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M. Andreas Höring Université de Nice Sophia Antipolis Directeur de thèse
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Deux points de vue sur les variétés de
Fano : géométrie du diviseur
anticanonique et classification des
surfaces à singularités 1/3(1,1)

Le sujet principal de cette thèse est l’étude des variétés de Fano, qui sont des objets centraux de la
classification des variétés algébriques.

La première question abordée concerne les variétés de Fano lisses de dimension quatre. On
cherche a étudier les potentielles singularités d’un diviseur anticanonique de sorte qu’on puisse les
écrire sous une forme locale explicite. En tant qu’étape intermédiaire, on démontre aussi que ces
points sont au plus des singularités terminales, c’est-à-dire les singularités les plus proches du cas
lisse du point de vue de la géométrie birationnelle. On montre ensuite que ce dernier résultat se
généralise en dimension arbitraire en admettant une conjecture de non-annulation de Kawamata.

De façon complémentaire, on s’intéresse à des variétés de Fano de dimension plus petite, mais ad-
mettant des singularités. Il s’agit des surfaces de del Pezzo ayant des singularités de type 1

3(1, 1). Ceci
est l’exemple le plus simple de singularité rigide, c’est-à-dire qui reste inchangée à une déformation
Q-Gorenstein près. On classifie entièrement ces objets en trouvant 29 familles. On obtient ainsi un
tableau contenant des modèles de ces surfaces, qui pour la plupart sont des intersections complètes
dans des variétés toriques. Ce travail s’inscrit dans un contexte plus large, où les auteurs de [OP]
calculent leur cohomologie quantique pour ensuite vérifier si les Conjectures A et B de [ACC+16]
sont valides dans ces cas.

Bien que ces problématiques soient très proches, elles font appel à deux points de vue opposées.
L’étude des surfaces, abordée au Chapitre 7, commence par l’utilisation d’une variante du pro-
gramme des modèles minimaux afin de les construire, et se conclut grâce à des modèles obtenus par
des techniques informatiques. Le cas des variétés de Fano de dimension quatre utilise des techniques
modernes des singularités des paires pour retrouver le résultat de terminalité. Ce qui donne lieu à
une étude de cas purement locale, alors que les méthodes sus-citées dans le cas des surfaces sont
globales.
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Variétés de Fano et systèmes anticanoniques

La problématique principale provient du constat suivant : en dimension strictement inférieure à
quatre, soit le système anticanonique | −KX | est globalement engendré, soit, par un résultat non
trivial de Shokurov, un diviseur général D ∈ | − KX | est lisse. Par contre, en dimension quatre,
il existe des exemples où un tel D est singulier en un point. Les travaux de Höring et Voisin
[HV11] montrent qu’il s’agit du cas extrémal, i.e. D ne peut être qu’à singularités isolées. Le but du
Chapitre 3 est de trouver une forme explicite des équations locales de D afin de décrire précisément
ses singularités. En utilisant des méthodes des singularités des paires, on relie la géométrie d’une
variété de Fano ambiante X avec celle des diviseurs anticanoniques et on obtient le premier résultat
suivant :

Theorem 0.1. Soit X une variété de Fano de dimension quatre et D ∈ |−KX | un élément général.
Alors D a au plus des singularités terminales.

On remarquera que la notion de singularité terminale, introduite dans le deuxième chapitre,
est le bon équivalent du résultat de Shokurov en dimension trois, puisque si D est une surface, un
point terminal est bien un point lisse. On peut ensuite améliorer ce résultat. En effet les singularités
terminales des variétés de dimension trois, bien que classifiées, sont en nombre infini, ce qui n’est
pas le cas pour les familles de déformations de variétés de Fano ambiantes. Il s’agit du point de
départ des travaux présentés ensuite.

Une conséquence du Théorème 0.1 est le résultat principal du Chapitre 3, que l’on énonce ci-
dessous.

Theorem 0.2. Soit X une variété de Fano de dimension quatre et D ∈ |−KX | un élément général
du système anticanonique. Alors, dans une carte analytique locale, toute singularité de D peut
s’écrire sous l’une des deux formes suivantes :

x2
1 + x2

2 + x2
3 + x2

4 = 0 ou x2
1 + x2

2 + x2
3 + x3

4 = 0.

Une direction naturelle dans laquelle poursuivre ces travaux est de s’intéresser aux multiples
du système anticanonique, c’est-à-dire aux systèmes linéaires de la forme | − mKX |, où m ≥ 1.
La conjecture de Fujita, démontrée dans les travaux de Reider (1988), Ein et Lazarsefeld (1995)
et Kawamata (1997), dans le cas où X est de dimension au plus quatre, implique que le système
|−(n−1)KX | est sans point de base pour tout n ≥ dimX. Il est donc naturel de se poser la question
suivante :

Question : Dans le cas général où le système linéaire |−(n−2)KX | a éventuellement des points
de base, peut-on déduire qu’il contient un élément lisse ?

Le résultat de Shokurov sus-cité montre que la réponse est affirmative si n = 3, car tous les
diviseurs anticanoniques généraux sont lisses sur une variété de dimension trois. On trouve des
résultats intermédiaires dans cette direction en dimension quatre en utilisant systématiquement des
théorèmes d’extension à partir des centres log canoniques :

Proposition 0.3. Si C est un centre log canonique de la paire (X,Y1 + Y2) qui est au plus de
dimension 1, alors Bs | − 2KX | ∩ C = ∅.

Le Chapitre 5 est une étude du Théorème 0.1 en dimension arbitraire, en relation avec la conjec-
ture de non-annulation de Kawamata. On montre d’abord que la terminalité est une conséquence
de cette conjecture et on cherche ensuite à trouver le contexte le plus général pour que cela reste
vrai.
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Une autre approche consiste à trouver des exemples de variétés de Fano ayant le lieu de base
Bs|−KX | non-vide, puis à décrire sa géométrie. Ceci est problématique car la plupart des exemples
connus de variétés de Fano de dimension quatre sont des variétés toriques, où tout fibré ample est
globalement engendré.

