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Collective dynamics of basal ganglia-thalamo-cortical loops and their roles in functions and dysfunctions

The Basal Ganglia (BG) are thought to be involved primarily in motor, but also in non-motor, functions such as habitual response and learning, goal-directed control of behavior, motivation and emotion. Unsurprisingly, the BG are shown to be involved in motor dysfunctions such as Parkinson's disease or dystonia. More recent studies suggest the key role of the BG in "nonmotor" diseases such as absence epilepsy which is a generalized non-convulsive epilepsy. In these diseases, symptoms accompany various oscillatory patterns of neural activity often synchronized across the BG, cortex and other brain areas. How can the BG support these different kinds of oscillatory patterns?

Absence seizures are characterized by brief interruptions of consciousness accompanied by abnormal brain oscillations persisting tens of seconds. Thalamocortical circuits are traditionally thought to underlie absence seizures. However, recent experiments have highlighted the key role of the BG. We propose a novel theory according to which the feedbacks of cortical activity through BG make this network bistable and drive the oscillatory patterns of activity occurring during the seizures. It demonstrates that abnormally strong striatal feedforward inhibition promotes synchronous oscillatory activity in the BG-thalamo-cortical network and relate this property to the observed strong suppression of the striatal output during seizures. The theory is compatible with virtually all known experimental results and it predicts that well-timed transient excitatory inputs to the cortex advance the termination of absence seizures. We report preliminary experimental results consistent with this prediction.

, frontal and somatosensory cortex are the only cortical areas projecting to the STN. The exact source of non-motor corticosubthalamic projections remains unknown (Mathai and Smith 2011). In contrast, corticostriatal projections originate from all major cortical regions. Almost all the cortical areas receive the nonspecific projection from the VM onto the layer I, which mainly consists of fibers connecting nearby cortical populations. The pyramidal cells in the layer III have apical dendrite contacting these fibers and receive input from nearby cortical areas and thalamus such as VM. The pyramidal cells in layers II and III receive input from layer IV and project to layers V and VI.

The Basal Ganglia (BG) comprise a complex network together with thalamus and cortex and are responsible for variety of functions and dysfunctions.

The largest input structure of the BG is the striatum which provides GABAergic projections to other BG nuclei. All major regions of the cerebral cortex provide glutamatergic projections to the striatum in a topographically ordered manner [START_REF] Mcgeorge | The organization of the projection from the cerebral cortex to the striatum in the rat[END_REF][START_REF] Wiesendanger | Topography of cortico-striatal connections in man: Anatomical evidence for parallel organization[END_REF]). The substantia nigra pars compacta (SNc) receives input from the striatum and in lesser extent from the frontal cortex [START_REF] Naito | The cortico-pallidal projection in the rat: an anterograde tracing study with biotinylated dextran amine[END_REF]) and provides dopaminergic projections to the striatum which in turn modulates the striatal output. The other input structure of the BG is the subthalamic nucleus (STN) which provides glutamatergic projections to other BG nuclei. Both striatum and STN project to the substantia nigra pars reticulata (SNr) and the globus pallidus pars interna (GPi) in primates, which are the output structure of the BG projecting to the VentroAnterior (VA), VentroLateral (VL) and VentroMedial (VM) thalamus. The globus pallidus pars externa (GPe) is an internal structure of the BG which communicates with other BG nuclei.

Thalamic nuclei connect cortical areas to other brain structures and also cortical areas to cortical areas via glutamatergic thalamocortical projections. For instance, the Ventral PosteroMedial (VPM) and the Ventral PosteroLateral (VPL) nuclei comprise VentroBasal (VB) complex and relay somatosensory information from the spinothalamic tract, medial lemniscus, and corticothalamic tract to the somatosensory cortex. The VB also receives input from the somatosensory cortex, constituting a thalamocortical loop. In contrast to these sensory thalamic nuclei, the VA and VL relay information from the BG to the motor cortex. The VM also receives BG input but differs from aforementioned VPM, VPL, VA and VL as it provides so-called nonspecific projection to almost all the cortical areas including the somatosensory cortex [START_REF] Herkenham | The afferent and efferent connections of the ventromedial thalamic nucleus in the rat[END_REF]). The target cortical layer is also different; the VM projects to the layer I [START_REF] Herkenham | The afferent and efferent connections of the ventromedial thalamic nucleus in the rat[END_REF]) whereas the VB projects to the layer IV [START_REF] Hand | Thalamocortical projections from the ventrobasal complex to somatic sensory areas I and II[END_REF]. The thalamocortical neurons receive GABAergic projections from the interneurons and neurons in the nucleus reticularis thalami (nRT). Both of these GABAergic neurons receive cortical excitation.

The cerebral cortex is a layered interconnected structure which also has connections with subcortical structures including the thalamus and the BG. The frontal or motor cortex has thalamic input from the VA and VL to the layer I, III, V and IV [START_REF] Strick | Synaptic termination of afferents from the ventrolateral nucleus of the thalamus in the cat motor cortex. A light and electron microscope study[END_REF][START_REF] Shinoda | Distribution of terminals of thalamocortical fibers originating from the ventrolateral nucleus of the cat thalamus[END_REF] but the bulk of the thalamocortical terminals are located in layer V [START_REF] Jacobson | Corticothalamic neurons and thalamocortical terminal fields: An investigation in rat using horseradish peroxidase and autoradiography[END_REF]. In turn, its layers V and VI project to the VA and VL [START_REF] Jacobson | Corticothalamic neurons and thalamocortical terminal fields: An investigation in rat using horseradish peroxidase and autoradiography[END_REF][START_REF] Jones | Size, laminar and columnar distribution of efferent cells in the sensory-motor cortex of monkeys[END_REF], layers III and V project to the striatum and the layer V projects the STN [START_REF] Mathai | The Corticostriatal and Corticosubthalamic Pathways: Two Entries, One Target. So What?[END_REF]. It is an open problem if the corticostriatal and corticosubthalamic neurons in the layer V are of the same populations [START_REF] Mathai | The Corticostriatal and Corticosubthalamic Pathways: Two Entries, One Target. So What?[END_REF]. In rats [START_REF] Afsharpour | Topographical projections of the cerebral cortex to the subthalamic nucleus[END_REF][START_REF] Canteras | Somatosensory inputs to the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat[END_REF][START_REF] Canteras | Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat[END_REF]) and monkeys [START_REF] Nambu | Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey[END_REF] 1.1.2 Closed loops in the BG-thalamo-cortical network There are three named parallel pathways from the cortex to the BG output nuclei: cortex-striatum-GPi/SNr, the direct pathway; cortex-striatum-GPe-STN-GPi/SNr, the indirect pathway; cortex-STN-GPi/SNr, the hyperdirect pathway. The direct and indirect pathways were described first [START_REF] Albin | The functional anatomy of basal ganglia disorders[END_REF][START_REF] Alexander | Functional architecture of basal ganglia circuits: neural substrates of parallel processing[END_REF]) and later the hyperdirect pathway was described as the route responsible for fast excitation of GPi in monkeys [START_REF] Nambu | Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway[END_REF]. These pathways project back to the cortex via thalamus. Thus, we extend standard terminology and call the feedback loops through direct, indirect and hyperdirect pathways the direct, indirect and hyperdirect (feedback) loops, respectively. Furthermore, each loop has finer topographicaly organized feedback loop structure [START_REF] Alexander | Parallel organization of functionally segregated circuits linking basal ganglia and cortex[END_REF][START_REF] Nakano | Neural circuits and functional organization of the striatum[END_REF]Yin, Knowlton, and Balleine 2006;[START_REF] Utter | The basal ganglia: An overview of circuits and function[END_REF][START_REF] Redgrave | Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease[END_REF]) such as sensorimotor, associative and limbic networks. This characteristic is also referred to as "parallel" in the literature but we call it coextensive to avoid confusion and emphasize that we do not mean strictly segregated sub-loops. For example, in our terminology, direct and hyperdirect loops are parallel while sensorimotor and associative loops are coextensive. The corticostriatal projections have rough topographical organization. For example, the somatosensory and motor cortices innervate to the posterior putamen and the prefrontal cortex innervates the anterior caudate. Somatosensory and motor corticostrital projections preserves somatotopy. In rats, corticostrital projections from the barrel cortex have anisotropic pattern in which a small region of the striatum receives inputs mainly from the same row of the barrels [START_REF] Alloway | Topography of cortical projections to the dorsolateral neostriatum in rats: Multiple overlapping sensorimotor pathways[END_REF]. STN also receives somatotopic projections from motor cortex in monkeys [START_REF] Monakow | Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey[END_REF][START_REF] Nambu | Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area[END_REF][START_REF] Nambu | Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway[END_REF] and in rats although not as clear as in monkeys [START_REF] Afsharpour | Topographical projections of the cerebral cortex to the subthalamic nucleus[END_REF][START_REF] Canteras | Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat[END_REF]). In non-human primates, GPe and GPi also somatotopically reflect activity in the primary motor cortex (M1) and supplementary motor area (SMA) [START_REF] Nambu | Somatotopic Organization of the Primate Basal Ganglia[END_REF]. The SNr also has somatotopic organization representing orofacial, oculomotor and prefrontal regions but not as clearly organized as GPi [START_REF] Nambu | Somatotopic Organization of the Primate Basal Ganglia[END_REF]. Using retrograde transneuronal transport of rabies virus [START_REF] Kelly | Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits[END_REF] showed that different regions in the GPe, striatum and STN project to M1 and Area 46 via multisynaptic connections in monkeys. Furthermore, they showed that the regions in the striatum and STN which projects to M1 receive projections from M1 thereby directly proving that the BG-thalamo-cortical network has closed loops.

Neuronal dynamics and synaptic interactions in the basal ganglia

Dynamics of striatal neurons

The output neurons of the striatum are the GABAergic Medium Spiny Neurons (MSN). MSN have a very powerful potassium inwardly rectifying current I kir [START_REF] Nisenbaum | Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons[END_REF] and thus it is expected that a large number of correlated excitatory input is required for discharge of MSN. Accordingly, in quiet resting rats, majority (72.7%) of striatal cells are silent and the firing rate of active neurons are low (4.85 spikes/sec) which reflects lack of strong excitatory input [START_REF] Sandstrom | Characterization of striatal activity in conscious rats: contribution of NMDA and AMPA/kainate receptors to both spontaneous and glutamate-driven firing[END_REF]. Due to this inwardly rectifying current, the resting potential of MSN is low (-80mV) [START_REF] Nisenbaum | Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons[END_REF] which is even below the GABA A receptor reversal potential (-75mV measured in visual cortex of cats and rats; [START_REF] Connors | Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat[END_REF]. It means that GABAergic inputs to MSN which come from MSN and GABAergic interneurons are excitatory at the resting potential. The distribution of the membrane potentials of the MSN in anesthetized rats also peak at similar value (-73mV;[START_REF] Wilson | The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons[END_REF]. Despite their low firing rate, the striatal neurons reflect cortical activity and it was proposed that the activity of striatal neurons depends on the states of vigilance [START_REF] Mahon | Relationship between EEG potentials and intracellular activity of striatal and cortico-striatal neurons: an in vivo study under different anesthetics[END_REF][START_REF] Mahon | Various synaptic activities and firing patterns in cortico-striatal and striatal neurons in vivo[END_REF]. Under urethane and/or ketamine-xylazine anesthesia in which cortical activity show slow oscillations at ∼1 Hz, the membrane potentials of MSN are known to have distribution [START_REF] Wilson | The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons[END_REF][START_REF] Stern | Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo[END_REF][START_REF] Reynolds | Substantia nigra dopamine regulates synaptic plasticity and membrane potential fluctuations in the rat neostriatum, in vivo[END_REF] reflecting the membrane dynamics which shows plateaus near the threshold (Up state) and the potassium equilibrium potential (Down state). Classically, it has been hypothesized that the potassium inwardly rectifying current of MSN is responsible for stabilizing the Down state [START_REF] Mahon | Various synaptic activities and firing patterns in cortico-striatal and striatal neurons in vivo[END_REF][START_REF] Wilson | Up and down states[END_REF]. However, under barbiturate anesthesia in which cortical spindle waves are observed in EEG, MSN membrane potentials show unimodal distribution [START_REF] Mahon | Various synaptic activities and firing patterns in cortico-striatal and striatal neurons in vivo[END_REF]. Under neurolept-analgesia, cortical EEG activity is irregular and does not show apparent rhythmicity and MSN membrane potential dynamics do not show switching between the Up and Down states. The cross-correlogram between membrane potential of MSN and EEG shows highly oscillatory patterns under ketamine-xylazine or barbiturate anesthesia [START_REF] Mahon | Various synaptic activities and firing patterns in cortico-striatal and striatal neurons in vivo[END_REF] in which cortical population activity is synchronous while it is flat under neurolept-analgesia [START_REF] Mahon | Relationship between EEG potentials and intracellular activity of striatal and cortico-striatal neurons: an in vivo study under different anesthetics[END_REF] in which cortical neurons are not synchronized. These results show that MSN membrane potential is controlled by a population of cortical neurons [START_REF] Mahon | Various synaptic activities and firing patterns in cortico-striatal and striatal neurons in vivo[END_REF].

Even though almost all neurons in the striatum are the MSN (97.7% in rats, [START_REF] Rymar | Neurogenesis and stereological morphometry of calretinin-immunoreactive GABAergic interneurons of the neostriatum[END_REF]possibly 23% in primates Graveland, Williams, andDifiglia 1985, Tepper and[START_REF] Tepper | Functional diversity and specificity of neostriatal interneurons[END_REF], the activity of MSN is strongly regulated by the Fast Spiking Interneurons (FSI) [START_REF] Mallet | Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo[END_REF]. The FSI are parvalbumin expressing neurons which consist about 0.7 % of rat neostriatum [START_REF] Tepper | Functional diversity and specificity of neostriatal interneurons[END_REF]. They can fire at 200-300 Hz with little or no adaptation when strongly depolarized, are coupled together with other FSI via gap junctions, have perisomatic synapses onto MSN, produce large inhibitory postsynaptic potentials (ISPSs) in MSN, and have converging input from the cortex. As a result, striatal feedforward inhibition (cortex-FSI-MSN) have strong control of MSN activity which is at least as fast as direct cortical excitation [START_REF] Mallet | Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo[END_REF][START_REF] Pidoux | Integration and propagation of somatosensory responses in the corticostriatal pathway: an intracellular study in vivo[END_REF]. In behaving rats, significantly more FSI have increase in firing rate related to task choice than MSN while both MSN and FSI populations have subpopulation which increases firing rate related to reward [START_REF] Gage | Selective activation of striatal fast-spiking interneurons during choice execution[END_REF]. The same study shows that nearby MSN and FSI have preference to opposing behavior and the authors proposed that FSI inhibit alternative actions.

The striatal neurons contain significantly more dopamine receptors than any other brain region [START_REF] Dawson | D-1 dopamine receptors in the rat brain: a quantitative autoradiographic analysis[END_REF][START_REF] Lidow | Dopamine D2 receptors in the cerebral cortex: distribution and pharmacological characterization with [3H]raclopride[END_REF][START_REF] Richfield | Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system[END_REF] and depletion of dopamine results in various motor dysfunctions and dopamine is involved in reward-based learning (see below). Thus, dopamine neuromodulation has been known to be crucial for understanding functions and dysfunctions of the striatum. Depending of intracellular signaling, dopamine receptors are categorized into at least five subtypes and two families, namely D1 (D1 and D5 subtypes) and D2 (D2, D3 and D4 subtypes) families [START_REF] Sibley | Molecular biology of dopamine receptors[END_REF][START_REF] Niznik | Dopamine receptor genes: new tools for molecular psychiatry[END_REF]. It has been hypothesized that D1 and D2 families are expressed in MSN on direct and indirect pathways, respectively [START_REF] Albin | The functional anatomy of basal ganglia disorders[END_REF][START_REF] Gerfen | D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neu-rons[END_REF][START_REF] Surmeier | D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons[END_REF]. Although anatomical studies [START_REF] Hersch | Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents[END_REF][START_REF] Moine | D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum[END_REF][START_REF] Deng | Differential perikaryal localization in rats of D1 and D2 dopamine receptors on striatal projection neuron types identified by retrograde labeling[END_REF] supported this hypothesis, substantial amount of cells show electrophysiological responses mediated by both D1 and D2 receptors [START_REF] Uchimura | Hyperpolarizing and depolarizing actions of dopamine via D-1 and D-2 receptors on nucleus accumbens neurons[END_REF][START_REF] Surmeier | Dopamine receptor subtypes colocalize in rat striatonigral neurons[END_REF][START_REF] Cepeda | Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated[END_REF]. This incoherence was resolved with more advance in anatomical and physiological approaches showing that virtually all MSN contain D1 and D2 receptors [START_REF] Surmeier | Coordinated expression of dopamine receptors in neostriatal medium spiny neurons[END_REF][START_REF] Aizman | Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons[END_REF]. Moreover, majority of MSN are projecting both to GPe and SNr [START_REF] Bolam | Synaptic organisation of the basal ganglia[END_REF][START_REF] Wu | The organization of the striatal output system: A single-cell juxtacellular labeling study in the rat[END_REF][START_REF] Lévesque | The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies[END_REF].

Activation of D1 receptor mediates synaptic plasticity by enhancing surface expression of AMPA [START_REF] Snyder | Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo[END_REF] and NMDA [START_REF] Hallett | Dopamine D1 Activation Potentiates Striatal NMDA Receptors by Tyrosine Phosphorylation-Dependent Subunit Trafficking[END_REF] receptors. However, the effect of D1 receptor at faster timescale on glutamate receptors are less clear. On one hand, excitatory postsynaptic potentials (EPSP) from whole cell current clamp recording of the dorsal striatal neurons are not modulated by D1 receptor [START_REF] Malenka | Modulation of synaptic transmission by dopamine and norepinephrine in ventral but not dorsal striatum[END_REF]. On the other hand, intracellular current clamp recording using sharp electrodes shows that D1 receptor activation enhances the responses evoked by NMDA [START_REF] Cepeda | Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated[END_REF]. These opposing results where shown to be due to indirect effect of D1 receptor on NMDA response through voltage-gated calcium-dependent currents which was altered in the cells recorded with the whole-cell patch clamp technique due to contamination of intracellular environment [START_REF] Liu | Calcium Modulates Dopamine Potentiation of N-Methyl-D-Aspartate Responses: Electrophysiological and Imaging Evidence[END_REF]). As D1 receptor agonist reduces sodium current [START_REF] Surmeier | Dopamine receptor subtypes colocalize in rat striatonigral neurons[END_REF]) which is responsible for initiation and propagation of the action potential, threshold of the striatal neurons is found to be increased when D1 agonist is applied [START_REF] Schiffmann | Dopamine D1 receptor modulates the voltage-gated sodium current in rat striatal neurones through a protein kinase A[END_REF]. Note that the effects of D1 receptor on MSN activity through enhancement of NMDA response and reduction of sodium current are opposite as the former increases the firing rate while the latter decreases it. It has been hypothesized that one of the function of dopamine modulation is to increase signal-to-noise ratio [START_REF] O'donnell | Dopamine gating of forebrain neural ensembles[END_REF][START_REF] Nicola | Contrast enhancement: A physiological effect of striatal dopamine?[END_REF]. Indeed, if dopamine effect through D1 receptor is to amplify the signal by larger corticostriatal gain, it makes sense to scale threshold similarly to filter out the amplified noise part.

As in D1 receptor, contribution to synaptic plasticity of D2 receptor is suggested for AMPA receptor [START_REF] Håkansson | Regulation of phosphorylation of the GluR1 AMPA receptor by dopamine D 2 receptors[END_REF]) and shown to attenuate NMDA receptor response [START_REF] Higley | Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors[END_REF]. D2 receptor stimulation also diminishes presynaptic release of glutamate [START_REF] Bamford | Selects Sets of Corticostriatal Terminals[END_REF]) which may be due to post-and/or presynaptic mechanisms (Yin, Knowlton, and Balleine 2006). Activation of D2 receptors also immediately attenuate AMPA receptor currents [START_REF] Cepeda | Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated[END_REF][START_REF] Hernández-Echeagaray | Modulation of AMPA currents by D2 dopamine receptors in striatal medium-sized spiny neu-rons: Are dendrites necessary?[END_REF]. Excitability of MSN is shown to be diminished by D2 receptor stimulation by reducing opening of voltage-dependent sodium channels [START_REF] Surmeier | Dopamine receptor subtypes colocalize in rat striatonigral neurons[END_REF], effectively increasing the potassium inwardly rectifying current [START_REF] Greif | Dopamine-modulated potassium channels on rat striatal neurons: specific activation and cellular expression[END_REF], and reducing L-type calcium currents [START_REF] Hernandez-Lopez | D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLCb1-IP3-calcineurin-signaling cascade[END_REF]. Unlike D1 receptor, the effects of D2 receptor through synaptic transmission and intrinsic dynamics are in the same direction to reduce MSN activity.

Dynamics of STN neurons

Neurons in STN in a wakefulness condition have irregular spiking activity which shifts to bursting pattern in slow wave sleep with no change of their mean firing rate [START_REF] Urbain | Unrelated course of subthalamic nucleus and globus pallidus neuronal activities across vigilance states in the rat[END_REF]. In vitro STN neurons can fire at around 5-15 spikes/sec even without synaptic input, mainly due to the persistent sodium current [START_REF] Bevan | Cellular principles underlying normal and pathological activity in the subthalamic nucleus[END_REF][START_REF] Charpier | The Subthalamic Nucleus : From In Vitro to In Vivo Mechanisms[END_REF]. STN neurons have calcium and calcium-dependent currents but they do not play a significant role in the single spike firing mode [START_REF] Charpier | The Subthalamic Nucleus : From In Vitro to In Vivo Mechanisms[END_REF]. Hyperpolarization to ∼ 80 mV for > 100 ms de-inactivate calcium channels and following depolarization generates rebound burst action potentials [START_REF] Bevan | Cellular principles underlying normal and pathological activity in the subthalamic nucleus[END_REF]. In vitro electrical stimulation to pallidosubthalamic fibers activating GABA A and GABA B receptor produces rebound bursts in which GABA A receptor also play an auxiliary role [START_REF] Hallworth | Globus Pallidus Neurons Dynamically Regulate the Activity Pattern of Subthalamic Nucleus Neurons through the Frequency-Dependent Activation of Postsynaptic GABAA and GABAB Receptors[END_REF]. During movement, wakefulness and slow wave sleep, STN neurons reflect cortical activity rather than generating activity pattern by their intrinsic dynamics or interaction with GP [START_REF] Bevan | Cellular principles underlying normal and pathological activity in the subthalamic nucleus[END_REF]. In monkeys, effect on cortical stimulation passes through STN first via NMDA receptors on cortico-subthalamic contacts and then via GABA A receptors on pallido-subthalamic contacts [START_REF] Nambu | Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey[END_REF]. In the basal ganglia slice from mice, brief stimulation of the STN generates a brief monosynaptic AMPA-mediated excitatory postsynaptic current (EPSC) in GP, entopeduncular nucleus and SNr [START_REF] Ammari | Subthalamic nucleus evokes similar long lasting glutamatergic excitations in pallidal, entopeduncular and nigral neurons in the basal ganglia slice[END_REF]. A higher intensity STN stimulation evokes a long-lasting response composed of a barrage of AMPA-mediated EPSCs on top of slow NMDA-mediated current, possibly generated by the recurrent network in STN.

Dynamics of GPe neurons

Majority of GPe neurons in vivo are in single-spike mode in wakefulness and slow wave sleep [START_REF] Kita | Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation[END_REF][START_REF] Urbain | Unrelated course of subthalamic nucleus and globus pallidus neuronal activities across vigilance states in the rat[END_REF][START_REF] Ni | Changes in the firing pattern of globus pallidus neurons after the degeneration of nigrostriatal pathway are mediated by the subthalamic nucleus in the rat[END_REF] although repeated bursts correlated with EEG in slow wave sleep are also reported [START_REF] Magill | Relationship of activity in the subthalamic nucleus-globus pallidus network to cortical electroencephalogram[END_REF].

In guinea pigs, two major types of neurons (type I: 59%, type II: 37%) are described to have low-threshold calcium conductance. In vitro, the former type is silent and the latter is spontaneously active [START_REF] Nambu | Electrophysiology of globus pallidus neurons in vitro[END_REF]. Similar portion (32%) of cells are spontaneously active in GP of rat brain slices but do not exhibit rebound depolarization [START_REF] Cooper | Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro[END_REF]. Locally stimulating rat GP neurons in vitro presumably activate local collateral axons and striatal afferent axons and induce slow IPSPs via GABA B receptors [START_REF] Kaneda | Synaptically Released GABA Activates Both Pre-and Postsynaptic GABAB Receptors in the Rat Globus Pallidus[END_REF]. The same study showed that synaptically released GABA also activates presynaptic GABA B autoreceptors. In 6-hydroxydopamine (6-OHDA)-treated hemi-parkinsonian rats, reduction of striatal output by muscimol injection to the striatum increased average firing rate and greatly reduced the pauses and bursts in GPe [START_REF] Kita | Role of Striatum in the Pause and Burst Generation in the Globus Pallidus of 6-OHDA-Treated Rats[END_REF]. In vitro STN-GPe circuitry was shown to be capable of producing synchronized oscillatory bursts at 0.4, 0.8 and 1.8 Hz [START_REF] Plenz | A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus[END_REF].

Dynamics of SNr/GPi neurons

Neurons in SNr and GPi are tonically active with high firing rate even in vitro without excitatory drive (Atherton and Bevan, 2005;Rick and Lacey, 1994;Yuan et al., 2004). Glutamatergic input to SNr is virtually ineffective in awake rats [START_REF] Windels | GABA, Not Glutamate, Controls the Activity of Substantia Nigra Reticulata Neurons in Awake, Unrestrained Rats[END_REF] while GABAergic input to SNr can control SNr activity in freely moving rats although it is less effective compared to anesthetized rats [START_REF] Windels | GABAergic mechanisms in regulating the activity state of substantia nigra pars reticulata neurons[END_REF]. In monkeys, it was shown that activation of motor and somatosensory cortex shapes response in GPi activity with early excitation and inhibition followed by late excitation mediated by hyperdirect, direct and indirect pathways, respectively [START_REF] Nambu | Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey[END_REF]. Electrically stimulating SNr in awake rats increases extra-cellar level of GABA that is of an exocytotic origin. This increase is compensated after first 3-min interval upon stimulation possibly because of GABA A autoreceptor of nigrothalamic neurons [START_REF] Timmerman | Electrical stimulation of the substantia nigra reticulata: detection of neuronal extracellular GABA in the ventromedial thalamus and its regulatory mechanism using microdialysis in awake rats[END_REF].

Functions of the basal ganglia

The topographically organized coextensive feedback networks through the BG can be divided to three coextensive loops in terms of function: limbic (motivational and emotional), associative (cognitive; e.g., goal-directed control of behavior) and sensorimotor (e.g., habitual control of behavior) networks (Yin, Knowlton, and Balleine 2006;[START_REF] Utter | The basal ganglia: An overview of circuits and function[END_REF][START_REF] Redgrave | Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease[END_REF].

Habitual control

The functions of the sensorimotor network are understood well compared to those of the other two networks. In the striatum and motor cortex, trial-to-trial variability decreases as the skill is consolidated through motor learning [START_REF] Brainard | What songbirds teach us about learning[END_REF][START_REF] Tchernichovski | Dynamics of the vocal imitation process: how a zebra finch learns its song[END_REF][START_REF] Hikosaka | Parallel neural networks for learning sequential procedures[END_REF][START_REF] Miyachi | Differential roles of monkey striatum in learning of sequential hand movement[END_REF][START_REF] Jin | Start/stop signals emerge in nigrostriatal circuits during sequence learning[END_REF][START_REF] Sakai | Chunking during human visuomotor sequence learning[END_REF]. Thus, it is suggested that a particular cortico-BG sub-network is chosen as skills are crystallized and provides a functionality analogous to reflexive stimulus-response which promotes motor performance by "chunking" sequence of actions (Jin and Costa 2015). Indeed, NMDAreceptor dependent corticostriatal long-term potentiation [START_REF] Calabresi | Long-term potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels[END_REF][START_REF] Shen | Dichotomous dopaminergic control of striatal synaptic plasticity[END_REF]) is required to learn to perform motor sequence faster, although the ability to learn the task is unaffected [START_REF] Jin | Start/stop signals emerge in nigrostriatal circuits during sequence learning[END_REF]. Knockout or knockdown of genes known to impair corticostriatal long-term depression [START_REF] Gerdeman | Postsynaptic endocannabinoid release is critical to long-term depression in the striatum[END_REF][START_REF] Groszer | Impaired synaptic plasticity and motor learning in mice with a point mutation implicated in human speech deficits[END_REF]) also have shown to disrupt habit and skill learning in mice and song learning in songbirds [START_REF] Hilário | Endocannabinoid signaling is critical for habit formation[END_REF][START_REF] Groszer | Impaired synaptic plasticity and motor learning in mice with a point mutation implicated in human speech deficits[END_REF][START_REF] French | An aetiological Foxp2 mutation causes aberrant striatal activity and alters plasticity during skill learning[END_REF][START_REF] Haesler | Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X[END_REF].

How are these learned behaviors are coded in the BG? There are striatal neurons which increase activity at the initiation, termination or both timings of a particular behavioral sequence [START_REF] Miyachi | Differential activation of monkey striatal neurons in the early and late stages of procedural learning[END_REF][START_REF] Jin | Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences[END_REF]. Similar neurons are found in SNr and GPe [START_REF] Jin | Start/stop signals emerge in nigrostriatal circuits during sequence learning[END_REF]. Comparing to MSN and GP, FSI fire at the initiation of chosen action in particular [START_REF] Gage | Selective activation of striatal fast-spiking interneurons during choice execution[END_REF]). In addition these types of neurons with phasic response during action, comparable amount of neurons in striatum, SNr and GPe increase or decrease activity during whole action sequence of a particular behavior [START_REF] Jin | Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences[END_REF]. D1 receptor expressing MSN tend to elevate activity during the task while D2 receptor expressing MSN tend to suppressed during the task [START_REF] Jin | Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences[END_REF]. These phasic, inhibited and sustained neural responses throughout the BG may underlie representation of "chunked" actions (Jin and Costa 2015).

Goal-directed control

The BG are also involved in goal-directed control of behavior for which the associative sub-network in the BG is responsible. Showing such involvement and dissociating it from habitual control required development of assays for behavioral learning experiment which can detect whether the animal operates habitually or intentionally [START_REF] Yin | The role of the basal ganglia in habit formation[END_REF]. A common class of such assays is the control of outcome value. For example, exposing the animal to the food reinforcer before a probe test decreases the value of food used as a reward. If the behavior is goal-directed, it has to be sensitive to such control. Another common class of assays is manipulation of actionoutcome contingency. If the probability of reward does not depend on whether or not a particular action is taken, the contingency is said to be completely degraded. Again, the behavior is expected to be sensitive to such manipulation if it is goal-directed.

Using such set of assays, it was shown that goal-directed control is blocked by inactivation of the rat posterior dorsomedial (associative) striatum with excitotoxic lesions or GABA agonist (muscimol) (Yin et al. 2005) or by suppression of long term plasticity by NMDA antagonist (2-amino-5-phosphonopentanoic acid) (Yin, Knowlton, and Balleine 2005). If the dorsolateral (sensorimotor) striatum of rats were lesioned before training, they adjusted behavior upon outcome devaluation [START_REF] Yin | Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning[END_REF] and contingency degradation (Yin, Knowlton, and Balleine 2006) even with the amount of training after which non-lesioned rats shows habitual response and insensitivity to such manipulations.

Common function

Are different functions of the BG sub-networks subserved by different physiological properties in them? Qualitative similarity of these networks suggests there is a general computational mechanism underlying such different functions such as a generic "selection" function [START_REF] Redgrave | The basal ganglia: a vertebrate solution to the selection problem?[END_REF][START_REF] Mink | The basal ganglia: focused selection and inhibition of competing motor programs[END_REF][START_REF] Hikosaka | Role of the basal ganglia in the control of purposive saccadic eye movements[END_REF][START_REF] Redgrave | What is reinforced by phasic dopamine signals?[END_REF][START_REF] Yin | The role of the basal ganglia in habit formation[END_REF][START_REF] Redgrave | Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease[END_REF]. The selection may take place within a sub-network (e.g., choosing a particular behavior from habitual repertoire) or between sub-networks (e.g., suppressing habitual control and use goal-directed control). Thus, the BG circuits representing such behavioral options may need to communicate each other over or within their functional domains [START_REF] Redgrave | The basal ganglia: a vertebrate solution to the selection problem?[END_REF][START_REF] Redgrave | What is reinforced by phasic dopamine signals?[END_REF][START_REF] Redgrave | Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease[END_REF].

