M. I. Karayannis and C. Efstathiou, Significant steps in the evolution of analytical chemistry ? is the today's analytical chemistry only chemistry? Talanta, pp.7-15, 2012.

L. C. Clark, . Jr, and C. Lyons, ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY, Annals of the New York Academy of Sciences, vol.12, issue.2, pp.29-45, 1962.
DOI : 10.1111/j.1749-6632.1962.tb13623.x

D. R. Thevenot, K. Toth, R. A. Durst, and G. S. Wilson, Electrochemical biosensors: recommended definitions and classification, Pure Appl. Chem, vol.71, pp.2333-2348, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01084678

V. Perumal and U. Hashim, Advances in biosensors: Principle, architecture and applications, Journal of Applied Biomedicine, vol.12, issue.1
DOI : 10.1016/j.jab.2013.02.001

C. I. Justino, A. C. Freitas, R. Pereira, A. C. Duarte, and T. A. Rocha-santos, Recent developments in recognition elements for chemical sensors and biosensors, TrAC Trends in Analytical Chemistry, vol.68, pp.2-17, 2015.
DOI : 10.1016/j.trac.2015.03.006

H. S. Song and T. H. Park, Integration of biomolecules and nanomaterials: towards highly selective and sensitive biosensors, Biotechnol. J, vol.6, pp.1310-1316, 2011.

A. Hayat, G. Catanante, and G. L. Marty, Current Trends in Nanomaterial-Based Amperometric Biosensors, Sensors, vol.14, issue.12, pp.23439-23461, 2014.
DOI : 10.3390/s141223439

URL : https://hal.archives-ouvertes.fr/hal-01166432

A. Bratov, N. Abramova, and A. Ipatov, Recent trends in potentiometric sensor arrays???A review, Analytica Chimica Acta, vol.678, issue.2, pp.149-159, 2010.
DOI : 10.1016/j.aca.2010.08.035

N. Jaffrezic-renault and S. V. Dzyadevych, Conductometric Microbiosensors for Environmental Monitoring, Sensors, vol.8, issue.4, pp.2569-2588, 2008.
DOI : 10.3390/s8042569

E. P. Randviir and C. E. Banks, Electrochemical impedance spectroscopy: an overview of bioanalytical applications, Analytical Methods, vol.102, issue.5, pp.1098-1115, 2013.
DOI : 10.1039/c3ay26476a

R. A. Couto, J. L. Lima, and M. B. Quinaz, Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis, Talanta, vol.146, pp.801-814, 2016.
DOI : 10.1016/j.talanta.2015.06.011

M. Tudorache and C. Bala, Biosensors based on screen-printing technology, and their applications in environmental and food analysis, Analytical and Bioanalytical Chemistry, vol.54, issue.574, pp.565-578, 2007.
DOI : 10.1007/s00216-007-1293-0

X. Guo, Surface plasmon resonance based biosensor technique: A review, Journal of Biophotonics, vol.289, issue.7, pp.483-501, 2012.
DOI : 10.1002/jbio.201200015

P. Das, M. Das, S. R. Chinnadayyala, I. Manoj-singha, and P. Goswami, Recent advances on developing 3rd generation enzyme electrode for biosensor applications, Biosensors and Bioelectronics, vol.79, pp.386-397, 2016.
DOI : 10.1016/j.bios.2015.12.055

L. Reverté, B. Prieto-simón, and M. Campàs, New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A??review, Analytica Chimica Acta, vol.908, pp.8-21, 2016.
DOI : 10.1016/j.aca.2015.11.050

Z. Wang, L. Wan, Z. Liu, X. Huang, and Z. Xu, Enzyme immobilization on electrospun polymer nanofibers: An overview, Journal of Molecular Catalysis B: Enzymatic, vol.56, issue.4, pp.189-195, 2009.
DOI : 10.1016/j.molcatb.2008.05.005

F. Lagarde, One-Step Fabrication of Electrospun Photo-Cross-Linkable Polymer Nanofibers Incorporating Multiwall Carbon Nanotubes and Enzyme for Biosensing, J. Electrochem. Soc, vol.162, pp.275-281, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01229524