Un bon point de départ sont les variétés décrites en tant qu’intersection complète Xd1...dc dans
des espaces projectifs à poids P(a0, . . . , an). On introduit les notions fondamentales nous permettant
de vérifier des propriétés de Xd1...dc , notamment sa lissité et l’amplitude du diviseur anticanonique.
On explicite ensuite une classification des variétés de codimension un qui sont de cette forme-là et on
donne enfin deux exemples en codimension deux, un lisse et un singulier. En particulier, on trouve
X6,10 ∈ P(1, 1, 1, 2, 2, 5, 5), dont le lieu de base Bs| − KX | est formé de trois courbes rationnelles
qui s’intersectent deux à deux. Ceci démontre, entre autres, que ce lieu de base n’est pas toujours
uniréglé (ce qui n’était pas clair a priori).

Surfaces de del Pezzo avec des singularités 1/3(1,1)

Les singularités considérées, les points du type 1
3(1, 1), sont des singularités quotient cycliques sur la

surface de del Pezzo considérée, c’est-à-dire qu’elles peuvent être exprimées localement en tant que
quotient de C2 par le groupe de l’unité d’ordre 3. Les déformations Q−Gorenstein ont la propriété
de ne pas changer le degré K2 de la surface de départ. On bénéficie donc de deux outils pour
aborder la classification : le programme des modèles minimaux et le calcul des invariants à partir
d’adaptations de formules classiques (Riemann Roch, formule de Noether).

On utilise d’abord les invariants pour borner le nombre de singularités qui peuvent apparâıtre sur
une surface S de del Pezzo (on trouve que le nombre maximal est 6). Ensuite, le programme de Mori
pour ces surfaces nous permet de terminer la classification. En effet, les singularités n’admettent
qu’un certain nombre de configurations possibles sur un rayon extrémal de S. Si on choisit de leur
assigner un ordre de contraction, on arrive à effectuer un programme des modèles minimaux nous
permettant de conclure rapidement.

Voici le résultat principal de cette section :

Theorem 0.4. Il existe exactement 29 familles de déformations Q-Gorenstein des surfaces de del
Pezzo ayant k ≥ 1 points singuliers de type 1

3(1, 1).

Le Chapitre 7 termine avec la présentation de deux tableaux contenant des invariants des sur-
faces, ainsi que des données combinatoires. Celles-ci permettant de reconstruire (dans la plupart
des cas) des variétés toriques F telles que nos surfaces de del Pezzo X ⊂ F soient des intersections
complètes dans F . On explique comment faire ces constructions en toute généralité, ainsi que sur
un exemple.

Mots-clés

Variétés de Fano, système anticanonique, centres log-canoniques, surfaces log-del Pezzo, variétés
toriques, programme des modèles minimaux

9



10



Contents

1 Introduction 13
1.1 Fano manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Previous results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Preliminaries 20
2.1 Fano varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Singularities of pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Fano fourfolds 25
3.1 Terminality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Separating strict transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Log pairs with mobile boundaries . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Fixed singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Moving singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 The bi-anticanonical system 43

5 Effective Nonvanishing 53

6 Examples in Weighted Projective Spaces 59
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 The hypersurface case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 Complete intersection of two hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . 66

6.3.1 The examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Del Pezzo surfaces with 1/3(1, 1) singularities 68
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.1.1 The results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.3 MMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.4 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.5 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.6 Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.6.1 A sample computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

11



12



Chapter 1

Introduction

1.1 Fano manifolds

Fano varieties constitute a fundamental part of the classification of algebraic varieties. Their study
began with classical research of Italian algebraic geometers at the beginning of the XX-th century
and has rapidly developed since the 1980s due to the introduction of the Minimal Model Program.
Throughout this thesis, we will consider Fano manifolds over the complex numbers. By definition,
these are projective manifolds with ample anticanonical class, which from a geometric point of view
signifies that they are positively curved. These objects are rationally connected (by [Cam92] and
[KMM87]), their Kodaira dimension is −∞, and there exist only finitely many deformation types
in each dimension (again by [KMM87]).

Fano manifolds have been completely classified up to dimension three. The only one-dimensional
Fano variety over an algebraically closed field is the projective line. In dimension two there are ten
such deformation families, termed del Pezzo surfaces: they are either isomorphic to P1 × P1 or the
blow-up of P2 in up to 8 points in general position. Fano threefolds have been classified into 105
deformation families by the work of Mori and Mukai [MM82] in the case where ρ > 1 and Iskovskikh
[Isk77, Isk78] for ρ = 1. The following result is central to this classification:

Theorem 1.1. [Šok79] Let X be a smooth Fano threefold. Then the anticanonical system | −KX |
is not empty and a general divisor D ∈ | −KX | is a smooth K3 surface.

In Chapter 3, we study a Fano fourfold X from the perspective of the singularities of the
anticanonical divisor, a general element of the system | −KX |. We sometimes refer to this object
as a “general elephant”, terminology due to Reid [Rei87]. This analysis is trivial in dimension two,
as for all but one of the del Pezzo surfaces the base locus Bs | −KX | is empty. For the remaining
surface, isomorphic to Blp1...p8P2, the anticanonical system has a single point as its base locus,
however its general elephant is smooth at this point.

When considering the threefold case, naturally Theorem 1.1 leads to an immediate conclusion,
though when examining Bs | −KX | the discussion is not as straightforward as in the surface case.
More precisely, a key observation in the proof of Theorem 1.1 is that if Bs| − KX | 6= ∅, then it
is isomorphic to P1. It is perhaps interesting to remark that here a result on the geometry of the
anticanonical system is crucial in completing the classification, while for surfaces the opposite is the
case.

The methods used in proving Threorem 1.1 are not generalizable in higher dimensions since they
rely on the geometry of K3 surfaces. Moreover, the statement does not hold in its current form if
X is a fourfold, as Höring and Voisin [HV11] constructed an example where a general D ∈ | −KX |
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is not even Q-factorial. For this reason, a suitable generalization is one in which we allow a class of
singularities on D as long as points1 of this type are smooth if D is a surface. This is exactly the
case for terminal singularities. Let us finish by presenting the example:

Example 1.2. [HV11, Ex. 2.12] Let S be the blow-up of P2 in eight points in general position.
As previously mentioned, S is a del Pezzo surface whose anticanonical system has exactly one base
point, denoted by p. Set X = S × S and Si := p−1

i (p) where pi is the projection on the i-th factor.
Then X is a smooth Fano fourfold and

Bs | −KX | = S1 ∪ S2.

Let D ∈ | −KX | be a general element, then Bs | −KX | ⊂ D, so the surfaces S1 and S2 are Weil
divisors on D. If they were Q-Cartier, their intersection S1 ∪S2 would have dimension at least one,
yet we have S1 ∪ S2 = (p, p). We have thus constructed a variety D that is not only singular, but
not even Q−factorial.

