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Abstract

In this dissertation we address the problem of visual object tracking,
wherein the goal is to localize an object and determine its trajectory over
time. In particular, we focus on challenging scenarios where the object
undergoes significant transformations, becomes occluded or leaves the field
of view. To this end, we propose two robust methods which learn a model
for the object of interest and update it, to reflect its changes over time.

Our first method addresses the tracking problem in the context of objects
undergoing severe geometric transformations, such as rotation, change in
scale. We present a novel proposal-selection algorithm, which extends the
traditional discriminative tracking-by-detection approach. This method
proceeds in two stages — proposal followed by selection. In the proposal
stage, we compute a candidate pool that represents the potential locations
of the object by robustly estimating the geometric transformations. The
best proposal is then selected from this candidate set to localize the object
precisely using multiple appearance and motion cues.

Second, we consider the problem of model update in visual tracking, i.e.,
determining when to update the model of the target, which may become
occluded or leave the field of view. To address this, we use motion cues to
identify the state of the object in a principled way, and update the model only
when the object is fully visible. In particular, we utilize long-term trajectories
in combination with a graph-cut based technique to estimate parts of the
objects that are visible.

We have evaluated both our approaches extensively on several tracking
benchmarks, notably, recent online tracking benchmark and the visual object
tracking challenge datasets. Both our approaches compare favorably to the
state of the art and show significant improvement over several other recent
trackers. Specifically, our submission to the visual object tracking challenge
organized in 2015 was the winner in one of the competitions.

Keywords. Visual object tracking e Tracking-by-detection e Proposal-
selection tracking e Long-term tracking e Occlusion reasoning e Video
analysis ¢ Computer vision
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Résumé

Cette dissertation traite du probléme du suivi d’objets visuels, dont le but
est de localiser un objet et de déterminer sa trajectoire au cours du temps. En
particulier, nous nous concentrons sur les scénarios difficiles, dans lesquels
les objets subissent d’importantes déformations et occlusions, ou quittent
le champs de vision. A cette fin, nous proposons deux méthodes robustes
qui apprennent un modele pour ’objet d’'intérét et le mettent a jour, afin de
refléter ses changements au cours du temps.

Notre premiere méthode traite du probleme du suivi dans le cas ot les
objets subissent d’importantes transformations géométriques comme une
rotation ou un changement d’échelle. Nous présentons un nouvel algorithme
de sélection de propositions, qui étend ’approche traditionnelle de “suivi
par détection”. Cette méthode procéde en deux étapes : proposition puis
sélection. Dans I’étape de proposition, nous construisons un ensemble de
candidats qui représente les localisations potentielles de I’objet en estimant de
maniere robuste les transformations géométriques. La meilleure proposition
est ensuite sélectionnée parmi cet ensemble de candidats pour précisément
localiser 1’objet en utilisant des indices d’apparence et de mouvement.

Dans un second temps, nous traitons du probléme de la mise a jour de
modeles dans le suivi visuel, c’est-a-dire de déterminer quand il est besoin
de mettre a jour le modele de la cible, lequel peut subir une occlusion, ou
quitter le champs de vision. Pour résoudre cela, nous utilisons des indices
de mouvement pour identifier I’état d"un objet de maniére automatique et
nous mettons a jour le modéle uniquement lorsque l’objet est entierement
visible. En particulier, nous utilisons des trajectoires a long terme ainsi qu’une
technique basée sur la coup de graphes pour estimer les parties de 1’objet qui
sont visibles.

Nous avons évalué nos deux approches de maniere étendue sur différents
bancs d’essai de suivi, en particulier sur le récent banc d’essai de suivi en
ligne et le jeu de donnée du concours de suivi visuel. Nos deux approches
se comparent favorablement a 1’état de 1’art et font montre d’améliorations
significatives par rapport a plusieurs autres récents suiveurs. Notre soumis-
sion au concours de suivi d’objets visuels de 2015 a par ailleurs remporté
I"'une de ces compétitions.

Mots-clés. Suivi d’objet visuel ® Suivi par détection e Suivi par proposition-
sélection e Suivi a long terme o Traitement des occlusions e Analyse vidéo
e Vision par ordinateur
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Introduction
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1.1 Goals . . . . . o 4
1.2 Context . . . . . . v e 4
1.3 Contributions . . . . . . . .. .. .. . e 6

As one of the most important and challenging research topics in com-
puter vision, visual object tracking aims at “the problem of estimating the
trajectory of an object in the image plane as it moves around a scene”
[Yilmaz et al., 2006]. It also plays a fundamental role in many high-level
computer vision tasks, e.g., action recognition and video understanding.
Visual object tracking has been successfully applied in a wide range of
real-world applications, especially in visual surveillance (e.g., W4 system
[Haritaoglu et al., 2000] and VSAM project [Collins et al., 2000] for moni-
toring human activities), monitoring traffic (e.g., traffic flow monitoring
[Coifman et al., 1998], traffic accident detection [Tai et al., 2004], and pedes-
trian counting [Masoud and Papanikolopoulos, 2001]), video compression
(e.g., MPEG4 standard [Sikora, 1997]), and human-computer interaction
(e.g., hand gesture recognition [Pavlovic et al., 1997] and mobile video
conferencing [Paschalakis and Bober, 2004]).

Despite extensive studies during the past several decades, tracking
objects under unconstrained scenarios is still a complex and difficult
task due to many practical challenges, including illumination change,
occlusion, deformable objects, noise corruption, viewpoint variations, and
motion blur (cf. Figure 1.1). Furthermore, the proliferation of video data
and new data-acquisition devices has stimulated a great deal of interest
in building more intelligent tracking algorithms.

Firstly, video has become one of the most popular visual media for

1
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Occlusion Deformation

Figure 1.1 — Illustration of challenging appearance changes resulting in
challenging scenarios for visual object tracking [Li et al., 2013b]. Image
courtesy of [Li et al., 2013b].

communication, surveillance and entertainment in recent years. Owing
to the fast growth of the consumer electronics industry, now everyone
can shoot videos to record anything that they are interested in, with
inexpensive video cameras or even mobile phones. Subsequently, the
amount of video data is booming, e.g., 300 hours of new videos are
uploaded to YouTube every minute. ' Another aspect to these videos is
that they are recorded by millions of contributors with varied devices
and thus vary in quality and content. In addition to the standard RGB
format, many videos may also come from various recording apparatuses,
such as thermal infrared (TIR) videos from thermal infrared cameras
and RGBD videos from Microsoft Kinect. In order to automatically or
semi-automatically analyze, index and manage such video data, more
general visual object tracking algorithms are required. An ideal general
tracker can handle multi-domain videos containing arbitrary content with
minimum changes in the parameters of its framework.

Secondly, several devices, usually seen in sci-fi movies, made their de-
but, and have been gradually coming to fruition in the past few years, such
as augmented reality glasses, autonomous cars and drones (cf. Figure 1.2).

1. https://www.youtube.com/yt/press/statistics.html
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Figure 1.2 — Illustration of recent devices. First row: Microsoft
Hololens (https://www.microsoft.com/microsoft-hololens);
Second row: Google autonomous car (https://www.google.com/
selfdrivingcar); Third row: DJI drone (http://www.dji.com/
product).

Based on these emerging devices, visual object tracking algorithms can
certainly be one of the fundamental components to create many new
applications in real-world scenarios. To this end, more robust tracking al-
gorithms, which can cope with objects changing in appearance, becoming
occluded and leaving the field of view, are highly sought after.
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1.1 Goals

The goal of our work is to devise a robust visual object tracker for
diverse real-world scenarios. In other words, we aim to track an arbitrary
object defined at the beginning of a video in an unconstrained environ-
ment, where the object can undergo significant transformations, become
occluded or leave the field of view.

Despite several decades of research, tracking arbitrary objects in an
uncontrolled setting still poses enormous challenges. One of the main
challenges is generality. In the early days, many widely used applica-
tions only focused on person or car tracking (a.k.a. model-specific tracking),
which significantly reduced the difficulties of designing tracking systems,
but also limited their adaptability to other scenarios. Later, model-free
tracking has attracted significant attention because of its capability of
handling different situations. Nevertheless, many model-free trackers
were only evaluated on a limited number of video sequences, which is
not sufficient to prove their generality. In this context, we aim to fur-
ther improve the generality of model-free tracking, building on the most
successful discriminative tracking-by-detection framework, and conduct
evaluations on diverse model-free tracking datasets from different video
domains.

Another challenge is the well-known template update problem [Matthews
et al., 2004], widely existing in real-world situations. In the case of dis-
criminative tracking-by-detection framework, if a classifier (i.e., template)
is only trained with the ground truth annotation in the first frame, it is
less prone to drifting caused by inaccurate model updates. However,
this robust approach does not take appearance changes into account and
cannot adapt to the evolution of the target object. In contrast, a highly
adaptive classifier (e.g., classifier updated every frame) can gather essen-
tial training samples to capture the diverse appearance changes, but easily
result in drifting due to improper updates. Unlike most existing heuristic
approaches, we aim to tackle this dilemma in a principled way, based on
motion cues, in order to predict the true state of an object, resulting in
robust model update.

1.2 Context

As the predecessor of visual object tracking, target tracking first ap-
peared in the 1950s [Wax, 1955]. It mainly focused on the application of
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radio detection and ranging (RADAR) signal detection and automated
tracking. The goal of RADAR tracking was to establish correlations be-
tween point-wise “blips”. Several algorithms, such as the Kalman filter
[Kalman, 1960], were first designed to solve the RADAR tracking problem,
and were later successfully applied to visual object tracking, other tasks
in computer vision and even other disciplines, e.g., control theory.

Point tracking methods treat the task as a data association problem, i.e.,
finding correspondences in data across frames, similar to RADAR signal
tracking. Point tracking techniques became popular in the late 1980s and
remained so until the early 1990s [Sethi and Jain, 1987, Salari and Sethi,
1990]. It is worth noting that point tracking has strong connections with
motion-based computer vision problems, e.g., optical flow estimation
[Lucas and Kanade, 1981], and thus they share similar approaches. For
instance, there are three general methods for computing optical flow
[Derpanis, 2006], including matching methods, differential methods and
frequency-based methods, which are also popular methodologies for
point tracking.

During the 1990s, the interest of visual tracking shifted from simple
points to higher-level objects, when appearance-based trackers emerged.
Here, tracked objects are represented by pixel-wise templates (e.g., Kanade-
Lucas-Tomasi tracker [LLucas and Kanade, 1981, Tomasi and Kanade,
1991]), outer contours of objects (e.g., snakes tracker [Kass et al., 1988]),
blobs (e.g., Pfinder tracker [Wren et al., 1997]) or histograms (e.g., mean-
shift tracker [Comaniciu et al., 2000]). Many widely used tracking applica-
tions only focused on specific objects, i.e., model-specific tracking, such
as human faces and bodies [Wren et al., 1997], which are favorable for
certain real-world scenarios.

Since 2000, several efforts have been made to develop more general
visual object tracking approaches. As a result, model-free tracking, which
is designed to find trajectories of arbitrary objects in video sequences,
has became popular. The tracking-by-detection approach has surfaced as
one of the successful paradigms for model-free tracking in the context of
short-term tracking, which usually assumes that the target object is always
present in the video sequence. This approach has also been used as one
of the basic components to build more complex tracking systems. For
example, the tracking-learning-detection (TLD) tracker [Kalal et al., 2012]
has leveraged it to handle the long-term tracking problem, which addresses
the model update issue when the target can become occluded or leave the
field of view.
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There has been rapid progress in visual object tracking more recently,
in particular, since 2010. For instance, discriminative correlation filter-
based trackers [Bolme et al., 2010, Henriques et al., 2015, Danelljan et al.,
2014a, 2015] have received more attention due to their state-of-the-art per-
formance and computational efficiency. Deep learning-based approaches
that have dominated many computer vision problems have also shown
excellent performance on many tracking datasets [Li et al., 2014, Wang
etal., 2015a, Nam and Han, 2016]. In parallel, several visual object track-
ing datasets and challenges [Wu et al., 2013, Smeulders et al., 2014, Kristan
et al., 2013, 2014, 2015, Felsberg et al., 2015, Li et al., 2015a] have been
developed, which provide unified evaluation platforms and can accelerate
the development of more advanced trackers.

In this context, our work fits into the model-free visual object tracking
scenario. In particular, we design and develop general and robust track-
ers in an unconstrained environment for both short-term and long-term
tracking problems.

1.3 Contributions

In this thesis, we propose two novel approaches for model-free visual
object tracking under challenge scenarios, where the object can undergo
significant transformations, become occluded or leave the field of view.
Our contributions are summarized in the following paragraphs.

A general tracking framework that handles diverse situations for short-
term tracking. Building upon the successful discriminative tracking-
by-detection framework, we present a general proposal-selection tracking
approach (cf. Figure 1.3). We first compute a candidate pool that consists
of the potential locations of the target. Besides proposals from a common
tracking-by-detection framework (cf. Figure 1.3-(c)), we calculate addi-
tional proposals by robustly estimating the geometry transformation (i.e.,
similarity transformation) that the target is likely to have undergone (cf.
Figure 1.3-(d)). We then utilize a two-phase selection strategy to deter-
mine the tracking result. In the first phase, we select the best candidate
merely based on detection scores (cf. Figure 1.3-(e)). If detection scores are
inconclusive to make a decision, we move to the second phase — select
the best candidate by comparing edge scores [Zitnick and Dollar, 2014]
computed with edge responses (cf. Figure 1.3-(f)) [Dollar and Zitnick,
2013] and motion boundaries (cf. Figure 1.3-(g)) [Weinzaepfel et al., 2015].



1.3. CONTRIBUTIONS 7

Proposal Selection

Phase | Phase Il

Figure 1.3 — The overall framework of proposal and selection tracker: (a)
Initialization; (b) A sample frame in which the object is to be tracked; (c)
Tracking-by-detection proposals; (d) Geometry proposals; (e) Selection
phase I: Detection score, selection phase II: Edgebox score from (f) edge
responses, and (g) motion boundaries; (h) The selected tracking result
used for updating the model.

Extensive experimental results show that the proposed tracker achieves
the top performance on diverse datasets with fixed parameters. This
work was published in ICCV 2015 [Hua et al., 2015] and is presented in
Chapter 3.

A robust method for model update in the context of long-term tracking.
Model update is one of the most critical components for long-term track-
ing, where the target object may be occluded or leave the field of view. We
propose a principled framework to handle the problem of model update,
relying on motion cues. In particular, we utilize long-term trajectories
in combination with graph-cut based track labeling to identify the state
of the object (cf. Figure 1.4), e.g., no / partial / full occlusion or leaving
the field of view. The decision of model update is then made according
to the state of the object in each frame. We evaluate our approach on
multiple video datasets and show comparable performance with several
state-of-the-art trackers. This work was published in ECCV 2014 [Hua
et al., 2014] and is discussed in Chapter 4.

Participation in VOT2015 and VOT-TIR2015. We present the result of
our participation in the visual object tracking (VOT) 2015 and the thermal
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Track labels

Figure 1.4 — Left: Illustration of long-term tracks spanning multiple frames.
The yellow box shows the search region used to compute the bounding
box most likely to contain the object (green box). Right: Close-up of
the track labels, where blue denotes an object tracks and red represents
background tracks.

infrared visual object tracking (VOT-TIR) 2015 challenges in Appendix A.
VOT and VOT-TIR compare short-term model-free single-object trackers,
and serve as the de factor state-of-the-art evaluation platform for visual
object tracking. VOT focuses on natural RGB video sequences with ro-
tated rectangular ground truth boxes, while VOT-TIR consists of thermal
infrared video sequences with axis-aligned ground truth boxes. Our sub-
mission is based on the proposal-selection tracker described in Chapter 3.
In order to show the generality of our tracker, we set identical parameters
for both the VOT2015 and VOT-TIR2015 challenges. Accordingly to the
evaluation results [Kristan et al., 2015, Felsberg et al., 2015], our tracker is
the winner chosen from 24 trackers in the VOT-TIR2015 challenge, and
ranked sixth among 62 trackers in the VOT2015 challenge.
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In this chapter we present an overview of the literature in visual
object tracking. Specifically, we focus on single-camera, single-target,
model-free trackers, applied to both short-term and long-term tracking.
In Section 2.1, we review several approaches for short-term tracking,
namely, tracking-by-detection (§2.1.1), and tracking by matching (§2.1.2),
correlation filters (§2.1.3), context information (§2.1.4), fusion (§2.1.5), and
deep learning (§2.1.6). We then discuss the requirement of long-term
tracking and present an overview of relevant methods in Section 2.2.
Finally, in Section 2.3, we introduce popular tracking datasets and their
corresponding evaluation methods used in this thesis.

We focus our discussion on the most representative and relevant ap-
proaches for this thesis. For other single-camera single-target model-free
tracking methods, the interested reader is referred to review papers, such

9
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as [Yilmaz et al., 2006], [Cannons, 2008], [Yang et al., 2011] and [Li et al.,
2013b]. Visual object tracking with multiple cameras [Wang, 2013] and
multiple object tracking [Luo et al., 2014], which are other active research
problems, are beyond the scope of this thesis.

2.1 Short-term Tracking

2.1.1 Tracking by Detection

During the past several years, tracking-by-detection has become one of
the most successful paradigms for visual object tracking, and has achieved
state-of-the-art performance [Grabner et al., 2006, Mei and Ling, 2009,
Babenko et al., 2011, Hare et al., 2011, Bai et al., 2013, Gao et al., 2014,
Possegger et al., 2015]. This is due, in part, to the success seen by compo-
nents of object detection algorithms. In particular, the popular algorithms
for object detection, such as [Viola and Jones, 2001], [Dalal and Triggs,
2005] and [Felzenszwalb et al., 2010], have inspired many representative
tracking algorithms, including [Grabner et al., 2006], [Supancic III and
Ramanan, 2013] and [Shu et al., 2012]. The two main components in the
tracking-by-detection approach are visual representation and statistical
modeling. Like other tasks in computer vision, visual representation also
plays a fundamental role in visual object tracking. Most features for visual
representation can be applied in visual object tracking, such as intensity
[Ross et al., 2008], color [Pérez et al., 2002], texture [Avidan, 2007], Haar-
like feature [Babenko et al., 2011], LBP [Grabner et al., 2006], HOG [Tang
et al., 2007], and deep learning features [Li et al., 2014]. Several popular
visual object tracking approaches based on deep learning features will be
discussed in §2.1.6.

In this section, we focus on the most representative papers related to
statistical modeling, which can be grouped into two categories: generative
and discriminative models.

Generative models. Tracking with generative modeling typically fo-
cuses on learning a model to represent the target object, and then uses it
to find the most similar region in the future frames. For instance, Black
and Jepson [1998] learn an offline subspace model to represent relevant
objects and Ross et al. [2008] utilize an incremental subspace model to
describe the target object to adapt appearance changes. Moreover, match-
ing methods can be applied to estimate the motion of the target object
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Figure 2.1 — Illustration of templates used for ¢; reconstruction [Mei
and Ling, 2009], including target templates and trivial templates. Image
courtesy of [Mei and Ling, 2009].

between consecutive frames and then track the object over time. These
matching-based tracking approaches will be discussed in §2.1.2.