R. O. Kadara, N. Jenkinson, and C. Banks, Screen printed recessed microelectrode arrays, Sensors and Actuators B: Chemical, vol.142, issue.1, pp.342-346, 2009.
DOI : 10.1016/j.snb.2009.08.005

B. Derkus, Applying the miniaturization technologies for biosensor design, Biosensors and Bioelectronics, vol.79, pp.901-913, 2016.
DOI : 10.1016/j.bios.2016.01.033

M. Zourob and E. Tamiya, Toward the development of smart and low cost point-of-care biosensors based on screen printed electrodes, Crit. Rev. Biotechnol, vol.35, pp.1-11, 2015.

A. Amine, F. Arduini, D. Moscone, and G. Palleschi, Recent advances in biosensors based on enzyme inhibition, Biosensors and Bioelectronics, vol.76, pp.180-194, 2016.
DOI : 10.1016/j.bios.2015.07.010

K. Malzahn, J. R. Windmiller, G. Valdes-ramirez, M. J. Schöning, and J. Wang, Wearable electrochemical sensors for in situ analysis in marine environments, The Analyst, vol.22, issue.14, pp.2912-2917, 2011.
DOI : 10.1016/j.snb.2010.11.048

J. R. Windmiller and J. Wang, Wearable Electrochemical Sensors and Biosensors: A Review, Electroanalysis, vol.119, issue.1, pp.29-46, 2013.
DOI : 10.1002/elan.201200349

A. J. Bandodkar, W. Jia, and J. Wang, Tattoo-Based Wearable Electrochemical Devices: A Review, Electroanalysis, vol.51, issue.3, pp.562-572, 2015.
DOI : 10.1002/elan.201400537

A. J. Bandodkar and J. Wang, Non-invasive wearable electrochemical sensors: a review, Trends in Biotechnology, vol.32, issue.7, pp.363-371, 2014.
DOI : 10.1016/j.tibtech.2014.04.005

A. P. Turner, Biosensors: sense and sensibility, Chemical Society Reviews, vol.7, issue.8, pp.3184-3196, 2013.
DOI : 10.1016/j.bios.2012.11.037

A. Koyun and E. Ahlatc?o?lu, Koca ?pek, Y. Biosensors and Their Principles, In: A Roadmap of Biomedical Engineers and Milestones, pp.115-142, 2012.

D. Grieshaber, R. Mackenzie, J. Vörös, and E. Reimhult, Electrochemical Biosensors - Sensor Principles and Architectures, Sensors, vol.8, issue.3, pp.1400-1458, 2008.
DOI : 10.3390/s8031400

URL : http://doi.org/10.3390/s8031400

S. Ferri, K. Kojima, and K. Sode, Review of Glucose Oxidases and Glucose Dehydrogenases: A Bird's Eye View of Glucose Sensing Enzymes, Journal of Diabetes Science and Technology, vol.44, issue.11, pp.1068-1076, 2011.
DOI : 10.1111/j.1749-6632.1962.tb13623.x

I. ?akinyt?, J. Barkauskas, J. Gaidukevi?, and J. Razumien?, Thermally reduced graphene oxide: The study and use for reagentless amperometric d-fructose biosensors, Talanta, vol.144, pp.1096-1103, 2015.
DOI : 10.1016/j.talanta.2015.07.072

G. Hughes, R. M. Pemberton, P. R. Fielden, and J. P. Hart, Development of a novel reagentless, screen-printed amperometric biosensor based on glutamate dehydrogenase and NAD+, integrated with multi-walled carbon nanotubes for the determination of glutamate in food and clinical applications, Sensors and Actuators B: Chemical, vol.216, pp.614-621, 2015.
DOI : 10.1016/j.snb.2015.04.066

R. Ciriello, T. R. Cataldi, F. Crispo, and A. Guerrieri, Quantification of l-lysine in cheese by a novel amperometric biosensor, Food Chemistry, vol.169, pp.13-19
DOI : 10.1016/j.foodchem.2014.07.141