1.2 Previous results

We present classification results in arbitrary dimension, provided that the manifold X is of high
Fano index.

Definition 1.3. The Fano index of a variety X is the number

i(X) := sup{t ∈ Q | −KX ≡ tH, for some ample Cartier divisor H}.

If X has klt singularities, then Pic(X) is torsion-free (by [IP99, Prop.2.1.2]) and the H in the
definition is uniquely determined. We call it the fundamental divisor of X.

It is known that i(X) ≤ dimX + 1, and if i(X) ≥ dimX then by the Kobayashi-Ochiai criterion
X is either a hyperquadric or a projective space. Smooth Fanos of index dimX − 1 are called del
Pezzo manifolds and have been classified by Fujita, while terminal Fano manifolds of index larger
than dimX − 2 were classified by Campana-Flenner [CF93] and Sano [San96].

Finally, the works of Mukai have classified smooth Fano n-folds X of index n− 2 (called Mukai
manifolds), provided that the linear system |H| contains a smooth divisor. In the article [Mel99],
Mella proved a stronger result: aside from two threefold cases, a Mukai variety with at worst klt
singularities always contains good divisors (i.e. the fundamental divisor of X has at worst the same
singularities as X). Since the exceptional cases are both of singular varieties, this implies that
Mukai’s initial classification holds for all Fano varieties of index n− 2.

Though no complete classification exists in this case, smooth and mildly singular Fano varieties
of index n− 3 have been studied by Floris in [Flo13]. One of the fundamental results of this article
is the following:

Theorem 1.4. [Flo13, Thm.1.2] Let X be a smooth Fano variety of dimension n ≥ 4 and index
n− 3, with H fundamental divisor.

1. If the dimension of X is n = 4, 5, then h0(X,H) ≥ n− 2.

2. If n = 6, 7 and the tangent bundle TX is H-semistable, then h0(X,H) ≥ n− 2.

3. If n ≥ 8, then h0(X,H) ≥ n− 2.

1a posteriori the singularities will be isolated.
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We will extensively use part 1 of this statement in Chapter 3, where the existence of two
independent sections of | − KX | is crucial to the proof of Proposition 3.6, as well as to eliminate
some of the cases leading to the result in Theorem 3.8. We display a brief computation in 5.10 to
show that h0(X,−KX) ≥ 2 in arbitrary index if X is a fourfold.

The starting point for the description of the general elephant in Chapter 3 was a result (which
we fully state as Proposition 5.2 in Chapter 5) of Kawamata in [Kaw00], generalized by Floris as
follows:

Theorem 1.5. [Flo13, Thm.4.1] Let X be a Fano variety of dimension n ≥ 4 with at most
Gorenstein canonical singularities and index n − 3, with H fundamental divisor. Suppose that
h0(X,H) 6= 0 and let Y ∈ |H| be a general element. Then Y has at most canonical singularities.

1.3 Main results

Following the discussion in 1.1, here is the first result in Chapter 3:

Theorem 1.6. Let X be a four-dimensional Fano manifold and let D ∈ | − KX | be a general
divisor. Then D has at most terminal singularities.

Theorem 1.6 is indeed the natural generalization of Theorem 1.1 in dimension four, and it relies
on and improves parts of 1.4 and 1.5 in the smooth case.

Although terminal Gorenstein singularities of threefolds are a well understood class, the state-
ment of Theorem 1.6 may be refined to a more specific result: while there only exists a finite number
of deformation families of Fano varieties in dimension four, there is a priori an infinite amount of
possible types of singularities on their anticanonical divisors.

Theorem 1.7. Let X be a four-dimensional Fano manifold and let D ∈ | − KX | be a general
divisor. Then the singularities of D are locally analytically given by

x2
1 + x2

2 + x2
3 + x2

4 = 0 or x2
1 + x2

2 + x2
3 + x3

4 = 0.

In particular, this result is consistent with the case in Example 1.2, which is a singularity of
the first type. We do not yet know of any examples of the second type of singularity on a general
elephant.

Throughout the proof of Theorem 1.7 we combine information obtained from the geometry of
the ambient space X together with the fact that the threefolds belong to the same linear system
inside it. We begin the analysis of the isolated terminal points by dividing the discussion into two
cases: depending on the geometry of all general elements in |−KX |, the anticanonical system either
has fixed or moving singularities. Specifically, either a point x ∈ Bs|−KX | is a singularity of all the
general elephants or there exists a subvariety V ⊂ Bs| − KX | of strictly positive dimension along
which these singularities move. We further separate each of these cases according to the rank of
the degree two part of a local expression of D and obtain the result in Theorem 1.7. It is perhaps
important to remark that the two situations do not generate identical outcomes: if | − KX | has
moving singularities, then they are necessarily of rank four, while if the singularities are fixed we
are additionally left with one case in rank three.

The fundamental tool in the proofs of both Theorem 1.6 and Theorem 1.7 is the following
inequality:

ai + 1 ≥ 2ri (1.1)

where, given a resolution µ : X ′ → X of Bs| − KX |, we denote by ai the discrepancies of each
exceptional divisor Ei with respect to (X, 0) and by ri the coefficients of Ei appearing in µ∗D (cf.
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Notation 3.2). We prove this result in Proposition 3.6 with techniques using singularities of pairs
and multiplier ideals. The inequality straightforwardly implies the terminality result for all cases
except ai = ri = 1, which we show does not in fact occur. It also allows us to systematically
eliminate most of the cases leading to the statement of Theorem 1.7, providing the necessary liaison
between the geometry of X and that of D. The general strategy of this proof is to explicitly build
a sequence of blow-ups, starting from a center in X containing either the fixed singularities or the
subvariety V , that ultimately contradicts condition (1.1).

The motivation behind Chapter 4 is a consequence of Fujita’s conjecture, which is proven up to
dimension four:

Theorem 1.8. If X is a smooth Fano variety and dim(X) ≤ 4, then the linear system |−(n−1)KX |
is base-point free for all n ≥ dimX.

In our case, this translates to | − 3KX | being base-point-free. Having just proven that this is
not the case for the anticanonical system, it is natural to ask whether | − 2KX | contains a smooth
element.

Using h0(X,−KX) ≥ 2, we obtain intermediate results on this topic:

Proposition 1.9. Let X be a smooth Fano fourfold and Y1, Y2 two general anticanonical divisors.
If C is a log-canonical center of the pair (X,Y1 + Y2) that is at most of dimension one, then
Bs | − 2KX | ∩ C = ∅, for two general elephants Y1 and Y2.

