
HAL Id: tel-01394204
https://theses.hal.science/tel-01394204v2

Submitted on 21 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Irreversible Markov chains by the factorized Metropolis
filter : algorithms and applications in particle systems

and spin models
Manon Michel

To cite this version:
Manon Michel. Irreversible Markov chains by the factorized Metropolis filter : algorithms and appli-
cations in particle systems and spin models. Statistical Mechanics [cond-mat.stat-mech]. Université
Paris sciences et lettres, 2016. English. �NNT : 2016PSLEE039�. �tel-01394204v2�

https://theses.hal.science/tel-01394204v2
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences et Lettres  
PSL Research University

Préparée au laboratoire de physique statistique 
à l'École Normale Supérieure de Paris

Irreversible Markov Chains by the Factorized Metropolis Filter:

Algorithms and Applications in Particle Systems and Spin Models

M. MOULINES, Éric

ESPCI, examinateur

Santa Fe Institute, examinateur

ENS Paris, examinateur

M. MOORE, Cristopher

M. ZAMPONI, Francesco

M. MAGGS, Anthony

COMPOSITION DU JURY  :

Universiteit Utrecht, rapporteur 

Télécom Paritech, rapporteur 

Soutenue par Manon MICHEL
le 17 octobre 2016
h

Ecole doctorale n°564

École doctorale Physique en Île de France EDPIF 

Spécialité Physique

h

ÉCOLE NORMALE
S U P É R I E U R E

Mme. DIJKSTRA, Marjolein

ENS Paris, directeur de thèse
M. KRAUTH, Werner





École Doctorale de Physique de la Région Parisienne - EDPIF 564
École normale supérieure

Laboratoire de physique statistique

Thèse de doctorat

Irreversible Markov chains by the factorized Metropolis filter:
Algorithms and applications in particle systems and spin models

présentée par Manon Michel

pour obtenir le titre de docteur de l’École normale supérieure

Soutenue le 17 octobre 2016 devant le jury composé de:

Marjolein Dijkstra Rapporteur
Werner Krauth Directeur de thèse
Anthony Maggs Examinateur
Cristopher Moore Examinateur
Éric Moulines Rapporteur
Francesco Zamponi Examinateur





À mes parents, Hélène et Max,
pour leur affection et soutien tout au long de ces années.





Remerciements

Je remercie Werner Krauth pour la confiance qu’il m’a apportée en acceptant de diriger
ce travail doctoral, pour m’avoir guidée et encouragée pendant plusieurs années et
pour avoir relu avec beaucoup de soin ce manuscrit. Je remercie également Florent
Krzakala pour avoir accepté d’être le parrain de cette thèse. Je remercie Marjolein Di-
jkstra, Éric Moulines, Anthony Maggs, Cristopher Moore et Francesco Zamponi d’avoir
accepté d’évaluer ce travail, en particulier les deux premiers pour en être les rappor-
teurs.

Pour les collaborations fructueuses et les nombreuses discussions scientifiques, je
remercie Sebastian Kapfer, avec lequel c’est un véritable plaisir de travailler ou de
participer à des conférences. Je remercie également les différentes personnes avec
lesquelles j’ai pu collaborer: Johannes Mayer pour les systèmes de spins XY, Yoshihiko
Nishikawa et Koji Hukushima pour les systèmes de spins Heisenberg.

Je remercie également les professeurs qui m’ont poussée dans mon intérêt pour la
recherche; Michel Faye pour tous ses efforts pour nous transmettre l’intuition de la
physique dans ce qu’elle a d’essentiel, qu’elle soit cachée dans des trébuchets ou des
transits de Vénus; feu Prebagaran Mottou, pour sa patience à l’égard de mes questions,
ses examens toujours plus exigeants à base d’aventures de Bernard et Bianca et ses
cours ambitieux qui me plaisaient tant; Jean-Pierre Sanchez pour la rigueur et les bases
solides qui ne m’ont plus quittée; Nicolas Schlosser pour son enthousiasme, le ski et
simplement pour avoir cru en moi; feu Jean-Daniel Bloch pour son authenticité et ses
fameux jets de craie; Gérard Mantin, merci de m’avoir tant envoyée au tableau et de ne
pas avoir accepté moins que ce que vous me croyiez capable, je ne pourrais vous offrir
assez de Michokos pour vous remercier; Dominique Zann pour sa disponibilité, sa
patience et pour m’avoir fait douter entre la physique et la chimie, c’est dire; Stéphane
Olivier pour ses cours incroyables, les expériences avec le Michelson et sa patience
face à mon cahier de brouillon. Une fois arrivée à l’ENS, je remercie Jean-François
Allemand et Frédéric Chevy pour avoir créé un environnement d’apprentissage très
stimulant. Enfin, je remercie les différents professeurs de physique statistique que

7



8

j’ai eu la chance de pouvoir écouter sur les bancs de l’École: Michel Bauer, Bernard
Derrida, Emmanuel Trizac, Stéphane Fauve, Alain Comtet, Werner Krauth et Henk
Hilhorst.

Ces dernières années, j’ai eu la chance d’enseigner à l’université Pierre et Marie
Curie à des élèves motivés et charmants. Je remercie ainsi Jean-Louis Cantin, Christophe
Prigent et Frédéric Daigne pour m’avoir fait confiance dans cette tâche, pendant laque-
lle j’ai tant appris.

Je remercie Éric Pérez et Jorge Kurchan, directeurs successifs du laboratoire de
physique statistique, pour m’avoir accueillie au sein de cette institution et pour avoir
fait en sorte que je puisse mener ma tâche de représentant des doctorants librement
et efficacement. Je remercie également Zaïre Dissi pour son aide technique et pour
avoir sauvé mon premier ordinateur de la peste bubonique. Pour leur bienveillance et
patience, je remercie Marie Gefflot, Annie Ribaudeau, Nora Sadoui et Benoît Paulet.
Sans leur assistance dans les démarches administratives, ces années auraient été en-
combrées de problèmes moins scientifiques et auraient compté moins de moments
conviviaux autour des cafés du jeudi.

Pour avoir créé une atmosphère de travail joviale et humaine, je remercie tout
d’abord mes compagnons les plus proches dans cette aventure de Monte Carlo: Tom-
maso Comparin, le grand sage du laboratoire, Ze Lei, le grand pourvoyeur de snack
chinois, et Juliane Klamser, le nouveau soleil de l’équipe. Je souhaite à ces deux
derniers beaucoup de succès pendant leur doctorat et à Tommaso du courage pour
la fin de la rédaction. Je remercie tout aussi chaleureusement les autres doctorants
et postdoctorants avec lesquels j’ai eu le plaisir de partager ces moments de notre je-
unesse: Étienne Bernard et Swann Piatecki, les grand frères et anciens membres de
notre équipe; Isabelle Motta, Benjamin Ravaux, Fabien Souris et Romain Lhermerout
avec lesquels j’ai eu le plaisir d’organiser le séminaire PhD & PostDoc, la journée
PhD & PostDoc et bien sûr les randonnées ! Quentin Feltgen et Nariaki Sakai, qui ont
repris le flambeau de l’organisation du séminaire PhD & PostDoc; Tridib Sadhu pour
la musique et la gentillesse de laisser son appartement se faire envahir de doctorants
lors de nos fameux dîners; Anirudh Kulkarni pour sa bonne humeur et son oreille
attentive; mais aussi les autres compagnons de ses moments joyeux, Diego Contreras
pour son amour des vélos et du voyage, Volker Pernice pour les cafés et les couvertures,
Lorenzo Posani pour son énergie et son humour, Samuel Poincloux pour les prome-
nades dans Lyon et les tricots, Riccardo Rossi pour sa force tranquille et sa rapidité au
pot et Arthur Prat-Carrabin pour ses conseils et sa bonne humeur; je n’oublie pas celui
qui a été l’un des doctorants incontournables du laboratoire, Tommaso Brotto, merci
de t’être occupé de toutes ces tâches que les autres préféraient éviter et surtout d’avoir
cimenté le groupe des doctorants; je remercie également ma partenaire des heures de
travail nocturnes, Gaïa Tavoni; je remercie enfin Kris Van Houcke pour sa tempérance
et sa sagesse et Félix Werner pour nos discussions sur la randonnée. Je remercie une
seconde fois ceux qui ont accepté de relire cette thèse, Tridib Sadhu, Anirudh Kulka-
rni et Juliane Klamser. Merci pour votre patience à l’égard de mes tournures un brin
françaises.



9

Je remercie tous mes amis qui ont su m’offrir des intermèdes heureux, avec plus ou
moins de péripéties, entre deux phases de recherche; les nimpros bien sûr: Tiphaine,
Pierre, Sévan, Paul, Nicolas, Anne-Sophie, Guillaume, Marion, Violaine, Tania, Ju-
lian, Antoine, François, Fathi, Marie, Samuel, Guillaume, Cassandre, Félix, Victor et
Anouck; les physiciens: Claude, Stéphanie, Gabriel, Éric, Lucie et Laure; les patineurs:
Marine, Sary et Guillaume; les cavaliers: Manon, Mathilde et Gérald; les amis tout
simplement: Swann, Katia et Hélène. Merci de m’honorer de votre amitié.

Finalement, je remercie ma famille et en particulier ceux qui ont toujours été là,
mes parents, Hélène et Max. Merci de vous être tant souciés de mon épanouïssement
et merci de m’avoir appris non pas la facilité mais la persévérance et l’effort. Merci
de votre aide dans les dernières heures de rédaction, les juments et moi-même vous
remercions tout particulièrement pour les soins que vous leur avez prodigués, quand
je n’étais pas disponible. Je remercie également Alix pour avoir partagé tant de soirées,
d’histoires et de kilomètres avec moi.



10



General introduction

In nature, there exist many systems composed of a great number of objects interact-
ing with each other, such as atomic gases, flock of birds, neural network or economic
systems. Composed of many degrees of freedom, those systems exhibit interesting
collective phenomena, even if the microscopic interactions are only local. In particular,
during second-order phase transitions, the correlations between the objects appear on
an infinite scale and the system moves as one [1]. Statistical mechanics offers a power-
ful framework to describe such systems, by assuming that, at equilibrium, each system
visits in a stochastic way every one of its microscopic states during its evolution [2–
6]. Building on the theory of probabilities, equilibrium statistical mechanics describes
complex systems by enumerating all their possible microscopic configurations and the
probability to find the system in a particular one. The successes of this approach ex-
tend now well beyond physics, from classical to quantum physics and astrophysics,
and reach a broad range of topics from biology and neuroscience to social sciences or
finance, with direct applications, such as deep learning and big data.

The description of a system by its configuration space and their probabilities cor-
responds analytically to solving high-dimensional integrals, which often turns out to
be an impossible task. The advent of the Monte Carlo method [7–9] has revolutionized
the computation of these high-dimensional integrals, and therefore the understanding
of complex systems [10–12]. This method runs a Markov chain on the configuration
space. As the chain explores this space, it samples the configurations with the correct
probability, once it reaches the stationary regime, called equilibrium. It then com-
putes the needed integrals as a configurational average over the samples. Deriving
also from probability theory and used with success in the same various range of do-
mains from physics [13, 14] to biology [15] and computer science [16], it is now hard
to differentiate the tool from the discipline it was meant to study. But, in spite of
celebrated past successes, the Monte Carlo method faces today new challenges. The
seminal paradigm introduced by Metropolis et al., (1953) [17] imposes strict rules, that
rely on the rejection of moves and often lead to the diffusive dynamics of the random

11



12

walk. On complex energy landscapes with numerous metastable states (e.g. in spin
glasses) or for probability distributions exhibiting a large number of bottlenecks (e.g.
in dense hard spheres), the equilibration time becomes often larger than the available
simulation time, while reaching equilibrium is a crucial condition for retrieving the
correct probability distribution. The extension of the Metropolis algorithm by Hast-
ings (1970) [18] led to the development of new methods which are used with success
in spin systems [19, 20], but are efficient in specific systems only. In order to reduce
the diffusive dynamics of the local update Metropolis algorithm, algorithms producing
global moves were designed [21–25]. The concept of lifting was then created to unify
these approaches [26–28].

During my PhD at Laboratoire de physique statistique at École Normale Supérieure,
I worked on the conception and study of irreversible Markov-chain Monte Carlo algo-
rithms and their application to particle and spin systems. This thesis reviews the work
done under the direction of Werner Krauth. I had the great pleasure to collaborate
with Werner Krauth, Sebastian Kapfer (soft spheres and elasticity), Johannes Mayer
(XY spins model), Yoshihiko Nishikawa and Koji Hukushima (Heisenberg spins). As
this work is at the junction between physics and mathematics, particular attention has
been paid to make this thesis accessible to both communities. In his lecture notes on
statistical mechanics [29], R. P. Feynman introduced the Boltzmann distribution and
the expected value of an observable over it by stating that ‘this fundamental law is the
summit of statistical mechanics, and the entire subject is either the slide-down from this sum-
mit, as the principle is applied to various cases, or the climb-up to where the fundamental law
is derived and the concepts of thermal equilibrium and temperature T is clarified. We will be-
gin by embarking on the climb.’. In a more humble way, this thesis offers the climb-up
to the fundamental concepts of statistical mechanics and, from there, a path to slide
down by using stochastic numerical computations by Monte Carlo method, instead of
traditional deterministic calculations.

First, Chapter 1 introduces essential concepts of statistical mechanics and Markov
chains. Then, Chapter 2 reviews the different Monte Carlo methods and the limitations
encountered by traditional schemes, in particular around phase transitions, where dy-
namical slowing down appears. The rest of the thesis is dedicated to the results that
I obtained during my thesis and that are summarized in three publications [30–32],
which are attached in this thesis, see Publication 1, Publication 2 and Publication 3,
and two manuscripts in preparation [33, 34]. Chapter 3 presents a general scheme for
rejection-free irreversible Markov chains, that relies on the new factorized Metropolis
filter. These irreversible factorized Metropolis algorithms draw on the lines of pre-
vious works on upgrading the Metropolis dynamics [24, 25] and build on the lifting
framework developed in mathematics [26–28]. These algorithms violate the Metropo-
lis paradigm, as they do not obey detailed balance, they proceed by global moves in
a persistent way and are implemented using infinitesimal steps. The applications of
this irreversible factorized Metropolis scheme, its implementation and performance in
soft-sphere and continuous spin systems are discussed in Chapter 4.
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CHAPTER 1

Markov processes

In 1738, D. Bernoulli published Hydrodynamica [35] that dealt with hydrodynamics,
also known as fluid mechanics, and was organized around the idea of conservation of
energy. Even in modern physics, the atomistic nature of fluids is ignored in hydrody-
namics. A fluid is described using a mesoscopic scale which is based on the possibility
of subdividing the fluid into infinitesimal elements. The averaged properties of these
elements are those of the macroscopic material, such as pressure, density or tempera-
ture. Such an assumption asks for a good separation of scales between the macroscopic
and microscopic level. This mesoscopic description assumes the conservation of mass,
energy and momentum. This link between a mesoscopic description and conservation
laws appears also in statistical mechanics.

In the same book, D. Bernoulli also laid the basis for the kinetic theory of gases by
arguing that gases consist of a great number of molecules moving in all directions and
that the macroscopic notion of pressure and heat find their origin in their motions. It is
almost two centuries later that the existence of atoms and molecules was proven by the
study of the Brownian motion by A. Einstein in 1905 [2] and observed experimentally
by J. Perrin in 1908 [36], as the Brownian motion of pollen grains or dust particles in
a liquid results directly from collisions with the liquid molecules. In 1857, R. Clausius
[37] introduced a more sophisticated version of the theory, with translational, rota-
tional and vibrational degrees of freedom. In 1859, J. C. Maxwell [3, 4] formulated the
Maxwell distribution of molecular velocities. Finally, in 1871, L. Boltzmann [5, 6] gen-
eralized Maxwell’s distribution to the Maxwell-Boltzmann distribution, which initiated
statistical mechanics.

A. Einstein described the Brownian motion as a memoryless stochastic process, a
Markov process. This stochastic description reflects the fact that microscopic informa-
tion is converted over time into fluctuations within the system on the macroscopic scale
[38–40]. The loss of the information about the initial conditions, as the system is able
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18 CHAPTER 1. MARKOV PROCESSES

to reach the equilibrium, will be of particular interest, especially in the case of Markov
processes, that are at the core of the Markov-chain Monte Carlo method.

In this chapter, the ensemble average over the Maxwell-Boltzmann distribution is
introduced in Section 1.1.1. The equivalence of time average and ensemble average,
the foundation of equilibrium statistical mechanics, is then discussed in Section 1.1.2,
along with the description of a system by means of a stochastic process in Section 1.1.3.
Among stochastic processes, we will focus on the memoryless Markov processes, in
Section 1.2, and discuss their speed of convergence to equilibrium in Section 1.3.

1.1 Fluctuations and statistical ensembles

A gap exists between the reversible laws of classical mechanics on the microscopic scale
and the irreversible phenomenological laws on the macroscopic scale. Computing the
exact variations of the positions and momenta of a large number of atoms appears
to be an impossible task, even if it is in principle possible. Macroscopic observables,
however, may behave smoothly and be described by simple laws, and such, without
knowing the microscopic details. This section addresses how statistical mechanics
solves this issue by reformulating drastically any single varying function of time f (t)
by an ensemble of functions, i.e. a stochastic process { f1, f2, f3, . . . }. All averages over
some time interval f̄ are then replaced by averages over the ensemble 〈 f 〉.

1.1.1 Maxwell-Boltzmann distribution

We introduce here the basic laws of statistical mechanics, first for a quantum mechan-
ical system, for simplicity, as it can be decomposed into a mixture of eigenvectors of
the Hamiltonian H. A more extended review can be found in [29, chapter 1].

We consider a system with a Hamiltonian H, whose eigenvector |i〉 of energy Ei,
called eigenstate, follows

H|i〉 = Ei|i〉. (1.1)

Systems of interest to statistical mechanics, e.g. often composed of O(1023) particles,
exhibit an extremely large degeneracy of energy levels. We denote by Ω(E, V, N) the
number of eigenstates with energy E of a system of N particles in a volume V.

The basic, but non trivial, assumption of statistical mechanics is the equiprobability
of any eigenstate of Ω(E, V, N). It can be justified by considering a system S weakly
coupled to a heat bath HB for a long time, as is done in [29]. The system is in thermal
equilibrium, i.e. all the fast phenomena have happened but the slow ones, e.g. the
erosion of the enclosure of the gas, have not. We consider two different states of
the system of same energy Er = Es. If the system is in state r, any extremely small
perturbation will cause the system to go into a different state of essentially the same
energy, such as s. Reciprocally, the same holds true if the state is in s. As the system is
in contact with the heat bath for a long time, one would expect states of equal energy
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Figure 1.1: Quasi-continuous energy levels of the heat bath HB in comparison to the
energy levels of the system S.

to be equally likely. The equiprobability holds, if the system is ergodic, as is discussed
in Section 1.3.1. Finally, if two states of the same energy are equally probable, the
probability P of a state having energy Er is a function of the energy Er only.

Now we write T the total system composed of HB and S, of total energy
E = EHB + ES. As HB is a large heat bath, its energy EHB is large, EHB � ES,
and the possible energy levels of HB are assumed to be quasi-continuous in compar-
ison to the energy levels of S, as illustrated in Fig. 1.1. The probability P(Er) that S
is in state r and that ES = Er is proportional to the number of ways S can have that
energy, i.e. the number of states of H that allows T to have the correct energy E, i.e.
|ΩHB(E− Er)|. So that,

P(Er)

P(Er′)
=
|ΩHB(E− Er)|
|ΩHB(E− Er′)|

= elog(|ΩHB(E−Er)|)−log(|ΩHB(E−Er′ )|). (1.2)

As Er � E, β(E) = d log(|ΩHB(E)|)/dE| is almost constant in the range under con-
sideration1 and

P(Er)

P(Er′)
= e−β(Er−Er′ )

P(Er) ∝ e−βEr .
(1.3)

β is called the inverse temperature, as the temperature T is conventionally defined as
β = 1/kbT, where kb is the Boltzmann’s constant. We define the canonical partition
function, Z, as

Z = ∑
i

e−βEi = Tr(exp(−H/kbT)), (1.4)

where Tr denotes the trace of the operator. We also define the Boltzmann weight, i.e.
the probability of a state i, π(i) = e−βEi /Z. The thermal or ensemble average of an
observable θ is then,

1The assumption made here is equivalent to the one that the heat bath has a quasi-continuous spec-
trum in the region considered and for which there is no particular characteristic energy, [29, p. 3].
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〈θ〉 = 1
Z ∑

i
〈i|θ|i〉e−βEi

=
Tr(θ exp(−βH))

Tr(exp(−βH))
.

(1.5)

In the following, we will be concerned with the classical limit of Eq. 1.4 for N
particle systems. In the classical limit, we have

Tr(exp(−βH)) ≈ Tr(exp(−βU) exp(−βK)), (1.6)

with U the potential part and K the kinetic part of H. The sum over the states can
then be replaced by an integration over all coordinates r and momenta p, leading to
the classical expression of the partition function,

Z =
1

hdN N!

∫
dpNdrN exp

(
−β

(
∑

j
p2

j /(2mj) + U(rN)

))
, (1.7)

the N! term comes from the fact that permuting two similar particles does not change
the observable properties of the macroscopic system and that the thermodynamic
quantity of entropy has to be at a maximum in a closed system in equilibrium [41, 42].
The classical expression of the ensemble average of an observable θ is

〈θ〉 = 1
Z

∫
dpNdrNθ(rN, pN) exp

(
−β

(
∑

j
p2

j /(2mj) + U(rN)

))
. (1.8)

Monte Carlo methods, see Chapter 2, have been designed to compute averages like in
Eq. 1.8. But, unlike in molecular dynamics [43], Monte Carlo methods only focus on
producing configurations of the positions of particles, because the particle velocities
form an independent sampling problem. As particle velocities follow the Maxwell
distribution, they are sampled easily, see Section 2.1.2.2. Thus, for an observable θ

depending only on the set ζ of positions of the particles, we can rewrite Eq. 1.8 after
renormalizing Z as,

〈θ〉 = 1
Z

∫
dζθ(ζ) exp (−βU(ζ)) . (1.9)

Thus far, we have discussed the ensemble average of an observable θ. But the experi-
mental average of an observable is actually its time average. The next section discusses
how both averages can be considered equivalent, as long as the system is ergodic.

1.1.2 Classical statistical mechanics and ensemble averages

Let us consider a fluid consisting of N classical atoms in a volume V. One microscopic
state ζ(t) of the fluid is described by the 6N independent position rj and momentum
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pj coordinates of each atom. We wish to study the density of the fluid at a distance
r from a given atom i, ρi(r). In most experiments, the measurement of precise and
instantaneous values ρi(r, ζ(t)) is not possible, as it depends on the coordinates rj of
all particles j. For example, the pressure that the fluid will exert on a piston is, as
a matter of fact, time-averaged by the inertia of the latter. It is then considered that
the result of a measurement is the time average ρ̄i(r) of ρi(r). Each measurement of a
macroscopic observable at a time t0 is considered to take actually a certain interval of
time t to be realized. During this interval, ζ(t) changes according to Newton’s laws of
motion and ρi(r, ζ(t)) with it. The time average,

1
t

∫ t0+t

t0

ρi(r, ζ(t′))dt′, (1.10)

is constant, if it is independent of the initial condition, i.e. t0, and the length of the
interval, i.e. t, given it is long enough. We consider this to be the case and will discuss
this issue later in Section 1.3.1. One can argue that the macroscopic interval of time
t for the measurement is extremely large from the microscopic point of view and one
may take the limit t→ ∞,

ρ̄i(r) = lim
t→∞

1
t

∫ t0+t

t0

dt′ρi(r, t′). (1.11)

As Eq. 1.11 does not depend on the initial condition, it is possible to rewrite it as an
average over a collection of initial conditions,

ρ̄i(r) =
∑initial conditions limt→∞

1
t

∫ t0+t
t0

dt′ρi(r, t′)

Total number of initial conditions
. (1.12)

Experimentally, Eq. 1.12 can be realized by observing a large number of copies of the
atomic fluid (Gibbs’s approach [44]) or by observing only one and the same copy of
the system on successive intervals, given the intervals are long enough so they are
independent from one another (time approach). Following [11, p.16], we consider the
limiting case of averaging over the set Ω of all possible initial conditions ζ(0),

∑initial conditions f (ζ(0))
Total number of initial conditions

→
∫

Ω
dζ(0)π(ζ(0)) f (ζ(0)), (1.13)

with f an arbitrary function of the initial coordinates ζ(0) = {ri(0), pi(0)}. π(ζ(0))
is the probability to start the averaging at ζ(0). For instance, if we realize the experi-
ment of measuring one copy of the system at intervals, then the starting point of the
measuring interval can be at any time and the initial conditions can be any state the
system will visit. Therefore π(ζ(0)) = π(ζ). In the case where the system is ergodic, as
previously assumed by the independence from the initial conditions, the system visits
during its evolution all states ζ of the phase space Γ for a given energy. The probability
weight π(ζ) can then be understood as the probability to find the system in the state ζ

during its evolution.
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Using the equivalence of Eq. 1.13, the time average Eq. 1.11 is now equivalent to the
ensemble average,

ρ̄i(r) = 〈ρi(r)〉 =
∫

Ω
dζπ(ζ)ρi(r, ζ), (1.14)

where 〈·〉 identifies with Eq. 1.9.
Eq. 1.14 is the main version of the ergodic hypothesis. ρ̄i(r) describes then the equi-

librium, without depending on the initial state. As the initial conditions do not matter,
only the quantities that are conserved do, hence the link between mesoscopic descrip-
tion and conservation laws. Section 1.3.1 will address with more care the ergodic
hypothesis. The systems studied later in Chapter 4 are ergodic, but not all systems are.

If one wishes to compute the average of a function, it is possible to either use the
time average, as in molecular dynamics [43] or the ensemble average, as in the Monte
Carlo method, see Chapter 2. Both approaches are equivalent, as shown by Eq. 1.14,
and have been extremely versatile. For particle systems, the molecular dynamics solves
the classical equations of motion and computes the trajectories of the particles from
collision to collision with other particles. The Monte Carlo method builds a stochastic
process that evolves on the configuration space and samples thus in a simpler way the
different configurations needed for the ensemble average.

If time and ensemble averages are equivalent, given the system is ergodic, dynam-
ical properties are still controlled by Newton’s equations of motion. For a closed and
isolated system2, the microscopic deterministic motion is represented as a trajectory in
phase space Γ. After a time t, each point ζ ∈ Γ is mapped in a unique and determined
way into another point ζt = φ(ζ, t) ∈ Γ. The initial probability density evolves in phase
space Γ according to Liouville’s equation. The deterministic trajectory generated this
way is different from the probabilistic trajectories generated in stochastic processes.
However, we are interested here on a coarse-grained picture and not on the full atom-
istic description. For such mesoscopic scale, only a subset of the degrees of freedom
matters. The microscopic variables that evolve on a much faster time scale act then
as a heat bath, like it was assumed for Eq. 1.11. It then induces stochastic transitions
among the relevant and slower mesoscopic variables. In the case of a separation of
time scales, the Liouville equation that controls the temporal evolution of the initial
distribution over Γ can be reduced to a Markovian master equation, Eq. 1.56, and the
stochastic process is then Markovian, see Section 1.2.

The stochastic nature does not come from setting a probability density P(x) as the
initial state. For instance, the irregular motion of a Brownian particle in a bath cannot
be linked to a probability distribution of some initial state. This irregularity is actually
the work of the bath molecules in the vicinity and is linked to all the microscopic vari-
ables describing the total system that have been eliminated in order to get an equation
for only the Brownian particle. It is the elimination of the bath variables that allows
one to establish the stochastic process of Brownian motion [40, p. 55-57].

2No energy or particle exchange
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1.1.3 Stochastic processes

In Section 1.1.2, the equivalence between time and ensemble averages was presented.
It led to the mesoscopic stochastic description, that contains both the deterministic
laws and the fluctuations. Such a description consists of eliminating a large number of
microscopic variables, so that a small set of mesoscopic variables obeys approximately
an independent set of deterministic equations. The deterministic nature of those
equations, as the hydrodynamics equations for instance, is indeed only approximated,
as the now hidden microscopic variables introduce fluctuation terms [38]. The fluctua-
tions, acting like a heat bath, change the mesoscopic variables into stochastic processes.

Following [40], a stochastic process Y = (Xt1 , Xt2 , ...Xtn) is an ordered collection
of a stochastic (or random) variable X, e.g. the ensemble of positions of one atom at
successive times. The random variable X is defined by a set of possible values Ω, called
the configuration space, and by a probability distribution (or density) P(x) over this
set, with

P(x) ≥ 0
∫

Ω
P(x)dx = 1.

(1.15)

The probability that X has a value between x and x + dx is P(x)dx. From Eq. 1.15, it
is possible to define the average of any function f , defined on the same configuration
space Ω, as in Eq. 1.14,

〈 f 〉 =
∫

Ω
f (x)P(x)dx. (1.16)

For multivariate distributions X = (X1, X2, ..., Xn), as for the atomic fluid with the
whole set of position and momentum coordinates of all atoms, the probability distri-
bution P(x) can be understood as the joint probability distribution of the n variables
X1, ..., Xn. A marginal distribution P(xi1 , ..., xis) on a subset of s < n variables Xi1 , ..., Xis ,
may be defined as

P(xi1 , ..., xis) =
∫

P(x1, ..., xn) ∏
j 6∈{i1,...,is}

dxj. (1.17)

For instance, in the atomic fluid, the marginal distribution of the position coordinates
is

P(r1, ..., rN) =
∫

P(r1, ..., rN , p1, ..., pN)
N

∏
j=0

dpj. (1.18)

The average of the density function ρi(r) is then

〈ρi(r)〉 =
∫

Ω
ρi(r)P(r1, ..., rN)

N

∏
j=0

drj. (1.19)
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One can define also the mth moment of X,

〈Xm〉 =
∫

Ω
xmP(x)dx, (1.20)

and the variance or dispersion var(X) = σ2
X,

var(X) = σ2
X = 〈X2〉 − 〈X〉2, (1.21)

that will be useful in discussing errors in Monte Carlo Method in Section 2.3. The
mth-moment of X exists if and only if the integral

∫
Ω |xm|P(x)dx converges. If the mth-

moment does not exist, neither does every nth-moment, n ≥ m. If the mth-moment
does exist, so does every nth-moment, n ≤ m.

The joint distribution of a set of s variables, while attributing fixed values to the re-
maining (r− s) variables, is called the conditional probability distribution of Xi1 , ..., Xis ,
conditional on Xj1 , ..., Xjr−s having the prescribed values xj1 , ..., xjr−s and denoted as
P(xi1 , ..., xis |xj1 , ..., xjr−s). Following the definition of the marginal and the conditional
probability distribution, Bayes’ rule is then expressed by,

P(x1, ..., xr) = P(xj1 , ..., xjr−s)P(xi1 , ..., xis |xj1 , ..., xjr−s) (1.22)

or

P(xi1 , ..., xis |xj1 , ..., xjr−s) =
P(x1, ..., xr)

P(xj1 , ..., xjr−s)
. (1.23)

It leads to the concept of statistical independence of two sets. If the set of r variables
can be subdivided in two sets (Xi1 , ..., Xis) and (Xj1 , ..., Xjr−s), so that Pr factorizes,

P(x1, ..., xr) = Ps(xi1 , ..., xis)P(xj1 , ..., xjr−s), (1.24)

then the two sets are called statistically independent and the factor Ps (respectively
Pr−s) identifies with the conditional probability density Ps|r−s (respectively Pr−s|s). Ba-
sically, this means that fixing the values of one set brings no extra information for
the possible values in the other set, as they do not affect each other. This will be
particularly useful to devise the factorized Metropolis filter that leads to rejection-free
irreversible Markov chains, as discussed in Section 3.2.

As in Eq. 1.20, one can define the moments of a multivariate distribution,

〈Xm1
1 ..Xmr

r 〉 =
∫

Ω
xm1

1 ...xmr
r P(x1, ..., xr)dx1...dxr. (1.25)

We are interested in stochastic processes Y = {Xt1 , Xt2 , . . . , Xtn} that are ordered
according to the time t, as illustrated in Fig. 1.1.3. A realization of the process y(t)
is an ordered collection {xt}, where xt are successive realizations of X. In statistical
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Figure 1.2: A stochastic process Y is defined as an ordered collection of a random vari-
able X. Here it is ordered along the time t and Y stands for the successive positions
{xt} of a Brownian particle. Top left: A stochastic process is the ensemble of all its real-
izations yi(t), where yi(t) is a sequence of realization x of X. Top right: One can define
the probability Pn(x1, t1; x2, t2; . . . ; xn, tn)dx1 . . . dxn for a realization to go through the
n windows centered on (xi, ti) and of width dxi. Bottom: For self-averaging processes,
which can be decomposed on long time intervals that do not affect one another, the
stochastic process Y is simply the ensemble of all the intervals yi(t).

mechanics, the stochastic process Y itself is understood as the ensemble of these re-
alizations y(t), like an ensemble of a large number of copies of an experiment. The
ensemble average 〈·〉 is

〈Y(ti)〉 =
∫

y(ti)P(y)dy

〈Y(ti)〉 =
∫

Ω
xP1(x, ti)dx.

(1.26)

Here the functional P is the probability distribution of y,
∫
P(y)dy = 1. It can be

rewritten as the joint probability distribution Pn of observing a certain realization
{xt1 , xt2 , . . . , xtn} as

Pn(x1, t1; x2, t2; . . . ; xn, tn) = 〈δ(Y(t1)− x1)δ(Y(t2)− x2) . . . δ(Y(tn)− xn)〉. (1.27)

A stochastic process is completely defined by the complete set of Pn, as shown by the
Kolmogorov existence theorem [45, 46]. Also Pn does not change on interchanging two
pairs (xk, tk) and (xl, tl). Considering the atomic fluid, the ensemble average of the
density 〈ρi(r)〉 is obtained by considering all the possible realizations ρi(r, t), leading
to Eq. 1.14.

The nth moment, from n values t1, ..., tn of the time t, can also be defined,

〈Y(t1)...Y(tn)〉 =
∫

Ω
x1 . . . xnPn(x1, t1; . . . ; xn, tn)dx1 . . . dxn. (1.28)
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The normalized autocorrelation CY function will be particularly useful,

CY(t1, t2) =
〈Y(t1)− 〈Y(t1)〉〉〈Y(t2)− 〈Y(t2)〉〉√

var(Y(t1))var(Y(t2))

=
〈Y(t1)Y(t2)〉 − 〈Y(t1)〉〈Y(t2)〉√

var(Y(t1))var(Y(t2))
.

(1.29)

From Eq. 1.28, one can define the stationary property. The statistical property of a
stationary process does not change with time, i.e. all the nth moments of a stochastic
process are not affected by any shift τ in time,

〈Y(t1 + τ)...Y(tn + τ)〉 = 〈Y(t1)...Y(tn)〉. (1.30)

A stationary stochastic process has therefore a time-independent average and its au-
tocorrelation function CY(t1, t2) of Eq. 1.29 depends only on the difference of time
|t1 − t2|, in particular CY(t1, t2) = C(t2, t1),

CY(t) =
〈Y(t)Y(0)〉 − 〈Y〉2
〈Y2〉 − 〈Y〉2 . (1.31)

This leads to the definition of an autocorrelation time τexp, so that CY(|t1 − t2| > τexp)

is negligible, see Section 1.3.2.4 and Section 2.3.3. In practice, stationary processes are
only an approximation; they arise by considering analytically the right time scale, so
that the evolution of the microscopic variables is averaged, whereas the macroscopic
variation is still negligible.

We discussed how the equivalence of time and ensemble average allows for a refor-
mulation of the problem in terms of a stochastic process. From the moment the system
exhibits a self-averaging property, which is the case in particular for a stationary sys-
tem, the irregularly varying function can be cut into a collection of long time intervals.
These intervals are an ensemble of realizations of the stochastic process. It is necessary
that there is no influence of an interval on the next one. If this is the case, the process
is called ergodic, see Section 1.3.1.

1.2 Markov processes and master equation

Before discussing Markov processes developed within Markov-chain Monte Carlo
methods in Section 2.2, we address more generally in this Section the Markovian de-
scription of physical systems. As seen in Section 1.1.2, if the separation of scales be-
tween microscopic and macroscopic variables is good enough, the underlying stochas-
tic process has a memory of only its immediate past and is said to be Markovian.
Experimentally, the Markov property is only approximate. For a Brownian particle for
instance, if the previous displacement was a large one, the probability that the current
displacement is also large is slightly higher. The autocorrelation time of the velocity,
even if small, is not strictly zero and a large displacement is more likely just after a
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large one. But, as the experimental sampling of positions is made on a coarse-grained
time scale longer than the autocorrelation time of the velocity, see Section 1.1.2, the
process appears Markovian.

The Markovian nature depends on the number of variables used to describe the
process. For example, if a stochastic process described by r variables is Markovian, it
is not necessary that the stochastic process constituted by a subset of s variables from
the previous ones is Markovian. The information brought by the s variables may not
be sufficient to predict the future configuration, not even the configuration restricted
to these s variables.

However, if a process is not Markovian, it is sometimes possible to extend the
configuration space by additional variables and create a Markovian process. These
additional variables describe explicitly the information that was previously implicit
and hidden in the past values of the variables. This extension of the configuration
space will be one of the key elements of the rejection-free Monte Carlo scheme, see
Section 3.1.

As discussed in Section 1.1.2, the goal is to find a small set of variables preserv-
ing the Markovian nature. Experimentally, it is possible to do so for most many-body
systems, but it remains an approximate description restricted to a macroscopic, coarse-
grained level. This reduction is usually called contraction or projection and the justifica-
tion of this approximation is still a debate at the most fundamental level of statistical
mechanics.