Sparse coding [Tibshirani, 1996] has also been applied to visual ob-
ject tracking to determine the target with minimum reconstruction error
from the template space. Mei and Ling [2009] proposed a robust track-
ing method, referred to as L1 tracker, by treating object tracking as a
sparse approximation problem. During tracking, target candidates are
represented as a sparse linear combination of the template set including
both target templates (obtained from previous frames) and trivial tem-
plates. Similar to [Wright et al., 2009], target templates correspond to
the normal appearance of object, while trivial templates are applied to
handle occlusion and other challenging issues, shown as in Figure 2.1.
In an ideal case, a target candidate can be efficiently represented by the
target templates. Therefore, almost all of the weights (i.e., coefficients) of
trivial templates tend to be zeros. In the case of challenging situations
(e.g., occlusion), a limited number of trivial coefficients may be activated,
but the whole coefficient vector (containing all of coefficients) remains
sparse. Then the target candidate with minimum reconstruction error is
selected as tracking result. Although L1 tracker performs well on several
challenging scenarios, it requires high computational resources due to
numerous calculations for /1 minimization. In order to address this issue,
Mei et al. [2011] extended the L1 tracker with minimum error bound
re-sampling. Most insignificant samples are filtered out by minimum
error bound before solving the computational expensive ¢; minimization
function. Thus this new strategy can improve the tracking speed without
sacrificing accuracy.

More recently, multi-task sparse learning [Zhang et al., 2012b] and low-
rank sparse learning [Zhang et al., 2012a] were applied to extend the L1
tracker, and utilize the underlying relationships between reconstruction
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samples. A more complete and detailed review on sparse coding based
tracking algorithms can be found in [Zhang et al., 2013].

Discriminative models. Despite the success, generative modeling usu-
ally faces difficulties to describe the target object without considering
background information, especially when the appearance of target object
changes dramatically and/or the background is cluttered. On the con-
trary, instead of trying to build a complete model to represent the target
object, discriminative modeling treats object tracking as a classification
problem, in order to distinguish the target object from the background.
Therefore, it is usually more robust to complex scenarios by explicitly
modeling background as negative training samples. Trackers based on
discriminative modeling have evolved rapidly and dominated almost all
datasets [Wu et al., 2013, Smeulders et al., 2014, Kristan et al., 2016] in
recent years.

An early approach of discriminative modeling was proposed by Avi-
dan [2004], where a support vector machine (SVM) classifier and optical-
flow-based tracking are combined to track vehicles over long video se-
quences. However, due to constraints on computational resources, the
SVM classifier is learned offline and is not updated in an online man-
ner. The ensemble-based tracking approach [Avidan, 2007] adopts the
Adaboost algorithm and breaks the complex training phase into a set of
simple and easy-to-learn tasks, i.e., weak classifiers, which can be com-
puted online. First, an ensemble of weak classifiers is trained to separate
pixels that belong to object from those that belong to background. Then,
given a new frame, this ensemble-based classifier is applied to create a
confidence map of the pixels. The mean-shift algorithm [Comaniciu et al.,
2003] is applied to this confidence map to find the new position of the
object, i.e., the peak in the confidence map. Subsequently, the ensemble-
based tracker is updated by adding a weak classifier learned from the
tracking result. Later, Collins et al. [2005] and Grabner et al. [2006] also
applied similar online boosting framework for real-time object tracking
but trained weak classifiers based on rectangle bounding box instead of
pixels used in [Avidan, 2007].

Online boosting-based tracking algorithms, however, suffer from drift-
ing, because the weak classifiers updated in each frame are not robust to
accumulated tracking errors. To address this, many improvements are
proposed from different perspectives. Semi-supervised learning [Chapelle
et al., 2006] is one way of dealing with errors in tracking, which affect the
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Figure 2.2 — Overview of SemiBoost tracker [Grabner et al., 2008]. Given a
prior classifier learned from the first frame and the position of the object
at time ¢, the classifier is evaluated at several candidate locations in a
search region in frame t + 1. The confidence map from this is analyzed
to estimate the most likely location of the object. Finally the classifier is
updated in an unsupervised manner using randomly selected patches.
Image courtesy of [Grabner et al., 2008].

training set for updating the model. Inspired by co-training [Blum and
Mitchell, 1998], Tang et al. [2007] proposed a semi-supervised learning
algorithm, where several classifiers learned online were used. In this
framework, the tracking results from one classifier are utilized to update
other classifier(s). Grabner et al. [2008] proposed a SemiBoost [Mallapra-
gada et al., 2009, Leistner et al., 2008] tracker to explore the continuum
between a prior classifier learned from the initial frame and all samples
as unlabeled for updating in the following frames, as shown in Figure 2.2.
In other words, SemiBoost tracker is updated on-line in an unsupervised
manner that can adapt (or drift) to new appearance, but it has the possibil-
ity to recover from significant drift, as it retains the prior classifier during
the tracking procedure.

Babenko et al. [2011] proposed to apply multiple instance learning
(MIL) [Dietterich et al., 1997] in visual object tracking, in order to allow the
classifier to select from a number of potential positive samples according
to its current state. Compared to other traditional methods (cf. Figure 2.3),
e.g., selecting single imperfect positive sample or using several noisy
positive samples, MIL tracker treats the training samples as “bags”. A
bag is considered as positive if it contains at least one positive instance,
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Figure 2.3 — Comparison of three different ways to update a discrimina-
tive appearance model [Babenko et al., 2011]. (A) Using a single positive
image patch to update a traditional discriminative classifier. Due to ac-
cumulated tracking errors, a single positive patch may not capture the
object sufficiently. (B) Using several positive patches to update a tradi-
tional discriminative classifier. It can introduce noisy training samples
and degrade the classifier. (C) Using one positive bag consisting of several
image patches to update a MIL classifier. Image courtesy of [Babenko
etal., 2011].

otherwise the bag is set to negative. Therefore, MIL tracker keeps sufficient
training samples and tolerates labeling noise when updates its model.

Another successful approach is to localize the target object precisely in
every frame in order not to accumulate tracking errors. Hare et al. [2011]
proposed Struck, which is based on structured output SVM framework
[Tsochantaridis et al., 2005]. It addresses the limitation of previous track-
ers, such as [Grabner et al., 2006], [Grabner et al., 2008] and [Babenko et al.,
2011], which separate target localization (i.e., labeling samples within a
search region) and model update into two distinct steps, shown as in
Figure 2.4. This dichotomy introduces additional errors from the labeling
step to the model update step, because the sample chosen by the classifier
may not correspond to the best estimate of the object location. In con-
trast, Struck integrates these two steps into one unified structured output
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Figure 2.4 — Comparison of adaptive tracking-by-detection paradigms
[Hare et al., 2011]. Given the current estimated object location, traditional
approaches (shown on the right-hand side) generate a set of samples and,
depending on the type of the learner, produce training labels. Struck
(left-hand side) avoids this two-step approach, and operates directly on
the tracking output. Image courtesy of [Hare et al., 2011].

learning framework (cf. Figure 2.4)

Moreover, discriminative correlation filter-based methods, which con-
duct pixel-accurate localization in the frequency domain, have evolved
and achieved state-of-the-art performance with real-time running speed
in recent years. These approaches will be discussed in §2.1.3.

Most discriminative model trackers are limited to a bounding-box
representation with a fixed aspect ratio. Thus, they cannot handle highly
non-rigid and articulated objects. Godec et al. [2011] proposed a novel
framework to overcome this limitation with the use of a Hough forest,
shown as in Figure 2.5. First, a Hough-based classification framework
is utilized to detect non-rigid objects robustly. Second, the foreground
supports (cf. red points shown as in Figure 2.5), detected by the Hough-
voting framework, are used to segment the object from the background
roughly. The segmentation result delivers a more precise description of
the object than a simple bounding box representation, which decreases
the noise for online model update, in particular for deformable objects.
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Figure 2.5 - Hough-based tracking [Godec et al., 2011], shown in clockwise
order from top-left image: Input frame, Hough-based object detection
result, back-projection and supporting image positions, guided segmen-
tation, robust updating, and tracking result. (Red points and regions:
foreground support and foreground segments; Blue regions: background
segments). Image courtesy of [Godec et al., 2011].

Later, Duffner and Garcia [2013] extended this framework to do pixel-
level Hough-based classification, which further improves the tracking
performance especially on small regions.

2.1.2 Tracking by Matching

Matching the representation of a target object between two consecutive
frames is a natural way to estimate its motion and track it over time. This
was a dominant tracking approach in the early days, due to its fairly good
performance, simple structure, and low computational requirement.

The simplest approach for object tracking in this paradigm is template
matching, where the image content within bounding box in the first frame
serves as an initial template. Tracking is then performed by maximizing
a similarity function, e.g., normalized cross-correlation (NCC), between
this initial patch and patches extracted at the candidate locations. In
practice, an exhaustive local search for candidate windows around the
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previous position of the target is performed, and the candidate window
with the highest similarity score is selected as the new target location. This
approach, referred to as NCC tracker, also acts as one of the important
components in more advanced trackers [Santner et al., 2010, Kalal et al.,
2012]. Although NCC tracker can be applied in an effective manner with
techniques, such as [Lewis, 1995], it remains computationally expensive,
especially when the template size or/and the search region is/are large.

As a more effective template-matching approach, Kanade-Lucas-Tomasi
(KLT) tracker [Lucas and Kanade, 1981, Tomasi and Kanade, 1991, Baker
and Matthews, 2004] considered that the similarity function of template
matching should be locally smooth and built upon gradient-based opti-
mization. First, the KLT tracker finds affine-transformed matches between
two consecutive frames by means of spatio-temporal derivatives and
warping. Then, the new location of the target is determined by mapping
its position in the previous frame to the location in the current frame
using the estimated affine transformation. This KLT tracker has been
improved in several aspects. Shi and Tomasi [1994] proposed a feature
selection criterion for applying template matching in order to improve
robustness. Since the smoothness assumption may only be valid in small
local regions in practice, Bouguet [2001] demonstrated a coarse-to-fine
optimization scheme on an image pyramid to deal with larger motion
between two consecutive frames. A forward-backward KLT tracker is
devised to automatically detect tracking failures in [Kalal et al., 2010].

Template-based matching methods typically lack robustness to track
non-rigid objects. Several approaches have emerged to solve this issue.
Based on the mean shift algorithm [Fukunaga and Hostetler, 1975] that
was originally proposed for data clustering, Comaniciu et al. [2000] de-
signed mean-shift trackers to perform matching with color histograms,
which is invariant to changes in shape of targets. In every new frame, the
mean shift algorithm is used to determine the location of the target by
maximizing a similarity metric. This tracker, however, can be confused
by regions with a similar color distribution, due to the lack of spatial in-
formation. Therefore, Yang et al. [2005] reintroduced spatial information
into the mean-shift framework by defining a new symmetric similarity be-
tween kernel density estimates of the template and the target distributions
in a joint feature-spatial space [Elgammal et al., 2003]. Similarly, Adam
et al. [2006] added spatial information into the histogram-based matching
scheme by dividing the target region into fixed fragments. Given a new
frame, each candidate window around the previous location of the tar-
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Figure 2.6 — Comparison of outputs using different correlation filters
[Bolme et al., 2010]. Top to bottom: input image, filters, and correlation
output. The three correlation filters (UMACE, ASEE, MOSSE) produce
peaks that are more compact than the one produced by the naive filter.
Image courtesy of [Bolme et al., 2010].

gets fragmented. Subsequently, the distance between the corresponding
patches regions is calculated by earth mover’s distance. The candidate
window which contains the top 25% matching patches is then selected as
the new target location.

Bayesian filtering-based methods, such as kernel-based Bayesian filter-
ing [Han et al., 2005], Kalman filtering [Cuevas et al., 2005], and particle
filtering [Isard and Blake, 1998a, Arulampalam et al., 2002], can be used
to extend matching-based methods. These Bayesian filtering-based meth-
ods treat tracking as a model estimation problem using measurements
of the target in every frame. The estimated model can be the position,
scale, geometry transformation, and even 2D /3D shape of the target. The
measurement can include color histogram, edges, contours, and other
appearance features of the target. Unlike matching-based methods, which
rely only on the similarity between template frame and target frame,
Bayesian filtering-based methods utilize all the observed frames with
emphasis on probabilistic formulation. These methods perform more
robust than matching-based methods in real-world applications.
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Figure 2.7 — A general flow chart for typical correlation filter-based track-
ing methods [Chen et al., 2015]. Image courtesy of [Chen et al., 2015].

2.1.3 Correlation Filter Tracking

In recent years, correlation filter-based trackers have received much
attention due to their simple structure, state-of-the-art performance and
computational efficiency. As a basic operation in digital image processing,
a correlation filter is used to find locations in an image that are similar
to a pre-defined template. Ideally, a correlation filter produces high re-
sponses for a pre-defined template, while generating low responses for
background. However, in most real-world applications, the response of a
naive correlation filter for background is relatively high, as shown in the
first column of Figure 2.6. Several improvements to correlation filters have
been proposed to overcome this issue. They are trained with negative
samples to suppress responses for background, while maintaining strong
responses for the pre-defined template. This approach has been success-
fully applied to eye localization [Bolme et al., 2009a], pedestrian detection
[Bolme et al., 2009b] and object recognition [Boddeti et al., 2013]. Due to
the requirement of a large number of training samples, these methods are
infeasible for online visual object tracking.

The minimum output sum of squared error (MOSSE) filter proposed
by Bolme et al. [2010], which is a variant of the average of synthetic exact
tilters (ASEF) [Bolme et al., 2009a], helped to overcome the limitation of
previous approaches. Unlike the minimum average correlation energy
(MACE) [Mahalanobis et al., 1987] and unconstrained maximum average
correlation energy (UMACE) [Mahalanobis et al., 1994] methods, ASEF
and MOSSE algorithms are more flexible and suitable for tracking prob-
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(a) Original image. (b) Periodicity in correlation filters.

Figure 2.8 — The periodic assumption of correlation filter-based trackers
[Danelljan et al., 2015]. Image courtesy of [Danelljan et al., 2015].

lem, as they do not require the target object to present at the center of
the image. However, ASEF filters become unstable when trained on a
small number of samples because the denominator tends to zero. In con-
trast, the denominator of MOSSE is the sum of the energy frequencies of
training samples, and is more stable numerically. Henriques et al. [2012]
proposed an improved approach by kernelizing the correlation filters with
a kernel regularized least squares formulation and circulant matrix. This
approach, called CSK, shows an excellent performance, while maintaining
computational efficiency.

The framework of a typical correlation filter-based tracking method
(cf. Figure 2.7) can be summarized as follows. In the first frame, an initial
correlation filter is trained based on the ground truth bounding box. For
each following frame, various local features are extracted and filtered by
a cosine window (cf. Figure 2.7) in order to smooth the boundary effects.
Subsequently, a response map is generated efficiently with a fast Fourier
transform (FFT). The position with the maximum value in this map is
predicted as the new location of the target object. Finally, the new location
of the object is used to update the correlation filter. It is worth noting that
the correlation filter training and updating procedures are all performed
in the frequency domain, which is critical to achieve a high-frame-rate
tracker.

Though MOSSE and CSK correlation filter-based trackers have shown
excellent performance, they have several limitations, which deserve fur-
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ther investigation. These trackers work directly on the raw pixels of
input images, which brings unwanted noise, and limits the tracking per-
formance. Although some preprocessing techniques can be applied to
address this, more powerful local features are still required. KCF [Hen-
riques et al., 2015] and DSST [Danelljan et al., 2014a] use HOG feature
[Dalal and Triggs, 2005, Felzenszwalb et al., 2010] computed over multiple
channels in the Fourier domain. Besides HOG feature, Danelljan et al.
[2014b] found color name feature [Van De Weijer et al., 2009] performed
well. These two features were used jointly in the SAMF [Li and Zhu,
2014].

MOSSE and CSK trackers also work with a fixed window size, i.e., the
window size is determined by the ground truth annotation in the first
frame and thus cannot handle scale changes. DSST [Danelljan et al., 2014a]
and SAMF [Li and Zhu, 2014] proposed a multi-scale search strategy to
estimate the true scale of the target object. In other words, these correlation
filter-based trackers are applied on multiple scale, and the window with
the highest response is selected as the tracking result.

As shown in Figure 2.8, the periodic extension of training sample,
which is generated by a circular sliding window operation, enables effi-
cient training and detection by FFT. However, it also produces unwanted
boundary effects, which can cause an inaccurate representation, and more
importantly, limit the search region of the tracker and the collection of
training samples. Danelljan et al. [2015] proposed spatially regularized
discriminative correlation filters (SRDCF) to overcome undesired bound-
ary effects with a spatial regularization component. This allows SRDCF
to be applied on, and learned from large image regions.

The methods described above have overcome the intrinsic issues of
correlation filter-based tracking. However, it is also worth noting that
the computational efficiency of these methods is significantly inferior
in comparison to the original correlation filter-based methods. A brief
summary of these works is given in Table 2.1. Correlation filter-based
trackers have been further extended to address deformable object tracking
[Liuetal, 2015, Lietal.,, 2015b], long-term tracking [Ma et al., 2015b, Hong
et al., 2015b], tracking with context information [Zhang et al., 2014b] and
tracking with deep learning [Ma et al., 2015a].

2.14 Tracking with Context Information

Context information plays an important role among many computer
vision tasks, including but not limited to, object classification [Kumar and
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Tracker Name Abbreviation Feature Speed (fps) Remarks
MOSSE [Bolme et al., 2010] Raw pixel 669.0 -

CSK [Henriques et al., 2012] Raw pixel 320.0 extension of MOSSE
KCF [Henriques et al., 2015] HOG 172.0 improved CSK
DSST [Danelljan et al., 2014a] HOG 24.0 based on MOSSE
CN [Danelljan et al., 2014b] Color name 78.9 based on CSK
SAMEF [Li and Zhu, 2014] HOG & Color name 7.0 based on KCF
SRDCEF [Danelljan et al., 2015] HOG 5.0 based on KCF

Table 2.1 — A summary of correlation filter-based trackers. The computation
time, shown as Speed (fps), is taken from the original papers.

Hebert, 2005, Munoz et al., 2009, Song et al., 2011], object detection [Tor-
ralba, 2003, Murphy et al., 2003, Hoiem et al., 2008], object segmentation
[Shotton et al., 2006, Rabinovich et al., 2007]. Not surprisingly, several
works also successfully utilized context information for the visual object
tracking task, in particular, for some challenging scenarios.

Yang et al. [2009] proposed a novel tracking framework by integrating
context information, called context-aware visual tracking (CAT). In CAT,
context information is represented by a set of auxiliary objects, which
are easy to track, and have motion consistent with the target. It is worth
noting that the auxiliary objects are not required to be semantic objects
but informative image regions. There are three main steps in the CAT
framework: (i) Data mining techniques are used to choose auxiliary objects
automatically by learning their co-occurrence associations, and estimating
affine motion models of the target; (ii) The target and auxiliary objects are
collaboratively tracked based on a random field model; (iii) Robust fusion
is applied to deal with inconsistency among the target and the auxiliary
object trackers.

Similar to [Yang et al., 2009], Grabner et al. [2010] introduced support-
ers which are useful features to predict the target location, even when the
target is occluded or leaves the fields of view. These supporters, which
need to have motion similar to the target, are maintained by generalized
Hough transform to vote and determinate target object location. Extend-
ing [Grabner et al., 2010], Dinh et al. [2011] exploited context information
with two opposite terms, i.e., supporters and distractors (cf. Figure 2.9),
in an online manner. Supporters are local key-points around the target,
which co-occur and have motion similar to the target. These supporters
can help verify the genuine target. In contrast, distractors are regions
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Figure 2.9 —Illustration of context elements, i.e., supporters and distractors
[Dinh et al., 2011]. Supporters: the end points of blue lines. Distractors:
the bounding boxes in cyan. Image courtesy of [Dinh et al., 2011].

which have similar appearance as the target and consistently co-occur.
They are tracked as negative regions in order to avoid confusion with the
target.

These initial ideas have evolved in the past few years, and several
tracking methods have exploited spatio-temporal context, such as [Wen
etal., 2012] and [Zhang et al., 2014b].