Reinforcement learning

Hinted by biological researches on stimulus-response reinforcement, so-called reinforcement learning algorithms are developed in the field of machine learning by computer scientists [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF]. These algorithms are in turn brought back to neuroscience to explain BG functions [START_REF] Doya | What are the computations of the cerebellum, the basal ganglia and the cerebral cortex?[END_REF][START_REF] Doya | Complementary roles of basal ganglia and cerebellum in learning and motor control[END_REF]Ito and Doya 2011) although the initial idea of simple stimulus-response reinforcement is generalized and does not literally hold. For example, the Q-leaning algorithm does not learn the actions directly but instead it learns so-called Q function, a mapping from a state/action pair to the corresponding value (or utility; expected sum of the future rewards) [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF]. The Q-leaning algorithm combined with so-called deep learning [START_REF] Lecun | Deep learning[END_REF] techniques developed in machine learning shows human-level scores in video games [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF] demonstrating that this algorithm is scalable to the tasks demanding even to humans. An optimal action argmax a Q(s, a) can be computed from learned Q function by maximizing it with respect to actions with the given state s. Such exploitation of knowledge of task at hand may be appropriate to explain goal-directed side of BG function. The value of Q function in neuroscience literature is called action value [START_REF] Tanaka | Prediction of immediate and future rewards differentially recruits corticobasal ganglia loops[END_REF][START_REF] Samejima | Representation of action-specific reward values in the striatum[END_REF][START_REF] Ito | Validation of decision-making models and analysis of decision variables in the rat basal ganglia[END_REF][START_REF] Kim | Role of Striatum in Updating Values of Chosen Actions[END_REF]) perhaps because only a single class of actions (e.g., choose left vs right) is typically analyzed rather than a sequence of actions and state transitions. Although "(action, state)-value" reflects the definition more correctly, we follow the conventional terminology. The value of Q function evaluated with chosen action (and the state at which the action is taken) is called chosen value. Computation of this value is required for calculating error of the Q function hence for the Q-learning.

Another representative example of reinforcement learning algorithm is the actor-critic method composed of two modules: a critic which represents the mapping from a state to the value and an actor which represents the conditional probability distribution (policy) of an action given a state [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF]. In the actor-critic method, once the policy is sufficiently learned it can operate without the critic and without explicit maximization operation which is needed for the Q-learning. This feature resembles the habit learning in the BG. The state-value mapping function learned by the critic is related to the Q function since the state value can be obtained by averaging Q function over actions using the probability distribution of learned by the actor (provided that the actor is optimal). Further assuming that the probability of choosing each action is uniform, the state value function can be calculated by just summing the action value function over possible actions (typically two actions such as choose left or right). The action value is similar to chosen value since they are action-independent although the action value is obtained via averaging and the chosen value via maximization plus random exploration. Thus, the effect presented as chosen value may actually represents the action value (Ito and Doya 2011) and vice versa.

The action value coding neurons are found in the dorsal striatum [START_REF] Samejima | Representation of action-specific reward values in the striatum[END_REF][START_REF] Pasquereau | Shaping of motor responses by incentive values through the basal ganglia[END_REF][START_REF] Wunderlich | Neural computations underlying action-based decision making in the human brain[END_REF][START_REF] Hori | Neuronal encoding of reward value and direction of actions in the primate putamen[END_REF][START_REF] Lau | Value representations in the primate striatum during matching behavior[END_REF], the GPi [START_REF] Pasquereau | Shaping of motor responses by incentive values through the basal ganglia[END_REF]) and the supplemental motor area [START_REF] Wunderlich | Neural computations underlying action-based decision making in the human brain[END_REF] of primates and in the small population of the dorsal and ventral striatum of rodents [START_REF] Ito | Validation of decision-making models and analysis of decision variables in the rat basal ganglia[END_REF][START_REF] Kim | Role of Striatum in Updating Values of Chosen Actions[END_REF][START_REF] Roesch | Ventral striatal neurons encode the value of the chosen action in rats deciding between differently delayed or sized rewards[END_REF]). The action-independent value which may represent chosen or action value is shown to be coded in a substantial but small population of neurons in the dorsal striatum of monkeys [START_REF] Samejima | Representation of action-specific reward values in the striatum[END_REF][START_REF] Lau | Value representations in the primate striatum during matching behavior[END_REF] and in the dorsal and ventral striatum of rats [START_REF] Ito | Validation of decision-making models and analysis of decision variables in the rat basal ganglia[END_REF][START_REF] Kim | Role of Striatum in Updating Values of Chosen Actions[END_REF]. Human fMRI data suggests that the ventral striatum implements the critic module (i.e., codes state value) [START_REF] O'doherty | Dissociable roles of ventral and dorsal striatum in instrumental conditioning[END_REF]). The neurons coding forthcoming action command are found in the dorsal striatum [START_REF] Samejima | Representation of action-specific reward values in the striatum[END_REF][START_REF] Pasquereau | Shaping of motor responses by incentive values through the basal ganglia[END_REF][START_REF] Kim | Role of Striatum in Updating Values of Chosen Actions[END_REF][START_REF] Pasupathy | Different time courses of learning-related activity in the prefrontal cortex and striatum[END_REF] but majority of the studies (except for [START_REF] Roesch | Ventral striatal neurons encode the value of the chosen action in rats deciding between differently delayed or sized rewards[END_REF]) report lack of action command coding in the ventral striatum [START_REF] Ito | Validation of decision-making models and analysis of decision variables in the rat basal ganglia[END_REF][START_REF] Kim | Role of Striatum in Updating Values of Chosen Actions[END_REF][START_REF] Kim | Encoding of action history in the rat ventral striatum[END_REF]. Action command-coding neurons are also found in the presupplementary motor [START_REF] Hoshi | Differential roles of neuronal activity in the supplementary and presupplementary motor areas: from information retrieval to motor planning and execution[END_REF], the prefrontal [START_REF] Pasupathy | Different time courses of learning-related activity in the prefrontal cortex and striatum[END_REF] and the parietal [START_REF] Roitman | Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task[END_REF] areas of monkey cortex. Ito and Doya (2011) suggested an explanation of the finding that only small amount action value and action command coding neurons are found (except in [START_REF] Roesch | Ventral striatal neurons encode the value of the chosen action in rats deciding between differently delayed or sized rewards[END_REF], based on hierarchical reinforcement learning. In the hierarchical reinforcement learning framework, the higher level module learns to control the lower level module by regarding the action command of the higher level as the state for the lower level providing the task context at the lower level. They proposed a hierarchy along the dorsolateral axis: the dorsolateral, the dorsomedial and the ventral striatum take care of the tasks at increasing spatial and temporal scales. Their idea is that the dorsolateral striatum learns lowest and more effector specific control while the dorsomedial striatum learns higher order control such as "turn left", "turn right" and "go straight". The ventral striatum learns to switch the context of lower levels such as "do a task" and "take a rest". Their proposal is based on the aforementioned recent results on the dissociation of habitual (dorsolateral) and goal-directed (dorsomedial) control in the BG [START_REF] Yin | The role of the basal ganglia in habit formation[END_REF][START_REF] Redgrave | Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease[END_REF].

Dysfunctions of the basal ganglia

It is well known that the basal ganglia (BG) have a key role in abnormal neural oscillations, e.g., in Parkinson's disease or dystonia [START_REF] Boraud | From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control[END_REF][START_REF] Hutchison | Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings[END_REF][START_REF] Gatev | Oscillations in the basal ganglia under normal conditions and in movement disorders[END_REF][START_REF] Leblois | Competition between Feedback Loops Underlies Normal and Pathological Dynamics in the Basal Ganglia[END_REF][START_REF] Hammond | Pathological synchronization in Parkinson's disease: networks, models and treatments[END_REF][START_REF] Wichmann | Pathological basal ganglia activity in movement disorders[END_REF]).

Parkinson's disease is a neurodegenerative disorder whose patients experience motor deficits such as slowness of movement, rigidity, a low frequency rest tremor, and difficulty with balance and also non-motor deficits such as depression, constipation, pain, genitourinary problems, and sleep disorders. The motor deficits are due to degeneration of dopamine containing neurons in the SNc and consequent loss of dopamine in the striatum. Such changes are not uniform within the striatum. Positron emission tomography imaging shows decreased striatal [ 18 F] florodopa uptake, which reflects reduction of number of cells per volume in SNr and striatal DA level [START_REF] Fearnley | Ageing and Parkinson's disease: substantia nigra regional selectivity[END_REF][START_REF] Pate | Correlation of striatal fluorodopa uptake in the MPTP Monkey with dopaminergic indices[END_REF][START_REF] Snow | Human positron emission tomographic [18F]Fluorodopa studies correlate with dopamine cell counts and levels[END_REF], especially in putamen [START_REF] Morrish | Clinical and [18F] dopa PET findings in early Parkinson's disease[END_REF]. Postmortem study of Parkinsonian patients found near-complete depletion of dopamine in the putamen [START_REF] Kish | Uneven Pattern of Dopamine Loss in the Striatum of Patients with Idiopathic Parkinson's Disease[END_REF]. This dysfunction of the putamen hence of the sensorimotor network in the BG should then impair stimulus-response habitual control [START_REF] Redgrave | Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease[END_REF]). Consistently, it has been known that Parkinsonian patients have difficulty of executing [START_REF] Schwab | Control of two simultaneous voluntary motor acts in normals and in Parkinsonism[END_REF][START_REF] Hoshiyama | Hypokinesia of associated movement in Parkinson's disease: A symptom in early stages of the disease[END_REF]) and learning [START_REF] Knowlton | A Neostriatal Habit Learning System in Humans[END_REF] habitual control of behavior. Furthermore, similar to rats with lesions in the sensorimotor striatum [START_REF] Yin | Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning[END_REF]Yin, Knowlton, and Balleine 2006), 6-OHDA-treated parkinsonian rats also does not show habit learning under over-training [START_REF] Faure | Lesion to the Nigrostriatal Dopamine System Disrupts Stimulus-Response Habit Formation[END_REF]. Neurons in Parkinsonian BG show abnormal patterns of synchronized oscillations [START_REF] Boraud | Oscillations in the Basal Ganglia: The good, the bad, and the unexpected[END_REF][START_REF] Gatev | Oscillations in the basal ganglia under normal conditions and in movement disorders[END_REF][START_REF] Pavlides | Computational Models Describing Possible Mechanisms for Generation of Excessive Beta Oscillations in Parkinson's Disease[END_REF]. Thus, neurons in motor systems downstream to the BG likely to receive normal activity from the goal-directed system and abnormal oscillations from the habitual system [START_REF] Redgrave | The basal ganglia: a vertebrate solution to the selection problem?[END_REF]. This hypothesis that the habitual system in particular have abnormal oscillations is compatible with a fMRI study of Parkinsonian patients showing increased activity in the regions associated with automaticity [START_REF] Wu | Effective connectivity of neural networks in automatic movements in Parkinson's disease[END_REF]. Reduced effective connectivity in the same brain regions shown in the same study is consistent with Parkinsonian symptoms such as slowness of movement (bradykinesia) and paucity of movement (akinesia). Patients with Parkinson's disease have been treated by lesions in the BG which in general do not aggravate or induce motor problems when lesions are unilateral [START_REF] Marsden | The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease[END_REF]. This has been noticed paradoxical [START_REF] Brown | Paradoxes of functional neurosurgery: Clues from basal ganglia recordings[END_REF] because of the involvement of the BG in movements and particularly the observation that GPi lesions producing the signs of Parkinson's disease (flexed posture, slow movement, rigidity) in normal monkeys reduces such signs in parkinsonian monkeys [START_REF] Mink | The Basal Ganglia[END_REF]. [START_REF] Redgrave | Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease[END_REF] suggested the reason is that "it may be better to have no output from stimulusresponse habitual control circuits than a 'noisy' one." In rats, lesions or suppression of the associative striatum blocks learning of goal-directed behavior (Yin et al. 2005;Yin, Knowlton, and Balleine 2005) whereas similar manipulation on the sensorimotor striatum blocks habitual learning [START_REF] Yin | Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning[END_REF]Yin, Knowlton, and Balleine 2006). The latter manipulation and behavioral consequence is akin to the pathophysiological change and behavioral deficits in Parkinson's disease whereas the same things can be said to the former experiments on the associative striatum and cognitive abulia. Abulia, one of the major syndromes of disorders of diminished motivation, is characterized by poverty of behavior and speech output, lack of initiative, loss of emotional responses, psychomotor slowing, and prolonged speech latency [START_REF] Marin | Disorders of Diminished Motivation[END_REF] with preservation of ability to perform wide range of tasks upon instruction [START_REF] Redgrave | Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease[END_REF]. Focal lesions associated with abulia may be taken place in associative and mesolimbic territories of the BG [START_REF] Redgrave | Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease[END_REF]. If this is the case, patients with Parkinson's disease and patients with abulia show double dissociation as in striatum-lesioned rats with lack of habitual and goal-directed behaviors.

The BG are also involved in other neurological pathologies. Huntington's disease is a neurodegenerative genetic disorder whose symptoms include abnormal movements, cognitive and emotional difficulties [START_REF] Mink | The Basal Ganglia[END_REF][START_REF] Obeso | The expanding universe of disorders of the basal ganglia[END_REF]. The abnormal movements include involuntary movements termed chorea and motor incoordination. The striatum degenerates at the early stage and loss of MSN can be up to 95% in advanced cases. Dystonia is a neurological movement disorder characterized by sustained abnormal postures [START_REF] Wichmann | Pathological basal ganglia activity in movement disorders[END_REF]. In patients and animal models, increased neuronal synchrony resembling Parkinson's disease is observed. For example, increase in 4-10 Hz frequency band of LFP signal is observed in the BG of patients, especially in GPe [START_REF] Gatev | Oscillations in the basal ganglia under normal conditions and in movement disorders[END_REF]. Tourette syndrome is an inherited neuropsychiatric disorder whose patients exhibit "tics" which are sudden, rapid, recurrent, nonrhythmic, stereotyped involuntary movements and vocalizations [START_REF] Obeso | The expanding universe of disorders of the basal ganglia[END_REF]. Limited evidence suggests pathologies in cortico-BG network. Mechanistic relations of these motor diseases including Parkinson's disease and how BG can account for such different symptoms remain unclear.

1.2 Collective dynamics in basal ganglia-thalamo-cortical network

Oscillations in Parkinson's disease

There are two prominent frequency bands in oscillations of Parkinson's disease, one peaked within 3-8 Hz ("tremor frequency") and another within 8-15 Hz (alpha/low-beta), observed as LFP and firing rate oscillations in GPe, GPi and STN of MPTP-treated monkeys [START_REF] Bergman | The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism[END_REF][START_REF] Wichmann | The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism[END_REF][START_REF] Raz | Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine vervet model of parkinsonism[END_REF][START_REF] Bergman | Physiology of MPTP Tremor[END_REF][START_REF] Wichmann | Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates[END_REF][START_REF] Dostrovsky | Oscillatory activity in the basal gangliarelationship to normal physiology and pathophysiology[END_REF]) and human patients [START_REF] Levy | High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor[END_REF][START_REF] Hutchison | Identification and characterization of neurons with tremor-frequency activity in human globus pallidus[END_REF][START_REF] Hayase | Neuronal Activity in GP and Vim of Parkinsonian Patients and Clinical Changes of Tremor through Surgical Interventions[END_REF][START_REF] Hurtado | Dynamics of tremor-related oscillations in the human globus pallidus: A single case study[END_REF][START_REF] Magnin | Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients[END_REF]Levy et al. 2002b). The lower frequency varies almost proportionally to the frequency of tremor [START_REF] Hutchison | Identification and characterization of neurons with tremor-frequency activity in human globus pallidus[END_REF]) and intermittently synchronized with upper limb tremor [START_REF] Hurtado | Dynamics of tremor-related oscillations in the human globus pallidus: A single case study[END_REF]. Existence of two frequency components strongly suggests that there are at least two different (but possibly over wrapping) neural networks with different characteristic time constants. Indeed, STN lesioning selectively suppress only the higher frequency component [START_REF] Wichmann | The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism[END_REF]. Levodopa and apomorphine administration reduces low-beta frequency band and increases tremor frequency band of LFP in STN while orphenadrine enhances beta frequency band [START_REF] Priori | Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson's disease[END_REF]; see also [START_REF] Brown | Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease[END_REF]Levy et al. 2002a). Furthermore, the tremor oscillations of different limbs have low coherence and thus it was suggested these oscillatory patterns are generated in different circuits [START_REF] Ben-Pazi | Synchrony of rest tremor in multiple limbs in Parkinson's disease: evidence for multiple oscillators[END_REF]. Therefore, it is expected that there are not only two different networks with different characteristic time constants but also at least the network responsible for the lower frequency (tremor frequency) has multiple subnetworks underlying decoupled tremor oscillations. Topographicaly organized coextensive feedback loop structure in the BG may be responsible for such decoupled subnetworks.

Task-related oscillations

The oscillations in the basal ganglia are also observed in non-pathological condition. In macaque monkeys, 10-25 Hz oscillations are observed in LFP of the striatum and these oscillations are amplified during the period of a saccade task [START_REF] Courtemanche | Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys[END_REF]. In rats, similar task-dependent increase in oscillations are observed in theta frequency band (7-14 Hz) during the T-maze task [START_REF] Decoteau | Oscillations of Local Field Potentials in the Rat Dorsal Striatum During Spontaneous and Instructed Behaviors[END_REF]. It remains unclear why the dominant frequencies in rats and monkeys are different [START_REF] Boraud | Oscillations in the Basal Ganglia: The good, the bad, and the unexpected[END_REF]. However, note that low frequency oscillations < 5 Hz were observed in [START_REF] Courtemanche | Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys[END_REF] but not analyzed to avoid possible artifact from cardiovascular rhythmicity (∼ 2 Hz) and the delta (< 5 Hz), beta (14-22 Hz) and gamma (30-50 Hz) bands were also observed in [START_REF] Decoteau | Oscillations of Local Field Potentials in the Rat Dorsal Striatum During Spontaneous and Instructed Behaviors[END_REF]. Focal zones in the oculomotor region of the striatum found to temporary increase and decrease synchrony during saccadic eye movements [START_REF] Courtemanche | Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys[END_REF]. Brief (90-115 ms) bursts of the beta band (13-30 Hz) activity is observed at task end, after reward and post-performance period in monkeys performing movement tasks [START_REF] Feingold | Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks[END_REF]. Similar bursts of the beta oscillations occur in the motor cortex but it occur after the last movement [START_REF] Feingold | Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks[END_REF].

In rats performing cued choice task, brief beta (∼ 20 Hz) oscillations are observed just after signal informative to make behavioral choice but not necessary during movement [START_REF] Leventhal | Basal Ganglia Beta Oscillations Accompany Cue Utilization[END_REF].

The common feature of non-pathological oscillations are that they are transient in time and more focal compared to pathological oscillations [START_REF] Boraud | Oscillations in the Basal Ganglia: The good, the bad, and the unexpected[END_REF].

Infraslow oscillations and resting state network

There are recently developed concepts that describes oscillations in larger spatial and temporal scales. The default mode network (DMN) is defined as the brain areas more active than other areas which show greatest deactivation during cognitive challenges [START_REF] Raichle | A default mode of brain function[END_REF][START_REF] Deco | Emerging concepts for the dynamical organization of resting-state activity in the brain[END_REF]. A related concept, the resting state network (RSN) is defined as the subset of brain areas functionally connected together [START_REF] Biswal | Functional connectivity in the motor cortex of resting human brain using echo-planar MRI[END_REF][START_REF] Deco | Emerging concepts for the dynamical organization of resting-state activity in the brain[END_REF]. The observation of these networks rely on activity and its dynamics of brain areas measured as blood oxygen level-dependent (BOLD) signal from fMRI and oxygen extraction fraction from positron-emission tomography (PET).

Infraslow oscillations

Prerequisite of RSN studies is neural dynamics slower than time resolution of fMRI. Indeed, resting state infraslow oscillations (0.01-0.1 Hz; also called ultraslow or multi-second oscillations) can be found in neural signals such as EEG [START_REF] Monto | Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans[END_REF][START_REF] Hiltunen | Infra-Slow EEG Fluctuations Are Correlated with Resting-State Network Dynamics in fMRI[END_REF], LFP in the cortex [START_REF] Leopold | Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging[END_REF][START_REF] Nir | Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex[END_REF][START_REF] Schölvinck | Neural basis of global resting-state fMRI activity[END_REF]) and the putamen [START_REF] Pan | Infraslow LFP correlates to resting-state fMRI BOLD signals[END_REF], firing rate of the neurons in the cortex [START_REF] Nir | Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex[END_REF]) and the BG [START_REF] Ruskin | Multisecond oscillations in firing rate in the globus pallidus: synergistic modulation by D1 and D2 dopamine receptors[END_REF][START_REF] Allers | Multisecond periodicities in basal ganglia firing rates correlate with theta bursts in transcortical and hippocampal EEG[END_REF] and the membrane potential of cortical neurons (Steriade, Amzica, and Nuñez 1993;Steriade, Nuñez, and Amzica 1993). Interhemispheric correlations are found in infraslow modulations of the delta frequency (1-4 Hz) power of EEG in anesthetized rats [START_REF] Lu | Synchronized delta oscillations correlate with the resting-state functional MRI signal[END_REF]) and the gamma frequency (40-80 Hz) power of LFP and firing rates in humans during awake rest and sleep [START_REF] Nir | Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex[END_REF]. Correlations in infraslow timescales are also found between the theta (4-7 Hz) power of EEG signals and firing rates of STN and GP in immobilized rats [START_REF] Allers | Multisecond periodicities in basal ganglia firing rates correlate with theta bursts in transcortical and hippocampal EEG[END_REF] and fMRI signals and upper gamma (40-80 Hz) and lower (2-15 Hz) power of LFP in monkeys [START_REF] Schölvinck | Neural basis of global resting-state fMRI activity[END_REF]. In a recent study using independent component analysis of human EEG and fMRI data, it was shown that BOLD signals from several RSN are correlated with full-band EEG without extracting amplitude envelopes of fast (> 1 Hz) fluctuations, i.e., infraslow oscillations of BOLD and EEG signals are directly related [START_REF] Hiltunen | Infra-Slow EEG Fluctuations Are Correlated with Resting-State Network Dynamics in fMRI[END_REF]). These findings indicate that cortical and subcortical networks are collectively involved in oscillations of various frequency ranges intermittently activated at infraslow timescales. The RSN and infraslow oscillations studies often report power-law scaling (1/f -like or scale-free) [START_REF] Ward | 1/f noise[END_REF][START_REF] He | Scale-free brain activity: past, present, and future[END_REF] in the power spectral density (PSD) of the neural signals [START_REF] Stam | Scale-free dynamics of global functional connectivity in the human brain[END_REF][START_REF] Lu | Synchronized delta oscillations correlate with the resting-state functional MRI signal[END_REF][START_REF] Monto | Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans[END_REF][START_REF] Nir | Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex[END_REF]). If a PSD show power-law scaling in some frequency range, it implies that there exist no prominent time scale and the signal is aperiodic. Often, PSD of neural signals show bump(s) on top of power-law scaling representing a predominant oscillations and background irregular dynamics, respectively.

Default mode network

The precursor of the DMN studies is the observation of consistent deactivation accompanied with cognitive demand [START_REF] Andreasen | Remembering the past: two facets of episodic memory explored with positron emission tomography[END_REF][START_REF] Nyberg | Network analysis of positron emission tomography regional cerebral blood flow data: ensemble inhibition during episodic memory retrieval[END_REF][START_REF] Shulman | Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex[END_REF]. Using PET and fMRI, [START_REF] Raichle | A default mode of brain function[END_REF] showed that a subset of brain areas (midline areas within the posterior cingulate and precuneus and within the medial prefrontal cortex) decreases neural activity during goal-directed behaviors compared to awake resting state with eyes closed. Since this subset of brain areas is independent of cognitive tasks, they hypothesized that these brain areas are tonically active in the baseline state. Following studies link the DMN to the regions showing infraslow fluctuations in BOLD signal [START_REF] Greicius | Functional connectivity in the resting brain: a network analysis of the default mode hypothesis[END_REF][START_REF] Fox | The human brain is intrinsically organized into dynamic, anticorrelated functional networks[END_REF][START_REF] Fransson | Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis[END_REF][START_REF] Waites | Effect of prior cognitive state on resting state networks measured with functional connectivity[END_REF], rather than tonically active baseline state. It has been noted that the DMN regions overlap with the regions related to self-referential or introspective mental activity such as autobiographic memory [START_REF] Gusnard | Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function[END_REF][START_REF] Buckner | Self-projection and the brain[END_REF], stimulus independent thought [START_REF] Gusnard | Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function[END_REF][START_REF] Mason | Wandering minds: the default network and stimulus-independent thought[END_REF]) and self-reports about mental state [START_REF] Christoff | Experience sampling during fMRI reveals default network and executive system contributions to mind wandering[END_REF]). The phase of infraslow EEG oscillations found to be strongly correlated with stimulus detection performance and suggested to be related to activation of DMN [START_REF] Monto | Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans[END_REF]. Interestingly, studies using non-human primates showed that the infraslow fluctuations in DMN exists even during anesthesia [START_REF] Vincent | Intrinsic functional architecture in the anaesthetized monkey brain[END_REF]) and light sleep [START_REF] Fukunaga | Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages[END_REF][START_REF] Horovitz | Low frequency BOLD fluctuations during resting wakefulness and light sleep: A simultaneous EEG-fMRI study[END_REF][START_REF] Picchioni | fMRI differences between early and late stage-1 sleep[END_REF] suggesting that activation of the DMN does not imply selfreferential activity although the reverse may be true.

Resting state network

Functional connectivity measured from correlations of infraslow fluctuations of BOLD signals [START_REF] Biswal | Functional connectivity in the motor cortex of resting human brain using echo-planar MRI[END_REF][START_REF] Lowe | Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations[END_REF][START_REF] Cordes | Frequencies Contributing to Functional Connectivity in the Cerebral Cortex in "Resting-state" Data[END_REF]) has been investigated prior to DMN studies. The RSN found in functional connectivity analysis is associated with the DMN by [START_REF] Greicius | Functional connectivity in the resting brain: a network analysis of the default mode hypothesis[END_REF] for the first time. The spontaneous activity of DMN is shown to be anticorrelated to that of an RSN active during attention-demanding cognitive tasks [START_REF] Fox | The human brain is intrinsically organized into dynamic, anticorrelated functional networks[END_REF]. A careful data analysis revealed nine RSN, one of which being the DMN, consistent across subjects [START_REF] Damoiseaux | Consistent resting-state networks across healthy subjects[END_REF]. A computational work suggested that although anatomical connectivity shapes functional connectivity, the RSN changes over time and depends on the time scale at which they are measured [START_REF] Honey | Network structure of cerebral cortex shapes functional connectivity on multiple time scales[END_REF]). Based on this work and using fMRI and diffusion spectrum imaging to access functional and structural connectivity, it was shown that functional connectivity can emerge even when direct structural connectivity is absent but such functional connectivity is variable over scanning sessions even within subject [START_REF] Honey | Predicting human resting-state functional connectivity from structural connectivity[END_REF]).

The DMN and RSN are age-dependent [START_REF] Fair | The maturing architecture of the brain's default network[END_REF][START_REF] Damoiseaux | Reduced resting-state brain activity in the "default network" in normal aging[END_REF]) and disrupted in patients of neuropsychiatric diseases such as autism, schizophrenia, Alzheimer's disease, depression and attention-deficit/hyperactivity disorder [START_REF] Garrity | Aberrant "Default Mode" Functional Connectivity in Schizophrenia[END_REF][START_REF] Greicius | Resting-state functional connectivity in neuropsychiatric disorders[END_REF][START_REF] Rombouts | Model-free group analysis shows altered BOLD FMRI networks in dementia[END_REF][START_REF] Buckner | The brain's default network: anatomy, function, and relevance to disease[END_REF][START_REF] Broyd | Default-mode brain dysfunction in mental disorders: a systematic review[END_REF]. Furthermore, resting state functional connectivity of DMN is different from healthy controls also in patients of Parkinson's disease even without cognitive impairment [START_REF] Wu | Changes of functional connectivity of the motor network in the resting state in Parkinson's disease[END_REF][START_REF] Tessitore | Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease[END_REF]). The functional connectivity [START_REF] Krajcovicova | The default mode network integrity in patients with Parkinson's disease is levodopa equivalent dose-dependent[END_REF]) and the deactivation pattern [START_REF] Delaveau | Dopaminergic modulation of the default mode network in Parkinson's disease[END_REF]) of the DMN of patients of Parkinson's disease are restored upon levodopa administration. Consistent with degeneration of dopaminergic nigrostriatal neurons in Parkinson's disease, striatal correlations with brainstem (which includes SNr) in resting state is markedly weak [START_REF] Hacker | Resting state functional connectivity of the striatum in Parkinson's disease[END_REF]. Increased cortex-STN [START_REF] Baudrexel | Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson's disease[END_REF]) and cortex-striatum [START_REF] Hacker | Resting state functional connectivity of the striatum in Parkinson's disease[END_REF] functional connectivity is also observed. In awake rats, infraslow oscillations in the BG are enhanced by systemic dopamine injection but STN lesion only alters GP-SNr phase relationship while keeping the incidence of oscillations unchanged [START_REF] Ruskin | Multisecond oscillations in firing rate in the globus pallidus: synergistic modulation by D1 and D2 dopamine receptors[END_REF][START_REF] Ruskin | Correlated multisecond oscillations in firing rate in the basal ganglia: modulation by dopamine and the subthalamic nucleus[END_REF][START_REF] Hutchison | Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings[END_REF]. It indicates that the main contribution of BG to the infraslow oscillations underlying the RSN, if any, comes from the pathways through the striatum. However, computational studies typically focus only on anatomical connectivity between cortical areas [START_REF] Honey | Network structure of cerebral cortex shapes functional connectivity on multiple time scales[END_REF][START_REF] Deco | Key role of coupling, delay, and noise in resting brain fluctuations[END_REF][START_REF] Ghosh | Noise during rest enables the exploration of the brain's dynamic repertoire[END_REF][START_REF] Pinotsis | Anatomical connectivity and the resting state activity of large cortical networks[END_REF][START_REF] Stam | The relation between structural and functional connectivity patterns in complex brain networks[END_REF][START_REF] Zhou | Hierarchical organization unveiled by functional connectivity in complex brain networks[END_REF][START_REF] Zemanová | Structural and functional clusters of complex brain networks[END_REF][START_REF] Deco | Emerging concepts for the dynamical organization of resting-state activity in the brain[END_REF].

1.2.4 Mathematical concepts for understanding the resting state networks [START_REF] Deco | Emerging concepts for the dynamical organization of resting-state activity in the brain[END_REF] reviewed computational models of RSN mainly focusing on three models based on primate cortical connectivity database CoCoMac [START_REF] Kötter | Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database[END_REF]) in which each cortical area is modeled as a chaotic oscillator [START_REF] Honey | Network structure of cerebral cortex shapes functional connectivity on multiple time scales[END_REF]), a neural oscillator [START_REF] Ghosh | Noise during rest enables the exploration of the brain's dynamic repertoire[END_REF]) and a Wilson-Cowan network [START_REF] Deco | Key role of coupling, delay, and noise in resting brain fluctuations[END_REF]. Although they show these models exhibit the infraslow oscillations and the RSN, the mathematical mechanism underlying such complex dynamics in different models is not clear. Here we review several mathematical concepts which may help probing into the mathematical principle of the infraslow oscillations and the RSN, in a way mathematically imprecise but applicable to neuroscience.

Structural stability

Chaos is a type of dynamics which cannot be categorized into simple types of dynamics such as static (fixed point) or oscillatory (limit cycle or period orbit) dynamics. Chaotic dynamics are often characterized by sensitive dependency on initial condition (i.e., two systems with slightly different states have very different states after a certain amount of time) even though the state of the system does not diverge. A heavily used quantity to describe the sensitive dependency on initial condition is the Lyapunov exponent which is the expansion rate of orbits averaged over long time. The term chaos is first used by [START_REF] Li | Period Three Implies Chaos[END_REF] although their definition is different from the Lyapunov exponent-based definition used commonly in science (see e.g., [START_REF] Eckmann | Ergodic theory of chaos and strange attractors[END_REF]. The search for practically useful and rigorous definition of chaos is still an ongoing research topic [START_REF] Hunt | Defining chaos[END_REF]. The studies of chaos and qualitative analysis of dynamical systems in general date back Poincaré's work on celestial mechanics [START_REF] Poincaré | Sur le problème des trois corps et les équations de la dynamique[END_REF][START_REF] Poincaré | Les méthodes nouvelles de la mécanique céleste[END_REF]. Later, abundance of chaos in natural phenomena has been recognized since [START_REF] Lorenz | Deterministic Nonperiodic Flow[END_REF] found chaotic dynamics in hydrodynamic flow which indicates difficulty of very-long-range weather prediction.