1.2.1 General properties of a Markov process

Markov processes (or Markov chains) exhibit the Markov property: The conditional
probability distribution of future states depends only upon the present state. For any
set of n successive times (i.e. t1 < t2 < ... < tn),

P(xn, tn|x1, t1; x2, t2; ...; xn−1, tn−1) = P(xn, tn|xn−1, tn−1). (1.32)

A Markov process is fully determined by the initial probability distribution P(x1, t1)

and the transition probability P(x2, t2|x1, t1) = p((x1, t1) → (x2, t2)). Using only these
functions, the complete hierarchy can be retrieved,

P3(x1, t1; x2, t2; x3, t3) = P1(x1, t1)P(x2, t2|x1, t1)P(x3, t3|x2, t2). (1.33)

Eq. 1.33 written for two times t1 and t2 is simply the Bayes rule, Eq. 1.23,

P2(x1, t1; x2, t2) = P1(x1, t1)P(x2, t2|x1, t1). (1.34)

Integrating Eq. 1.34 over x2 and dividing by P1(x1, t1) leads to the conservation condi-
tion for all x1, t1, t2,

1 =
∫

P(x2, t2|x1, t1)dx2 (1.35)
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Equivalent to,

P1(x1, t1) =
∫

P1(x1, t1)P(x2, t2|x1, t1)dx2 (1.36)

Integrating now Eq. 1.34 over x1 leads to the necessary condition for all x2, t1, t2,

P1(x2, t2) =
∫

P(x2, t2|x1, t1)P1(x1, t1)dx1. (1.37)

Eq. 1.37 is known as the global-balance condition in the Markov-chain Monte Carlo
method, in Chapter 2, Section 2.2. By analogy with the mass flow in hydrodynamics,
the instantaneous probability flow φx1→x2(t1, t2) between two configurations is defined
as

φx1→x2(t1, t2) = P1(x1, t1)P(x2, t2|x1, t1). (1.38)

As for the mass flow, the probability flow is composed of a velocity term P1(x2, t2|x1, t1)

and a mass term P1(x1, t1) and obeys a continuity condition, Eq. 1.36. Following this
analogy, the global-balance condition Eq. 1.37 and the conservation condition Eq. 1.36,
when combined, yield the incompressibility of the probability flows,

∑
x′∈Ω

P1(x′, t1)P(x, t2|x′, t1)

︸ ︷︷ ︸
All flows into configuration x

= ∑
x′∈Ω

P1(x, t1)P(x′, t2|x, t1)

︸ ︷︷ ︸
All flows out of configuration x

for all x, x′ in Ω.

∑
x′∈Ω

φx→x′(t1, t2) = ∑
x′∈Ω

φx′→x(t1, t2)

(1.39)

Finally, a relationship between the transition probabilities can be obtained by inte-
grating Eq. 1.33 over x2. Considering that the initial probability distribution is arbitrary,
we obtain, for any t1 < t2 < t3,

P1(x3, t3|x1, t1) =
∫

P(x3, t3|x2, t2)P(x2, t2|x1, t1)dx2, (1.40)

Eq. 1.40 is known as the Chapman-Kolmogorov equation. Any two nonnegative func-
tion P(x1, t1) and P(x2, t2|x1, t1) following the set of equations (Eq. 1.37, Eq. 1.40) or
equivalently the set (Eq. 1.37, Eq. 1.35) define uniquely a Markov process. Even if a
Markov process is specified only by P1 and P2, one needs however all the Pn to demon-
strate the Markovian nature of a process.

1.2.2 Stationary and homogeneous Markov processes

Markov processes that are stationary, as defined in Eq. 1.30, are of special interest, in
particular for describing a system in equilibrium and the fluctuations within. Consider
a system described by a Markov process Y(t). When the system reaches equilibrium,
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Y(t) becomes stationary. In particular, P1(x, t) = π(x) is independent of time and is
the equilibrium distribution of the quantity Y, as described by statistical mechanics,
Section 1.1.1. For simplicity, we consider here discrete-time Markov chains. The
continuous-time Markov chains will be presented in Section 1.2.3.

1.2.2.1 Transfer Matrix

The transition probabilities of a stationary Markov process only depend on the time
difference. Once the initial probability distribution is known, the Markov chain is
then completely characterized by a stochastic matrix T, called the transfer matrix. The
matrix T has for elements all the transition probabilities,

P(Xt+1 = x′|Xt = x) = T(x, x′)

P(Xt+τ = x′|Xt = x) = Tτ(x, x′),
(1.41)

with (x, x′) ∈ Ω2 and τ = t2− t1. The element Tτ(x1, x2) is the probability that a chain
on a state x reaches x′ in τ steps. The matrix Tτ is simply the τ-fold matrix product of
T. We can also define the stationary probability flow between two states x, x′,

φx→x′ = π(x)T(x, x′)

φτ
x→x′ = π(x)Tτ(x, x′).

(1.42)

The Chapman-Kolmogorov equation Eq. 1.40 becomes a simple matrix product, with
τ, τ′ > 0,

Tτ+τ′ = TτTτ′ . (1.43)

Eq. 1.41 is not restricted to positive τ [40]. As the probability P(Xt+τ = x′, Xt = x) is
symmetric, i.e. P(Xt+τ = x′, Xt = x) = P(Xt = x, Xt+τ = x′), from Eq. 1.41, we can
write,

π(x)Tτ(x, x′) = π(x′)T−τ(x′, x),

φτ
x→x′ = φ−τ

x′→x.
(1.44)

Eq. 1.44 applies for any stationary Markov process, among those, physical systems at
equilibrium, without additional assumption. It is simply the time reversal.

For a stationary process, the conservation condition and the global-balance condi-
tion can be simplified as,

Conservation condition:
∫

T(x, x′)dx′ = 1 for all x in Ω, (1.45)

Global-balance condition:
∫

π(x′)T(x′, x)dx′ = π(x) for all x in Ω. (1.46)

From Eq. 1.45, the matrix T has a right-eigenvector 1 of eigenvalue 1 and, from Eq. 1.46,
T has the stationary distribution π as a left-eigenvector of eigenvalue 1. The spectrum
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of the transfer matrix contains important information about the properties of conver-
gence and relaxation of the Markov chain, as will be discussed further in Section 1.3.2.

The global balance in Eq. 1.46 is automatically fulfilled, when the stronger condition
of the detailed balance Eq. 1.47, also called reversibility condition, is satisfied,

Detailed-balance condition: π(x)T(x, x′)︸ ︷︷ ︸
Flow x→x′

= π(x′)T(x′, x)︸ ︷︷ ︸
Flow x′→x

for all x and x′ in Ω. (1.47)

Note that Eq. 1.44 is not the detailed-balance condition, which has +τ on the
right-hand side. Enforcing the detailed-balance condition requires an additional phys-
ical justification. Eq. 1.47 is equivalent to the joint probability being symmetric, i.e.
P2(Xt−1 = x, Xt = x′) = P2(Xt−1 = x′, Xt = x). Hence the name reversible Markov
chain is used for any chain that obeys detailed balance. From now on, we only consider
τ > 0 to avoid confusion between time reversal and time reversibility.

1.2.2.2 Extraction of a subensemble

Stationary Markov processes will prove particularly useful in Chapter 2, regarding the
extraction of a particular subensemble. A subensemble of a stochastic process Y is the
subset of all realizations y(t) that obey a given condition. For instance, they all take the
value x0 at time t0. This defines a new, non-stationary Markov process Y∗ for t > t0,

P∗1 (x1, t1) = Tt1−t0(x0, x1)

P∗(x2, t2|x1, t1) = Tt2−t1(x1, x2).
(1.48)

More generally, one could extract a subensemble where at a given time t0 the values of
the realization y(t) are distributed according to a given probability distribution p(x0),

P∗1 (x1, t1) =
∫

dx0p(x0)Tt1−t0(x0, x1)

P∗(x2, t2|x1, t1) = Tt2−t1(x1, x2).
(1.49)

Although they are extracted from a stationary process, these processes are non-
stationary, given p 6= π, as a time t0 is singled out. The probability flows near t0

are not the stationary ones. However, the transition probabilities still depend only on
the time interval alone, as it is the same as the underlying stationary process. Such
non-stationary Markov processes whose transition probabilities only depend on time
difference are called homogeneous processes or Markov process with stationary tran-
sition probability.

For a stationary process, extracting such subensemble physically means that one
prepares the system in a certain non-equilibrium state, x0 and expects that after a long
time the system returns to equilibrium, i.e.,

P∗1 (x1, t1) −−→
t→∞

π(x1). (1.50)
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Moreover, as any initial state x0, or more generally any initial probability distribution
p(x0), is arbitrary, it is expected that,

Tt1−t0(x0, x1) −−−→
t1→∞

π(x1). (1.51)

Quantifying the asymptotic behavior in Eq. 1.50 and Eq. 1.51 is a major problem in
dealing with Markov processes and is discussed in Section 1.3. The convergence of
Markov processes will be at the heart of the Monte Carlo methods, see Chapter 2 and
Chapter 3, that relies on Markov processes to simulate ensemble average, as in Eq. 1.14.

1.2.3 Master equation

The Chapman-Kolmogorov equation Eq. 1.43 can be rewritten as the master equa-
tion, in the limit of vanishing time difference τ′, i.e. continuous time, as a differential
equation. The master equation has the advantage of being more convenient for math-
ematical operations but, most of all, it has a more direct physical interpretation.

1.2.3.1 Derivation of the master equation

For simplicity, we consider a homogeneous Markov process. From Eq. 1.37, Tτ′(x1, x2)

can be rewritten for small τ′ [40, 47] as

Tτ′(x1, x2) = (1− a0(x1)τ
′)δ(x1 − x2) + τ′W(x1, x2) + o(τ′), (1.52)

with W(x1, x2) being the transition probability per unit of time from x1 to x2. W(x1, x2)

is nonnegative. 1− a0τ′ is the probability that no transition takes place during τ′, with,

a0(x1) =
∫

W(x1, x2)dx2, (1.53)

as
∫

Tτ′(x1, x2)dx2 = 1, following Eq. 1.45. Inserting Eq. 1.52 into the Chapman-
Kolmogorov equation Eq. 1.43,

Tτ+τ′(x1, x3) = Tτ(x1, x3)(1− a0(x1)τ
′) + τ′

∫
Tτ(x1, x2)W(x2, x3)dx2. (1.54)

Eq. 1.54 is then divided by τ′, the limit τ′ → 0 is taken and a0 is replaced by Eq. 1.53.
A differential form of the Chapman-Kolmogorov equation is then obtained,

∂Tτ(x1, x3)

∂t
=
∫

dx2 [Tτ(x1, x2)W(x2, x3)− Tτ(x1, x3)W(x3, x2)] , (1.55)

Considering x1 as an initial state, P(x, t = 0) = δ(x− x1), it is usually written as

∂P(x, t)
∂t

=
∫

dx′
[
P(x′, t)W(x′, x)− P(x, t)W(x, x′)

]
, (1.56)

This is the famous master equation. It can be understood as a continuity equation.
The master equation contains indeed the fact that the total probability is conserved,
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∫
x P(x, t)dx = 1 at all times t, and also that any probability ’lost’ for a state x in the

transition to a state x′ is actually gained in the probability of x′. This ’incompressibility’
is the condition that Markov chains in the Markov-chain Monte Carlo method have to
follow in order for the scheme to be correct, see Section 2.2.

As shown by its derivation, the master equation is always the result of an ap-
proximation and relies on the existence of the transition rates W(x, x′). The quantity
W(x, x′)∆t is the probability for a transition from x to x′ during a short time ∆t and
it is computed, for a given system, by means of any available approximation method
that is valid for short times. Unlike the Liouville equation or Schrödinger equation,
the master equation is mesoscopic and is also irreversible, as the evolution of a system
towards the equilibrium. The property that all solutions of the master equation tend
to the stationary solution or one of the stationary solutions will be discussed, as the
veracity of Eq. 1.51, in the next Section 1.3.

1.2.3.2 Transfer Matrix for continuous-time Markov chain

It is useful to arrange the transition rate W(x, x′) into a matrix W so that,

∂P(x, t)
∂t

= P(t)W. (1.57)

This is achieved by

W(x, x′) = W(x, x′)− δ(x− x′)∑
x′′

W(x, x′′). (1.58)

It is noteworthy that W has π as a right-eigenvector but of eigenvalue 0. Once
the stationary regime is reached and T∞(x1, x3) = π(x3), the right-hand side of the
master equation Eq. 1.56 is indeed 0, as it is the global-balance condition Eq. 1.46. It
is consistent with the fact that, once the equilibrium is reached, the system follows a
reversible evolution and ∂P(x,t)

∂t = 0.
From Eq. 1.57, we can define the transfer matrix Tt [48, p. 25][49, Chapter 2,3] as,

Tt(x, x′) = exp(Wt)(x, x′), (1.59)

it is easy to check that πTt = π.
Given a discrete-time chain T, one can define the continuous-time chain T̃, by defin-

ing the transition rates W(i, j) = T(i, j), for i 6= j. Many quantities are unchanged by
the passage from the discrete-time chain to the continuous-time chain, as the station-
ary distribution π. This would be helpful to devise the continuous-time irreversible
Markov chains that are used in the irreversible factorized Metropolis paradigm, as
discussed in Chapter 3.
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1.3 Convergence in Markov processes

As discussed in Section 1.1.2 and Section 1.2, the ergodic hypothesis is at the basis of
statistical mechanics, as it is needed for the equivalence between time and ensemble
averages, Eq. 1.14. The ergodic theory quickly became a whole research field in math-
ematics. Beyond statistical mechanics, it is now an even more important issue because
of its importance in diverse fields like celestial mechanics (regarding the stability of the
solar system) or chemistry (stability of isolated excited molecules).

In this Section, we discuss the ergodic hypothesis and the mixing property. In
particular, the capacity of a system to reach equilibrium from a non equilibrium initial
condition in Section 1.3.1 and the convergence behavior of Markov chains that may
describe those systems in Section 1.3.2.

1.3.1 Ergodic and mixing properties

If a system is in equilibrium at energy E, long-time averages of any observable should
not depend on the initial state, as is assumed in Eq. 1.10. In principle, different initial
conditions will give different average values for the observable, following the Liouville
equation. However, if the system passes close to nearly all the states compatible with
conservation of energy, then the initial condition does not matter. The justification of
this hypothesis is not trivial and is the subject of the ergodic theory.

Although ergodicity has been proven for finite systems of hard spheres [50, 51],
this is not the case for other finite systems. For instance, glasses and metastable
phases are not ergodic in practice and harmonic solids are simply not ergodic.
Another important example is a system in a phase with broken symmetries. They
are not ergodic, as they stay in one separate region in phase space. Even systems
which present small perturbations, which should spread equally the initial energy
among the different modes, can be non ergodic. For instance, E. Fermi, J. R. Pasta,
S. Ulam and M. Tsingou simulated a one-dimensional chain of atoms, interacting
through an anharmonic potential. They did not manage to observe thermalization
that the anharmonicity was expected to bring [52]. It was discovered later that
introducing perturbations is not a sufficient condition to ensure ergodicity. In spite of
the perturbations, trajectories in the phase space may remain quasiperiodic, as they
follow invariant tori which are linked to conserved quantities. For a certain numbers
of initial conditions, the system is unable to explore the full phase space Γ. This re-
sult is known as the KAM theorem, after Kolmogorov [53], Arnold [54] and Moser [55].

The difference between ergodic and non-ergodic systems is of importance only for
small systems that are not coupled to a heat bath. We will take a pragmatic position
and assume from now on the ergodic hypothesis for two reasons. First, we are inter-
ested in systems with strong interactions between their particles, so that there are no
integrable constants of motion other than functions of the energy E [56], as in the case
of hard spheres [50, 51]. Second, we are most concerned here with the possibility of a
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system to reach equilibrium from a given initial density ρ0 on the phase space. Ergod-
icity is not a sufficient condition to ensure that a probability distribution that is initially
localized will evolve into the equilibrium distribution. If the system does so, it exhibits
the stronger property of mixing and, as a consequence, is ergodic [57, p. 25][56]. For a
system in state ζ at t, we denote φ−t(ζ) as its initial state. The mixing property is that,
for every pair of functions f and g whose squares are integrable on Ω,

lim
t→∞

∫

Ω
f (ζ)g(φ−t(ζ))dζ =

∫
Ω f (ζ)dζ

∫
Ω g(ζ)dζ∫

Ω dζ
(1.60)

If g = ρ0 in Eq. 1.60, it shows that
∫

Ω dζ f (ζ)ρ0[φ−t(ζ)] will approach the equilibrium
value of f for large t. [50, 51] showed that hard spheres are mixing. The mathematical
definition of mixing was introduced in 1932 by J. von Neumann [58], who also played
a great role in the development of the Monte Carlo method (see Chapter 2). This was
later developed by E. Hopf [59, 60]. However, the concept goes back to J. W. Gibbs
[44, p. 144] who introduced it by the analogy of stirring an incompressible liquid
containing a certain amount of coloring matter. Gibbs understood that the density
probability ρ(t) on a phase space of a mixing system approaches its limit not in the
usual pointwise sense, but in a coarse-grained sense: The average of ρ(t) over a region
R of Ω approaches the equilibrium limit as t→ ∞ for each R.

A proper approach to equilibrium should not be possible for any finite mechani-
cal system, due to the recurrence theorem of Poincaré stating that every such system
eventually returns arbitrarily close to its initial state [61]. It can be argued that, when
an ensemble of systems is considered, the individual systems may return to their ini-
tial state, as required by the Poincaré theorem, but this will happen at different times
for different systems, so that, at any particular time, only a very small fraction of the
systems in the ensemble are close to their initial states. The more general reason of the
irrelevance of the Poincaré theorem in mixing systems is that the motion of the phase
point is very unstable [56]. States that start very close to each other become widely sep-
arated as time progresses. The recurrence time is then extremely sensitive to the initial
conditions. This type of instability appears to be characteristic of real physical systems
and the work of unavoidable small external perturbations. It leads to irreversibility: If
we reverse the velocities of every particle, the system would not necessarily return or
even come close to its initial state. This instability is also found in molecular dynamics
simulations, although of different nature. The numerical simulation of the equations
of motion from time 0 to time t followed by the backwards simulation from time t to 0
will lead to a new state, as the numerical integration is unstable to small rounding-off
errors made during the computation. They play the same role as external perturbations
in real systems.

Eq. 1.60 can also be interpreted as requiring that, as equilibrium is reached with
t → ∞, every correlation function such as 〈 f (ζ)g[φ−t(ζ)]〉 approaches a limit 〈 f 〉〈g〉.
This translates to the following: if Q and R are arbitrary regions of Ω and the initial
distribution is uniform over Q, then the fraction of the distribution on R at time t will
approach a limit as t goes to ∞, this limit being the fraction of the area of Ω occupied by
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R. This criterion for equilibrium will be particularly useful to assess the convergence
in Markov-chain Monte Carlo method, see Section 2.3.

1.3.2 Mixing in Markov chains

As discussed in Section 1.2.2 and Section 1.2.3, a major issue in Markov processes is
to prove their mixing behavior, Eq. 1.50, and to assess how fast a chain T can go from
an initial probability distribution µ to its stationary distribution π. Regarding Markov
chains, the ergodic and even mixing properties are more simply demonstrated. From
this point on, we will consider homogeneous Markov chains, see Section 1.2.2.2, as
are used in Chapter 2 and Chapter 3. Also, for simplicity, we will consider chains on
finite discrete Ω. Much of the theory for general configuration spaces derives from
the discrete case by replacing sums by integrals and matrices by kernels, although the
proofs are often considerably harder [62].

1.3.2.1 Ergodic Theorem for Markov chains

A Markov chain T is said to be irreducible if, for any two states x, x′ ∈ Ω, there exists
τ such that Tτ(x, x′) > 0. This property simply requires that any state can be reached
from any other one. Following the Perron-Frobenius theorem, an irreducible Markov
chain possesses a stationary distribution, which is unique [63, p. 12-14]. Furthermore
it is proven by the Ergodic Theorem that, for any irreducible Markov chain, the time
average is equal to the ensemble average over the stationary distribution, for any initial
distribution µ, [63, p. 58]. The probability π(x) to find the chain in x is equal to the
asymptotic proportion of time the chain spends in a state x, which is equivalent to the
average time the chain takes to start from x and return to x,

π(x) =
1

〈τH+
x 〉x

, (1.61)

with 〈·〉x the average on the ensemble of realizations of the chain with x as the initial
state and τH+

x the positive hitting time for a given state x ∈ Ω, i.e. the first strictly
positive time at which the chain visits x,

τH+
x = min (t ≥ 1 : Xt = x) . (1.62)

For any states x and x′, the expectation of the positive hitting time of state x′ for an
irreducible chain starting from x is always finite.

Eq. 1.61 can be proven by considering a Markov chain and its initial state z. When
the chain visits z again at t, the section from 0 to t− 1 is stored, and so on after each
visit in z. It gives a collection of realizations of the chain starting in z of average
length 〈τH+

z 〉z. Averaging the number of visits in x on this collection gives Eq. 1.61 [63,
p. 20][48, p. 28].
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1.3.2.2 Convergence Theorem

Even if a Markov chain is ergodic in theory, in practice it could take an infinite time for
the chain to decorrelate from the initial distribution and reach the stationary probabil-
ity distribution π. Thus it is important to understand how the decay to equilibrium
behaves.

As we are interested in the speed of mixing of a chain, another simple property is
required for the completion of the Convergence theorem for chains with discrete time.
A chain T is called aperiodic if all states have a period of 1. The period of a state x is the
greatest common divisor, noted gcd, of the set of times T (x) = {τ ≥ 1; Tτ(x, x) > 0}.
For an irreducible chain, the period of the chain is defined to be the period which is
common to all states, since, if T is irreducible, gcd T (x) = gcd T (x′) for all (x, x′) ∈
Ω. It follows that if T is irreducible and aperiodic, there is an integer r such that
Tr(x, x′) > 0 for any (x, x′) ∈ Ω [63].

To monitor the rate of convergence, the total variation distance between the initial
probability distribution, µ, and the stationary distribution π is defined as the max-
imum difference between the probabilities assigned to a single event A by the two
distributions,

d(t) = ||µt − π||TV = max
A⊂Ω
|µt(A)− π(A)|. (1.63)

Eq. 1.63 can actually be rewritten as [63, p. 48],

||µt − π||TV =
1
2 ∑

x∈Ω
|µt(x)− π(x)|. (1.64)

We consider now an irreducible Markov chain T on finite set Ω, which is moreover
aperiodic, in case of discrete time steps. The chain T has the stationary distribution
π. Then, the Convergence Theorem stipulates that there exist constants α ∈ [0, 1) and
C > 0, such that,

d(t) = max
x∈Ω
||Tt(x, ·)− π||TV ≤ Cαt. (1.65)

It proves an exponential decay to equilibrium for T and justifies Eq. 1.50 and Eq. 1.51.

1.3.2.3 Mixing time

In order to characterize the exponential decay of Eq. 1.65, the mixing time τmix is
defined as the time needed for the current distribution Tt(x, ·) to be close enough to π

according to a parameter ε,

τmix(ε) = min{t|d(t) ≤ ε}. (1.66)

The time τmix is the time needed by the chains to reach equilibrium from the worst
initial condition. For ε = 1/e, d(t) = O

(
e−t/τmix(1/e)

)
. Computing τmix directly is

often not possible, but the spectral properties of T can be used for bounding τmix.
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We already know that π is one of the eigenvectors of T and corresponds to the
eigenvalue 1. For simplicity, we assume for now that T is reversible, i.e. follows
detailed balance Eq. 1.47. Then T is diagonalizable. We consider for now the discrete-
time case. The matrix T being stochastic, all its eigenvalues λ are bounded |λ| ≤ 1.
As T is aperiodic and irreducible, −1 is not an eigenvalue. As T is irreducible, the
largest eigenvalue λ1, equal to 1, and the corresponding eigenvector, π, are unique,
according to the Perron-Frobenius theorem. We can enumerate the eigenvalues of T as
1 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λn and the corresponding eigenvectors as {ψi}, that are
orthonormal with respect to the inner product [63, p.153],

〈 f , g〉π = ∑
x∈Ω

f (x)g(x)π(x). (1.67)

Considering matrix powers, we obtain the spectral representation formula for discrete
time steps [48, p. 73],

Tt
ij =

n

∑
m=1

λt
mπjψimψjm, (1.68)

For continuous time steps, the eigenvalues of −W are all positive and are ordered as
0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn. The spectral representation formula is [48, p. 73],

Tt
ij =

n

∑
m=1

exp(−λmt)πjψimψjm (1.69)

Eq. 1.69 can be obtained by Eq. 1.68 by going to the limit of infinitesimal time steps in a
discrete-time chain. It leads to a Poisson distribution and the relationship λc

m = 1−λd
m,

c is for continuous time and d for discrete time.
An interesting consequence of the spectral representation is that, considering the

simpler case of continuous time, there exists i such that,

Tt
ii − πi ∼ ciie−λ2t as t→ ∞, (1.70)

where cii = πiψ
2
i2 > 0. A more general formulation is, for i, j such that cij = πjψi2ψj2 6=

0,

Tt
ij − πj = cije−λ2t + o(e−λ2t) as t→ ∞, (1.71)

Thus the eigenvalue λ2 can be interpreted as the asymptotic rate of convergence to
the stationary distribution. It is then natural to define a relaxation time τrel as,

τrel = 1/λ2 for a continuous time chain

τrel = 1/(1− λ∗) for a discrete time chain,
(1.72)

with λ∗ = max{|λm| < 1} = max(λ2, |λn|). It is usual to define the absolute spectral
gap γ∗ = 1− λ∗ > 0, so that τrel = 1/γ∗. It is noteworthy that the spectral representa-
tion formula for continuous time is completely monotonic.
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The relaxation time plays an important role in the variance of an observable f
and its average for a stationary process, which is needed to compute the error in
Markov-chain Monte Carlo method, see Section 2.3. If we extract a subensemble of
the stationary chain T so that it starts in x with probability π(x), then [63, p. 155],

var

(
∑
y

Tt(x, y) f (y)

)
≤ λ∗2tvar( f ) ≤ e−2t/τrelvar( f ) for a discrete-time chain

var

(
∑
y

Tt(x, y) f (y)

)
≤ e−2λ∗tvar( f ) = e−2t/τrelvar( f ) for a continuous-time chain

(1.73)
By the Convergence Theorem Eq. 1.65, we know that ∑y Tt

xy f (y) → 〈 f 〉 for any initial
configuration x ∈ Ω, i.e. the function Tt f approaches a constant function. We can
now make a quantitative statement about this approach, if t ≥ τrel, then the standard
deviation of Tt f is bounded by 1/e times the standard deviation of f . Equality in
Eq. 1.73 is achieved when f is the eigenvector ψi∗ corresponding to λ∗.

Within the Monte Carlo method, we will be interested in the average of f , see
Chapter 2. We note the running average of f , S(t) = ∑t−1

s=0 f (Xs) in discrete time and
S(t) =

∫ t
0 f (Xs)ds in continuous time and σ2 the limit of the variance limt→∞ t−1varSt.

We have, for a reversible chain [48, p. 134-135],

0 < σ2 ≤ 2τrelvar( f ), (1.74)

with var( f ) the variance of f over the distribution π, as defined in Eq. 1.21. Bounds
on S(t) can also be derived.

The time τrel gives information on how long one should wait in order to retrieve
the correct average of f , when the initial condition is an equilibrated configuration x,
whereas τmix gives that information for a non-equilibrated configuration. Using τrel, it
is however possible to get an upper and lower bounds for τmix, [63, p. 155][63, p. 268],

(τrel − 1) log
(

1
2ε

)
≤ τmix(ε) ≤ log

(
1

επmin

)
τrel for discrete time

τrel log
(

1
2ε

)
≤ τmix(ε) ≤ log

(
1

επmin

)
τrel for continuous time

(1.75)

with πmin the minimum of π. One should note that this bounding is not always
efficient to determine τmix. For instance, the cut-off phenomenon shows the limitation
of Eq. 1.75 [64, 65]. A system exhibiting a cut-off will fall straight into equilibrium
for t slightly higher than τmix, whereas for t lower than τmix the system is far away
from equilibrium. In terms of total variation distance, Eq. 1.63, d(t) will be nearly 1
for t < τmix and will drop to 0 for t > τmix. In such cases, τmix � τrel, as there is no
cut-off for Markov chains with τmix/τrel bounded [63, p. 252], and it is not possible to
infer τmix from τrel.
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1.3.2.4 Relaxation time and autocorrelation times

Computing explicitly the eigenvalues of T is often no trivial task, all the more for a
Markov chain devised on the space of all the possible configurations of a N-particle
or N-spin systems, as considered in Section 2.2. Therefore, it is useful to link τrel to
the correlations of the observables in practice, when the chain is in equilibrium. An
observable f has an autocorrelation function C f , as defined in Eq. 1.31, that decays
exponentially for large t (∼ e−t/τexp( f )). We can define the exponential autocorrelation
time τexp( f ) [66, p. 6] as

τexp( f ) = lim
t→∞

sup
t

− log |C f (t)|
, (1.76)

and
τexp = sup

f
τexp( f ). (1.77)

The time τexp is the relaxation time of the slowest mode in the system. For reversible
chains, τexp relates to τrel as follows, [48, 66],

τexp = −1/ log λ∗ ≤ τrel in discrete time

τexp = τrel in continuous time
(1.78)

More generally, for non-reversible chains, [66, 67] proved that in discrete time, τexp

relates to the spectral radius of T−Π, with (Π f )i = ∑j πj f j, ∀i, according to the gen-
eralization of the spectral radius formula [67].

As the time scales τexp and τrel reflect the slowest mode, it is useful to define the
integrated autocorrelation time τint( f ). The time τint( f ) contains indeed the informa-
tion given by all the different time scales that are present in C f . These different time
scales reflect the different eigenvalues of T, outside the highest λ∗. The time τint( f ) is
defined [66] as

τint( f ) =
1
2

t=∞

∑
t=−∞

C f (t), (1.79)

so that we have more quantitative information than just upper and lower bounds for
the variance of f̄ = 1

N ∑N
i=1 fi,

var( f̄ ) =
var( f )

N

N−1

∑
k=−(N−1)

(
1− k

N

)
Ck( f )

≈ 2τint( f )var( f )
N

≤ 1
N
(2τrel)var( f ).

(1.80)

The times τint(θ) and τexp(θ) are different from each other and it was proved that
τint(θ) ≤ τexp(θ) in realistic models [67]. The two characteristic times are equal, up to
small corrections for small τint(θ), only in the case where the autocorrelation function
C(k) is a pure exponential. Section 2.3 will discuss more thoroughly the different roles
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of τint and τexp in assessing errors in the Markov-chain Monte Carlo method.

Finally, most of the results of this Section, summarized in Tab. 1.1, extend to infinite
Ω. The matrix arithmetic in the finite case extends to the countable case without any
problem, as do the concepts of irreducibility and aperiodicity [63]. Moreover, we will
be concerned in Chapter 3 and Chapter 4 with irreducible chains whose stationary
probability distribution π exists and is known. Then, the chain is positive recurrent, i.e.
the average time to return to a visited state is finite, and limt→∞ ||Tt(x, ·)− π||TV = 0
[63, p. 279]. For continuous spaces, like the positions of spheres in a box, if it is
measurable, it is possible to define a Markov kernel K that is the equivalent of T [68].
For reversible Markov chains, spectral techniques can again be tried [62].

Conclusion

In this chapter, we presented the equivalence of time and ensemble average, which
is at the basis of statistical mechanics. It was then discussed how it is useful to de-
scribe physical systems by Markov processes. We then introduced the fundamental
and tricky problem of having quantitative information on the convergence of Markov
chains. The next chapter will deal with the reverse situation of knowing transition
rates and retrieving the stationary distribution from them. In this new setting, the sta-
tionary distribution, i.e. the Maxwell-Boltzmann distribution, is known and we want
to get equilibrated samples from it. These samples will allow us to compute the ensem-
ble averages of macroscopic observables, e.g. pressure, orientation, etc., that describe
physical systems at equilibrium. As we will see, the key to the Markov-chain Monte
Carlo method is to devise special Markov chains, that may then be different from the
physical Markov process used to describe the system, but that exhibit fast convergence
properties. Fast algorithms are particularly needed around phase transitions where the
correlation length becomes infinite and the autocorrelation times scale with the size of
the system.
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Towards equilibrium From a non-equilibrated state From an equilibrated state

Mixing τmix τrel = 1/λ∗ C
Eq. 1.66 Eq. 1.72 = 1/(1− λ∗) D

In equilibrium Slowest mode Observable f

Asymptotic decay τexp = τrel C τexp( f )
of autocorrelation Eq. 1.77, 1.78 = −1/ log λ∗ ≤ τrel D Eq. 1.76

Asymptotic Variance 2τrel/N 2τint( f )/N
(limN→∞ var( f̄ )/var( f )) Eq. 1.72, 1.74 Eq. 1.79, 1.80

τmix � τrel ≥ τexp ≥ τint

Table 1.1: Different time scales rule the approach of a Markov chain towards the equi-
librium, e.g. the stationary regime. These characteristic times are linked together by
bounding relationships, that may prove more or less informative according to the sit-
uation (a � b stands for ca ≥ b, with c > 0). In the following, we will be particularly
concerned with assessing the autocorrelation times τexp and τint. Here, C stands for
continuous-time chains and D stands for discrete-time chains.
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CHAPTER 2

Monte Carlo Method

The beginning of stochastic computation takes place in the xviii
th century with Buf-

fon’s needle problem, the earliest problem of geometric probability. In 1733, the French
naturalist asked the question of the probability that a needle of a certain length will
lend on a line of the parquet flooring, made of equally spaced and parallel planks
[69, p. 43-45] and solved it in 1777 [70, p. 100-104]. Even if it was not Buffon’s prime
interest, the needle problem can be considered as the first Monte Carlo computation.

It was two centuries later, in the mid xx
th century, that the idea of replacing deter-

ministic calculation by stochastic computation really gained the interest of the scientific
community. In the 1930s, E. Fermi experimented with the Monte Carlo method regard-
ing neutron diffusion. More importantly, it was in the 1940s that the first version of
modern Monte Carlo methods was born at the Los Alamos National Laboratory, along
with its code name given by N. Metropolis to protect the secrecy of the project [7–9]
(for historical review, [71, 72]). In 1946, the mathematician S. Ulam proposed to use
random experiments to find the average distance travelled by a neutron before a colli-
sion with an atomic nucleus or how much energy would be released after a collision.
Physicists were struggling to do so by using conventional and deterministic methods.
J. von Neumann, convinced of the importance of the breakthrough, programmed the
ENIAC computer to carry out Monte Carlo calculations and developed the use of the
middle-square method to generate pseudorandom numbers and speed up the simula-
tions [73].

Finally, Metropolis et al. [17] brought in 1953 a key contribution, which started
fifty years of intense use of Markov-chain Monte Carlo methods. The Metropolis al-
gorithm is commonly regarded as one of the most important algorithms, see Tab. 2.1.
Recent and famous examples in statistical physics are the melting of hard disks [13, 74],
where Monte Carlo simulations ended a debate of fifty years, the computation of con-
figurational entropy in granular systems [75], investigating the Edwards hypothesis

43
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1. 1946: J. von Neumann, S. Ulam and N. Metropolis, Monte Carlo method

2. 1947: G. Dantzig, simplex method for linear programming

3. 1950: M. Hestenes E. Stiefel and C. Lanczos, Krylov subspace iteration method

4. 1951: A. Householder, decompositional approach to matrix computations

5. 1957: J.Backus, Fortran optimizing compiler

6. 1959-61: J. G. F. Francis, QR algorithm

7. 1962: T. Hoare, Quicksort

8. 1965: J. Cooley, fast Fourier transform

9. 1977: H. Ferguson and R. Foreade, integer relation detection algorithm

10. 1987: L. Greengard and V. Rokhlin, fast multipole algorithm

Table 2.1: Top Ten algorithms of the xx
th century in chronological order according to

editors J. Dongarra and F. Sullivan [88].

of equiprobability of jammed states [76], path integrals Monte Carlo for simulating
bosons [77], notably Helium liquid [14], or bold diagrammatic Monte Carlo for strongly
interacting fermions [78]. First successful in statistical physics, the Monte Carlo method
soon became popular in a wide range of different sciences, such as cosmology with
Hamiltonian Monte Carlo [79], chemistry [80, 81], economics [82–84], neuroscience
[15] and artificial intelligence [16]. More generally, the Monte Carlo method provides
a platform for solving multidimensional Bayesian problems [85–87]. However, naively
implementing the Metropolis algorithm is bound to fail around phase transitions and
for systems possessing complex energetic landscapes, as spin glasses, where metastable
states are numerous.

In this chapter, we introduce the concept of stochastic sampling by Monte Carlo
method, first the direct sampling in Section 2.1, and second, the Markov-chain Monte
Carlo method in Section 2.2. We then address in Section 2.3 the limitations of the
Markov-chain Monte Carlo method as the samples are no more independent, but cor-
related. Finally, we exhibit the solutions to those issues brought by the cluster algo-
rithms for specific systems in Section 2.4 and Section 2.5.

2.1 Direct sampling for high-dimensional integration

S. Ulam’s original idea at the base of the Monte Carlo method is to “change processes
described by certain differential equations into an equivalent form interpretable as a succession
of random operations” [72]. As long as a problem can be given a probabilistic interpre-
tation, it can be modeled using random numbers. As statistical physics formulates
irregular phenomena as a stochastic ensemble, see Section 1.1, it leads to solving high
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dimensional integrals Section 1.1.1 or the corresponding differential equations (see
Section 1.2.3), which is analytically a hard task. Following Ulam’s idea and relying on
Bernoulli’s law of large numbers, a high dimensional integral is now understood as an
average over a collection of random configurations, that follow the correct probability
distribution.

2.1.1 Weak and strong laws of large numbers and the Monte Carlo
method

As demonstrated by the law of large numbers, the average of an observable θ over
a probability distribution π, e.g. the Boltzmann distribution, written as the integral
Eq. 2.1, may be estimated without bias by its empirical average over random and inde-
pendent samples drawn from the same distribution π, as in Eq. 2.2. Such a collection
of samples is said to be independent and identically distributed, i.i.d., in particular
they have all the same mean and variance. Obtaining such a collection is commonly
referred to as direct sampling or static Monte Carlo. The estimator of the empirical
mean is called the Monte Carlo estimator (for a more thorough study of variance and
error in Monte Carlo method, see Section 2.3).

〈θ〉 =
∫

dx θ(x)π(x), (2.1)

〈θ〉 = lim
N→∞

1
N

N

∑
sample i=1

θ(xsampled
i ). (2.2)

The weak law of large numbers, commonly referred to as LLN, states that, for large N,
the empirical average θ̄ of i.i.d. θi converges in probability to its expected value 〈θ〉, i.e.
for any ε > 0,

lim
N→∞

P(|θ̄ − 〈θ〉| ≥ ε) = 0. (2.3)

The weak LLN is a simple application of the Bienaymé - Chebyshev inequality to
the random variable θ̄ for random variable θi with a finite variance. The Bienaymé -
Chebyshev inequality states indeed that for a random variable θi and ε a positive real
number,

P(|θi − 〈θ〉| ≥ ε) ≤ var(θ)
ε2 . (2.4)

However, a finite variance is only a sufficient condition for the weak LLN to hold [89,
p. 76]. The strong law of large numbers states that θ̄ converges almost surely to 〈θ〉,
given 〈θ〉 is finite. It means that the events where θ̄ does not converge towards 〈θ〉 have
a probability zero,

P( lim
N→∞

θ̄ = 〈θ〉) = 1. (2.5)
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π̂ = 2.8± 0.6 π̂ = 3.5± 0.2 π̂ = 3.15± 0.06

Figure 2.1: Evolution of the value of Buffon’s estimator π̂, Eq. 2.7, for a ratio r = 0.33,
as the number N of needles increases. After, N = 104 throws, π̂ = 3.115± 0.06. The
insets show configurations at N = 100, N = 1000 and N = 10000, where needles
hitting a line are represented in red, grey otherwise.

