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Abstract

Clustering, also called unsupervised learning, is an important technique in the field of

data mining. According to the type of data sets, clustering algorithms can be divided

into two kinds. One is for object data in the distance space, where the objects to be

clustered are described by feature vectors. The other is for proximity data, where only

the relationship values such as similarities or dissimilarities between objects are known.

The latter is a more general case, as the relationship could also be got for the data

represented by feature vectors. On the contrary, many real-world data sets can only be

represented by relational data for which object-based clustering algorithms could not

be applied directly.

Communities are groups of nodes (vertices) which probably share common proper-

ties and/or play similar roles within the graph. They can extract specific structures

from complex networks, and consequently community detection has attracted consid-

erable attention crossing many areas where systems are often represented as graphs.

Community detection is in fact a clustering problem on graphs, and the available in-

formation in this problem is often in the form of similarities or dissimilarities (between

nodes).

We consider in this work to represent graphs as relational data, and propose models

for the corresponding relational data clustering. Four approaches are brought forward

to handle the community detection problem under different scenarios.

We start with a basic situation where nodes in the graph are clustered based on

the dissimilarities and propose a new c-partition clustering approach named Median

Evidential C-Means (MECM) algorithm. This approach extends the median clustering

methods in the framework of belief function theory. Moreover, a community detection

scheme based on MECM is presented. The proposed approach could provide credal

partitions for data sets with only known dissimilarities. The dissimilarity measure

could be neither symmetric nor fulfilling any metric requirements. It is only required

to be of intuitive meaning. Thus it expands application scope of credal partitions.

In addition, some practical issues about how to apply the method into community

detection problems such as how to determine the initial prototypes and the optimum

community number in the sense of credal partitions are discussed. This makes the

approach appropriate for graph partitions and enables us to gain a better understanding

of the analysed networks, especially for the uncertain and imprecise structures.

In MECM, one single representative object in the original data set is used to describe

each of the individual classes. However, in some cases the way of using only one node to

describe a community may not be sufficient enough. In order to capture various aspects

of the community structures, more members rather than one should be referred as the

prototypes of an individual group. Motivated by this idea, a Similarity-based Multiple

Prototype (SMP) community detection approach is proposed. The centrality values are
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used as the criterion to select multiple prototypes to characterize each community. The

prototype weights are derived to describe the degree of representativeness of objects

for their own communities. Then the similarity between each node and community

is defined, and the nodes are partitioned into divided communities according to these

similarities. Crisp and fuzzy partitions could be obtained by the application of SMP.

Following, we extend SMP in the framework of belief functions to get credal parti-

tions so that we can gain a better understanding of the data structure. The prototype

weights are incorporate into the objective function of evidential clustering. The mass

membership and the prototype weights could be updated alternatively during the opti-

mization process. In this case, each cluster could be described using multiple weighted

prototypes. As we will show, the prototype weights could also provide us some useful

information for structure analysis of the data sets.

With the increasing size of social networks in real world, community detection

approaches should be fast. The Label Propagation Algorithm (LPA) is known to be

one of the near-linear solutions and benefits of easy implementation, thus it forms a good

basis for efficient community detection methods. We extend the original update rule and

propagation criterion of LPA in the framework of belief functions. A new community

detection approach, called Semi-supervised Evidential Label Propagation (SELP), is

proposed as an enhanced version of the conventional LPA. One of the advantages of

SELP is that it can take use of the available prior knowledge about the community

labels of some individuals. This is very common in real practice. For instance, in

the co-authorship network, some domain experts are very easy to be labeled as their

research interests are well-known to everyone. In SELP, the nodes are divided into two

parts. One contains the labeled nodes, and the other includes the unlabeled ones. The

community labels are propagated from the labeled nodes to the unlabeled ones step by

step according to the proposed evidential label propagation rule.

The performance of the proposed approaches is evaluated using benchmark graph

data sets and generated graphs. Our experimental results illustrate the effectiveness of

the proposed clustering algorithms and community detection approaches.



Résumé

Le clustering, également appelé classification non supervisée, est une technique im-

portante dans le domaine de l’exploration de données. Selon le type d’ensembles de

données, les algorithmes de classification peuvent être divisés en deux types. Le pre-

mier concerne les objets dans un espace muni d’une distance, où les objets devant

être groupés sont décrits par des vecteurs de caractéristiques. Le second concerne les

données de proximité, où seuls les valeurs relationnelles telles que les similitudes ou

les différences entre les objets sont connus. Ce dernier est un cas plus général, la

relation peut également être obtenue pour les données représentées par vecteurs de

caractéristiques, mais de nombreux ensembles de données du monde réel peuvent être

représentés seulement par des données relationnelles pour lequel des algorithmes de

clustering à base d’objets ne peuvent pas être appliquées directement.

Les communautés sont des groupes de œuds (sommets) qui partagent probablement

des propriétés communes et/ou jouent des rôles similaires dans le graphe. Ils peuvent

extraire des structures spécifiques des réseaux complexes, et par conséquent la détection

de ces communautés a été étudiée dans de nombreux domaines où les systèmes sont

souvent représentés sous forme de graphes. La détection de communautés est en fait

un problème de classification (ou clustering) sur les graphes, et linformation disponible

dans ce problème est souvent sous la forme de similitudes ou de différences (entre les

nœuds).

Nous considérons dans ce travail les graphes comme des données relationnelles et

proposons des modèles pour la classification de ces données relationnelles correspon-

dantes. Quatre approches sont présentées pour traiter le problème de la détection de

clusters selon différents scénarios.

Nous commençons par une situation de base où les nœuds dans le graphe sont

regroupés selon leurs similarités et proposons une nouvelle approche de clustering en

c-partition nommée algorithme Median Evidential C-Means (MECM). Cette approche

étend la méthode de classifciation par médiane dans le cadre de la théorie des fonctions

de croyance. En outre, une détection de communautés fondée sur l’approche MECM

est également présentée. L’approche proposée permet de fournir des partitions credales

selon des similarités avec seulement des données connues. La mesure de dissimilarité

pourrait être ni symétrique et même ne comporter aucune exigences de métriques.

Elle est simplement intuitive. Ainsi, elle élargit la portée d’applications des partitions

credales. De plus, certaines questions pratiques sur la façon d’appliquer la méthode

dans la détection de communautés à des problèmes tels que la façon de déterminer les

premiers prototypes et le nombre optimal de communautés dans le sens de partition

credale sont discutées. Cela rend l’approche appropriée pour les partitions de graphes

et nous donne une meilleure compréhension des réseaux analysés, en particulier pour

les structures incertaines et imprécises.
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Nous considérons dans ce travail les graphes comme des données relationnelles et

proposons des modèles pour la classification de ces données relationnelles correspon-

dantes. Quatre approches sont présentées pour traiter le problème de la détection de

clusters selon différents scénarios.

Pour l’approche MECM, un seul objet représentatif de l’ensemble de données d’origi-

ne est utilisé pour décrire une classe individuelle. Cependant, dans certains cas, le

fait d’utiliser un seul nœud (individu) pour décrire une communauté peut ne pas être

suffisant. Afin de saisir les divers aspects des structures de communautés, nous pou-

vons avoir besoin de plusieurs nœuds plutôt qu’un seul pour représenter un prototype

représantant un groupe d’individus. Motivée par cette idée, une approche de détection

de communautés fondée sur le Similarity-based Multiple Prototype (SMP) est proposée.

Les valeurs de centralité sont utilisées comme critère pour sélectionner plusieurs nœuds

(prototypes) pour caractériser chaque communauté, et les poids des prototypes sont

considérés pour décrire le degré de représentativité des objets liés à leur propre com-

munauté. Ensuite, la similarité entre chaque nœud et les communautés est définie. Les

nœ)uds sont divisés pour former des communautés selon leurs similarités. Les partitions

nettes et floues peuvent être obtenues par l’approche SMP.

Ensuite, nous étendons l’approche SMP au cadre des fonctions de croyance pour

obtenir des partitions credales de sorte que l’on puisse obtenir une meilleure compréhens-

ion de la structure des données. Les poids du prototype sont incorporés dans la fonction

dobjectif de la communauté. La composition de masse et les poids des prototypes ont

pu être mis à jour alternativement pendant le processus d’optimisation. Dans ce cas,

chaque groupe peut être décrit en utilisant de multiples prototypes pondérés. Comme

nous allons le montrer, les poids des prototypes peuvent également nous fournir des

informations utiles pour l’analyse des données.

Avec la taille croissante des réseaux sociaux dans le monde réel, lapproche de la

détection de communautés doit être rapide et précise. L’approche Label Propagation

Algorithm (LPA) est connue pour être l’une des solutions quasi-linéaire avec les avan-

tages d’une mise en œuvre facile. Ainsi elle forme une bonne base pour les méthodes

de détection de communautés. Dans le dernier chapitre, la règle de mise à jour et

le critère de propagation du LPA sont étendus aux fonctions de croyance. Une nou-

velle approche de détection de communautés, appelée Semisupervised Evidential Label

Propagation (SELP) est proposée comme une version améliorée de la méthode LPA con-

ventionnelle. L’un des avantages de l’approche SELP est quelle permet de tenir compte

de la connaissance préalable disponible sur les étiquettes des communautés de certains

individus. Ceci est très courant dans la pratique réelle. Par exemple, dans le réseau

des co-auteurs, certains experts du domaine sont très facilement labélisables selon leurs

intérêts de recherche bien connus de tous. Dans la méthode SELP, les nœuds sont di-

visés en deux partis. Certains contiennent des nœuds labélisés et les autres des nœuds

non labélisés. Les labels sont propagés depuis les nœuds labélisés à ceux non labélisés,
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étape par étape en utilisant la règle crédibiliste de propagation de labels proposée.

Les performances des approches proposées sont évaluées en utilisant les graphes de

référence des ensembles de données et des graphes générés. Nos résultats expérimentaux

illustrent l’efficacité des algorithmes de classification proposés et des méthodes de

détection de communautés.
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Introduction

Malgré des études approfondies sur la détection de communautés pour regrouper et

gérer efficacement divers types d’ensembles de données sous forme de graphes, cela

reste encore une tâche très difficile. Les principaux défis pour développer un moteur de

clustering efficace pour les graphes sont discutés ci-dessous :

Le recouvrement Dans de nombreux algorithmes de classification, tels que C-Means

(CM) et les approches de classification hiérarchique, un objet est uniquement affecté à

une seul classe (custer). Toutefois, dans des cas réels, il n’est pas toujours clair qu’un

objet appartienne à une classe plutôt qu’ue autre. Les valeurs d’adhésion floue sont

adoptées dans Fuzzy C-Means (FCM) pour décrire l’imprécision de la classe des objets.

La composition d’un objet est en fait une probabilité de distribution sur le cadre de

discernement Ω. Cependant, il existe un certain nombre de problèmes qui ont déjà été

traités dans des partitions floues. Par exemple, il ne pourrait pas distinguer les valeurs

aberrantes des objets incertains en raison de l’utilisation de la distance relative lors du

calcul de l’appartenance floue. Supposons c = 2 (voir Figure 1). Les objets xk et xj

sont équidistants des deux classes et la composition dans chaque classe pour les deux

objets seront identiques (0.5), indépendamment de la valeur absolue de la distance de

xk à partir des deux centres de gravité (ainsi que des autres objets de l’ensemble des

données d’origine). Le problème est que cela peut créer des valeurs aberrantes (objets

bruités), loin mais équidistantes de la structure centrale des deux classes. Ces objets

peuvent néanmoins être donnés avec une égale appartenance aux deux classes, mais il

semble beaucoup plus naturel que ces objets aient une appartenance très faible à lune

ou l’autre des classes. Pour remédier à ce problème, d’autres méthodes de raisonnement

dincertitudes doivent être adoptées pour être une alternative de la théorie des ensembles

flous pour effectuer l’analyse de la classification. La théorie des fonctions de croyance

peut être un bon choix.

Différente de la théorie des probabilités et des ensembles flous, la théorie des fonc-

tions de croyance est définie sur un ensemble des disjonctions de Ω, le cadre de dis-

cernement. En conséquence, la partition obtenue par les fonctions de croyance permet

à chaque objet d’avoir une appartenance à plusieurs classes avec divers degrés, pou-

vant ainsi représenter le recouvrement entre les classes. L’ensemble vide peut être pris

en considération pour détecter des valeurs aberrantes. Par ailleurs, il est possible de

décrire le degré qu’un objet appartienne à une méta-classe (classe imprécise, la classe,

comprenant plus d’une classe spécifique) en exprimant nos connaissances sur l’ensemble

des disjonction de Ω. Dans ce travail, nous proposons différents algorithmes de classi-

fication dans le cadre des fonctions de croyance pour modéliser la structure incertaine

des réseaux analysés.
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Figure 1. Le problème des partitons floues.

Les prototypes multiples Pour les réseaux sociaux avec de bonnes structures de

communauté, le centre d’un groupe est susceptible d’être une personne, qui joue le

rôle de chef de file de la communauté. Autrement dit, l’un des membres du groupe est

mieux d’être sélectionné comme l’initiateur, plutôt que le centre de toutes les personnes.

Cependant, dans certains cas, la manière d’utiliser un seul nœud pour décrire une

communauté peut ne pas être suffisante. Pour illustrer cette limitation d’avoir un

seul prototype représentant une classe, nous utilisons deux structures communautaires

simples présentées dans la Figure 2.

●

●

●

●

●

●

●

●

●

●

a. Communauté 1 b. Communauté 2

Figure 2. Deux petite structures communautaires.
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La premièr communauté se compose de quatre membres tandis que la seconde en

a huit. On peut constater que, sur la communauté 1, il est déraisonnable de décrire la

structure du cluster en utilisant un des quatre nœuds du groupe, puisquaucun des quatre

nœuds ne pourrait être considéré en tant que représentant plus approprié que les trois

autres. Dans la communauté 2 de la Figure 2, deux membres (marquée par des carrés

jaunes) sur les huit sont égaux et sont raisonnables pour être sélectionnés en tant que

représentant de la communauté. Cela signifie que choisir l’un deux peut conduire ne pas

détecter l’ensemble complet de tous les nœuds représentatifs. À partir de ces exemples,

nous pouvons voir que pour certains réseaux, nous pouvons avoir besoin de plusieurs

membres plutôt qu’un seul à renvoyer comme prototype d’un groupe d’individus et ainsi

mieux saisir les différents aspects de la structure de la communauté. Dans ce travail,

nous proposons deux sortes de classification fournissant plusieurs prototypes, fondées

sur la structure relationnelle des données. Les prototypes représentatifs sont configurés

pour être les objets des ensembles de données d’origine. Ces modèles proposés peuvent

tre utilisés pour obtenir des partitions nettes, floues et crédales.

Les outliers Bien que la plupart des nœuds dans un graphe suivent une distribu-

tion commune dans une communauté, certains objets peuvent dévier significativement

du modèle. Les outliers (ou anomalies) font souvent référence à des objets dont les

caractéristiques aberrantes dévient significativement de la majorité des données. Ils

ne sont pas nécessairement solitaires, et ils pourraient avoir un lien négligeable avec

certaines communautés. Il est d’un grand intérêt de détecter ces valeurs aberrantes

dans les réseaux pour débruiter les données améliorant ainsi la qualité de la structure

de la communauté pour une analyse ultérieure. Trouver les valeurs aberrantes d’une

communauté est un problème important, mais na pas reçu suffisamment d’attention

dans le domaine de l’analyse des réseaux sociaux. Dans ce travail, certaines classes

sont spécialement conçues pour les valeurs aberrantes ou des données bruitées. Les

objets qui sont significativement différents des autres peuvent être regroupés dans la

classe des valeurs aberrantes.

L’information préalable Avec la disponibilité croissante des informations sur le

réseau, il y a une quantité significative de connaissances antérieures disponibles sur les

communautés dans les réseaux sociaux. Spécifiquement, la vrai classe d’appartenance

de certains nœuds peut être connue à l’avance. Par exemple, dans un réseau d’une

communauté de coauteurs, il peut être possible d’étiqueter un petit sous-ensemble de

chercheurs en fonction de leurs intérêts de recherche. Dans une application de réseau

social, il peut être souhaitable d’étiqueter certains nœuds selon leur affinité à certains

produits par exemple. Utiliser ce type d’information pour améliorer les résultats de la

détection de communauté est un problème important dans le champ de l’analyse des

données d’un réseau social. Dans ce travail, une approche de détection de communautés
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semi-supervisée, qui peut tirer profit de la connaissance préalable disponible, est mise

en œuvre pour améliorer la précision des modèles de détection de la communauté l’aide

de quelques échantillons marqués.

Les contributions Le but de cette étude est donc d’améliorer l’analyse de la classifi-

cation des réseaux complexes en trouvant une représentation appropriée mathématique

des données issues de graphes, et le développement efficace dalgorithmes de classifi-

cation sur la base des représentations de données correspondantes. Nous traitons les

données issues de graphes sous forme de données relationnelles, qui peuvent impli-

quer des relations entre paires de nœuds. Ce modèle fondé sur la relation offre une

plus grande flexibilité et efficacité que le traditionnel modèle vectoriel pour représenter

plusieurs groupes de données qui pourraient décrire les données analysées définies à

partir des différentes perspectives. Foné sur les fonctions d’objectif, les modèles de

classification crédibiliste et des algorithmes d’optimisation alternatifs, nous proposons

différents modèles de classification des données relationnelles qui permettent d’améliorer

les performances de classification tout en fournissant une meilleure compréhension de

la structure interne des ensembles de données.

Nous avons ainsi :

• Proposer une nouvelle approche de classification des données relationnelles ap-

pelée MECM qui caractérise chaque groupe en utilisant un objet représentatif.

L’approche proposée peut fournir des partitions crédales des donnée uniquement

à partir des dissimilarité entre les données. La mesure de dissimilarité peut ne

pas ê tre une métrique. Elle est simplement intuitive. Ainsi, elle élargit la portée

d’applications des partitions credales. De plus, certaines questions pratiques sur la

façon d’appliquer la méthode dans la détection de communautés à des problèmes

tels que la façon de déterminer les premiers prototypes et le nombre optimal

de communautés dans le sens de partition credale sont discutées. Cela rend

l’approche appropriée pour les partitions de graphes et nous donne une meilleure

compréhension des réseaux analysés, en particulier pour les structures incertaines

et imprécises.

• Proposer une approche de détection de communautés fondée sur les similarités

permettant d’obtenir des prototypes multiples nommée Similarity-based Mul-

tiple Prototype (SMP). Bien qu’il existe des méthodes de classification multi-

prototypes pour les ensembles de données classiques, il y a peu d’approches

adaptées aux problèmes de détection de communautés. Une nouvelle approche de

représentation des communautés en utilisant de multiples prototypes est proposée

ici. De plus, le concept de pondération par prototype est présenté, qui décrit le

degré de représentativité du membre correspondant de son groupe. À laide du

poids du prototype, l’approche SMP fournit une description plus détaillée et plus



x

efficace pour chaque communauté. Cela nous permet d’acquérir une connaissance

approfondie de la structure interne de la communauté, qui est également très im-

portant et utile pour l’analyse du réseau. Dans l’approche proposée de détection

de la communautés, différents types de mesures de similarité et de centralité

pourraient être adoptées, ce qui est plus pratique et flexible dans des applications

réelles.

• Proposer l’approche SMP étendue dans le cadre des fonctions de croyance. Deux

versions de l’approche de classification Evidential C-Medoids (ECMdd), nommées

sECMdd et wECMdd sont proposées pour produire une partition credale opti-

male, en utilisant un seul médöıde et de multiples medöıdes pondérés respective-

ment pour représenter une classe. Comme la méthode MECM, l’approche ECMdd

est dédiée aux ensembles de données de proximités. Cependant, l’approche ECMD

permet de plus à chaque classe d’être décrite par plus dun motif représentatif.

Cela permet au modèle de représenter des structures de classes complexes. Les

poids des prototypes sont incorporés dans la fonction objective du modè de clas-

sification, et les deux fonctions de masse représentant les poids d’adhésion et de

prototypes sont mises à jour alternativement dans le processus d’optimisation.

• Proposer une approche de classification semi-supervisée en utilisant une nouvelle

approche nommée Evidential Label Propagation strategy (SELP) pour les ensem-

bles de données sous forme de graphes.LE principal avantage de l’approche SELP

est qu’elle permet de tenir compte de certaines connaissens a priori afin de guider

le processus de détection de communautés. Ces informations a priori sur les com-

munautés sont représentées par des labels exprimées sous la forme de fonctions de

masse initiales. Ainsi une nouvelle règle de propagation de labels crédibilistes est

proposée pour propager les labels initiaux aux données aux labels inconnus. Les

valeurs aberrantes peuvent être identifiées par l’ensemble vide. L’approche pour-

rait aussi être appliquée sur des ensembles de données classiques non-sphériques.
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Abbreviations and notations

In the following, a list as exhaustive as possible of abbreviations and notations used in

this thesis:

Clustering

• X: the set of samples in the analyzed data set;

• xi or xi: denote the samples in the analyzed data set. To make it clear, for object

data sets, we use xi to represent the sample, while xi for relational data sets;

• c: the number of classes/communities in the analyzed data set;

• n: the number of objects in the analyzed data set;

• dij = d(xi, xj): denotes the dissimilarity between objects xi and xj (or nodes ni

and nj).

• dij : For crisp or fuzzy clustering algorithms, it is the dissimilarity between object

xi and class ωj ; While for credal partitions, it is the dissimilarity between object

xi and class with focal set Aj ;

• sij : the similarity between objects xi and class ωj in SMP algorithm;

• mij ,m ({ωj}): is the mass membership of object xi on the focal set Aj ;

• mi: is the mass membership vector of object xi;

• uij : is the fuzzy membership of object xi on class ωj ;

• vj or vj : is the prototype of specific class ωj ; For object data sets, it is usually a

vector on the metric space, so we use the bolded variable vj . While for relational

data sets, vj is adopted.

• vj : is the prototype of the class that is associated with focal set Aj in ECM;

• Vrj : the prototype weight of object xj for class ωr in SMP algorithm;

• vΩ
k : the prototype of specific class Aj = {ωk} in sECMdd algorithm;

xxi
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• v2Ω

k : the prototype of the (imprecise or specific) class that associated with Ak in

sECMdd algorithm;

• v2Ω

ki : the prototype weight of object xi for the class that associated with Ak in

wECMdd algorithm;

Belief functions

• Ω: is the frame of discernment;

• S: is the number of sources;

• ω1, ω2, . . . , ωc: hypothesis in Ω; they are singletons;

• ωij , {ωi, ωj}: the compound focal set including ωi and ωj ;

• m, mj : is a mass function, m is a mass function defined on any frame of discern-

ment Ω; mj is the mass function provided by a source j;

Graph

• G(V,E): is the graph. V denotes the set of n nodes, while E is the set of edges;

• n1, n2, · · · , nn: is the n nodes in the graph;

• sij : is the similarity between nodes ni and nj ;

• A: is the adjacent matrix;

• aij : is the elements in the adjacent matrix, indicating whether there is a direct

edge between nodes ni and nj in the graph;

• di: is the degree of node ni;

• Q: is the modularity of a graph with given community structure;

Semi-supervised community detection

• mx: the mass function for node nx;

• mx
j : the mass function for node nx according to the information provided by node

nj ;



1
Introduction

1.1 Overview

With the development of computer and Internet technologies, networks are everywhere

in our common life. Graph models are useful in describing and analyzing many different

kinds of relationships and interdependencies. In order to have a better understanding of

organizations and functions in real-world networked systems, the community structure

in the graph is a primary feature that should be taken into consideration. Commu-

nities, also called clusters or modules, are groups of nodes (vertices) which probably

share common properties and/or play similar roles within the graph. They can extract

specific structures from complex networks, and consequently community detection has

attracted considerable attention crossing many areas from physics, biology, and eco-

nomics to sociology, where systems are often represented as graphs. For instance, in

social networks, society offers a wide variety of possible group organizations like fami-

lies, working and friendship circles, villages, towns, nation and so on. In protein-protein

networks, communities are likely to group proteins having the same specific function

with the cell. In the co-authorship network, scholars dealing with the same or related

topics may form a community.

Community detection is in fact a clustering problem on graphs. Clustering, also

called unsupervised learning, is an essential and frequently performed task in pat-

tern recognition for exploring underlying structures of data sets. The goal of cluster-

ing is to partition a set of objects X = {x1, x2, · · · , xn} into c (small value) groups

Ω = {ω1, ω2, · · · , ωc} in such a way that objects in the same cluster are as similar as

possible while objects in different clusters are as dissimilar as possible. To measure

the similarities (or dissimilarities), the patterns are described by either object data

or relational data. Object data are described explicitly by a p-dimensional vector.

For relational data, the available information arises from the pairwise similarities or

dissimilarities, which are usually stored in an n × n matrix named the similarity (or

dissimilarity) matrix. Relational clustering is more general in the sense that it is appli-

cable no matter whether the objects to be clustered could be represented by numerical

features or not. Even if the object could be represented by a feature vector, in relational

clustering, more kinds of dissimilarity measures could be considered according to the

characters of the analyzed data sets.

1
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Until now, various clustering approaches have been proposed for different appli-

cations. A clustering algorithm is usually formulated by taking the requirements of

the particular task and the nature of the data set to be handled into consideration.

Current graph clustering approaches for networks mainly partition nodes based on the

topological graph structure. In real applications of community detection, there are lots

of uncertain or imprecise information in the data sets. For example, the boundary

between clusters usually overlaps, and the links between some nodes may be imper-

fect. To improve the community detection results, new clustering methods should be

developed to effectively take advantage of the imprecise information and deal with the

uncertain parts of the data set carefully.

1.2 Motivations

Despite extensive studies on community detection, to effectively cluster and handle

various kinds of graph data sets still remains as a very challenging task. Some of

the main challenges to develop an effective clustering engine for graph data sets are

discussed as follows:

Overlap In many clustering algorithms, such as C-Means (CM) and hierarchical

clustering, one object is only assigned to a single cluster. However, in real cases, one

pattern might span multiple classes; in other words, more than one theme or topic

could be used to describe the object.

Fuzzy membership values are adopted in Fuzzy C-Means (FCM) to describe the

uncertainty of the objects’ class. The membership of an object is in fact a probability

distribution over the frame of discernment Ω. However, there are some problems that

have already been found in fuzzy partitions. For example, it could not distinguish

outliers from uncertain objects due to the use of relative distance when calculating the

fuzzy membership. Suppose c = 2 (see Figure 1.1). Both xk and xj are equidistant

from the two classes, the membership of each cluster for the two objects will be the

same (0.5), regardless of the large absolute value of the distance of xk from the two

centroids (as well as from the other objects in the original data set). The problem this

creates is that outliers (noise objects), far but equidistant from the central structure of

the two clusters, can nonetheless be given equal membership in both, when it seems far

more natural that such objects should be given very low (or even no) membership in

either cluster. To overcome this problem, other uncertainty reasoning methods should

be adopted to be an alternative of fuzzy set theory to perform the task of clustering

analysis. The theory of belief functions can be a good choice.
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Figure 1.1: The problem of fuzzy partitions.

Different from the probability theory and fuzzy membership, belief functions are

defined on the power set of the frame Ω. As a result, the partition provided by belief

functions allows each pattern to belong to not only specific classes but also imprecise

ones (a disjunctive combination of more than one single class) with various degrees so

that overlap between clusters is able to be captured. The empty set can be considered

for detecting outliers. In this work, we suggest different clustering algorithms in the

framework of belief functions to capture the uncertain/overlap structure of the analyzed

data sets.

Multiple prototypes For social networks with good community structures, the cen-

ter of one group is likely to be one person, who plays the leader role in the community.

That is to say, one of the members in the group is better to be selected as the seed,

rather than the center of all the objects. However, in some cases the way of using

only one node to describe a community may not be sufficient enough. To illustrate the

limitation of one-prototype community representation, we use two simple community

structures shown in Figure 1.2. The first community consists of four members while

the second has eight. It can be seen that in the left community, it is unreasonable

to describe the cluster structure using any one of the four nodes in the group, since

no one of the four nodes could be viewed as a more proper representative than the

other three. In the right community in Figure 1.2, two members (marked with yellow

squares) out of the eight are equal reasonable to be selected as the representative of

the community. This means choosing any one of them may fail to detect the complete

set of all the candidate representative nodes. From these examples, we can see that for

some networks, in order to capture various aspects of the community structures, we

may need more members rather than one to be referred as the prototypes of an indi-

vidual group. In this work, we suggest two kinds of multi-prototype based relational
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clustering algorithms, where the representative prototypes are set to be the objects in

the original data sets. These proposed models could be used to get hard, fuzzy and

credal partitions.

●

●

●

●

●

●

●

●

●

●

a. Community 1 b. Community 2

Figure 1.2: Two small community’s structures.

Outliers Although most of the nodes in a graph follow a common community dis-

tribution pattern, some certain objects may deviate significantly from the pattern.

Outliers (or anomalies) often refer to aberrant objects whose characteristics deviate

significantly from the majority of the data (Gao et al., 2010). They are not necessarily

solitary, and they might have some negligible connection with some communities (Cao

et al., 2013). It is of great value to detect such outliers in networks for de-noising data

thereby improving the quality of the detected community structure and also for further

analysis. Finding community outliers is an important problem but has not received

enough attention in the field of social network analysis. In this work, some classes

are specially designed for outliers or noisy data. The objects which are significantly

different from other samples can be clustered into the outlier class.

Prior information With the growing availability of network information, there is

a significant amount of prior knowledge available about the communities in social,

communication and several other networks (Subbian et al., 2013). Specifically, the true

community assignments of certain nodes may be known in advance. For instance, in a

co-authorship community network, it may be possible to label a small subset of scholars

based on their research interests. In a social network application, it may be desirable
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to label some nodes according to their affinity to some products. How to use such kind

of information to improve the community detection results is an important problem in

the filed of network data analysis. In this work, a semi-supervised community detection

approach, which can take advantage the available prior knowledge, is put forward to

improve the accuracy of community detection models using few labeled samples.

1.3 Objectives

The goal of this study is to improve clustering analysis of complex networks by find-

ing a suitable mathematical representation of the graph data, and developing effec-

tive clustering algorithms based on the corresponding data representations. We treat

the graph data as relational data, which may involve pairwise relationships of nodes.

This relation-based model provides a more flexible and effective way than the tradi-

tional vector-based model for representing multiple groups of data which could describe

the analyzed data set from different perspectives. Based on the solid foundation of

objective-function based belief clustering model and the alternating optimization algo-

rithm, our proposed belief relational clustering model aim to achieve improvement in

clustering performance while gain a better understanding of the internal structure of

the data sets.

