m+1(N
r+1,G(r+1)m−r ), are contained in γ̃r+2N . This

finishes the proof.

Now, we are ready to generalize Hall’s nilpotency criteria (Fact 6.10) to M̃c-groups.

Corollary 6.18. Let N be an A-ind-definable normal subgroup of an M̃c-group G. If N

is almost nilpotent of class m and G/ [̃N,N ]̃ is almost nilpotent of class n then G is almost

nilpotent of class at most
(m+1

2

)
n− (n2)+1.

Remark 6.19. Note that for an almost nilpotent subgroup H of an M̃c group, if γ̃n+1H

is trivial, then H is almost nilpotent of class at most n + 1 by Corollary 6.14, whereas

for nilpotent groups triviality of γ̃n+1H yields that H is nilpotent of class at most n.

This explains the extra plus 1 in the previous Corollary in comparison with the original

Hall’s nilpotency criteria.

Proof. By hypothesis and Lemma 6.14 we have that

γ̃m+1N = 1 and γ̃n+1G ≤ [̃N,N ]̃. (∗)

Hence

γ̃n+1(N,G
n) ≤ [̃N,N ]̃

and whence N satisfies the hypothesis of Lemma 6.17. Thus

γ̃rn+1(N
r,Grn−r+1) ≤ γ̃r+1N (6.5)

holds for all natural numbers r.
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Claim. Let f (x) =
(x+1

2

)
n − (x2). For every i greater than 1, we obtain that

γ̃f (i)+1G ≤ γ̃i+1N.

Proof of the claim. We prove the claim by induction on i ≥ 2.

So let i be equal to 2. We compute:

γ̃f (2)+1G = γ̃3nG = γ̃2n(γ̃n+1G,G
2n−1)

(∗)≤
6.5(1)

γ̃2n
(
[̃N,N ]̃,G2n−1) (6.5)≤ γ̃3N.

Now, suppose the claim holds for i ≥ 2. We show that the claim holds for i +1:

γ̃f (i+1)+1G = γ̃(i+1)n−i+1
(
γ̃f (i)+1G,G

(i+1)n−i)
hyp≤
6.5(1)

γ̃(i+1)n−i+1
(
γ̃i+1N,G

(i+1)n−(i+1)+1)
hyp≤
6.5(1)

γ̃(i+1)n+1
(
Ni+1,G(i+1)n−(i+1)+1)

6.5≤ γ̃i+2N.

This finishes the induction and the proof of the claim. claim

Choosing i to be m we get that

γ̃f (m)+1G ≤ γ̃m+1N = {1}.
So Lemma 6.14 yields that G is almost nilpotent of class at most

(m+1
2

)
n− (n2)+1.

Corollary 6.20. Let H and K be A-ind-definable normal subgroups of an M̃c-group G.

1. If [̃H,H ]̃ = [̃G,G]̃, then for all r ≥ 2, we have γ̃rH = γ̃rG.

2. If [̃H,K ]̃ and [̃H,H ]̃ are contained in [̃K,K ]̃, then for all r ≥ 2, the almost commutator

γ̃rH is contained in γ̃rK .

Proof. 1. AsH is a subgroup ofG, we have that γ̃rH ≤ γ̃rG holds trivially for all r ≥ 2.

We prove the inverse inclusion by induction on r. For r equals to 2, the statement

holds by hypothesis. Now suppose that the statement holds for all natural num-

bers smaller than r > 2. Thus,

γ̃rG ≤ γ̃r(Hr−1,G).

Furthermore, [̃H,G]̃ ≤ [̃H,H ]̃, hence we may apply Lemma 6.17 with m = 1 and

obtain that

γ̃r(H
r−1,G) ≤ γ̃rH

which finishes the proof.

2. Consider L =HK . Then we can compute that

[̃L,L]̃ = [̃HK,HK ]̃
6.7≤ [̃H,H ]̃ · [̃K,K ]̃ · [̃H,K ]̃ = [̃K,K ]̃.

By the first part of the corollary we can conclude that γ̃rH
r ≤ γ̃rLr = γ̃rKr .
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Other applications of the almost three subgroups lemma and results on
almost nilpotent groups

Using symmetry of the almost centralizer, the three subgroups lemma and the defin-

abilily of the almost centralizer, we may generalize a theorem due to Hall [31, Satz

III.2.8] for the ordinary centralizer to our context.

Proposition 6.21. LetG be an M̃c-group,N0 ≥N1 ≥ · · · ≥Nm ≥ . . . be a descending sequence
of A-definable normal subgroups of G, and H be an A-ind-definable normal subgroup of G.

Suppose that for all i ∈ ω, we have H � C̃G(Ni/Ni+1). We define for i > 0,

Hi :=
⋂
k∈ω

C̃H (Nk/Nk+i ).

Then we have that for all positive natural numbers i and j , the group Hi is almost contained

in C̃G(Hj/Hi+j ), the group H is almost contained in C̃iG
(
H
/
C̃G(Nj−1/Ni+j )

)
and therefore

[̃γ̃i+1H,Nj−1]̃ ≤Ni+j .
Remark 6.22. The non-approximate version [31, Satz III.2.8] states that for Hi defined

as
⋂
k<ω CH (Nk/Nk+i ) we have that for all positive natural numbers i and j , [Hi,Hj ] ≤

Hi+j and [γi+1H,Nj−1] ≤Ni+j .

Proof. Note that Hi is equal to
⋂
k∈ω C̃G(Nk/Nk+i ) ∩H and thus the intersection of an

ind-definable subgroup and boundedly many definable subgroups. So Hi is as well an

ind-definable subgroup of G.

As C̃G(Nk/Nk+i+j ) is definable for any natural number k, Properties 3.8 (9) yields that

Hi � C̃G(Hj/Hi+j ) = C̃G

⎛⎜⎜⎜⎜⎜⎝Hj
/ ⋂
k<ω

C̃G(Nk/Nk+i+j )

⎞⎟⎟⎟⎟⎟⎠
if and only if for all natural number k we have that

Hi � C̃G
(
Hj
/
C̃G(Nk/Nk+i+j )

)
.

So it is enough to show the latter result for any natural number k ∈ ω. So fix some k,

i and j in ω. By the definition of Hj we have that Hj ≤ C̃G(Nk+i /Nk+i+j ). Symmetry

modulo definable subgroups for almost centralizers yields that Nk+i � C̃G(Hj/Nk+i+j ).

This implies that

Hi ≤ C̃G (Nk/Nk+i ) ≤ C̃G
(
Nk
/
C̃G(Hj/Nk+i+j )

)
. (6.6)

Exchanging the role of i and j we obtain as well that

Hj ≤ C̃G
(
Nk
/
C̃G(Hi/Nk+j+i )

)
= C̃G
(
Nk
/
C̃G(Hi/Nk+i+j )

)
. (6.7)

Using again symmetry modulo definable subgroups for almost centralizers to (6.6), we

get:

Nk � C̃G
(
Hi
/
C̃G(Hj/Nk+i+j )

)
. (6.8)
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Working in G/Nk+i+j , we can apply the three subgroups lemma (Theorem 3.19) to the

equalities (6.7) and (6.8) since all Ni ’s and all Hi ’s normalize each other and obtain

Hi � C̃G
(
Hj
/
C̃G(Nk/Nk+i+j )

)
.

As k was arbitrary, this establishes the first part of the theorem.

In particular, we have that for any natural numbers i and j greater than 0

H1 � C̃G(H1/H2)� C̃G
(
H1

/
C̃G(H1/H3)

)
= C̃2

G(H1/H3)

� · · ·� C̃iG(H1/Hi+1)� C̃iG
(
H1

/
C̃G(Nj−1/Ni+j )

)

By hypothesis we have that H1 is a bounded intersection of groups which are commen-

surate with H and whence it is itself commensurate with H . As two commensurate

groups have the same almost centralizer, the same almost inclusion holds for H which

finishes the proof.

Using the previous result and definability of the almost centralizers, we may find a

version of [7, Lemma 2.4] in terms of the almost centralizer:

Corollary 6.23. Let H be an A-ind-definable normal subgroup of an M̃c-group G. Then for

any 0 < i < j , we have that

H � C̃iG

(
H
/
C̃G

(
C̃
j
G(H)
/
C̃
j−i−1
G (H)

))

Proof. For k < 2j − 1, we let Nk = C̃
2j−1−k
G (H) and for k ≥ 2j − 1, we let Nk be the trivial

group. As G is an M̃c-group, all Nk are definable. Note that for any natural number n,

the almost centralizer C̃nG(H) is definable and C̃n+1G (H) = C̃G(H/C̃
n
G(H)) is contained in

itself. Hence, symmetry of the almost centralizer (Theorem 3.13) yield that

H � C̃G
(
C̃n+1G (H)

/
C̃nG(H)

)
,

whence

H � C̃G(Nk/Nk+1).