Monte Carlo methods obey both the weak and strong LLN.
Buffon’s problem is a realization of the LLN. In this problem, a needle is thrown

on the floor and the hit observable θ (1 if the needle crosses a planck line (= hit), 0
otherwise) is updated at each throw. This experiment can be reproduced numerically
by generating the needle’s position (x, y) and angle φ randomly, as shown on Fig. 2.1.1.
The theoretical value of 〈θ〉,

〈θ〉 = 2r
π

, (2.6)

with r = l/d the ratio between the length l of the needle and the distance between
lines d; We consider the case r ≤ 1. This is estimated by θ̄,

θ̄ =
1
N

N

∑
i=0

θi. (2.7)

This estimator has a variance of,

σθ̄ =
2r

Nπ

(
1− 2r

π

)
, (2.8)

as the total number of hits follows a binomial distribution of parameters N and p =

2r/π.
It is noteworthy that π = 2r/〈θ〉 may be estimated by the unbiased π̂, also called

Buffon’s estimator,

π̂ =
2r

θ̄(r)
=

2r
1
N ∑N

i=0 θi
, (2.9)

whose variance is [90],[91, p.7],
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σπ̂ =
π4

4r2 σθ̄ =
π2

2N

(π

r
− 2
)

. (2.10)

The subtlety of the Monte Carlo method is then to find the suitable sampling, i.e.
the best way to create the collection of i.i.d. variables. The first sampling that was
implemented was the direct sampling. Direct sampling, as in Buffon’s problem, gen-
erates samples independently and directly from the desired distribution, unlike the
Markov-chain Monte Carlo method, as will be discussed in Section 2.2.

Numerical sampling is strongly linked to the problem of generating random num-
bers from a computer. From now on, we assume that there exists a perfect uniform
[0, 1] random variables generator, henceforth called ran(0, 1). More generally, ran(a, b)
stands for a uniform generator of random variables on the interval [a, b]. Historically,
several methods were developed to solve the issue of using uniform distributions of
random numbers to generate the desired nonuniform distributions [92]. We focus in
the next Sections on two of the most important ones, the inversion sampling (see Sec-
tion 2.1.2) and the acceptance-rejection method (see Section 2.1.3).

2.1.2 Inversion sampling

2.1.2.1 Method

Also known as inverse transform sampling, the first technique proposed by S. Ulam
[72] is to form the inverse function of the cumulative function F of the wanted contin-
uous distribution f , Eq. 2.11,

F(x) = P(X ≤ x) =
∫ x

−∞
dx′ f (x′) = F(x− dx) + f (x)dx. (2.11)

The function F takes values in [0, 1] and is at least weakly monotonic. It allows us to
define its inverse F−1 as,

F−1(ν) = inf
{

x′|F(x′) ≥ ν, 0 < ν < 1
}

. (2.12)

When F is strictly monotonic, i.e. f (x) > 0, ∀x, the inverse function F−1 is directly,

x = F−1(ν), 0 < ν < 1. (2.13)

If ν is drawn from ran(0, 1), then F−1(ν) follows the distribution F and conversely, if
X follows the distribution F, F(X) follows ran(0, 1) [92, p. 28].

The discrete version of the inversion method is the tower sampling method. From
the discrete probability distribution { f1, f2, . . . , fn}, we construct the cumulative distri-
bution Fk as,
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Fk =
k

∑
i=1

fi, k ≥ 1

F0 = 0.

(2.14)

As for the continuous case, a random number ν is drawn from ran(0, 1). It samples the
state k, which satisfies

Fk−1 < ν ≤ Fk. (2.15)

The condition Eq. 2.15 is equivalent to the inverse definition Eq. 2.12 and Eq. 2.13 of
the continuous case. In practice, finding k ∈ {1, . . . n} fulfilling Eq. 2.15 may be sped
up by using binary search, which runs at worst in logarithmic time with n. The target
value ν is compared to the middle element of the array {1, . . . n}. If not equal, the
search continues on the half of the array where the target can lie, until it is successful.

This inversion method can be interpreted as a sample transformation, stressing
interestingly the equivalence between integration and sampling [12]. Any change of
variables in an integral can be translated into a change on how to generate random
numbers. The goal of the inversion method is to transform the integral over the flat
uniform distribution ran(0, 1) into the integral of the wanted distribution f defined on
interval [a, b]. This integral transformation,

∫ 1

0
dν→

∫ b

a
dx f (x), (2.16)

is indeed equivalent to the sample transformation,

{sample ν| ran(0, 1)} → {sample x| f (x)} , (2.17)

which follows from the change of variable,

dν = Kdx f (x), (2.18)

with K a constant. It leads to,

ν = KF(x) + K′, (2.19)

with K′ a constant. We are back to the formulation of Eq. 2.12and Eq. 2.13.

In particular, this sample transformation method will be used to sample the maxi-
mum energy increase in the irreversible factorized Metropolis paradigm discussed in
the next Chapter 3.

2.1.2.2 Inversion method for sampling Gaussian random numbers

The sample transformation is particularly useful for producing Gaussian random num-
bers y following the probability distribution,
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π(y) =
1√
2πσ

exp
[
− (y− µ)2

2σ2

]
, (2.20)

with µ and σ two parameters coding respectively for the mean and variance of the
distribution. By the change of variables x = (y− µ)/σ, one can always come back to
the normal distribution,

π(x) =
1√
2π

exp
[
−x2

2

]
. (2.21)

Sampling Gaussian numbers described by Eq. 2.21 can be done by generating
a large amount of independent random numbers from the uniform distribution
ran(−1/2, 1/2). Their sum, rescaled by a factor 1/12 (which comes from the vari-
ance of ran(−1/2, 1/2)), will follow the normal distribution, as proved by the central
limit theorem, but still remains an approximation.

It is also possible to use a multidimensional sample transformation to generate
without approximation those Gaussian numbers. Considering the probability distri-
bution of two independent Gaussian random numbers x and y,

∫ +∞

−∞

dx√
2π

e−x2/2
∫ +∞

−∞

dy√
2π

e−x2/2 =
∫ +∞

−∞

dxdy
2π

e−(x2+y2)/2, (2.22)

we introduce polar coordinates (x = r cos φ, y = r sin φ, dxdy = rdrdφ),

∫ +∞

−∞

dxdy
2π

e−(x2+y2)/2 =
∫ 2π

0

dφ

2π

∫ ∞

0
rdre−r2/2 =

∫ 2π

0

dφ

2π

∫ ∞

0
due−u. (2.23)

On the right-side of Eq. 2.23, the first integral is sampled by φ = ran(0, 2π) and
the second integral by r =

√
2u, with u = − log(ran(0, 1)), leading to the sampling

of x and y. More generally, sampling d independent Gaussian random numbers is
equivalent to sampling a random point in a d-dimensional unit sphere.

This equivalence is closely linked to the Maxwell distribution of velocities in a gas
[12, p. 103]. Considering N spheres of mass m in a box of dimension d, a set of velocities
{v1 . . . vN} is legal if it corresponds to the correct value of the kinetic energy K,

K =
1
2

m
N

∑
i=1

vi
2. (2.24)

Applying the equiprobability principle, see Section 1.1, all legal configurations have
the same unnormalized weight π = 1, illegal configurations have a null weight. Each
velocity has d components, so that a legal set of velocities correspond to a point on
a dN-dimensional sphere of radius r =

√
(2K/m). As K/(dN) is the mean kinetic

energy per degree of freedom, it is equal to 1
2 kbT = 1/2β. Sampling a random point
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on the hypersphere is then the same as sampling dN Gaussian numbers with a variance
of 1/mβ. For d = 2, the probability distribution of a single component of the velocity
is then,

π(vx)dvx =

√
mβ

2π
exp

(
−1

2
βmv2

x

)
. (2.25)

The Maxwell-distribution agrees well with the velocity distribution obtained by
molecular dynamics [12]. As velocities form an independent sampling problem of
random points on the surface of a hypersphere, it is natural that velocities disappear
from a Monte Carlo simulation.

Finally, it is noteworthy that the possibility to directly simulate Gaussian numbers is
also at the core of the path integral method for Quantum Monte Carlo. Using the Lévy
construction [93], one can directly sample paths contributing to the density matrix of
a free particle or for a harmonic oscillator.

2.1.3 Acceptance-rejection method

The second method is the acceptance-rejection method, also called hit-or-miss, devel-
oped also by J. von Neumann [72]. It is particularly useful when it is difficult to form
the inverse function needed in the inversion sampling method, notably for multidi-
mensional Hamiltonian encountered in physics.

The acceptance-rejection method’s idea is to randomly generate a configuration that
is then accepted or not, depending on its probability weight. Buffon’s problem can be
interpreted as an acceptance-rejection sampling. The position and angle of the needle
are generated randomly and this configuration is accepted, if the needle hits a floor
line. The sum in Eq. 2.7 is simply equal to the total number of valid configurations.

The acceptance-rejection method can be easily applied to particle systems in
physics, for which the inversion method fails. For a N hard-sphere system of radius
σ in a hypercube Ld, the position of each sphere is generated by sampling d random
numbers ran(0, L). Once the configuration is generated, its validity is checked by look-
ing for overlap between two spheres or with the hypercube’s boundary, if the boundary
condition is not periodic. Such sampling allows for the recovery of the partition func-
tion (here with periodic boundary condition),

Z =
∫ L

0

{
ddri

}
1≤i≤N

∏
i,j

H(|ri − rj| − 2σ), (2.26)

with H being the Heaviside function. Fig. 2.1.3 illustrates the sampling of valid
configurations for two hard disks in a square with periodic boundary. This sampling
is actually equivalent to the sampling of a point in the free volume that is left, when
the position of the first sphere is fixed.
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Figure 2.2: Direct sampling by acceptance-rejection method of the correct configura-
tions for a two-hard-disks system with periodic boundary. Configurations are pro-
duced randomly by drawing four random numbers (one for each of the coordinate of
each sphere). Bottom row: represents the sampled configurations, that are either ac-
cepted (green contour) or rejected (red slash). Top row: represents each configuration
in the phase space (white area). In this example, only two configurations are accepted.

Acceptance-rejection sampling can also be used to sample more general probabil-
ity distribution than distributions with equiprobably valid configurations, as in hard
spheres or Buffon’s problem. For instance, we want to generate samples following
the distribution f , defined on the interval [a, b] and whose normalizing constant is
not known. To do so, we draw a box extending from a to b and from 0 to y0 with
y0 > supx∈[a,b] f (x). Random points are then uniformly sampled in this box and
considered valid when they fall below f .

Fig. 2.1.3 exhibits such sampling by acceptance-rejection method of a general dis-
tribution. It comes down to the sampling of the free volume of a two-hard-disks gas.
As for Buffon’s problem, the hit observable Θ (1 if the configuration is valid, 0 other-
wise) follows a binomial law of parameter n = 1, p =

∫ b
a dx f (x)/(y0|b− a|). Noting

I =
∫ b

a dx f (x)/(y0|b− a|), it follows that

〈Θ〉 = I

var(Θ) = I(1− I).
(2.27)

It is noteworthy that the variance of Θ is 0, when I = 1, meaning the sampling box
area is exactly the same as the area under the curve of f . This is the case only when
the points are directly sampled from f .

A limitation of the acceptance-rejection sampling is that the same amount of time, in
the case of a uniform random number generation, is spent sampling high probability
configurations as the low probability ones. First, the proposal distribution for the
generation of random numbers does not have to be the uniform ran distribution but
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Figure 2.3: Direct sampling by acceptance-rejection method for a general distribution
f on an interval [a, b]. To achieve such a sampling, the maximal value of f needs
to be known. Left: For each single random point, two random numbers (green and
blue spheres) are drawn uniformally in the square box. Center: The area under the
curve f is sampled by registering a hit, Θi = 1 (red), each time a random point is
under the curve, otherwise Θi = 0 (grey). Right: As the number of samples N grows,
the estimator f̄ = 1

N ∑N
i=0 Θi converges to 〈 f 〉 =

∫ b
a dx f (x), with a variance var( f̄ ) =

1
N I(1− I), with I the ratio between the red area and the total box area.

only needs to be easily sampled from, such as by inversion sampling, and to be as least
as high as the distribution f in any point from the interval [a, b]. A smarter procedure
is then to use importance sampling, as explained below.

2.1.4 Importance sampling

Even if it is clear that the acceptance-rejection method with a box support will con-
verge to the correct value, as stipulated by LLN, this method is inefficient for sampling
averages over a Boltzmann distribution as Eq. 1.9. Most of the simulation time is
indeed wasted at computing configurations with very small Boltzmann weights.
Importance sampling addresses this issue by allowing us to sample many points in
regions where the Boltzmann weight is large and few elsewhere.

As previously, we consider the probability distribution function f on the interval
[a, b], noting its integral I =

∫ b
a f (x)dx. I can be rewritten as

I =
∫ b

a

f (x)
g(x)

g(x)dx, (2.28)

with g a nonnegative probability distribution function that now controls the distribu-
tion of the sampling points in the interval [a, b]. Moreover, we choose g so that it is the
derivative of G a nonnegative, non-decreasing function with G(a) = 0 and G(b) = 1. I
can then be written as,

I =
∫ b

a

f (x)
g(x)

dG(x) =
∫ 1

0

f (G−1(x))
g(G−1(x))

dx (2.29)
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I can now be estimated by generating N random uniform numbers xi = ran(0, 1),

I = lim
N→∞

1
N

N

∑
i=0

f (G−1(xi))

g(G−1(xi))
. (2.30)

We note Î the estimate of I by the sum in Eq. 2.30. The variance σ2
Î

of this estimator is
[11] ,

σ2
Î =

1
N

[〈(
f
g

)2
〉
−
〈

f
g

〉2
]

(2.31)

Eq. 2.31 reveals the importance of the choice of g. If g is proportional to f , then the
variance of the estimator Î simply vanishes. If g is only a constant, as for a square
sampling box, then the variance becomes large. Although importance sampling
methods have proven powerful in some domains, it is not possible as of today to
construct a transformation, as shown in Eq. 2.28 and Eq. 2.29, that will generate points
with a probability distribution proportional to the Boltzmann factor. A necessary
condition for achieving such a sampling is to compute analytically the partition
function of the system, Eq. 1.7. However, if such computation would be possible for
the system under study, there would hardly be any need for a Monte Carlo simulation.

Direct sampling’s advantage lies in the statistical independence of the samples, as
the configurations are produced without any correlations between them. However,
producing configurations from high-dimensional probability distributions in such a
manner is no trivial task. In most cases, the rate of rejection increases exponentially
with the number of dimensions. It leads to prohibitively long simulation times, a prob-
lem known as the curse of dimensionality [94]. Smart methods, like importance sampling,
have been devised to address such issue. But, unfortunately, they lose their power in
most cases encountered in physics, notably because of the impossibility to compute
the partition function. As will be explained in the next Section 2.2, the Markov-chain
Monte Carlo method brings a solution to this problem, by changing conceptually the
way samples are proposed. Now a stochastic process, in practice always chosen Marko-
vian, see Section 1.1.3 and Section 1.2, is simulated on the configuration space Ω, so
that its stationary distribution is π. Markov-chain Monte Carlo method is also called
the dynamic Monte Carlo method.

2.2 Markov-chain Monte Carlo method

In 1953, Metropolis et al. [17], and later the theoretical justification of Wood and Parker
[95] and the generalization of Hastings [18], solves the partition function and high re-
jection issues, which was encountered by direct sampling. The Metropolis algorithm
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provides indeed the right probability distribution of the configurations, from the mo-
ment one can compute a function f proportional to the density π. Therefore the issue
of the computation of the partition function, or any normalizing factor, vanishes.

To do so, a sequence of samples is now obtained by running a Markov chain. Hence
the name of Markov-chain Monte Carlo method. Such algorithms can be then under-
stood as a Markov process following its own Master equation, see Section 1.2, with
a special choice of transition probabilities, see Section 2.2.2, which depend only on
ratios of the form π(x)/π(x′) with x and x′ two configurations and π the Boltzmann
probability distribution. A Markov-chain Monte Carlo method is then equivalent to
inventing a stochastic time evolution for a given system.

Unlike samples produced by direct sampling, samples originating from a Markov-
chain Monte Carlo method are thus correlated and assessment of errors asks for more
care, see Section 2.3. The time evolution does not need, however, to correspond to
any real physical dynamics; rather, the dynamics is to be chosen on the basis of its
computational efficiency. The situation is then different than in molecular dynamics
simulations [43]. In molecular dynamics, the microcanonical ensemble is sampled by
numerically solving Newton’s equations of motion. The extension to averages over the
canonical ensemble is ensured by coupling the system to a heat bath [11, p. 139]. Parti-
cles of the system can undergo collisions with the heat bath, during which they gain a
new velocity, drawn from the Maxwell-Boltzmann distribution, see Section 2.1.2.2. The
mixing of Newtonian dynamics and stochastic collisions changes the simulation into a
Markov process. It is however possible to keep the simulation deterministic by using
an extended Lagrangian instead of introducing a heat bath [11, p. 147].

2.2.1 Principles of the Markov-chain Monte Carlo method

In the Markov-chain Monte Carlo method, a Markov chain is devised on the space
state Ω, such that the chain is irreducible, aperiodic and its unique steady-state
distribution is precisely the wanted probability distribution π, see Section 1.3.2.
Under the conditions of irreducibility and aperiodicity, it can be proven that the
chain follows the strong law of large numbers, see Section 2.1.1, and the central limit
theorem, see Section 2.3.3 [66]: long-time average of any observable f converges with
probability 1 to its average on the stationary distribution π and with fluctuations of
size proportional to the square-root of the simulation time. Below are reviewed the
necessary conditions that the matrix T of the Markov chain has to fulfill, in order to
produce the correct stationary distribution.

As explained in Section 1.2, a homogeneous Markov chain is fully determined by
the initial probability distribution and the transition probabilities contained in the
transfer matrix T. In the Markov-chain Monte Carlo method, the initial probability
distribution is in most cases a Dirac distribution centered on a valid initial state.

The transition probabilities need to ensure that the Markov chain is irreducible, see
Section 1.3.2.1. Furthermore, the transition probabilities must satisfy the conservation
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Figure 2.4: Representation of the probability flows (arrows) between a given config-
uration x and its neighbors {xi}. Global balance must always be fulfilled in order
to retrieve the correct probability distribution. Detailed balance and maximal global
balance are particular cases of global balance. Detailed balance imposed a symmetric
equilibrium of flows between any two configurations, whereas maximal global balance
offers an out-of-equilibrium scheme where all flows are irreversible.

condition Eq. 1.37 and the global-balance condition Eq. 1.46, so that the stationary
distribution is π. Usually in Markov-chain Monte Carlo method, as the conservation
condition is trivially fulfilled, the global-balance condition actually refers to the com-
bination of both equations into the incompressibility condition Eq. 1.39.

As seen in Section 1.2.2.1, the global-balance condition is a necessary condition and
is fulfilled the moment the sufficient condition of detailed balance is satisfied. As il-
lustrated in Fig. 2.2.1, it is useful to define the extreme case of flows satisfying the
maximal global-balance condition, i.e. flows that are strictly irreversible on the config-
uration space. The rules followed by the Markov chain with transition probabilities, or
rate for continuous-time chain, p(x → x′) are, for all x in Ω,

Transition probabilities Stationary probability flows

Global balance ∑x′ π(x)p(x → x′) = ∑x′ π(x′)p(x′ → x) ∑x′ φ(x→x′) = ∑x′ φ(x′→x)
(Necessary)

Detailed balance ∀x′, π(x)p(x → x′) = π(x′)p(x′ → x) ∀x′, φ(x→x′) = φ(x′→x)
(Sufficient)

(2.32)
Detailed-balance Markov chains that have the uniform probability as the station-

ary distribution are characterized by symmetric transfer matrix T. Reciprocally, if a
transfer matrix T is symmetric, detailed balance is satisfied and the uniform distribu-
tion is the stationary distribution. For continuous systems with detailed balance, it is
sometimes possible to transform the coordinates until the stationary distribution is the
uniform one. The matrix T is then symmetric. For discrete systems, states may be bro-
ken into degenerate sub-states, in order to retrieve a uniform stationary distribution.
These transformations are actually the ones used for the inversion sampling and tower
sampling method, see Section 2.1.2, where samples following the distribution π are
transformed so they follow the uniform distribution ran.
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Figure 2.5: Metropolis sampling of the correct configurations for a two-hard-spheres
system. The key contribution of the Metropolis paper [17] was the idea that instead
of choosing configurations randomly, then weighting them with exp(−βE), we choose
now configurations with a probability exp(−βE) and weight them evenly.

2.2.2 Metropolis algorithm

Historically, the traditional Metropolis algorithm obeys the symmetric detailed-
balance condition. Its generality and ease of use has opened the way to a large class
of detailed-balance Markov-chain Monte Carlo algorithms. But, the symmetry and
locality enforced by the detailed-balance condition often lead to dynamics similar to
a diffusion process, see Section 2.3. However we will review, in Section 2.4, detailed-
balance algorithm that avoid this issue, notably by using efficient asymmetric a priori
probabilities described in Section 2.2.3. On the other hand, algorithms satisfying
only global balance display out of equilibrium dynamics and are often quicker than
Markov chains fulfilling the detailed balance, as will be explained in Chapter 3.

Starting in a valid state x, the Metropolis algorithm picks out a configuration x′ in
a uniform and random manner. In most cases, the choice of x′ is limited to a finite
range of configurations close to the initial one x. The probability to choose x from x′

is the same as choosing x′ from x. For hard-sphere systems, a random sphere will be
updated by a random vector δ, so that |δ| < δ0. The move from x to x′ is then accepted
with the acceptance probability, hereafter called the Metropolis filter,

pacc
Metro(x → x′) = min

(
1,

π(x′)
π(x)

)
. (2.33)

The Markov chain is irreducible, as there is always a positive probability of going from
a state s to a state x′. Detailed balance is also easily checked,



2.2. MARKOV-CHAIN MONTE CARLO METHOD 57

π(x)pacc
Metro(x → x′) = min

(
π(x), π(x′)

)
= π(x′)pacc(x′ → x). (2.34)

As exhibited in Fig. 2.2.2 for a two hard-sphere system, if the move x → x′ is accepted,
the chain goes from the state x to the state x′ and the state x′ is stored. If the move is
rejected, the chain remains on x and the state x is stored again. The same process is
then repeated from the current state.

Acceptance-rejection method in direct sampling produces uniformly random con-
figurations and weights them thereafter according to π. In the Metropolis algorithm,
all valid configurations are weighted the same way, but they are produced with a
probability π. Rejections now result in the repetition of configurations of higher prob-
abilities, which is consistent with the picture of probability as being equivalent to the
time spent by the Markov chain in the respective configuration, see Section 1.3.

Even if it was not stated as such in the original paper [17], the Metropolis algorithm
realizes a Markov process, described by a Master equation leading to the same physical
probability distribution π, see Section 1.2.3. The global-balance condition Eq. 1.46
is then simply the Master equation in the stationary regime, where dπt(x)/dt = 0.
However, as will be discussed later on, algorithms with transition probabilities no
longer equivalent to the Metropolis ones are not a faithful representation of the Master
equation of the physical system anymore.

2.2.3 A priori probabilities

A generalization of the Metropolis algorithm is due to Hastings [18], which introduces
a priori probabilities A. The move from x to x′ is now proposed according to the a
priori probability A(x → x′). The transition probability p(x → x′) to actually make
the move x → x′ is now divided into two independent components, the probability
of considering the move from x to x′, A(x → x′) and the probability pacc(x → x′) of
accepting it,

p(x → x′) = A(x → x′) · pacc(x → x′) (2.35)

The Metropolis algorithm can be seen as a special case, where A is symmetric and
uniform for all possible moves. Therefore p(x → x′) is equivalent to pacc(x → x′).

The detailed-balance condition can be now written as,

pacc(x → x′)
pacc(x′ → x)

=
π(x′)

A(x → x′)
A(x′ → x)

π(x)
, (2.36)

and the generalized Metropolis-Hastings acceptance probabilities,

pacc
Metro(x → x′) = min

(
1,

π(x′)
A(x → x′)

A(x′ → x)
π(x)

)
. (2.37)

From Eq. 2.37, one can see that a symmetric a priori probability, as a sphere or square
in the continuous space around x [12], disappears from the acceptance probability,



58 CHAPTER 2. MONTE CARLO METHOD

Figure 2.6: Left: Symmetric a priori probabilities; there is the same probability to
propose a move from the blue position to the black position than to move from the
black position to the blue one. Symmetric a priori probabilities disappear from the
generalized Metropolis-Hastings acceptance probability expression, Eq. 2.37. Right:
Asymmetric a priori probabilities; it is not possible to propose the move from the blue
position to the black one, whereas one can a priori move from the black to the blue
position. However, the latter move is not accepted in a detailed-balance scheme, as
written in Eq. 2.37.

as A(x → x′)/A(x′ → x) = 1, and so cannot bring any drastic change. On the
other hand, an asymmetric a priori probability, as a triangle on the continuous space,
adds a degree of freedom in the construction of the Markov process, see Fig. 2.6. A
priori probabilities are the equivalent of importance sampling, see Section 2.1.4, in a
Markov-chain Monte Carlo scheme. This can be used to lessen the rate of rejection
and allows for bigger moves. For instance, in the case where π(x) is large and π(x′)
is small, proposing the move x → x′ will lead most of the time to a rejection. With an
asymmetric a priori probability, it is possible to propose this move less frequently and
avoid wasting simulation time. This idea of proposing moves that would be most likely
successful is a key concept in the elaboration of the irreversible factorized Metropolis
paradigm, presented in Chapter 3.

As mentioned in [12], an interesting case is when A(x → x′) = π(x′) and
A(x′ → x) = π(x), leading to a generalized Metropolis acceptance probability
of one. Such a situation is equivalent to direct sampling, Section 2.1 and is at the core
of cluster algorithms, see Section 2.4. The former rejections of not valid configurations
are now replaced by the rejections of not valid moves. Even if the prohibitive limita-
tions of direct sampling, in particular importance sampling, apply in this formalism, a
priori probabilities can play a great role for systems or subsystems where direct sam-
pling can be nearly implemented. A priori probabilities can be then understood as the
equivalent in numerical computation of perturbation theory in theoretical physics.

2.2.4 Heat-bath algorithm

An alternative to the Metropolis algorithm is the Glauber dynamics or heat-bath al-
gorithm, named after the thermalizing of subsystems with their environment. This
algorithm is more famous under the name of Gibbs sampler in statistics [85, 86]. In
this dynamics, moves are proposed through a priori probabilities that implement di-
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rect sampling for subsystems. Glauber dynamics was first developed by Barker (1965)
[96] for a study of a proton-electron plasma.

We consider a Markov chain devised on a system of interacting particles of inverse
temperature β. The chain is now in a configuration C1 of energy E1 and probability
weight π(C1). A configuration C2 of energy E2 and probability weight π(C2) is con-
structed by choosing a random particle j and updating its coordinates by a random
displacement vector δ, such that |δ| < δ0. We note the difference in energies between
the two configurations ∆E. The next configuration in the Markov chain will be,

C1 with probability pC1 =
π(C2)

π(C1) + π(C2)
=

e−βE1

e−βE1 + e−βE2 =
1

1 + e−β∆E

C2 with probability pC2 =
π(C1)

π(C1) + π(C2)
=

e−βE2

e−βE1 + e−βE2 =
1

1 + eβ∆E





pC1 + pC2 = 1.

(2.38)
Such a scheme is detailed-balance, hence correct. But, unlike in the Metropolis scheme,
there is no consideration about the sign of ∆E. Moreover, it is noteworthy that p(C1 →
C2) = pC2 = p(C2 → C2), so that the initial configuration has no effect on the move.
Therefore the name heat-bath, as the scheme acts like a thermalization of a spin with its
local environment.

This scheme can be rewritten as follows: First choose a subsystem {1, 2} by picking
δ. Second, sample directly C1 with probability π{1,2}(C1) or C2 with π{1,2}(C2). This is
easily made by drawing a single random number ν = ran(0, 1). If ν < π{1,2}(C1), then
C1 is sampled, C2 otherwise.

It is also possible to interpret the Glauber dynamics as a Metropolis scheme with a
priori probabilities,

p(C1 → C2) = P(δ)pC2 = A(C1 → C2)pacc(C1 → C2) (2.39)

with,

A(C1 → C2) = P(δ)pC2 =
π(C2)P(δ)

π(C1) + π(C2)
. (2.40)

A(C1 → C2) is actually equal to the probability weight of C2, once rescaled to the
subsystem {1, 2}. As explained in Section 2.2.3, this is equivalent to direct sampling
in the subsystem. The acceptance probabilities are indeed always equal to 1. From
Eq. 2.37, as P(δ) = P(−δ),

pacc
Metro(C1 → C2) = min

(
1,

π(C2)

A(C1 → C2)

A(C2 → C1)

π(C1)

)

= min


1,

π(C2)
π(C2)P(δ)

π(C1)+π(C2)

π(C1)P(−δ)
π(C1)+π(C2)

π(C1)




= 1.

(2.41)
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It is possible to generalize the Glauber dynamics to scheme where the probability
P(· → {1, 2}) to pick the subsystem {1, 2} is not the same from C1 or C2. The proba-
bilities are now [18],

pC2 =
π(C2)P(2→ {1, 2})

π(C1)P(1→ {1, 2}) + π(C2)P(2→ {1, 2}) . (2.42)

P(· → {1, 2}) can be understood as an additional a priori probability.

The Glauber dynamics can easily be generalized thanks to the tower sampling
method, see Section 2.1.2, to scheme with discrete subsystems with more than 2 con-
figurations. Likewise, the generalization to continuous subsystems can be made using
inversion method, see Section 2.1.2. The Glauber dynamics is particularly used in spin
systems, where it is easy to pick subsystems by picking a random spin.

2.3 Convergence and error

Monte Carlo method, though it supplies quasi-exact predictions, remains a stochastic
method. Moreover, samples produced through Markov-chain Monte Carlo are corre-
lated, as, although Markov chains do converge to the stationary distribution π, Eq. 1.65,
they do so following more or less long time scales (see Section 1.3.2). It is then re-
quired to carefully assess the statistical error for a set of samples, which is no trivial
task [66, 97].

Errors come from two distinct sources. First, the initialization bias describes the
correlations that a sample may have with the initial configuration used by the algo-
rithm. One should wait long enough, so that the initialization bias disappears and
the system is thermalized (see Section 2.3.1). Second, the ensemble average of an ob-
servable f is often estimated by taking the average over the set of samples and this
estimation comes with an error ( see Section 2.3.2), all the more important as the sam-
ples are correlated in Markov chains (see SecErrorAutocorr). One has then to wait
long enough between two thermalized samples, so that they are slightly correlated.
However, around second-order phase transitions, the time needed to produce two in-
dependent samples diverges with the system size because of the critical slowing-down
phenomenon (see Section 2.3.4).

2.3.1 Initialization bias

We saw in Section 1.3.2.3 that the initialization bias is ruled by the time needed to
achieve thermalization, i.e. τmix, Eq. 1.66. Computing τmix is however a very hard
problem and it is usual to set an upper bound on τmix, Eq. 1.75, by using the relaxation
time τrel, Eq. 1.72. The relaxation time gives information on the initialization bias when
thermalization is already achieved, i.e. on the correlations between two equilibrated
samples.
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As the upper bound of Eq. 1.75 depends on the probability of the least likely state,
it is common for it to be very large and little information can be extracted from it.
Therefore, in practice, the initialization time, during which all states are discarded, is
usually taken to be 20τrel or 20τexp, with τexp the autocorrelation time of the slowest
mode, Eq. 1.77, that is very close to τrel, Eq. 1.78. However, this criterion appears
artificial. Another strategy consists in running simulations from two opposite initial
configurations. Typically, around a phase transition, a good choice is a disordered
configuration and an ordered one. If we define

d̄(t) = max
i,j
||Tt(i, ·)− Tt(j, ·)||TV , (2.43)

then
d(t) ≤ d̄(t) ≤ 2d(t), (2.44)

with d(t) = maxx∈Ω ||Tt(x, ·)− π||TV the distance defined in Eq. 1.65. When the sim-
ulations converge to the same configuration after a time t, one can take t as a good
estimation of τmix, following Eq. 2.44.

The coupling of Markov chains formalizes this strategy. Chains are started from
every possible initial condition. If two chains move to the same state during the same
time step, they merge into a single chain. When all the chains have merged, i.e. cou-
pled, all correlations with the initial configuration are lost. Thus, the time at the final
coupling τcoup is always larger than the mixing time τmix. Coupling methods became
very popular with the Coupling From The Past method developed by Propp and Wil-
son [98]. If this method suppresses the problem of estimating correlation times, it
is only applicable to specific systems. It indeed requires to simultaneously follow a
large number of Markov chains and is sensitive to the chaotic properties of the Markov
chain, known as damage spreading [99]. Such features make the coupling time τcoup

explode, whereas τmix remains small in comparison. In particular, the chaotic behavior
was observed in dense hard-sphere systems and spin glasses at low temperatures [99].

2.3.2 Uncorrelated samples

For a given physical system, we want to assess by a Monte Carlo method the expecta-
tion value 〈θ〉 of an observable θ. To do so, θ can be estimated by the estimator θ̄, the
usual mean over a set of N sequential samples {θj},

θ̄ =
1
N

N

∑
j=1

θj. (2.45)

The difference between θ and θ̄ is that the former is an ordinary number, whereas
the latter is a random one, which fluctuates around θ and should come with an error Eθ̄.
According to the Bienaymé - Chebyshev inequality Eq. 2.4, the error can be estimated
through the variance of θ̄. In practice, the variance, Eq. 2.46, of those fluctuations is not
estimated through the repetition of the whole Monte Carlo simulations, but is rather
estimated through the distribution of the individual samples θj.
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σ2
θ̄ = E2

θ̄ = 〈θ̄2〉 − 〈θ̄〉2. (2.46)

Injecting the definition of θ̄,

σ2
θ̄ =

1
N

〈
N

∑
i=1

θi
1
N

N

∑
j=1

θj

〉
−
〈

1
N

N

∑
i=1

θi

〉〈
1
N

N

∑
j=1

θj

〉

σ2
θ̄ =

1
N2

N

∑
i,j=1

〈
θiθj
〉
− 1

N2

N

∑
i,j=1
〈θi〉

〈
θj
〉

.

(2.47)

If the N samples are obtained through direct sampling, see Section 2.1 or, more gen-
erally, are independent, then 〈θiθj〉 = 0 for i 6= j and σ2

θ̄
simply relates to the variance

of the individual samples σ2
θj
= 〈θ2

j 〉 − 〈θj〉2. If we assume equilibrium, the individual
variances do not depend on time i and

σ2
θ̄ = σ2

θj
/N. (2.48)

Whatever the form of the distribution P(θi) is, the distribution of the mean value is
Gaussian, by the central limit theorem, at least for uncorrelated data in the asymptotic
regime of large N. It is noteworthy that P(θi) is often close to Gaussian because the
θi are usually averaged over many degrees of freedom, e.g. θ is the magnetization of a
system.

Under the assumption of a Gaussian distribution for the mean θ̄, 68% of all simu-
lations would yield a mean value in the range [θ̄ − σθ̄, θ̄ + σθ̄]. This one-sigma squared
error E2

θ̄
is the one usually being quoted along the mean value. The two-sigma interval

groups 95.4% of the simulations and the three-sigma intervals 99.7%.

2.3.3 Correlated samples and autocorrelation times

In Markov-chain Monte Carlo, samples are correlated and 〈θiθj〉 6= 0 for i 6= j. The
simpler relation Eq. 2.48 does not hold anymore. Separating the diagonal terms and
the now non-null off-diagonal terms leads to

σ2
θ̄ =

1
N2

N

∑
i=1

(
〈θ2

i 〉 − 〈θi〉2
)
+

1
N2

N

∑
i,j 6=1

(
〈θiθj〉 − 〈θi〉〈θj〉

)
. (2.49)

Assuming the samples have been collected once the Markov chain hit the stationary
regime, averages are now invariant to time translation, see Section 1.1.3, and only the
time difference between two samples θi and θj is relevant. Identifying σ2

θi
, Eq. 2.49

becomes,

σ2
θ̄ =

σ2
θi

N
+

2
N2

N−1

∑
k=1

(〈θ1θk+1〉 − 〈θ1〉〈θk+1〉) (N − k) . (2.50)
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As was done in Section 1.3.2.4, the integrated autocorrelation time τ̃int(θ) is introduced
in order to have a clearer understanding of the impact of the correlations on the vari-
ance of the estimator, as

σ2
θ̄ =

σ2
θi

N
2τ̃int(θ), (2.51)

with

τ̃int(θ) =
1
2
+

N

∑
k=1

C(k)
(

1− k
N

)
, (2.52)

where C(k) is the normalized autocorrelation function, Eq. 1.31.

When going to large time separations k, the autocorrelation function C(k) decays
as an exponential with the characteristic time τexp(θ), Eq. 1.76 Section 1.3.2.4. This
exponential decay allows us to approximate the proper integrated autocorrelation time
τ̃int(θ) by the commonly used integrated autocorrelation time τint(θ) [67], defined in
Eq. 1.79, from the moment the length of the simulation N � τexp(θ), which is actually
a primary condition for producing a meaningful set of samples.

Finally, one can define an effective number of samples Neff, which corresponds to
the equivalent number of independent samples achieving the same variance as the N
correlated ones,

Neff =
N

2τint(θ)
. (2.53)

The smaller the integrated autocorrelation time, the better the statistics, as, at only
every 2τint(θ), the samples are approximately uncorrelated.

In Section 1.3.2.3, the relationship between the eigenvalues of the transfer matrix T
of a Markov chain and its exponential autocorrelation time was presented in Eq. 1.78.
In practice, it is however impossible to directly compute the second highest eigenvalue
of T. Also, getting dynamic quantities as correlation times from a numerical simula-
tions come at a much higher cost than sampling some static quantities.

