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General Context

Polymer nano-composites are of great practical interest. For instance, introducing small solid filler particles in a polymer matrix significantly increases the elastic modulus, the wear resistance and damping property. However, the reinforcing effect depends not only on the filler amount, but also on filler surface chemistry, compatibility between the filler and the matrix, filler structure, size and filler distribution.

A critical application for nanocomposites is tire treads. The tread is the outer part of a tire that comes directly in contact with the road and therefore needs to be energy efficient while ensuring car or truck security and have a high resistance to abrasion. The operating condition of a tire covers a very wide range of temperature, shear amplitude and frequencies. In rolling condition, the rolling tread undergoes a cyclic strain due to road asperities (0.01-1mm) [START_REF] Persson | On the theory of rubber friction[END_REF] at a frequency of about 10 Hz and at ambient temperature [START_REF] Bond | A tailor-made polymer for tyre applications[END_REF]. Energy efficiency is ensured in this regime if the response of the tread is mostly elastic.

On the contrary, road grip and wet skidding is optimal when having the rheological response of the tire tread falling in a highly viscous regime for cyclic shear strain at high frequency (1kHz-1MHz) [START_REF] Bond | A tailor-made polymer for tyre applications[END_REF]. Tire tread also needs to be durable and therefore needs a high wear resistance. The material used for tire tread therefore needs to be engineered in order to provided high wear resistance, high wet traction and low rolling resistance.

The 1990s witnessed the development of energy-efficient passenger car tires (green tires). Rhodia (now Solvay) developed a highly dispersible silica and chemical agents for coupling fillers to a rubbery matrix which reduced tire tread rolling resistance and increased wear resistance, without reducing grip. The challenge nowadays is to keep on improving tire tread properties, in order to develop safer, fuel efficient and durable tire.

Solvay is a chemical company producing chemical agents and dispersible silica for the tire industry. A strategic challenge is therefore to develop new products targeted at tire manufacturers with a strong added value for improving tire properties. A route is to understand how filler morphology and filler distribution affect the mechanical properties of filled elastomers and if they can be modified to produce materials with finely tune properties.

Scientific Challenges

A considerable amount of literature has been published on filled elastomers in the past fifty years. One major theoretical issue that has dominated the field concerns the physical origin of the complex non-linear behaviour of filled elastomers:

-the relative increase of the mechanical modulus is not linear with the filler volume fraction and is not constant with the temperature [START_REF] Wang | Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates[END_REF]; -the elastic modulus decreases with the strain amplitude in filled elastomers whereas it remains roughly constant for the pure matrix; filled elastomers also undergo a highly dissipative regime for intermediate strain, as the drop of elastic modulus occurs [4]; -the loss of mechanical properties can be recovered partially if waiting a sufficient amount of time [5].

It is now well established that the manifestation of those non-linear behaviour can be explained by the presence of a complex filler network that gives rise to enhanced mechanical properties. Some debate still exists about the physical nature of this network and much more specifically on the nature of filler-filler contacts in the network. Recently, it has been proposed that filler particles which are very close could be bridged by a thin rigid polymer layer [START_REF] Merabia | A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins Effects)[END_REF]. This model is the Glassy Bridge Reinforcement Model (GBRM). Those rigid or glassy bridges would have the same physical origin as the shift of glass transition temperature observed in strongly adsorbed polymer thin films [7,[START_REF] Dequidt | Mechanical properties of thin confined polymer films close to the glass transition in the linear regime of deformation: theory and simulations[END_REF].

If a filler-filler network drives the mechanical properties, important parameters are therefore filler morphology and distribution in the sample. However, it is experimentally difficult to obtain well controlled filler morphology and distribution state in order to understand their effect on material behaviour. For instance, it has been shown that changing the filler surface chemistry modifies also the filler distribution state in the matrix. A question is therefore to determine if the changes in the mechanical behaviour should be attributed to the modified filler chemistry or to the changed filler distribution state. Is the filler distribution and morphology a first order parameter for predicting the mechanical behaviour of a filled elastomer ? Until now, the GBR model was not able to address this question since it was only taking into account random distribution of spherical particles. Extending this model to account for more realistic filler morphology and distribution would allow us to answer the question.

1.3

Overview of this work

This PhD work is an attempt at understanding the effect of filler morphology and distribution state on the mechanical properties of filled elastomers.

To do this, the phenomenology of both unfilled and filled polymers are compared in order to highlight the non-linearities induced by the addition of small solid particles in a polymer matrix. This constitutes Chapter 2 of this work. Different physical origin of the reinforcement are discussed and an emphasis is made on the GBR model.

The model is then extended to account for systems filled with fractal fillers instead of spherical particles. The distribution state of the filler is also controlled in such way that it becomes possible to simulate model systems having a realistic microstructure. The extension of the model is described in Chapter 3 which deals with the implementation of the model into a numerical code. This numerical framework is then used to solve the GBR model to study the effect of filler morphology and distribution state on the mechanical properties in the linear regime, in the non-linear non destructive regime and in the destructive regime.

First, the effect of filler distribution state is studied in a systematic way in Chapter 4. In this chapter, a model industrial filled elastomer is studied in order to understand what are the descriptors of filler distribution state. Then, using the new development of this work, different distribution state are simulated and the mechanical response of such systems are compared in the linear and non-linear regime. We demonstrate in this chapter that filler distribution state modifies drastically the viscoeastic behaviour of filled elastomers, and more specifically in the high temperature regime.

In Chapter 5, the effect of filler morphology is studied. In fact, systems filled with filler of fixed external envelope size but with a varying structure are compared. In this chapter, we show that filler structure indeed modifies the viscoelastic properties and give rise to more non-linearities in the viscoelastic response of the material. Some recent rheological measurements on homogeneously filled polymer melts have demonstrated that under certain conditions, the viscoelastic response to a strain exhibited a stress yield followed by a strain softening regime. This effect is similar to what is observed for amorphous glassy polymers, but with a stress yield of order a few MPa s. However, this effect is usually not observed in filled elastomer which exhibit a progressive softening with increasing the strain amplitude. By solving the GBR model on system filled with fractal aggregates at various distributions state, we show in Chapter 6 that highly ordered numerical systems exhibit such effect in quantitative agreement with experimental results. This effect is the footprint of the homogeneity of the filler distribution state in the sample. A physical origin of this effect is also proposed.

In Chapter 7 the GBRM is used to predict ultimate properties by adding a simple ingredient to account for local damage in the simulations. Two approaches for studying the ultimate properties are proposed and the effect on damaging behaviour of material properties such as filler volume fraction, filler morphology and distribution are studied. This last chapter gives new perspective for future work.

As a conclusion, we highlight the main results of this study and review the main mechanisms based on filler dynamics in filled elastomers that allow a better understanding of the viscoelastic behaviour of filled elastomer.

2

State of the Art

This chapter aims at reviewing the literature on polymers, filled elastomers and the specificities of nanocomposites. The first section gives a phenomenological approach to nano-composites. We focus on how the viscoelastic properties are modified when nano-particles are introduced in a polymer melt and in a cured elastomer. Selected mechanical properties are discussed in the linear regime, in the non-linear non destructive regime and in the destructive regime.

A second section will focus on the large variety of micro-structures obtained in nano-composites. The vocabulary used to describe those microstructures will be introduced, the way they can be tailored will be discussed. A general phenomenological section will address the effect of morphological parameters on the x e 2 e 1 e 3 P 13 P 12 P 23 Figure 2.1: Representation of simple shear geometry: the plane P 13 = (e 1 , e 3 ) slides along direction e 1 by an amount γ = δx/ such that tan α = γ. When the deformation is small enough, α ≈ γ.

Mechanical Properties of Nanocomposites

General Definitions

Polymers are made of long macromolecular chains grown by repeating a chemical reaction with one or several monomers. The chemical structure of monomers drives the properties of the obtained polymer, for instance a rigid backbone will restrict the mobility of the chain.

At low temperatures, chain dynamics is slowed down and the elastic modulus of the polymer is about 10 9 Pa, thus defining the glassy state. In amorphous polymers, this correspond to a rigid disordered state. In this state, the chains are associated with very long main relaxation time τ α , much longer than the observation time.

When the temperature is increased, chains mobility increases and the main relaxation time is fastened up. The elastic modulus is reduced down to about 10 6 Pa in the rubbery state [START_REF] Nielsen | Mechanical properties of polymers and composites[END_REF] when the chains are entangled or cross-linked. The temperature at which occurs the transition between the glassy state and the rubbery state is called the glass transition temperature and will be written T g in the following. This corresponds to a thermo-mechanical definition of the glass transition temperature, when the main relaxation time of the polymer has the same order of magnitude of the experimental time, this temperature being referred as T α in the literature. The measured value for this transition temperature depends on the solicitation frequency, or in other word the amount of time provided for the polymer to relax. In the following, the glass transition temperature T g and the main relaxation temperature T α will be used indifferently, and the reference frequency will be set to 1 Hz typically.

Other definitions for the glass transition temperature coexist in the literature, such as the dilatometric T g based on the increase of thermal expansion at glass transition, the calorimetric T g (increase of heat capacity), or the dielectric T g (drop of the real part of dielectric permittivity ε ). All the measurements are based on the evolution of a certain measurable quantity whose variation is the consequence of the actual glass transition of the polymer, and are in such way indirect measurements.

Polymers are viscoelastic solids [START_REF] Ferry | Viscoelastic Properties of Polymers[END_REF], their response to an applied stress is not instantaneous and depends on the history of loading. Sequential changes in strain are additives, it is referred as the Boltzmann superposition principle [START_REF] Ferry | Viscoelastic Properties of Polymers[END_REF]. For instance in Simple Shear geometry, two opposite faces of a cubic material element are displaced by sliding. Conventionally, the plane (e 1 , e 3 ) slides along direction e 1 , and a linear constitutive equation can be written

σ 12 (t) = t -∞ G(t -t ) γ12 (t )dt , (2.1) 
where γ12 is the shear rate and G the relaxation modulus. This situation is represented in Figure 2.1. Eq. (2.1) gives the stress at time t in response to a strain increment at time t < t. In a periodic or dynamic experiment, the stress is sinusoidal at a pulsation ω in rad s -1 . When the mechanical behaviour is linear,
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the strain is also sinusoidal and the integral in eq. (2.1) can be calculated and writes:

σ 12 (t) = γ 0 G sin ωt + G cos ωt , (2.2) 
with G and G , the shear storage modulus and the shear loss modulus respectively. Those quantities are frequency dependent functions and are in fact mathematically related to the Fourier transform of the relaxation modulus G(t) of the experiment. The physical significance of G(t) appears from eq. (2.2) where the stress is made of two components, an in phase stress (elastic) contribution with the strain and an out of phase stress (viscous) contribution. In other words, the elastic contribution refers to the material following Hooke's law σ = Gγ and behaving like an ideal elastic solid; while the viscous contribution refers to the material following Newton's law σ = η γ and behaving like an ideal viscous fluid.

Let us emphasise that this formalism assumes that the response is linear, so that the stress as a function of the time is sinusoidal and has the same frequency as the one imposed for the strain. The linear assumption is supposed to be true in the small strain regime but fails at higher deformation amplitudes.

What has been developed for simple shear is also valid for simple extension, both during static and dynamic loadings. For the case of a static loading in simple extension, a cubic material element is elongated in one direction, and the dimensional changes in the two mutually perpendicular directions are equal to each other and negative or zero. If we consider an experiment where an instantaneous strain increment δ is applied, eq. (2.1) can be modified accordingly giving

σ(t) = E(t) δ , (2.3) 
where the relaxation function E(t) converges eventually towards a non-zero value. In a quasi-static simple extension test, strain increments are performed much slower than the time taken for the relaxation function to converge. Therefore eq. ( 2.3) can be rewritten simply

σ = E , (2.4) 
where E is the Young modulus, which is by definition a constant with the strain in the linear regime.

We have given here a general introduction to the viscoelastic properties of polymers, such as the order of magnitude for the elastic modulus, and how they can be probed during two common mechanical tests.

The next section will describe the phenomenology of polymers and filled polymers in the linear regime.

Linear Regime

Our aim here is to expose the general phenomenology of polymers and nano-composites when a small deformation is imposed. When the deformation is small enough, γ = 10 -3 typically, the material response is linear with the strain. However, the evolution of the mechanical moduli with the condition of the experiment and with the used material is non trivial. Therefore, we identify here the non-linear phenomena of interest and the key parameters that drives them.

Polymer Melts

Adding solid filler particles in a polymer melt increases the storage and loss moduli. Let us first consider silica particles distributed in a Polystyrene matrix. In a study by Jouault et al. [START_REF] Jouault | Well-dispersed fractal aggregates as filler in polymer-silica nanocomposites: Long-range effects in rheology[END_REF], Silica aggregates have been homogeneously distributed in Polystyrene. The storage G and loss G moduli of such materials are reported in Figure 2.2 as a function of the pulsation for nanocomposites with a various amount of Silica particles. For filler volume fraction of only a few percents , the mechanical properties are increased non-linearly with the frequency. For instance, in the low frequency regime which corresponds to the terminal regime of the pure matrix, a rubber plateau appears for filler amount as low as 5 vol. %.

We identify here that both the storage and loss moduli of a polymer melt increases with the filler volume fraction. This general behaviour has been widely reported in the literature, for large spherical and non-spherical particles [START_REF] Kraus | Reinforcement of Elastomers by Carbon Black[END_REF], for clays [START_REF] Vermant | Quantifying dispersion of layered nanocomposites via melt rheology[END_REF], and for nanocomposites [START_REF] Reynaud | Nanofillers in polymeric matrix: a study on silica reinforced PA6[END_REF]. Reproduced from [START_REF] Jouault | Well-dispersed fractal aggregates as filler in polymer-silica nanocomposites: Long-range effects in rheology[END_REF] However, the resulting filler structure in the elastomer can modify the viscoelastic behaviour for a given polymer-filler set. For instance, the interaction between the polymer and the filler interface also drives the resulting enhancement of the mechanical properties. Polymer-Filler interaction can be modified by grafting polymer chains on the filler surface [START_REF] Moll | Mechanical Reinforcement in Polymer Melts Filled with Polymer Grafted Nanoparticles[END_REF] and others [START_REF] Edwards | Polymer-filler interactions in rubber reinforcement[END_REF][START_REF] Robertson | Influence of particle size and polymerfiller coupling on viscoelastic glass transition of particle-reinforced polymers[END_REF][START_REF] Yang | Keys to enhancing mechanical properties of silica nanoparticle composites hydrogels: The role of network structure and interfacial interactions[END_REF]. Yet, changing surface chemistry also results in a modification of the filler distribution and dispersion state in the matrix. In Fig. 2.3, various micro-structures have been obtained for a PS-Silica nanocomposite having 5 wt % spherical fillers particles [START_REF] Moll | Mechanical Reinforcement in Polymer Melts Filled with Polymer Grafted Nanoparticles[END_REF]. In this study by Moll et al. , the grafting density has been varied in a controlled way.

When filler surface has a very small amount of grafted chains, filler particles tends to forms compact clusters in the matrix. This can be described as an aggregated state made of isolated agglomerates. When increasing the grafting density, the nanocomposites microstructure evolves to form a continuous filler particle network. This increase of the homogeneity of the microstructure is not linear with the grafting density though, and for higher grafting densities, fillers agglomerate back together forming sheets of filler particles.

As observed in Fig. 2.3, various microstructures can be observed for a single filler amount, and the microstructure (here, the filler spatial distribution in the matrix) modifies the viscoelastic properties of the obtained nanocomposite. Here, the reinforcing effect is optimal when particles are homogeneously distributed in the sample, which corresponds to intermediary grafting densities.

Modifying the filler surface chemistry has an effect on the nanocomposite microstructure as reported in the literature [START_REF] Miltner | Quantifying the degree of nanofiller dispersion by advanced thermal analysis: application to polyester nanocomposites prepared by various elaboration methods[END_REF]. This modification of the surface chemistry induces both a modification of the morphology in the sample and a modification of the viscoelastic properties. The reinforcing effect is not linear with the grafting density [START_REF] Moll | Mechanical Reinforcement in Polymer Melts Filled with Polymer Grafted Nanoparticles[END_REF][START_REF] Liu | Nanoparticle dispersion and aggregation in polymer nanocomposites: Insights from molecular dynamics simulation[END_REF] which suggest a contribution of the filler network.

We have discussed the non-linearities induced by adding rigid filler particles in a polymer matrix. The non-linearities are enhanced in the high temperature (low frequency) regime which corresponds to the terminal regime when entangled linear polymer chains ultimately flow. Crosslinked polymers do not exhibit such a terminal flow at high temperature or low frequency. Let us discuss now whether similar non-linear behaviours are observed in crosslinked polymers.

Rubber-Like Materials

The results on reinforced polymer melts [START_REF] Jouault | Well-dispersed fractal aggregates as filler in polymer-silica nanocomposites: Long-range effects in rheology[END_REF][START_REF] Moll | Mechanical Reinforcement in Polymer Melts Filled with Polymer Grafted Nanoparticles[END_REF] can be extended to rubber-like materials. Unlike linear polymer chains, the chains in an elastomer are crosslinked and form a permanent network with a limited deformation range. Therefore, crosslinked polymers do not exhibit a terminal regime at low frequency, but a rubber plateau instead. Such a plateau can be observed in the low frequency range of the curves in Fig. 2.4 where the storage and loss moduli are plotted as a function of the frequency for a crosslinked S-SBR matrix (dashed lines) from a study by Klüppel et al. [START_REF] Klüppel | Evaluation of viscoelastic master curves of filled elastomers and applications to fracture mechanics[END_REF].

Similarly to the case of linear polymer chains, adding rigid filler particles in an elastomer enhances the mechanical properties in a non-linear way. For instance, in Fig. 2.4, the elastic modulus of the S-SBR-N550 Carbon Black composite is increased with respect to the pure matrix by a factor of two in the glassy regime and up to a factor of 10 in the rubber plateau. This effect has been widely reported in the literature for a large number of polymers such as natural rubber, SBR [START_REF] Mujtaba | Mechanical Properties and Cross-Link Density of Styrene-Butadiene Model Composites Containing Fillers with Bimodal Particle Size Distribution[END_REF], and even silicones [START_REF] Stricher | How I met your elastomers: from network topology to mechanical behaviours of conventional silicone materials[END_REF].

The data in Figure 2.4 have been constructed using the Time-Temperature Superposition (TTS) principle [START_REF] Ferry | Viscoelastic Properties of Polymers[END_REF]. Using this principle, the mechanical testing (isothermal frequency sweeps) is performed at different temperatures on the pure matrix. The resulting curves are then shifted along the frequency axis in order to form a continuous master curve at a reference temperature with corresponds to the temperature of the segment of curve that has not been shifted during the procedure. Using horizontal shift factors for the pure matrix, a continuous master curve may also be reconstructed for filled elastomers in some cases.

In reality, the TTS principle usually fails for reconstructing continuous master-curves of the viscoelastic behaviour of filled elastomers using only horizontal shifts. For instance, considering a fixed surface chemistry and filler amount, the filler grade can also impacts the resulting mechanical properties of the nanocomposite. In fact, when a S-SBR-N339 Carbon Black nanocomposite is studied (here, N339 carbon black is used instead of N550), both the increase of the elastic modulus and the shape of the reconstructed master-curve are modified. Especially, the viscoelastic response of this filled elastomers fail to reduce to a single master curve when using horizontal shift factors from the unfilled matrix only.

We report in Fig. 2.5 the discontinuous master curve for the storage and loss moduli of a S-SBR-N339 Carbon Black highly filled nanocomposite from [START_REF] Klüppel | Evaluation of viscoelastic master curves of filled elastomers and applications to fracture mechanics[END_REF]. We can identify that the discontinuities are mostly found in the low frequency regime. Questions have been raised about the origin of this effect. Here, the effect is triggered by the filler grade, and we are going to demonstrate that the difference between those Reproduced from [START_REF] Klüppel | Evaluation of viscoelastic master curves of filled elastomers and applications to fracture mechanics[END_REF]. Original data for the master curve of the pure matrix, also from [START_REF] Klüppel | Evaluation of viscoelastic master curves of filled elastomers and applications to fracture mechanics[END_REF] has been superimposed on the original figure (dashed lines). | 11

Table 2.1: Morphological parameters of filler grades used in [START_REF] Wang | Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates[END_REF][START_REF] Klüppel | Evaluation of viscoelastic master curves of filled elastomers and applications to fracture mechanics[END_REF] obtained from [START_REF] Donnet | Carbon Black: Science and Technology, Second Edition[END_REF] by TEM.

Grade S (m 2 /g) D (nm) d (nm) Shape Structure N110 121-150 68 18 Branched High N234 100-120 80 20 Linear and Branched High N339 70-99 100 25 Linear and Branched High N550 40-49 230 55 Linear and Branched High grades is mainly the specific surface area, or stated in more simple terms, filler size.

Let us mention that carbon black are classified using a nomenclature [START_REF]Standard Classification System for Carbon Blacks Used in Rubber Products[END_REF]. In Ref. [START_REF] Klüppel | Evaluation of viscoelastic master curves of filled elastomers and applications to fracture mechanics[END_REF], N550 and N339 Carbon Black grades are used. The first digit in this classification corresponds to the average surface area for CB particles of a given grade. Here, N550 corresponds to an average surface area of 40-49 m 2 /g and N339 corresponds to the 70-99 m 2 /g range. While N550 and N339 CB have different specific surface area, the morphology of their elementary constituents is similar, mostly made of linear and branched complex aggregates as described in Ref. [START_REF] Donnet | Carbon Black: Science and Technology, Second Edition[END_REF]. Therefore, it can be inferred that if N339 has higher specific surface area but similar morphology compared with N550, then it should be made of smaller primary constituents. This hypothesis has been confirmed by Donnet in Ref. [START_REF] Donnet | Carbon Black: Science and Technology, Second Edition[END_REF] using TEM. We report in Table 2.1 the morphological parameters of filler grades used in [START_REF] Klüppel | Evaluation of viscoelastic master curves of filled elastomers and applications to fracture mechanics[END_REF]. From this data, we can see that N339 particles are indeed two times smaller than N550 particles.

Therefore, filler morphology (here, filler size) can modify the viscoelastic behaviour of the nanocomposite.

Let us mention that a continuous master curve for G and G has been obtained for the data in Fig. 2.5 by using a temperature dependant vertical shift factor. As stated by Klüppel et al. , this vertical shift factor exhibits an Arrhenius dependence in the high temperature range. This indicates that fillers are influencing the macroscopic dynamic behaviour in the low frequency range, which can be associated with a thermally activated mechanism. The failing of TTS on filled nanocomposite has been observed by others [START_REF] Tsagaropoulos | Dynamic Mechanical Study of factor affecting the two Glass Transition Behavior of Filled Polymer. Similarities and differences with Random Ionomers[END_REF] and an analogy with polymer blends has been provided similar to systems with a broad distribution of relaxation times [START_REF] Mujtaba | Detection of surface-immobilized components and their role in viscoelastic reinforcement of rubbersilica nanocomposites[END_REF]. This indicates that fillers can modify substantially the observed polymer dynamics, which impacts strongly the macroscopic viscoelastic properties of the material.

Here, filler size has been identified as a factor inducing non-linearity of the viscoelastic response. Let us identify if this behaviour can be amplified with the filler amount. Because of the failing of TTS on filled nanocomposite, the viscoelastic properties of filled elastomers are usually reported under the evolution of the storage and loss moduli as a function of the temperature, probed at a fixed frequency of about 1 Hz in the linear regime (small deformations of arround 10 -3 ).

As confirmed by a study by Wang et al. , this non-linear behaviour can also be observed on the evolution of the elastic modulus as a function of temperature. In Figure 2.6, the elastic modulus G measured in oscillatory shear in the linear regime as a function of temperature is plotted for a series of Styrene Butadiene Rubber (SBR) filled with various amount of N234 carbon black as reported by Wang in Ref. [START_REF] Wang | Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates[END_REF].

The pure matrix (0 phr) exhibits a sharp decrease of the elastic modulus G with increasing the temperature. When adding as few as 10 phr of carbon black, the elastic modulus is increased by a roughly constant factor over all the temperature domain. This factor corresponds to the reinforcement R defined as the ratio between the elastic modulus of a reinforced sample versus the elastic modulus of the pure matrix

R(T ) = G (φ, T ) G (T ) . (2.5)
This quantity is plotted in Figure 2.7 for the data of Wang. This quantity is around unity for the sample at 10 phr and is mostly constant with the temperature. However, for higher carbon black fractions, the reinforcement R exhibit a peak located around T g + 30 K.

In strongly reinforced systems studied by Payne [START_REF] Payne | Dynamic properties of heat-treated butyl vulcanizates[END_REF], the maximum reinforcement peaked up to 200 in some cases. In the case of model systems with well distributed spherical particles of silica in poly(ethyl acrylate) matrix, R exhibits a narrow peak of magnitude 10 for a volume fraction φ = 0.10 and 60 for a volume fraction φ = 0.16, followed by a steep decrease with increasing temperature [START_REF] Berriot | Gradient of glass transition temperature in filled elastomers[END_REF]. We report in Fig. 2.8 the reinforcement R as a function of the temperature for spherical particles of diameter d = 50 nm embedded in a Poly(Ethyl-Acrylate) matrix with varying volume fraction. The sharp peak in the reinforcement is followed by a slower decrease with temperature that extends up to T g + 100 K at sufficiently high volume fraction.

We have seen so far that adding rigid filler particles in a polymer matrix increases the storage and loss moduli non-linearly. Driver parameters of this increase have been identified. First, the filler volume fraction. The higher the filler volume fraction, the higher the increase in mechanical moduli. Also, the Polymer-Filler interaction (that has been reported here under the perspective of filler surface chemistry) modifies both the filler distribution state in the matrix and the resulting mechanical properties. It is important here to state that the filler distribution results from the polymer-filler interaction, but both filler distribution and polymer-filler interactions drives the mechanical response of a nanocomposite. The results reported here are not sufficient to deconvolute the effects. Finally, for a given filler volume fraction and surface chemistry, filler morphology may give rise to new types of non-linear behaviour. The smaller the primary particles, the higher the increase in mechanical properties. Also, when fillers are sufficiently small, the viscoelastic response of a nanocomposite fails to reduce to a single master curve when using only horizontal shift factor.

Non-Linear, Non-Destructive Regime

The previous section covered the small deformation regime in which the mechanical response is linear with the strain. We address here the mechanical behaviour of filled elastomers subjected to deformations of higher amplitudes. We start by investigating the non-linearities of the Stress-Strain curve of pure elastomers and nanocomposites, and then we focus on the Payne and Mullins effects in filled elastomers.

Non-Linearities of the Stress-Strain Curve

Unfilled elastomers usually exhibit a linear viscoelastic behaviour at shear strains up to 20% [START_REF] Chazeau | Modulus recovery kinetics and other insights into the payne effect for filled elastomers[END_REF]. However, the stress-strain curve is drastically modified when fillers are added.

Let us first focus on the general characteristic of the stress-strain curve. For that matter, data from Kraus [START_REF] Kraus | Structure-Concentration Equivalence in Carbon Black Reinforcement of Elastomers. III. Application to Tensile Strength[END_REF] has been reported in Figure 2.9 for unfilled and filled rubber by various CB. Figure 2.9: Stress vs strain curves for (A) unfilled vulcanizate of an amorphous rubber, (B) same rubber reinforced with strongly bonded carbon black and (C) weakly bonded filler. Data from [START_REF] Kraus | Structure-Concentration Equivalence in Carbon Black Reinforcement of Elastomers. III. Application to Tensile Strength[END_REF].

In Regime (I), the slope of the stress-strain curve decreases with increasing strain. Reinforced rubber exhibit both higher initial modulus as well as higher drop of modulus with increasing the strain. This softening associated with the Payne effect occurs at smaller amplitude than the linear regime limit of pure rubber. The Payne effect will be discussed in §-2.1.3. Regime (II) is predicted from the Theory of Rubber Elasticity. However, a small departure from this ideal behaviour can be observed which corresponds mainly to network defects [START_REF] Mooney | A theory of large elastic deformation[END_REF]. This regime is not a stress plateau or a plastic flow and can be recovered almost completely when the strain is released. This phenomena is accompanied with a hysteresis on the stress-strain curve, meaning that energy has been dissipated during this process. This regime can be associated with Mullins effect described in §-2.1.3.

Regime (III) corresponds to a drastic hardening of the material, where the stress increases rapidly with the strain until rupture. This phenomenon may have multiple origins depending on the considered material. The hardening can be due to strain crystallisation occurring for instance in Natural Rubber or Neoprene. Other materials that do not strain-crystallize, such as Polybutadiene or Styrene-Butadiene Rubber (SBR) also exhibit a hardening for a strain of some hundredth of percent that can be associated to the finite extensibility of the chains of the polymer matrix.

Let us mention that in the curves in Figure 2.9, failure occurs at a strain lower for unfilled rubber than for filled rubber. Here, the main difference between the two reinforced samples is the adhesion between the filler and the matrix. In curve (B), fillers are strongly attached to the matrix whereas in curve (C) fillers are weakly bonded to the matrix. The latter exhibit a higher strain and a smaller stress at break. This will be assessed in §-2.1.4 on the ultimate regime. Double Strain Amplitude

.10: Dynamic storage (Left) and loss modulus (Right) versus strain amplitude Data from ref. [START_REF] Payne | Dynamic properties of heat-treated butyl vulcanizates[END_REF].

Payne Effect

Reinforced nanocomposites exhibit a drop of the storage modulus with increasing the strain amplitude while unfilled elastomers exhibit a constant modulus up to about 20% strain amplitude [START_REF] Chazeau | Modulus recovery kinetics and other insights into the payne effect for filled elastomers[END_REF]. This effect has been extensively studied by Payne [4,[START_REF] Payne | Dynamic properties of heat-treated butyl vulcanizates[END_REF][START_REF] Payne | The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part II[END_REF][START_REF] Payne | A note on the conductivity and modulus of carbon black-loaded rubbers[END_REF] and is usually referred as the Payne Effect.

In Ref [START_REF] Payne | Dynamic properties of heat-treated butyl vulcanizates[END_REF], the viscoelastic behaviour of a heat-treated and a normal compound are studied. The normal compound is in fact a composite made of carbon black added to Butyl rubber and then crosslinked by the addition of sulfur. The heat-treated sample have the elements of the normal compound but a promoting agent and a heat treatment is performed before crosslinking. The promoting agent is a coupling agent that reacts with CB and eases the distribution of the filler during the last milling step.

Payne identified that the normal compound exibited both a drop of the elastic modulus and a peak in the loss modulus with increasing the strain amplitude. In Figure 2.10 is reported the dynamic storage and loss moduli as a function of the strain amplitude for the normal compound with various amount of CB fillers. The higher the volume fraction, the higher the initial storage modulus at low strain amplitude and the sharper the drop of storage modulus with increasing the deformation. Moreover, for a strain about 10 -2 , at which the drop of storage modulus occurs, the loss modulus exhibits a peak whose amplitude also depends on the filler volume fraction.

The drop of elastic modulus can be related to the maximum loss modulus. In fact, all filled elastomers have a maximum loss modulus directly related (in first approximation) to the change in storage modulus between the high and low amplitude regime of the Payne Effect such as represented in Ref. [START_REF] Chazeau | Modulus recovery kinetics and other insights into the payne effect for filled elastomers[END_REF].

In the original study of Payne [START_REF] Payne | Dynamic properties of heat-treated butyl vulcanizates[END_REF], it was shown that adding the coupling agent reduced both the drop of storage modulus and the peak of loss modulus with increasing the strain amplitude.

In fact, this effect has been originally associated with the breakdown of the filler structure [START_REF] Payne | The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part II[END_REF]. Payne identified conductivity drops occurring with modulus drop [START_REF] Payne | A note on the conductivity and modulus of carbon black-loaded rubbers[END_REF][START_REF] Huang | Strain-Dependent Dielectric Behavior of Carbon Black Reinforced Natural Rubber[END_REF] in CB filled rubber, thus confirming that the effect may be triggered by the underlying network structure of fillers in the matrix. However, the drop of elastic modulus is reversible when decreasing the strain amplitude, thus this effect cannot be explained solely by an irreversible breakdown of the filler network.

Kraus proposed a semiquantitative theory of the agglomeration-deagglomeration of particles, considered as the main mechanism by which fillers contribute to energy dissipation in filled rubbers [START_REF] Kraus | Mechanical losses in carbon-black-filled rubbers[END_REF]. Other theories have been developed such as the progressive fractionation of the filler network [START_REF] Witten | Reinforcement of rubber by fractal aggregates[END_REF], filler-polymer-filler networks and transcient networks [START_REF] Drozdov | The payne effect for particle-reinforced elastomers[END_REF].

It has been found that increasing the interaction between the polymer and filler increased the amplitude of the modulus drop in SBR-Silica composites [START_REF] Stöckelhuber | Impact of Filler Surface Modification on Large Scale Mechanics of Styrene Butadiene/Silica Rubber Composites[END_REF]. This supports the idea of the effect of a filler-polymer-filler Relative elastic modulus (G (γ)/G 0 with G 0 measured at γ = 0.005) as a function of the strain amplitude for a system with a homogeneous filler distribution and a system exhibiting partially aggregated filler particles. Data from Ref. [START_REF] Montes | Particles in model filled rubber: dispersion and mechanical properties. The European physical journal[END_REF] network on the mechanical properties of nanocomposites.

Payne has identified the underlying filler network origin of the Payne Effect in an experiment where the distribution state of the filler was not finely controlled. More recently, Berriot et al. [START_REF] Berriot | Gradient of glass transition temperature in filled elastomers[END_REF][START_REF] Berriot | Reinforcement of model filled elastomers: Synthesis and characterization of the dispersion state by SANS measurements[END_REF] have developed model filled rubbers by incorporating spherical silica particles in an Poly(ethyl acrylate) matrix. The diameter of the spherical particles was highly monodispersed, and the synthesis route allowed to tune filler distribution state. Synthesis and dispersion state characterisation have been reported in Ref. [START_REF] Berriot | Reinforcement of model filled elastomers: Synthesis and characterization of the dispersion state by SANS measurements[END_REF] and the effect of the filler dispersion on the Payne effect amplitude has been reported in Ref. [START_REF] Montes | Particles in model filled rubber: dispersion and mechanical properties. The European physical journal[END_REF].

They studied the elastic modulus G during an oscillatory shear of frequency 1 Hz of increasing shear amplitude above the glass transition temperature in the reinforcement regime (T g + 50 K). The elastic modulus of the sample with a good distribution state remained mostly constant for all strains while the sample with a non-homogeneous distribution state exhibited a drop of the elastic modulus of about 20% as reported here in Fig. 2.11. This demonstrates that the amplitude of the Payne effect is related to the distribution state of the filler.

We have seen so far that filler distribution has an impact on the Payne effect amplitude. Filler morphology is also a driver of the effect. Scotti et al. [START_REF] Scotti | Shape controlled spherical (0D) and rod-like (1D) silica nanoparticles in silica/styrene butadiene rubber nanocomposites: Role of the particle morphology on the filler reinforcing effect[END_REF] studied the role of particle morphology on the filler reinforcing effect. They observed a relation between the elastic modulus in the linear regime and the aspect ratio of the fillers. Fillers with higher aspect ratio (small fractal dimension) were related to higher elastic modulus in the linear regime and a higher Payne effect amplitude. It was also found that the dependence on the aspect ratio was highly amplified by increasing the volume fraction of the fillers over 20 phr. They attributed this effect to the formation of a continuous percolating network of nanoparticles connected by thin polymer films and invoked the larger polymer/filler interface for the high aspect-ratio fillers, resulting in a higher interaction strength between the fillers and the matrix.

We need to address here the fact that the viscoelastic testing of the materials is performed in the non-linear regime for high strain amplitude, meaning that for instance the stress response is not sinusoidal. A more detailed analyse of this non-linear mechanical response has been proposed recently [START_REF] Papon | Nonlinear rheology of model filled elastomers[END_REF][START_REF] Papon | Unique Nonlinear Behavior of Nano-Filled Elastomers: From the Onset of Strain Softening to Large Amplitude Shear Deformations[END_REF]. The stress response is in fact not perfectly linear for high strain amplitude, but the energy appearing in higher harmonics of the stress response can be neglected for strains of the order 20-50%. For higher strain amplitudes, the stress response becomes strongly non-linear and two distinct effect may contribute to the Payne Effect. One related to the decrease of the elastic modulus, the other one related to the complex shape of a large amplitude cycle. This will be addressed in the last section of this chapter.

.12: Stress vs Strain curve for a SBR-CB composite at a volume fraction of 50 phr during a uniaxial tension (dashed curve) and during a cyclic uniaxial tension (plain curve) with increasing maximum stretch every 5 cycles. Reproduced from [START_REF] Diani | A review on the Mullins effect[END_REF].

Mullins Effect

A characteristic of filled elastomers is the high value of strain they can sustain before entering in a destructive regime. Meanwhile, for strains larger than 50%, they undergo a non-isotropic softening that can be recovered partially if waiting a sufficient amount of time [START_REF] Bueche | Mullins effect and rubber-filler interaction[END_REF][START_REF] Diani | A review on the Mullins effect[END_REF][START_REF] Harwood | Stress Softening in Natural Rubber Vulcanizates. Part II. Stress Softening Effects in Pure Gum and Filler Loaded Rubbers[END_REF].

The stress versus strain curve for a SBR-CB composite is reported in Fig 2 .12. A cyclic quasi-static uniaxial tension is performed with increasing maximum stretch every 5 cycles. After the first cycle for a given maximum stretch, the material exhibit a smaller modulus with respect to the unstretched sample.

When the loading is released, the remaining strain is very small. Let us introduce two main approaches to this effect.

Bueche [START_REF] Bueche | Mullins effect and rubber-filler interaction[END_REF] explains the stress softening by breakage of chains between fillers, which may be validated by an accoustic study by Godin and coworkers [START_REF] Godin | Acoustic emission potentialities for characterization of Mullins effect in natural rubber materials filled with carbon black[END_REF]. However, this cannot explain the partially reversible nature of the Mullins effect.

Dannenberg [START_REF] Dannenberg | The Effects of Surface Chemical Interactions on the Properties of Filler-Reinforced Rubbers[END_REF] developped an interpretation based on slippage and re-adsorption of chains on the surface of fillers. In this approach, chains can slip, and therefore do not contribute to the macroscopic elasticity of the sample. If waiting a sufficiently long time, and helped with thermal treatments, chains can diffuse back to the surface of the fillers and adsorb back.

A mixed interpretation can be proposed. An irreversible contribution to the effect related to chain breakage and filler reorganisation. And a reversible contribution localised at the polymer-filler interface, that may be related to the dynamic of the polymer near the surface or to complex slippage and adsorption of chains [START_REF] Bueche | Mullins effect and rubber-filler interaction[END_REF][START_REF] Rigbi | Reinforcement of rubber by carbon black[END_REF], or even rigid polymer bridges between fillers [51]

Destructive Regime

We address here only crack propagation in rubber-like materials and in filled rubber. 

Energetical Approach

Fracture Mechanics have been first developed [START_REF] Griffith | The Phenomena of Rupture and Flow in Solids[END_REF] to understand the difference between the measured strength of materials and the one that could be expected from the theoretical calculation of forces between molecules. The determination of the energy required to propagate a crack is the foundation of fracture mechanics. Two important quantities have to be defined first : the energy release rate G and the tear energy Γ.

The energy release rate [START_REF] Griffith | The Phenomena of Rupture and Flow in Solids[END_REF][START_REF] Irwin | Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate[END_REF] G is the amount of potential elastic energy U released during the propagation of a unit crack area A. This quantity writes, per unit of crack length,

G = - ∂U ∂ A , (2.6) 
this expression can be defined for any crack growth behaviour. The tear energy Γ is a material parameter and corresponds to the necessary energy to propagate the crack. When the energy release rate during a test G is lower than or equal to the tear energy Γ, then the crack line is stable with increasing time.

Conversely if G > Γ the crack will grow dramatically and propagate as an opening crack. This approach assumes that no energy dissipation occurs in the sample and that the crack line can freely advance in the sample.

Rubbers are highly dissipative materials and therefore Γ is no longer to be interpreted as a surface freeenergy [START_REF] Rivlin | Rupture of rubber. I. Characteristic energy for tearing[END_REF], but represents more generally the work expended irreversibly per unit of crack growth. It is the combination of chains breaking energy with a dissipative term depending on the temperature T and on the crack growth speed v [START_REF] Maugis | Subcritical crack growth, surface energy, fracture toughness, stick-slip and embrittlement[END_REF][START_REF] Persson | Crack propagation in rubber-like materials[END_REF].

The energy release rate G depends on the geometry of the sample and on crack tip geometry, it can be measured experimentally assuming that the crack tip has been standardized in some specific manner. However, the tear energy Γ is a material parameter. The later depends on temperature and on crack growth speed. The following sections will describe different types of crack growth behaviours and the influence of material parameters on crack propagation.

Mechanisms for Crack Growth in several Failure Mode

Failure in rubber can be assessed by studying tear, fatigue or wear. During a tear experiment, a static load is applied to the sample until failure occurs, the force, the displacement and the position of the crack line are recorded with time. A fatigue study will apply a dynamic loading with a given amplitude, frequency and average value that can evolve during the test. Dynamical modulus (or strain and stress) and the position of the crack line are recorded with time. In wear or abrasion test, an abrading apparatus with controlled frictional forces is used to abrade a sample [START_REF] Mané | A new rotary tribometer to study the wear of reinforced rubber materials[END_REF].

A three step mechanisms for crack growth has been proposed by Le Cam et al. [START_REF] Le Cam | Mechanism of Fatigue Crack Growth in Carbon Black Filled Natural Rubber[END_REF] for Carbon Black filled natural rubber. This mechanism is shown in Figure 2.14. First, cavities form in the matrix close to the crack tip, mostly due to the de-cohesion between the matrix and zinc oxide particles. Those cavities are stretched in the direction of the elongation until they are separated by only a thin membrane of polymer (Fig. 2.14a and b). The second step is the failure of the polymer membrane by tear leading to the coalescence of cavities becoming micro-cracks that propagate perpendicularly to the crack growth direction (Fig. 2.14c). Then, micro-cracks grow until the destruction of the crack tip surface and the crack tip advances by the thickness of initiating cavities and micro-cracks (Fig. 2.14d).

Influence on crack propagation

A review by Mars and Fatemi proposed four general classes of factor affecting the fatigue life of filled rubber [START_REF] Mars | Factors that Affect the Fatigue Life of Rubber: A Literature Survey[END_REF]. Those factors are related to the mechanical load history, to environmental conditions, to the formulation of the compound and to dissipative aspects of the material such as the Mullins Effect.

The addition of rigid fillers in an elastomer induces non-linear dissipative behaviour that improves fatigue [START_REF] Kraus | Structure-Concentration Equivalence in Carbon Black Reinforcement of Elastomers. III. Application to Tensile Strength[END_REF][START_REF] Auer | Factors Affecting Laboratory Cut-Growth Resistance of Cold SBR Tread Stocks[END_REF][START_REF] Dizon | The Effect of Carbon Black Parameters on the Fatigue Life of Filled Rubber Compounds[END_REF][START_REF] Medalia | Effect of Carbon Black on Dynamic Properties of Rubber Vulcanizates[END_REF]. However, this improvement is only valid for small volume fraction and an optimal volume fraction exists [START_REF] Auer | Factors Affecting Laboratory Cut-Growth Resistance of Cold SBR Tread Stocks[END_REF] above which fatigue is drastically reduced. Strain crystallization [START_REF] Lindley | Relation between hysteresis and the dynamic crack growth resistance of natural rubber[END_REF] may be facilitated at crack tip due to local strain amplification [START_REF] Trabelsi | Stress-induced crystallization around a crack tip in natural rubber[END_REF] due to rigid fillers. This effect adds stiffness and hysteresis to the damaging region and thus improves fatigue of strain-crystallizing elastomers.