The next step would be to extend this result to the case where the center is a surface. If this
is a smooth subvariety S, it is a surface of general type. We carry out an extensive case study on
whether | − 2KX |S | has a component of multiplicity higher than one in Proposition 4.4. The fact
that S is a minimal surface of general type certainly simplifies the analysis, as much progress has
already been made in this direction (for example in [Wen95, Xia85] in the case where K2

S ≤ 4).

We then prove the following conjecture in the case where S is not singular and irreducible:

Conjecture 1.10. Let X be a Fano fourfold. If Bs | − KX | ≤ 1, there exists a smooth element
D ∈ | − 2KX |.

If S is smooth, the proof is elementary by using [BHPVdV04, VII,Thm.7.4], whose statement
summarizes numerous results on minimal surfaces of general type. If S is reducible, we show this
through an analysis of the interactions between log canonical centers of the pair (X,Y1 + Y2) and
the base loci of both | −KX | and | − 2KX |. We discuss how to adapt these methods if S is singular
and irreducible.

In Chapter 5 we examine the necessary conditions for obtaining Theorem 1.6 in arbitrary dimen-
sion. What allows us to prove the pivotal Proposition 3.6 and ultimately arrive at condition (1.1)
in Chapter 3 is the fact that Kawamata’s effective nonvanishing Conjecture holds up to dimension
two:

Conjecture 1.11. (Kawamata nonvanishing) Let D be a numerically effective Cartier divisor on
a normal projective variety X. If there exists an effective R-divisor B such that the pair (X,B) is
Kawamata log terminal and such that the R-Cartier divisor D− (KX +B) is big and nef, then the
bundle OX(D) has a non-zero global section.

This result was in turn motivated by Shokurov’s famous non-vanishing theorem:
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Theorem 1.12. Let X be a nonsingular projective variety, and let D be a nef Cartier divisor. Let
G be a Q−divisor such that dGe is effective. Assume that the Q−divisor aD + G −KX is ample
for some a ∈ Q, a > 0, and the support of the fractional part {G} has only normal crossings, that
is, all its irreducible components are nonsingular and intersect transversally. Then

H0(X,OX(mD + dGe)) 6= 0

for any sufficiently large integer m� 0.

We carry out an analysis on whether weaker versions of Conjecture 1.11, for instance in the case
where X is a Fano variety and D a general elephant, imply the fact that D has at most terminal
singularities.

Chapter 6 is dedicated to finding examples of Fano fourfolds having non-empty base locus
Bs|−KX | and then to describe the geometry of this locus. This is problematic, as most of the Fano
fourfolds classified so far are toric and therefore ample line bundles on them are globally generated.

We look for suitable examples among complete intersections Xd1,...,dc in the weighted projective
space P(a0 . . . an), since properties like smoothness or ampleness of | −KX | are easy to verify. We
show that there are precisely 10 families of smooth Fano hypersurfaces in weighted projective space
that are not linear cones. Out of these, the only nontrivial Bs|−KX | is in the case of X10 ⊂ P(14, 2, 5)
and in particular it is of dimension zero. We also analyze examples of codimension two complete
intersections, among which X6,10 ⊂ P(13, 22, 52) yields a base locus of | −KX | consisting of three
rational curves. More work in even higher codimensions are likely to produce further examples,
though the combinatorics involved become increasingly complex.

In Chapter 7 we diverge from the study of smooth varieties and classify del Pezzo surfaces
admitting quotient singularities of type 1

3(1, 1). This is part of a joint work with Alessio Corti [CH].
The motivation behind this classification and subsequent construction of models of these surfaces
as complete intersections in toric varieties is to provide enough data in order to compute their
quantum orbifold cohomology (this is done in [OP]). We choose the simplest type of cyclic quotient
singularity that is rigid under Q-Gorenstein(qG) deformation, that is to say points of type 1

3(1, 1).
This type of deformation ensures that the canonical class is well-behaved in families, in particular
K2 and h0(−K) are locally constant in such a family (crucially, this is not true in the case of the
Gorenstein index).

We restrict our attention to qG-rigid singularities for the following reason: a surface cyclic
quotient singularity (x ∈ X) ∼= 1

n(1, q) has a unique qG-deformation component. Furthermore,
the general surface of the miniversal family has a unique singularity of class R, the R-content of
(x ∈ X), cf. [ACC+16] and [AK, Definition 2.4] and the discussion following it.

It is known [ACC+16, Lemma 6] that, if X is a del Pezzo surface with cyclic quotient singularities
xi ∈ X, the natural transformation of qG-deformation functors:

DefqGX →
∏

DefqG(X,xi)

is smooth: a choice for each i of a local qG-deformation of the singularity (X,xi) can always be
globalized to a qG-deformation of X. In other words X can be qG-deformed to a surface that has
only the residues of the (X,xi) as singularities.

Our point of view here is that, when we classify del Pezzo surfaces, and study mirror symmetry
for them, it is natural to classify first the locally qG-rigid ones, for these are the generic surfaces that
we are most likely to encounter, and study their qG-degenerations as a second step. In particular,
the singularity 1

3(1, 1) is qG-rigid and a singularity has R-content 1
3(1, 1) if and only if it is of the

form 1
3(3m+1)

(
1, 2(3m+ 1)− 1

)
.
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Here is the main result of this chapter:

Theorem 1.13. A del Pezzo surface with k ≥ 1 1
3(1, 1) points is one of the following, all constructed

in Tables 7.2 and 7.3 and in the statement and proof of theorem 7.21:

(1) A surface of the family X1, d is the blow-up of 25/3 − d ≤ 8 nonsingular points on P(1, 1, 3).
If d < 16/3, then it is also the blow-up of a surface of the family B1, 16/3 in 1 ≤ 16/3 − d ≤ 5
nonsingular points;

(2) A surface of the family X2, d is the blow-up of 17/3 − d ≤ 5 nonsingular points on X2, 17/3.
If d < 8/3, then it is also the blow-up of a surface of the family B2, 8/3 in 1 ≤ 8/3 − d ≤ 2
nonsingular points;

(3) A surface of the family X3, d is the blow-up of 5− d ≤ 4 nonsingular points on X3, 5;

(4) A surface of the family X4, d is the blow-up of 7/3− d ≤ 2 nonsingular points on X4, 7/3;

(5) A surface of the family X5, 2/3 is the blow-up of a nonsingular point on X5, 5/3;

(6) X6, 1 is the blow-up of a nonsingular point on X6, 2.