2.1.5 Tracking by Fusion

Fusing multi-channel information is another popular approach for
several computer vision tasks, including tracking. It is an important
strategy to exploit the complementarity of multiple tracking schemes.
This can be achieved by fusing either multiple cues or multiple trackers. A
tracker with multi-cue fusion combines complementary cues (e.g., features
or models from different domains) to tackle different scenarios. Each cue
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in the fusion framework plays a certain role and cannot be removed or
replaced arbitrarily. In contrast, the multi-tracker fusion framework can
integrate several existing trackers of different types. In other words, multi-
cue fusion happens at the model-level, while multi-tracker fusion is on
the output-level.

Multi-cue fusion. Du and Piater [2008] proposed a novel probabilistic
approach to integrate multiple cues and exploited the relationship be-
tween different cues. Four visual cues from different domains, including
color, edge, motion and contours, are used to build separate particle filter-
based trackers. A hidden Markov model is then learned to combine the
individual cues, to capture not only the temporal evolution of each cue,
but also its interaction with others. Inference is performed on this model
with sequential auxiliary particle belief propagation to track the target.

A few methods have explicitly handled the trade-off between stability
and plasticity. A tracking system requires plasticity for the integration
of appearance changes of the target, but also stability in order to prevent
it from drafting. To this end, Santner et al. [2010] proposed a parallel
robust online simple tracking (PROST) framework, which consists of
three trackers selected to cover the entire adaptivity spectrum, as shown
in Figure 2.10. For stability, a standard normalized cross-correlation (NCC)
template matching tracker, based only on the ground truth in the first
frame is applied. At the other extreme, a highly adaptive optical-flow-
based mean-shift tracker is utilized to capture frame-to-frame changes.
Between the two extremes, an online random forest tracker is learned.
These three complementary trackers are organized in a cascaded manner.
The adaptive optical-flow-based tracker is set as the main tracker, whose
output is verified and can be overruled by the random forest tracker.
Furthermore, the NCC tracker is deployed as a superior safe-guard to
monitor and prevent the random forest tracker from making incorrect
updates.

Lee et al. [2015] employed three Struck-based trackers [Hare et al,,
2011] using Haar-like features, color histogram features and illumination
invariant features. The fusion framework relies on a multi-hypothesis
trajectory analysis algorithm, which extracts geometric similarity, cyclic
weight, and appearance similarity from forward and backward trajectories
of the three trackers, and their corresponding robustness scores. The
forward trajectory of the tracker with the highest score is used to predict
the target location.
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Figure 2.10 — Illustration of the complementary components of PROST
[Santner et al., 2010] that have been chosen to cover the entire adaptivity
spectrum. The adaptivity of an online tracker is defined as the number

of frames it needs to adapt to appearance changes. Image courtesy of
[Santner et al., 2010].

Multi-tracker fusion. Leichter et al. [2006] proposed a probabilistic
framework for combining many standalone trackers, where each tracker
may operate in a different state-space. The principal requirement of
this framework is that the outputs of the trackers should be either an
explicit probability density function, or a sample-set of it, e.g., from
CONDENSATION-based trackers [Isard and Blake, 1998a]. Such a limi-
tation is a big drawback to further improve tracking performance, since
most top-performing trackers are not based on a probabilistic framework.

Other fusion frameworks have emerged in order to combine trackers
without any constraints. Inspired by joint learning from multiple label
sources [Whitehill et al., 2009], Zhong et al. [2014] proposed a novel fusion
framework, which can evaluate the performance of multiple individual
trackers during the tracking procedure. In other words, in each frame,
the best tracker among all the standalone trackers determines the target
location. However, this framework merely considers the fusion task as a
weakly-supervised binary classification problem, and ignores temporal
smoothness. Wang and Yeung [2014] designed a more integrated fusion
approach for object tracking based on a factorial hidden Markov model,
which generalizes HMM to a distributed state representation. It utilizes a
state-space model in a crowdsourcing setting for aggregating structured
time series data, i.e., frame-to-frame tracking results, coming from multi-
ple trackers in order to learn jointly the unknown trajectories of the target,
and the reliability of each tracker.

Bailer et al. [2014] introduced an energy-based fusion framework that
can work with arbitrary trackers, based on attraction fields and trajectory
optimization. In order to avoid setting thresholds typically used in a
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Figure 2.11 — The overall procedure of DeepTrack [Li et al., 2014] for
determining the tracking result and updating the corresponding CNN.
Image courtesy of [Li et al., 2014].

majority voting approach, attraction fields are employed to find fusion
results. Intuitively, the closer a fusion candidate is to the final tracking
result the higher the attraction score is, i.e., the stronger it is “attracted”
to the target location. Then, the trajectories are optimized with a unified
energy function to remove potential discontinuities in the frame-based
attractive fields.

Some other fusion-based approaches, either utilize additional training
data for specific object tracking (e.g., face and human) [Spengler and
Schiele, 2003, Stenger et al., 2009] or integrate information from other
domains (e.g., stereo sound or ultra-sound) for certain real-world applica-
tions [Perez et al., 2004, Han et al., 2007], and are beyond the scope of this
thesis.

2.1.6 Deep Learning for Tracking

In recent years, deep learning based approaches, particularly convo-
lutional neural network (CNN), have achieved great empirical success
and dominated many computer vision problems, such as object classifi-
cation [Krizhevsky et al., 2012], detection [Girshick et al., 2014], and face
verification [Taigman et al., 2014]. Applying this paradigm to the visual
object tracking problem requires some additional effort, due to the lack of
appropriate training data, and the target object evolving over the course



2.1. SHORT-TERM TRACKING 27

Shared Domain-specific
Layers Layers

€ 7 €
input convl conv2 conv3 fc4 fc5
| 3@107x107 96@51x51 256@11x11 512@3x3 512 512

Figure 2.12 — The architecture of multi-domain network [Nam and Han,
2016], which consists of shared layers and K branches of domain-specific
layers. Yellow and blue bounding boxes denote the positive and negative
samples in each domain, respectively. Image courtesy of [Nam and Han,
2016].

of the video sequence. In general, three main approaches exist so for:
(i) Using pre-trained deep learning features as visual representation for
object tracking; (ii) Training from scratch or fine-tuning a network in an
online manner; (iii) Improving localization accuracy with deep learning
networks.

One of the reasons why deep learning has become very popular in
computer vision is its representation power compared to traditional hand-
crafted features. Motivated by this, deep learning has been exploited as
a powerful feature learning tool for visual object tracking in [Wang and
Yeung, 2013]. They introduced a deep learning tracker by means of a
stacked denoising autoencoder (SDAE). At first, an offline unsupervised
image feature extractor is built using the SDAE learned from generic
datasets. Then, in the online tracking phase, a sigmoid classification layer
is added to the encoder part of SDAE learned offline to form a tracking-by-
detection tracker. Following the feature extraction framework in [Wang
and Yeung, 2013], Zhou et al. [2014] revisited the ensemble-based online
boosting framework with new deep learning features for tracking. A
group of binary deep neural network (DNN) classifiers is built by adding
a sigmoid layer to the pre-trained SDAE. This group of classifiers is then
integrated in an online boosting framework to determine the location of
the target.

In order to better adapt to the appearance of the target defined in
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Figure 2.13 — The overall procedure for tracking with a discriminative
saliency map [Hong et al., 2015a] computed with a convolutional neural
network. Image courtesy of [Hong et al., 2015a].

a video sequence, several works have also trained DNNs from scratch
or fine-tuned pre-trained DNNs in an online manner. Li et al. [2014]
proposed a novel online CNN for object tracking, referred to as DeepTrack.
It maintains a candidate pool of multiple CNNs built with four image cues,
namely, three local-contrast normalized images and a gradient image.
Given a frame, a subset of CNNs from this pool is applied to patches
surrounding the previous target location. Then, the best matching CNN
for each patch is determined by k-NN, and the matching score is assigned
to the corresponding patch. Finally, the patch with the highest score
is selected as the tracking result for the current frame. For the update
step, the CNN corresponding to the selected patch is retrained with a
warm-start back-propagation scheme, and the fully-connected layers of
all the CNNSs are retrained jointly. The overall procedure for determining
the tracking result and updating the corresponding CNN is shown in
Figure 2.11.

Wang et al. [2015b] presented a novel framework, called structured
output deep learning tracking (SO-DLT), to pre-train and fine-tune CNN
online, with structured output, to distinguish the target and background.
First, an offline structured output CNN is trained using the ImageNet
dataset [Russakovsky et al., 2015] in order to learn generic object features
for classifying object and non-object regions. Then, two CNNs adopted
from the offline CNN are fine-turned in an online manner for tracking:
one is tuned aggressively to adapt well for appearance changes, while
the other one is tuned conservatively to prevent drifting from inaccurate
tracking results. The final tracking result is determined by the CNN with
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Figure 2.14 — Pipeline of a fully convolutional network based tracker
[Wang et al., 2015a]: (a) Input ROI region, (b) VGG network, (c) SNet, (d)
GNet, (e) Tracking results. Image courtesy of [Wang et al., 2015a].

the higher confidence.

In order to address the lack of readily-available data to train CNN5s
for the tracking problems, Nam and Han [2016] used additional video
sequences from other tracking datasets, excluding videos belonged to the
working tracking dataset. It is truly challenging to train CNNs on these
additional video sequences directly, since the same kind of targets can be
set as positive samples in one video sequence, and as negative samples in
another sequence. Consequently, a novel CNN architecture, Multi-Domain
Network (MDNet), shown in Figure 2.12, is proposed. During the offline
training phase, each additional video sequence is treated as a separate
domain, and propagated through the shared layers and the corresponding
domain-specific layer of MDNet. By distinguishing domain-independent
and domain-specific information, the shared layers of MDNet updated
in every iteration, with all the training video sequences, are able to learn
a generic feature representation. During the online tracking phase, all
the pre-trained domain-specific layers are removed. Then, a new domain-
specific layer, to classify the target object, and the pre-trained shared
layers are fine-tuned frame-by-frame to adapt to the evolution of the
target object. A bounding box regression method [Girshick et al., 2014] is
also applied to improve the target localization.

Visual features extracted from the last layer of the network encode
high-level semantic information [Zeiler and Fergus, 2014], but they model
insufficient spatial details. A few approaches have attempted to address
this issue from different perspectives. Inspired by [Simonyan et al., 2014],
Hong et al. [2015a] constructed target-specific saliency maps obtained
by back-propagating information relevant to the target. This keeps spa-
tial information and provides accurate target segmentation. The overall
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Figure 2.15 — Hierarchical convolutional features for visual tracking [Ma
et al., 2015a]. The third, fourth and fifth convolutional layers from CNN
are used to represent the target. Each layer indexed by i is then convolved
with the learned linear correlation filter w() to generate a multi-level
response map. The location of the target is given by the maximum value
in this response map following a coarse-to-fine strategy. Image courtesy
of [Ma et al., 2015a].

approach is shown in Figure 2.13.

Instead of using the responses of the last CNN layer as a black-box
feature, Wang et al. [2015a] utilized the representations learned in the
intermediate convolutional layers. In particular, a top layer serves as a
generic category detector, while a lower layer encodes a specific-instance
detector with more discriminative information. Subsequently, a fully con-
volutional network based tracker (FCNT), including two convolutional
layers of different levels, is designed for robust tracking, as shown in
Figure 2.14. First, a selection of feature maps, based on a target heat map
regression model, is performed on the lower and the higher layers of
the pre-trained VGG network [Simonyan and Zisserman, 2015]. Then, a
general network (GNet) that encodes category information is built on the
selected feature map of a higher layer (i.e., conv5-3), while a specific net-
work (SNet) that carries instance information is generated on the selected
feature map of a lower layer (i.e., conv4-3). For every new frame, a region
of interest centered at the target location in the previous frame is cropped
and propagated through the fully convolutional network to generate two
foreground heat maps with GNet and SNet. Based on these two heat
maps, the tracking result is determined by a detection scheme, which
distinguishes the target object from its distractors in the background. A
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Figure 2.16 — Overview of the Tracking-Learning-Detection framework
[Kalal et al., 2012]. Image courtesy of [Kalal et al., 2012].

related approach is proposed in [Ma et al., 2015a]. Three independent
correlation filter-based trackers are applied on different convolutional lay-
ers, conv3-4, conv4-4, and conv5-4, using the pre-trained VGG network.
[MMustrated in Figure 2.15, the top layer of CNN encodes more semantic
information but is insufficient for capturing fine-grained spatial details. In
contrast, the earlier layers have rich information for localizing the object,
but do not represent semantics well. The target location is inferred from
multi-level correlation filter response maps, in a coarse-to-fine scheme.

2.2 Long-term Tracking

In traditional visual object tracking (i.e., short-term tracking), the
stability-plasticity trade-off [Grossberg, 1987] or template update problem
[Matthews et al., 2004] has not been addressed well. In order to alleviate
this issue, Kalal et al. [2012] pointed out that the visibility of the target
object, due to occlusion or the object leaving the field-of-view, should be
indicated and processed accordingly in long video sequences, which led
to the long-term tracking task.

In [Kalal et al., 2012], long-term tracking task is decomposed into three
sub-tasks: tracking, learning and detection, and their corresponding com-
ponents are designed to form a general tracker, called TLD. The tracking
component estimates the object motion and follows the object continually
in order to produce smooth trajectories, but it also accumulates errors
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Figure 2.17 — As part of the tracking procedure, SPLTT [Supancic III and
Ramanan, 2013] selects reliable frames (shown in red) to extract additional
training data. The model is learned (updated) with these additional
training data, which can correct the errors retrospectively. Image courtesy
of [Supancic III and Ramanan, 2013].

continually and fails to track if the target is invisible. The detection com-
ponent localizes the object in all its appearances that have been observed
so far, and reinitializes tracker when it fails. The learning procedure es-
timates the quality of the results and updated it with only high reliable
results. The overall procedure is shown in Figure 2.16.

Inspired by curriculum [Bengio et al., 2009] and self-paced [Kumar
et al., 2010] learning, Supancic III and Ramanan [2013] argued that it is
critical to revisit old frames during tracking since some object states are
hard to track initially, but may become easy in retrospect. They proposed
a novel framework for long-term tracking, referred to as SPLTT. Here,
the target appearance is learned conservatively by revisiting previous
frames and selecting the reliable ones for model updating, as shown in
Figure 2.17.

Many existing trackers use a “censorship mechanism” to perform
the update step when certain criteria are met. The main issue of this
mechanism is that it can only prevent bad updates from happening, but
can not correct the past mistakes. Zhang et al. [2014a] introduced a
novel multi-expert entropy minimization (MEEM) restoration scheme,
which allows a tracker to evolve backwards in order to undo undesirable
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Figure 2.18 —Illustration of Atkinson-Shiffrin memory model with short-
term and long-term stores [Hong et al., 2015b]. Image courtesy of [Hong
et al., 2015b].

model updates. Within the MEEM tracking framework, a discriminative
tracker and its former snapshots constitute an expert ensemble, and the
best expert is selected based on a minimum loss criterion, with entropy-
regularized optimization, to restore the tracker when a disagreement
among the experts occurs.

Ma et al. [2015b] proposed LCT by extending the popular correla-
tion filter-based tracker to the long-term tracking problem. LCT decom-
poses the long-term tracking task into the estimation of translation and
scale parameters of the target objects, in conjunction with an essential
re-detection scheme. For estimating translation, a correlation filter-based
tracker (CFT;) is applied to exploit the temporal correlation of the target
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and the surrounding spatial context, which is updated aggressively. CFT,
is robust to deformation, illumination variation, background clutter, and
abrupt motion. In parallel, another correlation filter-based tracker (CFT})
is constructed to determine the change in scale, and is updated conser-
vatively. Two thresholds, corresponding to CFTy, are set heuristically for
activating target re-detection in case of a tracking failure, and updating
the model with only trustworthy frames.

Inspired by the Atkinson-Shiffrin memory model (i.e., multi-store
model, illustrated in Figure 2.18), Hong et al. [2015b] designed the multi-
store tracker (MUSTer). It consists of one short-term store and one long-
term store that collaboratively process the tracking procedure. An inte-
grated correlation filter based on [Henriques et al., 2015] and [Danelljan
etal., 2014a] is applied to store short-term memory for short-term tracking
via two-stage filtering. Additionally, a complementary keypoint-based
tracking and RANSAC estimation is utilized for long-term memory store,
which controls the final output and the short-term memory states.

2.3 Tracking Datasets

Datasets play a critical role in almost all computer vision tasks. In
the case of the object classification problem, there has been a tremendous
evolution from Caltech101 [Fei-Fei et al., 2006] to PASCAL VOC [Ever-
ingham et al., 2010] and then to large-scale ImageNet [Russakovsky et al.,
2015]. While such an evolution has also occurred in the case of tracking,
it has been at smaller scale and a slower pace, and has its fair share of
issues. Most video sequences in initial datasets were recorded in an un-
natural experimental environment, or in some cases selected to highlight
the advantages of the proposed tracker. Furthermore, they lack a common
protocol for ground truth annotation, and are typically small in number.
These issues are being addressed by recent datasets and benchmarks [Wu
et al., 2013, Smeulders et al., 2014, Kristan et al., 2013, 2014, 2015, Felsberg
et al., 2015, Li et al., 2015a].

In this section, we first briefly review publicly available model-free
tracking datasets, and then introduce the datasets and corresponding
evaluation methods used in this thesis.
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2.3.1 Overview of tracking datasets

Amsterdam library of ordinary videos (ALOV++) dataset. Generality
is a very important feature for good model-free trackers. Smeulders et al.
[2014] argued that most trackers, have only been evaluated on a lim-
ited number of sequences, and the evaluation results are insufficient to
make conclusive remarks on the validity and robustness of the proposed
methods in a variety of circumstances. To address this issue, a large and
diverse dataset was proposed. The ALOV++ dataset contains 315 video
sequences with 89,364 frames in total from several sources: 22 sequences
come from standard and recent tracking datasets, 65 sequences are from
performance evaluation of tracking and surveillance (PETS) workshop
[Chu and Smeulders, 2010], and 250 new sequences are collected from
YouTube with 64 different types of targets. The ALOV++ dataset is an-
notated with a regular bounding box (i.e., axis-aligned box) enclosing
the target. Due to the large size of the dataset, ground truth is manually
annotated every fifth frame, while the annotation of the intermediate
frames is obtained by linear interpolation. ALOV++ is available online at
http://www.alov300.org.

NUS people and rigid objects (NUS-PRO) dataset. Proposed in [Li
et al., 2015a], it is the largest publicly available tracking dataset so far, and
contains 365 video sequences collected from YouTube. All the sequences in
NUS-PRO belong to five categories, namely, face, pedestrian, sportsman,
rigid object and long sequences. The five categories contain 17 kinds of ob-
jects in all. Many video sequences in the NUS-PRO dataset are recorded by
hand-held cameras which makes it close to real-life scenarios, e.g., videos
contain abrupt object movement or motion blur. Moreover, occlusion, usu-
ally missing or casually marked in other tracking datasets, is elaborately
considered and annotated in three categories: no occlusion, partial occlu-
sion and full occlusion. The NUS-PRO dataset and the evaluation system
are available at http://www.lv-nus.org/pro/nus_pro.html.