E. Rocaboy-faquet, L. Barthelmebs, C. Calas-blanchard, and T. Noguer, A novel amperometric biosensor for ??-triketone herbicides based on hydroxyphenylpyruvate dioxygenase inhibition: A case study for sulcotrione, Talanta, vol.146, pp.510-516, 2016.
DOI : 10.1016/j.talanta.2015.09.030

URL : https://hal.archives-ouvertes.fr/hal-01220624

J. Kirsch, C. Siltanen, Q. Zhou, A. Revzin, and A. Simonian, Biosensor technology: recent advances in threat agent detection and medicine, Chemical Society Reviews, vol.134, issue.22, pp.8733-8768, 2013.
DOI : 10.1002/smll.201202195

Y. Cui, Amperometric ATP Biosensors Based on Coimmobilizations of

H. Hydroxylase, Glucose-6-Phosphate Dehydrogenase, and Hexokinase on Clark-Type and Screen-Printed Electrodes, IEEE Sens. J, vol.10, pp.979-983, 2010.

J. Turana, M. Kesika, S. Soylemeza, S. Gokera, M. Kolbc et al., Development of an amperometric biosensor based on a novel conducting copolymer for detection of anti-dementia drugs, Journal of Electroanalytical Chemistry, vol.735, pp.43-50, 2014.
DOI : 10.1016/j.jelechem.2014.10.007

J. H. Min and A. J. Baeumner, Characterization and Optimization of Interdigitated Ultramicroelectrode Arrays as Electrochemical Biosensor Transducers, Electroanalysis, vol.16, issue.9, pp.724-729, 2004.
DOI : 10.1002/elan.200302872

N. Jaffrezic-renault and S. V. Dzyadevych, Conductometric Microbiosensors for Environmental Monitoring, Sensors, vol.8, issue.4, pp.2569-2588, 2008.
DOI : 10.3390/s8042569

V. G. Melnyk, O. D. Vasylenko, L. M. Semenycheva, A. P. Soldatkin, and S. V. Dzyadevych, Development of conductometric biosensor array for simultaneous determination of maltose, lactose, sucrose and glucose, Talanta, vol.115, pp.200-207, 2013.

W. Nouira, A. Maaref, H. Elaissari, F. Vocanson, M. Siadat et al., Enhanced Response of a Proteinase K-Based Conductometric Biosensor Using Nanoparticles, Sensors, vol.14, issue.7, pp.13298-13307, 2014.
DOI : 10.3390/s140713298

URL : https://hal.archives-ouvertes.fr/ujm-01057656

I. Isildak, O. Cubuk, M. Altikatoglu, M. Yolcu, V. Erci et al., A novel conductometric creatinine biosensor based on solid-state contact ammonium sensitive PVC???NH2 membrane, Biochemical Engineering Journal, vol.62, pp.34-38, 2012.
DOI : 10.1016/j.bej.2011.10.013

K. V. Stepurska, ?. ?. Soldatkin, I. S. Kucherenko, V. M. Arkhypova, S. V. Dzyadevych et al., Feasibility of application of conductometric biosensor based on acetylcholinesterase for the inhibitory analysis of toxic compounds of different nature, Analytica Chimica Acta, vol.854, pp.161-168, 2015.
DOI : 10.1016/j.aca.2014.11.027

URL : https://hal.archives-ouvertes.fr/hal-01187433

I. S. Kucherenko, D. Kucherenko, . Yu, O. O. Soldatkin, F. Lagarde et al., A novel conductometric biosensor based on hexokinase for determination of adenosine triphosphate, Talanta, vol.150, pp.469-475, 2016.
DOI : 10.1016/j.talanta.2015.12.069

URL : https://hal.archives-ouvertes.fr/hal-01363675

L. S. Upadhyay and N. Verma, Alkaline phosphatase inhibition based conductometric biosensor for phosphate estimation in biological fluids, Biosensors and Bioelectronics, vol.68, pp.611-616, 2015.
DOI : 10.1016/j.bios.2015.01.064

T. T. Nguyen-boisse, J. Saulnier, N. Jaffrezic-renault, and F. Lagarde, Highly sensitive conductometric biosensors for total lactate, d- and l-lactate determination in dairy products, Sensors and Actuators B: Chemical, vol.179, pp.232-239, 2013.
DOI : 10.1016/j.snb.2012.10.021

URL : https://hal.archives-ouvertes.fr/hal-00818875

G. Assad, S. Omar-martínez-chapa, D. Barceló, and R. Parra, Laccase-based biosensors for detection of phenolic compounds, TrAC, Trends Anal. Chem, vol.74, pp.21-45, 2015.