1.4 Contributions

In the process of achieving our objective, we have made several contributions to the

field of clustering and community detection as follows:

Belief relational clustering A new belief relational clustering approach named

MECM which characterizes each cluster using one representative object is proposed.

The proposed approach could provide credal partitions for data sets with only known

dissimilarities. The dissimilarity measure could be neither symmetric nor fulfilling any

metric requirements. It is only required to be of intuitive meaning. Thus it expands

application scope of credal partitions. In addition, some practical issues about how

to apply the method into community detection problems such as how to determine

the initial prototypes and the optimum community number in the sense of credal par-

titions are discussed. This makes the approach appropriate for graph partitions and

gives us a better understanding of the analysed networks, especially for the uncertain

and imprecise structures.

Similarity-based multiple prototype community detection A Similarity-based

Multiple Prototype (SMP) community detection approach is proposed. Although there

are some multi-prototype clustering methods for the classical data sets, there is little
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such work for community detection problems. Here a new community representation

mechanism using multiple prototypes is proposed. Moreover, the concept of prototype

weights is presented, which describes the degree of representativeness of a member

in its own group. With the help of prototype weights, SMP provides more sufficient

description for each individual community. This enables us to gain a deep insight into

the internal structure of a community, which we believe is also very important and

useful for network analysis. In the proposed community detection approach, different

kinds of similarity and centrality measures could be adopted, which makes it more

practical and flexible in real applications.

Evidential multi-prototype clustering The SMP algorithm is extended in the

framework of belief functions. The Evidential C-Medoids (ECMdd) clustering algo-

rithm which can utilize multiple weighted medoids to represent a class is proposed to

produce the optimal credal partition. Like MECM, ECMdd is for proximity data sets.

However, ECMdd allows each class to be described by more than one representative

pattern. This enables the model to capture complex class structure. The prototype

weights are incorporated into the objective function of the clustering model, and both

the mass membership and prototype weights are updated alternately in the optimiza-

tion process.

Semi-supervised evidential community detection A Semi-supervised clustering

approach using a new Evidential Label Propagation strategy (SELP) is proposed for

graph data sets. The main advantage of SELP is that it can take limited supervised

knowledge to guide the detection process. The prior information of community labels

is expressed in the form of mass functions initially. Then a new evidential label prop-

agation rule is adopted to propagate the labels from labeled data to unlabeled ones.

The communities can be identified as well as the outliers. The approach could also be

applied in non-spherical classical data sets.

1.5 Structure of the thesis

The thesis is organized in the following six chapters:

In Chapter 2, some related preliminary knowledge, including the theory of belief func-

tions and other uncertainty theories, some classical clustering and community detection

algorithms, the basic concepts of semi-supervised learning, will be introduced.

In Chapter 3, the belief relational clustering, MECM, will be presented. The dissim-

ilarity between samples and classes (specific classes and imprecise classes) is defined,

and then the objective function is given. The strategy for minimizing the cost function



1.5. Structure of the thesis 7

is described. Moreover, several problems about the application of MECM on graph

data sets are discussed.

Chapter 4 and Chapter 5 are about two multi-prototype based community detection

approaches. The difference between the proposed two methods is that the former is for

hard and fuzzy partitions, while the latter is for credal partitions. The multi-prototype

representativeness mechanism in both methods will be described respectively.

Chapter 6 will discuss about how to utilize the limited supervised information when

performing the task of community detection. The method for modeling the available

prior knowledge and the strategy for prorogating labels are introduced in the frame-

work of belief functions.

Finally, conclusions are drawn and some perspectives of this thesis are presented in

Chapter 7.
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2
Background

2.1 Overview

Due to the importance of clustering in various tasks of exploratory data mining, such as

community discovery in social network analysis, distinguish between different types of

tissue and blood in three-dimensional medical images, gene expression data analysis in

bioinformatics, grouping of shopping items in market basket analysis, spatial database

applications and so on, considerable efforts have been made on the development of

clustering algorithms by scholars or engineers from multiple disciplines. Common open

issues in clustering analysis including how to determine the number of clusters, robust-

ness and scalability, together with additional challenges in clustering of some specific

types of data sets, such as the problem of high-dimensionality for text data, impre-

cise and uncertain data, the difficulty of taking use of the available prior background

knowledge, have been extensively investigated in the literature. Instead of discussing

general issues and providing an exhaustive survey of various clustering approaches,

here we concentrate specially on issues and clustering approaches that are related to

community detection problems (specially partitioning-based clustering).

Specifically, the review of some related background knowledge in this chapter con-

tains the following four components:

Belief function theory and other uncertainty theories

Among the variety of mathematical frameworks for modeling and managing uncertainty,

probability theory is the predominant one and is very widely-applied. Other frameworks

include fuzzy set theory (Zadeh, 1965), possibility theory (Dubois and Prade, 1988),

rough set theory (Pawlak, 1982), and belief function theory (Shafer, 1976) – the model

adopted in this thesis. The reason why there are multiple frameworks is that there are

different types of uncertainty.

Generally, there are two kinds of uncertainty. One refers to epistemic uncertainty

because it corresponds to beliefs held by an agent about the world. The other is aleatory

uncertainty which is related to randomness and chance. Probability theory could only

deal with the latter one. This former type of uncertainty is the result of ignorance rather

than randomness. The Bayesian view is that ignorance can be adequately represented

using probability theory by applying the principle of indifference, which assigns equal

9
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probabilities to all possibilities. Consequently, equiprobability handles both equiprob-

able hypotheses and ignorant sources. In contrast, belief function theory distinguishes

between these types of uncertainty and thus makes ignorance explicit. There are other

types of uncertainty (e.g., vagueness of natural language which can be described by

fuzzy sets) but these are not considered in this thesis. Based on the review study of the

different uncertainty theories, we will see the need of the introduction of belief function

theory to effectively deal with the uncertainty information.

Clustering methods

This is the core technique in unsupervised data learning. Among the existing ap-

proaches to clustering, the objective function-driven or prototype-based clustering such

as c-means and Gaussian mixture modeling is one of the most widely applied paradigms

in statistical pattern recognition. These methods are based on a fundamentally very

simple, but nevertheless very effective idea, namely to describe the data under consid-

eration by a set of prototypes. They capture the characteristics of the data distribution

(like location, size, and shape), and classify the data set based on the similarities (or

dissimilarities) of the objects to their prototypes (Borgelt, 2006). Most of the proposed

community detection approaches in this thesis belong to the family of prototype-based

clustering. Thus we will review and compare some prototype-based clustering algo-

rithms handling uncertainty.

Classical community detection algorithms

The current literature on the community identification problem and other closely re-

lated problems will also be surveyed in this section. These methods are used to compare

in the conducted experiments in this thesis.

Semi-supervised learning

Semi-Supervised Learning (SSL) has grown into a large research area within machine

learning. Unlike unsupervised learning, SSL could take advantage of the available prior

information. But the supervised information is limited compared with the traditional

supervised learning scheme. We will present the principle of SSL, and give a literature

review of semi-supervised learning algorithms. Based on the review study of SSL,

we then discuss the significance to introduce a semi-supervised community detection

approach for graph data sets using the given labels of some (limited) individuals.

2.2 The theory of belief functions

The theory of belief functions is a mathematical theory that generalizes the the theory

of probabilities by giving up the additivity constraint. As mentioned before, probability
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theory could not distinguish equally probable events from the case of ignorance. In the

theory of belief functions, uncertainty, incompleteness and ignorance are well modeled

differently. In this theory, justified degrees of support are assessed according to an

evidential corpus. Evidential corpus is the set of all evidential pieces of evidence held

by a source that justifies degrees of support assigned to some subsets.

Let Ω = {ω1, ω2, . . . , ωc} be the finite domain of reference, called the discernment

frame. The c elements in Ω are non empty and mutually exclusive hypotheses related to

a given problem. The belief functions are defined on the power set 2Ω = {A : A ⊆ Ω}.
The function m : 2Ω → [0, 1] is said to be the Basic Belief Assignment (bba) on 2Ω, if

it satisfies: ∑
A⊆Ω

m(A) = 1. (2.1)

Every A ∈ 2Ω such that m(A) > 0 is called a focal element. The difference with

probability models is that masses can be given to any subsets of Ω instead of only to

the atomic element of Ω. The credibility and plausibility functions are defined as in

Eqs. (2.2) and (2.3) respectively:

Bel(A) =
∑

B⊆A,B 6=∅

m(B), ∀A ⊆ Ω, (2.2)

Pl(A) =
∑

B∩A6=∅

m(B), ∀A ⊆ Ω. (2.3)

Each quantity Bel(A) measures the total support given to A, while Pl(A) represents

potential amount of support to A. Functions Bel and Pl are linked by the following

relation:

Pl(A) = 1−m(∅)− Bel(A), (2.4)

where A denotes the complement of A in Ω. Some particular mass functions will be

introduced in the following.

A categorical mass function is a normalized mass function which has a unique focal

element A?. This kind of mass functions can be defined as:

m(A) =

1 if A = A∗ ⊂ Ω

0 otherwise.
(2.5)

A vacuous mass function is a particular categorical mass function focused on Ω. It

is a special kind of categorical mass functions with a unique focal element Ω. This type

of mass functions is defined as follows:

m(A) =

1 if A = Ω

0 otherwise.
(2.6)
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Vacuous mass function emphasizes the case of total ignorance.

A Bayesian mass function is a mass function which all focal elements are elemen-

tary hypotheses, i.e. the focal elements are all singletons. It is defined as follows:

m(A) =

a ∈ [0, 1] if |A| = 1

0 otherwise.
(2.7)

As all focal elements are single points, this mass function is a probability distribution

over frame Ω. Specially, if a Bayesian mass function is categorical, it describes that

there is no uncertainty at all and we are completely sure about the state of the concerned

variable.

When a source of evidence is not completely reliable, a discounting operation pro-

posed by Shafer (1976) and justified by Smets (1993) can be applied to the associated

bba. Suppose the reliability degree of mass function m is represented by α ∈ [0, 1],

then the discounting operation is given by:

m
′
(A) =

α×m(A) ∀A ⊂ Θ,

1− α+ α ∗m(Ω) if A = Ω.
(2.8)

If α = 1, the evidence is completely reliable and the bba will remain unchanged. On

the contrary, if α = 0, the evidence is completely unreliable, and we have m(Ω) = 1.

This is the so-called vacuous belief function representing total ignorance.

A belief function on the credal level can be transformed into a probability function

by Smets method (Smets, 2005). In this algorithm, each mass of belief m(A) is equally

distributed among the elements of A. This leads to the concept of pignistic probability,

BetP, defined by

BetP(ωi) =
∑

ωi∈A⊆Ω

m(A)

|A|(1−m(∅))
, (2.9)

where |A| is the number of elements of Ω in A. Pignistic probabilities, which is a

probability distribution over the frame Ω, can easily help us make a decision. In fact,

belief functions provide us many decision-making techniques not only in the form of

probability measures. For instance, a pessimistic decision can be made by maximizing

the credibility function, while maximizing the plausibility function could provide an

optimistic one (Martin and Quidu, 2008). Another criterion (Appriou’s rule) (Martin

and Quidu, 2008) considers the plausibility functions and consists in attributing the

class Aj for object i if

Aj = arg max
X⊆Ω
{mi(X)Pli(X)}, (2.10)

where

mi(X) = KiλX

(
1

|X|r

)
. (2.11)
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In Eq. (2.10) mi(X) is a weight on Pli(X), and r is a parameter in [0, 1] allowing a

decision from a simple class (r = 1) until the total ignorance Ω (r = 0). The value λX

allows the integration of the lack of knowledge on one of the focal sets X ⊆ Ω, and it

can be set to be 1 simply. Coefficient Ki is the normalization factor to constrain the

mass to be in the closed world:

Ki =
1

1−mi(∅)
. (2.12)

How to combine efficiently several bbas coming from distinct sources is a major

information fusion problem in the belief function framework. Many rules have been

proposed for such a task. Here we just briefly recall how some most popular rules are

mathematically defined.

When information sources reliable, the used fusion operators can be based on the

conjunctive combination. If bbas mj , j = 1, 2, · · · , S describing S distinct items of

evidence on Ω, the included result of the conjunctive rule (Smets and Kennes, 1994) is

defined as

mconj(A) = ( ∩©j=1,··· ,Smj)(X) =
∑

Y1∩···∩YS=A

S∏
j=1

mj(Yj), (2.13)

where mj(Yj) is the mass allocated to Yj by expert j. To apply this rule, the sources

are assumed reliable and cognitively independent.

Another kind of conjunctive combination is Dempster’s rule (Dempster, 1967). As-

suming that mconj(∅) 6= 1, the result of the combination by Dempster’s rule is

mDS(A) =


0 if A = ∅,
mconj(A)

1−mconj(∅)
otherwise.

(2.14)

The item

κ , mconj(∅) =
∑

Y1∩···∩YS=∅

S∏
j=1

mj(Yj)

is generally called Dempster’s degree of conflict of the combination or the inconsistency

of the combination.

2.3 Some links with other uncertainty theories

In this section some other uncertainty theories (including possibility theory, fuzzy set

theory, and rough set theory) and the links with belief function theory are presented.
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2.3.1 Possibility theory

Possibility theory is another popular choice for representing uncertain information

(Dubois and Prade, 1988; Liu, 2006). At the semantic level, a basic function in possi-

bility theory is a possibility distribution denoted as π which assigns each possible world

in the frame of discernment Ω with a value in [0, 1] (or a set of graded values). From

a possibility distribution, two measures are derived, a possibility measure (demoted as

Π) and a necessity measure (denoted as N). The former estimates to what extent the

true event is believed to be in the subset and the latter evaluates the degree of necessity

that the subset is true. The relationships between π, Π, and N are as follows.

Π(A) = max ({π(ω)|ω ∈ Ω}) , N(A) = 1−Π(A). (2.15)

Π(2Ω) = 1, Π(∅) = 0. (2.16)

Π(A ∪B) = max (Π(A),Π(B)) , N(A ∩B) = min (N(A), N(B)) (2.17)

A belief function is called a consonant function if its focal elements are nested

(Shafer, 1976). That is, if A1, A2, · · · , An are focal elements then A1 ⊂ A2 ⊂ · · · ⊂ An.

Suppose the credibility function and plausibility function of the consonant bba are Bel

and Pl, we have

Bel(A ∩B) = min (Bel(A),Bel(B)) , Pl(A ∪B) = max (Pl(A),Pl(B)) . (2.18)

These two properties are exactly the requirements of necessity and possibility mea-

sures in possibility theory. Necessity and possibility measures are special cases of cred-

ibility and plausibility functions when the focal sets of bba are nested. The theory of

belief functions thus, in a sense, is more general than the theory of possibilities.

2.3.2 Fuzzy set theory

In mathematics, fuzzy sets are sets whose elements have degrees of membership. In

classical set theory, the membership of an element in a set is either 1 or 0 (either belongs

or does not belong to the set). By contrast, fuzzy set theory permits the gradual

assessment of the membership of elements in a set with the help of a membership

function valued in the interval [0, 1]. The classical bivalent sets are usually called crisp

(hard) sets. Fuzzy sets generalize classical sets, since the indicator functions of classical

sets are special cases of the membership functions of fuzzy sets, if the latter only take

values 0 or 1.

Fuzzy sets represent vagueness of concepts as typically expressed by natural lan-

guage, while belief functions adequately model uncertainty induced by partial evidence.

They are not competing but complementary theories that model different aspects of

imperfect information.
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2.3.3 Rough set theory

In computer science, a rough set (Pawlak, 1982) is a formal approximation of an im-

precise concept or knowledge by available information or knowledge databases in terms

of a pair of sets which give the lower and the upper approximation of the original set.

Let Ω be a finite non-empty universe of discourse and R ⊆ Ω×Ω a binary equivalence

relation on Ω. Given an arbitrary set X ⊆ Ω, it may be impossible to describe X

precisely using the equivalence classes of R. In this case, one may characterize X by a

pair of lower and upper approximations:

R(X) = {x ∈ Ω | [x] ⊆ X} =
⋃
{[x] | [x] ⊆ X} , (2.19)

R(X) = {x ∈ Ω | [x] ∩X 6= ∅} =
⋃
{[x] | [x] ∩X 6= ∅} , (2.20)

where [x] is the R-equivalence class containing x. The lower approximation R(X) is

the union of all elementary sets which are subsets of X, and the upper approximation

R(X) is the union of all elementary sets which have a non-empty intersection with

X. It is equivalent to say that an element of Ω necessarily belongs to X if all of its

equivalent elements belong to X, whereas it possibly belongs to X if at least one of its

equivalent elements belongs to X. The pair
(
R(X), R(X)

)
is the representation of X

in the approximation space (U,R), or simply called the Pawlak rough set of X with

respect to (U,R).

Let P be a probability measure on
(

Ω/R, 2Ω/R
)

. The corresponding inner and

outer measures are defined by

P (X) = P (R (X)) , P (X) = P
(
R(X)

)
, ∀X ⊆ Ω. (2.21)

We can see that the theory of belief functions can be regarded as a particular case.

In fact, P can be regarded as the credibility function and P is the dual plausibility

function. The focal sets are the equivalence classes of R, and we have

m(F ) = P (F ), ∀F ∈ Ω/R. (2.22)

2.4 Clustering algorithms

Clustering, or unsupervised learning, has been widely studied in the data mining

and machine learning literature due to its numerous applications to information re-

trieval, climate, segmentation, and business (Grossman and Frieder, 2012; Clifton and

Lundquist, 2012; Dubey et al., 2013; Chen et al., 2012). The basic problem of cluster-

ing may be stated as follows (Aggarwal and Reddy, 2013): Given a set of data points,

partition them into a set of groups which are as similar as possible.

Clustering algorithms can be broadly divided into two groups: hierarchical and
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partitional. Hierarchical clustering algorithms recursively find nested clusters either

in agglomerative mode (starting with each data point in its own cluster and merging

the most similar pair of clusters successively to form a cluster hierarchy) or in divisive

(top-down) mode (starting with all the data points in one cluster and recursively divid-

ing each cluster into smaller clusters) (Jain, 2010). The most well-known hierarchical

algorithms are single-link and complete-link (Murtagh and Contreras, 2012). The re-

cent development of hierarchical clustering could be found in the work of Horng et al.

(2005); Dong et al. (2006); Zhang and Xu (2015); Maalel et al. (2014), et.al.

Compared to hierarchical clustering algorithms, partitional clustering algorithms

find all the clusters simultaneously as a partition of the data and do not impose a

hierarchical structure. The most popular and the simplest partitional algorithm is c-

means (Jain, 2010). The basic c-means algorithm has been extended in many different

ways. In original c-means, each data point is assigned to a single cluster (called hard

or crisp partition). To deal with the uncertainty or ambiguity of the membership

of objects, Dunn (1973) proposed fuzzy c-means and later Bezdek (1981) improved

it. Unlike c-means, in fuzzy c-means each data point can be a member of multiple

clusters with a membership value (fuzzy partition). In the past years many other

soft computing methodologies like possibility theory (Krishnapuram and Keller, 1993),

rough sets (Lingras and West, 2004), and shadowed sets (Mitra et al., 2010) have been

adopted to produce soft assignments in clustering.

Since partitional algorithms are preferred in pattern recognition due to the nature

of available data, our coverage here focuses on these algorithms, especially the c-means

type clustering. The following will provide a brief review of some soft prototype-based

clustering methods based on uncertainty theories.

Let X = {x1,x2, · · · ,xn} be a collection of vectors in Rp describing n objects, and

Ω = {ω1, ω2, · · · , ωc} be the frame of discernment of classes. The objective function of

c-means clustering is that:

JCM =
c∑
j=1

n∑
i=1

uijd
2
ij , (2.23)

where c is the number of clusters. As CM is based on crisp partitions, uij is either 0 or

1 depending whether xi is in cluster ωj . The value dij
1 is the distance between object

xi and class ωj , i.e. the distance between xi and class ωj ’ s prototype vector vj . The

algorithm proceeds by alternating between two steps

(1) Assignment update: Assign each observation to the cluster whose mean yields

the least within-cluster sum of squares. Mathematically, we have

uik = 1, and uij = 0, j 6= k, (2.24)

1To make the notations consistent with those in the original paper, in this chapter, dij is used to define
the distance between object xi and class ωj (or focal set Aj in ECM in Section 2.4.4).
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with

k = arg min {dil | l = 1, 2, · · · , c} . (2.25)

(2) Prototype update: Calculate the new means to be the centroids of the observa-

tions in the new clusters.

vk =

n∑
i=1

uβikxk

n∑
i=1

uβik

. (2.26)

Note here that uij in the equation is either 0 or 1.

2.4.1 Fuzzy clustering

Fuzzy C-Means (FCM) is a fuzzification of the classical crisp C-Means (CM) algorithm

(Dunn, 1973; Bezdek, 1981), and it looks for a best partition of the n patterns in X

by miming the objective function

JFCM =
c∑

k=1

uβikd
2
ik, (2.27)

subjects to the constraints

c∑
k=1

uik = 1,∀i ∈ {1, 2, · · · , n} (2.28)

and
n∑
i=1

uik > 0,∀k ∈ {1, 2, · · · , c}. (2.29)

In Eq. (2.27), β ∈ [1,∞) is the fuzzifier, uik ∈ [0, 1] is the membership of the ith pattern,

and dik is the distance between object xi and class ωk, i.e. the distance between xi

and class ωk’s center (prototype) vk. The objective function could be minimized using

an iterative algorithm obtained by the use of Lagrange multiplier method. The object

assignment and prototype selection are preformed by the following alternating update

steps:

(1) Assignment update:

uik =
d
−2/(β−1)
ik

c∑
j=1

d
−2/(β−1)
ij

. (2.30)
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(2) Prototype update: the new prototype of cluster k is set to be vk with

vk =

n∑
i=1

uβikxk

n∑
i=1

uβik

. (2.31)

2.4.2 Possibilistic clustering

FCM uses the probabilistic constraint (Eq. (2.28)) that the memberships of an object

across classes must sum to 1, which is responsible for the inability to detect noisy data

and outliers (Krishnapuram and Keller, 1993; Gabrys and Bargiela, 2000). In fact,

the fuzzy membership of xi for cluster ωk is based on the relative distance between

object xi and prototype vk, depending on not only dik but also the distances to other

classes. In the Possibilistic version of C-Means (PCM) type clustering introduced

by Krishnapuram and Keller (1993), the probabilistic constraint is dropped and the

objective function of PCM is

JPCM =

c∑
k=1

uβikd
2
ik +

c∑
k=1

ηk

n∑
i=1

(1− uik)β, (2.32)

where ηk is user-specified positive weight balancing the opposite effects of the two terms

in JPCM. As it can be seen, a penalty term is added in PCM to avoid the trivial solution

uij = 1,∀i, j ∈ {1, 2, · · · , n}. The alternative update procedure of PCM is similar to

FCM. The update equation for membership values is

uik =
1

1 + (d2
ik/ηi)

1/(β−1)
. (2.33)

As the added term is independent of class prototypes, the update formula for class

centers is the same as that in FCM.

2.4.3 Rough clustering

Lingras and West (2004) proposed an extension of CM algorithm using the theory of

rough set (RCM) and successfully applied it to web mining. In RCM, each cluster is

regarded as an interval or rough set. A rough set W is characterized by its lower and

upper approximations W and W respectively, with the following properties.

(1) Property 1. An object xi can be part of as most one lower approximation.

(2) Property 2. If xi ∈W of cluster W , then simultaneously xi ∈W .

(3) Property 3. If xi is not a part of any lower approximation, then it belongs to two

or more upper approximations.
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This permits overlaps between clusters. The patterns in the set W −W , WB (∈ W
but /∈ W ) locate in the boundary of class W (we call this meta approximation), and

those belonging to the shared boundary ares of more than one cluster are overlapping

objects. The Lingras and West (2004) rough cluster algorithm goes as follows:

Step 1: Initialization. Randomly partition each object to exactly one lower ap-

proximation. By Property 2, the pattern also belongs to the upper approximation of

the same cluster.

Step 2: Update of prototypes. Computation of the prototypes of classes is modified

in the rough framework by incorporating the concepts of upper and lower approxima-

tions. The means of the new class could be calculated by

vk =


wl

∑
xi∈ωk xi

|ωk|
+ wb

∑
xi∈ωBk

xi

|ωBk |
for ωBk 6= ∅,

wl

∑
xi∈ωk xi

|ωk|
otherwise,

(2.34)

where the parameters wl and wb define the importance of the lower approximation and

boundary area of the class, and | · | is the cardinality of the set indicating the number

of included elements.

Step 3: Update the partition. For a given object xi, determine its closest prototype

vh, i.e.

dih = d(xi,vh) = min
k=1,2,··· ,c

d(xi,vk). (2.35)

Object xi can be assigned to the upper approximation of class ωh, i.e. xi ∈ ωh.

The classes with prototypes that are also close to xi should be considered then.

Specially, given a threshold ε, those classes with centers that are not farther away from

xi than d(xi,vh) + ε are in the set

T = {t : d(xi,vk)− d(xi,vh) ≤ ε ∧ h 6= k}. (2.36)

If T = ∅, pattern xi is partitioned into ωh. Otherwise, xi is also close to at least one

other mean vt besides vh, and xi could be assigned to the upper approximation of ωt,

i.e. xi ∈ ωt,∀t ∈ T .

Step 4: Iterate Step 2 and Step 3 until some given criterion functions converge,

such as there are no more new assignments of objects.

It is observed that RCM clustering described above depends on the choice of the

three parameters wl, wb, and ε. Mitra (2004) proposed an evolutionary rough c-means

clustering algorithm, where genetic algorithms are employed to tune the threshold,

and relative importance of upper and lower approximations of the rough sets modeling

the clusters. Peters (2006) discussed various refinements of Lingras and West (2004)

original proposal. These included calculation of rough centroids and the use of ratios
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of distances as opposed to differences between distances similar to those used in the

rough set based Kohonen algorithm described in (Lingras and West, 2004).

Peters (2006) first pointed out that the algorithm as presented by Lingras and

West (2004) is numerical instable since there are data constellations where |ωk| = 0,

and suggested a solution by considering the three types of generated clusters by RCM,

such as those having objects (Mitra et al., 2006):

(1) in both the lower and meta approximations;

(2) only in lower approximation;

(3) only in meta approximation.

We can modify Eq. (2.34) accordingly as follows

vk =



wl

∑
xi∈ωk xi

|ωk|
+ wb

∑
xi∈ωBk

xi

|ωBk |
for ωBk 6= ∅ ∧ ωk 6= ∅,∑

xi∈ωk xi

|ωk|
for ωBk = ∅ ∧ ωk 6= ∅,∑

xi∈ωBk
xi

|ωBk |
for ωBk 6= ∅ ∧ ωk = ∅.

(2.37)

The properties of the set T were also investigated and interpreted in (Peters, 2006).

In Lingras and West (2004) RCM, the absolute distance d(xi,vk) − d(xi,vh) is con-

sidered to determine the elements of T . But in RCM proposed by Peters (2006), the

following relative distance measure instead of the absolute one was suggested

T
′

= {t :
d(xi,vk)

d(xi,vh)
≤ ε ∧ h 6= k}. (2.38)

2.4.4 Evidential clustering

Evidential c-means (Masson and Denoeux, 2008) is a direct generalization of FCM in the

framework of belief functions, and it is based on the credal partition first proposed by

Denœux and Masson (2004). The credal partition takes advantage of imprecise (meta)

classes to express partial knowledge of class memberships. The principle is different

from another belief clustering method put forward by Schubert (2004), in which conflict

between evidence is utilized to cluster the belief functions related to multiple events.

In ECM, the evidential membership of object xi = {xi1, xi2, · · · , xip} is represented by

a bba mi = (mi (Aj) : Aj ⊆ Ω) (i = 1, 2, · · · , n) over the given frame of discernment

Ω = {ω1, ω2, · · · , ωc}. The set F = {Aj | Aj ⊆ Ω,mi(Aj) > 0} contains all the focal

elements. The optimal credal partition M = (m1,m2, · · · ,mn) and the matrix V of

size (c × p) of cluster centres can be obtained by minimizing the following objective
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function:

JECM(M ,V ) =
n∑
i=1

∑
Aj⊆Ω,Aj 6=∅

|Aj |αmi(Aj)
βd2

ij +
n∑
i=1

δ2mi(∅)β (2.39)

constrained on ∑
Aj⊆Ω,Aj 6=∅

mi(Aj) +mi(∅) = 1, (2.40)

and

mi (Aj) ≥ 0, mi (∅) ≥ 0, (2.41)

where mi(Aj) , mij is the bba of xi given to the nonempty set Aj , while mi(∅) , mi∅
is the bba of xi assigned to the empty set. Parameter α is a tuning parameter allowing

to control the degree of penalization for subsets with high cardinality, parameter β is

a weighting exponent and δ is an adjustable threshold for detecting the outliers. Here

dij denotes the distance (generally Euclidean distance) between xi and the barycenter

(i.e. prototype, denoted by vj) associated with Aj :

d2
ij = ‖xi − vj‖2, (2.42)

where vj is defined mathematically by

vj =
1

|Aj |

c∑
h=1

shjvh, with shj =

1 if ωh ∈ Aj ,

0 else.
(2.43)

The notation vh is the geometrical center of points in cluster ωh. In fact the value of

dij reflects the distance between object xi and class Aj . Note that a “noise” class ∅ is

considered in ECM. If Aj = ∅, it is assumed that the distance between object xi and

class Aj is dij = δ. As we can see for credal partitions, the label of class ωj is not from

1 to c as usual, but ranges in 1, 2, · · · , f where f is the number of the focal elements

i.e. f = |F|. The update process with Euclidean distance is given by the following two

alternating steps.