Princeton tracking benchmark (PTB) dataset. Song and Xiao [2013]
constructed an RGBD tracking dataset of 100 video sequences, which are
captured with a standard Microsoft Kinect 1.0. It is the first attempt to
build a tracking dataset with depth information, which significantly re-
duces the ambiguity existing in RGB images [Shotton et al., 2013], and can
be used to prevent model drifting and handle occlusion cases. However,
due to the constraint of the recording device, the depth of the captured
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Dataset #Videos Ground truth (rectangle) Data

OTB [Wu et al., 2013] 50 Axis-aligned RGB, gray
PTB [Song and Xiao, 2013] 100 Axis-aligned RGBD
VOT2013 [Kristan et al., 2013] 16 Axis-aligned RGB
ALOV++ [Smeulders et al., 2014] 315 Axis-aligned RGB, gray
VOT2014 [Kristan et al., 2014] 25 Rotated RGB
TB-50/100 [Wu et al., 2015] 100 Axis-aligned RGB, gray
NUS-PRO [Li et al., 2015a] 365 Axis-aligned RGB
VOT2015 [Kristan et al., 2015] 60 Rotated RGB
VOTTIR2015 [Felsberg et al., 2015] 20 Axis-aligned Thermal infrared

Table 2.2 — A summary of popular tracking datasets in chronological order.

object can only vary from 0.5 to 10 meters, and thus all the RGBD video
sequences are captured indoors. The PTB dataset and the evaluation
system are available at http://tracking.cs.princeton.edu.

We use the-state-of-the-art object tracking benchmark (OTB) [Wu et al.,
2013] and the visual object tracking (VOT) challenge [Kristan et al., 2013,
2014, 2015, Felsberg et al., 2015] datasets extensively in this thesis, and
will discuss them in §2.3.2. A summary of tracking datasets is shown in
Table 2.2.

2.3.2 Datasets and evaluation methods used
Object tracking benchmark (OTB) dataset

The object tracking benchmark dataset [Wu et al., 2013], named OTB,
is a collection of 50 commonly used tracking sequences, where the object
varies in scale, has fast motion, or is occluded. The first frame of each
sequence in OTB is illustrated in Figure 2.19.

In order to present the progress of tracking algorithms and set a gen-
eral benchmark, 29 methods are compared in [Wu et al.,, 2013]. Two
well-adopted evaluation methodologies are used: precision and success.
Precision reflects the center location error. It is measured as the percentage
of frames whose predicted object location (center of the predicted box)
is within a distance varying between 0 and 50 pixels from the center of
the ground truth box. The precision score is the percentage value when
threshold distance is set to 20 pixels. The success measure is based on
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Figure 2.19 — Illustration of the OTB dataset [Wu et al., 2013], showing the
first frame in each sequence along with the ground truth target annotation.
Image courtesy of [Wu et al., 2013].
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the bounding box overlap. It shows the percentage of frames whose in-
tersection over union overlap with the ground truth annotation is over a
threshold, varying between 0 and 1. Instead of using a fixed threshold,
the area under curve (AUC) of the success plot determines the success
score in order to rank the algorithms. The robustness of different trackers
is evaluated with the following three procedures.

1. One-pass evaluation (OPE): It is a conventional method to evaluate
trackers. All the trackers are run on the test sequences with the
initializations from the ground truth position in the first frame, and
the average precision and success scores are measured.

2. Temporal robustness evaluation (TRE): Each sequence for testing
is divided uniformly into 20 segments. Each tracker is initialized
at the beginning of a segment and evaluated until the end of the
entire sequence. The tracking results of all the 20 tests are averaged
to generate the precision and success scores.

3. Spatial robustness evaluation (SRE): For every sequence, each tracker
is initialized in the first frame with shifted or scaled ground truth
bounding box. As a default, each tracker is evaluated 12 times with
different initial bounding box settings: eight spatial shifts including
four center shifts and four corner shifts (10% of target size), and 4
scale variations (i.e., 0.8, 0.9, 1.1 and 1.2) with respect to the ground
truth in the first frame. The precision and success scores are calcu-
lated from the average of all these 12 evaluations in order to rank
the trackers.

Visual object tracking (VOT) challenge dataset

The visual object tracking (VOT) challenge was introduced in 2013
with the aim of providing a standardized platform to evaluate single-
camera, single-target, model-free, causal short-term tracking algorithms.
It has been organized as an annual workshop in conjunction with ICCV
or ECCV conferences. In each workshop, a fully annotated dataset with
several per-frame visual attributes is released. Each frame in the dataset is
manually or semi-automatically labeled with six visual attributes, includ-
ing occlusion, illumination change, motion change, size change, camera
motion and unassigned. In addition to the dataset, an evaluation toolkit
is also developed and actively maintained, which allows easy integration
of third-party trackers for fair comparison. We used the datasets released
for the two recent challenges, i.e., 2014 and 2015, in this thesis.
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Figure 2.20 — Illustration of VOT2014 challenge dataset [Kristan et al.,
2014], showing the first frame in each sequence along with the initial
bounding box of the target object.

The evaluation scheme of VOT challenge uses accuracy and robustness
measures to compare trackers, due to their high level of interpretability
[Cehovin et al., 2014, 2015]. Raw accuracy is computed as the mean
intersection over union score with the ground truth bounding box over
the entire sequence (while discarding ten frames immediately following
a tracking failure to further reduce the bias in accuracy measure), and
raw robustness is the number of times the tracker has failed. A tracking
failure is signaled in a frame t if the predicted box does not overlap with
the ground truth annotation. In this case, the tracker is restarted from
scratch in frame t 4 5 with the corresponding ground truth annotation in
order to alleviate the bias in robustness measure. For a robust comparison,
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Figure 2.21 — Illustration of VOT2015 challenge dataset [Kristan et al.,
2015], showing the first frame in each sequence along with the initial
bounding box of the target object.
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the scores are averaged over 15 runs of the tracker to account for any
stochastic behavior.

VOT2014 challenge dataset. It contains a set of 25 challenging video se-
quences chosen from a candidate set of 394 sequences, which is composed
of examples used in several previous works, such as VOT2013 challenge
dataset [Kristan et al., 2013], OTB [Wu et al., 2013], ALOV++ [Smeulders
et al., 2014], as well as a few unpublished ones. This choice was made by:
(i) discarding sequences shorter than 200 frames, and (ii) ensuring that the
selected sequences contain well-defined targets and represent challenging
scenarios, such as clutter, object deformation, and change in aspect ratio.
The frames in all the sequences are manually annotated. In a departure
from annotations in other datasets, where the bounding box enclosing the
target is axis-aligned, this dataset uses rotated boxes in order to handle
targets that are deforming, as shown in Figure 2.20. This new annotation
makes the dataset a more challenging setting to evaluate trackers. In
addition, all the frames in VOT2014 challenge dataset are labeled with
visual attributes: occlusion, illumination change, object motion, object
size change, camera motion and neutral [Kristan et al., 2014].

The overall rank of a tracker is determined by first ranking trackers on
accuracy and robustness separately on each attribute set, and then taking
the mean rank over the two performance measures. If a set of trackers
show similar performance (which is measured with statistical significance
and practical difference tests), their ranks are set to the minimal rank of
these equivalent trackers.

VOT2015 challenge dataset. Compared with VOT2014, two improve-
ments are made in the VOT2015 challenge [Kristan et al., 2015]. The first
one is a dataset more than twice as large, containing 60 sequences in total
(cf., Figure 2.21). This dataset is fully annotated with rotated boxes and
per-frame attributes. The second improvement is the evaluation strategy.
The average of the accuracy and robustness ranks was used in VOT2013
and VOT2014. But it cannot be interpreted as a standalone result, since the
evaluation is based on relative ranking, which is susceptible to the quality
and the number of trackers compared. In other words, the performance
of a tracker is determined not only by itself, but also all the trackers used
for comparison.

To address this, a new measurement called expected average overlap is
introduced, which combines the raw values of per-frame accuracies and
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Figure 2.22 — Illustration of VOT-TIR2015 dataset [Felsberg et al., 2015],
showing the first frame in each sequence along with the initial bounding
box of the target object.
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failures in a principled way. In other words, expected average overlap
is a constant value to represent performance for each individual tracker,
which is not dependent on other trackers. It is calculated as the average of
the expected average overlap curve values over an interval [Nj,, Ny,;] of
typical sequence lengths in the dataset. The intervals are computed by a
kernel density estimate from the lengths of all the sequences in the dataset.
For instance, the lengths of sixty sequences are used for estimating the
range value for the VOT2015 dataset.

VOT-TIR2015 challenge dataset. A new sub-challenge was introduced
along with the VOT2015 challenge, involving a thermal infrared (TIR)
tracking dataset [Felsberg et al., 2015]. This dataset is annotated with
common axis-aligned boxes and per-frame attributes. This new challenge
adopts all the protocols from the VOT challenge, and utilizes the same
toolkit for performance evaluation. The first frame of each sequence in
VOT-TIR2015 is illustrated in Figure 2.22.
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Tracking-by-detection approaches are some of the most successful ob-
ject trackers in recent years [Wu et al., 2013, Smeulders et al., 2014, Pang
and Ling, 2013, Kristan et al., 2014, Song and Xiao, 2013]. Their success
is largely determined by the detector model they learn initially and then
update over time. However, under challenging conditions where an ob-
ject can undergo transformations, e.g., severe rotation, these methods are
found to be lacking. Furthermore, most tracking-by-detection approaches
usually determine tracking results only based on the best detection score,
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which is not always optimal and may gradually cause drift. In this chap-
ter, we address these problems by formulating visual object tracking as a
proposal selection approach. We make two contributions: (i) We introduce
novel proposals estimated from the geometric transformations undergone
by the object, and build a rich candidate set for predicting the object loca-
tion. (ii) We devise a two-phase selection strategy using multiple cues, i.e.,
detection and edgebox scores. We evaluate our approach extensively on
the visual object tracking (VOT) challenge and online tracking benchmark
(OTB) datasets, and show top performance.

3.1 Introduction

The tracking-by-detection framework formulates the tracking problem
as the task of detecting an object, which is likely to undergo changes in
appearance, size or become occluded over time [Avidan, 2007, Grabner
et al., 2008, Babenko et al., 2011, Mei and Ling, 2009, Godec et al., 2011,
Hare et al., 2011, Kalal et al., 2012, Supancic IIl and Ramanan, 2013]. These
approaches begin by training an object detector with an initialization (in
the form of a bounding box) in the first frame, and then update this model
over time. Naturally, the choice of exemplars used to update and improve
the object model is critical [Supancic III and Ramanan, 2013, Hua et al.,
2014, Zhang et al., 2014a].

Consider the motocross example shown in Figure 3.1. Here, the target
(biker and his motorbike) undergoes several deformations as the biker
performs an acrobatics routine, which leads to significant changes in the
aspect ratio as well as the rotation angle of the bounding box. Traditional
tracking-by-detection approaches, e.g., [Hare et al., 2011, Danelljan et al.,
2014a], rely on axis-aligned bounding boxes and thus are ill-equipped
to capture the accurate extents of the object in such scenarios. In this
chapter, we aim to address this issue by tracking based on selecting the
best proposal containing the object of interest from several candidates.

Here, we focus on the problem of tracking a single target in monocular
video sequences. The target is provided as a ground truth annotation
in the first frame, as in a standard tracking-by-detection setup [Hare
et al., 2011, Danelljan et al., 2014a, Supancic III and Ramanan, 2013]. We
learn an object detector model from this annotation and evaluate it in
subsequent frames to propose candidate locations that are likely to contain
the target. While these proposals are sufficient to track objects undergoing
a small subset of transformations over time, such as translation shown in
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Figure 3.1 — Sample frames (cropped) from the jogging (top row) and
motocross (bottom row) sequences [Kristan et al., 2014]. The ground truth
annotation (green) in the first frame (left) is used to train our tracker and
the winner [Danelljan et al., 2014a] of VOT2014 challenge. We show these
two tracking results (right) on another frame in the sequence. Our method
(yellow) successfully tracks objects undergoing geometric transformations
unlike [Danelljan et al., 2014a] (red).

Figure 3.1-top, they cannot handle generic transformations, e.g., similarity
transformation shown in Figure 3.1-bottom. Another issue is that such
approaches typically determine tracking results with only detection scores
— a suboptimal solution to localize the target. Subsequently, updating the
detection model with these slightly inaccurate samples may accumulate
localization errors and cause drift gradually.

We address these problems by: (i) introducing novel additional propos-
als to improve the candidate location set, and (ii) using multiple cues to
select the proposal that is most likely to contain the target. Additional pro-
posals are computed by robustly estimating the parameters of similarity
transformation (i.e., scaling, translation, rotation) that the target is likely
to have undergone, with a Hough transform voting scheme on the optical
flow. With these parameters, we propose several candidate locations for



CHAPTER 3. ONLINE OBJECT TRACKING WITH PROPOSAL
48 SELECTION

the target. Thus, for every frame of the video sequence, our candidate set
consists of object detector boxes as well as geometry estimation proposals.
Note that state-of-the-art tracking-by-detection approaches are limited to
detector proposals alone. The second contribution we make is in selecting
the best proposal from the candidate set using multiple cues — detec-
tion score, and edgebox scores [Zitnick and Dolldr, 2014] computed with
edge responses and motion boundaries. In order to avoid setting explicit
weights for combining multiple cues, we utilize a two-phase selection
strategy. In the first phase, we select the best candidate merely based
on detection score. If there are several candidates with similar detection
scores, we then move to the second phase and make the final decision by
comparing edgebox scores calculated from edge responses and motion
boundaries. This two-phase selection strategy ensures that we find a
high-quality proposal with sufficiently good detection score as well as a
precise localization.

We evaluate the performance of our approach exhaustively on recent
benchmark datasets, namely the visual object tracking (VOT) challenge
dataset [Kristan et al., 2014, 2015] and the online tracking benchmark
(OTB) [Wu et al., 2013]. Furthermore, we compare with all the 38 trackers
evaluated as part of the VOT2014 challenge, and with the best performers
[Hare et al., 2011, Jia et al., 2012, Zhong et al., 2012] among the 29 methods
analyzed in the OTB comparison paper [Wu et al., 2013]. Our method
shows the top performance on these challenging datasets, and it is in par-
ticular 29.5% better than the current leader [Danelljan et al., 2014a] of the
VOT2014 challenge. Our approach submitted to the visual object tracking
challenge in 2015 won one of the competitions. This submission, with a
detailed description and parameter settings, is presented in Appendix A.

The remainder of the chapter is organized as follows. In Section 3.2
we discuss closely related work. The details of our novel proposals and
the multiple cues to select the best candidate are explained in Section 3.3.
Section 3.4 discusses the implementation details of the methods. In Sec-
tion 3.5 we present an extensive evaluation of the proposed method and
compare it with the state of the art. Concluding remarks are made in
Section 3.6.

3.2 Related Work

Two of the key elements of any tracking algorithm are, how the object
of interest is represented, and how this representation is used to localize it
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in each frame. Several methods have been proposed on these two fronts.
Object representations have evolved from classical color histograms [Co-
maniciu et al., 2003] to models learned from generative [Black and Jepson,
1998, Ross et al., 2008, Mei et al., 2011] or discriminative [Avidan, 2004,
Collins et al., 2005, Babenko et al., 2011, Hare et al., 2011, Danelljan et al.,
2014a, Supancic III and Ramanan, 2013] approaches.

More recently, inspired by the success of object detection algorithms
[Everingham et al., 2010, Felzenszwalb et al., 2010], the discriminative
tracking-by-detection approach has gained popularity. In fact, methods
based on this paradigm are ranked among the top performers on evalua-
tion benchmarks [Wu et al., 2013, Smeulders et al., 2014, Pang and Ling,
2013, Kristan et al., 2014]. Standard discriminative tracking-by-detection
methods learn an initial model of the object from the first frame in the
sequence (e.g., with a support vector machine (SVM) [Hare et al., 2011,
Supancic III and Ramanan, 2013]), evaluate it to detect the most likely
object location in subsequent frames, and then update the object model
with these new detections. Struck [Hare et al., 2011] is an interesting
variant of this general framework, using a structured output formulation
to learn and update the detector. DSST [Danelljan et al., 2014a] improves
the discriminative correlation filtering scheme by estimating the scale of
the target and combining intensity and HOG features.

Despite the general success of the discriminative tracking-by-detection
approaches, they have an important shortcoming. They all rely solely on
a detector, and are thus unable to cope with transformations an object can
undergo. As a result, their models cannot be updated properly and cause
drift gradually. On the contrary, key point based trackers like CMT [Nebe-
hay and Pflugfelder, 2014] detect key points in a frame, match them to the
next frame and can estimate transformations, such as changes in scale and
rotation. However, they are highly sensitive to the success of key point
detection algorithms and lack a learned model. Indeed, this is evident
from the poor performance on the VOT dataset (see Section 3.5). Hua
et al. [2014] proposed to use a set of trackers to maintain all the geometry
transformations estimated by RANSAC based on frame-to-frame optical
flow. In other words, if the target object undergoes obvious geometry
transformations, a new discriminative tracker will be trained and added
into the tracker pool. Nevertheless, this approach requires maintaining a
set of trackers, all of which need to be evaluated independently in every
frame.

The main focus of this chapter is to address the gap between aforemen-
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tioned two paradigmes, i.e., tracking-by-detection and key point-based
approaches. Inspired by successful object proposal methods for detection
and segmentation [Alexe et al., 2012, Carreira and Sminchisescu, 2010],
we pose the tracking problem as the task of finding the best proposal from
a candidate set, see Figure 3.2.

To some extent, our selection strategy aligns with several tracking by
fusion approaches, such as [Isard and Blake, 1998b, Badrinarayanan et al.,
2007, Du and Piater, 2008, Santner et al., 2010, Park et al., 2012]. Those
approaches have incorporated multiple cues and fused their results with
particle filtering [Isard and Blake, 1998b, Badrinarayanan et al., 2007],
hidden Markov model [Du and Piater, 2008, Park et al., 2012] or pre-
defined multi-cue selection strategy in a cascaded manner [Santner et al.,
2010]. Ouwur selection approach is similar to the fusion method used in
[Santner et al., 2010]. However, the purpose of these two approaches are
different. In order to improve the adaptivity while keeping robustness,
Santner et al. [2010] proposed a cascaded multi-cue selection strategy, i.e.,
the tracking result of more stable cue can overrule the result from highly
adaptive cue if conflicts happen. In contrast, our two-phase selection
approach focuses on improving localization accuracy, while selecting
candidates with sufficiently good detection score.

3.3 Proposal Selection Tracking

We now present all the components of our tracker (cf. Figure 3.2) in
this section and then provide implementation details in Section 3.4.

3.3.1 Initial detector

We learn the initial detector model with a training set consisting of
one positive sample, available as a bounding box annotation in the first
frame, and several negative bounding box samples which are automati-
cally extracted from the entire image. We use HOG features [Dalal and
Triggs, 2005, Felzenszwalb et al., 2010] computed for these bounding
boxes and learn the detector with a linear SVM, similar to other tracking-
by-detection approaches [Supancic III and Ramanan, 2013, Hua et al.,
2014]. The detector is then evaluated on subsequent frames to estimate
the candidate locations of the object. Rather than make a suboptimal
decision by choosing the best detection as the object location in a frame,
we extract the top k detections and build a candidate set. We augment this
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Proposal Selection

Phase | Phase Il

Figure 3.2 — The overall framework of proposal selection tracker: (a)
Initialization; (b) A sample frame in which the object is to be tracked; (c)
Tracking-by-detection proposals; (d) Geometry proposals; (e) Selection
phase I: Detection score; Selection phase II: Edgebox score from (f) edge
responses; (g) motion boundaries; (h) Selected tracking result and model
updating.

set with proposals estimated from the transformations undergone by the
object, as described in the following section.

3.3.2 Estimating geometry and proposals

In the examples shown in Figure 3.3, the object of interest is undergoing
a geometric transformation (rotation in these examples). None of the
top detector proposals can capture the object accurately in this case. To
address this issue, we explicitly estimate the transformation undergone
by the object and then use it to enrich the candidate set with additional
geometric proposals.