A running estimator of τint(θ) can be computed by using the estimator of the auto-
correlation function Ĉ(k),

Ĉ(k) =
1

N−k ∑N−k
i=1 θiθi+k −

(
1
N ∑N

i=1 θi

)2

1
N ∑N

i=1 θ2
i −

(
1
N ∑N

i=1 θi

)2 . (2.54)

As k increases, the number of samples available to compute the mean values of θiθi+k
decreases. This leads to the divergence of the variance of Ĉ(k) with increasing k.
Therefore it is necessary to define an upper limit kmax in order to retrieve a correct
estimation for τint(θ) and, as a consequence, a correct error estimate,
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τ̂int(θ)(kmax) =
1
2
+

kmax

∑
k=1

Ĉ(k). (2.55)

The value of kmax is a compromise between the systematic error of truncating the sum
in Eq. 2.55 and the statistical error brought by the diverging variance of Ĉ(k). A current
procedure is to cut the summation once kmax ≥ 6τ̂int(θ)(kmax) [66]. This leads to the a
priori error estimate,

Eτint(θ) = τint(θ)

√
2(2kmax + 1)

N
≈ τint(θ)

√
12

Neff
. (2.56)

Instead of truncating the sum after kmax, it is possible to approximate the tail end
of C(k) by a single exponential with τexp(θ) as the characteristic time. It leads to an
expression that may be used to estimate τint(θ) or τexp(θ),

τ̂int(θ)(kmax) = τint(θ)− c exp(kmax/τexp(θ)), (2.57)

where c is a constant.
Finally, the error can also be estimated through tools like binning analysis or the

more elaborate jackknife [97].

When dealing with thermalized, but correlated samples extracted from a Markov-
chain Monte Carlo simulation, the error is ruled by the integrated autocorrelation time
τint, which has the exponential autocorrelation time τexp as its upper bound. The time
scale τexp gives information on the time needed to decorrelate from a thermalized
sample.

In practice, in order to have a squared error of ε2σ2
θi

, one should run a simulation
based on the Markov-chain Monte Carlo method over a time span of τmix + 2τintε

2.
Unfortunately, autocorrelation times are linked to the autocorrelation length in the
system and as a system approaches a critical point and its phase transition, the large
spatial correlations arise along with temporal correlations. At the critical point itself,
the temporal correlations and their characteristic time scales diverge.

It is noteworthy that it is possible to produce uncorrelated samples by Markov-chain
Monte Carlo method, by using a perfect sampling method, which rely on the coupling
of Markov chains, like the Coupling From The Past method [98].

2.3.4 Scaling of autocorrelation times around a phase transition

It is possible to give to a Markov-chain Monte Carlo process a dynamic interpretation
using the Master equation, see Section 1.2.3. This approach is useful to link the sta-
tistical errors, as discussed in Section 2.3.3, with the dynamic correlation functions of
the appropriate stochastic model. One can then understand what actually the slowest
variables are. For instance, conservation laws may cause long temporal correlations
in the system. Thus, the statistical inefficiency near second-order phase transitions,
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i.e. continuous phase transitions, reflects critical slowing down [1]. Near first- order
transitions, i.e. discontinuous phase transitions, rather than critical slowing down,
metastability and hysteresis may arise [100].

2.3.4.1 First-order phase transitions

First-order transitions are quite common in nature [100]. For instance, the ordinary
melting of water is a first-order transition. First-order transition are characterized by
discontinuities in the order parameter, like the jump experienced by the magnetization
M, when the transition between the paramagnetic and ferromagnetic phases occurs at
the transition point Tc. This discontinuity is caused by the possibility of two, or more,
phases coexisting. For instance, for the melting transition in the NVT ensemble, the
two coexisting phases are the ordered solid and the disordered liquid.

Unlike for second-order phase transitions, see Section 2.3.4.2, the correlation length
in the coexisting pure phases is finite and the autocorrelation time does not diverge
in the pure phases. However, for a system of dimension D, configurations exhibiting
a mixed phase made from coexisting phases contain interfaces between the phases,
which bring an extra energy σLD−1, with σ the interface tension and LD−1 the surface
of the interfaces. In addition to the energy of the two coexisting phases, that is equal to
the energy of the pure phases, the interface tension leads to an extra interfacial Boltz-
mann weight of exp(−2σLD−1), the factor 2 accounting for the topological constraint
of periodic boundary. Due to this factor, for large system sizes, it may take a long
time before the system flips from one phase to the other. The autocorrelation time
associated to this flipping mode scales as the inverse of the suppression factor,

τexp ∝ exp(2σLD−1). (2.58)

As the autocorrelation time now grows exponentially with the system size, this
behaviour is called supercritical slowing down. As Eq. 2.58 find its roots in the prob-
ability distribution itself and not in the locality or diffusivity of the proposed moves,
cluster algorithms are of no help. A new approach is needed, as with the use of mul-
ticanonical simulations [101]. On the other hand, studying the decay of metastable
states through nucleation and growth by the dynamic interpretation of Monte Carlo is
an interesting problem and the basis for a broad range of kinetic Monte Carlo studies
of stochastic processes.

2.3.4.2 Second-order phase transitions

The characteristic feature of second-order transition is a divergent spatial correlation
length ξ, associated with divergent temporal correlations, at the transition point βc,
[1, 102, 103]. The divergence of the time scale, leading to the critical slowing down, is
determined in part by the nature of the conservation laws. This divergence reflects the
scale invariance, at the core of renormalization group treatments and of the universality
concept. At the critical temperature βc, thermodynamic fluctuations are expected to
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be on all length scales, implying power-law singularities in thermodynamics functions,
such as the correlation length,

ξ = ξ±0 |1− T/Tc|−ν + correction terms, (2.59)

where ξ±0 is the critical amplitude on the high- and low-temperature side of the tran-
sition respectively and ν is a critical exponent. In spin systems, similar singularities
of the specific heat, magnetization and susceptibility define the critical exponents α, β

and γ respectively. The critical exponents are related to each other through scaling
relations and only two of them are considered independent.

The autocorrelation time τexp is linked to the correlation length ξ, as, qualitatively,
the information brought by locally updating a state by a step of the Markov chain has to
propagate over the correlation volume before obtaining a new statistically independent
state. So, close to βc, we have,

τexp ∝ ξz ∝ |1− t/Tc|νz. (2.60)

Here z is the dynamical critical exponent and is independent from the other critical
exponents. It depends on the algorithm used. For a local Markov-chain Monte Carlo
procedure, as the Metropolis, Section 2.2.2, or heat-bath algorithm, Section 2.2.4, the
information is expected to travel diffusively, from nearest neighbor to nearest neighbor,
through a random walk in the configuration space, which requires on average ξ2 steps
to propagate over a distance proportional to ξ. We then expects z to be approximately
2 and numerical estimates for the Ising model yield z ≈ 2.15 in two dimensions and
z ≈ 2.05 in three dimensions, see Tab. 2.2. This scaling of the autocorrelation time with
the diverging correlation length leads to the critical slowing-down phenomenon and
the dramatic reduction of the level of accuracy attainable in practice, when close to a
critical point. In any numerical simulation, the system is, however, of finite size and
the correlation length does not actually diverge, as all other quantities, but equals the
linear size L of the system, as illustrated in Fig. 2.7 for a two-dimensional Ising system.
Therefore thermodynamic scaling laws are replaced by finite-size scaling, [10, 11], as
|1− t/Tc| ∝ ξ−1/ν → L−1/ν and for autocorrelation time,

τexp ∝ Lz, (2.61)

and the autocorrelation times scale with the system size. Far away from βc, however, ξ

is finite and the autocorrelation times do not depend on the system size. It is notewor-
thy that, near a critical point, the common assumption that τexp and τint are of the same
order of magnitude may not be true. Replacing time by space, τexp is the analogue of
a correlation length, whereas τint is the analogue of a susceptibility.

Eq. 2.61 is the reason that developing non-local algorithms is important. Instead of
flipping a spin or moving a single sphere, a step of the Markov chain should consist of
moving a cluster of spins or spheres in a consistent way, to escape from the local and
diffusive behavior leading to z ∼ 2. Different cluster algorithms were then developed,
see Section 2.4, and, even if z varies from one algorithm to the other, in most cases, z
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Figure 2.7: Configurations of a system of 100× 100 Ising spins on a 2D lattice, from
high temperatures (upper left) to just below the critical temperature. Spins up are
coded in red, Spins down in blue. From top left to bottom right: β/βc = 0.5, 0.7,
0.85, 0.9, 0.95, 0.98, & 1.0, 1.05. The critical region is characterized by large spatial
correlations, as the system undergoes a second-order phase transition [104].

is smaller than 1, see Tab. 2.2. Applied to the 2D Ising model, some algorithms even
achieve z ≈ 0, leading to a logarithmic divergence and a fast mixing. However, one
should always check that the proportionality constant in Eq. 2.61 is not too large.

2.4 Cluster algorithms

Any Markov-chain Monte Carlo algorithm brings correlations between samples that
hinder the statistical accuracy of the estimators of observables. As these correlations
are characterized by the integrated and exponential autocorrelation times, it is then
a crucial issue to develop algorithms that keep autocorrelation times as short as pos-
sible. It is in the late 1980s that the critical slowing down was not seen anymore as
inescapable, as it is in experiments. Cluster and non-local algorithms, as presented
in the next Section 2.4, managed to get past this limit by proposing new rules for the
construction of the Markov chain.

2.4.1 Fortuin-Kasteleyn transformation

To beat critical slowing down in spin systems on lattice, the idea was to propose flips
of correlated-spin clusters instead of single-spin flips. C. M. Fortuin and P. W. Kaste-
leyn [110, 111] started this paradigm shift by mapping a ferromagnetic Potts model
onto a corresponding percolation model, where states are produced by throwing down
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Algorithm Ising 2D Ising 3D
z Obs. Ref. z Obs. Ref.

Metropolis 2.1667(5) (M, τexp) [105, 106] 2.055(10) (M, τrel) [107]

Swendsen-Wang 0.35(1) (E, τexp) [19] 0.75(1) (E, τexp) [19]
0.27(2) (E, τint) [108] 0.50(3) (E, τint) [108]
0.20(2) (χ, τint) [108] 0.50(3) (χ, τint) [108]
O(log L) (M, τexp) [109]

Wolff 0.26(2) (E, τint) [108] 0.28(2) (E, τint) [108]
0.13(2) (χ, τint) [108] 0.14(2) (χ, τint) [108]

Table 2.2: Dynamical critical exponents z, as defined in Eq. 2.61, for Ising spin sys-
tems in two dimensions and three dimensions for the local Metropolis algorithm and
the cluster algorithms of Swendsen-Wang and Wolff. For each value of z, the studied
time is indicated. M stands for magnetization, E energy and χ susceptibility. Differ-
ent observables may yield quite different values for z. In 3D, the Wolff algorithm is
clearly more efficient than the Swendsen-Wang algorithm, whereas, in 2D, they appear
equivalent.

particles or bonds in an uncorrelated manner. Thanks to the Fortuin-Kasteleyn trans-
formation, the standard Monte Carlo dynamics, which exhibits slow critical relaxation,
is now mapped into one where such behavior does not exist.

Following the notations of [10], the partition function of the q-state Potts model is,

Z = ∑
σi

e−βJ ∑i,j(δσiσj−1). (2.62)

The transformation replaces each pair of interacting Potts spins on the lattice by a bond
on an equivalent lattice with probability,

p = 1− e−βJδσiσj , (2.63)

which is only non-zero if the spins σi and σj are in the same state. This leads to the
construction of a lattice with bonds connecting some spin sites. One then produces
a set of clusters of spins of same state, with different sizes and shapes. The partition
function Z can then be rewritten as,

Z = ∑
bonds

pb(1− p)(Nb−b)qNc , (2.64)

where b is the numbers of bonds, Nb is the total numbers of possible bonds and Nc

the total number of clusters.
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This equivalence between the Potts and percolation problems was exploited to de-
vise new Monte Carlo methods for spin systems as showed in the next Section 2.4.2
and Section 2.4.3.

2.4.2 Swendsen-Wang algorithm

R. H. Swendsen and J. S. Wang [19] were the first to use the Fortuin-Kasteleyn transfor-
mation for developing Monte Carlo algorithms. As in the Markov-chain Monte Carlo
method, one starts with a valid initial spin configuration. Then, one constructs the
bonds through the lattice with the probability p of Eq. 2.63. Each cluster is then ran-
domly assigned a new spin value. The bonds are erased and the procedure is repeated.
Such a procedure allows for non-local moves on the energy.

At each move, all the spins are flipped. Detailed balance is fulfilled, since the spin
flip is involutary, as, applied twice, it is the identity. It is easy to see that the spin flip is
rejection-free, as the cluster construction can be interpreted as drawing from an a priori
probabilities A(C1 → C2), with C1 the initial configuration and C2 the corresponding
configuration after the clusters are flipped. Following Eq. 2.64, the construction ensures
that A(C1 → C2) = π(C2), leading to a rejection-free scheme, see Section 2.2.3.

As the probability p to draw a bond between two sites depends on the temperature,
the resulting cluster distribution varies strongly with the temperature. At very high
temperatures, p is small and the clusters will be quite small. On the contrary, at low
temperature, all neighboring spins with the same state will end up in the same cluster
and the system will tend to oscillate back and forth between similar structures. So in
both cases, this new procedure does not improve by far a standard Monte Carlo ap-
proach. But, near a critical point, the distribution of clusters will be quite diverse and
the different configurations produced by cluster flipping will end up substantially dif-
ferent from one another. Therefore critical slowing down is reduced, as the reduction
in the scaling of the characteristic time with the linear size of the lattice shows: from
the diffusive value of z ∼ 2 for Metropolis single-site spin flip to a value of about 0
(O(log)) in two dimensions and ∼ 0.5 in three dimensions, see Tab. 2.2.

2.4.3 Wolff algorithm

One of the issues encountered by the Swendsen-Wang algorithm is that all clusters are
treated in the same way, independently of their sizes. As a consequence, a significant
effort is spent addressing small clusters, whereas they do not contribute to the critical
slowing down. U. Wolff [20] proposed an alternative detailed-balance algorithm, based
also on the Fortuin-Kasteleyn theorem, that grows and flips single clusters sequentially.
Eliminating partially the constraint of dealing with small clusters, the performance of
the Wolff algorithm is generally better than the one presented by the Swendsen-Wang
method, see Tab. 2.2, and is simpler to implement.

The Wolff algorithm starts from a valid spin configuration. A single spin is then
randomly chosen and bonds are then drawn to its nearest-neighbors of same state with
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the probability p of Eq. 2.63. Then, the same bond drawing procedure is applied to
any sites that are now connected with the initially chosen spin and so on. The process
stops when no new bonds are formed and the entire cluster is then flipped.

Apart from being simpler, the Wolff single-cluster algorithm shows better re-
sults than the Swendsen-Wang multiple-cluster algorithm, especially in 3D, see
Tab. 2.2. On average, the single-cluster method leads to flips of larger clusters.
Some care is nonetheless necessary with the definition of the unit of time, since
the number of flipped spins varies from cluster to cluster. This number depends
crucially on temperature since the average cluster size automatically adapts to the
correlation length. It is then usual to define one sweep as the time unit. A sweep
corresponds to V/〈C〉 single cluster steps, with 〈C〉 denoting the average cluster
size, so that, after one sweep, V spins are flipped on average. This definition allows
for direct comparison with the Swendsen-Wang algorithm or the Metropolis algorithm.

For classical continuous spin models, as will be considered in Section 4.3.1, the spin-
flip operation is generalized into a reflection with respect to a hyperplane orthogonal
to a random vector r [20],

R(r)σx = σx − 2(σx · r)r. (2.65)

The reflection is involutory, as R ◦ R = 1. The cluster flipping procedure is now
replaced by first choosing a random vector r and a random lattice site x as the starting
point of the cluster, that is flipped according to Eq. 2.65. Then all the nearest-neighbors
y are checked, i.e. the bond x− y is activated with probability,

p(σx, σy) = 1− exp(min(0, βσx · (1− R(r)σy))) (2.66)

If the bond is activated, σy is flipped. Iteratively, all bonds leading to yet unflipped
neighbors of newly flipped spins are investigated, until the process stops. For contin-
uous XY spins, the Wolff algorithm achieves a scaling z . 0.1, [20, 112]. Simulations
implementing the Wolff algorithm clarified that the two-dimensional XY model under-
goes a Kosterlitz-Thouless transition [113, 114]. However, if the Wolff algorithm can be
implemented for the three-dimensional XY spin glass model, it loses all its efficiency
[115, 116].

2.4.4 Cluster algorithms for spin glasses

Instead of having the same coupling constant J for all pairs of spins, spin glass sys-
tems possess a set of couplings {Jij} that is drawn from a random distribution. Spin
glasses describe, for instance, materials where ferromagnetic impurities are coupled
over intermediate distances, leading to couplings that may be more or less repulsive or
attractive. Spin glass systems are disordered systems and they exhibit a large number
of metastable states, that are bound to hinder the speed of local simulations. Hence
there is a need for fast algorithms.
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Both cluster algorithms can also be applied to spin glass models [117–119]. The
antiferromagnetic interactions can be handled by emulating frozen spins as quenched,
non-interacting impurities. However, there was no improvement in performance to be
noted, in part because of the strong frustration at play. Another reason for this lack
of efficiency lies in the fact that the speed of cluster algorithms in ferromagnetic Ising
systems comes from their ability to switch quickly between the two ground states,
thanks to large updates in magnetization at each step. However, such large strides
do not facilitate moves between the large number of metastable states in spin glass
systems.

In spite of these issues, Houdayer (2001) [120] introduced a successful rejection-
free cluster algorithm, tailored to work for two-dimensional Ising spin glasses. The
speedup was of several orders of magnitude but, to be efficient, the method asks for
temperature not close to zero or a percolation threshold of more than 50%, which is not
reached in the three-dimensional Ising spin glass for example. For the low-temperature
regime, only small clusters are produced and, for systems with a percolation threshold
under 50%, clusters span the entire system. The percolation threshold can be artifi-
cially increased, by diluting the lattice for instance [121], but such a method is highly
dependent on the problem to be studied.

Recently, building on [120], [122] devised a method to produce isoenergetic clus-
ter moves, where clusters of small sizes or clusters spanning the entire system are
avoided, by restricting the cluster moves to temperatures where cluster percolation is
hampered by the interplay of frustration and temperature. This method achieves an
important speedup in thermalization, that appears to improve with the system size.
The thermalization was judged based on the agreement of the internal energy per spin
to the internal energy computed from the link overlap for Gaussian couplings, [123].
However, the cluster moves of [120] and [122], as they are isoenergetic, still need to
implement single-spin flips, in order to be irreducible. To speed this process, both
methods use parallel tempering [124], also known as replica exchange, which consists
of running copies of the system at different temperatures and of exchanging them
based on the Metropolis filter, Eq. 2.33. The goal is to make configurations at high
temperatures available to the simulations at low temperatures and vice versa.

2.5 Non-local algorithms

Fluids or continuous particle systems, notably in two dimensions where the particular
physics of Kosterlitz and Thouless transitions emerges, see Section 4.1, encounter also
critical slowing-down phenomena. Moreover, at high densities, simpler cage phenom-
ena may occur where moving a single particle is nearly impossible, as any traditional
Metropolis move gets rejected. Also, away from any phase transition, a fluid in the
NVT ensemble will present slow relaxation of long wavelength density fluctuations,
because of the conservation of the density. This issue of long-time tails is known as the
hydrodynamic slowing down [1].
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A new class of methods for particle systems was created in order to generalize the
drastic reduction of critical slowing down of cluster algorithms on spin systems, see
Tab. 2.2. As for spins, the idea is to go beyond single particle move, but to produce
instead persistent and consistent moves of several particles. Such moves do not happen
on a local scale anymore and are not connected to the physical process of single-particle
motion. Clusters are built from a symmetric operation that leaves the Hamiltonian
invariant if applied to the entire configuration or applied twice. The challenge here is
to find such an operation in particle systems.

2.5.1 Geometric cluster algorithm

The first attempt to generalize cluster algorithms to hard core systems was proposed
in [125]. The challenge arises by the vanishing of symmetries that spin lattices offer
in comparison to the continuum space of a fluid. For example, a spin flip is its own
inverse. Therefore, flipping a spin twice will bring it back to its initial state, whereas
updating a particle by the same displacement δr twice will not achieve the same result.
In a rejection-free scheme, where the transition probability comes down to the a priori
probability, symmetric a priori probabilities are necessary to fulfill detailed balance.

The geometric cluster algorithm [125], also called the pivot algorithm, builds such
symmetric a priori probabilities. Considering a system of N hard spheres in configu-
ration C1, the algorithm is as follows,

• A pivot, i.e. a point, is chosen randomly in the box.

• A new configuration C̃1 is obtained by carrying out a point reflection for all
particles in C1 according to that pivot. This operation is its own inverse.

• By superimposing C1 and C̃1, clusters of particles are identified as groups of
particles that overlap.

• One can then exchange the positions of the particles of a given cluster between
C1 and C̃1, without risking any overlap. Such exchange is done with a probability
1/2 for each cluster. It leads to two new configurations C1 → C′1 and C̃1 → C̃′1.

• The new configuration C′1 is stored and serves as a new starting point of the
scheme. C̃′1 is discarded.

The superposition yielding N clusters offer 2N possible new configurations. As the
process is symmetric, detailed balance is satisfied, while moves are non-local. More-
over, irreducibility follows from the irreducibility of the local algorithm. This method
was applied with success to binary [126] and polydisperse mixtures [127], where it
avoids the jamming problem, in which a very large fraction of all trial moves is re-
jected because of overlaps. The algorithm was generalized to soft potentials in [128] by
constructing the clusters according to probabilities that take into account the energy
differences between the reflected and old positions, as is done by cluster algorithms in
spin systems, Eq. 2.63.
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However, an important limitation of this algorithm is that, for large densities that
exceed the percolation threshold of the combined configurations, all particles will be
in the same cluster, leading to a simple rotation of the system. The algorithm can
then no longer be seen as mixing. Geometric cluster algorithms are then powerful
methods, but only for some systems. This situation is similar to what happens with
cluster algorithms for spin systems, see Section 2.4.4. For instance, the geometric clus-
ter algorithm did not improve the notoriously difficult simulations of monodisperse
hard disks, which was solved by an irreversible factorized Metropolis algorithm, the
event-chain algorithm [13], as will be presented in Chapter 3.

2.5.2 Jaster algorithm

Another non-local algorithm for hard core particles was proposed in [129]. It displaces
chains of particles, but is not rejection-free, because of the following avalanche issue.
All particles of a chain are moved in the same direction with equal displacements. The
chain is first started by the random choice of a particle i. This particle i is moved
by a random vector δr. If the move brings no overlap, it is accepted. If it brings an
overlap with only one particle j, said particle is moved as was i, along δr, and the same
procedure is applied. If two or more particles are involved in the overlap, moving the
collided particles along δr would create an avalanche, where the number of moving
spheres may increase at each collision. In order to satisfy detailed balance, the move is
rejected and the procedure is restarted from the beginning with the choice of a random
sphere. It is possible to set the maximal number nmax of particles that are involved in
the chains.

It was expected from the construction of the algorithm that short chains will be
produced in disordered domains, while, in ordered domains where the positional cor-
relation length is large, long chains will be built. The stability of the ordered regions is
responsible for the large autocorrelation times in two-dimensional hard disk systems.
This non-local algorithm brings a speedup of a factor of around 5 for the autocorre-
lation times, but it still scales the same way with the system size, as the traditional
local Metropolis does [129]. However, in [129], it was shown that for systems of 4096
particles, chains with more than 16 particles are a very rare occurrence; as in a local
Metropolis algorithm, a large proportion of moves is rejected.

Another version of this algorithm was also proposed in [129], in order to create
longer chains. The particle i is now moved along a random direction v to the nearest
collision point with one of the remaining particles. This particle is then moved in the
same direction v and so on until the total number of particles moved in the chain
adds up to a random number drawn beforehand between 1 and nmax. At this point,
the last particle is placed with uniform probability between its initial position and the
collision point. In order to satisfy the detailed-balance condition, the new configuration
is accepted with the probability min(1, `end/`start), `end being the length between the
initial position and collision point of the last particle and `start being the length between
the final position of the first particle and the collision point in the −v direction. Such a
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rule ensures indeed that a chain along v and its return chain along −v are of the same
probability. In [24], the event-chain algorithm works in a similar way, but, instead
of setting the maximal number of particles involved in the chain, it sets the global
displacement ` travelled along the chain. This is the key element in order to implement
a global-balance scheme.

It appears clearly here that enforcing detailed balance comes with rejected moves
and local, diffusive dynamics. In spite of moving clusters of particles, Jaster’s algo-
rithm [129] is unable to upgrade from a local and diffusive dynamics and to reduce the
critical slowing down.

Conclusion

In this Chapter, we discussed the efficiency of the Monte Carlo method to simulate
physical systems. In particular, the Markov-chain Monte Carlo method allows us to
solve the issues brought about by the impossibility to compute the partition function
and by the high dimensionality of the systems under study. In physical terms, the
Markov-chain Monte Carlo method relies on inventing a stochastic time evolution for
a given system. However, this time evolution does not need to correspond to any
real physical dynamics. On the contrary, the dynamics is to be treated like any other
numerical algorithm, on the basis of its computational efficiency. The need for fast
algorithms becomes all the more dire, as, around critical points, critical slowing down
drastically reduces the statistical accuracy for local algorithms.

The cluster algorithms devised for spin systems exhibit large speedups in compar-
ison to local algorithms, like the Metropolis or heat-bath algorithm. Unfortunately,
these speedups do not generalize to spin glasses or antiferromagnetic spin systems. In
particle systems, different methods were tried to emulate cluster algorithms, in order
to produce non-local and consistent moves of a cluster of particles. However, fulfilling
the detailed-balance condition leads to powerful methods, but which are specialized
to some systems, or to the drastic reduction of the probability for any large cluster to
form, because of the avalanche process.

In the next Chapter, we introduce a new paradigm for Markov-chain Monte Carlo.
This paradigm relies on the factorized Metropolis filter and the lifting concept. It
produces an irreversible Markov chain based on non-local moves, which are rejection-
free. Its generality of use allows one to implement it for particle systems as well as for
spin systems.



CHAPTER 3

Irreversible factorized Metropolis algorithm

The Markov-chain Monte Carlo method in statistical physics has progressed far from
the original local-move detailed-balance Metropolis algorithm [17]. In spin systems,
the Fortuin-Kasteleyn transformation allows to set for Metropolis-Hastings algorithms
a priori probabilities that equal the probability weights of the target configurations.
These cluster algorithms have proven powerful in thermalizing certain spin systems
and reduce the critical slowing-down phenomenon to nearly zero in lattice models and
ferromagnetic continuous models [19, 20, 113, 114]. Although cluster algorithms can be
implemented for a wide range of models, they are efficient only in a few of them. An
important example is their difficulty to thermalize anti-ferromagnetic spin systems or
spin glasses. In particle systems, different methods try to emulate cluster algorithms
by producing non-local moves [125, 128] and proved to be efficient for polydisperse
mixtures [126, 127]. However, as for spin systems, the fast mixing observed for those
systems does not easily generalize. At the time, it seems like a single method could
not be highly optimized and completely general at the same time.

In 2011, Bernard et al. [13] solved the issue of the famously difficult problem of the
melting of hard disks. They relied on a new algorithm, the event-chain algorithm [24],
that produces also non-local moves, but not detailed-balance ones. By only fulfilling
the weaker condition of global-balance while avoiding the avalanche problem, clusters
of particles can now be of large size, in comparison to [129]. Global-balance algorithms
that break detailed-balance converge in general faster, as they introduce persistence
between subsequent moves and reduce the diffusive nature of the Markov chain on
small and intermediate time scales. Notable examples are guided random walks [21],
hybrid Monte Carlo [22, 25] and overrelaxation [23]. The Markov chain lifting frame-
work [26–28] unifies these concepts by augmenting the physical configuration space
with auxiliary variables that determine the a priori probabilities.

Lifted Markov chains have already been applied to spin models [130, 131] but not

75
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Figure 3.1: Irreversible Markov chains allow for constructing a rejection-free and max-
imal global-balance scheme, that is at the core of the irreversible factorized Metropo-
lis algorithm. This new paradigm is coordinated around three principles: the lifting
framework where the configuration space is transformed into two replicas thanks to
an extra variable (Top), the factorized filter for generalization to multidimensional po-
tentials (Middle) and finally the implementation with infinitesimal steps that leads to
a continuum of valid configurations (Bottom).

to continuum systems. Drawing on the line of [24, 25], we generalized the event-chain
scheme of hard-sphere systems to general systems by introducing a factorized version
of the Metropolis filter that allows to treat a multidimensional potential as a product of
independent unidimensional potential. Using the lifting framework, it is then possible
to implement irreversible Markov chains in a maximal global balance scheme. The
algorithm is rejection-free, even for moves between configurations of different ener-
gies. This new approach does not rely on any symmetries of the Hamiltonian to build
symmetric a priori probabilities, like cluster algorithms do, and is not hindered by
forcing the algorithm to obey the detailed-balance condition, which may lead to a high
rate of rejection. Finally, this new irreversible factorized Metropolis paradigm is eas-
ily implemented in a large range of systems, where it achieves important speedups in
comparison to the local Metropolis algorithm, as will be discussed in Chapter 4. This
method gains its generality from replacing the general driver of most Monte Carlo
algorithms, the local Metropolis filter.

In this chapter, we will demonstrate how the new factorized Metropolis filter leads
to a maximal global-balance and rejection-free algorithm for general potentials. As
illustrated in Fig. 3.1, the rejection-free irreversible factorized Metropolis paradigm re-
lies on three key concepts: First, moves are proposed in a persistent way; Second,
multidimensional potential are reduced to a collection of independent unidimensional
ones; Third, moves are infinitesimal. The irreversible Markov chains are described by
using the lifting concept, see Section 3.1, that is easily generalized thanks to the fac-
torized filter to particle systems or any multidimensional potentials, see Section 3.2.
Then, we will discuss how the use of infinitesimal steps allows for a continuum of
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valid configurations, while producing a maximal balance of probability flows, see Sec-
tion 3.3. We will review how moves are computed using an event-driven scheme [132],
see Section 3.3.2, and ensemble averages of observables are retrieved from uniformly
sampling configurations from the continuum of valid ones, see Section 3.3.3. Finally,
the generalization leading to infinite chain will be discussed in Section 3.4.

3.1 The Lifting Framework

Section 2.4 and Section 2.5 discussed how an important acceleration can be gained by
producing non local moves, in particularly around the transition point. As explained in
Section 2.4.2, cluster algorithms can be interpreted as a detailed-balance Markov-chain
Monte Carlo method with special a priori probabilities that enforce global moves. As
the goal is to derive a general scheme that does not depend on the symmetry of the
Hamiltonian, persistency is introduced by directly setting the a priori probabilities such
that the direction of moves will be persistent and thus produce consistent sequential
moves.

Adding persistency will however break the Markovian nature of the process. In
order to recover it, it is necessary to add an additional variable to describe the chain,
as explained in Section 1.2. Following this idea, a general framework was developed
in [26–28] for speeding up Markov-chain Monte Carlo algorithms by lifting. A lifting
of a Markov chain T on the configuration space Ω is a larger chain TL obtained by
extending each physical state x of Ω by an additional variable σ that fixes the a priori
probability A ((x, σ)→ (x′, σ)). It is then simple to upgrade a reversible Markov chain,
obeying detailed-balance, into an irreversible Markov chain, obeying only the weaker
condition of global balance. As observed by [26] and explored further by [27], lifting
can lead to a substantially shorter mixing time of the Markov chain, Eq. 1.66, and, as a
consequence, faster algorithms.

3.1.1 Lifting for the unidimensional random walk

As illustrated in Fig. 3.2, we consider a unidimensional random walk with periodic
boundary on the unidimensional lattice Ω = {1, 2, . . . , n}, with stationary probability
π. The random walk is described by the detailed-balance matrix T,

Tkl =





1
2 pacc(k→ k− 1) for l = k− 1
1
2 pacc(k→ k + 1) for l = k + 1
1− 1

2 (pacc(k→ k− 1) + pacc(k→ k + 1)) for l = k
(3.1)

with,

pacc(k→ l) = min
(

1,
π(l)
π(k)

)
(3.2)
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Figure 3.2: Left: Random walk on a loop with a probability on each location to move
right, left or to stay at the current location, Eq. 3.1. Right: Extension of the configura-
tion space Ω by addition of a lifting variable σ ∈ {←,→}. Two replicas of the initial
physical configuration space are then created, (Ω,←) where the chain only moves
to the left, (Ω,→) where the chain only moves to the right. If the move is rejected
physically in (Ω,→), a lifting move (dashed lines) takes place towards (Ω,←), and
conversely. During this lifting move, the physical configuration does not change, only
the lifting variable is updated.

T realizes a Metropolis scheme, where, at each time step, it is proposed with probabil-
ity 1

2 to move from k to k + 1 or to k− 1. The acceptance probability of the move is the
Metropolis filter, Eq. 2.33.

The space Ω is now extended into two replicas (Ω,←) and (Ω,→) thanks to the
additional lifting variable σ ∈ {←,→}. In the lifted scheme, σ sets the a priori proba-
bilities so that,

Physical moves




AL
(−→

k → −−→k− 1
)
) = 0 AL

(←−
k → ←−−k− 1

)
= pacc(k→ k− 1)

AL
(−→

k → −−→k + 1
)
= pacc(k→ k + 1) AL

(←−
k → ←−−k + 1

)
= 0

Lifting moves
{
AL
(−→

k → ←−k
)
= 1− pacc(k→ k + 1) AL

(←−
k → −→k

)
= 1− pacc(k→ k− 1).

(3.3)

The acceptance probability of a move in the lifted scheme is 1. The scheme is rejection-
free, as the rejected moves have been transformed into lifting moves. The detailed-
balance condition is violated, as in (Ω,←) (resp. (Ω,→)), only the physical moves
k → k − 1 (resp. k → k + 1) are proposed, apart from the lifting moves

←−
k → −→

k
(resp.

−→
k → ←−k ) between replicas. The global balance condition, Eq. 1.46, is still obeyed

though, making the scheme correct,

φ(
−−→
k− 1→ −→k ) + φ(

←−
k → −→k ) =

π(k)
2

= φ(
−→
k → −−→k + 1) + φ(

−→
k → ←−k ), (3.4)

with the flows IN,
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φ(
−−→
k− 1→ −→k ) + φ(

←−
k → −→k ) =

π(k− 1)
2

pacc(k− 1→ k) +
π(k)

2
(1− pacc(k→ k− 1))

=
π(k)

2
,

(3.5)
and the flows OUT,

φ(
−→
k → −−→k + 1)+φ(

−→
k → ←−k ) =

π(k)
2

pacc(k→ k+ 1)+
π(k)

2
(1− pacc(k→ k+ 1)) =

π(k)
2

(3.6)
If π is the uniform distribution, then τmix is reduced from O(n2) to O(n) [26].

Indeed, if π is the uniform distribution ran(1, n), then no lifting move will take place
and the random walk will cover the whole set Ω by moving step by step without ever
turning back.

The square-root reduction of the mixing time is the best possible, while only using
lifting [27]. If π is the stationary distribution of the initial scheme, it is still the sta-
tionary distribution of the lifted scheme, but needs to be renormalized (here a factor
1/2, as they are two possible lifted states for the same physical state). From now on,
as in Markov-chain Monte Carlo we are sampling a distribution proportional to the
physical one, we will not mention this normalization and refer to both the stationary
distributions of the reversible and lifted scheme as π.

3.1.2 General case

3.1.2.1 Two replicas

We saw how powerful the lifting of a configuration space was in a simple unidimen-
sional random walk, achieving a square root reduction of the mixing time. We now
consider a Markov chain T devised on a space state Ω, which obeys the detailed-
balance condition and converges to the equilibrium distribution π. Each state is dupli-
cated into two replicas, marked by the lifting variable σ = ±. New transition proba-
bilities are introduced within each of the replicas, so that T = T(+) + T(−), with every
T(±)

ij positive. The chains T(±) break detailed balance but satisfy the skew detailed
balance condition,

πiT
(+)
ij = πjT

(−)
ji ∀i, j. (3.7)

The lifting moves between the same physical states of each replica are represented
in the total transfer matrix TL by the interreplica matrices Λ(±,∓), that are positive and
diagonal,

TL =

(
T+ Λ(+,−)

Λ(−,+) T−

)
. (3.8)
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Figure 3.3: Probability flows for a two replicas maximal global-balance scheme. The
probability flows are represented by the arrows, black codes for the total flows IN
and OUT of each configurations, blue codes for physical moves and red for the lifting
moves. Here we consider πi < πj and set T+

ij = Tij = πj/πi and T−ji = Tji = 1. T+
ji

and T−ij are 0 to achieve a maximal global-balance scheme. The interreplica term Λ
(+,−)
ii

compensates the compressibility introduced in the probability flows by the transition
probabilities T+

ij and T−ji .

The global-balance condition, and by it the convergence towards π, is enforced by
the choice of the interreplica matrices Λ(±,∓). They compensate any compressibility of
the probability flows that the lifting of the configuration space may have introduced
with the matrices T±. In general, multiple choices of Λ(±,∓) are possible, as the global-
balance condition on TL only fixes the difference Λ(+,−) −Λ(−,+),





∑j πjT±ji + πiΛ
(∓,±)
ii = πi

∑j πiT±ij + πiΛ
(±,∓)
ii = πi.

(3.9)

Using the skew detailed-balance condition, Eq. 3.7, it leads to




Λ
(±,∓)
ii −Λ

(∓,±)
ii = ∑j

(
T±ij − T∓ij

)
,

T±ii = 1−∑j 6=i T±ij −Λ
(±,∓)
ii

(3.10)

To produce only the necessary flows, the minimum Λ(±,∓) satisfying the difference in
Eq. 3.10 are obtained with

Λ
(±,∓)
ii = max

(
0, ∑

j

(
T±ij − T∓ij

))
, (3.11)

as Λ(±,∓) ≥ 0. Thus the interreplica flow goes only in one direction. For the same
reason, we also set T±ii = 0, so that,

Λ
(±,∓)
ii = 1−∑

j 6=i
T±ij (3.12)
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In this scheme, all the physical rejected moves are transformed into the interreplica
flows, as was observed for the unidimensional random walk in Section 3.1.1.

Finally, the maximal global-balance scheme is achieved, if it is also enforced that,
for a given pair of states i, j, probability only flows in one direction in each replica,

{
T+

ij = Tij T+
ji = 0 ⇐⇒ in (Ω,+), only i→ j moves

T−ij = 0 T−ji = Tji ⇐⇒ in (Ω,−), only j→ i moves
. (3.13)

As shown in Fig. 3.3, the probability flows on the extended configuration space are
then restricted to the necessary amount to obey global balance, which is the case for
the example of the unidimensional random walk of Section 3.1.1.

Originally, in [26], the scheme counts one more degree of freedom, the flip rate θ.
In Ω+, after proposing the move (i,+) → (i + 1,+), the chain is in (i + 1,+), if the
move is accepted according to the probability pacc adapted from the reversible scheme,
or in (i,−) otherwise. The extra step is to propose to change the lifting variable with
the probability θ. Thus, after a step, the chain can be in,

(i,+)→





(i,+) with probability (1− pacc)θ

(i,−) with probability (1− pacc)(1− θ)

(i + 1,+) with probability pacc(1− θ)

(i + 1,−) with probability paccθ.

(3.14)

As we are interested in irreversible scheme, θ is set to 0.