So we may apply Proposition 6.21 to the ind-definable subgroup H and the sequence of

definable groups Ni . This gives us that

H � C̃iG
(
H
/
C̃G
(
Nj−1/Ni+j

))
= C̃iG

(
H
/
C̃G

(
C̃
j
G(H)
/
C̃
j−i−1
G (H)

))

Using the new notion of almost commutator, we may state the previous lemma in this

terminology which resembles more to the ordinary result.

Corollary 6.24. Let H be an A-ind-definable normal subgroup of the M̃c-group G. Then for

any 0 < i < j , we have that

[̃γ̃i+1H,C̃
j
G(H)]̃ ≤ C̃j−i−1G (H).
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Proof. We have that

H � C̃iG

(
H
/
C̃G

(
C̃
j
G(H)
/
C̃
j−i−1
G (H)

))
= C̃G

(
H
/
C̃i−1G

(
H
/
C̃G

(
C̃
j
G(H)
/
C̃
j−i−1
G (H)

)))

Using that the iterated almost centralizer of an ind-definable subgroup of an M̃c-group

is definable as well as that an ind-definable subgroup modulo a definable subgroup

remains ind-definable, we have that C̃�G

(
H
/
C̃G

(
C̃
j
G(H)
/
C̃
j−i−1
G (H)

))
is definable for any

natural number �. Hence, the above yields that

[̃H,H ]̃ ≤ C̃i−1G

(
H
/
C̃G

(
C̃
j
G(H)
/
C̃
j−i−1
G (H)

))
.

Iterating this process gives us

γ̃iH ≤ C̃G
(
H
/
C̃G

(
C̃
j
G(H)
/
C̃
j−i−1
G (H)

))
.

As the almost centralizer C̃G

(
C̃
j
G(H)
/
C̃
j−i−1
G (H)

)
is again definable, we get

γ̃i+1H ≤ C̃G
(
C̃
j
G(H)
/
C̃
j−i−1
G (H)

)
.

By the same argument, we obtain the final inequation:

[γ̃i+1H,C̃
j
G(H)]̃ ≤ C̃j−i−1G (H).

In the next lemma, we use the almost three subgroups lemma in terms of the almost

commutator to generalize [7, Lemma 2.5] to our framework.

Lemma 6.25. Let H and K be two A-ind-definable normal subgroups of G with K ≤ H and

� > 0. If

C̃G(γ̃tK) ∼ C̃G(γ̃tH) t = 1, . . . , �

then C̃�G(K) ∼ C̃�G(H).

Proof. The case � equals 1 is trivial. So let’s assume that the lemma holds for � − 1. We

need to prove the following intermediate result:

Claim. [̃γ̃�−tH, C̃�G(K)]̃ ≤ C̃tG(H) holds for all t = 0, . . . , � − 1.

Proof. We show the claim by induction on the tuple (�, t) (ordered lexicographically)

with t < �. First we treat the cases (�,0) for any positive natural number �:

Replacing H by K , i by � − 1, and j by � in Corollary 6.24, we obtain [̃γ̃�K, C̃
�
G(K)]̃ = 1.

This implies that C̃�G(K) is almost contained in C̃G(γ̃�K) which is, by the hypothesis of

the lemma, commensurate with C̃G(γ̃�H). Thus C̃�G(K) � C̃G(γ̃�H) or in other words

[̃γ̃�H, C̃
�
G(K)]̃ = 1. Hence the claim holds for (�,0) with � > 0.

Now, let 0 < t < � and assume additionally that the claim holds for any tuple (k, s) <

(�, t) in the lexicographical order.

Then using Lemma 6.5 (1) and the induction hypothesis for (�, t − 1) (in the equation
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marked as (∗) below) and for (� − 1, t − 1) (in the equation marked as (∗∗) below) we may

compute

[̃
[̃γ̃�−tH,K ]̃, C̃�G(K)

]̃
]̃
6.5(1)≤
K≤H
[̃
[̃γ̃�−tH,H ]̃, C̃�G(K)

]̃
= [̃γ̃�−(t−1)H,C̃�G(K)]̃

(∗)≤ C̃t−1G (H)

and

[̃
γ̃�−tH, [̃K,C̃�G(K)]̃

]̃
≤ [̃γ̃�−tH, C̃�−1G (K)]̃ = [̃γ̃(�−1)−(t−1)H,C̃�−1G (H)]̃

(∗∗)≤ C̃t−1G (H).

Thus by Corollary 6.11 we have

[̃
[̃γ̃l−tH, C̃�G(K)]̃,K

]̃
≤ C̃t−1G (H).

As t − 1 is less than �, we have, by the hypothesis of the outer induction, that C̃t−1G (H) is

commensurate with C̃t−1G (K) and so
[̃
[̃γ̃�−tH, C̃�G(K)]̃,K

]̃
is almost contained in C̃t−1G (K).

As C̃t−1G (K) is A-definable, using Corollary 6.4, we obtain that

[̃
[̃γ̃�−tH, C̃�G(K)]̃,K

]̃
≤ C̃t−1G (K).

Thus [̃γ̃�−tH, C̃�G(K)]̃ is almost contained in C̃tG(K) which is commensurate once more

with C̃tG(H) by the outer induction hypothesis. Again by Corollary 6.4 almost contained

can be replaced by contained, which gives us

[̃γ̃�−tH, C̃�G(K)]̃ ≤ C̃tG(H).

Thus the claim holds for the tuple (�, t) which finishes the induction and hence the proof

of the claim. (claim)

Now taking t equals to �−1, we obtain [̃H,C̃�G(K)]̃ ≤ C̃�−1G (H) which implies that C̃�G(K)

is almost contained in C̃�G(H). On the other hand, we have that

[̃K,C̃�G(H)]̃
6.5(1)≤
K≤H

[̃H,C̃�G(H)]̃
6.9≤ C̃�−1G (H)

hyp.∼ C̃�−1G (K).

Again by Corollary 6.3 we obtain that [̃K,C̃�G(H)]̃ ≤ C̃�−1G (K) and so C̃�G(H) is almost con-

tained in C̃�G(K). Combining these two results, we obtain that C̃�G(K) is commensurate

with C̃�G(H) which finishes the proof.

We finish this section with another result on almost nilpotent M̃c-groups which does

not use the almost three subgroups lemma.

Lemma 6.26. Let G be almost nilpotent M̃c-group and N be a nontrivial intersection of A-

definable normal subgroups of G. Then [̃N,G]̃ is properly contained in N and N ∩ Z̃(G) is a
nontrivial subgroup of G. In particular, any minimal A-invariant normal subgroup of G is

contained in the almost center of G.

Proof. As N is an intersection of A-definable normal subgroups of G and we have triv-

ially thatN � C̃G(G/N ), the group [̃N,G]̃ is contained inN . Additionally, the commuta-

tor [̃N,G]̃ is also contained in [̃G,G]̃ by Lemma 6.5. Inductively we obtain γ̃i+1(N,G
i ) ≤
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N ∩ γ̃i+1G. As G is almost nilpotent γ̃mG is trivial for some natural number m. Hence

[̃N,G]̃ has to be properly contained in N because if not γ̃m(N,G
m−1) would be equal to

N as well. This proves the first part of the Lemma.

Moreover, again by Lemma 6.5, we have that γ̃m(N,G
m−1) ≤ γ̃mG and thus it is

also trivial. Now choose n such that γ̃n+1(N,G
n) is trivial and properly contained in

γ̃n(N,G
n−1). Hence

γ̃n(N,G
n−1)� Z̃(G).

Since the almost center ofG is definable, Corollary 6.4 yields that γ̃n(N,G
n−1) is actually

contained in Z̃(G). As additionally the group γ̃n(N,G
n−1) is nontrivial and contained in

N , the subgroup N ∩ Z̃(G) is nontrivial as well.



Part II

Corps

77





7Fields in n-dependent theories

Macintyre showed in [44] that any ω-stable filed is algebraically closed. Cherlin and

Shelah [8] generalized this result to superstable fields. However, less is known in the

case of supersimple fields. Hrushovski proved that any infinite perfect bounded pseudo

algebraically closed (PAC) field is supersimple [30] and conversely supersimple fields

are perfect and bounded (Pillay and Poizat [51]), and it is conjectured that they are

PAC. Another subject of interest is to analyze the number of Artin-Schreier extensions

of certain fields. Using a suitable chain condition for uniformly definable subgroups,

Kaplan, Scanlon and Wagner showed in [34] that infinite dependent fields are Artin-

Schreier closed and simple fields have at most finitely many Artin-Schreier extensions.

The latter result was generalized to NTP2 fields by Chernikov, Kaplan and Simon [12].

We study groups and fields without the n-independence property. As pointed out

in the preliminaries, the random n-hypergraph is n-dependent and simple but not de-

pendent. One question we are interested in is the existence of a non combinatorial

examples of n-dependent theories which have the independence property. And fur-

thermore, which results of dependent theories can be generalized to n-dependent the-

ories or more specifically which results of (super)stable theories remain true for (su-

per)simple n-dependent theories? Beyarslan [4] constructed the random n-hypergraph

in any pseudofinite field or, more generally, in any e-free perfect PAC field (PAC fields

whose absolute Galois group is the profinite completion of the free group on e genera-

tors). Thus, those fields lie outside of the hierarchy of n-dependent fields.