Soon after chaotic phenomena were recognized, one of the important questions for mathematicians was whether such non-trivial phenomena is robust; does a system slightly different from the original chaotic system has the same dynamics? If chaos is not robust under slight modification of the system, chaotic phenomena would not be observable in experiments since one cannot reproduce experimental setting in a precisely the same way. In other words, they were asking if chaos were relevant in natural science. The dynamics of two systems are regarded as "the same" (topologically conjugate) if the state evolved in one system is the same as the state which is mapped to the state of another system first, evolved by the law of another system, and then mapped back to the original system. Note that this condition implies the similarity of the dynamics even in the long time limit (i.e., "attractor"). Thus, given that slight difference the state of chaotic system is expanded to a large difference, this is a fundamental question in the theory of qualitative behavior of dynamical systems. This question is closely related to the notion of "fine tuning of parameter" discussed a lot in computational neuroscience but more essential since the question involves the perturbations in the space of all possible dynamical systems, not just the perturbations in the parametrized space of dynamical systems. This is a very important notion in theoretical neuroscience and "interdisciplinary physics" in general where the description of the system cannot be derived from the first principle. Such modeling always contain inaccuracy in the definition of the model which cannot be captured by just changing the model parameters.

The robustness of qualitative dynamics under perturbations of the system definition is conceptualized as structural stability by [START_REF] Andronov | Systemes grossiers[END_REF] and subsequent works identify the condition that is sufficient (Robinson 1975a;Robinson 1975b) and necessary [START_REF] Mañé | A proof of the C 1 stability conjecture[END_REF][START_REF] Hayashi | Connecting Invariant Manifolds and the Solution of the C 1 Stability and Ω-Stability Conjectures for Flows[END_REF]) for a dynamical system to be structurally stable. This is the condition for a theoretical model in science to be a priori a "good" model because otherwise there is no guarantee that the qualitative behavior remains the same if there exist uncaptured mechanisms with seemingly negligible effect. The structural stability condition implies that the "attractor" to be hyperbolic. Roughly speaking, it means that (1) every point in the orbit of the attractor can be decomposed into the directions of expansion and contraction and (2) such decomposition is smooth within the attractor, i.e., an expanding direction cannot become contracting at any point and vice versa. Thus, in a hyperbolic system, there is no zero Lyapunov exponents except for the one in the direction of the orbit in the case of flows (continuous dynamical systems). By contraposition, zero Lyapunov exponents (not in the direction of flow) implies non-hyperbolicity and thus violates structural stability condition. Dynamical systems with near-zero maximum Lyapunov exponent are called to be at the edge of chaos in neuroscience and its positive contributions to computations has been described [START_REF] Sussillo | Generating coherent patterns of activity from chaotic neural networks[END_REF][START_REF] Toyoizumi | Beyond the edge of chaos: Amplification and temporal integration by recurrent networks in the chaotic regime[END_REF]. Furthermore, near-zero Lyapunov exponents (marginal modes) in general imply slow timescales which may be relevant to infraslow oscillations. However, since the systems with zero Lyapunov exponents are not structurally stable, above mentioned mathematical results demand an explanation for a system to have near-zero Lyapunov exponents robustly. [START_REF] Smale | Differentiable dynamical systems[END_REF] conjectured that structurally stable dynamical system is generic in the space of all dynamical systems. That is to say, it is "very rare" to find systems without structural stability. However, [START_REF] Newhouse | Nondensity of axiom A(a) on S 2[END_REF] found a result against Smale's conjecture and showed that there can be a system without structural stability and all similar systems (i.e., systems in the neighborhood of the original system in the space of dynamical systems) are again not structurally stable. Note that it does not mean infinitesimal structural perturbation of the original system does not change the qualitative behavior. Instead, it means that all the systems have behavior qualitatively different to all other similar systems. Interestingly, such systems can have infinite number of coexisting periodic attractors (nowadays called Newhouse's phenomena) [START_REF] Newhouse | Diffeomorphisms with infinitely many sinks[END_REF]Newhouse 1979;[START_REF] Bonatti | A C 1 -generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources[END_REF][START_REF] Pujals | Trying to Characterize Robust and Generic Dynamics[END_REF]. Although these works points to a possibility for non-hyperbolic systems to be realized in neural systems, it is still not clear how a specific dynamical behavior can be observed in a reproducible way. It is possible that the structural stability condition is too strict so that too many "rare systems" are captured. To find a better notion of "structural stability", mathematicians are trying to relax the condition by using different definitions of "all similar systems" (see e.g., [START_REF] Pugh | Structural stability[END_REF]. Another direction would be to relax the way to compare two systems (rather than using topological conjugacy). For example, if statistics of observable quantities from two systems are similar, experimentally it would be hard to detect the difference of them even though actual temporal evaluations are asymptotically different. Therefore, probabilistic approach capturing stability of distribution over attractors (natural invariant measures) may be useful [START_REF] Araújo | Infinitely many stochastically stable attractors[END_REF].

Chaotic itinerancy

Chaotic itinerancy [START_REF] Kaneko | Chaotic itinerancy[END_REF]Tsuda 2009;Tsuda 2013;Kaneko 2015) is a type of dynamics in which low-dimensional ordered dynamics appear intermittently and spontaneously in clusters (subsets) of elements in a system showing high-dimensional more random dynamics otherwise. Thus, chaotic itinerancy may be an appropriate concept to understand mathematical principle behind infraslow fluctuations and intermittent activation of synchronized dynamics within clusters (i.e., RSN). Each state of low-dimensional dynamics resembles attractor but it cannot be treated as "classical" (or geometric) attractor [START_REF] Kaneko | Chaotic itinerancy[END_REF]Milnor 2006) which requires all neighboring orbits to approach to the attractor and thus are called attractor ruin (or quasiattractor). [START_REF] Kaneko | Chaotic itinerancy[END_REF] proposed to model attractor ruins as Milnor attractors [START_REF] Milnor | On the concept of attractor[END_REF] whose definition allows some substantial amount of neighboring orbits to leave the attractor. The definition of Milnor attractor (in a broad sense) includes classical attractor but we use Milnor attractor in a narrow sense only for non-classical attractors, following [START_REF] Kaneko | Chaotic itinerancy[END_REF]. In compatible with their proposal, chaotic itinerancy was found in a coupled system in which each "node" has a Milnor attractor [START_REF] Tsuda | Chaotic itinerancy generated by coupling of Milnor attractors[END_REF]. In chaotic itinerancy, attraction to low-dimensional dynamics and escape from them are balanced and lead to many near-zero Lyapunov exponents (Tsuda 2013;Kaneko 2015). It suggests that chaotic itinerancy is achieved through non-hyperbolic dynamics. Indeed, even in a low dimensional system, chaotic itinerancy-like phenomena are observed if the system is non-hyperbolic and a small amount of noise is applied [START_REF] Sauer | Chaotic itinerancy based on attractors of one-dimensional maps[END_REF]. Peculiarly slow timescale dynamics in non-hyperbolic systems are characterized by slow convergence of near-zero Lyapunov exponents and natural measure (probability distribution of the states in the attractor) [START_REF] Anishchenko | Peculiarities of the relaxation to an invariant probability measure of nonhy-perbolic chaotic attractors in the presence of noise[END_REF][START_REF] Sauer | Chaotic itinerancy based on attractors of one-dimensional maps[END_REF]. Note that slow convergence of natural measure implies slow convergence of any "observable quantities" (time averages).

Counterintuitive to its non-hyperbolic nature, chaotic itinerancy has been found to abundant in high-dimensional systems according to Kaneko and Tsuda (see e.g., Kaneko 1994;[START_REF] Kaneko | Chaotic itinerancy[END_REF]Tsuda 2013;Kaneko 2015). Tsuda (2009) described five scenarios to realize chaotic itinerancy although it seems that those explanations rely on symmetries in the system or pre-defined non-hyperbolicity (such as Milnor attractor). One scenario is that in high dimensional systems with some kind of symmetry, Milnor attractors becomes abundant due to the difference in scaling of volume of the phase space and of the number of clustered states with respect to the number of elements in the system. On one hand, the volume of the phase space scales exponentially. On the other hand, the order of number of clustered states is factorial due to the symmetry in the system; if one state is in an attractor, the state obtained by replacing elements following the symmetry (e.g., replacing two elements in the case of permutation symmetry) is in another attractor. Since the number of clustered states grows much faster than the volume of phase space, each clustered state becomes very close to other clustered states for it to attract all neighboring states. It was observed that such phenomena are already dominating when the number of elements is 7 ± 2 in the case of mean-field type interaction (globally coupled maps) whose dynamics are invariant under permutation of elements (Kaneko 2002). However, it's not clear how such symmetry arise in heterogeneous systems such as neural circuits. One may expect that mean-field type interactions emerge in large system limit and such permutation symmetry is natural. However, if chaotic itinerancy occurred in such system, some clusters would become synchronous once in awhile hence it would break the asynchronous assumption for the mean-field interaction to arise. Furthermore, it was shown that whether or not spatially extensive system become effectively hyperbolic depends on the dynamics of each coupled element even with a coupling scheme having translational symmetry [START_REF] Kuptsov | Large-Deviation Approach to Space-Time Chaos[END_REF].

Other scenarios require non-structurally stable components such as Milnor attractors hence cannot answer to the question why they exist in the first place although these scenarios provide more flexible explanations for systems without symmetry to have chaotic itinerancy. Chaotic itinerancy in one of such scenarios which requires Milnor attractors and external noise has been observed in the model of sequential retrieval of memories in asynchronous neural networks [START_REF] Tsuda | Memory Dynamics in Asynchronous Neural Networks[END_REF][START_REF] Tsuda | Dynamic link of memory-Chaotic memory map in nonequilibrium neural networks[END_REF]. Although these scenarios do not account for preexistence of non-structurally stable components without innate symmetry in the system, those scenarios still help understanding aforementioned computational models of the RSN.

Computational models of the resting state networks

Many models of RSN have a neural system near the bifurcation at each node such as a Wilson-Cowan network with parameter near the Hopf bifurcation [START_REF] Deco | Key role of coupling, delay, and noise in resting brain fluctuations[END_REF]), a FitzHugh-Nagumo neuron [START_REF] Ghosh | Noise during rest enables the exploration of the brain's dynamic repertoire[END_REF], a network of FitzHugh-Nagumo neurons [START_REF] Ghosh | Noise during rest enables the exploration of the brain's dynamic repertoire[END_REF][START_REF] Zhou | Hierarchical organization unveiled by functional connectivity in complex brain networks[END_REF][START_REF] Zemanová | Structural and functional clusters of complex brain networks[END_REF]. All of these models have external source of noise at each node. Interestingly, [START_REF] Zhou | Hierarchical organization unveiled by functional connectivity in complex brain networks[END_REF] reported that if the nodes are replaced with self-sustained oscillators (Van der Pol), then their network cannot produce biologically plausible RSN and all nodes become synchronous. They conclude that an important requirement for RSN modeling is that nodes are "excitable", i.e., they can be transiently activated. Indeed, simple binary stochastic nodes with excitable and activated states are shown to be able to model RSN [START_REF] Deco | How anatomy shapes dynamics: a semianalytical study of the brain at rest by a simple spin model[END_REF][START_REF] Haimovici | Brain organization into resting state networks emerges at criticality on a model of the human connectome[END_REF][START_REF] Stam | The relation between structural and functional connectivity patterns in complex brain networks[END_REF]. In the scenarios of chaotic itinerancy, the excitable node can be matched to the Milnor attractor in which small perturbation can lead to orbits leaving the attractor, i.e., excitation. However, the mechanism based on such pre-defined Milnor-like attractor cannot explain why such attractor arise. Another related shortcoming in those models is that internode (cortico-cortical) interactions are assumed to be of mean-field type, i.e., average of activity of the neurons in the node. It implies that neurons in a local network at a node receive co-fluctuating inputs. Once mean-field interaction constraint is taken out, it requires synchronous activity already at the local network level. Otherwise, fluctuations from asynchronous activities in presynaptic neurons are washed out due to the effect of the central limit theorem.

In contrast to these models, the nodes of the model of [START_REF] Honey | Network structure of cerebral cortex shapes functional connectivity on multiple time scales[END_REF] are not tuned to be near bifurcation and do not receive external noise. Instead, each node is a chaotic neural network studied in [START_REF] Breakspear | Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics[END_REF] exhibiting intermittency, phase synchrony, and marginal stability. In other words, each node already poses the properties of chaotic itinerancy. Given that the low-dimensional system without structural stability exhibits chaotic itinerancy [START_REF] Sauer | Chaotic itinerancy based on attractors of one-dimensional maps[END_REF] and that the network of non-structurally stable elements (Milnor attractors) again exhibits chaotic itinerancy [START_REF] Tsuda | Chaotic itinerancy generated by coupling of Milnor attractors[END_REF], it is natural that the network of [START_REF] Honey | Network structure of cerebral cortex shapes functional connectivity on multiple time scales[END_REF] can model the RSN. In the local network at each node, neurons interact with mean-field type connection [START_REF] Breakspear | Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics[END_REF] as in global coupled maps hence the scenario based on (permutation) symmetry comes into play. Indeed, [START_REF] Breakspear | Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics[END_REF] showed intermittent dynamics occur due to blowout bifurcation which typically requires some kind of symmetry (see e.g., [START_REF] Ashwin | Bubbling transition[END_REF]. Note that chaotic itinerancy is also observed in the network of neurons which are electrically coupled to their nearest neighborhoods [START_REF] Fujii | Itinerant Dynamics of Class I* Neurons Coupled by Gap Junctions[END_REF][START_REF] Tsuda | Chaotic itinerancy as a mechanism of irregular changes between synchronization and desynchronization in a neural network[END_REF]) and such connection scheme have translational symmetry. However, [START_REF] Breakspear | Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics[END_REF] also showed that intermittent behavior still exist even when heterogeneity is introduced in neuronal parameters, indicating that their system remain not to be structurally stable. It may be because their original network with symmetry happen to be a generic dynamical system such as in the set of dynamical systems described by [START_REF] Newhouse | Nondensity of axiom A(a) on S 2[END_REF]. The mechanisms for why such dynamical systems can arise robustly remain unclear. In summary, although the scenarios of chaotic itinerancy help understanding how RSN can be modeled in different ways, it is still not clear how those scenarios are achieved in a heterogeneous biological system. The prominent argument as to why the system can be tuned not to be structurally stable seems to be that the brain operates at critically [START_REF] Deco | How anatomy shapes dynamics: a semianalytical study of the brain at rest by a simple spin model[END_REF][START_REF] Haimovici | Brain organization into resting state networks emerges at criticality on a model of the human connectome[END_REF][START_REF] Stam | The relation between structural and functional connectivity patterns in complex brain networks[END_REF], the hypothesis still remains controversial (see e.g., [START_REF] Beggs | Being critical of criticality in the brain[END_REF].

A recently developed computational method based on large deviation theory (a generalization of statistical physics) provides a way to quantify effective interactions among different degrees of freedom, hyperbolicity of the dynamics and hidden symmetries in high-dimensional dynamical systems, by calculating how (co-)fluctuations of Lyapunov exponents scale with simulation time [START_REF] Kuptsov | Large-Deviation Approach to Space-Time Chaos[END_REF]. Such method may help understanding interactions of clusters, (non-)hyperbolicity and its origin of the computational models of the infraslow fluctuations and the RSN. The computational method to calculate covariant Lyapunov vectors (i.e., the expanding or contracting directions corresponding to Lyapunov exponents) [START_REF] Ginelli | Characterizing Dynamics with Covariant Lyapunov Vectors[END_REF]) can be used to find nodes which are stabilizing or destabilizing each RSN. To connect coarse-grained low-dimensional description of node and more elaborate high-dimensional network-of-networks approach and also to use these computational methods efficiently, a unified framework in which coarse-grained model can be systematically derived from network-of-networks model is in demand. Without such a framework, understanding how a brain can become non-structurally stable (or not) and yet exhibits reproducible features such as the RSN may be difficult.

Absence seizure

Absence seizures are characterized by brief interruptions of conscious experience accompanied with abnormal brain oscillations (2.5-4 Hz;[START_REF] Crunelli | A role for GABAB receptors in excitation and inhibition of thalamocortical cells[END_REF] recorded as spike-and-wave discharges (SWD) in an electroencephalogram (EEG) [START_REF] Gibbs | The electro-encephalogram in epilepsy and in conditions of impaired consciousness[END_REF]. SWD are highly synchronized across a large number of cortical areas and thalamic nuclei. Absence seizures are therefore classified as generalized epileptic seizures [START_REF] Williams | A study of thalamic and cortical rhythms in petit mal[END_REF][START_REF] Crunelli | A role for GABAB receptors in excitation and inhibition of thalamocortical cells[END_REF]. The frequency of oscillations varies among animal models: 2-4 Hz in monkey [START_REF] David | Behavioral and electrical correlates of absence seizures induced by thalamic stimulation in juvenile rhesus monkeys with frontal aluminum hydroxide implants: A pharmacologic evaluation[END_REF], 3-5 Hz in cat having received a large dose of intramuscular penicillin [START_REF] Gloor | Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy[END_REF], 7-11 Hz in rat models [START_REF] Danober | Pathophysiological mechanisms of genetic absence epilepsy in the rat[END_REF][START_REF] Coenen | Genetic Animal Models for Absence Epilepsy: A Review of the WAG/Rij Strain of Rats[END_REF] and 6-7 Hz in mouse models [START_REF] Mcnamara | Cellular and molecular basis of epilepsy[END_REF]. Genetic Absence Epilepsy Rats from Strasbourg (GAERS) [START_REF] Danober | Pathophysiological mechanisms of genetic absence epilepsy in the rat[END_REF] and WAG/Rij strain of rats [START_REF] Coenen | Genetic Animal Models for Absence Epilepsy: A Review of the WAG/Rij Strain of Rats[END_REF] are well established genetic models of absence epilepsy. These models show not only the SWD activity but also behavioral arrest concomitant to it and thus reproduces clinical aspect of human absence seizures. Mouse models such as tottering, stargazer, mocha, and lethargic also display electropathophysiological and clinical characteristics of absence seizures but also accompany other nonabsence clinical symptoms. Therefore, relation of pathophysiological properties of these mouse models to the absence seizures is not as clear as the rat models.

Experiments have shown that both the cortex and thalamus are necessary for the maintenance of seizures [START_REF] Meeren | Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory[END_REF][START_REF] Hughes | Absence seizures: a review of recent reports with new concepts[END_REF]). SWD are abolished by cortical lesions or, more specifically, deactivation or infusion of anti-absence drugs to the somatosensory cortex in animal models of absence epilepsy [START_REF] Avoli | Role of the thalamus in generalized penicillin epilepsy: Observations on decorticated cats[END_REF][START_REF] Vergnes | Cortical and thalamic lesions in rats with genetic absence epilepsy[END_REF][START_REF] Manning | Cortical-area specific block of genetically determined absence seizures by ethosuximide[END_REF][START_REF] Sitnikova | Cortical control of generalized absence seizures: effect of lidocaine applied to the somatosensory cortex in WAG/Rij rats[END_REF][START_REF] Gurbanova | Effect of systemic and intracortical administration of phenytoin in two genetic models of absence epilepsy[END_REF]Polack and Charpier 2009). Moreover, lesions in the thalamus, especially the nucleus reticularis thalami (nRT), suppress SWD in rats [START_REF] Buzsáki | Nucleus basalis and thalamic control of neocortical activity in the freely moving rat[END_REF][START_REF] Vergnes | Cortical and thalamic lesions in rats with genetic absence epilepsy[END_REF][START_REF] Avanzini | Calcium-Dependent Regulation of Genetically Determined Spike and Waves by the Reticular Thalamic Nucleus of Rats[END_REF][START_REF] Meeren | Thalamic lesions in a genetic rat model of absence epilepsy: dissociation between spike-wave discharges and sleep spindles[END_REF]). These observations gave rise to the thalamocortical theory of absence epilepsy which postulates that the interactions between the thalamus and the cortex generate absence seizures [START_REF] Prince | Centrencephalic" spike wave discharges following parenteral penicillin injection in the cat[END_REF][START_REF] Avoli | A brief history on the oscillating roles of thalamus and cortex in absence seizures[END_REF].

There is converging evidence that the initiation of seizures in rodent genetic models occurs from a specific cortical focus [START_REF] Meeren | Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats[END_REF][START_REF] Meeren | Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory[END_REF][START_REF] Polack | Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures[END_REF]Polack et al. 2009). SWD can be initiated in patients when a convulsive drug is conveyed to the cortex by intravascular injection, whereas the drug has no effect when conveyed to the thalamus [START_REF] Bennett | Intracarotid and Intravertebral Metrazol in Petit Mal Epilepsy[END_REF]. Moreover, in rat models of absence epilepsy, neurons in the somatosensory cortex initiate SWD since they display interictal paroxysmal oscillations that do not propagate to distant cortical and thalamic areas [START_REF] Polack | Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures[END_REF]) and lead the discharges in the thalamus at the beginning of the seizures [START_REF] Meeren | Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats[END_REF][START_REF] Polack | Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures[END_REF]Polack et al. 2009). By contrast, the network that maintains absence seizures over several tens of seconds has still to be identified. A recent study (Polack et al. 2009) showed that suppressing the thalamic region involved in the thalamocortical loop does not suppress the SWD in the somatosensory cortex. As far as we know, there is no evidence that the thalamus and cortex are sufficient to maintain seizures [START_REF] Danober | Pathophysiological mechanisms of genetic absence epilepsy in the rat[END_REF][START_REF] Depaulis | The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies[END_REF]. The thalamocortical theory of absence seizures has also been studied using computational models [START_REF] Destexhe | Spike-and-wave oscillations based on the properties of GABAB receptors[END_REF][START_REF] Destexhe | Interactions between membrane conductances underlying thalamocortical slow-wave oscillations[END_REF][START_REF] Suffczynski | Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network[END_REF][START_REF] Bouwman | GABAergic mechanisms in absence epilepsy: a computational model of absence epilepsy simulating spike and wave discharges after vigabatrin in WAG/Rij rats[END_REF][START_REF] Taylor | A model of stimulus induced epileptic spike-wave discharges[END_REF] in which GABA B inhibition from nRT to TC (thalamocortical) neurons, cortical hyperexcitability and an increased T-type current in nRT neurons play key roles.

Involvement of the basal ganglia in absence seizure

SWD in humans were at first characterized in cortical and thalamic brain regions. This prompted researchers to examine these networks to look for potential underlying mechanisms. Recent electrophysiological recordings in animal models of absence have however revealed synchronous oscillatory activity in deep brain structures during SWD, in particular the basal ganglia (BG) [START_REF] Depaulis | Endogenous control of epilepsy: the nigral inhibitory system[END_REF][START_REF] Charpier | The Subthalamic Nucleus : From In Vitro to In Vivo Mechanisms[END_REF]. In GAERS, the VM thalamic neurons, which receive inhibition from the SNr, display bursting activity at each SWD cycle whereas in the VB neurons do not have bursting activity [START_REF] Paz | Activity of ventral medial thalamic neurons during absence seizures and modulation of cortical paroxysms by the nigrothalamic pathway[END_REF]). Importantly, lesions or inactivations in the BG, specifically pharmacological blockades of the subthalamo-nigral pathway or enhancement of striatal output activity, suppress seizures [START_REF] Depaulis | Endogenous control of epilepsy: the nigral inhibitory system[END_REF][START_REF] Paz | Activity of ventral medial thalamic neurons during absence seizures and modulation of cortical paroxysms by the nigrothalamic pathway[END_REF]). Furthermore, functional magnetic resonance imaging (fMRI) studies have revealed that the striatum is deactivated during seizures both in human patients [START_REF] Moeller | Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy[END_REF]) and in GAERS [START_REF] David | Identifying neural drivers with functional MRI: an electrophysiological validation[END_REF]. Consistently, in GAERS the electrophysiological activity of medium spiny neurons (MSN) in the striatum is suppressed during absence seizures, probably due to a strong feedforward inhibition by fast spiking interneurons (FSI) [START_REF] Slaght | On the activity of the corticostriatal networks during spike-and-wave discharges in a genetic model of absence epilepsy[END_REF][START_REF] Charpier | The Subthalamic Nucleus : From In Vitro to In Vivo Mechanisms[END_REF]. Similar inhibitory control of MSN by FSI is observed in 6-OHDA-treated rat model of Parkinson's disease in which the BG are involved in pathological oscillations [START_REF] Mallet | Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats[END_REF]. Despite this large body of experimental evidence the involvement of BG tends to be neglected in current theories on the mechanism underlying absence seizures. The role of the BG network, and in particular the suppression of MSN activity during absence seizures, remains unclear.

Chapter 2

The role of striatal feedforward inhibition in the maintenance of absence seizures Abstract Absence seizures are characterized by brief interruptions of conscious experience accompanied by widely synchronized brain oscillations. While thalamocortical circuitry is traditionally thought to underlie absence seizures, converging experimental evidence support the key involvement of the basal ganglia (BG). Our theoretical work suggests that the BG are essential for the maintenance of absence seizures. Specifically, we demonstrate that abnormally strong striatal feedforward inhibition promotes synchronous oscillatory activity in the BG-thalamo-cortical network which persists over several tens of seconds as observed during seizures. Our theory is consistent with observations of BG influence on seizures; e.g., a pharmacological blockade of the subthalamo-nigral pathway or enhancement of striatal output activity suppresses seizures. It also accounts for the strong observed suppression of the striatal output during seizures. Our theory predicts that well-timed transient excitatory inputs to the cortex advance the termination of absence seizures. We report preliminary experimental results consistent with this prediction.

Introduction

The hypothesis underlying our theory is that the maintenance of absence seizures over several tens of seconds emerges from the dynamics of the BG-thalamo-cortical network. Specifically, we hypothesize that absence seizures are an electro-clinical symptom associated with a bistability between two states of the dynamics of this network, a normal state in which the network activity is non-oscillatory and asynchronous and an abnormal state in which the activity is oscillatory and spatially synchronized. In other words, we posit that absence seizures are initiated in the cortex but are maintained by the recurrent dynamics of the BG-thalamo-cortical loop. We explore this hypothesis theoretically in a computational model of the BG-thalamo-cortical network with different levels of physiologically relevant details. We conclude with some predictions that can be tested experimentally. The architecture of the BG-thalamo-cortical network model. The model consists of seven neuronal populations: the pyramidal neurons of the somatosensory cortex, the striatal Fast Spiking Interneurons (FSI), the striatal Medium Spiny Neurons (MSN), the SubThalamic Nucleus (STN), the Substantia Nigra pars reticulata (SNr), the Globus Pallidus pars externa (GPe) and the thalamocortical neurons. The Substantia Nigra pars compacta (SNc) is not included in the model. The cortical, FSI, MSN, STN, SNr and thalamic populations are the essential components of our theory. They form three parallel feedback loops: the hyperdirect feedback loop (blue), the direct feedback loop (red) and the feedback loop through FSI (green). Arrows: Excitatory connections. Dots: Inhibitory connections. Dashed lines: Population and connections that are not included in the model; A, B and C are the gains of the hyperdirect, direct and "through FSI" feedback loops. 

The BG-thalamo-cortical network model

Our model of the basal ganglia (BG)-thalamo-cortical network includes neuronal populations from five brain structures: the somatosensory cortex, thalamus, and the BG (Figure 2.1). The BG nuclei we specifically consider are the dorsal striatum, the STN, the SNr and the GPe. For simplicity, each of these nuclei is modeled as a single population of neurons [START_REF] Leblois | Competition between Feedback Loops Underlies Normal and Pathological Dynamics in the Basal Ganglia[END_REF]) except for the striatum for which we include two populations representing the MSN, which project to the SNr and GPe, and the FSI which project to MSN. A central goal of our study is to investigate the role of the FSI in the dynamics of the BG-thalamo-cortical network in epileptic condition. Anatomical studies [START_REF] Alexander | Parallel organization of functionally segregated circuits linking basal ganglia and cortex[END_REF][START_REF] Kelly | Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits[END_REF] indicate that the output from the cortex propagates back to the same portion of the cortex through BG and thalamus; i.e., the BG together with the thalamus and cortex constitute feedback loops. Hereafter we model the synaptic inputs as current entries. Specifically, we treat glutamatergic and GABAergic postsynaptic responses in a simplified manner as positive (excitatory) and negative (inhibitory) input currents, respectively. Taking into account the polarities of the synaptic connections which go through the cortex, the STN and SNr, the hyperdirect pathway (Cortex-STN-SNr, [START_REF] Nambu | Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey[END_REF] inhibits the thalamus and therefore effectively provides negative (dis-facilitatory) feedback to the cortex (hyperdirect feedback loop; blue in Figure 2.1). By contrast, the direct pathway which includes the cortex, MSN population and the SNr, provides a disinhibition of the thalamus [START_REF] Chevalier | Disinhibition as a basic process in the expression of striatal functions[END_REF]) and thus positive (disinhibition) feedback to the cortex (direct feedback loop; red). The third pathway which comprises the cortex, the FSI, the MSN and the SNr, involves three serial inhibitory connections and therefore provides negative feedback to the cortex (loop through FSI ; green). The key idea in our theory is that absence seizures emerge primarily from the competition between these three loops. In particular, loops that include the GPe such as the one involving the indirect pathway (Cortex-Striatum-GPe-STN-SNr) or the STN-GPe-STN loop do not play a significant role in our theory. We investigate below how the dynamics of the network depend on the gain of these three loops. The gain of a connection from an upstream to a downstream population (e.g., cortex-STN) characterizes how much the activity of the downstream population (e.g., STN) changes with the activity of the upstream population (e.g., cortex) when keeping the activities of all other populations in the network fixed. The value of this gain can be calculated as the ratio between the change induced in the downstream population and the change imposed in the upstream population. To define the gain of a closed loop (e.g., cortex-STN-SNr-thalamus-cortex), imagine an "unfolded" open path by assuming that the initial and final populations are different (e.g., cortex1-STN-SNrthalamus-cortex2). The gain of the loop is defined as the ratio between the change in firing rate of the final population (e.g., cortex2) and the change in the firing rate of the initial population (e.g., cortex1) while inputs from populations outside of this pathway remain constant. Overall, the gain of a closed loop describes how a perturbation applied to the activity of a given population propagates back to it through the loop. In our model, this gain is the product of all synaptic weights and slopes of the input-output relationships of the populations (see Equation 2.5). Our theory focuses on how persistent oscillations arise from the competition of the hyperdirect (Cortex-STN-SNr, [START_REF] Nambu | Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey[END_REF] and the direct (Cortex-striatum-SNr) pathways [START_REF] Leblois | Competition between Feedback Loops Underlies Normal and Pathological Dynamics in the Basal Ganglia[END_REF]). Therefore we first investigate how the dynamics depend on the gain of these three loops without including the indirect pathway in the network. This reduces the number of parameters in the model and simplifies the analysis. We then verify that the inclusion of the GPe does not qualitatively affect our results.

We used two levels of modeling for the neuronal dynamics, namely a minimal rate-based formulation (hereafter, rate model, Section 2.3-2.5) in which the dynamics describes the activity of each population by a single rate variable [START_REF] Wilson | Excitatory and inhibitory interactions in localized populations of model neurons[END_REF][START_REF] Dayan | Theoretical neuroscience[END_REF], and an integrate-and-fire model (hereafter, spiking model, Section 2.2, 2.6 and 2.7) describing the dynamics of the membrane potential of each neuron in each population [START_REF] Lapicque | Recherches quantitatives sur l'excitation électrique des nerfs traitée comme une polarisation[END_REF][START_REF] Dayan | Theoretical neuroscience[END_REF]. More details on the network architecture and the dynamics are given in the Material and Methods section. The parameters listed in Table 2.1 and 2.2 were used as the reference set. Since we do "exhaustive" search for the synaptic efficacy parameters in the form of the phase diagram, only free parameters are the firing rates. They were chosen to be compatible with published physiological data in GAERS [START_REF] Deransart | Single-unit Analysis of Substantia Nigra Pars Reticulata Neurons in Freely Behaving Rats with Genetic Absence Epilepsy[END_REF][START_REF] Slaght | On the activity of the corticostriatal networks during spike-and-wave discharges in a genetic model of absence epilepsy[END_REF][START_REF] Mallet | Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo[END_REF][START_REF] Polack | Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures[END_REF]).

Strong striatal feedforward inhibition promotes bistability of the BGthalamo-cortical network dynamics

The key hypothesis underlying our theory is that absence seizures are maintained for lengthy durations because the BG-thalamo-cortical network dynamics are bistable. We therefore begin the description of our results using the spiking network model which can be mapped directly to the pathophysiology observed in experiments. This model can indeed exhibit bistability and that this depends on the strength of the feedforward inhibition in the striatum. An example of bistability in the simulated dynamics of this model is depicted in Figure 2.2A. At the beginning of the simulation the network is in an asynchronous state in which neurons in all the populations fire irregularly and asynchronously. As a result, the population average firing rate of the cortical neurons is essentially constant (about 4 spikes/sec; not to be confused with oscillation frequency of SWD) until a transient excitation (amplitude: 2mV; duration 8ms) is applied to the cortex at t = 1s (Figure 2.2A, upper panel). This transient stimulation induces a rapid change in the activity pattern of the network: it becomes synchronous and oscillates in 10 Hz (oscillatory state). The network remains in this state until another transient excitatory stimulus (amplitude: 2mV; duration 50ms) is applied to the cortex at t = 8s. As a result of this stimulus the network switches back to the asynchronous state, as it was before the first stimulation. This behavior is typical of a network exhibiting bistable dynamics. A notable feature of the activity in the oscillatory state in Figure 2.2A is the almost complete suppression of MSN spikes (bottom panel). This suppression is due to the rhythmic bursting activity in FSI (Figure 2.2C-E) which inhibits the MSN. This can be verified by blocking the FSI inhibition on a single MSN. This manipulation causes the MSN to become strongly active and fire periodic bursts of action potentials during the oscillations (Figure 2.2E).