The filler-polymer interaction is also a parameter that drives the damaging properties of a filled elastomer [START_REF] Medalia | Effect of Carbon Black on Dynamic Properties of Rubber Vulcanizates[END_REF][START_REF] Ansarifar | Reinforcing Effect of Silica and Silane Fillers on the Properties of Some Natural Rubber Vulcanizates[END_REF][START_REF] Menon | Fatigue resistance of silica-filled natural rubber vulcanizates: comparative study of the effect of phosphorylated cardanol prepolymer and a silane coupling agent[END_REF], but it is still not clear whether the interaction or the modified distribution state due to changed interaction is the key parameter. Effect of filler and filler dispersion have been addressed by Bhattacharya et al. [START_REF] Bhattacharya | Tailoring properties of styrene butadiene rubber nanocomposite by various nanofillers and their dispersion[END_REF] using clay, silica, graphite, carbon fiber and carbon black. An attempt at varying the filler dispersion by modifying both the process and the formulation exhibited a modest increase of the tear strength accompanied with a strong increase of the tensile strength.

The effect of filler distribution and morphologies has been addressed for instance in [START_REF] Ramier | Comportement mécanique d'élastomères chargés , Influence de l'adhésion chargepolymère[END_REF]. Damage is reduced when a source of both strength and dissipation is introduced in the material.

More recently, Fayolle [START_REF] Fayolle | Influence de la dispersion de la silice sur les propriétés viscoélastiques et mécaniques des élastomères renforcés[END_REF] shown that increasing the homogeneity of the distribution state of the filler was associated to a slight improvement of damaging behaviour.

Multiscale Structure of Filler in Elastomers

When fillers are dispersed in a matrix, different structures can be obtained. The homogeneity of the microstructure of a system is related to the filler spatial distribution state. It was noticed by Payne [START_REF] Payne | Dynamic properties of heat-treated butyl vulcanizates[END_REF] that a coupling agent between the filler and the matrix was increasing the homogeneity of the micro-structure thus reducing filler structures and the amplitude of the associated non-linear mechanical behaviours. This has been addressed in the previous section.

In this section, we first describe the terminology used to differentiate the structures. We then address selected experimental routes that can modify the filler structure.

General Filler Structures and Shapes

Structure

Commonly used to describe carbon black aggregate morphology, the structure refers to filler shape complexity. A filler with a low structure can be considered as mostly spherical, with a high fractal dimension. On the contrary, a high structure filler has a complex shape that can be characterised by lower fractal exponent. Let us mention that this vocabulary has been introduced before extensive study on the actual filler shape by microscopy or scattering have been performed.

If we consider a filler particle of diameter D made of primary particles of diameter d, the number of primary particles n p it is made with is linked with its diameter D by a power law writing

n p = D d D f (2.7)
with D f the fractal dimension. This is illustrated in Fig. 2.15. Therefore, we will retain that increasing the filler structure is equivalent to decrease filler fractal dimension. Or in other words, for a fixed envelope diameter, increasing the filler structure is equivalent to decrease filler primary particle size.

Filler Shape

Filler shaped may be categorised into classes, pictured in Fig 2 .15 as follows:

1. Spheroidal, the collection of primary particles are closely packed to form an object with spherical symmetry.

2. Ellipsoidal, the collection of primary particles are densely packed but the resulting particle has the shape of an ellipsoid instead of a sphere.

3. Linear, primary particles are arranged in strings forming linear aggregates with an extremely low fractal dimension D f ∼ 1.

4.

Branched, primary particles forms a fractal aggregate with multiple branches.

Filler Distribution and Dispersion

Silica fillers are commercially available as micro-pearl of average size of some hundreds of micrometers.

During the compounding process, those micro-pearls need to be broken down into their elementary constituents that are silica aggregates.

The dispersion state of the filler quantify how well the breaking down of the micro-pearl has been achieved. Perfect Silica dispersion should lead to a relatively small size distribution of the aggregates at the end of the process. This means that all elementary objects (aggregates of primary particles) have been separated. When the micro-pearl is broken down, filler aggregates need to distribute spatially in the matrix. Hence filler distribution state quantifies the homogeneity of the micro-structure, or in other words the homogeneity of the local density in filler particle number in the matrix. We show in Figure 2.16 a schematic representation of both distribution and dispersion.

Therefore, the following terminology is retained:

-Filler Dispersion refers to the distribution of filler aggregate sizes.

-Filler Distribution refers to the spatial distribution. 

Multiscale Structure

Considering that fillers are individual unbreakable objects distributed in the matrix, still a large amount of morphologies can be obtained. For instance, when fillers are distributed in an elastomer, they can easily form a percolative network form some volume percent as demonstrated by the resitivity drop with the filler content in Fig 2 .17.

A complete study of the multiscale structure of fractal aggregates has been provided by Sorensen et al. in Ref. [START_REF] Sorensen | Scaling description of the structure factor of fractal soot composites[END_REF]. In this study, aggregates with a fractal dimension of 1.8 have been studied by light scattering and small-angle x-ray scattering over a wide q range for different packing density. Sorensen et al. provide a full description of the features of the intensity data with scaling arguments thus giving an insight of the different length scales involved in the packing of fractal aggregates.

Using SAXS and TEM, Baeza et al. proposed a complete quantitative model of a large scale filler network [START_REF] Baeza | Multiscale Filler Structure in Simplified Industrial Nanocomposite Silica/SBR Systems Studied by SAXS and TEM[END_REF]. They studied the microstructure of a simplified industrial nanocomposite made of silica filler particles dispersed in a SBR matrix using a mixing process related to tire application. They found small silica aggregates of average diameter 70-80 nm, with a large polydispersity in aggregate size and in aggregation number (15 primary particles, up to 45). Those aggregates were part of a complex large-scale structure made of branches (of only a few aggregates wide) described by a fractal of average dimension 2.4 [START_REF] Baeza | Multiscale Filler Structure in Simplified Industrial Nanocomposite Silica/SBR Systems Studied by SAXS and TEM[END_REF].

The fractal dimension and the width of the branches of the structure are model dependant quantities fitting the SAXS data, and may be discussed. However, the paper by Baeza et al. gives a nice picture of a possible large scale structure encountered in filled elastomers.

Dispersion & Distribution Driving Forces

In industrial filled elastomers, fillers are introduced in the polymer matrix during the mixing procedure.

For the case of silica aggregates, primary particles are aggregated by the mean of covalent interactions forming unbreakable 1 aggregates. Filler aggregates interact through weaker van der Waals forces leading to agglomerates of several micrometers. Industrial silica is delivered as a powder containing filler 1 Considering a reasonable amount of shear stress.

agglomerates of several micrometers. The breaking of the objects should occur during compounding. The question to address here is whether the distribution and dispersion procedure is mechanically or thermodynamically driven.

Let us first suppose that surfaces energies can compete the cohesive forces of a silica agglomerates if the interaction between the matrix and the silica surface is high enough. A thermodynamic equilibrium exists if a configuration of the filler particles results in a minimum of the internal energy U of the system. When starting with a distribution of filler agglomerates, filler particles needs to move around in order to find this local minimum of internal energy. The Stokes-Einstein relation for the diffusion coefficient of a spherical particle of radius a embedded in a fluid of viscosity η at temperature T writes :

D = k B T 6πηa . (2.8)
The diffusion coefficient is related to the average mean squared displacement x 2 /2t = D. Using for the mean squared displacement the size of a filler particles x 2 1/2 = a, one can estimate the self diffusion time t s of a particle in the matrix :

t s = 6πηa 3 k B T . (2.9)
Considering a viscosity of η = 10 4 Pa.s for a typical uncured elastomer melt at a temperature of 400 K and spherical filler of size a = 50 nm, the self diffusion time can be approximated to about 4000 seconds (more than one hour). Thus because of the viscosity of the matrix, the particle self diffusion is low and the displacement of the particles is not driven by the thermodynamic interactions between fillers and between the fillers and the matrix. The most effective contribution is the shear from the mixing process.

It appears that the final distribution and dispersion states of the filler are set during the compounding process [START_REF] Wang | Filler dispersion evolution of acrylonitrilebutadiene rubber/graphite nanocomposites during processing[END_REF]. Edith Peuvrel-Disdier's group [START_REF] Collin | New insights in dispersion mechanisms of carbon black in a polymer matrix under shear by rheo-optics[END_REF] has demonstrated different dispersion mechanisms, depending on the amount of shear stress the matrix can transmit to filler agglomerates. They have shown that the viscosity of the matrix needs to be high enough to transmit to fillers the shear stress necessary to break filler agglomerates apart.

Physical Origin of the Reinforcement

Various interpretations have been proposed to account for the non-linearities induced when nanofillers are introduced in a polymer matrix.

The Geometric Argument

Hydrodynamic Origine

The reinforcing effect of nanofillers can be accounted for by considering a nano-filled elastomer as being a heterogeneous continuous medium. In this approach, a rigid phase is finely dispersed in soft phase leading to a geometric interpretation of the reinforcement.

In the limitation of small volume fraction of rigid particles, Einstein proposed that the viscosity of the mixture was a linear function of the volume fraction of rigid fillers [START_REF] Einstein | Eine neue Bestimmung der Moleküldimensionen[END_REF] :

η = η 0 (1 + 2.5φ) .
(2.10) Smallwood extended the relation for the elastic modulus instead of the viscosity, thus giving a relation for crosslinked polymers [START_REF] Hugh | Limiting Law of the Reinforcement of Rubber[END_REF] :

E = E 0 (1 + 2.5φ) . (2.11)
Let us mention that all the formula given here assume that the elastic modulus of the matrix is many orders of magnitude lower than that of the fillers. Moreover, the matrix is accounted for by a purely incompressible medium. A more general formula has been provided by Christensen [START_REF] Christensen | Mechanics of Composite Materials[END_REF]:

E = E 0 1 - 15(1 -ν m ) 1 - E f E 0 φ 7 -5ν m + 2 (4 -5ν m ) E f E 0 (2.12)
where φ is the volume fraction of the filler, ν m is the Poisson ratio of the matrix. Subscripts f and 0 refers to the fillers and the matrix respectively. With rigid fillers (G f G 0 ) in an incompressible matrix (ν m = 1/2), eq. 2.12 reduces to the Einstein-Smallwood equation [START_REF] Einstein | Eine neue Bestimmung der Moleküldimensionen[END_REF][START_REF] Hugh | Limiting Law of the Reinforcement of Rubber[END_REF].

However, the Smallwood relation still gives a linear relation between the elastic modulus and the volume fraction. Guth and Gold [START_REF] Guth | On the hydrodynamical theory of the viscosity of suspensions[END_REF] proposed to account for filler anisotropy by introducing a filler-shapedependant factor B :

E = E 0 1 + 2.5φ + Bφ 2 .
(2.13)

For instance, B = 14.1 for spherical particles.

Another geometrical interpretation is to consider that filler aggregates have a complex fractal morphology. Because of their branched complex structure, a part of the polymer may be trapped in aggregate branches, and therefore cannot participate to the macroscopic elasticity. This leads to the concept of effective volume fraction for the fillers developed by Medalia [START_REF] Medalia | Effective Degree of Immobilization of Rubber Occluded within Carbon Black Aggregates[END_REF]. Here, the effective volume of a filler particle becomes the volume of filler matter added to the volume of polymer attached in its branches. The polymer trapped in the complex morphology of the aggregate is called occluded polymer. This occluded polymer can also be found when filler particles are very close from each others.

Those phenomenological models accounts for the evolution of the elastic modulus with the filler volume fraction. The evolution of the elastic modulus with increasing the strain amplitude can also be predicted if we assume that filler structure evolves during the deformation.

Contacts in the Filler Network

Kraus proposed that the elastic modulus is set by the number of contacts between filler particles [START_REF] Kraus | Mechanical losses in carbon-black-filled rubbers[END_REF].

Those contacts are broken or reformed during a deformation with an empirical kinetic law, the contact rupture rate. This rate is proportional to the strain and to the number of remaining contacts. In steady state, the average number of contacts during a cycle sets the elastic modulus and the number of broken and reformed contacts sets the dissipative behaviour of the material and thus the loss modulus. The Kraus expression of the strain dependence of the storage modulus G (γ) is as follows :

G (γ) -G ∞ G 0 -G ∞ = 1 1 + (γ/γ c ) 2m , (2.14) 
where m and γ c are fitting parameters whose physical origin is the contact rupture rate kinetics. Material parameters G 0 and G ∞ are the low-and high-strain values for the storage modulus G respectively. The Kraus expression of the strain dependance of the loss modulus is as follows :

G (γ) -G ∞ G m -G ∞ = 2 (γ/γ c ) m 1 + (γ/γ c ) 2m , (2.15) 
with G m and G ∞ the peak and large strain values of G respectively. While the evolution of the elastic modulus with the strain amplitude is well described by the phenomenological Kraus model, the model fails to predict the evolution of the loss modulus with the strain amplitude. One may mention the attempt of Ulmer to extended the Kraus model introducing another dissipative process [START_REF] Ulmer | Strain dependence of dynamic mechanical properties of carbon black-filled rubber compounds[END_REF].

Another approach is related to the fractal nature of the filler network. In this approach, the morphology of the filler network can be described by a power law such as

N = (D/d) D f (2.16)
where N is the number of unbreakable objects of size D made of primary particles of size d. Huber and Vilgis [START_REF] Huber | Universal properties of filled rubbers: Mechanisms for reinforcement on different length scales[END_REF][START_REF] Huber | On the mechanism of hydrodynamic reinforcement in elastic composites[END_REF] proposed that the filler network was progressively fractured during the deformation, and thus D(γ) is a decreasing function of the strain amplitude. Therefore, by introducing a simple rheological model depending on the size D(γ) of the reinforcing objects, the viscoelastic properties can be estimated. Heinrich and Klüppel [START_REF] Heinrich | Recent Advances in the Theory of Filler Networking in Elastomers[END_REF] proposed a similar model based on a different writting of the disordered structure based on the density of rigid percolation path in the sample.

Gerspacher et al. [START_REF] Van De Walle | Modeling carbon black reinforcement in rubber compounds[END_REF] extended this class of geometrical Contact Model by decribing the physics of the broken and reformed bridge between filler particles. This problem is treated by considering two bodies with a van der Walls interaction embedded in a viscous matrix. The macroscopic behaviour of a material can be predicted considering both the distance distribution and the effective interaction between filler particles that the model allows to calculate.

Stress Strain Amplification

A recent review listed different mechanisms for geometric reinforcement based on strain amplification [START_REF] Song | A Guide for Hydrodynamic Reinforcement Effect in Nanoparticle-filled Polymers[END_REF]. Since rigid fillers are not deformed during the macroscopic stretching of the material, the polymer located between filler particles undergoes a higher strain than the macroscopic one. This allows to use a homogenization approach to elucidate the viscoelastic properties of particles embedded in complex fluids such as in Ref. [START_REF] Chateau | Homogenization approach to the behavior of suspensions of noncolloidal particles in yield stress fluids[END_REF] by Ovarlez et al.

Westermann et al. [START_REF] Westermann | Matrix chain deformation in reinforced networks: A SANS approach[END_REF] have shown by SANS measurement of Polystyrene-filled polyisoprene the validity of the strain amplification factor in soft matrices filled with semi-rigid spherical particles in the limitation of the small strain regime. More recently, Botti et al. showed by SANS measurement of partially labelled silica-filled rubbers that the rubbery matrix was not exhibiting overstrain between filler particles [START_REF] Botti | A microscopic look at the reinforcement of silica-filled rubbers[END_REF].

However, these models fail to predict accurately the evolution of the elastic modulus with the temperature, the frequency, nor the increase of the mechanical properties when smaller filler particles are used. Some key ingredient seems to be missing to account for the complex phenomenology of filled elastomers. This missing ingredient is the modification of the dynamic behaviour of the polymer due to the presence of rigid nanosized filler particle.

Entanglement Densities

Polymer chains can interact with filler surface in different ways. For instance, a chain end can form a covalent bonding with the filler surface, leading to an irreversible trapping of the chain end near filler surface. The chain can also interact with filler surface through weaker physical interactions such as van der Waals forces, and therefore chain ends and chains backbone can be temporarily and reversibly adsorbed on the filler surface.

For experimental times of the order of or shorter than the reptation time of the polymer τ rept , entanglements can play the role of equivalent cross-linking junctions. Moreover, chains adsorbed on the filler surface may induce topological constraints with local relaxation time higher than the experimental time, thus appearing as frozen entanglements. Those topological constraints adds to the chemical cross-links building up a trapped defect density ν e . The latter is in fact longer than the real amount of chemical cross-links between polymer chains ν. In this approach, the elastic modulus is of the order G = ν e k B T if probed at characteristic time scales smaller than the relaxation time of the physical interaction between polymer chains and filler surface.

This approach may explain the non-linearity of the elastic modulus with the filler amount and polymerfiller interaction. An extension of this approach assesses the evolution of the viscoelastic properties when increasing the strain amplitude. For instance, Maier & Göritz consider filler-elastomer interaction. When fillers are mixed with elastomers, physical adsorption processes occur at the filler surface, leading to a population of stable cross-link ν st .

The first physical adsorption facilitates other chain contact with contact sites in the neighbourhood. The later can only make weak bonds to the filler surface, which results in an unstable cross-link population ν unst . The apparent mechanical behaviour of the nanocomposite is similar to an elastomer with a cross-link ν eq equals to

ν eq = ν C + ν st + ν unst , (2.17) 
with ν C the elastomer initial chemical cross-link density.

In this formalism, the elastic modulus G can be written as

G = (ν C + ν st + ν unst ) k B T (2.18)
Dissipation would be due to friction between polymer chains and the filler surface. This model describes well the Payne effect on the elastic modulus G (γ) but as some difficulties with G (γ). The Maier-Göritz equation for G (γ) is the following :

G (γ) -G ∞ G 0 -G ∞ = 2α K γ m 1 + (K γ m ) 2 , (2.19) 
with G 0 and G ∞ the low and high strain values of storage modulus G respectively. This models contains three fitting parameters α, K, and m.

It appears for silica concentration lower than the percolation threshold of the filler suggesting another mechanism associated with trapped entanglements [START_REF] Cassagnau | Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state[END_REF]. More complex model base on entanglement of sliding links such as the slip-link model [START_REF] Masnada | Entanglement-induced reinforcement in polymer nanocomposites[END_REF][START_REF] Del Biondo | Numerical study of a slip-link model for polymer melts and nanocomposites[END_REF] have also been proposed. However, a recent study shown that the measured entanglement density is not sufficient to explain the increase of modulus [START_REF] Vieyres | Sulfur-cured natural rubber elastomer networks: Correlating cross-link density, chain orientation, and mechanical response by combined techniques[END_REF][START_REF] Pérez-Aparicio | Reinforcement in natural rubber elastomer nanocomposites: Breakdown of entropic elasticity[END_REF], and the entropic contribution to the elasticity has been measured to remain constant and small for different strain amplitudes.

2.4

The Glassy Bridge Reinforcement Model

Gradient of Glass Transition Temperature at interface

The dynamical properties of polymer chains in a nanofilled elastomer has been measured using solid state NMR [START_REF] Papon | Unique Nonlinear Behavior of Nano-Filled Elastomers: From the Onset of Strain Softening to Large Amplitude Shear Deformations[END_REF][START_REF] Kaufman | Nuclear Magnetic Resonance Study of Rubber-Carbon Black Interactions[END_REF][START_REF] English | Solid-state NMR investigation of the contribution of anisotropic segmental motion to chain dynamics in cis -1, 4-polybutadiene[END_REF][START_REF] Addad | Gel-like behaviour of polybutadiene/carbon black mixtures: n.m.r. and swelling properties[END_REF][START_REF] Litvinov | EPDM -Carbon Black Interactions and the Reinforcement Mechanisms[END_REF][START_REF] Berriot | Filler-elastomer interaction in model filled rubbers, a 1H NMR study[END_REF]. Well above the glass transition temperature, in unfilled rubber, the transverse magnetisation decays monotonically, whereas the one of filled elastomer reveals two components with strongly different decay times. An interpretation of this result is the presence of spatially heterogeneous domains with different chain mobilities.

Assuming that glassy domains are located near filler surfaces and form thin glassy layers, the thickness of this glassy layer has been estimated to be around 2 nm at T g + 80 K [START_REF] Berriot | Filler-elastomer interaction in model filled rubbers, a 1H NMR study[END_REF]. However, this interpretation is model dependent and one could assume that the glassy polymer is in fact located only between neighbouring filler surfaces such as proposed by Gusev [START_REF] Gusev | Micromechanical mechanism of reinforcement and losses in filled rubbers[END_REF]. If the glassy polymer is localised and forms glassy bridges between particles, thickness of the bridges is no more limited to some nanometers far above T g .

In 2001, Long and Lequeux proposed that densities fluctuation in van der Waals liquids were responsible for the spatially heterogeneous dynamics of those materials [7]. The typical length of density fluctuations has been estimated to be around some nanometres (a few monomers) with a weak dependence on the temperature. When the local density is increased with respect to the average density due for instance to a local monomer jump, the local relaxation time gets longer. Based on percolation theory, the viscoelastic behaviour of a volume element will depend on the density of heterogeneities with long relaxation time. If the volume element contains a small amount of slow domains, it will behave like a fluid. On the contrary, Figure 2.18: Elastic modulus G as a function of the temperature measured for a vdW liquid interacting with sliding walls (0.5k B T per monomers), reproduced from [START_REF] Dequidt | Mechanical properties of thin confined polymer films close to the glass transition in the linear regime of deformation: theory and simulations[END_REF].

if the small volume element contains enough slow domains to build a macroscopic slow aggregate, it will behave like a solid. Here, macroscopic refers to a size close to the size of the small volume element itself.

According to Long and Lequeux [7], the size ζ of such macroscopic aggregate of slow domains can be derived from 3D on-lattice percolation ζ = ξ (p cp) -ν with ξ the mesh size, p the fraction of slow domain, p c the percolation threshold of the considered geometry and ν ≈ 0.88. We can assume that a strongly adsorbed thin polymer film of thickness β will appear glassy when it embeds macroscopic slow cluster with a size comparable to its thickness ζ ≈ β, thus leading to a shift of apparent T g for the film writing

ΔT g T g = β z 1/ν , (2.20) 
where β ∼ 1 nm, the equation remaining valid for the case of strongly adsorbed polymer films only. As a result of eq. (2.20), the apparent measured T g in a strongly adsorbed polymer film will increase when probed closer to the rigid surface, and can be written

T g (z) = T g Bulk 1 + β z 1/ν , (2.21) 
as demonstrated in [7] and evidenced by Berriot et al. in Refs [START_REF] Berriot | Gradient of glass transition temperature in filled elastomers[END_REF][START_REF] Berriot | Evidence for the Shift of the Glass Transition near the Particles in Silica-Filled Elastomers[END_REF].

A recent numerical study [START_REF] Dequidt | Mechanical properties of thin confined polymer films close to the glass transition in the linear regime of deformation: theory and simulations[END_REF] extended the Long & Lequeux model [7] by considering a van der Waals liquid confined between rigid walls with which monomers could interact (adsorb). The viscoelastic properties of the vdW liquid has been measured in shear, with the interacting rigid walls remaining parallel and undeformed in the shear geometry. We report in Fig. 2.18 the evolution of the elastic modulus with the temperature for different confinement size (thickness of confined liquid between the walls). When the distance between rigid surface equals the size of some dynamic heterogeneities (the most visible effect is for 3 units of dynamic heterogeneities length), the apparent glass transition is shifted and broadened. Therefore, the elastic modulus of the most confined thin film remains higher even far above the bulk glass transition temperature.

One may notice that the curves in Fig. 2.18 are very similar to the curves observed for reinforced rubber such as reported for instance in Fig. 2.6. The physical interpretation can be summarized as follows:

-when filler particles are close from each other, a macroscopic cluster of slow units can connect filler surfaces when the average slow cluster size has the same order of magnitude as the distance between filler surface ; -when the sample is deformed, the viscoelastic response of the polymer confined between filler surface is driven by the response of percolating slow clusters. Similarly to glassy polymers, the stress stored in a slow cluster connecting two filler particles can facilitate the relaxation of the slow units composing the cluster. In that case, the slow cluster breaks and the local stress decreases to a smaller value.

Slow percolating clusters between filler surface are simply called glassy bridges or rigid bridges between filler particles. We are going to demonstrate that the complex phenomenology of nanofilled elastomers can be accounted for by the Glassy Bridge Reinforcement Model (GBRM) [START_REF] Merabia | A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins Effects)[END_REF] with only physically justified parameters.

Ingredients of the Model

In this section we shall recall the basic ingredients of the physical model originally described in Ref. [START_REF] Merabia | A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins Effects)[END_REF].

As supported by more recent study [START_REF] Dequidt | Mechanical properties of thin confined polymer films close to the glass transition in the linear regime of deformation: theory and simulations[END_REF], the heterogeneous dynamics of the polymer confined between fillers may be at the origin of the reinforcement and of non-linear properties of filled elastomers and nanocomposites.

Confinement Effect on the Polymer

We have shown that the increase of the glass transition temperature of the polymer confined between filler surface has the same origin as the increase of T g in strongly adsorbed polymer thin films [START_REF] Dequidt | Mechanical properties of thin confined polymer films close to the glass transition in the linear regime of deformation: theory and simulations[END_REF]. Thus, this increase can be expressed as a function of the distance z from the filler surface using the relation derived by Long and Lequeux in 2001 [7] :

ΔT g T g = β z 1/ν (2.22)
where the exponent ν is the critical exponent for the 3D correlation length (ν ≈ 0.88 after [START_REF] Stauffer | Scaling theory of percolation clusters[END_REF]) and the parameter β accounts for the strength of the interactions between the polymer and the matrix. The typical value for the interaction parameter is β ∼ 0.1nm [START_REF] Dequidt | Mechanical properties of thin confined polymer films close to the glass transition in the linear regime of deformation: theory and simulations[END_REF] in a system with a moderate interaction between the filler surface and the matrix and β ∼ 1nm -2 nm [6] in a system with strong interactions. The latter value will be used in our simulations.

For the sake of simplicity, we assume from now on that ν = 1 and equation (2.22) thus becomes :

ΔT g T g = β z . ( 2 

.23)

Let us focus on the physical consequences of the parameter β. If the distances between fillers are expressed in filler size, then βT g simply indicates the shift of glass transition temperature at a distance of one filler unit length from the surface of the filler.

We report in Fig. 2.19 the T g shift according to eq. (2.23) as a function of the distance from the filler surface for different values of the parameter β.

In order to compute an order of magnitude for the average shift of T g , let us consider a distribution of fillers in which the closest distance between primary particles is r c . The highest shift is ΔT g = T g (2 β/(r c )) between closest filler particles. Nonetheless, this local shift of T g is not representative of the macroscopic shift of glass transition. Considering that a filler particles contributes to the macroscopic shift of glass transition through confinement effect due to the presence of its n-th first neighbours, one can compute an averaged shift of glass transition ΔT g as the following :

ΔT g = ∞ 0 p(r)ΔT g (r)dr, (2.24) 
introducing the distance distribution p(r) between a particle and its n-th first neighbours. In order to fix the idea, let us consider a flat distribution of the distance between n-th first neighbours defined as p(r) = Θ(rr c )H (r mr)/(r mr c ) with r m the distance of the farthest neighbour and Θ(•) the Heaviside step function [START_REF]Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF] defined as Θ(x) = 1 for x > 0, Θ(x) = 1/2 for x = 0 and Θ(x) = 0 otherwise. This allows us to give an estimate for the shift of T g (2.23) in units of T g as a function of the distance from the filler surface in unit of filler size for different values of the β parameter as indicated in the graph. Dashed grey line corresponds to the shift of T g obtained from eq. (2.22). Dotted line (a) corresponds to a shift of glass transition temperature of 0.1T g (i. e. +21 K for the case of PI) and dotted line (b) corresponds to a shift of glass transition temperature of 0.04T g (i. e. +10 K for the case of PI).

ΔT g = 2 βT g 1 r m -r c ln r m r c (2.
In a distribution of fillers of diameter 40nm [START_REF] Montes | Particles in model filled rubber: dispersion and mechanical properties. The European physical journal[END_REF] at a volume fraction of 20%, the closest approach distance has been found to be around r c ≈ 8 nm [START_REF] Montes | Particles in model filled rubber: dispersion and mechanical properties. The European physical journal[END_REF] in a badly dispersed sample and if we consider that a particle interacts with its ten first neighbours, the farthest of the ten first neighbours is approximately at 30 nm. If the filler population interacts strongly ( β = 1.8 nm) with the matrix (ethylacrylate elastomer T g = 253K), this leads to a maximum shift of glass transition temperature of ΔT g (r c ) ≈ 110K (at 4 nm of the filler surface) and an averaged shift of glass transition temperature ΔT g ≈ 24K. The later, while eventually underestimated due to the assumption of the shape of the distance distribution p(r), is close to experimental observation in Ref. [START_REF] Montes | Particles in model filled rubber: dispersion and mechanical properties. The European physical journal[END_REF].

Note that reducing the volume fraction will drastically increase the distance r m to the farthest of the n-th first neighbours. This will cancel the reinforcement because of the effect on the average shift of glass transition temperature ΔT g (r m → ∞) = 0.

Effect of an Applied Stress

When a reinforced system is strained, the stress is concentrated locally in the confined polymer between filler particles. This rigid polymer is associated to a yield stress σ y that is proportional to the difference between the local T g and the temperature T. The yield stress can be written σ y = K (T g (z) -T ) where T g (z) is the glass transition temperature computed in the previous section and K a parameter that depends on the polymer. This parameter is of the order 10 6 Pa/K typically [START_REF] Monnerie | Deformation, yield and fracture of amorphous polymers: Relation to the secondary transitions[END_REF]. The relation can be rewritten in order to introduce the local T g that depends on the confinement z and on the local stress σ :

T g (z, σ) = T g 1 + β z - σ K . (2.26)
One can estimate the effect of a small deformation on the local glass transition temperature by differentiating the glass transition temperature versus the half surface to surface distance z between fillers. Assuming that dσ ≈ G g d ≈ G g dz/z and differentiating eq. (2.26) leads to:

dT g (z) ≈ - T g β z - G g K dz z . (2.27)
The first term is related to the effect of the drift of particle due to the applied macroscopic deformation. This induces a shift of glass transition of the order 10 2 K per unit of filler particles size. On the other side, the second term is due to the yield stress parameter and induces a drift of the order 10 3 K per unit of filler particles size. From equation (2.27) a macroscopic deformation of 1% would induce a shift of T g due to the drift of particles of around 1K and a shift of Tg due to the yield stress parameter of about 10K. Compared to the shift computed in the previous section, a macroscopic deformation of a few percent (exactly 2% in our example) would compensate the increase of T g due to the confinement.

This effect is comparable to the Payne effect which is a drop of the elastic modulus in the range of a few percent of deformation.

Local relaxation time of the Polymer

Filled elastomers and thermoplastic elastomers exhibit strong non-linear mechanical behaviour. The macroscopic mechanical behaviour can be related to the microscopic mechanism occurring at the scale of the filler. For example, one can define a local dominant relaxation time τ α (r ) that can be defined for any position r of the volume V f occupied by the polymer matrix. We assume that the local dominant relaxation time τ α (r ) of the polymer is bounded by the relaxation time at equilibrium τ WLF (r ) given by the William -Landel -Ferry (WLF) law of the corresponding polymer modified by the local T g (r ) due to interfacial effects. Thus, the relaxation time at equilibrium is given by

log τ WLF (r ) τ g = - C 1 T -T g (r ) C 2 + T -T g (r ) , (2.28) 
where τ g is the relaxation time at T g of the polymer and T is the temperature. C 1 and C 2 are the WLF parameters of the considered polymer.

Due to interfacial effects mentioned above, one can expect that the dominant relaxation time can be several order of magnitude longer in the polymer confined in between filler particles. In fact, when considering the local relaxation time of the polymer midway between two filler surfaces the local T g becomes T g (z) = T g (1 + β/z) when there is no stress between the particles, with z the distance between the considered position and a filler surface. Considering a polymer with a T g = 213K and an interaction parameter β = 1.8nm, when the distance is about z = 5nm (equivalent to a surface to surface distance of 10nm between fillers) and the temperature is T = T g + 60K= 273K, one finds a local relaxation time in the bulk τ WLF (∞) ∼ 10 -2 s while the relaxation time of the polymer confined in between the fillers is of the order τ WLF (z) ∼ 10 7 s.

Thus, in our configuration, the dynamics of the matrix in the nanocomposites is strongly heterogeneous and has a local relaxation time that spans over ten decades.

Before reaching the equilibrium, the local relaxation time depends on the local history and is denoted τ α (r, t) : the polymer exhibits an aging behavior, during which the relaxation time follows the Struik ageing law [START_REF] Struik | Physical Aging in Plastic and other Glassy Materials[END_REF][START_REF] Kovacs | Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory[END_REF][START_REF] Merabia | Heterogeneous dynamics, ageing, and rejuvenating in van der Waals liquids[END_REF] given by τ α ∝ t μ w with t w the waiting time since the last relaxation and an ageing exponent μ ≈ 1. Thus, the evolution of the local relaxation time τ α (r, t) is given by

∂τ α ∂t (r, t) = 1, (2.29) 
while it is by definition bounded by the equilibrium value τ WLF (r ) discussed earlier :

τ α (r, t) ≤ τ WLF (r ).
(2.30) Reproduced from [START_REF] Merabia | A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins Effects)[END_REF].

Equation (2.30) indicates that if the stress would increase (or if the particles would be brought away from each other), the equilibrium relaxation time τ WLF (r ) would drop to a smaller value. We assume that the local relaxation time τ α (r, t) follows the decrease of τ WLF (r ) and then increases progressively again (according to eq. (2.29) on the ageing condition) when the stress decreases (or the filler particles get closer together).

The definition of the relaxation time τ α indicates that at any time, the polymer has a probability for relaxing per unit time dP/dt given by

dP = α dt τ α (t) , (2.31) 
where α is a number of order 1 (but less than 1) that allows the ageing of the local polymer.

Published Results

In the following sections, we recall the main results of the model published so far.

Reinforcement

The work by Merabia et al. focussed on spherical particles randomly distributed in space. In a system filled with spherical particles at a volume fraction φ = 0.40, first the effect of the filler-matrix parameter has been studied. The elastic modulus G has been measured in the linear regime at a frequency of ω = 1 s -1 and a deformation γ 0 = 0.005.

Reinforcement curves are reported in Figure 2.20 as a function of temperature for different values of the β parameter. Both the amplitude of the reinforcement and the temperature range in which it occurs depends on the strength of the interaction between the polymer and the matrix. In fact, for reinforcement parameter β = 0.02 in dimensionless units2 , the reinforcement peak is of the order 100 and spreads up to T g + 60 K only while the reinforcement parameter β = 0.08 allows a reinforcement peak up to 150 spreading up to T g + 200 K.

Therefore, the reinforcement at a given volume fraction is driven by the interaction parameter β.

The elastic modulus as a function of temperature for systems at a fixed interaction parameter β but a varying volume fraction are shown in Fig. 2.21. The higher the volume fraction, the slower the decrease of the elastic modulus with the temperature. However, the curves exhibit a plateau regime for temperatures comprised between T g + 10 K up to T g + 40 K. This non-realistic feature is due to the fact that the strength of rigid units k 0 does not vary with the temperature. In Ref. [START_REF] Merabia | A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins Effects)[END_REF], this constant was indeed set to k 0 = 100k ∞ using a geometric argument.

In fact, the curves in Fig. 2.21 have been obtained using the following recipe :

-G num (T ) is computed by numerical simulation of an oscillatory shear and it is normalised to account for the spring density in the systems; -A purely empiric formula is used in order to describe the elastic modulus G Ref of the pure matrix as a function of the temperature. This formula writes :

log G Ref G g = log G r G g tanh exp T 0 -T ΔT , (2.32) 
where G g and G r are respectively the low and high temperature moduli, ΔT characterizes the width of the glass transition of the pure matrix and T 0 is a temperature close to but not necessarily equal to T g of the pure matrix. -G (T ) of a given system is computed by simply adding the contribution of the rigid bridges provided by the model in G num (T ) to the contribution of the pure matrix G Ref (T ).

This simple recipe remains valid since we assume that the elastic contribution of the rigid units between fillers simply adds to the elastic contribution of the pure matrix independently. However, the strength of the rigid units should increase as temperature decreases, and thus the range of temperature below T g + 50 K is not well described in the numerical implementation used in Ref. [START_REF] Merabia | A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins Effects)[END_REF] in order to solve the GBR model. We will address this issue in Chapter 3 by introducing a temperature and system dependant function for evaluating the strength of rigid bridges in our simulations.

Even if the numerical results exhibit some non-realistic features in the low temperature regime, the Reinforcement curves obtained by the relation

R = G num (T ) + G Ref (T ) G Ref (T ) (2.33)
are very similar to what is obtained experimentally.

Reinforcement curves as a function of temperature for systems presented in Fig. 2.21, at a fixed interaction parameter β but a varying volume fraction are shown in Fig. 2.22.

Decreasing the filler volume fraction results in a narrowing of the temperature range of the reinforcement and in a decrease of the amplitude of the reinforcement peak.

As regards the reinforcement, reducing the strength of the filler-matrix interaction is qualitatively equivalent to reducing the filler volume fraction. Reinforcement extends on a narrower temperature range for less strongly reinforced systems, which corresponds here to either lower volume fraction φ or to lower values of the interaction parameter β.

According to the GBR model, the value of the elastic modulus and therefore the value of the resulting reinforcement depends on clusters of particles connected by rigid (or glassy) bridges. The number of particles of the largest cluster for systems with various volume fraction is reported in Fig. 2.22 as a function of the temperature. The decrease of the mass of the largest glassy cluster is indeed correlated with the decrease of the elastic modulus (or the reinforcement). Even if the largest glassy cluster does not percolate, the reminiscent elastic contribution of isolated glassy clusters allows for reinforcement values around 10.

In this section, we identified two key parameters of the reinforcement that are the filler volume fraction and the filler-matrix interaction introduced in our model through the parameter β. The reinforcement results from the contribution of the rigid skeleton of glassy bridges between filler particles. 

Payne Effect

The elastic modulus G in MPa as a function of the shear amplitude γ at T = T g + 30 K for different volume fractions is reported in Fig. 2.24 (left). This figure demonstrates that the amplitude of the decrease of the elastic modulus with the shear amplitude depends on the filler volume fraction at a given temperature. As a matter of fact, systems exhibiting a high reinforcement as observed in Fig. 2.22 (left) undergo a large decrease of the elastic modulus with the shear amplitude.

The decrease of the elastic modulus G is accompanied with an increase in the loss modulus G and therefore in the energy dissipation of the system. The loss modulus G in MPa and loss angle tan δ as a function of the shear amplitude γ at T = T g + 70 K for different volume fractions is reported in Fig. 2.24 (right). The reinforced systems exhibit a peak in the elastic modulus for strains comprised between 0.01 and 0.1. The amplitude of the peak increases with the filler volume fraction while it spans on a broader range of temperature.

This mechanical behaviour is quantitatively similar to the Payne Effect in filled elastomer and nanocomposite as observed initially by Payne. This can be easily understood by taking into account the distribution of glassy bridges relaxation time and how it is modified by the oscillatory shear of the systems. Indeed, when a system is sheared, the GBR model predicts that rigid bridges storing elastic energy may relax. The dynamic of build, age, and yield of rigid units between fillers can explain the mechanical behaviour observed when increasing the strain amplitude.

The mechanical properties can be explained by the evolution of the distribution of relaxation times during loading, which is the consequence of the local evolution of the glass transition temperature from eq.

(2.26), the WLF law from eq.(2.28) and the ageing relation from eqs. (2.29) and (2.30). Let us define the integrated distribution of relaxation times P (log τ) as the number of glassy springs having a relaxation . The upper dashed curve is the distribtuion at equilibrium (after infinite ageing time) which is taken as the initial distribution of relaxation time in the system, prior to shearing. Reproduced from [START_REF] Merabia | A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins Effects)[END_REF].

time larger than, or equal to τ. This integrated distribution writes

P (log τ) = N s ∞ τ p(τ)dτ, (2.34)
with N s the number of glassy springs in the system and p(τ) the normalised distribution of relaxation times. The later can therefore be written:

p(τ) = - 1 N s τ dP (log τ) d [log τ] , (2.35) 
and is proportional to the derivative of the integrated distribution. Let us mention that in the text, P(log τ) will be written n(τ ≥ τ 0 ) indifferently, as the number of glassy units having a relaxation time higher than τ 0 .

The integrated distribution of relaxation times P (log τ) after an oscillatory shear of various amplitude γ is reported in Fig. 2. [START_REF] Donnet | Carbon Black: Science and Technology, Second Edition[END_REF].

One can see that for very small deformation amplitude, the distribution of breaking times is only slightly altered and remains essentially equal to the equilibrium one. At larger applied strain, the distribution shifts toward smaller time scales.

The shift toward shorter lifetimes results in the lowering of the elastic modulus G and in the appearance of a peak in dissipation G . Indeed, the value of G measured for an amplitude γ is directly related to the fraction of bridges with breaking times comparable or larger than the experimental time scale (here, the period 2π/ω of the oscillatory deformation). The value of G is related to the amount of bridges that build, age and break on the timescale of the applied oscillatory deformation. In fact, both G and G can be estimated considering that rigid bridges are Maxwell elements of relaxation time τ :

G ∝ p(τ) ω 2 τ 2 1 + ω 2 τ 2 dτ, and G ∝ p(τ) ωτ 1 + ω 2 τ 2 dτ, (2.36) 
with ω the pulsation of the oscillatory shear experiment and p (τ) the distribution of relaxation times of the glassy bridges network.

Consider for instance the distribution of breaking times after shearing at the amplitude γ = 0.1. A significant amount of rigid bridges have a relaxation time comprised between 1 and 10 s. This number corresponds to the variation of the integral distribution P (τ). On the time scale of the applied oscillatory deformation, this number corresponds to bridges that build and break during a single cycle. Therefore, they contribute fully to the dissipation and explain the presence of the peaks in G observed in Fig. 2.24 and as well in the experiment described by Payne.

Plasticity and Recovery Behaviour

Rubber-like materials usually exhibit a change in their strength yet after the first loading cycle. This property is the so-called Mullins effect. No general agreement has been found on the physical source of this effect. However, experimental evidences are in favour of a superposition of complex mechanisms [START_REF] Diani | A review on the Mullins effect[END_REF] such as bond rupture, molecule slipping, filler rupture, polymer chain disentanglement and filler-polymer-filler network breakdown.

After the initial deformation and subsequent softening, the initial low amplitude elastic modulus can be recovered at least partially by waiting a sufficient amount of time and, or by thermal treatments [START_REF] Chazeau | Modulus recovery kinetics and other insights into the payne effect for filled elastomers[END_REF].

The plasticity and recovery behaviour of filled elastomers has been studied through the GBR model by Merabia et al. in Ref. [START_REF] Merabia | Unique plastic and recovery behavior of nanofilled elastomers and thermoplastic elastomers (Payne and Mullins effects)[END_REF]. First, an oscillatory deformation of amplitude γ 0 is applied during n cycles. The deformation induces a shift in the distribution of relaxation times towards shorter times. During the n-th cycle, the strain is maintained fixed at the value γ 0 corresponding to the maximum of the cycles as demonstrated in Fig. 2.26 (left). The evolution of the shear stress in the deformed state for different deformation amplitudes is reported in Fig. 2.26 (right). deformed state with a fixed strain γ 0 = 0.06 (left) and γ 0 = 0.12 (right). Reproduced from [START_REF] Merabia | Unique plastic and recovery behavior of nanofilled elastomers and thermoplastic elastomers (Payne and Mullins effects)[END_REF].