By duplicating the configuration space by an auxiliary variable σ, sequential moves
are persistent, until the value of σ changes. Detailed balance is broken but the global-
balance condition is fulfilled, by switching periodically from one replica to the other.
In a maximal global-balance scheme, if the chain is on Ω+, it will keep moving in the
direction set by +, until there is a lifting move (rejection in the physical space), where
it will then switch to the replica Ω− by updating the lifting variable but keeping the
same physical configuration. Therefore, there is no formal rejection on the extended
configuration space, as rejection are now replaced by a lifting move.

This 2-replica scheme was used by [130] for the mean-field Ising model,

E({sk}) = −
J

2N ∑
k,k′

sks′k = −
J

2N
M({sk})2, (3.15)

with the magnetization M,
M({sk}) = ∑

k
sk. (3.16)

The replicas correspond respectively to the increasing of the magnetization M→ M− 2
by flipping down spins and to the decreasing of the magnetization M→ M + 2 by flip-
ping up spins. As the energy is proportional to M2 and configurations are completely
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Figure 3.4: For a Markov chain on a bidimensional lattice, the configuration space can
be partitioned into the set of horizontal lines {Lxj} (Left) and into the set of vertical
lines {Lyj} (Center). On {Lxj}, states are updated along the±x directions and on {Lyj},
states are updated along the ±y directions. Finally, the collection of the partitions {Lxj}
and {Lyj} allows to reach any state y from a state x, as there is always a path x1, . . . , xn

connecting the two states, such that any two sequential intermediate states xi and xi+1
are in a common line L (Right).

determined by M, the situation then is similar to the 1D random walk in Section 3.1.1
and the lifting scheme brings a square-root reduction of the exponential autocorrela-
tion time [130] and of the integrated autocorrelation times of the magnetization [131].

The situation is different in the two-dimensional Ising model with nearest-neighbor
interactions, as simulated in Fig. 2.7,

E({sk}) = −J ∑
〈k,k′〉

sks′k. (3.17)

The magnetization does not characterize fully a configuration anymore. No clear re-
duction of the critical slowing down appears, but a constant speedup of 5 for the
integrated autocorrelation times of the energy and magnetization is observed [131].

3.1.2.2 d× 2 replicas

The lifting framework for 1 × 2 replicas extends naturally for d × 2 replicas for d-
dimensional distributions. It is necessary to be able to partition Ω into ordered lines,
corresponding to the direction along which a state is updated, see Fig. 3.4. There
should be one partition per dimension, leading to a set of partitions {i}, each corre-
sponding to the linearly ordered lines {Lij}, that correspond to the direction set by
i. Furthermore, Ω must be connected in the sense that for each x, y in Ω, there is a
path x0 = x, x1, . . . , xl = y such that each pair xi, xi+1 are in a common line. For the
euclidean space Rd, a natural choice is to set the partition i as the set of the lines par-
allel to the i-th coordinate. Such a partition is presented in Fig. 3.4 for the case of a
bidimensional lattice, but the natural choice may not be the simplest, as illustrated in
Fig. 3.5, where the bidimensional grid is transformed into a unidimensional grid.

The scheme proposed in [26] on the extended space Ω× {−1,+1}d is:
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Figure 3.5: For the bidimensional lattice, there are better collections of partitions than
the one presented in Fig. 3.4. With these partitions, the problem becomes again uni-
dimensional and there is no need to resample the direction i. However, creating such
collection is only possible when one has some knowledge on the stationary distribu-
tion π. If some of the states of the grid has a probability weight equal to zero, then
those collections will not be irreducible.

• Choose one of the directions i with a probability wi.

• Update the physical state x according to z(i) = z ∈ {+,−}. The proposed
move is x → x + zδi. If the move is accepted, the chain moves to the state
(x + zδi, z(i) = z). Otherwise, it moves to (x, z(i) = −z).

• Propose a flip of probability θi. If a flip is sampled, the new state is
(x + zδi, z(i) = −z) or (x, z(i) = z), according to the acceptance or rejection
of the physical move.

• Update the set {z(i)} to the new value of its i-th component z(i).

Partitioning Ω allows one to reduce the multidimensional problem into unidimen-
sional ones and to treat each one of them as is done in the 2-replicas case. In practice,
the simulation of the chain does not require the lines to be constructed explicitly,
see Chapter 4, only that it is possible to move from the current point on a line to its
successor or predecessor.

The set {z(i)} acts as the memory of the process. It allows for persistent moves,
but in a delayed way, as one needs to wait for a resampling of the same direction i
to see its effect. We will be concerned with complex systems of particles, where one
can easily fall into a dynamic trap. For instance, in a hard-disk systems, disks often
form cages that trap other disks. Suppressing these cages is achieved by moving in
a consistent way the prisoner disk and the jailer disks. As explained in Publication 1
[30], to solve this issue, we do not resample the direction at each moves, unlike [26].
We define instead a lifting variable σ = (i, z), where i is the direction of the move
and z = ± its sense. There is no set {z(i)}. When a rejection occurs, z is updated to
−z. To change the direction i, the lifting variable is resampled after a fixed number of
steps, in analogy with molecular dynamics [43], where velocities may be resampled



84 CHAPTER 3. IRREVERSIBLE FACTORIZED METROPOLIS ALGORITHM

every now and then. This does not introduce any bias and leads to ballistic moves of
several particles. Thus, there is no need to keep and update a set {z(σi)}, which can
reach an considerable size when considering a large number N of particles in several
dimensions and where z will take dN values, see Section 3.2.3. Finally, implementing
a resampling of the lifting variable at each step is simply impossible, while using
infinitesimal steps, which are crucial in order to avoid the multirejection problem, see
Section 3.3.

The difficulty with implementing lifting for multidimensional distributions is that
appropriate sets of lines of direction, i.e. appropriate lifting variables in our scheme,
must be found, preferably ones which will be effective in eliminating diffusive behav-
ior. For instance, for a discrete grid, it is easy to define lines, but if the distribution
is non zero only on a connected subset of the grid, these lines might not be effective
in eliminating diffusive behavior. The factorized Metropolis filter, see Section 3.2, will
be the key to the construction of the collection of partitions for any multidimensional
potential, notably in continuous space.

3.1.3 Lifting for two particles

The implementation to a unidimensional two-particles system with periodic boundary
follows easily. Two spheres interacting through a hardcore potential or a soft potential
(∝ r−n) is indeed only a unidimensional problem, the degree of freedom being the
interdistance r between the two spheres. But even for a simple problem as two soft
spheres, there are two ways to extend the configuration space by lifting:

• fixed-sphere scheme: Following [26], the lifting variable σ = (i, z) sets the sphere
i that moves and the direction z = ±x. The direction z changes when there is
a rejection. The moving sphere is resampled after a given number of steps, as
shown on Fig. 3.6.

• The new fixed-direction scheme we propose: The lifting variable σ = z sets only
the sphere that moves, z = i, and the direction is fixed, +. When a rejection
occurs, the other sphere j moves next and z = j, see Fig. 3.7. The direction of
move does not need to be resampled for the algorithm to be irreducible on the
configuration space Ω.

As illustrated in Fig. 3.4 and Fig. 3.5, both schemes are correct and actually equiv-
alent from the point of view of the sampling of the interdistance r. On the space Ω
of the coordinates of the spheres, however, the fixed-direction scheme is a maximal
global-balance one, whereas the fixed-sphere scheme is not as efficient as forth-and-
back moves are produced, as illustrated in Fig. 3.8. The maximal global-balance scheme
is generalized with ease to two-particles systems in higher dimensions. The lifting vari-
able just needs to set the direction xi of the moves, but the moves are still proposed
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Figure 3.6: Lifting for two hard spheres: The lifting variable fixes the direction and the
moving sphere. The moving sphere is updated by physical moves (blue box arrow)
until it is rejected (blue cross arrow) and a lifting move (red box arrow) happens.
The direction changes. In this scheme, every configuration has one predecessor and
one successor, making the scheme correct. Configurations of hard spheres are indeed
equiprobable, from the moment they are valid, i.e. there is no overlap.

Figure 3.7: Lifting for two hard spheres: The lifting variable sets only which sphere to
move. The direction is fixed. When a rejection happens, the next sphere becomes the
moving sphere. Every configuration has also one predecessor and one successor.

only in the +xi sense, see Fig. 3.9. The direction is resampled uniformly over {+xi}
after a fixed time.

For two soft spheres interacting by the potential E(r), maximal global-balance con-
dition is verified, as probability flows are produced only in one direction and Eq. 3.9
is obeyed: We consider a configuration {r1, r2, σ = {1,+x}}, where the lifting variable
σ fixes the moves so that the position of the sphere 1 is updated along +x, the balance
of flows is,

Flows OUT





Physical flow: π({r1, r2})min
(

1,
π({r1 + δx, r2})

π({r1, r2})

)

Lifting flow: π({r1, r2})
(

1−min
(

1,
π({r1 + δx1, r2})

π({r1, r2})

))

Total flow OUT: π({r1, r2})
(3.18)
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Figure 3.8: Configuration space for two hard spheres on an unidimensional discrete
lattice with periodic boundary. The position x1 of the sphere 1 is represented by the x
axis on the bidimensional lattice, the position x2 of the sphere 2 by the y axis. The two
hard spheres cannot be on the same site, i.e. x1 = x2, the forbidden configurations are
in red. The two schemes, as illustrated in Fig. 3.6 and Fig. 3.7, have a different collection
of independent lines along which the configuration is updated. Left and Center: For
the first scheme, there are two partitions of lines (blue: lines which updates sphere 1;
red: lines which updates sphere 2) . A sphere is moved back and forth on a line until
the lifting variable is resampled. The scheme is not maximal global-balanced. Right:
The second scheme needs only one partition (green), so there is no need to resample.
The scheme is maximal global-balanced.

Flows IN





Physical flow: π({r1− δx, r2})min
(

1,
π({r1, r2})

π({r1− δx, r2})

)

Lifting flow: π({r1, r2})
(

1−min
(

1,
π({r1, r2 + δx})

π({r1, r2})

))

Total flow IN: π({r1, r2})

(3.19)

As the potential E only depends on the interdistance r = |r1 − r2|, the energy of the
configurations ({r1, r2 + δx}) and ({r1− δx, r2}) are the same, making the Boltzmann
weight π the same.

The generalization to N spheres is however more tricky, as finding a collection of
partition for the space Ω for a maximal global-balance scheme is not as straightforward
anymore. The avalanche problem, discussed in Section 2.5.2, is a serious issue for hard
spheres, as several overlaps leads to a conflict on which one of the collided spheres
to move next. For soft spheres, the problem is even more complicated, as, when a
rejection occurs because of a too big global energy increase, choosing randomly another
sphere than the one being moved is not correct. The probability flows will indeed not
be the same, as the lifting flow corresponds to the rejection flow by all the spheres
and compensates in this way, see Fig. 3.3. It is possible to solve these problems by
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giving up on the maximal global-balance scheme and by producing backwards moves,
but in the next Section 3.2, I present how the factorized Metropolis filter allows for
the definition of lifting variables corresponding to independent lines along which the
states are updated in a maximal global-balance fashion.

Figure 3.9: Lifting for two spheres in two dimensions. Top row: The volume of valid
configurations is represented in white on the space of coordinates of the interdistance
vector r, the sampled states are represented in red. Middle row: The lifting variable
sets the moving sphere and the direction +x or +y. When the physical move is rejected,
the collided sphere moves in turn in the same direction. After a given amount of
steps, the direction is resampled uniformly between +x and +y. Bottom row: The
scheme here is implemented using an event-driven approach, making every visited
configuration valid, see Section 3.3.

3.2 The Factorized Metropolis filter

An important problem encountered in previous methods, see Section 2.5.2, while try-
ing to implement persistency in Monte Carlo method consists in the arising of the
avalanche issue in hard spheres or the difficulty to find a general rule to simply imple-
ment the global-balance conditions in soft-sphere systems for instance. One solution
to correct the scheme is to implement a detailed-balance condition, where a global
move is accepted or not given its total energy variation. The development of the lifting
framework for upgrading reversible schemes to nonreversible ones, Section 3.1, does
not allow one to construct a general maximal global-balance filter. It indeed adapts
the acceptance probabilities from the reversible chains. Therefore, the solution lies in
developing a reversible filter, that will lead to a maximal global-balance scheme, once
lifted. Moreover, the filter should be as general as the Metropolis filter, Eq. 2.33, is for
detailed-balance schemes.
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Figure 3.10: Instead of accepting or rejecting a move according to the global change in
energy (Left), the factorized filter is written as an independent products of the different
energy factors (Right: here the energy factors are the pairwise interactions). Sampling
such filter is easily made by looking at the acceptance or rejection of every independent
energy factor. Doing so allows to get a direct information on which factor is rejecting
the move or not.

In this section, we discuss how the general factorized Metropolis filter, Publication 1
[30], once it is combined with the lifting approach, leads to maximal global-balance
schemes.

3.2.1 Definition of the Factorized Metropolis filter

The factorized Metropolis filter separates a multidimensional potential into indepen-
dent factors, reducing it to a product of unidimensional potentials, see Fig. 3.10. The
factors will serve as the backbone for the construction of the partition of Ω by lifting
variables, as explained in Section 3.1.2.2.

Two potential factors are said to be independent, if the probabilities for their own
increase to reject a move are independent. As the probability of a physical state of
energy E is the Boltzmann weight exp(−βE), up to the normalizing constant of the
partition function, Eq. 1.7, two potential factors ∆E1 and ∆E2 are then independent if
the global potential change ∆E between two states ζ and ζ ′ can be written as their sum,

E(ζ ′)− E(ζ) = ∆E = ∆E1 + ∆E2

exp(−β∆E) = exp(−β∆E1) exp(−β∆E2).
(3.20)

The factorized Metropolis filter then articulates around these factors. The acceptance
probability to accept the move ζ → ζ ′ is

pacc
Fact(ζ → ζ ′) = min(1, exp(−β∆E1)) x min(1, exp(−β∆E2))

= pacc
Metro(∆E1)pacc

Metro(∆E2),
(3.21)

making both potential factors independent in their acceptance or rejection, as defined
in Eq. 1.24, whereas it is not the case in the standard Metropolis filter,

pacc
Metro(ζ → ζ ′) = min(1, exp(−β(∆E1 + ∆E2))). (3.22)
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As the factorized Metropolis filter can be interpreted as a product of Metropolis
acceptance probabilities, it exhibits the same symmetry as the Metropolis filter, Eq. 2.33.
Therefore, when the a priori probabilities are symmetric, the factorized Metropolis
filter obeys the detailed-balance condition,

π(ζ)A(ζ → ζ ′)pacc
Fact(ζ → ζ ′) = π(ζ ′)A(ζ ′ → ζ)pacc

Fact(ζ
′ → ζ)

π(ζ)pacc
Metro(∆E1)pacc

Metro(∆E2) = π(ζ ′)pacc
Metro(−∆E1)pacc

Metro(−∆E2)

π(ζ) exp(−β∆E1) exp(−β∆E2) = π(ζ ′),

(3.23)

so the correct stationary distribution π is retrieved, as π(ζ ′)/π(ζ) =

exp(−β (∆E1 + ∆E2)).

More generally, a multidimensional potential E defined on a set of variables {xi}
can be factorized into the potential factors corresponding to its partial derivatives,

dE(ζ) = ∑
i

∂E
∂xi

dxi (3.24)

and

pacc
Fact(ζ → ζ ′) = ∏

i
min

(
1, exp

(
−β

∫ ζ ′

ζ

∂E
∂xi

dxi

))
. (3.25)

The factorization along each coordinates is always possible but it may not be the
most physical one and may fail to be the most efficient. The problem is similar to the
choice of a collection of partitions for Ω in the lifting framework, see Section 3.1.2.2. For
instance for a pairwise potential, as commonly encountered in a system of N spheres
or spins, see Fig. 3.10, a factorization can be the decomposition of the potential E on
its pairwise components Eij, as,

E(ζ) = ∑
〈i,j〉

Eij(ζ)

∆E(ζ → ζ ′) = ∑
〈i,j〉

∆Eij.
(3.26)

The pair energy Eij can also be decomposed on each coordinate axis. However,
as the a priori probabilities in the lifting framework will only be non zero for moves
according to a given axis set by the lifting variable, there is no need to actually de-
compose the pairwise factors into each one of their coordinates subfactors. Thus, if we
consider a system of N particles described respectively by one vector ri and interacting
through a pairwise potential E({ri}) = ∑〈i,j〉 Eij(rij), with rij = rj − ri, the factorized
filter simply writes itself as,

pacc
Fact(ri → r′i) = ∏

j
pacc

Met(rij → r′ij)

= ∏
j

min
(

1, exp
[
−β∆Eij(rij → r′ij)

])
.

(3.27)
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Figure 3.11: Factorization of the Lennard-Jones potential (black) on its attractive (blue)
and repulsive (red) parts. It can be interpreted as substituting two ghosts particles to
the actual one. One of the ghost particles codes for the attractive interaction, the other
for the repulsive one. For a given move, only one of the ghost particles may reject the
moves.

Figure 3.12: Factorization of the Lennard-Jones potential on its attractive (blue) and
repulsive (red) parts. Left: As the moving sphere gets further away from the other
sphere, only the attractive part can reject the move. Right: As the moving sphere gets
closer, the global potential reduces in that case to its repulsive part, as the attractive
part always accepts the move.

Decomposing a potential E into factors can then be useful to separate different
components of E, instead of only factorizing along the coordinates. For instance, the
factorization can be used to separate the attractive ∝ 1/r6 and repulsive ∝ 1/r12 com-
ponents in the Lennard-Jones potential, see Fig. 3.11. For a given move, only one of
the two components will participate in the total pacc

Fact, see Fig. 3.12. Eq. 3.25 can indeed
be rewritten as,

pacc
Fact(ζ → ζ ′) = ∏

i
exp

[
−β max

(
0, δEi(ζ → ζ ′

)]
, (3.28)

noting δEi the factors of E. Thus, only the positive factors, translating an increase of
energy, participate in the value of pacc

Fact, as negative factors always gives 1. Repulsive
and attractive factors are always of opposite signs and, therefore, only one of the two
does participate.

3.2.2 Implementation

Unlike in the Metropolis filter, every singled out factor of the potential has an inde-
pendent probability to reject or accept the move. There are two ways of sampling the
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Figure 3.13: At time t, a move is proposed from configuration a to configuration b.
Left: Traditional Metropolis move: following pacc

Met, it is either accepted, leading to
the configuration b at time t + 1 or rejected, leading to configuration a at time t + 1.
Right: Consensus rule imposed by the factorized filter: The change of energy between
configuration a and configuration b is treated independently for each factor of the
energy, here the pair energies. If both factors accept the move, the move is accepted. If
one of the factor rejects the move, the move is rejected.

acceptance or the rejection of a proposed move ζ → ζ ′,

• One computes the global value of pacc
Fact(ζ → ζ ′) and draws a random number

ran(0, 1) to sample if the move is accepted, see the left panel of Fig. 3.13.

• Capitalizing on the formulation based on a product of probabilities of indepen-
dent events, one computes for each factor δEi the respective probability pacc

Met(δEi)

and draws a random number ran(0, 1) that will decide if i accepts the move or
not. This is the consensus rule, as is illustrated in Fig. 3.13. The move will be in-
deed accepted if all independent factors accept it, see the right panel of Fig. 3.13.

The consensus rule asks for more random numbers, but it allows to get a direct
information on which factor δEi is rejecting the move or not. Information that will
be extremely useful to implement a maximal global-balance scheme, as was done for
two particles, see Section 3.1.3. More generally, as pFact

acc ≤ pMet
acc , the interest of the

factorized filter is limited for detailed-balance scheme, as it induces more rejection
than the Metropolis one. For instance, the rate of rejections is about 50% higher for
a bidimensional system of N soft spheres in a volume V, with a pairwise interaction
∝ 1/r12 on a range of density ρ = N/V ∈ [0.8, 1.2], Publication 1 [30]. For hard-
sphere system, the factorized and standard Metropolis filter agree, as the acceptance
probability of a move is always one (no overlap created by the move) or zero (overlap
created by the move) in both filter.
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3.2.3 The factorized Metropolis filter in the lifting framework,
beyond ± replicas

The factorized filter allows to generalize the maximal global balance described in Sec-
tion 3.1.3 from two to N particles in d dimensions, as the multidimensional potential
is factorized into independent unidimensional problems. We assume for now that
multiple rejections are not produced, this will be addressed in the Section 3.3.

The irreversible factorized scheme is as follows: A sphere i is updated according to
a direction +xk. When the move of the sphere i is rejected by the potential factor of
the pair energy with a sphere j, see Fig. 3.13, the sphere j is then moved in turn on the
same axis +x. At some point, the direction is resampled.

In the lifting framework, the lifting variable σfact = (xk, z = i) sets the moving
sphere i and the direction of the moves along +xk. When there is a rejection of the
physical move by a sphere j, the lifting variable is updated to (xk, z = j). After a fixed
number of steps, the lifting variables is resampled, so that the chain is irreducible and
explores all the directions. The resulting scheme is presented in Fig. 3.14.

a

a

b ca

a

a

Figure 3.14: Maximal global-balance condition for a three-sphere system. The physical
configurations a, b and c are extended by the lifting variable fixing the moving sphere
(�: red sphere moving, �: blue sphere moving and �: green sphere moving) and
the direction, here +x. The physical moves are represented by blue arrows and the
lifting moves by red ones. When a physical move is rejected, a lifting move happens
instead. The physical configuration is unchanged but the lifting variable is updated to
the sphere rejecting the increase in pair energy. It is the sphere that is moved next.

As explained in Section 3.1.3, this maximal global-balance scheme differs from the
d × 2-replicas lifting of [26], see Section 3.1.2.2. In the d × 2-replicas formalism of
[26], there is one partition (i, xk) of independent lines per dimension and per sphere.
A state will be updated, as a sphere moves back and forth along a direction. These
moves are set by the lifting variable σ± = (i, xk, z = ±). The back-and-forth moves
set by z = ± ensure that the global-balance condition is obeyed.

In the present scheme, there is only one partition xk per dimension. The lifting
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variable component z takes its value in the set of spheres {i}. Thanks to the factorized
filter, the global-balance condition is fulfilled, as illustrated in Fig. 3.14 and computed
in Eq. 3.35 and Eq. 3.36.

The factorized filter generalizes the lifting framework to schemes with d × N-
replicas. The set of potential factors needs to be chosen with care, in order to realize
the most efficient scheme without backward moves. This choice is actually quite natu-
ral in pairwise potential, where the factors identify with the pair energies Eij(|ri − rj|),
which are symmetric in ri and rj, so that the change of Eij is the same, if ri is updated
by−δ (used in the scheme z = ±) or if rj is updated by δ (used in the scheme z ∈ {i}).
The next Section 3.3 addresses in more details the requirements for the factors; the
need to implement infinitesimal steps to avoid multiple rejection is also discussed.

3.3 Continuous-time scheme

In Section 3.2.3, we did not address the problem of multiple rejections. As for now,
the scheme illustrated in Fig. 3.14 does not solve this problem. Even if the filter is
factorized, one can imagine easily that a move with a big enough energy increase
could trigger several factors. In those conditions, in order to obey global balance,
one would need to enforce again backwards moves. In this Section, we introduce
infinitesimal steps into the scheme, making the event of two factors being triggered at
the same step an event of asymptotic probability zero. We explain how to implement
an event-driven approach and how to average observables on the continuum of valid
configurations between two lifting moves.

3.3.1 Maximal global-balance by infinitesimal steps

The global-balance condition enforces incompressible flows. The lifting flows compen-
sate for the compressibility generated by the irreversible physical moves, see Fig. 3.15.
If two factors reject a move, as it may be the case if implementing finite moves δx, the
compressibility cannot then be counterbalanced by a single lifting flow. Infinitesimal
steps dx ensures that only one factor at a time can cause a rejection, meaning that,

pacc
fact(ri → ri + dx) = ∏

j
pacc

ij ≈ 1−∑
j
(1− pacc

ij )∏
k 6=j

pacc
ik ≈ 1−∑

j
(1− pacc

ij ). (3.29)

For pacc
ij (ri → ri + dx) = 1− εij −−−→

dx→0
1, Eq. 3.29 is true at first order. Noting ε ≥ εij,

we have ∀εij
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a

a

b ca

a

a

Figure 3.15: Probability flows for an irreversible Markov chain with the factorized
Metropolis filter, implemented with infinitesimal steps in a three-sphere system with
repulsive interactions.The physical configurations a, b and c are extended by the lifting
variable fixing the moving sphere (�: red sphere moving, �: blue sphere moving
and �: green sphere moving) and the direction, here +x. The physical flows are
represented by the blue arrows and the lifting flows by the red arrows. The value
represented in each arrow correspond to the flow value divided by the probability
weight of the central configuration a. Lifting moves only happen when the energy
is increasing during the physical moves, i.e. when the moving sphere goes closer to
another.

pacc
fact(ri → ri + dx) = ∏

j
pacc

ij

= 1− ∑
subsetP

∏
j∈P

(1− pacc
ij ) ∏

k/∈P
pacc

ik

= 1− ∑
subsetP

∏
j∈P

εij ∏
k/∈P

(1− εik)

= 1−∑
j
(1− pacc

ij )∏
k 6=j

pacc
ik + o(ε).

= 1−∑
j
(1− pacc

ij ) + o(ε).

(3.30)

The element εij identifies with the energy increase of the factor δEij caused by the move
dx,

pacc
ij (ri → ri + dx) = exp

[
−β max

(
0, dEij(ri → ri + dx)

)]

= 1− β max
(
0, dEij(ri → ri + dx)

)
−−−→
dx→0

1.
(3.31)

The total acceptance probability is then,

pacc
fact(ri → ri + dx) = ∏

j
(1− βdE+

ij ) = 1−∑
j

βdE+
ij = ∏

j
(1− plift

ij ), (3.32)
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noting dE+
ij = max

(
0, dEij

)
. Either the physical move is accepted or a lifting move

takes place. The lifting probability per factor is,

plift
ij (ri → ri + dx) = 1− pacc

ij (ri → ri + dx) = βdE+
ij , (3.33)

When proposing a move, only the factors that code for an energy increase can reject
the move with a probability plift

ij > 0. After a physical rejection, a lifting move happens
between the replicas i and j. In a N particle system, it corresponds to moving the
sphere j instead of the sphere i. The lifting moves only flows into the replica, where
the move decreases the energy. It is useful to note that,

plift
ij (ri → ri + dx) + plift

ij (rj → rj + dx) = βdE+
ij + β(−dE)+ij = βdEij. (3.34)

We consider a system of N spheres, interacting by the potential E =

∑〈i,j〉 Eij(rij). We note ζ the configuration {r1, . . . , ri, . . . , rN} and ζ(i + dx) =

{r1, . . . , ri + dx, . . . , rN}. As illustrated in Fig. 3.15, the flows IN and the flows OUT of a
configuration {ζ(i), σ = (i,+x)} are equal to π(ζ), achieving maximal global balance,

Flows OUT





Physical flow: π(ζ)pacc
fact(ζ(i)→ ζ(i + dx))

= π(ζ)

(
1−∑

j
βdE+

ij

)

Lifting flow: π(ζ)(1− pacc
fact(ζ(i)→ ζ(i + dx)))

= π(ζ)∑
j

plift
ij = π(ζ)

(
∑

j
βdE+

ij

)

Total flow OUT: π(ζ)

(3.35)

Flows IN





Physical flow: π(ζ(i− dx))pacc
fact(ζ(i− dx)→ ζ(i))

= π(ζ)pacc
fact(ζ(i)→ ζ(i− dx))

= π(ζ)

(
1−∑

j
β
(
−dEij

)+
)

Lifting flow: ∑
j

π(ζ)plift
ij (ζ(j)→ ζ(j + dx))

= π(ζ)∑
j

β
(
−dEij

)+

Total flow IN: π(ζ)

(3.36)

When a lifting move happens, a flow π(ζ)βdE is redirected from one replica to
the other. For the maximal global-balance scheme to be correct, this flow needs to
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Figure 3.16: For wall boundary, it is possible to conserve the maximal global-balance
scheme by factorizing the hard core interaction of the wall with each particle. When
a particle hits the wall, the wall is then moved forward, until it hits another particle,
which is then moved in turn.

compensate the physical flow. If the physical flow is equal to π(ζ)(1 − βdE), the
scheme is correct. Therefore the replica reached by lifting is the one where the moves
are decreasing the energy, as it was previously increased in the former replica.

The factorized filter allows to propose another replica than just the one where
moves are proposing backwards. This filter matches indeed in a global manner the
compressibility of the physical flows by the lifting flows. It relies, however, on the
symmetry of the potential factor δE on two variables xi 6= xj, so that δE(+dxi) =

−δE(−dxj). It is the case for pairwise potentials, that only depend on the difference
xi − xj. If it is not possible to decompose the potential E into factors exhibiting such
symmetry, for instance for a three-body interactions, a general solution is to implement
backwards moves. However, the factorized filter allows to separate the symmetric com-
ponents of the potential from the non symmetric ones, so that the symmetric parts are
treated with a maximal global-balance scheme and the non symmetric ones with only a
global-balance scheme. The global-balance scheme on the non symmetric components
can actually be improved from the back-and-forth scheme, as explained in Section 3.4.

Finally, the maximal global-balance scheme is correct, even if the system has not a
periodic boundary. If the boundary is a wall, the distance between the sphere hitting
the wall and the wall itself will have to increase on the next move. Instead of making
the sphere go backward, it may be better to actually make the wall go forward, i.e.
all particles go backwards, until it hits another particle on the other side, which will
be moved in turn. As exhibited in Fig. 3.16, this last scheme avoids to implement di-
rectly backwards moves and is maximal global-balanced. The same applies to particles
trapped in an external potential. When the external potential rejects a physical move,
it is moved forward until it is rejected by another particle, which will be the one being
moved next.

3.3.2 Event-driven approach: Event sampling

3.3.2.1 Sampling a lifting event

In practice, infinitesimal moves require a scaling of the physical time, as in one unit
of time, an infinite number of physical moves take place. However, the number of
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U U U

Figure 3.17: Left: detailed-balance Markov chains with local and finite moves. Right:
Irreversible Markov chains with an event-driven implementation producing a contin-
uum of valid configurations.

lifting moves remains finite. In an event-driven approach, the algorithmic complexity
can be then made to scale with the number of lifting moves. Instead of sampling the
acceptance of every infinitesimal physical moves, we directly sample the moment of
a lifting move, called an event, as was done in [24], following [132]. Between two
events, there is an infinity of Monte Carlo steps, giving a continuous trajectory on
valid configurations, as shown in Fig. 3.17.

For an one-dimensional system with probability distribution π, potential E and a
lifting variable updating the potential along the trajectory s → s + ds, the probability
pevent(0 → n) to accept n subsequent physical moves and then to reject the (n + 1)-st
physical move is,

pevent(0→ n) = pacc(0→ 1)pacc(1→ 2) . . . pacc(n− 1→ n)(1− pacc(n→ n + 1)).
(3.37)

The jth term in this expression is min(1, πj/πj−1), where πj = π(sj = s + jds). Con-
sidering first the case where πj is monotonically decreasing with j, this gives,

pevent(0→ n) =
πn−1

π0

(
1− πn

πn−1

)
=
−1
π0

∂π

∂s

∣∣∣
s=sn

ds. (3.38)

This probability is normalized, writing sevent the value of s at which the event of the
rejection of the physical moves happens, by sample transformation (Section 2.1.2),

−1
π0

∫ ∞

0

∂π

∂s

∣∣∣
s=sevent

dsevent =
1

π0

∫ π0

0
dπevent = 1. (3.39)

This integral is directly sampled by, see Section 2.1.2,

πevent = ran(0, π0)

πevent/π0 = ran(0, 1),
(3.40)

which is equivalent to the following sampling of the energy increase,

∆E(sevent) = −[log ran(0, 1)]/β. (3.41)

Simply sampling π uniformly between 0 and the present value, π0 (equivalently, ∆E
from its exponential distribution) thus yields the event time, sevent, see Fig. 3.18.
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Figure 3.18: Event-driven implementation for a monotonic probability distribution π.
From a starting point sk = s0 of weight πo and energy E0, sk is updated by infinitesimal
moves until sk = sevent. The lifting event is sampled as πevent = ran(0, π0), equivalent
to an energy increase ∆E(sevent) = −[log ran(0, 1)]/β.

Figure 3.19: Event-driven implementation for a general probability distribution π.
From a starting point sk = s0 of weight πo and energy E0, sk is updated by infinitesimal
moves until sk = sevent. The lifting event is sampled as ∆E∗event = [− log ran(0, 1)]/β.

For a non-monotonic probability distribution, all negative energy increments cor-
respond to an acceptance probability 1, and disappear from Eq. 3.37. The sampling
of the total energy increment in Eq. 3.41 turns into the sampling of only the positive
energy increments. As shown in Fig. 3.19, this can be expressed as a function ∆E∗,
constructed only from the positive increments of the energy E [25],

∆E∗(s0 → s f ) =
∫ s f

s0

max
(

0,
∂E
∂s

)
ds =

∫ s f

s0

dE+(s). (3.42)

It is noteworthy that this integral depends on the path followed by the updating of
s. The event time sevent is then sampled by drawing a random number ran(0, 1) and
finding sevent so that,

∆E∗event = ∆E∗(s0 → sevent) = −[log ran(0, 1)]/β. (3.43)

For multidimensional potentials, the acceptance probability of each potential factor
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Figure 3.20: Event sampling for complex systems: A lifting event is sampled for each
factor, here each pair energy, according to Eq. 3.43. Here the earliest lifting event
involves the blue sphere. The orange sphere is then updated until the event time and
the blue sphere will be the next one to be moved. The lifting event may not always
involve the closest sphere. The energy increase sampled in Eq. 3.43 for the interaction
between the orange and green spheres is too large to be achieved by a single approach
of the orange sphere towards the green one.

δEij is independent. A lifting event is then sampled for each factor, according to the
function ∆E∗ij, which stores all positive values of δEij. The earliest event is the one
actually realized, as illustrated on Fig. 3.20. The increment ∆E∗ij can be interpreted as
an energy increase made possible by the thermal fluctuations.

In this event-driven implementation, the fixed number of steps after which the di-
rection of the moves and the moving spheres are resampled is replaced by a global
displacement `, referred to as the chain length: The distances travelled by the spheres
between two lifting events are summed up. When their sum reaches `, the lifting
variable (direction and sphere) is uniformly resampled. The scheme of [26], see Sec-
tion 3.1.2.2, would be impossible to implement while using infinitesimal steps, as the
lifting variable would be resampled at every infinitesimal step. Along a given chain,
moves share the same direction, as only the component z of the lifting variable is
changed, when a lifting event occurs. The collection of chains can be interpreted as a
collection of finite-time realizations of the Markov chain.

3.3.2.2 Practical computation of lifting events

It is possible that Eq. 3.43 yields a time event sevent = ∞, for example when the
potential factor δEij is always zero, while the state is updated according to +ds or
when the thermal excitation ∆E∗ij is too large and cannot be reached. Solving Eq. 3.43
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can be nontrivial in general. Many potentials are, however, central potentials that
depend on the distance between particles. If the pair potential consists of several
terms, e.g. attractive and repulsive terms, it may be convenient to further factorize
the potential, as was explained for the Lennard-Jones potential, see Section 3.2.1. This
decomposition can lead to a higher event rate than the full potential. For instance, for
the Lennard-Jones potential, the mean free path between events is reduced at most by
half. In return, the decomposition simplifies the implementation of the irreversible
factorized Metropolis algorithm, as a potential can be decomposed on monotonic
components.

We now discuss how to solve Eq. 3.43 for a soft-sphere potential E ∝ 1/rn, first for
a system without boundary. A sphere i is moved along the direction s. Lifting events
only happen when the energy is increased by the proposed physical moves, which is
translated in Eq. 3.43 by the fact that only the positive energy increase matters. As
E is monotonic on its rising part, i.e. as the spheres get closer, Eq. 3.43 amounts to
sampling the energy increase ∆E∗ij = − log ran(0, 1)/β, as in Eq. 3.41. It fixes the event
time of the pair energy,

Eevent
ij = Eij(rij(sevent)) = E∗ij(0) + ∆E∗ij, (3.44)

with,

E∗ij(0) =
{

Eij(rij(s = 0)) if the initial pair energy derivative is positive.
0 otherwise

(3.45)

and thus the interdistance at the event time is

revent
ij = E−1

ij (Eevent
ij ). (3.46)

If Eq. 3.46 does not have a solution because Eevent
ij exceeds any possible value, no lifting

event involving the pair {ij} happens, as for the green and orange spheres in Fig. 3.20.
The physical moves are always accepted by j. If Eq. 3.46 does have a solution, sevent is
then inferred from Eq. 3.46 by taking the positive root of revent

ij = |ri + sevent − rj|.
Again, if no such root exists, no lifting event happens. In case of no lifting event,
the sphere i is displaced until the finite chain length ` is reached. This situation is
particular to some systems, for instance, it does not arise in spin systems.

In a periodic box of length L, a particle can pass by the same lifting partner more
than once. The potential is no longer monotonic but periodic, as it is the case in
Fig. 3.19. When the particle travels over a full box size, the energy increase is ∆Emax

ij .
To solve Eq. 3.43, one first slices off the n full box translations allowed by the sampled
total energy increase ∆E∗ij, leaving a value ∆E∗, f

ij ,

∆E∗ij = ∆E∗, f
ij + n∆Emax

ij , (3.47)
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and the distance s f corresponding to ∆E∗, f
ij is calculated as above. Finally,

sevent = s f + nL. (3.48)

Even if solving Eq. 3.43 in periodic boundary does not complicate the implementation,
it is possible to tune the fixed total displacement `, so that the moving sphere can only
interact with one periodic image of the other spheres or by introducing a lifting event
of the moving sphere with itself after a displacement of half the box for instance.

3.3.3 Observable averaging

As the continuum of configurations between two lifting events is correctly sampled
from π, one has to draw a uniform subset from this continuum, in order to retrieve
the ensemble average of an observable. This may be done either by outputting the
configuration at the end of a chain or during the chain itself. This problem is similar to
the one of drawing a time at which to resample the lifting variable without introducing
bias, as it also cannot be done at each infinitesimal step.

The lifting variable is resampled at the precise moment when the sequential dis-
placements sum up to a length `. At this point, the instantaneous configuration can
be saved for ensemble averaging. This way, no bias is introduced as configurations
are output at regular intervals, independently of the occurrence of the events. In con-
strast, it is incorrect to sample configuration at the event time. Configurations at an
event time follow a different probability distribution, as, for instance in a hard-sphere
system, these configurations always contain two touching spheres. For a given lifting
variable updating the state by ds, the configurations output at the lifting events follow
the probability distribution |∂π/∂sds|, as from Eq. 3.38,

P(event in state (x, s)) = π(x)pevent(x → x + ds) =
[
−∂π

∂s

∣∣∣
x
ds
]+

. (3.49)

Therefore a Dirac function appears for the hard spheres (two touching spheres), as it
is the derivative of the Heaviside distribution, Eq. 2.26.