(1) Assignment update:

mij =
|Aj |−α/(β−1)d

−2/(β−1)
ij∑

Ah 6=∅
|Ah|−α/(β−1)d

−2/(β−1)
ih + δ−2/(β−1)

,∀i, ∀j/Aj(6= ∅) ⊆ Ω (2.44)

mi∅ = 1−
∑
Aj 6=∅

mij , ∀i = 1, 2, · · · , n. (2.45)
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(2) Prototype update: The prototypes (centers) of the classes are given by the rows

of the matrix Vc×p, which is the solution of the following linear system:

HV = B, (2.46)

where H is a matrix of size (c× c) given by

Hlt =
∑
i

∑
Ahk{ωt,ωl}

|Ah|α−2mβ
ih, t, l = 1, 2, · · · , c, (2.47)

and B is a matrix of size (c× p) defined by

Blq =

n∑
i=1

xiq
∑
Ak3ωl

|Ak|α−1mβ
ik, l = 1, 2, · · · , c, q = 1, 2, · · · , p. (2.48)

There is another credal clustering algorithm named EVCLUS (Denœux and Masson,

2004), which is dedicated to proximity data. It does not use any explicit geometrical

model of the data, so that it is applicable to both metric and non-metric data. The

only required data consists of a n × n dissimilarity matrix ∆ = (δij) where δij repre-

sents the dissimilarity between objects xi and xj
2. Matrix ∆ is only supposed to be

symmetric with null diagonal elements. EVCLUS minimizes an error function inspired

from Sammon’s stress function (Sammon, 1969) defined as

JEVCLUS =
1

cons

∑
i<j

(akij + b− δij)2

δij
, (2.49)

where a and b are two coefficients, cons is a normalizing constant, and

kij =
∑

A∩B=∅

mi(A)mj(B) (2.50)

is the global conflict between the mass membership of objects xi and xj . This criterion

can be minimized with respect to M , a and b using an iterative procedure. To control

the model complexity, the author suggested to add to the stress function a penalization

term that favors “simple” and “informative” masses. The informativeness of each bba

mi could be measured through the following entropy measure:

E(mi) =
∑
A6=∅

log2

(
|A|

mi(A)

)
+mi(∅) log2

(
|Ω|
mi(∅)

)
. (2.51)

2For the clustering methods on relational data sets, the objects may not be vectors. Thus we do not use
the bold element in these contexts.
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This measure tends to be small when the mass is assigned to few focal sets with small

cardinality. Finally, the objective function to be minimized is:

JEVCLUS1 = JEVCLUS + λ
n∑
i=1

E(mi), (2.52)

where λ is the penalization coefficient balancing the two items.

The semi-supervised versions of ECM and EVCLUS have been developed by An-

toine et al. (2012) and Antoine et al. (2014) recently. The must-link and cannot-link

constraints are considered in the clustering task, and these additional information could

help us to improve the performance of the clustering algorithms. Other works about

clustering using belief functions could be found in the work of Liu et al. (2012, 2015),

where a modified version of ECM is designed; Masson and Denoeux (2011), where the

ensemble clustering in the framework of belief functions are presented; Masson and

Denœux (2009) where the relational version of ECM is proposed; Masson and Denœux

(2004) where the problem of clustering objects based on interval-valued dissimilarities

is tackled in the framework of the Dempster–Shafer theory of belief functions; Hariz

et al. (2006) where a new clustering technique handling uncertainty in the attribute

values of objects using belief functions is provided.

Recently, a new decision-directed clustering algorithm for relational data sets is put

forward based on the Evidential K Nearest-Neighbor (EK-NN) rule (Denœux et al.,

2015). Starting from an initial partition, the algorithm, called EK-NNclus, iteratively

reassigns objects to clusters using the EK-NN rule (Denoeux, 1995), until a stable

partition is obtained. After convergence, the cluster membership of each object is

described by a mass function which assigns a belief to each specific cluster and to the

whole set of clusters.

2.5 Community detection

In this section some background knowledge related to community detection problems

and social networks, including centrality and similarity measures, modularity and some

classical existing algorithms, will be presented.

2.5.1 Node centrality and similarity

Generally speaking, the person who is the center of a community in a social network has

the following characteristics: he has relation with most of the members of the group and

the relationships are stronger than usual; he may directly contact with other persons

who also play an important role in their own communities. Therefore, the centers of the

community should be set to the ones not only with high degree and weight strength,

but also with neighbors who also have high degree and strength. The degree of node is
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the number of its connections with other nodes, and the strength describes the levels of

these connections. Gao et al. (2013) proposed an evidential centrality measure, named

Evidential Semi-local Centrality (ESC), based on the theory of belief functions. In

the application of ESC, the degree and strength of each node are first expressed by

basic belief assignments (BBA), and then the fused importance is calculated using the

combination rule in the theory of belief functions. The higher the ESC value is, the more

important the node is. Gao et al. (2013) pointed out that it is more efficient than the

existing centrality measures such as Degree Centrality (DC), Betweenness Centrality

(BC) and Closeness Centrality (CC). The detail computation process of ESC can be

found in (Gao et al., 2013).

The similarity measures the closeness between any pair of nodes in the graph. In

(Zhou et al., 2009) several node similarity metrics on basis of local information were

described and the performance of different measures applied to community detection

was discussed. Here we give a brief description of some measures. Let G(V,E) be an

undirected network, where V is the set of n nodes and E is the sets of edges. Let

A = (aij)n×n denote the adjacency matrix, where aij = 1 represents that there is an

edge between nodes ni and nj . The degree of node ni, di, can be defined by

di =
n∑
j=1

aij . (2.53)

(1) Common neighbors. This measure is based on the idea that more common neigh-

bors the pair shares, more similar they are. Thus the similarity can be simply

proportional to the number of their shared neighbors:

sC(x, y) = |N(x) ∩N(y)|, (2.54)

where N(x) = {w ∈ V \ x : a(w, x) = 1} denotes the set of vertices that are

adjacent to x.

(2) Jaccard Index. This index was proposed by Jaccard over a hundred years ago, and

is defined as

sJ(x, y) =
|N(x) ∩N(y)|
|N(x) ∪N(y)|

. (2.55)

(3) Zhou-Lü-Zhang Index. Zhou et al. (2009) also proposed a new similarity metric

which is motivated by the resource allocation process:

sZ(x, y) =
∑

z∈N(x)∩N(y)

1

d(z)
, (2.56)

where d(z) is the degree of node z.
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(4) Pan’s Index. Pan et al. (2010) pointed out that the similarity measure proposed

by Zhou et al. (2009) may bring about inaccurate results for community detec-

tion on the networks as the metric can not differentiate the tightness relation

between a pair of nodes whether they are connected directly or indirectly. In or-

der to overcome this defect, in his presented new measure the similarity between

unconnected pair is simply set to be 0:

SP (x, y) =


∑

z∈N(x)∩N(y)

1

d(z)
, if x, y are connected,

0 otherwise.

(2.57)

(5) Signal similarity. A similarity measure considering the global graph structure is

put forward by Hu et al. (2008) based on signaling propagation in the network.

For a network with n nodes, every node is viewed as an excitable system which

can send, receive, and record signals. Initially, a node is selected as the source

of signal. Then the source node sends a signal to its neighbors and itself first.

Afterwards, the nodes with signals can also send signals to their neighbors and

themselves. After a certain T time steps, the amount distribution of signals over

the nodes could be viewed as the influence of the source node on the whole net-

work. Naturally, compared with nodes in other communities, the nodes of the

same community have more similar influence on the whole network. Therefore,

similarities between nodes could be obtained by calculating the differences be-

tween the amount of signals they have received.

2.5.2 Modularity

Modularity is a recently introduced quality measure for graph clusterings (Newman

and Girvan, 2004). By assumption, high values of modularity indicate good partitions.

However, the true maximum is out of reach, as it has been recently proved that modu-

larity optimization is an NP-complete problem (Brandes et al., 2006; Newman, 2006b).

Existing modularity maximization algorithms are all try to find fairly good approxi-

mations of the modularity maximum in a reasonable time, for example the algorithms

based on greedy techniques (Clauset et al., 2004; Newman, 2004; Blondel et al., 2008),

spectral optimization (White and Smyth, 2005), simulated annealing (Guimera et al.,

2004; Reichardt and Bornholdt, 2006) extremal optimization (Duch and Arenas, 2005)

and other optimization strategies (Amiri et al., 2013; Xu et al., 2007).

Newman and Girvan (2004) proposed a modularity measure, also called Q function,

which has been widely used. Let G(V,E,W ) be an undirected network, V is the set of

n nodes, E is the set of edges, and W is a N × N edge weight matrix with elements

wij , i, j = 1, 2, · · · , N . Given a hard partition with K groups U = (uik)N×K , where

uik is one if vertex i (i = 1, 2, · · · , N) belongs to the kth (k = 1, 2, · · · ,K) community,
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0 otherwise. Denote the K crisp subsets of vertices by {C1, C2, · · · , CK}, then the

modularity can be defined as (Fortunato, 2010):

Qh =
1

‖W ‖

K∑
k=1

∑
i,j∈Ck

(
wij −

kikj
‖W ‖

)
, (2.58)

where ‖W ‖ =

N∑
i,j=1

wij , ki =

N∑
j=1

wij . The node subsets {Vk, k = 1, 2, · · · , c} are

determined by the hard partition Un×c, but the role of U is somewhat obscured by this

form of modularity function. To reveal the role played by the partition U explicitly,

Havens et al. (2013) rewrote the equations in the form of U . Let k = (k1, k2, · · · , kn)T ,

B = W − kTk/ ‖W‖, then

Qh =
1

‖W ‖

c∑
k=1

n∑
i,j=1

(
wij −

kikj
‖W ‖

)
uikujk

=
1

‖W ‖

c∑
k=1

ukBu
T
k

= trace
(
UTBU

)
/‖W ‖, (2.59)

where uk = (u1k, u2k, · · · , unk)T.

Havens et al. (2013) pointed out that an advantage of Eq. (2.59) is that it is well

defined for any partition of the nodes not just crisp ones. The fuzzy modularity of U

was derived as

Qf = trace
(
UTBU

)
/‖W ‖, (2.60)

where U is the membership matrix and uik represents the membership of community

k for node ni. If uik is restricted in [0, 1], the fuzzy partition degrades to the hard one,

and so Qf equals to Qh at this time.

The Q measure has been proved highly effective in practice for community evalua-

tion, although Fortunato and Barthelemy (2007) claim resolution limits of modularity-

based division methods. Besides, some other problems of Newman’s modularity have

also been found (Chen et al., 2009). To solve these problems, some new modularity

measures have been proposed (Scripps et al., 2007; Chen et al., 2009). The Max–Min

(MM) modularity function proposed by Chen et al. (2009) is utilized as the index to

determine the optimal number of communities. MM modularity attempts to maximize

the number of edges within groups and minimize the number of unrelated pairs from

the user-defined unrelated pair set within groups at the same time:

QMM = Qmax −Qmin, (2.61)
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where Qmax is the Q modularity of the original graph, while Qmin is that of the com-

plement graph G
′
. Graph G

′
= (Y,E

′
) is created based on the user-defined criteriaM

which defines whether two disconnected nodes i, j are related (i, j) ∈ M or unrelated

(i, j) /∈ M, i.e. (i, j) ∈ E′ if (i, j) /∈ E and (i, j) /∈ M. The related pairs M can be

given by experts, or defined according to the original structure (Chen et al., 2009).

2.5.3 Some classical methods of community detection

Here we give a short presentation of some classical approaches for community detection.

MMO is a heuristic method through modularity optimization. This algorithm is

now known as the “Louvain method” because it was devised when the authors all were

at the University Catholique of Louvain. Here we use the name MMO to indicate

that it is based on Multi-level Modularity Optimization. The algorithm is divided into

two phases repeated iteratively. In the beginning of the first phase, the network is

thought to have N groups each of which consists of only one node. Then for each

node ni, it may be placed into a new community (it must be a community that one

of its neighbors belongs to) for which the gain of modularity is maximum. The first

phase is not completed until no further improvement of the modularity can be achieved.

The second phase consists in building a new network whose nodes are the communities

detected in the last phase, and then the first phase can be reapplied on this newly

created graph. Blondel et al. (2008) pointed out that MMO outperformed all other

known community detection methods in terms of computation time.

Newman (2006a) demonstrated that the modularity can be succinctly expressed as

a function of the eigenvalues and eigenvectors of the modularity matrix and derived

a competitive Leading Eigenvector (LE) algorithm for identifying communities. The

graph is first divided into two groups according to the signs of the elements of the

eigenvector corresponding to the most positive eigenvalue of the modularity matrix,

and then can be partitioned into more communities depending on the requirement

analogously. It is showed that LE works better than the standard spectral partitioning

method as it is unconstrained by the need to find groups of any particular size (Newman,

2006a) .

LPA is investigated by Raghavan et al. (2007) and it only uses the network structure

and requires neither optimization of a predefined objective function nor prior informa-

tion about the communities. It starts from an initial configuration where every node

has a unique label. Then at every step one node (in asynchronous version) or each

node (in a synchronous version) updates its current label to the label shared by the

maximum number of its neighbors. For node v, its new label can be updated to ωj

with

j = arg max
l
{|u : cu = l, u ∈ Nv|}, (2.62)

where |X| is the cardinality of set X, and Nv is the set of node v’s neighbors. When
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there are multiple maximal labels among the neighbors labels, the new label is picked

randomly from them. By this iterative process densely connected groups of nodes form

consensus on one label to form communities, and each node has more neighbors in its

own community than in any of other community. Communities are identified as a group

of nodes sharing the same label.

InfoMap uses the probability flow of random walks on a network as a proxy for

information flows in the real system, and graph clustering turns then into the cod-

ing problem of finding the partition that yields the minimum description length of an

infinite random walk (Fortunato, 2010). The network is optimally decomposed into

modules by compressing the information needed to describe of the process of informa-

tion diffusion across the graph (Rosvall and Bergstrom, 2008). The regularities in the

community structure and their relationships are reflected by a map.

The c-rank algorithm is proposed by Jiang et al. (2012), and it uses an alternate

iteration strategy like c-means. Firstly, the top–c nodes with the highest rank centrality

is selected as initial seeds. This initialization mechanism could overcome the problem

brought by the random initial centers in the application of prototype-based clustering

methods like c-means. Then the seeds and cluster labels are updated alternately by

using an iterative technique. As illustrated before, the way of selecting c representative

members with each to totally represent one individual community may be insufficient

to fully characterize a community. This in turn indicates that multiple nodes should

be utilized in order to capture each group in the network more accurately.

2.6 Semi-supervised learning

Unlike unsupervised clustering, the semi-supervised approach to clustering has a short

history (Zhu and Goldberg, 2009). As the name suggests, semi-supervised learning

is somewhere between unsupervised and supervised learning. The key point of semi-

supervised clustering is how to combine both sources of information, i.e. the dis-

similarities between data objects and the user-provide information. In fact, most semi-

supervised learning strategies are based on extending either unsupervised or supervised

learning to include additional information typical of the other learning paradigm (Zhu

and Goldberg, 2009).

There are two kinds of prior information. One is the pairwise constrains, and

the other is the labels of some individuals. This leads to two paradigms of semi-

supervised learning methods: constrained clustering and semi-supervised classification.

Constrained clustering is an extension to unsupervised clustering. The supervised in-

formation can be so-called must-link constraints, that two instances xi, xj must be in

the same class; and cannot-link constraints, that xi, xj cannot be in the same cluster.

For semi-supervised classification, it is also known as classification with labeled

and unlabeled data (or partially labeled data). This is an extension to the supervised
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classification problem. One typically assumes that there is much more unlabeled data

than labeled data. The supervised classifier does not work well since the limited amount

of training data. Semi-supervised could effectively take advantage of the unlabeled data

to help training the classifier and consequently improve the performance.

Recently, a few methods for semi-supervised clustering methods have been proposed

for the community detection task in graph data sets. A semi-supervised spin-glass

model that enables current community detection methods to incorporate background

knowledge in the forms of pairwise constraints was developed in (Eaton and Mansbach,

2012). The proposed method has addressed the problem for applications that impose

constraints on the acceptable solutions. Ma et al. (2010) developed a new commu-

nity detection algorithm, named the so-called SNMF-SS, by combining the Symmetric

Nonnegative Matrix Factorization (SNMF) and a semi-supervised clustering approach.

The conducted experiments have shown that the proposed approach performs well

particularly in the cases when community structure is obscure. Zhang (2013) put for-

ward another framework which could implicitly encodes the must-link and cannot-link

constraints by modifying the adjacency matrix of network. The author stated that

the proposed method enhances the interpretability of the detection results. All these

methods described above can improve the accuracy of community detection with prior

knowledge in the form of pairwise constrains.

Liu et al. (2014) considered the individual labels as prior knowledge, i.e. the true

community assignments of certain nodes are known in advance. In their work the

traditional LPA is adapted, allowing a few nodes to have true community labels, but the

rest nodes are unlabeled. In face the presented semi-supervised community detection

approach is an application of the semi-supervised classification algorithm proposed by

Wang and Zhang (2008) on graph data sets.

2.7 Summary

In this chapter, we provided some background knowledge on uncertainty theories, clus-

tering and community detection. We started this chapter by introducing the theory

of belief functions. Then we described the links between belief function theory and

other uncertainty theories. Next, we introduced some classical clustering algorithms,

especially some soft prototype-based clustering approaches. Finally, some concepts in

networks and classical community detection models were presented.

This chapter recalls some basics of belief function theory. In the sequel of this re-

port, uncertainty is modeled with the theory of belief functions. The following chapters

are the core of this thesis. The key idea is to find imprecise clustering algorithms for

relational data where only dissimilarities or similarities between objects are available.

Firstly we try to use one “most” representative object to describe each class and pro-

posed the median evidential c-means clustering (Chapter 3). To capture the cluster
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structure more effectively, in Chapters 4 and 5, we extend the class representativeness

mechanism so that each class could be described by more than one prototype. The clus-

tering models for hard/fuzzy partitions (Chapter 4) and credal partitions (Chapter 5)

are presented respectively. In Chapter 6 another semi-supervised community detection

method that can take advantage of the available prior information is proposed.
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Median evidential c-means

clustering

3.1 Overview

Median clustering is of great value for partitioning relational data. In this chapter, a

new prototype-based clustering method, called Median Evidential C-Means (MECM),

which is an extension of median c-means and median fuzzy c-means on the theoretical

framework of belief functions is proposed (Zhou et al., 2015c). The median variant

relaxes the restriction of a metric space embedding for the objects but constrains the

prototypes to be in the original data set. Due to these properties, MECM could be ap-

plied to graph clustering problems. A community detection scheme for networks based

on MECM is investigated. The credal partitions of graphs provided by MECM, which

are more refined than crisp and fuzzy ones, enable us to have a better understanding of

the graph structures. An initial prototype-selection scheme based on evidential semi-

centrality is presented to avoid local premature convergence. The concept of evidential

modularity function is introduced to choose the optimal number of communities. Fi-

nally, experiments in synthetic and real data sets illustrate the performance of MECM

and show its difference to other methods.

3.2 Median c-means and median fuzzy c-means

Median c-means is a variant of the traditional c-means method (Cottrell et al., 2006;

Geweniger et al., 2010) on relational data sets. We assume that n data objects in

X = {x1, x2, · · · , xn} are given. The dissimilarity between objects xi and xj is denoted

by dij = d(xi, xj). The objective function of MCM is similar to that in CM:

JMCM =
c∑
j=1

n∑
i=1

uijd
2
ij , (3.1)

where c is the number of clusters. As MCM is based on crisp partitions, uij is either 0

or 1 depending whether xi is in cluster ωj . The value dij is the dissimilarity between

object xi and cluster ωj (i = 1, 2, · · · , n, j = 1, 2, · · · , c), i.e. the dissimilarity between

31
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xj and prototype vj

dij = d(xi, vj). (3.2)

The dissimilarity measure is not assumed to be fulfilling any metric properties but

should reflect the common sense of dissimilarity. Due to these weak assumptions,

object xi itself may be a general choice and it does not have to live in a metric space

(Geweniger et al., 2010). The main difference between MCM and CM is that the

prototypes of MCM are restricted to the data objects.

Median fuzzy c-means (MFCM) merges MCM and the standard fuzzy c-means

(FCM). As in MCM, it requires the knowledge of the dissimilarity between data objects,

and the prototypes are restricted to the objects themselves (Geweniger et al., 2010).

MFCM also performs a two-step iteration scheme to minimize the cost function

JMFCM =

c∑
j=1

n∑
i=1

uβijd
2
ij , (3.3)

subject to the constrains

c∑
k=1

uik = 1,∀i ∈ {1, 2, · · · , n}, (3.4)

and
n∑
i=1

uik > 0,∀k ∈ {1, 2, · · · , c}, (3.5)

where each number uik ∈ [0, 1] is interpreted as a degree of membership of object i

to cluster ωk, and β > 1 is a weighting exponent that controls the fuzziness of the

partition. Again, MFCM is preformed by alternating update steps as for MCM:

• Assignment update:

uij =
d
−2/(β−1)
ij∑c

k=1 d
−2/(β−1)
ik

. (3.6)

• Prototype update: the new prototype of cluster ωj is set to be vj = xl∗ with

xl∗ = arg min
{vj :vj=xl(∈X)}

n∑
i=1

uβijd
2
ij . (3.7)

3.3 Median Evidential C-Means (MECM)

We introduce here median evidential c-means in order to take advantages of both me-

dian clustering and credal partitions. Like all the prototype-based clustering methods,

for MECM, an objective function should first be found to provide an immediate mea-
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sure of the quality of clustering results. Our goal then can be characterized as the

optimization of the objective function to get the best credal partition.

3.3.1 The objective function of MECM

To group n objects in X = {x1, x2, · · · , xn} into c clusters ω1, ω2, · · · , ωc, the credal

partition M = {m1,m2, · · · ,mn} defined on Ω = {ω1, ω2, · · · , ωc} is used to repre-

sent the class membership of objects, as in (Denœux and Masson, 2004; Masson and

Denoeux, 2008). The quantities mij = mi(Aj) (Aj 6= ∅, Aj ⊆ Ω) are determined by the

dissimilarity between object xi and focal set Aj which has to be defined first.

Let the prototype set of specific (singleton) clusters be V = {v1, v2, · · · , vc}, where

vi is the prototype vector of cluster ωi (i = 1, 2, · · · , c) and it must be one of the

n objects. If |Aj | = 1, i.e. Aj is associated with one of the singleton clusters in Ω

(suppose to be ωj with prototype vector vj), then the dissimilarity between xi and Aj

is defined by

d
2
ij = d2(xi, vj), (3.8)

where d(xi, xj) represents the given dissimilarity between objects xi and xj . When

|Aj | > 1, it represents an imprecise (meta) cluster. If object xi is to be partitioned

into a meta cluster, two conditions should be satisfied. One is the dissimilarity values

between xi and the included singleton classes’ prototypes are similar. The other is

the object should be close to the prototypes of all these specific clusters. The former

measures the degree of uncertainty, while the latter is to avoid the pitfall of partitioning

two data objects irrelevant to any included specific clusters into the corresponding

imprecise classes. The dissimilarity between xi and Aj can be defined as:

d
2
ij =

γ 1
|Aj |

∑
ωk∈Aj

d2(xi, vk) + ρij min{d(xi, vk) : ωk ∈ Aj}

γ + 1
, (3.9)

with

ρij =

∑
ωx,ωy∈Aj

√
(d (xi, vx)− d(xi, vy))

2

η
∑

ωx,ωy∈Aj
d(vx, vy)

. (3.10)

In Eq. (3.9), parameter γ weights the contribution of the dissimilarity of the objects

from the consisted specific clusters and it can be tuned according to the applications.

If γ = 0, the imprecise clusters only consider our uncertainty. Discounting factor ρij

reflects the degree of uncertainty. If ρij = 0, it means that all the dissimilarity values

between xi and the included specific classes in Aj are equal, and we are absolutely

uncertain about which cluster object xi is actually in. Parameter η (∈ [0, 1]) can be

tuned to control of the discounting degree. In credal partitions, we can distinguish

between “equal evidence” (uncertainty) and “ignorance”. The ignorance reflects the
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indistinguishability among clusters. In fact, imprecise classes take both uncertainty and

ignorance into consideration, and we can balance the two types of imprecise information

by adjusting γ. Therefore, the dissimilarity between xi and Aj(Aj 6= ∅, Aj ⊆ Ω), dij ,

can be calculated by

d
2
ij =


d2(xi, vj) |Aj | = 1,

γ 1
|Aj |

∑
ωk∈Aj

d2(xi, vk) + ρij min{d(xi, vk) : ωk ∈ Aj}

γ + 1
|Aj | > 1

. (3.11)

Like ECM, we propose to look for the credal partition

M = {m1,m2, · · · ,mn} ∈ Rn×2c

and the prototype set V = {v1, v2, · · · , vc} of specific (singleton) clusters by minimizing

the objective function:

JMECM(M ,V ) =
n∑
i=1

∑
Aj⊆Ω,Aj 6=∅

|Aj |αmβ
ijd

2
ij +

n∑
i=1

δ2mβ
i∅, (3.12)

constrained on ∑
Aj⊆Ω,Aj 6=∅

mij +mi∅ = 1, (3.13)

where mij , mi(Aj) is the bba of xi given to the nonempty set Aj , mi∅ , mi(∅) is the

bba of xi assigned to the empty set, and dij is the dissimilarity between xi and focal

set Aj . Parameters α, β, δ are adjustable with the same meanings as those in ECM.

Note that JMECM depends on the credal partition M and the set V of all prototypes.

3.3.2 The optimization

To minimize JMECM, an optimization scheme via an Expectation-Maximization (EM)

algorithm as in MCM (Cottrell et al., 2006) and MFCM (Geweniger et al., 2010) can be

designed. The detailed derivation process can be found in the appendix. The alternate

update steps are as follows:

Step 1. Credal partition (M) update.

• ∀Aj ⊆ Ω, Aj 6= ∅,

mij =
|Aj |−α/(β−1)d

−2/(β−1)
ij∑

Ak 6=∅
|Ak|−α/(β−1)d

−2/(β−1)
ik + δ−2/(β−1)

(3.14)
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• if Aj = ∅,
mi∅ = 1−

∑
Aj 6=∅

mij (3.15)

Step 2. Prototype (V ) update.

The prototype vi of a specific (singleton) cluster ωi (i = 1, 2, · · · , c) can be updated

first and then the dissimilarity between the object and the prototype of each imprecise

(meta) clusters associated with subset Aj ⊆ Ω can be obtained by Eq. (3.11). For single-

ton clusters ωk (k = 1, 2, · · · , c), the corresponding new prototypes vk (k = 1, 2, · · · , c)
are set to be sample xl orderly, with

xl = arg min
v
′
k

L(v
′
k) ,

n∑
i=1

∑
ωk∈Aj

|Aj |αmβ
ijd

2
ij(v

′
k), v

′
k ∈ {x1, x2, · · · , xn}

 , (3.16)

The dissimilarity between xi and Aj , d
2
ij , is a function of v

′
k, which is the prototype of

ωk(∈ Aj), and it should be one of the n objects in X = {x1, x2, · · · , xn}.
The bbas of the objects’ class membership are updated identically to ECM (Masson

and Denoeux, 2008), but it is worth noting that dij has different meanings and less

constraints as explained before. For the prototype updating process the fact that the

prototypes are assumed to be one of the data objects is taken into account. Therefore,

when the credal partition matrix M is fixed, the new prototypes of the clusters can

be obtained in a simpler manner than in the case of ECM application. The MECM

algorithm is summarized as Algorithm 1.

Algorithm 1 : Median evidential c-means algorithm

Input dissimilarity matrix D , [d(xi, xj)]n×n for the n objects
{x1, x2, · · · , xn}
Parameters c: number clusters 1 < c < n

α: weighing exponent for cardinality
β > 1: weighting exponent
δ > 0: dissimilarity between any object to the emptyset
γ > 0: weight of dissimilarity between data and prototype vectors
η ∈ [0, 1]: control of the discounting degree

Initialization Choose randomly c initial cluster prototypes from the objects

Loop t← 0
Repeat
(1). t← t+ 1
(2). Compute Mt using Eq. (3.14), Eq. (3.15) and Vt−1

(3). Compute the new prototype set Vt using Eq. (3.16)
Until the prototypes remain unchanged

The convergence of MECM algorithm can be proved in the following lemma, similar
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to the proof of median neural gas (Cottrell et al., 2006) and MFCM (Geweniger et al.,

2010).

Lemma 3.1 The MECM algorithm (Algorithm 1) converges in a finite number of

steps.

Proof Suppose θ(t) = (Mt,Vt) and θ(t+1) = (Mt+1,Vt+1) are the parameters from

two successive iterations of MECM. We will first prove that

JMECM (θ(t)) ≥ JMECM (θ(t+1)), (3.17)

which shows MECM always monotonically decreases the objective function. Let

J
(t)
MECM =

n∑
i=1

∑
Aj⊆Ω,Aj 6=∅

|Aj |α(m
(t)
ij )β(d

(t)
ij )2 +

n∑
i=1

δ2(m
(t)
i∅ )β

,
∑
i

∑
j

f1(Mt)f2(Vt) +
∑
i

f3(Mt), (3.18)

where f1(Mt) = |Aj |α(m
(t)
ij )β, f2(Vt) = (d

(t)
ij )2, and f3(Mt) = δ2(m

(t)
i∅ )β. Mt+1 is then

obtained by maximizing the right hand side of the equation above. Thus,

J
(t)
MECM ≥

∑
i

∑
j

f1(Mt+1)f2(Vt) +
∑
i

f3(Mt+1) (3.19)

≥
∑
i

∑
j

f1(Mt+1)f2(Vt+1) +
∑
i

f3(Mt+1) (3.20)

= J
(t+1)
MECM . (3.21)

This inequality (3.19) comes from the fact Mt+1 is determined by differentiating of

the respective Lagrangian of the cost function with respect to Mt. To get Eq. (3.20),

we could use the fact that every prototype vk (k = 1, 2, · · · , c) in Vt+1 is orderly chosen

explicitly to be

arg min
v
′
k

L(v
′
k) ,

n∑
i=1

∑
ωk∈Aj

|Aj |αmβ
ijd

2
ij(v

′
k), v

′
k ∈ {x1, x2, · · · , xn}

 ,

and thus this formula evaluated at Vt+1 must be equal to or less than the same formula

evaluated at Vt.



3.3. Median Evidential C-Means (MECM) 37

Hence MECM causes the objective function to converge monotonically. Moreover,

the bba M is a function of the prototypes V and for given V the assignment M is

unique. Because MECM assumes that the prototypes are original object data in X,

so there is a finite number of different prototype vectors V and so is the number of

corresponding credal partitions M . Consequently we can get the conclusion that the

MECM algorithm converges in a finite number of steps. ut

Remark 1. Although the objective function of MECM takes the same form as that

in ECM (Masson and Denoeux, 2008), we should note that in MECM, it is no longer

assumed that there is an underlying Euclidean distance. Thus the dissimilarity measure

dij has few restrictions such as the triangle inequality or the symmetry. This freedom

distinguishes the MECM from ECM and RECM, and it leads to the constraint for

the prototypes to be data objects themselves. The distinct difference in the process of

minimization between MECM and ECM lies in the prototype-update step. The purpose

of updating the prototypes is to make sure that the cost function would decrease. In

ECM the Lagrange multiplier optimization is evoked directly while in MECM a search

method is applied. As a result, the objective function may decline more quickly in

ECM as the optimization process has few constraints. However, when the centers of

clusters in the data set are more likely to be the data object, MECM may converge

with few steps.