N. Tekaya, O. Saiapina, H. Ben-ouada, F. Lagarde, H. Ben-ouada et al., Ultra-sensitive conductometric detection of pesticides based on inhibition of esterase activity in Arthrospira platensis, Environmental Pollution, vol.178, pp.182-188, 2013.
DOI : 10.1016/j.envpol.2013.03.013

URL : https://hal.archives-ouvertes.fr/hal-00851121

I. Lee, X. Luo, J. Huang, and X. Cui, Detection of Cardiac Biomarkers Using Single Polyaniline Nanowire-Based Conductometric Biosensors, Biosensors, vol.2, issue.4, pp.205-220, 2012.
DOI : 10.3390/bios2020205

D. L. Nelson and M. M. Cox, Leninger principles of biochemistry, 2008.

C. Kennedy, ATP as a cotransmitter in the autonomic nervous system, Autonomic Neuroscience, vol.191, pp.2-15, 2015.
DOI : 10.1016/j.autneu.2015.04.004

M. J. Bours, E. L. Swennen, F. Di-virgilio, B. N. Cronstein, and P. C. Dagnelie, Adenosine 5???-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation, Pharmacology & Therapeutics, vol.112, issue.2, pp.358-404, 2006.
DOI : 10.1016/j.pharmthera.2005.04.013

A. Pelleg and E. S. Schulman, Adenosine 5??-Triphosphate Axis in Obstructive Airway Diseases, American Journal of Therapeutics, vol.9, issue.5, pp.454-464, 2002.
DOI : 10.1097/00045391-200209000-00014

G. Burnstock, The journey to establish purinergic signalling in the gut, Neurogastroenterology & Motility, vol.43, issue.s1, pp.8-19, 2008.
DOI : 10.1002/ddr.1093

T. Kobayashi, H. Kouzaki, and H. Kita, Human Eosinophils Recognize Endogenous Danger Signal Crystalline Uric Acid and Produce Proinflammatory Cytokines Mediated by Autocrine ATP, The Journal of Immunology, vol.184, issue.11, pp.6350-6358, 2010.
DOI : 10.4049/jimmunol.0902673

M. Silva-ramos, I. Silva, O. Oliveira, S. Ferreira, M. J. Reis et al., Urinary ATP May Be a Dynamic Biomarker of Detrusor Overactivity in Women with Overactive Bladder Syndrome, PLoS ONE, vol.158, issue.4, p.64696, 2013.
DOI : 10.1371/journal.pone.0064696.t002

G. Lomakina, Y. A. Yu-modestova, and N. N. Ugarova, Bioluminescence assay for cell viability, Biochemistry (Moscow), vol.80, issue.6, pp.701-713
DOI : 10.1134/S0006297915060061

C. Feng, S. Dai, and L. Wang, Optical aptasensors for quantitative detection of small biomolecules: A review, Biosensors and Bioelectronics, vol.59, pp.64-74, 2014.
DOI : 10.1016/j.bios.2014.03.014

Y. Cao, K. Tanaka, C. T. Nguyen, and G. Stacey, Extracellular ATP is a central signaling molecule in plant stress responses, Current Opinion in Plant Biology, vol.20, pp.82-87, 2014.
DOI : 10.1016/j.pbi.2014.04.009

B. Bottari, M. Santarelli, and E. Neviani, Determination of microbial load for different beverages and foodstuff by assessment of intracellular ATP, Trends in Food Science & Technology, vol.44, issue.1, pp.36-48, 2015.
DOI : 10.1016/j.tifs.2015.02.012