After an initial sharp stress relaxation at early time, the stress relaxes slowly toward a non-vanishing value which increases with γ 0 . During this relaxation process, springs that were broken during the initial deformation process rebuild and age progressively as shown in Fig. 2.27.

The non-vanishing value of the stress is due to the elastic energy stored in rigid units that remained unbroken during the initial deformation and in the rubbery springs network. During ageing, new rigid units build between filler particles leading to the progressive emergence of a new configuration of rigid units at equilibrium.

In fact, this leads to a configuration where stretched rubbery and glassy units coexist with glassy units in a new reference state. Therefore, this new rigid network will contribute to the mechanical properties of the system in this deformed state.

We report in Fig. 2.29 the evolution of the systems in the shear stress/shear strain plain during a strain relaxation during which the shape of the system is allowed to changes in order to cancel out the stress. Systems are those which were preliminary allowed to age during a time t w = 10 4 s or 10 5 s at different fixed value of the strain γ 0 . All the systems relaxes to a configuration where the stress vanishes. However, the final strain is non-zero and its value depends on the amount of time the system has been aged. Therefore, the plasticity occurring in the systems is a time dependant mechanisms.

In dense systems filled with spherical beads, the common plasticity mechanisms is particle buckling when the local environment of a particle changes irreversibly due to occluded volume effect. Because of the complex reorganisation in the local environment, the buckled particle is not able to reach back is initial position when the strain is relaxed, even if the system is forced back into its original shape. This is a common mechanism occurring in dense systems [START_REF] Hansen | Theory of Simple Liquids[END_REF].

The second mechanism is the formation of a new configuration of relaxed rigid units between particles. If this network of new rigid units between particles is allowed to age a sufficient amount of time, it becomes strong enough to prevent the original network (made of rigid units and rubbery units) to fully relax. Therefore, this plasticity mechanisms superimpose over particle buckling leading to a non-vanishing value for the final strain that depends on the amount of time the system has been aged.

After systems have relaxed toward a vanishing stress, the initial mechanical properties can be recovered, at least partially.

The corresponding storage moduli, measured after 10 cycles as previously are shown in Fig. 2.30 as a function of the shear amplitude. Clearly, all the systems considered exhibit a Payne effect, that is a drop of the modulus as γ increases. For sufficiently small initial deformation γ 0 ≤ 0.1, the values of the storage moduli in the new state are undistinguishable from those measured in the initial undeformed state. Therefore, the mechanical properties in the deformed state have almost completely recovered. When the initial deformation is larger than 0.1, the amplitude of the Payne Effect decreases, but the curves join in the large amplitude regime. The large amplitude deformation behavior does not depend much on the Particles with which the central particle p can form rigid units with are identified in a reference configuration. When the system is strained, complex reorganisation can lead to a drastic change in the local neighbouring of particle p. Therefore, candidate particles x should bridge with particle p, but the numerical code simply ignore them.

history of the considered sample.

The loss moduli shown in Fig. 2.30 exhibit a peak of dissipation for intermediary strains. If the behaviour are quite similar to the reference state for systems initially deformed less than 0.1, all curves join in the high deformation amplitude regime. Hence, the dissipative properties in the deformed state are the same than those in the undeformed reference state.

Note that a better recovery mechanisms could have been obtained by waiting a longer time in the deformed state. Moreover, we believe that a numerical artefact was preventing the code from discovering new neighbours for the primary particles whose local environment has drastically changed as picture in Fig. 2.31.

Nonetheless, the recovery behaviour presented here is very similar to the one observed by Sternstein and coworkers. In a recent study, Sternstein et al. studied the influence of the mechanical history on the mechanical behaviour of filled elastomers. In particular, they considered the effect of a finite static strain on the storage and loss moduli of their filled systems and have shown that the application of a static strain had no effect on the storage and loss moduli of their samples. In their study, the amplitude of the static strain was at most 0.1, and also the samples had been allowed to equilibrate several hours after the application of a static strain. Experimental evidences reported by Sternstein are therefore in agreement with the simulations reported here.

2.5

Conclusions

In this chapter, we exposed the general phenomenology of filled elastomers. We discussed different physical origin for the increase of the mechanical properties with the addition of small solid particles and we emphasised on the Glassy Bridge Reinforcement Model. The ingredients of the model are occluded volume effects, confinement of the polymer between filler surface, yield stress of the polymer, friction and ageing. We also recalled some published results on how the model has been used so far to study the mechanical properties of filled elastomers.

First of all, the GBR model is able to cover the large phenomenology of filled elastomers in the non-linear non-destructive regime. With its simple ingredients, it covers for instance the following behaviours:

-Reinforcement and how it evolves with temperature, volume fraction or filler-matrix interaction.

-The decrease of the elastic modulus with the strain amplitude, the so-called Payne Effect, is also recovered in quantitative agreement with the literature. An important feature of filled elastomers in tyre industry is the dissipative behaviour of rubber when submitted to oscillatory shear of some percent of deformation. This feature is also reproduced within the model with the dissipation peak observed in the evolution of the loss modulus with increasing the strain amplitude. -The time-dependant non-linear loss of strength subsequent to the first elongation (Mullins Effect)

and the recovery of the initial properties with aging is also embedded in the GBR model, thus giving new insight in the understanding of Plasticity and Recovery Mechanisms in filled elastomers. -Non-linear Rheology such as shear thinning and strain hardening.

Let us recall that in all the previous studies reported here, filler particles were monodispersed spheres distributed randomly in space.

The main objectives of this work are to:

-extend the model in order to account for more realistic filler particles, closer to their experimental and industrial counterparts; -determine whether the distribution state is a first order parameter with regard to reinforcement and Payne effect; -determine whether filler structure is a first order parameter with regard to reinforcement and Payne effect; -study the non-linear behaviour of filled elastomers at higher deformation in the non-destructive regime; -ultimately explore the possibility of using the GBR to study damaging behaviour of filled elastomers.
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Numerical Implementation of the Model

The model introduced in the previous section has been solved numerically using a home made simulation code. This is a non-traditional approach similar to a simplified Dissipative Particle Dynamics scheme. In this chapter, we describe how the key ingredients of the model have been added in this numerical framework. 

Introduction

The typical length of our mesoscale model is the size of a primary particle of Silica of the order 10 nm typically. It is 100 times higher than the typical scale of molecular dynamics and about 10 times higher than more usual Dissipative Particles Dynamics (DPD) simulations. Our model contains occluded volume effects and elasticity. Yet, rigid bridges have a specific dynamic which does not derives from a unique inter-particular potential. Ageing and yielding are the consequence of the underlying dynamics of the confined polymer, and would need a description at the scale of polymer atoms or blobs in order to be modelled using a conventional modelling technique such as DPD or Molecular Dynamics (MD).

At this point, we decided to develop a home made code in order to solve the model without distorting the physics of the model for numerical reasons. We report in this chapter how the basic ingredients of the model have been translated into numerical objects. We report in a second section how the deformable simulation domain is mathematically treated and thereafter how the stress is measured. We conclude this chapter with a discussion on how the numerical quantities can be scaled back to physical quantities. 

Particle Dynamics Methodology

In order to numerically solve the model described before, we have constructed a mesoscale simulation tool where the degrees of freedom are the center of mass and the orientation of the filler aggregates distributed in the matrix. A filler is defined as a rigid set of n p spherical particles. The polymer matrix is accounted for by a hydrodynamic friction on filler particles and the rubbery elasticity by harmonic springs connecting primary particles.

In Section 2.4.2 we considered the relaxation time of the matrix τ α (r ) for any position in the matrix. In order to simplify this picture, we only consider the relaxation time of the polymer confined in between fillers and a rigid bridge will be modelled by a harmonic spring with specific relaxation time (the spring can break) and strength.

While the equations of motion are solved at the scale of the fillers, the forces are only defined between the primary particles that do not belong to the same filler. Forces between primary particles are of two kind. The first category gather elastic forces in order to represent the contribution of the elastomer and the contribution of the rigid bridges between primary particles. The second are repulsion forces between primary particles.

The next section defines the forces that act between primary particles in our simulation.

Coarse Graining of Filler Aggregates

As described in Chapter 2, Fillers such as precipitated silica are a collection of primary particles rigidly aggregated in a nonspherical object. During mechanical loading, we can assume that the filler morphology remains constant : filler aggregates do not break.

We decided to define numerically nonspherical filler aggregate as the collection of rigid primary particles forming a rigid body. This allows us constructing fillers of arbitrary shapes in a simple manner. We represent in Fig. 3.2 the main difference between the previous work done by Merabia et al. [6] and the extension developed during this work. By taking into account the orientation and the morphology of fillers, the distances between fillers becomes widely distributed. This allows obtaining more realistic simulation systems.

The introduction of aggregates defined as a set of spherical subunits increases the complexity of the numerical code. The degrees of freedom become the orientation of the aggregates with respect to a well defined fixed frame in addition to the position of their center of mass.

A popular method is to use Euler angles to handle the degrees of freedom for the solid's orientation in the model volume. However, using Euler angles has two main disadvantages in term of computational efficiency and numerical artefacts :

-The gimbal lock is the loss of a degree of freedom for a particular value of an angle which depends on the chosen parametrisation. For the parametrisation with the set of angles (α, β, γ), respectively constrained in the interval [-π, π], [0, π] and [-π, π], the gimbal lock appears when β = 0. In this situation, changing the value of α has the same effect of changing the value of γ in a way that only the rotation angle α + γ matters, the direction being locked. -Trigonometric functions are intensively used while updating the rotation matrix with Euler angles.

Trigonometric functions are slow to compute compared to basic operations such as addition and multiplication.

Therefore, the orientation is treated numerically using Quaternions. The introduction of Quaternion Arithmetics is provided in Chapter E.

Governing Equations

In this particle dynamics model, filler elastomers and nanocomposites are simulated using a set S of interacting complex particles. Each complex particle represents a filler aggregate which is itself a collection of smaller primary particles. Newton's laws governs the motion of each filler aggregate in a non-inertial scheme. Therefore, solving the equation of motion consists solely in cancelling the total force and total torque acting on each filler aggregate A:

⎧ ⎪ ⎨ ⎪ ⎩ F A = 0 T A = 0 , ∀A ∈ S. (3.1)
Here, F A is the total force acting on aggregate A. It can be written as the sum of all the forces acting on its primary particles:

F A = i ∈ A f i , (3.2) 
where f i is the sum of the forces acting on particle i due to its interaction with neighbouring particles not belonging to the same aggregate. The same can be done for the total torque T A acting on aggregate A:

T A = i ∈ A (r i -R A ) ∧ f i , (3.3) 
where R A is the position of the center of mass of aggregate A and r i is the position of the center of primary particle i belonging to aggregate A.

The force acting on primary particle i writing here f i is the consequence of its interaction with other particles. This force is assumed to be pairwise additive and consists of two part: a semi-conservative force f C i and a dissipative force f D i . Let us mention that compared to a standard Dissipative Particle Dynamics scheme, the missing ingredient here is simply the thermal random force.

The semi-conservative force f C i is a soft interaction between primary particles which represents in our model the elasticity of the matrix (rubbery elasticity (RE) and glassy bridge elasticity (GE)) and filler-filler contact forces modelled by a hard sphere repulsion (HS). Therefore, f C i writes:

f C i = j A f RE ij + f GE ij + f HS ij . (3.4)
The dissipative force f D i represents the effect of viscosity. This force writes for a particle i in aggregate A:

f D i = -ζ j A v i -v j . (3.5) 
However, solving eq. (3.5) would be numerically expensive. The friction force is therefore rewritten in a mean field approximation,

f D i = -ζ (v i -v ∞ ) . (3.6) 
with v ∞ the local mean field velocity.

A detailed discussion of different interactions is given in the following.

Repulsion Forces

We consider in this section the repulsion force f HS ij acting on a particle i. Filler primary particles are rigid spheres modelling Silica beads. It is therefore impossible for them to overlap during our simulations. This behaviour is modelled using a simple repulsive potential between primary particles not belonging to the same filler object. The Hard-Sphere potential between fillers is then approximated by the Repulsive part of a Lennard-Jones (RLJ) potential [START_REF] Allen | [END_REF]. In the previous work the potential had the following form :

V RLJ ij = ε r ij -12 , (3.7) 
where r ij is the center-to-center distance between particles i and j. In this work, we decided to truncate and adjust the potential so that the resulting force cancels for non-overlapping primary particles. Also, during the building procedure, we introduce an additional parameter, r c , which represents the surface-to-surface distance required between primary particles for the repulsion force to cancel. This parameter is set to r c = 0 after systems are equilibrated and before any simulations.

Therefore, the Shifted-Force Potential (SFP) [START_REF] Allen | [END_REF] has been chosen. This potential writes

V SFP ij = ε ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ d ij r ij d ij -12 - d ij + r c d ij -12 + 12 r ij -d ij + r c d ij + r c d ij -13⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , (3.8) 
where

d ij = (d i + d j )/2
is the equivalent diameter for a given pair of particles i and j. The resulting force acting on particle i is f HS ij and derives from the potential given in Eq. (3.8). This force is a central force acting along the center of the primary particles i and j in the direction rij , defined as the unit vector joining the center of particle i towards the center of j. According to our conventions, the force writes :

f HS ij = -∇V SFP ij = 12 ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ r ij d ij -13 - d ij + r c d ij -13⎤ ⎥ ⎥ ⎥ ⎥ ⎦ rij . (3.9)
When a system is equilibrated at a volume fraction φ, the long ranged repulsion is removed (r c = 0), and only the repulsion caused by particle overlapping remains during the subsequent simulations. Let us mention that the SFP potential used in this work is equivalent to the RLJ potential used in previous studies with r c → ∞ and d ij = 1. This modification ensures that V SFP ij is differentiable for all values of r ij and especially for r ij = d ij + r c . Therefore, the derived force is a continuous function of the center to center distance.

The Shifted-Force Potential used in this work is shown as a function of the center-to-center distance in Fig. 3.3. This formulation ensures that the derived force is a continuous function of the center-to-center distance. However, the force is not differentiable for r ij = d ij + r c , but this will not induce numerical instabilities in our model. Also, the exponent in eq (3.9) is 13. It is a high value and could require a very small time-step in order to prevent numerical instabilities.
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Mapping between a polymer matrix element and an equivalent spring connecting two filler particles i and j.

Elasticity of the Matrix

In order to represent the elasticity of the matrix, a permanent network of springs is connected between primary particles. We approximate the elastic behaviour of the rubbery matrix by harmonic springs. Let us discuss how to map the strength of a harmonic spring on the elastic modulus of the matrix element it represents.

The size of a primary particle is not a constant of our model. The harmonic spring between two particles represents the local force the matrix would sustain. Let us consider a small volume element in the polymer comprised between two filler surface. The initial length of the matrix element between fillers is h 0 . Due to fillers relative displacement, the length h 0 becomes h, which corresponds to a local deformation l = (hh 0 )/h 0 . From Hooks law, the polymer element undergoes a local stress in the direction of deformation writing:

σ = G l , (3.10) 
with G the elastic modulus of the polymer element.

Let us estimate the equivalent force by considering as a surface a disk of diameter d perpendicular to the line joining the center of particle i and j and located in between. The surface of the disk is

πd 2 /4 ≈ d 2 .
Therefore, the equivalent local force writes in this case:

f = d 2 G l = d 2 G h -h 0 h 0 . (3.11) 
The local force in eq. (3.11) is similar to the one of a harmonic spring connecting tangentially particle i and j with a strength k writing:

k = d 2 G h 0 , (3.12) 
with a rest length h 0 that becomes h due to the deformation.

Therefore, it is shown from eq. (3.12) that the strength of a spring needs to be defined locally in a simulation when the size of the primary particles is distributed. As a result, the local force between two primary particles i and j is computed by:

f RE ij (t) = -k ∞ ij r ij (t) -r ij (0) , (3.13) 
where r ij is the center to center vector from particle i to particle j taken at time t or at the equilibrium for t = 0. The strength is a pair-wise constant and writes: In our dimensionless model, the elastic modulus of the matrix G r sets the unit of modulus and is replaced by k ∞ = 1. In order to be specific, we assume that this corresponds to a value of G r = 10 6 Pa in the following.

k ∞ ij = d i + d j 2 4h 0 G r (3.
The beads are connected up to a connectivity of n c = 10 springs per bead. Since the number of springs depends on the choice of n c and on the number of primary particles of a filler aggregate, the numerical stress computed in the system will be normalised accordingly.

The strong assumption that the elastomer matrix behaves as an harmonic springs will be satisfying in the limit of small deformations of a few percents. It is possible to waive this limitation by introducing a FENE [START_REF] Kremer | Dynamics of entangled linear polymer melts: A molecular-dynamics simulation[END_REF] like interaction modelled by an inverse Langevin function. The use of permanent harmonic springs also implies that both matrix and fillers are strongly attached and the polymer will remain undamaged between fillers during our simulations.

Elasticity of Rigid Bridges

In addition to the permanent spring network modelling the matrix, two neighbouring particles can interact with a harmonic spring corresponding to a rigid bridge. These springs have finite lifetimes, and they break and rebuild permanently when the distance and local stress between the particles is sufficiently low. This network models the contribution of rigid bridges between fillers and the strength of the network depends on the temperature and on the morphology of the systems.

The local strength of the bridges needs to be investigated. Dequidt et al. [START_REF] Dequidt | Mechanical properties of thin confined polymer films close to the glass transition in the linear regime of deformation: theory and simulations[END_REF] showed that the strength of the confined polymer was related to the number of rigid subunits forming percolating path between two rigid surfaces. Therefore, the local strength writes G = Σ(T )G g with Σ(T ) being equivalent to a volume fraction of rigid dynamical heterogeneities that goes from Σ = 1 for T = T g down to Σ ∼ 10 -2 far from T g , thus corresponding to the volume fraction of a single percolating path between two rigid surface.

Since we are not aiming at representing the physics of the glass transition of the elastomer at the scale of the dynamical heterogeneities, we consider that Σ(T ) represents the fraction of the polymer matrix affected by interfacial effects such that the local T g > T.

Let Λ i (u) = |r i -u|d i /2 the distance between a position u of the volume occupied by the matrix in the simulation domain and the surface of the primary particle i whose center is

r i . Let Λ(u) = min(Λ i (u))
the shortest distance between the position and the surface of all the primary particles of the domain. We represent the definition of Λ(u) in Fig. 3.5. We can use equation (2.22) in order to compute the local T g at u:

T g (u) = T g 1 + β Λ(u) . (3.15)
If T -T g (u) < 0 the position u is considered to be glassy. Using the Heaviside step function [START_REF]Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF] Θ(x), one can write the actual fraction of glassy polymer. It is the volume average over the simulation domain :

Σ(T ) = 1 V V f du Θ T g 1 + β Λ(u) -T . (3.16)
From the definition, Σ(T ) is a decreasing function of the temperature and goes from 1 -φ for T ≤ T Bulk g to zero for T T Bulk g . Let us mention that if a glassy bridge connects two particles, this means that at least one percolating path of slow dynamical heterogeneities connects two filler surface. Therefore, Σ(T ) should not be smaller than the fraction of a single path of dynamical heterogeneities between two particles. The typical size of a dynamical heterogeneity is around 3 nm [7] which is ten time smaller than typical filler particles. Therefore, we bound the function so that Σ(T ) > 10 -2 . This preliminary discussion allows us to identify the strength of the rigid bridges that connect particles being G ∼ ΣG g . Translating this behaviour into the strength of the spring connecting two primary particles, the local strength of a rigid bridge can be written:

k 0 = Σ(T )G g G r k ∞ . (3.17) 
Therefore, the force due to rigid bridges reads:

f ij = k 0 ij r ij (t) -r ij (t l ) , (3.18) 
with the reference state r ij (t l ) corresponding to the configuration of the system when the last bridge breaking occurred at time t l .

A breaking event (or yield) occurs according to a probability dP = ατ/dt. The coefficient α is a parameter smaller than one, and the lifetime of the spring τ is the results of the dynamical evolution calculated according to eq. (2.26), the WLF law from eq.(2.28) and the ageing relation from eqs. (2.29) and (2.30). This allows us to take the local history into account in a simple manner. When breaking occurs, the elastic energy stored in the spring is lost, the force drops down to zero.

According to our model, the strength and number of glassy springs decrease with increasing the temperature, as is has been represented in Fig. 3.6.

Dissipation

As mentioned earlier, the dissipative force f D i represents the effect of viscosity and it is computed in a mean field approximation by the following equation:

f D i = -ζ i (v i -v ∞ ) . (3.19)
The value of v ∞ with respect to the affine deformation of the simulation domain is provided by eq. 3.37 later in the text. Let us first discuss in details the value of parameter ζ. The friction parameter is calibrated according to a dissipation mechanism due to the shearing of polymer layers in between filler particles, after that eventual rigid bridges have yielded. In this regime, rheology experiments have shown that the stress η γ is of order a few 10 MPa [START_REF] Ward | Review: The yield behaviour of polymers[END_REF]. The viscosity depends slightly on the shear rate logarithmically.

Increasing Temperature In the regime of interest, the macroscopic strain rate is of order γ ≈ 0.1, the local strain rate is amplified by an amplification factor a and the fraction of rigid units taking part in this mechanism can be estimated using the function Σ previously defined. The local viscous stress is thus σ ≈ a Σ η γ.

The viscous stress due to the dissipative force in eq. (3.6) writes

ζ (v i -v j )/d 2 = ζ γ/d
where d is the filler diameter or the typical distance between fillers. Therefore, the friction coefficient can be mapped to the viscous dissipation and writes, in units of rubbery elastic modulus:

ζ i = d i Σ γη γG r (3.20) 
Let us call ζ 0 = γη/ γG r . At a strain rate γ = 0.1 s -1 , assuming γη = 10 7 Pa and G g = 10 6 Pa, ζ 0 ≈ 100 s.

The friction coefficient however depends on the dimensionless size of the considered primary particle and on the Σ function that is comprised between 1 and 10 -2 .

In this work, primary particles are part of rigid aggregates. The dissipation is in fact computed at the scale of an aggregate.

Let us compute the total dissipative force F (D) and torque T (D) acting on an aggregate due to the friction force from eq. (3.6) acting on its primary particles.

It is shown in Chapter D that the total force and total torque acting on an aggregate A can be written:

⎧ ⎪ ⎨ ⎪ ⎩ F (D) A = -ζ num A,Trans (v A -v ∞ ) T (D) A = -ζ num A,Rot (ω A -ω ∞ ) (3.21)
with v A and ω A the velocity and angular velocity of aggregate A respectively and v ∞ and ω ∞ the local mean field velocity and the local mean field angular velocity surrounding aggregate A, respectively.

For the case of a complex aggregate made of primary particles of size d, the numerical translational and rotational friction parameters are related to the friction on a single primary particle by

ζ num A,Trans = n p ζ and ζ num A,Rot = n p R 2 g ζ, with ζ = d i Σ(T )ζ 0 . The coefficient ζ num A,Trans = n p ζ = n p d i Σ(T )ζ 0 scales with n p d i
, the number of primary particle and the size of a primary particle. Assuming the fractal dimension is

D f ≈ 2, then n p ≈ D 2 /d 2 . Therefore, ζ num A,Trans
scales with D 2 /d. When the envelope size of the filler is fixed D = 1, the quantity scales with 1/d the diameter of a primary particle. 

= 100Σ(T ) s Coefficient β 2 nm 0.030 Coefficient K 10 6 Pa/K 0.01 K -1 Coefficient α 0.4
The sum of elastic forces acting on an aggregate are n c n p f , with n c the connectivity per primary particles, n p the number of particles in the aggregate and f the force of a spring, that can be approximated f ≈ kh 0 ε with k the local strength, k = d 2 /h 0 ≈ d with h 0 the same order of d. The macroscopic relaxation time of such object can be written

τ m = ζ/k. This relaxation time writes τ m ≈ 1/n c n p d 2 . Assuming the fractal dimension is D f ≈ 2, n p ≈ d -2 and therefore τ m ≈ 1/n c is a constant when D is fixed.
This assumes however that the size of the constituting primary particles is constant, that the hydrodynamic friction does not depend on the position of the particle in the aggregate and that the aggregate is sufficiently spherical. This writing therefore would fail for highly anisotropic aggregates.

Parameters of the Simulations

The parameters and the corresponding values used in the simulations are summarized in Table 3.1.

Solving the Equation Of Motion

As mentioned above, we consider here over-damped dynamic, and the equations of motion are therefore non-inertial. The dynamic is performed at the scale of an aggregate, whose degrees of freedom are the position and their rotation with respect to a fixed world frame.

The total force acting on aggregate F A can be written

F A = F (D) A + i ∈ A f i , (3.22) 
where F (D) A is the hydrodynamic friction acting on the aggregate and f i is the sum of the forces acting on particle i due to its interaction with neighbouring particles not belonging to the same aggregate. The same can be done for the total torque acting on aggregate A

T A = T (D) A + i ∈ A x i ∧ f i , (3.23) 
where T (D) A is the hydrodynamic friction torque acting on aggregate A. The force f i is the sum of the forces acting on particle i whose relative position with respect to the center of mass of the aggregate is x i .

Because equations of motion are non-inertial, solving the equation of motion consist solely in solving

⎧ ⎪ ⎨ ⎪ ⎩ F A = 0 T A = 0 . (3.24) 
which corresponds to the following equation for the velocity of A :

V A = v ∞ + 1 ζ num A,Trans i ∈ A f i , (3.25) 
and the following for the angular velocity of A :

Ω A = ω ∞ + 1 ζ num A,Rot i ∈ A x i ∧ f i .
(3.26)

3.4

The simulation domain

Standard molecular dynamics simulation or dissipative particle dynamics simulation is built upon an orthogonal unit cell which can be reduced to a cube. However, we need to deform the unit-cell in order to reproduce what happens during a mechanical test. This sections describes the parameters defining the so-called deformable unit-cell and how transformations are performed.

Transformation of the unit-cell

Let consider a material point X i expressed in the reference configuration E at time t 0 that undergoes an affine transformation towards a new configuration E at time t. The position x i of this material point in the new configuration E can be written

x i = φ i (X, t 0 , t). (3.27)
A small displacement dX i in E defined at position X i can be approximated by the following :

φ i (X + dX, t 0 , t) = φ i (X, t 0 , t) + ∂φ i (X, t 0 , t) ∂ X j dX j (3.28)
The deformation gradient tensor F ij is then introduced and writes

F ij = ∂φ i (X i , t 0 , t) ∂ X j (3.29)
This is illustrated in Fig. 3.7.

When the transformation is homogeneous, the function φ is a constant for any position X i and can simply write φ(t 0 , t). The Taylor expansion derived in Eq. 3.28 becomes valid for any displacement dX and the deformation gradient can therefore be used to find the position in the deformed configuration E from any position in E :

x i (t) = F ij (t)X j , (3.30) 
where

F ij (t 0 ) ≡ δ ij and hence x i (t 0 ) ≡ X i .
The Green-Lagrange strain tensor E ij is related to the deformation gradient and is defined by

E ij = 1 2 F ki F k j -δ ij . (3.31) 
It represents the deformation state with respect to the reference configuration E. In the deformed configuration E , the Euler-Almansi A ij strain tensor is used instead. A ij writes :

A ij = 1 2 1 -F -1 ki F -1 k j . (3.32)
The small strain deformation tensor ij writes ij =

1 2 F ij + F ji -2δ ij . (3.33) 
While the simulation program extensively relies on the definition of F ij , the small strain deformation tensor will be used in the following.

Deformation Rate

In a previous section, we defined dissipative forces acting on primary particles in a mean field approach using v ∞ . Let us derive the relation between the mean field velocity and the deformation gradient F. The simulation domain can be deformed at any time. Therefore, F at time t can be transformed in a new deformation state into F at t + dt by performing an elementary transformation dΓ. By making a first order Taylor approximation of the time evolution of the deformation gradient of the body,

F ij (t + dt) = F ij (t) + Ḟij (t)dt. (3.34)
with Ḟij the time derivative of the deformation gradient. During elementary time increment dt a small transformation dΓ occurs, and therefore the previous equation can be written in term of a product of matrices, writting

F ij (t + dt) = dΓ il F l j (t). (3.35) 
Equalling 3.34 with 3.35 leads to an expression of the small transformation dΓ :

dΓ il F l j (t) = F ij (t) + Ḟij (t)dt = F ij (t) + dt Ḟik (t) F -1 kl (t) F l j (t) = δ il + dt Ḟik (t) F -1 kl (t) F l j (t)
Hence, the expression of dΓ can be identified from the previous development, leading to the following relation which implies the time dependence of the terms to reduce the verbiage :

dΓ ij = δ ij + dt Ḟik F -1 k j , Ḟij = dΓ ik -δ ik dt F k j (3.36)
During this body deformation, particles contained in the unit-cell are following the affine transformation dΓ. Hence, if x(t) is the position of a given particle in the frame E (t) before the elementary transformation, it becomes x(t + dt) in the frame E (t + dt) written :

x i (t + dt) = dΓ il x l (t) = δ il + dt Ḟik F -1 kl x l (t) = x i (t) + dt Ḟik F -1 kl x l (t).
Therefore, the Lagrangian velocity field emanating from a transformation associated with a time derivative of a deformation gradient Ḟij is

∂ x i ∂t = Ḟij F -1 kl x l . (3.37) 
This velocity will be used for the mean field velocity (V ∞ ) in the hydrodynamic friction force defined previously. We recall also that the local mean field angular velocity was required to compute the local friction. Hence, from general mechanics, the local vorticity ω of a velocity field can be expressed

ω = ∇ ∧ V ∞ , (3.38) 
and it is twice the local mean field angular velocity, therefore ω ∞ = ω/2.

Common mechanical test

In our numerical framework, the deformation of the system is represented through the transformation F which is the deformation gradient in the system. During a mechanical test, the deformation gradients evolves with time according to a given deformation.

In order to deform the system, the numerical framework requires the user to provide the time derivative of the deformation gradient Ḟij .

Shear

Let us consider that a shear deformation (3.8) is applied to a simulation box in an initial reference state. Therefore, at t = 0,

F ij (0) = δ ij .
In order to be specific, we consider here a shear experiment performed along e 1 . The shear rate of the experiment is γ, meaning that during each time step, the system is sheared by a small increment dγ = γdt, the associated small transformation matrix dΓ transforming the system from state E (t) into state E (t + dt) is thus expressed with respect to the initial configuration E (0) This means that at time t + dt, the deformation gradient matrix writes

dΓ E (0) = 1 dγ 0 0 1 0 0 0 1 .
F ij (t + dt) = dΓ ik F k j (t).
The transformation matrix (ndt) can be expressed in term of n product with the small deformation matrix

F (ndt) = (dΓ) n F (0)
And the time derivative of the transformation matrix can be computed as :

dF dt = 0 γ 0 0 0 0 0 0 0 .
Let us compute the velocity field :

v ∞ ∂ x ∂t = dF dt F -1 x = 0 γ 0 0 0 0 0 0 0 . 1 -ndγ 0 0 1 0 0 0 1 . x y z = γy 0 0
and the angular velocity :

ω ∞ = 1 2 ∇ ∧ ∂ x dt = 1 2 0 0 -γ
which leads to small rotation along êz of angle -dγ/2 at each time step. The cumulated affine rotation at the end of the transformation up to a pure shear γ is then of angle -γ/2. If γ = 1, then the total affine rotation is of angle -.5 rad around êz .

Dynamic Mechanical Analysis

The characterisation of the viscoelasticity behaviour of the simulated system is performed with an oscillatory rheological test [START_REF] Ferry | Viscoelastic Properties of Polymers[END_REF] based on the same principle as those used on real systems.

A sinusoidal deformation is applied through the deformation gradient tensor F that implies a non-zero velocity mean field (computed from Ḟ during de transformation).

The particles follows an affine displacement until interactions and spring forces counteract this movement.

In the theory of viscoelasticity, a stress increment relaxes during time through a deformation with a delay depending on the relaxation time of the system. Hence the time evolution of strain γ(t) and stress σ(t)

will be expressed mathematically

γ(t) = γ 0 sin(ω 0 t), (3.39) σ(t) = σ 0 sin(ω 0 t + δ). (3.40)
To find the modulus G (ω 0 ) and G (ω 0 ) in the frequency domain using the constitutive relation

σ(ω 0 ) = (G (ω 0 ) + iG (ω 0 )) γ(ω 0 ), (3.41) 
the Fourier transform of both σ(t) and γ(t) have to be found. Since they are combination of sines and cosines, the calculation is straightforward. However, attention should be paid to the sign of the quantities to prevent absurd numerical results.

The Fourier transform1 of σ(t) and γ(t) are given by

σ(ω) = σ 0 sin δ 2 (δ(ω + ω 0 ) + δ(ω -ω 0 )) - σ 0 cos δ 2 i (δ(ω + ω 0 ) -δ(ω -ω 0 )) , (3.43) 
γ(ω) = - γ 0 2 i (δ(ω + ω 0 ) -δ(ω -ω 0 )) . (3.44) 
Taking ω = ω 0 , and solving 3.41 for G and G leads to

G = Im(σ(ω 0 )) γ 0 and G = - Re(σ(ω 0 )) γ 0 .
(3.45)

Periodic boundary conditions

Periodic boundary conditions [START_REF] Allen | [END_REF][START_REF] Born | Über Schwingungen in Raumgittern (The Distribution of the Proper Periods of a Point Grating)[END_REF] allow overcoming surface effects by considering an infinite lattice built upon the replicated parallelepiped unit cell as shown for a two dimensional cell in Figure 3.9. The restriction of those conditions is that the cell dimension has to be more twice the longest interaction which may not be really restrictive in our simulation as the longest range is a few unit sizes.

When a particle moves out of the unit-cell, it is relocated in the unit-cell at the opposite boundary. In practice, the particles are never explicitly "folded" back into the unit-cell.

In the Minimum Image Convention (MIC) the joining vector of a pair of particles m and n writes R * m mn , where the superscript * m indicates that this joining vector has been computed with respect to the bead m. Introducing the floor function x [START_REF]Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF] as the largest integer less than or equal to x, the α-th component of R * m mn is computed by:

R * m mnα = R mnα -L α R mnα L α , (3.46) 
with the L α the size of the parallelepipedic unit cell in direction α.

When considering only joining vectors between pairs of particles, this notation may seems superfluous because the joining vector computed with respect to bead m or bead n are always the same

R * m mn = -R * n nm . (3.47)
However, a bead m may interact with particle n or with one of its replica. Therefore, when considering the interaction between two particles, the absolute position of a bead may depend on the location original bead. Two particles in a unit-cell with periodic boundary conditions are represented in Figure 3.10. The absolute position of particle m and n are R m and R n respectively. As mentioned above, the joining vector between particles m and n using the MIC does not depend on the reference bead and therefore R * m mn = -R * n nm is valid. However, the absolute position of bead n is the position of bead n (image of n) in the MIC with respect to m. This absolute position writes R * m n .
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3.6

Stress

The stress in our simulations needs to be computed. A measure of mechanical stress on the scale of fillers is given by Virial stress. Based on the derivation of Virial stress for athermal particles as provided in Ref. [START_REF] Doi | The theory of polymer dynamics[END_REF], we have calculated the formula for the stress in a system where applies the periodic boundary conditions.

The stress in our simulations is therefore computed using the following formula:

σ αβ = 1 2 1 V m,n f mnα r * m mnβ . (3.48)
where f mn is the sum of the pair-wise forces between primary particles m and n and r * m mnβ is the center to center vector joining particle m and n in the minimal image convention due to periodic boundary conditions, taken with respect to particle m.

3.7

Scaling to Physical Quantities

Length Scale

In [START_REF] Merabia | A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins Effects)[END_REF], the unit of length was the size of a filler particle, thus leading to a straightforward mapping to physical quantities. In this work, we have kept this definition, meaning that in a system made of spherical particles of diameter D = 1 (and d = 1), the particle size sets the unit of length in the system.

In this work, a filler of envelope diameter D = 1 arbitrarily sets the unit of length and corresponds to a filler of size D = 60 nm. The diameter of primary particles will change and will be smaller than D. Latter in the text, the length will be expressed in dimensionless unit relative to D. When a unit of length is missing, it is implied that it is relative to D.

Temperature Scale

In our model, the temperature scale is related to the reinforcement parameter β. This parameter appears in the shift of glass transition

T g (z) -T g B T g B = β z , (3.49) 
which is used in the definition of the WLF equation with respect to the WLF parameters of the matrix studied, T g , C 1 and C 2 . Therefore, quantity of interest is T -T g relative to the WLF parameter of the matrix, in order to be general.

What matters for the computation of the relaxation time of a glassy bridge unit is the value of T -T g (z, σ) in eq. 2.28, which rewrites according to eq. (3.49) when the stress σ = 0

(T -T g (z, σ = 0)) = T -T g B 1 + β z (3.50)
Therefore, doubling the value of the interaction parameter β is physically equivalent of considering fillers whose physical size is twice smaller than the reference, since it will result in the same shift of T g .

Stress Scale

The stress in our simulation is estimated using a Virial approximation given for instance in eq. (3.48). This numeric value is directly proportional to the number of springs between primary particles, their strength and the volume of the domain. Therefore, in order to map the numerical stress in physical units such as Pascals, a normalising recipe needs to be introduced.

This recipe is of major concern since it has been used to scale our numerical results to physical quantities in order to compare more easily our simulations with experiments. In this section, we derive the normalising factor used to normalise the numerical results in order to map to a stress with physical units. In our implementation of the model, the Virial stress scales with the number of springs, their strength and the volume of a system, such as

σ (num) ∝ n s Fl V . (3.51)
The force of a single spring can be estimated

F = k (l -l 0 ) = k l 0 with k = d 2 /h 0 ≈ d the local strength.
The total number of springs n s writes n s = n c n p N with n c the connectivity, n p the number of primary particles per aggregate and N the number of aggregates. Also, the length of a spring l depends on the deformation and can write l = l 0 (1 + ). By injecting the latter in eq. (3.51) leads to

σ (num) ∝ N n c n p (dl 0 )l 0 (1 + ) V . (3.52)
With l 0 the same order of magnitude of d, and as introduced before n p d 2 ≈ 1, the stress, in unit of the elastic modulus of the rubbery matrix, is in fact proportional to Nn c /V . The results are therefore normalised by V /Nn c in order for them to be compared.

Time Scale

The unit of time arise from the friction parameter ζ that induces a macroscopic relaxation time of the form τ m = ζ/k. We have seen before that this quantity is roughly constant when the filler size D is fixed.

At high temperature, when considering a distribution of spherical particles of diameter D, this quantity is of the order τ m ≈ 1 s. Therefore, the unit of time is τ m in our systems, close to the equivalent physical unit of time.

3.8

Conclusions

We have presented in this part how the physical model had been translated into a numerical code. A Silica filler is modelled by a rigid collection of hard sphere primary particles. The elasticity of the matrix is modelled by harmonic springs and the elasticity of rigid bridges are modelled through harmonic springs that can break. In this non-conservative scheme, the elastic energy stored in a rigid spring that breaks is lost in the process.

The numerical code allows performing mechanical deformations while measuring the stress in the sample. This is a versatile implementation that can be used to study a large variety of deformations, even nonorthogonal unit cells.

In this model, the unit of length is the size of a filler particle, the unit of time is the relaxation time of the matrix at high temperature, and the unit of stress is the elastic modulus of the rubbery matrix. The temperature scale is imposed by the WLF parameters of the considered matrix and by its glass transition temperature.

This model is going to be used in order to study the viscoelastic properties of systems filled with different loading of particles while varying their distribution state and morphology.

Introduction

In Chapter 2, the difference between distribution and the dispersion of the filler has been described. Let us just recall that Silica fillers are commercially available as micro-pearl of average size of some hundredth of micrometers. During the compounding process, those micro-pearls need to be broken down to their elementary constituents that are silica aggregates. The dispersion state of the filler quantifies how well the broken down of the micro-pearl has been achieved. Perfect silica dispersion should lead to a relatively small size distribution of the aggregates at the end of the process.

When the micro-pearl is broken down, filler aggregate needs to distribute spatially in the matrix. Hence filler distribution state quantifies the homogeneity of the micro-structure, or in other words the homogeneity of the local density in filler particle number in the matrix.

In this chapter we focus on the effect of the distribution state of fillers on the mechanical properties of the nano-composite. We assume that we start from an ideal situation where fillers have been totally dispersed. Therefore, a simulation system will be made of only one kind of constituents, spherical particles with a fixed diameter D = 1 in dimensionless units.

In order to build simulation systems that share a similar micro-structure with their experimental counterparts, one needs to understand what is a realistic distribution state and what characterises a homogeneous distribution state. In the first section of this chapter, the filler distribution state of a model nanocomposite is studied using small angle scattering and a reverse Monte-Carlo method. In a second section, a numerical method that allows the construction of systems with different distribution state is described. We use the latter to study the effect of filler distribution on the mechanical properties of filled elastomers using the model presented in § 2.4 and Chap. 3 that we have extended during this work.

Experimental Distributions

In this section, an experimental model system is studied. It is assumed that this system exhibits the features of industrially processed samples since the compounding process has been chosen to be very similar to the industrial one. Moreover, this system exhibits a homogeneous micro-structure when characterised by microscopy, and the most homogeneous micro-structure available by industrial compounding techniques to the date.

We study the microstructure using a reverse Monte-Carlo technique on small angle X-Ray scattering data. This technique does not allow to recreate the original filler configuration. However, by performing the Monte-Carlo method on various initial configurations, we are able to identify various features giving a good picture of how the fillers are distributed in space in the sample.

This approach gives rise to a question. While the microstructure of the sample appears to be very homogeneous when studied by microscopy, the reverse Monte-Carlo method shows that the microstructure exhibits very short distances between particles. We know from studies on model systems [START_REF] Berriot | Evidence for the Shift of the Glass Transition near the Particles in Silica-Filled Elastomers[END_REF] that a homogeneous distribution state exhibited the structure of a system with repulsive interactions with a well defined first distance approach. Therefore, this part questions the following assumption:

-A heterogeneous distribution exhibits particles that are extremely close, and can form in certain cases aggregates. -A homogeneous distribution contains fillers that are well separated from each-others.

Experimental Model Systems

Silica particles of size 50 nm have been synthesized by Solvay to provide the European project Comp-NanoComp with model filled elastomers. In this context, a remarkable level of filler distribution has been obtained.

Spherical particles have been obtained starting from a Silica soil (Klebosol 30R25) acting as silica germs and grown by adding silicate precursors while controlling silicate throughput, pH and temperature in order to have a good control of average size, size distribution and morphology of particles. A mixing protocol similar to the industrial one has been chosen. The highly monodispersed Silica is mixed in an Internal Mixer with the elastomer, a coupling agent such as silanes, and other agents (anti-oxidation agents, and activators like ZnO and stearic acid) at a temperature T = 140 °C. We report in Figure 4.1 a SEM picture of the filler distribution state obtained after the described experimental procedure. This picture clearly demonstrates that spherical particles are well dispersed (no aggregation of spherical particles is found) and that the distribution state is homogeneous, except for minor heterogeneities of some particle diameter only. In fact, we recognize that there is a large domain with a number density of particles close to zero. However, the relative size of this domain is small compared to the continuous domain with a constant particle density.

Small angle X-Ray scattering has been used to characterise the distribution of spherical particles. The scattered intensity as a function of the scattering vector q is reported in Figure 4.2 for the experimental system. Since the sample holds a distribution of highly mono-disperse spherical particles, the filler form factor can be easily computed knowing the size distribution of the particles.