The strong feedforward inhibition of the MSN by the FSI plays a key role in the bistability of the dynamics in our BG-thalamo-cortical network model. Figure 2.2B shows that if the strength of this inhibition is reduced by 80%, transient stimulations do not trigger a transition to an oscillatory state even if they are much stronger than the one used in Figure 2.2A. Subsequent to this stimulus, the network relaxes back very fast into the asynchronous state. This also happened for all the stimulus parameters (amplitude and duration) we tested suggesting that after this reduction in the strength of striatal feedforward inhibition the network dynamics are not bistable anymore.

The competition between feedback loops in the BG-thalamo-cortical network

To understand the mechanism enabling the BG-thalamo-cortical network to exhibit bistability and the conditions under which this takes place, we first analyze how changing the interaction strength between the various populations affects the dynamics of our model. To this end, it is convenient to consider the rate-based formulation of the model. The relative simplicity of this description allows us to determine its phase diagram combining analytical calculations with extensive numerical simulations.

The phase diagram plotted in Figure 2.4A summarizes the ways in which the dynamics of the network depend on the strength of the feedback loops for the parameters given in Table 2.1. Figure 2.3 displays examples of these dynamics. The four regions in the phase diagram correspond to four qualitatively different dynamical regimes. (1) If the direct and hyperdirect feedback gains (A and B) "balance", the network always settles at a fixed point in which the activity of the various populations is constant in time (Figure 2.3A). Moreover, following transient perturbations, the network eventually converges back to the stable fixed point, possibly with damped oscillations of activity. This is thus a monostable fixed point regime (FP, middle region in white in Figure 2.4A). In terms of our theory, it corresponds to the normal state. (2) When the hyperdirect feedback gain, A, is strong relative to the direct feedback gain, B, the network stationary dynamics are solely oscillatory, and the oscillations cannot be suppressed by transient perturbations (monostable oscillations, OSC, Figure 2.3B, 2.4A). These oscillations are sustained by the delayed negative feedback of the hyperdirect loop and therefore must be distinguished from transient oscillations such as non-pathological beta oscillations related to movement. (3) In between these two regimes, there is a region where the dynamics have two coexisting stable stationary states; namely, a fixed point and an oscillatory state (bistability, BST, gray in Figure 2.4A). The network can switch between these two states if an appropriate transient excitatory input is applied to the cortex (Figure 2.3C). According to our theory, this regime underlies absence epilepsy. The fixed point corresponds to the normal state whereas synchronized oscillations in the whole network corresponds to the seizures. The fact that the oscillatory state is stable to sufficiently small perturbations correspond to the persistence of the absence seizure oscillations (Figure 2 firing rate of the cortical neurons diverges. We do not discuss this other non-physiological regime.

Strong striatal feedforward inhibition promotes bistability

The BG-thalamo-cortical model network can have bistable dynamics even if the feedforward inhibition of the MSN by the FSI is blocked (C = 0). However in this case, the corresponding region in the phase diagram is small (black striped region). A key result of our study is that increasing this feedforward inhibition results in expansion of the bistable region (gray region). In other words, a network in the monostable fixed point regime (i.e., the healthy condition; When the striatal feedforward inhibition is blocked, the MSN population is highly active during oscillations in the bistable regime (striped region in Figure 2.4A). Increasing striatal feedforward inhibition not only enlarges the bistable region but also reduces MSN activity during the oscillations. In the example depicted in Figure 2.4D we chose the cortical excitation to the MSN to be the smallest that is compatible with bistability (location marked with + in the phase diagram Figure 2.4A). Even in this setting the activity of the MSN during the oscillations is larger than at the fixed point (by a factor of 1.9). More generally, if the cortical excitation is strong relative to the striatal feedforward inhibition (upper-right of the gray region in Figure 2.4A) MSN are highly active during oscillations (Figure 2.4E). Conversely, if the striatal feedforward inhibition is strong compared to the direct excitation coming from the cortex (Figure 2.4C), MSN activity can be suppressed during oscillations. However, this also requires sufficiently fast kinetics of this inhibition. If they are too slow (in Figure 2.4F, τ FSI = 5 ms; in other panels in Figure 2.4, τ FSI = 0), MSN activity cannot be suppressed during the oscillations because the inhibition reaches the MSN too late to cancel the excitation.

The mechanisms for bistability and suppression of MSN activity

For the sake of analytical tractability, all the populations in our rate model have a threshold linear input-output relationship (G(I) = I if I > 0 otherwise 0) except for FSI for which the input-output relationship exhibits an expanding nonlinearity (G FSI (I) = I 2 /(1 + I) if I > 0 otherwise 0). We now argue that this nonlinearity has an important influence on the size of the region in the parameter space where the network dynamics are bistable and on MSN activity in this regime.

The expansion of the bistable region upon the increase of the striatal feedforward inhibition (Figure 2.4A) requires nonlinearity in the FSI input-output relationship. When this relationship is linear the phase diagram plotted as a function of gains A and B + C (as in Figure 2.4A) does not depend on the strength of the feedforward inhibition of the MSN (Figure 2.5). This is because as far as the net input to the MSN is concerned the network is virtually equivalent to one with no striatal feedforward inhibition.

The net synaptic input, I MSN , received by the MSN is the sum of the excitation coming directly from the cortical population and the effectively inhibitory disynaptic input coming from the cortex through the FSI. This net input can be expressed as a function of the cortical activity, m Ctx (Figure 2.6B). The combination of the nonlinearity in the input-output relationship of FSI and the feedforward inhibition makes the net input to MSN a nonmonotonic function of the cortical activity (solid line in Figure 2.6B). When the cortex is nearly inactive (m Ctx ∼ 0 Hz) MSN are not active because there is no excitation. On the other hand, when the cortical activity is higher than the normal state (m Ctx ∼ 10 Hz), MSN are also not active because the striatal feedforward inhibition overcomes the direct excitation from the cortex. Note that upon blockade of the striatal feedforward inhibition, the MSN would be highly active in this case (Figure 2.6B, dashed line). The enlargement of the bistable region with the increase in striatal feedforward inhibition is a general feature of the network. It does not depend on the specific nonlinearity of the inputoutput relationship of FSI, G FSI (x), provided that it is expanding (positive second order derivative, G FSI (x) > 0 for x > 0). As a matter of fact, if one assumes that the synaptic time constant is very small compared to the delay in the feedback loops τ p ∆, it is possible to analytically prove that the bistable region enlarges upon increasing -J MSN FSI or J FSI Ctx . See Section 4.2.6 for the proof. Of course, this enlargement quantitatively depends on the strength of the nonlinearity of G FSI (x) around the fixed point; i.e., how large the second order derivative, G FSI (x), is.

Since during oscillations MSN are suppressed, and thus the activity cannot propagate along the direct pathway, the timescale of the oscillations is determined by the hyperdirect loop. In fact, the internal frequency of the oscillations decreases monotonically when the delay along the hyperdirect loop is increased (Figure 2.6C). When using the parameters in Table 2.1 the frequency is 9.6 Hz, a value which is close to the frequency of the oscillations reported in GAERS (7 to 11 Hz; [START_REF] Danober | Pathophysiological mechanisms of genetic absence epilepsy in the rat[END_REF][START_REF] Depaulis | The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies[END_REF]. In our theory, the frequency of the oscillations depends on the effective delay along hyperdirect feedback loop (Figure 2.6C). In particular, to account for the frequency of the oscillations of absence seizures in human (∼ 3 Hz) requires an effective delay along the hyperdirect feedback loop of 150 ms which is longer than in Table 2.1 (Figure 2.6C).

Asynchronous firing and synchronous oscillations in the BG-thalamocortical spiking network

In this section we return to the dynamics of our integrate-and-fire model of the BG-thalamocortical network. We show that the properties we derived in the simple rate model hold for this more realistic model of the BG-thalamo-cortical network in which every population consists of 10000 spiking neurons.

Building on the analysis of our rate model network, we determined the regions in the parameter space of the spiking network model where: (1) Neurons fire in an essentially asynchronous manner, exhibiting only very weak correlations (ASYNC; as in the example shown in Figure 2.2B); [START_REF] Lowe | Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations[END_REF] The network develops oscillatory patterns of activity in which the neurons across the whole system fire with a substantial degree of synchrony (OSC); (3) The network exhibits bistability between an asynchronous state and a synchronous oscillatory state (BST; Figure 2.2A). The phase diagram for the parameters of the model given in Table 2.2 is plotted in Figure 2.7A. It is qualitatively similar to the one found in the rate model (Figure 2.4A). When the positive feedback is sufficiently strong in the direct loop, the activity of the network is asynchronous (ASYNC). In this state, the spatial average activity of each of population is constant over time. This corresponds to the fixed point regime in the rate model. By contrast, for sufficiently strong negative feedback through the hyperdirect pathway, the asynchronous state gets destabilized and the network settles in a state in which the neurons display synchronous oscillatory activity. In a broad region in between these two regimes the dynamics are bistable. Depending on initial conditions, this activity can be asynchronous or oscillatory and synchronous. A transient input to the cortical population can switch the network activity from asynchronous spiking to synchronous oscillations (Figure 2.2A).

As in the rate model, the bistable regime depends crucially on the strength of the striatal feedforward inhibition. If this inhibition is too weak, the network does not exhibit bistability (Figure 2.7D). It also requires that the transmission along the cortex-FSI-MSN pathway be sufficiently nonlinear (Figure 2.7F). To demonstrate this, we parametrized the synaptic strengths J FSI Ctx and J MSN FSI according to

J FSI Ctx = ηJ 0 FSI Ctx J MSN FSI = η -1 J 0 MSN FSI (2.1)
where J 0 FSI Ctx and J 0 MSN FSI are fixed (see Table 2.2). Varying parameter η changes the balance in the contributions of the cortex-FSI and FSI-MSN interactions without changing the overall gain of the cortex-FSI-MSN pathway. The reference parameter case for which the phase diagram is plotted in Figure 2.7A corresponds to η = 1. Since the nonlinearity of this pathway stems from the nonlinearity of the FSI input-output transfer function it becomes more linear as η decreases. Note that the nonlinearity of the pathway can come from short-term potentiation of cortex-FSI and/or FSI-SM synapses. Our theory indicates that the source of nonlinearity is irrelevant to the global dynamics and only the net effect on MSN (Figure 2.6B, 2.7A) matters. Figures 2.7B,C plot the phase diagrams of the network for two values of η. Comparing these two phase diagrams with the one plotted in Figure 2.7A, one concludes that the size of the bistable region reduces with η.

Finally, as was the case in our rate model, the FSI input-output relationship (Figure 2.7E) in our spiking network is a nonmonotonic function of the activity, m Ctx , of the cortical population. Due to this nonmonotonicity, the input to MSN, I MSN , is subthreshold at the minimum (∼ 0 Hz) and maximum (∼ 10 Hz) cortical population firing rate during the oscillations (Figure 2.7F). This feature is essential for the suppression of the MSN activity during the seizures as we found in the rate model.

Appropriately timed excitatory stimulation of the cortex terminates seizures

As shown above (Figure 2.2), in the bistable regime, oscillations can be initiated by transient excitatory input to the cortical population. Remarkably, transient excitatory input to the cortex can also terminate the oscillations. To show this, we simulated our spiking network model with transient input to all cortical neurons while varying tree parameters: duration, amplitude and phase (Figure 2.9A). The phase φ is defined with respect to the oscillations in the cortical input and measured in units normalized from 0 to 1. A phase φ = 0.5 corresponds to the minimum of the oscillation in the activity. The combinations of parameters which yields termination are depicted in Figure 2.9B. When this input has a short duration and high amplitude, the network resets to the asynchronous state only if the perturbation occurs around φ ∼ 0.5 of cortical activity ( perturbation, the MSN firing rate increases for a short period of time (the star in Figure 2.9C,D) regardless of parameters. At the single cell level, this can be observed as a rebound-like spiking activity (Figure 2.2A, bottom trace of Figure 2.9C,D).

Bistable dynamics in the network model with the GPe included

According to our theory absence seizures emerge primarily from the competition between the hyperdirect and direct feedback loops modulated by striatal feedforward inhibition. To show that the competition between these loops is sufficient to generate the seizures, the model investigated above only included these loops. In particular we did not take into account the GPe and the feedback loops in which it is involved, namely the indirect pathway (Cortex-Striatum-GPe-STN-SNr) or the STN-GPe-STN loop.

It should be noted that the dynamics of this simplified model exhibit bistability between asynchronous (normal) and oscillatory (pathological) activity patterns in a broad range of parameters. It is therefore to be expected that including the GPe will not affect qualitatively the existence of such bistable regime for the model network dynamics, at least if the added connections are not too strong.

Due to qualitative nature of our network model, proving that those "not too strong" connections indeed cover biologically plausible range is not as straightforward as just plugging in some estimated synaptic efficacies. To this end, we first determined for which values of J STN GPe the GPe-STN sub-network does not exhibit oscillations by its own, while other parameters are fixed as in Figure 2.10A. Figure 2.10 shows that, for these values the phase diagram of the network model has the same structure (Figure 2.10B, compare with Figure 2.7A) and similar neuronal dynamics (Figure 2.10A,C-D, compare with Figure 2.2A,C-D) than in the network model considered above which does not include the GPe. In particular during seizures the activity of the MSN exhibits subthreshold oscillations and the FSI display periodic bursting in both models.

Note, that since MSN are not active during the oscillations, the GPe affects the global dynamics mainly through the positive feedback loop Cortex-STN-GPe-SNr-Thalamus-Cortex. As a result the region in which the network exhibits bistability is shifted to the right in Figure 2.10B compared to Figure 2.7A. That is why in the example of bistable behavior in Figure 2.10A, C-D, the values of J STN Ctx and J MSN Ctx are different than in Table 2.2. We conclude that the bistable dynamics (Figure 2.10A, C-D) and the bifurcation structure (Figure 2.10B) are qualitatively preserved under inclusion of the GPe.

Discussion

We argued in this chapter that the basal ganglia (BG)-thalamocortical network can operate in three dynamical regimes as a consequence of the competition between the hyperdirect and direct feedback loops: (1) A regime where activity is asynchronous in all populations of the network;

(2) An oscillatory regime where the whole network displays synchronous oscillations driven by the hyperdirect loop; (3) A bistable regime in which the network exhibits an asynchronous state which coexists with synchronous oscillations. Our model shows that overly strong feedforward inhibition in the striatum enlarges the parameter region of bistability. In the latter regime, activation of the cortical neurons may trigger oscillations that persist for a long time. According to our theory, the occurrence of seizures in absence epilepsy corresponds to such a transition. Furthermore, abnormally strong striatal feedforward inhibition is involved in the emergence of the electro-clinical symptoms of absence epilepsy because it promotes bistability in the network dynamics.

Consistency of our theory with previous experimental results

Neurons in all BG nuclei exhibit strong oscillatory activity during spike-and-wave discharge (SWD) [START_REF] Charpier | The Subthalamic Nucleus : From In Vitro to In Vivo Mechanisms[END_REF]. Furthermore, in Genetic Absence Epilepsy Rats from Strasbourg (GAERS), the ventromedial (VM) thalamic neurons, which receive inhibition from the substantia nigra pars reticulata (SNr) and project to layer I of almost all the cortical areas including the somatosensory cortex [START_REF] Herkenham | The afferent and efferent connections of the ventromedial thalamic nucleus in the rat[END_REF], display bursting activity at each SWD cycle [START_REF] Paz | Activity of ventral medial thalamic neurons during absence seizures and modulation of cortical paroxysms by the nigrothalamic pathway[END_REF]). This suggests that the BG-thalamo-cortical loop may play an active role in SWD generation. The nonspecificity of thalamocortical projections from the VM fits with the generalized nature of the SWD. Pharmacological blockade of the subthalamo-nigral hyperdirect pathway and enhancement of the striato-nigral direct pathway prevent seizures [START_REF] Depaulis | Endogenous control of epilepsy: the nigral inhibitory system[END_REF][START_REF] Deransart | The role of basal ganglia in the control of generalized absence seizures[END_REF][START_REF] Deransart | Dopamine in the striatum modulates seizures in a genetic model of absence epilepsy in the rat[END_REF][START_REF] Paz | Activity of ventral medial thalamic neurons during absence seizures and modulation of cortical paroxysms by the nigrothalamic pathway[END_REF][START_REF] Kase | Roles of the subthalamic nucleus and subthalamic HCN channels in absence seizures[END_REF]. Our theory accounts naturally for all these experimental findings which point to the central role of the BG in absence seizures, with the hyperdirect feedback loop driving the oscillations and the direct feedback loop impeding them.

The dynamics of our model are also consistent with the significant reduction in overall striatal activity during seizures reported in functional magnetic resonance imaging (fMRI) studies (David et al. 2008;[START_REF] Moeller | Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy[END_REF], as well as extra-and intracellular electrophysiological recordings. At the cellular level, electrophysiological recordings show that during seizures fast spiking interneurons (FSI) increase their activity whereas medium spiny neurons (MSN) reduce their activity significantly and exhibit subthreshold membrane oscillations in synchrony with SWD [START_REF] Slaght | On the activity of the corticostriatal networks during spike-and-wave discharges in a genetic model of absence epilepsy[END_REF]). Our theory establishes a connection between these features and the mechanisms of SWD. It also explains naturally why MSN become almost completely inactive during seizures. According to our theory, this is an outcome of a supra-linear input-output relationship of FSI. When cortical activity is at the normal level, total MSN input increases when cortical activity is increased. However, if the cortex is strongly active, as in seizures, the striatal feedforward inhibition dominates the total MSN input due to supra-linear FSI output and suppresses the MSN activity (Figures 2.6B and 2.7F). Such nonmonotonicity in MSN response has been reported in experiments on normal anesthetized rats [START_REF] Pidoux | Integration and propagation of somatosensory responses in the corticostriatal pathway: an intracellular study in vivo[END_REF]). In our model, MSN exhibit rebound-like activity when oscillations are terminated by transient cortical activation. A similar rebound was observed in GAERS MSN activity at the end of absence seizures [START_REF] Slaght | On the activity of the corticostriatal networks during spike-and-wave discharges in a genetic model of absence epilepsy[END_REF]) and was previously suggested as a possible termination mechanism for absence seizures [START_REF] Charpier | The Subthalamic Nucleus : From In Vitro to In Vivo Mechanisms[END_REF]). In the framework of our theory, maintenance of oscillatory activity during absence seizures is due to the decreased efficiency of the direct feedback loop through MSN, and maintaining activity in the MSN during a sufficiently long time interval will terminate the oscillation. Our theory therefore naturally provides a link between MSN rebound and the end of absence seizures.

It has been argued that T-type channels present in thalamic neurons are critical for SWD [START_REF] Avanzini | Role of the thalamic reticular nucleus in the generation of rhythmic thalamo-cortical activities subserving spike and waves[END_REF][START_REF] Avanzini | Calcium-Dependent Regulation of Genetically Determined Spike and Waves by the Reticular Thalamic Nucleus of Rats[END_REF][START_REF] Tsakiridou | Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy[END_REF][START_REF] Tsakiridou | Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy[END_REF][START_REF] Kim | Lack of the Burst Firing of Thalamocortical Relay Neurons and Resistance to Absence Seizures in Mice Lacking α1G T-Type Ca2+ Channels[END_REF]. Blockade of GABA A receptors in the thalamus increases GABA B IPSPs which in turn deinactivates T-type channels and thereby switches thalamic neurons to the bursting mode [START_REF] Crunelli | A role for GABAB receptors in excitation and inhibition of thalamocortical cells[END_REF]. Experiments in ferret thalamic slices suggested that this may be a key component of SWD [START_REF] Krosigk | Cellular mechanisms of a synchronized oscillation in the thalamus[END_REF][START_REF] Bal | Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro[END_REF]. In addition, the extracellular level of GABA is higher in epileptic rats [START_REF] Danober | Pathophysiological mechanisms of genetic absence epilepsy in the rat[END_REF]) and systemic or local injection of GABA B receptor agonists to various thalamic nuclei or nucleus reticularis thalami (nRT) increases SWD whereas GABA B antagonists have the opposite effect [START_REF] Liu | Involvement of intrathalamic GABAb neurotransmission in the control of absence seizures in the rat[END_REF][START_REF] Marescaux | GABAB receptor antagonists: potential new anti-absence drugs[END_REF][START_REF] Hosford | The role of GABAB receptor activation in absence seizures of lethargic (lh/lh) mice[END_REF]). The experimental results showing the importance of T-type channels and of GABA B transmission in the thalamus are also in line with our theory, since it is likely (see Perspectives and Predictions) that the gain of the input-output relationship is higher for neurons in the bursting mode than in the regular spiking mode. It is also probable that the global gain of the VM population increases with the firing rates of VM neurons and is thus modulated by the nRT. A local injection of GABA B can thus increase the overall gain of the BG-thalamo-cortical network which, according to our theory promotes the bistability of the BG-thalamo-cortical network.

Various animal models of absence epilepsy exhibit increased excitability in the cortex [START_REF] Meeren | Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory[END_REF][START_REF] Leresche | From sleep spindles of natural sleep to spike and wave discharges of typical absence seizures: is the hypothesis still valid?[END_REF][START_REF] Avoli | A brief history on the oscillating roles of thalamus and cortex in absence seizures[END_REF][START_REF] Luhmann | Impairment of intracortical GABAergic inhibition in a rat model of absence epilepsy[END_REF][START_REF] Pumain | Responses to Nmethyl-D-aspartate are enhanced in rats with Petit Mal-like seizures[END_REF][START_REF] D'antuono | Synaptic hyperexcitability of deep layer neocortical cells in a genetic model of absence seizures[END_REF][START_REF] Avanzini | Cortical versus thalamic mechanisms underlying spike and wave discharges in GAERS[END_REF][START_REF] Polack | Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures[END_REF]). This prompted the idea that the thalamocortical loop maintains SWD [START_REF] Meeren | Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory[END_REF]). However, the involvement of cortical hyperexcitability in the maintenance of SWD is also compatible with our model. This is because if the excitability of the cortex increases the amplitude of the overall gain (|A + B + C|) also increases, hence shifting the operating point of the network toward the pathological bistable regime (Figure 2.4A). Our model can therefore undergo a transition from the non-epileptic to epileptic regime simply by changing the thalamocortical gain while keeping the BG physiological properties unchanged. Although pathological changes could take place in the cortex and/or in the thalamus, a strong striatal feedforward inhibition is still an important requisite for absence seizures.

Recent studies have shown that genetically-determined rodent SWD are initiated in the somatosensory cortex [START_REF] Meeren | Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats[END_REF][START_REF] Polack | Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures[END_REF]). Furthermore, [START_REF] Polack | Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures[END_REF] showed that neurons in the deep layers of the cortex that display early firing during the SWD cycle have a distinctive hyperactivity associated with a membrane depolarization. We show in our model that a transient perturbation in cortical activity can initiate and terminate the seizures. Therefore, in our theory, the emergence of seizures may partially rely on pathological changes in the thalamocortical network enabling such a "trigger". In other words, we argue that absence seizures may be due to a coincidental expression of an increased bistability in the BG-thalamocortical network and abnormal transient activity patterns in the thalamocortical loop. Note that this view is consistent with the "focal hypothesis" that recurrent perturbations in the activity of the somatosensory cortex initiate the seizures [START_REF] Polack | Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures[END_REF]Polack et al. 2009).

Comparison to the thalamocortical theory

The thalamus is involved in the generation of sleep spindles and was hypothesized to play a central role in SWD. During sleep spindles, neurons in the nRT exhibit bursting activity mediated by the T-type channel [START_REF] Mccormick | Sleep and arousal: thalamocortical mechanisms[END_REF]. Building on the aforementioned observation that this channel also plays a role in the generation of SWD and the fact that lesioning thalamic relay and reticular nuclei [START_REF] Buzsáki | Nucleus basalis and thalamic control of neocortical activity in the freely moving rat[END_REF][START_REF] Vergnes | Cortical and thalamic lesions in rats with genetic absence epilepsy[END_REF][START_REF] Avanzini | Calcium-Dependent Regulation of Genetically Determined Spike and Waves by the Reticular Thalamic Nucleus of Rats[END_REF][START_REF] Meeren | Thalamic lesions in a genetic rat model of absence epilepsy: dissociation between spike-wave discharges and sleep spindles[END_REF] or pharmacologically suppressing nRT [START_REF] Liu | Evidence for a critical role of GABAergic transmission within the thalamus in the genesis and control of absence seizures in the rat[END_REF] decreases or abolishes absence seizures it has been hypothesized that the cortex-nRT-TC network is responsible for sleep spindles and SWD [START_REF] Wang | Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms[END_REF][START_REF] Gloor | Generalized epilepsy with bilateral synchronous spike and wave discharge. New findings concerning its physiological mechanisms[END_REF][START_REF] Kostopoulos | Spike-and-wave discharges of absence seizures as a transformation of sleep spindles: the continuing development of a hypothesis[END_REF].

This hypothesis was also investigated in a computational model of the thalamocortical network [START_REF] Destexhe | Spike-and-wave oscillations based on the properties of GABAB receptors[END_REF][START_REF] Destexhe | Interactions between membrane conductances underlying thalamocortical slow-wave oscillations[END_REF]. According to this model, absence seizures can be attributed to the recruitment of an oscillatory loop which consists of excitatory neurons in the cortex, TC neurons and nRT neurons [START_REF] Destexhe | Spike-and-wave oscillations based on the properties of GABAB receptors[END_REF][START_REF] Destexhe | Interactions between membrane conductances underlying thalamocortical slow-wave oscillations[END_REF]. Their model also shows that cortical hyperexcitation and the interplay between a T-type current and GABA B synapses in thalamic neurons strengthen oscillatory dynamics of this loop.

Other computational modeling works have suggested that the thalamocortical loop can exhibit bistable [START_REF] Suffczynski | Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network[END_REF][START_REF] Marten | Derivation and analysis of an ordinary differential equation mean-field model for studying clinically recorded epilepsy dynamics[END_REF] or quasi-bistable [START_REF] Taylor | A model of stimulus induced epileptic spike-wave discharges[END_REF]) dynamics and that these dynamics underlie absence epileptic seizures. These thalamocortical mechanisms differ from our theory in terms of the identity of the loop that sustains the oscillations and the identity of the network that modulates them. According to these mechanisms, the thalamocortical loop sustains the oscillations and the BG modulate them [START_REF] Chen | Bidirectional control of absence seizures by the Basal Ganglia: a computational evidence[END_REF][START_REF] Chen | Critical Roles of the Direct GABAergic Pallido-cortical Pathway in Controlling Absence Seizures[END_REF]. Our theory posits the opposite: the BG play an active role in sustaining oscillations and the thalamocortical network, including the nRT, modulates them by modifying the gain of BG-thalamo-cortical loop. As a result, the frequency of the seizures is primarily determined by the kinetics of the inhibition of nRT on TC neurons [START_REF] Destexhe | Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents?[END_REF]) in the thalamocortical theory, whereas in our theory this frequency depends crucially on the synaptic and transmission delay along the hyperdirect feedback loop.

Recent studies have challenged the basic idea that SWD may represent "perverted" sleep spindles [START_REF] Leresche | From sleep spindles of natural sleep to spike and wave discharges of typical absence seizures: is the hypothesis still valid?[END_REF]. As a matter of fact, lesions that leave the rostral part of the nRT intact suppress ipsilateral sleep spindles but increase SWD bilaterally [START_REF] Meeren | Thalamic lesions in a genetic rat model of absence epilepsy: dissociation between spike-wave discharges and sleep spindles[END_REF], suggesting that a largely intact nRT is necessary for sleep spindles but not for SWD. Moreover, many experimental results are difficult to interpret in the framework of the thalamocortical theory. For instance, no differences between GAERS and non-epileptic rats have been reported as regards the properties of GABAergic synapses and neuronal excitability in nRT and TC nuclei (see [START_REF] Danober | Pathophysiological mechanisms of genetic absence epilepsy in the rat[END_REF][START_REF] Slaght | Activity of thalamic reticular neurons during spontaneous genetically determined spike and wave discharges[END_REF][START_REF] Paz | Activity of ventral medial thalamic neurons during absence seizures and modulation of cortical paroxysms by the nigrothalamic pathway[END_REF]Polack et al. 2009 and references therein), thus questioning the causal role of the thalamocortical loop in SWD. Moreover, although the feedback loop between the somatosensory cortex and thalamus involves specific relay nuclei such as the ventrobasal (VB) complex, suppressing VB does not reduce SWD (Polack et al. 2009). This is difficult to reconcile in the framework of the thalamocortical theory, which predicts this reduction based on the lack of an oscillatory loop. In contrast, our theory is compatible with these experiments because it does not rely on thalamic properties other than as a pathway to the cortex. It has been reported that lesions in VM also have no effect on seizures [START_REF] Depaulis | Involvement of the nigral output pathways in the inhibitory control of the substantia nigra over generalized nonconvulsive seizures in the rat[END_REF][START_REF] Vergnes | Cortical and thalamic lesions in rats with genetic absence epilepsy[END_REF]). However, this is at odds with a more recent study which shows that the VM is the only thalamocortical nucleus that presents bursting activity during SWD [START_REF] Paz | Activity of ventral medial thalamic neurons during absence seizures and modulation of cortical paroxysms by the nigrothalamic pathway[END_REF]). Thus, a more systematic analysis of the effects of lesion or inactivation of the VM and/or VB in absence epilepsy is essential to further assess the validity of our theory in which the VM plays a key role in closing the hyperdirect and direct loops at the somatosensory cortex.

Perspectives and predictions

Thalamocortical neurons in VM exhibit bursting during seizures [START_REF] Paz | Activity of ventral medial thalamic neurons during absence seizures and modulation of cortical paroxysms by the nigrothalamic pathway[END_REF]) which depends on a T-type current (Sherman 2006). The rate and spiking network models we considered in this work do not incorporate these features. Nevertheless our theory on the role of the BG-thalamo-cortical network in sustaining absence seizures may still qualitatively hold if we take these features into account. When the VM neurons are in the bursting mode, their firing rate increases abruptly at threshold crossing (Sherman 2006). This may be regarded as an effectively stronger gain compared to the gain around the threshold when they are in the regular spiking mode. Thus, when neurons in the VM operate in the bursting mode it is likely that the overall gain of the direct and hyperdirect loops of the BG-thalamo-cortical network will increase. If this increase is in the appropriate range, the system will move toward the bistable regime. Therefore, we conjecture that introducing a Ttype current and a GABA B synapse to the thalamocortical neurons in our model should increase the pathological bistable region; i.e., promote absence epilepsy in line with the reported experimental results. Assessing this conjecture as well as the effects of other intrathalamic circuitries requires investigating an extension of our model which would incorporate more realistic description of the dynamics of single neurons and circuitry in the thalamus. This study is beyond the scope of the present work.

Our theory focuses on the mechanism by which the BG-thalamo-cortical network can maintain absence seizures. It does not address the origin of the specific shape of the SWD during these seizures. [START_REF] Chipaux | Chloride-mediated inhibition of the ictogenic neurones initiating genetically-determined absence seizures[END_REF] argued that this shape stems from the fast recurrent activation of GABA A interneurons in the cortex which negatively control focal excitatory neurons. Thalamocortical neurons, like cortical neurons, exhibit synchronized spikes followed by a prolonged silent period for each SWD. This silent period in the activity of thalamocortical neurons may be due to recurrent GABAergic inhibition from nRT [START_REF] Pinault | Intracellular recordings in thalamic neurones during spontaneous spike and wave discharges in rats with absence epilepsy[END_REF][START_REF] Charpier | On the putative contribution of GABA(B) receptors to the electrical events occurring during spontaneous spike and wave discharges[END_REF][START_REF] Slaght | Activity of thalamic reticular neurons during spontaneous genetically determined spike and wave discharges[END_REF]. Furthermore, the bursting activity that takes place in VM thalamocortical neurons on each SWD cycle [START_REF] Paz | Activity of ventral medial thalamic neurons during absence seizures and modulation of cortical paroxysms by the nigrothalamic pathway[END_REF]) may also contribute to shaping the sharp spike pattern for each SWD cycle in the cortical EEG. We anticipate that SWD shape can be accounted for in our theory if we extend our model to take into account the micro circuitry and some of the intrinsic properties of cortical and thalamic neurons without changing the principal mechanism maintaining absence seizures. Further modeling works are needed to explore how the specific shape of SWD can be accounted for in the framework of our theory.