The notations in Theorem 1.13 are as follows: the symbol Xk,d signifies the family of surfaces
X with k singular points, degree K2

X = d and Fano index 1. The families B1, 16/3, B2, 8/3 and
P(1, 1, 3) = S1,25/3 follow the same notation yet are distinguished as their Fano index is f > 1.

We start by constructing birational models for the surfaces: for a given k, they are organized in
cascades - terminology due to [RS03] - they can be constructed from one another through blow-ups
of smooth points. The difficulty resides in determining the surfaces that are at the bottom of the
cascades, the ones of highest possible degree K2 for a fixed k. This is done through a detailed
combinatorial study of the configuration of negative curves on their minimal resolutions.

Once we have obtained a complete list, we need to find good model constructions. In the case
of most surfaces, this is equivalent to describing it as a complete intersection of type L1 . . . Lc in a

toric variety F such that the line bundles Li are nef on F and −KF −
c∑
i=1

Li is ample. The models

we find are by no means unique, however they provide the data required to compute the quantum
cohomology of the surfaces. Tables 7.2 and 7.3 plot many invariants of these surfaces, as well as
display the model constructions. In Sections 7.5 and 7.6 we explain how to read the tables, as well
as how to verify that the models coincide with the surfaces we classified.

1.4 Outlook

An interesting and concrete problem would be the construction of more smooth Fano fourfolds with
singular anticanonical divisors. Essentially, Example 1.2 is the only one that is known, and, as men-
tioned before, even finding Fano varieties with nontrivial base locus turns out to be problematic.
These examples have to be built by hand since computer databases, though vast, principally contain
information on toric varieties. Finding such a divisor with a singularity of rank three would be par-
ticularly interesting. Completing the classification in Chapter 6 of weighted complete intersections
of codimension two would be a first step. A much more ambitious project would be to classify all
smooth Fano fourfolds for which the anticanonical divisor is not smooth.

A second, more abstract question would be whether variants of the terminality result are true
in arbitrary dimension, for example for the fundamental divisor on Fano varieties of index n − 3.
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Some of the methods in Chapter 5 may apply in this case, as by Theorem 1.4 it has at least n-2
global sections.

Concerning the log del Pezzo surfaces, the motivation for doing the classification was eventually
proving Conjectures A and B in [ACC+16]. Though Conjecture B is out of reach with currently
available methods (if one tried to calculate quantum cohomology for surfaces with slightly more
complicated rigid cyclic quotient singularities, the computations would be incredibly complicated),
the same is not true for Conjecture A. It states that there exists a one-to-one correspondence
between mutation equivalence classes of Fano polygons and Q-Gorenstein deformation classes of
locally Q-rigid del Pezzo surfaces with cyclic quotient singularities. Basically, a (class of a) polygon
P goes to a (any) generic Q−Gorenstein deformation of the toric surface XP . In [ACC+16], the
authors have already proved that this is a surjective map, the difficulty resides in proving injectivity.
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Chapter 2

Preliminaries

The principal results of this thesis concern Fano varieties, we therefore briefly resume some of their
elementary, but fundamental features which significantly facilitate this study. We then present the
technical results that use singularities of pairs, which will extensively be used throughout Chapters
3, 4 and 5. All definitions in this chapter follow [KM98], [IP99] and [Laz04].

2.1 Fano varieties

We will be working over the field of complex numbers. Here is a basic result of the definition of a
Fano variety:

Theorem 2.1. [IP99, Prop.2.1.2] Let X be a smooth Fano variety. We have the following:

(a) H i(X,OX) = 0, ∀ i > 0.

(b) Pic(X) is a finitely generated torsion-free Z-module and Pic(X) ' H2(X,Z).

(c) numerical equivalence on Cartier divisors on X coincides with linear equivalence.

(d) X has Kodaira dimension −∞.

We say a few words about the proof. By the Kodaira vanishing theorem we immediately obtain
(a). We use the exponential sequence

0→ Z→ OX → O∗X → 0

that induces the long exact sequence in cohomology

. . .→ H1(X,OX)→ H1(X,O∗X)→ H2(X,Z)→ H2(X,OX)→ . . .

which, together with (a) and the fact that Pic(X) ' H1(X,O∗X), proves the second part of (b). We
also have that if D ≡ 0 then by the Riemann-Roch formula h0(X,OX(D)) = h0(X,OX) = 1. Since
X is projective, this implies D = 0 and that Pic(X) is torsion-free.

The concepts of rationality and ruledness are key in the classification of algebraic surfaces.
Even though del Pezzo surfaces are rational (over any algebraically closed field), this is not true for
three dimensional Fano manifolds. A natural replacement for rationality and ruledness in higher
dimension are rational connectedness and uniruledness, respectively.
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Theorem 2.2 ([KMM87, Cam92]). A Fano manifold over a field of characteristic zero is rationally
connected.

The same authors have shown in [KMM92, Cam91] that rationally connected varieties are simply
connected, therefore the same holds for a Fano manifold.

Theorem 2.3. [Pet11, Thm.5.5] Let X be a projective manifold with −KX semi-ample. Then TX
is generically nef.

Naturally this remains true in the case of Fano varieties, and so does the following corollary
which we use in the Riemann Roch computation in Chapter 5:

Proposition 2.4. [Pet11, Cor.5.6] Let X be an n-dimensional projective manifold with −KX nef.
Then

c2(X) ·H1 · . . . ·Hn − 2 ≥ 0

for all ample line bundles Hj on X.

2.2 Singularities of pairs

Definition 2.5. Let X be an irreducible normal variety. A Q-Weil divisor (or Q-divisor) on X is
a formal linear combination D =

∑
diDi, where di ∈ Q and Di are distinct prime divisors. Such a

divisor is said to be Q-Cartier if mD is Cartier for some 0 6= m ∈ Z. X is called Q-factorial if every
Q-divisor is Q-Cartier.

Definition 2.6. A pair (X,∆) is the data of a normal variety X and a Q−Weil divisor ∆ such
that KX + ∆ is Q-Cartier.

Definition 2.7. Let (X,∆) be a pair and write ∆ =
∑
di∆i, where ∆i are distinct prime divisors.