We represent the geometric transformation with a similarity matrix.
Note that other transformations like homography can also be used. The
similarity transformation is defined by four parameters — one each for
rotation and scale, and two for translation. In this work, we estimate them
with a Hough transform voting scheme using frame-to-frame optical
flow correspondences. We begin by computing the optical flow between
frames t — 1 and t with a state-of-the-art flow estimation method [Brox
and Malik, 2011]. The pixels within the object bounding box with flow
values in frame t — 1 then give us corresponding pixels in frame t. With a
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Figure 3.3 — Illustration of our geometric proposals on two sequences from
the VOT2014 dataset. In each row, we show the ground truth (in green)
in the first frame (left) and the best geometry proposal in a subsequent
frame (in yellow in the right image). We show a vertical line on each box
to visualize the rotation angle with respect to image edges.

pair of these matches, given by two pixels in t — 1 which are sufficiently
distant from each other, we estimate the four scalar parameters in the
similarity matrix [Hartley and Zisserman, 2004]. Every choice of a pair
of corresponding matches gives us an estimate of the four parameters.
We then use the Hough transform [Hough, 1962], wherein each pair of
point-matches votes for a (4D) parameter set, to find the top k consistent
parameter sets. This voting scheme allows us to filter out the incorrect
correspondences due to common errors in optical flow estimation.

To sum up, we estimate the k most likely geometric transformations
undergone by the object as the parameters with the top k votes. Each one
of these transformations results in a candidate location of the object in ¢,
by applying the corresponding similarity matrix to the object bounding
box in t — 1. Before adding all these k proposals to the candidate set, we
perform an additional filtering step to ensure further robustness. To this
end, we discard all the proposals: (i) which have a low confidence, given
by the number of votes, normalized by the total number of point-matches,
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Figure 3.4 — Comparison of edgebox score calculated edge responses of
two proposals. The proposal shown on the left is a better localization than
the one on the right, which is supported by its higher edgebox score.

and (ii) those where the estimated angle is significantly different from
estimations in earlier frames. We determine both these threshold values
with Kalman filtering [Kalman, 1960]. A threshold t;, used for filtering
proposals in frame t + 1, is given by:

T = aT—1 +ke(di — afri_1), 3.1)
ke = (pra+q)/(pra+q+7), (3.2)
pr = (1 —ki)(ps—1+9q), (3.3)

where «, B, g, r are scalar parameters set empirically (see Section 3.4), k;
is the Kalman gain, p; is the error estimate. The filter is initialized with
79 = 0, po = 0.1. Here, d; is either the confidence score or the estimated

angle of the selected proposal in frame t to determine the respective
threshold.

3.3.3 Selecting proposals

At the end of the geometry estimation step, we have k proposals from
the detector and (at most) k proposals from the similarity transformation
in frame t. Now, the task is to find the best proposal most likely to contain
the object in this frame. We use three cues, detection confidence score,
edgebox measures [Zitnick and Dollar, 2014] computed with object edge
responses [Dollar and Zitnick, 2013] and motion boundaries [Weinzaepfel
et al., 2015], for this task.

We propose a two-phase selection strategy to combine all the cues.
In the first phase, we use the (normalized) detection confidence score
computed for each proposal box with the SVM model. This provides in-
formation directly relevant to the object of interest in a given sequence. In
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Figure 3.5 — Two examples of edge responses and motion boundaries. In
each row, from left to right, we show the original image (with the object
in a green box), edge responses and motion boundaries. Edges provide a
stronger response in the example in the first row while motion boundaries
are more effective in the example in the second row.

cases where the detection scores of all the candidate boxes are statistically
similar, we then move to the second phase — use cues extracted from
object edge responses and motion boundaries in the image, referred to
as edgebox scores. In other words, when the detection scores are incon-
clusive to choose the best proposal, we rely on edgebox measure. Here,
all the top candidates contain the object of interest to some extent, and
the task is to choose the one that best contains the object. This scenario is
well-suited for edgebox measure because a proposal box which accurately
localizes the entire object has a higher edgebox score compared to a box
which overlaps partially with the object, thus resulting in a lower edgebox
score, as shown in Figure 3.4.

The edgebox score is given by the number of edge responses (or motion
boundaries) within a proposal box, after discarding contours that intersect
with the box’s boundary, as in [Zitnick and Dollar, 2014]. We compute
edgebox scores with edge responses and motion boundaries separately
and use the one with a higher (normalized) score. As shown in the
examples in Figure 3.5, these two cues are complementary. Then, the
proposal with the best edgebox score is selected.

It is worth emphasizing that we follow this two-phase selection ap-
proach, rather than using a combined score, e.g., a weighted combination
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Algorithm 1 : Our approach for online object tracking.

Data: Image frames 1...n, ground truth box; in frame 1
Result: Object location box; in framest =2...n
Learn initial detector model in frame 1 (§3.3.1)

fort =2...ndo
candidate set C; < Top-k detections in frame ¢ (§3.3.1)

H; < Geometry proposals in frame t (§3.3.2)

Ct + CrUH;

box; < Best proposal in C; (§3.3.3)

Update detector model with box; (§3.3.4)
end

of SVM and edgebox scores, because setting this weight manually is
suboptimal, and learning it is not possible due to the lack of standard
training-validation-test datasets for tracking. In contrast, our approach
uses object-specific SVM and generic edgebox scores effectively, and cir-
cumvents the need for a manually set weight to combine scores.

3.3.4 Updating the detector

Having computed the best proposal containing the object, box;, we
use it as a positive exemplar to learn a new object model. In practice,
we update the current model incrementally with this new sample; see
Section 3.4. This new detector is then evaluated in frame t + 1, to continue
tracking the object. Algorithm 1 summarizes our overall approach.

3.4 Implementation Details

Detector. The initial detector is trained with the one positive sample
(provided as ground truth box in the first frame) and several negative
examples extracted from the frame. We harvest bounding boxes that
overlap less than 50% with the ground truth for the negative set. The
regularization parameter in the SVM cost function is set to 0.1 in all our
experiments. This cost function is minimized with LIBLINEAR [Fan et al.,
2008]. We perform three rounds of hard negative mining to refine the
detector. The detector scores are calibrated with Platt’s method [Platt,
1999] using jittered versions of the positive sample (100 positive and
negative samples each). For the VOT2014 dataset, an additional step is
introduced to train with rotated bounding box annotations. We estimated
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the rotation angle between one edge of the box and the corresponding
image axis, ! rectified the image with this angle, and extracted an axis-
aligned box as the positive sample. The detector was evaluated at seven
scales: {0.980, 0.990, 0.995, 1.000, 1.005, 1.010, 1.020}, in every frame. This
is done densely in each scale, with a step size of 2 pixels. In the rotated
bounding box case, we rectify the image with the angle estimated during
training, before evaluating the detector. We set k = 5 to select the top
5 detection results and also (at most) 5 geometry proposals to form the
candidate set. The best proposal box; selected from all the candidates in a
frame is used to update the detector with a warm-start scheme [Fan et al.,
2008, Supancic III and Ramanan, 2013]. We then perform hard negative
mining and calibrate the scores to complete the detector update step. For
computational efficiency, the detector is evaluated in a region around the
previously estimated object location, instead of the entire image.

Hough voting. The geometric transformation is estimated only when
the mean /¢, norm of optical flow in box;_; is larger than 0.5. This en-
sures that there is sufficient motion in the frame to justify estimating a
transformation.

We use two pixels in t — 1 and their corresponding points in ¢ to vote
for the geometric transformation parameters. In practice, pixels that are
at least 25 pixels apart from each other in t — 1 were chosen randomly
for a reliable estimation. To aggregate the votes, a pseudo-random hash
function of bin values is used to vote into a one-dimensional hash table,
instead of a four-dimensional array, similar to [Lowe, 2004]. The bin size
for scale is set to 0.1, and 2.0 for angle and the two translation parameters.
Finally, we take the least-squares solution of all the candidates that vote
for a particular bin, making our geometry estimation further robust.

Pruning proposals. The parameters of the Kalman filter to discard weak
geometry proposals are set as: &« = 1, B = 1, process error variance
g = 0.001, and measurement error variance » = 0.01 in all our experi-
ments. Edgebox scores are used to determine the best proposal when the
detection scores are inconclusive, i.e., when one or more proposals differ
from the best detection score by at most 1%. However, edgebox scores
can often be corrupted by noise, e.g., low-quality images that are common
in benchmark datasets. We ensure that these scores are used only when

1. Note that this estimation was done only in the first frame or whenever the tracker
is restarted after a failure, i.e., when we have access to the ground truth box.
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they are comparable to the mean score of the previous 5 frames, i.e., the
difference between the highest edgebox score and the mean is less than
twice the variance. This filtering step is performed separately for edgebox
computed with object edge response and motion boundaries.

3.5 Experiments

We now present our empirical evaluation on two state-of-the-art bench-
mark datasets, namely, VOT2014 challenge dataset [Kristan et al., 2014]
and OTB [Wu et al., 2013], and compare with several recent methods.
These two datasets are evaluated with their respective toolkits, and the
comparison results are obtained directly from the corresponding project
websites.

3.5.1 VOT2014 Results

The results in Table 3.1 correspond to the baseline experiment in the
VOT2014 toolkit and the overall rank is computed as described in §2.3.2.
Overall, our proposal selection method using detector and geometry
proposals (“Our-ms-rot” in the table) performs significantly better than
DSST [Danelljan et al., 2014a], the winner of the VOT2014 challenge,
with an average rank of 7.33 vs 10.39. We also evaluated two variants
of our approach. The first one “Our-ms” uses only multi-scale detector
proposals and the second variant “Our-ss”is limited to proposals from
the detector evaluated only at a single scale. The overall rank of these
two variants is lower than our full method: 7.43 and 15.29 respectively.
The variant based on multi-scale detector proposals performs better on
the accuracy measure compared to the full method, but is significantly
worse on the robustness measure. In other words, this variant fails on
many more frames than the full method, and benefits from the resulting
reinitializations. Due to significant changes in scale that occur in several
frames in the dataset, the variant based on a single-scale detector performs
poorly. CMT [Nebehay and Pflugfelder, 2014], the key point based tracker
which estimates rotation and scale of the object, has an average rank of
24.43. With the evaluation protocol of reinitializing the tracker when it
fails, we found that using edgebox measure did not show a significant
difference compared to the detection score. Thus, to keep the comparison
with respect to the large number of trackers (38) reasonable, we show a
subset of variants of our methods on VOT2014.



CHAPTER 3. ONLINE OBJECT TRACKING WITH PROPOSAL

58 SELECTION
No. Method Acc. Robust. Avg.
1 Our-ms-rot 6.07 7.33
2 Our-ms 4.73 10.13 743
3 DSST [Danelljan et al., 2014a] 6.78 13.99
4 SAMF [Liand Zhu, 2014] 6.46 15.65 11.06
5 DGT 12.67 10.13 114
6 KCF [Henriques et al., 2015] 16.71 11.44
7 PLTyy 16.04 6.98 11.51
8 PLTy3 19.74 4.00 11.87
9 eASMS 15.37 15.10 15.24
10 Our-ss 16.11 14.47 15.29
11 ACAT 15.10 16.78 15.94
12 MatFlow 23.82 9.67 16.74
13 HMMTxD 11.08 2251 168
14 MCT 18.47 15.14 16.81
15 qwsEDFT 19.06 21.15 20.11
16 ACT 22.68 18.10 20.39
17 ABS 22.34 2049 21.42
18 VTDMG 23.22 19.94 21.58
19 LGTvl 31.05 12.68 21.87
20 BDF 2492 19.39 22.15
21 aStruck 23.92 20.98 22.45
22 Struck [Hare et al., 2011] 22.44 2296 22.70
23 DynMS 24.38 21.24 2281
24 Matrioska 23.85 2248 23.17
25 ThunderStruck 24.43 2193 23.18
26 OGT 16.24 32.03 24.14
27 EDFT 22.12 2644 24.28
28 CMT [Nebehay and Pflugfelder, 2014] 21.67 27.19 2443
29 SIR PF 26.43 2259 24.51
30 FoT 21.16 28.42 24.79
31 LT FLO 18.44 32.85 25.64
32 IPRT 29.48 24.33 26.90
33 IIVIv2 27.64 2744 27.54
34 NCC 19.96 37.00 28.48
35 PTp 35.05 23.05 29.05
36 IMPNCC 28.49 30.32 29.40
37 FRT 26.23 33.14 29.68
38 FSDT 26.39 34.16 30.27
39 IVT 29.79 31.65 30.72
40 MIL [Babenko et al., 2011] 36.85 26.85 31.85
41 CT 34.38 30.54 3246

Table 3.1 — Performance comparison of our methods and all the entries
in the VOT2014 challenge. We show the ranking on accuracy (Acc.) and
robustness (Robust.) measures, as well as the overall rank (Avg.). The top
performer in each measure is shown in red, and the second and third best
are in blue and green respectively. We show three variants of our method
— Our-ms-rot: uses multi-scale detector and geometry proposals, Our-ms:
only multi-scale detector proposals, and Our-ss: only single-scale detector

proposals.
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Ranking plot for experiment baseline
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Figure 3.6 — AR ranking plot of all the trackers from the VOT2014 challenge
and our methods. Trackers close to the top right corner of the plot are
among the top performers.

On the accuracy measure, our approaches (“Our-ms-rot” and “Our-
ms”) are ranked first and second. KCF [Henriques et al., 2015] is third,
with SAMF and DSST [Danelljan et al., 2014a] also performing well. The
AR ranking plot in Figure 3.6 shows the similar performance of KCF,
SAMF and DSST, where they form a cluster. KCF is a correlation filter
based tracker. It is essentially a regression method trained with HOG
features computed on several patches densely sampled around the object.
This method, however, is significantly inferior on robustness measure
(16.71 compared to our result 8.58) as it cannot handle object deformations
other than translation. SAMF and DSST are extensions of the correlation
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Figure 3.7 — Sample result on the motocross sequence in VOT2014 challenge
dataset. Ground truth: green, Our result: yellow, DSST [Danelljan et al.,
2014a]: red, PLT14: cyan, Struck [Hare et al., 2011]: blue.

filter-based methods. SAMF proposes an adaptive scale for the patches
and also integrates HOG and color attribute features. It is more robust
than KCF, but still poorer than our result (15.65 vs 8.58). DSST [Danelljan
et al,, 2014a], the VOT2014 challenge winner, improves the correlation
filtering scheme by estimating the scale of the target and combining inten-
sity and HOG features. It trains two separate filters: one for estimating
translation and another for scale. While DSST shows better performance
than both SAMF and KCF it also cannot handle cases where the target
is rotating. Our method addresses this issue and significantly improves
over DSST (8.58 vs 13.99 in robustness rank).

Our tracker is ranked third on the robustness measure. PLT;3 and
PLTy4, which are two variants of Struck [Hare et al., 2011], are first and
second respectively. PLT;3, the winner of the VOT2013 challenge, uses
object-background color histograms to weight the features within the
bounding box during SVM training. In essence, it attempts to refine
the object representation from an entire bounding box to an object seg-
mentation. PLTy4 is the multi-scale version of PLT;3, and it shows better
accuracy at the cost of a lower robustness. The segmentation cue used in
these methods makes them accurate because it provides a more precise
object representation than a bounding box. However, in many situations,
e.g., fast motion, lack of strong object-background color priors, it is likely
to fail. This is evident from the significantly lower accuracy of the PLT
methods —16.04, 19.74 compared to 6.07 of our approach (see Table 3.1).

We present a sample qualitative result in Figure 3.7. The motocross
sequence is considered as one of the most challenging sequences in this
benchmark, based on the number of trackers that fail on it. Our approach
performs significantly better than other methods. We compare to the re-
sults of DSST and PLT14, which performed well on the VOT2014 challenge,
and also Struck, the top performer on several datasets.
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3.5.2 OTB Results

The results in Figure 3.8 correspond to the one-pass evaluation (OPE)
discussed in §2.3.2. We show success and precision plots of our method in
Figure 3.8 and compare it with the top 10 methods. Our overall method
“Our-ms-rot-em” and its four variants outperform all the trackers on both
the measures. More precisely, our tracker achieves 0.798 precision score
compared to 0.656 of Struck [Hare et al., 2011], and 0.580 success score
compared to 0.499 of SCM [Zhong et al., 2012] — the top two performers
on this benchmark dataset [Wu et al., 2013]. We also show precision
and success plots on the 11 attributes of the OTB dataset in Figures 3.9
and 3.10. These include attributes, such as “fast motion”, “background

14 “ 14 “ 4 ‘3

clutter”, “motion blur”, “deformation”, “illumination variation”, “in-
plane rotation”, “low resolution”, “occlusion”, “out-of-plane rotation”,
“out of view”, and “scale variation”.

Our single-scale tracker “Our-ss” is inferior to the other four variants:
0.733 precision score and 0.523 success score, due to significant changes
in scale and/or rotation in several sequences. The performance of our
multi-scale version without geometry proposals “Our-ms”, and the multi-
scale one with geometry proposals “Our-ms-rot” is very similar. This is
expected, despite “Our-ms-rot” performing better than “Our-ms” on the
VOT2014 dataset, because the ground truth annotations in the OTB dataset
are axis-aligned and not rotated boxes, as is the case in VOT2014. Thus,
a rotating object can be enclosed (although imprecisely) by a larger axis-
aligned box. This makes “Our-ms” as effective as “Our-ms-rot” following
the OTB evaluation protocol. In Figure 3.8 we also show the influence
of scores computed with edges “e” and motion boundaries “m”. The
precision result using (multi-scale) detector confidence alone to select
from the candidate set (“Our-ms-rot”) is 0.754. Incorporating the measure
computed with edges (“Ours-ms-rot-e”) improves this by 2.1% to 0.770,
and the cue computed with motion boundary (“Our-ms-rot-em”) gives a
turther 3.6% improvement to 0.798. A similar improvement pattern can
be seen on the success plot.

A couple of recent papers [Hua et al., 2014, Supancic III and Ramanan,
2013] also evaluated their trackers on the OTB dataset. However, they are
not online trackers, in that they use the information for subsequent frames
to infer the object location in the current frame. We, nevertheless, compare
to them using mean F; score (with 50% overlap threshold), following the
protocol in [Hua et al., 2014]. Our tracker (“Our-ms-rot-em”) performs
significantly better with a score of 0.757 compared to 0.657 and 0.661 of
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Figure 3.8 — Precision plots (left) and success plots (right) of OPE on the
OTB dataset. For clarity we compare to the top 10 algorithms in each
figure. The precision plots are summarized with the precision score at 20
pixel error threshold and the success plots with the area under the curve.
These values are shown in the legend.

[Hua et al., 2014] and [Supancic III and Ramanan, 2013] respectively.

Qualitative results. In Figure 3.11, we compare our results with those
of the top three methods from the standard evaluation toolkit [Wu et al.,
2013]. For the CarScale sequence in Figure 3.11(a), our method (shown
in yellow) successfully estimates the change in scale showing the best
performance over the entire sequence. Struck (magenta) cannot cope with
change in scale. TLD (red) uses a set of fixed-size template patches as
the object model, which is restrictive, and cannot handle these severe
changes. SCM tracker (cyan) suffers from lack of sufficient model updates
as the appearance of the object changes significantly. Trackers using a
dense sampling approach, i.e., Struck (magenta), TLD (red), get stuck
on background regions in the David3 sequence shown in Figure 3.11(b).
Once again SCM (cyan) cannot handle the appearance changes, when the
person is partially occluded by the tree. On the contrary, our approach
(yellow) continues to track the person.