Given the lack of empirical data on the BG-thalamo-cortical network in humans and the large body of data concerning detailed cellular physiology in this network in normal and GAERS, we chose to focus our modeling effort on a representation of the rodent BG-thalamo-cortical network. We believe that the pathophysiological mechanisms underlying absence epileptic seizures are largely shared by this animal model and the human form of absence epilepsy [START_REF] Danober | Pathophysiological mechanisms of genetic absence epilepsy in the rat[END_REF][START_REF] Depaulis | The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies[END_REF]. Since the Globus Pallidus pars interna (GPi) is the main output nucleus of the BG in primates, SNr should be replaced by the GPi in our network model to reflect the primate BG-thalamo-cortical network (Figure 2.1). Moreover, differences in network properties, and in particular neuronal and synaptic time constants, need to be taken into account to reflect the differences in the oscillatory frequency of seizures in rats, patients and other animal models. In particular, our theory suggests that slower oscillations in human absence seizures (∼ 3 Hz) can be accounted for by a longer effective delay along hyperdirect feedback loop (Figure 2.6C) whereas other studies have suggested that it should be ascribed to differences in the kinetics of intrathalamic inhibition [START_REF] Pinault | Intracellular recordings in thalamic neurones during spontaneous spike and wave discharges in rats with absence epilepsy[END_REF][START_REF] Destexhe | Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents?[END_REF].

Our theory predicts that absence seizures can be initiated and terminated by a transient stimulation to the cortex. For termination, the cortical stimulation has to satisfy a specific phaseduration-amplitude relationship as indicated in Figure 2.9. Consistently, transcranial electrical stimulation [START_REF] Berényi | Closed-loop control of epilepsy by transcranial electrical stimulation[END_REF]) and direct current injection [START_REF] Perez | Phase response curves in the characterization of epileptiform activity[END_REF]) have been demonstrated to shorten or desynchronize SWD in epileptic rats, although phase dependency is unclear in these protocols. The prediction for the seizure initiation and the termination can be tested by electrically stimulating a cortical site (e.g., somatosensory cortex) while recording an EEG.

It should be noted, however, that these predictions do not provide a unequivocal test of the specific mechanism that underlies bistability. For instance, a similar phase-duration-amplitude relationship occurs in the thalamocortical network model by [START_REF] Suffczynski | Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network[END_REF] where bistability is a consequence of a subcritical Hopf bifurcation. To differentiate our theory from thalamocortical theory experimentally, an experiment could be conducted in which the gain of the hyperdirect feedback loop is reduced relative to the gain of the direct feedback loop without changing the mean firing rate of BG output neurons in the SNr, and hence the firing rate of thalamocortical populations. Our theory predicts that for sufficient reduction, seizures will be suppressed. This experiment could be performed by combining a conventional pharmacological manipulation in BG; e.g., with a glutamatergic agonist in the STN, while controlling the SNr firing rate with a glutamatergic antagonist, to avoid changes in its mean interictal activity from the control case.

Materials and Methods

The computational models investigated in this work consist of six or seven populations of neurons representing the pyramidal neurons in the cortex (Ctx), the thalamocortical neurons (Th), striatal MSN, striatal FSI, the subthalamic nucleus (STN), the substantia nigra pars reticulata (SNr) and optionally the globus pallidus pars externa (GPe) (Figure 2.1).

We first consider a rate model [START_REF] Wilson | Excitatory and inhibitory interactions in localized populations of model neurons[END_REF][START_REF] Dayan | Theoretical neuroscience[END_REF] in which the activity in each population is represented by one global dynamical "rate variable". In a second model each population consists of numerous leaky integrate-and-fire spiking neurons [START_REF] Lapicque | Recherches quantitatives sur l'excitation électrique des nerfs traitée comme une polarisation[END_REF][START_REF] Dayan | Theoretical neuroscience[END_REF].

The rate model

In this model, the activity of population p=MSN, FSI, STN, SNr, Th, Ctx, is described by a variable, m p , the dynamics of which are governed by:

τ p dm p dt (t) = -m p (t) + G p (I p (t)). (2.2)
Here, τ p is the time constant of the dynamics, G p (I p (t)) the input-output relationship of population p and I p (t) the total input current in that population, at time t:

I p (t) = q J pq m q (t -∆ q ) + h p (2.3)
where q indicates summation over presynaptic populations, J pq is a synaptic weight, ∆ q is a delay, and h p a constant background input to population p. For simplicity we take a thresholdlinear input-output relationship, G p (I p ) = [I p ] + where [x] + = x if x > 0 otherwise 0, for all populations except FSI. For the latter which we take an expanding nonlinear function

G FSI (I FSI ) = c [I FSI /c] 2 + 1 + [I FSI /c] + (2.4)
where c is a constant controlling the level of nonlinearity (Figure 2.6A). Our main result does not depend on the value of c nor the exact shape of G FSI . See Section 4.2.6 for the proof. Quantitative dependency of the bistability on a similar nonlinearity parameter η of the spiking model is described in Results. Variables and constants m p (t), I p (t) and h p are all scaled to the unit of the firing rate G p (I p (t)) and the synaptic weight J pq is a dimensionless parameter. This model has many parameters. We constrained our exploration of the model properties to a combination of parameters leading to a physiologically reasonable level of activity in each population when the network is in a normal state (Table 2.1).

The spiking model

Our spiking model consists of the six or seven aforementioned populations (with or without GPe respectively). In each population single cells are modeled as integrate-and-fire neurons. The subthreshold dynamics of the membrane potential, V p,i , of a neuron i in population p are:

τ p dV p,i dt (t) = -V p,i (t) + I p,i (t) + ξ p,i (t)
where, τ p is the membrane time constant. We use τ p = 10 ms for all populations except MSN and FSI. For MSN we take τ m MSN = 20 ms whereas for FSI, τ m FSI = 5 ms, to reflect slow dynamics of MSN due to powerful potassium inwardly rectifying current [START_REF] Nisenbaum | Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons[END_REF] and fast dynamics of FSI whose effect on MSN is effectively as fast as the direct cortical excitation [START_REF] Mallet | Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats[END_REF][START_REF] Pidoux | Integration and propagation of somatosensory responses in the corticostriatal pathway: an intracellular study in vivo[END_REF]. Neurons receive Gaussian noisy input from outside the network, ξ p,i (t), such that: ξ p,i (t) = 0 and ξ p,i (t) ξ p,i (t ) = σ √ τ p δ(tt ). The quantity I p,i (t) represents the total synaptic input into the neuron from its interactions with other neurons in the BG-thalamo-cortical network. It is given by

I p,i (t) = q J pq K q τ q τ d -τ r (κ d i,q (t -∆ q ) -κ r i,q (t -∆ q )) + h p , κ o i,q (t) = k exp - t -t k τ o (o = d, r )
where k indicates the summation over all spikes of all neurons in population q presynaptic to neuron i , t k is the timing of kth spike, K q is the average number of neurons in population q projecting to a neuron in a postsynaptic population, τ d and τ r are the synaptic decay and rise times, which were assumed to be identical for all the interactions, h p is a background current from outside the network. We also assumed that neurons in p and q are randomly connected with probability N q /K q where N q is the number of neurons in population q. J pq denotes the strength of the post synaptic potential in a neuron from population p induced by a action potential of a neuron in population q.

When the membrane potential V p,i reaches the threshold θ, it is reset to V r , i.e.,

V p,i (t k + 0) = V r if V p,i (t k -0) = θ.
For constant input, µ = I p (t), the firing rate of the neuron can be calculated analytically [START_REF] Ricciardi | Diffusion Processes and Related Topics in Biology[END_REF] yielding:

G(µ) = τ p √ π (θ-µ)/σ (V r -µ)/σ (1 + erf(u))e u 2 du -1
.

Analysis of the rate model

We analytically investigated the existence of fixed point solutions of the rate dynamics and their stability. The latter depends on three parameters which are combinations of the interaction strengths, namely:

A = JCtx Th JTh SNr JSNr STN JSTN Ctx , B = JCtx Th JTh SNr JSNr MSN JMSN Ctx , (2.5) 
C = JCtx Th JTh SNr JSNr MSN JMSN FSI JFSI Ctx
where Jpq is the effective synaptic interaction strength defined by Jpq = G p (G -1 p (ν p )) J pq and ν p is the firing rate of population p in the fixed point (normal state) given in Table 2.1. Note that Jpq = J pq for p = FSI since G p is threshold linear in this case. These parameters characterize the gains of the feedback along the hyperdirect, the direct loop via MSN and the direct loop via FSI, respectively.

To characterize the stability of a fixed point solution, the evolution of a small perturbation around this solution needs to be calculated. For this purpose we substituted m p (t) = p exp(λt) + ν p in Equation 2.2 yielding

M = 0.
Here is the six dimensional vector of the perturbation with element p . The elements of the 6×6 stability matrix M are:

M pq = Jpq exp(-λ∆ q ) -(τ p λ + 1) δ pq , δ pq = 1, p = q 0, p = q.
The growth rates of the perturbations λ are then the solutions of the equation P (λ) = 0 where P (λ) = det M. The fixed point solution is stable if all the real part of all the solutions λ, the characteristic exponents of the fixed point, are negative. Therefore a necessary condition for instability onset when some parameter changes is that one of the characteristic exponents changes sign. The parameter at this onset can be found by imposing that the characteristic exponent is zero (λ = iω), i.e., by solving

[P (iω)] = 0 (2.6) [P (iω)] = 0 (2.7)
where ω is real.

For instantaneous striatal feedforward inhibition, i.e. τ FSI = 0 and ∆ FSI = 0, the function P (iω) depends linearly on A and B + C. Equations 2.6 and 2.7 can then be solved for A and B + C as a function of ω, yielding the stability boundary of the fixed point as a curve parametrized by ω in the A-(B + C) plane. On this curve a Hopf bifurcation occurs. The unstable mode oscillates with a frequency ω determined by Equations 2.6 and 2.7. For given (A, B, C), off the Hopf bifurcation boundary, we approximate the frequency ω by the nearest point, ω * , on the boundary, namely:

ω * = arg min ω>0 (A -A ω ) 2 + ((B + C) -(B ω + C ω )) 2 (2.8)
where A ω , B ω , C ω are the solutions to Equations 2.6 and 2.7 with given ω. This estimate is in good agreement with the numerical simulations as shown in Figure 2.6C. In Figure 2.4A, we use B + C instead of B as the y-axis of the phase diagram in order to align the Hopf bifurcation boundaries with different combinations of B and C. This is possible because the Hopf bifurcation depends solely on the value of A and B + C, as explained above. Without the shift by C, the bistable region without FSI (black striped region in Figure 2.4A, A-(B + C) plane) would be below the bistable region with FSI (black region in Figure 2.5, A-B plane).

Simulations

In all our simulations of the rate model, differential equations were integrated using the Euler scheme [START_REF] Dayan | Theoretical neuroscience[END_REF]. Simulations of the spiking model were performed using the second-order Runge-Kutta scheme for stochastic differential equations [START_REF] Hansel | On Numerical Simulations of Integrateand-Fire Neural Networks[END_REF][START_REF] Honeycutt | Stochastic Runge-Kutta algorithms. I. White noise[END_REF]. The integration time step was 0.1 ms for all simulations. The parameters used in the simulations are those given in Table 2.1 and 2.2 unless specified otherwise.

To determine the domain of parameters in which the network exhibits bistability between fixed point and oscillations we proceeded as follows. We simulated the network with J STN Ctx =0 and other parameters as in Table 2.1 or 2.2. In this case the dynamics converge to a fixed point since the hyperdirect loop is not effective. We then gradually increased |J STN Ctx | until the network settled in an oscillatory state. Then we gradually reduced |J STN Ctx | back to 0. The network dynamics are bistable for some value of |J STN Ctx | if for that value the network is at a fixed point when |J STN Ctx | increases but exhibits oscillations when |J STN Ctx | decreases (hysteresis). To draw the phase diagrams (Figure 2.4A, 2.7), we ran these simulations with different values of J MSN Ctx .

Note that to get a reliable estimate of the bistability range, |J STN Ctx | must be varied sufficiently slowly so that at each step the network is always in the stationary state. To determine whether the network state was oscillatory for a given value of the parameters, we computed an "oscillation index". For the rate model, this index is the amplitude of the input to the cortical population. If it is larger than some threshold, O, the state is considered oscillatory. The smaller the threshold, the better the characterization of the network state, but the longer it takes. We determined that O = 5 was a good tradeoff between precision and simulation time. For the spiking model, we first computed the maximum autocorrelation of the population averaged cortical input over a time duration larger than twice ∆ A , the sum of all the delays along the hyperdirect feedback loop. This value was normalized to the autocorrelation at the zero time delay so that it was always between 0 and 1. The threshold O = 0.35 is used to detect oscillations.

The spiking model dynamics are noisy and a simple threshold crossing criterion to detect oscillations may not be precise enough to estimate the extent of the bistable region. To improve this estimate, we used the knowledge of the structure of the phase diagram provided by the study of the rate model. For each simulation at a fixed value of J MSN Ctx , we applied three post-processing algorithms: (1) We looked for the largest asynchronous state region. [START_REF] Lowe | Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations[END_REF] We considered the locations detected as oscillatory or bistable to the left of the largest asynchronous state region in the phase diagram as in fact miss-detections. We thus classified them as being in the asynchronous region. (3) We considered the right-most transition line from the non-oscillatory to the oscillatory regime as the boundary of the oscillatory region.

Chapter 3

Preliminary evidence for bistable characteristics of absence seizures Abstract Absence seizures are characterized by brief interruptions of consciousness accompanied by abnormal brain oscillations, termed spike-and-wave (SW) discharges, persisting tens of seconds. In computational modeling studies it has been hypothesized that bistable dynamics underlie absence seizures because of a clear difference and sudden transitions between inter-ictal and ictal cortical activity patterns and persistent nature of SW discharges. A common prediction from those bistable models is that the SW discharges can be initiated and terminated by external perturbations to the system (e.g., electrical stimulation to the cortex). Furthermore, those bistable models predict that the perturbation has to be provided during a particular phase of a SW complex in order to terminate SW discharges.

Here we report that the SW discharges can be initiated and terminated through strong short or weak long cortical electrical stimulation in Genetic Absence Epilepsy Rats from Strasbourg, a well established rodent model of absence epilepsy. Furthermore, for short duration and high amplitude stimulations, successful terminations occurred only if they were provided during the wave-element of the SW complex. These results are consistent with the theoretical predictions.

Introduction

Absence seizures are characterized by interruptions of conscious experience accompanied with abnormal brain oscillatory activity which persist tens of seconds [START_REF] Crunelli | A role for GABAB receptors in excitation and inhibition of thalamocortical cells[END_REF]. The oscillations recorded in electroencephalogram (EEG) are called spike-and-wave discharges (SWD) whose pattern clearly different from the normal state [START_REF] Gibbs | The electro-encephalogram in epilepsy and in conditions of impaired consciousness[END_REF]. In the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and WAG/Rij rats, well established rodent models of absence epilepsy, the frequency of SWD oscillations (intra-SWD frequency) has consistent value within an animal model when it is measured during a consistent window of ictal period, as the frequency gradually drops during an ictal period [START_REF] Akman | Electroencephalographic differences between WAG/Rij and GAERS rat models of absence epilepsy[END_REF]). On the contrary, the ictal period in GAERS is 25 ± 8 sec in general but can last up to 60 sec in some individuals [START_REF] Depaulis | The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies[END_REF]. A statistical analysis indicates that ictal periods of some human patients and GAERS individuals can be modeled as exponential distributions [START_REF] Suffczynski | Dynamics of epileptic phenomena determined from statistics of ictal transitions[END_REF]. The same study shows that, in general, the initiation of SWD in human patients, GAERS and WAG/Rij rats are stochastic and SWD mechanism can be modeled as a bistable system with noise switching ictal and inter-ictal states. Indeed, converging evidence shows that the initiation of seizures in rodent genetic models occurs from a specific cortical focus [START_REF] Meeren | Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats[END_REF][START_REF] Meeren | Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory[END_REF][START_REF] Polack | Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures[END_REF]Polack et al. 2009) whose deep layer neurons have hyperactivity and inter-ictal oscillations [START_REF] Polack | Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures[END_REF]). These pathological activity may underlie noise switching the ictal and inter-ictal states while evidence showing the roles of subcortical structure such as the thalamus and basal ganglia [START_REF] Meeren | Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory[END_REF][START_REF] Hughes | Absence seizures: a review of recent reports with new concepts[END_REF][START_REF] Leresche | From sleep spindles of natural sleep to spike and wave discharges of typical absence seizures: is the hypothesis still valid?[END_REF][START_REF] Depaulis | Endogenous control of epilepsy: the nigral inhibitory system[END_REF][START_REF] Charpier | The Subthalamic Nucleus : From In Vitro to In Vivo Mechanisms[END_REF] indicates that the bistable mechanism are embedded in the network of cortical and subcortical structures.

This idea is explored in computational studies which tried to explain the mechanism of SWD using bistable models [START_REF] Suffczynski | Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network[END_REF][START_REF] Marten | Derivation and analysis of an ordinary differential equation mean-field model for studying clinically recorded epilepsy dynamics[END_REF][START_REF] Taylor | A spatially extended model for macroscopic spikewave discharges[END_REF][START_REF] Taylor | A model of stimulus induced epileptic spike-wave discharges[END_REF]. In Chapter 2, we developed a theory of SWD maintenance mechanism based on a bistable BG-thalamo-cortical network. Our theory predicts that cortical stimulation with a specific amplitude, duration and phase relationship resets the seizures with high probability. Although similar relationship can be found in a thalamocortical model [START_REF] Suffczynski | Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network[END_REF], this property would limit mathematical structure underlying the bistability. To be more precise, this relationship indicates that the bistability is a consequence of a subcritical Hopf bifurcation which is the case of our model and the thalamocortical model.

Although there is a large body of evidence supporting the idea of bistability as underling mechanism of absence seizures, there is no direct evidence showing that the brains of epileptic animals are bistable. [START_REF] Berényi | Closed-loop control of epilepsy by transcranial electrical stimulation[END_REF] showed repeated transcranial electrical stimulations during an SWD episode shorten the ictal period. However, initiation of SWD with such stimuli are not described and the phase relationship is not clear with such repeated stimuli. [START_REF] Perez | Phase response curves in the characterization of epileptiform activity[END_REF] noted that belief (∼1 sec) desynchronizations of SWD are observed upon single pulse stimulation in their phase response curve study. However, they did not observe complete interruption and no specific phase of the perturbation was found. Here, we describe preliminary experimental results in GAERS which shows initiation and termination evoked by electrical stimulation of the somatosensory cortex. The phase relationship observed is in line with our theoretical result. To our knowledge, this is the first time that bistability of absence seizures is directly observed.

Results

We found that SWD can be initiated and terminated in GAERS through strong short (Figure 3.1) and weak long cortical electrical stimulation. Short duration and high amplitude stimulations are provided via a bipolar electrode located at deep layer of the barrel cortex during ictal and inter-ictal states. The power in 4-12 Hz frequency band of simultaneously recorded EEG traces of the same cortical area are calculated within pre-and post-stimulus 1024 ms time window (Figure 3.1D,left). A clear separation of left cluster and right clusters is due to a bimodal distribution of the pre-stimulus power and shows that inter-ictal (blue dots) and ictal (green and red dots) states can be differentiated by the power of this frequency band. The post-stimulus power of the EEG traces which are in inter-ictal states before the stimulus (blue dots) shows consistent increase in power except for two cases, indicating robust initiation of the SWD via electrical stimulation. The post-stimulus power of the EEG traces which are in ictal states before the stimulus (right clusters) have bimodal distribution (green and red dots), showing that successful and failed terminations of the SWD can be clearly speared (Figure 3.1B). Since SW complex is a highly repeated pattern, the EEG voltage just before the stimulus (Figure 3.1D, right) provide a rough estimate of the timing of the stimulus within a SW complex. The histograms of the EEG voltage for the success and failed cases show a clear difference and thus indicate the timings at which the stimuli are provided are also different. Furthermore, successful terminations occurred only if they were provided during the wave-element of the SW complex (positive EEG voltage; Figure 3.1C). If provided during the spike-element of the SW complex (negative EEG voltage), the terminations failed. Therefore, there is a particular window in a SW complex for successful SWD termination by a short duration and high amplitude stimulation. 

Discussion

We demonstrated that SWD can be initiated and terminated in GAERS through electrical stimulation in the barrel cortex. Furthermore, termination occurs only when the stimulation is provided during the wave element in the SW complex. Evoked terminations of SWD observed in our experiments is clearer than previous studies using transcranial electrical stimulations [START_REF] Berényi | Closed-loop control of epilepsy by transcranial electrical stimulation[END_REF] or more local stimulations using a bipolar electrode [START_REF] Perez | Phase response curves in the characterization of epileptiform activity[END_REF]). Transient thalamic electrical stimulation is known to initiate SWD in monkeys [START_REF] David | Behavioral and electrical correlates of absence seizures induced by thalamic stimulation in juvenile rhesus monkeys with frontal aluminum hydroxide implants: A pharmacologic evaluation[END_REF] and WAG/Rij rats [START_REF] Lüttjohann | Thalamic stimulation in absence epilepsy[END_REF] although evoked terminations of SWD with the same stimulations have not been reported.

As the wave-element in SW complex corresponds to silence in cortical neurons [START_REF] Danober | Pathophysiological mechanisms of genetic absence epilepsy in the rat[END_REF][START_REF] Polack | Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures[END_REF], the phase-duration-amplitude relationship required for successful terminations is consistent with our theoretical prediction (Figure 2.9B,C) as well as thalamocortical model of absence seizures [START_REF] Suffczynski | Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network[END_REF]. Our observations of the bistable characteristics of absence seizures favor computational models based on bistable mechanisms (our BG-thalamo-cortical model investigated in Chapter 2 and thalamocortical models investigated in [START_REF] Suffczynski | Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network[END_REF][START_REF] Marten | Derivation and analysis of an ordinary differential equation mean-field model for studying clinically recorded epilepsy dynamics[END_REF][START_REF] Taylor | A spatially extended model for macroscopic spikewave discharges[END_REF][START_REF] Taylor | A model of stimulus induced epileptic spike-wave discharges[END_REF] than the models not replying on bistable mechanisms [START_REF] Destexhe | Spike-and-wave oscillations based on the properties of GABAB receptors[END_REF][START_REF] Destexhe | Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents?[END_REF][START_REF] Chen | Bidirectional control of absence seizures by the Basal Ganglia: a computational evidence[END_REF][START_REF] Chen | Critical Roles of the Direct GABAergic Pallido-cortical Pathway in Controlling Absence Seizures[END_REF].

Recently, anti-epileptic effect of deep brain stimulation (DBS) of SNr in GAERS automatically triggered upon detection of SWD was explored [START_REF] Saillet | Neural adaptation to responsive stimulation: a comparison of auditory and deep brain stimulation in a rat model of absence epilepsy[END_REF][START_REF] Depaulis | The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies[END_REF]. The clinical advantages of such approach is reduction of power consumption of brain stimulators, neural adaptation, and behavioral or physiological side-effects. Similar high frequency long lasting (1 sec; longer than the duration of a SW complex) stimulation provided to VPM or anterior thalamic nucleus also was shown to disrupt spontaneous SWD [START_REF] Lüttjohann | Thalamic stimulation in absence epilepsy[END_REF]. In the BG-thalamo-cortical bistable model we developed (Chapter 2) the SNr and thalamus are in the feedback loops maintaining oscillations. Thus, this model predicts that the transient single pulse stimulation of SNr or thalamus is as effective as cortical stimulation. Such single pulse stimulation combined with on-line phase detection may realize the aforementioned clinical advantages more effectively than long lasting high frequency stimulation used in the DBS studies. This is in contrast to the case of Parkinson's diseases in which neural oscillations exist even in the resting state, i.e., non-oscillatory normal state is not stable. Thus, the DBS widely used in Parkinson's disease treatment are not likely to be replaced with single pulse stimulation. On the other hand, seizure state is clearly distinguished from the normal state which is stable. Thus, it may be an interesting direction unique to epilepsy treatment to exploit the stability of the normal state and dynamically turn off the seizures by transient single pulse DBS.

Materials and Methods

In vivo experiments from epileptic animals Animal preparation

Experiments were conducted in vivo from 3 adult GAERS mature for SWD. The animals were initially anesthetized with sodium pentobarbital (40 mg/kg, i.p.; Centravet, Plancöet, France) and ketamine (50 mg/kg, i.m.; Imalgène, Merial, France). A cannula was inserted into the trachea, and the animal was placed in a stereotaxic frame. Wounds and pressure points were repeatedly (every 2 h) infiltrated with lidocaïne (2%). A craniotomy was performed above the primary somatosensory cortex. The rats were subsequently maintained in a narcotized and sedated state by injections of fentanyl (3 µg/kg, i.p.; Janssen-Cilag, Issy-les-Moulinaux, France) repeated every 20-30 min [START_REF] Polack | Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures[END_REF]Polack et al. 2009). Rats were immobilized with gallamine triethiodide (40 mg/2h; Sigma, France) and artificially ventilated. The degree of anesthesia was assessed by continuously monitoring EEG and heart rate, and additional doses of fentanyl were administered at the slightest change toward an awake pattern (i.e., an increase in the frequency and reduction in the amplitude of the EEG waves and/or an increase in heart rate). Body temperature was maintained (36.5-37.5 • C) with a homeothermic blanket.

Electrophysiological recordings

The surface EEG was recorded with a silver electrode (∼60 kΩ) placed on the dura above the facial region of the somatosensory cortex, at the following stereotaxic coordinates: 0.7-1mm posterior to the bregma, 4.5-5.5mm lateral to the midline. This cortical area has been shown to be the ictogenic region (cortical focus) in GAERS (Polack and Charpier, 2009;[START_REF] Polack | Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures[END_REF]Polack et al., , 2009)). A reference electrode was placed in a contralateral head muscle. A bipolar stimulating electrode was inserted within the cortical focus to deliver controlled electrical shocks. In one rat, short-lasting strong stimulation (200 µs duration, 20V), designed to mimic the pulse-like input predicted to be required for termination during the silent period (φ ∼ 0.5; Figure 2.9B,C), was provided. For the two other rats, a train of weak stimuli (200 µs duration, 2.5 or 5 V, 7 or 14 times for every 10 ms) was applied to mimic long-lasting stimulation required for termination during the active period (φ ∼ 0; Figure 2.9B,D). We confirmed that both initiation and termination could be evoked with one of these stimulation parameters (14 pulses with 2.5V intensity) in one of these rats. The other rat was stimulated with only one other parameter (14 pulses with 5V intensity) due to the shorter duration of the recording and we did not observe any consistent initiation or termination. Since the relationship between the train of weak pulses and the long step input used in the simulation was less direct than the strong single pulse stimulation, we only present the data from the rat with the latter stimulation parameter. Spontaneous EEG activity was first monitored to track and record the appearance of spontaneous SWDs. After 1-4h of spontaneous EEG recording, the following stimulation protocol was applied: when a spontaneous SWD began, electrical stimulation interleaved with 1-3s intervals were applied during the SWD. This SWD recording and stimulation protocol lasted 1-4h.

Data acquisition and analysis

For a given set of stimulation parameters, the voltage traces were visually inspected around the all cortical stimulation applied during the SWD, and were labeled as successful (if SWD persisted after stimulation) or failed termination (if SWD were abolished by stimulation, Figure 3.1B). The power spectral density of the EEG was calculated over a 1024 ms window prior to the stimulus and at a 750 ms offset after the stimulus using the fast Fourier transform from the data digitized at a sampling rate of 1 kHz. This power spectral density was integrated over 4 to 12 Hz. We used this as oscillation index to detect SWD (Figure 3.1D). The EEG voltages immediately before stimulation were collected and their distribution is shown as a histogram for each of the two groups (Figure 3.1C).

Chapter 4

Complex dynamics of basal ganglia-thalamo-cortical loops Abstract The basal ganglia-thalamo-cortical network is shown to involved in various dynamics in physiological and pathophysiological conditions with different time scales such as tremor frequency and alpha/low-beta frequency bands in Parkinsonian oscillations. We develop a novel mathematical method to investigate the dynamics of this network. First, the maintenance mechanism of absence seizures proposed in Chapter 2 is shown to be analytically trackable using this method. We then explore more complex dynamics and show that our network model can have at least seven dynamical regimes including tristability of one fixed point and two oscillatory states and bistability between a fixed point and a chaotic attractor. Relation to these dynamics to the Parkinsonian oscillations is discussed.

Introduction

In Parkinson's disease, complex oscillatory patterns composed of multiple frequency bands are observed in firing rate of single units and LFP of BG nuclei in human patients [START_REF] Levy | High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor[END_REF][START_REF] Hutchison | Identification and characterization of neurons with tremor-frequency activity in human globus pallidus[END_REF][START_REF] Hayase | Neuronal Activity in GP and Vim of Parkinsonian Patients and Clinical Changes of Tremor through Surgical Interventions[END_REF][START_REF] Hurtado | Dynamics of tremor-related oscillations in the human globus pallidus: A single case study[END_REF][START_REF] Magnin | Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients[END_REF]Levy et al. 2002b), MPTP-treated monkeys [START_REF] Bergman | The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism[END_REF][START_REF] Wichmann | The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism[END_REF][START_REF] Raz | Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine vervet model of parkinsonism[END_REF][START_REF] Bergman | Physiology of MPTP Tremor[END_REF][START_REF] Wichmann | Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates[END_REF][START_REF] Dostrovsky | Oscillatory activity in the basal gangliarelationship to normal physiology and pathophysiology[END_REF], and 6-OHDA-lesioned rats [START_REF] Deumens | Modeling Parkinson's Disease in Rats: An Evaluation of 6-OHDA Lesions of the Nigrostriatal Pathway[END_REF][START_REF] Sharott | Dopamine depletion increases the power and coherence of β-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat[END_REF][START_REF] Meissner | Increased slow oscillatory activity in substantia nigra pars reticulata triggers abnormal involuntary movements in the 6-OHDA-lesioned rat in the presence of excessive extracelullar striatal dopamine[END_REF]. These oscillatory patterns are intermittent and spatially localized [START_REF] Ben-Pazi | Synchrony of rest tremor in multiple limbs in Parkinson's disease: evidence for multiple oscillators[END_REF][START_REF] Hurtado | Dynamics of tremor-related oscillations in the human globus pallidus: A single case study[END_REF][START_REF] Hurtado | Temporal evolution of oscillations and synchrony in GPi/muscle pairs in Parkinson's disease[END_REF][START_REF] Park | Fine Temporal Structure of Beta Oscillations Synchronization in Subthalamic Nucleus in Parkinson's Disease[END_REF]. Since Parkinson's disease is due to degeneration of dopamine in BG, it has been hypothesized that BG drives the Parkinsonian oscillations [START_REF] Boraud | Oscillations in the Basal Ganglia: The good, the bad, and the unexpected[END_REF][START_REF] Gatev | Oscillations in the basal ganglia under normal conditions and in movement disorders[END_REF][START_REF] Pavlides | Computational Models Describing Possible Mechanisms for Generation of Excessive Beta Oscillations in Parkinson's Disease[END_REF]. Transient and focal oscillations are also observed in healthy animals during behavioral tasks [START_REF] Courtemanche | Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys[END_REF][START_REF] Boraud | Oscillations in the Basal Ganglia: The good, the bad, and the unexpected[END_REF][START_REF] Decoteau | Oscillations of Local Field Potentials in the Rat Dorsal Striatum During Spontaneous and Instructed Behaviors[END_REF][START_REF] Leventhal | Basal Ganglia Beta Oscillations Accompany Cue Utilization[END_REF]. How can BG have such rich repertoire of oscillations?

The major finding of Chapter 2 is that enhancing striatal feedforward inhibition enlarges the region of bistability between normal asynchronous state and pathological synchronous oscillations. The mechanism of bistability and its enlargement by the striatal interneurons can be mathematically understood by the reduction of the population rate description of this network described as multi dimensional differential equations into a one dimensional discrete time dynamical system also known as map. The assumption for this reduction is that neuronal and synaptic time scales are much shorter than synaptic delays along the feedback loops in the BG-thalamo-cortical network. We apply this assumption by taking the limit in which the sum of synaptic delays goes infinity. With this technique, we were able to analytically calculate the boundary of the bistable region in the parameter space of the network. It requires determining two kinds of boundary. One of the boundary is a Hopf bifurcation which is a local bifurcation from a fixed point. The classical method calculating exponential decay of the perturbation can determine this kind of boundary. The other boundary is the saddle-node bifurcation which is a global bifurcation. The attractor appears out of nowhere and hence the classical "local methods" cannot be applied. Our method using the discrete model can be applied to both cases. Although this method is only true in the large delay limit, boundaries of dynamical regimes in the discrete model and the original rate model are quantitatively similar. Furthermore, in the reduced discrete model, we can mathematically prove that this bistable region in the parameter space increases upon an increase in any synaptic and neuronal gain along cortex-FSI-MSN pathway.

With this reduced discrete model, we can explore the parameter space of the network analytically. In Chapter 2, we reduced the parameters of the model to the gain of three feedback loops through BG. While this is valid loss-less reduction for the local bifurcations, it is not valid for the global bifurcations. Thus, the parameter space to be explored for global bifurcations has high dimensionality and it is practically impossible to use numerical methods. With the reduced discrete model, we avoided this difficulty and it led us to discover new dynamical regimes that are more complex than the bistability we described in Chapter 2. The discrete model predicts that there could be tristability between a fixed point and two limit cycles. Furthermore, it also predicts that this system can exhibit chaotic dynamics. Indeed, we found these complex dynamics in the original continuous time rate network model. These complex dynamics may explain several modes of BG oscillations in Parkinson's disease.