Let µ : Y → X be a birational morphism, Y normal. We then write

KY ≡ µ∗(KX + ∆) +
∑

a(Ei, X,∆)Ei,

where Ei ⊂ Y are distinct prime divisors and a(Ei, X,∆) ∈ R. Further, we adopt the convention
that a nonexceptional divisor E appears in the sum if and only if E = µ−1

∗ ∆i for some i and then
its coefficient a(E,X,∆) = −di.

We call the a(Ei, X,∆) the discrepancies of the pair (X,∆).
A divisor E ⊂ Y is exceptional over X if there exists a birational morphism µ : Y → X such

that E is µ-exceptional.

The aim of this definition is to construct an invariant from the data provided by the pair (that
is, independent of both µ and Y ). Note that the a(Ei, X,∆) themselves are not an invariant of
(X,∆), since we can always blow up along smooth centers on a given Y in order to create new
exceptional divisors. However, continuing this process arbitrarily will only result in additional
positive coefficients, therefore it becomes apparent that the discrepancies containing information
on the singularities of (X,∆) are the smallest ones. It is then natural to introduce the following
definition:

Definition 2.8. We set

discrep(X,∆) = inf{a(Ei, X,∆) | E is an exceptional prime divisor over X} and

totaldiscrep(X,∆) = inf{a(Ei, X,∆) | E is a divisor over X}
A pair (X,∆) is said to be
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• terminal if discrep(X,∆) > 0,

• canonical if discrep(X,∆) ≥ 0,

• klt (kawamata log terminal) if discrep(X,∆) > −1 and b∆c ≤ 0,

• plt (purely log terminal) if discrep(X,∆) > −1,

• lc (log canonical) if discrep(X,∆) ≥ −1.

These types of singularities arise naturally in birational geometry: assuming ∆ = 0, terminal
singularities are the mildest singularities for which the Minimal Model Program is stated (starting
with dimension 3, since in dimension 2 these are smooth points), canonical singularities arise on
canonical models of surfaces of general type. Kawamata log terminal singularities are the most
general case for which certain (non-)vanishing theorems are true (we devote Chapter 5 to studying
a result of this type). Finally, log canonical singularities are the largest class for which the notion
of discrepancy makes sense:

Remark 2.9. [KM98, Cor.2.31] If E is a divisor over X whose coefficient a(E,X,∆) is smaller than
−1, then one can produce arbitrarily small coefficients by blowing up more centers. More precisely,
either discrep(X,∆) = −∞ or −1 ≤ totaldiscrep(X,∆) ≤ discrep(X,∆) ≤ 1.

Proof. We sketch the first part: take E to be a divisor over X such that a(E,X,∆) = 1 − c with
c > 0. Take a birational morphism µ : Y → X such that centerYE is a divisor on Y and let
KY + ∆Y = f∗(KX + ∆).

Let Z0 be a codimension 2 locus contained in E but not in any other exceptional divisor of f
or in f − 1∗∆. We can assume Y is smooth at the generic point of Z0. Let g1 = Y1 = BlZ0Y → Y
with exceptional divisor E1 ⊂ Y1. Then

a(E1, X,∆) = a(E1, Y,∆Y ) = −c.

Let Z1 ⊂ Y2 be the intersection of E1 with he strict transform of E. Let g2 : Y2 = BlZ1Y1 → Y1

with exceptional divisor E2 ⊂ Y2. Then

a(E2, X,∆) = a(E2, Y,∆Y ) = −2c.

By repeating this process we obtain divisors with discrepancies −3c, −4c etc., which proves the
remark.

Singularities that are klt, canonical or terminal are all rational, that is for some resolution
µ : Y → X we have Riµ∗OY = 0 for all i > 0. This does not hold however in the case of
log canonical singularities, as there are counterexamples even in dimension two: the cone over a
smooth cubic curve is log canonical and does not have rational singularities. The exceptional locus
of its minimal resolution is an elliptic curve, which leads to a nontrivial R1µ∗OY .

Finally, we present the generalization of log-canonical to the case where X is not normal:

Definition 2.10 ([Kaw00]). Let X be a reduced equi-dimensional algebraic scheme and ∆ an
effective Q − divisor on X. The pair (X,∆) is said to be slc (semi-log canonical) if the following
conditions are satisfied:

(a) X satisfies the Serre condition S2, and has only normal crossing singularities in codimension 1.

22



(b) The singular locus of X does not contain any irreducible component of ∆.

(c) KX + ∆ is a Q−Cartier divisor.

(d) For any birational morphism µ : Y → X from a normal variety, if we write KY = µ∗(KX +
∆) + ∆Y , then all coefficients in ∆Y are at least −1.

We now discuss log canonical centers and thresholds.

Definition 2.11. Let(X,∆) be a log canonical pair. A place for (X,∆) is a prime divisor on some
birational model µ : Y → X of X such that a(E,X,B) = −1. The closure of µ(E) in X is called a
log canonical center and is denoted as CenterX(E). We use the notation CLC(X,∆) when referring
to the set of all centers, while the alternative LCS(X,∆) is also known to appear in literature.

Remark 2.12. If the pair (X,∆) is log canonical,

{x | (X,∆) is not klt near x} = ∪ECenterX(E),

where the union runs over the places.

Centers appear in three fundamental instances throughout the thesis: in the proof of Proposition
3.6 when showing an anticanonical divisor on a fourfold is terminal, in a similar result in Chapter
5 while sketching out a generalization of this proof and in Chapter 4, where we mostly study the
interactions of such objects. An important result in this direction is the following:

Proposition 2.13. If (X,∆) is a klt pair and D an effective Q-Cartier Q−divisor such that (X,∆+
D) is log canonical. Then CLC(X,D) is a finite set and if W1,W2 ∈ CLC(X,D), all the irreducible
components of W1 ∩W2 are in CLC(X,D).

This motivates the following:

Definition 2.14. We refer to a center as minimal when it is minimal with respect to the inclusion.
This concept can be either global, i.e. a minimal lc center of the pair (X,∆), or local, i.e. the
minimal lc center of (X,∆) at a point x ∈ X. The latter is of course unique.

Definition 2.15. Let (X,∆) be a klt pair, D an effective Q-Cartier divisor. The log canonical
threshold of D for (X,∆) is

lct((X,∆), D) = sup{t | (X,∆ + tD) is lc}.

Note that this is the same as sup{t | (X,∆ + tD) is klt}.