The scattered intensity from a collection of similar objects can be written as

I (q) = N V 2 p | ρ 2 | S(q) P(q), (4.1)
where N is the number density of fillers, V p is the volume of a filler object, ρ 2 is the contrast factor in the system, S(q) is the structure factor describing how these objects are arranged in space and P(q) the form factor of individual objects. When the length scale is smaller than particles size, or if particle positions are uncorrelated (for instance in a dilute system), this factor tends to 1 and the scattered intensity is proportional to the form factor P(q).

When particles in the system are polydisperse spheres, an equivalent form factor P(q) can be evaluated by smearing the form factor P(q, d) of a sphere of diameter d with a suitable particle size distribution A(d).

The averaged equivalent form factor writes

V 2 p P(q) = ∞ 0 V 2 p (d) P(q, d) A(d) dd, (4.2) 
with the form factor a spherical particle of diameter d being

P(q, d) = sin qd/2 -qd/2 cos qd/2 qd/2 3 2 . (4.3)
By performing the small angle scattering of such particles at a very low volume fraction, the diluted system approximation [START_REF] Higgins | Polymers and neutron scattering[END_REF] gives S(q) ∼ 1 and the suitable particle size distribution can be fitted from the scattering intensity.

On the system we are studying, it was found that a Log-Normal distribution was the best fitting distribution of particles. The Log-Normal distribution A(d) for the diameter of the particles d writes

A(d) = 1 β √ 2π exp - (ln(d) -α) 2 2 β 2 , ( 4.4) 
the parameters are obtained by looking at the SAXS results for a diluted solution of the spherical particles of average radius estimated to be d ≈ 48.6 nm and read α ≈ 3.9431 and β ≈ 0.0836. Such a distribution is reported in Figure 4.3. This has been used to compute the Fitted P(q) in Fig. 4.2.

At this point, we have identified the filler form factor P(q). In order study filler structure, we need to study the structure factor S(q). First, using the size distribution of particles as shown in Fig. 4.3, systems are going to be randomly constructed at the volume fraction of the experiment (φ ≈ 0.18). Secondly, using the Experimental I(q) Fitted P(q) q-range of interest = distribution state Porod Regime = Filler Shape SAXS results in Fig. 4.2, and most importantly the structure factor S(q) deconvolved by knowing the form factor P(q), a 3D distribution of spherical particles is going to be generated using a Reverse Monte Carlo method.

Reverse Monte Carlo Method

Our aim is to generate a collection of systems having the same evolution of their scattered intensity with respect to the scattering vector q as the system presented before. The technique will be a Reverse Monte-Carlo method adapted from Oberdisse et al. [START_REF] Oberdisse | Structure of interacting aggregates of silica nanoparticles in a polymer matrix: Small-angle scattering and Reverse Monte-Carlo simulations[END_REF] that as been used in other studies such as [START_REF] Papon | Dynamique dans les élastomères renforcés et conséquences[END_REF].

Given the computational power available nowadays, we are able to work with systems filled with a high number of filler particles ≈ 10 4 . By increasing the number of filler particles, the size of the simulation domain increases, thus giving access to lower and lower q. While this method was usually limited to the study of the interaction of a single particle with its closer neighbours, by using a sufficiently optimised numerical algorithm, we can have access to the structure in larger length scales.

Description of the Method

The method we have implemented is as follows:

1. An initial configuration of N spheres is introduced in a simulation box a volume fraction φ. This results in a simulation box of dimension L = (N π/6φ) 1/3 that sets the lowest accessible q = 2π/L. The size distribution that has been experimentally measured is applied to the distribution of particles. This results in a small increase of the total volume fraction.

2. The initial position of the particles is adjusted so that no particle overlaps in the initial configuration.

3. The scattered intensity I Sim is computed using the methods described more precisely in § B.3.

4. The deviation between experimental and predicted scattering is determined with the computation of the cost function ψ.

5.

A subset of n particles are moved randomly.

6. The change in the cost function Δ ψ due to last step random jumps is computed 7. The step is accepted or discarded using a Boltzmann criterion of the form exp(-βΔ ψ) with a specific temperature β. If the step is discared, then the subset of n particles are moved back to their previous location.

8. The procedure goes back to step (5) and steps (5-7) are repeated a large number of times. 9. When the cost function ψ is sufficiently small, the method is stopped and the current configuration of filler is saved.

This simple numerical method requires well defined and chosen cost function and parameters. We describe in the following how those parameters has been selected.

To start with, we define a pseudo energy that is related to the quality of the fit. This pseudo energy is non-zero until the experimental curve and the simulation curve join:

ψ = 1 N e N e k=1 log I Sim,k -log I Exp,k 2 σ 2 , ( 4.5) 
where N e is the number of experimental points, I Sim and I Exp are the scattered intensity obtained by numerical simulation and during the experiment respectively and σ corresponds to the precision of the measurement. In a logarithmic scale, the absolute difference between experimental points and simulation points are about 0.5 per points for an initial random distribution of spherical particles. Therefore, the quantity log (I Sim )log I Exp 2 is about 0.25 per points at the beginning of the simulation.

We consider that the fit is acceptable when the difference between experimental data and simulation is less than 0.05 per points. Therefore, we want the quantity log (I Sim )log I Exp 2 to be about 0.002 per points at the end of the RMC procedure. When the RMC procedure is successful, the cost-function should have a magnitude of around 1. Thus, we set the constant σ which is a precision parameter such that 1/σ 2 = 400, hence σ = 0.0025.

During the RMC procedure, a new configuration that decreases the quality of the fit can be accepted. However, this can be tolerated only a small amount of time. We assume that the difference in logarithmic scale between experimental points and simulation point can increase of 0.01 with a probability of 0.4. Therefore, considering the value from σ and the previous conditions implying that p(Δ ψ = 0.04) = 0.4 leads to a value for the temperature of the RMC procedure which is β = 23.

As the spherical particles are impenetrable spheres modelling the behaviour of silica particles, an overlapping pseudo-energy is added through the quantity ε defined as:

ε = κ i, j i Θ d i + d j -2 r ij (4.6)
with r ij the center to center distance between a pair of particle i and j, and d i , d j , the diameter of the particles i and j respectively. The value for the parameter κ will be set so that the probability of accepting overlapping is very low, of order ∼ 10 -5 .

This allows for the definition of a total cost function as

U U = ψ + ε, (4.7) 
Hence, at each step n, the variation on the cost function U of a Monte-Carlo move is computed with

δU n = U n -U n-1 .
The move is accepted with a Boltzmann probability exp (-βδU n ) with β the temperature of the Monte-Carlo system.

In order to get a probability of overlapping of the order ∼ 10 -5 , the parameter κ is set to 0.5.

The numerical values for the parameters of the RMC procedure are shown in Table 4.1.

Figure 4.4 shows a comparison of the scattered intensity between the experimental system and the simulation results for initial and final configuration. A good agreement is observed between the experimental system and the simulated one in a wide q-range after 3 × 10 4 MC steps typically. We conclude here that the parameters of the method have been chosen in a way that the method can converge easily. The inset provides a representation of the error between the the computed scattering intensity and the experimental one. A good agreement is observed between the experimental system and the simulated one in all the q-range after 3 × 10 4 MC steps typically. 
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Validation on Different Initial Configurations

In order to ensure the repeatability of the RMC procedure, a large number of initial configurations were built.

All simulations contain 10000 particles at an initial volume fraction of around 18%. We created 10 systems with a different initial seed for the pseudorandom number generator used in the study. Then, a repulsion potential has been applied to the particles and the forces has been relaxed in the systems for a different amount of time. This procedure allows to generate for each random distribution (obtained for a given random seed) systems in 9 different initial configuration in a very simple way.

The initial and final values for the cost function can be seen in fig. 4.5(a). The initial configuration induces a variation of the cost function that does not alter the final state after the RMC procedure. As expected, after 30000 RMC steps the final value for the cost functions is of order 1 for all the simulated systems.

The evolution of the cost function during the simulation run can be found in fig. 4.5(b). It shows a decay during the first 20000 steps until an equilibrium is found around 30k steps. During all the run, the acceptance rate is found to be around 10%.

Not only we are sure that the method allows to reconstruct systems that do not have the memory of their initial configuration. Moreover, we have constructed a large amount of systems.

At this point, the systems will be used to study how fillers organise in space.

Distances Between Objects

Distances between a filler and its neighbour is the key driver of the reinforcement as stated in Chapter 2.4. Distances can be approached in different ways.

For instance, the radial pair distribution function g(r) of a system is the probability of finding two particles at a distance r in the simulation divided by the probability of finding two particles at this distance in a perfectly random distribution of particles. Therefore, it highlights the order and the interaction between the particles.

The pair distribution function of a system can be shown in fig. 4.6. The particles can come very close from each other with a first neighbour peak at a center-to-center distance close to 1 (50 nm) which corresponds to the diameter of a particle. Note that the size distribution of the filler has to be taken into account in order to study the distances in the simulation samples. In fact, the radial pair distribution function g(r) as in fig. 4.6 shows some distances less than 1 that are not to be mistaken as overlapping pairs of particles. It is only the results of particles with diameter smaller than one that are close from each-others.

In the approximation of a dilute system, the pair correlation function can be related to the potential of mean forces w(r) between the particles by the relation :

g(r) = exp - w(r) k B T . (4.8)
Hence, the potential of mean forces w(r) in fig. 4.6 shows an attractive regime in a corona of size 0.5D L ≈ 25 nm around the particles. However, one has to be cautious since the systems are not quite equilibrated nor diluted and the polymer around the particles interplays with the inter-particles interaction.

The pair distribution function g(r) of Fig. 4.6 was not sufficient to elucidate the surface-to-surface distances between the particles in our system.

Increasing h Therefore, one can study the first-neighbour distance distribution by taking only the surface-to-surface distance (h) between the objects. This quantity is shown in fig. 4.7 (Left). It reveals that most of the particles have their closest neighbour around 0.1 (≈ 5 nm). This evidences that particles tend to be very close from each other. This behaviour can be explained by predominant attractive interactions in the system due to the interactions between fillers particles.

From this study, one can conclude that particles usually have a first neighbours at a distance less than 10 nm. The pair correlation function indicates that some of then are almost in contact. This shows that a system that appears to be homogeneous as for instance in the picture given in Fig. 4.1, may contains particles that are close from each other. This means that in that kind of system, particles are randomly distributed, nothing prevents them to get into contact.

Cluster of particles

In order to identify the structures created by the set of almost-in-contact spherical particles, we introduce a notion of pseudo clusters. Two Particles belong to the same cluster their surfaces are closer than a certain distance parameter h. We give a visual representation of the method in Fig. 4.8 in order to fix the idea.

The mass m of a pseudo cluster is then defined as the number of particles belonging to the cluster. A relevant quantification of clusters masses and their distribution in the systems is the second moment of the mass distribution defined as

m = m 2 n(m) mn(m) , (4.9) 
with m the mass of a cluster and n(m) the number of clusters of mass m.

Fig. 4.9 shows the evolution of the average mass with the distance parameter h. We compare in the figure the cluster mass evolution for the initial configuration, after 10 4 steps and at the end of the RMC procedure. Particles distances are shifted toward smaller values during the RMC procedure. From the curves it is clear that the initial configuration does not impact the final configuration.

For small h, the average mass of the clusters is 1, each cluster contains only one single particle. When h increases, the average cluster mass increases drastically. When all the particles belongs to the same cluster, the average mass of the cluster is simply the number of primary particles in the system. We see here that approximately all the particles in the systems belong to the same object if the distance parameter is higher than 0.03 ≈ 1.5 nm. In other words: all particles have at least a neighbour closer than 1.5 nm.

The average cluster mass in Fig. 4.9 does not exactly equal the total number of particles in the simulations, which is in agreement with previous results showing that a limited number of particles have only distant neighbours.

Local Volume Fraction

Voronoi Tesselation has been used for instance by Dalmas et al. [START_REF] Dalmas | 3D Dispersion of Spherical Silica Nanoparticles in Polymer Nanocomposites: A Quantitative Study by Electron Tomography[END_REF] in order to assess the homogeneity of the distribution of fillers in numerical systems constructed by tomography. Voronoi Tesselation is a way of dividing space into Voronoi Cells containing only one spherical particle each. These cells can be described by their volume and their number of edges.

When considering spherical particles, the volume of the enclosing Voronoi cell can be used to estimate the local volume fraction, being simply the ratio of the volume of the particle versus the volume of the cell. The number of cell edges can be used to estimate the number of close neighbours of the enclosed spherical particle. In other words, it gives a simple estimate of how many particles sees the enclosed particle.

As mentioned earlier, This method has been used in Ref. [START_REF] Dalmas | 3D Dispersion of Spherical Silica Nanoparticles in Polymer Nanocomposites: A Quantitative Study by Electron Tomography[END_REF] where they found in the distribution of number of faces two distinct populations of particles (one population with a relatively low number of faces and one with a relatively high number of faces). The same bimodal distribution was found for the distribution of local volume fraction. This argument was used in order to demonstrate the inhomogeneity of the distribution of fillers in space, and therefore to assess the homogeneity of the filler distribution state in their samples.

Voronoi Tesselation has been applied to our samples using an open-source library provided in Ref. [START_REF] Rycroft | VORO++: A three-dimensional Voronoi cell library in C++[END_REF]. We report in Figure 4.10 the distribution of face number and local volume fraction for our systems constructed by RMC. A large distribution of number of faces per Voronoi cell is found. However, the distribution is not bimodal and only one population of Voronoi cells with around 15 faces is found instead.

The local volume fraction is computed as the ratio of the volume of a particle with respect to the volume of its Voronoi Cell. This quantity (fig. 4.10) also shows only one population centred at a local volume fraction of around 0.19. Therefore, even if the local volume fraction spans from 0.1 to 0.3, the shape of the distribution indicates only one population of Voronoi Cells. Using the argument from Ref. [START_REF] Dalmas | 3D Dispersion of Spherical Silica Nanoparticles in Polymer Nanocomposites: A Quantitative Study by Electron Tomography[END_REF], we can conclude here that the micro-structure is homogeneous since we are not in presence of heterogeneous domains in term of particle number density at the size of the fillers.

We demonstrate here that the local volume fraction is distributed. A question is whether the local volume fraction of two adjacent Voronoi Cells are correlated or not. In fact, the system could exhibit some heterogeneities at the scale of several Voronoi Cells (which is the scale of several filler particles). The study of the spatial distribution of the local volume fraction has not been performed during this work.

Outcome of this Study

In this section, we have developed a reverse Monte-Carlo method in order to recreate the 3D distribution of spherical particles embedded in a polymer matrix using structural informations provided by Small Angle Neutron Scattering. This method has been tested on numerous initial configurations in order to ensure that the resulting systems were not keeping a memory of their initial configuration.

Very small distances between filler particles have been identified in the systems. In fact,we have found that all the particles have at least a neighbour closer than 2 nm.

We also studied the local environment of the particles by Voronoi tesselation in order to estimate the number of neighbours per particles and the local volume fraction. Both quantities are normally distributed (around 15 neighbours and a volume fraction of around φ = 0.19). We concluded therefore that the microstructure is homogeneous in the sample.

As a conclusion, we have found that this model sample exhibits a homogeneous micro-structure as pictured by microscopy (Fig. 4.1) while the micro-structure obtained by the quantitative Reverse Monte Carlo study shows a more complex picture: closest neighbours gives proof that particles can be very close from each others while the distribution of the local volume fraction does not exhibit the presence of independent clusters.

A way to understand this non-trivial spatial distribution is to consider that this sample is the snapshot of an out-of-equilibrium distribution of particles. And therefore, homogeneous dispersion (no aggregation) does not ensure that particles are nicely arranged in a crystalline structure, or at least identically far from each other.

This study allowed us to get a good picture of what an industrial distribution state might be. We will show in the next section that this distribution state differs from the model distribution obtained for instance by Berriot et al. [START_REF] Berriot | Evidence for the Shift of the Glass Transition near the Particles in Silica-Filled Elastomers[END_REF]. 

Creating Controlled Distribution State

We have shown in a previous section that the definition of the distribution state can be subjective in some case. Depending on the interaction between particles, several distribution state can be obtained. For instance, for hard disks in a plane, the position of the particles can be set randomly, distant by a small amount or in a lattice, as represented in Fig. 4.11. Also, a random distribution of spherical particles may appear correlated if only a thin section of the distribution is considered (for TEM microscopy).

In Chapter 2.4, we have introduced a repulsion force between filler particles defined with a parameter r c such that the force cancels when two filler particles have a center to center distance greater than their diameter plus r c . This parameter r c is set to 0 when the system are equilibrated. Let us discuss the general procedure for building the systems before equilibrium.

First, filler aggregates are introduced in a large simulation domain with a random position and orientation with respect to the simulation domain. At this point, the size of the domain is set so that when all the fillers are introduced, the volume fraction is of the order 10 -5 . Then, the repulsion force is applied with a non-zero r c parameter between the particles and the system is isostatically compressed while relaxing the repulsion forces between objects. This method is similar to the Lubachevsky Stillinger algorithm [START_REF] Lubachevsky | Geometric properties of random disk packings[END_REF]. I the LS algorithm, instead of compressing the simulation box, the size of the filler is increased.

Our strategy here is to modify the non-physical parameter r c which is the range of the repulsion potential between fillers applied during the construction of the systems in order to determine if it can be used to tailor the distribution state of the particles. Comparing with Fig. 4.11, our aim here is to find intermediary state between a small range correlated systems (heterogeneous) and a large range correlated systems close to a periodic system. However, it will not be possible to construct perfectly random systems by using this method. Those systems will be compared to the experimental system described in the previous section and to the model ones obtained by Berriot et al. .

Comparison with Experimental Data

Study of the distribution state is performed via simulation of Small Angle Neutron Scattering (SANS) using the method described in § B.2. We report the total scattered intensity in Figure 4.12 for systems filled with spherical particles at a filler volume fraction φ = 0.20 and constructed with a varying r c parameter.

Since we consider a distribution of spherical particles with a diameter D = 1, fillers form factor P(q) can be easily calculated.

Oscillations of the sphere form factor appears strongly in the high-q regime for any value of the parameter r c . However, the behaviour changes drastically in the low-q regime when comparing systems constructed with different r c values. For a parameter r c ≥ 0.2D, a maximum in the scattered intensity appears and its position and amplitude varies with increasing the parameter r c . In fact, its q-position decreases with increasing r c and its amplitude increases with increasing q. The structure factor of systems made with a varying parameter r c exhibits the same characteristic as the structure factors obtained for experimental systems at different distribution states.

First of all, the experimental aggregated system in the insert of Fig. 4.13 exhibits an increase of S(q) for low and decreasing wave vectors. This follows an exponent of around ∼ -0.5 which corresponds to the response of fractal very open aggregates [START_REF] Montes | Particles in model filled rubber: dispersion and mechanical properties. The European physical journal[END_REF]. Since the computation of the structure factor is limited at low q by the size of our simulation boxes L (q min ∼ 2π/L), we cannot attribute the small increase of the structure factor with decreasing q to the large scale aggregation of fillers. We would need simulations of bigger size in order to conclude on this point.

Nevertheless, the second important feature of the structure factor is the position of the first peak. This first peak corresponds to the distance between first neighbours and using the Percus-Yevick approximation in the case of the well distributed sample, this peak corresponds to a first approach distance of about 0.36D.

We reproduce this characteristic in our simulation by setting a screening for the repulsion potential to r c = 0.400D. The experimental aggregated sample of Berriot et al. presents a first peak at around qR ≈ 3.1, thus corresponding to a first approach distance of about 0.1D. We approximately reproduce the relative position of the peak in our system by setting a screening for the repulsion potential to r c = 0.1D. 

Microscopy

In Figure 4.14 we report the simulated TEM picture of our systems with a varying distribution state parameter r c . In order to produce those pictures, a slice of thickness D has been extracted from the simulation domains, and only the particles whose center of mass lied in the slice were kept. This inhomogeneous micro-structure appears only in our simulated TEM picture and it is due to the fact that particles whose center of mass does not lie in the slice are excluded.

In Figure 4.15, we report the simulated SEM picture of our systems in the same conditions. More details about this procedure are provided in Chapter A. Aggregation of filler particles decreases with increasing the distribution state parameter. The heterogeneity of the micro-structure that can be characterized by the presence of domains with lower filler density seems to vanish completely for distribution state parameter r c = 0.6D.

A critical behaviour seems to appear for a value of the distribution state parameter r c comprised between 0.3 and 0.4. This critical behaviour can be explained by the following. The statistical surface-to-surface distance between spherical filler particles of diameter D = 1 can be estimated for a volume fraction φ as:

h = π 6φ 1/3 -1. (4.10) 
In our simulations, with a volume fraction φ = 0.2, this distance becomes h = 0.38D. In fact, this corresponds to the distance at which the distribution state seems to improve drastically for r c ∼ h.

Let us mention that according to Fig 4 .15, the system with distribution state parameter r c = 0.6D exhibits a nicely organised structure similar to hexagonal close packing. Such an organised system is not typical of nano-filled elastomers. Therefore, systems with distribution state parameter r c > 0.4D will be considered as not realistic since they exhibit a highly ordered microstructure. Similarly, systems with distribution state parameter r c < 0.1D will be considered carefully since they contain very small distances between primary particles. We assume here that the polymer confined to such thicknesses would not be correctly modelled by a harmonic springs for such small distances.

As a conclusion, this discussion demonstrates that setting the range of a repulsive interaction between particles while constructing a system allows to reproduce realistic dispersion states for the fillers close filler particles in space. From now on, a system constructed with a repulsive potential r c = 0.4D will be associated to a system with a homogeneous distribution state and systems with a repulsive potential r c = 0.1D will be associated to a system with a heterogeneous filler distribution state.

4.4

Results and Discussions

Reinforcement

The elastic modulus G measured at small shear amplitude (γ = 5 × 10 -3 ) at a frequency ω = 6.28 rad/s is plotted in Figure 4.17 volume fraction φ = 0.20 built using a screening parameter r c varying from 0.4D (24nm) down to 0.06D (3.6nm). The interaction parameter between the filler and the matrix is β = 0.030D (1.8nm). The WLF parameters are those of polyisoprene, with T g = 213K. The yield parameter is K = 0.01.

The curves in Figure 4.17 show that a reinforcement of around 10 7 Pa can be obtained over a large temperature range as soon as the dispersion state of the fillers is sufficiently inhomogeneous in the samples. In fact, the well dispersed sample with r c ≥ 0.4D exhibit a sharp drop of the elastic modulus in a temperature domain between T g and T g + 50K. Intermediary dispersion state (r c = 0.3D, r c = 0.2D) show a drop of the modulus in a broader temperature range, up to T g + 80K. Badly dispersed samples (with r c ≤ 0.1D) show a smoother decrease of the elastic modulus. In fact, for T g + 120K, the rigid bridge network gives a contribution to the macroscopic elastic modulus that is strong enough (macroscopic modulus of 10 7 Pa).

These data may be alternatively plotted to show the reinforcement defined as the ratio R = G /G rubber . In order to do so, we use as a reference (Ref in Fig. 4.17) a heuristic mathematical formula as used in [START_REF] Dequidt | Mechanical properties of thin confined polymer films close to the glass transition in the linear regime of deformation: theory and simulations[END_REF].

The reference exhibits a glass modulus of G g = 10 9 Pa and a rubbery modulus of G r = 10 6 Pa. The curves are strongly peaked at a temperature a few tens of kelvin above the matrix T g . The magnitude is not drastically dependant on the dispersion state of the filler in the matrix. The effect of the latter is more pronounced on the high temperature domain (above T g + 50K) of the curves. The reinforcement for a well distributed sample reaches its terminal value of around 3 at T g + 50K while more heterogeneous microstructures never reach their terminal value in the temperature domain probed.

For the dispersion state probed, the elastic modulus exhibits a smooth decrease with the temperature until it reaches a critical temperature T c where it undergoes a sharp drop down to its terminal value. This characteristic is not seen in experimental results where a smoother drop is usually expected. In fact, according to the model, the temperature T c at which the terminal value of the reinforcement is reached is determined by the melting temperature of the most rigid units in the system. This unit is related to the polymer confined between the closest particles in the system. We report in Figure 4.18 the distribution of the surface-to-surface distance between a particle and its 10 first neighbours for different screening parameter r c .

For badly reinforced samples with r c < 0.600D, the distance distribution exhibits a strong step in a distance range smaller than 0.01D located around the screening parameter r c chosen during the system stabilisation. Hence, this translates in a huge population of rigid units having the same relaxation time τ(r c ) associated with a shift of glass transition ΔT g /T g = 2 β/z. This induces de facto a sharp decrease of the elastic modulus at a critical temperature T c = T g (1 + 2 β/z) since all the rigid units melt at the same time. We believe that small distances leads to stronger glassy bridges (bridges with a higher local T g ) that drive the mechanical behaviour of filled elastomers in the reinforcement regime. In our simulation, the screening parameter allows to finely define the smaller distances achievable in the systems. shows that for a more homogeneous system the closest approach distance is much more distributed on a distance range of about 0.3D. This would translate in a much smoother drop of the elastic modulus.

We believe that an experimental sample with a bad dispersion state of the filler will not exhibit this behaviour since the closest approach distance between samples will be more distributed due to fluctuation of concentration or inhomogeneities during the synthesis. In order for our model to be more representative of the experimental phenomenology, it is possible to consider a sufficiently representative set of systems with a distributed r c parameter.

Payne Effect

The elastic modulus G obtained in our simulations is plotted in Figure 4.19 as a function of the oscillatory shear amplitude at temperature T = 263K for various screening parameters between r c = 0.400D (good distribution state of the fillers) and r c = 0.100D (bad distribution state of the fillers). It is important to report that the elastic modulus is measured in the permanent regime, after typically 2 cycles in the transient regime. The interaction parameters β = 0.030D, and this corresponds to a strong interaction writing in physical units β = 1.8 nm for fillers with D = 60 nm. Also, the systems have a high volume fraction φ = 0.20. The low shear amplitude modulus exhibits a strong reinforcement of about G 0 = 13MPa for a system with a bad dispersion state, and a more moderate reinforcement of G = 3MPa for a system with a good dispersion state of the filler in the matrix. Hence, we show here that the elastic modulus at low shear amplitude strongly depends on the dispersion state of the filler in the matrix.

According to our model and for all the systems, the larger the shear amplitude, the larger the fraction of rigid bridges which have melted, and the lower the elastic modulus. In the systems reported in Figure 4.19, the critical shear amplitude at which occurs the Payne effect also depends on the dispersion state of the fillers. The system with a bad dispersion state (r c = 0.1D) exhibits the drop of the elastic modulus for strains of about γ = 0.1 and systems with a better dispersion state (ie r c = 0.3D) show a drop of the elastic modulus for smaller strains γ ≈ 0.01. From this observation we understand that the drop of the elastic modulus is indeed due to the melting of the rigid bridges due to the stress in the confined elastomer between the fillers. Hence, rigid bridges with high T g shifts (and hence small z) leads to a Payne effect for higher shear amplitude.

This contradicts the idea of strain amplification between fillers in a reinforced sample. In a filled elastomer, the strain amplification λ relates the macroscopic deformation to the local deformation of the elastomer taking into account that fillers do not deform. The local strain can write ε l = λε m , with λ ∼ d/z with d the diameter of the filler particles and z the surface to surface distance between the fillers. If the strain was locally amplified, the local stress would write σ = (d/z)G ε m and the polymer confined in between close fillers (with low z) would undergo a higher stress than the polymer between more distant fillers. As a result, rigid bridges of small size would melt at lower strains and the Payne effect of these systems should occurs for low shear amplitude. In fact, in our simulations, the deformation is localised in the softer regions (low density of rigid bridges) and the confined polymer deforms faintly until it reaches its local yielding stress.

The data from Figure 4.19 can be used to predict the relative drop of elastic modulus G /G 0 with the strain amplitude, G 0 being the low strain elastic modulus probed at γ = 10 -3 . This quantity is reported in Fig. 4.20. The elastic modulus is mostly independent of the strain amplitude for the system with a good dispersion state, while it decreases significantly for the system with a bad dispersion state. Hence, we clearly demonstrate here that the amplitude of the Payne Effect is related to the relative position of the particles in the matrix. The relative drop of elastic modulus allows us to compare our results with the experimental results of Ref. [START_REF] Montes | Particles in model filled rubber: dispersion and mechanical properties. The European physical journal[END_REF]. In this reference, they use the same materials as synthesised in Ref. [START_REF] Berriot | Evidence for the Shift of the Glass Transition near the Particles in Silica-Filled Elastomers[END_REF] with different dispersion state as described in Chapter 2. They compare then the relative amplitude for the Payne effect of the systems with different dispersion state at a temperature such that T = T g + 50K.

We obtain the same characteristics in our simulation. We predict here that the screening parameter (and hence the quality of the dispersion state) impacts the amplitude of the Payne effect in a critical way, a good dispersion state leading to a small Payne amplitude and a bad dispersion state leading to a big Payne effect amplitude, without the possibility to finely tune this amplitude in the critical transition between a homogeneous and a heterogeneous distribution state at a volume fraction of φ = 0.20.

The loss modulus G as a function of the shear amplitude is also reported in Figure 4.19. The systems exhibiting a significant loss of elastic modulus with the strain amplitude also exhibits a dissipation peak at intermediary strains. Moreover, a surprising characteristic is that the dissipation at low strain is not a monotonous function of the distribution state. This will be discussed in the next section.

It can be seen from Figure 4.19 that the relative position of G 0 does not vary linearly with the distribution state of the fillers. In fact, G 0 ≈ 1.5 MPa for the system with r c = 0.4D, G 0 ≈ 3 MPa for the system with r c = 0.3D, G 0 ≈ 2.5 MPa for the system with r c = 0.2D and G 0 ≈ 3.2 MPa for the system with r c = 0.1D. The rigid units can be assimilated to a Maxwell elements made of a purely elastic spring of strength k and a purely viscous damper of viscosity η = kτ. Knowing the distribution of relaxation time p(τ) for the rigid units allows to compute an approximation for the loss modulus as a function of the shear frequency ω given as:

G (ω) ∝ ∞ 0 p(τ) ωτ 1 + ω 2 τ 2 dτ. (4.11)
According to eq. 4.11, the loss modulus G is proportional to the total number of rigid units and it is mostly affected by rigid units with relaxation time of the order, and smaller than, the experimental relaxation time τ exp = 2π/ω. The number of rigid units n(τ > τ 0 ) with a relaxation time τ bigger than a reference relaxation time τ 0 is plotted in Figure 4.21 as a function of the reference relaxation time τ 0 for different shear amplitudes during the Payne Effect experiment reporter before. The quantity n(τ > τ 0 ) can be expressed directly as a function of the distribution of relaxation time p(τ):

n(τ > τ 0 ) = n 0 1 - τ 0 0 p(τ) dτ . (4.12)
Hence, the slope of the curves in Fig. 4.21 is directly related to the distribution of relaxation time n 0 p(log τ) = -∂n/∂ log τ.

We can see in Figure 4.21(a) that more than 90% of the rigid units of the system with a good dispersion state r c = 0.4D has already melted. The slope of the curves at τ = τ exp decreases slightly with the strain amplitude thus inducing a small decrease of the loss modulus with the strain amplitude as shown in Figure 4.19. Compared to the well dispersed sample (r c = 0.4D) the system with r c = 0.3D has a bigger number of rigid units, especially at low strain amplitude. Moreover, the slope of the curve associated with a small shear amplitude γ = 0.001 in Figure 4.21(b) for the system with r c = 0.3D exhibits a maximum for τ = τ exp . This translates in a loss modulus at small shear strain amplitude about two times bigger in the system with r c = 0.3D than the system with r c = 0.4D. The maximum for the slope of the curve is brought back to smaller reference relaxation time with the shear strain amplitude, and the total number of rigid units that has not already melted is subsequently diminished. While doing so, when the total number of rigid units and the slope of the distribution are sufficiently high, the loss modulus exhibits a peak, for intermediary strains as shown in Figure 4.19.

In our simulations, G exhibits a maximum for deformation range between 0.01 and 0.1 for the systems with a bad dispersion state. The position of this maximum depends on the dispersion state of the systems. The less reinforced system with a good dispersion state of the fillers exhibits only a soft decrease of the loss modulus with the strain amplitude.

A pronounced maximum for the loss modulus in reinforced systems has also been observed for the strongly reinforced elastomer studied by Payne. We predict here that the dispersion state of the filler is a key to tailor the dissipation of the filled elastomer or nano-composite. A bad dispersion state, while allowing for a better elastic modulus in the linear domain, induces a more pronounced dissipation for intermediary strains, leading to more energy dissipation for every solicitation cycle, which would be dramatic considering the operating condition of a car tire, but would be used at profit considering the operating conditions of, for example, a rubber vibration absorber.

4.5

Conclusions

In this chapter we have investigated the notion of homogeneous distribution state. We show that a homogeneous distribution (by microscopy) corresponds to a system where the particles are not in clusters. However, even if we are not able to see cluster of particles, this does not mean that all the particles are far from each others. In fact, we have found that in the industrial system studied, all particles have at least one neighbour whose surface to surface distance is closer than 2 nm.

Also, we have developed a numerical method allowing us to distribute fillers in space in a simple way. This methods allows generating systems with a distribution state similar to experimental results obtained for instance in Refs [START_REF] Berriot | Gradient of glass transition temperature in filled elastomers[END_REF][START_REF] Berriot | Filler-elastomer interaction in model filled rubbers, a 1H NMR study[END_REF][START_REF] Berriot | Evidence for the Shift of the Glass Transition near the Particles in Silica-Filled Elastomers[END_REF].

We used the method in order to study the effect of filler distribution on Reinforcement. We have shown that heterogeneous distribution state gives rise to a reinforcement that exhibits a slow decrease with increasing the temperature. Similarly, the more reinforced systems which is the more disordered exhibits a stronger Payne effect as compared to more homogeneous samples. This result is in agreement with a model experimental study reported by Montes, Chaussé and Papon in Ref. [START_REF] Montes | Particles in model filled rubber: dispersion and mechanical properties. The European physical journal[END_REF].

We have studied the effect of distribution on spherical particles only. The same method for distributing filler particles can be used on more complex objects. This new developpement will therefore be used in order to study the effect of filler distribution on the large amplitude deformation behaviour in Chapter 6 and on the damaging behaviour in Chapter 7. In the next chapter, we will concentrate on the mechanical properties in the linear and non-linear regimes for systems with various filler morphologies, with a homogeneous distribution state.

-What is a homogeneous distribution state ? In practice, a homogeneous distribution state is obtained when filler particles are not aggregated into big clusters. Yet, that does not mean that all the particles are far from each other, since a random distribution gives also a homogeneous distribution. -The distribution is modelled in our work by setting the value of a repulsion parameter during system construction. We obtained systems that are similar to experimental model systems. -Filler distribution has a strong effect on the mechanical properties of filled elastomers, especially in the high temperature range. When fillers are heterogeneously distributed, small distances between filler particles are much more likely to occur between particles, and therefore this leads to higher local T g shifts.

Introduction

In this part, we consider the specific effect of the morphology of the fillers. We have seen in Chapter 2 that the filler morphology have an impact on the viscoelastic properties of filled elastomers. For instance, the elastic drop of elastic modulus with increasing the strain amplitude depends on the filler surface area [START_REF] Fröhlich | The effect of filler-filler and filler-elastomer interaction on rubber reinforcement[END_REF] which has long been the key parameter of the reinforcement. The specific surface area is usually characterized using an adsoption method [START_REF] Donnet | Carbon Black: Science and Technology, Second Edition[END_REF] such as the iodine number, CetylTrimethyl Ammonium Bromide method (CTAB), or Brunauer-Emmett-Teller (BET) theory that uses nitrogen. However, all those indirect methods are affected by filler surface chemistry, topology and the actual accessibility of an adsorption site. Therefore, a direct relation between the specific surface area and other physical properties may be misinterpreted without taking into account the specificity of a filler and its chemistry, that drives its interaction with the matrix.

Recently, a study have shown that filler anisotropy have an effect of the mechanical properties of filled elastomers [START_REF] Scotti | Shape controlled spherical (0D) and rod-like (1D) silica nanoparticles in silica/styrene butadiene rubber nanocomposites: Role of the particle morphology on the filler reinforcing effect[END_REF]. Highly anisotropic fillers gives higher shift of glass transition temperature and drop of elastic modulus with increasing the strain amplitude. In the current implementation of the model, we are not able to deal with highly anisotropic filler particles yet. As a result, we restrict to fractal aggregates. This choice allows us to study systems that shares similar morphological properties as industrial precipitated Silica.

During this work, we have decided to study the effect of primary particle sizes, which can be compared to changing the specific surface area. In order to fix some quantities, all filler particles will have an envelope diameter D fixed in this study. They will be made of different number of primary particles, and therefore the size of the primary particles will decreases as the number of primary particle increases. In the following, the morphological parameters of the fillers and the obtained microstructure are discussed using simulation of SEM and scattering.

The effect of filler morphology on the Reinforcement curves and Payne effect are then studied. We consider Table 5.1: Scaling analysis of the most described growth processes.

Growth Process Fractal Dimension References

Diffusion-LA 1.71 -1.75 [START_REF] Weitz | Dynamic Scaling of Cluster-Mass Distributions in Kinetic Colloid Aggregation[END_REF][START_REF] Nogueira | Scaling laws in the diffusion limited aggregation of persistent random walkers[END_REF] Ballistic-A 2.00 [START_REF] Nogueira | Scaling laws in the diffusion limited aggregation of persistent random walkers[END_REF] Reaction-LA 2.05 [START_REF] Weitz | Dynamic Scaling of Cluster-Mass Distributions in Kinetic Colloid Aggregation[END_REF] in this part a homogeneous distribution state (r c = 0.4 ) and a volume fraction of φ = 0.2. We also assume an ideal filler dispersion: in all the systems we only consider a monotonic population of fillers in term of number of primary particles.

Let us first introduce the numerical algorithm that allows us to construct fractal filler aggregates with a various amount of primary particles.

Morphological Parameters

In what follows, we consider fillers with a varying number n p of primary particles while having an envelope diameter D ≈ 1. The envelope diameter is set with the gyration radius D = 2R g that is computed using the position of the primary particles r i compared to the position of the center of mass of the aggregate R :

R 2 g = 1 n p n p i |r i -R| 2 . ( 5.1) 
We randomly generate aggregates using a modified DLA algorithm [START_REF] Witten | Diffusion-limited aggregation, a kinetic critical phenomenon[END_REF]. This procedure is described in the following.

Random Growth Algorithms

Precipitated silica is obtained by the random agglomeration and growth of small silica primary particles. In order to generate realistic objects, a random growth algorithm that mimic this process is going to be implemented. Natural aggregation process occurs for instance in the growth of an organism being made of cells. A two-dimensional simple growth process has been proposed by Eden [124]. This growth process begins with a single occupied site that can undergo duplication into a randomly selected perimeter site. The process is repeated again and again, adding each time a single occupied site in the perimeter domain. This leads to a compact site population whose geometrical characteristics is mostly circular, details can be found in Ref. [START_REF] Peters | Radius, Perimeter, and Density Profile for Percolation Cluster and Lattice Animals[END_REF].

Witten and Sanders [START_REF] Witten | Diffusion-limited aggregation, a kinetic critical phenomenon[END_REF] proposed a variant of the Eden model whose initial state is a seed particle at the origin of a lattice. A candidate particle is added far from the origin at some random position. The particle undergoes a Brownian motion (diffusion) until it visits a neighbouring site of the seed. The candidate becomes part of the cluster and another particle is introduced at a random distant position such that the process is repeated again and again. This is a Diffusion-Limited Aggregation (DLA) and the geometrical characteristics has been study in Ref. [START_REF] Witten | Diffusion-limited aggregation[END_REF]: clusters are fractal-like objects exhibiting power law scaling parameters.

A special case of DLA can be found in Ballistic Aggregation (BA) where the candidate particles undergoes a motion in straight line from a random position [START_REF] Sander | Theory of Ballistic Aggregation[END_REF] until it attaches to the main cluster.

In order to provide a better model for the formation of colloidal aggregates, the diffusion-limited clustercluster aggregation (DLCCA) model has been developed by Meakin and Kolv, Jullien [START_REF] Kolb | Scaling of kinetically growing clusters[END_REF][START_REF] Meakin | Formation of fractal clusters and networks by irreversible diffusion-limited aggregation[END_REF] leading to clusters having a fractal dimensionality of about 1.78, close to experimental colloid aggregates [START_REF] Schaefer | Fractal geometry of colloidal aggregates[END_REF]. In this model, clusters of particles (instead of particles) are moved randomly until they come in contact and combine with neighbours.

This approach is still based on a strong assumption that particles and aggregates forms cluster instantaneously and irreversibly when they come in contact.

On the contrary in real systems the number of encounters between pairs of particles needed before a cluster is formed may be very large. It allows the candidate particles (or clusters of particles) to explore more deeply the phase space of acceptable bounding positions before being irreversibly trapped in the cluster. In this model [START_REF] Meakin | Structure and kinetics of reaction-limited aggregation[END_REF], the aggregation process is no more limited by the diffusion of a particle but by the chemical kinetics of aggregation. This a reaction-limited aggregation mode (RLA). Similarly to the DLA and DLCCA models, RLA extends in a Reaction-Limited cluster-cluster aggregation: clusters are randomly moved until they come into contact with each over via neighbour sites. In this case, a sticking probability P σ smaller than 1 is introduced to determine if adjacent clusters effectively combine or if they slide with respect to each-other independently. Two implementations of this basic procedure are given and compared in Ref. [START_REF] Meakin | Structure and kinetics of reaction-limited aggregation[END_REF].

Those DLA and RLA processes are similar: they all start with seeds that are randomly moved until they combine with a sticking probability P σ ≤ 1. However, the geometric properties of generated clusters highly depend on the model used and on the implementation into a numerical code.

In our work, we use an off-lattice DLA algorithm. A seed spherical particle of diameter d = 1 is set at the origin. A walker particle is added close to the growing cluster at a random position. Then the walker particle moves randomly until it overlaps with the seed. The walker then becomes part of the cluster and another particle is introduced not too far from the growing cluster. The process is repeated again and again until the cluster contains n p particles.

Let us mention some details of our implementation:

-At any time, the gyration radius of the growing cluster is estimated using eq. (5.1) taking into account only the particles that are part of the cluster. The initial position of a walker particle is set at random on a sphere of radius k R g whose center is the center of mass of the growing cluster, with k = 2 typically -A walker is removed from the simulation if the distance between the center of mass of the growing cluster and the center of mass of the walker is greater than 2k R g -The walker moves in a random direction which is not uniformly distributed. In fact, a move that increases the distance between the center of mass of the growing cluster and the center of mass of the walker can be randomly rejected. In this case a new random direction is picked until the move gets accepted. Then an other random direction is picked and is kept with the same probability. This process is repeated until a move is accepted.

Obtained Systems

Aggregates are generated by the modified DLA algorithm presented before with walker particles of diameter d = 1. The generated objects are then scaled by a factor depending on the number of primary particles in the aggregates so that the average envelope diameter < D >= 1 for the full filler population generated. We report in Table 5.2 the morphological parameters of the 1000 fillers extracted from the filler population and used in our simulations. The diameter of the primary particles varies from 1 down to 0.2 . If we consider that unit of length corresponds to a filler of diameter D = 60 nm this corresponds to primary particle size of 60 nm (n p = 1), 30 nm (5), 22 nm (10), 19 nm (15), 17 nm (20), 14 nm (30) and 12 nm (40).

This procedure allows to get a realistic distribution of filler size while the primary particle size remains constant within a system made with a fixed number of primary particles. The filler population has a fractal dimension and an envelope size distribution. We represent in Figure 5.1 an estimate of the fractal dimension of the filler population and the size distribution of the 1000 aggregates for the systems studied in this chapter. The fractal dimension of the filler population has been estimated around 1.97. It would be straightforward to select fillers according to their envelope diameter in order to produce systems with a fixed fractal dimension, if one assumes that the fractal dimension of an object of only a few primary particle has a meaning. We decided here to keep the distributed envelope size thus introducing a source of disorder in the systems.