Discrete-time approximation of basal ganglia-thalamo-cortical network 4.2.1 Reduction to one dimensional discrete system

To explain the idea of the reduction, consider an arbitrary one dimensional delayed differential equation of the form

τ dx dt (t) = -x(t) + f (x(t -∆))
where τ is the time constant of the system, ∆ is the delay and f is an arbitrary function. In our context, x is cortical firing rate, τ is the neuronal context of the cortex, ∆ is the delay through the (hyperdirect) feedback loop and f accounts for how synaptic interactions of BG and thalamus shapes cortical output into feedback input. By assuming the feedback delay is much larger than the time constant (τ ∆), one can take the limit τ → 0 and obtain the discrete-time dynamical system (also known as map)

x(t) = f (x(t -∆)).
Although the assumption τ ∆ does not hold since difference is not large in our simulations (∆ 20 ms; τ 5 ms), we show that the phase diagram of the discrete system is qualitatively indistinguishable from the rate model. Note that similar reduction is used to analyze local Hopf bifurcation of optical systems [START_REF] Larger | Subcritical Hopf bifurcation in dynamical systems described by a scalar nonlinear delay differential equation[END_REF][START_REF] Erneux | Ikeda Hopf bifurcation revisited[END_REF]). However, to our knowledge, this is the first model in which this method is used to analyze global saddle-node bifurcation.

This reduction can be done directly from the multidimensional delayed differential equation of the rate model

τ p dm p dt (t) = -m p (t) + G p q J pq m q (t -∆ q ) + h p
(see also Equation 2.2 and 2.3). By taking the limit τ p → 0, one obtains

m p (t) = G p q J pq m q (t -∆ q ) + h p .
By assuming that FSI-MSN interactions are instantaneous (∆ FSI = 0 and τ FSI = 0; as in Chapter 2) and delays through hyperdirect, direct and "through FSI" pathways are identical, current cortical output m Ctx (t) can be expressed as a function of the cortical output of the "previous step" m Ctx (t -∆) (Figure 2.1) where ∆ is the sum of the synaptic delays through the hyperdirect feedback loop. Such function f can be written as

f (m) = [[C 1 F (C 2 m + γ) + B m + β] + + A m + α] + (4.1)
where m is the cortical output, [•] + is the threshold linear function ([x] + = x if x > 0 otherwise 0), F = G FSI and the parameters are given by

A := J Ctx Th J Th SNr J SNr STN J STN Ctx B := J Ctx Th J Th SNr J SNr MSN J MSN Ctx B 1 := J Ctx Th J Th SNr J SNr MSN C 1 := J Ctx Th J Th SNr J SNr MSN J MSN FSI C 2 := J FSI Ctx α := J Ctx Th J Th SNr J SNr STN h STN + J Ctx Th J Th SNr h SNr + J Ctx Th h Th + h Ctx β := J Ctx Th J Th SNr J SNr MSN h MSN γ := h FSI .
In the above derivation, the STN, SNr and thalamus are assumed to be always active. Two threshold linear functions are from the input output relationship of the MSN and the cortex populations. The parameters A, B, C 1 and C 2 are the feedback gains and α, β and γ are "effective external input" (or equivalently "effective negative threshold") to the cortex, MSN and FSI respectively.

Analysis of the discrete model dynamics

The fixed point p of the dynamics of the map f is the point which satisfies p = f (p). The stability boundary of the fixed point is |f (p)| = 1. The same analysis done for f 2 = f • f instead of f determines the existence and the stability of the period-2 orbit. Since period doubling instability at f (p) = -1 coincides with the Hopf instability condition of the original delayed differential equation in the limit τ → 0 and in this limit the oscillatory period of the original delayed differential equation tends to 2∆, the period of period-2 orbit, we identify the stable period-2 orbit with the oscillations of the rate model. The fixed points and period-2 orbits can be visualized as the points where the map f and f 2 , respectively, cross the identity line "y = x". In Figure 4.1, the examples of bistability of the fixed point and period-2 orbit are shown for the case with out FSI (Figure 4.1A; J MSN FSI = 0) and with FSI (Figure 4.1B). The black dot on the map f corresponds to the stable fixed point and two black dots on f 2 ((0, 0) and (α, α)) correspond to one stable period-2 orbit. The unmarked points between the stable fixed point and period-2 orbits where f 2 crosses identity line correspond one unstable period-2 orbit. The unstable period-2 orbit separates the basins of the attraction for the stable fixed point and the stable period-2 orbit.

In the parameter regime of Figure 4.1, the bifurcation process of the map f in this parameter is as follows. When the hyperdirect feedback gain A is varied from 0 to more negative value with other parameters fixed to the values in Figure 4.1, the stable and unstable period-2 orbit appear "out of nowhere" via saddle-node bifurcation (global bifurcation). Initially monostable dynamics (stable fixed point) becomes bistable (stable fixed point and period-2 orbit) as in Figure 4.1. When the hyperdirect feedback gain is increased further, the slope at the stable fixed point becomes steeper 

C 1 = -1, C 2 = 2.5, ν Ctx = 1 Hz, ν MSN = 0.2 Hz, h FSI = 0.5 Hz, B 1 = 2 (B)
The phase diagram with two bistable regions. In the left bistable region, the oscillation is driven by the feedback through FSI since the hyperdirect feedback gain is |A| < 1 and this loop alone cannot drive the oscillations. Parameters are the same as (A) except for B 1 = 6. direct feedback gain B yields the saddle-node bifurcation boundary

B S = C 1 {F (h FSI -C 2 (A ν Ctx + B 1 ν MSN )) -ν FSI } + ν Ctx A ν Ctx + B 1 ν MSN -A. (4.4)
Note that B and B 1 are independent variables and varying B with fixed B 1 is equivalent to varying J MSN Ctx . By combining the boundaries of Hopf B H , rate B H and saddle-node B S instabilities, the possible dynamical regimes of the discrete model can be summarized as a phase diagram on A-B plane (Figure 4.2). The size of bistable region is

δB = B S -B H = 1 + ν Ctx A ν Ctx + B 1 ν MSN -C 1 C 2 F (h FSI -C 2 (A ν Ctx + B 1 ν MSN )) -ν FSI -C 2 (A ν Ctx + B 1 ν MSN ) -F (h FSI ) . (4.5)
Since the first two terms are not related to the FSI, the contribution of the FSI is defined by

Γ = -C 1 C 2 F (h FSI + x) -F (h FSI ) x -F (h FSI ) (4.6) where x = -C 2 (A ν Ctx + B 1 ν MSN ).
Since F is a convex function and -C 1 C 2 > 0, we have Γ > 0 when x > 0. In other words, the bistable region is increased by increasing C when x > 0. When A < A * := -B 1 ν MSN /ν Ctx is satisfied, x > 0. Thus, the condition for the bistable region being increased due to strong striatal inhibition C is A < A * . Note that lim A→A * ±0 B S (A) = ∓∞. In Figure 4.2, the phase diagrams for two values of B 1 are shown. When B 1 is strong, a bistable region appears in the range A * < A < 0. However, since |A| is weak in this region, the source of the oscillations is the negative feedback C. As we assume that the hyperdirect loop A is strong enough to make the network oscillatory, we will focus on the bistable region in the range A < A * .

In Figure 4.3, the phase diagrams are shown for different values of the strength of striatal inhibition. As shown in the example (Figure 4.1A), the bistable region exists in the absence of FSI (C 1 = 0; Figure 4.3A). This small bistable region extends when the striatal inhibition C 1 is increased (Figure 4.3B,C). Thus, the discrete model reduced from the rate model captures physiological and pathophysiological dynamics of BG-thalamo-cortical network explored in Chapter 2 using the rate and spiking model.

Effects of synaptic dynamics

There are two aspects of the rate and spiking model dynamics not reproduced in the discrete model. First, since the time is discrete, the cortical activity is allowed to jump between up and down phases and therefore MSN are never active in the stable period-2 orbit. In the rate model, this is not the case since the cortical activity varies continuously. However, we already explained that MSN are suppressed almost all the time provided striatal feedforward inhibition is sufficiently fast (Figure 2.4). Furthermore, in the spiking model, the suppression is almost perfect at the single neuron level since the firing rate is very low (Figure 2.2).

Second, the bistable region extends indefinitely for large gains of the hyperdirect A and direct B feedbacks (Figure 4.2, 4.3) which is not the case in the rate (Figure 2.4A) and spiking model (Figure 2.7). What assumption we made for the mathematical reduction introduces such difference? Is it due to the core but admittedly biologically implausible assumption we made that synaptic and neuronal integration time is negligible compared to the sum of synaptic conduction delays through the feedback loops? Or is it due to other auxiliary assumptions?

Degenerate and non-degenerate rate models

As explained in Section 2.4.3, the characteristic exponent of the dynamics of the rate model is given as the solution of the characteristic equation P 0 (λ) = det M = 0 where

P 0 (λ) = p∈P (λ τ p + 1) -A (λ τ MSN + 1) (λ τ FSI + 1) exp(-λ ∆ A ) -B (λ τ STN + 1) (λ τ FSI + 1) exp(-λ ∆ B )
-C (λ τ STN + 1) exp(-λ ∆ C ), P = {Ctx, MSN, FSI, STN, SNr, Th} and

∆ A = ∆ Th + ∆ SNr + ∆ STN + ∆ Ctx ∆ B = ∆ Th + ∆ SNr + ∆ MSN + ∆ Ctx ∆ C = ∆ Th + ∆ SNr + ∆ MSN + ∆ FSI + ∆ Ctx .
By a biologically plausible assumption that FSI-MSN interaction time is negligible compared to other interactions (τ FSI = ∆ FSI = 0), the characteristic equation is simplified to P 1 (λ) = 0 where

P 1 (λ) = p∈P (λ τ p + 1) -A (λ τ MSN + 1) exp(-λ ∆ A ) -(B + C) (λ τ STN + 1) exp(-λ ∆ B ).
Recall that we assume that the hyperdirect and direct feedback delays are identical to obtain the discrete model. Furthermore, in the limit τ p → 0 all the synaptic time constants are all zero and thus indistinguishable. With these assumptions (∆ = ∆ A = ∆ B , τ = τ p for all p = FSI), the characteristic equation is further simplified to P 2 (λ) = 0 where 

P 2 (λ) = (λ τ + 1) 4 -(A + B + C) exp(-λ ∆).

Slow feedback in the direct pathway

The phase diagrams of the discrete model (Figure 4.4A), the degenerate rate model (Figure 4.4B) and the non-degenerate rate model (Figure 4.4C) show that non-degeneracy (∆ A = ∆ B ) is the source of unboundedness of the bistable region, not the assumption that synaptic time constant is negligibly fast compared to the feedback delays. Indeed, the bistable region is unbounded in the non-degenerate rate model (Figure 4.4C) even though the limit τ → 0 is not applied. Comparing the phase diagrams, it seems that only the Hopf boundary is affected, i.e., curved leftward, when the direct feedback is slower than the hyperdirect feedback. The saddle-node boundary qualitatively stays the same.

How the striatal feedforward inhibition enhances bistability

Since the contribution Γ of the striatal feedforward inhibition to the size of bistable region (Equation 4.6) is linear in C 1 , it is clear that the bistable region enlarges when C 1 is increased (Figure 4.3).

The dependency of C 2 can be assessed simply by differentiating Γ by C 2 : parameter η used in the numerical analysis of the spiking model (Equation 2.1). To see this, replace C 1 and C 2 with η -1 C 1 and ηC 2 respectively in Equation 4.6 which yields

Γ (C 2 ) = -C 1 (F (h FSI -C 2 (A ν C + B 1 ν M )) -F (h FSI )) Since -C 1 > 0, x = -C 2 (A ν Ctx + B 1 ν MSN ) > 0,
Γ η = -C 1 C 2 F (h FSI + ηx) -F (h FSI ) ηx -F (h FSI ) .
It is easy to see that FSI-dependent increase of the bistability vanishes when the nonlinearity is weak (Γ η → 0 as η → 0) and Γ η is a monotonically increasing function of η. In sum, increasing striatal feedforward inhibition strength (C 1 and C 2 ) and nonlinearity (η) enlarges the bistable region. We already have shown that this feature is a generic property of BG-thalamo-cortical network using the rate (Figure 2.4A) and spiking (Figure 2.7) models.

How the bistability depends on other network parameters

The phase diagram of the spiking model (Figure 2.7) looses bistable region when the striatal feedforward inhibition is partially blocked or its nonlinearity is reduced. This is a feature different from the example phase diagrams of discrete and rate model shown so far. Can the discrete model explain this difference or is it a feature special to the spiking model? Using the Equation 4.5, the condition that the bistable region exist without FSI (δB| C1=0 > 0) is

ν MSN < - A + 1 B 1 ν Ctx .
From this equation, it can be read that low firing rate of the MSN helps bistability. This is intuitively clear since the bistability occurs due to dynamic shutdown of the direct feedback and if the firing rate of MSN is close to zero it is easy to cut the direct feedback. If the firing rates ν Ctx and ν MSN are fixed, remaining parameter is B 1 since the hyperdirect feedback gain A is varied when drawing the phase diagram. Changing B 1 means changing how the synaptic gains through direct feedback loop are distributed to J MSN Ctx and B 1 = J Ctx Th J Th SNr J SNr MSN . Thus, by sufficiently increasing B 1 , the discrete model looses bistable region when the striatal feedforward inhibition is blocked (Figure 4.6A). 

Complex dynamics

The unexpected finding in this parameter region is that dynamics is more complex than those of previously inspected parameters. Indeed, it is easy to find periodic orbits with various periods including that of period 3 (Figure 4.6B). Since the theorem of [START_REF] Li | Period Three Implies Chaos[END_REF] asserts that "period three implies chaos", dynamics of the BG-thalamo-cortical network is expected to be complex. Even when period-3 orbit is not found, period of small odd number such as 5 and 7 are easily found. According to the theorem of Sharkovski ȋ (1995), it implies that infinitely many periodic orbits exist [START_REF] Robinson | Dynamical Systems: Stability, Symbolic Dynamics, and Chaos[END_REF]. Since the curvature of the bump in Figure 4.6B is due to the nonlinearity of the input-output relationship of FSI, striatal feedforward inhibition is essential for such chaotic dynamics. In the rate model of similar parameter (Table 4.2), coexistence of at least three stable attractors is numerically confirmed and thus the phase diagram has much more complex structure (Figure 4.6C). Furthermore, the rate dynamics can be non-periodic and exhibit strange attractor (Figure 4.6D).

In addition to the stable fixed point and stable oscillations analyzed previously, another fixed point (mFP) in which MSN are not active and a complex oscillatory state (cOSC) bifurcated from mFP through supercritical Hopf bifurcation (the vertical line in Figure 4.6C) emerge. The complex oscillatory state in some parameter values behaves chaotic. Previously analyzed fixed point in which all populations are active and the simple oscillations are denoted as aFP and sOSC, respectively. Depending on the gain of hyperdirect and direct feedbacks, up to three of those stable states can coexist and symbolized as follows: am: aFP and mFP coexist ( The regions outside of the rate instability (U) and Hopf instability of mFP (OSC) are determined as previous phase diagrams. However, it does not mean that these are the only existing stable states. We focus only on the parameter region where the all-active fixed point (aFP) is stable since this region is considered closer to the parameter of the normal BG-thalamo-cortical network. Since mFP and cOSC relate to inactivation of MSN, cortical firing rate also drops and oscillates below the normal operating point in cOSC state (Figure 4.7). Interestingly, external input to the MSN is much more powerful to switching those stable states than external input to the cortex. Especially, we could not find simple rectangular input to initiate mFP or cOSC from aFP.

Note that sOSC frequency is higher (see also 2.1). This is for demonstrating that sOSC frequency can cover beta oscillations observed in rat model of Parkinson's disease. We defer the discussion on frequency to Section 5.1.

In the upper ac region, the cOSC state becomes non-periodic (Figure 4.7E) and exhibits strange attractor (Figure 4.6D). Is this state chaotic? Even though the corresponding discrete model has period-3 orbit and thus chaotic, it maybe an artifact of the reduction τ → 0. Furthermore, [START_REF] Li | Period Three Implies Chaos[END_REF] used a definition of chaos weaker than more famous definition of chaos in terms of the Lyapunov exponent. Thus, we computed the maximum Lyapunov exponent numerically while increasing hyperdirect and direct gains together (Figure 4.8A). Indeed, some regions of the parameter have positive Lyapunov exponent. Furthermore, around these regions, doubling of oscillatory period and eventual widening of the power spectral density (Figure 4.8B), which are known characteristics of chaotic systems, are observed. Note that if only the hyperdirect gain is varied while direct gain is fixed, the chaotic region in the plot Figure 4.8A become much more brief. It indicates that the chaotic region exists diagonally around the rate instability line. This is in line with the fact that typical continuous map with chaotic dynamics has bump as in Figure 4.6B (e.g., logistic map) due to the requirement that positive slope is necessary for positive Lyapunov exponent and the attractor has to be bounded. On the bump, the two gains have to be comparable since a maximal point exists. As a result, we find chaotic dynamics in the upper ac region and we do not find an example of chaotic dynamics coexisting with sOSC. When the cOSC and sOSC coexist, the fundamental frequency of cOSC is roughly the third of sOSC, indicating that cOSC relate to the period-3 orbit of the map (Figure 4.6B). Furthermore, the power spectral density of the chaotic dynamics at a close parameter region is similar to the one of cOSC. 

Discussion

We reveal the mathematical structure behind the bistability of the oscillations and fixed point in BG-thalamo-cortical network which we previously posit as a mechanism of absence seizures, using a novel method we developed for analyzing delayed differential equations. Furthermore, this method also reveals that the BG-thalamo-cortical network can have complex multi-stable dynamics and chaotic dynamics. The mechanism of such dynamics heavily rely on MSN threshold and the nonlinearity of the FSI activity.

The newly found complex oscillations (cOSC) which exhibits chaos in some parameter range have complex wave shape and slower oscillations. Intuitively, this is because the direct feedback tries to stabilize the oscillations in the phases where MSN are active and hence slows down the oscillations. This effect also takes place but is weak in the simple oscillations (sOSC). These two kinds of striatal contributions on the oscillations are not mutually exclusive. Indeed, we found a broad range of parameter in which these two oscillations can coexist together with the fixed point in which all populations are active with stationary firing rate.

The biological interpretations of the theoretical results are discussed in Chapter 5. Here, we confine our discussion to theoretical aspects.

Local and global bifurcation analysis

When analytic solution of differential equations is not available, a class of technique called singular perturbation methods (normal forms, hyper-normal forms, multi-scaling method, averaging method, geometric singular perturbation) is used. Recent studies in theoretical physics [START_REF] Chen | Renormalization Group Theory for Global Asymptotic Analysis[END_REF]Chen, Goldenfeld, and Oono 1996) and mathematics [START_REF] Deville | Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations[END_REF][START_REF] Chiba | Approximation of center manifolds on the renormalization group method[END_REF]Chiba 2009b;Chiba 2009a) unify such singular perturbation methods under the idea of the renormalization group method. The first step of such method is to write down "unperturbed solution" and therefore applicable for stability analysis of the perturbed solution (local bifurcation analysis) but not for emergence of a solution (global bifurcation analysis). Our bifurcation analysis covers global bifurcation (saddle-node bifurcation) and thus can capture the bistability between a fixed point and a limit cycle. There is no known general treatment for such global bifurcation analysis and thus one needs to exploit some system-specific properties. What is the dynamical properties of the BG-thalamo-cortical model important for the global bifurcation analysis? Recall that we set all the delays along feedback loops (hyperdirect, direct and "via FSI") to the same value before taking the limit τ /∆ → 0. It indicates that the parallel organization of the BG-thalamo-cortical loops is essential to our method. We have shown that in our models, slight difference in the delays of the parallel feedback loops and the fact that τ ≈ ∆ do not introduce a qualitative discrepancy between the reduced discrete model and the original rate model. Thus, our method may be applicable to other systems with similar parallel organization of feedback loops.

How to incorporate thalamocortical bursting in the discrete model

We discussed that inclusion of T-type current may help shaping the spike-and-wave complex without destroying the bistable property of the BG-thalamo-cortical network (Section 2.3.3). The discrete model may help confirming the latter point on bistability. As a simple approximation of bursting mode, the input-output relationship of the thalamocortical population may be replaced with a threshold linear function with a jump at the threshold or even with the Heaviside step function. Then the Hopf bifurcation (BST-OSC boundary) is calculated from the normal threshold linear function for the thalamocortical population and the saddle-node bifurcation (FP-BST boundary) is calculated from the aforementioned "bursting mode" input-output relationship. An additional self-consistent condition to the bursting mode solution has to be imposed to verify that the inhibition during the down phase in the thalamus is enough to produce the burst. Note that the above extension does not forbid the oscillations arising from the saddle-node bifurcation of the map in which thalamocortical neurons are in regular firing mode. If such a solution exists and the inhibition to the thalamus during the down phase is sufficiently weak for starting the rebound bursting then this "regular mode" oscillations (i.e., the oscillations we found here) may also exist and be stable. It is of theoretical interest if a fixed point, "regular mode" oscillations and "bursting mode" oscillations can coexist.

Incorporating topographic organization as coupled map systems

Topographic nature of BG-thalamo-cortical loops may be modeled as coupled maps. One of the simple kinds of the coupled maps is the globally coupled map defined as

x i (t + 1) = (1 -) f (x i (t)) + N N i=1 f (x i (t))
where t is a discrete time step, i is the index of an element, N is the number of elements, x i (t) is the dynamical state of the element i at time t, is the parameter controlling interaction strength between the elements and f is a (typically chaotic) map [START_REF] Kaneko | Chaotic itinerancy[END_REF]Kaneko 2015). If = 0 then the elements are completely decoupled and = 1 means the interaction is global. In our model, x i may be interpreted as the activity of a cortical population of i -th BG-thalamocortical "channel" and may be interpreted as the parameter controlling the interaction between such channels. Another kind of the coupled map model is the coupled map lattices in which only nearby elements interact [START_REF] Kaneko | Chaotic itinerancy[END_REF]Kaneko 2015). This may be a better model for topographic nature of the BG-thalamo-cortical network since the interaction is restricted to neighboring maps (i.e., BG-thalamo-cortical sub-loops).

The coupled map is one of the systems in which a complex dynamical state later termed chaotic itinerancy [START_REF] Kaneko | Chaotic itinerancy[END_REF]Tsuda 2013) is first discovered. The chaotic itinerancy is characterized by intermittent appearance of various ordered low-dimensional dynamical states interleaved by high-dimensional random motion. It has been shown to be relevant to 1/f noise [START_REF] Keeler | Robust space-time intermittency and 1/f noise[END_REF], dynamic memory in humans and animals [START_REF] Tsuda | Dynamic link of memory-Chaotic memory map in nonequilibrium neural networks[END_REF][START_REF] Tsuda | Memory Dynamics in Asynchronous Neural Networks[END_REF], searching process [START_REF] Nozawa | Solution of the optimization problem using the neural network model as a globally coupled map[END_REF][START_REF] Nara | Can potentially useful dynamics to solve complex problems emerge from constrained chaos and/or chaotic itinerancy?[END_REF]), communication of system elements with different time scales [START_REF] Okuda | A Coupled chaotic system with different time scales: possible implications of observations by dynamical systems[END_REF]Fujimoto and Kaneko 2003a;Fujimoto and Kaneko 2003b), and other topics less relevant to neuroscience. Behavior relevant and intermittently chaotic complex dynamics of EEG and LFP observed in olfactory, visual, auditory and somatosensory systems and hippocampus [START_REF] Skarda | How brains make chaos in order to make sense of the world[END_REF][START_REF] Kay | Reafference and attractors in the olfactory system during odor recognition[END_REF][START_REF] Freeman | Neurodynamics: An Exploration in Mesoscopic Brain Dynamics[END_REF]Freeman 2003;Kay 2003a) are hypothesized to be relevant to chaotic itinerancy [START_REF] Kay | Comparison of EEG time series from rat olfactory system with model composed of nonlinear coupled oscillators[END_REF]Tsuda 2009). In theoretical studies of neuroscience aspect of chaotic itinerancy, local circuits of cortex or thalamus are typically modeled. It is interesting to compare mathematical principles underlying chaotic itinerancy of large scale networks such as BG-thalamo-cortical network. It also worth pointing out that the minimal element for such "network of maps" is the channel in the BG-thalamo-cortical loops. This is in contrast to the minimal elements used in theoretical neuroscience studies such as neuron and population of neurons.

Chapter 5

Discussion

In Chapter 2, we have shown that strong feedforward inhibition in the striatum promotes bistability in the dynamics of BG-thalamo-cortical network. In the bistable regime, activation of the cortical neurons can trigger oscillations that persist for a long time. According to our theory, seizures in absence epilepsy correspond to such dynamics. We thus propose that, abnormally strong striatal feedforward inhibition is involved in the emergence of the electro-clinical symptoms of absence epilepsy.

In Chapter 4, we then determined a mathematical principle and a minimal set of physiological mechanisms of absence seizures maintenance by using a reduced one dimensional discrete dynamical system. This reduced model also reveals more complex dynamics such as tristability of one fixed point and two oscillatory states and bistability between a fixed point and a chaotic attractor which we relate to the multi-timescale nature of Parkinsonian oscillations. In summary, we obtained a model of BG-thalamo-cortical network which can explain a large variety of dynamics from clear-cut bistable dynamics such as absence seizures to more complex dynamics such as of Parkinson's disease.

Relation to pathological oscillations

Scaling of pathological oscillation frequencies

The rich repertoire of dynamics in BG-thalamo-cortical network we found may underlie complex oscillations of BG activity in Parkinson's disease composed of multiple frequency bands as well as simple monotone oscillations of spike-and-wave discharges (SWD) during absence seizures. In MPTP-treated monkeys [START_REF] Bergman | The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism[END_REF][START_REF] Wichmann | The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism[END_REF][START_REF] Raz | Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine vervet model of parkinsonism[END_REF][START_REF] Bergman | Physiology of MPTP Tremor[END_REF][START_REF] Wichmann | Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates[END_REF][START_REF] Dostrovsky | Oscillatory activity in the basal gangliarelationship to normal physiology and pathophysiology[END_REF]) and human patients of Parkinson's disease [START_REF] Levy | High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor[END_REF][START_REF] Hutchison | Identification and characterization of neurons with tremor-frequency activity in human globus pallidus[END_REF][START_REF] Hayase | Neuronal Activity in GP and Vim of Parkinsonian Patients and Clinical Changes of Tremor through Surgical Interventions[END_REF][START_REF] Hurtado | Dynamics of tremor-related oscillations in the human globus pallidus: A single case study[END_REF][START_REF] Magnin | Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients[END_REF]Levy et al. 2002b), the lowest frequency observed in firing rate of single units and LFP is of so-called tremor related oscillations and peaked in 3-8 Hz and the next faster frequency is the alpha frequency peak is in 8-15 Hz. In 6-OHDA-lesioned rats, the tremor related (4-10 Hz; [START_REF] Meissner | Increased slow oscillatory activity in substantia nigra pars reticulata triggers abnormal involuntary movements in the 6-OHDA-lesioned rat in the presence of excessive extracelullar striatal dopamine[END_REF]) and the next (25-30 Hz;[START_REF] Sharott | Dopamine depletion increases the power and coherence of β-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat[END_REF] frequencies are higher than primates. The SWD frequency (also called internal oscillation frequency) in monkeys [START_REF] David | Behavioral and electrical correlates of absence seizures induced by thalamic stimulation in juvenile rhesus monkeys with frontal aluminum hydroxide implants: A pharmacologic evaluation[END_REF]) and human patients [START_REF] Crunelli | A role for GABAB receptors in excitation and inhibition of thalamocortical cells[END_REF] is about 3 Hz and in rats it is about 7 Hz. In Chapter 2, we modeled SWD as oscillations sustained by BG-thalamo-cortical network. The BG-thalamo-cortical network is also thought to underlie the Parkinsonian oscillations [START_REF] Boraud | Oscillations in the Basal Ganglia: The good, the bad, and the unexpected[END_REF][START_REF] Gatev | Oscillations in the basal ganglia under normal conditions and in movement disorders[END_REF][START_REF] Pavlides | Computational Models Describing Possible Mechanisms for Generation of Excessive Beta Oscillations in Parkinson's Disease[END_REF]. If we assume that the oscillation mechanism in the animal models and patient is identical within each of these diseases and that the BG-thalamo-cortical network underlie mechanisms of these diseases, then it is expected that the oscillatory frequencies of Parkinson's disease are scaled as SWD do with the factor about 2 when comparing primates and rodents ( , these types of oscillations cannot share the same mechanism. Thus, we only consider the possibility that the mechanisms of the BG oscillations at the tremor related frequency and SWD are shared. Note that the common mechanism underlying SWD and tremor oscillations was proposed to take place in the thalamocortical network [START_REF] Buzsáki | Petit mal epilepsy and parkinsonian tremor: Hypothesis of a common pacemaker[END_REF]. This is in contrast to the scenarios we consider in which BG actively involved in those oscillations. . Unfortunately, conventional terminology (alpha, beta, gamma etc.) for frequency bands in neuroscience does not admit the scaling we consider here. Thus, we call the Parkinsonian oscillations (frequency) at the alpha frequency (8-15 Hz) in primates and high-beta frequency (25-30 Hz) in rodents the B-oscillations (frequency). This should not be confused with the beta frequency (15-30 Hz) observed in human patients [START_REF] Brown | Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease[END_REF][START_REF] Cassidy | Movement-related changes in synchronization in the human basal ganglia[END_REF] even though the physical frequency matches with the B-frequency of rodents. In the literature, the high-beta frequency oscillations in human patients has been discussed together with the oscillations in rodents at the same frequency (e.g., [START_REF] Tachibana | Subthalamo-pallidal interactions underlying parkinsonian neuronal oscillations in the primate basal ganglia[END_REF]) and the need for the scaling has been typically ignored. We argue that such scaling is necessary to understand mechanisms of homologous neural oscillations in different species. Similarly, we call the oscillations (frequency) of neural activity at the frequency of tremor the T-oscillations (frequency) to avoid confusion with the physical oscillations of the limbs during tremor. T-frequency in primates (3-8 Hz) and rodents (4-10 Hz) are around theta and theta to low-alpha bands, respectively.

Depending on which feedback loop drives the oscillations and the time constants associated with the feedback, there are two possible scenarios to reconcile Parkinsonian oscillations and absence seizures in our model (Table 5.1).

Scenario 1: hyperdirect feedback drives B-oscillations

The first scenario is that the hyperdirect feedback drives the B-oscillations. In this scenario, B-oscillations and T-oscillations are identified with sOSC and cOSC, respectively (Table 5.1). This is in line with the interpretation of our predecessor model [START_REF] Leblois | Competition between Feedback Loops Underlies Normal and Pathological Dynamics in the Basal Ganglia[END_REF]) in which 10-12 Hz oscillations (which we call sOSC here) driven by the hyperdirect feedback loop were interpreted as the Parkinsonian oscillations in nonhuman primate models of Parkinson's disease (i.e., B-oscillations).

Recall that the key change required for emergence of cOSC is increase of MSN firing rate at the fixed point and/or strengthening of MSN inhibition on SNr or on GPi at the non-oscillatory state. Note that despite such increase, the MSN activity and inhibition on SNr and GPi are weak when the network is in the complex oscillatory state or chaotic state (cOSC). Indeed, there are contradicting studies reporting increase or decrease of MSN firing rate in Parkinson's disease [START_REF] Kish | Multiple single-unit recordings in the striatum of freely moving animals: effects of apomorphine and d-amphetamine in normal and unilateral 6-hydroxydopamine-lesioned rats[END_REF][START_REF] Liang | Inversion of Dopamine Responses in Striatal Medium Spiny Neurons and Involuntary Movements[END_REF][START_REF] Mallet | Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats[END_REF]). This contradiction in those studies can be due to the bistability in the BG-thalamo-cortical network and resulting dependency of the MSN firing rate on the network state. The coexisting cOSC and the simple oscillations (sOSC) resembles the different frequency components in the Parkinsonian oscillations, namely the T-and B-oscillations. In our theory, the sOSC is faster due to the hyperdirect feedback and cOSC is about three times slower due to the interaction of MSN threshold and FSI nonlinearity. Thus, we identify sOSC with B-oscillations and cOSC with T-oscillations in this scenario. Furthermore, multiple sub-networks seem to generate the slower oscillations at the tremor frequency [START_REF] Ben-Pazi | Synchrony of rest tremor in multiple limbs in Parkinson's disease: evidence for multiple oscillators[END_REF]. This is compatible with cOSC in our model since this is due to the direct feedback through striatum which has more neurons than STN (Bar-Gad, Morris, and Bergman 2003) thus more oscillating variable can be embedded in the direct feedback loop. The GPi tremorrelated activity in Parkinsonian monkeys shown to transiently synchronized with upper limb tremor and also neuron to neuron [START_REF] Hurtado | Dynamics of tremor-related oscillations in the human globus pallidus: A single case study[END_REF]). These intermittent synchronization and desynchronization resemble a well-characterized type of dynamics called chaotic itinerancy [START_REF] Kaneko | Chaotic itinerancy[END_REF]Tsuda 2013). This type of dynamics is hypothesized [START_REF] Kay | Comparison of EEG time series from rat olfactory system with model composed of nonlinear coupled oscillators[END_REF]Tsuda 2009) to underlie behavior relevant and intermittently chaotic dynamics of EEG and LFP observed in olfactory, visual, auditory and somatosensory systems and hippocampus [START_REF] Skarda | How brains make chaos in order to make sense of the world[END_REF][START_REF] Kay | Reafference and attractors in the olfactory system during odor recognition[END_REF][START_REF] Freeman | Neurodynamics: An Exploration in Mesoscopic Brain Dynamics[END_REF]Freeman 2003;Kay 2003a). Chaotic itinerancy is produced by several mathematical models including coupled chaotic maps (Kaneko 2015). If spatial extension is introduced in our discrete model, nearby "channels" of the direct and hyperdirect feedbacks can be interpreted as coupled maps (see Section 4.4.3). It may help understanding the transient synchronization of Parkinson's disease.