In this chapter, we first give an example of a group with a simple 2-dependent theory

which has the independence property. Additionally, in this group theA-connected com-

ponent depends on the parameter set A. This establishes on the one hand a non com-

binatorial example of a proper 2-dependent theory and on the other hand shows that

the existence of an absolute connected component in any dependent group cannot be

generalized to 2-dependent groups. Using the Baldwin-Saxl condition for n-dependent

groups (Proposition 2.6) and connectivity of a certain vector group established in Sec-

tion 7.2 we deduce that n-dependent fields are Artin-Schreier closed (Section 7.3). Fur-

thermore, we show in Section 7.4 that the theory of any non separably closed PAC field

is not n-dependent for any natural numbers n, This was established by Duret for the

case n equals to 1 [16]. In Section 7.5 we extend certain consequences which can be

found in [34] for dependent valued fields with perfect residue field as well as in [32]

by Jahnke and Koenigsmann for dependent henselian valued fields to the n-dependent

context.
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7.1 Example of a 2-dependent group

Let G be
⊕

ωFp where Fp is the finite field with p elements. We consider the structure

M defined as (G,Fp,0,+, ·) where 0 is the neutral element, + is addition in G, and · is the
bilinear form (ai )i · (bi )i =∑i aibi from G to Fp. This example in the case p equals 2 has

been studied by Wagner in [63, Example 4.1.14]. He shows that it is simple and that

the connected component G0
A for any parameter set A is equal to {g ∈ G :

⋂
a∈A g · a =

0}. Hence, it is getting smaller and smaller while enlarging A, whence the absolute

connected component, which exists in any dependent group, does not for this example.

Lemma 7.1. The theory of M eliminates quantifiers.

Proof. Let t1(x; ȳ) and t2(x; ȳ) be two group terms in G and let ε be an element of Fp.

Observe that the atomic formula t1(x; ȳ) = t2(x; ȳ) (resp. t1(x; ȳ) � t2(x; ȳ)) is equivalent
to an atomic formula of the form x = t(ȳ) or 0 = t(ȳ) (resp. x � t(ȳ) or 0 � t(ȳ)) for
some group term t(ȳ). Note that 0 = t(ȳ) as well as 0 � t(ȳ) are both quantifier free

formulas in the free variables ȳ. Furthermore, the atomic formulas t1(x; ȳ) · t2(x; ȳ) = ε
and t1(x; ȳ) · t2(x; ȳ) � ε are equivalent to a boolean combination of atomic formulas of

the form x · x = εx, x · ti(ȳ) = εi and tj (ȳ) · tk(ȳ) = εjk (a quantifier free formula in the free

variables ȳ) with ti(ȳ) group terms and εx, εi , and εjk elements of Fp. Thus, a quantifier

free formula ϕ(x, ȳ) is equivalent to a finite disjunction of formulas of the form

φ(x; ȳ) = ψ(ȳ)∧ x · x = ε∧
∧
i∈I0

x = t0i (ȳ)∧
∧
i∈I1

x � t1i (ȳ)∧
∧
i∈I2

x · t2i (ȳ) = εi

where t
j
i (ȳ) are group terms, ε,εi are elements of Fp, andψ(ȳ) is a quantifier free formula

in the free variables ȳ. If I0 is nonempty, the formula ∃xφ(x, ȳ) is equivalent to

ψ(ȳ)∧
∧
j,�∈I0

t0j (ȳ) = t
0
� (ȳ)∧ t0i (ȳ) · t0i (ȳ) = ε∧

∧
j∈I1

t0i (ȳ) � t
1
j (ȳ)∧

∧
j∈I2

t0i (ȳ) · t2j (ȳ) = εj

for any i ∈ I0. Now, we assume that I0 is the empty set. If there exists an element x′
such that x′ · zi = εi for given z0, . . . , zm in G and εi ∈ Fp, one can always find an element

x such that x · x = ε and x � vj for given v0, . . . , vq in G which still satisfies x · zi = εi by
modifying x′ at some large enough coordinate. Hence, it is enough to find a quantifier

free condition which is equivalent to ∃x∧i∈I2 x · t2i (ȳ) = εi .
For i ∈ Fp, let

Yi = {j ∈ I2 : εj = i}.
Then ∃x∧i∈I2 x · t2i (ȳ) = εi is equivalent to

p−1∧
i=0

∧
j∈Yi

t2j (ȳ) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
k∈Y0

λ0k t
2
k (ȳ) + · · ·+

∑
k∈Yi\j

λikt
2
k (ȳ) : λ

�
k ∈ Fp,

i∑
�=1

k�j∑
k∈Y�

� ·Fp λ�k � i
⎫⎪⎪⎪⎬⎪⎪⎪⎭

which finishes the proof.

Lemma 7.2. The structure M is 2-dependent.
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Proof. We suppose, towards a contradiction, that M has IP2. By Fact 1.9 we can find

a formula φ(ȳ0, ȳ1;x) with |x| = 1 which witnesses the 2-independence property. By the

proof of Lemma 7.1 and as being 2-dependent is preserved under boolean combinations

(Fact 1.10), it suffices to prove that none of the following formulas can witness the 2-

independence property in the variables (ȳ0, ȳ1;x):

• quantifier free formulas of the form ψ(ȳ0, ȳ1),

• the formula x · x = ε with ε in Fp,

• formulas of the form x = t(ȳ0, ȳ1) for some group term t(ȳ0, ȳ1),

• formulas of the form x · t(ȳ0, ȳ1) = ε for some group term t(ȳ0, ȳ1) and ε in Fp.

As the atomic formula ψ(ȳ0, ȳ1) does not depend on x and x · x = ε does not depend on

ȳ0 nor ȳ1 they cannot witness the 2-independence property in the variables (ȳ0, ȳ1;x).

Furthermore, as for given ā and b̄, the formula x = t(ā, b̄) can be only satisfied by a single

element, such a formula is also 2-dependent. Thus the only candidate left is a formula

of the form x · t(ȳ0, ȳ1) = ε with t(ȳ0, ȳ1) some group term in G and ε an element of Fp.

Thus, we suppose that the formula x · t(ȳ0, ȳ1) = ε has IP2 and choose some elements

{āi : i ∈ ω}, {b̄i : i ∈ ω} and {cI : I ⊂ ω2} which witness it. As t(ȳ0, ȳ1) is just a sum of

elements of the tuples ȳ0 and ȳ1 and G is commutative, we may write this formula as

x · (ta(ȳ0) + tb(ȳ1)) = ε in which the term ta(ȳ0) (resp. tb(ȳ1)) is a sum of elements of the

tuple ȳ0 (resp. ȳ1). Let

Sij := {x : x · (ta(āi ) + tb(b̄j )) = ε}

be the set of realizations of the formula x · (ta(āi ) + tb(b̄j )) = ε. Note, that an element c

belongs to Sij if and only if we have that eij (c) defined as

eij (c) = c ·
(
ta(āi ) + tb(b̄j )

)

is equal to ε. Let i, l, j , and k be arbitrary natural numbers. Then,

eij (c) = c ·
(
ta(āi ) + tb(b̄j )

)
= c ·
(
(ta(āi ) + tb(b̄k)) + (p − 1)(ta(āl ) + tb(b̄k)) + (ta(āl ) + tb(b̄j ))

)
= eik(c) + (p − 1)elk(c) + elj (c).

If the element c belongs to Sik∩Slk∩Slj , the terms eik(c), elk(c), and elj (c) are all equal to

ε. By the equality above we get that eij (c) is also equal to ε and so c also belongs to Sij .

Let I = {(1,1), (1,2), (2,2)}. Then cI ∈ S22 ∩ S12 ∩ S11 but cI � S21 which contradicts

the previous paragraph letting i and k be equal to 2 and l and j be equal to 1. Thus

the formula x · t(ȳ0, ȳ1) = ε is 2-dependent, hence all formulas in the theory of M are

2-dependent and M is 2-dependent.
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7.2 A special vector group

We first recall the definition of a vector group.

Definition 7.3. A vector group is a group isomorphic to a finite Cartesian power of the

additive group of a field.

We need the following fact about vector groups.

Fact 7.4. [34, Corollary 2.6] Let k be a perfect field, n ∈ ω, and G be a closed connected

1-dimensional algebraic subgroup of (kalg,+)n defined over k. Then G is isomorphic over k to

(kalg,+).

For the rest of the section, we fix an sufficiently saturated algebraically closed field K

of characteristic p > 0 and we let ℘(x) be the additive homomorphism x �→ xp − x on K.

We analyze the following algebraic subgroups of (K,+)n:

Definition 7.5. For a singleton a in K, we let Ga be equal to (K,+), and for a tuple

ā = (a0, . . . , an−1) ∈Kn with n > 1 we define:

Gā = {(x0, . . . ,xn−1) ∈Kn : a0 ·℘(x0) = ai ·℘(xi ) for 0 ≤ i < n}.