Once a library of fillers with a fixed number of primary particle is obtained, filler are introduced with a random position and orientation in a simulation domain at a low volume fraction. The system then undergoes a isostatic compression so that the volume fraction is increased up to φ = 0.2. During this process, a repulsion potential is applied between primary particles and the repulsion forces are relaxed by translating and rotating fillers between each compression steps. This is the Lubachevsky-Stillinger [START_REF] Lubachevsky | Geometric properties of random disk packings[END_REF]. First, filler aggregates are introduced in a large simulation domain with a random position and orientation with respect to the simulation domain. At this point, the size of the domain is set so that when all the fillers are introduced, the volume fraction is of the order 10 -5 . Then, the repulsion force is applied with a non-zero r c parameter between the particles and the system is isostatically compressed while relaxing the repulsion forces between objects. The repulsion parameter during the compression procedure is set for all the systems is r c = 0.4. We have shown in Chapter 4 that this parameter allows us to tailor the distribution Figure 5.2: Visualization of the equilibrated systems at a volume fraction φ = 0.2 containing 1000 filler aggregates each, with a varying number of primary particles n p . For a matter of clarity, the primary particles belonging to an aggregate are painted with the same color. Interaction between primary particles are depicted by the mean of a solid blue line.

state of filler, and by choosing such a value, the distribution state obtained is homogeneous.

Morphological Study: Microscopy and Scattering

We represent in Figure 5.2 a visual representation of the generated systems made with filler aggregates with a varying number of primary particles n p . Each system contains 1000 filler aggregates at a volume fraction φ = 0.2. Aggregates of envelope diameter 1 made with multiple primary particles have a smaller volume than a simple spherical particle of size 1. Therefore, for a given volume fraction, systems filled with complex aggregates are smaller than system filled with spherical particles.

Changing filler structure by increasing the number of primary particles per aggregate allows us to generate a large variety of microstructures. The simulation of TEM performed on slices extracted from the simulated systems is shown in Fig. 5.3. The picture of the system constructed with spherical particles and a distribution state parameter r c = 0.4D has not been reported here as it has been reported in Chap. 4 in Fig. 4.14.

In the TEM simulation of the system built with fillers made of 5 primary particles, we can see independent filler aggregates that are homogeneously distributed on the slice. As the number of primary particle per aggregate increases, the 2D projection gets more and more crowded and the distribution seems to become heterogeneous. However, all the systems have been constructed with the same repulsion parameter r c allowing a homogeneous distribution state and the repulsion forces have been relaxed until equilibrating the systems (velocities equals to zero).

The simulation of scattering techniques can be performed on such systems. Let us first discuss the amplitude of the scattered intensity of different systems. We report in Fig. 5.4 I (q) as a function of q. The absolute intensity here can be related to the diffusing objects in our simulation by the following:

I (q → 0) ≈ nV 2 p Δρ 2 0 , (5.2) 
with n the number density of filler particles and V p the volume of a single filler particle Δρ 2 0 the contrast factor in the system [START_REF] Higgins | Polymers and neutron scattering[END_REF].

The volume fraction φ = nV p is fixed in our systems and the number density writes n = φ/V p . Let us introduce φ i the internal volume fraction of an aggregate made of n p primary particles and defined by If we consider a filler aggregate of internal volume fraction φ i , the volume of such object is therefore V p = φ i V 0 with V 0 the volume of a spherical particle of the same diameter D. In our system, D ≈ 1, so V 0 ≈ π/6. The number density in eq. (5.2) then writes n = φ/φ i V 0 . When considering systems filled with such aggregates, the contrast factor writes

Δρ = ρ int -ρ matrix (5.3) = φ int ρ Si0 2 + (1 -φ int ) ρ matrix -ρ matrix (5.4) = φ int ρ Si0 2 -ρ matrix (5.5) = φ int Δρ 0 (5.6)
The absolute intensity therefore writes:

I (q → 0) ≈ φ φ i V 0 V 2 0 φ 2 i φ 2 i Δρ 2 0 ∝ φ 3 i (5.7)
and is directly proportional to the cube of the internal volume fraction of an aggregate φ i . The internal volume fraction of an aggregate can be expressed as a function of the number and size of its primary particles: φ i = n p d 3 /D 3 . Our objects are built such that D ≈ 1 for every different values of n p . Assuming that the power law Figure 5.4: Scattered intensity (I (q) vs q) of the the considered systems filled with fillers made of a various number of primary particles n p . The curves corresponds to n p = 1, 5, 10, 15, 20, 30, 40. In this study, fillers are scaled in order to get an average diameter of D ≈ 1 while the primary particle size d is fixed in a given filler population.

n p = D d D f , (5.8 
holds in the population of aggregates, with D f the fractal dimension of our objects, then the internal volume fraction of an aggregate can be rewritten:

φ i = n 1-3/D f p (5.9)
and therefore, the absolute intensity should be proportional to the quantity

I (q → 0) ∝ n 3-9/D f p .
(5.10)

Since our systems are small with respect to the size of a single particle, we are not able to estimate directly the value of I (q → 0). However, we can consider in our system that the observed peak in the intensity for all the systems (or for instance the maxima in the first oscillation in the Porod regime) scales with I (0). Let call this intensity I n p for a system made of n p particles. With D f ≈ 2.1, in the system made with n p = 40 we estimate φ 3 i ≈ 0.01 which corresponds to the observation in fig. 5.4. In fact, the estimation of the scaling of I (q) with n p is better when considering the actual size of the primary particles in our systems, as provided in Tab. 5.2. However, this work allows us to estimate the actual fractal dimension of the fillers using eq. (5.10), rewriting ln(I 1 /I n p ) = (3 -9/D f ) ln(1/n p ). The slope in the inset in fig. 5.4 gives 3 -9/D f ≈ -1.13 and therefore this gives us D f ≈ 2.18.

The Kratky plot, q 2 I (x) vs q, of the simulated systems is reported in Fig. 5.5. The maxima in Kratky plot gives an estimate of the external size of fractal objects and the position at which the curves enters in a q -2 regime indicates the size of the primary particles. From the curves in Fig. 5.5 it appears that all filler objects indeed have approximately the same envelope size with a decreasing primary particle size. This corresponds to the way fillers have been built.

Mechanical Modelling

The spring network is connected between primary particles not belonging to the same aggregate as described in Chapter 2.4. The elastic strength of the rubbery spring network is set to 1, the unit of elastic modulus in our system. The elastic strength of glassy springs is set to a value that depends on the temperature and on the considered system and writes

k 0 = Σ(T )G g G r k ∞ , (5.11) 
with Σ(T ) defined arbitrarily in equation (3.16). This quantity has been calculated as a function of the temperature for all the systems presented here and is reported in Fig. 5.6. Let us recall that the actual strength of a spring joining particle i and j is defined locally and writes for instance for a glassy spring

k 0 ij = d 2 k 0 /h 0 .
Let us mention that Σ(T ) is defined arbitrarily to account for the amount of glassy polymer in the system due to the shift of glass transition defined in our model. This function should be defined locally, to account for the real amount of glassy clusters lying between two filler surfaces which corresponds to the physical origin of our simplistic glassy bridges. However, defining a local elastic strength would increase the complexity the numerical implementation of the model and it has not been performed during this work. We will discuss in the following section whether the results obtained are artificially amplified by our arbitrary Σ(T ) function or not. .5: Kratky plot (q 2 I (q) vs q) of the simulated scattered intensity for the considered systems filled with fillers made of a various number of primary particles n p . From bottom to top, the curves corresponds to n p = 1, 5, 10, 15, 20, 30, 40. In this study, fillers are scaled in order to get an average diameter of D ≈ 1 while the primary particle size d is fixed. The width of the Kratky plateau increases with the number of primary particles towards higher q meaning that the envelope size of fillers is approximately constant while they are made of smaller primary particle size when increasing the number of primary particle. Curves are vertically shifted by a decade for clarity with respect to the curve corresponding to n p = 10. 

Preliminary Study

In this chapter, various filler structure are introduced in our simulations. This is the first time that the model is solved considering complex aggregates. Before using the model to predict the specific effect of filler structure on the mechanical properties of filled elastomers, we need to validate the implementation first on systems for which experimental results exists.

We know from previous work of Merabia [START_REF] Merabia | A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins Effects)[END_REF] that the filler size is of primary importance when considering the reinforcement and the Payne effect amplitude. This effect has also been studied experimentally recently by Fayolle [START_REF] Fayolle | Influence de la dispersion de la silice sur les propriétés viscoélastiques et mécaniques des élastomères renforcés[END_REF] in NR filled rubber with silica particles of various sizes. In fact, Solvay produces two kind of commercial silica that are morphologically similar but with different primary particles sizes:

-Z1085, which contains filler aggregates of envelope size of around 100 nm and whose specific surface area is 85 m 2 /g; -Z1165, which contains filler aggregates of envelope size of around 50 nm and whose specific surface area is 160 m 2 /g.

Those products are particularly interesting because they allow the production of model experimental samples where the size of the filler particles is well controlled. Therefore, Fayolle studied the viscoelastic properties of cross-linked natural rubber filled with silica at a volume fraction around 20%. The experimental details of this study are provided in details in ref. [START_REF] Fayolle | Influence de la dispersion de la silice sur les propriétés viscoélastiques et mécaniques des élastomères renforcés[END_REF]. Let us just recall the main results obtained.

In Fig. 5.7 we report the evolution of the elastic modulus and the reinforcement curves as a function of the temperature for the experimental systems. The curves exhibit a decrease of the elastic modulus when increasing the temperature. When Z1085 filler are introduced, the glass transition temperature is slightly shifted towards higher temperatures. The effect is stronger when adding Z1165 filler particles instead. In fact, this effect is even more pronounced when comparing the reinforcement curves in Fig. 5.7. In fact, it appears that the reinforcement peak is around three times higher for a system filled with Z1165 with respect to a system filled with Z1085. This experimental study shows that filler size is a key parameter of the reinforcement and here if the size is divided by a factor of two, the amplitude of the reinforcement effect gets multiplied by a factor of three. The Payne Effect has also been investigated in those systems. In Fig. 5.8 are reported the evolution of the elastic and loss moduli as a function of the amplitude of the deformation γ for the experimental systems at a temperature T g + 100 K. It can be seen from the curves that the elastic modulus decreases with increasing the amplitude of the deformation for the two systems but the relative amplitude of the drop of modulus is increased when decreasing the size of filler particles. Also, the systems exhibit a dissipation peak on the G -γ curve whose amplitude depends also on the size of filler particles.

As a conclusion, it can be said that the reinforcement in a system depends strongly on the envelope size of the aggregates. Moreover, the drop of elastic modulus which can be associated to diminished material performances is amplified when considering smaller aggregates.

Our model and its implementation can be easily used to simulate such systems. We consider in the following homogeneously distributed fillers containing each 10 primary particles. The procedure for building the systems is similar to the one described previously in Chap. 4, but considering this time filler aggregates instead of spherical particles only. In our study, aggregates have been constructed so that their envelope diameter is distributed around the unit of length of our simulations. This maps to filler aggregates of diameter around 60 nm in physical units. A homothetic transformation of the systems can be easily used to modify the actual diameter of the filler particles. In order to map back the size of the filler particles back to the specific surface area used in the work of Fayolle, let us estimate the specific surface area of our aggregates. We consider that the total surface of an aggregate is simply the sum of the surface of its primary particles, therefore it writes S 0 = n p πd 2 with d the diameter of the primary particles of the aggregate. The volume of the aggregate is similarly V 0 = n p πd 3 /6 and its mass can be computed by m 0 = ρ Si V 0 where ρ Si is amorphous Silica density with is around 2g/cm 3 . Therefore, the specific surface area S * = S 0 /m 0 can be estimated simply for our aggregates

S * = 6 dρ Si .
(5.12)

The numerical reinforcement curves for systems filled with aggregates made of 10 primary particles of various size are reported in Fig. 5.9. Let us mention here that the systems are constructed with a repulsion parameter r c = 0.4 D so that the resulting structures are homogeneously distributed.

The numerical simulations exhibit similar features as compared to the experimental curves in Fig. 5.7. In fact, the amplitude of the reinforcement depends strongly on the size of the primary particles. However, we can notice that the amplitude of the reinforcement peak is somehow overestimated by a factor 2-5 when comparing specifically the systems with similar specific surface area to those of Fayolle. This effect can be explained by the high value of the reinforcement parameter β that has been chosen in this work. The physical value of this parameter is comprised between 0.1 and 1 nm according to the work of Merabia [START_REF] Merabia | A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins Effects)[END_REF].

In order to amplify the non-linear effects in this quantitative study, this parameter has been set to β = 0.030 in dimensionless units which translates to 1.8 nm in physical units.

The value of this parameter could be reduced in order to obtain more similar orders of magnitude for the amplitude of the reinforcement peaks. This was not the aim of this work and this value will be kept in the following.

While the peaks are overestimated, we can notice that the reinforcement decreases slowly with the temperature in the experimental systems whereas it decreases sharply with the temperature in our simulations. The latter can be easily understood using the results obtained in the previous chapter on the effect of filler distribution. In fact, we have previously shown that the distribution state of the filler is responsible for the slow decrease of the elastic modulus with increasing the temperature far above the glass transition temperature of the pure matrix. The features exhibited by the experimental curves in Fig. 5.7 are indeed the footprint of a slightly heterogeneous distribution state. However, our simulations have been constructed with a repulsion parameter r c = 0.4 D and therefore exhibit a homogeneous distribution state.

As a conclusion, this discussion shows that our model is able to capture the effect of the size of filler primary particle in a semi-quantitative way. Further fitting of the reinforcement parameter would allow obtaining smaller reinforcement peak and using more similar distribution state would allow getting a reinforcement that decreases slowly with the temperature.

In order to validate additionally our numerical tool on experimental systems, the Payne Effect has also been simulated in the systems filled with various primary particle sizes. In order to simulate the Payne Effect well above T g , the previous systems have been reconstructed using this time a smaller repulsion parameter r c = 0.1 allowing us to obtain a heterogeneous distribution state much similar to the one obtained experimentally by Fayolle.

The evolution of the elastic modulus as a function of the amplitude of the deformation is reported in Fig. 5.10. The main features of the Payne effect are captured for the systems considered here. The elastic modulus drops when increasing the strain amplitude while the loss modulus exhibits a dissipation peak as described previously in Ch. 2. Our model also capture the features reported by Fayolle: the amplitude of the Payne effect depends on the filler size as demonstrated here and and the dissipation gets higher with smaller filler particles. The orders of magnitude are correct for the elastic modulus. However, the amplitude of the loss modulus may be overestimated here by a factor around 5. The latter could be easily tailored by reducing the friction parameter ζ used to model the dissipation of the matrix as introduced in Chap. 2.4.

This preliminary study allows us to consider that the model have been correctly extended in order to account for non-spherical particles. In this section, we have only introduced filler aggregates made of 10 primary particles each. When simulating such systems at various sizes, we have been able to reproduce semi-quantitatively the experimental results obtained on Z1085 and Z1165 Solvay Silica aggregates both in the linear regime (Reinforcement) and in the non-linear non-destructive regime (Payne Effect). The parameters that have been selected for the simulations have a physical origin discussed in Chap. 2.4 that allows us to obtain the right orders of magnitude for the studied effects. A thinner tailoring of the parameters would allow us to give more quantitatively accurate prediction of the absolute magnitude of the amplitude of the reinforcement and drop of elastic modulus during the Payne effect. However, we consider here that the selected parameters used in this work are sufficient enough to make a comparative (and semi-quantitative) study, which is the matter of the next section.

5.4

Results and Discussion

Reinforcement

We report in Figure 5.11 the storage modulus as a function of the temperature for aggregates of external radiusq 60nm made of a varying number of primary particles from 1 to 40 and a value of the interaction parameter β = 0.030 . The WLF parameters are those of polyisoprene with T g = 213K.

The curves in Figure 5.11 shows not only a shift but also a broadening of the glass transition for systems made with smaller primary particles. In fact, a strong reinforcement, between 10 and 100 MPa, can be obtained over a large range of temperature as it can be observed in highly reinforced experimental samples (cite ?). Contrary to the case of pure elastomer, the elastic modulus is a decreasing function of the temperature that never reaches a constant regime for the system made with the smaller primary particles (system of aggregates with 30 and 40 primary particles each.)

Let us determine whether the results obtained here are only the consequence of the arbitrary function Σ(T ) we have previously defined. For instance, according to the curves in Fig. 5.6, Σ(T ) = 0.01 for a system filled with aggregregates made of 10 or 15 primary particles at T = T g + 80. If our simulation results are only the consequence of this function, the elastic modulus of a system filled with aggregate made of 10 primary particles should be equal to the one of a system filled with aggregates made of 15 primary particles each. The curves in Fig. 5.11 show that the system filled with aggregates made of 15 primary particle each has a higher elastic modulus than the system filled with aggregates with n p = 10. Therefore, the results obtained here are not only the consequence of the arbitrary function Σ(T ).

The data of Figure 5.11 can be alternatively plotted to show the reinforcement defined as the ratio R = G /G matrix of the elastic modulus of the reinforced system versus the elastic modulus of the pure matrix. The reinforcement curves in Figure 5.11 exhibit two main caracteristics. The reinforcement peak, located around T g + 30 for all the systems, has an amplitude that strongly depends on the filler morphology. In our study, with a very high interaction parameter β = 1.8nm, the peak amplitude goes from 10 1 for spherical particles up to 10 2 for filler aggregates made of 40 particles per aggregates. We demonstrate here the dramatic relation between the amplitude of the reinforcement peak and the morphology of the fillers for the same volume fraction of fillers, for the same spatial distribution homogeneity and for the same filler average envelope size.

The second characteristic of the reinforcement curves is the width of the temperature range where the reinforcement is not a constant of the temperature. This width is clearly dependant on the morphology of the fillers since the reinforcement effect spans over 70K for a system of spherical particles, it spans over 80K for a system of aggregates made of 5 primary particles each and it spans over 120K for systems with aggregates made of 20 primary particles each.

We report in Figure 5.12 the loss modulus G and the loss angle tan δ as a function of the temperature.

The loss modulus exhibits a peak whose position depends on the morphology of the fillers. In fact, the peak is shifted from T g + 40 K for a system of spherical particles to T g + 60 K for a system made of aggregates with small primary particles (d = 0.2D, aggregates made of 40 primary particles). The peak is followed by a smooth decrease with the temperature. We consider that the fluctuation close to the glass transition temperature are not relevant because they are strongly related to the choice of the Σ(T ) function discussed before. On the right of Figure 5.12, the loss angle tan δ exhibit a peak with a position and an amplitude that strongly depends on the filler morphology. Spherical particles exhibit a sharp peak with a maximum located around T g +40 K while more complex systems exhibit a shift and a spreading of the peak to higher temperature. We predict here that systems made of complex fillers will dissipate more at high temperature.

The higher reinforcement peak and broaden glass transition can be explained by the distance distributions that are drastically different depending of the filler morphology. In order to illustrate this, we study the distribution of the ten first neighbours of each primary particles. First neighbours are associated with shorter distances leading to stronger glassy bridges according to Eq. (2.28) and Eq. (2.23) that drives the mechanical behaviour in the reinforcement regime. As reported in fig. 5.13 where the distribution of distance of the ten first neighbour is represented for the systems, aggregates with smaller primary particles leads to smaller distances. The screening parameter for the repulsion r c used to tailor the distribution state of the systems affects strongly the distances distribution of the system made of spherical particles. Indeed, the spherical particles have an average of five neighbours located at this specific distance. Although more complex systems have been made using the same screening parameter, they do not exhibit such characteristic first approach distance. For the majority of the systems, the surface to surface distances between primary particles are smaller than the parameter r c , and the smaller the primary particles of the aggregates, the closer they get from each other.

This effect can be understood considering the average distance L between the center of mass of the Figure 5.13: Distribution of the distances within the tenth first neighbours for fillers with a varying number of primary particles n p . We believe that small distances leads to stronger glassy bridges (bridges with a higher local T g ) that drive the mechanical behaviour of filled elastomers in the reinforcement regime.

In our simulation, systems filled with smaller primary particles are associated with closer distances, and as a result, exhibit a reinforcement of higher amplitude in a broaden range of temperature.

aggregates. If we consider that the aggregates are homogeneously distributed in space, L can be related to the volume fraction and to the volume V of the aggregate by φ = V /L 3 . The volume of the aggregate is, in the case of non-overlapping primary particles V = n p πd 3 /6. Using the definition of the fractal dimension D f , the size of the primary particles d is related to the size of the aggregate D and to the number of primary particle in the aggregate by n p = (d/D) D f . This discussion allows us to compute the average distance between the center of mass of the aggregates as being :

L D = π n 1-3D -1 f p 6φ 1/3 . (5.13)
We report in Figure 5.14 the average distance between the center of mass of the aggregate, computed using eq. 5.13, as a function of the number of primary particles per aggregates n p for different volume fraction. When L/D becomes smaller than 1, aggregate envelopes need to overlap in order to achieve a given volume fraction. This is the case for high volume fraction, while increasing the number of primary particles per aggregates. When the volume fraction is high enough, the primary particles of the aggregates gets closer since it is not possible for the system to find a configuration where all the repulsion forces are relaxed. In fact, increasing the number of primary particles or increasing the volume fraction has the same effect on the average distance between the center of mass of the aggregates, and therefore on the surface to surface distances between fillers. We demonstrate here the fact that by changing the morphology of the fillers for a given volume fraction leads to an increase in the elastic modulus that would be equivalently achieved by increasing the volume fraction. A consequence of eq. 5.13 is that the effect we report here for φ = 0.20 may vanish for smaller volume fraction.

Payne Effect

Oscillatory shear at a constant pulsation ω = 6.28rad/s is performed with a varying shear amplitude γ on the systems presented below. We consider here the elastic modulus G , the loss modulus G , the loss angle tan(δ) and the relative modulus G /G 0 , G 0 being the low shear amplitude elastic modulus for the considered system.

We report in this article the numerical results obtained for the oscillatory shear performed at T = T g + 50K in Figure 5.15 and at T = T g + 100K in Figure 5.16.

In the reinforcement regime, at T = T g + 50K, the curves for the elastic modulus G in Figure 5.15 show a large drop for deformation amplitudes of order a few percent to about 10%. This drop is reminiscent of the Payne Effect observed in carbon black filled elastomers. The smaller the primary particles, the higher the low shear amplitude elastic modulus G 0 , and the stronger the drop of elastic modulus with the deformation. This drop is accompanied by an increase of the loss modulus G resulting in peak in the loss angle tan(δ). The peak in the loss angle appears for higher strain and goes to higher amplitude when the size of the primary particles is reduced. The curves we present in Figure 5.15 indicates that while complex fillers gives a higher elastic modulus at the same temperature, volume fraction, distribution state and oscillatory shear amplitude, filler complexity (or with an increasing number of primary particles) leads to a stronger Payne Effect amplitude and dissipation for intermediary strains.

At higher temperature, T = T g + 100K, the elastic modulus at low shear amplitude is lower for all the systems as it has been discussed in the previous section. Nevertheless, the strong non-linear behaviour associated with more complex morphologies persists. In fact, as reported in Figure 5.16 the most complex system with fillers made of 40 primary particles exhibit a drop of modulus of order 2 while the system of spherical particles exhibit a more linear behaviour. The dissipation, considered in term of loss modulus G or loss angle tan(δ) is also higher for systems with smaller primary particles.

We demonstrate here that the amplitude of the Payne Effect is drastically related to the morphology of the fillers, considering the systems at the same volume fraction and for a homogeneous filler distribution. The Relative drop of elastic modulus G /G 0 with G 0 the elastic modulus at low strain amplitude, as a function of the strain amplitude is a good indication of this effect. We report this quantity for two temperatures in Fig. 5.17 in the systems studied in this chapter. 

Conclusion

In this chapter we have studied the effect of filler structure on the mechanical behaviour of filled elastomers. Filler structure is controlled by setting the number of primary particles per aggregates and different systems were made starting with spherical fillers up to complex fractal objects made of 40 primary particles.

We have demonstrated in this chapter that filler structure is a first order parameter when considering systems filled with a fixed volume fraction of solid particles. In our case, increasing filler structure shifts and broadens the glass transition observed on the evolution of the elastic modulus G as a function of the temperature. Also, the obtained materials exhibit a peak in the loss angle tan δ that is shifted toward higher temperature, broadens and whose amplitude decreases with increasing filler structure.

Also, for a given temperature, filler structure increases the drop of the elastic modulus when increasing the strain amplitude. The Payne Effect amplitude is therefore increased when increasing filler structure.

Those numerical results are in fact in agreement with other experimental study.

Let us mention that this study has been performed at a high volume fraction. Those results can be explained by the fact that complex filler particles gets closer for a given volume fraction. Our simple model predicts that this huge difference in the viscoelastic response due to filler structure may vanish at lower volume fraction. This systematic study should be performed at lower volume fraction in order to answer this question.

-We have been able to model realistic filler particles made of a varying number of primary particles. This is equivalent of increasing the filler specific surface area. -Using the GBR model, we have found that systems with complex filler particles (high n p ) have higher shift of T g when the volume fraction is fixed. The result is similar to what is known from the literature, the higher the surface area, the stronger the non-linear effets. -However, we show here that this effect is not related to the surface area, but to the size of the primary particles. This is a geometric effect that depends on the filler fractal dimension and on the filler volume fraction. In order to fit in the system, complex particles a brought very close from each others. This is at the origin of high local shift of T g that drives the macroscopic response of the system. -A systematic study need to be performed now at lower volume fraction and considering different distribution states. Also, more model filler shape can be introduced. This will be done in the near future.
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Yield Stress in Polymer Nanocomposites

In the previous chapter we have used the GBR model to study the effect of distribution and morphology on the viscoelastic behaviour of filled elastomers. The results obtained so far are in agreement with the usual experimental trends. In this chapter, the ingredients of the model are used to study the response of a filled elastomer (or equivalently a highly filled polymer melt) during simple elongation above the glass transition temperature of the matrix. 

Introduction

Recent rheological measurements on homogeneously filled polymer melts have demonstrated that under certain conditions, the viscoelastic response to a strain exhibits a yield stress followed by a strain softening regime in some range of temperature above T g . This effect is similar to what is observed for amorphous glassy polymers, but with a yield stress of some MPas only.

We report in Figure 6.1 the stress strain curve obtained by Jouault et al. [START_REF] Jouault | Well-dispersed fractal aggregates as filler in polymer-silica nanocomposites: Long-range effects in rheology[END_REF] for PS nanocomposite filled with a homogeneous distribution of fractal aggregates at various volume fraction. The temperature of the experiment reported here is T g + 20 K and the strain rate is λ = 0.005 s -1 which is faster than the reptation time of the polymer at the considered temperature. For high silica concentration, a maximum in the stress-strain curve is observed : This has the characteristic of a yield stress in amorphous glassy polymers but with a much smaller amplitude, some MPas instead of hundredths of MPas. This effect is usually not observed in crosslinked filled elastomers. Though, they exhibit only a progressive softening with increasing the strain amplitude, more comparable to the systems of Jouault et al. at lower volume fraction.

By solving the GBR model on system filled with fractal aggregates at various distributions state, we show Figure 6.1: Experimental evicence of the Jouault Effect occuring in polymer melts with containing a homogeneous distribution of fractal aggregates. The figure here is reproduced from Ref. [START_REF] Jouault | Well-dispersed fractal aggregates as filler in polymer-silica nanocomposites: Long-range effects in rheology[END_REF]. in this chapter that highly ordered model systems exhibit such effect in quantitative agreement with experimental results. This effect is the footprint of the homogeneity of the filler distribution state in the sample. A physical origin of this effect is also proposed.

But first, we need to discuss how our model of filled elastomer can be mapped to highly filled entangled polymer melts.

Mapping the GBRM to entangled polymer melts

The GBRM consists only of a limited set of ingredients that are permanent elasticity, rigid bridge between filler particles, occluded volume interaction and hydrodynamic friction. We can assume that occluded volume interaction and hydrodynamic friction are also a characteristic of polymer melts. The Long-Lequeux model [7] for van der Waals liquids can apply to the case of PS chains, and therefore it is reasonable to assume that rigid bridges can link filler particles when sufficiently close. A specific modification of the interaction parameter β would be required for a more quantitative study, and the same discussion can be performed for the stress yield parameter K, and the WLF parameters used in calculating the local relaxation time of the confined polymer chains.

The GBRM model contains permanent elasticity (rubbery spring network) which models crosslinks in an elastomer. Here, for small enough experimental times (smaller than the reptation time of the polymer) it is possible to assume that entanglements of the polymer chain acts as equivalent crosslinks nodes. We recall that stress values are given in unit of matrix rubbery modulus, which has been set to 1MPa in all this study for practical reasons. A scaling of the numerical stress values may be introduced in order to perform a more quantitative study, but this was not the priority of the work performed in this study. Therefore, by assuming the scaling of the stress values and a sufficiently small deformation time scale, we can confidently use the GBRM to study filled polymer melts close to the glass transition temperature.

The stress is numerically computed using the Virial Stress formulation as given in Chapter 3:

σ αβ = 1 V i, j F ijα R ijβ , (6.1) 
This formulation gives a volume average of the stress in the sample, and therefore represents the true stress in the system. Harmonic springs drives the elasticity of our samples and therefore the numerical stress computed through the Virial Stress formulation. During uniaxial stretching, the stress in the tensile direction can be estimated as the average force acting through any plane perpendicular to the tensile direction. We assume that this average total force writes F = N kl 0 a d ε, with N the number of springs in the system, k the spring strength, l 0 the rest length of the spring and a d a parameter accounting the orientation of the spring and the strain amplification in the material due to the presence of rigid fillers.

σ ≈ F S = N kl 0 a d S ε = N k 0 l 0 a d S 0 ε + ε 2 . (6.2)
Since the surface area S changes during the elongation and writes S = S 0 / (1 + ε). Therefore the stress is not directly proportional to the amount of springs and how they are loaded. The later is described by the quantity N k 0 a d only. However, the nominal stress is directly proportional to the quantity N k 0 a d

σ e = σ 1 + ε = N k 0 a d S 0 ε. (6.3)
Therefore we will display the nominal stress instead of the true stress. This choice ensures that a change in the slope of the stress strain curve will be only due to a change in the energy stored in harmonic springs representing rubbery and glassy elasticity in our simulations.

The systems considered here are filled with complex aggregates made of 15 primary particle each. We are going to study different volume fraction and different distribution state. Systems are constructed using the Lubachevsky Stillinger procedure [START_REF] Lubachevsky | Geometric properties of random disk packings[END_REF] previously described in the text. The parameters of the simulations are those given in Tab. 3.1. In order to be specific, the considered matrix here is PI, which scales the temperature and the modulus in our numerical simulations.

Results

Filler Volume Fraction

The experimental evidence of the yield stress in polymer melts filled with well dispersed aggregates has been given by Jouault et al. and has been presented in a previous section in Fig. 6.1. The question is to determine if our model and its basic ingredients is able to reproduce this effect and what are the parameters controlling its amplitude and strain onset. We investigate first the effect of filler volume fraction by constructing systems made of complex aggregates (made of 15 primary particles each) at a distribution state r c = 0.1D at different volume fraction φ = 0.01, 0.05, 0.07, 0.10, 0.12, 0.15, and 0.20. Our interest is to study similar systems as those studied by Jouault et al. from Ref. [START_REF] Jouault | Well-dispersed fractal aggregates as filler in polymer-silica nanocomposites: Long-range effects in rheology[END_REF].

We report in Figure 6.2 the stress-strain curve obtained in our simulations at a temperature of T = T g + 50 K. The curves exhibit an elastic regime followed by a softening occurring between λ = 1.1 and λ = 1.2, except for the system with a volume fraction of only φ = 0.01 that exhibits a softening over the full range of deformation. For reinforced systems with φ > 0.01, the softening regime is followed by a strain-hardening regime with a slope increasing with the volume fraction of the system. A yield stress can be observed for the most reinforced systems with φ ≥ 0.12 located around λ = 1.1 but it is not followed by a significant softening. Instead, it is followed by a stress plateau up to a deformation of λ = 1.2.

We consider that the curves in Fig. 6.2 do not display the characteristics of a yield stress followed by a softening as it was observed by Jouault et al. in Fig. 6.1 for systems filled with a volume fraction φ ≥ 0.12. In addition, a system with a different distribution state has been constructed. We consider a more ordered distribution state using the parameter r c = 0.2D in the same conditions as before. We report in Fig. 6.3 the stress-strain curves for the systems at a temperature of T = T g + 50 K. While the general characteristic of the curves are very similar to those with the less ordered distribution state, a more prononounced yield stress can be observed this time for systems at a sufficiently high volume fraction φ > 0.12.

Similarly, we report in Fig. 6.4 the stress-strain curves for a more ordered system with a distribution parameter r c = 0.4D. If the order of the distribution state is increased, a significant yield stress is still observed for systems with a sufficiently high volume fraction.

Curves in figure 6.2, 6.3 and 6.4 can be alternatively plotted to represent the tangential modulus ∂σ/∂λ. We report this quantity in Figure 6.5. Since the stress fluctuates for relatively high strains, the partial derivative of the stress with the strain is noisy even after smoothing. We can see from the curves that a softening appears for all distribution state with sufficiently high volume fraction. This softening corresponds to the inflection of the stress-strain curve. The distribution state however impacts the deepness and the width of the softening in a way that needs to be quantified.

In order to do so, we define the Strain Softening parameter as the difference between the peak stress and the plateau stress occurring for deformations where ∂σ/∂λ = 0.

We report the evolution of the Stress Softening parameter as a function of the filler volume fraction for different distribution state in Fig. 6.6. The curves show an increase of the strain softening with the distribution state and the volume fraction, but the evolution with the distribution state is not monotonous and exhibit a maximum for the intermediary distribution state.

We can conclude that our model is able to quantitatively predict the yield stress observed by Jouault et al. for systems with a sufficiently ordered distribution state and filled with a large amount of aggregates. However, this phenomenon merits further consideration concerning the effect of the order of the distribution state of the fillers. This is assessed in the next section. . The distribution parameter is chosen to reproduce different distribution states using r c = 0.01D, 0.04D, 0.06D, 0.08D, 0.1D, 0.2D, 0.3D and 0.4D

Effect of Distribution State

As mentioned before, the distribution state of a system modifies the observed yield stress. To study the specific effect of distribution state, systems at a volume fraction φ = 0.15 are constructed with a varying distribution state r c = 0.01D, 0.04D, 0.06D, 0.08D, 0.1D, 0.2D, 0.3D and 0.4D. It is known from Chapter 4 that the distribution state parameter r c is a numerical trick that allows to tune the homogeneity (or the order) of the filler spatial distribution. Uniaxial stretching is performed at a constant strain rate λ = 0.1 s -1 and the temperature varies from T = T g + 20 K (in the glassy regime) to T = T g + 50 K (reinforcement regime).

We report in Figure 6.7 the stress-strain curves for the systems at a temperature T = T g + 20 K and a varying distribution state. All the curves exhibit an elastic regime with a slope depending on the distribution state of the system until a maximum stress is reached for an elongation ration around λ = 1.2. A strain softening is then observed whose amplitude depends on the distribution state until elongation ratio λ = 1.4. It can be noticed that the shape at larger λ is similar, except for the initial stress shift due to the elastic and strain softening regime.

Since the temperature corresponds to a high reinforcement regime, this strong yield stress is in agreement with the overall glassy behaviour of the samples at that temperature. The evolution of the yield stress and strain softening with the filler distribution state at higher temperature in the reinforcement regime is then questioned.

We report in Figure 6.8 the stress-strain curves for the systems at a temperature T = T g + 50 K and a varying distribution state. The curves exhibit here a clear transition between a smooth softening and a yield stress with varying the distribution state of the systems. A distribution state optimum seems to be found for intermediary distribution as mentioned in a previous section. It can be seen from comparison with 6.7 that the strain at which occurs the softening or the yield stress is smaller with increasing the temperature. The shape at large λ also depends on the distribution state with a strain hardening parameter to be defined. 

T = T g + 10 K, T = T g + 20 K, T = T g + 30 K, T = T g + 40 K, T = T g + 50 K, T = T g + 70 K and T = T g + 90 K.
The strain rate is constant and is λ = 0.01 s -1 . Figure 6.9 shows the evolution of the strain softening parameter with the filler distribution state parameter r c for different systems using the data of Figures 6.7 and 6.8. The evolution of the strain softening parameter with the distribution state parameter show that increasing the order of the distribution state increases the amplitude of the strain softening of both highly reinforced (mostly glassy) and more moderately reinforced systems.

However, the strain softening does not increases indefinitely with the filler distribution state parameter r c . A transition between a regime characterised by a very small strain softening regime (or no strain softening) and a strain softening regime with average value 1.5 MPa for T = T g + 20 K and 0.2 MPa for T = T g + 50 K seems to appear for a critical screening parameter r c ∼ 0.1. This will be studied in the discussion section of this chapter.

We have shown here that the apparent yield stress and subsequent strain softening depends on the distribution state of the systems. We have found that an increase of only 30 K allowed to reduce by a factor 8 the measured strain softening parameter. We have found for now on that the yield stress we study here shares similar properties with the yield stress of amorphous polymers and glasses. The evolution of the yield stress and strain softening is going to be investigated as a function of the temperature.

Temperature

In this section we study the effect of temperature on the occurring of the yield stress and strain softening during uni-axial stretching. For that matter, systems at a volume fraction φ = 0.15 are constructed with a varying distribution state (r c = 0.1D and r c = 0.4D) and the temperature varies between T = T g + 10 K and T = T g + 90 K. Two values for the strain rate are also tested with λ = 0.01 s -1 and 0.1 s -1 . Figure 6.10 compares the stress-strain curves for a well distributed sample (r c = 0.4D) during uniaxial stretching at a constante rate λ = 0.01 s -1 for different temperatures. When decreasing the temperature, the yield stress and the strain at which it occurs is increased. The yield stress varies from 7 MPa at 
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T = T g + 10 K, T = T g + 20 K, T = T g + 30 K, T = T g + 40 K, T = T g + 50 K, T = T g + 70 K and T = T g + 90 K. The strain rate is constant and is λ = 0.1 s -1 .
down to 1 MPa at T g + 50 K before vanishing for higher temperatures. The strain at which it occurs, the yield strain, varies from λ = 1.2 down to λ = 1.1 in this range of temperatures. We demonstrate here a strong effect of the temperature on the yield stress and yield strain.

The stress strain curves for the same system but for a higher strain rate is reported in Fig. 6.11. This time, the strain rate is set to λ = 0.1 s -1 . The stress-strain curves exhibit similar properties when the tensile rate is increased, except for both higher yield stress and strain. The yield stress varies here from 8 MPa at T g + 10 K down to 8 MPa at T g + 50 K, and the yield stress are shifted, at a smaller extent, to higher strains. It can be postulated here that the strain rate has a small effect on the yield stress, but this effect needs to be investigated further.

For now on, we can plot the evolution of the Strain Softening as a function of the temperature for different systems. This quantity is reported in Fig. 6.12. It can be observed that the strain softening decreases with increasing the temperature. Moreover, strain softening is more pronounced in a sample with a good distribution state and can appear in a badly distributed system when the temperature is sufficiently low and the strain rate is high enough. The postulated small effect of the strain rate on yield stress and strain softening is no more valid for a system with a less ordered distribution state. However, we confirm here the effect of the filler distribution on the amplitude of the strain softening in our systems as demonstrated in a previous section.

In the next section, the effect of the strain rate on the yield stress and stress softening is going to be investigated.

Strain Rate

In this section we study the effect of tensile strain rate on the occurring of the yield during uni-axial stretching. For that matter, systems at a volume fraction φ = 0.15 are constructed with a varying distribution state (r c = 0.1L and r c = 0.4L) and the temperature is set at T = T g + 50 K. The strain rate is written λ and spans over 5 decades: λ = 0.001 s -1 , 0.01 s -1 , 0.1 s -1 , 1 s -1 and 10 s -1 . The stress yield parameter is set at K = 0.02.

We report in Fig. 6.13 stress-strain curves for a system with a distribution state r c = 0.1D. All curves in Fig. 6.13 exhibit an initial slope of about 30 MPa in the small strain regime. When the strain rate is sufficiently slow λ ≤ 0.1 s -1 , a smooth softening of the stress is observed with increasing the extension ratio. However, when the strain rate is increased, a yield stress with a maximum stress depending on the strain rate followed by a stress softening regime is observed.

We report in Fig. 6.14 stress-strain curves for a system with a distribution state r c = 0.4D. The small strain regime exhibit the same characteristics here as in the system with a distribution state r c = 0.1D presented in Fig. 6.13. However, the curves in Fig. 6.14 exhibit a yield stress followed by a stress softening regime for merely all the strain rates, except for the slowest strain rate where a stress plateau is observed instead.

A common characteristic of Fig. 6.13 and Fig. 6.14 is the strain rate dependance of both the yield stress and the strain at which it occurs.

The evolution of the strain softening with the strain rate for the well and badly distributed systems is presented in Fig. 6.15. The curves exhibit an increase of the stress softening with increasing the strain rate for both the well distributed system (r c = 0.4D) and the badly distributed system (r c = 0.1D). One may notice that the evolution of the strain softening is not linear with the strain rate. Once again, the stress softening is increased with increasing the order of the distribution state.

Effect of Parameter K

As described in Chapter 2 and 3, a parameter of our model concerns the stress yield of rigid bridges between filler particles. This parameter derives from a physical value shown to be around 10 6 Pa/K [START_REF] Ward | Review: The yield behaviour of polymers[END_REF].

In can be predicted from the model that increasing the value of K leads to an increase of the elastic energy that can be stored in a glassy unit before yielding, meaning that the yield stress of the macroscopic sample would increase linearly with the yield stress parameter K.

We show in Fig. 6.16 stress-strain curves for a well distributed system at a temperature T g + 50 K during uniaxial stretching at a strain rate λ = 0.1 s -1 for a varying K parameter. The curves exhibit an increase of the macroscopic yield stress with increasing the yield stress parameter. The curves are similir for higher λ except for the initial stress jump in the elastic glassy regime. However, the strain softening amplitudes seems to decrease with increasing the stress yield parameter K. With increasing the parameter, the systems go from a regime where a clear strain softening can be distinguished to a regime where appears a smooth strain softening without any strain softening but a stress plateau instead.

The evolution of the strain softening as a function of the yield stress parameter K is given in Fig. 6.17. The curves exhibit a strong non-linearity of the evolution of the strain softening with increasing the yield stress parameter K. Yield Stress Parameter K' Figure 6.17: Strain softening as a function of the yield stress parameter K for an heterogeneous (r c = 0.1) and a homogeneous system (r c = 0.4) filled with aggregates (n p = 15) at a volume fraction of φ = 0.15.

Discussion

Physical Origin of the Yield Stress in Polymer Nanocomposites

Let us first discuss a possible origin for the effect. The pseudo-yield observed is due to the breaking of glassy bridges between primary particles. When a glassy bridge breaks, the elastic energy stored is transformed in irreversible displacement of particles in our simulations. In reality, this energy may be dissipated in other ways, such as heat. The yield appears when the rate of dissipated energy overcomes the rate of elastic energy injected in the material during the deformation process.

For instance, increasing the strain rate also increases the rate of breaking events in the sample as shown in Figure 6.18.

The homogeneity of the filler distribution state seems to drive the appearance of a pseudo-yield in our simulation. When looking at the glassy bridge breaking rate in Fig. 6.19 it is clear that different distribution states does not behave the same way. Heterogeneous distribution states exhibit a smooth increase of the breaking rate during the deformation. On the contrary, a very limited amount of glassy bridges break during the first percent of deformation until a critical deformation is reached where the materials enters a catastrophic regime with higher breaking rate than more homogeneous systems.