In MPTP-treated monkeys, [START_REF] Tachibana | Subthalamo-pallidal interactions underlying parkinsonian neuronal oscillations in the primate basal ganglia[END_REF] showed that (1) blockade of GABAergic inhibition in GPi potentiate 8-15 Hz oscillations, (2) blockade of glutamatergic excitation in STN suppresses 8-15 Hz oscillations and (3) suppression of activity in GPe also suppresses 8-15 Hz oscillations. Interpreted in our framework, finding (1) indicates that hyperdirect feedback alone can drive B-oscillations (sOSC) and thus verifies our basic assumption. Finding [START_REF] Lowe | Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations[END_REF] indicates that hyperdirect feedback is necessary for B-oscillations and finding (3) indicates that hyperdirect feedback without indirect feedback cannot drive B-oscillations in the presence of direct feedback. Note that suppression of GPe in experiment (3) slightly increases STN firing rate and presumably STN neuronal gain. However, this results in increase in the hyperdirect feedback gain hence do not alter our conclusion, i.e., the hyperdirect feedback cannot drive oscillations even with an increase in gain for such condition. Thus, hyperdirect feedback through STN in our rate and discrete models have to be interpreted as combination of the hyperdirect feedback and feedbacks through GPe (cortex-MSN-GPe-STN-SNr/GPi-Th-cortex and cortex-MSN-GPe-SNr/GPi-Th-cortex). The results of [START_REF] Tachibana | Subthalamo-pallidal interactions underlying parkinsonian neuronal oscillations in the primate basal ganglia[END_REF] are considered by [START_REF] Pavlides | Computational Models Describing Possible Mechanisms for Generation of Excessive Beta Oscillations in Parkinson's Disease[END_REF] in a computational modeling framework and they concluded that oscillations driven by the hyperdirect feedback loop (in our terminology) is one of the possibility of Parkinsonian oscillations.

After L-DOPA treatment, typically the dyskinesia state appears prior to so-called ON state in which Parkinsonian motor symptoms are improved. During the dyskinesia state, 8-15 Hz oscillations are reduced [START_REF] Tachibana | Subthalamo-pallidal interactions underlying parkinsonian neuronal oscillations in the primate basal ganglia[END_REF]. Slow oscillations at tremor frequency are also observed in L-DOPA treated 6-OHDA-lesioned rats [START_REF] Meissner | Increased slow oscillatory activity in substantia nigra pars reticulata triggers abnormal involuntary movements in the 6-OHDA-lesioned rat in the presence of excessive extracelullar striatal dopamine[END_REF]). This transient increase in T-oscillations concomitant with reduction of B-oscillations may be due to bifurcations following change in gains of the BG feedback loops. Recall that, our theory (Figure 4.6C) shows that between asc-and am-region there exists ac-region where asc is the region in which B-oscillations exist, am is the region in which no oscillatory state exist and ac is the region in which T-oscillations (cOSC) but not B-oscillations (sOSC) exist. Thus, the ac-region may underlie the dynamics during dyskinesia state. In this case, decrease in the "chaosness" of T-oscillations with possible transient increase (Figure 4.8A) and step-like increase of the fundamental frequency of the T-oscillations due to undoing of the period-doubling (Figure 4.8C) may be observed during the dyskinesia state.

In human patients, oscillations in high beta frequency at 15-30 Hz are also observed [START_REF] Brown | Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease[END_REF][START_REF] Cassidy | Movement-related changes in synchronization in the human basal ganglia[END_REF] but not in monkeys (Gatev, Darbin, and Wich-mann 2006;[START_REF] Tachibana | Subthalamo-pallidal interactions underlying parkinsonian neuronal oscillations in the primate basal ganglia[END_REF]. This oscillations may be due to more local structure such as STN-GPe network (Table 5.1). Indeed, typical oscillatory frequency in computational models of Parkinsonian STN-GPe network is in 20-30 Hz range (Nevado-Holgado, Terry, and Bogacz 2010; [START_REF] Kumar | The Role of Inhibition in Generating and Controlling Parkinson's Disease Oscillations in the Basal Ganglia[END_REF][START_REF] Holt | Origins and suppression of oscillations in a computational model of Parkinson's disease[END_REF][START_REF] Pasillas-Lépine | Delay-induced oscillations in Wilson and Cowan's model: An analysis of the subthalamo-pallidal feedback loop in healthy and parkinsonian subjects[END_REF][START_REF] Pavlides | Improved conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network[END_REF] or even higher [START_REF] Merrison-Hort | An interactive channel model of the Basal Ganglia: bifurcation analysis under healthy and parkinsonian conditions[END_REF]. The difference between human patients and monkeys may be due to difference in synaptic efficacy along pathway which are not in sOSC driver (hyperdirect and indirect feedbacks), i.e., connection from STN to GPe. Note that this difference could exist already in healthy condition and the high beta oscillations appear upon increase of other synaptic or neuronal gains (e.g., GPe to STN) in Parkinson's disease.

Since the frequency of SWD is close to T-frequency (associated with cOSC) and much lower than B-frequency (associated with sOSC) (Table 5.1), SWD are not driven by the hyperdirect feedback loop in this scenario and may be associated with cOSC. This is incompatible to the interpretation of our theory developed in Chapter 2. However, most of the properties shown in Chapter 2 holds for cOSC. For example, the MSN activity is low during the oscillations and decrease in hyperdirect feedback gain breaks the oscillations. Thus, cOSC in this scenario is also compatible with experimental findings of MSN activity and pharmacological reductions of the hyperdirect feedback. There are two key differences. The first difference is that potentiation of direct feedback loop does not destabilize the SWD (cOSC). This can be seen in Figure 4.6C where am-ac (healthy-epileptic) boundary is vertical. The second difference is that FSI are not active during cOSC (Figure 4.7B,4.7D). However, FSI becomes active when the cortical firing rate oscillates in larger amplitude (sOSC in Figure 4.7D). Therefore, if mechanism underlying SWD shape as discussed Section 2.3.3 is incorporated, FSI may exhibit periodic bursting during cOSC. Note that it is also possible that scenario 1 is partially true in the sense that only Parkinsonian oscillations are generated in the BG-thalamo-cortical network while SWD are maintained outside of this network (e.g., thalamocortical network). The experimental procedures to test this scenario using aforementioned differences are discussed below.

Scenario 2: hyperdirect feedback drives SWD

The second scenario (Table 5.1) is an extension of the model of absence seizures described in Chapter 2 and thus the hyperdirect feedback loop drives the SWD which are identified with sOSC. Since B-oscillations are faster than SWD which are driven by the fastest feedback, B-oscillations cannot be driven by any of the BG-thalamo-cortical feedbacks. Thus, B-oscillations in this scenario are assumed to be driven by some more local network such as STN-GPe network. Since Tfrequency band contains SWD frequency, sOSC may explain also T-oscillations. However, since T-frequency band is broader than SWD frequency which does not vary within individual animal and patient as T-oscillations, sOSC may not be sufficient. Due to the cascade of period-doubling which eventually turns the BG-thalamo-cortical network chaotic (Figure 4.8A,4.8B), the PSD of cOSC has more peaks than expected from the harmonics of the peak frequency of the PSD (Figure 4.8C). For example, peak frequency next to sOSC is about 4/3 of sOSC frequency which is about 4 Hz in primates 9.3 Hz in rodents and is within the T-frequency band.

B-oscillations in this scenario may be driven by cortical oscillations and "resonated" in the STN-GPe network [START_REF] Tachibana | Subthalamo-pallidal interactions underlying parkinsonian neuronal oscillations in the primate basal ganglia[END_REF][START_REF] Pavlides | Computational Models Describing Possible Mechanisms for Generation of Excessive Beta Oscillations in Parkinson's Disease[END_REF]. Since characteristic frequency of the STN-GPe network is higher (20-30 Hz) as discussed above, the cortical drive has to be oscillating at B-frequency or lower. This low frequency input to the STN-GPe network may be due to multiple peak structure in the PSD of cOSC. This multiple peak structure may facilitate coupling of oscillations at different frequencies. However, note that the STN-GPe network can oscillates at 0.4, 0.8 and 1.8 Hz in vitro [START_REF] Plenz | A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus[END_REF]. Although neuronal dynamics may significantly differ from those of in vivo and the frequency range of those oscillations are outside the B-frequency band in primates (8-15 Hz), it indicates that the STN-GPe network has mechanisms underlying slower oscillations than 20-30 Hz.

In this scenario, the time scale of the hyperdirect feedback is slow enough to produce 3 Hz oscillations in human patients (Table 5.1). This frequency has been reproduced in thalamocortical model of absence seizures using slow time scale of GABA B IPSP and T-type current [START_REF] Destexhe | Spike-and-wave oscillations based on the properties of GABAB receptors[END_REF]. Furthermore, changing ratio between amount of GABA A and GABA B receptors shown to cover range of fast oscillations (∼ 7 Hz) in rodent [START_REF] Destexhe | Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents?[END_REF]. Thus, incorporating GABA B receptors and T-type current in GPi/SNr-thalamus interaction may replicate such slow oscillations.

Comparison of the two scenarios

Both scenarios have pros and cons. Scenario 1 extends [START_REF] Leblois | Competition between Feedback Loops Underlies Normal and Pathological Dynamics in the Basal Ganglia[END_REF]) in a way both B-and T-oscillations can be explained. However, it must be clarified why oscillations are stable for tens of seconds and generalized in SWD while they are more intermittent and spatially independent in T-oscillations since these two oscillations are driven by the same feedback in scenario 1. This may be because how nearby cortical neurons are interacting and how diverging corticostriatal projections are different in normal and epileptic animals and patients. Scenario 2 extends the result of Chapter 2 on absence seizures but requires some "ingredients" to slow down SWD and B-oscillation frequencies especially in primates. In scenario 1, the phase diagram has to have the shape of Figure 4.6C in both absence epilepsy and Parkinson's disease cases while in scenario 2 the phase diagram can be either Figure 4.6C or Figure 2.4A in absence epilepsy case.

These two scenarios are mutually exclusive since the frequencies of B-oscillations and SWD do not match within each species (Table 5.1). Since cOSC can be generated without activating FSI (Figure 4.7B,4.7D), SWD in scenario 1 would not be attenuated with blockade of FSI inhibition on MSN by injecting gabazine in striatum. In scenario 2, this manipulation would activate MSN and destabilizes SWD. However, this experiment cannot distinguish between scenario 1 and thalamocortical origin of SWD.

Another possible experiment test is to decrease both hyperdirect and direct feedback gains. On one hand, since am-ac boundary (Figure 4.6C) is vertical, if the decrease in the hyperdirect feedback gain is enough to suppress SWD (cOSC), following reduction of direct feedback gain does not re-introduce SWD. On the other hand, since am-ac(upper) boundary (Figure 4.6C) or equivalently FP-BST boundary (Figure 2.4A) is curved, sufficient reduction of direct feedback gain re-introduces SWD. For this experiment, the first reduction of hyperdirect feedback gain has to be as small as possible and "just" enough to suppress SWD since there is a left limit in the region where SWD exist in both scenarios. Note that the firing rate of the populations targeted by the pharmacological manipulations must be recorded and counter balanced if a large difference in the firing rate is introduced (see Section 2.3.3).

The complex nature of the experimental design above is due to the fact that it is difficult to pharmacologically increase synaptic gain. If one can increase synaptic gain, assessing the shape of the phase diagram becomes more direct. Suppose that one can increase direct feedback gain experimentally in epileptic animals. On one hand, scenario 1 predicts that SWD (cOSC) do not disappear because am-ac boundary (Figure 4.6C) is vertical. On the other hand, scenario 2 predicts that SWD (sOSC) disappears because am-ac(upper) boundary (Figure 4.6C) or equivalently FP-BST boundary (Figure 2.4A) is curved. To increase synaptic gain (e.g., of striatonigral projection), it is important to note that competitive agonist (e.g., muscimol) cannot be used since the neurons are going to be less sensitive to intrinsic synaptic excitation. High frequency stimulation on SNr coupled with levodopa administration in Parkinson's disease patients suggest potentiation of GABAergic synapse onto SNr [START_REF] Prescott | Levodopa enhances synaptic plasticity in the substantia nigra pars reticulata of Parkinson's disease patients[END_REF]. Thus, such protocol applied to epileptic animals with confirmation of potentiation of striatonigral projection may work as a technique to increase the direct feedback gain.

Inter-species scaling of alpha and beta frequency bands

In Section 5.1, we discussed how to relate pathological oscillations in absence epilepsy and Parkinson's disease of rodents and primates via scaling of frequency. What are the possible neuronal The vertical bars represent "heuristic range" of SWD frequencies which is mentioned in review article as "X-Y Hz" or "X to Y Hz". Colored points are intra-SWD frequency mentioned as an average. We expect brain weight to work as an proxy of physical length of BG-thalamo-cortical loop which in turn determine sum of conduction delays along the loop. If these assumptions holds, this plot indicates that the delay along the BG-thalamo-cortical loop determines the inter-species difference of SWD frequency. Data are accumulated from: [START_REF] Crunelli | A role for GABAB receptors in excitation and inhibition of thalamocortical cells[END_REF], [START_REF] David | Behavioral and electrical correlates of absence seizures induced by thalamic stimulation in juvenile rhesus monkeys with frontal aluminum hydroxide implants: A pharmacologic evaluation[END_REF], [START_REF] Kostopoulos | A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: EEG features[END_REF], [START_REF] Danober | Pathophysiological mechanisms of genetic absence epilepsy in the rat[END_REF][START_REF] Mcnamara | Cellular and molecular basis of epilepsy[END_REF], [START_REF] Akman | Electroencephalographic differences between WAG/Rij and GAERS rat models of absence epilepsy[END_REF], [START_REF] Hofman | A two-component theory of encephalization in mammals[END_REF], and [START_REF] Roth | Natural occurrence of gamma-hydroxybutyrate in mammalian brain[END_REF]. mechanisms underlying such scaling? Can we extend this discussion to non-pathological oscillations?

Where is the scale?

Intra-SWD frequency of various species are plotted in Figure 5.1 against brain weight which gives a very rough idea of characteristic physical length of the brain. If the physical length of axon is the main determinant of the inter-species difference of axonal conduction delay then Figure 5.1 may be interpreted as how the delay along the BG-thalamo-cortical loop changes the SWD frequency. The ratio of conduction delay between human patients and rats estimated from such assumptions is (1400 [g]/2 [g]) 1/3 ≈ 9 not far from the ratio of the delays of hyperdirect feedback loop of human patients and rats required for our model to generate experimentally observed intra-SWD frequencies 150 [ms]/25 [ms] = 6 (Figure 2.6C) considering a large amount of properties we are ignoring (anatomical organization, neurite morphology, average gaps of myelin sheath, etc.). Such differences in physical metrics are observed SNc neurons. For example, the ratio of maximum dendritic length between humans and macaques are about 1.3 is the ratio between humans and rats is about 2.5 [START_REF] Kötter | Species-dependence and relationship of morphological and electrophysiological properties in nigral compacta neurons[END_REF]. Other neuronal dimensions such as dendritic stem diameter and soma diameter also follows similar ratio. These differences yield 3 to 5 times larger input resistance (hence membrane time constant). Using biophysical modeling, they showed that input resistance can become 3 to 5 times bigger in rats than humans with such physical difference and alter spontaneous firing rate. They also noted that SNc firing rate and action potential duration measured in various studies vary as expected from the effect of physical size. Their study do not directly connect to our theory since SNc is not dynamically involved in the oscillatory mechanisms we consider. However it demonstrates how physical size may effect neuronal dynamics in general. Notably, hippocampal theta oscillations in humans (∼3-4 Hz) are about two times slower than in rodents (∼8 Hz) [START_REF] Jacobs | Hippocampal theta oscillations are slower in humans than in rodents: implications for models of spatial navigation and memory[END_REF][START_REF] Hanslmayr | Oscillations and Episodic Memory: Addressing the Synchronization/Desynchronization Conundrum[END_REF] showing the same ratio as the SWD. [START_REF] Buzsáki | Scaling brain size, keeping timing: Evolutionary preservation of brain rhythms[END_REF] discussed the scaling of brain size but focused on the aspect of the preservation of oscillatory frequencies from infra-slow to ripple among species. They argued the size effect on the conduction delay may be counter balanced by biophysical properties such as diameter of axons. However, even with such inverse scaling, estimated cross-brain conduction time in humans is about four times larger than in rats [START_REF] Wang | Functional Trade-Offs in White Matter Axonal Scaling[END_REF][START_REF] Buzsáki | Scaling brain size, keeping timing: Evolutionary preservation of brain rhythms[END_REF]. Furthermore, how the frequency of oscillations scales with the brain size is likely to be specific to underlying neural network. Thus, the scaling with the brain size must be discussed separately for each neural network.

The mouse SWD frequency seems to be out of trend (Figure 5.1) since it is lower than the frequency in rats. However, note that SWD duration in mouse models are short (a few seconds; [START_REF] Song | Role of the alpha1G T-type calcium channel in spontaneous absence seizures in mutant mice[END_REF]) and young (40-90 days) GAERS have similar SWD duration and frequency [START_REF] Vergnes | Ontogeny of spontaneous petit mal-like seizures in Wistar rats[END_REF][START_REF] Depaulis | The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies[END_REF]. Thus, this lower SWD frequency may be a generic property of BG-thalamo-cortical network at the bifurcation from monostable fixed point regime to bistable regime, i.e., at the onset of absence epilepsy. SWD frequency in GAERS and WAG/Rij decreases about 1 Hz during one episode of absence seizures [START_REF] Slaght | On the activity of the corticostriatal networks during spike-and-wave discharges in a genetic model of absence epilepsy[END_REF][START_REF] Polack | Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures[END_REF][START_REF] Akman | Electroencephalographic differences between WAG/Rij and GAERS rat models of absence epilepsy[END_REF][START_REF] Depaulis | The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies[END_REF]. This also may affect inter-species comparison of SWD frequency since the average duration of SWD varies among (also within) species and the time window in an episode of absence seizures are not systematically chosen for each studies. Of course, properties of neuronal and synaptic dynamics and the possibility that the networks underlying SWD in different species are not identical have to be considered.

What may (not) be scaled?

We argued that oscillations of absence epilepsy and Parkinson's disease have to be scaled together provided the networks responsible for those kinds oscillations are shared. Thus, in the scenarios of BG-thalamo-cortical oscillations we consider, other types of oscillations should be scaled if they share the same BG-thalamo-cortical network. Note that, hereafter, we treat scaling mechanism (discussed above) as a black box and discuss how different types of pathological and non-pathological oscillations may co-scale.

The gamma oscillations are observed in the cortex [START_REF] Gray | Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties[END_REF][START_REF] Murthy | Coherent 25-to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys[END_REF][START_REF] Fries | Modulation of oscillatory neuronal synchronization by selective visual attention[END_REF][START_REF] Sirota | Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm[END_REF], striatum [START_REF] Berke | Oscillatory entrainment of striatal neurons in freely moving rats[END_REF][START_REF] Tort | Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task[END_REF], STN [START_REF] Brown | Oscillatory Local Field Potentials Recorded from the Subthalamic Nucleus of the Alert Rat[END_REF], ventral tegmental area [START_REF] Fujisawa | A 4 Hz Oscillation Adaptively Synchronizes Prefrontal, VTA, and Hippocampal Activities[END_REF] and other brain areas in nonpathological condition. The gamma oscillations are also observed in the studies of Parkinson's disease. LFP of STN in human patients of Parkinson's disease shows elevation of gamma frequency after treatment with levodopa [START_REF] Brown | Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease[END_REF][START_REF] Williams | Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans[END_REF]. In LFP of the globus pallidus in monkeys, the amplitude of high-frequency oscillations shows coupling to the phase of gamma frequency bands (45-64 Hz) in non-pathological and Parkinsonian states while coupling to the beta band is increased with Parkinsonian severity [START_REF] Connolly | Modulations in Oscillatory Frequency and Coupling in Globus Pallidus with Increasing Parkinsonian Severity[END_REF]. Thus there are, likely several, networks underlying the gamma oscillations in the BG-thalamocortical network. However, current view of the gamma oscillations is that they are generated within local circuits of single inhibitory population or coupled excitatory and inhibitory populations [START_REF] Bartos | Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks[END_REF][START_REF] Tiesinga | Cortical Enlightenment: Are Attentional Gamma Oscillations Driven by ING or PING?[END_REF][START_REF] Buzsáki | Mechanisms of Gamma Oscillations[END_REF]. Indeed, across species and brain areas, oscillations at two sub-bands in gamma frequency [START_REF] Csicsvari | Fast network oscillations in the hippocampal CA1 region of the behaving rat[END_REF][START_REF] Ray | Different origins of gamma rhythm and highgamma activity in macaque visual cortex[END_REF]Kay 2003b;[START_REF] Canolty | High gamma power is phase-locked to theta oscillations in human neocortex[END_REF][START_REF] Colgin | Frequency of gamma oscillations routes flow of information in the hippocampus[END_REF][START_REF] Buzsáki | Scaling brain size, keeping timing: Evolutionary preservation of brain rhythms[END_REF], or in more recent view, at three sub-bands (Tort et al. 2010;[START_REF] Belluscio | Cross-Frequency Phase-Phase Coupling between Theta and Gamma Oscillations in the Hippocampus[END_REF][START_REF] Buzsáki | Mechanisms of Gamma Oscillations[END_REF], are observed. Furthermore, gamma oscillations at ∼ 40 Hz are also observed in vitro [START_REF] Whittington | Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation[END_REF][START_REF] Fisahn | Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro[END_REF][START_REF] Fisahn | Distinct Roles for the Kainate Receptor Subunits GluR5 and GluR6 in Kainate-Induced Hippocampal Gamma Oscillations[END_REF][START_REF] Bartos | Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks[END_REF]. Thus, it is unlikely that the gamma frequencies are modulated by the timescale of inter-area connection (e.g., corticostriatal, subthalamonigral) and the gamma frequencies do not require inter-species scaling. The fast ripple oscillations generated in the hippocampus and the spindle oscillations generated in the thalamus also have similar frequency throughout species [START_REF] Buzsáki | Mechanisms of Gamma Oscillations[END_REF] presumably because the local aspect of underlying network.

In rats performing cued choice task, brief increase in beta (∼ 20 Hz) oscillatory power is observed just after auditory cue informative to make behavioral choice but not necessary during movement [START_REF] Leventhal | Basal Ganglia Beta Oscillations Accompany Cue Utilization[END_REF]. This beta band oscillations briefly stop while waiting auditory stimuli. If these oscillations are generated in the BG-thalamo-cortical network generating the oscillations in Parkinson's disease and absence epilepsy in our scenarios, then the relevant oscillatory frequency in primates is ∼ 10 Hz which is in the alpha band. In humans, this high-alpha sub-band (10-20 Hz) is related to task-specific sensorimotor processes [START_REF] Babiloni | Cortical EEG alpha rhythms reflect taskspecific somatosensory and motor interactions in humans[END_REF]). The functional connectivity network which includes the BG and is co-activated with increase in alpha band power of EEG shows temporal increase in BOLD signal just after auditory stimuli if they are detected by the subjects [START_REF] Sadaghiani | Intrinsic Connectivity Networks, Alpha Oscillations, and Tonic Alertness: A Simultaneous Electroencephalography/Functional Magnetic Resonance Imaging Study[END_REF]. Event-related oscillations in various cortical areas have peaks in its PSD which are lower in humans (at ∼5 Hz and ∼9 Hz) than in rats (at ∼7 Hz and ∼16 Hz) [START_REF] Ehlers | Decreases in energy and increases in phase locking of event-related oscillations to auditory stimuli occur during adolescence in human and rodent brain[END_REF]. Alpha power of LFP of the motor cortices of monkeys decreases during and anticipating stimuli [START_REF] Haegens | α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking[END_REF] resembling the drop of beta power in rats anticipating auditory stimuli [START_REF] Leventhal | Basal Ganglia Beta Oscillations Accompany Cue Utilization[END_REF]. Note that the beta band oscillations are also observed in monkeys performing the same experiment during the decision period [START_REF] Haegens | α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking[END_REF]. On the other hand, no change in the peak frequency is observed in [START_REF] Leventhal | Basal Ganglia Beta Oscillations Accompany Cue Utilization[END_REF]. It may indicate that the task related beta oscillations in primates [START_REF] Courtemanche | Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys[END_REF][START_REF] Feingold | Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks[END_REF] should not be scaled and there are two kinds of task related beta oscillations in rats [START_REF] Leventhal | Basal Ganglia Beta Oscillations Accompany Cue Utilization[END_REF]; the first kind identified with the alpha oscillations of primates and the second kind identified with the beta oscillations of primates. In our scenario 1, we interpret the first kind as the B-oscillations while the second kind originates from different network such as locally inter connected cortical populations. Our scenario 2 do not cover this frequency range. Note that for the B-oscillations to be interpreted as the beta oscillations of the first kind in rodents and the high-alpha oscillations in primates, the B-oscillations has to be sufficiently destabilized to avoid the level of synchrony observed in Parkinson's disease. This can be achieved by setting network parameters in the regime slightly outside of the regime in which B-oscillations are stable (e.g., asc and OSC in Figure 4.6C). Alternatively, this destabilization may be achieved by symmetry breaking-type instability of B-oscillations solution brought by the topographical organization of the direct and hyperdirect feedback loops [START_REF] Leblois | Competition between Feedback Loops Underlies Normal and Pathological Dynamics in the Basal Ganglia[END_REF]. In summary, we point out that scaling the oscillations observed in the BG-thalamo-cortical network in various species may help understanding the underlying mechanisms throughout species. Since pathological oscillations in absence epilepsy and Parkinson's disease show clearer, stable, and globalized patterns, they are good reference points for such scaling.

Are Parkinsonian oscillations multi-stable?

In absence epilepsy, there is a clear-cut transition from stationary asynchronous EEG to large amplitude wave pattern synchronized over many cortical areas. Thus, a straightforward choice was to model this dynamics as bistability between an asynchronous state and globally (i.e., generalized) synchronized oscillatory state. In contrast, Parkinsonian oscillations are much more complex. For one thing, the oscillatory patterns observed in Parkinsonian patients and animal models have multiple frequency bands. However, Parkinsonian oscillations have been modeled as single monostable oscillations [START_REF] Leblois | Competition between Feedback Loops Underlies Normal and Pathological Dynamics in the Basal Ganglia[END_REF][START_REF] Nevado-Holgado | Conditions for the Generation of Beta Oscillations in the Subthalamic Nucleus-Globus Pallidus Network[END_REF][START_REF] Kumar | The Role of Inhibition in Generating and Controlling Parkinson's Disease Oscillations in the Basal Ganglia[END_REF][START_REF] Holt | Origins and suppression of oscillations in a computational model of Parkinson's disease[END_REF][START_REF] Pasillas-Lépine | Delay-induced oscillations in Wilson and Cowan's model: An analysis of the subthalamo-pallidal feedback loop in healthy and parkinsonian subjects[END_REF][START_REF] Pavlides | Improved conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network[END_REF] which can explain only a single peak in PSD and mechanisms of oscillations at different frequencies are discussed together, possibly introducing a confusion.

A direction as important as determining different but possibly over-wrapping sources of Parkinsonian oscillations at distinguished frequencies is to reveal in what sense these different kinds of oscillations coexist. The oscillations can be spatially localized in the sense that different kinds of oscillations occur in weakly connected networks. The oscillations can also be temporary localized in the sense that only one of these kinds of oscillations occur at the same time, i.e., these oscillations are multi-stable. Of course, mixture of these types of localization may underlie the mechanism of coexistence.

There are several studies supporting spatial localization. In MPTP-treated monkeys, STN lesioning inactivation selectively suppress only 8-20 Hz oscillations of GPi without altering 4-8 Hz oscillations [START_REF] Wichmann | The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism[END_REF]. In the STN of human patients, Levodopa and apomorphine administration reduces low-beta frequency band and increases tremor frequency band while orphenadrine enhances beta frequency band [START_REF] Priori | Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson's disease[END_REF]; see also [START_REF] Brown | Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease[END_REF]Levy et al. 2002a). Thus, it is expected that these two kinds of oscillations spatially localized and the network responsible for 8-20 Hz oscillations may contain the STN. Furthermore, tremor oscillations between different limbs are not synchronized [START_REF] Ben-Pazi | Synchrony of rest tremor in multiple limbs in Parkinson's disease: evidence for multiple oscillators[END_REF]. Low frequency oscillations are observed only in contralateral STN when the dyskinesias are present in one limb [START_REF] Alonso-Frech | Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson's disease[END_REF]. LFP oscillations at tremor and double tremor frequencies in STN are coherent to tremor EMG of contralateral forearm in the way specific to the location of electrode in STN. Thus, some coextensive (see Section 1.1.2) network may underlie the slower oscillations at tremor related frequency.

Evidence supporting or discarding temporal localization are not abundant. The oscillations in BG at beta frequency band [START_REF] Park | Fine Temporal Structure of Beta Oscillations Synchronization in Subthalamic Nucleus in Parkinson's Disease[END_REF] and tremor related frequency [START_REF] Hurtado | Dynamics of tremor-related oscillations in the human globus pallidus: A single case study[END_REF][START_REF] Hurtado | Temporal evolution of oscillations and synchrony in GPi/muscle pairs in Parkinson's disease[END_REF] are not globally synchronized and stable in time. In these studies, typical duration of desynchronization is several hundreds of milliseconds for beta oscillations and several seconds for tremor frequency oscillations hence supporting partial temporal localization. However, duration of desynchronization of tremor frequency oscillations are typically shorter than duration of synchronization and thus suggesting that the beta oscillations and the tremor frequency oscillations temporally coexist most of the time.

In our model, if cOSC solution undergoes symmetry breaking instability akin to [START_REF] Leblois | Competition between Feedback Loops Underlies Normal and Pathological Dynamics in the Basal Ganglia[END_REF] when topographic organization is considered while sOSC solution maintain its stability, then sOSC become only possible oscillatory solutions while cOSC mode at each channel in the BG-thalamo-cortical loops still exists. This may explain temporal coexistence of two kinds of oscillations. It then would imply that multi-stable nature of T-oscillations (sOSC) and B-oscillations (cOSC) turned out to be a side effect of the simplification ignoring topographic organization and give us theoretical access to differential mechanisms of the two types of oscillations.

How to determine the oscillation driver experimentally

In our models, the hyperdirect feedback promotes oscillations because its polarity is negative and the effect of cortical variation takes time to be fed back the cortical dynamics. Since this oscillation promoting property of delayed negative feedback is universal in mechanics (e.g., pendulum, celestial mechanics), electronics (e.g., RLC circuit, Van der Pol oscillator), optics (e.g., Ikeda optical ring cavities), chemistry (e.g., Belousov-Zhabotinsky reaction), biology (e.g., Lotka-Volterra or predator-prey equations) and also single neuron [START_REF] Izhikevich | Neural Excitability, Spiking, and Bursting[END_REF] and neural network dynamics [START_REF] Wilson | Excitatory and inhibitory interactions in localized populations of model neurons[END_REF][START_REF] Dayan | Theoretical neuroscience[END_REF], we argue that determining negative feedback loop(s) in any oscillating system is essential to understand the mechanism underlying the oscillations.

Determining principal negative feedback in neural systems seems to be easy to do in experiments since one can use agonists and antagonists to change synaptic gain between neural populations. However, since these drugs are often competitive (i.e., occupy or block the receptor), these drug induces a static component irrelevant to the afferent activity. Due to this effect, counter intuitively from the literal meaning, competitive agonist decreases synaptic gain. Furthermore, modulation of synaptic gains unavoidably modulates static component of the presynaptic output (e.g., interictal asynchronous activity in epileptic animals). Therefore, the static firing rate of the population targeted by the pharmacological manipulation changes together with its incoming synaptic gain. Since the slope of input-output relationship (neuronal gain) of a neuron is different at various firing rate, change in static firing rate induces change in gain at neuronal level. We summarize the effect of agonists and antagonists on the overall gain in are also considered although we are only aware of non-competitive antagonists [START_REF] Sripada | The role of MK-801 in sensitization to stimulants[END_REF][START_REF] Balannik | Molecular mechanism of AMPA receptor noncompetitive antagonism[END_REF][START_REF] Rogawski | Preclinical pharmacology of perampanel, a selective noncompetitive AMPA receptor antagonist[END_REF]. To derive this table, we assume that neurons are all firing in non-saturating regime, i.e., neuronal gain increases with activity. One can see that only reduction of the total gain (multiple of synaptic and neuronal gains) is practically possible.