Remark 2. Although both MECM and MFCM can be applied to the same type of

data set, they are very different. This is due to the fact that they are founded on

different models of partitioning. MFCM provides fuzzy partition. In contrast, MECM

gives credal partitions. We emphasize that MECM is in line with MCM and MFCM:

each class is represented by a prototype which is restricted to the data objects and

the dissimilarities are not assumed to be fulfilling any metric properties. MECM is an

extension of MCM and MFCM in the framework of belief functions.

3.3.3 The parameters of the algorithm

As in ECM, before running MECM, the values of the parameters have to be set. Pa-

rameters α, β and δ have the same meanings as those in ECM, and γ weighs the

contribution of uncertainty to the dissimilarity between nodes and imprecise clusters.

The value β can be set to be β = 2 in all experiments for which it is a usual choice. The

parameter α aims to penalize the subsets with high cardinality and control the amount

of points assigned to imprecise clusters in both ECM and MECM. As the measures for

the dissimilarity between nodes and meta classes are different, thus different values of α

should be taken even for the same data set. But both in ECM and MECM, the higher
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α is, the less mass belief is assigned to the meta clusters and the less imprecise will be

the resulting partition. However, the decrease of imprecision may result in high risk of

errors. For instance, in the case of hard partitions, the clustering results are completely

precise but there is much more intendancy to partition an object to an unrelated group.

As suggested in (Masson and Denoeux, 2008), a value can be used as a starting default

one but it can be modified according to what is expected from the user. The choice δ

is more difficult and is strongly data dependent (Masson and Denoeux, 2008).

For determining the number of clusters, the validity index of a credal partition

defined by Masson and Denoeux (2008) could be utilised:

N∗(c) ,
1

n log2(c)
×

n∑
i=1

 ∑
A∈2Ω\∅

mi(A) log2 |A|+mi(∅) log2(c)

 , (3.22)

where 0 ≤ N∗(c) ≤ 1. This index has to be minimized to get the optimal number of

clusters. When MECM is applied to community detection, a different index is defined

to determine the number of communities. We will describe it in the next section.

3.4 Application and evaluation issues

In this section, we will discuss how to apply MECM to community detection problems

in social networks and how to evaluate credal partitions.

3.4.1 Evidential modular function

Assume the obtained credal partition of the graph is

M = [m1,m2, · · · ,mn]T ,

where mi = (mi1,mi2, · · · ,mic)
T. Similarly to the fuzzy modularity by Havens et

al. (Havens et al., 2013), here we introduce an evidential modularity (Zhou et al.,

2014):

Qe =
1

‖W ‖

c∑
k=1

n∑
i,j=1

(
wij −

kikj
‖W ‖

)
plikpljk, (3.23)

where pli = (pli1, pli2, · · · , plic)T is the contour function associated with mi, which

describes the upper value of our belief to the proposition that the ith node belongs to

the kth community.

Let PL = (plik)n×c, then Eq. (3.23) can be rewritten as:

Qe =
trace(PLT B PL)

‖W ‖
. (3.24)
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Qe is a directly extension of the crisp and fuzzy modularity functions in Eq. (2.59).

When the credal partition degrades into the hard and fuzzy ones, Qe is equal to Qh

and Qf respectively.

3.4.2 The initial prototypes for communities

Generally speaking, the person who is the center in the community in a social network

has the following characteristics: he has relation with all the members of the group and

their relationship is stronger than usual; he may directly contact with other persons

who also play an important role in their own community. For instance, in Twitter

network, all the members in the community of the fans of Real Madrid football Club

(RMC) are following the official account of the team, and RMC must be the center of

this community. RMC follows the famous football player in the club, who is sure to be

the center of the community of his fans. In fact, RMC has 19015495 followers and 48

followings (the data on April 22, 2016). Most of the followings have more than 500000

followers. Therefore, the centers of the community can be set to the ones not only

with high degree and strength, but also with neighbors who also have high degree and

strength. Thanks to the theory of belief functions, the evidential semi-local centrality

ranks the nodes considering all these measures. Therefore the initial c prototypes of

each community can be set to the nodes with largest ESC values.

Note that there is usually more than one center in one community. Take Twitter

network for example again, the fans of RMC who follow the club official account may

also pay attention to Cristiano Ronaldo, the most popular player in the team, who

could be another center of the community of RMC’s fans to a great extent. These two

centers (the accounts of the club and Ronaldo) both have large ESC values but they

are near to each other. This situation violates the rule which requires the chosen seeds

as far away from each other as possible (Arthur and Vassilvitskii, 2007; Jiang et al.,

2012).

The dissimilarity between the nodes could be utilised to solve this problem. Suppose

the ranking order of the nodes with respect to their ESCs is n1 ≥ n2 ≥ · · · ≥ nn. In

the beginning n1 is set to be the first prototype as it has the largest ESC, and then

node n2 is considered. If d(n1, n2) (the dissimilarity between nodes 1 and 2) is larger

than a threshold µ, it is chosen to be the second prototype. Otherwise, we abandon

n2 and turn to check n3. The process continues until all the c prototypes are found.

If there are not enough prototypes after checking all the nodes, we should decrease µ

moderately and restart the search from n1. In this chapter we test the approach with

the dissimilarity measure proposed in (Zhou, 2003). Based on our experiments, [0.7, 1]

is a better experiential range of the threshold µ. This seed choosing strategy is similar

to that in (Jiang et al., 2012).
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3.4.3 The community detection algorithm based on MECM

The whole community detection algorithm in social networks based on MECM is sum-

marized in Algorithm 2.

Algorithm 2 : Community detection algorithm based on MECM

Input: A, the adjacency matrix; W , the weight matrix (if any); µ, the threshold
controlling the dissimilarity between the prototypes; cmin, the minimal number of
communities; cmax, the maximal of communities; the required parameters in original
MECM algorithm
Initialization: Calculate the dissimilarity matrix of the nodes in the graph.
repeat

(1). Set the cluster number c in MECM be c = cmin.
(2). Choose the initial c prototypes using the strategy proposed in Section 3.4.2.
(3). Run MECM with the corresponding parameters and the initial prototypes got
in (2).
(4). Calculate the evidential modularity using Eq. (3.24).
(5). Let c = c+ 1.

until c reaches at cmax.
Output: Choose the number of communities at around which the modular function
peaks, and output the corresponding credal partition of the graph.

In the algorithm, cmin and cmax can be determined based on the original graph.

Note that cmin ≥ 2. It is an empirical range of the community number of the network.

If c is given, we can get a credal partition based on MECM and then the evidential

modularity can be derived. As we can see, the modularity is a function of c and it

should peak at around the optimal value of c for the given network.

3.4.4 Performance evaluation

The objective of the clustering problem is to partition a similar data pair to the same

group. There are two types of correct decisions by the clustering result: a true positive

(TP) decision assigns two similar objects to the same cluster, while a true negative (TN)

decision assigns two dissimilar objects to different clusters. Correspondingly, there are

two types of errors we can commit: a false positive (FP) decision assigns two dissimilar

objects to the same cluster, while a false negative (FN) decision assigns two similar

objects to different clusters. Let a (respectively, b) be the number of pairs of objects

simultaneously assigned to identical classes (respectively, different classes) by the stand

reference partition and the obtained one. Actually a (respectively, b) is the number of

TP (respectively, TN) decisions. Similarly, let c and d be the numbers of FP and FN

decisions respectively. Two popular measures that are typically used to evaluate the

performance of hard clusterings are precision and recall. Precision (P) is the fraction of

relevant instances (pairs in identical groups in the clustering benchmark) out of those
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retrieved instances (pairs in identical groups of the discovered clusters), while recall

(R) is the fraction of relevant instances that are retrieved. Then precision and recall

can be calculated by

P =
a

a+ c
and R =

a

a+ d
(3.25)

respectively. The Rand index (RI) measures the percentage of correct decisions and it

can be defined as

RI =
2(a+ b)

n(n− 1)
, (3.26)

where n is the number of data objects. In fact, precision measures the rate of the first

type of errors (FP), recall (R) measures another type (FN), while RI measures both.

For fuzzy and evidential clusterings, objects may be partitioned into multiple clus-

ters with different degrees. In such cases precision would be consequently low (Mendes

and Sacks, 2003). Usually the fuzzy and evidential clusters are made crisp before cal-

culating the measures, using for instance the maximum membership criterion (Mendes

and Sacks, 2003) and pignistic probabilities (Masson and Denoeux, 2008). Thus in

the work presented in this chapter, we have hardened the fuzzy and credal clusters

by maximizing the corresponding membership and pignistic probabilities and calculate

precision, recall and RI for each case.

The introduced imprecise clusters can avoid the risk to group a data into a specific

class without strong belief. In other words, a data pair can be clustered into the same

specific group only when we are quite confident and thus the misclassification rate will

be reduced. However, partitioning too many data into imprecise clusters may cause

that many objects are not identified for their precise groups. In order to show the

effectiveness of the proposed method in these aspects, we use the evidential precision

(EP) and evidential recall (ER):

EP =
ner
Ne

, ER =
ner
Nr

. (3.27)

In Eq. (3.27), the notation Ne denotes the number of pairs partitioned into the same

specific group by evidential clusterings, and ner is the number of relevant instance pairs

out of these specifically clustered pairs. The value Nr denotes the number of pairs in the

same group of the clustering benchmark, and ER is the fraction of specifically retrieved

instances (grouped into an identical specific cluster) out of these relevant pairs. When

the partition degrades to a crisp one, EP and ER equal to the classical precision and

recall measures respectively. EP and ER reflect the accuracy of the credal partition

from different points of view, but we could not evaluate the clusterings from one single

term. For example, if all the objects are partitioned into imprecise clusters except two

relevant data object grouped into a specific class, EP = 1 in this case. But we could

not say this is a good partition since it does not provide us with any information of

great value. In this case ER ≈ 0. Thus ER could be used to express the efficiency of
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the method for providing valuable partitions. Certainly we can combine EP and ER

like RI to get the evidential rank index (ERI) describing the accuracy:

ERI =
2(a∗ + b∗)

n(n− 1)
, (3.28)

where a∗ (respectively, b∗) is the number of pairs of objects simultaneously clustered

to the same specific class (i.e. singleton class, respectively, different classes) by the

stand reference partition and the obtained credal one. Note that for evidential clus-

terings, precision, recall and RI measures are calculated after the corresponding hard

partitions are got, while EP, ER and ERI are based on hard credal partitions (Masson

and Denoeux, 2008).

Example 3.1. In order to show the significance of the above performance measures,

an example containing only ten objects from two groups is presented here. The three

partitions are given in Figures 3.1-b – 3.1-d. The values of the six evidential indices

(P,R,RI,EP,ER,ERI) are listed in Table 3.1.

�1 

�2 

�1 

�2 

a. Original data sets. b. Partition 1.

�1 

�2 

�12 

�1 

�2 

�12 

c. Partition 2. d. Partition 3.

Figure 3.1: A small data set with imprecise classes.

We can see that if we simply partition the nodes in the overlapped area, the risk

of misclassification is high in terms of precision. The introduced imprecise cluster

ω12 , {ω1, ω2} could enable us to make soft decisions, as a result the accuracy of the

specific partitions is high. However, if too many objects are clustered into imprecise

classes, which is the case of partition 3, it is pointless although EP is high. Generally,

EP denotes the accuracy of the specific decisions, while ER represents the efficiency
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Table 3.1: Evaluation Indices of the obtained partitions.

EP ER ERI P R RI

Partition 1 0.6190 0.6190 0.6444 0.6190 0.6190 0.6444
Partition 2 1.0000 0.6190 0.8222 – – –
Partition 3 1.0000 0.0476 0.5556 – – –

of the approach. We remark that the evidential indices degrade to the corresponding

classical indices (e.g, evidential precision degrades to precision) when the partition is

crisp.

3.5 Experiments

In this section a number of experiments are performed on classical data sets in the

distance space and on graph data for which only the dissimilarities between nodes are

known. The obtained credal partitions are compared with hard and fuzzy ones using

the evaluation indices proposed in Section 3.4.4 to show the merits of MECM.

3.5.1 Overlapped data set

Clustering approaches to detect overlap objects which leads to recent attentions are still

inefficiently processed. Due to the introduction of imprecise classes, MECM has the

advantage to detect overlapped clusters. In the first example, we will use overlapped

data sets to illustrate the behavior of the proposed algorithm.

We start by generating 2×100 points uniformly distributed in two overlapped circles

with a same radiusR = 30 but with different centers. The coordinates of the first circle’s

center are (0, 0) while the coordinates of the other circle’s center are (30, 30). The data

set is displayed in Figure 3.2-a.

In order to show the influence of parameters in MECM and ECM, different values

of γ, α, η and δ have been tested for this data set. Figure 3.3-a displays the three

evidential indices varying with γ (α is fixed to be 2) by MECM, while Figure 3.3-b

depicts the results of MECM with different α but a fixed γ = 0.4 (η and δ are set

0.7 and 50, respectively, in the tests). For fixed α and γ, the results with different

η and δ are shown in Figure 3.3-c. The effect of α and δ on the clusterings of ECM

is illustrated in Figure 3.3-e. As we can see, for both MECM and ECM, if we want

to make more imprecise decisions to improve ER, parameter α can be decreased. In

MECM, we can also reduce the value of parameter γ to accomplish the same purpose.

Although both α and γ have effect on imprecise clusters in MECM, the mechanisms
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Figure 3.2: Clustering of overlapped data set

they work are different. Parameter α tries to adjust the penalty degree to control the

imprecise rates of the results. However, for γ, the same aim could be got by regulating

the uncertainty degree of imprecise classes. It can be seen from the figures, the effect

of γ is more conspicuous than α. Moreover, although α may be set too high to obtain

good clusterings, “good” partitions can also be got by adjusting γ in this case. For

both MECM and ECM, the stable limiting values of evidential measures are around 0.7

and 0.8. Such values suggest the equivalence of the two methods to a certain extent.

Parameter η is used for discounting the distance between uncertain objects and specific

clusters. As pointed out in Figure 3.3-c, if γ and α are well set, it has little effect

on the final clusterings. The same is true in the case of δ which is applied to detect

outliers. The effect of the different values of parameter β is illustrated in Figure 3.3-d.

We can see that it has little influence on the final results as long as it is larger than 1.

As in FCM and ECM, for which it is a usual choice, we use β = 2 in all the following

experiments.

The improvement of precision will bring about the decline of recall, as more data

could not be clustered into specific classes. What we should do is to set parameters

based on our own requirement to make a tradeoff between precision and recall. For

instance, if we want to make a cautious decision in which EP is relatively high, we can

reduce γ and α. Values of these parameters can be also learned from historical data if

such data are available.

For the objects in the overlapped area, it is difficult to make a hard decision i.e.

to decide about their specific groups. Thanks to the imprecise clusters, we can make

a soft decision. As analysed before, the soft decision will improve the precision of
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total results and reduce the risk of misclassifications caused by simply partitioning

the overlapped objects into specific class. However, too many imprecise decisions will

decrease the recall value. Therefore, the ideal partition should make a compromise

between the two measures. Set α = 1.8, γ = 0.2, η = 0.7 and δ = 50, the “best”

(with relatively high values on both precision and recall) clustering result by MECM

is shown in Figure 3.2-b. As we can see, most of the data in the overlapped area are

partitioned into imprecise cluster ω12 , {ω1, ω2} by the application of MECM. We

adjust the coordinates of the center of the second circle to get overlapped data with

different proportions (overlap rates), and the validity indices of the clustering results

by different methods are illustrated in Figure 3.4. For the application of MECM,

MCM and MFCM, each algorithm is evoked 20 times with randomly selected initial

prototypes for the same data set and the mean values of the evaluating indices are

reported. Figure 3.4-d shows the average values of the indices by MECM (plus and

minus one standard deviation) for 20 repeated experiments as a function of the overlap

rates. As we can see the initial prototypes indeed have effects on the final results,

especially when the overlap rates are high. Certainly, we can avoid the influence by

repeating the algorithm many times. But this is too expensive for MECM. Therefore,

we suggest to use the prototypes obtained in MFCM or MCM as the initial. In the

following experiments, we will set the initial prototypes to be the ones got by MFCM.

As it can be seen, for different overlap rates, the classical measures such as precision,

recall, and RI are almost the same for all the methods. This reflects that pignistic

probabilities play a similar role as fuzzy membership. But we can see that for MECM,

EP is significantly high, and the increasing of overlap rates has least effects on it

compared with the other methods. Such effect can be attributed to the introduced

imprecise clusters which enable us to make a compromise decision between hard ones.

But as many points are clustered into imprecise classes, the evidential recall value is

low.

Overall, this example reflects one of the superiority of MECM that it can detect

overlapped clusters. The objects in the overlapped area could be clustered into im-

precise classes by this approach. Other possible available information or special tech-

niques could be utilised for these imprecise data when we have to make hard decisions.

Moreover, partitions with different degree of imprecision can be got by adjusting the

parameters of the algorithm based on our own requirement.

3.5.2 Classical data sets from Gaussian mixture model

In the second experiment, we test on a data set consisting of 3× 50 + 2× 5 points gen-

erated from different Gaussian distributions. The first 3× 50 points are from Gaussian
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distributions G(µk,Σk)(k = 1, 2, 3) with

µ1 =(0, 0)T,µ2 = (40, 40)T,µ3 = (80, 80)T (3.29)

Σ1 = Σ2 = Σ3 =

(
120 0

0 120

)
,

and the last 2× 10 data are noisy points follow G(µk,Σk)(k = 4, 5) with

µ4 =(−50, 90)T,µ5 = (−10, 130)T (3.30)

Σ4 = Σ5 =

(
80 0

0 80

)
.

MECM is applied with the following settings: α = 1, δ = 100, η = 0.7, while ECM has

been tested using α = 1.7, δ = 100 (The appropriate parameters can be determined

similarly as in the first example). One can see from Figures 3.5-b and 3.5-c , MCM

and MFCM can partition most of the regular data in ω1, ω2 and ω3 into their correct

clusters, but they could not detect the noisy points correctly. These noisy data are

simply grouped into a specific cluster by both approaches. As can be seen from Figure

3.5-d, for the points located in the middle part of ω2, ECM could not find their exact

group and misclassify them into imprecise cluster ω13. In the figures ωij , {ωi, ωj}
denotes imprecise clusters.

As mentioned before, imprecise classes in MECM can measure ignorance and uncer-

tainty at the same time, and the degree of ignorance in meta clusters can be adjusted

by γ. We can see that MECM does not detect many points in the overlapped area

between two groups if γ is set to 0.6. In such a case the test objects are partitioned

into imprecise clusters mainly because of our ignorance about their specific classes.

These objects attributed to meta classes mainly belong to noisy data in ω4 and ω5.

The distance of these points to the prototypes of specific clusters is large (but not too

large or they could be regarded to be in the emptyset, see Figure 3.5-e). Thus the

distance between the prototype vectors is relatively small so that these specific clus-

ters are indistinguishable. Decreasing γ to be 0.2 would make imprecise class denoting

more uncertainty, as it can be seen from Figure 3.5-f, where many points located in the

margin of each group are clustered into imprecise classes. In such a case, meta classes

rather reflect our uncertainty on the data objects’ specific cluster.

Table 3.2 lists the indices for evaluating the different methods. Bold entries in each

column of this table (and also other tables in the following) indicate that the results are

significant as the top performing algorithm(s) in terms of the corresponding evaluation

index. We can see that the precision, recall and RI values for all approaches are similar

except from those obtained for ECM which are significantly lower. As these classical

measures are based on the associated pignistic probabilities for evidential clusterings, it
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seems that credal partitions can provide the same information as crisp and fuzzy ones.

But from the same table, we can also see that the evidential measures EP and ERI

obtained for MECM are higher (for hard partitions, the values of evidential measures

equal to the corresponding classical ones) than the ones obtained for other methods.

This fact confirms the accuracy of the specific decisions i.e. decisions clustering the

objects into specific classes. The advantage can be attributed to the introduction of

imprecise clusters, with which we do not have to partition the uncertain or unknown

objects into a specific cluster. Consequently, it could reduce the risk of misclassifica-

tion. However, although ECM also deals with imprecise clusters, the accuracy is not

improved as much as in the case of applying MECM. As illustrated before in the case

of ECM application, many objects of a specific cluster are partitioned into an irrelevant

imprecise class and, as a result, the evidential precision value and ERI decrease as well.

Table 3.2: The clustering results for Gaussian data sets by different methods. For each
method, we generate 20 data sets with the same parameters and report the mean values
of the evaluation indices for all the data sets.

Precision Recall RI EP ER ERI

MCM 0.7802 0.9570 0.9002 0.7802 0.9570 0.9002
MFCM 0.8616 0.9797 0.9484 0.8616 0.9797 0.9484

FCM 0.8644 0.9820 0.9500 0.8644 0.9820 0.9500
ECM 0.8215 0.9353 0.9222 0.9069 0.8436 0.9294

MECM (γ = 0.2) 0.8674 0.9855 0.9520 0.9993 0.7721 0.9336
MECM (γ = 0.6) 0.8662 0.9851 0.9515 0.9958 0.9586 0.9868

We also test on “Iris flower”, “cat cortex” and “protein” data sets (Fisher, 1936;

Graepel et al., 1999; Hofmann and Buhmann, 1997). The first is object data while

the other two are relational data sets. Thus we compare our method with FCM and

ECM for the Iris data set, and with RECM and NRFCM (Non-Euclidean Relational

Fuzzy Clustering Method (Hathaway and Bezdek, 1994)) for the last two data sets.

The results are displayed in Figure 3.6.

Presented results allow us to sum up the characteristics of MECM. Firstly, one can

see that the behavior of MECM is similar to ECM for traditional data. Besides, credal

partitions provided by MECM allow to recover the information of crisp and fuzzy par-

titions. Moreover, we are able to balance influence of our uncertainty and ignorance

according to the actual needs. The examples utilised before deal with classical data

sets. But the superiority of MECM makes it applicable in the case of data sets for which

only dissimilarity measures are known e.g. social networks. Thus in the following ex-

periments, we will use some graph data to illustrate the behaviour of the proposed
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method on the community detection problem in social networks. The dissimilarity

index used here is the one brought forward by Zhou (2003). To have a fair compari-

son, in the following experiments, we also compare with three classical algorithms for

community detection i.e. BGLL (Blondel et al., 2008), LPA (Raghavan et al., 2007)

and ZFCM (a fuzzy c-means based approach proposed by Zhang et al. (2007)). The

obtained community structures are compared with known performance measures, i.e.

NMI (Normalized Mutual Information), VI (Variation of Information) and Modularity.

Note that the NMI and VI are calculated using the detected community structure and

the benchmark. The more the result is similar to the benchmark, the larger the value

of NMI is, and the smaller the value of VI is.
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3.5.3 Artificial graphs and generated benchmarks

To show the performance of the algorithm in detecting communities in networks, we

first apply the method to a sample network generated from Gaussian mixture model.

This model has been used for testing community detection approaches by Liu and Liu

(2010).

The artificial graph is composed of 3 × 50 nodes, n1, n2, · · · , n150, which are rep-

resented by 150 sample points, x1, x2, · · · , x150, in two-dimensional Euclidean space.

There are 3 × 50 points generated from Gaussian distributions G(µk,Σk)(k = 1, 2, 3)

with

µ1 = (1.0,4.0)T,µ2 = (2.5, 5.5)T,µ3 = (0.5, 6.0)T (3.31)

Σ1 = Σ2 = Σ3 =

(
0.25 0

0 0.25

)
.

Then, the edges of the graph are generated by the following thresholding strategy: if

|xi − xj | ≤ dist, we set an edge between nodes ni and nj ; Otherwise the two nodes

are not directly connected. The graph is shown in Figure 3.7-a (with dist = 0.8) and

the dissimilarity matrix of the nodes is displayed in Figure 3.7-b. From the figures we

can see that there are three significant communities in the graph, and some nodes in

the bordering of their groups seem to be in overlapped classes as they contact with

members in different communities simultaneously.

Table 3.3 lists the indices for evaluating the results. It shows that MECM performs

well as the evidential precision resulting from its application is high. MECM utilization

also results in decreasing the probabilities of clustering failure thanks to the introduc-

tion of imprecise clusters. This makes the decision-making process more cautious and

reasonable.

Table 3.3: The results for Gaussian graph by different methods.

Precision Recall RI EP ER ERI NMI VI Modularity
MCM 0.9049 0.9110 0.9392 0.9049 0.9110 0.9392 0.8282 0.3769 0.6100

MFCM 0.9067 0.9099 0.9396 0.9067 0.9099 0.9396 0.8172 0.4013 0.6115
ZFCM 0.9202 0.9224 0.9482 0.9202 0.9224 0.9482 0.8386 0.3545 0.6118

MECM 0.9470 0.9472 0.9652 0.9789 0.6060 0.8661 0.8895 0.2428 0.6072
BGLL 0.9329 0.9347 0.9564 0.9329 0.9347 0.9564 0.8597 0.3081 0.6119

LPA 0.3289 1.0000 0.3289 0.3289 1.0000 0.3289 0.0000 1.0986 0.0000

The algorithms are also compared by means of Lancichinetti et al. (2008) benchmark
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Figure 3.7: Artificial network from Gaussian mixture model.

(LFR) networks. The results of different methods in two kinds of LFR networks with

500 and 1000 nodes are displayed in Figures 3.8–3.9 respectively. The parameter µ

showed in the x-axis in the figures identifies whether the network has clear communities.

When µ is small, the graph has well community structure. In such a case, almost all

the methods perform well. But we can see that when µ is large, the results by MECM

have the largest values of precision. It means that the decisions which partition the

nodes into a specific cluster are of great confidence. In terms of NMI, the results are

similar to those by BGLL and LPA, but better than those of MCM and MFCM. This

fact well explains that the hard or fuzzy partitions could be recovered when necessary.

3.5.4 Some real-world networks

A. Zachary’s Karate Club. The Zachary’s Karate Club data (Zachary, 1977) is an

undirected graph which consists of 34 vertices and 78 edges. The edges describe the

friendship between the members of the club observed by Zachary in his two-year study.

During the course of the study, a disagreement developed between the administrator of

the club and the club’s instructor, which ultimately resulted in the instructor’s leaving

and starting a new club, taking about a half of the original club’s members with him.

The original graph and the dissimilarity of the nodes are shown in Figures 3.10-a and

3.10-b respectively.



54 Chapter3. Median evidential c-means clustering

0.2 0.4 0.6 0.8

0
.2

0
.4

0
.6

0
.8

1
.0

µ

E
P

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MECM

MCM

MFCM

BGLL

LPA

0.2 0.4 0.6 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

µ

N
M
I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MECM

MCM

MFCM

BGLL

LPA

a. Precision b. NMI

Figure 3.8: Comparison of MECM and other algorithms in LFR networks. The number
of nodes is n = 500. The average degree is |k| = 15, and the pair for the exponents is
(γ, β) = (2, 1).

0.2 0.4 0.6 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

µ

E
P

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MECM

MCM

MFCM

BGLL

LPA

0.2 0.4 0.6 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

µ

N
M
I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MECM

MCM

MFCM

BGLL

LPA

a. Precision b. NMI

Figure 3.9: Comparison of MECM and other algorithms in LFR networks. The number
of nodes is n = 1000. The average degree is |k| = 20, and the pair for the exponents is
(γ, β) = (2, 1).



3.5. Experiments 55

Let the parameters of MECM be α = 1.5, δ = 100, η = 0.9, γ = 0.6. The modularity

functions by MECM, MCM, MFCM and ZFCM (Figure 3.12-a) peak around c = 2 and

c = 3. Let c = 2, all the methods can detect the two communities exactly. If we

set c = 3, a small community, which can also be found in the dissimilarity matrix

(Figure 3.10-b), is separated from ω1 by all the approaches (see Figure 3.11). But

ZFCM assigns the maximum membership to ω1 for node 9, which is actually in ω2. It

seems that the loss of accuracy in the mapping process may cause such results.

MECM does not find imprecise groups when γ = 0.6 as the network has apparent

community structure, and this reflects the fact that the communities are distinguishable

for all the nodes. But there may be some overlap between two communities. The nodes

in the overlapped cluster can be detected by decreasing γ (increasing the uncertainty

for imprecise communities). As is displayed in Figure 3.11-c and d, by declining γ to

0.1 and 0.05 respectively (the other parameters remain unchanged), nodes 3 and 9 are

clustered into both ω1 and ω2 (ω12) one after another.

From the results, we can see that MECM takes both the ignorance and the un-

certainty into consideration while introducing imprecise communities. The degree of

ignorance and uncertainty could be balanced through adjusting γ. The analysis shows

that there appears only uncertainty without ignorance in the original club network. In

order to show the performance of MECM when there are noisy conditions such that

some communities are indistinguishable, two noisy nodes are added to the original

graph in the next experiment.
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Figure 3.10: Original Karate Club network.
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Figure 3.11: Detected communities of Karate Club network by different methods.

B. Karate Club network with some added noisy nodes. In this test, two

noisy nodes are added to the original Karate Club network (see Figure 3.13-a). The

first one is node 35, which is directly connected with nodes 18 and 27. The other one is

36, which is connected to nodes 1 and 33. It can be seen from the dissimilarity matrix

that node 36 has stronger relationships with both communities than node 35. This

is due to the fact that the nodes connected to node 36 play leader roles in their own
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Figure 3.12: Modularity functions of Karate Club network by different methods.

group, but node 35 contacts with two marginal nodes with “small” or insignificant roles

in their own groups only.

The results obtained by the application of different methods are shown in Fig-

ure 3.14. The MECM parameters are set as follows: α = 1.5, δ = 100, η = 0.9 and γ is

tuned according to the extent that the imprecise communities reflect our ignorance. As

we can see, MCM, MFCM and ZFCM simply group the two noisy nodes into ω1. With

γ = 0.4, MECM regards node 36 as a member of ω1 while node 35 is grouped into im-

precise community ω12. And ω12 mainly reflects our ignorance rather than uncertainty

on the actual community of node 36. This is why node 36 is not clustered into ω12 since

ω1 and ω2 are distinguishable for him but we are just not sure for the final decision.

The increase in the extent of uncertainty in imprecise communities results from the

decrease of γ value. We can see that more nodes (including nodes 36,9,1,12,27, see Fig-

ures 3.14-e and 3.14-f) are clustered into ω12 or ω13 due to uncertainty. The imprecise

communities consider both ignorance (node 35) and uncertainty (other nodes).