The chain length ` can be either fixed beforehand or drawn randomly before start-
ing a chain. Another method consists in introducing a small constant probability for
terminating a chain in each infinitesimal move. This would effectively lead to a Poisson
process and an exponentially distributed random `.

3.4 Infinite chains

In Section 3.2, we explained how the factorized Metropolis filter allows for the
implementation of a maximal global-balance scheme for a given reversible Markov
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chain. The factorized Metropolis filter allows indeed for the chain to explore without
resampling the complete partition of a lifting variable for a given dimension. It is
however possible to link the dimensions by a detailed-balance scheme and so to avoid
resampling the lifting variable [33].

We consider two soft spheres in a two-dimensional box with periodic boundary
and interacting by the potential E. The lifting variable σ sets the direction +x or +y
and the moving sphere 1 or 2. When σ = (+x, i), the sphere i is updated according to
+x, until a rejection occurs. The moving sphere is then the sphere j and σ = (+x, j).
If the initial state is (x1, y1, x2, y2), one will explore all the states (·, y1, ·, y2). But, in
order to reach the configurations with other values in the y-coordinate than y1 and
y2, one will need to resample σ. If a rejection happens in (ζ, σ = (i,+x)), it would
be indeed not correct to propose a lifting move (ζ, σ = (i,+x)) → (ζ, σ = (i,+y)),
as the lifting flow from (ζ, σ = (i,+x)) is π(ζ)[β∂E/∂x]dx and the flow needed to
compensate the physical flow into (ζ, σ = (�,+y)) is π(ζ)[β∂E/∂y], � notes for the
sphere whose update by +dy will decrease the energy, i.e [∂E/∂y] > 0. The two flows
are not necessary equal and implementing such moves will not be correct.

The solution proposed in [33] is to accept or not the interdimensional lifting moves
by the probability,

pLift((ζ, σ = (i,+x))→ (ζ, σ = (�,+y))) = min
(

1,
|∂E/∂y|
|∂E/∂x|

)
(3.50)

Eq. 3.50 is only defined when a lifting move is sampled from ((ζ, σ = (i, +x)). If
the interdimensional lifting move is not accepted, the usual lifting move takes place.
The flows are then again correctly balanced, as the Metropolis filter used in Eq. 3.50
enforced detailed-balance with the correct flows as the stationary distribution. Except
in situations where it is possible for no lifting move to happen, which is impossible in
the common studied models of N particles or spins, there is no need to resample the
lifting variable anymore and one can run a chain without ever stopping it.

For hardcore potential, the energy partial derivative in Eq. 3.50 is replaced by the
partial derivative of the interdistance r. The derivative −βdsE(ζ) = dπ/ds|ζ reflects
indeed the local increase or decrease in the density of valid states around ζ when
making a move +ds, the similar quantity for hardcore models is the local decrease
or increase of the interdistance r, as the number of valid states identifies with the
geometric distance between two collisions.

Implementing interdimensional lifting moves is particularly useful to study
anisotropic particles that possess the extra degree of freedom of rotation. Consider-
ing N bidimensional hardcore dimers of diameter σ, each dimer i is described by the
position of its center (x, y) and its angle φ, the center of each monomer i1, i2 is then
at (x ± σ

2 cos(φ), x ± σ
2 sin(φ)). The lifting variable sets the moving dimer i and the

direction of the move, chosen in {+x,+y,+φ,−φ}. Both sense of rotations are indeed
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needed as, when the dimer i collides with the dimer j after a rotation +dφ, rotating j
by +dφ may not separate the dimer. But more importantly, rotating the dimer j, even
in the rotation sense that will separate both dimers, may not lead to the same increase
in the local density of valid states, as will be yielded by rotating i by −dφ, see Fig. 3.21.
If we consider, without lack of generality, that the two monomers colliding are i1 and
j1, then,





∂ri1 j1
∂φi

=
σ

2ri1 j1

[
d sin(φij − φi) +

σ

2
sin(φi − φj)

]

∂ri1 j1
∂φj

=
−σ

2ri1 j1

[
d sin(φij − φj) +

σ

2
sin(φi − φj)

]
.

(3.51)

where xi − xj = d cos(φij) and yi − yj = d sin(φij).

The symmetry is broken by the term sin(φij − φ·). If one implements a scheme
where j is updated next, the chain will end up trapped dynamically, as dimers will be
in contact with no way out. This dynamical trap arises from the fact that, by rotating
the collided dimer next, the chain will step by step flow into configurations less and
less likely, until reaching configurations where dimers are touching, see Fig. 3.21. To
correctly update the next dimer j after a collision with the dimer i, the interdimensional
move (ζ, σ = (i, +φ)) → (ζ, σ = (j, ±φ)) has a probability of,

pLift((ζ, σ = (i,+φ))→ (ζ, σ = (j,±φ))) = min

(
1,
|∂ri1 j1/∂φj|
|∂ri1 j1/∂φi|

)

= min

(
1,
|d sin(φij − φj) +

σ
2 sin(φi − φj)|

|d sin(φij − φi) +
σ
2 sin(φi − φj)|

)

(3.52)
The variable ± takes the value that separates the dimer, as lifting move takes place
towards replicas proposing moves to more likely configurations.

The interdimensional lifting move allows us to produce persistent rotations of
dimers, instead of always rotating the same dimer back and forth. However the scheme
is only global balanced and not maximal global balanced. When simulating molecules,
atoms may not interact the same way. For instance, in a fluid of water molecules,
the hydrogen atoms of one molecule will be more attracted towards the oxygen of
another, and not to its other hydrogen atoms. As shown in Fig. 3.22, the factorized
Metropolis filter can be used to separate the molecule-molecule interaction into the
simpler atom-atom interactions, as can be done for the Lennard-Jones potential, see
Fig. 3.11. Rotations of molecules can also be implemented with interdimensional
lifting moves, in order to export a persistent move on a cluster of molecules.

More generally, interdimensional lifting moves can be used in case of a non sym-
metric potential, like a three-body potential. In a three-body interaction, it is not pos-
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Figure 3.21: Left: if a dimer i collides with a dimer j by rotation, rotating the dimer j
next is not correct if the flows are not rescaled with Eq. 3.52. Right: if implemented
without taking care of rescaling the probability flows with Eq. 3.52, hardcore systems
will get blocked in dynamical traps, as here in red; rotating one of the dimers leads to
an immediate collision from one of the other two

Figure 3.22: Factorization of the global interaction molecule-molecule into the simpler
atom-atom interactions. Atoms not interacting in the considered factor are represented
in grey. Red stands for an oxygen atom and white for an hydrogen one.
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sible to segment the potential into pairwise components. Thus, while implementing
the irreversible factorized scheme, if the three-body factor dE123 is the one rejecting
the moves, the moving particle 1 has to go backwards. However, we can implement a
scheme that allows to move one of the other two particles 2, 3 involved in the three-
body interaction. One chooses randomly one particles i of the two particles and accepts
the lifting move (1,+s)→ (i,+s) proposes with the probability,

pacc((1,+s)→ (i,+s)) = min
(

1,
|∂E123/∂si|
|∂E123/∂s1|

)
, (3.53)

or one can also implement maximal global balance by implementing a tower sampling
scheme, see Section 2.1.2.

Conclusion

The main theoretical result of this chapter is the factorized Metropolis filter. Combined
with the lifting framework and an event-driven implementation, it offers a general
paradigm for constructing maximal global-balance Markov-chains for a large class of
systems. Irreversible factorized Metropolis algorithms produce chains of persistent
and non-local moves and generate a continuum of valid samples of the equilibrium
distribution. The factorized filter allows to generalize lifting with two replicas z = ±
to a scheme with as much as N replicas z ∈ {1, ..., N}, with N being the number
of particles. Both the original hard-sphere event-chain algorithm [24] and the hybrid
Monte Carlo algorithm of [25] are particular cases of irreversible factorized Metropolis
algorithms.

Factorized Metropolis algorithms are general, simple to use and can be parallelized
[133, 134]. It is moreover possible to implement interdimensional lifting moves, leading
to the rotation of clusters of particles or persistent moves for n-body interactions in a
global-balance scheme. At the difference of many of the common acceleration methods
for Markov chains, as the parallel tempering [124], the factorized Metropolis filter acts
at the core of the Markov chain, in the socalled Monte Carlo driver. In Chapter 4, we
will discuss how using such irreversible scheme improves greatly the thermalization
in particles as spin systems.
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CHAPTER 4

Applications of the irreversible factorized Metropolis algorithm

Numerical simulations of systems with many degrees of freedom play an important
role as a non-perturbative approach to statistical physics, notably for studying equilib-
rium phase transitions. Phase transitions are however often characterized by dynam-
ical slowing down, including critical slowing down in second-order transitions (Sec-
tion 2.3.4.2), nucleation process in first-order transitions (Section 2.3.4.1), and glassy
behavior in complex systems (Section 2.4.4). In these situations, Monte Carlo algo-
rithms with local updates such as the Metropolis algorithm take an extremely long
time to sample equilibrium states. For instance, in case of a second-order transition,
the autocorrelation time scales quadratically with the linear size of the system, see
Eq. 2.61. In a glassy system, the acceptance rate is small. Even if an event-driven
implementation [132] is implemented to prevent from wasting simulation time into
sampling rejected moves, the dynamics is still dominated by isolated deep local min-
ima. The system follows a futile dynamics, where, after climbing out of a potential
well, it slides all the way down in energy at the next step [12, 320].

In Chapter 3, we presented how to implement a maximal global-balance scheme
relying on the factorized Metropolis filter and the lifting framework. These algorithms
are referred to as irreversible factorized Metropolis Monte Carlo (IFMMC). In this
Chapter, we will study the performance of IFMMC in a wide variety of systems, from
soft spheres to spin glasses, in order to test the generality of a possible acceleration of
the thermalization. Other algorithms that improve the efficiency in some systems do
not indeed perform as well in others, as seen in Section 2.4.4 and Section 2.5.

In particle systems, good results were obtained in hard-sphere systems, where it
was possible to design IFMMC without the justification of the factorized filter, [24].
We test the algorithms in soft-sphere systems, as addressed in Section 4.1, Publica-
tion 1 [30]. In particular, we discuss how the factorized Metropolis filter allows us to
directly compute the pressure in particle systems, without any additional computation,

107



108 CHAPTER 4. APPLICATIONS OF IFMMC ALGORITHMS

see Section 4.2. In spin systems, as discussed in Section 2.4, efficient algorithms already
exist but they suffer a dramatic loss of their power in glassy systems, which display
numerous metastable states. We review the implementation of IFMMC for classical
and continuous spin systems, see Section 4.3. First for XY spins, with ferromagnetic
interactions, see Section 4.3.1.2, and with random couplings, see Section 4.3.1.3, Publi-
cation 2 [31]. Finally, we study the performance of IFMMC in Heisenberg spin systems,
see Section 4.3.2, Publication 3 [32].

4.1 Soft-sphere systems

The debate on the scenario of the melting of a bidimensional particle systems was
caused in part by the dynamical slowing down related to phase transitions. It indeed
leads to prohibitive large simulation times for the local Metropolis algorithm, if one
uses a local Metropolis algorithm.

The factorized Metropolis filter combined with the lifting concept, offers a general
framework for implementing irreversible Markov-chain Monte Carlo for general multi-
dimensional potentials. We test its performance in bidimensional soft-sphere systems,
Publication 1[30].

4.1.1 Melting in soft spheres

Two-dimensional particle systems with short-range interactions has been shown to
form solids [43], albeit they do not exhibit long positional order [135], because of the
importance of fluctuations. Two-dimensional solids are characterized by long-range
orientational and quasilong-range positional orders, where positional correlation func-
tions decay algebraically. When the system is liquid, positional and orientational order
are both short ranged and the correlation functions are characterized by an exponential
decay.

As the solid melts, it may go through an intermediate hexatic phase, characterized
by short-range positional but quasi-long range orientational order. However, the sce-
nario of the melting transition has been heavily debated, whether it follows, as in three
dimensions, an one-step first order scenario between the liquid and the solid, with-
out the intermediate hexatic phase, or whether it exhibits the two-steps scenario of
Kosterliz, Thouless [136, 137], Halperin, Nelson [138, 139] and Young [140] (KTHNY)
transition, where the hexatic phase separates the liquid phase from the solid ones by
continuous transitions.

In hard-sphere systems, Bernard et al. (2011) [13] showed that bidimensional hard
spheres melt through first a continuous transition from solid to hexatic and second
through a first-order transition from hexatic to liquid. It was thanks to the event-
chain algorithm [24] that the simulations could thermalize in a reasonable time, as
it can bring in large systems of 106 particles a speedup of as much as two orders of
magnitude in comparison to a local update scheme [74].
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4.1.2 Performance

We studied a two-dimensional system of N particles interacting with a truncated pair-
wise power-law potential, {

Eij(r) = Ẽ(min(r, rc))

Ẽ(r) = ε(σ/r)n.
(4.1)

with rc = 1.8σ, σ being the particle diameter. This potential describe a broad range
of interactions, such as the dipole interaction in magnetic colloids [141] and Lennard-
Jones particles, once decomposed into repulsive (n = 6) and attractive (n = 12) factors,
see Section 3.2.1.

IFMMC is implemented by separating the global potential into independent factors
identifying with the pair energies,

pacc
Fact(ri → ri + dx) = ∏

ij
exp(−βdE+

ij ). (4.2)

The configuration is updated by specifying the moving sphere and the direction. A
sphere is updated in a persistent way along +x or +y, until a lifting move is sampled.
The sphere involved in the lifting is updated next. Lifting events are determined as is
detailed in Section 3.3.2.2.

We compare the relative performance of the algorithms by computing the autocor-
relation time for the slowest mode, see Section 2.3. As was previously done in particle
systems [24, 74], we consider the global orientational order parameter Ψ6 to exhibit the
slow relaxation of the system,

Ψ6 =
1
N ∑

i,j
ψij =

1
N ∑

i,j

Aij

Ai
exp(6iθij), (4.3)

where θij is the angle of the bond vector between particles i and j against a fixed axis
and Aij/Ai the contribution of particle j to particle i’s Voronoi cell perimeter [142, 143],
see Fig. 4.1.

As for any other observable, the autocorrelation function of Ψ6 decays exponentially
on a timescale τ6. Ψ6 being a global observable, we assume that τ6 is representative
for the relaxation time for dense liquid states close to the freezing point, located at
ρσ2 = 1 for n = 12 and ρσ2 = 0.89 for n = 1024, where ρσ2 is the dimensionless
density, Nσ2/V. Moreover, by symmetry, Ψ6 has an average of zero, so that it prevents
from missing a long time scale, even if we do not know the full probability distribution
π(Ψ6). The autocorrelation of Ψ6 then is simply,

CΨ6 =
〈Ψ6(0)Ψ6(t)〉
〈Ψ6(0)Ψ6(0)〉

(4.4)

Both algorithms were tuned to their optimal parameters: IFMMC: A chain spans
half the system volume; LMC : A move is proposed by a random vector sampled
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Figure 4.1: Local orientational order ψij of the disk i (red) and the disk j (green). The
nearest neighbors of i are determined by the Voronoi tesselation (Delaunay triangula-
tion [144]): The disk i and j are neighbors if the midpoint of the line connecting their
centers is closer to i and j than to any other sphere. The angle θij is determined ac-
cording to a fixed axis. The ratio Aij/Ai corresponds to the ratio of the Voronoi facet
length between i and j (red facet) over the total perimeter of the Voronoi cell around i.
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Figure 4.2: Autocorrelation time τ6 of the global orientational parameter Ψ6, Eq. 4.3 for
IFMMC and LMC for a soft-disk system of N particles at inverse temperature β = 1. τ6

is measured in CPU time. For large system sizes, LMC does not thermalize within the
simulation time and the distribution |Ψ6| is not stationary, even though the simulation
time exceeds τ6 by a factor of 100. Therefore these values of τ6 were not determined
for these sizes.
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from a disk of radius 0.16 σ. implementing IFMMC requires to sample a random
number per pair energy, whereas LMC only needs one per step. However, the main
computational workload occured for evaluating the potentials, not for the generation
of random numbers. Therefore, one event of IFMMC is implemented in the same
time as one attempted step of LMC. The time unit used to compare both algorithms is
the CPU time, which corresponds to a global displacement of 100Nσ in IFMMC and
to 1000N attempted moves in LMC, where moves are proposed by a random vector
sampled from a disk of radius 0.16 σ. We define speedup as the ratio of τ6 in LMC
over τ6 in IFMMC.

As shown in Fig. 4.2, it appeared that IFMMC relaxes a few times quicker than
MCMC for small system sizes in CPU units. In the region of study, the speedup does
not seem to depend strongly on the density ρ, whereas it increases with the system size.
This is consistent with what was observed in hard-sphere systems, [24, 74]. As LMC
did not equilibrate in the allotted simulation time, we could not investigate further.
However, IFMMC is expected to present the same increasing speedup with N for larger
systems, all the more as there is no important difference in the speedup evolution
between soft spheres n = 12 and quasi-hard spheres n = 1024. Finally, IFMMC was
used with success in [145] for determining the melting scenario of soft spheres for
3 ≤ n ≤ 1024, where the existence of the intermediate hexatic phase was observed for
each n. Systems up to 106 particles were simulated.

4.2 Pressure computation

By producing a continuum of valid configurations and sampling lifting moves with
a rate proportional to dE+

ij , it is possible to compute directly the pressure and the
stress tensor as a byproduct of the simulation without any additional computations,
Publication 1 [30]

In order to obtain the equation of state in the NVT ensemble for a particle system,
the pressure P must be computed. P is a dependent variable, defined as,

βP =
∂ log Z

∂V
. (4.5)

The pressure is usually retrieved through the virial theorem [146, Sec. 2.2], either by av-
eraging the virial or by integration of the product of the static pair-correlation function
g(r) and the pair potential Eij(r).

Direct averaging is not possible for hard-sphere interactions, because the potential
is singular, and g(r) has to be computed through a discrete approximation and ex-
trapolated to the contact value to obtain P. Moreover, the dominant contributions to P
come from close pairs, r ≈ σ for a soft power-law potential, even when the potential
does not present singularities. These contributions are poorly sampled in the canon-
ical ensemble. Finally, evaluating the virial during the simulation comes with extra
computation, as the forces need to be evaluated.
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Figure 4.3: Virtual rift volume changes by
random removal of an infinitesimal strip
from a hard-sphere configuration. Left: A
successful removal but the bonds are com-
pressed. Center: Elimination of a particle
(ideal gas pressure). Right: Generation of
an overlap (excess pressure). The left and
right cases become indistinct for soft inter-
actions.

Figure 4.4: Direct computation of the pres-
sure: The excess pressure is derived from
the ratio of excess displacement (green
dashed lines, ∑lifts(xj − xi)) and the chain
displacement ` (red solid line). For
isotropic systems, only the distance be-
tween the final and initial particle xfinal −
xinitial (blue dashed-dotted arrow) has to
be recorded.

The situation is quite different for simulations using an event-driven molecular
dynamics [43]. The virial pressure is directly related to the collision rate, which is a
trivial byproduct of the computation [43],

βP = ρ− βρm
2Tsim

∑
collisions

bij, (4.6)

where ρ = N/V the particle number density, Tsim the total simulation time, m the
mass of a particle and bij = (ri − rj)(vi − vj), with ri,j, vi,j the positions and velocities
of the colliding particles.

In IFMMC, we access dEij through the lifting events, whose rates are directly related
to P, as the collision rate is. It is then possible to derive, independently from the virial
theorem, the pressure P in terms of displacement lengths. We consider a soft-particle
system, but the results are also valid for hard particles, using arguments in [147], which
connect the pressure to the stochastic geometry of the admissible configurations.

In order to compute Eq. 4.5, we consider virtual rift-volume changes, which allow
to retrieve the ratio Z(V − dV)/Z(V). They are produced by removing a randomly lo-
cated strip of size dLx x dLy from the system, as is illustrated in Fig. 4.2. By considering
all the possible position of the strips, this procedure leads to sampling all N particles
configurations in the smaller box and thus yields the new partition function Z(V− dV).
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While going from Z(V) to Z(V − dV), the configurations need to be reweighted as the
bonds between particles are compressed, whereas some configurations are illegal. For
an isotropic system, the virial expression is then recovered,

βP = ρ +
1
V

〈
∑
〈i,j〉
|xj − xi|β

∂Eij(ri − rj)

∂xi

〉
, (4.7)

where 〈·〉 is the usual canonical average. The first term corresponds to the ideal-gas
pressure and comes from the illegal configurations with less than N particles, as some
particles were in the removed strips. The second term is the non-ideal contribution
to the pressure, as it comes from the reweighting, consequence of the compressed
bonds. The probability that a bond is traversed by the removed strip is accounted for
by |xi − xj| and β∂Eij/∂xi is equal at first order to the ratio of the Boltzmann weights
π(r′ij)/π(rij). In hard spheres, the compressed bonds are replaced by overlaps. By
symmetry, as dEij = dE+

ij +−(−dEij)
+ = (dxi∂E/∂xi)

+ − (dxj∂E/∂xj)
+,

βP = ρ +
1
V

〈
∑

i
∑

j
(xj − xi)β

[
∂Eij

∂xi

]+〉

= ρ +
N
V

〈
∑

j
(xj − xi)β

[
∂Eij

∂xi

]+〉
,

(4.8)

as spheres are indistinguishable.

We saw in Eq. 3.49 in Section 3.3.3 that the probability distribution followed by the
event configuration is exactly −∂π/∂s ds = βπ∂E/∂s ds, with s the lifting variable.
In Eq. 4.8, the second term is actually the average of the distance xj − xi on the event
configurations related to the lifting variable x. Thus, replacing the ensemble average
by the average over the simulation time, Eq. 4.8 can be rewritten as,

βP = ρ +
N
V

1
S ∑

Lifts (i→j)
(xj − xi). (4.9)

with S the global displacement made during the simulation. We can segment the global
displacement into the chains of length `,

βP = ρ + ρ

〈
1
` ∑

Lifts (i→j)
(xj − xi)

〉

chains

. (4.10)

Denoting that (xfinal − xinitial) = ` + ∑Lifts(xj − xi), with xinitial the initial position of
the first particle of the chain and xfinal the final position of the last particle of the chain
(adjusted for periodic boundary if necessary), see Fig. 4.2, we finally obtain,

βP = ρ

〈
xfinal − xinitial

`

〉

chains
. (4.11)
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Thus, it is sufficient to know the beginning and end configurations of the chains to
compute the pressure P directly from the simulation.

In the ideal gas, no lifting move takes place, as there is no interaction. Eq. 4.11
reduces to the ideal gas pressure ρ. The excess displacement (xj − xi) is positive for
repulsive potentials, whereas it is negative for attractive potentials. For a potential
as the Lennard-Jones potential, the excess displacements caused by the decomposed
attractive and repulsive parts add up to the correct pressure, see Publication 1 [30].

For anisotropic systems where the collision rates can depend on the direction of
the chains, the derivation presented in Fig. 4.2, where strips are removed in a direction
normal to the chain direction is supplemented with an analogous result for transverse
rifts, where strips are aligned with the chain. It leads in d dimensions to the more
general formula,

βP = ρ +
ρ

d`

〈
∑

Lifts (i→j)

(rj− ri
2)

xj − xi

〉

chains

, (4.12)

where x is the coordinate parallel to the chain direction. More generally, the full stress
tensor u can be obtained as an average of the outer product of the interparticle vector
rij,

βu = −ρ1− ρ

d`

〈
∑

Lifts (i→j)

rijrT
ij

xj − xi

〉

chains

, (4.13)

where 1 is the identity matrix in d dimensions.

4.3 Continuous classical spin systems

Spin models are of widespread interest in physics and neighboring sciences, as proved
by the recent boom of their implementation, notably for solving inference problems,
in neuroscience (neurons interacting through synapses), machine learning (Hopfield
network) and economics (speculative agents in a market). In spite of their microscopic
simplicity, they exhibit rich macroscopic behavior.

They also constitute one of the major testbeds for algorithms, notably around phase
transitions. In order to avoid the slowing down, a wide variety of algorithms, such as
the Swendsen–Wang [19] and the Wolff [20] cluster algorithms, and the multicanonical
method [148] and the exchange Monte Carlo method [124] based on extended
ensembles, have been proposed. All these algorithms are detailed-balance. Recently,
algorithms specific to spin systems and breaking the detailed-balance condition but
not the global-balance condition have been designed [130, 131, 149] and it has been
shown that they improve the sampling efficiency in some cases. In this Section, we
review the performance of IFMMC in ferromagnetic as well as glassy systems.
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The O(n) model was first introduced by H. E. Stanley [150]. In this model, n-
component classical spins Si are placed on the vertices of a lattice of dimension d.
They interact through pairwise interactions Ekl with their 2d nearest neighbors. The
Hamiltonian of the O(n) model is,

E = ∑
〈k,l〉

Ekl = − ∑
〈k,l〉

JklSk · Sl −∑
k

hk · Sk. (4.14)

The vector hk corresponds to an external local magnetic field and is fixed to 0 from this
point on. Jkl specifies the coupling strength for the pair of spins Sk, Sl. If all Jkl = 1,
the system is said to be ferromagnetic. If the couplings {Jkl} are drawn from a ran-
dom distribution, the system is called a spin glass and possesses a complex energetic
landscape, where numerous metastable states can be found. Important quantities to
describe a spin system are the magnetization M,

M = ∑
k

Sk, (4.15)

and the susceptibility χ,

χ =
|∑k Sk|2

N
=
|M|2

N
, (4.16)

For these systems, the factorized filter is given by,

pfact
acc = ∏

〈k,l〉
pkl

acc = ∏
〈k,l〉

exp(−β∆E+
kl ) = ∏

〈k,l〉
exp(−β [−JklSk · Sl]

+). (4.17)

In the following, we will discuss the implementation and performance of IFMMC
first in Section 4.3.1 in the O(2)-model, commonly called the XY model, for ferromag-
netic couplings, Section 4.3.1.2, and random couplings, Section 4.3.1.3 and in the O(3)
model, usually referred to as the Heisenberg model, Section 4.3.2.

4.3.1 Planar rotator spin systems

The classical continuous two-dimensional spin model, also called classical XY model
or classical rotor model, describes spins Si evolving in two dimensions, which are then
characterized by a single angle φi. In the absence of a local field, the potential described
in Eq. 4.14 comes down to,

E = − ∑
〈k,l〉

Jkl cos(φk − φl). (4.18)

For nearest-neighbor interactions and for ferromagnetic interactions, the XY model
exhibits the interesting physics of the Kosterlitz-Thouless transition [137, 151]. The
XY model is commonly used to modelize two-dimensional systems that possess or-
der parameters with the same symmetry, as for superfluid helium or hexatic liquid
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crystals. The Kosterlitz-Thouless transition indeed stands out by the absence of sym-
metry breaking and its unbinding of topological defects (vortex, dislocation, etc.) as
the system evolve from the low-temperature ordered phase to the high-temperature
disordered phase.

The nature of the XY model transition was still highly controversial [152], in part
because of the poor performance of the traditional LMC. It is by the use of the Wolff al-
gorithm (see Section 2.4.3, we will now referred to it as SFC for single flip cluster), that
the debate was clarified [113, 114] and the transition temperature β = 1.1199 deter-
mined up to five significant digits [153, 154]. Moreover SFC was decisive in achieving
a detailed quantitative description of the XY model [155, 156].

As discussed in Section 2.4.4, SFC and its variants fail to really improve the
thermalization in spin glasses, notably because of the large number of metastable
states. The problem is particularly acute in the case of the three-dimensional XY spin
glass model, where the algorithm loses all its power [115, 116]. For this much studied
spin glass model, our understanding today still needs efficient algorithms to clarify
the position and nature of the transition. This situation resembles the one of the
XY model before the revolution triggered by the cluster algorithms. In this context,
we implemented IFMMC for both a ferromagnetic XY model and the XY spin glass
model, Publication 2 [31].

While implementing IFMMC, the configuration space is extended by a lifting vari-
able, written as y

k . The variable y
k singles out the spin k as the spin being updated

along +φ, φk → φk + dφ. If the move is accepted, the lifting variable for the next time
step t + 1 is again y

k . If the physical move is rejected, a lifting move takes place and
the lifting variable is passed on to the spin l of the pair that rejected the move, and the
physical configuration is unchanged.

In the event-driven approach, the lifting variable being set to y
k , the angle φk now

rotates clockwise until the event, i.e. a lifting move, is produced through a rejection by
a neighbor l. The lifting variable is updated to y

l , φl rotates clockwise, etc. The event
is sampled through the sampling of the positive energy increase for each neighbor l,
as explained in Section 3.3.2,

∆E∗kl(φl,event) = −[log ran(0, 1)]/β

∆E∗kl(φl,event) =
∫ φl,event

φk,0

[
∂Ekl
∂φk

]+
dφk

∆E∗kl(φl,event) =
∫ φl,event

φk,0

[
−Jkl

∂ cos(φk − φl)

∂φk

]+
dφk.

(4.19)

To solve Eq. 4.19 and determine φk,event, any 2|Jkl| increment, corresponding to a 2π

rotation of φk, are sliced off ∆E∗kl(φl,event), as the potential is periodic, see Section 3.3.2.2
and Fig. 3.19. After the withdrawal of the n full rotations, it leaves a remaining ∆E f

kl,

E∗init + ∆E f
kl = −|Jkl| cos(φl,event − (φl + φ0)− 2nπ), (4.20)
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Figure 4.5: Autocorrelation function of magnetization CM(t) at the critical temperature
for various system sizes. The inset shows the spin autocorrelation function of a trivial
algorithm that only performs global rotations in spin space along the two axes.

where

E∗init =

{
Ekl if the initial pair energy derivative is positive
−|Jkl| otherwise

φ0 =

{
0 if Jkl ≥ 0
π otherwise.

(4.21)

The event time φl,event is sampled for every neighbor l and the event taking place is
the one with the smallest angle.

Spins are always updated only along one direction and there is no need to resample
the lifting variable to ensure irreducibility on the other space coordinates. We found
that the efficiency was not increased by halting and restarting the simulation after
fixed displacements Publication 2 [31]. Observables are still averaged by outputting a
configuration after a global displacement `, Section 3.3.3.

4.3.1.1 Choice of a slow variable for a spin system

To evaluate the correlation time and the dynamical critical exponent for IFMMC, one
must pay attention to the irreversible nature of the underlying Markov chain. During
one chain, spins all rotate in the same sense, and the system undergoes quasi-global
rotations. This results in fast oscillations of the magnetization M and a quick decay
of its autocorrelation function that is insensitive to the system size (see Fig. 4.5), and
even to the temperature. However, this effect is also visible for a trivial algorithm,
which simply performs global rotations (see the inset of Fig. 4.5). The trivial algorithm
satisfies global balance, but its correlation time is infinite, as it does not relax the
energy. A similar effect appears in IFMMC for particle systems [24], that likewise is
not characterized by the mean net displacement of particles.
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4.3.1.2 Ferromagnetic XY model on a bidimensional lattice

We study the performance of IFMMC in comparison to SFC and LMC for a bidimen-
sional XY system with periodic boundary. We suppose the susceptibility χ of the
system to be the slow variable monitoring the convergence dynamics, as explained in
Section 2.3. Thermalization is ensured by checking agreement with [153]. This choice is
motivated in particular because χ is not sensitive to global rotations, see Section 4.3.1.1.
To estimate these convergence properties, we consider at the critical point β = 1.1199
[153] the susceptibility autocorrelation function,

Cχ(t) =
〈χ(t′ + t)χ(t′)〉 − 〈χ〉2

〈χ2〉 − 〈χ〉2 . (4.22)

As discussed in Section 2.4.3, time is measured in sweeps: For IFMMC, one sweep
corresponds to ∼ N lifting events while for LMC, one sweep corresponds to ∼ N
attempted moves. For SFC, a sweep denotes ∼ N spins added to clusters. The
complexity and the CPU times used per sweep are roughly comparable.

Fig. 4.6 shows the autocorrelation function for the XY model at its critical point,
obtained from very long single runs of the algorithms. For LMC and SFC, the decay
of the susceptibility autocorrelation function can be described by a single time scale,
while for IFMMC, it is well described by two time scales:

Cχ(t) '





exp(−t/τLMC) (LMC)

exp(−t/τSFC) (SFC)

A0 exp(−t/τIFMMC
0 ) + A1 exp(−t/τIFMMC

1 ) (IFMMC)

. (4.23)

IFMMC is indeed first described by a fast time scale, portraying the rapid decay of
the correlation function to Cχ ∼ 0.1 on a timescale τIFMMC

0 of about 5 sweeps. A slow
mode τIFMMC

1 then sets in, presenting a z . 2 scaling (τIFMMC
1 ∼ Lz, with N = Lz,

Section 2.3.4.2). As shown in Fig. 4.7, τIFMMC
1 is an order of magnitude smaller than

τLMC. Together with the initial rapid decrease, this makes IFMMC about one hundred
times faster than LMC. However, its dynamical scaling exponent appears to be z . 2,
as for LMC.

In particle systems, IFMMC also shows initial ballistic behavior, but then crosses
over into slower decay [133]. A possible explanation for such behavior is that, after a
few sweeps of rapid decay, the system undergoes a quasi-global rotation and a diffusive
dynamics appears. Implementing the lifting framework is indeed not always bound to
lead to a square-root reduction of the mixing time [27, 157] and it may be possible that
the emergence of quasi-global rotations effectively induces some reversibility. Still, the
speedup obtained is of two orders of magnitude.
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Figure 4.6: Autocorrelation function Cχ(t) for the two-dimensional XY model at the
critical point β = 1.1199 for LMC (red, triangle), IFMMC (blue, circle), and SFC (yellow,
square). Exponential fits (black, dotted) are as in Eq. 4.23. Left: N = 322. Right:
N = 1282. Right: Scaling of the autocorrelation time τ with the system size. Both
LMC (red, triangle) and the slow scale of IFMMC (dark blue, circle) are compatible with
a dynamical scaling exponent z ∼ 2, zIFMMC ≤ zLMC, as for soft spheres. Both the fast
scale of IFMMC (light blue, diamond) and SFC (yellow, square) are compatible with z ∼ 0.
Right Inset: Speedup of IFMMC with respect to LMC vs. L.
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Figure 4.7: Scaling of the autocorrelation time τ with the system size for the two-
dimensional XY model at the critical point β = 1.1199 . Both LMC (red, triangle) and
the slow scale of IFMMC (dark blue, circle) are compatible with a dynamical scaling
exponent z ∼ 2. Both the fast scale of IFMMC (light blue, diamond) and SFC (yellow,
square) are compatible with z ∼ 0. Inset: Speedup of IFMMC with respect to LMC vs.
L.
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4.3.1.3 XY spin glass model on a three-dimensional lattice

Spin glasses are key models of statistical mechanics. They possess both strong frustra-
tion and randomness, yielding a slow dynamics. The Edwards-Anderson (EA) model
of spin glass where spins are located on each site of a lattice and interact via random
coupling {Jkl} was first proposed in [158]. The infinite-range or mean-field version of
the EA model was solved thanks to the replica-symmetry breaking [159–161]. However,
the behavior of finite range EA spin glass in three dimensions is still not understood.
In particular, at low temperature, the phase diagram of the three-dimensional XY
spin glass model is still being debated, regarding particularly a possible existence
of separate spin-glass and chiral-glass phases [116, 124, 162, 163]. This possible
spin-chirality decoupling means that the chirality orders at a temperature higher than
the spin, with an intermediate chiral-glass phase, where only the chirality, Eq. 4.25,
exhibits a glassy long-range order. We implemented IFMMC for the XY spin glass
model on a cubic lattice, where the nearest-neighbor coupling constants Jkl are drawn
from a Gaussian normal distribution of zero mean and unit variance, Publication 2 [31].

Following [115], we consider the chiral overlap between two independent systems,
(1) and (2), with identical coupling constants,

pκ =
1
N

N

∑
p=1

κ
(1)
p⊥µκ

(2)
p⊥µ, (4.24)

with κ
(i)
p⊥µ being the chirality at a plaquette p, perpendicular to the axis µ, defined as,

κ
(i)
p⊥µ =

1
2
√

2
∑

(i,j)∈p
sgn(Jij) sin(φi − φj). (4.25)

The sum ∑(i,j)∈p is taken over the four bonds encircling the plaquette p in clockwise
order. By construction, pκ is a symmetric function about zero.

At high temperature, the autocorrelation function of the chiral overlap for IFMMC
yields a size independent speedup factor of ∼ 5, in comparison to LMC, as shown in
the inset in Fig. 4.8.

As the phase diagram of the XY spin glass model is still not agred upon, we
consider β = 3.636, a temperature where the spin glass transition may take place [116]
or, otherwise, which is below and near the transition [162, 163]. Without using parallel
tempering [124], IFMMC clearly outperforms LMC. In one third of the samples for a
system size of N = 63 and after 106 sweeps, IFMMC exhibits indeed a symmetrical
chiral overlap, see Fig. 4.9, showing a full configuration space exploration, whereas
LMC does not. For larger systems, the speed up of IFMMC in comparison to LMC
seems to increase, but already for 103 systems, IFMMC no longer equilibrates at
β = 3.636 after 106 sweeps.
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In conclusion, we obtain clear acceleration for the two-dimensional ferromagnetic
XY model, as for the three-dimensional XY spin glass model. Unlike cluster methods,
IFMMC appears very general. In Section 4.3.2, we discuss a reduction of the critical
slowing down obtained for an O(3) spin system.

4.3.2 Heisenberg spin systems on a three-dimensional lattice

Finally we implemented IFMMC for an O(3) spin system, Publication 3 [32]. In a
three-dimensional spin model, or commonly called Heisenberg spin model, the spins
Si are described by three components. The lifting variable (k, v) needs to determine
which spin, k, is rotating but also around which axis, v. When a lifting event happens
between spin k and spin l, the lifting variable is updated from (k, v) to (l, v).

In practice, for a fixed rotation axis v, IFMMC algorithm for the Heisenberg model
reduces to the one of the XY model: With (φv,k, θv,k) the spherical coordinates of a spin
k in a system where the z-axis is aligned with v, the pair energy Ekl between spins k
and l is,

Ekl = −J′ cos(φv,k − φv,l) + K, (4.26)

with

J′ = J sin θv,k sin θv,l,

K = −J cos θv,k cos θv,l.

Both J′ and K depend only on the polar angle θv and both parameters re-
main unchanged along the chain. The azimuthal-angle dependence in Eq. 4.26 is
∝ cos (φ v, k − φv,l), as in the XY model. The sampling of the next event is then
the same as Eq. 4.20, but with a renormalized J′. In order to be irreducible, only two
different linearly independent axes are necessary. The chain is stopped after the chain
reaches the length `, the last configuration is stored for observable averaging and the
lifting variable is resampled.