R. Dubois, Fonction photogenique des Pyrophores, Compt. Rend. Soc. Biol, vol.1885, issue.37, pp.559-562

W. Mcelroy, The Energy Source for Bioluminescence in an Isolated System, Proceedings of the National Academy of Sciences, vol.33, issue.11
DOI : 10.1073/pnas.33.11.342

S. V. Khlyntseva, . R. Bazel-',-ya, and A. B. Vishnikin, Andruch, V. Methods for the Determination of Adenosine Triphosphate and Other Adenine Nucleotides, J. Anal

N. S. Rodionova and V. N. Petushkov, Effect of different salts and detergents on luciferin???luciferase luminescence of the enchytraeid Fridericia heliota, Journal of Photochemistry and Photobiology B: Biology, vol.83, issue.2, pp.123-128, 2006.
DOI : 10.1016/j.jphotobiol.2005.12.014

Y. Zhu, X. Hu, S. Shi, R. Gao, H. Huang et al., Ultrasensitive and universal fluorescent aptasensor for the detection of biomolecules (ATP, adenosine and thrombin) based on DNA

D. Cheng, Y. Li, J. Wang, Y. Sun, L. Jin et al., Fluorescence and colorimetric detection of ATP based on a strategy of self-promoting aggregation of a water-soluble polythiophene derivative, Chem. Commun., vol.109, issue.40, pp.2015-8544
DOI : 10.1039/C5CC01713K

L. Zhou, X. Xue, J. Zhou, Y. Li, J. Zhao et al., Fast Determination of Adenosine 5???-Triphosphate (ATP) and Its Catabolites in Royal Jelly Using Ultraperformance Liquid Chromatography, Journal of Agricultural and Food Chemistry, vol.60, issue.36, pp.8994-8999
DOI : 10.1021/jf3022805

Z. Ling-li, L. Qiu-sha, H. Guo-zhu, and L. Lu, Simultaneous Determination of Exogenous Phosphocreatine and Its Metabolite Creatine and Related Adenosine Triphosphate in Rat Plasma and Red Blood Cell by Ion-Pair High Performance Liquid Chromatography- Ultraviolet-Visible Assay. Chin, J. Anal. Chem, vol.39, pp.45-50, 2011.

J. Lietsche, J. Gorka, S. Hardt, M. Karas, and J. Klein, Self-built microdialysis probes with improved recoveries of ATP and neuropeptides, Journal of Neuroscience Methods, vol.237, pp.1-8, 2014.
DOI : 10.1016/j.jneumeth.2014.08.015

J. Korf, K. D. Huinink, and G. A. Posthuma-trumpie, Ultraslow microdialysis and microfiltration for in-line, on-line and off-line monitoring, Trends in Biotechnology, vol.28, issue.3, pp.150-158, 2010.
DOI : 10.1016/j.tibtech.2009.12.005

N. Dale and B. G. Frenguelli, Measurement of purine release with microelectrode biosensors, Purinergic Signalling, vol.588, issue.Pt 16, pp.27-40, 2012.
DOI : 10.1007/s11302-011-9273-4

J. Pang, Z. Zhang, and H. Jin, Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors, Biosensors and Bioelectronics, vol.77
DOI : 10.1016/j.bios.2015.09.035

Q. Zhou, Y. Lin, Y. Lin, Q. Wei, G. Chen et al., In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags, Talanta, vol.146, pp.23-28, 2016.
DOI : 10.1016/j.talanta.2015.08.035

U. Baterdene, C. Huang, Y. Y. Wang, P. Burke, M. Dutta et al., A Graphene and Aptamer Based Liquid Gated FET-Like Electrochemical Biosensor to Detect Adenosine Triphosphate, IEEE Transactions on NanoBioscience, vol.14, pp.967-972, 2015.