Remark 2.16. • A pair is properly log canonical (plc) if it is lc and not klt, therefore if c =
lct((X,∆), D), the pair (X,∆ + tD) is plc.

• The lct is a rational number and the supremum appearing in the definition is actually a
maximum.

The notion of log canonical center is precisely the object of the following fundamental theorems,
which are instrumental for the result in Chapter 3:
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Theorem 2.17. [Fuj11, Thm.2.2] Let (X,B) be a projective log canonical pair. Let D be a Cartier
divisor on X such that D − (KX + B) is ample. Let C be an lc center of (X,B) with a reduced
scheme structure. Then

H i(X, IC ⊗OX(D)) = 0

for every i > 0, where IC is the defining ideal sheaf of C. In particular, the restriction map

H0(X,OX(D))→ H0(C,OC(D))

is surjective.

This section extension theorem is a generalization of the Nadel-Shokurov vanishing theorem,
which is formulated in the case of a smooth variety and is, in turn, a restatement of the classical
vanishing theorem of Kawamata-Viehweg in terms of multiplier ideals. However, the methods used
to prove Fujino’s result are hard to reach using previous techniques, and in particular its novelty
resides in the non-minimality of the center C. The statement is a significant technical tool when
working with the minimal model program for log canonical pairs.

We continue with a result by Fujino and Gongyo, which is a stronger version of Kawamata’s
subadjunction theorem:

Theorem 2.18 (Subadjunction theorem). [FG12, Thm.1.2] Let K be the rational number field Q
or the real number field R. Let X be a normal projective variety and let D be an effective K-divisor
on X such that (X,D) is log canonical. Let W be a minimal log canonical center with respect to
(X,D). Then there exists an effective K-divisor DW on W such that

(KX +D)|W ∼K KW +DW

and that the pair (W,DW ) is Kawamata log terminal. In particular, W is normal and has only
rational singularities.

Theorem 2.19. (Kawamata nonvanishing) Let D be a numerically effective Cartier divisor on a
normal projective variety X of dimension at most three. If there exists an effective Q-divisor B such
that the pair (X,B) is Kawamata log terminal and such that the Q-Cartier divisor D − (KX +B)
is big and nef, then the bundle OX(D) has a non-zero global section.
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Chapter 3

Fano fourfolds

3.1 Terminality

For the convenience of the reader, we recall the known results on anticanonical divisors on Fano
fourfolds that we have discussed in the Introduction:

Proposition 3.1. [HV11, Thm.1.7][Kaw00, Thm 5.2] Let X be a four-dimensional Fano manifold
and D ∈ | −KX | be a general divisor. We have the following:

1) h0(X,−KX) ≥ 2.

2) D is irreducible. In particular, this implies that Bs| −KX | is at most a surface.

3) D has at most isolated canonical singularities.

Notation 3.2. Let X be a projective manifold. Given a resolution µ : X ′ → X of the base locus

of | −KX | such that E =
m∑
i=1

Ei is its exceptional locus and D ∈ | −KX | is a general element, we

then write:

• |µ∗D| = |D′|+
m∑
i=1

riEi, where D′ is the strict transform of D and ri are positive integers for

i ∈ {1 . . .m},

• KX′ = µ∗KX +
m∑
i=1

aiEi, where ai > 0, for all i ∈ {1 . . .m}.

These coefficients will be extensively used throughout our proofs.

Definition 3.3. [Laz04, Def.1.1.8] The base ideal of a linear system |L|, denoted by

b(|L|) = b(X, |L|) ⊆ OX

is the image of the map L⊗C L
∗ → OX determined by the evaluation map of |L|. The base locus

Bs |L| ⊆ X

of |L| is the closed subset of X cut out by the base ideal b(|L|). When we wish to emphasize the
scheme structure on Bs(|L|) determined by b(|L|) we refer to Bs(|L|) as the base scheme of |L|.
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Remark 3.4. By Bertini’s Theorem, if |L| is a linear system on a smooth varietyX andD1, D2 ∈ |L|
are two general elements, then the divisor D1 +D2 is SNC outside Bs|L|.

Definition 3.5. [Laz04, Def. 9.2.10] Let |L| be a non-empty linear series on a smooth complex
variety X and let µ : X ′ → X be a log resolution of |L|, with

µ∗|L| = |W |+ F,

where F + exc(µ) is a divisor with SNC support and W ⊆ H0(X ′,OX′(µ∗L−F )). Given a rational
number c > 0, the multiplier ideal J (c · |L|) corresponding to c and |L| is

J (c · |L|) = J (X, c · |L|) = µ∗OX′(KX′/X − [c · F ]).

Proposition 3.6. Let X be a four-dimensional Fano manifold. Then for every c < 2 we have that

J (c | −KX |) = OX .

In terms of the coefficients in Notation 3.2, this is equivalent to

∀ i ∈ {1 . . .m} : ai + 1 ≥ 2ri. (3.1)

Proof. Arguing by contradiction, we suppose there exists a rational number c < 2 such that J (c| −
KX |) ( OX . By [Laz04, Prop.9.2.26], this is equivalent to the fact that the pair

(
X, c D1+D2

2

)
is

not klt for two general divisors D1, D2 ∈ | −KX |. Take c0 < c to be the log canonical threshold
of
(
X, D1+D2

2

)
, thus producing a properly log canonical pair

(
X, c0

D1+D2
2

)
which admits a minimal

log canonical center, denoted in what follows by C.
As by Remark 3.4 the divisor D1 + D2 has simple normal crossings outside the base locus of

| − KX |, the identity map is a log resolution of the pair
(
X \ Bs| −KX |, c0

D1+D2
2

)
. Since c0

2 < 1
we deduce that this pair is klt, which shows that the log canonical center C must be included in
the base locus. As the dimension of Bs| −KX | is at most two by Proposition 3.1, then C is also at
most a surface.

Since c0 < 2, we can apply Theorem 2.17 to the pair
(
X, c0

D1+D2
2

)
together with the anticanon-

ical divisor. As the divisor −KX − (KX + c0
D1+D2

2 ) ∼ (2− c0)(−KX) is ample, we have obtained
a surjective map

H0(X,OX(−KX)) � H0(C,OC(−KX)).

This map is the zero map since C is contained in Bs| −KX |, and in order to obtain a contradiction
we show that the target is nontrivial.