These results reflect the difference between ignorance and uncertainty. As node 35

is only related to one outward node of each community, thus we are ignorant about

which community it really belongs to. On the contrary, node 36 connects with the key

members (playing an important role in the community), and in this case the dissimilar-

ity between the prototypes of ω1 and ω2 is relatively large so they are distinguishable.

Thus there is uncertainty rather than ignorance about which community node 36 is

inside. In this network, node 36 is a “good” member for both communities, whereas

node 35 is a “poor” member. It can be seen from Figure 3.15-a that the fuzzy partition

by MFCM also gives large similar membership values to ω1 and ω2 for node 35, just

like in the case of such good members as nodes 36 and 9. The obtained results show the
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problem of distinguishing between ignorance and the “equal evidence” (uncertainty) for

fuzzy partitions. But Figure 3.15-b shows that the credal partition by MECM assigns

small mass belief to ω1 and ω2 for node 35, indicating our ignorance on its situation.
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a. Karate Club network with added nodes b. Dissimilarity matrix

Figure 3.13: Karate Club network with two noisy nodes.

We also test our method on four other real-world graphs: American football net-

work, Dolphins network, Lesmis network and Political books network3. The measures

applied to evaluate the performance of different methods are listed in Tables 3.4–3.7.

It can been seen from the tables, for all the graphs MECM application results in a

community structure with high evidential precision level. The precision results from a

cautious decision making process which clusters the noisy nodes into imprecise commu-

nities. In terms of classical performance measures like NMI, VI and modularity, MECM

slightly outperforms the other algorithms. Note that these classical measures for hard

partitions are calculated by the pignistic probabilities associated with the credal par-

titions provided by MECM. Therefore, we can also see the possibility to recover the

hard decisions here when using the proposed evidential detection approach.

3These data sets can be found in http://networkdata.ics.uci.edu/index.php
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Figure 3.14: Detected communities in Karate Club network with noisy nodes.
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Table 3.4: The results for American football network by different methods.

Precision Recall RI EP ER ERI NMI VI Modularity
MCM 0.7416 0.8834 0.9661 0.7416 0.8834 0.9661 0.8637 0.6467 0.5862

MFCM 0.7583 0.8757 0.9678 0.7583 0.8757 0.9678 0.8715 0.6160 0.5745
ZFCM 0.8176 0.9082 0.9765 0.8176 0.9082 0.9765 0.9035 0.4653 0.6022

MECM 0.8232 0.9082 0.9771 0.9303 0.8681 0.9843 0.9042 0.4625 0.5995
BGLL 0.7512 0.9120 0.9689 0.7512 0.9120 0.9689 0.8903 0.5195 0.6046

LPA 0.6698 0.8298 0.9538 0.6698 0.8298 0.9538 0.8623 0.6580 0.5757

3.5.5 Discussion

We will discuss for which application MECM is designed here. As analysed before, for

MECM only dissimilarities between objects are required and only the intuitive assump-

tions need to be satisfied for the dissimilarity measure. Therefore, the algorithm could

be appropriate for many clustering tasks for non-metric data objects. This type of data

is very common in social sciences, psychology, etc, where any metric assumptions about

the similarities/dissimilarities could not be assured. The freedom for the data set leads

to the restriction that the prototypes should be the objects themselves. Nevertheless,

this constraint seems reasonable for social networks as the center of a community is

usually the person (node) frequently contacting with others. Thus the approach can

be applied to community detection problems. Thanks to the introduction of imprecise

classes, it could reduce the risk of partitioning the objects which we are uncertain or

ignorant into an incorrect cluster. For this reason the algorithm can help us make soft

decisions when clustering the data set without distinct cluster/community structures
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Table 3.5: The results for Dolphins network by different methods.

Precision Recall RI EP ER ERI NMI VI Modularity
MCM 1 1 1 1 1 1 1 0 0.3787

MFCM 1 1 1 1 1 1 1 0 0.3787
ZFCM 1 1 1 1 1 1 1 0 0.3787

MECM 1 1 1 1 1 1 1 0 0.3787
BGLL 0.9271 0.3583 0.6351 0.9271 0.3583 0.6351 0.4617 1.1784 0.5185

LPA 0.9250 0.5029 0.7070 0.9250 0.5029 0.7070 0.5595 0.8354 0.5070

Table 3.6: The results for Lesmis network by different methods.

Precision Recall RI EP ER ERI NMI VI Modularity
MCM 0.6109 0.5522 0.9005 0.6109 0.5522 0.9005 0.7381 1.1295 0.4732

MFCM 0.5774 0.6456 0.8971 0.5774 0.6456 0.8971 0.7743 0.9555 0.4705
ZFCM 0.7368 0.5769 0.9217 0.7368 0.5769 0.9217 0.7805 0.9666 0.4983

MECM 0.7065 0.7473 0.9299 0.9298 0.4368 0.9258 0.7977 0.8531 0.4884
BGLL 0.5796 0.8104 0.9033 0.5796 0.8104 0.9033 0.7551 0.9435 0.5556

LPA 0.4594 0.9643 0.8544 0.4594 0.9643 0.8544 0.7500 0.8637 0.5428

or with overlap.

Due to the computational complexity, the proposed algorithm is not well directly

adapted to handle very large data sets. However, here we discuss the possibility to

apply the evidential community detection approach to large-scale networks. Firstly,

the number of parameters to be optimized is exponential and depends on the number

of clusters (Masson and Denoeux, 2008). For the number of classes larger than 10,

calculations are not tractable. But we can consider only a subclass with a limited

number of focal sets (Masson and Denoeux, 2008). For instance, we could constrain the

focal sets to be composed of at most two classes (except Ω). Secondly, for the network

with millions of nodes, MCM or MFCM could be evoked as a first step to merge some

nodes into small clusters. After that we can apply MECM to the “coarsened” network.

But how to define the edges or connections of the new graph should be studied. Lastly

we emphasize that the evidential community detection algorithm could be utilised for

gaining a better insight into the network structure and detecting the imprecise classes.

For the large-scale network, it is difficult to make specific decisions for all of nodes due

to the limitation of time, money or techniques. In this case, we can use the proposed

approach to make some “soft” decisions first and then use some techniques special for

the imprecise parts of the graph.
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Table 3.7: The results for Political books network by different methods.

Precision Recall RI EP ER ERI NMI VI Modularity
MCM 0.8109 0.8030 0.8482 0.8109 0.8030 0.8482 0.5721 0.8426 0.4979

MFCM 0.8020 0.8187 0.8485 0.8020 0.8187 0.8485 0.5755 0.8256 0.4962
ZFCM 0.7928 0.7487 0.8234 0.7928 0.7487 0.8234 0.5301 0.9407 0.5048

MECM 0.7880 0.8081 0.8383 0.8458 0.6435 0.8128 0.5755 0.8247 0.4725
BGLL 0.8244 0.6203 0.7978 0.8244 0.6203 0.7978 0.5121 1.0987 0.5205

LPA 0.7331 0.8558 0.8200 0.7331 0.8558 0.8200 0.5612 0.7925 0.4604

3.6 Conclusion

We introduced a Median variant of Evidential C-means (MECM) as a new prototype-

based clustering algorithm in this chapter. The proposed approach is an extension of

median c-means and median fuzzy c-means. It is based on the framework of belief

function theory. The applied median-based clustering requires the definition of the

dissimilarity between objects only. Therefore, it is not restricted to a metric space ap-

plication. The prototypes of the clusters are constrained to the data objects themselves.

MECM provides us with not only credal partitions but also hard and fuzzy partitions as

by-products through computing pignistic probabilities. Moreover, it could distinguish

ignorance from uncertainty while the fuzzy or crisp partitions could not. By the intro-

duced imprecise clusters, we could find some overlapped and indistinguishable clusters

for related nodes. Thanks to the advantages of belief function theory and median clus-

tering, MECM could be applied to community detection problems in social networks.

As other median clustering approaches, MECM tends to get stuck in local minima

such that several runs have to be performed to obtain good performance. However,

we propose an initial prototype-selection scheme using the evidential semi-centrality

for the application of MECM in community detection to solve the problems brought

by the initial prototypes. Results of presented experiments on artificial and real-world

networks show that the credal partitions on graphs provided by MECM application

are more refined than crisp and fuzzy ones. Therefore, they could enable us to gain a

better understanding of analysed community structure. Some examples on the classical

metric space are also given to illustrate the interest of MECM and to show its difference

with respect to the existing methods.

In MECM, we ignore “multi-center” to avoid the troubles brought by the need

for an initial seed using ESC and the definition of a threshold to control the distance

between prototypes. Nevertheless, many real-world networks may have more than one

center. Therefore, we will include the feature of multi-center clustering in the sequel of

this report.



4
Similarity-based community

detection with multiple prototypes

4.1 Overview

Some existing community detection algorithms, including the model based on MECM

proposed in the last chapter, use a single prototype to represent an individual group.

As we mentioned, in real applications this may not adequately model the different types

of communities and hence limits the clustering performance on graphs. To address this

problem, a Similarity-based Multi-Prototype (SMP) community detection approach is

proposed in this chapter (Zhou et al., 2015a). In SMP, vertices in each community

carry various weights to describe their degree of representativeness. This mechanism

enables each community to be represented by more than one node. The centrality of

nodes is used to calculate prototype weights, while similarity is utilized to guide us

to partitioning the graph. Experimental results on computer generated and real-world

networks clearly show that SMP performs well for detecting communities. Moreover,

the method can provide richer information for the inner structure of the detected com-

munities with the help of prototype weights compared with the existing community

detection models.

4.2 The multi-prototype community detection approach

We propose our method in this section . After an introduction of the concept of repre-

sentative weights (also called prototype weights) in Section 4.2.1, the whole algorithm

will be presented in detail in Section 4.2.2. The problem of determining the optimum

community number and the complexity of the algorithm will be discussed in Section

4.2.3 and Section 4.2.4 respectively.

4.2.1 The prototype weights

Suppose Ω = {ω1, ω2, · · · , ωc} is a partition of a graph G(V,E), where V is the set

of nodes and E is the set of edges. The n nodes in the graph can be denoted by

{n1, n2, · · · , nn}. The matrix Vc×n denotes the prototype weights of n nodes with

respect to all the c communities. As analyzed before, the centrality value of a node

63
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can be used to express the belief that the node plays the center role in its community.

Therefore, the weight of node nj ’s degree of representativeness in cluster ωr can be

derived as below:

Vrj =


Cen(j)∑

{h:nh∈ωr}
Cen(h)

nj ∈ ωr

0 nj /∈ ωr,

r = 1, 2, · · · , c, j = 1, 2, · · · , n, (4.1)

where Cen(j) is the centrality of node nj in the subgraph corresponding community

ωr. Then, for a given node ni, the similarity between ni and community ωj , denoted

by s̄ij , can be obtained as

s̄ij =
n∑
h=1

vjhsih, (4.2)

where sih is the similarity between nodes ni and nh. From Eqs. (4.1) and (4.2) we can

see that s̄ij is a weighted sum of the similarity between node ni and all the nodes in

community ωj , and the weights used in the summation depend on the contribution of

the nodes to their own community.

4.2.2 The detection algorithm

The whole SMP algorithm to detect communities in social networks is summarized

as Algorithm 3. In fact SMP is a variation of c-means, c-medoids and c-rank. The

difference between SMP and the other three clustering algorithms lies in the manner of

updating the prototypes. c-means uses the average value to represent every class while

c-medoids and c-rank uses one “most possible” object. On the contrary, SMP adopts

an effective multi-prototype representation based on the determined prototype weights

of each member in the group. Due to the various types of community structures,

the way to represent a cluster using multiple prototypes is more reasonable in real

applications. Moreover, SMP often needs fewer iterations than c-means to make the

algorithm convergent.

Remark 3. As we can see, SMP provides us a crisp (hard) partition of the analyzed

network. Also the similarity between node ni and community ωj could be obtained by

Eq. (4.2). Then the node ni’s membership with regard to community ωj can be defined

as follows:

uij =
s̄ij
c∑

h=1

s̄ih

, i = 1, 2, · · · , n, j = 1, 2, · · · , c. (4.3)

This form of membership measure is in line with that got by FCM algorithm, where the

membership values assigned to an object are inversely related to the relative distance to

the cluster. Similarly here the memberships in Eq. (4.3) are determined by the relative

similarities. One of the problem of fuzzy membership has been reported is that it could
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Algorithm 3 : The Similarity-based Multi-Prototype (SMP) community detection
algorithm

Input: c, the number of communities; A, the adjacency matrix; W , the weight
matrix (if any); Nmax, the maximum number of iterations.
Initialization:
(1). Select the top c nodes with highest centralities as the initial c prototypes.
(2). Calculate the similarity matrix between any two nodes in the graph.
(3). Extract the similarity matrix between the nodes and the prototypes. Partition
the node into the community to which its nearest prototype belongs, and get the
initial c classes of the graph: ω1, ω2, · · · , ωc.
repeat

(4). Update the matrices Vc×n recording prototype weights of n nodes with respect
to all the c communities based on the current partitions using Eq. (4.1).
(5). Calculate the similarity between node ni and community ωj , s̄ij , using
Eq. (4.2), and then cluster the vertices into k communities with every node being
in the community it is most similar to.

until All the detected communities remain unchanged or the number of iterations
comes to Nmax.
Output: The membership of each node and the prototype weights of all the members
in each community.

not distinguish between “equal evidence” (membership values are large and equal for a

number of alternatives) and “ignorance” (all the membership values are equal but very

close to zero) (Krishnapuram and Keller, 1993; Pal et al., 2005). If node ni is equidistant

from more than one community, the membership of each cluster will be the same,

regardless of the absolute values of the similarity to the communities. Consequently,

the fuzzy membership could not be applied to detect noise objects (outliers) which are

far but equidistant to some communities (Pal et al., 2005). In SMP, the prototype

weights can help us solve this problem, which we will show in detail in Section 4.3.2.

4.2.3 Determining the number of communities

In the first step of SMP algorithm, the additional information about the number of

communities should be specified. This is also a fundamental issue in classical c-means

and FCM clusterings. In fact, to determine the optimal number of clusters is an

open problem for prototype-based clustering methods. Most of the methods to solve

this problem consist in computing a validity index from several community structures

detected with different values of c and looking for a minimum or maximum of a given

criterion (Hu et al., 2008; Zhang et al., 2007; Nepusz et al., 2008). In this chapter

MM–modularity (Eq. (2.61)) is used to estimate a proper c. The modularity values

signify the quality of the detected communities. When the modularity achieves the

maximum, we can get the best c.
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4.2.4 The complexity of SMP algorithm

The complexity of SMP consists of calculating similarities and centralities of nodes

and iterative process. If we use signal similarity and evidential semi-local centrality

measures, as we will see in Section 4, the corresponding time complexity if O(p(|k| +
1)n2) (Hu et al., 2008) and O(n|k|2) (Gao et al., 2013), where p is the number of

propagations, |k| is the average degree of vertices in the network, and n is the number

of nodes. The iterative technique is similar to that in c-means. The only difference

is the strategy of updating the prototypes. The c-means computes the average value

of all the members in the cluster, while SMP tries to find prototype weights of all the

members. As the communities are subgraphs which are much smaller than the original

network, the updating prototype weights process of SMP does not cost much. If the

number of communities c is fixed, the time complexity of c-means clustering is O(nct),

where t is the number of iterations. Consequently, the total complexity of SMP is

O(p(|k|+ 1)n2 +n|k|2 +nct). It is worth noting that SMP often needs fewer iterations.

4.3 Experiments

In this section some experiments are performed on both computer-generated graphs

and real-world networks whose community structure is known in advance. Apart from

c-rank (Jiang et al., 2012), we also compare SMP with four other classical meth-

ods: Multi-level Modularity Optimization (MMO) algorithm (Blondel et al., 2008),

Leading Eigenvector (LE) algorithm (Newman, 2006a), Label Propagation Algorithm

(LPA) (Raghavan et al., 2007), and Information Map algorithm (InfoMap) (Rosvall and

Bergstrom, 2008). The obtained community structures are evaluated with known per-

formance measures, i.e. accuracy and NMI (Normalized Mutual Information). As the

benchmarks and the real-world data sets used in this chapter are with known commu-

nity structure, accuracy and NMI measure the similarity between the planted partitions

(ground truth) and the results of the algorithms. Both accuracy and NMI measure the

proportion of the nodes that have been grouped correctly, and represent the consis-

tence between the found community structure and the presumed one (Fan et al., 2007;

Hu et al., 2008). The influence of different similarity and centrality measures in the

application of SMP will be discussed in the first experiment. After that we will use the

evidential semi-local centrality and signal similarity in the following tests based on the

experimental results.

4.3.1 Computer-generated graphs

The algorithm is first compared by means of two classes of computer-generated artificial

benchmark networks, namely, Girvan and Newman (Girvan and Newman, 2002) (GN)

and Lancichinetti et al. (2008) benchmark (LFR) networks. For the former, each net-
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work has n = 128 nodes in total and 32 nodes in each of the four divided communities.

The average degree of each vertex is set to 16. For a given node, the average number

of links to its fellows in the inner community, denoted by Zin, is varied from 8 to 16.

The average number of edges between communities, denoted by Zout, is varied from 8

to 0. The larger Zin is, the more apparent community structure the network has.

It is noteworthy that in the application of SMP algorithm, different similarity and

centrality measures could be adopted instead of the signal similarity and evidential

semi-local centrality suggested in this chapter. When using ESC for calculating the

centrality, results by four different similarity metrics, i.e. signal similarity, the sim-

ple Jaccard index and the measures proposed by Pan et al. (2010) (denoted by Pan

in the figure) and Zhou et al. (2009) (denoted by Zhou in the figure), are shown in

Figure 4.1-a. As can be seen from the figure, the results by signal similarity are better

than the other indices in terms of NMI values. Here we could conclude that global

similarity measures like signal similarity are more applicable for SMP than local ones.

Figure 4.1-b depicts the behavior of SMP with difference centrality measures but the

same (signal) similarity index. It can be seen that ESC and PR are better among the

four measures, i.e. ESC, PageRank (PR) (Brin and Page, 1998), Degree Centrality

(DC), and Closeness Centrality (CC). Although there is no significant difference be-

tween ESC and PR, the performance of ESC is more stable than PR. This paper is not

focusing on the comparison of different similarity and centrality measures, thus in the

following experiment we only consider the signal similarity and evidential semi-local

centrality.

For each Zin, the experiment is repeated 20 times and the mean values of the

evaluating measures are reported. The average values of the indices by accuracy and

NMI using SMP and the other five algorithms with different values of Zin are displayed

in Figure 4.2-a and Figure 4.2-b respectively. The results show that in terms of accuracy

and NMI, all the methods perform well when Zin is large. However, when Zin is smaller

than 10, they have different performances. LPA and InfoMap have the worst results

as they could not work when Zin < 10. SMP and MMO are best in general among all

the methods. Although MMO is superior to SMP when Zin = 11 and Zin = 12, the

superiority is not obvious. SMP is significantly better than MMO when Zin is small

(especially when Zin = 8). Moreover, with the decreasing of Zin, the performance of

SMP does not drop so dramatically as the case in other methods. This demonstrates

that using multiple members with various prototype weights is able to characterize the

structure of clusters more precisely no matter whether the network has clear community

structure or not, which in turn helps to produce a partition of the graph with good

quality.
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Figure 4.1: Comparison of similarity and centrality measures in the application of
SMP algorithm. Average NMI values (plus and minus one standard deviation) for 20
repeated experiments, as a function of the average degree.
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Figure 4.2: Comparison of SMP and other algorithms in Girvan and Newman’s net-
works.
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The LFR benchmark network (Lancichinetti et al., 2008) is an artificial network for

community detection, which is claimed to process some basic statistical properties found

in real networks, such as heterogeneous distributions of degree and community size. The

results of different methods in three kinds of LFR networks with 1000, 2000 and 5000

nodes are displayed in Figures 4.3–4.5 respectively. The parameter µ illustrated in

x-axis in the figures identifies whether the network has clear communities. When µ is

small, the graph has well community structure. In such a case, almost all the methods

perform well. But we can see that when µ is large, the results by SMP have relatively

large values of NMI, and the performance of SMP and c-rank do not drop dramatically

as the case in other methods. SMP slightly outperforms c-rank especially when µ is

large, this could be attributed to the multi-prototype representation of communities.

Overall, from the two types of benchmarks, SMP fits for the networks no matter whether

they have clear community structures or not.
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Figure 4.3: Comparison of SMP and other algorithms in LFR networks. The number
of nodes is n = 1000. The average degree is |k| = 20, and the pair for the exponents is
(γ, β) = (2, 1).

4.3.2 Real world networks

A. Zachary’s Karate Club. To evaluate the effectiveness of the proposed method

applied on real-world networks, we first test on the widely used benchmark in detecting
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Figure 4.4: Comparison of SMP and other algorithms in LFR networks. The number
of nodes is n = 2000. The average degree is |k| = 30, and the pair for the exponents is
(γ, β) = (2, 1).
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Figure 4.5: Comparison of SMP and other algorithms in LFR networks. The number
of nodes is n = 5000. The average degree is |k| = 30, and the pair for the exponents is
(γ, β) = (2, 1).
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community structures, “Karate Club” (Zachary, 1977). This data set has been studied

in Section 3.5.4.
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Figure 4.6: The modularity values on Karate Club network varying with community
numbers.

The values of the modularity with different number of communities are displayed

in Figure 4.6. The modularity function peaks when c = 2. This is in consistent with

the fact that the network has two groups. The discovered communities are illustrated

in Table 4.1. The table also shows the prototype weights in each of the found group.

As we can see, node 1 makes the most contribution to community 1, while node 34 is

most important to community 2. This confirms the center role of the two persons in

their own communities. On the contrary, nodes 17 and 25 seem not very important

in their group in terms of their prototype weights. We can see that in Figure 4.6-a,

these two nodes locate in the marginal parts. Therefore, the proposed SMP detection

approach enables us to have a better understanding of the graph structure with the

help of prototype weights.

B. Karate Club network with some added noisy nodes. In this test two

noisy nodes are added to the original Karate Club network (see Figure 4.7-a). The

detail of this data set can be seen in Experiment B in Section 3.5.4. The modularity

values varying with different community numbers are depicted in Figure 4.7-b and the

detected results are displayed in Table 4.2.
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Table 4.1: The results for Karate Club network. The notation uij denotes the fuzzy
membership of node ni to community j, and PW is short for prototype weights. The
nodes are order by prototype weights in each community.

Community 1 Community 2

Node ID ui1 ui2 PW Node ID ui1 ui2 PW

1 0.5324 0.4676 0.1166 34 0.4607 0.5393 0.1025
2 0.5305 0.4695 0.0929 33 0.4582 0.5418 0.0940
4 0.5385 0.4615 0.0881 24 0.4469 0.5531 0.0738
3 0.5091 0.4909 0.0857 32 0.4798 0.5202 0.0698
8 0.5404 0.4596 0.0786 30 0.4424 0.5576 0.0679

14 0.5175 0.4825 0.0786 9 0.4882 0.5118 0.0595
6 0.5576 0.4424 0.0536 31 0.4772 0.5228 0.0595
7 0.5576 0.4424 0.0536 15 0.4464 0.5536 0.0532

18 0.5486 0.4514 0.0524 16 0.4464 0.5536 0.0532
20 0.5109 0.4891 0.0524 19 0.4464 0.5536 0.0532
22 0.5486 0.4514 0.0524 21 0.4464 0.5536 0.0532
5 0.5564 0.4436 0.0488 23 0.4464 0.5536 0.0532

11 0.5564 0.4436 0.0488 28 0.4707 0.5293 0.0474
13 0.5513 0.4487 0.0476 29 0.4788 0.5212 0.0408
12 0.5488 0.4512 0.0334 27 0.4420 0.5580 0.0392
17 0.5734 0.4266 0.0164 10 0.4802 0.5198 0.0307

26 0.4582 0.5418 0.0268
25 0.4671 0.5329 0.0223

From Table 4.2 we can see that the fuzzy membership values of nodes 35 and 36 are

almost the same for both communities (approximatively equal to 0.5). These results

could not reflect the difference between ignorance and uncertainty. As node 35 is only

related to one outward node of each community, thus we are ignorant about which

community it really belongs to, or we say node 35 is an outlier. On the contrary,

node 36 connects with the key members (playing an important role in the community)

in both communities. Thus there is uncertainty rather than ignorance about which

community node 36 is inside. In this network, node 36 is a “good” member for both

communities, whereas node 35 is a “poor” member. As mentioned before, the inability

to distinguish the outliers from the uncertain nodes with equal memberships is caused

by the relative similarity used in fuzzy memberships. In SMP, the prototype weights

could be utilized to solve this problem and to detect the outliers. As shown in Table 4.2,

the prototype weight of node 35 is the least in the community, but node 36 contributes

much more than node 35. Therefore, node 35 has no contribution to both communities

(the prototype weight of node 35 for community 1 is 0.0052, and 0 for community 2),

and it could be recognized as an outlier. This example further demonstrates the fact

that prototype weights indeed enable us to gain a better understanding of the graph
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structure, especially for detecting outliers in the network.
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Figure 4.7: The Karate Club network with added nodes and the modularity values
varying with community numbers.

We also test our method on four other real-world graphs: American football net-

work, Dolphins network, Lesmis network and Political books network4. The values of

the two indices, accuracy and NMI, applied to evaluate the performance of different

methods are listed in Table 4.3 and Table 4.4 respectively5. It can been seen from the

tables, SMP application results in a community structure with highest accuracy level

in most cases. In terms of the performance measure NMI, SMP also outperforms the

other algorithms. It should be noted that some methods provide partitions with high

accuracy but low NMI. This may be caused by the fact that they cluster the nodes into

too many small communities. The partition rules of both c-rank and SMP are based

on node similarity. These two approaches are better than the others in general, and

the effectiveness could be attributed to the high performance of vertex similarities. But

the reason that SMP works better than c-rank in these real-world networks is largely

because of the application of multiple prototype representation of communities.

From the above extensive experimental results, we can summarize the compelling

properties of SMP as follows:

(1) In the partition process, SMP uses multiple prototypes to represent the commu-

nities. This is a useful extension of the existing community detection methods

4These data sets can be found in http://networkdata.ics.uci.edu/index.php
5All these real-world graphs are with known community structure, thus the accuracy and NMI are
calculated based on the ground truth and the partition got by different algorithms.
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Table 4.2: The results for Karate Club network with added nodes. The notation uij
denotes the fuzzy membership of node ni to community j, and PW is short for prototype
weights. The nodes are order by PW in each community.

Community 1 Community 2

Node ID ui1 ui2 PW Node ID ui1 ui2 PW

1 0.5278 0.4722 0.1111 34 0.4656 0.5344 0.1028
2 0.5271 0.4729 0.0888 33 0.4651 0.5349 0.0944
4 0.5344 0.4656 0.0836 24 0.4534 0.5466 0.0737
3 0.5084 0.4916 0.0814 32 0.4824 0.5176 0.0696
8 0.5360 0.4640 0.0747 30 0.4506 0.5494 0.0680

14 0.5158 0.4842 0.0747 9 0.4899 0.5101 0.0598
18 0.5399 0.4601 0.0528 31 0.4801 0.5199 0.0598
6 0.5511 0.4489 0.0520 15 0.4533 0.5467 0.0534
7 0.5511 0.4489 0.0520 16 0.4533 0.5467 0.0534

20 0.5099 0.4901 0.0506 19 0.4533 0.5467 0.0534
22 0.5427 0.4573 0.0506 21 0.4533 0.5467 0.0534
5 0.5498 0.4502 0.0475 23 0.4533 0.5467 0.0534

11 0.5498 0.4502 0.0475 28 0.4740 0.5260 0.0471
13 0.5454 0.4546 0.0462 29 0.4813 0.5187 0.0404
12 0.5427 0.4573 0.0330 27 0.4539 0.5461 0.0395
36 0.5016 0.4984 0.0330 10 0.4826 0.5174 0.0309
17 0.5658 0.4342 0.0154 26 0.4628 0.5372 0.0258
35 0.5020 0.4980 0.0052 25 0.4705 0.5295 0.0212

where only one prototype is allowed, especially when the analyzed graph has some

complex community structures.

(2) The prototype weights, as a by-product of the detection results, provide us with

some valuable information about the community structure from another point of

view, and enable us to gain a better understanding of the analyzed graph.

(3) SMP works well even for the graphs without clear community structures. It could

avoid the problem of inability to distinguish the outliers from uncertain data for

fuzzy membership.

(4) Last but not the least, the experiments on both synthetic and real-world graph

data sets demonstrate that the proposed approach is a competitive candidate for

community detection tasks compared with other five existing methods.
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Table 4.3: Comparison of SMP and other algorithms by accuracy in real-world net-
works.

Karate Football Dolphins Lesmis Books

SMP 1.0000 0.9345 1.0000 0.7792 0.8667
c-rank 1.0000 0.9320 1.0000 0.8052 0.8537
MMO 1.0000 0.8000 0.9516 0.7922 0.7276

LE 1.0000 0.6261 0.9677 0.7273 0.8476
LPA 0.9706 0.9043 1.0000 0.7273 0.8476

InfoMap 1.0000 0.9043 0.9839 0.8701 0.7854

Table 4.4: Comparison of SMP and other algorithms by NMI in real-world networks.

Karate Football Dolphins Lesmis Books

SMP 1.0000 0.9235 1.0000 0.7444 0.5938
c-rank 1.0000 0.9211 1.0000 0.7818 0.5741
MMO 0.6873 0.8550 0.4617 0.7551 0.5121

LE 0.6552 0.6952 0.5094 0.7182 0.5201
LPA 0.8255 0.9095 0.8230 0.7381 0.5485

InfoMap 0.8255 0.8937 0.5629 0.8198 0.4935

4.4 Conclusion

In this chapter, a new type of similarity-based community detection algorithm called

SMP is proposed. SMP could find not only communities of each node but also weighted

representative members of each group. In the task of network structure analysis, in-

formation on both community labels and internal structure of each of the detected

communities are important. One distinctive characteristic of the proposed method is

that each community is presented by multiple prototypes, rather than by single one

object. The experiments on synthetic networks show the effectiveness of the proposed

method and the tests on real-world networks have further pointed out our method pre-

forms better than the existing ones. The results show that the way of using prototype

weights to represent a cluster enables SMP to capture the various types of community

structures more precisely and completely hence improves the quality of the detected

communities. Moreover, more detail information on the discovered clusters may be

obtained with the help of prototype weights.