T. Bao, H. Shu, W. Wen, X. Zhang, and S. Wang, A sensitive electrochemical aptasensor for ATP detection based on exonuclease III-assisted signal amplification strategy, Analytica Chimica Acta, vol.862
DOI : 10.1016/j.aca.2014.12.049

M. Gotoh, E. Tamiya, I. Karube, and Y. Kagawa, A microsensor for adenosine-5???-triphosphate pH-sensitive field effect transistors, Analytica Chimica Acta, vol.187, pp.287-291, 1986.
DOI : 10.1016/S0003-2670(00)82920-7

S. Migita, K. Ozasa, T. Tanaka, and T. Haruyama, Enzyme-based Field-Effect Transistor for Adenosine Triphosphate (ATP) Sensing, Analytical Sciences, vol.23, issue.1, pp.45-48, 2007.
DOI : 10.2116/analsci.23.45

T. Katsu and K. Yamanaka, Potentiometric method for the determination of adenosine-5???-triphosphate, Analytica Chimica Acta, vol.276, issue.2, pp.373-376, 1993.
DOI : 10.1016/0003-2670(93)80407-C

Y. Adachi, M. Sugawara, K. Taniguchi, Y. Umezawa, +. Na et al., Na+,K+-ATPase-based bilayer lipid membrane sensor for adenosine 5???-triphosphate, Analytica Chimica Acta, vol.281, issue.3, pp.577-584, 1993.
DOI : 10.1016/0003-2670(93)85017-E

E. Llaudet, S. Hatz, M. Droniou, and N. Dale, Microelectrode Biosensor for Real-Time Measurement of ATP in Biological Tissue, Analytical Chemistry, vol.77, issue.10, pp.3267-3273, 2005.
DOI : 10.1021/ac048106q

L. Sarissa-biomedical, A self-referencing biosensor for real-time monitoring of physiological ATP transport in plant systems, Biosens. Bioelectron, vol.89, issue.74, pp.37-44, 2015.

D. Compagnone and G. Guilbault, Glucose oxidase/hexokinase electrode for the determination of ATP, Analytica Chimica Acta, vol.340, issue.1-3, pp.109-113, 1997.
DOI : 10.1016/S0003-2670(96)00451-5

A. Kueng, C. Kranz, and B. Mizaikoff, Amperometric ATP biosensor based on polymer entrapped enzymes, Biosensors and Bioelectronics, vol.19, issue.10, pp.1301-1307, 2004.
DOI : 10.1016/j.bios.2003.11.023

S. Liu and Y. Sun, Co-immobilization of glucose oxidase and hexokinase on silicate hybrid sol???gel membrane for glucose and ATP detections, Biosensors and Bioelectronics, vol.22, issue.6, pp.905-911, 2007.
DOI : 10.1016/j.bios.2006.03.019

O. O. Soldatkin, O. M. Schuvailo, S. Marinesco, R. Cespuglio, and A. P. Soldatkin, Microbiosensor based on glucose oxidase and hexokinase co-immobilised on platinum microelectrode for selective ATP detection Talanta, pp.1023-1028, 2009.

B. A. Patel, M. Rogers, T. Wieder, D. O-'hare, and M. G. Boutelle, ATP microelectrode biosensor for stable long-term in vitro monitoring from gastrointestinal tissue, Biosensors and Bioelectronics, vol.26, issue.6, pp.2890-2896, 2011.
DOI : 10.1016/j.bios.2010.11.033

Y. Auchli, R. Brunisholz, D. Neumann, and L. Barret, Regulation of brain-type creatine kinase by AMP-activated protein kinase: Interaction, phosphorylation and ER localization, Biochim. Biophys. Acta, pp.1271-1283, 1837.

K. Sahlin and R. C. Harris, The creatine kinase reaction: a simple reaction with functional complexity, Amino Acids, vol.170, issue.1, pp.1363-1367, 2011.
DOI : 10.1007/s00726-011-0856-8

C. Liu, L. Jiang, H. Wang, Z. Guo, and X. Cai, A novel disposable amperometric biosensor based on trienzyme electrode for the determination of total creatine kinase, Sensors and Actuators B: Chemical, vol.122, issue.1, pp.295-300, 2007.
DOI : 10.1016/j.snb.2006.05.043

G. Davis, M. J. Green, and H. A. Hill, Detection of ATP and creatine kinase using an enzyme electrode, Enzyme and Microbial Technology, vol.8, issue.6, pp.349-352, 1986.
DOI : 10.1016/0141-0229(86)90134-1