Recall that for an algebraic groupG, we denote byG0 the connected component of the

unit element of G. Note that if G is definable over some parameter set A, its connected

component G0 coincides with the smallest A-definable algebraic subgroup of G of finite

index. Our aim is to show that Gā is connected for certain choices of ā, namely Gā
coincides with G0

ā .

Lemma 7.6. Let k be an algebraically closed subfield of K, let G be a k-definable connected

algebraic subgroup of (Kn,+) and let f be a k-definable homomorphism from G to (K,+)

such that for every ḡ ∈ G there are polynomials Pḡ (X0, . . . ,Xn−1) and Qḡ (X0, . . . ,Xn−1) in
k[X0, . . . ,Xn−1] such that

f (ḡ) =
Pḡ (ḡ)

Qḡ (ḡ)
.

Then f is an additive polynomial in k[X0, . . . ,Xn−1]. In fact, there exists natural numbers

m0, . . . ,mn such that f is of the form
∑m0

i=0 ai,0X
pi

0 + · · ·+∑mn
i=0 ai,nX

pi
n with coefficients ai,j in

k.

Proof. By compactness, one can find finitely many definable subsets Di of G and poly-

nomials Pi(X0, . . . ,Xn−1) and Qi(X0, . . . ,Xn−1) in k[X0, . . . ,Xn−1] such that f is equal to

Pi(x̄)/Qi(x̄) on Di . Using [5, Lemma 3.8] we can extend f to a k-definable homomor-

phism F : (Kn,+)→ (K,+) which is also locally rational. Now, the functions

F0(X) := F(X,0, . . . ,0), . . . ,Fn−1(X) := F(0, . . . ,0,X)

are k-definable homomorphisms of (K,+) to itself. Additionally, they are rational on

a finite definable decomposition of K, so they are rational on a cofinite subset of K.
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Hence every Fi is an additive polynomial in k[X]. As F itself was assumed to be a

homomorphism from G to (K,+), we obtain that

F(X0, . . . ,Xn−1) = F(X0,0, . . . ,0)) +F(0,X1,0, . . . ,0)) · · ·+F(0, . . . ,0,Xn−1)
= F0(X0) + · · ·+Fn−1(Xn−1)

is an additive polynomial in k[X0, . . . ,Xn−1] as it is a sum of additive polynomials. By

[19, Proposition 1.1.5] it is of the desired form.

Lemma 7.7. Let ā = (a0, . . . , an) be a tuple in K×. Then Gā is connected if and only if the set{
1
a0
, . . . , 1an

}
is linearly Fp-independent.

Parts of the proof follows the one of [34, Lemma 2.8].

Proof. So suppose first that
{
1
a0
, . . . , 1an

}
is linearly Fp-dependent. Thus we can find ele-

ments b0, . . . , bn−1 in Fp such that

b0 · 1

a0
+ · · ·+ bn−1 1

an−1
=

1

an
.

Now, let ā′ be the tuple ā restricted to its first n coordinates and fix some element

(x0, . . .xn−1) in Gā′ . Let t be defined as a0(x
p
0 − x0). Hence, by the definition of Gā′ , we

have that t is equal to ai(x
p
i − xi ) for any i < n. Furthermore, we have that (x0, . . . ,xn−1,x)

belongs to Gā if and only if

t = an(x
p − x)

⇔ 0 =
1

an
t − (xp − x)

⇔ 0 =
b0
a0
t + · · ·+ bn−1

an−1
t − (xp − x)

⇔ 0 = b0 · (xp0 − x0) + · · ·+ bn−1 · (xpn−1 − xn−1)− (xp − x)
⇔ 0 = (b0 · x0 + · · ·+ bn−1 · xn−1 − x)p − (b0 · x0 + · · ·+ bn−1xn−1 − x).

In other words, (x0, . . . ,xn−1,x) belongs to Gā if and only if b0 · x0 + · · ·+ bn−1xn−1 − x is

an element of Fp. With this formulation we consider the following subset of Gā:

H = {(x0, . . .xn) ∈ Gā : (x0, . . .xn−1) ∈ Gā′ and b0 · x0 + . . . bn−1xn−1 − xn = 0}
This is in fact a proper definable subgroup of Gā of finite index. Hence Gā is not con-

nected.

We prove the other implication by induction on the length of the tuple ā which we

denote by n. Let n = 1, then Gā is equal to (K,+) and thus connected since the additive

group of an algebraically closed field is always connected.

Let ā = (a0, . . . , an) be an (n + 1)-tuple such that
{
1
a0
, . . . , 1an

}
is linearly Fp-independent

and suppose that the statement holds for tuples of length n. Define ā′ to be the re-

striction of ā to the first n coordinates. Observe that the natural map π : Gā → Gā′ is

surjective since K is algebraically closed and that

[Gā′ : π(G
0
ā )] = [π(Gā) : π(G

0
ā )] ≤ [Gā : G

0
ā ] <∞.
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Hence the definable group π(G0
ā ) has finite index in Gā′ . As

{
1
a0
, . . . , 1

an−1

}
is also linearly

Fp-independent, the group Gā′ is connected by assumption. Therefore π(G0
ā ) = Gā′ .

Now, suppose that Gā is not connected.

Claim. For every x̄ ∈ Gā′ , there exists a unique xn ∈K such that (x̄,xn) ∈ G0
ā .

Proof of the Claim. Assume there exists x̄ ∈ Kn and two distinct elements x0n and x1n of

K such that (x̄,x0n) and (x̄,x1n) are elements of G0
ā . As G0

ā is a group, their difference
(0̄,x0n −x1n) belongs also to G0

ā . Thus, by definition of Gā, its last coordinate x
0
n −x1n lies in

Fp. So (0̄,Fp) is a subgroup ofG0
ā . Take an arbitrary element (x̄,xn) inGā. As π(G

0
ā ) = Gā′ ,

there exists x′n ∈ K with (x̄,x′n) ∈ G0
ā . Again, the difference of the last coordinate x′n − xn

lies in Fp. So

(x̄,xn) = (x̄,x′n)− (0̄,x′n − xn) ∈ G0
ā .

This leads to a contradiction, as G0
ā is assumed to be a proper subgroup of Gā. claim

Thus, we can fix a definable additive function f : Gā′ → K that sends every tuple

to this unique element. Note that Gā and hence also G0
ā are defined over ā. So the

function f is defined over ā as well. Now, let x̄ = (x0, . . . ,xn−1) be any tuple in Gā′ and set

L := Fp(a0, . . . , an). Then:

xn := f (x̄) ∈ dcl(ā, x̄).

In other words, xn is definable over L(x0, . . . ,xn−1) which simply means that it belongs to

the purely inseparable closure
⋃
n∈N L(x0, . . . ,xn−1)p

−n
of L(x0, . . . ,xn−1) by [6, Chapter 4,

Corollary 1.4]. Since there exists an � ∈ L(x0) such that x
p
n −xn − a−1n � = 0, the element xn

is separable over L(x0, . . . ,xn−1). So it belongs to L(x0, . . . ,xn−1) which implies that there

exists some mutually prime polynomials g,h ∈ L[X0, . . . ,Xn−1] such that

xn = h(x0, . . . ,xn−1)/g(x0, . . . ,xn−1).

Thus, by Lemma 7.6 the definable function f (X0, . . . ,Xn−1) we started with is an additive

polynomial in n variables over Lalg and there exists cj,i in L
alg and natural numbers mj

such that

f (X0, . . . ,Xn−1) =
m0∑
i=0

c0,iX
pi

0 + · · ·+
mn−1∑
i=0

cn−1,iX
pi

n−1.

Using the identitiesX
p
i −Xi = a0

ai
(X

p
0−X0) inG

0
ā , there are βj in L

alg and g(X0) =
∑m0

i=1 diX
pi

0

an additive polynomial in Lalg[X0] with summands of powers of X0 greater or equal to

p such that

f (X0, . . . ,Xn−1) = g(X0) +

n−1∑
j=0

βj ·Xj.

Since the image under f of the vectors (0,1,0, . . . ,0), (0,0,1,0, . . . ,0), . . . , (0, . . . ,0,1) has to

be an element of Fp, for 0 < i < n the βi ’s have to be elements of Fp. On the other hand,

for any element (x0, . . . ,xn) of G
0
ā we have that an(x

p
n − xn) = a0(xp0 − x0). Replacing xn by
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f (x0, . . . ,xn−1) we obtain

0 = an [f (x0, . . . ,xn−1)p − f (x0, . . . ,xn−1)]− a0(xp0 − x0)

= an

⎡⎢⎢⎢⎢⎢⎢⎣g(x0)p − g(x0) + (β
p
0x

p
0 − β0x0) +

n−1∑
j=1

βj (x
p
j − xj )
⎤⎥⎥⎥⎥⎥⎥⎦− a0(xp0 − x0).