In real applications, the signal similarity measure and ESC centrality utilized in the

work could be replaced by any other index. For instance, if we want to apply the method

to directed networks, the similarity and centrality measures for directed networks could

be adopted. Therefore, we intend to study on the comparison of difference measures

and on the application into directed networks in our future research work. Meanwhile,
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not only centrality but also more other factors should be considered for determining

the prototype weights. Hence the way to optimize the prototype weights using the

available information as much as possible will also be included in our further study.

As we see, SMP could only be used to produce hard and fuzzy partitions. This is

not enough to describe the uncertain or overlapping graph structure. Therefore, in the

next chapter, we will extend SMP in the framework of belief functions to obtain credal

partitions.



5
Evidential c-medoids clustering with

multiple weighted prototypes

5.1 Overview

In this chapter, we will extend SMP algorithm in the framework of belief functions to

capture the uncertain class structures in the data set more effectively. The prototype

weights are incorporated into the concept of medoid-based clustering, which is of great

value for partitioning proximity data sets. A new prototype-based clustering method

named Evidential C-Medoids (ECMdd) is proposed (Zhou et al., 2015b). ECMdd can

be seen an extension of Fuzzy C-Medoids (FCMdd) on the theoretical framework of

belief functions. In the application of FCMdd and original ECMdd, a single medoid

(prototype), which is supposed to belong to the object set, is utilized to represent one

class. To make it clearly, this kind of ECMdd using a single medoid is denoted by

sECMdd. As we mentioned before, in real clustering applications, using only one pat-

tern to capture or interpret a class may not adequately model different types of group

structure and hence limits the clustering performance. In order to address this prob-

lem, a variation of ECMdd using multiple weighted medoids, denoted by wECMdd, is

presented. Unlike sECMdd, in wECMdd objects in each cluster carry various weights

to represent their degree of representativeness for that class. This mechanism enables

each class to be represented by more than one object. Experimental results in syn-

thetic and real data sets clearly demonstrate the superiority of sECMdd and wECMdd.

Moreover, the clustering results by wECMdd could provide richer information for the

inner structure of the detected clusters with the help of prototype weights.

5.2 Hard and fuzzy c-medoids clustering

The hard C-Medoids (CMdd) clustering is a variant of the traditional c-means al-

gorithm. Both of them produce a crisp partition of the analyzed data set. Let

X = {xi | i = 1, 2, · · · , n} be the set of n objects and d(xi, xj) , dij denote the dis-

similarity between objects xi and xj . Each object may or may not be represented by a

feature vector. Let V = {v1, v2, · · · , vc}, vi ∈X represent a subset ofX. The objective

77
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function of CMdd is similar to that in CM:

JCMdd =
c∑
j=1

n∑
i=1

uijd(xi, vj), (5.1)

where c is the number of clusters. As CMdd is based on crisp partitions, uij is either

0 or 1 depending whether xi is in cluster ωj . The notation vj is the prototype of class

ωj , and it is supposed to be one of the objects in the data set. Due to the fact that

exhaustive search of medoids is an NP hard problem, Kaufman and Rousseeuw (2009)

proposed one approximate search algorithm called PAM, where the c medoids are found

efficiently. After the selection of the prototypes, object xi is assigned the closest class

ωf , the medoid of which is most similar to this pattern, i.e.

xi ∈ ωf , with f = arg min
l=1,2,··· ,c

d(xi, vl). (5.2)

Fuzzy C-Medoids (FCMdd) is a variation of CMdd designed for relational data

(Krishnapuram et al., 2001). The objective function of FCMdd is given as

JFCMdd =

n∑
i=1

c∑
j=1

uβijd(xi, vj) (5.3)

subject to
c∑
j=1

uij = 1, i = 1, 2, · · · , n, (5.4)

and

uij ≥ 0, i = 1, 2, · · · , n, j = 1, 2, · · · , c. (5.5)

In fact, the objective function of FCMdd is similar to that of FCM. The main difference

lies in that the prototype of a class in FCMdd is defined as the medoid, i.e. one of the

object in the original data set, instead of the centroid (the average point in a continues

space) for FCM. The object assignment and prototype selection are preformed by the

following alternating update steps:

(1) Assignment update:

uij =
d
−1/(β−1)
ij

c∑
k=1

d
−1/(β−1)
ik

. (5.6)

(2) Prototype update: the new prototype of cluster ωj is set to be vj = xl∗ with

xl∗ = arg min
{vj :vj=xl(∈X)}

n∑
i=1

uβijd(xi, vj). (5.7)
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In a recent work of Mei and Chen (2011), a generalized medoids-based Fuzzy clus-

tering with Multiple Medoids (FMMdd) has been proposed. For a data set X given

the dissimilarity matrix {dij}n×n, where dij records the dissimilarity between each two

objects xi and xj . The objective of FMMdd is to minimize the following criterion:

JFMMdd =
c∑

k=1

n∑
i=1

n∑
j=1

uβikv
ψ
kjdij (5.8)

subject to
c∑

k=1

uik = 1, ∀i = 1, 2, · · ·n; uik ≥ 0,∀i and k (5.9)

and
n∑
j=1

vkj = 1,∀k = 1, 2, · · · , c; vkj ≥ 0, ∀k and j, (5.10)

where uik denotes the fuzzy membership of xi for cluster ωk, and vkj denotes the

prototype weights of xj for cluster ωk. The constrained minimization problem of finding

the optimal fuzzy partition could be solved by the use of Lagrange multipliers and the

update equations of uik and vkj are derived as below:

uik =

(
n∑
j=1

vψkjdij

)−1/(β−1)

c∑
f=k

(
n∑
j=1

vψfjdij

)−1/(β−1)
(5.11)

and

vkj =

(
n∑
i=1

uβikdij

)−1/(ψ−1)

n∑
h=1

(
n∑
i=1

uβikdih

)−1/(ψ−1)
. (5.12)

The FMMdd algorithm starts with a non-negative initialization, then the membership

values and prototype weights are iteratively updated with Eqs. (5.11) and (5.12) until

convergence.

5.3 ECMdd clustering with multiple prototypes

In order to introduce ECMdd clustering with multiple prototypes, we start with the in-

troduction of evidential c-medoids clustering algorithm using a single medoid, sECMdd,

which takes advantages of both medoid-based clustering and credal partitions. Based

on sECMdd, the method where multiple prototypes are adopted will be presented then.
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5.3.1 sECMdd with a single medoid

The principle of sECMdd is similar to that of fuzzy c-medoids. Like all the prototype-

based clustering methods, for sECMdd, an objective function should first be found to

provide an immediate measure of the quality of the partitions. Hence our goal can

be characterized as the optimization of the objective function to get the best credal

partition.

The objective function

As before, let X = {xi | i = 1, 2, · · · , n} be the set of n objects, and dij = d(xi, xj)

records the dissimilarity between objects xi and xj . The pairwise dissimilarity is the

only information required for the analyzed data set. The objective function of sECMdd

is similar to that in ECM:

JsECMdd(M ,V ) =

n∑
i=1

∑
Aj⊆Ω,Aj 6=∅

|Aj |αmβ
ijdij +

n∑
i=1

δ2mβ
i∅, (5.13)

constrained on ∑
Aj⊆Ω,Aj 6=∅

mij +mi∅ = 1, (5.14)

where mij , mi(Aj) is the bba of xi given to the nonempty set Aj , mi∅ , mi(∅) is the

bba of xi assigned to the empty set, and dij , d(xi, Aj) is the dissimilarity between xi

and focal set Aj . Parameters α, β, δ are adjustable with the same meanings as those

in ECM. Note that JsECMdd depends on the credal partition M and the set V of all

prototypes.

Let vΩ
k be the prototype of specific cluster (whose focal element is a singleton)

Aj = {ωk} (k = 1, 2, · · · , c) and assume that it must be one of the objects in X. The

dissimilarity between object xi and cluster (focal set) Aj can be defined as follows. If

|Aj | = 1, i.e. Aj is associated with one of the singleton clusters in Ω (suppose to be

ωk with prototype vΩ
k , i.e. Aj = {ωk}), then the dissimilarity between xi and Aj is

defined by

dij = d(xi, Aj) = d(xi, v
Ω
k ). (5.15)

When |Aj | > 1, it represents an imprecise (meta) cluster. If object xi is to be parti-

tioned into a meta cluster, two conditions should be satisfied (Zhou et al., 2015c). One

condition is the dissimilarity values between xi and the included singleton classes’ pro-

totypes are small. The other condition is the object should be close to the prototypes

of all these specific clusters. The former measures the degree of uncertainty, while the

latter is to avoid the pitfall of partitioning two data objects irrelevant to any included

specific clusters into the corresponding imprecise classes. Therefore, the medoid (proto-

type) of an imprecise class Aj could be set to be one of the objects locating with similar
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dissimilarities to all the prototypes of the specific classes ωk ∈ Aj included in Aj . The

variance of the dissimilarities of object xi to the medoids of all the involved specific

classes could be taken into account to express the degree of uncertainty. The smaller the

variance is, the higher uncertainty we have for object xi. Meanwhile the medoid should

be close to all the prototypes of the specific classes. This is to distinguish the outliers,

which may have similar dissimilarities to the prototypes of some specific classes, but

obviously not a good choice for representing the associated imprecise classes. Let v2Ω

j

denote the medoid of class Aj
6. Based on the above analysis, the medoid of Aj should

set to v2Ω

j = xp with

p = arg min
i:xi∈X

{
f
(
{d(xi, v

Ω
k );ωk ∈ Aj}

)
+ η

1

|Aj |
∑
ωk∈Aj

d(xi, v
Ω
k )
}
, (5.16)

where ωk is the element of Aj , v
Ω
k is its corresponding prototype and f denotes the

function describing the variance among the related dissimilarity values. The variance

function could be used directly:

Varij =
1

|Aj |
∑
ωk∈Aj

[
d(xi, v

Ω
k )− 1

|Aj |
∑
ωk∈Aj

d(xi, v
Ω
k )

]2

. (5.17)

In this chapter, we use the following function to describe the variance ρij of the dis-

similarities between object xi and the medoids of the involved specific classes in Aj

ρij =
1

choose(|Aj |, 2)

∑
ωx,ωy∈Aj

√(
d(xi, vΩ

x )− d(xi, vΩ
y )
)2
, (5.18)

where choose(a, b) is the number of combinations of the given a elements taken b at a

time. Then the dissimilarity between objects xi and class Aj can be defined as

dij =

d(xi, v
2Ω

j ) + γ 1
|Aj |

∑
ωk∈Aj

d(xi, v
Ω
k )

1 + γ
. (5.19)

As we can see from the above equation, the dissimilarity between object xi and meta

class Aj is the weighted average of dissimilarities of xi to the all involved singleton

cluster medoids and to the prototype of the imprecise class Aj with a tuning factor γ.

If Aj is a specific class with Aj = {ωk} (|Aj | = 1), the dissimilarity between xj and Aj

degrades to the dissimilarity between xi and vΩ
k as defined in Eq. (5.15), i.e. v2Ω

j = vΩ
k .

6The notation vΩ
k denotes the prototype of specific class ωk, indicating it is in the framework of Ω.

Similarly, v2Ω

j is defined on the power set 2Ω, representing the prototype of the focal set Aj ∈ 2Ω.

In fact V is the set of all the prototypes, i.e. V = {v2Ω

j : j = 1, 2, · · · , 2c − 1}. It is easy to see

{vΩ
k : k = 1, 2, · · · , c} ⊆ V ⊆X.
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And if |Aj | > 1, its medoid is decided by Eq. (5.16).

Remark 4. sECMdd is similar to Median Evidential C-Means (MECM) (Zhou et al.,

2015c) algorithm in Chapter 3. MECM is in the framework of median clustering, while

sECMdd consists with FCMdd in principle. Another difference of sECMdd and MECM

is the way of calculating the dissimilarities between objects and imprecise classes. Al-

though both MECM and sECMdd consider the dissimilarities of objects to the proto-

types for specific clusters, the strategy adopted by sECMdd is more simple and intu-

itive, hence makes sECMdd run faster in real time. Moreover, there is no representative

medoid for imprecise classes in MECM. In addition, sECMdd is designed as the base

of the multiple prototype evidential clustering presented later.

The optimization

To minimize JsECMdd, an optimization scheme via an Expectation-Maximization (EM)

algorithm can be designed, and the alternate update steps are as follows:

Step 1. Credal partition (M) update.

The bbas of objects’ class membership for any subset Aj ⊆ Ω and the empty set ∅
representing the outliers are updated identically to ECM (Masson and Denoeux, 2008):

(1) ∀Aj ⊆ Ω, Aj 6= ∅,

mij =
|Aj |−α/(β−1)d

−1/(β−1)
ij∑

Ak 6=∅
|Ak|−α/(β−1)d

−1/(β−1)
ik + δ−1/(β−1)

(5.20)

(2) If Aj = ∅,
mi∅ = 1−

∑
Aj 6=∅

mij (5.21)

Step 2. Prototype (V ) update.

The prototype vΩ
i of a specific (singleton) cluster ωi (i = 1, 2, · · · , c) can be up-

dated first and then the prototypes of imprecise (meta) classes could be determined by

Eq. (5.16). For singleton clusters ωk (k = 1, 2, · · · , c), the corresponding new prototype

vΩ
k (k = 1, 2, · · · , c) could be set to xl ∈X such that

xl = arg min
v
′
k


n∑
i=1

∑
Aj={ωk}

mβ
ijdij(v

′
k) : v

′
k ∈ X

 . (5.22)

The dissimilarity between object xi and cluster Aj , dij , is a function of v
′
k, which is the

potential prototype of class ωk.

The bbas of the objects’ class assignment are updated identically to ECM (Masson

and Denoeux, 2008), but it is worth noting that dij has different meanings as that in
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ECM although in both cases it measures the dissimilarity between object xi and class

Aj . In ECM dij is the distance between object i and the centroid point of Aj , while

in sECMdd, it is the dissimilarity between xi and the most “possible” medoid. For the

prototype updating process the fact that the prototypes are assumed to be one of the

data objects is taken into consideration. Therefore, when the credal partition matrix

M is fixed, the new prototype of each cluster can be obtained in a simpler manner

than in the case of ECM application. The sECMdd algorithm can be summarized as

Algorithm 4.

Algorithm 4 : sECMdd algorithm

Input: Dissimilarity matrix [dij , d(xi, xj)]n×n for the n objects {x1, x2, · · · , xn}.
Parameters:
c: number clusters 1 < c < n
α: weighing exponent for cardinality
β > 1: weighting exponent
δ > 0: dissimilarity between any object to the empty set
η > 0: to distinguish the outliers from the possible medoids
γ ∈ [0, 1]: to balance of the contribution for imprecise classes
Initialization:
Choose randomly c initial prototypes from the object set
repeat

(1). t← t+ 1
(2). Compute Mt using Eq. (5.20), Eq. (5.21) and Vt−1

(3). Compute the new prototype set Vt using Eqs. (5.22) and (5.16)
until the prototypes remain unchanged.
Output: The optimal credal partition.

Remark 5. The assignment update process will not increase JsECMdd since the new

mass matrix is determined by differentiating of the respective Lagrangian of the cost

function with respect to M . Also JsECMdd will not increase through the medoid-

searching scheme for prototypes of specific classes. If the prototypes of specific classes

are fixed, the medoids of imprecise classes determined by Eq. (5.16) are likely to locate

near to the “centroid” of all the prototypes of the included specific classes. If the objects

are in Euclidean space, the medoids of imprecise classes are near to the centroids found

in ECM. Thus it will not increase the value of the objective function also. Moreover,

the bba M is a function of the prototypes V and for given V the assignment M is

unique. Because sECMdd assumes that the prototypes are original object data in X,

so there is a finite number of different prototype vectors V and so is the number of

corresponding credal partitions M . Consequently we can conclude that the sECMdd

algorithm converges in a finite number of steps.
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5.3.2 ECMdd with multiple weighted medoids

This section presents evidential c-medoids algorithm using multiple weighted medoids.

The approach to compute the relative weights of the medoids are based on both the

computation of the membership degree of objects belonging to specific classes and the

computation of the dissimilarities between objects.

The objective function

The objective function of wECMdd, JwECMdd, has the same form as that in sECMdd

(see Eq. (5.13)). In wECMdd, we use multiple weighted medoids to represent each

specific class instead of a single medoid. Thus the method to calculate dij in the

objective function is different from sECMdd. Let V Ω = {vΩ
ki}c×n be the weight matrix

for specific classes, where vΩ
ki describes the weight of object i for the kth specific class.

Then, the dissimilarity between object xi and cluster Aj = {ωk} could be calculated

by

d(xi, Aj) , dij =

n∑
l=1

(
vΩ
kl

)ψ
dil, (5.23)

with
n∑
l=1

vΩ
kl = 1,∀k = 1, 2, · · · , c. (5.24)

Parameter ψ controls the smoothness of the distribution of prototype weights. The

weights of imprecise class Aj (|Aj | > 1) could be derived according to the involved

specific classes. If object xi has similar weights for specific classes ωm and ωn, it is

most probable that xi lies in the overlapped area of two classes. Thus the variance

of the weights of object xi for all the included specific classes of Aj , Varji, could be

used to express the weights of xi for Aj (denoted by v2Ω

ji , and V is used to denote

the corresponding weight matrix7). The smaller Varji is, the higher v2Ω

ji is. However,

we should pay attention to the outliers. They may hold similar small weights for each

specific class, but have no contribution to the imprecise classes at all. The minimum

of xi’s weights for all the associated specific classes could be taken into consideration

to distinguish the outliers. If the minimal weight is too small, we should assign a small

weight value for that object. Based on the discussion, the weights of object xi for class

Aj (Aj ⊆ Ω) could be calculated as

v2Ω

ji =
f1

(
Var

(
{vΩ
ki;ωk ∈ Aj}

))
∗ f2

(
min

(
{vΩ
ki;ωk ∈ Aj}

))∑
l

f1

(
Var

(
{vΩ
kl;ωk ∈ Aj}

))
∗ f2

(
min

(
{vΩ
kl;ωk ∈ Aj}

)) , (5.25)

7In sECMdd, V denotes the set of prototypes of all the classes. Here V represents the weights of
prototypes. We use the same notation to show the similar role of V in sECMdd and wECMdd. In fact
sECMdd can be regarded as a special case of wECMdd, where the weight values are restricted to be
either 0 or 1.
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where f1 is a monotone decreasing function while f2 is an increasing function. The

two functions should be determined according to the application under concern. Based

on our experiments, we suggest adopting the simple directly and inversely proportion

functions, i.e.

v2Ω

ji =
[min

(
{vΩ
ki;ωk ∈ Aj}

)
]ξ/Var

(
{vΩ
ki;ωk ∈ Aj}

)∑
l

[min
(
{vΩ
kl;ωk ∈ Aj}

)
]ξ/Var

(
{vΩ
kl;ωk ∈ Aj}

) . (5.26)

Parameter ξ is used to balance the contribution of f1 and f2. It is remarkable that when

Aj = {ωk}, that is to say |Aj | = 1, v2Ω

ji = vΩ
ki. Therefore, the dissimilarity between

object xi and cluster Aj (including both specific and imprecise classes) could be given

by

dij =
n∑
l=1

(
v2Ω

jl

)ψ
dil, Aj ⊆ Ω, Aj 6= ∅. (5.27)

Optimization

The problem of finding optimal cluster assignments of objects and representatives of

classes is now formulated as a constrained optimization problem, i.e. to find optimal

values of M and V subject to a set of constrains. As before, the method of Lagrange

multipliers could be utilized to derive the solutions. The Lagrangian function is con-

structed as

LwECMdd = JwECMdd −
n∑
i=1

λi

 ∑
Aj⊆Ω,Aj 6=∅

mij − 1

− c∑
k=1

βk

(
n∑
i=1

vΩ
ki − 1

)
, (5.28)

where λi and βk are Lagrange multipliers. By calculating the first order partial deriva-

tives of LwECMdd with respect to mij , v
Ω
ki, λi and βk and letting them to be 0, the

update equations of mij and vΩ
ki could be derived. It is easy to see that the update

equations for mij are the same as Eqs. (5.20) and (5.21) in the application of sECMdd,

except that in this case dij should be calculated by Eq. (5.27). The update strategy for

the prototype weights vΩ
ki is difficult to get since it is a non-linear optimization problem.

Some specifical techniques may be adopted to solve this problem. Here we use a simple

approximation scheme to update vΩ
ki.

Suppose the class assignment M is fixed and assume that the prototype weights

for imprecise class Aj (Aj ⊆ Ω, |Aj | > 1), v2Ω

ji , are dependent of the weights for specific

classes (vΩ
ki). Then the first order necessary condition with respect to vΩ

ki is only related
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to dij with Aj = {ωk}. The update equations of vΩ
ki could then derived as

vΩ
ki =

(
n∑
l=1

mβ
ljdli

)−1/(ψ−1)

n∑
h=1

(
n∑
l=1

mβ
ljdlh

)−1/(ψ−1)
k = 1, 2, · · · , c, Aj = {ωk}. (5.29)

After obtaining the weights for specific classes, the weights for imprecise classes could

be got by Eq. (5.26) and the dissimilarities between objects and classes could then

calculated by Eq. (5.27). The update of cluster assignment M and prototype weight

matrix V should be repeated until convergence. The wECMdd algorithm is summarised

in Algorithm 5.

Algorithm 5 : wECMdd algorithm

Input: Dissimilarity matrix [d(xi, xj)]n×n for the n objects {x1, x2, · · · , xn}.
Parameters:
c: number clusters 1 < c < n
α: weighing exponent for cardinality
β > 1: weighting exponent
δ > 0: dissimilarity between any object to the empty set
ξ > 0: balancing the weights of imprecise classes
ψ: controlling the smoothness of the distribution of prototype weigths
Initialization:
Choose randomly c initial prototypes from the object set
repeat

(1). t← t+ 1
(2). Compute Mt using Eq. (5.20), Eq. (5.21) and Vt−1

(3). Compute the prototype weights for specific classes using Eq. (5.29)
(4). Compute the prototype weights for imprecise classes using Eq. (5.26) and get
the new Vt.

until the prototypes remain unchanged.
Output: The optimal credal partition.

Remark 6. Existing work has studied the convergence properties of the partitioning

clustering algorithms, such as C-Means, and C-Medoids. As we can see, wECMdd

follows a similar clustering approach. The optimization process consists of three steps:

cluster assignment update, prototype weights of specific classes update and then pro-

totype weights of imprecise classes update. The first two steps improve the objective

function value by the application of Lagrangian multiplier method. The third step tries

to find good representative objects for imprecise classes. If the method to determine

the weights for imprecise classes is of practical meaning, it will also keep the objective

function increasing. In fact the approach of updating the prototype weights is similar

to the idea of one-step Gaussian-Seidel iteration method, where the computation of the
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new variable vector uses the new elements that have already been computed, and the

old elements that have not yet to be advanced to the next iteration. In Section 5.5, we

will demonstrate through experiments that wECMdd could converge in a few number

of iterations.

5.4 Application issues

In this section, some problems when applying the ECMdd algorithms, such as how to

adjust the parameters and how to select the initial prototypes for each class, will be

discussed.

5.4.1 The parameters of the algorithm

As in ECM, before running ECMdd, the values of the parameters have to be set.

Parameters α, β and δ have the same meanings as those in ECM. The value β can be

set to be β = 2 in all experiments for which it is a usual choice. The parameter α

aims to penalize the subsets with high cardinality and control the amount of points

assigned to imprecise clusters for credal partitions. The higher α is, the less mass belief

is assigned to the meta clusters and the less imprecise will be the resulting partition.

However, the decrease of imprecision may result in high risk of errors. For instance,

in the case of hard partitions, the clustering results are completely precise but there is

much more intendancy to partition an object to an unrelated group. As suggested in

(Masson and Denoeux, 2008), a value can be used as a starting default one but it can

be modified according to what is expected from the user. The choice δ is more difficult

and is strongly data dependent (Masson and Denoeux, 2008).

In sECMdd, parameter γ weighs the contribution of uncertainty to the dissimilarity

between objects and imprecise clusters. Parameter η is used to distinguish the outliers

from the possible medoids when determining the prototypes of meta classes. It could be

set 1 by default and it has little effect on the final partition results. Parameters ξ and

ψ are for specially for wECMdd. Similar to β, ψ is used to control the smoothness of

the weight distribution. Parameter ξ is used for not assigning the outliers large weights

for imprecise classes. If there are few outliers in the data set, it could be set to be near

0.

As in MECM, the validity index for credal partitions defined by Masson and De-

noeux (2008) can be used to determine the number of clusters:

N∗(c) ,
1

n log2(c)
×

n∑
i=1

 ∑
A∈2Ω\∅

mi(A) log2 |A|+mi(∅) log2(c)

 , (5.30)

where 0 ≤ N∗(c) ≤ 1. This index has to be minimized to get the optimal number of
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classes in the data set.

5.4.2 The initial prototypes

The c-means type clustering algorithms are sensitive to the initial prototypes. In this

work, we follow the initialization procedure as the one used in (Krishnapuram et al.,

2001; Mei and Chen, 2010) to generate a set of c initial prototypes one by one. The

first medoid, σ1, is randomly picked from the data set. The rest of medoids are selected

successively one by one in such a way that each one is most dissimilar to all the medoids

that have already been picked. Suppose σ = {σ1, σ2, · · · , σj} is the set of the first chosen

j (j < c) medoids. Then the j + 1 medoid, σj+1, is set to the object xp with

p = arg max
1≤i≤n;xi /∈σ

{
min
σk∈σ

d(xi, σk)

}
. (5.31)

This selection process makes the initial prototypes evenly distributed and locate as far

away from each other as possible. It is noted that another scheme is that the first

medoid is set to be the object with the smallest total dissimilarity to all the other

objects, i.e. σ1 = xr with

r = arg min
1≤i≤n


n∑
j=1

d(xi, xj)

 , (5.32)

and the remaining prototypes are selected the same way as before. Krishnapuram

et al. (2001) have pointed out that both initialization schemes work well in practice.

But based on our experiments, for credal partitions, a bit of randomness of the first

prototype might be desirable.

5.4.3 Making the important objects more important

In wECMdd, a matrix V = {v2Ω

ji } is used to record prototype weights of n objects

with respect to all the clusters, including the specific classes and imprecise classes.

All objects are engaged in describing clusters information with some weights assigned

to each detected classes. This seems unreasonable since it is easy to understand that

when an object does not belong to a cluster, it should not participate in describing

that cluster (Gao et al., 2014). Therefore, in each iteration of wECMdd, after the

weights vΩ
ki, k = 1, 2, · · · , c, i = 1, 2, · · · , n of xi for all the specific classes ωk are got by
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Eq. (5.29), the normalized weights wΩ
ki could be calculated by 8

wΩ
ki =

v
′
ki

n∑
i=1

v
′
ki

, i = 1, 2, · · · , n, and k = 1, 2, · · · , c, (5.33)

where v
′
ki equals to vΩ

ki if xi belongs to ωk, 0 otherwise. Remark that xi is regarded

as a member of class ωk if mi({ωk}) is the maximum of the masses assigned to all the

focal sets at this iteration. In fact, if we want to make the important “core” objects

more important in each cluster, a subset of fixed cardinality 1 ≤ q � n of objects X

could be used. The q objects constitute core of each cluster, and collaborate to describe

information of each class. This kind of wECMdd with q medoids in each class is denoted

by wECMdd-q. More generally, q could be different for each cluster. However, how to

determine q or the number of cores in every class should be considered. This is not the

topic of this work and we will study that in the future work.

5.5 Experiments

In this section some experiments on generated and real data sets will be performed

to show the effectiveness of sECMdd and wECMdd. The results are compared with

other relational clustering approaches PAM (Kaufman and Rousseeuw, 2009), FCMdd

(Krishnapuram et al., 2001), FMMdd (Mei and Chen, 2011) and MECM (Zhou et al.,

2015c) to illustrate the advantages of credal partitions and multi-prototype representa-

tiveness of classes. The Precision (P), Recall (R) and Rand Index (RI), and the indices

for evaluating credal partitions, Evidential Precision (EP), Evidential Recall (ER) and

Evidential Rank Index (ERI) presented in Section 3.4.4 will be used to compare.

5.5.1 Overlapped data sets

Due to the introduction of imprecise classes, credal partitions have the advantage to

detect overlapped clusters. In the first example, we will use overlapped data sets to

illustrate the behavior of the proposed algorithms. We start by generating 3×361 points

distributed in three overlapped circles with a same radius R = 5 but with different

centers. The coordinates of the first circle’s center are (5, 6) while the coordinates of

the other two circles’ centers are (0, 0) and (9, 0). The data set is displayed in Figure

5.1-a.

Figure 5.1-b shows the iteration steps for different methods. For ECMdd clustering

algorithms, there are three alternative steps to optimize the objective function (assign-

8In the following we call this type of prototype weights “normalized weights”, and wECMdd with
normalized weights is denoted by wECMdd-0. The standard wECMdd with multiple weights on all the
objects described in the last section is still denoted by wECMdd.
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ment update, and the update for medoids of specific and imprecise classes), while only

two steps (update of membership and specific classes’ prototypes) are required for the

existing methods (PAM, FCMdd and FMMdd). But we can see from the figure, the

added third step for calculating the new prototypes of imprecise classes in ECMdd

clustering has no effects on the convergence.

The fuzzy and credal partitions by different methods are shown in Figure 5.2, and

the values of the evaluation indices are listed in Table 5.1. The objects are clustered

into the class with the maximum membership values for fuzzy partitions (by FCMdd,

FMMdd), while for credal partitions (by different ECMdd algorithms), with the max-

imum mass assignment. As a result, imprecise classes, such as {ω1, ω2} (denoted by

ω12 in the figure), are produced by ECMdd clustering to accept the objects for which

it is difficult to make a precise (hard) decision. Consequently, the EP values of the

credal partitions by ECMdd algorithms are distinctly high, which indicates that such

soft decision mechanism could make the clustering result more “cautious” and decrease

the misclassification rate.

In this experiment, all the ECMdd algorithms are run with: α = 2, β = 2, δ = 100.