F. T. Moreira, R. A. Dutra, J. P. Noronha, and M. G. Sales, Novel sensory surface for creatine kinase electrochemical detection, Biosensors and Bioelectronics, vol.56, pp.217-222, 2014.
DOI : 10.1016/j.bios.2013.12.052

Z. G. Laoutidis and K. Kioulos, Antipsychotic-induced elevation of creatine kinase: a systematic review of the literature and recommendations for the clinical practice, Psychopharmacology, vol.67, issue.5, pp.4255-4270, 2014.
DOI : 10.1007/s00213-014-3764-2

P. W. Armstrong, J. S. Hochman, J. S. Mills, W. Ruzyllo, and K. W. Mahaffey, Methods of creatine kinase-MB analysis to predict mortality in patients with myocardial infarction treated with reperfusion therapy, Trials, vol.14, pp.123-131, 2013.

B. Kim, H. Je, and Y. H. Park, Prognostic value of creatine kinase-myocardial band isoenzyme elevation following percutaneous coronary intervention: A meta-analysis

A. J. Koch, R. Pereira, and M. Machado, The creatine kinase response to resistance exercise, J. Musculoskeletal Neuronal Interact, vol.14, pp.68-77, 2014.

K. Kishi, U. Schlattner, T. Wallimann, M. Yanai, and K. Kumasaka, Development and performance of an enzyme immunoassay to detect creatine kinase isoenzyme MB activity using anti-mitochondrial creatine kinase monoclonal antibodies. Scand, J. Clin. Lab. Investig, vol.69, pp.687-695, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00391002

T. Toyoda, S. S. Kuan, and G. G. Guilbault, Measurement of creatine kinase isoenzyme MB in serum with immunoseparation and electrochemical detection, Analytical Chemistry, vol.57, issue.12, pp.2346-2349, 1985.
DOI : 10.1021/ac00289a040

C. D. Cabaniss, Chapter 32 Creatine Kinase, in Clinical Methods: The History, Physical, and Laboratory Examinations, pp.161-163, 1990.

O. Y. Saiapina, S. V. Marchenko, A. V. El-'skaya, and . Biosensors, A quarter of a century of R&D experience, Biopolym. Cell, vol.29, pp.188-206, 2013.

G. Nagy, C. X. Xu, R. P. Buck, E. Lindner, M. R. Neuman et al., Wet and dry chemistry kits for total creatine kinase activity using a microfabricated, planar, small-volume, amperometric cell, Analytica Chimica Acta, vol.377, issue.1, pp.1-12, 1998.
DOI : 10.1016/S0003-2670(98)00600-X

S. Cosnier and M. Holzinger, Electrosynthesized polymers for biosensing, Chemical Society Reviews, vol.21, issue.5, pp.2146-2156, 2011.
DOI : 10.1007/s10800-10010-10179-10806

S. J. Killoran and R. D. Neill, Characterization of permselective coatings electrosynthesized on Pt???Ir from the three phenylenediamine isomers for biosensor applications, Electrochimica Acta, vol.53, issue.24, pp.7303-7312, 2008.
DOI : 10.1016/j.electacta.2008.03.076

O. M. Schuvailo, O. O. Soldatkin, A. Lefebvre, R. Cespuglio, and A. P. Soldatkin, Highly selective microbiosensors for in vivo measurement of glucose, lactate and glutamate, Analytica Chimica Acta, vol.573, issue.574
DOI : 10.1016/j.aca.2006.03.034

L. Chen and Z. Chen, A multifunctional label-free electrochemical impedance biosensor for Hg2+, adenosine triphosphate and thrombin, Talanta, vol.132, pp.664-668, 2015.
DOI : 10.1016/j.talanta.2014.10.039

J. Jia, J. Feng, H. G. Chen, H. Q. Luo, and N. B. Li, A simple electrochemical method for the detection of ATP using target-induced conformational change of dual-hairpin DNA structure, Sensors and Actuators B: Chemical, vol.222, pp.1090-1095, 2016.
DOI : 10.1016/j.snb.2015.08.045