Using again the identities x
p
i − xi = a0

ai
(x
p
0 − x0) in G0

ā we obtain a polynomial in one

variable

P(X) = an

⎡⎢⎢⎢⎢⎢⎢⎣g(X)p − g(X) + (β
p
0X

p − β0X) +
n−1∑
j=1

βj
a0
aj

(Xp −X)
⎤⎥⎥⎥⎥⎥⎥⎦− a0(Xp −X)

which vanishes for all elements x0 of K such that there exists x1, . . . ,xn−1 in K with

(x0, . . . ,xn−1) ∈ Gā′ . In fact, this is true for all elements of K. Hence, P is the zero poly-

nomial. Notice that g(X) appears in a pth-power. Since it contains only summands

of power of X greater or equal to p, the polynomial g(X)p contains only summands of

power of X strictly greater than p. As X only appears in powers less or equal to p in

all summands of P except for g(X), the polynomial g(X) has to be the zero polynomial

itself. By the same argument as for the other βj , the coefficient β0 has to belong to Fp as

well. Dividing by a0an yields that

n∑
j=0

βj
1

aj
(Xp −X)

with βn := −1 is the zero polynomial. Thus

n∑
j=0

βj
1

aj
= 0.

As βn is different from 0 and all βi are elements of Fp, this contradicts the assumption

and the lemma is established.

Using Lemma 7.7 and Fact 7.4, we obtain the following corollary in the same way as

Kaplan, Scanlon and Wagner obtain [34, Corollary 2.9].

Corollary 7.8. Let k be a perfect subfield of K and ā ∈ kn be as in the previous lemma. Then

Gā is isomorphic over k to (K,+). In particular, for any field K ≥ k with K ≤ K, the group

Gā(K) is isomorphic to (K,+).

Proof. Consider the projection of Gā to its first coordinate. This map is onto and has

finite fibers. Thus the dimension of Gā as a variety is equal to 1. As Gā is connected by

Lemma 7.7, Fact 7.4 yields that Gā is isomorphic to K over k. Finally, this isomorphism

send Gā(K) to K for any field that contains k.
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7.3 Artin-Schreier extensions

Definition 7.9. Let K be a field of characteristic p > 0 and ℘(x) the additive homomor-

phism x �→ xp − x. A field extension L/K is called an Artin-Schreier extension if L = K(a)

with ℘(a) ∈ K . We say that K is Artin-Schreier closed if it has no proper Artin-Schreier

extension.

Observe, that if a is a root of the polynomial ℘(x) − k for some k in K , then {a,a +
1, . . . , a + p − 1} is the set of all roots of this polynomial. Hence for any a which is not in

K such that ℘(a) is in K , the field extension K(a) is a cyclic Galois extension of degree p.

Moreover, the converse holds as well, namely every cyclic Galois extension of degree p

is an Artin-Schreier extension [42, Theorem VI.6.4].

Now, suppose that K(a) and K(b) are two Artin-Schreier extensions of K such that ℘(a)

and ℘(b) lie in the same coset of the additive group K modulo ℘(K), i. e. the element

℘(a)−℘(b) belongs to ℘(K). Then we have that

℘(a− b) = ℘(a)−℘(b) ∈ ℘(K)
Thus there is k ∈ K such that ℘(a−b) = ℘(k). So the element k−(a−b) is a root of ℘(x) and
thus it belongs to Fp. As additionally k is an element of K , we have that a − b belongs

to K as well. Hence the two Artin-Schreier extensions K(a) and K(b) coincide. This

demonstrates that the number of Artin-Schreier extensions is bounded by the cardinal-

ity of K/℘(K). Hence to show that K is Artin-Schreier closed, it suffices to show that K

equals ℘(K).

In the following remark, we produce elements from an algebraically independent

array of size mn which fit the condition of Lemma 7.7.

Remark 7.10. Let {αi,j : i ∈ n, j ∈ m} be a set of algebraically independent elements in

K. Then the tuple (a(i0,...,in−1) : (i0, . . . , in−1) ∈ mn) with a(i0,...,in−1) =
∏n−1
l=0 αl,il and ordered

lexicographically satisfies the condition of Lemma 7.7.

Proof. Suppose that there exists a tuple of elements (β(i0,...,in−1) : (i0, . . . , in−1) ∈mn) in Fp

not all equal to zero such that

∑
(i0,...,in−1)∈mn

β(i0,...,in−1)
1

a(i0,...,in−1)
= 0

Then the αi,j satisfy:

∑
(i0,...,in−1)∈mn

β(i0,...,in−1) ·
⎛⎜⎜⎜⎜⎜⎜⎜⎝

∏
{(k,l)�(j,ij ):j≤n−1}

αk,l

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = 0

which contradicts the algebraic independence of the αi,j .

We can now adapt the proof in [34] showing that an infinite dependent field is Artin-

Schreier closed to n-dependent fields.

Theorem 7.11. Any infinite n-dependent field is Artin-Schreier closed.



7. Chapter: Fields in n-dependent theories 87

Proof. LetK be an infinite n-dependent field. Wemay assume that it isℵ0-saturated. We

work in a big algebraically closed field K that contains all objects we will consider. Let

k =
⋂
l∈ωKp

l
, which is a type-definable infinite perfect subfield of K . We consider the

formula ψ(x;y0, . . . , yn−1) given by ∃t (x =∏n−1i=0 yi ·℘(t)) which for every tuple (a0, . . . , an−1)
in kn defines an additive subgroup of (K,+). Let m be the natural number given by

Proposition 2.6 for this formula. Now, we fix an array of size mn of algebraically inde-

pendent elements {αi,j : i ∈ n, j ∈ m} in k and set a(i0,...,in−1) to be equal to
∏n
l=0αl,il . By

choice of m, there exists (j0, . . . , jn−1) in mn such that

⋂
(i0,...,in−1)∈mn

a(i0,...,in−1) ·℘(K) =
⋂

(i0,...,in−1)�(j0,...,jn−1)
a(i0,...,in−1) ·℘(K). (7.1)

By reordering the elements, we may assume that (j0, . . . , jn−1) is equal to (m,. . . ,m). Let ā

be the tuple (a(i0,...,in−1) : (i0, . . . , in−1) ∈mn) ordered lexicographically and ā′ the restriction
to mn − 1 coordinates (one coordinate less).

We consider the groups Gā and respectively Gā′ defined as in Definition 7.5. Using

Remark 7.10 and Corollary 7.8 we obtain the following commuting diagram:

Gā
π ��

�
��

Gā′

�
��

(K,+)
ρ �� (K,+)

As the vertical isomorphisms are defined over k, this diagram can be restricted to K .

Note that π and therefore also ρ stays onto for this restriction by equality (7.1) and that

the size of ker(ρ) has to be equal to p. Choose a nontrivial element c in the kernel of ρ

and let ρ′ be equal to ρ(c ·x). Observe that ρ′ is still a morphism from (K,+) to (K,+), its

restriction to K is still onto and its kernel is equal to Fp. Then [34, Remark 4.2] ensures

that ρ′ is of the form a · (xp − x)pn for some a in K . Finally, let l ∈ K be arbitrary. Since

ρ′ � K is onto and Xp
n
is an inseparable polynomial in characteristic p, there exists h ∈ K

with l = hp − h. As l ∈ K was arbitrary, we get that ℘(K) = K and we can conclude.

The proof of [34, Corollary 4.4] adapts immediately and yields the following corol-

lary.

Corollary 7.12. If K is an infinite n-dependent field of characteristic p > 0 and L/K is a finite

separable extension, then p does not divide [L : K].

7.4 Non separably closed PAC field

The goal of this section is to generalize a result of Duret [16], namely that the theory of

a non separably closed PAC field is not dependent. To do so we need the following two

facts.

Fact 7.13. [16, Lemme 6.2] Let K be a field and k be a subfield of K which is PAC. Let p be

a prime number which does not coincide with the characteristic of K such that k contains all

pth roots of unity and there exists an element in k that does not have a pth root in K . Let
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(ai : i ∈ ω) be a set of pairwise different elements of k and let I and J be finite disjoint subsets

of ω. Then K realizes

{∃y(yp = x + ai ) : i ∈ I } ∪ {¬∃y(yp = x + aj ) : j ∈ J}.
Fact 7.14. [16, Lemme 2.1] Every finite separable extension of a PAC field is PAC.

Theorem 7.15. Let K be a field and k be a subfield of K which is a non separably closed PAC

field and relatively algebraically closed in K . Then Th(K) has the n-independence property.

Proof. If k is countable, we may work in an elementary extension of the tuple (K,k)

for which it is uncountable. As k is non separably closed, there exists a proper Galois

extension l of k. Let p be a prime number that divides the degree of l over k. Then there

is a separable extension k′ of k such that the Galois extension l over k′ is of degree p. We

may distinguish two cases:

1. The characteristic of k is equal to p. As l is a cyclic Galois extension of degree p

of k′, a field of characteristic p, it is an Artin-Schreier extension of k′. We pick

α such that k′ = k(α) and let K ′ = K(α). As k′ is separable over k, it is relatively

algebraically closed in K ′ by [41, p.59]. Hence K ′ admits an Artin-Schreier exten-

sion and consequently its theory has IPn by Theorem 7.11. As it is an algebraic

extension of K , thus interpretable in K , the theory Th(K) has IPn as well.