For the Dog1 sequence in Figure 3.11(c), SCM (cyan) provides an ac-
curate location of the object, but fails to estimate its scale precisely. In
contrast, our tracker (yellow) has a near-perfect overlap with the ground
truth. For the Dudek sequence in Figure 3.11(d) all the three other trackers
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Figure 3.9 — Precision and success plots on the 11 attributes of the OTB
dataset (part 1). For clarity we show the top 10 algorithms in each figure.
The precision plots are summarized with the precision score at 20 pixel
error threshold and the success plots with the area under the curve. These
values are shown in the legend.
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Figure 3.10 — Precision and success plots on the 11 attributes of the OTB
dataset (part 2). For clarity we show the top 10 algorithms in each figure.
The precision plots are summarized with the precision score at 20 pixel
error threshold and the success plots with the area under the curve. These
values are shown in the legend.
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— TLD = Struck

Ground truth

Figure 3.11 — Tracking results of our method (“Our-ms-rot-em” shown
in yellow) on CarScale, David3, Dogl, Dudek sequences from the OTB
dataset. We also show the ground truth (green) and results of SCM (cyan),
Struck (magenta) and TLD (red) for comparison.
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(cyan, magenta, red) drift onto a part of the object as they lack an accurate
rotation angle estimation (see column 3 in the figure), unlike our tracker
(yellow). The three trackers (SCM, Struck, TLD) also fail on the Iron-
man example shown in Figure 3.11(e), which has significant illumination
changes, object undergoing geometric transformations and/or becoming
occluded. Our framework (yellow) overcomes these challenges.

For the MotorRolling sequence in Figure 3.11(f), given the significant
change in appearance of the object, TLD (red) cannot re-start the tracker
successfully when it fails. Struck (magenta) remains in a region around
the initial location of the object due to its dense sampling scheme. The
restrictive update used in the SCM tracker (cyan), i.e., only updating neg-
ative samples in the discriminative model and object template histogram
in the generative model, is also ineffective. Our estimation of geometry
transformations to track and then update the model performs best. In the
case of the Tigerl sequence shown in Figure 3.11(g), TLD (red), Struck
(magenta) and SCM (cyan) track the object successfully in several frames,
but are less effective when the object undergoes motion blur or partial
occlusion. All the trackers perform poorly on the Matrix sequence shown
in Figure 3.11(h). This sequence is particularly challenging, with imaging
conditions changing dramatically from the frames at the beginning of the
sequence (column 1: heavy rain) to subsequent frames (columns 2 and
3: little to almost no rain). Struck and TLD suffer from drift in frame 2
(column 1). Our method and SCM perform better than these two, and
track the object at the beginning of the sequence, but drift or miss it later
on (columns 2 and 3).

In Figure 3.12, we compare our complete method “Our-ms-rot-em”with
four variants on two sample sequences — Lemming and Skating respec-
tively. For the Lemming sequence, depicted in Figure 3.12(a-c), we observe
that the full method (shown in yellow) and the variant using object edge
cues (“Our-ms-rot-e”shown in magenta) can handle partial occlusion of
the object (column 2 in (a)), while the three other variants, which rely
solely on detection scores to select from the proposal set, cannot. The
strength of the object edges and motion boundaries are shown in rows
(b) and (c) respectively. We observe a similar behavior in the Skating se-
quence, shown in Figure 3.12(d-f), where the two versions using edgebox
scores perform the best.
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Figure 3.12 — Comparison of our full method “Our-ms-rot-em” with four
variants on Lemming and Skating sequences — “Our-ss”: Single scale de-
tector proposals only, “Our-ms”: Multi-scale detector proposals, “Our-ms-
rot”: Multi-scale detector + geometry proposals, “Our-ms-rot-e”: Multi-
scale detector + geometry proposals + edgebox score from object edges.
The full method additionally uses edgebox score from motion boundaries
with “Our-ms-rot-e”. (a, d) Tracking results on sample frames. (b, e)
Object edge responses. (c, f) Motion boundaries.



CHAPTER 3. ONLINE OBJECT TRACKING WITH PROPOSAL

68 SELECTION
0.600 -
0.591 0.592 0.592 0.592
—> < *
0.590 -
o
&
[
g
o 0.580 -
c
3 0.576
= 0.574 '
0.570 -
0.560 T T T T 1
1+1 3+3 545 7+7 10+10 15+15

Number of proposals (detection + geometry)

Figure 3.13 — Influence of the number of (detection and geometry) propos-
als on the tracking performance on the OTB dataset.

3.5.3 Discussion

Influence of the number of proposals. In Figure 3.13 we evaluate the
performance of our approach (“Our-ms-rot-em”) with respect to the num-
ber of candidate proposals on the OTB dataset. Here, we measure the
performance as mean overlap between the predicted and the ground truth
bounding boxes over the entire sequence. We observe that the mean over-
lap score increases initially with the number of proposals, but then quickly
saturates. In other words, we require a minimum number of proposals
(5 each for detection and geometry, which we use in this chapter) for
tracking an object effectively. Adding further candidate proposals beyond
this does not affect the performance, as the new candidates are either very
similar to or less accurate than those already in the proposal set.

Computation time. Our Matlab and mex implementation is un-optimized
and not real-time. It performs as follows (average fps on VOT2014+OTB
datasets): our-ss: 6.4, our-ms: 4.1, our-ms-rot: 3.1, our-ms-rot-e: 2.1, our-
ms-rot-em: 1.9 on a cluster node with 20 cores. The last three variants
require pre-computed optical flow [Brox and Malik, 2011], which runs at
0.3 fps on a GPU. Our implementation can be sped up in several ways, e.g.,
by scaling the images down, improving the feature extraction process.
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3.6 Summary

This chapter presents a new tracking-by-detection framework for on-
line object tracking. Our approach begins with building a candidate set of
object location proposals extracted using a learned detector model. It is
then augmented with novel proposals computed by estimating the geo-
metric transformation(s) undergone by the object. We localize the object
by selecting the best proposal from this candidate set using multiple cues:
detection confidence score, edge responses and motion boundaries. The
performance of our tracker is evaluated extensively on the VOT challenge
and the OTB datasets, and we show significant improvement over the top
performers.

The proposal-selection framework is flexible and can be adopted to
different user scenarios by adding or changing the source of proposals
and the strategy of selection. For instance, in order to handle extreme
deformable objects, proposals from object segmentation can be added.
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Although discriminative tracking-by-detection approaches, in particu-
lar Struck [Hare et al., 2011], have shown competitive results, they perform
poorly in the presence of long-term occlusions, as well as severe viewpoint
changes of the object. In this chapter, we propose a principled way to
combine occlusion and motion reasoning with a tracking-by-detection
approach. Our occlusion and motion reasoning is based on state-of-the-art
long-term trajectories which are labeled as object or background tracks
with an energy-based formulation. The overlap between labeled tracks
and detected regions allows to identify occlusions. Further, the tracks are
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used to estimate the geometric transformations of the target over time.
Experimental results show that our tracker obtains state-of-the-art results,
and handles occlusion and viewpoint changes better than competing
tracking methods.

4.1 Introduction

Many of the previous works have approached the problem of tracking
from the perspective of either a motion tracker or an appearance tracker.
As discussed in previous chapters, tracking-by-detection, i.e., approaches
that treat the tracking problem as a task of detecting the object over time
[Avidan, 2007, Grabner et al., 2008, Babenko et al., 2011, Mei and Ling,
2009, Godec et al., 2011, Hare et al., 2011, Kalal et al., 2012, Supancic III
and Ramanan, 2013], has become an increasingly popular method for
object tracking. In fact, the latest evaluation papers [Wu et al., 2013, Pang
and Ling, 2013] have shown such an approach, namely Struck [Hare et al.,
2011], to be the best-performer on a diverse set of examples. One of
the critical steps in these methods is to update and improve the object
model over time. Consider the example in Figure 4.1. It shows a scenario
where the object of interest — a car — is occluded when it goes under a
bridge. If the model is updated in every frame, this results in the well-
known issue of drifting [Matthews et al., 2004]. In other words, a part
of the bridge might be tracked instead of the car in the latter frames in
the sequence. In this section we present an algorithm which can handle
such occlusions as well as significant viewpoint changes in a principled
way, based on state-of-the-art quasi-dense long-term trajectories [Ochs
etal., 2014, Sundaram et al., 2010]. These trajectories rely on dense optical
flow [Brox and Malik, 2011] in combination with a forward-backward
matching criterion. Sundaram et al. [2010] showed that they significantly
outperform the Kanade-Lucas-Tomasi (KLT) tracker [Lucas and Kanade,
1981], often used in tracking approaches [Everingham et al., 2009, Kalal
et al., 2012].

Our main contribution is to use these long-term trajectories in com-
bination with graph-cut based track labeling to identify the state of the
object, e.g., no, partial or full occlusion, as well as change in viewpoint,
and to choose and adapt positive and negative object samples accordingly
to improve the model.

The goal of this chapter is to track the object, given a bounding box
initialization in the first frame. Our approach begins by learning an initial
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Figure 4.1 — Three sample frames from the Carchase sequence in the TLD
dataset [Kalal et al., 2012]. Each image also shows the result of our method
(in green) and Struck [Hare et al., 2011] (in red). As the car starts to move
to a severely occluded state, updating the appearance model with the
prediction result leads to model drift, as shown by the Struck result. Our
proposed method estimates such states, and does not update the model
in such cases.

appearance model from the annotation in the first frame, similar to [Hare
et al., 2011, Kalal et al., 2012, Supancic III and Ramanan, 2013], and uses it
to propose candidate object locations in the latter frames. We incorporate
motion cues to refine the candidate region search space and avoid incorrect
object proposals (Section 4.3). In order to determine whether a candidate
location in a frame contains the object, we compute long-term motion
tracks in the video [Sundaram et al., 2010], and use them to predict the
state of the object, i.e., the transformation it has undergone with respect
to the previous frames (Section 4.4). More specifically, we estimate states
such as, no, partial or full occlusion, change in appearance of the object.
This is achieved with an energy-based formulation, where the task is
to assign each track an object or background label. When a significant
part of the tracks within a candidate region belong to the background,
the object is identified to be occluded. We will show that other types of
change in state, such as a significant change in viewpoint, can also be
estimated with our formulation. With this additional cue in hand, we
build a temporally-evolving object model which deals with these state
changes by updating the initially learned detector accordingly (See §4.4.2).
In essence, our tracker proposes a new way to interleave the motion-based
and tracking-by-detection paradigms. Its performance is evaluated on
sequences from a recent benchmark dataset [Wu et al., 2013] and video
sequences used in [Kalal et al., 2012, Supancic III and Ramanan, 2013]
(Section 4.6).
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4.2 Related Work

A variant of the tracking-by-detection approach, known as adaptive
discriminative tracking-by-detection, updates the object model over time
[Grabner et al., 2008, Babenko et al., 2011, Hare et al., 2011, Kalal et al.,
2012, Supancic III and Ramanan, 2013]. It typically consists of two phases:
(i) tracking, where the detector is used to predict the object location in
each frame; and (ii) learning, where the estimated object locations (in
the form of bounding boxes) are used to generate training examples to
improve the learned object model. Observing that many of the adaptive
methods lack a principled way of generating the training samples, a joint
structured output formulation (Struck) was proposed in [Hare et al., 2011].
This work learns a function to predict the object location in a frame based
on its location in the previous frame and a predefined search space. The
prediction function is a dot product of a weight vector and a joint kernel
map. This weight vector is learned and updated with an online structured
output framework. Our approach is based on a similar philosophy, in
that, we learn and update a prediction function. However, we use state-of-
the-art long-term motion tracks [Sundaram et al., 2010] to determine the
state of the object and produce an effective set of training exemplars for
the update step. In the example shown in Figure 4.1, we predict that the
object is severely occluded in the middle frame and thus, do not update
our detector. Note that Struck (result shown in red in Figure 4.1) drifts
onto a part of the bridge in this example.

Our method is also closely related to two other recent approaches
[Kalal et al., 2012, Supancic III and Ramanan, 2013] on long-term tracking.
The TLD algorithm [Kalal et al., 2012] aims to combine the benefits of
tracker- and detector-based approaches. It decomposes the tracking task
into specialized components for tracking, learning and detection, which
are run simultaneously. The result of this algorithm is a combination of
predictions from the frame-to-frame tracking based on median optical flow
and a detection component. The two components mutually update each
other. Specifically, the results of the tracker provide training data to update
the detector, and the detector re-initializes the tracker when it fails, for
example, when the object is occluded or leaves the field of view. While this
is an interesting approach, it is somewhat restrictive as the object model is
a set of fixed-size template patches, i.e., TLD cannot handle severe changes
in object size, such as the scenario shown in Figure 4.2. Furthermore, the
motion information is limited to frame-to-frame constraints. Supancic III
and Ramanan [2013] presented a tracking-by-detection method, where
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Figure 4.2 — Three frames from the CarScale sequence in [Wu et al., 2013]
are shown to highlight the severe change in object size over time in some
of the videos.

the detector is updated using a pre-fixed number of frames, i.e., the top-k
frames chosen according to an SVM objective function, irrespective of
the state of the object. This does not handle long-term occlusions. In
contrast, our algorithm updates the model with only the frames that show
a significant presence of the object, as it relies on long-term motion cues to
choose the training exemplars, unlike [Supancic Il and Ramanan, 2013]
which uses only the detector.

We experimentally compare with these related works [Hare et al., 2011,
Kalal et al., 2012, Supancic III and Ramanan, 2013], and show the benefits
of our approach in Section 4.6.

4.3 QOverview

In line with the tracking-by-detection approach, our tracker comprises
three stages. First, a detector is learned from a given training set of
positive and negative exemplars. Second, we track with this learned
detector. Third, we update the object model with a carefully selected
subset of frames. We now present an overview of these stages and then
provide more details in Sections 4.4 and 4.5.

Initial detector and tracking. An initial object detector is required to set
off our tracker. It is learned with a training set, where the positive example
is the ground truth annotation in the first frame of the sequence, and the
negative samples are harvested from the frame, similar to [Supancic III
and Ramanan, 2013]. The initial model is then learned with HOG features
[Dalal and Triggs, 2005, Felzenszwalb et al., 2010] extracted from the
bounding boxes, and a linear SVM.

The detector is used to predict candidate locations of the object in
other frames. In each frame, we find the most likely location of the
object by evaluating the detector in a region estimated from motion cues
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Track labels

Figure 4.3 — Left: Long-term tracks beginning in frame 1 of the Coke
sequence [Wu et al., 2013]. The yellow box shows the search region used
to compute the bounding box most likely to contain the object (green box).
We use tracks to estimate the object state. Right: Close-up of the track
labels in frame 37. Here, less than 60% of the tracks within the predicted
bounding box are assigned to the object (blue), and the remaining are
labeled as background (red). Thus, the object is predicted to be in an
occluded state.

(optical flow computed from the previous frame), and then choosing
the bounding box with the best detection score, as shown in Figure 4.3.
The motion-refined search is not only computationally efficient, but also
avoids incorrect detections due to background clutter. Note that the
bounding box obtained from this step is not labeled as the object yet.

We compute and analyze the motion cues to make the object label
assignment in each frame. To this end, we extract long-term point tracks
which extend over many frames in the video [Sundaram et al., 2010],
see Figure 4.3-Left. At this stage, we discard tracks less than 5 frames
long, which are typically less reliable. We then propose an energy-based
formulation to label the remaining tracks as object or background. This is
related to the labeling framework used in [Lezama et al., 2011] for motion-
clustering tracks. The tracks within the bounding box in the first frame,
i.e., the ground truth annotation, are initialized with the object label, and
those that lie outside are given the background label. With these initial
assignments and pairwise energy terms (which measure track similarity),
we optimize the energy function and label all the new tracks, i.e., tracks
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that begin in the second or latter frames, see Figure 4.3-Right.

Occlusion. If a significant part (40% or more) of the tracks within the
bounding box take the background label (as in Figure 4.3), we consider
the object to be in an occluded state. In this case, the object model is not
updated with the detection result. We continue to track the object with
the non-updated detector as long as there are object tracks and a detection
response. This step avoids model drift [Matthews et al., 2004, Supancic III
and Ramanan, 2013]. For example, in the sequence in Figure 4.1, the
model is not updated with the frame shown in the middle, to avoid the
tracker drifting onto a part of the bridge, which occludes the car. To
handle cases where the object re-appears after a full occlusion (e.g., the
frame on the right in Figure 4.1), the detector is evaluated over the entire
image in subsequent frames.

Temporally-evolving detector. When the object is not occluded in a
frame, the long-term tracks are used to measure geometric transformations
that the object may have undergone, such as change in scale, rotation (see
Figures 4.2 and 4.4). In this work, we approximate these transformations
with a similarity matrix [Hartley and Zisserman, 2004], and estimate
it with track-point correspondences between consecutive frames. The
bounding box is then refined with the estimated transformation and is
assigned the object label. This is illustrated on an example in Figure 4.4.
Based on the severity of the transformation, we either: (i) update the
existing detector; or (ii) learn a new detector. In summary, our detector
model evolves temporally to account for changes in object appearance by
updating, i.e., learning, with new positive instances.

4.4 Motion Cues in the Tracker

Motion cues serve two purposes in our algorithm: (1) to determine the
search region for evaluating the detector; and (2) to estimate the state of
the object. We use dense optical flow computed between two frames for
the first task, and cues extracted from long-term tracks for the second.

Given the bounding box labeled as the object in a frame, we compute
optical flow [Brox and Malik, 2011] for all the pixels within the box, and
obtain the median flow. With this flow estimate, the bounding box is
translated onto the following frame, and the area surrounding it (an
enlarged box) is considered as the search region for the detector. In other
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words, we restrict the search space for the object detector when finding the
most likely location of the object in a new frame. An example is illustrated
in Figure 4.3. This useful cue is inspired by many of the traditional motion-
based trackers, but is limited to providing only local motion information.
We argue that these local cues are insufficient to reliably estimate (e.g.,
when the optical flow measurements are poor) whether the new bounding
box contains the object or not. Our work integrates richer cues computed
from long-term tracks into the framework to make a robust estimation of
the state of the object. We achieve this with an energy-based formulation
involving the long-term tracks.

Each track is represented with a random variable X; and takes a label
x; € {0,1}, where 0 denotes the background and 1 is the object. Let
n denote the number of tracks, and X = {X3y, Xy, ..., X, } be the set of
random variables. A labeling x refers to any possible assignment of labels
to the random variables, and takes values from the set {0, 1}". The cost of
a label assignment E(X = x), or E(x) in short, is defined as:

n

Ex) =Y ¢i(xi) +A Y ¢ijxi x)), (4.1)

i=1 (ij)e€

where ¢;(x;) is the unary term to measure how likely it is for the track i to
take label x;. The function (pij(xi, x]-) is a smoothness term to encourage
similar tracks to take the same label. The set of pairs of interacting tracks
is denoted by &£, and A is a parameter to regulate the relative strength of
the unary and the pairwise terms. The energy function (4.1) is minimized
exactly to obtain the globally optimal labels for the tracks.

The pairwise smoothness term takes the form of a generalized Potts
model [Boykov and Jolly, 2001] and is given by:

¢ij(xi, %)) = { ep(~Aad(i,])) Hxi 7 3, (4.2)

0 otherwise,

where d(i, j) measures the dissimilarity between the two tracks i and j
and A, is a parameter set to 0.1. This term is defined between pairs of
neighbouring tracks, and it assigns a low cost for two dissimilar tracks to
take different labels. We use the popular dissimilarity measure [Brox

and Malik, 2010] computed as the maximum distance between time-

corresponding spatial coordinates p!, p} and velocity values vi, v} as:
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i _ o2
i) — - inellvi = w3
4(i,j) = max [lpi = P25

This maximum is computed over points in time where the two tracks over-

(4.3)

lap. The first term, ||p} — p}||3, measures the spatial Euclidean distance,
and the second term is the vector difference of the velocities estimated
over 5 frames, i.e., vi = pi™ — pt.