L. R. Schoukroun-barnes, E. P. Glaser, and R. J. White, Heterogeneous Electrochemical Aptamer-Based Sensor Surfaces for Controlled Sensor Response, Langmuir, vol.31, issue.23, pp.6563-6569, 2015.
DOI : 10.1021/acs.langmuir.5b01418

X. Huang, Y. Li, X. Zhang, X. Zhang, Y. Chenc et al., An efficient signal-on aptamer-based biosensor for adenosine triphosphate detection using graphene oxide both as an electrochemical and electrochemiluminescence signal indicator, The Analyst, vol.81, issue.17, pp.6015-6024, 2015.
DOI : 10.1039/C5AN00769K

L. Zhu, Y. Liu, P. Yanga, and B. Liua, Label-free Aptasensor based on Electrodeposition of Gold Nanoparticles on Graphene and Its Application in the Quantification of Adenosine Triphosphate, Electrochimica Acta, vol.172, pp.88-93, 2015.
DOI : 10.1016/j.electacta.2015.04.100

Y. Zhao and S. Wang, A novel amperometric adenosine triphosphate biosensor by immobilizing graphene/dual-labeled aptamers complex onto poly(o-phenylenediamine) modified electrode, Sens. Actuators, B, vol.191, pp.695-702, 2014.

W. Bücking, G. A. Urban, and T. Nanna, An electrochemical biomimetic ATP-sensor, Sensors and Actuators B: Chemical, vol.104, issue.1
DOI : 10.1016/j.snb.2004.04.115

Y. Cui, J. P. Barford, and R. Renneberg, Amperometric trienzyme ATP biosensors based on the coimmobilization of salicylate hydroxylase, glucose-6-phosphate dehydrogenase, and hexokinase, Sensors and Actuators B: Chemical, vol.132, issue.1, pp.1-4, 2008.
DOI : 10.1016/j.snb.2008.01.001

F. Scheller and D. Pfeiffer, Glucose oxidase???hexokinase bienzyme electrode sensor for adenosine triphosphate, Analytica Chimica Acta, vol.117, pp.383-386, 1980.
DOI : 10.1016/0003-2670(80)87043-7

G. Szasz, W. Gruber, and E. Bernt, Creatine kinase in serum: 1. Determination of optimum reaction conditions, Clin. Chem, vol.22, pp.650-656, 1976.

D. P. Kosow and I. A. Rose, Product Inhibition of the Hexokinases, J. Biol. Chem, vol.245, pp.198-204, 1970.

H. Gao and J. A. Leary, Multiplex inhibitor screening and kinetic constant determinations for yeast hexokinase using mass spectrometry based assays, Journal of the American Society for Mass Spectrometry, vol.200, issue.3
DOI : 10.1016/S1044-0305(02)00867-X

I. S. Kucherenko, D. Yu, O. O. Didukh, A. P. Soldatkin, and . Soldatkin, Amperometric Biosensor System for Simultaneous Determination of Adenosine-5???-Triphosphate and Glucose, Analytical Chemistry, vol.86, issue.11, pp.5455-5462, 2014.
DOI : 10.1021/ac5006553

I. S. Kucherenko, O. O. Soldatkin, F. Lagarde, N. Jaffrezic-renault, S. V. Dzyadevych et al., Determination of total creatine kinase activity in blood serum using an amperometric biosensor based on glucose oxidase and hexokinase, Talanta, vol.144, pp.604-611, 2015.
DOI : 10.1016/j.talanta.2015.06.079

URL : https://hal.archives-ouvertes.fr/hal-01234221

A. P. Soldatkin, A novel conductometric biosensor based on hexokinase for determination of adenosine triphosphate Abstracts of conferences, Talanta, vol.150, pp.469-475, 2016.

F. Soldatkin and . Lagarde, Amperometric enzyme biosensor for determination of creatine kinase activity Journée de Printemps de la SCF en Rhône Alpes 11, p.31, 2015.

A. P. Soldatkin, Determination of creatine kinase in blood serum by using an ATP-sensitive biosensor, European Materials Research Society Spring Meeting 11-15, p.14, 2015.