2. The characteristic of k is different than p. Since l is a separable extension of k′, we

can find an element β of l such that l is equal to k′(β). Let ξ be a primitive p-root

of unity and let k′ξ = k′(ξ) and lξ = l(ξ). Note that lξ is equal to k′ξ (β), that the
degree [lξ : k′ξ ] is at most p, and that the degree [k′ξ : k′] is strictly smaller than p.

Additionally, we have:

[lξ : k
′
ξ ] · [k′ξ : k′] = [lξ : k

′] = [lξ : l] · [l : k′] = [lξ : l] · p.
Thus [lξ : k′ξ ] is divisible by p and hence equal to p. Furthermore, the conjugates

of β over k′ξ are the same as over k′. Hence, as l is a Galois extension of k′, they
are contained in l, whence in lξ . Thus, the field lξ is a cyclic Galois extension of

the field k′ξ and k′ξ contains the p-roots of unity. In other words, lξ is a Kummer

extension of k′ξ of degree p. So there exists an element δ in k′ξ that does not have

a p-root in it. Furthermore, as k′ξ is a finite separable extension of k, it is also PAC

by Fact 7.14 and it is relatively algebraically closed in K ′
ξ = K ′(ξ) by [41, p.59].

Thus, the element δ has no p-root in K ′
ξ as well. Let {ai,j : j < n, i ∈ ω} be a set

of algebraically independent elements in k′ξ which exists as it is an uncountable

field. This ensures that

n−1∏
�=0

ai�,� �
n−1∏
�=0

aj�,� whenever (i0, . . . , in−1) � (j0, . . . , jn−1).

Thus we may apply Fact 7.13 to the fields K ′
ξ , k

′
ξ and the infinite set

⎧⎪⎪⎨⎪⎪⎩
n−1∏
�=0

ai�,� : (i0, . . . , in−1) ∈ ωn
⎫⎪⎪⎬⎪⎪⎭ .
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We deduce that for the formula ϕ(y;x0, . . . ,xn−1) defined as ∃z(zp = y+∏n−1i=0 xi ) and

for any disjoint finite subsets I and J of N n there exists an element in K ′
ξ that

realizes

{ϕ(y;ai0,0, . . . , ain−1,n−1)}(i0,...,in−1)∈I ∪ {¬ϕ(y;aj0,0, . . . , ajn−1,n−1)}(j0,...,jn−1)∈J

Thus Th(K ′
ξ ) is n-dependent by compactness. As again K ′

ξ is interpretable in K ,

we can conclude that the theory of K is n-dependent as well.

Corollary 7.16. The theory of any non separably closed PAC field has the IPn property.

In the special case of pseudofinite fields or, more generally, e-free PAC fields the

previous corollary is a consequence of a result of Beyarslan proved in [4], namely that

one can interpret the n-hypergraph in any such field.

7.5 Applications to valued fields

In [34] the authors deduce that an dependent valued field of positive characteristic p

has to be p-divisible simply by the fact that infinite dependent fields are Artin-Schreier

closed [34, Proposition 5.4]. Thus their result generalizes to our framework.

For the rest of the section, we fix some natural number n.

Corollary 7.17. If (K,v) is an n-dependent valued field of positive characteristic p, then the

value group of K is p-divisible.

Together with Corollary 7.12, we can conclude the following analog to [34, Corollary

5.10].

Corollary 7.18. Every n-dependent valued field of positive characteristic p whose residue

field is perfect, is Kaplansky, i.e.

• the value group is p-divisible;

• the residue field is perfect and does not admit a finite separable extension whose degree

is divisible by p.

Now, we turn to the question whether an n-dependent henselian valued field can

carry a nontrivial definable henselian valuation. Note that by a definable henselian

valuation v on K we mean that the valuation ring of (K,v), i. e. the set of elements of

K with non-negative value, is a definable set in the language of rings. We need the

following definition:

Definition 7.19. Let K be a field. We say that its absolute Galois group is universal if

for every finite group G there exist a finite extensions L of K and a Galois extension M

of L such that Gal(M/L) � G.
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As any finite extension of an n-dependent field K of characteristic p > 0 is still n-

dependent and of characteristic p, one cannot find finite extensions L ⊆ M of K such

that their Galois group Gal(M/L) is of order p. Hence any n-dependent field of pos-

itive characteristic has a non-universal absolute Galois group. Note that Jahnke and

Koenigsmann showed in [32, Theorem 3.15] that a henselian valued field whose abso-

lute value group is non universal and which is neither separably nor real closed admits

a non-trivial definable henselian valuation. Hence this gives the following result which

is a generalization of [32, Corollary 3.18]:

Proposition 7.20. Let (K,v) be a non-trivially henselian valued field of positive characteristic

p which is not separably closed. If K is n-dependent then K admits a non-trivial definable

henselian valuation.



8Belastungstest für Divisionsringe

In this last chapter we study divisions rings. First, we analyze simple division rings

which contain a generic element of weight 1 (Definition 8.12) and show that these are

always commutative. Afterwards we move on to division rings of finite burden (Defini-

tion 8.18) which are shown to be finite dimensional over their center. This is joint work

with Daniel Palacín.

8.1 Preliminaries

First, we summarize some general results on division rings we shall use.

Let us fix a division ringD. For any element a inD and any element d inD×, we write

as usual ad for d−1ad. For any subdivision ring D0 of D and every element d ∈ D×, we

write Dd
0 for {ad : a ∈ D0}. Moreover, for any a in D, we write aD for its conjugacy class

{ad : d ∈D×} in D.

Fact 8.1 (Wedderburn’s little theorem). [40, 13.1] Any finite division ring is a field.

Fact 8.2 (Kaplansky’s theorem). [40, 15.15] Any division ring that has finite exponent over

its center is a field.

Fact 8.3 (Cartan-Brauer-Hua Theorem). [40, 13.17] Let D be a division ring and D0 be

a subdivision ring. If for any d in D×, we have that Dd
0 is contained in D0, either D0 is

contained in the center of D, or D0 equals D.

Fact 8.4. [40, 15.8] Let K be a commutative subdivision ring of D. If D has finite dimension

over K , it is finite dimensional over its center.

Now we turn to division rings in rosy and in particular simple theories. Note first the

following:

Remark 8.5. Let D be a division ring and D0 be a proper infinite subdivision ring of D.

So D is a vector space over D0 of dimension at least 2, and therefore the additive group

(D0,+) has infinite index in (D,+).

Remark 8.6. As the centralizer of an element is a subdivision ring and rosy groups

satisfy the ICC0 (Fact 2.3), by the previous remark any rosy division ring satisfies the

ordinary ICC on centralizers.

We use the following fact due to Milliet on division ring of positive characteristic

with a simple theory in the main result on simple division rings of weight 1:
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Fact 8.7. [45] A division ring of positive characteristic with a simple theory has finite dimen-

sion over its center.

Remark 8.8. Analyzing the proof of Fact 8.7 one realizes that the only tools which are

used are the chain condition on centralizers and Schlichting’s theorem. Thus it can be

generalized to rosy theories. Hence, any rosy division ring of positive characteristic has

finite dimension over its center.

Now we introduce the notion of a generic element in groups with a simple theory and

point out some properties.

Definition 8.9. Let G be a group ∅-definable in a simple theory and A be a parameter

set. An element g of G is generic over A if for any element h of G with h |	A
g we have

that hg |	A,h. We say that a complete A-type is generic if all its realizations are.

One of the essential properties of generic elements is that they exist over any small

parameter set in any group ∅-definable in a simple theory [63, Proposition 4.1.7]. Addi-

tionally, we make use of the following properties of generics elements and types which

can be found in [63, Chapter 4]:

Properties 8.10. Let G be a group ∅-definable in a simple theory and A be a parameter

set.

1. If g is a generic element of G over A and h is an element of G with h |	A
g then hg

is generic over A as well.

2. Any A-definable subgroup H which contains an element of G which is generic

over A has finite index in G.

8.2 Weight one

The following proposition will serve to show commutativity of simple division rings

with a generic of weight 1. It uses ideas of the proof of [63, Theorem 5.6.12].

Proposition 8.11. A division ring with a rosy theory which has finitely many non-central

conjugacy classes is commutative.

Proof. Let D be a non-commutative division ring with a rosy theory, and suppose that

a0, . . . , an are representatives of all its non-central conjugacy classes.