Relaxation-time maps during stretching are obtained by concatenating the cumulative distributions of relaxation time of our systems for different extension ratio λ. The results are shown in Figure 6.20.

A general characteristic of the maps is the progressive melting of rigid units (with high relaxation time τ) with increasing the extension ratio. It can be seen on the maps with the contour plots going to smaller relaxation times with increasing the deformation.

Those maps are helpful to understand the underlying dynamics of a system during uni-axial stretching.

First, for all systems at deformations λ < 1.1, the distribution of relaxation time is steady except for the post-ageing that will be discussed latter. Then, the population of rigid units starts to melt. In an ordered system, this melting is catastrophic and for an increase of a few percent of deformation, the population of rigid units with a relaxation time τ ≥ 10 1 s drops, for instance, from about 95% down to 40% in a well distributed sample. However, in samples with disordered distribution state, the melting seems to appear in a bigger range of deformations. From extension ratios λ = 1.2 to λ = 1.4, the drop of the population of relaxation time τ ≥ 10 1 s is only from 80% down to 60%.

We can conclude here that a system that exhibits a yield stress followed by strain softening undergoes a large number of local plasticizing events in a limited range of deformations. This happens in well distributed samples close to the glass transition temperature and at a deformation rate λ = 0.1 s -1 . However, a system that does not exhibit a strain softening undergoes local plasticizing events in a broader range of deformations.

Let us go back to the post-ageing mentioned above. Relaxation-time Maps exhibit a post-ageing behaviour occurring in systems with distribution state r c = 0.1D, r c = 0.08D, r c = 0.06D and r c = 0.04D. Instead of showing a distribution of relaxation time shifted to smaller values with increasing the deformation, Relaxation-time Maps exhibit an anomalous increase of the population of glassy springs having a relaxation time τ ≥ τ 0 for relatively small τ 0 < 0.1 s as compared to the relaxation-time map of a more ordered system such as r c = 0.3D. This increase in the population of rigid springs occurs during the first deformation step. When a system is stretched in a direction for the first time, particles can meet new neighbours and they connect through rigid bridges. Those newly created bridges add to the initial population of rigid bridges and they age during the deformation of the sample.

The evolution of the relative population of rigid springs with a relaxation time τ ≥ τ 0 during uni-axial stretching for two different distribution state is presented in Fig. 6.21.

This representation enlightens the post-ageing process occurring in the disordered system. Post ageing can also be found in smaller amount in the more ordered system.

We suppose that the yield stress and strain softening is due to the simultaneous plasticizing of a large amount of rigid units. However, it can be inferred from Fig. 6.21 that the disordered system that exhibit a post-ageing regime was not in a fully equilibrated state since new units are found during the deformation of the system. That would mean that the drop of stress due to the drop of elastic energy stored in plasticizing The quantity reported here is the relative size of the population of rigid springs with a relaxation time τ ≥ τ 0 . This quantity evolves during time (ageing) and deformation of the system (yield). Different distribution state gives relaxation-time maps that are drastically differents especially in the region of experimental interest between τ 0 = 0.1 s and τ 0 = 10 s. distribution state with r c = 0.400D. In the less ordered system with r c = 0.040D, the curves exhibit a soft decrease with increasing the extension ratio after a steady state up to λ = 1.2. In a more ordered system with r c = 0.400D, the curves exhibit a sharp decrease with increasing the extension ratio after a steady state up to λ = 1.2. We attribute the sharpness of the decrease to the amplitude of the strain softening appearing after the yield stress observed in our simulations. rigid units is concealed by the fact that only a smaller amount of rigid units (as compared to the ordered one) can store elastic energy at the beginning of the deformation.

Post-Ageing During the First Loading

In the previous section we enlightened that our systems may not be in a fully equilibrated state. In fact, the number of rigid units increases during the deformation since new neighbours are found between fillers primary particles that come closer. Since disordered systems initially contains less rigid units, it may be inferred that they can store a smaller amount of elastic energy and releasing this energy at yield is not sufficient to exhibit a pronounced yield stress and strain softening.

In order to test this assumption, the disordered system studied before is taken in its reference state and it is deformed up to λ = 1.2 in uni-axial elongation at a speed λ = 0.1 s -1 . During this deformation, new rigid units are created between neighbouring particles. Then, the system is brought back to its reference shape λ = 1 using uni-axial compression at speed λ = 1 s -1 . In this new reference state, the system is aged during 10 4 s again. The system is then stretched using the same procedure as described in a previous section.

After this procedure, when stretched at a constant tensile rate λ = 0.1 s -1 the disordered system exhibit a moderate stress softening of about 0.34 MPa as it can be seen in Fig. 6.22. This amount of stress softening is 5 times smaller than the stress softening observed in the well ordered system.

We can conclude that the less pronounced stress softening in the disordered system is not a consequence of a system that may not be fully equilibrated. Moreover, the distribution state has evolved during the initial deformation of the system, and even if it has changed, this initially disordered system still exhibit a very small softening.

As discussed before, the disordered system exhibit a smoother decay of the population of rigid bridges than the system with an order distribution state. However, post-ageing observed in figure 6.20 can be attributed to a numerical artefact: new rigid units are discovered during the first elongation. Nonetheless, this does not affect drastically the mechanical properties nor the appearance and the amplitude of a yield stress and strain softening. In Fig. 6.22 we can see that the post-aged disordered sample exhibit a small deformation modulus similar to the one of the homogeneous sample. In fact, we have seen in Chapter 4 that the elastic modulus of a disordered sample is higher or similar to a more ordered one for all temperatures above glass transition. This effect is due to smaller distances occurring in a disorder system. However, this is not what we have observed for instance in Fig. 6.7 where the modulus is higher for more ordered systems. We can conclude here that systems should have been pre-stretched in order to reduce this numerical artefact. Anyhow, the strain softening is not affected by a pre-stretching as demonstrated in Fig. 6.22. This discussion allows to conclude that the reason for our disordered systems not to exhibit a stress softening is not linked to the numerical implementation of the model. It seems to be the disorder in the distribution state that allows a smooth decay of the population of reinforcing rigid units. A sharper decay is observed in a system with an ordered distribution state and therefore leads to a strain softening regime when all the elastic energy is released.

Link with the Jamming Transition

Jamming occurs when a system develops a yield stress in a disordered state [START_REF] O'hern | Jamming at zero temperature and zero applied stress: The epitome of disorder[END_REF]. This is a physical process by which a material becomes rigid when increasing for instance density. It typically occurs when the internal stress cannot be relaxed via the relative displacement of filler particles [START_REF] Mohan | Microscopic Origin of Internal Stresses in Jammed Soft Particle Suspensions[END_REF] when a system is loaded with a macroscopic shear stress usually denoted by Σ. In this situation, the system cannot flow and exhibit a rigid behaviour. In other words, the system exhibits a stress relaxation time that exceeds the time scale of one's measurement.

Parameters that controls the jamming transition in systems filled with rigid or semi-rigid particles are the temperature T, the shear stress Σ and the inverse of the density 1/φ [START_REF] Liu | The Jamming Transition and the Marginally Jammed Solid[END_REF].

In our simulations, filler particles interact through two sets of harmonic springs, one permanently set and one that constantly breaks and rebuilds.

Let us focus on the dynamic set of rigid (glassy) springs. The number of particles connected through glassy springs with a local relaxation time τ > τ 0 depends on the distance between objects, the temperature of the experiment, and on the overall stress. A system containing a percolating network of particles connected by glassy bridges can therefore be considered as Jammed with respect to a given experimental time scale. It will relax with a relaxation time corresponding τ > τ 0 . Therefore, the phenomenology of the jamming transition is observed:

-Increasing the temperature will reduce the relaxation time of the bridges according to the WLF equation of the model, eq. (2.28), and thus will reduce the number of particles connected by glassy springs. The systems go into the unjammed state. -Decreasing the density will increase the average distance between objects and thus will reduce the number of particles connected by glassy bridges due to the shift of glass transition temperature from equation (2.22). The system goes then into the unjammed state. -Increasing the stress will progressively melt rigid units due to the stress yield parameter in eq. (2.26), and thus will reduce the number of particles connected by glassy bridges. The system also goes into the unjammed state.

Our present study adds a new parameter that drives the jamming of suspension. For instance, the curves in Fig. 6.7 shows that at a volume fraction φ = 0.15 and at T = T g + 20 K and a shear stress of (arbitrarily) σ = 4 MPa, some systems exhibited a smooth softening while other systems are still rigid. Therefore, we argue here that a fourth parameter triggers the jamming transition in systems such as polymer nanocomposite, which is the small range order of particles. We controlled the local order using a repulsion parameter r c for constructing our systems, therefore the higher r c , the higher the local ordering of filler particles, the better the homogeneity of the filler distribution.

So let us introduce a disorder parameter 1/r c which increases when the filler distribution becomes heterogeneous. The data from Figures 6.6 and 6.12 can be used to estimate a jamming phase diagram. We arbitrarily define a jammed system as a system exhibiting a stress softening higher than σ SS > 0.5 MPa.

We report in Fig. 6.23 the jamming phase diagram. The systems indeed exhibit unjamming when increasing the temperature or lowering the volume fraction. Also, the unjamming occurs when the disorder in filler distribution is increased. Therefore we believe that the filler distribution state is a parameter of the jamming transition in polymer nanocomposites when the GBRM applies. Further studies are however needed to confirm this effect. A system is considered Jammed (J) when it exhibits a strain softening σ SS > 0.05 MPa, and is considered Unjammed (N) when it exhibits a smooth softening instead.

6.5

Conclusions

In this chapter we have studied the effect of distribution state on the viscoelastic properties of filled elastomer during simple elongation. Filled elastomers usually exhibit a smooth decay of the elastic modulus with increasing the strain amplitude. However, it has been found recently that polymer melts containing well distributed fractal aggregates exhibit such decay but also a strain softening regime in certain case for systems at high volume fraction.

We have used the GBRM to study if such strain softening regime can be obtained numerically and we have demonstrated that this effect appears in highly ordered systems. When the distribution state of the system is heterogeneous, rigid bridges between filler particles progressively melt when increasing the strain amplitude. On the countrary, in more ordered systems, all the melting events occurs at the same time thus leading to a catastrophic regime which translates on the stress strain curve as a strain softening regime.

We have studied different parameters that drives the effect and we have found that disorder in term of filler distribution state is the main parameter of the effect. At this point, experimental studies on highly ordered systems needs to be performed in order to confirm this effect.

-In simple elongation, filled elastomers exhibit a smooth softening above the glass temperature whereas highly filled polymer melt can exhibit a yield stress of some MPa. -The GBR model has been used to simulate such experiment and both the smooth softening or the yield stress can be obtained depending on the condition of the experiment. -The most important parameter has been found to be local ordering of filler. The distribution state needs to be highly homogeneous (to the sense of our study or model systems of Berriot [START_REF] Berriot | Gradient of glass transition temperature in filled elastomers[END_REF] and Jouault [START_REF] Jouault | Well-dispersed fractal aggregates as filler in polymer-silica nanocomposites: Long-range effects in rheology[END_REF]) in order for a yield stress to develop. -The yield stress in such systems is the consequence of the catastrophic melting of small subunits. In ordered systems, a progressive melting is observed instead. -We predict that similar effect can be observed in highly ordered filled elastomers. At this point, an experimental study on model system (model to the sense of Berriot or Jouault) need to be performed in order to confirm our predictions.

Introduction

We have developed in this work a way to estimate the viscoelastic properties in the linear and non-linear non-destructive regime for systems filled with complex aggregates at different distribution state. In this part of the work, we want to determine if it is possible to use this extended model to estimate the damaging behaviour of such systems. In other words, considering the ingredients of the model, and the source of disorder brought by aggregate morphology and distribution state, are we able to distinguish different damaging behaviours between our systems.

Let us first discuss some results of the literature. It is known from Auer [START_REF] Auer | Factors Affecting Laboratory Cut-Growth Resistance of Cold SBR Tread Stocks[END_REF] that an optimum in cut growth resistance exists for intermediary filler volume fraction (around 5 vol.%). We reproduce the data from [START_REF] Auer | Factors Affecting Laboratory Cut-Growth Resistance of Cold SBR Tread Stocks[END_REF] in Fig. 7.1 where the cut growth resistance at 65°C is plotted as a function of the carbon black loading in different samples. The curves clearly show an optimum for intermediary volume fraction. However, the samples have been formulated so that their elastic modulus at 300% of deformation is constant. Therefore, samples containing a fewer amount of filler have been highly cross-linked in order to obtain similar strength.

In Auer's work, both the filler amount and the cross-link density are varied and more specially at low volume fraction: samples needs to be highly cross-linked in order to exhibit a higher strength. The tear resistance, the Fatigue Life and Toughness of cross-linked rubbers depends on cross-link density and exhibit a maximum for intermediary cross-link densities [START_REF] Flory | Dependence of tensile strength of vulcanized rubber on degree of cross-linking[END_REF][START_REF] Yanyo | Effect of crosslinking type on the fracture of natural rubber[END_REF][START_REF] Mark | The Science and Technology of Rubber[END_REF]. Therefore, at low volume fraction, the cut growth resistance is small because the tear energy of a highly cross-linked elastomer is small. In other words, the results of Auer [START_REF] Auer | Factors Affecting Laboratory Cut-Growth Resistance of Cold SBR Tread Stocks[END_REF] may only be the consequence of the cross-link density and not the filler amount in itself.

Nonetheless, the tear energy of unfilled SBR is of the order some kJ/m 2 whereas the one of filled SBR is Each line correspond to samples prepared in such way that their elastic modulus at 300% is 5.5 MPa, 8.3 MPa and 11 MPa. Therefore, the formulation of the matrix is not constant when increasing the filler loading. Data from Ref. [START_REF] Auer | Factors Affecting Laboratory Cut-Growth Resistance of Cold SBR Tread Stocks[END_REF] and converted in SI units.

about 100 kJ/m 2 when the interaction between the filler surface and the elastomer is strong [START_REF] Ostad-Movahed | Comparing Effects of Silanized Silica Nanofiller on the Crosslinking and Mechanical Properties of Natural Rubber and Synthetic Polyisoprene[END_REF]. The question raised is whether the tear energy increases with the filler loading when the matrix formulation is fixed. In fact, we have not been able to find a systematic experimental study of the effect of filler loading on tear energy while the matrix formulation (or cross-link density) was kept constant. In fact, most of the time, only one filler amount is studied and compared to the pure matrix such [START_REF] Mané | A new rotary tribometer to study the wear of reinforced rubber materials[END_REF][START_REF] Gabrielle | Effect of tear rotation on ultimate strength in reinforced natural rubber[END_REF]. In other cases, the matrix formulation is changed to study systems with identical mechanical properties.

Therefore, we will study the effect of filler amount on the tear energy while considering that other material parameters are kept constant.

As mentioned in Chapter 2, the filler amount is not the only parameter affecting the ultimate properties of filled elastomers. Generally, dissipative mechanisms such as Payne Effect and Mullins Effect increases the tear energy when they occurs [START_REF] Kraus | Structure-Concentration Equivalence in Carbon Black Reinforcement of Elastomers. III. Application to Tensile Strength[END_REF][START_REF] Auer | Factors Affecting Laboratory Cut-Growth Resistance of Cold SBR Tread Stocks[END_REF][START_REF] Dizon | The Effect of Carbon Black Parameters on the Fatigue Life of Filled Rubber Compounds[END_REF][START_REF] Medalia | Effect of Carbon Black on Dynamic Properties of Rubber Vulcanizates[END_REF]. This is contrasted by a more recent study where Fayolle [START_REF] Fayolle | Influence de la dispersion de la silice sur les propriétés viscoélastiques et mécaniques des élastomères renforcés[END_REF] has shown that increasing the homogeneity of the filler distribution lead to a slight increase of the tear energy while lowering the elastic modulus G . In fact, when the filler distribution is strongly heterogeneous, we have shown previously that the amplitude of the dissipative behaviour is augmented. Though, in certain case, heterogeneously distributed fillers form macroscopic clusters, big enough to initiate cracks facilitating the damaging of a sample.

We will also study the effect of disorder in term of filler distribution. In order to do so, we need to introduce a new ingredient in the model to account for irreversible damage in our simulations. Then, new numerical methods will be used to quantify the damaging behaviour of our samples. Our ambition here is only to study the behaviour of a system during quasi-static simple loading, and to understand how the distribution, the filler volume fraction and filler morphology can affect the mechanical response in this destructive regime.

Modelling Breaking

In the following, we are going to introduce a simple ingredient for modelling irreversible damage in our simulations. Let us recall the basic ingredients of the model first. Rigid filler particles are introduced in a simulation domain and then a permanent network or rubbery springs is set between primary particles to model the elasticity of the matrix. A dynamic network of rigid springs models glassy bridges between sufficiently close primary particles. Those springs are dynamically set during the simulations, they break and reform constantly.

A simple way to introduce irreversible damage in our simulation is to set a simple critical extension for rubbery springs. Therefore, let us assume that a rubbery spring breaks irremediably when its local deformation ε l reaches a maximum stretch criterion ε c . With d the diameter of primary particles connected by the spring, l 0 and l the initial length and current length of the spring respectively, the local deformation ε l writes

ε l = l -l 0 l 0 -d , (7.1) 
with d the diameter of the primary particles connected by the spring. The lengths l and l 0 stand here for the center to center length of a spring, Let us discuss the value of ε c . Simulations use a small number of fillers (N = 1000 typically). A plane of a simulation domain contains only N 2/3 = 100 fillers. If we assume that the volume of our system is constant during stretching, the surface area of a plane perpendicular to the tensile direction is divided by λ and particles rearrange. A plane containing less than 10 fillers would not be realistic. In order to stay representative, a plane containing less than 4 particles per side (16 particles) will not be allowed in our simulations. This introduce a maximal elongation ratio for our simulation λ m = 6.25.

This maximal elongation ratio λ m has the same order of magnitude as the elongation ratio at break of Silica filled rubber λ b ∼ 7. This discussion allows us say that it is possible to simulate extensions of about λ = 6 with our numerical model. Let us estimate the time needed to simulate such extensions.

We have introduced a hydrodynamic friction mapped on the dissipation of the matrix by a friction coefficient ζ = 30 s typically. The strength of a rubbery spring is k ∞ = 1, and the relaxation time in simulation seconds is therefore τ = ζ/k = 30 s. Our extensions should be performed with λ 1/τ, in the order 10 -2 -10 -3 to be in quasi-static regime. Deforming a system up to an elongation ratio of 7 would require 7 × 10 3 simulation seconds or 7 × 10 6 simulation steps since the shortest relaxation times in the systems are about 1 second. During a step, the forces are evaluated 4 times in the Runte-Kunga algorithm for each primary particles leading to about 3 × 10 7 computations for a particle, 10 10 computations for a system made of 1000 spherical particles up to 10 12 for a system made of 1000 aggregates of 30 particles per aggregates. This would require extremely long simulations with no breaking events. Therefore, we need to introduce a smaller breaking criterion in order to induce the damage at smaller elongation ratio. We choose instead a small maximum stretch criterion ε c . We aim at keeping the dissipative behaviour of glassy springs breaking due to the stress yield of the glassy part of the matrix. Hence, we set this criterion to be larger than the stretch at break of the glassy springs.

In a previous chapter, we derived in equation (2.27) the shift of local T g due to the displacement of two filler particles. It was determined that only a few percent of deformation allowed a shift of glass transition temperature sufficient to counteract the increase of T g due to interfacial effects. Therefore, any criterion higher than some percent would be sufficient to preserve the effect of matrix dissipation. As a result, we set c = 0.4. If the local elongation of a spring is more than 40%, the spring breaks: its local strength k becomes zero. This ensure that glassy bridges will break before rubbery springs, and the dissipative behaviour of reversibly breakable springs that models glassy bridges is kept. Also this ensures that the damage occurs at small deformations, that are more easily accessible by our numerical tool.

The way the breaking of a polymer element is modelled by the breaking of a spring needs to be discussed. In this approach, the force grows linearly with the local deformation until the critical elongation is reached. Then the force drops immediately down to zeros as the local strength does so. In reality, some elastomers such as NR can strain crystallise [START_REF] Hamed | The Mechanism of Carbon Black Reinforcement of SBR and NR Vulcanizates[END_REF], which has a strong effect on the strength of a polymer element when its elongation is increased. We do not impose a hardening mechanism in our simulations and therefore both the effect of strain crystallisation and finite extensibility are not reproduced in our simulations. Those mechanisms are hardening mechanisms and are known to impact crack propagation mechanisms [START_REF] Vieyres | Sulfur-cured natural rubber elastomer networks: Correlating cross-link density, chain orientation, and mechanical response by combined techniques[END_REF][START_REF] Gabrielle | Effect of tear rotation on ultimate strength in reinforced natural rubber[END_REF][START_REF] Gabrielle | Etude du renforcement et de la propagation d'entaille dans les élastomères renforcés[END_REF]. This constitutes a strong limitation of our model.

7.3

Qualitative Results

In this part, the systems will be pre-notched in direction x before applying uni-axial elongation in direction z. Because our systems are periodic in all directions, this corresponds to the study of a lattice of infinite cracks as represented in Fig. 7.2. We want to identify first how the initial crack will grow during the elongation and therefore we need a numerical way of identifying the spatial localisation of the damage in our samples.

The strategy to solve this issue is to build a damage map. The damage map is made of a collection of independent cells associated with the damage state of springs allowed to break in a given systems. In order to facilitate the numerical computation of such damage map, only the springs connecting the upper and lower part of the sample are allowed to break with a maximum elongation, as explained before. This forces the crack to propagate in the predetermined surface separating both halves of the sample. To construct a damage map, each spring crossing the surface are associated with a damage cell whose state can be either undamaged or damaged. If a spring breaks, its associated damage cell becomes damaged. This gives a simple approach allowing to identify if the damage in the sample is localised at the crack tip or if it is distributed in the whole sample (in practice, in the whole fracture surface). We represent this approach in Figure 7.3. Therefore, at this point we have defined a function D(x, y) that can be equal to 1 if the corresponding cell is undamaged or 0 otherwise.

For each value of λ, the damage localization in the fracture surface is estimated by the function D(x, y, λ). In can be seen from Figure 7.4 that the damage does not seem to localise close to the initial crack tip and seems to be distributed in the sample. A more useful representation of the damage map is to average the state of the cells (damaged = 0 and undamaged = 1) in the rows perpendicular to the crack propagation direction

D x (y, λ) = 1 L L 0 D(x, y, λ)dx (7.
2)

The latter can be represented in the (y, λ) plane and gives a representation of how the damage localises near the crack tip during elongation. This procedure is shown in Figure 7.5 in order to fix the ideas. In the (y, λ) plane, the crack tip appears as black left and right borders. The border grows when increasing the deformation, meaning that the crack tip is moving in the y direction.

This new approach gives us a numerical framework that allows to determine easily if the damage localises near crack tip or if it is more distributed in the sample. Therefore, we use this numerical framework The damage is average along the direction perpendicular to the crack propagation. This results in a function D x (y, λ) depicting the average damage as a function of the distance (along y) to the crack tip (crack tip is along x). This function can be represented in the (y, λ) plane and results in a map depicting how the crack evolves with the stretch. When D x (y, λ) > 0.5 this means that less than 50% of the cells are damaged, it is depicted in white. When D x (y, λ) < 0.5, most of the cells are damaged, this is depicted in black.

in order to study the behaviour of systems filled with spherical particles at a volume fraction φ = 0.2 at various distribution state. Systems are created with a various distribution parameter as described in Chapter. 3. Uni-axial extension is performed at small strain rate λ = 0.001 s -1 at high temperature T = T g + 150 K.

We represent in Figure 7.6 the function D x (y, λ) in the (y, λ) plane.

From Fig. 7.6 it can be seen that the damage onset depends on the filler distribution state and decreases with increasing the heterogeneity of the systems. The damage onset here is when the black border starts to erode the undamaged white core. This means that with increasing the deformation, the crack progressively grows. It is clear that the crack grows faster in a system with a heterogeneous distribution state r c = 0.1D as compared to a more homogeneous system.

Moreover, a homogeneous system exhibit a more localised damage near the crack tip while the damage is much more distributed in heterogeneous samples. For instance, new cracks appear during the elongation in most heterogeneous systems with r c = 0.05D and r c = 0.01D. We see here that the homogeneity of the distribution state of the filler modifies the behaviour of a sample in the damaging regime. A homogeneous system breaks critically while a more heterogeneous system undergo a more progressive damage until it breaks.

The distribution state therefore determines the behaviour of a sample in the damaging regime for systems filled with spherical particles. The same study has been performed on system filled with complex aggregates n p = 10 and n p = 30, both at a volume fraction φ = 0.2. The results are reported in Fig. 7.7 for n p = 10. Systems constructed with small r c parameters are damaged for smaller elongation values. However, the behaviour remains comparable for all the distribution states considered here.

We report the results of the study on systems filled with complex aggregates n p = 30 in Fig. 7.8. This time, different damaging behaviour are not distinguishable between different distribution states.

In fact, we have seen from Chapter 5 that complex systems had similar mechanical properties as systems filled with highly heterogeneously distributed spherical particles. It can be noted that all the samples are totally broken for a deformation similar but greater than the damage criterion = 0.4 we arbitrarily set in this study. Moreover, this study corresponds to an extreme situation where only pre-identified springs crossing an arbitrary surface boundary can break. Therefore, a more realistic study needs to be performed.

7.4

Quantitative Results

The qualitative damage map performed in the last section already gave us an important result on the effect of filler distribution. When systems are partially aggregated, the damaging is no more localised at crack tip, at least in our simulation which are a very simplified model of crack propagation. In the following, we release the constraint on crack propagation, meaning that any spring with a local strain ε > ε c will break, even if in the bulk far from the boundary surface.

Failure of a numerical system is detected according to the following algorithm. First, for each extension state, we compute the average number m of objects in rubbery clusters. If two fillers are connected through a rubbery spring, they belong to the same rubbery cluster. The average number m is in fact the second moment of the cluster number distribution and is written:

m = m 2 n(m) mn(m) , (7.3) 
with m the number of filler in a cluster and n(m) the number of clusters of size m. At the beginning of our simulations, all filler particles are connected to a single cluster that percolates in the system. Therefore, m at t = 0 equals the total number of filler particles in the simulation. During extension, rubbery springs progressively break and some filler particles are no more connected to the main percolating clusters. This cluster starts to break into smaller clusters during this process. We assume that a system is broken when occurs the biggest fragmentation of the cluster, i.e. when the time derivative of m (t) is the most negative.

This gives us a simple way to decide on whether a numerical sample is broken or not. The tear energy is then estimated by integrating the stress vs strain curve until the sample breaks. This gives us the energy density at break W b : 

W b = λ b 1 σ(λ)dλ, (7.4) 

Effect of Filler Distribution

First, system filled with spherical particles at a volume fraction φ = 0.2 and different distribution state (from Chapter 4) are studied. The systems undergo simple extension at a strain rate λ = 0.1 s -1 , at T g +50 K.

The evolution of the stress in the main direction is reported as a function of the strain in the samples for different distribution state in Fig. 7.9. Systems with heterogeneous distribution state (small r c values) exhibit first a softening with increasing the deformation for strain of a few percents. It is reminiscent of the Payne Effect already discussed, which is more pronounced in heterogeneous distributions of particles.

For extensions of about 1.5, the stress becomes a decreasing function of the extension ratio, therefore materials enters a damaging regime. This corresponds to a regime where rubbery springs reach their critical elongation and break irreversibly. In Fig. 7.10 the total number of rubbery springs is plotted as a function of the elongation ratio in the systems. Systems are filled with 1000 filler particles and with a connectivity of 10 springs per filler particles this leads to 5000 springs at the beginning of the simulations. During elongation, springs start to break and the total number of springs decreases progressively. The extension onset at which springs start to break is smaller in heterogeneous systems as described in a previous section.

As mentioned earlier, we detect material failure when the average rubbery cluster size m decreases sharply during the elongation. We report the evolution of this quantity as a function of the extension ratio in Fig. 7.11. The breaking event occurs for smaller extension ratio in heterogeneous samples compared to more homogeneous samples.

The same study has been performed at a higher temperature and we report in figure 7.12 the stress-strain curve and the evolution of the cluster size of those systems.

The samples exhibit a slightly smaller tear energy when tested at higher temperature but the tendency of the increase of the tear energy with filler distribution homogeneity is recovered in the sample. The evolution of the tear energy as a function of the stretch ratio at break and as a function of the distribution parameter is reported in Figure 7.13 for different distribution parameters at T g + 30 K and T g + 50 K.

The increase of the tear energy with the elongation at break is qualitatively similar to the results found for instance in the study of Auer, Doak and Schaffner [START_REF] Auer | Factors Affecting Laboratory Cut-Growth Resistance of Cold SBR Tread Stocks[END_REF]. Also, they observed an exponential decrease of the cut growth resistance with increasing the temperature, which is again qualitatively similar to what is observed in our simulations. The slight increase of the Tear Energy in our simulation with the homogeneity of the distribution state can also be compared to the results of Fayolle PhD Thesis [START_REF] Fayolle | Influence de la dispersion de la silice sur les propriétés viscoélastiques et mécaniques des élastomères renforcés[END_REF]. In her study, increasing filler homogeneity was associated to lower elastic modulus G and slight increase in wear. However, Fayolle demonstrated that the modification of the wear behaviour due to filler distribution homogeneity was not found during fatigue experiment.

This current study has been performed on the deformation of only one system each times. Our hypothesis is that the damaging behaviour may be highly distributed in our systems. Therefore will consider in the following 10 samples per distribution state instead.

Effect of Filler Distribution, continued

Ten systems are built for each distribution state studied. In this study, spherical particles are used at a volume fraction φ = 0.2. Simple elongation is performed at a constant strain rate and the tear energy is estimated using the procedure previously described based on integrating the stress-strain curve up to material failure determined by the sharpest decrease of the average rubbery cluster mass. We report in Fig. 7.14.

The main result of this statistical validation is that the clear increase of the tear energy with distribution homogeneity is no more valid. The results of the previous study are in fact drown in the large fluctuations of the tear energy for different samples at the same distribution state. In our study, we find a small increase of the minimum tear energy with increasing the filler distribution homogeneity in certain case. However, this behaviour is not systematic and for instance, at high speed and high temperature (Fig. 7.14.d), the minimum tear energy simply fluctuates with increasing the distribution parameter.

We report in figure 7.15 the evolution of the storage and loss moduli as a function of the distribution parameter in the systems studied. As mentioned in Chapter 4, the elastic modulus decreases with increasing the distribution r c . This set of data allows us to construct a map of the tear energy as a function of the elastic modulus which is represented in Fig. 7.16. Elastic and loss moduli are not statistically distributed among the different systems studied. In fact, the standard deviation is smaller than the symbol size in 7.16 and is therefore not represented.

Averaged over 10 configurations for each distribution state, the increase of the tear energy with increasing the distribution parameter is no more a characteristic of our simulations. Based on the results of this study, we argue that the effect of filler distribution on damage resistance is difficult to predict at the scale of our simulation. Let us recall that our simulations contains about 1000 fillers particles of size less than 100 nm. The resulting simulations are therefore equivalent to small volume element of less than a micron in physical units. Moreover, distribution state are usually not homogeneous in experimental samples. The results obtained yet allows us to make the hypothesis that wear for instance is a local effect where the local weakness of the sample is more critical to the macroscopic behaviour. On the contrary, the macroscopic fatigue is affected by the average distribution of tear energy in the sample. Therefore, this numerical study gives us new strategies for interpreting fatigue vs wear results when modifying the filler distribution state..

Effect of Filler Morphology

In Chapter 5, the effect of filler structure on the mechanical properties in the linear regime and non-linear non-destructive regime has been studied. Our aim here is to estimate if filler morphology also modifies the mechanical behaviour in the destructive regime.

Similarly to the previous section, a set of ten systems are constructed for a given filler structure. The disribution parameter is set to r c = 0.4 and the volume fraction is fixed to φ = 0.2.

Simple elongation at a constant strain rate λ is performed while assuming the incompressibility of the system. We report in Figure 7.17 the Stress Strain curves for the systems filled with different filler shape. The decrease of the stress which corresponds to the damaging regime appears at smaller extension ratio for systems filled with more complex aggregates. This seems to indicate that system filled with complex aggregates undergoes damage at smaller strain compared to system filled with spherical particles. However, the system filled with aggregate made of 20 particles each exhibits a negative stress during the elongation while it is not considered broken yet. This negative stress comes from the fact that complex aggregates are compressed in the direction perpendicular to the elongation and therefore the perpendicular stress is strongly non-zero during this process. The perpendicular compression leads to an internal force in the direction of the elongation. This is a numerical artefact due to the way we impose a compression in order to keep the volume constant in our simulation.

During the damaging regime, springs progressively break in the samples. The portion of remaining rubbery springs is plotted as a function of the extension ratio in the different systems in Fig. 7.18. The system filled with more complex aggregates starts to undergo a drop of remaining rubbery springs before systems filled with more simple filler shapes. However, more rubbery springs needs to break in a system filled with complex aggregates before the macroscopic rupture occurs in the sample compared to systems filled with spherical particles. The relative amount of damage is therefore higher at macroscopic rupture in a sample filled with more complex aggregate.

The curves in Fig. 7.18 can have an interest at higher scale, for instance in FEM modeling. We provide here a model to estimate the evolution of the damage during simple elongation, which can be used to establish a damage law in nanocomposite elastoplastic damage models.

An interesting feature is also the extension ratio at break for the set of systems. We report in Fig. 7.19 the evolution of the extension ratio at break as a function of the filler structure parameter n p for the different system studied. The extension ratio at break increases with the filler structure. Also, it increases with the temperature.

The stress-strain curve exhibits a strong numerical artefact arising from the negative stress due to the constant volume hypothesis. Therefore, the estimation of the tear energy by simply integrating the stress strain curve until macroscopic failure needs to be considered cautiously. We report the evolution of the Tear Energy as a function of the filler structure parameter n p in Fig. 7.20. It appears that the tear energy decreases with increasing the filler structure parameter except for the most complex structure with n p = 20. The latter point corresponds to systems that where fillers were not able to rearrange during elongation and therefore exhibited enormous amount of stress due to very strong filler-filler contact.

As a conclusion, the model we propose is not mature enough to allow the estimation of tear energy for complex aggregates at a volume fraction as low as φ = 0.20%. However, we believe that this study revealed some interesting features. First, the amount of local damage at break is higher in a system filled with complex aggregates. Moreover, the elongation at break is also higher in system filled with such complex aggregates. It has been demonstrated that increasing filler structure parameter was responsible for higher shift of glass transition temperature and higher modulus for a given temperature in Chapter 5 and as reported in Fig. 7.21. Complex filler here allows higher elongation at break and higher local damage required before failure. In this approach, a higher amount of energy would be needed for them to break. However, our method for estimating tear energy provides in fact the opposite. We believe that this is a numerical artefact and further consideration will be required to solve this current issue, such as for instance releasing the constant volume hypothesis.

Effect of Volume Fraction

In order to study the effect of volume fraction on the tear energy, we restrict to the case of spherical particles and moderately complex aggregates made of with 15 primary particles only. A great care will be used when considering volume fraction close to 20% because of the numerical artefact due to the constant volume assumption.

First, systems are constructed with different amount of spherical particles with a distribution state parameter r c = 0.1 leading to a heterogeneous distribution state. We report in Fig. 7.22 the stress strain curves for the different systems at a heterogeneous distribution state with a varying volume fraction. In the low deformation range, an elastic regime appears with a slope increasing with the filler amount. However, the more reinforced systems exhibit a decrease of the stress with increasing the deformation at smaller critical strains. Also, the extension at break decreases with increasing the volume fraction. Similarly to the previous section, systems at a volume fraction φ = 0.2 exhibits a negative stress because of the lateral compression during uniaxial elongation due to the constant volume assumption.

When performing the test on a set of 10 systems per volume fraction, the extension ratio at break is clearly a) T g + 30 K, λ = 0.10 s -1 b) T g + 50 K, λ = 0.10 s -1 We can estimate the tear energy by integrating the stress strain curve for our systems. The tear energy is also a decreasing function of the volume fraction as reported in Fig. 7.24. This is a systematic effect that appears even for filler volume fraction below 0.1. We believe that this results is not due to a numerical artefact since it appears at small volume fraction where the lateral compression does not produce an excess of contact forces between filler particles.

The results found here are in agreement with the litterature, such as the study of Auer [START_REF] Auer | Factors Affecting Laboratory Cut-Growth Resistance of Cold SBR Tread Stocks[END_REF] showing a decrease of the crack propagation resistance with increasing the volume fraction. However, our model is not able to represent systems filled with very small filler amount. Because the matrix is accounted for only by rubbery springs between filler particles, a system filled at a low volume fraction is in fact a very sparse system with a large amount of empty space.

The same study is performed on spherical particles with a more homogeneous distribution state. We report in Fig. 7.26 the extension Ratio as a function of the volume fraction at two temperatures. The extension ratio at break decreases with increasing the volume fraction. The trend is not affected by filler distribution state here, however the extension ratio at break is higher by a small amount for the case of homogeneous distributions.

As performed before, we can estimate the tear energy by integrating the stress strain curves. As shown Let us mention that the non-linear increase of the elastic modulus G with increasing the volume fraction is more pronounced at T g + 50 K since systems filled at small volume fraction do not exhibit a strong reinforcement. The curve at lower temperature is more linear since the systems are all in a strongly reinforced regime. The modulus therefore increases with the filler amount. The evolution of the loss modulus is not linear with the volume fraction. At T g + 30 K, the overall dissipation decreases with the volume fraction while at T g + 50 K, the materials exhibit a strongly dissipative regime for volume fraction between 6% and 12%.

The study has been performed on systems filled with complex aggregates made of n p = 15 particles each. The distribution parameter has been fixed to r c = 0.4 allowing a homogeneous filler distribution state. We report only here the evolution of the elongation at break and the tear energy with the volume fraction in The trends observed for spherical particles needs to be reconsidered for fractal aggregates.

Discussion

Disorder Affects the Damage Behaviour

We discuss in this section the origin of the general trend observed in our numerical results. When systems are dense or complex, they also exhibit a degraded damage behaviour. We argue that this is linked to the ability of a population of filler to reorganise in a sample without leading to breaking events for a given deformation.

In our system, a crack propagate when a rubbery spring reaches its maximum stretch. Due to strain amplification between filler particles, the macroscopic strain is amplified locally and therefore a system containing primary particles separated by small distances will break for smaller stretches than a system with more distant particles. This simple rule of thumb allows to understand the behaviour with increasing the volume fraction but is not sufficient to explain the reason why a system filled with well distributed complex aggregate breaks for smaller stretch than a system filled with spherical particles only.

The latter can be explained by the fact that the local reorganisations are more complex in a system filled with fractal aggregates than in a system filled with spherical particles only. For that matter, let us introduce the non-affine displacement of a filler during deformation. The center of mass of an aggregate particle is described by R(t) as a function of time. In the reference configuration, at t = 0, the original position of the filler particle is then R(0). During the deformation of the system at a constant rate, the interaction with neighbouring particles will prevent the filler to follow the affine deformation of the system. The deformation between the reference state and the deformed state is depicted through F (t) and therefore at any time, the non-affine displacement x expressed in the reference configuration can be written

x(t) = F -1 (t)R(t) -R(0). (7.5) 
The squared norm of this non-affine displacement can be averaged over all the particles in the system. We report in Fig. 7.30 the evolution of x 2 as a function of the stretch for a system filled with complex aggregates and a system filled with spherical particles. Both systems have a filler volume fraction of φ = 0.1 with r c = 0.4 (homogeneous distribution state).

It can be seen from the curves that the non-affine displacement is much higher in a system filled with complex aggregates compared to a system filled with spherical particles. For that reason, rubbery springs between complex fillers are stretched to higher local values than rubbery springs between spherical particles. We report in Fig. 7.31 the distribution of the local strain in a system filled with spherical particles and in a system filled with complex aggregates. The local strain distribution is constrained in a small extension range for the system filled with spherical particles only. The maximum local stretch in a system filled with spherical particles is about 1.2 while the macroscopic stretch is λ = 1.1, meaning that the maximum local strain amplification a ≈ 2.

In a system filled with complex aggregate, the maximum local stretch is much more amplified, reaching a value of around λ l = 2, with a maximum local strain amplification of about a ≈ 10.

Let us mention here that the differences in local strain here induces a difference in local strain rate. The amplitude of this difference local strain rate is less than a decade, it is around 5 in our example. Moreover, the local strain is widely distributed in the samples and only a few amounts of the matrix actually undergoes a highly amplified local strain rate. Therefore, we argue that the theory of elastomer reinforcement based only on local strain rate amplification is not sufficient to account for the high shift of macroscopic glass transition observed in elastomers filled with nanometric particles. .30: Non affine displacement x 2 as a function of the stretch λ for a system filled with spherical particles and a system filled with complex aggregates. Systems are at a volume fraction φ = 0.1, the elongation is performed at a constant rate λ = 0.1 s -1 .

Guidelines for Material Design

Increasing the filler volume fraction leads to an increase of the mechanical modulus at a given temperature and to a decrease of the tear energy in our simulations. The question we want to address here is whether it is possible to find a guideline in term of filler morphology and filler distribution state allowing to produce a material with tuned mechanical and damage properties.

For a given application, let say for tire application, both high tear energy and high modulus are required. For that matter, let introduce a threshold for the tear energy, arbirarily set to W 0 = 4 and a threshold for the elastic modulus G 0 = 10 MPa. Plotting the reduced properties W /W 0 and G /G 0 allows us to easily find the right set of parameters allowing us to produce a material with the required properties.

It is not possible to obtain the set of required properties using homogeneously distributed spherical particles according to our simulations. However, when the particles are partially aggregated, a volume fraction window appear and the material exhibit the required properties with 0.10 < φ < 0.15.

When considering fractal aggregates made of 15 primary particles, the homogeneous distribution exhibit the desired properties for φ = 0.08. The range allowed is very narrow and may be difficult to aim at experimentally with the required precision. When considering a heterogeneous distribution state instead, the volume fraction window becomes wider with 0.07 < φ < 0.12. Therefore, a material made with partially aggregated fractal objects made of 15 particles each allows to reach the required properties with a fewer amount of fillers than with spherical particles.

On the contrary, in order to produce a highly dissipative material that exhibit a high tear energy, the same approach can be used. We report in Fig. 7.34 the reduced properties that are in this case W /W 0 and tan δ with T 0 = 8. The loss angle tan δ is not reduced since we require arbitrarily tan δ > 1.

This approach allows us to find that homogeneously distributed spherical particles exhibit both a highly dissipative regime and a high tear energy for a volume fraction 0.06 < φ < 0.10 at a temperature T g + 50 K. We demonstrate here that the results obtained by numerical simulations can be used to narrow the phase space of material composition in term of volume fraction, distribution, and filler morphology when requiring a set of properties. Because the parameters of our model have not been specifically calibrated on a peculiar polymer matrix and filler surface chemistry, the results obtained so far gives us qualitative trends only. Also, this artificial applied exercise is only a way to exhibit a proof of concept that the model can be used to solve an optimization problem. A cost function can be build accounting for all the required material properties, and more complex optimisation techniques could be used for solving real engineering design problems.

General Trends

The general trends obtained by our quantitative study at T g + 50 K are plotted in Fig. 7.35 and can be summarized as follows :

Distribution Parameter r c Increasing the distribution parameter increases the homogeneity of the filler distribution. It reduces the elastic modulus at a given temperature and can increase the tear energy in certain cases. Also, homogeneous distribution state leads to a more localised damage in the samples and the deformation at which the samples starts to damage is also higher compared to more heterogeneous distributions. However, the macroscopic break requires less broken springs in a homogeneous samples than in an heterogeneous one.