The dynamical critical exponent of LMC for the Heisenberg model on a three-
dimensional lattice was estimated from the autocorrelation function of the magneti-
zation M as z = 1.96(6)[164]. The overrelaxation algorithm [165, 166] seems to give
z ' 1.10 [164], which was obtained from the autocorrelation function of the magneti-
zation, and the SFC algorithm is believed to yield a value close to zero: z & 0, a value
obtained from the susceptibility autocorrelation function [167].

To evaluate the dynamical performance of IFMMC at the critical temperature
β = 0.693, we consider the susceptibility χ, as for the XY model in Section 4.3.1,
but also the energy density e. Both χ and e are insensitive to global rotations, see
Section 4.3.1.1. As shown in Fig. 4.10, the autocorrelation functions both of the energy
density and of the susceptibility are well approximated as a single exponential,

Cχ(t) = exp(−t/τ), (4.27)
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Figure 4.11: Scaling in the three-dimensional Heisenberg model at its critical point
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the autocorrelation time of the susceptibility for LMC (yellow squares). Error bars are
smaller than the markers size. Inset: Speedup for the susceptibility χ in comparison
to LMC for system sizes 43, 83, . . . , 643.



124 CHAPTER 4. APPLICATIONS OF IFMMC ALGORITHMS

on essentially the same timescales. Furthermore, the finite-size behavior of the auto-
correlation times indicates a z ' 1 dynamical scaling, as exhibited in Fig. 4.11. This z
value is significantly less than for LMC and very similar to the one obtained for over-
relaxation methods, although the z ' 0 value of the cluster algorithm is not reached.

The earliest application of lifting [26], the motion of a particle on a one-dimensional
n-site lattice with periodic boundary conditions, see Section 3.1.1, already featured the
decrease of the dynamical scaling exponent from z = 2 to z = 1 (the reduction of the
mixing time from ∝ n2 to ∝ n). This reduction is made possible by the irreversibility
of the Markov chain. It was pointed out that the square-root decrease of the critical
exponent was the optimal improvement [27]. A clear reduction of the dynamical ex-
ponent z from a quadratic to a linear scaling had not been observed yet in soft-sphere
systems and XY spin systems, although speedups appear to increase with the system
size, as was shown in hard-sphere systems [74]. The three-dimensional Heisenberg
model seems to be a first such IFMMC application with a lowered critical dynamical
exponent z ≈ 1. Our observation relies on the hypotheses that the energy and the
susceptibility are indeed slow variables, and that the observed decay of the autocorre-
lation function continues for larger times. However, in Fig. 4.10, a crossover from z = 1
to z = 2 as it was observed for XY-model after ∼ 5 sweeps in Fig. 4.6, appears unlikely
to arise after hundreds of sweeps. The dynamical critical exponent z ≈ 1 represents
a maximal improvement with respect to the z ≈ 2 of LMC, supposing again that the
theorems of [27] apply to infinitesimal Markov chains.

Conclusion

In this Chapter, we compared the performances in terms of autocorrelation times
reached by implementing the factorized Metropolis filter in an irreversible lifting
scheme. Clear accelerations were obtained in soft spheres, as in the ferromagnetic
XY model. Albeit no reduction of the critical slowing down was observed, definite
evidence for a speedup that increases with system size was obtained. In the three-
dimensional ferromagnetic Heisenberg system, a square-root reduction was shown,
rendering the scaling of the autocorrelation time linear with the system size L. As
shown by [27], this is the best reduction possible if implementing a lifting scheme.
Moreover, the factorized filter allows us to retrieve directly and without any additional
cost the pressure P of a particle system, an observable that was formerly very costly to
compute.

The good performance of IFMMC in these different systems underlines the gen-
erality of the irreversible factorized Metropolis approach, that is already being used
with success by the community in three-dimensional hard spheres [168], polymers
[134, 169], self-avoiding walks [170], chiral magnets [171] and even in machine learn-
ing [172].



General conclusion

Since the beginning of the Markov-chain Monte Carlo method in the 1950s, numerical
simulations have become a fundamental tool of statistical mechanics and beyond, act-
ing like a real telescope of the mind. However fast mixing algorithms are still needed,
notably for the study of particles and glassy spin systems. The seminal Metropolis
algorithm [17] with local updates is limited in such systems and a wide variety of
algorithms has been designed to counteract the slowing down linked to phase transi-
tions.

In ferromagnetic spin systems, cluster algorithms [19, 20] suppress the slowing
down but, even if they can be generalized, their efficiency is only observed in specific
systems. The situation repeated itself in particle systems, where algorithms updating
in one step clusters of particles were created [125, 128, 129]. They also accelerate the
thermalization, but such improvement is also restricted to some systems.

During my thesis, I built on the lifting framework in mathematics [26, 27] and
on previous attempts to set up irreversible Markov chains algorithms in physics, [24,
25], to design a general procedure for implementing an irreversible scheme out of a
reversible ones [30]. My main theoretical result is the factorized Metropolis filter, which
allows to treat any multidimensional potential as a collection of unidimensional ones.
As it replaces the Metropolis filter at the most fundamental level of the method, the
factorized Metropolis filter is simple to use and easy to generalize to any distribution.

The irreversible factorized scheme exhibits a clear acceleration in soft-sphere sys-
tems and bidimensional XY spin systems, and, most of all, a square-root reduction of
the critical slowing down in Heisenberg spin systems [30–32]. As its performances are
similar in a broad class of systems [134, 168–172], the irreversible factorized scheme
appears to be more general than the highly optimized algorithms that only work in
very specific circumstances.

For decades, stochastic calculations were seen as practical challenges, but whose
theoretical grounds were set in stone. Although the irreversible factorized paradigm
may offer a new starting point, some questions are still open. One of the main issues is

125
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to push the effort in understanding the mixing process in lifting for continuous space.
The goal is to understand why, in the ferromagnetic XY model, we observed the two-
time-scale evolution, while in the ferromagnetic Heisenberg model, there is only one
scale, that shows an important reduction of the critical slowing down. As discussed
in [27] for chains on a discrete space, the square-root reduction of the mixing time is
the best possible. Finally, an interesting challenge lies in the possibility to implement
a maximal global-balance scheme for interdimensional lifting moves, where only a
detailed-balance scheme is for now proven correct.
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Publication 1: Generalized event-chain Monte Carlo: Con-
structing rejection-free global-balance algorithms from in-
finitesimal steps

Manon Michel, Sebastian C. Kapfer and Werner Krauth, J. Chem. Phys., 140, 054116
(2014).

This article presents how to construct rejection-free and maximal global-balance
Markov-chain Monte Carlo algorithms by implementing the factorized Metropolis filter
with lifted Markov chains. The article describes the additional possibility offered by the
factorized Metropolis filter, as the direct computation of pressure or the decomposition
of a non monotonic potential into monotonic parts. Finally, it analyzes the performance
of the irreversible factorized Metropolis algorithm, generalization of the event-chain
algorithm, in bidimensional soft spheres.
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Generalized event-chain Monte Carlo: Constructing rejection-free
global-balance algorithms from infinitesimal steps
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24 rue Lhomond, 75005 Paris, France
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In this article, we present an event-driven algorithm that generalizes the recent hard-sphere event-
chain Monte Carlo method without introducing discretizations in time or in space. A factorization
of the Metropolis filter and the concept of infinitesimal Monte Carlo moves are used to design a
rejection-free Markov-chain Monte Carlo algorithm for particle systems with arbitrary pairwise in-
teractions. The algorithm breaks detailed balance, but satisfies maximal global balance and performs
better than the classic, local Metropolis algorithm in large systems. The new algorithm generates a
continuum of samples of the stationary probability density. This allows us to compute the pressure
and stress tensor as a byproduct of the simulation without any additional computations. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4863991]

I. INTRODUCTION

Markov-chain Monte Carlo (MCMC) methods in statisti-
cal physics have progressed far from the original local-move,
detailed-balance Metropolis algorithm.3 On the one hand, in-
tricate non-local cluster moves have met with great success
in lattice models.4, 5 To a lesser extent, continuum systems of
hard spheres have in recent years also benefitted from non-
local moves,6–9 building on earlier work.10–12 On the other
hand, extensions of the classic detailed balance condition
have allowed to construct Markov chains that converge faster.
These algorithms introduce persistence between subsequent
moves and reduce the diffusive nature of the Markov chain on
small and intermediate length and time scales. Notable exam-
ples are guided random walks,13 hybrid Monte Carlo,14, 15 and
overrelaxation.16 The Markov chain lifting framework17–19

unifies these concepts by augmenting the physical configura-
tion space with auxiliary variables that resemble the momen-
tum in Newtonian time evolution and in molecular dynamics
(MD).20 Lifted Markov chains have already been applied to
spin models,23, 24 but not to continuum systems.

The present article draws on the above lines of research.
As a main theoretical result, we introduce a factorized ver-
sion of the Metropolis filter (acceptance rule) that is well
suited for the simulation of N-particle systems with pair-
potential interactions. Combined with the concept of infinites-
imal Monte Carlo moves, this filter allows us to construct
a rejection-free event-chain Monte Carlo (ECMC) algorithm
that breaks detailed balance yet satisfies maximal global bal-
ance. This algorithm builds upon a recent insightful hybrid
Monte Carlo scheme.15 By virtue of infinitesimal displace-
ments of particles, our algorithm produces a continuum of
configurations that all sample the equilibrium distribution.
Samples are obtained efficiently using an event-driven algo-

a)Electronic mail: manon.michel@ens.fr
b)Electronic mail: sebastian.kapfer@ens.fr
c)Electronic mail: werner.krauth@ens.fr

rithm. For hard spheres, the events correspond to hard-sphere
collisions, and the new algorithm reduces to the hard-sphere
event-chain algorithm.6 For general pair interactions, our al-
gorithm replaces the hard-sphere collisions by pairwise colli-
sions, whose collision distance is resampled after each event
from the pair potential. Finally, the continuum of ECMC
samples permits to directly compute the pressure and the
stress tensor in the NV T ensemble at no extra computational
cost.

II. BALANCE CONDITIONS, FACTORIZED
METROPOLIS FILTER

For an MCMC algorithm to converge to the stationary
distribution, it must satisfy the global balance condition for
the stationary flows ϕa→b from configuration a to b: the total
flow into a configuration a must equal the total flow out of it,∑

b

ϕb→a =
∑

c

ϕa→c = π (a), (1)

where π (a) is the statistical weight of configuration a, e. g.,
given by a Boltzmann factor. The flow must also satisfy an
ergodicity requirement.21 The global balance, Eq. (1), is in
particular satisfied by the detailed balance condition which
equates the flows between any two configurations a and b:

ϕa→b = ϕb→a (2)

(see Fig. 1). We will be concerned with algorithms satisfying
maximal global balance, where flow between two configura-
tions is unidirectional and flows from a to a (that is, rejec-
tions) are avoided: if ϕa→b > 0, then ϕb→a = 0. In this case,
probability does flow back nonlocally from b to a. In the par-
ticle systems that we consider, this happens via the periodic
boundary conditions.

MCMC methods commonly rely on the Metropolis algo-
rithm, which enforces detailed balance of the flows between

0021-9606/2014/140(5)/054116/8/$30.00 © 2014 AIP Publishing LLC140, 054116-1
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FIG. 1. Balance conditions for probability flow in Markov-chain Monte Carlo. Arrows represent stationary flows of equal magnitude. Top left: Global balance,
a necessary condition for the convergence towards equilibrium. The total flow

∑
c ϕc→a into any configuration a must equal the total flow

∑
c ϕa→c out of it.

The loops ϕa→a , etc., correspond to rejected moves. Top right: Detailed balance, the net flow between any two configurations is zero, ϕa→b = ϕb→a . Bottom:
Maximal global balance, ϕa→b > 0 implies ϕb→a = 0, the flow ϕa→a vanishes.

a and b as follows:

ϕa→b = Aa⇀↽b min(π (a), π (b)). (3)

In our algorithm, the a priori probability A is symmet-
ric and amounts to zero or a global constant that we drop
for simplicity. Equation (3) is manifestly symmetric in π (a)
and π (b) so that, by construction, ϕa→b = ϕb→a . Since
ϕa→b = π (a)p(a → b), with p the acceptance probability,
Eq. (3) is equivalent to the well-known Metropolis filter,

p(a → b) = min

(
1,

π (b)

π (a)

)
, (4)

that has been implemented in countless computer programs.
In statistical physics, the weight of a configuration a is

often given by the Boltzmann factor π (a) = exp (−βE(a)),
where E(a) is the energy of a and β is the inverse temperature,
which we set to one for the majority of this article. Using the
abbreviation

[x]+ := max(0, x) (≥ 0), (5)

we can write the Metropolis filter of Eq. (4) as

p(a → b) = min(1, exp(−�E)) = exp(−[�E]+), (6)

where �E = E(b) − E(a). This corresponds to the acceptance
probability of a proposed move, whereas the rejection proba-
bility is 1 − p = 1 − exp (−[�E]+).

We now consider an N-particle system with pair interac-
tions E = ∑

{i, j} Eij, where i and j, in our applications, label
particles in D-dimensional space, but could also refer to spins
or other degrees of freedom. The sum runs over all unordered
pairs {i, j} of particles. For such a system, the Metropolis fil-

ter has always been used as

pMet(a → b) = min
(

1, exp
(
−

∑
{i,j}

�Eij

))

= exp
(
−

[∑
{i,j}

�Eij

]+)
. (7)

In the present article, however, we introduce a factorized
Metropolis filter,

pfact(a → b) =
∏
{i,j}

min(1, exp(−�Eij ))

= exp
(
−

∑
{i,j}

[�Eij ]+
)
, (8)

which also fulfills detailed balance by respecting the
same flow symmetries as the standard Metropolis fil-
ter, as can be seen by applying the identity π (a)/π (b)
= exp (

∑
{i, j} [�Eij]+ − [−�Eij]+) to Eq. (8). The conven-

tional and the factorized Metropolis filter agree in the hard-
sphere case1 and (trivially) for N = 2. They differ whenever
terms of opposite sign appear on the rhs of Eq. (8), i.e., for
general interactions and N > 2. The factorization increases
the rate of rejections in a detailed-balance MC algorithm. We
find that for the soft-sphere interactions considered in this ar-
ticle, the rate of rejections is about 50% higher (soft spheres
with n = 12, ρ = 0.8 . . . 1.2, with a step size of 0.1 in units
of the particle diameter). However, the factorization yields the
acceptance probability as a product of independent pair inter-
action terms. This will be the key to derive a rejection-free
lifted MCMC algorithm for general N-particle systems.
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FIG. 2. Upper: Discrete one-dimensional system (L = 2) with constant probabilities π (a) = π (b) and hard-wall conditions π (c) = π (d) = 0. The lifting variable
h = ±1 corresponds to the direction of motion of the particle. Lower: Equivalent lifting algorithm for two hard spheres with finite displacement � (the values
of the lifting variable ±1 are replaced by {1, 2}). The forbidden particle moves b1 → c1 and a2 → d2 trigger lifting moves. Maximal global balance is satisfied
by moving in the +x direction only. The equivalence between one-dimensional motion and two-particle dynamics in a constrained direction carries over to
arbitrary pair potentials.

III. LIFTING: 1D SYSTEMS AND TWO PARTICLES
IN A BOX

We now introduce the concept of Markov chain lifting
in a simple setting, which we later generalize to interacting
particle systems. We consider a one-dimensional discrete sys-
tem with configurations a and stationary weights π (a) (i.e.,
a ∈ {�, 2�, . . . , L�}). For moves sampled uniformly from
{−�, �}, the standard Metropolis filter of Eq. (4) satisfies
detailed balance ϕa→a+� = ϕa+�→a ∀a. The stationary dis-
tribution π is sampled in the limit of infinite running times.

Lifting,17–19 in this example, consists in duplicating each
configuration a with a momentum-like variable into two con-
figurations a± = (a, h = ±1). The lifting variable determines
the next proposed move, which would in ordinary Metropo-
lis MC be sampled from a prior distribution: For a+, only the
particle move a → a + � is proposed, and for a−, only a
→ a − �. For flow balance, we introduce lifting moves a+
→ a− and a− → a+ which take effect if the particle move is
rejected, as summarized in the diagram,

(9)
where the flows ϕ0 and ϕ1 are given by

ϕ0 = min[π (a), π (a − �)], (10)

ϕ1 = min[π (a), π (a + �)]. (11)

We take the weights of the lifted configurations to be the same
as the weights of the original configurations, π (a±) = π (a),
adjusting the constant of normalization. This rejection-free
MCMC algorithm satisfies maximal global balance, as only
one of the two flows ϕa+→a− and ϕa−→a+ can be non-zero.
In the physical variables a, however, rejections are still
present.

We now consider uniform stationary probabilities
(π (a) = constant) and impose hard-wall boundary conditions
in our one-dimensional discrete model. The lifting flows are
non-zero only for a rightmoving particle at a = L�, and for
a leftmoving particle at a = �. For these configurations, the
lifting flow equals the entire incoming flow, and the particle
reverses its direction. One can show that the lifted algorithm
visits all sites in O(L) steps, rather than in O(L2) steps for the
Metropolis algorithm.2, 22

As demonstrated in Fig. 2, the discrete one-dimensional
system with hard walls corresponds to two D-dimensional
hard spheres that are constrained to move only, say, along
the x direction, in a box with periodic boundary conditions.
The new lifting variable i now indicates the moving sphere,
and the hard wall turns into a no-overlap condition for the
two spheres. Although the spheres only move towards the
right, the algorithm satisfies maximal global balance due to
flows across the periodic boundaries. Ergodicity for the un-
constrained two-sphere problem in a D-dimensional box is
achieved by resampling, after a fixed number of steps, the
moving particle i ∈ {1, 2} and the direction of motion
� ∈ {+ex�,+ey�} (for the example of two hard disks in a
periodic box). The sequence of moves between resampling is
referred to in the following as an event chain.
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IV. INFINITESIMAL MOVES AND EVENT-CHAIN
ALGORITHM FOR INTERACTING
MANYPARTICLE SYSTEMS

We now extend the discussion of Sec. III to N-particle
systems, first for hard spheres, and then for particles with ar-
bitrary pairwise potentials. The idea to indicate the moving
particle and its “momentum” by lifting variables generalizes
trivially to the N-particle case. Special care is, however, re-
quired to preserve global balance, and we show that the factor-
ized Metropolis filter can be used to achieve maximal global
balance in the infinitesimal-move limit. We then implement
this scheme efficiently in an event-driven MCMC algorithm.

Lifted configurations are now specified by the N hard-
sphere centers (r1, . . . , rN ), the moving sphere i, and its di-
rection of motion �. For concreteness, we focus on the posi-
tive x direction, � = +ex�, as before. A particle move is

ai = (r1, . . . , r i , . . . , rN ) →bi = (r1, . . . , r i + �, . . . , rN ).

(12)

This algorithm violates global balance because it generates
configurations with multiple overlaps, see Fig. 3. In the pres-
ence of a multiple overlap, it is impossible to define flows that
satisfy the global balance condition. Multiple overlaps van-
ish, and maximal global balance is recovered, for infinites-
imal moves |�| → 0: In that limit, the factorized Metropo-
lis filter identifies a unique collision partner, with probability
one, since no two particles are at the same distance from the
moving particle. The collision partner then inherits the lifting
variable and moves forward in the next step. By a succession
of infinitesimal steps that add up to a finite chain displacement
	, this reproduces the hard-sphere event-chain algorithm.6 Of
course, the infinitesimal-move algorithm is not implemented
naively through a fine discretization, but rather by identifying

t t+1 t+2

c2 a2 d2

a1 b1

e3 a3 f3

FIG. 3. Multiple overlaps for hard disks (weight π = constant for the non-
overlapping physical configurations a, d, f). The violation of the global bal-
ance condition is caused by the multiple overlap in configuration b (overlap
of disk 1 with both disks 2 and 3): the flow into all legal configurations a, d,
and f must be equal, while the illegal (crossed-out) configurations b, c, and
e generate zero flow. The multiple overlap disappears, and global balance is
again satisfied, in the limit |�| → 0.

the next lifting event, and then advancing the moving disk to
contact.

We now generalize the infinitesimal-move event-chain
algorithm to arbitrary pair potentials, using the factorized
Metropolis filter, Eq. (8). For general interactions, the energy
change between configurations ai and bi which differ by an
infinitesimal displacement dxi of particle i is

dE = E(b) − E(a) =
∑
j (�=i)

∂Eij (rj − r i)

∂xi

dxi =
∑
j (�=i)

dEij ,

(13)

where dEij is the pairwise energy change, and Eij the pair po-
tential. According to the factorized Metropolis filter, the move
is rejected with probability

1−pfact(ai →bi)=1 − exp
(
−

∑
j (�=i)

[dEij ]+
)
=

∑
j (�=i)

[dEij ]+.

(14)

Remarkably, for infinitesimal displacements, the rejection
probability is a sum of pair terms, while the individual terms
[dEij]+ normally neither add up to the total energy change dE
nor to [dE]+. We use the terms in Eq. (14) as the probabilities
for lifting moves

plift(ai →aj ) = [dEij ]+ ∀j �= i, (15)

and obtain a rejection-free, maximal global balance MCMC
algorithm. Fig. 4 illustrates that the total flow into the config-
uration ai equals the total flow out of configuration ai, satisfy-
ing the global balance condition Eq. (1). Explicitly, the lifting
flows in the example of Fig. 4 are

ϕa2→a1 = π (a)[dE21]+,

ϕa3→a1 = π (a)[dE31]+,

t t+1

a3

b1 a1

a2

FIG. 4. Maximal global balance for N particles with arbitrary pair interac-
tions (infinitesimal step, factorized Metropolis filter of Eq. (8)). Flow into a1
is due to N − 1 lifting moves (here, for N = 3, a2 → a1 and a3 → a1) and
to a particle move (here, b1 → a1). For infinitesimal steps, the flow into a1
equals π (a) (see text), thus balancing the flow π (a) out of a1 and satisfying
global balance, Eq. (1).
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and the particle move flow:

ϕb1→a1 = ϕfact
a→b = π (a)(1 − [dE21]+ − [dE31]+).

Indeed, Eqs. (14) and (15) define a rejection-free infinitesimal
MCMC algorithm with maximal global balance.

In order to implement this algorithm efficiently, we
choose an event-based approach. As mentioned, the factor-
ized Metropolis filter ensures that no two lifting events can
occur in the same infinitesimal timestep. Thus, every inter-
action of the moving particle with another can be treated in-
dependently of other interactions. Further, for fixed partner j,
the lifting probabilities at successive timesteps are indepen-
dent, and they vanish if the pair potential decreases during
displacement. Following the Bortz-Kalos-Lebowitz (BKL)
algorithm,15, 25 we determine the displacement until the first
lifting move occurs by sampling a uniform random number
ϒ ij from (0, 1] which determines the admissible energy in-
crease until lifting, E∗

ij = − ln ϒij . The displacement until
lifting sij is then found from

E∗
ij =

∫ E∗
ij

0
[dEij ]+ =

∫ sij

0

[
∂Eij (rj − r i − sex)

∂s

]+
ds.

(16)

If this equation lacks a solution due to the shape of the in-
teraction potential, or due to a large thermal excitation E∗

ij ,
no lifting event is generated, sij = ∞. While solving Eq. (16)
can be nontrivial in general, we give a fast method for the
most usual pair potentials below. The smallest of the N − 1
independent {sij}j �= i determines the lifting move i → j∗

which will actually take place, advancing the moving disk by
minj �=i(sij ) = sij∗ in the +ex direction and changing the lift-
ing variable to j∗. We also make sure that the total displace-
ment in a single event chain equals the chain displacement 	,
which usually requires truncating the final event. After the
end of the chain, the lifting variables are resampled. Each
chain thus consists in an infinite succession of infinitesimal
moves that add up to the chain displacement 	. Alternatively,
we could introduce a small constant probability for terminat-
ing a chain in each infinitesimal move. This would effectively
lead to exponentially distributed random 	, and is also a valid
MCMC algorithm.

We conclude with some practical remarks on solving
Eq. (16) for model potentials that occur in practice. Many
model potentials are central potentials, Eij (r ij ) = Eij (rij ). If
the pair potential consists of several terms, e.g., attractive and
repulsive terms, it may be convenient to treat them separately
by a further factorization of the Metropolis filter, and de-
compose the lifting probabilities, [dEattr

ij ]+ + [dE
rep
ij ]

+
, where

Eattr and Erep are the attractive and repulsive parts of the pair
potential. This decomposition can lead, however, to a higher
event rate than the full potential. For instance, the Lennard-
Jones potential reduces to two soft-sphere interactions, one
attractive and one repulsive, and the mean free path between
events is reduced at most by half in comparison to the case
without decomposition. In return, the decomposition greatly
simplifies the Monte Carlo program.

We will thus focus here on the case of soft-sphere po-
tentials which are monotonous. A lifting move can only be

generated if the moving particle is in the rising part of the
pair potential. In this case, solving Eq. (16) amounts to sam-
pling the energy increase E∗

ij = − log ϒij , with ϒ ij a uniform
random number from (0, 1], which fixes the interaction en-
ergy Elift

ij = Eij (rij ) + E∗
ij , and thus the interparticle distance

r lift
ij = E−1

ij (Elift
ij ) at the lifting move. (If Elift exceeds any pos-

sible value of the interaction potential, there is no lifting move
generated.) The admissible displacement sij for the i, j parti-
cle pair is then the positive root of r lift

ij = |rj − r i − sij ex|.
Again, if no such root exists, no lifting move is generated,
and particle i will pass particle j. Using this method, and the
decomposition into attractive and repulsive terms, Eq. (16) is
thus easily computable for a large range of potentials.

In systems with periodic boundary conditions, for very
long chains, a particle can pass by the same collision partner
more than once: The pair potential no longer is monotonous.
This is most easily avoided by tuning the chain displacement
so that the moving sphere can only interact with one periodic
image of the other spheres or by introducing a lifting move of
the moving sphere with itself after a displacement of half the
box. This move does not change the statistics of the following
events. After it, the next event is computed as usual.

V. SPEEDUP WITH RESPECT TO METROPOLIS
MONTE CARLO

We now compare the performance of the generalized
ECMC algorithm with Metropolis Monte Carlo (MMC). As
an application, we consider a two-dimensional system of
N particles interacting with a truncated pairwise power-law
potential, Eij (r) = Ẽ(min(r, rc)), with Ẽ(r) = ε(σ/r)n and
rc = 1.8σ , σ being the particle diameter. This potential in-
cludes important physical interactions such as the dipole in-
teraction in magnetic colloids,26 hard disks (n → ∞) and
Lennard-Jones particles, once decomposed into a repulsive
soft-sphere interaction (n = 12) and an attractive one (n = 6).
In comparison to MMC, the ECMC algorithm uses more ran-
dom numbers, one per interaction term, whereas Metropolis
uses one per step. In our implementations, however, the main
computational workload is the evaluation of the potentials,
not the generation of random numbers (using the Mersenne
Twister). One event of the ECMC algorithm is thus imple-
mented in the same amount of time as one attempted step
of MMC (3.2 × 109 steps/h in MMC, 1.5 × 109 events/h in
ECMC). We compare the performance of the algorithms in
terms of the central processing unit (CPU) time used (see
Fig. 5 for details).

As estimate of the relative performance of the algorithms
we consider as in other recent work6, 8, 9 the autocorrelation
time τ 6 of the global orientational order parameter �6,

�6 = 1

N
·
∑
i,j

Aij

Ai

exp(6iθij ), (17)

where θ ij is the angle of the bond vector between particles i
and j against a fixed axis and Aij/Ai the contribution of particle
j to particle i’s Voronoi cell perimeter.27, 28 With �6 being a
global observable, we assume that its autocorrelation time τ 6

is representative for the mixing time for dense liquid states
close to the freezing point, located at ρσ 2 = 1 for n = 12, and
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FIG. 5. Autocorrelation times τ 6 of the �6 orientational order parameter for event-chain Monte Carlo (ECMC) and Metropolis Monte Carlo (MMC), for
soft-disk systems of N particles at inverse temperature β = 1. τ 6 is measured in arbitrary though comparable amounts of CPU time: One unit of CPU time for
ECMC is a displacement of T = 100Nσ , chain displacement 	 = 0.025

√
Nσ , spanning thus about half the system volume. Event chains in +x and +y alternate

every �T = Nσ /2 of displacement. One unit of CPU time for Metropolis consists of 1000N moves, where a move is the attempt to displace a particle by a
random vector sampled from a disk of radius 0.16σ .

ρσ 2 ≈ 0.89 for harder disks with n = 1024, where ρσ 2 is the
dimensionless density, Nσ 2/V .

We find that in terms of CPU time, in small systems,
ECMC mixes a few times quicker than MMC. We tuned both
algorithms to their optimal parameters (see Fig. 5 for details).
Speedup, defined as the ratio τ6(MMC)/τ6(ECMC), is, in the
region of study, not found to be a strong function of density
(Fig. 5, bottom row). For increasing system size, however, the
speedup increases (Fig. 5, top row). An increase of speedup
with system size has also been found for hard-sphere systems,
where it approaches two orders of magnitude in large systems
of 106 particles.8 We thus expect that the generalized ECMC
algorithm has similar characteristics with respect to system
size as the hard-sphere ECMC algorithm. For very large sys-
tems, the MMC algorithm does not equilibrate within the al-
lotted simulation time: The distribution of |�6| is not yet sta-
tionary, even though the simulation time exceeds the τ 6 by
a factor of 100. Thus, we have not determined τ 6 for these
systems.

VI. DIRECT PRESSURE COMPUTATION

In order to obtain the equation of state in the NV T en-
semble for the particle system under study, the pressure P
must be computed. Usually, the pressure is obtained using the
virial theorem (see Sec. 2.2 of Ref. 30), either by averaging
the virial, or by integration of the product of the static pair
correlation function g(r) and the pair potential Eij(r). Direct
averaging is not possible for hard-sphere interactions, since
the potential is singular. It is thus required to compute a dis-

crete approximation of g(r) and extrapolate it to the contact
value to obtain P. Even for non-singular steep potentials, the
approach via g(r) is bothersome, since the dominant contribu-
tions to P come from close pairs (for the family of power-law
potentials, r ≈ σ ), which is poorly sampled in the canonical
ensemble. Finally, evaluation of the virial during the simula-
tion implies extra computation for evaluating the forces. By
contrast, in hard-sphere event-driven molecular dynamics the
virial pressure is directly related to the collision rate, which is
a trivial byproduct of the computation:20

βP = ρ − βρm

2TsimN

∑
collisions

bij , (18)

where ρ = N/V is the particle number density, Tsim the
total simulation time, m the mass of a particle, and
bij = (r i − rj )(vi − vj ), with r i,j , vi,j the positions and ve-
locities of the colliding particles. In the following we show
that in ECMC, the rate of lifting moves is, just like the colli-
sion rate in event-driven MD, directly related to the pressure.
We give an elementary derivation independent of the virial
theorem for the soft-particle case. The results are, however,
also valid for hard particles and can be derived using argu-
ments by Speedy,29 which connect the pressure to the stochas-
tic geometry of the admissible configurations.

In order to compute the pressure βP = ∂ ln Z/∂V , we
consider virtual rift volume changes effected by removing
a randomly located strip of size dLx × Ly from the sys-
tem (see Fig. 6). By considering all positions of the strip,
this procedure yields all N-particle configurations in the
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FIG. 6. Virtual rift volume changes by random removal of an infinitesimal
strip from a hard-sphere configuration. Left: A successful removal. Center:
Elimination of a particle (ideal gas pressure). Right: Generation of an over-
lap (excess pressure). The left and right cases become indistinct for soft
interactions.

smaller simulation box, and thus the new partition func-
tion Z(V + dV ). For isotropic systems, we recover the virial
expression,

βP = ρ + 1

V

〈∑
{i,j}

(xj − xi)
β∂Eij (r i − rj )

∂xi

〉
, (19)

where 〈 · 〉 is the canonical average. The first term of the rhs
in Eq. (19) is due to particles located in the removed strip,
which lead to illegal configurations with less than N particles
(Fig. 6, center). This term yields the ideal-gas pressure. The
non-ideal contribution to the pressure results from changes
in the Boltzmann weight due to compressed bonds, with
(xj − xi) accounting for the probability of a bond traversing
the removed strip. In hard spheres, this term is produced by
particle overlap (Fig. 6, right panel). Replacing the canoni-
cal average in Eq. (19) by an average in the lifted canonical
ensemble, 〈 · 〉k := N−1∑

k〈 · 〉, where k is the lifting variable,
one of the sums collapses and yields a factor of N; we recover
the probabilities for a lifting move from i → j and j → i. An
ECMC simulation will reproduce the lifted canonical average
and thus yields an unbiased estimator of the pressure. Sum-
ming up all the lifting events in a chain (see Fig. 7), we obtain

βP = ρ ·
〈
xfinal − xinitial

	

〉
chains

, (20)

where 〈·〉chains is the average over event chains, xinitial is the
position of the first particle before the effects of the chain,
and xfinal the position of the last particle after, adjusted for
periodic boundaries if necessary. Thus, it suffices to know the
beginning and end of event chains to compute the pressure.
Explicitly,

xfinal − xinitial = 	 +
∑
lifts

(xj − xi), (21)

where xi and xj are the positions of the moving particle i and
of the hit particle j, respectively, at lifting, see Fig. 7. In the
ideal gas, there are no lifting moves and Eq. (20) reduces to
the ideal gas pressure. The excess displacement (xj − xi) can
be negative for an interaction potential with attractive compo-
nents, such as Lennard-Jones. If the potential is decomposed
into attractive and repulsive parts as outlined in Sec. IV, in-
dividual excess displacements for the two potentials also add

FIG. 7. Direct computation of the pressure: The excess pressure is derived
from the ratio of excess displacement (green dashed lines,

∑
lifts(xj − xi ))

and the chain displacement 	 (red solid line). For isotropic systems, only
the distance between the final and initial particle xfinal − xinitial (blue dashed-
dotted arrow) has to be recorded.

up to the correct pressure. As evidenced by Table I, the re-
sults obtained from ECMC via Eq. (20) agree with the con-
ventional virial approach. Since no extra computation is re-
quired, the procedure via the excess displacement in ECMC is
more efficient than the virial approach, in particular for steep
potentials.

Finally, one might be interested in anisotropic systems
where the collision rates can depend on the direction of the
event chains. In this case, the derivation presented for longi-
tudinal rifts (removing strips normal to the chain direction)
is supplemented with an analogous result for transverse rifts
(removing strips aligned with the event chain), which leads in
D dimensions to the full pressure,

βP = ρ +
〈

ρ

D	

∑
lifts

(rj − r i)2

xj − xi

〉
chains

, (22)

where x is the coordinate parallel to the chain direction. More
generally, the full stress tensor τ can be computed as an
average of the dyadic product of the interparticle distance
r ij = rj − r i at collision:

βτ = −ρ1 −
〈

ρ

	

∑
lifts

r ij r t
ij

xj − xi

〉
chains

, (23)

where 1 is the identity matrix in D dimensions.

TABLE I. Comparison of pressure computed using the virial expression
and from excess displacement in ECMC Eq. (20), for repulsive soft and
hard sphere (HS) interactions, and for the Lennard-Jones (LJ) potential, at
β = 1. Pressures and densities are nondimensionalized, βPσ 2 and ρσ 2. The
deviations given are standard errors from 10 independent simulations each.
For LJ, the potential was decomposed into attractive and repulsive parts.

n N ρσ 2 Virial pressure ECMC pressure

12 214 0.990 14.4369 ± 0.0058 14.4267 ± 0.0038
48 214 0.860 8.753 ± 0.011 8.7565 ± 0.0023
48 214 0.888 9.441 ± 0.025 9.429 ± 0.027
1024 214 0.888 9.174 ± 0.028 9.1679 ± 0.0026
∞ (HS) 216 0.888 9.1667 ± 0.0073 9.1723 ± 0.0064
12, 6 (LJ) 214 0.888 1.44833 ± 0.00031 1.447623 ± 0.000045
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VII. CONCLUSION

In the present article, we have generalized the event-chain
Monte Carlo algorithm from hard spheres to particle systems
interacting with arbitrary pair potentials, such as Lennard-
Jones liquids or soft disks. The resulting algorithm is faster
than conventional Metropolis Monte Carlo, with the gap in
performance increasing with the system size. It is based on
the lifting concept, and relies on a new factorization of the
Metropolis filter, applied to infinitesimal Monte Carlo moves,
to achieve maximal global balance. The infinitesimal moves
are implemented efficiently in an event-based algorithm using
the BKL approach. The algorithm generates a continuum of
samples of the equilibrium distribution. This has allowed us to
derive the pressure and the stress tensor in the NV T ensemble
directly from the simulation without any additional computa-
tion. Even though presented in periodic boundary conditions,
the algorithm also applies to nonperiodic systems, by intro-
ducing chains in the −x and −y direction to render it ergodic.

Infinitesimal moves permit to apply the framework of
lifted Markov chains to the interacting particles problem,
since they define uniquely the next event, while satisfying
global balance. By subdivision into infinitesimal moves, both
the original hard-sphere event-chain algorithm6 and the hy-
brid MC algorithm of Peters and de With15 are revealed to be
lifting algorithms. Lifting improves mixing in large, strongly
correlated systems, since clusters of particles are displaced in
a cooperative way. It is thus applicable to packing problems,
glassy systems, etc., particularly, as its dynamics are funda-
mentally different from the MMC or MD case. As the original
event-chain algorithm, it can be parallelized.9 We expect the
algorithm to extend to complex fluids, with particles possess-
ing internal degrees of freedom, to path integral (quantum)
Monte Carlo, and other sampling problems.
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Abstract – We apply the event-chain Monte Carlo algorithm to classical continuum spin models
on a lattice and clarify the condition for its validity. In the two-dimensional XY model, it
outperforms the local Monte Carlo algorithm by two orders of magnitude, although it remains
slower than the Wolff cluster algorithm. In the three-dimensional XY spin glass model at low
temperature, the event-chain algorithm is far superior to the other algorithms.
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Introduction. – Classical and quantum spin models
are of fundamental interest in statistical and condensed-
matter physics. Spin models are also a crucial test bed for
computational algorithms.

An important representative is the model of continuous
two-dimensional classical spins of fixed length (rotators)
on a two-dimensional lattice. Thirty years ago, the ex-
istence and nature of the phase transition in this two-
dimensional XY model were highly controversial [1]. The
substitution of the traditional local Monte Carlo (LMC)
algorithm [2] by Wolff’s spin flip cluster (SFC) algo-
rithm [3] then quickly allowed to clarify that this model
indeed undergoes a Kosterlitz-Thouless transition [4,5],
whose temperature is now known to five significant dig-
its [6,7]. SFC has played a decisive role in understanding
the physics of the XY model [8–10], and in arriving at its
detailed quantitative description.