The first step is to show that Z(D) is contained in bD − b for any non-central element

b inD. To do so, we prove first that Z(D)∩(bD−b) is an additive subgroup of Z(D), with

only finitely many Z(D)-translates:

Let bd−b and bc−b be two different elements in (bD−b)∩Z(D). Note that their difference
is an element of Z(D). So, we may compute that:

(bd − b)− (bc − b) = (bd − bc)c−1 = bdc−1 − b ∈ (bD − b).
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So (bD −b)∩Z(D) is an additive subgroup of Z(D), which we denote by H . Now, for any

z in Z(D) we have that

zH = z[(bD)− b]∩Z(D) = [(zbD)− zb]∩Z(D).

Let c and c′ be two element in Z(D) such that c′b is a conjugate of cb. Choose d in D

such that c′b = (cb)d . We have that

cH = (cH)d = [(cb)Dd − (cb)d ]∩Z(D) = [(c′b)D − (c′b)]∩Z(D) = c′H.

As Z(D)b contains only finitely many conjugacy classes, the group H has finitely many

multiplicative Z(D)-translates.

Observe that for any two central elements z and z′, their difference z − z′ belongs to
bD − b if and only if there is some element x from D× such that

b + z = bx + z′ = (b + z′)x.

As there are only finitely many conjugacy classes in b+Z(D), the index of Z(D)∩(bD−b)
in Z(D) has to be finite. Thus, the finite intersection of all its Z(D)-translates, which

forms an ideal of Z(D), has finite index in Z(D) as well. If Z(D) is finite, the character-

istic of D is positive and thus by Remark 8.8 and Wedderburn’s theorem (Fact 8.1), the

division ring D must be commutative. So we may assume that Z(D) is an infinite field

and hence equal to Z(D)∩ (bD −b). Thus Z(D) is contained in bD −b for any non-central

b.

Now, by Kaplansky’s theorem (Fact 8.2), we can find an element a inD for which none

of its powers belong to Z(D). As D satisfies the chain condition on centralizers, after

replacing a by one of its powers, we may assume that CD(a) = CD(a
n) for any natural

number n.

Suppose first that there exists a natural number n and an element c in Z(D) with no

n-root in D. As an is non-central, there is x ∈ D such that (an)x − an = c. Observe that a

and ax commute since

CD(a
x) = CD(a)

x = CD(a
n)x = CD((a

n)x) = CD(a
n) = CD(a)

and so

(axa−1)n − ca−n = ((an)x − c)a−n = 1.

However, as ca−n is non-central, one can find an element y in D with (ca−n)y − ca−n = 1

and so the n-power (axa−1)n equals to (ca−n)y . As c was assumed to have no n-root in D,

this yields a contradiction.

Otherwise, for any natural number m any element of the center has an mth-root in D.

In particular, there is an infinite sequence ξ0,ξ1,ξ2, . . . of elements in D with ξ2
k

k = −1
for all k < ω. It is clear that all these roots of unity have different conjugacy classes

and hence all but finitely many must belong to the center since there are only finitely

many non-central conjugacy classes. So let I be the set of indices such that ξi belongs

to Z(D). So {ξia : i ∈ I } is a sequence of non-central elements. As again there are only

finitely many non-central conjugacy classes, one can find two different indices i and j
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in I and some x in D \CD(a) such that ξia = ξja
x. Thus, a = ζax with ζm = 1 for some

m < ω and ζ ∈ Z(D). Hence am = (ζax)m = (am)x and so x belongs to the centralizer of

am which, by the choice of a, coincides with the centralizer of a. This yields the final

contradiction.

Now, we introduce the notion of the weight of a type and point out the properties

which we use in our proof.

Definition 8.12. Let p be a type and λ be a cardinal. The weight of p is at least λ if there

is a non-forking extension tp(a/A) of p and a sequence (ai : i < λ) such that for all i < λ:

• ai |	A
(aj : j < i);

• a � |	A
ai .

The weight of p is λ, denoted by w(p) = λ, if it is at least λ and not at least λ+.

For an element g of G and a parameter set A, we write w(g/A) for w(tp(g/A)).

Properties 8.13. Let G be a group ∅-definable in a simple theory, A and B be parameter

sets and g be an element of G.

• A type p over A having weight 1 implies that for every realization a of p and any

two elements b and c such that b |	A
c, we have that a |	A

b or a |	A
c.

• [63, Lemma 5.2.2] If g |	A
B, then w(g/A) = w(g/A,B).

• Let h be an element of G inter-algebraic with g over A, then w(g/A) = w(h/A).

Remark 8.14. Let G be a group with a simple theory and p and q be two generic types

over A. Then w(p) = w(q).

Proof. Let g be a realization of p and h be a realization of q such that g |	A
h. Thus

gh−1 |	
A

g and gh−1 |	
A

h.

Thus

w(p) = w(g/A) = w(g/A,gh−1) = w(h/A) = w(q).

Krupinski and Pillay show in [39, Remark 1.1] that the set of non-generic elements

of any stable group whose generic types have weight 1 forms a subgroup. The proof is

easily adaptable for simple theories. For sake of completeness we give a detailed proof.

Lemma 8.15. Let G be a group ∅-definable in a simple theory for which one generic type (and

thus all) has weight 1. Then, the set of non-generic elements of G over any small parameter

set A forms a subgroup.



8. Chapter: Belastungstest für Divisionsringe 95

Proof. Let a and b be two non-generic elements and suppose towards a contradiction

that ab is generic. Now, choose a generic element g of G over A independent of a,b over

A. As g and ab are generic and g |	A
b as well as g |	A

ab we obtain that bg and abg are

generic over A and g |	A
abg .

Now suppose that bg |	A
g . This yields that g is generic over A,bg , which implies that

bgg−1 = b is generic which contradicts our assumption. Hence

bg � |	
A

g.

On the other hand using the same argument, we obtain that bg � |	A
abg as a is non-

generic. As g |	A
abg , this implies that the weight of tp(bg/A) is at least 2. On the other

hand, as gb is a generic element over A, it has weight 1 which leads to a contradiction

and the lemma is established.

As multiplicative and additive generics in a division ring with a simple theory coin-

cide, we obtain immediately the following corollary.

Corollary 8.16. The set of non-generic elements over any given small set of parameters of

any division ring with a simple theory with a generic of weight 1 forms a subdivision ring.

Theorem 8.17. A definable division ring in a simple theory with a generic element of weight

1 is a field.

Proof. Suppose that D is a non-commutative division ring with a simple theory and a

generic element of weight 1. Let g be any non-central element. We denote by �gD�
the canonical parameter of the conjugacy class of g in D. Now, let X be the set of non-

generic elements ofD over �gD�. By Corollary 8.16 the set of non-generic elements over

any given small subset forms a division ring. As conjugation is an automorphism of D

which fixes �gD�, such a subdivision ring is invariant under conjugation. Thus, as it

is properly contained in D, we have that the division ring of non-generics over �gD� is

contained in Z(D) by the Cartan-Brauer-Hua Theorem (Fact 8.3). In fact, as Z(D) is a

∅-definable proper subdivision ring, it has infinite index as additive subgroup. Thus, it

cannot contain any generic element and therefore the division ring of non-generics over

�gD� and Z(D) coincide. So g itself is a generic element ofD independent of �gD�. Thus
for any noncentral element g in D, we have that �gD� is algebraic over the empty set.

HenceD has only finitely many non-central conjugacy classes, whence it is commutative

by Proposition 8.11.

8.3 Finite burden

In this section we want to analyze division ring whose theory has finite burden. This

is a subclass of NTP2 theories. Moreover, the burden of a complete type in a simple

theory is the supremum of the weights of all its extensions. Below we give the precise

definition.
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Definition 8.18. Let p(x) be a (partial) type. An inp-pattern of depth κ in p(x) is a se-

quence of formulas (ψα(x̄; ȳα) : α < κ), an array of parameters (āα,j : α < κ,j < ω) with

|āα,j | = |ȳα |, and a sequence of natural numbers (kα : α < κ) such that:

• {ψα(x̄; āα,j ) : j ∈ ω} is kα-inconsistent for every α < κ;
• p(x)∪ {ψα(x̄; āα,f (α)) : α ∈ κ} is consistent for every f : κ→ ω.

A theory has burden n for some natural number n, if there is no inp-pattern of depth n

in the partial type x = x. A theory of burden 1 is called inp-minimal.

A definable group or division ring has burden n if the formula which defines the group

or division ring seen as a partial type has burden at most n.

The following result corresponds to [12, Proposition 4.5] in the definable context. We

offer a proof for the sake of completeness.

Lemma 8.19. Let G be a definable group of burden n and let H0, . . . ,Hn be definable normal

subgroups of G. Then there exists some j ≤ n such that
⋂
i Hi has finite index in

⋂
i�j Hi .

Proof. Suppose, towards a contradiction, that there are definable normal subgroups

H0, . . . ,Hn of G such that the intersection of all of them, denoted byN , has infinite index

in each proper subintersection H�i defined by
⋂
j�i Hj . Let {aji }i∈ω be a collection of

representatives of distinct cosets ofN inH�j . Thus, the family {ajiHj }i∈ω for a fixed j ≤ n
consists of pairwise disjoint cosets of Hj in G and is therefore 2-inconsistent. On the

other hand, the intersection a0i0H0∩ . . .∩aninHn is nonempty for any choice of i0, . . . , in ∈ ω
as each Hi is normal in G. Hence, the formulas defining cosets of the Hj ’s together with

the a
j
i ’s contradict the fact that G has burden n.