For the unary terms, all the tracks that begin within the ground truth
annotation in the first frame are assigned a very high cost to take the back-
ground label. This prevents them from changing their label in the latter
frames, and is essentially a hard assignment of the object label. Inversely,
tracks that lie outside the annotation in the first frame are given a very
high cost to take the foreground label. The hard label assignment within
the ground truth annotation can be refined, for example, by assigning a
subset of the tracks with the object label using Grabcut-like segmenta-
tion techniques [Rother et al., 2004]. We found this refinement step to be
non-essential in our case, since the track labels are used in combination
with other cues, and not directly to determine the object location. The
unary term for any new tracks starting in the second frame and beyond is
defined as:

1) - { 1-— 1+exp(—(1zxtdt+ﬁt)) if track i € boxy, (4.4)

0.5 otherwise,
and ¢;(x; = 0) =1 — ¢;(x; = 1). Here, d; is the SVM detection score for
box;, the bounding box estimate in frame t. The scalars a; and B; map this
score into a probabilistic output, and are computed using Platt’s method
[Platt, 1999]. The intuition behind this unary term is that new tracks
within a strong detection are likely to belong to the object. For tracks that
lie outside the detection box, we allow the pairwise similarity terms to
decide on their labels by giving an equal unary cost for assigning object
or background labels.

In order to minimize the energy function (4.1) we apply the min-
cut/maxflow algorithm [Hammer, 1965, Kolmogorov and Zabih, 2004,
Boykov and Kolmogorov, 2004] on a corresponding graph, where each
track is represented as a node. All the tracks within the search region
in frame t (shown as a yellow box in Figure 4.4) are added as nodes.
Additionally, tracks labeled in the previous frames which continue to



CHAPTER 4. OCCLUSION AND MOTION REASONING FOR
80 LONG-TERM TRACKING

exist in the frame are added. The unary and pairwise costs, computed as
described earlier, are added as weights on the edges in the graph. We then
perform st-mincut on the graph to get the optimal labels for all the nodes.
Building the graph and performing inference on it in every frame allows
us to update the labels of existing tracks based on new evidence from
neighboring tracks. An illustration of track labels is shown in Figure 4.3.

4.4.1 Predicting the State

With the track labels in hand, we determine whether the object has
been occluded or a change in viewpoint has occurred. If more than 40% of
the tracks within box; belong to the background, it is marked as a partial
occlusion. We identify a full occlusion of the object if more than 80%
of the tracks are assigned the background label. In other cases where a
majority of the tracks continue to belong to the object, we verify if there
have been any other transformations, see Figures 4.2 and 4.4 for two such
examples. We model these transformations with a similarity matrix. It
is estimated with a RANSAC approach [Hartley and Zisserman, 2004],
using points on the tracks (inside the box;_1) in frames t — 1 and ¢ as
correspondences. Since it is feasible to obtain more reliable point cor-
respondences between consecutive frames, we compute frame-to-frame
similarity matrices, and then accumulate them over a set of frames. For
example, the transformation S from frame 1 to 3, is computed as the
product of the transformations S3 and S1. When a similarity matrix shows
a significant change in scale or rotation, fixed empirically as 15% and
10° respectively in all the experiments, we mark the state as change in
viewpoint.

To sum up, the candidate region box; is labeled as occluded when a
full occlusion state is predicted. When a change in viewpoint is estimated,
box; is transformed with the similarity matrix S} to obtain boxtS , which is
then assigned the object label. In other cases, i.e., neither occlusion nor
change in viewpoint, box; takes the object label.

4.4.2 Re-training the Model

Re-training (or updating) the model is crucial to the success of a track-
ing algorithm to handle situations where the object may change in some
form over time. We use the predicted state of the object to precisely define
the update step as follows.
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(a) Frame 1 (b) Frame 4

Figure 4.4 — Sample frames from the MotorRolling sequence [Wu et al.,
2013], where the object undergoes a significant transformation (rotates
counter clockwise). (a) Frame 1, showing the bounding box in the first
frame. (b) The result of our tracker is shown is green. We show the
bounding box transformed with the estimated similarity in yellow.

Case 1: No change in state. The model update is straightforward, if the
object is neither occluded, nor has undergone any of the other transforma-
tions. The new bounding box, box;, is treated as a positive exemplar, and
is used to update the SVM classifier.

Case 2: Occlusion. When the object is in a (partial or fully) occluded
state, the classifier is not updated.

Case 3: Change in viewpoint. The detection result box; in this case is
transformed with the estimated similarity matrix to box?. We then fit an
image-axes-aligned box that encloses box?, as illustrated in the example
in Figure 4.4. This transformation changes either the scale or the aspect
ratio of the bounding box containing the object. Recall that our initial
detector is trained from a single positive example at one scale, and adding
other samples with different scales (or aspect ratios) will deteriorate it.
We choose to train a new detector with the new bounding box in frame ¢,
and maintain a set of detectors which capture various scales and aspect
ratios of the object, as it changes over time. This idea of maintaining
multiple detectors for an object category is similar in spirit to exemplar
SVMs [Malisiewicz et al., 2011].

A summary of our method is given in Algorithm 2. Note that in the
case of a full occlusion, the best detection is obtained by evaluating the
detector over the entire image. If the score of the best detection result in
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Algorithm 2 : Our approach for tracking an object and estimating its state.

Data: Image frames 1. ..n, object location box; in frame 1
Result: Object location box; and state; in framest =2...n

Learn initial detector in frame 1 (§4.3)

Compute long-term tracks

fort =2...ndo

if state;_ is Full occlusion then

box;, score; <+ Best detection over the entire frame ¢

if score; > restart_threshold then
state; <— No change
Update detector model (§4.4.2)
else
box; + @
state; <+ Full occlusion
end
else
box; < Best detection in frame ¢
Compute track labels (§4.4)
state; <— Estimate object state in frame ¢ (§4.4.1)
switch state; do
case Full occlusion
box; + @
No detector update
end

case Partial occlusion
| No detector update

end

case Change in viewpoint
S} « Estimate the transformation
boxtS < Transform(box;, S}) (§4.4.2)
box; + boxts
Learn new detector model (§4.4.2)

end

case No change

| Update detector model (§4.4.2)

end

endsw

end

end
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the image is greater than a pre-determined threshold, we consider it as a
full recovery from the occlusion state.

4.5 Implementation Details

Detector. We chose a linear SVM and HOG features to learn the object
detector in this work, following a recent approach [Supancic III and Ra-
manan, 2013] which showed its efficacy on the tracking problem. The
regularization parameter in SVM is fixed to 0.1 for all our experiments.
The SVM objective function is minimized with LIBLINEAR [Fan et al.,
2008]. The initial detector is learned with one positive sample in the first
frame and many negative examples harvested from bounding boxes (sam-
pled from the entire image) that do not overlap with the true positive by
more than 10%. We also perform 5 iterations of hard negative mining,
similar to [Supancic III and Ramanan, 2013]. The learned detector is run
at its original scale in the motion-predicted search region. Recall that
we handle severe changes in object state (change in scale, rotation) by
building a set of detectors (Section 4.3). For all the experiments, we fixed
the maximum size of this set to 4, and replaced the worst performing
detector (i.e., the detector with the lowest score when evaluated on the
new exemplar), whenever necessary. We found this approach to work
better in practice, compared to one where a single multi-scale detector
is used. To update the detector efficiently with new samples, we use the
standard warm-start strategy [Fan et al., 2008, Supancic III and Ramanan,
2013].

State prediction. The parameter A in the energy function (4.1), which
controls the strength of the unary and pairwise terms is set to 1 in all
our experiments. Pairwise terms are added between pairs of tracks that
are less than a distance of 5 pixels in a frame. We minimize (4.1) with
the graph cut algorithm [Hammer, 1965, Kolmogorov and Zabih, 2004,
Boykov and Kolmogorov, 2004]. The thresholds for determining a partial
or full occlusion are empirically fixed to 40% and 80% respectively in all
our experiments.
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4.6 Experimental Analysis

4.6.1 Datasets

To compare with the most relevant tracking-by-detection approaches,
we use the test videos and ground truth annotations from the OTB dataset
[Wuetal., 2013] and TLD dataset [Kalal et al., 2012]. We show a sample
set of frames from these videos in Figures 4.5, 4.6 and 4.8. In particular,
we evaluate on all the videos in the OTB dataset, many of which contain
motion blur, fast motion, rotation, background clutter, and the following
sequences from the TLD dataset: Pedestrian2, Pedestrian3, Carchase,
which contain challenging scenarios with pose, scale and illumination
changes, full or partial occlusion. We note that the sequences in the OTB
dataset, do not annotate occlusion states. For example, frames in the
Coke sequence where the Coke can is completely occluded by a leaf are
still annotated with a bounding box. As a result, our method is at a
disadvantage in cases where we estimate an occlusion and do not output
a bounding box until the object is re-detected with a sufficiently good
detection score.

4.6.2 Evaluation Measures

Some of the previous works in tracking have used mean displacement
error in pixels to evaluate the accuracy quantitatively. As argued in
[Supancic III and Ramanan, 2013], this measure is not scale-invariant and
is not precise for cases when a method loses track of the object. We follow
[Kalal et al., 2012, Supancic III and Ramanan, 2013] and treat an estimated
object location as correct if it sufficiently overlaps with the ground truth
annotation. We then compute precision, recall and the F; score. In the
results shown in Table 4.1, we use 50% as the overlap threshold.

4.6.3 Experimental Results

In this section we compare our approach with the top-performing
methods, namely TLD (2012) [Kalal et al., 2012], SPLTT (2013) [Supancic III
and Ramanan, 2013], and the best tracker evaluated on OTB dataset [Wu
et al., 2013] — Struck (2013) [Hare et al., 2011]. We used the original
implementation provided by the respective authors. For TLD, we set the
size of the initial object bounding box as 15, since it did not run with the
default value of 24 for some of the sequences.
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No. Sequence Struck TLD SPLIT (?ur PP roach'
plain  occ.+vpoint
1 Footballl 0.378 0.351 0.554 1.000 1.000
2 Trellis 0.821 0.455 0.701 0.838 0.919
3 Walking 0.585 0.379 0.541 0.476 0.922
4  MotorRolling 0.146 0.110 0.128 0.134 0.512
5 MountainBike 0908 0.355 0.908 1.000 1.000
6 Basketball 0.072 0.025 0.396 0.425 0.554
7 Car4 0404 0.003 0314 0401 0.398
8 Suv 0587 0913 0904 0.531 0.907
9 Woman 0936 0.829 0.891 0.935 0.920
10 Coke 0948 0.694 0.804 0.801 0.880
11 Freemand4 0.177 0.134 0.145 0.095 0.004
12 Soccer 0.166 0.094 0.133 0.126 0.143
13 Pedestrian2  0.175 0.500 0.950 0.107 0.979
14 Pedestrian3 0.353 0.886 0.989 0.424 1.000
15 Carchase 0.036 0.340 0.290 0.098 0.312

Table 4.1 — Comparison of our approach with the state-of-the-art meth-
ods using F; measure (higher is better). “Plain” and “occ.+vpoint” refer
to our variants without and with object state estimation respectively.

OTB Results. When evaluated on all the 50 sequences from OTB dataset
[Wu et al., 2013], our approach results in 0.657 mean F; score (with 50%
overlap threshold), whereas Struck [Hare et al., 2011], TLD [Kalal et al.,
2012] and SPLTT [Supancic III and Ramanan, 2013] achieve 0.565, 0.513
and 0.661 respectively. We illustrate a selection of these sequences in
Table 4.1 (row 1-12), Figures 4.5 and 4.6.

Our method shows a significant improvement on several sequences
(rows 1-6 in Table 4.1). For the Footballl sequence (row 1, Table 4.1),
our F; score is 1.000 compared to 0.554 (SPLTT). In Figure 4.5(1), we see
that Struck (columns 2, 3: red box) tends to drift because the model is
not selectively updated. SPLTT also performs poorly (column 2: yellow
box, column 3: loses track) as it only relies on frame-to-frame optical flow
between candidate detections computed in each frame. If either the optical
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Figure 4.5 — Qualitative results on (1) Footballl, (2) Trellis, (3) Walking, (4)
MotorRolling, (5) MountainBike, and (6) Basketball sequences from the
OTB dataset [Wu et al., 2013]. Green: Our result, Red: Struck, Blue: TLD,
Yellow: SPLTT. See text for detalils.
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Figure 4.6 — Qualitative results on (7) Car4, (8) Suv, (9) Woman, (10) Coke,
(11) Freeman4, and (12) Soccer sequences from the OTB dataset [Wu et al,,
2013]. Green: Our result, Red: Struck, Blue: TLD, Yellow: SPLTT. See text
for details.
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flow or the detection is weak, SPLTT loses track. TLD (column 3: loses
track) also uses frame-to-frame optical flow tracking and is prone to drift.
In contrast, our method uses long-term tracks and updates the model
selectively, which results in better performance. For the Trellis sequence,
our method shows nearly 10% improvement over Struck (0.919 vs 0.821,
see row 2, Table 4.1). Sample frames are shown in Figure 4.5(2). Here, TLD
is confused by the illumination changes, drifts (blue box in column 1) onto
a part of the object (the face), and eventually loses track (columns 2 and
3: no blue box). This is potentially due to the weaker object model. The
partial occlusions (column 2) and change in viewpoint (column 3) lead to
incorrect model updates, and thus poorer results for SPLTT (yellow box)
and Struck (red box). Our method (green box) estimates the state of the
object (occlusion or change in viewpoint) and performs a correct update
step.

For the Walking sequence, we achieve an F; score of 0.922 compared
to 0.585 from Struck (row 3, Table 4.1). From Figure 4.5(3) we observe
that our tracker (green box) adapts to changes in object size (with the
help of long-term tracks) better than SPLTT (yellow box) and Struck (red
box). TLD (blue box) tracks the object initially, but drifts at about half-way
through the sequence (frame 202). For the Basketball sequence (row 6,
Table 4.1), our F1 score is 0.554 compared to 0.396 (SPLTT). As seen in
the sample frames in Figure 4.5(6), the other methods track the object, the
basketball player in green, initially (column 1). However, they drift onto
another player who runs in front of the object (column 2: red (Struck) and
blue (TLD) boxes) or nearby regions (column 3: yellow (SPLTT) and blue
(TLD) boxes). Struck updates the model without considering the state of
the object, e.g., occlusion, and is thus more prone to drift. Our detector
model is updated temporally only when the object is not occluded. It is
also stronger than the model used in TLD (a set of image patches). Hence,
we continue to track the object accurately. SPLTT recovers from the partial
drift (column 3, Figure 4.5(6)), but is less accurate overall.

The performance of our method is comparable on some sequences
(rows 7-12 in Table 4.1). For example, an F; score of 0.398 compared to
0.404 (Struck) for the Car4 sequence (see row 7, Table 4.1). For the Suv
sequence, shown in Figure 4.6(8), our result (0.907) is comparable to SPLTT
(0.904), TLD (0.913), and is better than Struck (0.587). In Figure 4.6(9)
we show sample frames from the Woman sequence, where our method
identifsies that the object is occluded (column 2). Due to the lack of
occlusion labeling in the ground truth annotation, our method is penalized
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Figure 4.7 — Qualitative results comparing our occlusion reasoning (this
chapter) and proposal selection tracker (Chapter 3) on (a) Jogging and (b)
Suv sequences from the OTB dataset [Wu et al., 2013]. Yellow: Occlusion
reasoning tracker, Red: Proposal selection tracker, Green: Ground truth.
See text for details.

for frames where we estimate occlusion, and hence our result is slightly
worse (0.920 vs 0.936 (Struck), shown in row 9, Table 4.1). The Coke
sequence (row 10, Table 4.1) is another such case, where our method (0.87)
performs significantly better than TLD (0.69) and SPLTT (0.80), but is
inferior to Struck (0.95).

In a few cases, our method performs worse than the trackers we
compare with. For example, on the Freeman4 sequence, our method fails
to track the object (0.004 F; score). Struck, TLD and SPLTT perform better
than this (0.177, 0.134 and 0.145 respectively), but are still significantly
inferior to their average performance on the entire benchmark dataset.
As shown in Figure 4.6(12), none of the methods show a noteworthy
performance, and drift or miss the object often. We observed that the
minimum size of our detector was not ideal to find the object in this
sequence, which is only 15 x 16 pixels large. All the trackers also perform
poorly on the Soccer sequence — 0.166 is the best performance, which is
comparable to our score, 0.143. In Figure 4.6(12) we see that the player’s
face in this sequence is tracked initially, but due to severe motion blur,
fails in the latter frames.

The overall performance of our method presented in this chapter is sim-
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Figure 4.8 — Qualitative results on (a) Pedestrian2, and (b) Carchase se-
quences from the TLD dataset [Kalal et al., 2012]. Green: Our result, Red:
Struck, Blue: TLD, Yellow: SPLTT. See text for details.

ilar to the proposal selection tracker (single-scale) described in Chapter 3.
However, the occlusion reasoning method performs significantly better
on certain sequences. From the qualitative results shown in Figure 4.7, the
method described in this chpater stops tracking when occlusion occurs,
and resumes tracking when the target reappears. In contrast, the proposal
selection tracker (single-scale) continues to track even when the target is
occluded and drifts to the background due to incorrect updates.

TLD Dataset Results. We show tracking results on the most challenging
sequences from the TLD dataset (Pedestrian2, Pedestrian3 and Carchase)
Table 4.1 (rows 13-15). Results on the Pedestrian2 and Carchase long-term
sequences, in Figure 4.8(a) and Figure 4.8(b), show that Struck cannot
handle cases where the object re-enters the field of view after occlusion,
unlike our method, TLD and SPLTT.

Discussion. Table 4.1 also shows a component-level evaluation of our
method, namely “plain” and “occ.+vpoint”. The former one refers to our
basic approach without predicting the state of the object, while the latter
one uses the predicted state. Estimating the state of the object improves
the performance in most cases (e.g., Walking sequence in row 3). In some
cases we observe a slight decrease in performance over the plain vanilla
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method (e.g., Woman sequence in row 9) due to lack of occlusion labeling
in the ground truth annotation.

Note that long-term tracks are used as an additional information in
our work. If there are insufficient point tracks within the bounding box
(i.e., less than 10), we do not estimate the state, and continue in a tracking-
by-detection mode. For estimating the object state, we observed two cases.
(1) Object and camera motion: In this case, tracks from [Sundaram et al.,
2010] do not suffer from significant drift as they tend to be relatively short
in length. For example, on the Deer sequence (71 frames), the average
length of the track is 10.1, and less than 10% of tracks drift. This does not
affect our state estimation. (2) Object or camera motion only: Here, tracks
can drift, and then result in incorrect occlusion estimates (e.g., Crossing
sequence: 120 frames; average track length 77, 50% drift). In the worst
case, our tracker predicts full occlusion and misses the object for a few
frames, but recovers when the detector is run over the entire image to
overcome this occlusion state. In essence, failures in long-term tracks
have a limited impact on our system overall. However, a limiting case of
our approach is when an object undergoes occlusion, and re-appears in a
viewpoint which has not been seen before the occlusion (i.e., no template
is learned).

Computation time of our method depends on the image size and the
number of tracks in the sequence. For sequences in Table 4.1, it takes 6.7
seconds/frame on average, with our unoptimized Matlab code (which
does not include time to precompute optical flow — 3.4 seconds/frame
on GPU).