For sECMdd, η = 1 and for wECMdd γ = 1.2, ξ = 3. The results by wECMdd

and wECMdd-0 are similar, as they both use weights of objects to describe the cluster

structure. The ECMdd algorithms using one (sECMdd, wECMdd-1) or two (wECMdd-

2) objects to represent a class are sensitive to the detected prototypes. More objects

that are not located in the overlapped area are inclined to be partitioned into the

imprecise classes by these methods.
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Figure 5.1: The overlapped data sets.
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Figure 5.2: Clustering on overlapped data sets. All the methods are evoked with
the same initial medoids. The prototypes in the detected classes by each method are
marked with ⊕. For wECMdd and wECMdd-0, the object with maximum weight in
each class is marked as medoid. The results of PAM and FMMdd are similar, so we
only display the figure of PAM to save space. And so also are the results for wECMdd
and wECMdd-0.
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Table 5.1: The clustering results on the overlapped data set.

P R RI EP ER ERI

PAM 0.8701 0.8701 0.9136 0.8701 0.8701 0.9136
FCMdd 0.8731 0.8734 0.9156 0.8731 0.8734 0.9156
FMMdd 0.8703 0.8702 0.9136 0.8703 0.8702 0.9136
sECMdd 0.8715 0.8730 0.9149 0.9889 0.6799 0.8910

wECMdd 0.8703 0.8705 0.9137 0.9726 0.7181 0.8994
wECMdd-0 0.8737 0.8738 0.9159 0.9405 0.7732 0.9083
wECMdd-1 0.8746 0.8764 0.9171 1.0000 0.6015 0.8674
wECMdd-2 0.8763 0.8780 0.9182 1.0000 0.6213 0.8740

The running time of sECMdd, wECMdd, MECM, PAM, FCMdd, FMMdd is calcu-

lated to show the computational complexity9. Each algorithm is evoked 10 times with

different initial parameters, and the average elapsed time is displayed in Table 5.2. As

we can see from the table, ECMdd is of higher complexity compared with fuzzy or

hard medoid based clustering. This is easy to understand, as in the partitions there

are imprecise classes and the membership is considered on the extended frame of the

power set 2Ω. But credal partitions by the use of ECMdd will improve the precision

of the clustering results. This is also important in some applications, where cautious

decisions are more welcome to avoid the possible high risk of misclassification.

Table 5.2: The average running time of different algorithms.

sECMdd wECMdd MECM PAM FCMdd FMMdd

Elapsed Time (s) 19.1100 14.2260 330.4680 1.3000 1.3480 6.9080

In order to show the influence of parameters in ECMdd algorithms, different values

of α, η, ξ, δ and β have been tested for this data set. Figure 5.3-a displays the three

evidential indices varying with α by sECMdd, while Figure 5.3-b depicts the results of

wECMdd with different α. As we can see, for both sECMdd and wECMdd, if we want

to make more imprecise decisions to improve ER, parameter α can be decreased, since α

tries to adjust the penalty degree to control the imprecise rates of the results. Keeping

more soft decisions will reduce the misclassification rate and makes the specific decisions

more accurate. But the partition results with few specific decisions have low ER values

and they are of limited practical meaning. In application we should determine α based

on the requirement. Parameter η in sECMdd and ξ in wECMdd are both for distinguish

9All the algorithms in this work are implemented with R 3.2.1
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the outliers in imprecise classes. As pointed out in Figures 5.3-c and 5.3-d, if η and

ξ are well set, they have little effect on the final clusterings. The same is true in the

case of δ which is applied to detect outliers (see Figure 5.3-f). The effect of various

values of β is illustrated in Figure 5.3-e. We can see that it has little influence on the

final results as long as it is larger than 1. Similar to FCM and ECM, the value of β

could also be set to be 2 as a usual choice here. Compared with MECM (the discussion

about the parameters of MECM could be seen in (Zhou et al., 2015c)), the parameters

of ECMdd are much easier to adjust and control.

5.5.2 Gaussian data set

In the second experiment, we test on a data set consisting of 10000 points generated

from different Gaussian distributions. The points are from 10 Gaussian distributions,

the mean values of which are uniformly located in a circle. The data set is displayed

in Figure 5.4.

Table 5.3: The clustering results on Gaussian data set.

P R RI EP ER ERI Elapsed Time (s)

PAM 0.8939 0.8940 0.8988 0.8939 0.8940 0.8988 118.2097
FCMdd 0.8960 0.8960 0.8992 0.8960 0.8960 0.8992 152.4320
FMMdd 0.8928 0.8980 0.8996 0.8980 0.8928 0.8996 197.5340
MECM 0.8980 0.8940 0.8921 0.9932 0.3173 0.9321 19430.1560

sECMdd 0.8931 0.8992 0.9043 1.0000 0.4468 0.9452 8987.7390
wECMdd 0.8923 0.8914 0.8908 1.0000 0.5623 0.9566 8534.8740

Table 5.3 lists the indices for evaluating the different methods. Bold entries in each

column of this table (and also other tables in the following) indicate that the results are

significant as the top performing algorithm(s) in terms of the corresponding evaluation

index. We can see that the precision, recall and RI values for all approaches are similar.

As the objects are from gaussian distributions, it is intuitive that there is only one ge-

ometrical center in each class. That’s why the one-prototype based clustering sECMdd

is a little better than wECMdd. For evidential clusterings, e.g., MECM, sECMdd and

wECMdd, the three classical measures are based on the associated pignistic proba-

bilities. It indicates that credal partitions can provide the same information as crisp

and fuzzy ones (PAM, FCMdd, and FMMdd). Most of the misclassifications in this

experiment come from the objects lying in the overlapped area between two classes.
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Figure 5.3: Clustering of overlapped data with different parameters.



5.5. Experiments 95

●●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●
●

● ●

●
●

●

●

●

●●

●

●

● ●●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

● ●

●
●

● ●

●

●
●

● ●

●
●

●

●
●

●● ●
●

●
●●

●

●

●
●

●
●● ●

●

●
●● ●

●
●

●

●

●

● ●

●●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●●

● ●

●
●

●

●

●●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●●

●
●

●

●●

●

●

●●

●

● ●
●

●
● ●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●● ●

●

●

●
●●●

●

●●

●

●
●

●●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●

●
●
● ●

●

●
● ●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●
●

●●●

●

●
●

● ●

●
●

●

●

●●

●
●

●●

●
●

●

●

● ●●

●

●
●

●● ●

●

●

●
●

●

●
●

●

●

●
●

●
●●●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●
●

●

●●

●

●
●

●●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●●
● ●

●

●
●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●
●●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●

●
●

●● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●●

●

●

●

● ●●

●●
● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●●

●
●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

● ●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●●●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

● ●
●●

●

●

●
●

●
●●●

●
●

●● ●

●

●

●●
●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●●

●

●
● ● ●

●
● ●

●

●

●

●

●●

●

●●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

● ●

●

●
●

●
●

●

● ●●

● ●

●

●●

●

●
●

●

●

●

●
●

●●

●

●
● ●

●

●
●

● ●

●

●
●

●
●

●

●

●

●
● ●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●●
●

●

●●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●
●

● ●

●

●

●
●

●

● ●

●
●

●

●

●
●

●

●

●
●

●●
●

●
●

●●

●

●
●●

●

●

●

●
●

●
●

● ●

●

●

●●●

●
●

●

●

● ●●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●
●●
●

●

●
●

●

●●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●●
●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●
● ●●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●●●●
●

●

●

●
●●

● ● ●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●●
● ● ●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●● ●
●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●● ●

●

●

●

●●
●

● ●
●

●

●●
●

●

●●
●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●
●

● ●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●
●
●●●

●●
●

●

●

●

●●
●

●●

●

●

●

●

● ●
●

●

●

●
●●●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●
●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●●
●

●
●

●

●

●●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●

●
●

●

●

● ●

●
●

●

●

●

●●

●

●
●

●

● ●
●

●●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●
●●

●
●

●

●●
●
●●

●

●

●

●

−5 0 5 10 15

−
5

0
5

10
15

Figure 5.4: Gaussian data set.

However, from the same table, we can also see that the evidential measures EP

and ERI by sECMdd and wECMdd are higher (for hard partitions, the values of evi-

dential measures equal to the corresponding classical ones) than the ones obtained by

other methods. This fact confirms the accuracy of the specific decisions i.e. decisions

clustering the objects into specific classes. The advantage can be attributed to the in-

troduction of imprecise clusters, with which we do not have to partition the uncertain

or unknown objects lying in the overlap into a specific cluster. Consequently, it could

reduce the risk of misclassification. For the computational time, the same conclusion

as in the first experiment can be obtained. Evidential clustering algorithms (sECMdd,

wECMdd and MECM) are more time-consuming than hard or fuzzy ones. But we can

see that wECMdd is the fastest one among the three, and it is significantly better than

MECM in terms of complexity.

5.5.3 X12 data set

In this test, a simple classical data set composed of 12 objects represented in Figure

5.5-a is considered. As we can see from the figure, objects 1 - 11 are clearly dived into

two groups whereas object 12 is an outlier. The results by sECMdd and wECMdd are

shown in Figure 5.5-b. Object 6 is clustered into imprecise class ω12 , {ω1, ω2} while

object 12 is regarded as an outlier (belonging to ∅).
In this data set, object 6 is a “good” member for both classes, whereas object 12 is

a “poor” point. It can be seen from Table 5.4 that the fuzzy partition by FCMdd also

gives large equal membership values to ω1 and ω2 for object 12, just like in the case of

such good members as point 6. The same is true for PAM and FMMdd. The obtained

results show the problem of distinguishing between ignorance and the “equal evidence”

(uncertainty) for fuzzy partitions. But the table shows that the credal partition by
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wECMdd assigns largest mass belief to ∅ for object 12, indicating it is an outlier.

Moreover, the values v2Ω

ji in the table are the weights of object i for class Aj , from

which it can be seen that object 3 and object 9 play the center role in their own class,

while object 6 contributes most to the overlapped parts of the two classes. Thus the

prototype weights indeed could provide us some rich information about the cluster

structure.
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Figure 5.5: A simple data set of 12 objects.

5.5.4 X11 data set

In this experiment, we will show the effectiveness of the application of multiple weighted

prototypes using the data set displayed in Figure 5.6. The X11 data set has two obvious

clusters, one containing objects 1 to 4 and the other including objects 5 to 10. Object

11 locates slightly biased to the cluster on the right side. It can be seen that in the

left class, it is unreasonable to describe the cluster structure using any one of the

four objects in the group, since no one of the four points could be viewed as a more

proper representative than the other three. The clustering results by FCMdd, sECMdd,

wECMdd are listed in Table 5.5. The result by MECM is not listed here as it is similar

to that by sECMdd.

From the table we can see that the two clustering approaches, FCMdd and sECMdd,

which using a single medoid cluster to represent a cluster, partition object 11 to cluster

1 for mistake. This is resulted by the fact that both of them set object 4 to be the center

of class ω1. On the contrary, in wECMdd, the four objects in cluster ω1 are thought
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Table 5.4: The clustering results of X12 data set using FCMdd and wECMdd. The
objects marked with * are the medoids found by FCMdd. Values mij , j = 1, 2, 3, 4 are
the mass assigned to xi for class ∅, ω1, ω2 and imprecise class ω12 , {ω1, ω2}. Values

v2Ω

ij , j = 1, 2, 3 are the weights of object xi for class ω1, ω2 and ω12.

FCMdd wECMdd

id ui1 ui2 mi1 mi2 mi3 mi4 BetPi1 BetPi2 v2Ω

1i v2Ω

2i v2Ω

3i

1 0.9412 0.0588 0.1054 0.7242 0.1599 0.0105 0.8154 0.1846 0.1123 0.0230 0.0000
2 0.9091 0.0909 0.0749 0.7282 0.1825 0.0144 0.7950 0.2050 0.1396 0.0359 0.0000
3 1.0000 0.0000* 0.0502 0.8005 0.1354 0.0140 0.8501 0.1499 0.1829 0.0382 0.0000
4 0.9091 0.0909 0.0821 0.7083 0.1938 0.0158 0.7803 0.2197 0.1117 0.0337 0.0000
5 0.8000 0.2000 0.0438 0.5969 0.2498 0.1095 0.6815 0.3185 0.1386 0.0709 0.0001
6 0.5000 0.5000 0.0000 0.0000 0.0000 1.0000 0.5000 0.5000 0.0997 0.0999 0.9998
7 0.2000 0.8000 0.0437 0.2463 0.6006 0.1094 0.3147 0.6853 0.0707 0.1388 0.0001
8 0.0909 0.9091 0.0753 0.1813 0.7289 0.0145 0.2039 0.7961 0.0358 0.1395 0.0000
9 0.0000 1.0000* 0.0507 0.1351 0.8001 0.0141 0.1497 0.8503 0.0381 0.1823 0.0000
10 0.0909 0.9091 0.0825 0.1927 0.7089 0.0159 0.2186 0.7814 0.0336 0.1115 0.0000
11 0.0588 0.9412 0.1063 0.1596 0.7235 0.0106 0.1845 0.8155 0.0230 0.1119 0.0000
12 0.5000 0.5000 0.3803 0.3042 0.3060 0.0095 0.4986 0.5014 0.0142 0.0143 0.0001

to have nearly the same contribution to the class. Consequently, object 11 is clustered

into ω2 correctly. FMMdd could also get the exactly accurate results as it is also take

use of multiple weighted medoids. This experiment shows that the multi-prototype

representation of classes could capture some complex data structure and consequently

enhance the clustering performance. It is remarkable that the hard partition could

be recovered from pignistic probability (BetP) for credal partitions. And the results

of these experiments reflects that pignistic probabilities play a similar role as fuzzy

membership.

5.5.5 Karate Club network

Graph visualization is commonly used to visually model relations in many areas. For

graphs such as social networks, the prototype (center) of one group is likely to be one

of the persons (i.e. nodes in the graph) playing the leader role in the community.

Moreover, a graph (network) of vertices (nodes) and edges usually describes the inter-

actions between different agents of the complex system and the pair-wise relationships

between nodes are often implied in the graph data sets. Thus medoids-based relational

clustering algorithms could be directly applied. In this section we will evaluate the

effectiveness of the proposed methods applied on community detection problems.

Here the widely used benchmark in detecting community structures, “Karate Club”,

studied by Wayne Zachary is considered. There are many similarity and dissimilarity
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Figure 5.6: A simple data set of 11 objects. The idea centers of the two clusters are
located at (-1, 1) and (1, 1). The coordinates of object 11 are (0.05, 1), which is closer
to the center of cluster 2.

indices for networks, using local or global information of graph structure. In this ex-

periment, the different similarity metrics will be compared first. The similarity indices

considered here are listed in Table 5.6 10. It is notable that the similarities by these

measures are from 0 to 1, thus they could be converted into dissimilarities simply by

dissimilarity = 1− similarity. The comparison results for different dissimilarity indices

by FCMdd and sECMdd are shown in Table 5.7 and Table 5.8 respectively. As we

can see, for all the dissimilarity indices, for sECMdd, the value of evidential precision

is higher than that of precision. This can be attributed to the introduced imprecise

classes which enable us not to make a hard decision for the nodes that we are uncer-

tain and consequently guarantee the accuracy of the specific clustering results. From

the table we can also see that the performance using the dissimilarity measure based

on signal prorogation is better than those using local similarities in the application of

both FCMdd and sECMdd. This reflects that global dissimilarity metric is better than

the local ones for community detection. Thus in the following experiments, we only

consider the signal dissimilarity index.

The detected community structures by different methods are displayed in Figures

5.7-b – 5.7-d. FCMdd could detect the exact community structure of all the nodes

except nodes 3, 14, 20. As we can see from the figures, these three nodes have connec-

tions with both communities. They are partitioned into imprecise class ω12 , {ω1, ω2},
which describing the uncertainty on the exact class labels of the related nodes, by the

application of sECMdd. The medoids found by FCMdd of the two specific communities

are node 5 and node 29, while by sECMdd node 5 and node 33. The uncertain nodes

10A more detailed description could be found in Section 2.5.1.
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Table 5.5: The clustering results of X11 data set. The objects marked with * are the
medoids found by FCMdd and sECMdd. Values vij , j = 1, 2, 3 are the weights of object
xi for class ω1, ω2 and imprecise class ω12 , {ω1, ω2}.

FCMdd sECMdd wECMdd

id ui1 ui2 BetPi1 BetPi2 BetPi1 BetPi2 vi1 vi2 vi3
1 0.9674 0.0326 0.9510 0.0490 0.9620 0.0380 0.1477 0.0414 0.0018
2 0.9802 0.0198 0.9671 0.0329 0.9578 0.0422 0.1476 0.0433 0.0024
3 0.9802 0.0198 0.9667 0.0333 0.9578 0.0422 0.1476 0.0433 0.0024
4 1.0000 0.0000* 1.0000 0.0000* 0.9517 0.0483 0.1475 0.0457 0.0033
5 0.0127 0.9873 0.0958 0.9042 0.0169 0.9831 0.0585 0.1190 0.0320
6 0.0147 0.9853 0.0383 0.9617 0.0145 0.9855 0.0554 0.1187 0.0223
7 0.0000 1.0000* 0.0327 0.9673 0.0073 0.9927 0.0558 0.1447 0.0117
8 0.0010 0.9990 0.0198 0.9802 0.0072 0.9928 0.0553 0.1445 0.0111
9 0.0099 0.9901 0.5000 0.5000 0.0144 0.9856 0.0554 0.1187 0.0223
10 0.0121 0.9879 0.0000 1.0000* 0.0128 0.9872 0.0530 0.1183 0.0167
11 0.5450 0.4550 0.5723 0.4277 0.4990 0.5010 0.0761 0.0625 0.8739

Table 5.6: Different local and global similarity indices.

Index name Global metric Ref.

Jaccard No (Jaccard, 1912)
Pan No (Pan et al., 2010)

Zhou No (Zhou et al., 2009)
Signal Yes (Hu et al., 2008)

found by MECM are node 3 and node 9.

The results by wECMdd algorithms are similar to that by sECMdd. Table 5.9

lists the prototype weights obtained by FMMdd and wECMdd. The nodes in each

community are ordered by prototype weights in the table. We just display the first ten

important members in every class. From the weight values by FMMdd and wECMdd

in the table we can get the same conclusion: nodes 1 and 12 play the center role in

community ω1, while node 33 and 34 consists the two cores in community ω2. But by

wECMdd more information about the overlapped structure of the network is available.

As we can see from the last two columns of the table, node 9 contributes most to the

overlapped community ω12, which is a good reflection of its “bridge” role for the two

classes. Therefore, the prototype weights provide us some information about the cluster

structure from another point of view, which could help us gain a better understanding

of the inner structure of a class.
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c. Results by MECM d. Results by sECMdd

Figure 5.7: The Karate Club network. The parameters of MECM are α = 1.5, β =
2, δ = 100, η = 0.9, γ = 0.05. In sECMdd, α = 0.05, β = 2, δ = 100, η = 1, γ = 1, while
in FCMdd, β = 2.
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Table 5.7: Comparison of different similarity indices by FCMdd.

Index P R RI EP ER ERI

Jaccard 0.6364 0.7179 0.6631 0.6364 0.7179 0.6631
Pan 0.4866 1.0000 0.4866 0.4866 1.0000 0.4866

Zhou 0.4866 1.0000 0.4866 0.4866 1.0000 0.4866
Signal 0.8125 0.8571 0.8342 0.8125 0.8571 0.8342

Table 5.8: Comparison of different similarity indices by sECMdd.

Index P R RI EP ER ERI

Jaccard 0.6458 0.6813 0.6631 0.7277 0.5092 0.6684
Pan 0.6868 0.7070 0.7005 0.7214 0.6923 0.7201

Zhou 0.6522 0.6593 0.6631 0.7460 0.3443 0.6239
Signal 1.0000 1.0000 1.0000 1.0000 0.6190 0.8146

5.5.6 Countries data

In this section we will test on a relational data set, referred as the benchmark data set

Countries Data (Kaufman and Rousseeuw, 2009; Mei and Chen, 2010). The task is to

group twelve countries into clusters based on the pairwise relationships as given in Table

5.10, which is in fact the average dissimilarity scores on some dimensions of quality of

life provided subjectively by students in a political science class. Generally, these

countries are classified into three categories: Western, Developing and Communist.

The parameters are set as β = 2 for FCMdd, and β = 2, α = 0.95, η = 1, γ = 1 for

sECMdd. We test the performances of FCMdd and sECMdd with two different sets of

initial representative countries: ∆1 = {C10: USSR; C8: Israel; C7: India} and ∆2 =

{C6: France; C4: Cuba; C1: Belgium}. The three countries in ∆1 are well separated.

On the contrary, for the countries in ∆2, Belgium is similar to France, which makes

two initial medoids of three are very close in terms of the given dissimilarities.

The results of FCMdd and sECMdd are given in Table 5.11 and Table 5.12 respec-

tively. It can be seen that FCMdd is very sensitive to initializations. When the initial

prototypes are well set (the case of ∆1), the obtained partition is reasonable. However,

the clustering results become worse when the initial medoids are not ideal (the case

of ∆2). In fact two of the three medoids are not changed during the update process

of FCMdd when using initial prototype set ∆2. This example illustrates that FCMdd

is quite easy to be stuck in a local minimum. For sECMdd, the credal partitions are

the same with different initializations. The pignistic probabilities are also displayed in

Table 5.12, which can be regarded as membership values in fuzzy partitions. The coun-

try Egypt is clustered into imprecise class {1, 2}, indicating that Egypt is not so well
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Table 5.9: The prototype weights by FMMdd and wECMdd. Community ω12 denotes
the imprecise community {ω1, ω2}. Only the first 10 nodes with largest weight values
in each community are listed.

FMMdd wECMdd

Community ω1 Community ω2 Community ω1 Community ω2 Community ω12

Node Weights Node Weights Node Weights Node Weights Node Weights

1 0.0689 33 0.0607 12 0.0707 33 0.0606 9 0.3194
12 0.0663 34 0.0565 1 0.0659 34 0.0562 3 0.1348
22 0.0590 28 0.0556 13 0.0588 24 0.0557 20 0.1254
18 0.0590 24 0.0551 18 0.0584 28 0.0549 25 0.0989
13 0.0583 15 0.0512 22 0.0584 15 0.0519 10 0.0493
2 0.0548 16 0.0512 5 0.0519 16 0.0519 32 0.0453
4 0.0544 19 0.0512 11 0.0519 19 0.0519 26 0.0429
8 0.0537 21 0.0512 4 0.0506 21 0.0519 29 0.0379
14 0.0469 23 0.0512 8 0.0503 23 0.0519 14 0.0351
5 0.0436 31 0.0504 2 0.0500 30 0.0509 31 0.0306

belongs to Developing or Western alone, but belongs to both categories. This result is

consistent with the fact shown from the dissimilarity matrix: Egypt is similar to both

USA and India, but has the largest dissimilarity to China. The results by wECMdd and

MECM algorithms are not displayed here, as they product the same clustering result

with sECMdd. From this experiment we can conclude that ECMdd is more robust to

the initializations than FCMdd.

5.5.7 UCI data sets

Finally the clustering performance of different methods will be compared on eight

benchmark UCI data sets (Lichman, 2013) summarized in Table 5.13. Euclidean dis-

tance is used as the dissimilarity measure for the object data sets, and the Signal

dissimilarity is adopted for the graph data sets.

Same as ECM, the number of parameters to be optimized in ECMdd is exponential

and depends on the number of clusters (Masson and Denoeux, 2008). For the number

of classes larger than 10, calculations are not tractable. But we can only consider

a subclass with a limited number of focal sets (Masson and Denoeux, 2008). Here

we constrain the focal sets to be composed of at most two classes (except Ω). The

evaluation results are listed in Tables 5.14–5.21.

It can be seen that generally wECMdd works better than the other approaches on

all of the data sets, except for Iris data set where sECMdd works best. This may

be explained by the fact that, Iris is a small data set and each class can be well

represented by one prototype. wECMdd has better performance for the other complex
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Table 5.10: Countries data: dissimilarity matrix.

Countries C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

1 C1: Belgium: 0.00 5.58 7.00 7.08 4.83 2.17 6.42 3.42 2.50 6.08 5.25 4.75
2 C2: Brazil 5.58 0.00 6.50 7.00 5.08 5.75 5.00 5.50 4.92 6.67 6.83 3.00
3 C3: China 7.00 6.50 0.00 3.83 8.17 6.67 5.58 6.42 6.25 4.25 4.50 6.08
4 C4: Cuba 7.08 7.00 3.83 0.00 5.83 6.92 6.00 6.42 7.33 2.67 3.75 6.67
5 C5: Egypt 4.83 5.08 8.17 5.83 0.00 4.92 4.67 5.00 4.50 6.00 5.75 5.00
6 C6: France 2.17 5.75 6.67 6.92 4.92 0.00 6.42 3.92 2.25 6.17 5.42 5.58
7 C7: India 6.42 5.00 5.58 6.00 4.67 6.42 0.00 6.17 6.33 6.17 6.08 4.83
8 C8: Israel 3.42 5.50 6.42 6.42 5.00 3.92 6.17 0.00 2.75 6.92 5.83 6.17
9 C9: USA 2.50 4.92 6.25 7.33 4.50 2.25 6.33 2.75 0.00 6.17 6.67 5.67
10 C10: USSR 6.08 6.67 4.25 2.67 6.00 6.17 6.17 6.92 6.17 0.00 3.67 6.50
11 C11: Yugoslavia 5.25 6.83 4.50 3.75 5.75 5.42 6.08 5.83 6.67 3.67 0.00 6.92
12 C12: Zaire 4.75 3.00 6.08 6.67 5.00 5.58 4.83 6.17 5.67 6.50 6.92 0.00

Table 5.11: Clustering results of FCMdd for countries data. The prototype (medoid)
of each class is marked with *.

FCMdd with ∆1 FCMdd with ∆2

Countries ui1 ui2 ui3 Label Medoids ui1 ui2 ui3 Label Medoids

1 C1: Belgium 0.4773 0.2543 0.2685 1 - 1.0000 0.0000 0.0000 1 *
2 C6: France 0.4453 0.2719 0.2829 1 - 0.0000 1.0000 0.0000 2 *
3 C8: Israel 1.0000 0.0000 0.0000 1 * 0.4158 0.3627 0.2215 1 -
4 C9: USA 0.5319 0.2311 0.2371 1 - 0.4078 0.4531 0.1391 2 -

5 C3: China 0.2731 0.3143 0.4126 3 - 0.2579 0.2707 0.4714 3 -
6 C4: Cuba 0.2235 0.2391 0.5374 3 - 0.0000 0.0000 1.0000 3 *
7 C10: USSR 0.0000 0.0000 1.0000 3 * 0.2346 0.2312 0.5342 3 -
8 C11: Yugoslavia 0.2819 0.2703 0.4478 3 - 0.2969 0.2875 0.4156 3 -

9 C2: Brazil 0.3419 0.3761 0.2820 2 - 0.3613 0.3506 0.2880 1 -
10 C5: Egypt 0.3444 0.3687 0.2870 2 - 0.3558 0.3493 0.2948 1 -
11 C7: India 0.0000 1.0000 0.0000 2 * 0.3257 0.3257 0.3485 3 -
12 C12: Zaire 0.3099 0.3959 0.2942 2 - 0.3901 0.3321 0.2778 1 -

data sets, since the single prototype seems not enough to capture a cluster in these cases,

whereas the cluster can be properly characterized by the multiple prototypes as done

in wECMdd. From the tables we can see that the EP values for credal partitions by

sECMdd and wECMdd are significantly higher than those for hard or fuzzy partitions,

which indicates the accuracy of specific decisions. Consequently it will avoid the risk

of misclassification by the concept of imprecise decisions.

The value of ER describes the fraction of instances grouped into an identical specific

cluster out of those relevant pairs in the ground-truth. If the objects are located in

the overlap, they are likely to be clustered into imprecise classes by ECMdd. This will

increase the value of EP. However, as few objects are partitioned into specific classes,

the value of ER will decrease. That’s why for Iris data set the partitional result by

wECMdd has the highest EP value following with a low ER value. The value of ERI can

be regarded as a compromise between EP and ER, and it is an integration of EP and
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Table 5.12: Clustering results of sECMdd for countries data. The prototype (medoid) of
each class is marked with *. The Label {1, 2} represents the imprecise class expressing
the uncertainty on class 1 and class 2.

sECMdd with ∆1 sECMdd with ∆2

Countries BetPi1 BetPi2 BetPi3 Label Medoids BetPi1 BetPi2 BetPi3 Label Medoids

1 C1: Belgium 1.0000 0.0000 0.0000 1 * 1.0000 0.0000 0.0000 1 *
2 C6: France 0.4932 0.2633 0.2435 1 - 0.5149 0.2555 0.2297 1 -
3 C8: Israel 0.4144 0.3119 0.2738 1 - 0.4231 0.3051 0.2719 1 -
4 C9: USA 0.4503 0.2994 0.2503 1 - 0.4684 0.2920 0.2396 1 -

5 C3: China 0.2323 0.2294 0.5383 3 * 0.0000 0.0000 1.0000 3 *
6 C4: Cuba 0.2778 0.2636 0.4586 3 - 0.2899 0.2794 0.4307 3 -
7 C10: USSR 0.2509 0.2260 0.5231 3 - 0.3167 0.2849 0.3984 3 -
8 C11: Yugoslavia 0.3478 0.2488 0.4034 3 - 0.3579 0.2526 0.3895 3 -

9 C2: Brazil 0.0000 1.0000 0.0000 2 * 0.0000 1.0000 0.0000 2 *
10 C5: Egypt 0.3755 0.3686 0.2558 {1, 2} - 0.3845 0.3777 0.2378 {1, 2} -
11 C7: India 0.3125 0.3650 0.3226 2 - 0.2787 0.3740 0.3473 2 -
12 C12: Zaire 0.3081 0.4336 0.2583 2 - 0.3068 0.4312 0.2619 2 -

Table 5.13: A summary of eight UCI data sets.

Data set No. of objects No. of cluster Category

Iris 150 3 object data
Cat cortex 65 4 relational data
Protein 213 4 relational data
American football 115 12 graph data
Banknote 1372 2 object data
Segment 2100 19 object data
Digits 1797 10 object data
Yeast 1484 10 object data

ER. As can be seen from the results, ECMdd performs best in terms of ERI for most

of the data sets. In practice, one can adjust the value of parameter α to get partitions

with different definition. The elapsed time for every clustering algorithm is illustrated

in the last column of each table. In terms of computational time, as excepted, the

evidential clustering algorithms take more time than hard or fuzzy clustering. But

sECMdd and wECMdd are much faster than MECM. wECMdd is less time-consuming

than sECMdd.

Presented results allow us to sum up the characteristics of the proposed ECMdd

clustering approaches (including sECMdd and wECMdd). Firstly, credal partitions

provided by all the ECMdd algorithms could recover the information of crisp and fuzzy

partitions. Secondly, ECMdd is more robust to the outliers and the initialization than

FCMdd. Thirdly, the imprecise classes by credal partitions enable us to make soft

decisions for uncertain objects and could avoid the risk of misclassifications. Moreover,

wECMdd performs best generally due to the efficient class representativeness strategy.
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Table 5.14: The clustering results on Iris data set.