Theorem 8.20. A division ring of burden n has dimension at most n over any infinite defin-

able subfield.

Proof. Let D be a division ring of burden n with an infinite definable subfield K , and

assume that the dimension of D over K is at least n+1. Choose K-linearly independent

elements e0, . . . , en in D. For j ≤ n, consider the definable K-vector spaces Vj =
⊕

i�j〈ei〉,
and observe that all of them are normal subgroups in D+, as the latter is abelian. More-

over, as the e0, . . . , en are linearly independent elements and each Vj is generated by all

these elements but the element ej , we have that
⋂
j Vj is the zero vector space and for

some � less or equal to n, the vector space
⋂
j�� Vj is generated by e�. Therefore, Lemma

8.19 yields the existence of some k ≤ n such that the index⎡⎢⎢⎢⎢⎢⎢⎣
⋂
j�k

Vj :
⋂
j

Vj

⎤⎥⎥⎥⎥⎥⎥⎦ = [〈ek〉 : {0}]

is finite. However, as K is infinite and 〈ek〉 is a one-dimensional K-vector space, we

obtain the desired contradiction.

Corollary 8.21. Any infinite division ring of burden n has dimension at most n over its

center.
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Proof. Let D be a division ring of burden n. As any division ring of finite order is

commutative by Kaplansky’s theorem (Fact 8.2), we may assume that D has an element

d of infinite order. Hence Z(C(d)) is an infinite subfield of D and so Theorem 8.20

implies that D has finite dimension over Z(C(d)). Thus the ring D has finite dimension

over its center by Fact 8.4 which must hence be infinite. Now, we can apply Theorem

8.20 to the center of D and obtain the desired result.

Immediately we obtain:

Corollary 8.22. An inp-minimal division ring is commutative.

Moreover, as the quaternions are a finite extension of the inp-minimal field R, they

have finite burden. As they are non-commutative, one cannot expects the improve The-

orem 8.20 to obtain commutativity.

Another consequence of Theorem 8.20 is a descending chain condition among defin-

able subfields.

Corollary 8.23. Let D be an infinite division ring of burden n. Then any descending chain

of definable infinite subfields has length at most �log2(n) + 1. Therefore, if F is a family of

definable subfields ofD, the intersection of all subfields inF is equal to a finite subintersection

and so, it is definable.

Proof. Assume that D has burden n and suppose, towards a contradiction, that there

exists a proper descending chain

D = F0 � F1 � F2 � · · ·� F�log2(n) +1

of infinite subfields of D. Hence, the dimension of Fi+1 over Fi as a vector space is

greater or equal to 2. This implies that dimension of F0 over F�log2(n) +1 is at least

2�log2(n) +1, which contradicts Theorem 8.20.

For the second part of the statement note that we may suppose any finite intersection

of subfields in F to be infinite (otherwise the result is obvious). So the result follows

from the first part.

Now, we consider the two-sorted structure of an infinite field F and a subgroup G of

Aut(F) equipped with the natural action of G on F, i.e. the structure

(F,G,+F,×F,action of G on F).

In the superstable case, this setting has been already analyzed by Hrushovski in [29],

who obtained the following:

Fact 8.24. [29, Proposition 3] If the structure (F,G,+F,×F,action of G on F) is superstable,

then G is trivial.

Our aim is to generalize this result to the finite burden framework. In particular, the

same holds in the inp-minimal case.

Theorem 8.25. If the structure (F,G,+F,×F,action of G on F) has burden n and the algebraic

closure of the prime field of F in F is infinite, then G has size at most n.
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Proof. Assume, as we may, that our structure is sufficiently saturated. Let k be the prime

field of F and let Gx denote the stabilizer of any element x ∈ kalg ∩ F in G. As k is fixed

by the action of every element in G and G/Gx is in bijection with the orbit of x, the

stabilizer Gx has finite index in G. Now, we work with the subgroup

H =
⋂

x∈kalg∩F
Gx

of G. Note that it is a type-definable subgroup of G of bounded index. We consider

the intersection Fix(H) =
⋂
σ∈H Fix(σ) of definable subfields of F. By Corollary 8.23 it

is equal to a finite subintersection. Hence, as additionally Fix(H) contains the infinite

field kalg ∩ F, it is a definable infinite subfield of F. Thus, Theorem 8.20 yields that F

has at most dimension n over Fix(H), so H is finite (by Galois theory). Hence the group

G is a bounded definable group and whence finite by compactness. Now, consider the

definable field Fix(G). By Galois theory we know that F is a finite field extension of

Fix(G) of degree |G|, and so Fix(G) is an infinite definable subfield of F. Hence F has

dimension at most n over Fix(G) by Theorem 8.20 and whence G has size at most n.

Corollary 8.26. If the structure (F,G,+F,×F,action of G on F) is inp-minimal and the alge-

braic closure of the prime field of F in F is infinite, then G is trivial.
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106 English abstract

Groups and Fields in Neostable Theories

Chain Conditions and Definable Envelopes

Abstract: This thesis is dedicated to the study of groups and fields whose defin-

able sets do not admit certain combinatorial patterns.

Given a group G, one particular problem we are interested in is to find definable

envelopes for arbitrary abelian, nilpotent or solvable subgroups of G which ad-

mit the same algebraic properties. Such evelopes exists if G is stable and even if

G is merely dependent but sufficiently saturated, with the additional hypothesis

of normality in the solvable case. In groups with a simple theory, one obtains

definable envelopes up to finite index.

We introduce the notion of an almost centralizer and establish some of its basic

properties. This enables us to extend the aforementioned results to M̃c-groups,

i. e. groups in which any definable section satisfies a chain condition on cen-

tralizers up to finite index. These include any definable group in a rosy and in

particular in a simple theory. Furthermore, inspired from the proof in depen-

dent theories as well as using techniques developed for almost centralizers in

this thesis, we are able to find definable envelopes up to finite index for abelian,

nilpotent and normal solvable subgroups of any enough saturated NTP2 group.

Moreover, using envelopes for nilpotent subgroups of M̃c-groups and the chain

condition on centralizer up to finite index, we show additionally that the Fitting

subgroup of any M̃c-group is nilpotent and that its almost Fitting subgroup is

virtually solvable.

The second part of this thesis focuses on the study of n-dependent fields. We

prove that any n-dependent field is Artin-Schreier closed and that non separa-

bly closed PAC fields are not n-dependent for any natural number n.

Keywords: definable envelopes, NTP2 groups, chain condition on centralizers,

almost centralizers, n-dependent theories





Groupes et Corps dans des Théories Neostables
Condition de Chaîne et Enveloppes Définissables

Résumé: Cette thèse est consacrée à l’étude des groupes et des corps dont les ensembles

définissables n’admettent pas certaines configurations combinatoires.

Étant donné un groupe G, un problème particulier qui nous intéresse est de trouver des

enveloppes définissables de sous-groupes abéliens, nilpotents ou résolubles de G ayant les

mêmes propriétés algébriques. De tels enveloppes existent si G est stable, et même si G est

seulement dépendant mais saturé, avec l’hypothèse supplémentaire de normalité pour le

cas des sous-groupes résolubles. Dans les groupes ayant une théorie simple, on obtient des

enveloppes définissables à indice fini près.

Nous introduisons la notion de presque centralisateur et nous établissons certaines de ses

propriétés de base. Cela nous permet d’étendre les résultats mentionnés ci-dessus à des

M̃c-groupes, i. e. des groupes dans lesquels toutes sections définissables satisfont une con-

dition de chaîne sur les centralisateurs à indice fini près. Ceux-ci incluent les groupes

définissables dans une théorie rose et en particulier dans une théorie simple. En s’inspirant

de la preuve pour les groupes dépendants et en utilisant les techniques développées sur

les presque centralisateurs dans cette thèse, nous démontrons l’existence des enveloppes

définissables à indice fini près pour des sous groupes abélien, nilpotents ou normaux et

résolubles de tout groupe NTP2 assez saturé. En utilisant les enveloppes des sous-groupes

nilpotents de M̃c-groupes et la condition de chaîne sur les centralisateurs à indice fini près,

nous montrons en outre que le sous-groupe de Fitting de tout M̃c-groupe est nilpotent et

que son sous-groupe presque Fitting est résoluble-par-fini.

La deuxième partie de cette thèse porte sur l’étude des corps n-dépendants. Nous dé-

montrons que tout corps n-dépendant est Artin-Schreier clos et que les corps PAC non

séparablement clos ne sont pas n-dépendants pour tout nombre naturel n.

Mots clés: enveloppes définissable, groupes NTP2, condition de chaîne sur les centralisa-

teur, presque centralisateur, théorie n-dépendante
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