SFC and its variants can be implemented for a wide
range of models, but they are efficient only in a few of
them. Particularly frustrating is the case of the three-
dimensional XY spin glass model, where the algorithm
loses all its power [11,12]. For this much studied spin
glass model, our understanding today resembles the one
of the XY model before the revolution triggered by the
cluster algorithms. Clearly, there still is a great need for
more powerful algorithms for classical and quantum spin
models.

Today’s Markov-chain Monte Carlo algorithms gener-
ally follow the conventional paradigm based on three

(a)E-mail: manon.michel@ens.fr
(b)E-mail: werner.krauth@ens.fr

principles: 1) Each move represents a finite change of
the configuration. It is independent of the previous move,
and depends only on the configuration itself. 2) The al-
gorithm satisfies the detailed-balance condition. 3) The
decision whether a proposed move is accepted is based on
the change in energy, using the Metropolis acceptance rule
or the heat-bath condition [2,13].

In the present work, we show that the novel event-
chain Monte Carlo (ECMC) paradigm [14–16], that has
already been very successful in particle systems [17–20],
can also be applied to the XY model and to the XY
spin glass model. The paradigm breaks all three prin-
ciples of the conventional Markov-chain scheme: Moves
are infinitesimal rather than finite, although an event-
driven scheme allows to recover finite displacements [16].
In one-dimensional systems, the moves do not change with
time. In multidimensional systems, moves persist on long
time scales. This is achieved within the Markov-chain
scheme through additional “lifting” variables [15,21]. In
addition, ECMC violates the detailed balance and only
satisfies the weaker global balance condition (cf. [22–26]).
Finally, the decision on future moves is based on the
change in pair energies, rather than on the change in to-
tal energy. This is achieved by replacing the standard
Metropolis algorithm by its recently introduced factorized
variant [15].

For the two-dimensional XY model at the critical point,
we find that ECMC is about 100 times faster than LMC,
although the presence of a slow time scale in autocorrela-
tion functions makes that it is not as fast as SFC. In the
low-temperature phase of the three-dimensional XY spin
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Fig. 1: (Colour on-line) LMC move for the one-dimensional
XY model. Upper panel: configuration at time t and proposed
displacement Δφ of a randomly chosen spin, corresponding to
an energy change ΔE. Lower panel: possible configurations at
time t + 1. The proposed move is accepted with probability
min(1, exp(−βΔE)) (left) and rejected otherwise (right).

glass model, where SFC is known to be inefficient, ECMC
clearly outperforms LMC.

From local Monte Carlo to the “event-chain”
algorithm. – In the two-dimensional ferromagnetic XY
model of spins Sk = (Sx

k , Sy
k) = (cos φk, sin φk) on a lattice

with sites i = 1, . . . , N , and with an energy

E = −
∑

〈i,j〉
JijSi · Sj =

∑

〈i,j〉
[−Jij cos(φi − φj)]︸ ︷︷ ︸

Eij

, (1)

the coupling constants Jij are all equal to one. The sum
〈i, j〉 goes over nearest neighbors on the lattice. We refer
to the Eij as “pair energies”. The XY model on a two-
dimensional square lattice undergoes a phase transition at
inverse temperature β = 1.1199, see ref. [6].

In LMC, one proposes at each time step t a finite move
from a configuration a to a configuration b (a rotation by a
finite angle Δφ of a spin k), as sketched in fig. 1. To satisfy
detailed balance [13], k is randomly chosen at each time
step, and Δφ is sampled from a symmetric distribution
around zero, so that Δφ arises with the same probability
as −Δφ. The proposed move corresponds to an energy
change ΔE = Eb − Ea in eq. (1), and it is accepted with
probability

pMet
acc = min(1, exp(−βΔE)). (2)

The exponential in this equation corresponds to the ratio
πb/πa of the Boltzmann weights of the configurations.

Practically, the move is accepted, and the configuration
updated to b, if a uniform random number between 0 and
1 satisfies ran(0, 1) < pMet

acc (see [13]). Otherwise, the con-
figuration at time t + 1 is the same as the one at time t,
namely a.

The recently introduced factorized algorithm [15] also
satisfies the detailed-balance condition. In this method,
the energy-based Metropolis acceptance probability is re-
placed by a factorized form which separately depends on
the pair-energy changes:

pfact
acc =

∏

〈k,l〉
pkl
acc =

∏

〈k,l〉
min(1, exp(−βΔEkl)). (3)

The proposed move a → b is accepted with this probabil-
ity. The factorized algorithm always has a smaller accep-
tance rate than the conventional one, pfact

acc ≤ pMet
acc (this

Fig. 2: (Colour on-line) Factorized Metropolis move. Upper
panel: configuration at time t and proposed displacement Δφ
of a randomly chosen spin k. Middle panel: factorization into
pairs (j, k) and (k, l). In the factor (j, k), the move is pair-
accepted with probability min(1, exp(−βΔEjk), etc. Lower
panel: possible configurations at time t+1; the proposed move
is either accepted by consensus (i.e. accepted independently
by each pair) or else rejected.

will however turn out not to be a problem in ECMC). To
implement eq. (3), one might use a single random number
and accept the move if ran(0, 1) < pfact

acc . We rather accept
the move if several independent random numbers satisfy
rankl(0, 1) < pkl

acc for all pairs k, l. In other words, a move
is accepted only if it is pair-accepted by all pairs k, l. This
consensus rule is illustrated in fig. 2. We note that the
factorization in eq. (3) relies on the possibility to cut the
Hamiltonian into independent pieces. The factorization
may also be used to separate different components of the
inter-particle potential, as for example the 1/r6 and 1/r12

pieces in the Lennard-Jones potential [15,19].

The ECMC combines the factorized Metropolis prob-
ability with the “lifting” concept of Diaconis et al. [21]
and with the idea of infinitesimal displacements [15]. The
term “lifting” refers to the extension of the physical config-
uration by an additional variable that fixes the proposed
move. Written as

�
k , it singles out the spin k as the only

one that can move, as φk → φk + Δφ (see fig. 3). If the
move is accepted, the lifting variable for the next time step
t + 1 is again

�
k . If the physical move is rejected, a lifting

move takes place and the lifting variable is passed on to
the spin l of the pair that rejected the move, and the phys-
ical configuration is unchanged. In both cases, the value
of Δφ is used again. Note that for infinitesimal Δφ, the
acceptance probabilities of the physical moves approach
one and the rejection probabilities approach zero. Multi-
ple rejections are totally suppressed, and the choice of

�
l

is unique [15]. At each time step, either a lifting move or
a physical move takes place, and ECMC is thus formally
rejection-free.

ECMC satisfies the global balance condition in the XY
model, as we now show: For simplicity, we consider only
two spins and concentrate on a configuration d (see fig. 3).
This configuration can only be reached through a lifting
move from a or through a physical move from b. The
global-balance condition [13] states that the flow into
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Fig. 3: (Colour on-line) Lifting approach of ECMC. Physical
moves b → d, d → f and a → c are by the same infinitesimal
angle Δφ in clockwise direction, all others are lifting moves
that preserve the physical configuration. Note that πb = πc

because of eq. (1).

configuration d must be equal to the flow out of it:

πap(a → d)︸ ︷︷ ︸
P(a→d)

+πbp(b → d)︸ ︷︷ ︸
P(b→d)

= πdp(d → f)︸ ︷︷ ︸
P(d→f)

+πdp(d → a)︸ ︷︷ ︸
P(d→a)

. (4)

Here, P(a → d) represents the probability flow from a to
d, etc. For ECMC, the probabilities p in eq. (4) coincide
with the acceptance probabilities: All configurations carry
a lifting variable that specifies the spin that may move and
the move itself, Δφ.

The statistical weight πa is trivially equal to πd because
they differ only by a lifting move. Furthermore, πc equals
πb, as the two configurations differ only by a global rota-
tion. Writing ΔE = Eb − Ed, we thus find

P(b → d) = πbp
frac
acc (b → d) = πdp

frac
acc (d → b)

= πd min(1, exp(−βΔE)). (5)

Note in this equation that πbp
frac
acc (b → d) = πdp

frac
acc (d →

b), because the factorized transition probabilities satisfy
detailed balance. Likewise, the change in energy in going
from a → c is also ΔE and p(a → d) = 1 − p(a → c).
Therefore, the flow P(a → d) satisfies

P(a → d) = πa(1 − min(1, exp(−βΔE))

= πd(1 − min(1, exp(−βΔE)). (6)

It follows that the flow into d, namely the sum of P (a → d)
and of P (b → d), equals πd. As for the flow out of d, it
trivially equals πd because of the conservation of proba-
bilities. It follows that the global balance of eq. (4) is
satisfied. The factorization property and the infinitesimal
limit guarantee that the argument carries over to general
N (see [15]).

ECMC violates the detailed-balance condition P(b →
d) = P(d → b): A move d → b would be anti-clockwise,
yet all moves within ECMC are, by the initial choice of
Δφ, clockwise. Also, P(a → d) = 0, as Ed > Ef and all
physical moves from d to f are accepted. Furthermore,

for ECMC to be valid, the pair energy must be symmetric
(so that πb = πc in fig. 3). Modified XY models, as de-
scribed in ref. [27], can also be treated, but more general
pair energies require special considerations [28].

ECMC with infinitesimal moves requires a scaling of
physical time: In one unit of time, as Δφ goes to zero,
an infinite number of physical moves take place, but the
number of lifting moves remains finite. In an event-driven
approach [15,16], the algorithmic complexity can be made
to scale with the number of liftings: The lifting variable
being set to

�
k , the angle φk now rotates clockwise until

the “event”, i.e. a lifting move, is produced through a
rejection by a neighbor l. The lifting variable is updated to
�
l , φl rotates clockwise, etc. Effectively, one undergoes an
infinite number of Monte Carlo steps, giving a continuous
trajectory.

The angle φk corresponding to the next event is easily
sampled: We continue to consider a single pair (k, l) of
spins, with the lifting variable

�
k . The i-th infinitesimal

update of φk is noted as the move i − 1 → i and the
weight of the configuration (φi = φk + idφ, φl), πi. The
probability pevent(0 → n) to accept n subsequent physical
moves and then to reject the (n + 1)-st physical move is

pevent(0 → n) = pacc(0 → 1) · · · pacc(n − 1 → n)

× [1 − pacc(n → n + 1)] . (7)

The jth term in this expression is min(1, πj/πj−1). Sup-
posing for a moment that πj is monotonously decreasing
with j, this gives

pevent(0 → n) =
πn−1

π0

(
1 − πn

πn−1

)

=
−1

π0

∂π

∂φk

∣∣∣∣
φk=φn

dφ. (8)

This probability is normalized, writing φevent the value of
φk at which the event happens:

− 1

π0

∫ ∞

0

∂π

∂φk

∣∣∣∣
φk=φevent

dφevent

=
1

π0

∫ π0

0

dπevent = 1. (9)

This integral is sampled by [13]

πevent = ran(0, π0)

πevent/π0 = ran(0, 1), (10)

which is equivalent to the following sampling of the energy
increase:

ΔE(φevent) = − [log ran(0, 1)] /β. (11)

Sampling π uniformly between 0 and the present value, π0

(equivalently, ΔE from its exponential distribution) thus
yields the event time, φevent (see fig. 4).
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Fig. 4: (Colour on-line) Event-driven implementation of ECMC
for a pair of spins (k, l). From a starting point φk = φ0 of
weight π0 and energy E0, φk is updated by infinitesimal moves
until φk = φevent. Left: monotonously decreasing distribution
π: the lifting event is sampled as πevent = ran(0, π0). Right:
general distribution π; E∗

event − E∗(0) = [− log ran(0, 1)]/β.

For a non-monotonous probability distribution, all neg-
ative energy increments correspond to an acceptance prob-
ability 1, and disappear from eq. (7). The sampling of the
energy increase in eq. (11) turns into the sampling of only
the positive energy changes. As shown in fig. 4, this can
be expressed as a function E∗, constructed only from the
positive increments of the energy E [16].

For a system of more than one pair of spins, the event
times φevent for each neighbor of the lifted spin k can be
computed independently in view of the factorized proba-
bility of eq. (3), and k turns clockwise up to the earliest
event (that involves, say, another spin l). The lifting vari-
able is then set to

�
l .

It follows from eq. (7) that all configurations encoun-
tered between two events sample the Boltzmann distribu-
tion. Any uniform subset of these configurations can be
used for averaging observables. A practical choice con-
sists in outputting spin configurations at regular intervals
independent of the occurrence of events.

For the models considered here, we found that the ef-
ficiency was not increased by halting and restarting the
simulation after fixed displacements. In contrast, switches
between moves along the different coordinate axes assure
ergodicity in multi-dimensional Hamiltonians as they ap-
pear in particles systems [14], but also the related Heisen-
berg model.

Simulations for the two-dimensional XY model
at the critical point. – In the two-dimensional XY
model, we consider the susceptibility χ

χ =
‖∑

Sk‖2

N
, (12)

and estimate the convergence properties by the suscepti-
bility autocorrelation function

Cχ(t) =
〈χ(t′ + t)χ(t′)〉 − 〈χ〉2

〈χ2〉 − 〈χ〉2 (13)

at the critical point β = 1.1199 (see [6]). We suppose
that χ is a slow variable of this model. We measure time
in sweeps: For ECMC, one sweep corresponds to ∼ N
lifting events while for LMC, one sweep corresponds to N
attempted moves. For SFC, a sweep denotes ∼ N spins
added to clusters. The complexity of one sweep is O(N)
in the three algorithms and the CPU times used per sweep
are roughly comparable.

In fig. 5, we show the autocorrelation function for the
XY model at its critical point, obtained from very long
single runs of the algorithms. For LMC and SFC, the
decay of the susceptibility autocorrelation function can be
described by a single time scale, while for ECMC, it is well
described by two time scales:

Cχ(t) �

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp(−t/τLMC) (LMC),

exp(−t/τSFC) (SFC),

A0 exp(−t/τECMC
0 )

+A1 exp(−t/τECMC
1 ) (ECMC).

(14)

For ECMC, this correlation function rapidly decays to
Cχ ∼ 0.1 on a timescale τECMC

0 of about 5 sweeps. A slow
mode τECMC

1 then sets in. It presents a z = 2 scaling
(τECMC

1 ∼ L2, with N = L2). As shown on the right
panel of fig. 5, τECMC

1 is an order of magnitude smaller
than τLMC. Together with the initial rapid decrease, this
makes ECMC about one hundred times faster than LMC.
However, the dynamical scaling exponent seems to be un-
changed with respect to LMC: After a fast initial decay,
on a time scale τECMC

0 that appears independent of system
size (z ∼ 0), the relaxation crosses over to a slower decay,
characterized by a constant τECMC

1 that scales as z ∼ 2,
just as τLMC. In the absence of a clear explanation of this
cross-over, we notice that an analogous phenomenon ap-
pears in ECMC simulations for particle systems, where the
initial ballistic behavior gives rise to a slow diffusive decay,
with what appears to be the dynamical critical exponent
of LMC [29].

Three-dimensional XY spin glass model. – We
now study ECMC for the three-dimensional XY spin glass
model, where the nearest-neighbor coupling constants Jij

are drawn from a Gaussian normal distribution of zero
mean and unit variance. The algorithm can be formulated
as for the ferromagnetic model, and the spins continue to
always turn clockwise. We will find evidence that the re-
laxation dynamics of ECMC differs from the one of LMC.
Following [11], we consider the chiral overlap between two
independent systems, (1) and (2), with identical coupling
constants

pκ =
1

N

N∑

p=1

κ
(1)
p⊥μκ

(2)
p⊥μ, (15)
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Fig. 5: (Colour on-line) Autocorrelation function Cχ(t) for the two-dimensional XY model at the critical point β = 1.1199 for
LMC (red, triangle), ECMC (blue, circle), and SFC (yellow, square). Exponential fits (black dotted line) are as in eq. (14).
Left: N = 322. Middle: N = 1282. Right: scaling of the autocorrelation time τ with the system size. Both LMC (red triangles)
and the slow scale of ECMC (dark blue circles) are compatible with a dynamical scaling exponent z ∼ 2. Both the fast scale of
ECMC (light blue diamonds) and SFC (yellow squares) are compatible with z ∼ 0. Inset: speedup of ECMC with respect to
LMC vs. L.

Fig. 6: (Colour on-line) Cumulative distribution of the chiral
overlap pκ for the three-dimensional XY spin glass model for
N = 43, 63, 83, 103 at β = 1.5, in the high-temperature phase
(single samples). Inset: autocorrelation function Cpκ(t) for
N = 63 from LMC (red, triangle) and ECMC (blue, circle).

with κ
(i)
p⊥μ being the chirality at a plaquette p, perpendic-

ular to the axis μ, defined as

κ
(i)
p⊥μ =

1

2
√

2

∑

(i,j)∈p

sgn(Jij) sin(φi − φj). (16)

The sum
∑

(i,j)∈p is taken over the four bonds encircling
the plaquette p clockwise. By construction, pκ is a sym-
metric function about zero. As shown in fig. 6, ECMC
and LMC agree very well at high temperature. The au-
tocorrelation function of the chiral overlap for LMC and
ECMC, shown in fig. 6, gives at high temperature a size-
independent speedup by a factor ∼ 5 of ECMC.

The phase diagram of the three-dimensional XY spin
glass model at low temperature (with the possible exis-
tence of separate spin-glass and chiral-glass phases) is still
being debated. We consider β = 3.636, which may be the
locus of the spin glass transition [12], or below it, near

Fig. 7: (Colour on-line) Chiral overlap autocorrelation function
from ECMC (blue, circle) and LMC (red, triangle) at β = 3.636
for a given sample at N = 63. Inset: distributions of pκ after
106 sweeps for the two algorithms in the same sample. Note
the nearly symmetric distribution for ECMC.

the transition [30,31]. At this temperature, ECMC ex-
hibits a striking advantage over LMC in one third of sam-
ples of size N = 63, where it explores the configuration
space more easily, without using parallel tempering [32].
A typical example of a symmetric chiral overlap distribu-
tion profile after 106 sweeps (symmetric for ECMC, but
not for LMC) is shown in fig. 7, together with the corre-
sponding autocorrelation function. For larger systems, the
speedup of ECMC with respect to LMC seems to increase,
but already for 103 systems, ECMC no longer equilibrates
at β = 3.636.

Conclusion. – In conclusion, we have applied in this
work the recent event-chain algorithm to classical spin
models, and obtained a considerable algorithmic speed-
up with respect to the local Monte Carlo algorithm for
the two-dimensional XY model at its critical point. The
new method appears very general, as we also obtained a
clear acceleration for the three-dimensional XY spin glass
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model at low temperature. It will be interesting to see
how well the event-chain algorithm couples with the tra-
ditional acceleration methods, as for example the parallel
tempering method, or the overrelaxation approaches that
have been much used for spin glasses.
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Publication 3: Event-chain algorithm for the Heisenberg
model: Evidence for z ' 1 dynamic scaling

Yoshihiko Nishikawa, Manon Michel, Werner Krauth and Koji Hukushima, PRE, 92,
063306 (2015).

This article studies the implementation of the irreversible factorized Metropolis
algorithm in systems of three-dimensional Heisenberg spins. It exhibits the important
reduction of the critical slowing down obtained in this system and provides evidence
for the square-root reduction of the dynamical critical scaling exponent.
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We apply the event-chain Monte Carlo algorithm to the three-dimensional ferromagnetic Heisenberg model.
The algorithm is rejection-free and also realizes an irreversible Markov chain that satisfies global balance. The
autocorrelation functions of the magnetic susceptibility and the energy indicate a dynamical critical exponent
z ≈ 1 at the critical temperature, while that of the magnetization does not measure the performance of the
algorithm. We show that the event-chain Monte Carlo algorithm substantially reduces the dynamical critical
exponent from the conventional value of z � 2.
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I. INTRODUCTION

Ever since the advent of the local Metropolis Monte Carlo
algorithm (LMC) [1], Monte Carlo simulations of systems
with many degrees of freedom have played an important role in
statistical physics. Near phase transitions, the LMC is severely
hampered by dynamical arrest phenomena such as critical
slowing down for second-order transitions, nucleation and
coarsening for first-order transitions, and glassy behavior in
disordered systems. A number of specialized algorithms then
allow one to speed up the sampling of configuration space,
namely, the Swendsen-Wang [2] and the Wolff [3] cluster
algorithms, the multicanonical method [4], and the exchange
Monte Carlo method [5] based on extended ensembles.

The above algorithms respect detailed balance, a sufficient
condition for the convergence towards the equilibrium Boltz-
mann distribution. Recently, algorithms breaking detailed
balance but satisfying the necessary global-balance condition
have been discussed [6–9]. Among them, the event-chain
Monte Carlo algorithm (ECMC) [9] has proven useful in
hard-sphere [10,11] and more general particle systems [12,13],
allowing one to equilibrate systems larger than previously
possible [11,14]. It has also been applied to continuous spin
systems [15]. The ECMC uses a factorized Metropolis filter
[12] and relies on an additional lifting variable to augment
configuration space [16]. It is rejection-free and realizes
an irreversible Markov chain. So far, however, the speedup
realized by the ECMC with respect to the LMC has always
represented a constant factor in the thermodynamic limit,
although larger gains are theoretically possible [16,17].

In this paper we apply the ECMC to the three-dimensional
ferromagnetic Heisenberg model, defined by the energy

E({Si}) =
∑
〈i,j〉

Eij = −J
∑
〈i,j〉

Si · Sj , (1)

*nishikawa@huku.c.u-tokyo.ac.jp
†manon.michel@ens.fr
‡werner.krauth@ens.fr
§hukusima@phys.c.u-tokyo.ac.jp

where J is the unit of the energy, Si is a three-component
unit vector, and the sum runs over all neighboring pairs of the
N = L3 sites of a simple cubic lattice of linear extension L. In
our simulations, we consider the critical inverse temperature
βc = J/Tc = 0.6930 [18]. To describe the dynamics of the
system, we compute the autocorrelation functions of the en-
ergy, the system magnetization M = ∑

k Sk , and the magnetic
susceptibility

χ = |M|2
N

.

Both the energy and the susceptibility are invariant under
global rotations of the spins Sk around a common axis, whereas
the magnetization follows the rotation. We will argue that the
energy and the susceptibility are slow variables, that is, their
slowest time constant describes the correlation (mixing) time
of the underlying Markov chain. Under this hypothesis, we will
present evidence that the ECMC for the three-dimensional
Heisenberg model reduces the dynamical critical exponent
from the LMC value of z � 2 to z � 1. This considerable
reduction of mixing times with respect to the LMC may
be optimal within the lifting approach [17]. The observed
reduction is all the more surprising as in the closely related XY

model [15], where the spins are two-dimensional unit vectors,
the ECMC realizes speedups by two orders of magnitude with
respect to the LMC, but does not seem to lower the dynamical
critical exponent.

II. THE ECMC ALGORITHM FOR THE
HEISENBERG MODEL

In the LMC, finite local moves are proposed randomly and
a move from a configuration a to a configuration b is accepted
with the notorious Metropolis filter

pMet(a → b) = min[1, exp(−β�E)], (2)

where �E = Eb − Ea is the change of the system energy. For
Heisenberg spins, as for any system with pairwise interactions,

1539-3755/2015/92(6)/063306(5) 063306-1 ©2015 American Physical Society
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we may write Eq. (2) as

pMet(a → b) = min

⎡
⎣1,

∏
〈i,j〉

exp(−β�Eij )

⎤
⎦,

with the pair energies �Eij = Eb
ij − Ea

ij [see Eq. (1)]. If the
move b → a is proposed with the same probability as a → b,
the detailed-balance condition

πap
Met(a → b) = πbp

Met(b → a) (3)

is satisfied with the Boltzmann weights πa = exp(−βEa)
and πb = exp(−βEb). The LMC dynamics is diffusive and
detailed balance is enforced through the rejections in the
Metropolis filter of Eq. (2).

In contrast to the LMC, the ECMC produces persistent
infinitesimal moves that nevertheless amount to finite displace-
ments. Specifically, in the Heisenberg model, it augments the
physical space of spin configurations by a lifting variable (k,v)
that defines the considered infinitesimal counterclockwise
rotation of spin k about the axis v. This rotation is accepted
according to a consensus based on all individual pair energies,
namely, the factorized Metropolis filter [12]

pfact(a → b) =
∏
〈i,j〉

min[1, exp(−β�Eij )]. (4)

For infinitesimal rotations and by virtue of the factorized
Metropolis filter, this physical move can only be rejected by
a single neighboring spin l and the lifting variable will then
be moved as (k,v) → (l,v), keeping the sense of rotation, but
passing it on to the spin responsible for the rejection. In the
augmented space, the rejections are thus supplanted by events,
namely, the lifting moves for arrested physical states. As there
are no clockwise moves, obviously pfact(b → a) is zero if
pfact(a → b) > 0, so the detailed balance condition of Eq. (3)
is broken. Nevertheless, it is easy to show for infinitesimal
moves that the more general global balance condition∑

a

πap
fact(a → b) =

∑
c

πbp
fact(b → c) (5)

is satisfied [12,15], with the stationary Boltzmann weights.
Equation (5) describes equality between the global probability
flow into the configuration b (on the left-hand side) and the
flow out of it (on the right-hand side). In contrast to Eq. (3),
a,b,c, . . . now comprise the lifting variable and there are no
rejections in this augmented space (see Ref. [15]).

Practically, while the spin Sk rotates around v, the azimuthal
angle φv,k increases from its initial value φ0 until one of its
neighbors l triggers a lifting (k,v) → (l,v) at φv,k = φl,event.
One no longer samples the acceptation of each infinitesimal
rotation of Sk , but directly samples the event angle φl,event. It
is sampled with a single random number in the event-driven
approach [12,13]. Precisely, φl,event is given by the sampling
of the positive pair energy increase

�El = −[lnR(0,1)]/β, (6)

where R(0,1) is a uniform random number between 0 and 1.
For a fixed rotation axis v, the ECMC for the Heisenberg

model reduces to the one of the XY model: With (φv,k,θv,k)
the spherical coordinates of a spin k in a system where the

z axis is aligned with v, the pair energy Ekl between spins k

and l is

Ekl = −J ′ cos(φv,k − φv,l) + K, (7)

with

J ′ = J sin θv,k sin θv,l ,

K = −J cos θv,k cos θv,l .

Both J ′ and K depend only on the polar angles θv and
remain unchanged along the event chain. The azimuthal-angle
dependence in Eq. (7) is proportional to cos(φv,k − φv,l), as
in the XY model. The positive pair energy increase of Eq. (6)
then becomes

�El = −J ′
∫ φl,event

φ0

max

(
0,

d cos(φv,k − φv,l)

dφv,k

)
dφv,k. (8)

To solve Eq. (8) for φl,event, one first slices off any full rotations
(these n rotations by 2π yield an energy increase of 2nJ ′),
leaving a value �E

f

l ,

E∗
init + �E

f

l = −J ′ cos(φl,event − φv,l − 2nπ ), (9)

where

E∗
init =

{
Ekl if the initial pair energy derivative is positive

−J ′ otherwise.

The true lifting event corresponds to the earliest of the
independent event times sampled for all the neighbors of the
spin k. In the ECMC, the Monte Carlo time is continuous and
proportional to the total displacement of the spins.

The ECMC creates then chains of successive and consistent
finite displacements of different spins. The choice of the length
� of a chain, defined as the cumulative rotation angles about
v of the chain, is free. For the XY model of planar rotators,
v is uniquely defined as the axis perpendicular to the sense
of rotation. For this reason, the ECMC around this axis is
irreducible and the chain length � in this model is best taken
equal to the simulation time [15]. For the Heisenberg model,
spin rotations must be about at least two axes in order to reach
the entire configuration space. The resampling of the rotation
axis is performed after the chain length � is reached. All
configurations of the chain sample the equilibrium distribution
and any uniform subset of them yields valid observable
averages. Observables may be integrated during the continuous
evolution or, e.g., retrieved at regular intervals independent of
the lifting events.

We have checked the correctness of the ECMC and obtained
perfect agreement for the mean energy, the specific heat,
and the susceptibility with the heat-bath algorithm [19,20]
modified with the exchange Monte Carlo method (or parallel
tempering) [5] (see Fig. 1).

III. DYNAMICAL SCALING EXPONENT

At the critical temperature Tc, the correlation length ξ of a
model undergoing a second-order phase transition equals the
system size L and the autocorrelation time of slow variables
τ diverges as τ ∼ Lz, where z is the dynamical critical
exponent. We define time in terms of sweeps: One ECMC
sweep corresponds, on average, to N lifting events and one
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FIG. 1. (Color online) Temperature dependence of (a) the energy density e = E/N , (b) the specific heat c, and (c) the magnetic susceptibility
χ of the three-dimensional Heisenberg model with L = 12. A chain length � = Nπ/10 is used.

LMC sweep to N attempted moves. For both algorithms, the
complexity of one sweep is O(N ) and the CPU times used per
sweep are roughly the same. Time autocorrelation functions
are defined by

CO(t) = 〈O(t ′ + t)O(t ′)〉 − 〈O(t ′)〉2

〈O2(t ′)〉 − 〈O(t ′)〉2
, (10)

where the angular brackets indicate the thermal average and
t ′ is set sufficiently large for equilibration. The dynamical
critical exponent of the LMC for the three-dimensional
Heisenberg model was estimated from the autocorrelation
function of the magnetization M as z = 1.96(6) [21]. The
overrelaxation algorithm [22,23] seems to give z � 1.10 [21],
which was obtained from the autocorrelation function of the
magnetization, and the Wolff algorithm is believed to yield
a value close to zero: z � 0, a value obtained from the
susceptibility autocorrelation function [24].

To evaluate the correlation time and the dynamical critical
exponent for the ECMC, one must pay attention to the
irreversible nature of the underlying Markov chain. During
one event chain, spins all rotate in the same sense and the
system undergoes global rotations with taking into account
the thermal fluctuation. This results in fast oscillations of the
magnetization M and a quick decay of its autocorrelation

0 5 10 15 20
t in sweeps

1

0.8

0.6

0.4

0.2

0.0

−0.2

C
M

L = 4

L = 8

L = 16

L = 32

L = 64

0 10 20 30 40 50
t in sweeps

1
0.8
0.6
0.4
0.2
0.0

−0.2

C
M

FIG. 2. (Color online) Autocorrelation function of magnetiza-
tion CM (t) at the critical temperature for various system sizes. The
inset shows the spin autocorrelation function of a trivial algorithm
that only performs global rotations in spin space along the two axes.

function that is insensitive to the system size (see Fig. 2) and
even to the temperature. However, this effect is also visible
for a trivial algorithm, which simply performs global rotations
(see the inset of Fig. 2). The trivial algorithm satisfies global
balance, but its correlation time is infinite, as it does not
relax the energy. A similar effect appears in the ECMC for
particle systems [9], which likewise is not characterized by
the mean net displacement of particles. To characterize the
speed of the ECMC, we consider the energy density and
the susceptibility that we conjecture to be slow variables at
the critical temperature. Both χ and e are insensitive to global
rotations and do not oscillate.

As shown in Fig. 3, the autocorrelation functions both of the
energy density and of the susceptibility are well approximated
as a single exponential decay

Cχ (t) = exp(−t/τ ) (11)

on essentially the same time scales. Furthermore, the finite-
size behavior of the autocorrelation times indicates z � 1
dynamical scaling. This z value is significantly less than for the
LMC and very similar to the one obtained for overrelaxation
methods, although the z � 0 value of the cluster algorithm is
not reached.

IV. DISCUSSION AND SUMMARY

The earliest application of lifting [16], the motion of a
particle on a one-dimensional N -site lattice with periodic
boundary conditions, already featured the decrease of the
dynamical scaling exponent from z = 2 to z = 1 (the reduction
of the mixing time from proportional to N2 to proportional
to N ). To reach such reductions, the Markov chain must be
irreversible. It was pointed out that the square-root decrease
of the critical exponent was the optimal improvement [17].
The concepts of factorized Metropolis filters and of infinites-
imal moves brought irreversible lifting algorithms to general
N -body systems, although only finite speed-ups were realized
in the N → ∞ limit. The three-dimensional Heisenberg
model however seems to be an ECMC application with a
lowered critical dynamical exponent. Our observation relies
on the hypotheses that the energy and the susceptibility are
indeed slow variables and that the observed decay of the
autocorrelation function continues for larger times. However,
in Fig. 3, a crossover from z = 1 back to z = 2 as it was
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FIG. 3. (Color online) Autocorrelation functions and time constants of the ECMC for the three-dimensional Heisenberg model at its critical
point β = 0.693: (a) energy density autocorrelation function Ce for system sizes 43,83, . . . ,643, (b) susceptibility autocorrelation function Cχ

for the ECMC for the three-dimensional Heisenberg system sizes 43,83, . . . ,643, and (c) scaling of the autocorrelation time τχ (τe) of the
susceptibility χ (energy density e) with system size L for the ECMC [blue circles (red triangles)] and of the autocorrelation time of the
susceptibility for the LMC (yellow squares). Error bars are smaller than the markers size. The inset shows the speedup for the susceptibility χ

in comparison to the LMC for system sizes 43,83, . . . ,643.

observed in the XY model after approximately five sweeps
[15] appears unlikely to arise after hundreds of sweeps.
The dynamical critical exponent z ≈ 1 represents a maximal
improvement with respect to the z ≈ 2 of the LMC, supposing
again that the theorems of Ref. [17] apply to infinitesimal
Markov chains.

In summary, we have successfully applied the ECMC to
the Heisenberg model in three dimensions. The ECMC shows
considerable promise for spin models and the numerical data
presented in this paper allow us to formulate the exciting con-
jecture that the dynamical critical exponent for the Heisenberg
model is z � 1. The ECMC is also applicable to frustrated
magnets and spin glasses, which involve antiferromagnetic
interactions and/or quenched disorder. Our preliminary study
indicates that the ECMC algorithm is also useful for a Heisen-
berg spin glass model. The ECMC can be easily combined with
other algorithms such as the exchange Monte Carlo method
and the overrelaxation algorithm in the usual manner. This may
allow the investigation of the three-dimensional Heisenberg

spin glass model in the low-temperature region. Large-scale
simulations in this direction are currently in progress. It would
be very interesting to understand why the ECMC is so much
more successful in the Heisenberg model than both in hard and
soft disks and in the XY model.
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Résumé

Cette thèse porte sur le développement et l’application en physique statistique d’un nouveau
paradigme pour les méthodes sans rejet de Monte-Carlo par chaînes de Markov irréversibles,
grâce à la mise en œuvre du filtre factorisé de Metropolis et du concept de lifting.

Les deux premiers chapitres présentent la méthode de Monte-Carlo et ses différentes appli-
cations à des problèmes de physique statistique. Une des principales limites de ces méthodes
se rencontre dans le voisinage des transitions de phase, où des phénomènes de ralentissement
dynamique entravent fortement la thermalisation des systèmes.

Le troisième chapitre présente la nouvelle classe des algorithmes de Metropolis factorisés
et irréversibles. Se fondant sur le concept de lifting des chaînes de Markov, le filtre factorisé
de Metropolis permet de décomposer un potentiel multidimensionnel en plusieurs autres
unidimensionnels. De là, il est possible de définir un algorithme sans rejet de Monte-Carlo
par chaînes de Markov irréversibles. Le quatrième chapitre examine les performances de
ce nouvel algorithme dans une grande variété de systèmes. Des accélérations du temps de
thermalisation sont observées dans des systèmes bidimensionnels de particules molles, des
systèmes bidimensionnels de spins XY ferromagnétiques et des systèmes tridimensionnels
de verres de spins XY. Finalement, une réduction importante du ralentissement critique est
exposée pour un système tridimensionnel de spins Heisenberg ferromagnétiques.

Mots-clefs : Méthode de Monte-Carlo - Chaînes de Markov irréversibles- Systèmes dé-
sordonnés - Systèmes bidimensionnels - Systèmes de spins classiques - Verre de spins.

Abstract

This thesis deals with the development and application in statistical physics of a general frame-
work for irreversible and rejection-free Markov-chain Monte Carlo methods, through the im-
plementation of the factorized Metropolis filter and the lifting concept.

The first two chapters present the Markov-chain Monte Carlo method and its different
implementations in statistical physics. One of the main limitations of Markov-chain Monte
Carlo methods arises around phase transitions, where phenomena of dynamical slowing down
greatly impede the thermalization of the system.

The third chapter introduces the new class of irreversible factorized Metropolis algo-
rithms. Building on the concept of lifting of Markov chains, the factorized Metropolis
filter allows to decompose a multidimensional potential into several unidimensional ones.
From there, it is possible to define a rejection-free and completely irreversible Markov-chain
Monte Carlo algorithm. The fourth chapter reviews the performance of the irreversible
factorized algorithm in a wide variety of systems. Clear accelerations of the thermalization
time are observed in bidimensional soft-particle systems, bidimensional ferromagnetic XY
spin systems and three-dimensional XY spin glasses. Finally, an important reduction of the
critical slowing down is exhibited in three-dimensional ferromagnetic Heisenberg spin systems.

Keywords: Monte Carlo method - Irreversible Markov chains - Disordered systems -
Two-dimensional systems - Classical spin systems - Spin glass.
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chapitre examine les performances de ce nouvel 
algorithme dans une grande variété de systèmes. 
Des accélérations du temps de thermalisation sont 
observées dans des systèmes bidimensionnels de 
particules molles, des systèmes bidimensionnels 
de spins XY ferromagnétiques et des systèmes 
tridimensionnels de verres de spins XY. 
Finalement, une réduction importante du 
ralentissement critique est exposée pour un 
système tridimensionnel de spins Heisenberg 
ferromagnétiques.
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This thesis deals with the development and 
application in statistical physics of a general 
framework for irreversible and rejection-free 
Markov-chain Monte Carlo methods, through the 
implementation of the factorized Metropolis filter 
and the lifting concept. 

The first two chapters present the Markov-chain 
Monte Carlo method and its different 
implementations in statistical physics. One of the 
main limitations of Markov-chain Monte Carlo 
methods arises around phase transitions, where 
phenomena of dynamical slowing down greatly 
impede the thermalization of the system.

The third chapter introduces the new class of 
irreversible factorized Metropolis algorithms. 
Building on the concept of lifting of Markov chains, 
the factorized Metropolis filter allows to 
decompose a multidimensional potential into 
several unidimensional ones. From there, it is 
possible to define a rejection-free and completely 
irreversible Markov-chain Monte Carlo algorithm. 
The fourth chapter reviews the performance of the 
irreversible factorized algorithm in  a wide variety 
of systems. Clear accelerations of the 
thermalization time are observed in bidimensional 
soft-particle systems, bidimensional ferromagnetic 
XY spin systems and three-dimensional XY spin 
glasses. Finally, an important reduction of the 
critical slowing down is exhibited in three-
dimensional ferromagnetic Heisenberg spin 
systems. 
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