If the target population is a part of a larger network with closed feedbacks, the static effect propagates to downstream populations and fed back to the target population. This static effect of feedback loops is system specific and often counter-intuitive. Thus, in general, pharmacological manipulations can give a consistent effect on the total gain even though some manipulations are consistent in single-population setting (Table 5.2). This may be partially the source of difficulty reconciling mechanism of oscillations in Parkinson's disease [START_REF] Galvan | Pathophysiology of Parkinsonism[END_REF][START_REF] Nambu | Mechanism of parkinsonian neuronal oscillations in the primate basal ganglia: some considerations based on our recent work[END_REF]. The pharmacological manipulations we suggested (Section 2.3.3, 5.1.4) are designed to disentangle such complex effects and only manipulate the dynamic effect (i.e., gains).

Functional implication of the complex dynamics

Can chaotic dynamics we have found in the BG-thalamo-cortical network play a functional role in non-pathological condition, provided such chaotic dynamics can be made spatially synchronized only weakly when spatial extent is considered? Weakly chaotic dynamics of the striatum has been proposed to mechanism to generate sequence of activity slowly varying in the time scale relevant to behavioral task [START_REF] Ponzi | Sequentially switching cell assemblies in random inhibitory networks of spiking neurons in the striatum[END_REF]Ponzi and Wickens 2012;[START_REF] Ponzi | Optimal balance of the striatal medium spiny neuron network[END_REF].

In more general abstract framework, functional properties of chaotic dynamics are studied in the frame work of reservoir computing. However, note that in the study of echo state network [START_REF] Jaeger | The "echo state" approach to analysing and training recurrent neural networks[END_REF]), one of the original studies of reservoir computing together with liquid state machine [START_REF] Maass | Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations[END_REF], the definition of the echo state network require its dynamics to be a contraction mapping. A contraction mapping is a fundamental concept in many mathematical areas. Roughly speaking, it means that the trajectory of the two solutions from two points (not necessary close) come closer at every time step. To a contraction mapping one can apply contraction mapping principle (also known as Banach fixed-point theorem) and conclude that the reservoir network has a monostable fixed point. This is in contrast to following studies of reservoir computing in neuroscience which seems to ignore this definition and weigh much more attention to complex innate dynamics of the reservoir implemented as chaotic attractor, a very different class of attractor compared to monostable fixed point. Furthermore, in those studies the complexity of the dynamics is often only measured by the Lyapunov exponents. However, Feigenbaum's attractor has no positive Lyapunov exponents but is fractal (i.e, of a "complex shape") and the attractor of the Arnold's cat map have a positive Lyapunov exponent but is not fractal [START_REF] Eckmann | Ergodic theory of chaos and strange attractors[END_REF] indicating that there are many aspects of "complexity". Therefore, what kind of "complexity" is required for reservoir computing remains to be clarified and a caution has to be taken when relating functional property of a network and its "chaotic" dynamics. Nevertheless, chaotic reservoir networks have been shown to have positive functional properties such as learning of complex patterns [START_REF] Sussillo | Generating coherent patterns of activity from chaotic neural networks[END_REF]) and short-term memory [START_REF] Toyoizumi | Beyond the edge of chaos: Amplification and temporal integration by recurrent networks in the chaotic regime[END_REF].

We have found a chaos with physiologically well-defined origin Figure 4.6B in a large network of interconnected multiple populations (sub-networks). A key difference of these reservoir computing models to our model is that, in reservoir computing, single population network with mixture of excitatory and inhibitory neurons or two-population network of excitatory and inhibitory populations is usually considered and chaos arises as a universal property of large recurrent network [START_REF] Sompolinsky | Chaos in Random Neural Networks[END_REF]. Furthermore, the "read out" neuron is often outside of such reservoir network although there is a variation in which the read out neuron is embedded in the reservoir network [START_REF] Sussillo | Generating coherent patterns of activity from chaotic neural networks[END_REF]. Thus, it is difficult to interpret, for example, striatal neurons as read out neurons and corticostriatal plasticity during behavioral learning in the reservoir computing framework because they are in the key component of the generation of the complex dynamics and alternating corticostriatal excitation breaks the original "reservoir network".

Since our chaotic dynamics can be observed in population rate dynamics of cortex, it may be considered as randomized sequencing of motor programs encoded in cortical populations following [START_REF] Leblois | Competition between Feedback Loops Underlies Normal and Pathological Dynamics in the Basal Ganglia[END_REF], the ancestor of our model. This randomness is one hierarchy above the noise required for usual reinforcement learning algorithms because the noise in reinforcement learning is used for shaping behavior itself through exploration. Hierarchical implementation of reinforcement learning algorithm in the striatum has been proposed (Ito and Doya 2011) in which the ventral striatum (VS), the dorsomedial striatum (DMS) and dorsolateral striatum (DLS) learns function in descending hierarchy (e.g., VS learns control of each limb, DMS learns higher order command such as "turn left/right" and DLS learns even higher order command such as "do a task" or "take a rest"). The randomness arose from chaos of the "lower" order BG-thalamo-cortical network (e.g., through DLS) may be used in the reinforcement learning of "higher" BG-thalamo-cortical network (e.g., through DMS) since the timescale of this randomness is naturally the timescale of switching of the "lower" order commands.

Beta oscillations increased during static motor control such as tonic or postural contraction [START_REF] Jenkinson | New insights into the relationship between dopamine, beta oscillations and motor function[END_REF]) may be useful for freezing degree of freedom in BG-thalamo-cortical network and suppress high dimensional chaotic dynamics. On the contrary, suppression of the beta oscillations during or in preparation to the movement [START_REF] Brittain | The highs and lows of beta activity in cortico-basal ganglia loops[END_REF]) may be the release of large degree of freedom which turns on a free running mode of the BG-thalamocortical network [START_REF] Brown | Cortical drives to human muscle: The Piper and related rhythms[END_REF]. 

  ganglia-thalamo-cortical network 1.1.1 Anatomy of basal ganglia-thalamo-cortical network

  Figure2.1: The architecture of the BG-thalamo-cortical network model. The model consists of seven neuronal populations: the pyramidal neurons of the somatosensory cortex, the striatal Fast Spiking Interneurons (FSI), the striatal Medium Spiny Neurons (MSN), the SubThalamic Nucleus (STN), the Substantia Nigra pars reticulata (SNr), the Globus Pallidus pars externa (GPe) and the thalamocortical neurons. The Substantia Nigra pars compacta (SNc) is not included in the model. The cortical, FSI, MSN, STN, SNr and thalamic populations are the essential components of our theory. They form three parallel feedback loops: the hyperdirect feedback loop (blue), the direct feedback loop (red) and the feedback loop through FSI (green). Arrows: Excitatory connections. Dots: Inhibitory connections. Dashed lines: Population and connections that are not included in the model; A, B and C are the gains of the hyperdirect, direct and "through FSI" feedback loops.

Figure 2 . 2 :Figure 2 . 2 :

 2222 Figure 2.2: Bistability between asynchronous activity and collective oscillations in the spiking BG-thalamo-cortical network model. (cont.)
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 23 Figure 2.3: The collective dynamics of the BG-thalamo-cortical rate model depend on the balance between the hyperdirect and direct feedback. (A) When the gain of the hyperdirect A and direct B feedback are in appropriate balance the dynamics exhibit only one stationary state, namely a stable fixed point. An external input to the cortex (in Hz) evokes short transient oscillations of a few cycles before the dynamics return to the fixed point. Parameter: J STN Ctx = 1.0. (B) When the gain of the hyperdirect feedback A is large compared to the direct feedback B the activity is oscillatory. The activity oscillations are synchronized across the whole network and there is no other stationary state. A brief input to the cortex perturbs the oscillations only transiently. Parameter: J STN Ctx = 2.5. (C) The network can exhibit bistability between a fixed point and an oscillatory state. For t < 0.4 sec the network is at a fixed point. Following the transient input to the cortex at t = 0.4 sec, the network settles in an oscillatory state. The network remains in this state until a second transient input to the cortex at t = 3.5 sec. Note the damped oscillations in the activity subsequent to the latter input. Parameter: J STN Ctx = 1.7.
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 2 4B) can become bistable (i.e., epileptic condition; Figure2.4C) if the striatal feedforward inhibition is sufficiently strong. This is because the boundary between U and FP and the boundary between FP and OSC depends only on the pair (A, B +C) (the ratio between B and C is irrelevant) whereas the boundary between BST and FP depends directly on C. Note that the points in Figure 2.4A corresponding to Figure 2.4B,C are at the same location in the phase diagram; i.e. they correspond to the same values of A and B + C whereas the value of B and C are different.
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 24 Figure 2.4: Nonlinear strong striatal feedforward inhibition suppresses MSN during oscillations and promotes bistability in the rate model. (A) Phase diagram of the network as a function of the direct and hyperdirect feedback gains.Depending on the balance between the hyperdirect and the direct feedback loops the dynamics can be monostable or bistable. In the first case, the stationary state can be a fixed point (FP; Figure2.3A), or an oscillatory state (OSC; Figure2.3B). In the second case, a stable fixed point coexists with stable oscillations (BST; Figure2.3C). The size of the bistable region increases with J MSN FSI . The striped region corresponds to the bistability when feedforward inhibition is blocked (J MSN FSI = 0). This region extends in the gray domain when J MSN FSI = 5.6 (default). When the direct feedback loop is too strong an instability occurs leading to saturation or inactivation of the cortex (U). Solid lines: Results of the analytical calculations. Dotted lines: Results of the numerical simulations (see Materials and Methods). Parameters used in (B-C), (D) and (E) are indicated by •, + and ×, respectively. (B) Activities of cortical and MSN populations in response to a transient input to the cortex for J STN Ctx = 1.7, J MSN Ctx = 0.53, J MSN FSI = 0. For these parameters the network dynamics are monostable (fixed point). (C) Dynamics of cortical, MSN and FSI populations for J STN Ctx = 1.7, J MSN Ctx = 5.9, J MSN FSI = -4. The value of A and B + C are the same as in (B) but the network is now bistable because of the sufficiently strong feedforward inhibition of the MSN. Dashed red line: The time averaged activity of the MSN during the oscillations. Note that the activity of the MSN is suppressed during the oscillations. (D) Dynamics in the bistable region when the feedforward inhibition of the MSN is blocked. Parameters:J STN Ctx = 2.1, J MSN Ctx = 0.63, J MSN FSI = 0.In the oscillatory state, the MSN are highly active because of the increase in cortical excitation. (E) Dynamics in the bistable region when the FSI feedforward inhibition of MSN is weak compared to the direct excitation. Parameters: B = J STN Ctx = 2.3, J MSN Ctx = 7.4. The MSN population is on average more active in the oscillatory state than at the fixed point because the inhibition of the MSN by the FSI does not sufficiently compensate for the increase in the direct cortical excitation delivered to the MSN. (F) Dynamics in the bistable region when the FSI feedforward inhibition is slow. Parameters: J STN Ctx = 5.9, J MSN Ctx = 1.8, τ FSI = 5 ms. The striatal feedforward inhibition of the MSN does not arrive in time to compensate for their direct cortical excitation in the oscillatory state. Thus the activity of the MSN is not suppressed. In (B-F): Blue: Cortex; Red: MSN; Green: FSI.
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 25 Figure2.5: How nonlinear FSI extends bistable region. Filled regions represent bistable regimes in different conditions. Black: FSI feedforward inhibition is blocked J MSN FSI = 0; Gray: with nonlinear FSI (J MSN FSI = -4); Black stripe: linear FSI (J MSN FSI = -4, G FSI (x) = [x] + ). When increasing the striatal inhibition, the phase diagram shifts upward, since additional positive feedback B is required to stabilize the network. A linear FSI input-function relationship increasing feedforward striatal inhibition does not change the size of the bistable region (the sizes of the black and black-striped regions are the same).
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 262728 Figure 2.6: The mechanism underlying the promotion of the bistability and the suppression of MSN activity during oscillations. (A) Input-output relationship of the neuronal populations in the rate model are threshold-linear except for the FSI, for which it exhibits an expanding nonlinearity around the origin while behaving linearly when the firing rate is high (compare with straight dashed line). Black dots represent activity of the neuronal populations at the fixed point. (B) The net input (direct excitation + feedforward inhibition) to MSN plotted vs. the cortical output. Dashed line: Input when feedforward inhibition is blocked (I MSN = J MSN Ctx m Ctx + h MSN ); Solid line: Input in the presence of nonlinear feedforward inhibition (I MSN = J MSN Ctx m Ctx + J MSN FSI G FSI (J FSI Ctx m Ctx + h FSI ) + h MSN ); Vertical dotted line: Cortical activity at the fixed point; Horizontal dotted line: Threshold of MSN. The input to MSN varies nonmonotonically with the cortical output because of the expanding nonlinearity of the FSI input-output relationship (G FSI (I FSI )). See Materials and Methods for definitions. (C) The frequency of the oscillations vs. the overall delay of the hyperdirect feedback loop. Dots: Results of the numerical simulations. Solid line: Numerical solution of Equation 2.8. Vertical dotted line: Value of the delay used in Figure 2.4.
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 229 Figure 2.9: A transient excitatory input to the cortex with appropriate phase-amplitudeduration relationship terminates the seizures. (A) The transient excitation of the cortex (top) and its effect on the activity of the cortex (bottom, solid). The dashed line corresponds to the unperturbed oscillation. The network operates in the bistable regime. The phase of the transient excitation is zero if it occurs at the trough of the oscillation in the cortical activity. (B) The phase-amplitude-duration relationship for successful terminations of the oscillations. Black dots correspond to the input parameters used in panels (C-D). (C) A transient excitation of the cortex with short duration and large amplitude terminates the oscillations if it occurs at phase φ ∼ 0.5. Top to bottom: The input to the cortical population (amplitude 7 mV), population average activity of cortical neurons and MSN and voltage traces of one FSI and one MSN. Green: Unperturbed traces. Blue: Traces following the transient input. Note that the activity of the MSN population increases briefly after the transient input is over (indicated by *). This is reflected as a rebound of activity at the single neuron level (Figure 2.2A,D). (D) Another example of successful termination of the oscillations. 35
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 210 Figure 2.10: Bistable dynamics in the spiking network model with the globus pallidus pars externa (GPe) included. (A) Simulation of the spiking network model.The parameters as in Table 2.2 (as in Figure 2.2A) except for the following: J STN Ctx = 85 mV, J MSN Ctx = 550 mV, J GPe MSN = -20 mV, J GPe STN = 20 mV, J SNr GPe = -10 mV, J STN GPe = -10 mV, ν GPe = 20 spikes/sec. Stimulations with same duration and intensity as in Figure 2.2A can initiate and terminate the oscillations. Top: The external input to the cortex (in mV). Middle: Population average firing rate in the cortex. Bottom: The voltage trace of one MSN. (B) Phase diagram of the spiking model as a function of J STN Ctx and J MSN Ctx Other parameters are as in (A). Gray: The region where the network dynamics are bistable. Dot: Parameters used in (A). (C-D) Zoom on the dynamics around the initiation (C) and termination (D) of the oscillatory episode in (A). From top to bottom: the cortical activity and the membrane potential of one FSI, one MSN, one neuron in the STN, one neuron in the SNr and one neuron in the GPe. Overall, the dynamics are qualitatively identical to the one without GPe shown in Figure 2.2C,D.
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 31 Figure 3.1: Experimental initiation and termination of SWD in GAERS. (cont.)
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 42 Figure 4.2: Phase diagrams of the discrete model. (A) The phase diagram with a single bistable region in which the oscillation is driven by the hyperdirect feedback loop. Parameters:C 1 = -1, C 2 = 2.5, ν Ctx = 1 Hz, ν MSN = 0.2 Hz, h FSI = 0.5 Hz, B 1 = 2 (B)The phase diagram with two bistable regions. In the left bistable region, the oscillation is driven by the feedback through FSI since the hyperdirect feedback gain is |A| < 1 and this loop alone cannot drive the oscillations. Parameters are the same as (A) except for B 1 = 6.
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 44 Figure 4.4: Phase diagram of the rate model in the discrete (A), non-degenerate (C) and degenerate (B) models. The bistable regions in all the models are smaller when the striatal feedforward inhibition is blocked (striped region) compared to the non-blocked cases (gray region). The solid lines are calculated analytically and dashed lines are determined numerically. Parameters: (A), ∆ A = ∆ B = ∞; (B), ∆ A = ∆ B = 20 ms; (C), ∆ A = 20 ms < ∆ B = 26 ms. Parameters for rate models (B,C) are from Table 4.1.
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 45 Figure 4.5: How the size of bistable region depends on the striatal feedforward inhibition. The size of the bistable region δB is given by Equation 4.5. As proved in the text, it is monotonically increased function of the striatal feedforward inhibition C 2 . The parameters are the same as Figure 4.3B.

  Figure 4.7A); ac: aFP and cOSC coexist (Figure 4.7B); ams: aFP, mFP and sOSC coexist (Figure 4.7C); asc: aFP, sOSC and cOSC coexist (Figure 4.7D). There are two ac regions above and below asc regions.
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 46 Figure 4.6: Complex population rate dynamics in the BG-thalamo-cortical network. (A) A discrete model phase diagram in which the bistable region disappears upon blockade of the striatal feedforward inhibition. (B) An example map with period-3 orbit. (C) A rate model phase diagram with in which the bistable region disappears upon blockade of the striatal feedforward inhibition. The possible dynamics are all-active fixed point (aFP), fixed point with silent MSN (mFP), simple oscillations (sOSC) and complex oscillations (cOSC).Abbreviations: am: coexistence of aFP and mFP; ac: coexistence of aFP and cOSC; ams: coexistence of aFP, mFP and sOSC; asc: coexistence of aFP, sOSC and cOSC; U: rateinstabilized region; OSC: Hopf-instabilized region. (D) An example chaotic rate dynamics. A parameter within ac region is used: J MSN Ctx = 1.3, J STN Ctx = 1.6. See Table4.2 for other parameters.

A

  aFP→aFP→mFP (am region) B aFP→aFP→cOSC (ac region) C aFP→mFP→aFP→sOSC (ams region) D aFP→cOSC→aFP→sOSC (asc region) E aFP→aFP→chaos/cOSC (ac region)
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 47 Figure 4.7: Examples of complex dynamics. (cont.)
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 22 Figure 2.2: (cont.) The firing rate dynamics of the cortex (blue), MSN (red) and FSI (green) populations are shown. The top panels show transient input to the MSN. Parameters are based on Table4.2 if not specified. (A) Bistability between aFP and mFP (am region). The first perturbation confirms that the aFP is stable. Inhibiting MSN (the second perturbation) switches the network state to mFP from aFP. (B) Bistability between aFP and cOSC (ac region). The same input trace as (A) but the network state switches to cOSC instead of mFP. Parameters: J MSN Ctx = 1.3, J STN Ctx = 1.7. (C) Tristability between aFP, mFP and sOSC (ams region). The first perturbation switches the network state to mFP from aFP. The second perturbation switches the network state back to aFP. The third perturbation turns on cOSC. Parameters: J MSN Ctx = 0.85, J STN Ctx = 1.3. (D) Tristability between aFP, sOSC and cOSC (asc region). Similar to (C) but the network shows cOSC instead of mFP after the first perturbation. Parameters: J MSN Ctx = 1.1, J STN Ctx = 2. (E) Bistability between aFP and chaos (ac region). After the second perturbation, the network settles in a chaotic dynamics. Thus, the wave pattern never repeats. The same parameters as Figure4.6D are used.

  Figure 4.8: Analysis of chaotic dynamics of the BG-thalamo-cortical network. (A) How the maximum Lyapunov exponent depend on the feedback gain. The hyperdirect and direct feedback gains are increased together with the constraint J MSN Ctx = 0.75J STN Ctx + 0.1. The maximum Lyapunov exponent is calculated after the network is settled in the cOSC attractor. (B) The network parameters are changed as in (A) and the power spectral density (PSD) of the cOSC attractor is calculated. Peaks at roughly half of the frequency appears repeatedly. It indicates period-doubling bifurcations. Around |A| ∼ 1.65 and ∼ 1.95, the PSD covers the whole frequency range. It collies with the region in which the maximum Lyapunov exponent is positive in (A). (C) The PSD of sOSC and cOSC at the same parameter point in asc-region and the chaotic dynamics of different parameter in the ac-region.
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 5 Figure5.1: A meta analysis of SWD frequency and brain size. Intra-SWD frequency and brain weight of various animal models and human patients are accumulated from the literature. The vertical bars represent "heuristic range" of SWD frequencies which is mentioned in review article as "X-Y Hz" or "X to Y Hz". Colored points are intra-SWD frequency mentioned as an average. We expect brain weight to work as an proxy of physical length of BG-thalamo-cortical loop which in turn determine sum of conduction delays along the loop. If these assumptions holds, this plot indicates that the delay along the BG-thalamo-cortical loop determines the inter-species difference of SWD frequency. Data are accumulated from:[START_REF] Crunelli | A role for GABAB receptors in excitation and inhibition of thalamocortical cells[END_REF],[START_REF] David | Behavioral and electrical correlates of absence seizures induced by thalamic stimulation in juvenile rhesus monkeys with frontal aluminum hydroxide implants: A pharmacologic evaluation[END_REF],[START_REF] Kostopoulos | A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: EEG features[END_REF],[START_REF] Danober | Pathophysiological mechanisms of genetic absence epilepsy in the rat[END_REF][START_REF] Mcnamara | Cellular and molecular basis of epilepsy[END_REF],[START_REF] Akman | Electroencephalographic differences between WAG/Rij and GAERS rat models of absence epilepsy[END_REF],[START_REF] Hofman | A two-component theory of encephalization in mammals[END_REF], and[START_REF] Roth | Natural occurrence of gamma-hydroxybutyrate in mammalian brain[END_REF].
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 1 Figure A.1: Plot of y = tan(∆ x) and y = -τ x. The point ω H (black dot) converges to the value π/∆ (white dot) when τ /∆ → 0.
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 2 1: Parameters for the firing rate model

			Table 2.2: Parameters for the spiking net-
			work model	
	Parameter	Value	Parameter	Value
	J Ctx Th	1	N p	10000 neurons
	J Th SNr	-1	K p	neurons
	J SNr STN	1	J Ctx Th	30.0 mV
	J STN Ctx	1.7	J Th SNr	-10.0 mV
	J SNr MSN	-1	J SNr STN	50.0 mV
	J MSN Ctx	5.9	J STN Ctx	80.0 mV
	J MSN FSI	-4.0	J SNr MSN	-20.0 mV
	J FSI Ctx	2.5	J MSN Ctx	400.0 mV
	ν Ctx	5 Hz	J MSN FSI	-150.0 mV
	ν MSN	1 Hz	J FSI Ctx	300.0 mV
	ν SNr	30 Hz	ν Ctx	5 spikes/sec
	ν FSI	3 Hz	ν MSN	3 spikes/sec
	ν Th	10 Hz	ν SNr	spikes/sec
	ν STN	10 Hz	ν FSI	3 spikes/sec
	c	20 Hz	ν STN	spikes/sec
	∆ Ctx	5 ms	ν Th	spikes/sec
	∆ MSN	10 ms	∆ Ctx	5 ms
	∆ SNr	5 ms	∆ MSN	5 ms
	∆ FSI	0 ms	∆ SNr	5 ms
	∆ Th	10 ms	∆ FSI	0 ms
	∆ STN	5 ms	∆ STN	5 ms
	τ p (p = FSI, Ctx)	5 ms	∆ Th	5 ms
	τ Ctx	10 ms	τ m p (p = FSI, MSN)	10 ms
	τ FSI	0 ms	τ m FSI	5 ms
			τ m MSN	20 ms
			τ 1	3 ms
			τ 2	1 ms
			σ	5 mV
			θ	-40 mV
			V r	-60 mV
	2.2 Results			
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 2 2. The network dynamics are bistable: a state in which the neurons in all the populations fire irregularly and asynchronously coexists with a state in which the activity oscillates in synchrony in all the populations. A transient excitatory input to the cortex can initiate and terminate the oscillations. Top: The external input to the cortex (in mV). Middle: Population average firing rate in the cortex. Bottom: The voltage trace of one MSN. Note that the firing rate of the neuron is low before and after the oscillatory episode and that during this episode the neuron is hyperpolarized and its activity is suppressed. (B) Simulation of the spiking network model with the parameters in Table2.2 except for the feedforward inhibition which is reduced by 80% (J

MSN FSI = -30). The network dynamics are monostable: the only possible state is the asynchronous state. The panels are the same as in (A). (C) Zoom on the dynamics (from top to bottom) of the cortical activity and the membrane potential of one FSI, one MSN, one neuron in the STN and one neuron in the SNr. The traces are plotted around the initiation of the oscillatory episode in (A). The activity of the FSI is very sparse before initiation and rises rapidly when the transient excitation occurs in the cortex. During the oscillations, the MSN exhibits subthreshold oscillations (dotted line: threshold). The SNr neuron does not change its activity level much (25 spikes/sec before, 33 spikes/sec after) but its firing pattern is more bursty during the oscillations. (D) Zoom on the dynamics (from top to bottom) of the cortical activity and the membrane potential of one FSI, one MSN, one neuron in the STN and one neuron in the SNr. The traces after the termination of the oscillatory episode are plotted. The activity of the FSI is bursty before the termination of the oscillatory epoch and is rapidly suppressed when the transient excitation occurs in the cortex. The MSN increases its activity after the end of this epoch. (E) Zoom on the dynamics (from top to bottom) of the cortical activity and the membrane potential of one FSI and one MSN. In the last bottom panel the voltage trace is plotted for one MSN for which the FSI inhibition was selectively blocked while inhibition to all other MSN is still intact. For all neurons, the membrane potential oscillates in synchrony with cortical activity. Note that the membrane potential of the MSN remains below threshold during oscillations because of the strong inhibition from FSI. Selective blockade of this inhibition results in bursting activity, in phase with cortical oscillations.

Table 4 .

 4 1: Parameters for the firing rate model

	Parameter	Value
	J Ctx Th	1
	J Th SNr	-1
	J SNr STN	1
	J SNr MSN	-1
	J MSN FSI	-4.0
	J FSI Ctx	2.5
	ν Ctx	5 Hz
	ν MSN	2 Hz
	ν SNr	50 Hz
	ν FSI	1 Hz
	ν Th	10 Hz
	ν STN	10 Hz
	c	5 Hz
	∆ Ctx	5 ms
	∆ MSN	11 ms
	∆ SNr	5 ms
	∆ FSI	0 ms
	∆ Th	5 ms
	∆ STN	5 ms
	τ p (p = Ctx)	5 ms
	τ FSI	0 ms

That is to say, this characteristic equation solely depends on the sum of the gains A + B + C rather than individual values of A, B and C. We call the rate model with above constraints on the parameters the degenerate rate model (corresponding to P 2 (λ)) and the rate model without such constraints the non-degenerate rate model (corresponding to P 1 (λ)).
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 42 Parameters for the firing rate model

	Parameter	Value
	J Ctx Th	1
	J Th SNr	-1
	J SNr STN	1
	J STN Ctx	1
	J SNr MSN	-4
	J MSN Ctx	1.1
	J MSN FSI	-0.5
	J FSI Ctx	2.5
	ν Ctx	5 Hz
	ν MSN	2 Hz
	ν SNr	50 Hz
	ν FSI	1 Hz
	ν Th	10 Hz
	ν STN	10 Hz
	c	5 Hz
	∆ Ctx	5 ms
	∆ MSN	11 ms
	∆ SNr	5 ms
	∆ FSI	0 ms
	∆ Th	5 ms
	∆ STN	5 ms
	τ p (p = Ctx)	5 ms
	τ FSI	0 ms
	pare Table 4.2 and Table	

Table 5 .

 5 Table5.1). Here, a hidden assumption is that the characteristic 1: Frequencies and mechanisms of pathological oscillations in the basal ganglia time scales of different oscillatory mechanisms (at least two in Parkinson's disease) are scaled together. This is naturally the case in the scenarios we consider below in which we assume at least one of the oscillatory mechanism of Parkinsonian oscillations takes place in BG-thalamocortical network. It is also possible that the characteristic time scale of the underlying network are very different in absence epilepsy and Parkinson's disease but we do not pursue this possibility to minimize assumption we make. This scaling suggests that 8-15 Hz alpha frequency in primates should be associated with 25-30 Hz high-beta frequency in rodents. The same association holds for tremor related frequency. Since the SWD frequency (∼3 Hz in primates, ∼7 Hz in rodents) is out of the second frequency band of Parkinsonian oscillations (8-15 Hz in primates, 25-30 Hz in rodents)

	Pathological Our	Frequency	Scenario 1		Scenario 2
	oscillations	terminology	Primate	Rodent	State Driver feedback State	Driver feedback
	SWD		3 Hz	7 Hz	cOSC direct	sOSC	hyperdirect
	"tremor"	T-oscillations 3-8 Hz	4-10 Hz	cOSC direct	s/cOSC hyper/direct
	"alpha"	B-oscillations 8-15 Hz	25-30 Hz sOSC hyperdirect		(cortex)
	"beta"		15-30 Hz		(STN-GPe)	

Table 5 . 2 :

 52 Table 5.2. Note that "non-competitive agonists" Effects drugs on synaptic, neuronal and total gain. The symbol ↑ and ↓ indicate increase and decrease, respectively, in the absolute vale of the gain. Total gain is the multiple of synaptic and neuronal gains.

	Drug	Synaptic gain Activity & Neuronal gain Total gain
	competitive glutamatergic agonist	↓	↑	undecidable
	competitive GABAergic agonist	↓	↓	↓
	competitive glutamatergic antagonist	↓	↓	↓
	competitive GABAergic antagonist	↓	↑	undecidable
	non-competitive glutamatergic agonist	↑	↑	↑
	non-competitive GABAergic agonist	↑	↓	undecidable
	non-competitive glutamatergic antagonist ↓	↓	↓
	non-competitive GABAergic antagonist	↓	↑	undecidable
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A B Figure 4.1: Shape of the map f and f 2 = f • f . (A) An example of bistable map without FSI. The center black dot on the blue line f (m) is the stable fixed point and the black dots at (0, 0) and (α, α) are the stable periodic orbits. Parameters: A = -3.0, B = 2.5, C 1 = 0, α = 1, β = -0.52. (B) An example of bistable map with FSI. Parameters:

and the fixed point looses stability (f (p) = -1). At the same time, the unstable period-2 orbit collides with the fixed point. This is the subcritical Hopf bifurcation and as a result the stable period-2 orbit becomes the only stable attractor in this map.

In the stable period-2 orbit, the cortical output m(t) oscillates between the state in which the cortex is not active (m(t) = 0, "down phase") and active (m(t) = α, "up phase"). The state of MSN at those states can be read from Figure 4.1 by comparing f and the line Am + α, the component of the map f solely from the hyperdirect feedback. The difference between f and Am + α is the contribution from the MSN output. Thus, it can be read that the MSN are not active when the cortex is at the down phase with ( 

corresponding to the Hopf instability (f (p) = -1) and the boundary

corresponding to the instability (f (p) = 1) in which the cortical activity diverges in non-oscillatory manner. We call the latter the rate instability [START_REF] Leblois | Competition between Feedback Loops Underlies Normal and Pathological Dynamics in the Basal Ganglia[END_REF]).

The derivative corresponding to the stable period-2 orbit (f 2 ) (α) is always 0 at the point α due to the threshold of f introduced by the cortex. Thus, the existence condition of the period-2 orbit suffice to determine the bistability. Solving the existence boundary f 2 (0) = f (α) = 0 for the The limit cycle of a certain type of delayed differential equation (DDE) can be related to the period-2 orbit of the corresponding discrete system using a simple example. The following type of DDE

can be reduced a one dimensional discrete system

taking the limit of τ /∆ → 0. The DDE can be linearized around its fixed point (p = f (p)):

where J = f (p). Substituting x(t) = exp(λt) + p to calculate the evolution of a small perturbation applied to the system gives the characteristic equation:

Note that, for this type of DDE, amplitude of the perturbation vanishes form the characteristic equation. Substituting λ = iω gives the condition of the Hopf instability:

The slope J can be eliminated from the equations. Therefore, instability condition can be written in a following simple form:

The smallest positive root of this equation ω H is the mode of the Hopf instability. The slope J where the Hopf instability occurs can be calculated from ω H as J H = 1/ cos(ω H ). As seen in Thus, the corresponding period is T H = 2π/ω H = 2∆. Therefore, the period-2 orbit of the discrete system is the corresponding orbit of the limit cycle of the DDE.