Filler Structure n p High filler structure increases the elastic modulus at the cost of the tear energy as we compute it in our simulations. The latter needs to be studied further since it may be affected by a numerical artefact. Complex fillers have a smaller damage strain onset but needs more rubbery springs to be broken before macroscopic break. This is similar to what have been observed for Volume fraction φ The effect of volume fraction is similar to what is known from previous experimental study. We reproduce the experimental trends, except for the drastic increase of the tear energy at extremely low volume fraction. This is due to the fact that our model is not able to correctly represent sparse systems.

7.6

Conclusions

In this chapter we have extended the GBR model to account for irreversible damage in our simulation. We simply set an elastic limit on rubbery springs that model the matrix between filler particles. When the local strain between two filler particles is higher than the elastic limit ε c , the spring breaks definitely.

In a first attempt to determine the behaviour of our simulation systems in the destructive regime, we have constructed systems at different distribution state and we studied the localisation of the damage in the samples. It is clear from our results that highly ordered sample exhibit a localised damage compared to more heterogeneous systems. This is valid for spherical particles and aggregates containing 10 primary particles each. However, we were not able to distinguish this effect on more complex aggregates with 30 primary particle each. In fact, it is known from Chapter 5 that the distances between filler primary particles is widely distributed in a sample containing complex aggregates even when the distribution parameter is high. Therefore, the effect of distribution, in the way we have studied it in this work, is minimal when considering complex filler aggregates.

In a second attempt, we introduced a way to estimate the tear energy of our systems. This is a rough estimate defined simply by integrating the stress-strain curve until macroscopic failure of the system. In fact, this gives us the energy density at break W b . This allows us to show that the distribution state of the filler may not be a first order parameter on the damaging behaviour of our systems. We demonstrate in this part that even on spherical particles, the distribution state has roughly no effect on the energy density at break W b . The volume fraction and filler structure seems to play a more important role. The phenomenology discussed for instance by Auer [START_REF] Auer | Factors Affecting Laboratory Cut-Growth Resistance of Cold SBR Tread Stocks[END_REF] is partially recovered in our study (decrease of the tear energy with increasing the filler loading). However, the results obtained so far suffers from some limitation:

-First, the model is not able to correctly represent sparse systems. In fact, we only model the matrix between filler particles and when the amount of filler becomes extremely small, the simulations contains large domains with no interactions. This problem could be addressed by adding a second spring network not connected to filler particles and accounting for the matrix elasticity. This would be a drastic modification of the particle dynamics scheme we have implemented in this work, and we may loose the advantage of simulating big systems (≈ 100 -1000 nm) with only a limited number of elements. -We have set an extremely small critical elongation on rubbery springs which is some orders of magnitude smaller than the real elongation at break of elastomers. This explains why the value of the energy density at break are small as compared to experimental studies. In the near future, systems containing a bigger number of particles should be studied, and the critical elongation should be set to a higher value, for instance some hundredth of percent.

In order to be more representative of the actual behaviour of elastomer, a new physical ingredient would need to be introduced. We have seen for instance in Chap. 2, in Fig. 2.9 that a hardening mechanisms was taking place at high deformations before breaking. The physical nature of the hardening mechanisms depends on the system studied, and can be the finite extensibility of polymer chains (except that the level of modulus seems to be to high to be explained by only this effect), the strain crystallisation of polymer chains (in strain crystallising polymers such as NR) or strain hardening of the glassy polymer confined between filler surface. This would be a new ingredient of the model.

Also, let us discuss the way the model have been implemented. We assumed that our simulated materials are incompressible and during simple elongation we contract the system in the perpendicular directions to the elongation. When aggregates are complex, this generates a large amount of filler filler forces that leads to non-realistic stress values. This could be solved whether by releasing the constant volume assumption or by relaxing the perpendicular forces by applying a perpendicular strain to the system while keeping the volume constant.

As a conclusion, we have been able to extend the GBRM to study the damaging behaviour of filled elastomers. Filler distribution state has a minimal effect on the damaging behaviour while the driving parameters seems to be the volume fraction and the morphology. From the results, we have shown that increasing the disorder (morphology, filler loading) constrains locally the possible reorganisation of the fillers. The stress cannot be relaxed and polymer elements (in our case rubbery springs) are deformed up to breaking. Now, the effect of filler loading and morphology should be studied in more details both numerically and experimentally.

-We have introduced a new ingredient in order to allow the breaking of the springs. It is a simple criterion on a critical local deformation. -The tear energy has been estimated by the energy density at break in our systems.

-The energy density at break decreases in systems when the local strain is amplified and when fillers are not able to reorganise. The later is achieved when increasing the filler amount, filler structure. -We don't see a clear effect of the filler distribution state on the energy density at break in our systems. The only effect of filler distribution is the localisation of the damage which occurs near the crack tip in homogeneous systems.

Conclusions

The general context of this work is related to industrial tire performances and how they might be tailored by filler structure and by their spatial distribution. The addition of nanoscale rigid particles in elastomer matrices induces nonlinear effects that are not yet fully understood. A model for the reinforcement (the Glassy Bridge Reinforcement Model or GBRM) of nanocomposites based on the reduced mobility of the polymer confined between two fillers has been developed over the past few years: reinforcement is the consequence of the presence of rigid layers around the fillers which bridges nearby particles at sufficiently high volume fraction, even far above the glass transition temperature of the elastomer in the bulk. Until now, this model has been solved only in the case of random distributions of spherical particles. However, fillers used in the industry today have a complex fractal structure and their spatial distribution varies substantially from a system to another. It has been demonstrated that the mechanical properties are very sensitive to the detail of the fractal aggregates, which provide better reinforcement than spherical particles of similar diameter. The purpose of this thesis was to extend the model to the case of more complex fillers (aggregates), and to consider also the effect of the spatial distribution of the fillers.

In chapter 3, we have extended the previous numerical model in order to control the distribution state of the fillers in the matrix and to deal with complex aggregates made of multiple primary particles. The numerical code allows performing mechanical deformations while measuring the stress in the simulations. A wide variety of filler morphology can also be explicitly modelled. We have restricted to mostly spherical filler particles in this work. Highly anisotropic objects will be investigated in a near future. This model is based on physical quantities and the numerical results can be directly mapped to real stresses, and elastic modulus. This model therefore allows the semi-quantitative modelling of filled elastomers and nanocomposites.

In chapter 4 we have considered the effect of filler distribution. First, we tried to develop a better understanding of what is a homogeneous distribution state. We have shown that a homogeneous distribution does not prevent filler particles to be very close from each other, even if no macroscopic cluster of particle can be observed. Then we have studied the mechanical properties in the linear and non-linear regimes. We have shown that disordered systems (systems with a bad filler distribution state) exhibit reinforcement in a wider range of temperature with respect to their more ordered counterparts. In fact, this effect can span over more than 100K for highly disordered systems. An increase of the Payne effect amplitude has been observed with disordered systems. These results are in agreement with recent experimental studies. We have shown that the disorder of the distribution allows for shorter distances between neighboring fillers as compared to well distributed systems. It results in a higher reinforcement.

In chapter 5 we have focused on filler morphology. Several experimental studies proposed that filler morphology, such as filler anisotropy, can modify the mechanical properties of a nanocomposite. We have studied this effect by solving the model using aggregates of different shapes. We first considered systems with filler volume fraction 20%. Fillers are aggregates defined by a fixed envelope diameter but a varying number of spherical primary particles of different diameters. This allowed us to modify the filler morphology (size of primary particles and fractal dimension) in a simple way. We have shown that the reinforcement is enhanced with complex fillers made of a large number of primary particles with respect to more simple fillers such as spherical particles. Payne Effect amplitude also depends on filler morphology since a complex filler structure is both a source of reinforcement and dissipation during a cyclic solicitation. We interpret these results by the fact that systems filled with complex aggregates can form a larger number of glassy bridges as compared to large spherical particles, due to the interpenetration of the fillers at close distances.

In chapter 6, the mechanical behavior of reinforced elastomers during uniaxial stretching has been investigated above Tg. Usually, filled elastomers display a smooth stress softening for deformations of a few percent: this is the Payne Effect. However, Jouault et al. have shown that in some cases, polymer melts filled with well distributed aggregates exhibit a yield stress very similar to that observed with glassy polymers, with a maximum stress followed by a strain softening regime, though from much smaller amplitude as compared to glassy polymers, i.e. of order 1 MPa instead of 60-80 MPa for glassy polymers. The origin of this effect is discussed in Chapter 3. The aim was to determine if we can explain this behavior using only the physics contained in the GBR model. By studying systems filled with complex aggregates at different volume fraction and distribution state, we show that GBRM predicts this effect in a quantitative agreement as compared to the results of Jouault et al. We argue that the distribution state of fillers is key in this effect. In the case of well distributed filler, the inter-particle distances are more monodisperse as compared to disordered systems. Thus, glassy bridges tend to melt simultaneously under applied strain, which results in a glassy-polymer like behavior. In disordered samples, the melting of glassy bridges is spread over a larger range of deformation, which results in the smooth stress softening of filled elastomers.

In the first three chapters, the mechanical properties of filled elastomers have been investigated using the GBRM on systems filled with complex aggregates and diverse distribution states. We conclude that this work provides a comprehensive study of the physical model as it stands, regarding the mechanical behavior of nano-filled elastomers in the linear and non-linear non-destructive regime. It appears that this model is consistent with experimental results over a broad range of filler morphology and distribution state.

As a final point, we wanted in chapter 7 to study the tearing mechanisms in filled elastomers. While keeping the original ingredients of the model, failure is introduced with a critical strain criterion. Tear energy is estimated in uniaxial stretching for nano-filled elastomers with a varying amount of fillers, different distribution state and morphologies. We show that the damage is much more localised when systems are homogeneously distributed. However, the energy density at break decreases when systems are disordered. We interpret these results by the fact that filler particles cannot easily move in disorder systems in order to relax the local stress. Also, when systems are very dense, the local strain is amplified and springs break more easily.

This research sheds new light on the specific role of filler morphology on material performances and this property can be subsequently modified to produce materials with tailored properties. This project also provided an important opportunity to advance the understanding of the effect of filler distribution isolated from other material parameters such as matrix-filler interaction energy or the addition of a coupling agent. This project shows that the disorder in term of filler structure or spatial distribution is key in controlling mechanical properties of filled elastomers from linear regime up to ultimate behavior. It allows for devising in more detail routes for preparing filled elastomers with enhanced properties.

On the opposite side of the sample, a detector of Detective Quantum Efficiency ζ will record a signal of amplitude

I I = nqV ζ P (A.6)
A realistic image is produced by passing the acquired intensity through a Poisson distributed number generator.

A.3 Implementation of the TEM Method

We consider in the following the the intensity measured at the detector writing

I (r ) = I 0 exp - l (r ) λ , (A.7)
with l (r ) the total length of filler particles as seen by the scanning cathode ray. The probability distribution function of the poisson distribution writes

f (x, I (r )) = exp (-I (r )) I x (r ) x! , (A.8)
so that the resulting value is distributed between 0 and I.

The output of such procedure is represented in figure A.1.

A.4 Scanning Electron Microscopy

An elementary volume of matter has a probability p i = exp(-dx/λ i ) of transmitting the electron flux and q i = r i (1exp(-dx/λ i )) of reflecting the flux. The reduced intensity φ i received at voxel i is the product of the probability of previous voxel transmitting the electron flux, hence

φ i = i-1 j=0 exp - dx λ j = exp -dx i-1 j=0 1 λ j (A.9)
The reduced reflected intensity writting is

i = φ i q i = r i 1 -exp -d x λ i exp -dx i-1 j=0 1 λ j . (A.10)
The reflected flux is going to interact with matter the same way the incoming flux did, hence, the total reduced reflected flux probed in the backward direction is φ i ρ i . The total reflected reduced intensity writes .11) Assuming that the total flux that is not transmitted is reflected leads to r i = 1. A good absorbtion length for fillers has been found to be λ = 15 nm. We assume that the absorption length for the polymer to be 4 times higher than this value, so λ p = 60 nm. | 163
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B Neutron Scattering of Filled Elastomers

We propose in this chapter two numerical methods for the computation of the neutron scattering structure and form factors.

B.1 Static Elastic Scattering

The static elastic scattering is governed by the following equation [START_REF] Higgins | Polymers and neutron scattering[END_REF] :

dσ dΩ (q) = 1 N N i b i exp (-i q • r i ) (B.1)
During a scattering experiment, a small of volume V of matter is illuminated by an incident beam, and a total intensity I (λ, q) is measured by a detector. This quantity writes

I (λ, q) = I 0 (λ) ΔΩ η(λ) T V dσ dΩ (q) (B.2)
where I 0 is the incident flux, ΔΩ is the solid angle element of the detector matrix, η is the detector efficiency, T the sample transmission. The last part of the relation is the part that contains the microscopic description of the matter, it is known as the differential cross section (dσ/dΩ).

The total neutron scattering

dσ dΩ (q) = N p V 2 p b 2 P(q)S(q) + B inc , (B.3)
where N p is the number of scattering bodies, V p is the volume of a scattering body, b is the neutron scattering length difference, the contrast factor. P(q) is the form factor and S(q) is the interparticle structure factor.

B.2 Density Matrix

B.2.1 Implementation

A density matrix D(r ) is built associating to each voxel of volume dx 3 a value corresponding to the local scattering length. We consider here that the polymer is associated to a scattering length b m = 0 and filler particles are associated with a scattering length b f = 1. The Fourier Transform D of the density matrix is computed using the open-source libfftw library. One has to be very cautious with the normalisation of the Fourier Transform in order to find the differential cross section in an absolute scale.

dΣ(q) dΩ = D2 (q) V (B.4)
Even if the scattering length of fillers defines the unit of scattering length in our simulations, the scattering length densities ρ are not directly 1. The scattering length density ρ is defined as

ρ = 1 V n i b i . (B.5)
In our problem, we consider that a voxel of size dx and volume dx 3 has a scattering length b which depends on the constituent and is equals to 1 in case of voxel representing a filler volume element and 0 for a voxel representing a matrix volume element. The scattering length density of a voxel is hence b i /dx 3 and the contrast in our system is

Δρ 2 = 1 dx 3 2 (B.6)

B.2.2 Validation on Spherical Particles

In order to put this procedure to the test, we consider a set of systems of varying size L filled with a varying number of spherical particles N. The computation of the matrix density is performed with a varying voxel size dx. Those results are compared to the form factor of a sphere given by the relation

P(ν) = 3 sin (ν) -ν cos (ν) ν 3 2 , (B.7)
where ν is the dimension less scattering vector qR, with R the radius of a particle. To be specific, a system of size L = 10D made of a random distribution of N p = 500 spherical particles is used. The voxel size is dx = 0.01D. We report in Figure B.1 the scattering amplitude computed using our algorithm.

Since the voxel size is dx = 0.01D, the maximum accessible q is q max = (2π/dx)/2 ≈ 314 D -1 . The smallest value for q is q min = 2π/L = 0.6 D -1 . Instead of reporting the scattered intensities as a function of the scattering vector q, we report the quantities as a function of the reduced scattering vector qR with R the average radius of our particles, R = 0.5 D.

It can be seen from the curves in Fig. B.1.b that the system exhibit a Porod regime q -4 . The small-q regime exhibit however a small deviation with respect to the model function. This can be explained by the fact that particles position are not correlated and a small overlapping between the particles can occur. Hence, the volume fraction in the system is not strictly N p πD 3 /6L 3 , the real volume fraction being lower, as it can be inferred from the low-q value.

We report in Fig. B.2 the simulation results for three systems. A slice of the reciprocal space is extracted for q 3 = 0. On the right, a spherical average is performed in reciprocal space so that we can report the evolution of the Fourier coefficients magnitude as a function of |q|.

We report on the right the logarithmic magnitude of the Fourier coefficients as a function of the reciprocal space components q 1 and q 2 .

B.2.3 Validation on Aggregates

In this part, we validate the method on aggregates. A single aggregate made of n p particles of radius r = 0.1D is put in a box of size L = 40. The scattered intensity for is reported in scattered intensity as the form factor of a sphere of radius r = 0.1D with a pre-factor N c n p V 2 f /V , with V the volume of the box, N c the number of clusters in the domain, n p the number of primary particles per clusters and V f the volume of a primary particles. This corresponds to the red dashed line in Fig. B.3, and this models well the scattered intensity for the aggregate made of a signe spherical particles of radius r = 0.1D.

In the low-q regime, the scattered intensity of the box filled with an aggregate made of 10 primary particles has an intensity shifted by 2 decades with respect to the single filler particles. The shift is 100 in the case of the filler of 10 primary particles, 400 in the case of 20 primary particles,10 4 in the case of 100 primary particles and 4 10 4 for the case of 200 primary particles. We find here by numerical simulation the common scaling of the intensity with the squared number of primary particles when considering fractal aggregates. This factor simply writes Nn 2 p , with N the total number of clusters (aggregates) and n p the number of primary particles per aggregate.

B.2.4 Limitations

The method allows to simulate the total scattered intensity by our systems and can be applied to both system filled with spherical particles and systems filled with complex aggregates made of a collection of spherical particles. But this approach requires a huge amount of computational power. In fact, it requires the voxelisation of direct space and automatically produces matrix of total size (L/dx) 3 . In order to have a good definition in the high-q regime, one need to use the smallest voxel size possible, dx = 0.05D typically. In order to have access to the low-q regime, the size of the simulation domain needs to be high enough since the smallest accessible q will be q min = 2π/L. Assuming a box of size L = 10D, with the diameter of a particle being D = 100 nm, the lowest q value is approximately q min ≈ 10 -3 Å -1 . Moreover, we will restrain more than 2 times this value in order to circumvent finite size effects. Compared with the work of Baeza et al. [START_REF] Baeza | Multiscale Filler Structure in Simplified Industrial Nanocomposite Silica/SBR Systems Studied by SAXS and TEM[END_REF], this corresponds to the medium-q regime. Accessing q range of the order ≈ 10 -4 Å -1

would require a domain of size L = 100. Using a voxel size of the order dx = 0.05D (q max = 0.1 Å -1 ), the density matrix would be of size 8 10 8 voxels. The Fourier Transform allows to perform in place transforms (the matrix on which the transform is performed is the same as the output matrix). But the output of the q 200 q 100 q 20 q 10 q 1 Fourier transform is made of complex Fourier coefficients. Each coefficient has the size of two doubles, or 16 bytes in our 64-bits architectures. The total size of the resulting Fourier transform of the density matrix is 128 gigabytes.

Even if the computation power of our clusters allows us to consider this solution, a more simple solution exists using the radial pair distribution function. This will be the matter of next section.

B.3 Pair Distribution Function

As mentioned above, the structure factor can be related to the pair distribution function g(r). We consider here that the scattering object will be a primary particle. The differential cross section can be estimated by computing the form factor of the distribution of spherical primary particles. In order to access the low-q regime, a box of size L = 100 is still needed. This time, The number of particles in the box is about 10 5 for spherical particles up to 10 7 for more complex aggregates. The computation of g(r) can be performed in about N 2 p operations. However, this time consuming task will be performed without needing a huge amount of memory, and this can be easily parallelised.

It can be shown that the structure factor is related to the Fourier Transform of the pair correlation function. This is obtained by: S(q) = 1 -ρ (g(r ) -1) exp (-iqr ) dr . (B.8)
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C Simulation Procedure

The aim of this chapter is to provide some technical details about the way the model has been implemented.

C.1 Forces in the System

The forces are described in Chapter 3 of this works. In order to connect the springs between primary particles, we decided to connect every primary particles to its 10 closest neighbours. This corresponds to a connectivity n c = 10 in the system when dealing with spherical particles only. This value have been selected for systems of spherical particles in Ref. [START_REF] Long | Numerical simulation for the mesoscale deformation of disordered reinforced elastomers[END_REF]. The latter is kept for numerical reasons when dealing with complex aggregates, which leads to a connectivity n c = n c n p per aggregates, with n p the number of primary particles in an aggregate.

C.2 Glassy Bridges

Glassy bridges are modelled by harmonic springs that can break and rebuild during a simulation. Details of the forces are given in Chapter 3. Each spring is then associated with a local relaxation time τ that ages with time ∂τ/∂t = 1 if τ < τ W LF

The equilibrium relaxation time is dictated by the WLF relation of the matrix, corrected by the local confinement effect and stress yield on the polymer

log τ WLF (z, σ) τ g = - C 1 T -T g (z, σ) C 2 + T -T g (z, σ) , (C.1)
with T g (z, β) defined by :

T g (z, σ) = T g 1 + β z - σ K (C.2)
where z is the half distance between two filler particle surface and σ the local stress between the particles.

C.2.1 Connecting a spring

A glassy spring is created between two primary particles -if less than the number of glassy springs is bellow N max , a numerical parameter in the program set to ensure the connectivity, -if the primary particles are sufficiently close, according to a cut-off parameter set in order to ensure the connectivity n c per primary particles in the system. -and if the equilibrium relaxation time τ W LF is greater than the time step.

C.2.2 Breaking a spring

At each time step, a glassy spring have a probability dP = ατ/dt of breaking. If a spring breaks, the elastic energy stored inside is lost. From a technical point of view, the object storing the information about the spring is deleted from the simulation program memory. However, if the conditions stated in the previous section for building a glassy spring are met, a new object is then created and replaces the previous one. The latter is then created in its reference state.

C.3

Runge-Kutta Algorithm

The equation of motion are solved for the positions R i and the orientation quaternion Q i of all the aggregates. For the position R, assuming a velocity depicted by the function f that depends on the time t n and the position and orientation R n and Q n , the general formula of the Euler method can be given by Two particles gets connected by a glassy spring whose relaxation time is small at the beginning. Then during the mechanical evolution of the system, the particles move with respect to each others. The force in the spring increases and then due to the evolution of the local shift of glass transition temperature, the equilibrium relaxation time of the spring decreases. At some point, the spring may break and the force is releases. The spring may be recreated and then the process start again, with a small relaxation time at the beginning which increases (ages) with time.

R n+1 = R n + h f t n , R n ,
and for the orientation quaternion Q assuming an angular velocity depicted by the function g that depends on the time t n and the position and orientation R n and Q n ,

Qn+1 = ẽ xp hg t n , R n , Qn 2 ⊗ Qn . (C.4)
It advances a solution for R and Q from a time t n to a time t n+1 = t n + h. It uses only the derivative information at the beginning of the interval, meaning that the step error is of the order h 2 .

We use a fourth-order Runge-Kutta method for solving the equation of motion. We acknowledge that this is not a perfect method but we consider the method to be more accurate and stable than the simple Euler method. The general formula of the Runge-Kunga method is the following : Here, the derivative information is given by the function f . The variable y n is advanced from a time t n to a time t n+1 using four intermediary evaluations of the derivative f . This general formula has to be applied to the case of the rigid body dynamics. For the positions R, the set of Runge-Kutta parameters k n are in

k 1 = h f (x n , y n ) (C.

D Hydrodynamique Friction on Complex Aggregates

Let us consider a subunit α of a given aggregate A. If the center of mass of the aggregate is depicted by the position vector R A , the position of the particle can be written r α = R A + x α .

A subunit α that belongs to an aggregate A moves accordingly to the velocity V A and to the angular velocity Ω A of the aggregate :

v α = V A + Ω A ∧ x α , (D.1)
with x α the position of the primary particle α with respect to the center of mass of the aggregate R A . We assume that the hydrodynamic force acting on the aggregate F H is the sum of the hydrodynamic forces acting on its constituting primary particles,

F H i = α∈ A f H αi , (D.2)
with f H αi is as given

f H αi = -ζ α (v αi -v ∞i ) (D.3)
The average affine deformation rate at the position r α of the particle α can be decomposed by introducing the average affine deformation rate v ∞ (R) at the position R A of the center of mass of the aggregate A and the average affine vorticity ω ∞ (R) :

v ∞ (r α ) = v ∞ (R) + ω ∞ (R) ∧ x α . (D.4)
Using the definition for the hydrodynamic force from eq. (D.3) and for the particle velocity from eq. (D.1) the hydrodynamic force can be rewritten1 

F H i = - α∈ A ζ α δ ij V j -v ∞ j (R) + ζ α ijk x αk Ω j -ω ∞ j (R) . (D.5)
The Onsager tensor is the relation between the hydrodynamic force and torque acting on an aggregate due to its velocity and angular velocity :

F H T H = K C t C N V -v ∞ (R) Ω -ω ∞ . (D.6)
By combining eq. (D.6) and eq. (D.5), we can obtain the expression for the Onsager matrices K ij and C ij :

K ij = - α∈ A ζ α δ ij and C ij = - α∈ A ζ α ijk x αk (D.7)
The total torque T acting on the aggregate is the sum of the torques τ α emanating from the forces acting on the subunits of the aggregate. In the same manner as forces, the torque may be expressed as

T i = α∈ A τ αi = α∈ A ijk x j f αk . (D.8)
By focussing on the hydrodynamic interparticle interaction f H α and its related torque induced in the aggregate τ H α , one may express the total hydrodynamic torque T H = τ H α = x α ∧ f H α . Taking into account the expression for hydrodynamic force from eq. (D.3), and injecting the relation for velocity composition from eq. (D.1) and eq. (D.4), the hydrodynamic torque rewrites

T H i = - α∈ A ijk x j ζ α v αk -v ∞ k (r α ) = - α∈ A ijk x α j ζ α V k + klm Ω l x αm -v ∞ k (R) -klm ω ∞ l x αm = - α∈ A ijk x α j ζ α V k -v ∞ k (R) - α∈ A ijk klm x α j x αm ζ Ω l -ω ∞ l
Using the identity for the product between Livi-Civita ijk klm = δ il δ jm -δ im δ jl and simplifying the products of Kronecker leads to

T H i = α∈ A ijk x αk ζ α V j -v ∞ j (R) - α∈ A ζ α δ ij | x α | 2 -x αi x α j Ω j -ω ∞ j .
(D.9) By combining eq. (D.9) and eq. (D.6), one may lighten up the compatibility of the expression of t C with the one given in eq. (D.7) and find the expression for N :

N ij = - α∈ A ζ α δ ij |x α | 2 -x αi x α j (D.10)
Hence, we recall the Onsager tensor of eq. (D.6) defined as

F H T H = K C t C N V -v ∞ (R) Ω -ω ∞ .
with

K ij = - α∈ A ζ α δ ij , C ij = - α∈ A ζ α ijk x αk , N ij = - α∈ A ζ α δ ij |x α | 2 -x αi x α j (D.11)
This relation would make the resolution of the equation of motion expensive in term of computational time. From this point, we are going to establish a more simple relation by neglecting when possible the special morphological features of fillers.

First of all, we assume that the particle wise coefficient ζ α does not vary with the position nor the size of a subunit particle α. Therefore subunit particles share the same friction coefficient (ζ α = ζ) so that the sum can be factorized by this quantity. By injecting this simplification into eq. (D.11), and by introducing K such as K ij = K δ ij , the Onsager coefficients can be rewritten

K = -ζ N a , C ij = -ζ α∈ A ijk x αk , N ij = -ζ α∈ A δ ij |x α | 2 -x αi x α j . (D.12)
Then, we assume that primary particles in an aggregate all have the same size, and therefore x αk = 0 by definition. We recall that the position x are the position of the primary particles relatively to the center of | 177 mass of the aggregate. That cancels out the mixed coupling coefficients C ij = 0 leading to a rewriting of eq. (D.12) as the following :

K = -ζ N a , C = 0, N ij = -ζ α∈ A δ ij |x α | 2 -x αi x α j . (D.13)
The last assumption we have to make is that primary particle positions are not correlated in an aggregate. Therefore x αi x α j ≈ 0. We introduce here N such as N ij = N δ ij . The Onsager coefficients can be rewritten :

K = -ζ N a , C = 0, N = -ζ α∈ A | x α | 2 (D.14)
We recall here the gyration radius of a fractal aggregate

R 2 g = 1 N A α∈ A |x α | 2 ,
hence leading to this simplified relation :

K = -ζ N A , C = 0, N = -ζ N A R 2 g . (D.15)
Therefore, the coefficients we derived herein relation will be used to compute the hydrodynamic force and torque acting on an aggregate, As a conclusion, we found a relation between the friction forces and the velocity of an aggregate. This relation has been found by assuming that a filler aggregate undergoes hydrodynamic friction through its subunit particles. In order to give a more handy relation, we assumed that the friction coefficient was not a function of the primary particle position nor size. This allowed us to derive a simple relation that can be easily implemented into a numerical code. However, this relation is only valid for aggregates made of primary particles of size d = 1, the size for which eq. (D.3) has been formulated.

F (H) Ai = -ζ tr ans A V Ai -v ∞ i (R A ) and T (H) Ai = -ζ rot A Ω Ai -ω ∞ i (R A ) , ( 
| 

E.1 Definitions

Hamiltonian Quaternions are an extension of complex numbers C, using basis elements i, j and k. Elementary relationship are the following :

i 2 = j 2 = k 2 = i j k = -1.
From Eq. (E.1) follows :

i j = k, j i = -k, j k = i, k j = -i, k i = j, ik =j.

A quaternion q is represented using a 4-tuple of real numbers :

q = w + xi + y j + z k (E.1) = (w x y z) (E.2) = w, q v (E.3)
where q v is the vector part of the quaternion and w the scalar part.

E.2 Algebra on IH

Let p = (p 0 , p) and q = q 0 , q .

The addition can be added to IH in order to define a group (IH, +) with the following rules:

p + q = (p 0 + q 0 , p + q) (E.4) pq = (p 0q 0 , pq) (E.5)

(E.6)
It can be shown that:

-p + q = q + p, (IH, +) is commutative; -p + (q + r ) = (q + p) + r, (IH, +) is associative; -∃e|∀q ∈ IH, q + e = e + q = q, (IH, +) has an identity element ; -∀q ∈ IH, ∃!q |q + q = q + q = e, and each element have an inverse element by +.

The (IH, +) is therefore an Abelian group.

However, the Hamiltonian product ⊗ between p and q is defined by : p ⊗ q = p 0 q 0p • q, p 0 q + q 0 p + p ∧ q (E.7)

and is not commutative. It is anti-commutative in fact. The inverse of a quaternion through the quaternion product is denoted p -1 and can be expressed as a function of the conjugate of a quaterion p p = (p 0 ,p) (E.8)

p -1 = p p ⊗ p (E.9)
The Hamiltonian product ⊗ from eq. E.7 can be be split into symmetric and antisymmetric product :

p ⊗ q + q ⊗ p 2 = p 0 q 0p • q, p 0 q + q 0 p , (E.10) p ⊗ qq ⊗ p 2 = (0, p ∧ q) . (E.11)

E.3

Representing Orientation

E.3.1 Quaternion and Rotation

The unit quaternion q depicting a rotation R(2θ, û) of angle 2θ around the unit vector û can be expressed in term of these previous parameters by the following relation q = cos (θ) + sin (θ) û

Let an ordinary vector v. It can be shown that the rotation of the original vector v by an angle 2θ around the axis defined by û yields the vector v by means of the following product

v = q ⊗ v ⊗ q -1 ,
where q -1 is the inverse 1 of q.

Given the position x ≡ x A of a particle belonging to an aggregate and whose coordinates are expressed in the local frame A of its aggregate and the position x R of the particle whose coordinate are expressed in the world frame.

The mapping between x R and x relies on a translation vector t which describes the position of the center of mass of the aggregate and a rotation quaternion q x R = t + q ⊗ x ⊗ q -1 1 In the case of unit quaternion, the conjugate is equal to the inverse.

it stops representing pure rotation in space. A solution can be proposed to explicitly force the normalisation of the quaternion such that after each integration its module remains 1. This holds no physical meaning and can even alter the real orientation of the body during a simulation run.

To ensure numerical stability, a unit quaternion q is constructed on the rotation ω.dt and the integration of the equation of motion, the rotation specifically, is conducted with the following relation : q(t + dt) = q ⊗ q(t) (E.20)

F Nomenclature

While the symbols are defined in the text, we report in the following table only the list of the most used symbols in this work. The meaning of a symbol may differ between chapters. In fact, we have chosen to keep symbols used normally in the literature but the consequence of this choice is that several quantities may share the same symbol. 

Symbol

Extension du Modèle (Ch. 3)

L'objectif premier de ce travail était l'extension du modèle de renforcement par ponts vitreux afin de prendre en compte des objets complexes plus ou moins bien distribués.

Nous avons décidé de traiter les aggrégats de silice de manière explicite comme des objets rigides constitués d'une collection de particules primaires sphériques. Cette approche permet de modéliser n'importe quel objet de forme complexe en utilisant des grains sphériques de taille variable. Les objets ainsi réalisés sont considérés comme indeformable et incassables durant les simulations, et peuvent être alors traité mécaniquement de manière simple.

Le modèle de renforcement que nous étendons comporte les ingrédients suivants : un ingrédient de volume occlus qui empéche les charges de s'interpénetrer, un ingrédient d'élasticité permanente qui représente l'élasticité de la matrice, un ingrédient de dissipation qui représente la friction hydrodynamique perçue par les charges au sein de la matrice et enfin un ingrédient d'élasticité non permanente qui représente la présence ou non de ponts vitreux entre les charges.

Ainsi, nous décidons que les interactions entre les charges se feront entre les particules primaires de ces dernières. La dynamique sera par contre réalisée au niveau des objets rigides, en résolvant l'équation fondamentale de la dynamique dans un cadre non-inertiel pour la position et l'orientation des objets dans l'espace. Nous gérons donc 6 degrès de liberté par charge, sa position dans l'espace et son orientation vis à vis d'un repère fixe. Afin de représenter l'orientation, nous utilisons des Quaternions parce qu'ils permettent de faciliter le travail numérique lors des dynamiques.

Cela constitue la base de notre travail. Ensuite, nous définissons une géométrie pour nos simulations. Les objets rigides sont introduits dans une cellule unitaire périodique cubique. Par des transformations géométriques de la cellule, il est possible de modéliser un vaste ensemble de tests mécaniques. Nous faisons alors le lien entre l'état de déformation de la cellule avec les tenseurs de déformations usuels des mécaniciens. Nous établissons également une méthode pour calculer les contraintes dans nos systèmes périodiques.

Effet de la Distribution (Ch. 4)

Dans un premier temps, nous étudions l'effet spécifique du désordre ayant pour forme l'état de distribution des charges dans l'espace. Pour commencer, nous avons essayé de déterminer ce qui caractérise l'état de distribution de la charge dans un caoutchouc renforcé industriel. Nous utilisons une méthode de Monte-Carlo inverse pour reconstruire les systèmes et en étudier la morphologie local. Cela nous permet de déterminer que les systèmes industriels d'apparence homogène présentent des distances de première approche très faibles entre les objets. En partant des résultats obtenus sur un système industriel, nous avons introduit un paramètre lors de la construction de systèmes afin de gérer finement l'état de distribution des charges dans l'espace. Ce paramètre permet en effet d'obtenir une large gamme de miscrostructures plus ou moins homogènes. Toutefois, les états de distribution obtenus sont plus proches des systèmes modèles de Bérriot et. al. que des systèmes industriels. Nous utilisons ces résultats pour déterminer l'effet de l'état de distribution sur les propriétés mécaniques. Nous montrons qu'un état de distribution fortement hétérogène conduit à un renforcement plus important qui s'étend dans une plus large gamme de température. Sur la figure suivante, on reproduit l'évolution du module élastique en fonction de la température pour différents états de distribution r c : Ainsi, nous avons dans ce chapitre, validé la méthode permettant de générer différents états de distribution. Aussi, nous avons utilisé la méthode afin de déterminer l'effet de la distribution de charges sur les propriétés élastiques des nanocomposites dans le régime linéaire et non-linéaire. L'effet le plus marquant de la nonhomogénéité de l'état de distribution des charges est la chute très lente du module élastique à haute temperature.

Effet de la Morphologie (Ch. 5)

Dans une seconde partie, nous étudions l'effet spécifique du désordre en terme de structure des charges. Des particules parfaitement sphériques sont comparées à des agrégats fractals plus ou moins finement définis. Nous montrons que des objets finement définis peuvent s'imbriquer au sein de la matrice et conduisent à une augmentation du renfort et de la dissipation dans ces matériaux. 

Comportement en Elongation (Ch. 6)

Ensuite, nous étudions la réponse de nos systèmes lorsqu'ils sont soumis à une première élongation. Les élastomères renforcés présentent généralement une chute progressive du module élastique lors de l'augmentation de la déformation. Des études récentes ont montré que des fondus de polymère chargés avec des agrégats bien distribués présentent un seuil de plasticité suivi par un adoucissement plastique, soit un comportement proche des amorphes vitreux, avec cependant une contrainte au seuil bien plus faible, de quelques MPa seulement.

Nous évaluons alors la capacité de notre modèle à simuler ce type de systèmes. Durant notre étude, nous montrons que notre modèle reproduit cette phénoménologie et nous en étudions l'origine. . The distribution parameter is chosen to reproduce a different distribution states using r c = 0.01L, 0.04L, 0.06L, 0.08L, 0.1L, 0.2L, 0.3L and 0.4L.

Nous montrons alors qu'un système hétérogène se plastifie localement progressivement au cours de la déformation alors qu'un système homogène présence une plastification catastrophique de son ensemble à partir d'une déformation critique. Les élastomères renforcés sont généralement des matériaux fortement hétérogènes, mais nous prédisons alors que des matériaux modèles plus homogènes présentent ce type de comportement.

Comportement Ultime (Ch. 7)

Enfin dans une dernière partie nous évaluons la possibilité d'étendre le modèle afin de simuler l'endommagement des nanocomposites. Nous introduisons pour cela un critère simple de rupture afin de prendre en compte l'endommagement locale du polymère entre les charges. Nous étudions ensuite comment se comporte les matériaux simulés en faisant varier la morphologie de la charge, son état de distribution et son taux.

Par exemple, les résultats obtenus pour des aggrégats distribués homogénement sont les suivants : Dans la figure précédente, nous avons représenté l'élongation à rupture en fonction de la fraction volumique de charges ainsi que l'énergie de déchirure telle que nous l'éstimons en fonction du taux de charge. Nous voyons apparaitre comme un maximum sur l'énergie de déchirure pour une fraction volumique de l'ordre de 7% tandis que l'élongation à rupture évolue de manière non linéaire. Cet optimum a été également identifié dans la littérature, pour des fractions volumiques plus faibles. Toutefois, certaines limitations de notre modèle nous interdisent une conclusion ferme. En effet, d'une part, notre modèle ne représente pas bien les systèmes peu chargés. En effet, la matrice est modélisée par des ressorts harmoniques simples situés entre les particules primaires des charges. Lorsque les systèmes sont peu denses, la majorité de la matrice est alors pas représentée. De ce fait, les systèmes à faible fraction volumique ne sont peut-être pas de bons modèles. Aussi, lorsqu'on considère des charges complexes à haute fraction volumique, celles-ci peuvent se géner localement et se bloquer dans nos simulation. De plus, lors de nos déformations, nous avons fait l'hypothèse que le volume de nos système était constant, et par conséquent les faces lattérales sont comprimés d'autant que le système s'allonge sans prendre en compte le niveau de contrainte latteral effectif. La conséquence de ces deux phénomènes est l'apparition de niveaux de contraintes très importants dans la direction perpendiculaire à la direction d'élongation lorsque les systèmes sont composés de charges complexes à haute fraction volumique.

Aussi, il peut arriver que les charges basculent et se retrouvent dans une configuration où les efforts perpendiculaires sont transmis dans la direction de la traction. De fait, il apparait une contribution négative à la contrainte principale qui est due au trop fort niveau de contrainte perpendiculaire. Cela se traduit par une contrainte totale parfois négative dans le sens de l'élongation, et par conséquent, fausse l'éstimation de l'énergie de déchirure.

Le modèle reproduit correctement les tendances générales expérimentales avec toutefois des limitations que nous discutons.

Conclusions

Ce travail constitue la première étude systématique de l'effet de la morphologie et de la distribution des charges sur les propriétés mécaniques des nanocomposites, dans le domaine linéaire, dans le domaine non-linéaire et non-ultime, et enfin dans le domaine ultime. Nous montrons que ces paramètres souvent peu contrôlés sont pourtant des paramètres clés et peuvent servir à optimiser les propriétés d'un matériau afin d'en modifier les propriétés finales.
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 22 Figure 2.2: Master curves at T ref = T g of the elastic modulus G (Left) and loss modulus G as a function of the pulsation ω in a PS-Silica nanocomposite. Reproduced from[START_REF] Jouault | Well-dispersed fractal aggregates as filler in polymer-silica nanocomposites: Long-range effects in rheology[END_REF] 

Figure 2 . 3 :

 23 Figure 2.3: Top: TEM images of the dispersion state obtained in PS-Silica nanocomposite with various polymer-filler interactions. The interaction is tuned by varying the density of PS chains grafted on filler surface, and increases from left to right. Bottom Right: Steady shear in the melt at a shear rate γ = 0.2 s -1 and at 180 °C. Bottom Left: Storage modulus as a function of the frequency for the same nanocomposites at 180 °C. Reproduced from [15].
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 24 Figure 2.4: Continuous master curve at T ref = 20 °C for a S-SBR Carbon Black nanocomposite filled 60 phr N550. Reproduced from[START_REF] Klüppel | Evaluation of viscoelastic master curves of filled elastomers and applications to fracture mechanics[END_REF]. Original data for the master curve of the pure matrix, also from[START_REF] Klüppel | Evaluation of viscoelastic master curves of filled elastomers and applications to fracture mechanics[END_REF] has been superimposed on the original figure (dashed lines).
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 25 Figure 2.5: Discontinuous master curve at T ref = 20 °C for a S-SBR Carbon Black nanocomposite filled 60 phr N339. Reproduced from [21].
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 2627 Figure 2.6: Elastic modulus G measured in oscillatory shear in the linear regime as a function of temperature for a series of Styrene Butadiene Rubber (SBR) filled with various amount of carbon black (in phr). Inset: G as a function of the filler amount at T = -4 °C . After Wang [3].
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 28 Figure 2.8: Reinforcement as a function of the temperature for various filler volume fraction in a model nanocomposite. Reproduced from Ref. [29].
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 213 Figure 2.13: Crack in an elastic slab
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 214 Figure 2.14: Crack growth mechanism proposed by Le Cam et al. . We reproduce here Fig. 8 from Ref. [58].
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 215 Figure 2.15: Comparison between filler low and high structure (a) and standard shape classes for Carbon Black fillers (b). After Donnet [25].
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 216 Figure 2.16: Cartoon of different distribution and dispersion state for fractal fillers.
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 217 Figure 2.17: Transmission electron micrograph images of SBR containing the indicated quantity of N330 carbon black. The corresponding electrical resistivity behaviour is indicated in the graph. Reproduced from Ref. [70]
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 219 Figure 2.19: Shift of glass transition temperature according to eq. (2.23) in units of T g as a function of the distance from the filler surface in unit of filler size for different values of the β parameter as indicated in the graph. Dashed grey line corresponds to the shift of T g obtained from eq. (2.22). Dotted line (a) corresponds to a shift of glass transition temperature of 0.1T g (i. e. +21 K for the case of PI) and dotted line (b) corresponds to a shift of glass transition temperature of 0.04T g (i. e. +10 K for the case of PI).
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 220 Figure 2.20: Reinforcement as a function of temperature for systems with filler volume fraction φ = 0.4 and different values of interaction parameter β: from bottom to top β = 0.02, 0.04, 0.08 respectively.Reproduced from[START_REF] Merabia | A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins Effects)[END_REF].
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 221 Figure 2.21: Elastic modulus in the linear regime (oscillatory shear of amplitude γ = 0.005 and period T = 6.28 s) as a function of the temperature for various volume fraction φ. The curves from bottom to top correspond to the filler volume fraction φ = 0.15, 0.20, 0.30, 0.40 and 0.45 respectively. Reproduced from [6].
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 222 Figure 2.22: Left: Reinforcement as a function of the temperature. The curves from bottom to top correspond to the filler volume fraction φ = 0.15, 0.20, 0.30, 0.40 and 0.45 respectively. Right: Mass of glassy clusters at equilibrium as a function of the temperature. The mass of the largest cluster is shown for systems with various volume fraction : φ = 0.15 (•), φ = 0.20 ( ), φ = 0.25 ( ), φ = 0.30 ( ), φ = 0.40 ( ). The plain line shows the average mass m as a function of temperature in the system φ = 0.20. Parameters for systems relative to both right and left figures are β = 0.08, K = 0.2 and WLF parameters of polyisoprene (PI), with T g = 213 K. Reproduced from [6].
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 223 Figure 2.23: Elastic modulus G in the simulated reinforced elastomers, measured in oscillatory shear at a pulsation ω = 1 rad s -1 as a function of the shear amplitude γ, at various temperature T : T = T g + 30 K (+), T = T g + 50 K (•), T = T g + 70 K ( ), T = T g + 90 K ( ), T = T g + 110 K ( ), T = T g + 130 K ( ), T = T g + 150 K (×). Parameters are φ = 0.40, β = 0.08, K = 0.3 and WLF parameters of PI. Reproduced from [6].
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 224 Figure 2.24: Left: Elastic Modulus G in MPa as a function of the shear amplitude γ at T = T g + 30 K for different volume fractions φ = 0.15 ( ), φ = 0.20 ( ), φ = 0.25 (•), φ = 0.30 ( ), φ = 0.40 ( ). Other parameters are β = 0.08, K = 0.1, pulsation ω = 0.2 rad s -1 , and WLF parameters of PI. Right: Loss modulus G (open symbols) and loss angle tan δ (filled symbols) at T = T g + 70 K for different volume fractions φ = 0.20 (•), φ = 0.30 ( ), φ = 0.40 ( ). Other parameters are β = 0.08, K = 0.2 and pulsation ω = 0.2 rad s -1 . Reproduced from [6].
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 225 Figure 2.25: Integrated distribution of relaxation times P (log τ) after an oscillatory shear of various amplitude γ from 0.005 to 1.0 (from top to bottom curves, respectively; the values of the shear amplitude γ for each curves are indicated on the graph), at T = T g + 50 K in the system φ = 0.40, β = 0.04 and K = 0.3. P (log τ) is measured after 10 cycles of pulsation ω = 1 rad s -1. The upper dashed curve is the distribtuion at equilibrium (after infinite ageing time) which is taken as the initial distribution of relaxation time in the system, prior to shearing. Reproduced from[START_REF] Merabia | A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins Effects)[END_REF].
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 226227 Figure2.26: Left: Relaxation of the shear stress of systems maintained in a deformed state (with fixed value of the shear strain γ 0 ) after an oscillatory shear of amplitude γ 0 has been applied for n cycles. Right: Relaxation of the shear stress of systems maintained in a deformed state, whith various fixed value of the shear strain γ 0 : γ 0 = 0.5, γ 0 = 0.36, γ 0 = 0.12, γ 0 = 0.06. Before maintaining the strain fixed, the different systems were oscillatory sheared with an amplitude γ 0 during 10 cycles with a pulsation ω = 1 rad s -1 . The parameters are φ = 0.4, β = 0.04, K = 0.3, T = T g + 50 K, and the WLF parameters are those of PI. Reproduced from[START_REF] Merabia | Unique plastic and recovery behavior of nanofilled elastomers and thermoplastic elastomers (Payne and Mullins effects)[END_REF].