P R RI EP ER ERI Elapsed Time (s)

PAM 0.8077 0.8571 0.8859 0.8077 0.8571 0.8859 0.0140
FCMdd 0.7965 0.8520 0.8797 0.7965 0.8520 0.8797 0.0160
FMMdd 0.8329 0.8411 0.8923 0.8329 0.8411 0.8923 0.0560
MECM 0.8347 0.8384 0.8923 0.9454 0.7064 0.8900 73.3300

sECMdd 0.8359 0.8471 0.8950 0.9347 0.7328 0.8953 0.2500
wECMdd 0.8305 0.8335 0.8893 0.9742 0.4827 0.8257 0.2000

Table 5.15: The clustering results on Proteins data set.

P R RI EP ER ERI Elapsed Time (s)

PAM 0.7023 0.8246 0.8492 0.7023 0.8246 0.8492 0.0230
FCMdd 0.6405 0.8353 0.8181 0.6405 0.8353 0.8181 0.0200
FMMdd 0.6586 0.7735 0.8198 0.6586 0.7735 0.8198 0.1760
MECM 0.6734 0.8250 0.8348 0.8530 0.5946 0.8542 220.7700

sECMdd 0.6534 0.8150 0.7848 0.8630 0.5146 0.8642 0.8100
wECMdd 0.7449 0.8594 0.8751 0.8609 0.7527 0.8940 0.4700

Table 5.16: The clustering results on Cats data set.

P R RI EP ER ERI Elapsed Time (s)

PAM 0.6883 0.6897 0.8438 0.6883 0.6897 0.8438 0.0040
FCMdd 0.6036 0.5747 0.7986 0.6036 0.5747 0.7986 0.0220
FMMdd 0.4706 0.6130 0.7298 0.4706 0.6130 0.7298 0.0090
MECM 0.7269 0.7088 0.8601 0.9412 0.3065 0.8212 8.8000

sECMdd 0.7569 0.7288 0.8801 0.9512 0.2865 0.8312 0.1700
wECMdd 0.8526 0.8755 0.9308 0.8774 0.8908 0.9413 0.1400

Table 5.17: The clustering results on American football network.

P R RI EP ER ERI Elapsed Time (s)

PAM 0.8649 0.9178 0.9820 0.8649 0.9178 0.9820 0.0430
FCMdd 0.8649 0.9178 0.9820 0.8649 0.9178 0.9820 0.0200
FMMdd 0.8590 0.9082 0.9808 0.8590 0.9082 0.9808 0.0710
MECM 0.8232 0.9082 0.9771 0.9303 0.8681 0.9843 154.9300

sECMdd 0.4166 0.6826 0.8984 0.7696 0.3384 0.9391 19.4700
wECMdd 0.8924 0.9197 0.9847 0.9735 0.5621 0.9638 18.2100
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Table 5.18: The clustering results on Banknote authentication data set.

P R RI EP ER ERI Elapsed Time (s)

PAM 0.5252 0.5851 0.5226 0.5252 0.5851 0.5226 0.7561
FCMdd 0.5252 0.5851 0.5226 0.5252 0.5851 0.5226 0.8350
FMMdd 0.5225 0.5302 0.5173 0.5225 0.5302 0.5173 5.9381
MECM 0.5201 0.5618 0.5265 0.5553 0.4078 0.5353 50.0890

sECMdd 0.5211 0.6334 0.5202 0.5191 0.5256 0.5138 8.2880
wECMdd 0.5259 0.5645 0.5793 0.5713 0.4808 0.5797 7.1500

Table 5.19: The clustering results on Segment data set.

P R RI EP ER ERI Elapsed Time (s)

PAM 0.4131 0.4910 0.8281 0.4131 0.4910 0.8281 7.8250
FCMdd 0.4380 0.5683 0.8246 0.4380 0.5683 0.8346 8.9900
FMMdd 0.5186 0.8043 0.5626 0.5186 0.8043 0.5626 107.3040
MECM 0.5164 0.7744 0.6160 0.6764 0.5444 0.7160 765.8800

sECMdd 0.5040 0.7738 0.6065 0.7040 0.4738 0.7255 351.0800
wECMdd 0.5433 0.8350 0.8455 0.7584 0.4856 0.8582 308.3100

Table 5.20: The clustering results on Digits data set.

P R RI EP ER ERI Elapsed Time (s)

PAM 0.5928 0.6351 0.8203 0.5928 0.6351 0.8203 6.3638
FCMdd 0.5096 0.5753 0.8026 0.5096 0.5753 0.8026 4.1913
FMMdd 0.6542 0.5941 0.7861 0.6542 0.5941 0.7861 25.7530
MECM 0.6148 0.5685 0.7772 0.8137 0.7268 0.6126 524.2380

sECMdd 0.7201 0.5920 0.7566 0.8048 0.7630 0.6005 215.5220
wECMdd 0.7250 0.6645 0.8232 0.8211 0.5911 0.8141 206.5590

Table 5.21: The clustering results on Yeast data set.

P R RI EP ER ERI Elapsed Time (s)

PAM 0.5229 0.4848 0.7322 0.5229 0.4848 0.7322 4.6414
FCMdd 0.5939 0.5151 0.7515 0.5939 0.5151 0.7515 4.7177
FMMdd 0.5938 0.5568 0.6345 0.5938 0.5568 0.6345 12.7288
MECM 0.3991 0.4098 0.6829 0.5723 0.5601 0.7149 212.6400

sECMdd 0.4123 0.4698 0.7050 0.6393 0.5369 0.7273 155.5300
wECMdd 0.6329 0.5065 0.7712 0.7041 0.6544 0.7917 134.8950
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Lastly, the prototype weights provided by wECMdd algorithms are useful for our better

understanding of cluster structure in real applications.

5.6 Conclusion

In this chapter, the evidential c-medoids clustering is proposed as a new medoid-based

clustering algorithm. Two versions of ECMdd algorithms are presented. One uses a

single medoid to represent each class, while the other adopts the multiple weighted

medoids. The proposed approaches are some extensions of crisp c-medoids and fuzzy c-

medoids on the framework of belief function theory. The experimental results illustrates

the advantages of credal partitions by sECMdd and wECMdd. Moreover, the way of

using prototype weights to represent a cluster enables wECMdd to capture the various

types of cluster structures more precisely and completely hence improves the quality of

the detected classes. Furthermore, more detailed information on the discovered clusters

may be obtained with the help of prototype weights.

As we analyzed in this chapter, assigning weights of a class to all the patterns seems

not rational since objects in other clusters make little contribution. Thus it is better

to set the number of possible objects holding positive weights differently for each class.

But how to determine the optimal number of prototypes is a key problem and we will

study this in our future work. The relational descriptions of a data set may be given

by multiple dissimilarity matrices. Thus another interesting work aiming to obtain a

collaborative role of the different dissimilarity matrices to get a final consensus partition

will also be investigated in the future.

Until now, we have introduced three clustering algorithms for community detection.

These models only take the dissimilarities or similarities between nodes based on the

topological graph structure into consideration. In some cases, there may be some

available information which is also of great value for guiding us preforming the task

of graph clustering. In next chapter, we will discuss this problem and present a new

clustering model which can make use of the available supervised knowledge.
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6
Semi-supervised evidential label

propagation algorithm for graphs

6.1 Introduction

With the increasing size of networks in real world, community detection approaches

should be fast and accurate. The Label Propagation Algorithm (LPA) (Raghavan

et al., 2007) is known to be one of the near-linear solutions and benefits of easy imple-

mentation, thus it forms a good basis for efficient community detection methods. The

behavior of LPA is not stable because of the randomness. Different communities may

be detected in different runs over the same network. Moreover, by assuming that a

node always adopts the label of the majority of its neighbors, LPA ignores any other

structural information existing in the neighborhood of this node.

Supervised classification is one of the most popular techniques in machine learning.

Generally, the goal of supervised learning is to train a classifier that reliably approx-

imates a classification task based on a set of labeled examples from the problem of

interest. The performance of the learned classifier highly depends on the proportion of

labeled samples. However, in many practical applications of pattern classification, it is

usually difficult to get abundant labeled samples since the task of manual labeling is

time consuming and often requires expensive human labor. On the contrary, there are

usually a large number of unlabeled samples which are easier to obtain. Consequently,

Semi-Supervised Learning (SSL), which aims to effectively combine the information

from both unlabeled and labeled data, has been proposed to perform the classification

task when there are not enough training samples.

Semi-supervised classification has been widely studied for classical data sets, but

there has been little work on semi-supervised community detection. In many scenarios

a substantial amount of prior knowledge about the graph structure may be available.

It could reflect the application-specific knowledge about cluster membership to some

extent. For instance, in a co-authorship community network, it may be possible to

label a small subset of scholars based on their research interests. In a social network

application, it may be desirable to label some nodes according to their affinity to some

products.

In this chapter, we enhance the original LPA by introducing new update and prop-

agation strategies using the theory of belief functions. The Semi-supervised version of

109
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Evidential Label Propagation (SELP) algorithm is presented. SELP can take advan-

tage of the limited amount of supervised information and consequently improve the

detection results.

6.2 Semi-supervised label propagation

Inspired from LPA and EK-NNclus (Denœux et al., 2015), we propose here the SELP

algorithm for graph data sets with prior information. The problem of semi-supervised

community detection will be first described in a mathematical way, and then the pro-

posed semi-supervised label propagation algorithm will be presented in detail.

6.2.1 Problem restatement and notions

Let G(V,E) denote the graph, where V is the set of n nodes and E ⊆ V × V is the set

of edges. Generally, a network can be expressed by its adjacent matrix A = (aij)n×n,

where aij = 1 indicates that there is a direct edge between nodes ni and nj , and 0

otherwise.

Assume that there are c communities in the graph. The set of labels is denoted

by Ω = {ω1, ω2, · · · , ωc}. In addition, in order to make sure the solution is unique, we

assume that there must be at least one labeled vertex in each community. The n nodes

in set V can be divided into two parts:

VL = {(n1, y1), (n2, y2), · · · , (nl, yl)}, yj ∈ Ω

for the labeled nodes, and

VU = {nl+1, nl+2, · · · , nn}

for the unlabeled ones. The main task of the semi-supervised community detection is

to make models propagating the labels from nodes in VL to those in VU , and further

determine the labels of those unlabeled vertices.

6.2.2 The dissimilarities between nodes

Like the smooth assumption in the semi-supervised graph-based learning methods (Zhu

et al., 2005), here we assume that the more common neighbors the two nodes share,

the larger probability that they belong to the same community. Thus in this work, the

index considering the number of shared common neighbors is adopted to measure the

similarities between nodes.

Definition 6.1. Let the set of neighbors of node ni be Ni, and the degree of node ni
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be di. The similarity between nodes ni and nj (ni, nj ∈ V ) is defined as

sij =


|Ni ∩Nj |
di + dj

, if aij = 1

0, otherwise.

(6.1)

Then the dissimilarities associated with the similarity measure can be defined as

dij =
1− sij
sij

, ∀ ni, nj ∈ V. (6.2)

6.2.3 Label propagation

For the labeled node nj ∈ VL in community ωk, the initial bba can be defined as a

Bayesian categorical mass function:

mj(A) =

1 if A = {ωk}

0 otherwise.
(6.3)

For the unlabeled node nx ∈ VU , the vacuous mass assignment can be used to express

our ignorance about its community label:

mx(A) =

1 if A = Ω

0 otherwise.
(6.4)

To determine the label of node nx, its neighbors can be regarded as distinct infor-

mation sources. If there are |Nx| = rx neighbors for node nx, the number of sources is

rx. The reliability of each source depends on the similarities between nodes. Suppose

that there is a neighbor nt with label ωj , it can provide us with a bba describing the

belief on the community label of node nx as

mx
t ({ωt}) = α ∗mt({ωj}),
mx
t (Ω) = mt(Ω) + (1− α) ∗mt({ωj}),

mx
t (A) = 0, if A 6= {ωj},Ω, (6.5)

where α is the discounting parameter such that 0 ≤ α ≤ 1. It should be determined

according to the similarity between nodes nx and nt. The more similar the two nodes

are, the more reliable the source is. Thus α can be set as a decreasing function of dxt.

In this work we suggest to use

α = α0 exp{−γdβxt}, (6.6)
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where parameters α0 and β can be set to be 1 and 2 respectively as default, and γ can

be set to

γ = 1/median
({
dβij , i = 1, 2, · · · , n, j ∈ Ni

})
. (6.7)

After the rx bbas from its neighbors are calculated using Eq. (6.5), the fused bba of

node nx can be got by the use of Dempster’s combination rule (see Eq. (2.14)):

mx = mx
1 ⊕mx

2 ⊕ · · · ⊕mx
rx . (6.8)

The label of node nx can be determined by the maximal value of mx. The main

principle of semi-supervised learning is to take advantage of the unlabeled data. It is

an intuitive way to add node nx (previously in set VU but already be labeled now) to

set Vl to train the classifier. However, if the predicted label of nx is wrong, it will have

very bad effects on the accuracy of the following predictions. Here a parameter η is

introduced to control the prediction confidence of the nodes that to be added in Vl. If

the maximum of mx is larger than η, it indicates that the belief about the community

of node nx is high and the prediction is confident. Then we remove node nx in VU and

add it to set VL. On the contrary, if the maximum of mx is not larger than η, it means

that we can not make a confident decision about the label of nx based on the current

information. Thus the node nx should be remained in set VU . In fact this is the idea

of self-training (Li and Zhou, 2005).

In order to propagate the labels from the labeled nodes to the unlabeled ones in the

graph, a classifier should be first trained using the labeled data in Vl. For each node

nx in VU , we find its direct neighbors and construct bbas through Eq. (6.5). Then the

fused bba about the community label of node nx is calculated by Eq. (6.8). The subset

of the unlabeled nodes, the maximal bba of which is larger than the given threshold η,

are selected to augment the labeled data set. The predicted labels of these nodes are

set to be the class assigned with the maximal mass. Parameter η can be set to 0.7 by

default in practice.

After the above update process, there may still be some nodes in VU . For these

nodes, we can find their neighbors that are in VL, and then use Eqs. (6.5) and (6.8) to

determine their bbas. The whole algorithm of SELP is summarised in Algorithm 6.

6.3 Experiment

In order to verify the efficiency and effectiveness of the proposed SELP algorithm, some

experiments on classification tasks will be conducted in this section, and the results by

the use of different methods will be reported. The semi-supervised community detection

algorithm using label propagation (SLP) (Liu et al., 2014) and the unsupervised label

propagation algorithm will be used to compare the performance on graph data sets.

The parameters in SELP are all set to the default values in the experiments.
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Algorithm 6 : SELP algorithm

Input: Graph G(V,E). The set of labeled node VL, and the set of unlabeled node
VU .
Parameters:
η: the parameter to control the prediction confidence
α0, β: the parameter to determine the discounting factor
MaxIts: the maximal update steps
PercFul: the percentage of the labeled data
Initialization:
(1). Initialize the bba of each node in the network using Eqs. (6.3) and (6.4).
(2). Let it = 0
repeat

(1). For each node nx ∈ VU , find its rx direct neighbors and construct rx bbas of
nx using Eq. (6.5).
(2). Calculate the fused bba of node nx by Eq. (6.8).
(3). If the maximum of mass assignment of nx is larger than η, move node nX
from set VU to set VL.
(4). it = it+ 1.

until The percentage of nodes in VL is larger than PercFul or the maximal update
step is reached.
If there are still some nodes in VU , update their bbas based on the information from
the neighbors using Eqs. (6.5) and (6.8).
Output: The bba matrix M = {mi}, i = 1, 2, · · · , n.

6.3.1 Real world networks

A. Karate Club network. In this experiment we test on the widely used benchmark

in detecting community structures, “Karate Club”.

In the first test, the labeled node in community ω1 is set to node 5, while that in

community ω2 is node 24. After five steps, SELP algorithm stops. The detailed update

process is displayed in Figure 6.1. It can be seen from the figure that two outliers,

nodes 10 and 12 are detected by SELP. From the original graph, we can see that node

10 has two neighbors, nodes 3 and 34. But neither of them shares a common neighbor

with node 10. For node 12, it only connects to node 1, but has no connection with any

other node in the graph. Therefore, it is very intuitive that the two nodes are regarded

as outliers of the graph.

The detection results on Karate Club network by SELP and SLP algorithms with

different labeled nodes are shown in Table 6.1. The labeled vertices and its correspond-

ing misclassified vertices are clearly presented in the table. As can be seen from the

table, nodes 10 and 12 are detected as outliers in all the cases by SELP, and the two

communities can be correctly classified most of the time. The performance of SLP is
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Figure 6.1: The label propagation process on Karate Club network. The nodes marked
with color red are the outliers detected by SELP.
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worse than that of SELP when there is only one labeled data in each community. For

the nodes which are connected to both communities and located in the overlap, such

as nodes 3 and 9, they are misclassified most frequently. If the number of labeled data

in each community is increased to 2, the exact community structure can be got by

both methods. It is indicated that the more prior information we have, the better the

performance of SELP is.

Table 6.1: Community detection results for the Karate Club network.

Labeled nodes in ω1 Labeled nodes in ω2 Misclassified nodes by SELP Detected outliers by SELP Misclassified nodes by SLP

1 34 None 10, 12 None
1 32 9 10, 12 9, 10, 27, 31, 34
2 33 None 10, 12 None
6 31 3 10, 12 2, 3, 8, 14, 2
8 31 None 10, 12 10
8 32 None 10, 12 None

17 31 3, 4, 8, 14 10, 12 2, 3, 4, 8, 13, 14, 18, 20, 22
1, 2 33, 34 None 10, 12 None
1, 2 33, 9 None 10, 12 None

3, 18 26, 30 None 10, 12 None
17, 4 31, 9 None 10, 12 None

B. American football network. As a further test of our algorithm, the network

we investigate in this experiment is the world of American college football games.

Let the number of labeled nodes in each community to be fixed. Then SELP and

SLP algorithms are evoked 50 times respectively with randomly selected labeled nodes.

The average error rates and NMI values (plus and minus one standard deviation) of the

50 experiments are displayed in Figures 6.2-a and 6.2-b respectively. As can be seen

from the figures, with the increasing number of labeled samples, the performance of

both SELP and SLP becomes better. The NMI values of the detected communities by

SELP and SLP are significantly larger than those by LPA. It indicates that the semi-

supervised community detection methods could take advantage of the limited amount

of prior information and consequently improve the accuracy of the detection results.

The behavior of SELP is better than that of SLP in terms of both error rates and NMI

values.

6.3.2 LFR network

In this subsection, LFR benchmark networks will be used to test the ability of the

algorithm to identify communities. The experiments here include evaluating the per-

formance of the algorithm with various amounts of labeled nodes and different values

of parameter µ in the benchmark networks. The original LPA (Raghavan et al., 2007)

and the semi-supervised community detection approach SLP (Liu et al., 2014) will be

used to compare.
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Figure 6.2: The results on American football network. The two figures show the average
error rates and NMI values (plus and minus one standard deviation) for 50 repeated
experiments, as a function of the number of labeled samples.

As mentioned before, in LFR networks, the mixing parameter µ represents the ratio

between the external degree of each vertex with respect to its community and the total

degree of the node. The larger the value of µ is, the more difficult the community

structure will be correctly detected. The values of the parameters in LFR benchmark

networks are set as follows: n = 1000, ξ = 15, τ1 = 2, τ2 = 1, cmin = 20, cmax = 50.

The performance of different methods with various values of µ is shown in Figure

6.3. As expected, the error rate is very high and the NMI value is low when µ is large. It

demonstrates the fact that the community structure is not very clear and consequently

difficult to be identified correctly. It can be seen from Figure 6.3-a that the error rates

by SELP are smaller than those by SLP generally. SELP performs better than SLP.

This conclusion could also be got in terms of NMI values displayed in Figure 6.3-b.

The original LPA could not work at all when µ is larger than 0.5. The results

of SELP and SLP are significantly improved in these cases compared with LPA. As

shown in Figure 6.4-b, even when there is only one labeled data in each community,

the behavior of SELP is much better than that of LPA. This confirms the fact that the

semi-supervised community detection approaches can effectively take advantage of the

limited amount of labeled data. From Figure 6.4, we can also see that the performance

of SELP and SLP becomes better with the increasing number of labeled nodes.
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Figure 6.3: The results on LFR network. The number of labeled nodes in each com-
munity is 3.
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6.3.3 Classical data sets

To apply the proposed SELP algorithm on classical data sets, we should first find an ap-

propriate graph to model the analyzed data set. However, although the graph is at the

heart of these graph-based methods, its construction has not been studied extensively

(Zhu, 2006). Here a commonly used method, the K-Nearest Neighbor Graph (KNNG),

is adopted to construct a graph based on the dissimilarities between objects (Maier

et al., 2009). Assume that there are n objects, x1, x2, · · · , xn, in the data set. The

dissimilarities between objects are denoted by dij , i, j = 1, 2, · · · , n. The data points

are used as vertices in the constructed undirected graph. As before, by Nj we denote

the set of the K nearest neighbors of object xi among x1, x2, · · · , xi−1, xi+1, · · · , xn.

The KNNG can be defined as: xi and xj are connected if xi ∈ Nj and xj ∈ Ni.

Example 6.1. In this experiment a simulated two-dimensional data set, often called

“two-moon data set” (shown in Figure 6.5-a), is used. This data set consists of 405

objects which form two non-linearly separable semi-circle shaped clusters. There are

five noisy points (marked with stars in the figure) that do not belong to either class.

The constructed graph with K = 9 is displayed in Figure 6.5-b.
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Figure 6.5: The two-moon data set.

We evoke SELP algorithm on this graph. Initially we randomly select one sample

from each class as the labeled data. The label propagation process is illustrated in

Figure 6.6. As can be seen from the figure, the algorithm stops after 30 iterations. The

two classes as well as the five noisy data are correctly classified finally. Using other

semi-supervised learning algorithms such as SLP on the same constructed graph, the
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two classes are easy to be detected. However, the noisy data will be partitioned into

the two classes by mistake.

●

●●●
●

●

●

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−
1

.0
−

0
.5

0
.0

0
.5

x

y

● Labeled data in ω1

Labeled data in ω2

unlabeled data

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0
−

1
.0

−
0

.5
0

.0
0

.5

x

y

● Labeled data in ω1

Labeled data in ω2

unlabeled data

a. it = 3 b. it = 11

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−
1

.0
−

0
.5

0
.0

0
.5

x

y

● Labeled data in ω1

Labeled data in ω2

Labeled as noisy data

unlabeled data

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−
1

.0
−

0
.5

0
.0

0
.5

x

y

● Labeled data in ω1

Labeled data in ω2

Labeled as noisy data

unlabeled data

c. it = 27 d. it = 30

Figure 6.6: The label propagation process on two-moon data set. The initial labeled
samples are marked with big size symbols in the figure.

Example 6.2. The original data set used in the example, which is a three-ring pattern

with 180×3+6 data points, is shown in Figure 6.7-a. Each circle contains 180 patterns,

and there are also six noisy points located between circles. Figure 6.7-b depicts the

constructed K-NN graph with K = 10.
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Figure 6.7: The three-ring data set.

The update process and the classification results are illustrated in Figures 6.8-a –

6.8-d. From the figures we can see that SELP could detect the three classes exactly.

Five outliers out of six are correctly found.

These two experiments on classical data sets are just used to show the possibility of

the application of SELP on classical data sets. The results indicate that SELP works

well especially it can detect the outliers. However, how to construct the graph using

the dissimilarities between objects needs a further consideration.

6.4 Conclusion

In this chapter, the semi-supervised evidential label propagation algorithm is presented

as an enhanced version of LPA. Different from the other chapters in this manuscript,

the approach proposed here could effectively take advantage of the limited amount of

supervised information. This is of practical meaning in real applications as there often

exists some prior knowledge for the analyzed data sets. The experimental results show

that the detection results will be significantly improved with the help of limited amount

of supervised data.

At the end of the experimental part, we show the possibility to apply SELP on

classical data sets. This requires the construction of graph based on the dissimilarities

between objects. However, how to construct graphs should be further studied. An-

other problem, also can be seen from the experiments, is that the detection results are

different if the labeled data are different. Thus which data should be selected as the
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Figure 6.8: The label propagation process on three-ring data set. The initial labeled
samples are marked with big size symbols in the figure. In the first three figures, the
samples marked with black symbols denote the unlabeled data in the current step.
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initial labeled samples should be considered. In fact this question is in the context of

active learning. The active community detection approach using the principle of label

propagation is also an interesting problem that is worth investigation in the future

research work.



7
Conclusion and future work

7.1 Conclusion

Clustering is a key process in different data mining applications and it offers many

potential benefits to a wide-range of fields including data mining, pattern recognition,

information retrieval, bioinformatics, and business intelligence. Different requirements

and challenges need to be taken into consideration in designing clustering algorithms

applied to different tasks. In this thesis, we focused our study on clustering of proximity

data. For community detection problems on networks, it could be seen as a graph

clustering where the available data is the similarities or dissimilarities based on the

topological graph structure.

With this objective in mind, we first consider a basic situation where only the

pairwise relation between patterns is available, and three clustering methods, MECM,

SMP, and ECMdd have been proposed. MECM uses only one prototype to describe

the class, while SMP and ECMdd can take advantage of more than one representative

prototype. The difference between SMP and ECMdd is that the former is for hard

and fuzzy partitions, and the latter is for credal partitions. Compared with crisp and

fuzzy partitions, credal partitions could also provide us with the information contained

in hard and fuzzy partitions as by-products through computing pignistic probabilities.

Thus it is more general than hard and fuzzy clustering. Moreover, it could distinguish

ignorance from uncertainty while fuzzy or crisp partitions could not. By the intro-

duced imprecise clusters, we could find some overlapping and indistinguishable clusters

for related patterns. We also find that the way of using prototype weights to represent

a cluster enables the clustering models to capture the various types of cluster struc-

tures more precisely and completely hence improves the quality of the detected classes.

Furthermore, more detailed information on the discovered clusters can be got with the

help of prototype weights. These clustering algorithms have been successfully applied

in community detection problems.

SELP is different from the above three clustering methods since it can take some

available prior information into consideration. In real applications of network data

analysis, there often exists some prior information about the community labels of nodes.

SELP can take use of such kind of supervised information to improve the detection

results. SELP performs significantly better than the unsupervised community detection
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approach. Compared with the existing semi-supervised community detection methods,

SELP also has a better behavior.

To conclude, our work on evidential clustering aims to effectively make use of prox-

imity data to improve the clustering results, provide interpretive information to describe

each of the detected clusters, especially the imprecise and uncertain classes.

7.2 Future work

In this section, we try to develop some possible future works based on the current work

that we have already done in this thesis. We are mostly interested in several directions

as below:

• We will compare the four proposed methods on community detection problems,

and discuss the principle of the selection of different methods under different

conditions in real applications.

• In practice, labeled data are expensive to get. Active learning (Settles, 2010)

aims to achieve high accuracy using few labeled data. There is little work on

active learning for community detection problems. But it is of great value to

introduce active learning in graph clustering approach since it could improve the

performance of discovering community structure of complex networks. As there

is often quite a large amount of uncertain information in networks, querying un-

certain data during the learning procedure can reduce the uncertainty(Ma et al.,

2016). It is interesting to study the strategy of selecting and querying the uncer-

tain members in networks to improve the performance of learner.

• For credal partitions, the complexity of the algorithm is exponential to the number

of clusters. This limits the application on the data sets when the class number

is large. Although there are some method such as considering only a subclass

with a limited number of focal sets (Masson and Denoeux, 2008), it is not effi-

cient in practice. How to reduce the complexity of the algorithm should also be

considered.

• The communities considered in this work can intuitively be defined as subsets of

nodes in a graph with a dense structure in the corresponding subgraph. Only

structural aspects are taken into account. Typically, no concise nor easily in-

terpretable community description is provided in this case (Atzmueller et al.,

2016). In order to provide both structurally valid and interpretable communities,

the graph structure as well as additional descriptive features of the nodes in the

graph should be utilized (Atzmueller et al., 2016). When nodes are described

with a set of attributes, it is the concept of attributed networks (Largeron et al.,
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2015). The attributes may be noisy and uncertain. It may be interesting to pro-

pose an evidential community detection approach to capture the imprecise graph

structure with some uncertain information in an attributed graph.
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Appendix

A. Update equations for the MECM algorithm

For minimizing JMECM, the Lagrange multipliers method can be adopted. The

calculation for the updating equations is similar to that in ECM (Masson and Denoeux,

2008). In the first step, the prototype set V is considered to be fixed. To solve the

constrained minimization problem with respect to M , the Lagrange multipliers λi can

be introduced:

L(M ;λ1, λ2, · · · , λn) = JMECM(M ,V )−
n∑
i=1

λi

 ∑
Aj⊆Ω,Aj 6=∅

mij +mi∅ − 1

 . (A.1)

By differentiating the Lagrangian with respect to the mij , mi∅ and λi and setting

the derivatives to zero, we can obtain:

∂L

∂mij
= |Aj |αβmβ−1

ij d
2
ij − λi = 0, (A.2)

∂L

∂mi∅
= βmβ−1

ij δ2 − λi = 0, (A.3)

∂L

∂λi
=

∑
Aj⊆Ω,Aj 6=∅

mij +mi∅ − 1 = 0. (A.4)

From Eq. (A.2) we can get

mij =

(
λi
β

) 1
β−1

(
1

|Aj |αd
2
ij

) 1
β−1

. (A.5)

And from Eq. (A.3)

mi∅ =

(
λi
β

) 1
β−1

(
1

δ2

) 1
β−1

. (A.6)

Using Eqs. (A.4)- (A.6) we have

(
λi
β

) 1
β−1

=

∑
j

1

|Aj |
α
β−1

1(
dij
) 2
β−1

+
1

δ
2

β−1

−1

. (A.7)

Returning in Eq. (A.2), one obtains the necessary condition of optimality for M :

127



128 Chapter7. Conclusion and future work

mij =
|Aj |−α/(β−1)d

−2/(β−1)
ij∑

Ak 6=∅
|Ak|−α/(β−1)d

−2/(β−1)
ik + δ−2/(β−1)

, (A.8)

mi∅ = 1−
∑
Aj 6=∅

mij . (A.9)

The update strategy for V is based on a global searching scheme, trough which the

objective function JMECM can also be decreased.
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