4.7 Summary

This chapter describes a principled way to identify the state of an
object to address the model update problem in visual object tracking. In
particular, we consider the long-term tracking problem, where the object
may become occluded or leave the field of view. To address this, we utilize
long-term trajectories in combination with graph-cut based track labeling
scheme to determinate the state of the target. We also estimate geometry
transformations between consecutive frames based on these trajectories
to perform an appropriate update step. We evaluate our approach on
multiple datasets and show comparable performance with several state-
of-the-art trackers.
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In this thesis we have focused on the problem of visual object tracking
in challenging scenarios, where the object undergoes significant trans-
formations, becomes occluded or leaves the field of view. We proposed
two approaches for addressing such cases: (i) We presented a general
proposal-selection framework, building on the discriminative tracking-by-
detection paradigm for short-term tracking. (ii) We utilized motion cues
to identify the state of an object in a principled way in order to address
the model update issue for long-term tracking.

The following concludes the thesis with a summary of contributions
in Section 5.1, and potential directions for future research in Section 5.2.

5.1 Summary of contributions

In Chapter 3, we investigated challenging scenarios in visual object
tracking, where an object undergoes severe geometric transformations.
Although a discriminative tracking-by-detection framework has become
one of the most successful paradigms for tracking in recent years, it is
ill-equipped to handle such challenging conditions. Moreover, it also
determines tracking results based only on the best detection score, which
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is not always an optimal strategy. In order to address these issues, we pre-
sented a proposal-selection tracking approach, building on the traditional
discriminative tracking-by-detection framework. In the proposal stage,
besides candidates from a standard tracking-by-detection framework,
we introduced additional candidates that capture geometric transforma-
tions undergone by the object to form an enlarged candidate pool. In
the selection stage, we then determined the best proposal from this set
using multiple cues — detection score, and edgebox scores computed
with edge responses and motion boundaries. We utilized a two-phase
selection strategy to combine these cues, wherein edgebox scores are used
when the detection scores are inconclusive to choose the best proposal
(i.e., the detection scores of several candidates are statistically similar).
Our extensive experiments showed that the proposal-selection tracking
approach achieves top performance on diverse datasets with the same set
of parameters.

In Chapter 4, we considered the problem of model update, which is
one of the most critical components in long-term tracking. In order words,
we studied the problem of determining when to update the model of a
target object, as it may become occluded or leave the field of view in the
long-term tracking scenario. To address this, we first calculated long-term
trajectories from optical flow in the video sequence. Then, we proposed
a method to identify the state of the object based on a graph-cut scheme
to label the trajectories as object or background. This estimated state of
the object allows us to update the model selectively. We evaluated our
approach on multiple datasets and showed significant performance gain
over state-of-the-art trackers.

In Appendix A, we presented our submission to the visual object
tracking challenge organized in 2015. Our tracker, based on our proposal-
selection framework, was the winner in the VOT-TIR2015 challenge, and
it was ranked sixth in the VOT2015 challenge.

5.2 Future work

In the following, we present potential extensions of our work, which
are based on observations from the experimental results, and also inspired
by recent progress in computer vision and machine learning. We address
extensions of the proposal-selection tracking framework in §5.2.1 and
extensions of the occlusion reasoning for long-term tracking in §5.2.2.
Finally, in §5.2.3, we discuss potential extensions based on deep features.
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5.2.1 Proposal-Selection Tracking Framework

Our proposal-selection tracking approach has achieved state-of-the-art
results. However, it can not handle deformable objects. There are two
main reasons. First, we only consider candidates undergoing geometry
transformations (i.e., similarity transformations) in the proposal stage. In
other words, if the objects do not undergo rigid transformations, they
will not be included in the candidate pool and thus cannot be selected
by the tracker. Second, in the selection stage, we determine the tracking
result using detection scores. They are calculated with HOG features and
a linear SVM, which tend to perform poorly on deformable objects. To ad-
dress these issues, the proposal-selection approach can be improved with
additional proposals from object segmentation based methods [Son et al.,
2015, Li et al., 2013a, Wen et al., 2015, Tsai et al., 2012] and deformable ob-
ject trackers [Godec et al., 2011, Liu et al., 2015, Nebehay and Pflugfelder,
2015]. Furthermore, as suggested by [Zhu et al., 2015], including candi-
dates from object proposals [Hosang et al., 2016] extracted for the entire
frame, can improve tracking robustness, in particular for fast moving
objects and low-frame-rate videos. During the selection phase, other
cues can be investigated, based on matching [Cho et al., 2014, Revaud
et al., 2015a], multiple experts [Zhang et al., 2014a], and multihypothesis
trajectory analysis [Lee et al., 2015].

For real-world applications, real-time processing is mandatory for
visual object tracking. Currently, the computation time of our proposal-
selection pipeline is limited by the optical flow estimation which is used
for generating the geometry proposals and motion boundaries, and also
the object detector, which is evaluated with small step size. It is worth
exploring how faster optical flow methods (e.g., [Tao et al., 2012] and
[Revaud et al., 2015b]) or matching based methods (e.g., [Revaud et al.,
2015a]) can improve speed without decreasing performance. Furthermore,
high-speed trackers, such as [Vojir et al., 2014, Henriques et al., 2015],
can replace the HOG and linear SVM based detector in our framework.
However, these high-speed trackers may cause loss in performance, as
shown in several recent evaluations [Kristan et al., 2014, 2015]. To address
this, inspired by [Viola and Jones, 2001], we suggest a cascaded proposal-
selection framework with different trackers, taking into account the trade
off between performance and computational cost. In particular, in every
frame, fast trackers and a simple selection strategy can be first applied to
build a pool of pre-selected candidates, i.e., reject unreasonable candidates
at a low computational cost. Then, high-performance trackers and better



96 CHAPTER 5. CONCLUSION

selection strategies can be utilized to determine the final tracking result,
from the pre-selected candidate pool.

5.2.2 Occlusion Reasoning for Long-term Tracking

We utilized long-term trajectories to determine the state of a tracked
object, which decides when to update the model in long-term tracking. For
easy integration, we adopted long-term trajectories that are pre-calculated
on the entire video sequence [Ochs et al., 2014]. As a result, our occlusion
reasoning tracker cannot run in an online manner, as it relies on trajectories
calculated with future frames. We can adapt our framework to the online
scenario with trajectories calculated using all the frames until the current
frame. Given the problem setting for object tracking, we can use the
ground truth annotation in the first frame (or the re-detection result when
the tracker recovers from an occlusion) for guiding long-term trajectory
segmentation, in order to determine the state of the target. This is more
reliable than using additional trajectories from future frames.

As in the case of the proposal-selection framework, the computational
bottleneck of our occlusion reasoning tracker is the calculation of optical
flow for extracting long-term trajectories. According to our experimental
results, quasi-dense long-term trajectories supply sufficient information
for identifying the state of the object. These trajectories are built with
dense optical flow [Brox and Malik, 2011] calculated at every pixel. In-
stead of this dense optical flow, we can use matching based methods, e.g.,
efficient GPU implementation of deep matching [Revaud et al., 2015a],
to decrease the computational cost. Moreover, matching based methods
can also be applied to get correspondences not only between consecutive
frames but also over more distant frames. This can further improve the
robustness of long-term trajectories under challenging scenarios, such as
frames containing motion blur, where traditional optical flow methods
perform poorly. One way to address this is to skip the frames contain-
ing motion blur, and find long-range correspondences using matching
techniques [Revaud et al., 2015a].

Another extension is to combine the proposal-selection tracking ap-
proach and occlusion reasoning into one unified framework, to handle
more diverse circumstances, e.g., target objects undergoing significant
transformations, and becoming occluded or leaving the field of view. In
particular, the proposal-selection tracking approach can be used to handle
the short-term tracking scenario, while occlusion reasoning can be applied
to determine when to update the model, in order to avoid drifting and
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improve robustness. This unified framework can be further extended
by recent works [Hong et al., 2015b, Ma et al., 2015b], which suggest
maintaining multiple trackers with different (aggressive or conservative)
updating strategies.

5.2.3 Deep Learning for Tracking

In the past year or so, supervised deep learning methods have been
applied to visual object tracking successfully, and have achieved good
performance on many tracking datasets [Li et al., 2014, Wang et al., 2015a,
Nam and Han, 2016]. However, these methods have not dominated
model-free tracking, unlike what is observed on other computer vision
problems, e.g., object classification [Krizhevsky et al., 2012], object detec-
tion [Girshick et al., 2014], and face verification [Taigman et al., 2014]. One
of the reasons is the lack of proper training data in the standard setup of
model-free tracking, i.e., the tracking target can be any object or any part
of an object, annotated only in the first frame of a video sequence. What
is even worse is that, “the same kind of objects can be considered as a
target in a sequence and as a background object in another” [Nam and
Han, 2016]. Therefore, supervised deep learning methods, which focus on
learning an appearance representation, are suboptimal for direct use in
model-free tracking. Instead, these approaches, e.g., faster R-CNN [Ren
et al., 2015], can be: (i) used to compute object proposals to enrich our
proposal-selection framework, and (ii) applied to model-specific tracking
problems.

As shown in Chapter 4, long-range motion patterns in video sequences
can be used to identify the object state and guide model update for model-
free object tracking. Inspired by this work and [Dosovitskiy et al., 2015],
we propose to adapt supervised deep learning methods, e.g., temporal
convolutional networks learned from multi-frame dense optical flow [Si-
monyan and Zisserman, 2014] and long-term recurrent convolutional
networks learned from video sequences [Donahue et al., 2015], for rep-
resenting different long-range motion patterns. These motion patterns,
e.g., occlusion and self-occlusion, are not necessarily dependent on the
appearance of objects. For instance, in the case where a person walking is
occluded by a tree or by a building, the appearance of the two objects (i.e.,
tree and building) is very different. However, from a motion point of view,
these two events have the same motion pattern — the motion trajectory
from a moving object (person) is terminated by a stationary object (tree or
building). This approach can exploit additional training data as it is not
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restricted by the type of object, thus making it applicable to model-free
tracking.
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In this appendix, we present the details of our submission and the
evaluation results on both the visual object tracking (VOT) 2015 and the
thermal infrared visual object tracking (VOT-TIR) 2015 challenges. The
goal of these challenges is to compare short-term model-free single-object
trackers, and serve as the de factor state-of-the-art evaluation platform for
visual object tracking. In particular, the VOT challenge focuses on natural
RGB video sequences with rotated rectangle ground truth boxes, while
the VOT-TIR challenge consists of thermal infrared video sequences with
axis-aligned ground truth boxes, see examples in Figures 2.21 and 2.22.
For more details of the two challenges, we refer the reader to the challenge
reports [Kristan et al., 2015, Felsberg et al., 2015]. In the following, we
describe our submitted tracker in Section A.1, and present evaluation
results in Section A.2.
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A.1 Description of the tracker

We submitted a simplified version of our proposal-selection tracker,
referred as to sPST. Compared to the full version of our proposal-selection
tracker, described in Chapter 3, we excluded geometry proposals and
motion boundaries selection in sPST, due to the computational cost of the
optical flow method. Similar to the full version of the proposal-selection
tracker, sPST proceeds in two stages — proposal followed by selection.
In the proposal stage, we generate a set of candidates computed by the
tracking-by-detection framework, where we use the frame as is, or rotate
it according to the ground truth annotation in the initial frame to handle
rotated bounding box annotation. In the selection stage, we determine the
best candidate as the tracking result with detection and edgebox scores.
We follow the two-phase selection strategy to combine these two cues,
as described in Chapter 3. It is worth noting that in order to show the
generality of sPST, we set identical parameters for both VOT2015 and
VOT-TIR2015 challenges, despite the target video domains of these two
challenges being different.

A.1.1 Experimental environment

We implemented sPST with Matlab 2014b and mex files. For evaluation
on the challenge datasets, we followed the guidelines, and integrated sPST
into the VOT challenge toolkit. | We performed all the experiments on a
workstation with an Intel Xeon CPU at 2.4GHz and 48G memory, running
Fedora 21 64bit operation system.

A.1.2 Implementation details

We adopted all the parameters of sPST from Chapter 3, which are fixed
or calculated based on the ground truth annotation in the first frame of all
the sequences in VOT2015 and VOT-TIR2015 challenges.

Object template and HOG feature. The object template and HOG fea-
ture parameters are set according to the area of the ground truth bounding
box in the initial frame. If the area of the bounding box is larger than
10000 pixels, the object template resize scale is set to 0.5. If the area of the
bounding box is between 400 pixels and 10000 pixels, the object template

1. Available at https://github.com/votchallenge/vot—toolkit.
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resize scale is set to 0.8. If the area of the bounding box is smaller than 400
pixels, the object template resize scale is set to 1.0.

After resizing, if the area of object template is larger than 4000 pixels,
the cell size of HOG feature is set to 8. If the area of object template is
between 1000 pixels and 4000 pixels, the cell size is set to 6. For an area
less than 1000 pixels, the cell size is set to 4.

Detector. The initial detector is trained in the first frame with one posi-
tive sample and several negative examples that have less than 50% overlap
with the ground truth annotation. In order to make our experimental re-
sults repeatable, we fixed the training sample order randomly to learn
the SVM. In every frame that follows, the detector is evaluated at seven
scales: {0.980, 0.990, 0.995, 1.000, 1.005, 1.010, 1.020} with dense-scanning
at a step size of 2 pixels. The detector is updated with the tracking result
every frame, except when the result in a frame is very similar to that in
the previous frame (i.e., the normalized cross-correlation score between
current and previous frame results is larger than 0.95).

Candidate proposals. The top 5 detection results are added to the can-
didate pool. Moreover, if the ground truth bounding box in the initial
frame is rotated by more than 15 degrees (clockwise or anti-clockwise),
another top 5 detection results on the rotated image are added to enrich
the pool.

Candidate selection. We adopted the two-phase selection strategy, dis-
cussed in Chapter 3, in the selection stage. First, we check the normalized
detection confidence score of all proposals. When the detection scores
of some or all the proposals are statistically similar (i.e., the differences
between these detection scores and the maximum detection score are less
than 1% of the maximum score), we collect all these similar proposals
for the following selection step. Otherwise, we choose the proposal with
the maximum detection score as tracking result. Second, we check the
edgebox scores [Zitnick and Dollar, 2014] of remaining proposals. If all
the edgebox scores are less than 0.075 or are not comparable to the mean
of the last five edgebox scores of the tracking predictions, which implies
a low quality score, we select the candidate with the highest detection
score. Otherwise, we choose the proposal with the highest edgebox score
as tracking result.
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Handling small bounding box. If the initial ground truth box contains
less than 300 pixels, we still train the detector as usual. But before evaluat-
ing the detector in the new frame, we check the pixel difference between
current and previous frames. If more than 40 percent of pixels in the search
region are changed, we apply the ordinary proposal-selection scheme to
determinate tracking result. Otherwise, we set the region, which has the
same size as the previous tracking box and contains the largest percent of
changed pixels, as tracking result.

A.2 Evaluation results

According to [Kristan et al., 2015], sPST was ranked sixth among
62 trackers in the VOT2015 challenge. For the VOT-TIR2015 challenge
[Felsberg et al., 2015], sPST was ranked second among 24 trackers and
received the “winning tracker” title. The tracker ranked first, with a
slightly better performance that sPST, was submitted by the organizers
themselves, and was disqualified according to the competition rules.

A.21 The performance of sPST on VOT2015

All the raw results of each sequence in the VOT2015 dataset are gen-
erated by VOT challenge toolkit, and are shown in Table A.1. According
to these results from the toolkit, the average accuracy of sPST is 0.54, the
average number of failures is 1.42, and it runs at 5.80 fps on average.

Overlap | Failures | Speed

bag 0.45 1.00 4.14
balll 0.85 0.00 2.24
ball2 0.56 0.00 1.93
basketball 0.63 0.00 7.71
birdsl 0.42 2.00 3.04
birds2 0.56 0.00 5.54
blanket 0.66 0.00 13.23
bmx 0.35 0.00 2.49
boltl 0.70 1.00 7.10
bolt2 0.68 0.00 9.93
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book 0.36 5.00 3.45
butterfly 0.25 0.00 4.17
carl 0.67 2.00 8.15
car2 0.83 0.00 15.74
crossing 0.70 0.00 3.15
dinosaur 0.48 2.00 6.83
fernando 0.43 1.00 5.25
fish1 0.42 4.00 6.90
fish2 0.38 4.00 4.33
fish3 0.58 0.00 7.79
fish4 0.40 1.00 10.86

girl 0.68 1.00 7.36
glove 0.62 3.00 2.47
godfather 0.37 1.00 7.92
graduate 0.55 3.00 9.93
gymnastics1 0.49 4.00 8.83
gymnastics2 0.57 3.00 2.14
gymnastics3 0.28 3.00 1.31
gymnastics4 0.42 1.00 291
hand 0.52 5.00 6.76
handballl 0.62 3.00 9.60
handball2 0.52 3.00 4.24
helicopter 0.41 0.00 5.97
iceskaterl 0.46 2.00 6.68
iceskater2 0.57 2.00 7.01
leaves 0.24 5.00 1.44
marching 0.71 0.00 3.58
matrix 0.56 2.00 4.58
motocross] 0.56 1.00 4.81
motocross?2 0.34 2.00 0.98
nature 0.33 5.00 5.91
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octopus 0.57 0.00 4.96
pedestrianl 0.68 1.00 7.67
pedestrian2 0.45 0.00 9.49
rabbit 0.22 6.00 3.24
racing 0.58 0.00 5.28
road 0.63 1.00 3.97
shaking 0.78 0.00 7.42
sheep 0.58 0.00 9.08
singerl 0.70 0.00 6.62
singer?2 0.76 1.00 6.27
singer3 0.24 0.00 4.38
soccerl 0.39 2.00 5.81
soccer2 0.63 1.00 2.39
soldier 0.50 1.00 1.42
sphere 0.69 0.00 6.78
tiger 0.78 0.00 5.72
traffic 0.87 0.00 2.64
tunnel 0.71 0.00 9.49
wiper 0.74 0.00 6.85
mean 0.54 1.42 5.80

Table A.1 — The performance of sPST on the VOT2015 challenge dataset.

A.2.2 The performance of sPST on VOT-TIR2015

All the raw results of each sequence in the VOT-TIR2015 dataset, which
are generated by the VOT challenge toolkit, are shown in Table A.2. Ac-
cording to these results from the toolkit, the average accuracy of sPST
is 0.70, the average number of failures is 0.35 and it runs at 11.07 fps on

average.

Overlap | Failures | Speed
birds 0.74 0.00 6.64
car 0.55 0.00 13.02
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crossing 0.85 0.00 8.80
crouching 0.67 0.00 10.05
crowd 0.78 0.00 3.98
depthwise_crossing 0.72 0.00 9.58
garden 0.65 3.00 14.69
hiding 0.66 0.00 14.57
horse 0.74 0.00 12.70
jacket 0.82 0.00 11.73
mixed_distractors 0.74 0.00 7.16
quadrocopter 0.52 1.00 5.88
quadrocopter2 0.54 0.00 20.38
rhino_behind_tree 0.71 0.00 22.83
running_rhino 0.54 1.00 22.95
saturated 0.79 0.00 6.72
selma 0.74 0.00 7.08
soccer 0.59 0.00 4.44
street 0.75 1.00 6.65

trees 0.81 1.00 11.49
mean 0.70 0.35 11.07

Table A.2 — The results of the VOT-TIR2015 challenge for our sPST tracker.

As shown in Figure 2.22, thermal infrared (TIR) video data shows more
clear edge responses than RGB video data. To highlight the usefulness
of this cue for tracking, we evaluated our sPST tracker on VOT-TIR2015
without two-phase selection, i.e., the tracking result in each frame was
determined only by the detection score. This results in 0.67 for the average
accuracy and 0.35 for the average number of failures, both of which are
inferior to sPST with two-phase selection (0.70 and 0.35 respectively).
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