Figure 2 . 28 :

 228 Figure2.28: Left: Measurement of the small amplitude storage and loss moduli of systems having aged in a deformed state for different values of the fixed strain γ 0 . Right: Small amplitude storage modulus of systems as a function of the time t w the have aged in a deformed state under different values of the fixed strain γ 0 . The small amplitude modulus was measured using oscillatory shear cycles of amplitude 0.005 and pulsation omega = 1 rad s -1 , taking only the first three cycles (time span of about 20 s). After this time period, the moduli slightly increases with aging time t w spent in the deformed state. Reproduced from[START_REF] Merabia | Unique plastic and recovery behavior of nanofilled elastomers and thermoplastic elastomers (Payne and Mullins effects)[END_REF].
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 229 Figure2.29: Relaxation of the shear stress plotted in the shear stress/shear strain plain during the the stress relaxation of systems which were preliminary allowed to age during a time t w = 10 4 s or 10 5 s at different fixed value of the strain γ 0 . During the relaxation, all systems reach a value where the stress cancels. However, the non-vanishing value for the strain depends on the aging time of the system. We indicate by blue arrows pointing down the final non-vanishing values of the strain for systems aged for t w = 10 4 s and by blue arrows pointing up the final non-vanishing values of the strain for systems aged for t w = 10 5 s. Reproduced from[START_REF] Merabia | Unique plastic and recovery behavior of nanofilled elastomers and thermoplastic elastomers (Payne and Mullins effects)[END_REF].
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 230 Figure 2.30: Top: Measurement of the storage and loss moduli at different shear amplitude in systems aged during t w = 10 5 s at different fixed values of γ 0 and in which stress was subsequently relaxed. Bottom Left: Storage modulus as a function of the shear amplitude for systems which have been preliminary deformed during t w = 10 5 s at different fixed values of γ 0 and then subsequently relaxed. Bottom Right: Loss Modulus as a function of the shear amplitude for the same systems. Data from [107].
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 231 Figure 2.31: Representation of the numerical artefact occuring in an older version of the numerical code.Particles with which the central particle p can form rigid units with are identified in a reference configuration. When the system is strained, complex reorganisation can lead to a drastic change in the local neighbouring of particle p. Therefore, candidate particles x should bridge with particle p, but the numerical code simply ignore them.
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Figure 3 . 1 :

 31 Figure 3.1: Presentation of the degrees of freedom in our simulation. Randomly generated aggregates are introduced in a simulation cell and are defined by a position and an orientation with respect to the cell. Interactions (springs, occluded volume, repulsion) occur at the scale of the primary particles and the equation of motion are solved at the scale of the rigid body aggregates.

Figure 3 . 2 :

 32 Figure 3.2: Comparison between the GBRM model as solved in the work of Merabia et al.[START_REF] Merabia | A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins Effects)[END_REF] and the extension developed during this work. Filler particles are defined as a rigid collection of primary particles instead of single spherical particles. The degrees of freedom are the position and the orientation of each filler particles.

Figure 3 . 3 :

 33 Figure 3.3: Representation of the Shifted-Force Potential used in this work as a function of the center to center distance between primary particles expressed in units of particles diameter. Shifted-Force Potential (top) and the derived force (bottom).

Figure 3 . 5 :

 35 Figure 3.5: Left: Particles are embedded in a polymer matrix with dynamical heterogeneities with different relaxation time (the darker, the longer). Percolating path of slow units may join the surface of two particles. Right: Representation of the estimation of the local glass transition temperature at any position u using equation (3.15). The gray regions correspond to T g (u) > T.

Figure 3 . 6 :

 36 Figure 3.6: Schematic representation of the numerical implementation of matrix elasticity and glassy bridges. A permanent network of harmonic rubbery springs connects primary particles (pictured in dark grey). Depending on the local confinement and local stress, a dynamic network of glassy springs (pictured in blue) connects the particles. The strength and number of glassy springs decrease with increasing the temperature.
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 319 Parameters of the model ( β, K , ζ, k 0 , k ∞ ) Pa k 0 = 1000Σ(T ) Glass transition temperature of the pure rubber 213K T g = 213 K Temperature of the experiment T T = T g • • • T g + 100 K Oscillatory Shear Typical Frequency ω ω = 2π rad/s Oscillatory shear Typical deformation γ 0 γ 0 = 0.005 • • • 0.1 Dissipative modulus at large deformation amplitude 10 6 Pa ζ

FFigure 3 . 7 :

 37 Figure 3.7: Representation of the transformation of the simulation domain during a mechanical deformation.

Figure 3 . 8 :

 38 Figure 3.8: Representation of a numerical shear experiment. The simulation domain is gradually deformed.

Figure 3 . 9 :

 39 Figure 3.9: Periodic Boundary conditions representation. Five particles are represented on an infinite 2D lattice. The particle (1) moved out of the unit cell and has been formally replaced by its image for the computation of interactions with particle (2) in the minimum image convention at position R * 2 1 .

Figure 3 . 10 :

 310 Figure 3.10: Two particles are embeded in a unit-cell with periodic conditions. The minimum image convention is represented here where particle m is neigbhour with particle n (image of n with respect to m in the minimum image convention), and particle n is neigbhour with m (image of m with respect to n in the MIC).

Figure 3 . 11 :

 311 Figure 3.11: Computation of the stress in our simulation, inspired from [113].

Figure 4 . 1 :

 41 Figure 4.1: SEM picture of the distribution of spherical silica particles at 50phr (φ ≈ 0.2)

Figure 4 . 2 :

 42 Figure 4.2: Scattered Intensity (SAXS) for the distribution of the system pictured in Figure 4.1. The fitted P(q) corresponds to the form factor of particles taking into account a log-normal distribution for the radius of the particles.

Figure 4 . 3 :

 43 Figure 4.3: Log-Normal distribution of particle sizes fitted from SAXS results.

Figure 4 . 4 :

 44 Figure 4.4: Scattered intensity as a function of the reduced scattering vector for the experimental system compared to simulations in the initial configuration and final configuration after the RMC procedure.The inset provides a representation of the error between the the computed scattering intensity and the experimental one. A good agreement is observed between the experimental system and the simulated one in all the q-range after 3 × 10 4 MC steps typically.

Figure 4 . 5 :

 45 Figure 4.5: (a) Initial and final values for the cost function U of all the 100 simulations with respect to the configuration number. If the cost function slightly depends on the amount of time the forces have been relaxed, the memory of the starting point is lost after the RMC run. (b) Evolution of the cost function U during the RMC procedure for 3 random systems. The cost function decays rapidly during the first 20 10 3 steps before it reaches a steady state. (c) The acceptance rate of the RMC steps is around 10% during all the simulation run.

Figure 4 . 6 :

 46 Figure 4.6: Pair distribution function for a system after the RMC procedure. Estimation of the potential of mean forces w(r) from the radial distribution function of the system.

Figure 4 . 7 :

 47 Figure 4.7: Surface-to-surface Distance distribution of the first neighbour (left) and the ten first neighbours (right) in the simulations. Data are averaged over 20 simulation, the dots represents the data for a single system.

Figure 4 . 8 :

 48 Figure 4.8: Representation of the pseudo clusters defined in our study. Particles whose surface-to-surface distance is smaller than a parameter h are set to belong to the same clusters. When increasing h, the number of different clusters decreases. As pictured, the configuration on the left contains 8 clusters with one cluster made of two particles and 7 made of only one particle. The configuration on the right however only contains two clusters, one made of 4 particles and the other made of 5 particles.

Figure 4 . 9 :

 49 Figure 4.9: Evolution of the average cluster mass m of particles whose center-to-center distance is closer than h in a simulation run.

Figure 4 . 10 :

 410 Figure 4.10: Distribution of the number of faces N f per Voronoi cell. Right: Distribution of the local volume fraction per Voronoi cell.

Figure 4 . 11 :

 411 Figure 4.11: Representation of different distributions state for a population of hard disks in 2D.

Figure 4 . 12 :

 412 Figure 4.12: Total scattered intensity (simulation) as a function of the scattering angle for different distribution state obtained by varying the repulsion parameter r c when constructing the systems.

Figure 4 . 13 :

 413 Figure 4.13: Structure Factor of spherical filler particles dispersed at a volume fraction of φ = 0.20 computed from the pair distribution function using Eq. (B.8). A varying screening parameter r c has been used for constructing systems with different dispersion state: from bottom to top in the low q domain, r c = 1.000D, r c = 0.600D, r c = 0.400D, r c = 0.300D, r c = 0.200D, r c = 0.100D, r c = 0.080D,r c = 0.060D, r c = 0.040D. Noticeable structure factors are for r c = 0.400D (+) and for r c = 0.100D ( ) since they respectively reproduce the characteristics of the experimental structure factors of a sample with a homogeneous microstructure and a sample with an aggregation filler particles. The insert reproduces the experimental structure factor of the systems studied by Berriot et al. from Ref. [41].

Figures 4 .

 4 14.a) and Fig. 4.14.b) with distribution state parameter r c = 0.1D and r c = 0.2D respectively exhibit a heterogeneous micro-structure with particles close from each others. The number of particles in closecontact decreases with increasing the distribution state parameter r c . In fact, in Fig. 4.14.d) with distribution state parameter r c = 0.4D, no particles are any more in contact. Particles seem to organise into entangled strings of particles hence forming a heterogeneous micro-structure, even for the well distributed sample.

Figure 4 . 14 :

 414 Figure 4.14: Simulation of a TEM Micrograph of a slice of thickness 1D of a system with a varying distribution state parameter r c = 0.04D. The diameter of a single filler particle is D = 1. The procedure for generating such a micrograph is described in Chapter A.
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 415416 Figure 4.15: Simulation of SEM of a system with a varying distribution state parameter r c . The diameter of a single filler particle is D = 1. The procedure for generating such a micrograph is described in Chapter A.
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 417 Figure 4.17: Evolution of the elastic modulus and reinforcement (defined as R = G /G rubber ) with the temperature for systems of spherical particles constructed with different screening parameter r c .

Figure 4 Figure 4 . 18 :

 4418 Figure 4.18: Distribution of the distances within the tenth first neighbours in systems with a varying screening parameter r c . We believe that small distances leads to stronger glassy bridges (bridges with a higher local T g ) that drive the mechanical behaviour of filled elastomers in the reinforcement regime. In our simulation, the screening parameter allows to finely define the smaller distances achievable in the systems.

Figure 4 . 19 :

 419 Figure 4.19: Elastic modulus G (in MPa) in the simulations, measured in oscillatory shear at a pulsation ω = 6.28rad s -1 , as a function of the shear amplitude γ at temperature T = 263K, for various screening parameter r c between 0.4D and 0.1D: r c = 0.4D (+), r c = 0.3D ( ), r c = 0.2D ( ), r c = 0.1D ( ). The parameters are φ = 0.2, β = 0.030 and K = 0.01, and WLF parameters of PI with T g = 213K.

Figure 4 . 20 :

 420 Figure 4.20: Relative drop of elastic modulus G /G 0 measured in oscillatory shear at a pulsation ω = 6.28rad s -1 , as a function of the shear amplitude γ at temperature T = 263K, for various screening parameter r c between 0.4D and 0.1D: r c = 0.4D (+), r c = 0.3D ( ), r c = 0.2D ( ), r c = 0.1D ( ). The parameters are φ = 0.2, β = 0.030 and K = 0.01, and WLF parameters of PI with T g = 213K.

Figure 4 . 21 :

 421 Figure 4.21: Distribution of relaxation times n(τ > τ 0 ) after an oscillatory shear of various amplitudes γ from 0.001 to 0.5 (from top to bottom, respectively, the value of the shear amplitude γ for the curves are the same of the markers of Figure 4.19) at T = 263K for systems of a varying distribution state: (a) r c = 0.400D, (b) r c = 0.300D, (c) r c = 0.200D, (d) r c = 0.100D.
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 51 Figure 5.1: Fractal Dimension D f of the filler population (left) and distribution p(D) of the envelope diameter D of the filler population (right). The fractal dimension D f is defined with the equation log(n p ) = D f log(D/d). Here, the slope of the dashed line is D f = 1.97.

40 Figure 5 . 3 :

 4053 Figure 5.3: Simulation of TEM (method depicted in Chapter A) for a slice of thickness 1D taken out of the systems filled with filler of different structure.

Figure 5

 5 Figure 5.5: Kratky plot (q 2 I (q) vs q) of the simulated scattered intensity for the considered systems filled with fillers made of a various number of primary particles n p . From bottom to top, the curves corresponds to n p = 1, 5, 10, 15, 20, 30, 40. In this study, fillers are scaled in order to get an average diameter of D ≈ 1 while the primary particle size d is fixed. The width of the Kratky plateau increases with the number of primary particles towards higher q meaning that the envelope size of fillers is approximately constant while they are made of smaller primary particle size when increasing the number of primary particle. Curves are vertically shifted by a decade for clarity with respect to the curve corresponding to n p = 10.

Figure 5 . 6 :

 56 Figure 5.6: Evolution of Σ as a function of the temperature for systems at a volume fraction φ containing 1000 fillers with a various number n p of primary particles. Σ(T ) is computed using Eq. (3.16) considering β = 0.03 and T g = 213 K.
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 57 Figure 5.7: Elastic modulus (in simple elongation) E (left) and Reinforcement (right) as a function of the temperature for NR filled with silica of various sizes. Data by Fayolle [69].

Figure 5 . 8 :

 58 Figure 5.8: Evolution of the elastic modulus G (left) and loss modulus G (right) as a function of the temperature for NR filled with silica of various sizes. Data by Fayolle [69].

Figure 5 . 9 :

 59 Figure 5.9: Reinforcement as a function of the temperature for systems filled with aggregate made of 10 primary particles of various sizes which corresponds to fillers of various specific surface area. Systems have a homogeneous distribution state (r c = 0.4 D) and a volume fraction of 20%. The curves correspond to reduced filler enveloppe diameter D of (from top to bottom) 0.5 (30 nm), 0.6 (36 nm) , 0.75 (45 nm), 1.00 (60 nm), 1.50 (80 nm), and 3 (180 nm). Parameters are those of PI as described in tab. 3.1.

Figure 5 . 10 :

 510 Figure 5.10: Elastic modulus (left) and loss modulus (right) as a function of the amplitude of the deformation for systems filled with aggregate made of 10 primary particles of various sizes which corresponds to fillers of various specific surface area at a temperature T g + 100 K. Systems have a heterogeneous distribution state (r c = 0.1 D) and a volume fraction of 20%. The curves correspond to reduced filler enveloppe diameter D of (from top to bottom) 1.00 (60 nm), 1.50 (80 nm), and 3 (180 nm). Parameters are those of PI as described in tab. 3.1.

Figure 5 . 11 :

 511 Figure 5.11: Storage modulus G (left) and Reinforcement R (right) in the linear regime as a function of the temperature, measured in oscillatory shear at a pulsasion ω = 2π/s. The parameters are β = 0.030, K = 0.01, and the volume fraction of filler is Φ = 0.20. The WLF parameters are those of polyisoprene with T g = 213K. The systems are filled with fillers of diameter D = 1 with a varying number of primary particles n p : n p = 1 (•), n p = 5 ( ), n p = 10 (+), n p = 15 ( ), n p = 20 ( ), n p = 30 ( ), n p = 40 ( ). The corresponding size of the primary particles are presented in table 5.2.

Figure 5 . 12 :

 512 Figure 5.12: Loss modulus G (left) and loss angle tan δ (right) in the linear regime as a function of the temperature. Data are those of figure 5.11 The systems are filled with fillers of diameter D = 1 with a varying number of primary particles n p : n p = 1 (•), n p = 5 ( ), n p = 10 (+), n p = 15 ( ), n p = 20 ( ), n p = 30 ( ), n p = 40 ( ). The corresponding size of the primary particles are presented in table XX.
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 514 Figure 5.14: Statistical distance between the center of mass of the aggregates for a distribution of filler aggregates as a function of the number of primary particles for a varying volume fraction, from top to bottom: φ = 0.01, φ = 0.02, φ = 0.05, φ = 0.10, φ = 0.20, φ = 0.30. Data is computed using eq. 5.13 with a Hausdorf fractal dimension set to D f = 2.0 in this example.
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 515516 Figure 5.15: Payne Effect for the systems with different morphologies at a temperature of T g + 70K (283K).We represent here the elastic modulus G (in MPa), the loss modulus G (MPa), the loss angle tan(δ) and the relative modulus G /G 0 as a function of the shear amplitude. The parameters are β = 0.030, K = 0.01, and the volume fraction of filler is Φ = 0.20. The WLF parameters are those of polyisoprene with T g = 213K.The systems are filled with fillers of diameter D = 1 with a varying number of primary particles n p : n p = 1 (•), n p = 5 ( ), n p = 10 (+), n p = 15 ( ), n p = 20 ( ), n p = 30 ( ), n p = 40 ( ).

Figure 5 . 17 :

 517 Figure 5.17: Relative drop of elastic modulus G /G 0 with G 0 the elastic modulus at low strain amplitude, as a function of the strain amplitude at a temperature T g +70 K (left) and T g +100 K (right). The parameters are β = 0.030, K = 0.01, and the volume fraction of filler is Φ = 0.20. The WLF parameters are those of polyisoprene with T g = 213K. The systems are filled with fillers of diameter D = 1 with a varying number of primary particles n p : n p = 1 (•), n p = 5 ( ), n p = 10 (+), n p = 15 ( ), n p = 20 ( ), n p = 30 ( ), n p = 40 ( ).
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 6263 Figure 6.2: Stress-Strain and Reinforcement for systems r c = 0.1 at a temperature T=233K. λ = 0.01 s -1 .

Figure 6 . 4 :

 64 Figure 6.4: Stress-Strain and Reinforcement for systems r c = 0.4D at a temperature T = 233 K. λ = 0.01 s -1 .

Figure 6 . 5 :

 65 Figure 6.5: Tangent modulus as a function of the extension ratio for systems at different distribution state and different volume fraction during a uni-axial elongation performed at λ = 0.01 s -1 .

Figure 6 . 6 :

 66 Figure 6.6: Strain softenning as a function of the filler volume fraction for different distribution state (r c value).

Figure 6 . 7 :

 67 Figure 6.7: Stress-Strain curves for systems φ = 0.15 at a temperature T = T g + 20 K. The strain rate is fixed and is λ = 0.1 s -1 . The distribution parameter is chosen to reproduce different distribution states using r c = 0.01D, 0.04D, 0.06D, 0.08D, 0.1D, 0.2D, 0.3D and 0.4D

Figure 6 . 8 :Figure 6 . 9 :

 6869 Figure 6.8: Stress-Strain curves for systems φ = 0.15 at a temperature T = T g + 50 K. The strain rate is fixed and is λ = 0.1 s -1 . The distribution parameter is chosen to reproduce different distribution states using r c = 0.01D, 0.04D, 0.06D, 0.08D, 0.1D, 0.2D, 0.3D and 0.4D.

Figure 6 . 10 :

 610 Figure 6.10: Stress-Strain curves for systems φ = 0.15, r c = 0.4D at different temperatures: T = T g + 10 K, T = T g + 20 K, T = T g + 30 K, T = T g + 40 K, T = T g + 50 K, T = T g + 70 K and T = T g + 90 K. The strain rate is constant and is λ = 0.01 s -1 .

Figure 6 . 11 :

 611 Figure 6.11: Stress-Strain curves for systems φ = 0.15, r c = 0.4D at different temperatures: T = T g + 10 K, T = T g + 20 K, T = T g + 30 K, T = T g + 40 K, T = T g + 50 K, T = T g + 70 K and T = T g + 90 K. The strain rate is constant and is λ = 0.1 s -1 .
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 612 Figure 6.12: Strain softening as a function of the temperature for different distribution state and strain rate.
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 613614615 Figure 6.13: Stress-Strain cuvers for systems φ = 0.15, r c = 0.1D at temperatures T = 233 K for different values of the strain rate: from bottom to top, λ = 0.01 s -1 , 0.1 s -1 , 1 s -1 and 10 s -1 .

Figure 6 . 16 :

 616 Figure 6.16: Stress-Strain curves for systems φ = 0.15 at temperatures: T=253K. λ = 0.1 s -1 , r c = 0.4D, for different value of the K parameter. Here, from bottom to top, K = 0.005, 0.01, 0.02, 0.04, 0.08.
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 618619 Figure 6.18: Evolution of the number of yield events per unit of time for different strain rate in a homogeneous system at T g + 20 K

2 cFigure 6 . 20 :

 2620 Figure 6.20: Relaxation-time maps during uni-axial stretching for different filler distribution state. The quantity reported here is the relative size of the population of rigid springs with a relaxation time τ ≥ τ 0 . This quantity evolves during time (ageing) and deformation of the system (yield). Different distribution state gives relaxation-time maps that are drastically differents especially in the region of experimental interest between τ 0 = 0.1 s and τ 0 = 10 s.

Figure 6 . 21 :

 621 Figure 6.21: Evolution of the relative population of rigid springs with a relaxation time τ ≥ τ 0 during uni-axial stretching for two different distribution state. Left: distribution state with r c = 0.040D and Right: distribution state with r c = 0.400D. In the less ordered system with r c = 0.040D, the curves exhibit a soft decrease with increasing the extension ratio after a steady state up to λ = 1.2. In a more ordered system with r c = 0.400D, the curves exhibit a sharp decrease with increasing the extension ratio after a steady state up to λ = 1.2. We attribute the sharpness of the decrease to the amplitude of the strain softening appearing after the yield stress observed in our simulations.

Figure 6 .

 6 Figure 6.22: a) Stress strain curves, b) Relaxation map and c) evolution of rigid spring population as a function of the elongation ratio after a post-ageing procedure for disordered system (r c = 0.01).

a)Figure 6 . 23 :

 623 Figure 6.23: Jamming Phase diagram representing systems from this study. A system is considered Jammed (J) when it exhibits a strain softening σ SS > 0.05 MPa, and is considered Unjammed (N) when it exhibits a smooth softening instead.
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 71 Figure 7.1: Cut growth resistance as a function of the carbon black loading in SBR nanocomposites. Each line correspond to samples prepared in such way that their elastic modulus at 300% is 5.5 MPa, 8.3 MPa and 11 MPa. Therefore, the formulation of the matrix is not constant when increasing the filler loading. Data from Ref.[START_REF] Auer | Factors Affecting Laboratory Cut-Growth Resistance of Cold SBR Tread Stocks[END_REF] and converted in SI units.

Figure 7 . 2 :

 72 Figure 7.2: Representation of the geometry of the equivalent macroscopic solid modelled here. A lattice of cracks along x is elongated in the z direction.
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 7374 Figure 7.3: Schematic representation of a Damage Map constituted as a collection of damage cells. First, springs allowed to break during an elongation are identified and their center is projected in the (x, y) plane and associated to a damage cell. During the elongation, if the spring breaks, its associated damage cell will be marked as damaged. The damage map is therefore a boolean representation (damage and undamaged) of the spatial localisation of the damage in the sample (in the predefined surface) that evolves during a mechanical deformation.

Figure 7 . 5 :

 75 Figure7.5: The damage is average along the direction perpendicular to the crack propagation. This results in a function D x (y, λ) depicting the average damage as a function of the distance (along y) to the crack tip (crack tip is along x). This function can be represented in the (y, λ) plane and results in a map depicting how the crack evolves with the stretch. When D x (y, λ) > 0.5 this means that less than 50% of the cells are damaged, it is depicted in white. When D x (y, λ) < 0.5, most of the cells are damaged, this is depicted in black.
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 767778 Figure 7.6: Representation of D x (y, λ) for a collection of systems filled with spherical particles at a volume fraction of φ = 0.2 at various distribution state.
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 479 Figure 7.9: Stress-Strain curves for systems with a varying distribution state for temperature T = T g + 30 K.
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 710711 Figure 7.10: Evolution of the number of rubbery springs as a function of the extension ratio for systems with a varying distribution state for temperature T = T g + 30 K.

Figure 7 . 12 :

 712 Figure 7.12: Stress-Strain curves (left) and clusters size as a function of the extension ratio (right) for systems with a varying distribution state for temperature T = T g + 50 K.
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 713 Figure 7.13: Tear Energy Estimate as a function of the stretch ratio at break (left) and as a function of the distribution parameter (right) for systems with a varying distribution state for temperatures T = T g + 30 K and T = T g + 50 K.
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 714 Figure 7.14: Tear energy as a function of the distribution parameter r c for simulated systems at different temperature : T g + 30 K (Left) and T g + 50 K (Right) and different strain rate : 0.01 s -1 (Top) and 0.1 s -1 (Bottom). The solid line indicates the average over 10 samples, the shaded gray area depicts the standard deviation of the results and the symbols and represents the smallest and biggest value recorded in the samples respectively.
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 715 Figure 7.15: Storage modulus G in the linear regime as a function of the distribution parameter r c in the system presently studied.

Figure 7 . 16 :

 716 Figure 7.16: Average energy density at break W b as a function of the elastic modulus for each samples studied at different temperature and distribution state.

Figure 7 . 17 :

 717 Figure 7.17: Stress-Strain curves for systems with a varying filler morphology.

Figure 7 . 18 :

 718 Figure 7.18: Evolution of the number of rubbery springs as a function of the extension ratio for systems with a varying morphology for temperature T = T g + 30 K.
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 719720 Figure 7.19: Extension Ratio at break for the set of systems filled with different filler structure at temperatures T g + 30 K (Left) and T g + 50 K (Right) at a strain rate λ = 0.1 s -1 .
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 721 Figure 7.21: Storage and loss modulus as a function of the number of primary particles per aggregates for two temperatures.

Figure 7 . 22 :

 722 Figure 7.22: Stress Strain curves for systems filled with a varying amount of spherical particles at a heterogeneous distribution state.
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 723724 Figure 7.23: Extension ratio at break as a function of the volume fraction φ
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 725726 Figure 7.25: Storage and loss moduli as a function of the volume fraction for partially aggregated systems.
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 7727728 Figure 7.27: Effect of volume fraction, on spherical particles at a good distribution state

Figure 7

 7 Figure 7.30: Non affine displacement x 2 as a function of the stretch λ for a system filled with spherical particles and a system filled with complex aggregates. Systems are at a volume fraction φ = 0.1, the elongation is performed at a constant rate λ = 0.1 s -1 .
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 731732 Figure 7.31: Distribution of the local strain λ l for different macroscopic strain ranging from λ = 1.01 up to λ = 1.1 for a system filled with 10% of spherical particles (a) and 10% of fractal aggregates (b) made of 15 primary particle each, both at a homogeneous distribution state with r c = 0.4.
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 733 Figure 7.33: Evolution of the reduced properties at T g + 50 K as a function of the volume fraction for well distributed aggregate particles (left) and partially agglomerated aggregate particles (right). The reduced properties W /W 0 and G /G 0 are set with W 0 = 4 and G 0 = 10 MPa.
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 734 Figure 7.34: Evolution of the reduced properties at T g + 50 K as a function of the volume fraction for (left) well distributed and (left) heterogeneously distributed (right) spherical particles (top) and aggregates (bottom). The reduced properties W /W 0 and tan δ are set with W 0 = 4 and tan δ ≥ 1.
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 735 Figure 7.35: Schematic representation of the evolution of the damage properties in the W -G map according to filler properties such as the volume fraction φ, the distribution state parameter r c and the filler structure n p
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 1 Figure A.1: Simulation of TEM micrograph with a varying absorption length λ.
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 31 Figure B.1: Scattering amplitude computed using our algorithm. Top picture is a section of reciprocal space, bottom picture correspond to the circular averaging of the previous.

Figure B. 2 :

 2 Figure B.2: Validation of the method on systems of size L containing a random distribution of N p spherical particles of size D = 1.

Figure B. 3 :

 3 Figure B.3: full scattering obtained on systems filled with only one aggregates made of several primary particles.
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 4471 Figure B.4: [71] Scaling of the intensity with filler morphological paramaters.

Figure B. 5 :

 5 Figure B.5: Evaluation of the scaling with the number of aggregates and the number of primary particles per aggregates.

Figure B. 6 :

 6 Figure B.6: Kratky plot of different systems filled with aggregates of various sizes.

dFigure C. 1 :

 1 Figure C.1: Representation of a connectivity of n c = 3 per primary particles (only springs emanating from light gray particles are drawn).

Qn , (C. 3 )Figure C. 2 :

 32 Figure C.2: Schematic representation of the building-ageing-breaking mechanisms for the glassy springs.Two particles gets connected by a glassy spring whose relaxation time is small at the beginning. Then during the mechanical evolution of the system, the particles move with respect to each others. The force in the spring increases and then due to the evolution of the local shift of glass transition temperature, the equilibrium relaxation time of the spring decreases. At some point, the spring may break and the force is releases. The spring may be recreated and then the process start again, with a small relaxation time at the beginning which increases (ages) with time.

D. 16 )

 16 with ζ tr ans A = ζ N A and ζ rot A = ζ N A R 2 g .

  Les systèmes ayant les plus faibles r c correspondent aux systèmes les plus désordonnés. Leurs module chute lentement avec l'augmentation de la temperature. Nous montrons aussi dans cette partie que cet effet s'accompagne par une augmentation de la dissipation lié notamment à l'Effet Payne.

  Module élastique G dans le régime linéaire en fonction de la température pour différentes morphologies. Les systèmes sont chargés avec des aggrégats compleques diamètre D = 1 constitué de plusieurs particules primaires n p : n p = 1 (•), n p = 5 ( ), n p = 10 (+), n p = 15 ( ), n p = 20 ( ), n p = 30 ( ), n p = 40 ( ).

  Stress-Strain curves for systems φ = 0.15 at temperatures T = T g + 50 K. The strain rate is fixed and is λ = 0.1 s -1

  

  

  

Table 4 .

 4 1: Parameters of the RMC fit used during the simulations.

	Parameter	Value	Remark
	Aim of the total Cost Function U 1	Stops the algorithm when reached
	Precision parameter	σ = 0.05	
	Temperature	β = 23	Set to tolerate ΔU = 0.001 with p = 10 -4
	Equiv. Velocity	δx = 2	A jump is always smaller than δx
	Jump per steps	n j = 2	Only two particles are moved randomly each try
	Repulsion parameter	κ = 0.5	Set to tolerate overlapping with p ∼ 10 -5

Table 5 .

 5 2: Morphological parameters and graphical representation of the filler morphologies used in this study. Except for spheres with n p = 1, each object has been randomly generated, thus the picture given here is just a representation of a single filler. Fillers are scaled so that the average diameter of the filler population < D >≈ 1.

	n p	1	5	10	15	20	30	40
	< D >	1.000	0.961	0.994	1.020	1.029	1.045	1.051
	< D > [nm]	60 nm	58 nm	60 nm	61 nm	62 nm	63 nm	63 nm
	d	1.000	0.502	0.373	0.313	0.277	0.233	0.206
	d [nm]	60 nm	30 nm	22 nm	19 nm	17 nm	14 nm	12 nm

  Evolution of the elongation at break (Left) and the tear energy (Right) for systems filled with various amount of aggregates (n p = 15) at a homogeneous distribution state.
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  Les nanocomposites sont utilisés dans un grand nombre d'applications telles que les pneumatiques. L'ajout de charges rigides nanométriques dans une matrice élastomère permet d'augmenter drastiquement les propriétés mécaniques de cette dernière, d'une manière qui n'est pas encore bien comprise. Un modèle pour le renforcement basé sur un effet de confinement du polymère entre les surfaces rigides des charges a été proposé récemment. Jusqu'à maintenant, ce modèle n'a été résolu que sur des distributions aléatoires de charges sphériques. Toutefois, les nanocomposites industriels sont chargés avec des objets de morphologie complexe avec différents états de distribution. L'objectif de ce travail est donc d'étendre le modèle afin de prendre en compte explicitement la morphologie des objets renforçants et d'en contrôler leur état de distribution dans la matrice. Ainsi, nous avons étendu le modèle afin de prendre en compte de tels objets et nous avons introduit un paramètre qui permet de contrôler finement l'état de distribution dans la matrice. Nous résolvons alors le modèle de manière numérique.

	p(h)	Surface to Surface Distribution function
	φ	Filler volume fraction
	phr	Equivalent to a volume fraction, means per hundredth of resin.
	R	Reinforcement
	r	center-to-center distance between particles
	Σ	Volume average of glassy polymer due to confinement effects in the matrix
	σ	True Stress
	σ e	Engineering Stress
	τ	Relaxation time
	t	Time
	T	Torque acting on an aggregate
	τ	Torque arising from the forces acting on a primary particles
	T	Temperature
	T g	Glass transition temperature
	t s	Diffusion time
	U β x 2 d ω D v D f V δ W b γ Ω	Potential elastic energy Description Mean squared displacement Reinforcement parameter Pulsation Diameter of a primary particle velocity of a primary particle Diameter of an aggregate Velocity of an Aggregate Fractal dimension Tear Energy Density Instantaneous strain increment Shear rate Angular velocity of an aggregate
		Strain (elongation)
	E	Elastic Modulus (simple elongation)
	E	Loss Modulus (simple elongation)
	η	Fluid viscosity
	F	Force acting on an aggregate
	f	Force acting on a primary particle
	γ	Strain (shear)
	Γ	Tear Energy
	G	Elastic Modulus (simple shear)
	G	Loss Modulus (simple shear)
	g(r)	Pair correlation function
	h	surface-to-surface distance between particles
	K	Yield parameter
	k B	Boltzmann constant
	k 0	Elastic strength of rigid (glassy) springs
	k ∞	Elastic Strength of rubbery springs
	λ	Extension ratio
	Λ	Shortest distance to a filler surface for a given point of the matrix
	< m >	Average size or mass of clusters of particles
	ν	Poisson ratio of the matrix
	ν	Entanglement or cross-link density
	ν	Percolation exponent
	n c	Number of springs per primary particles
	n p	number of primary particles in an aggregate
	N s	Total number of spring in a simulation
	P	Probability of rupture

In this work, the unit of length has been set by the filler particle size D = 10 nm. Therefore, β = 0.02 corresponds to 0.2 nm and β = 0.08 corresponds to 0.8 nm.

The forward Fourier transform of the time dependent function f (t) is defined as f (ω) computed by the following relation :f (ω) = ∞ -∞ exp(-iωt) f (t)dt (3.42)

We rearranged the order of the Livi-Civita ik j =i j k , and we added the Kronecker δ i j to bolder the matrix product underlying the relation
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A Scanning Electron Microscopy, Numerical Simulations

A.1

Introduction

We have developed a simple model allowing us to simulate scanning electron microscopy. In this model, electrons are note treated quantum mechanically. We assume instead that when an incoming electron from the cathode flux interacts with matter, the electron is lost for the imaging process.

A.2 Electrons absorption by heterogeneous media

We consider a constant flux of accelerated electrons of energy E writting :

with n the number of electrons, q the elementary charge and V the electron potential. In fact, nq is related to the intensity of the electrical current i of the electron flux with nq = idt.

When an electron interacts with matter, it can undergo several interactions that can be elastic or inelastic.

We consider here a simple case where an electron interacting with the sample is lost for the imaging process.

The probability that a certain electron interacts with an atom in any possible way depends on the interaction cross section σ. Considering only elastic scattering, the interaction cross section can write

with Z the atomic number, q the elementary charge, V the electron potential and Θ the scattering angle.

Considering that a sample contains N atoms in a unit volume, a total scattering interactions cross section Q is given as

with N A the Avogadro number, M the atomic mass of the atoms of density ρ.

The probability p of scattering in a specimen of thickness dx follows then

The probability for an electron not to be scattered in a specimen of thickness l then becomes

fact elementary displacements. The position R n is found with the straightforward equation

For the case of the orientation quaternion Q, the Runge-Kutta parameters k n are elementary rotations. We rotate progressively the orientation quaternion Q with the elementary rotations k n using the following relation :

Quaternion arithmetic is introduced in Chapter E.

C.4 Conclusions

We have discussed in this appendix some details about the mathematical implementation of the model. The details given here are to be considered as an addition to the text provided in Chapter 3.

Additional information can be found in Ref. [START_REF] Long | Numerical simulation for the mesoscale deformation of disordered reinforced elastomers[END_REF]. In the latter, the numerical modelling framework exposed does not consider confinement effect. Also, information about the numerical model can be found in Ref. [START_REF] Merabia | A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins Effects)[END_REF]. A detailed paper concerning the numerical framework for considering the particle dynamics of complex aggregates is being currently prepared.

E.3.2 Quaternion and angular velocity of the rigid body

The velocity of the particle in the world frame of the particle can be expressed in term of its time derivative which is related to the translational and angular velocity of the aggregate dt dt and ω R or ω ≡ ω A .

Let focus on the time derivative of the rotation quaternion dq dt to find a relation with the angular velocity of a given aggregate.

By introducing the identity q -1 ⊗ q into eq. E.16, the right side of the equation becomes

which reduces to the following

Using the identity dq dt ⊗ q -1 = -

By identifying the antisymmetric product from eq. E.11 in eq. E.17 between dq dt ⊗ q -1 and (x Rt), the value of dq dt ⊗ q -1 have to be

thus leading to the differential equation

This equation can be rewritten in term of the angular velocity expressed in the local frame of the aggregate ω as

The discretisation of the previous relation leads to the following relation

This additive relation may be valid for small angular velocity ω and time step dt but the module of the quaternion q(t) can diverge from unity during the simulation. When the quaternion numerically diverges,

Notice

Résumé en Français

Les nanocomposites présentent des propriétés uniques dont l'origine est souvent mal comprise. Dans ce travail, nous cherchons à determiner quel est l'impact de la morphologie de la charge et de son état de distribution sur les propriétés des matériaux. Pour cela, nous avons étendu un modèle théorique que nous résolvons numériquement. Nous avons étudié l'effet de la distribution des charges dans la matrice. Nous montrons qu'un état de distribution fortement hétérogène conduit à un renforcement plus important qui s'étend dans une plus large gamme de température, mais augmente aussi la dissipation d'énergie. Ensuite, nous étudions l'effet de la structure des charges. Des particules parfaitement sphériques sont comparées à des agrégats fractals plus ou moins finement définis. Nous montrons que des objets finement définis peuvent s'imbriquer au sein de la matrice et conduisent à une augmentation du renfort et de la dissipation dans ces matériaux. Puis, nous étudions la réponse de nos systèmes lorsqu'ils sont soumis à une première élongation de forte amplitude. Nous montrons alors qu'un système hétérogène se plastifie localement progressivement au cours de la déformation alors qu'un système homogène présence une plastification catastrophique de son ensemble à partir d'une déformation critique. Enfin dans une dernière partie nous évaluons la possibilité d'étendre le modèle afin de simuler l'endommagement des nanocomposites. Nous introduisons pour cela un critère simple de rupture afin de prendre en compte l'endommagement locale du polymère entre les charges. Nous étudions ensuite comment se comporte les matériaux simulés en faisant varier la morphologie de la charge, son état de distribution et son taux. Ce travail constitue la première étude systématique de l'effet de la morphologie et de la distribution des charges sur les propriétés mécaniques des nanocomposites. Nous montrons que ces paramètres peu contrôlés sont pourtant des paramètres clés et peuvent servir à optimiser les propriétés d'un matériau afin d'en modifier les propriétés finales.
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Abstract in English

Nano-filled elastomer composites are used in a very broad range of applications such as tires, damping materials and impact modifiers. The addition of nanoscale rigid particles in a polymer matrix induces nonlinear effects that are not yet fully understood far above the glass transition temperature of the pure matrix. A model of the reinforcement of nanocomposites based on the reduced mobility of the polymer confined between two spherical filler particles has been developed over the last ten years. In order to study the influence of the filler shape, structure, size, and dispersion state, we have extended the model were the morphology of the fillers is defined explicitly as spherical particles aggregated in the polymer matrix. The model is then solved by mesoscale numerical simulation in order to describe the mechanical properties of the nanocomposite. We study the mechanical response of nanocomposite filled with aggregates of different shapes and distribution state to deformations of various amplitudes in the reinforcement regime. We show that the mechanical behavior of nanocomposites strongly depends on the filler morphology and we propose that stress-relaxation mechanisms in the material are related to the disorder (particle size, aggregation number, distribution state) in the filler population. In a second part of this work, we study the mechanical response at larger amplitude in both a non-destructive and destructive regime. For that matter, the model has been extended in order to account for damaging of the polymer between filler particles. Our model opens the path for the development of systems with tailored properties by adjusting the fillers morphology and distribution.
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