Indeed, using the minimality of C and the Theorem 2.18, there exists an effective Q-divisor
B ⊂ C such that (

KX + c0
D1 +D2

2

)
|C ∼Q KC +B

and the pair (C,B) is klt. This provides the ingredients to apply Kawamata’s Nonvanishing Theorem
(Theorem 2.19) to the pair (C,B) and the divisor −KX |C . As the divisor

−KX |C − (KC +B) ∼Q −KX |C −
(
KX + c0

D1 +D2

2

)
|C ∼Q (2− c0)(−KX |C)

is ample, it follows that H0(C,OC(−KX)) 6= ∅.

This statement immediately implies our first result:
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Theorem 3.7. Let X be a four-dimensional Fano manifold and let D ∈ | − KX | be a general
divisor. Then D has at most terminal singularities.

Proof. Let µ be a resolution as in Notation 3.2. The adjunction formula for a general elephant gives
us:

KD′ = (µ|D′)∗KD +
m∑
i=1

(ai − ri)(Ei ∩D′) (3.2)

which means that the discrepancy of (D, 0) is at least inf
i
{ai − ri |Ei is µ-exceptional}. As by

Proposition 3.1,3 we already know that this is non-negative, the aim of what follows is to show that
the discrepancy of this pair is non-zero. Note that since we have considered a log resolution, the
intersection Ei ∩D′ is reduced for all i ∈ {1 . . .m}.

We further argue that the inequality in condition (3.1) is sufficient in order to obtain terminality.
Indeed, the only case in which this doesn’t imply ai − ri > 0 is if both ai and ri are equal to one.

Since the coefficients do not depend on the choice of the resolution, we can assume that we have
been working with one in which all blow-ups were made along smooth centers.

Claim: We can only obtain ai = 1 for a certain i ∈ {1 . . .m} if codimXµ(Ei) = 2.
We start with a simple example, then prove the claim in all its generality. Suppose that after a

series of two blow-ups along smooth centers

X ′ = X2
µ2 // X1

µ1 // X

we have constructed a resolution as in Notation 3.2 such that a2 = 1. We can also suppose a1 > 1,
since we may assume we obtained the desired coefficient only after the last blow-up. We show that
the center corresponding to E2 has codimension two.

Suppose the center corresponding to µi is of codimension mi, i = 1, 2. We have the following:

KX1 = µ∗1KX + (m1 − 1)E1

KX2 = µ∗2KX1 + (m2 − 1)E2,

By combining these two relations we get:

KX2 = µ∗2(µ∗1KX1 + (m1 − 1)E1) + (m2 − 1)E2

= (µ1 ◦ µ2)∗KX + (m1 − 1)µ∗2E1 + (m2 − 1)E2

= (µ1 ◦ µ2)∗KX + (m1 − 1)(E1 + ν1E2) + (m2 − 1)E2

= (µ1 ◦ µ2)∗KX + (m1 − 1)E1 + ((m1 − 1)ν1 +m2 − 1)E2,

where ν1 > 0 if and only if µ2(E2) ⊂ E1. Our hypothesis is precisely that (m1 − 1)ν1 +m2 − 1 = 1
and since ν1 ≥ 0 and m1 − 1 = a1 > 1, the only chance for this to occur is if ν1 = 0 and m2 = 2.

We move on to the general case. Similarly, without loss of generality, we can assume we obtained
this coefficient by doing the very last blow-up of the resolution, denoted by µm:

X ′ = Xm
µm // Xm−1

ψ // X

where µ = ψ ◦ µm. We have that

am = λ+

m−1∑
i=1

aiνi

where λ = codimXm−1µm(Em) − 1 ≥ 1 and νi > 0 if and only if µm(Em) ⊂ Ei. Having am = 1
implies λ = 1 and νi = 0 ∀ i, which proves the claim since the former condition shows that µm(Em)
is exactly of codimension two in Xm−1, while the latter signifies that ψ does not contract µm(Em).
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The fact that codimXψ(Ei) = 2 implies that ψ(Ei) is a divisor on D. Therefore the intersection
Ei∩D′ is not µ|D′-exceptional, this divisor does not contribute to the discrepancy of the pair (D, 0)
as computed in (3.2). Together with condition (3.1) this proves that the discrepancy can never be
zero, therefore a general elephant D has at most terminal singularities.

3.2 Separating strict transforms

The main result of this section is the following:

Theorem 3.8. Let X be a four-dimensional Fano manifold and let D ∈ | − KX | be a general
divisor. Then the singularities of D are locally analytically given by

x2
1 + x2

2 + x2
3 + x2

4 = 0 or x2
1 + x2

2 + x2
3 + x3

4 = 0.

We provide the set-up for the discussion describing the local equations of these singular points.

Notation 3.9. Let |L| be a linear system on a projective manifold X and let D be an effective
prime divisor on X. We denote by |L|D the linear system on D given by the image of the restriction
morphism:

H0(X,OX(L))→ H0(D,OD(L)).

We obtain a linear system on D that will not only be determined by the intrinsic properties of D,
but which fundamentally depends on the behavior of |L| on X. An immediate consequence of this
is:

Bs|L|D = Bs|L| ∩D. (3.3)

Notation 3.10. Given a linear system |L| on a projective variety X and a point x ∈ Bs|L|, denote
by |L|x the following closed subset of |L|:

|L|x := {D ∈ |L| | x ∈ Dsing},

where by Dsing we denote the singularities of D.

Lemma 3.11 (Tangency lemma). Let X be a projective manifold and let |L| be a linear system
on X. Let x ∈ X be a point in Bs|L| such that codim|L||L|x = 1. Then the tangent spaces at x of
all divisors in |L| \ |L|x coincide.

Proof. Let D1, D2 ∈ |L| \ |L|x be two divisors and denote by P := 〈D1, D2〉 the pencil that they
generate.

As |L| is a projective space, any intersection between a codimension one subset and a line is
non-empty, thus there exists a divisor D ∈ |L|x ∩ P . If fi are local equations of Di around x, there
exist two scalars λ, η ∈ C such that D is given by:

f = λf1 + ηf2.

We differentiate and obtain

∇f = λ∇f1 + η∇f2,

and as D is singular at x, the left hand side vanishes at this point. On the other hand, both
∇f1(x) and ∇f2(x) are nonzero, thus they must be proportional. This is the same as saying that
the tangent spaces of D1 and D2 coincide at the point x.
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Remark 3.12. Throughout this chapter, we use the lemma above in two particular cases, for a
divisor D ∈ |L|, where |L| is a linear system on an irreducible projective variety X (a posteriori
obtained by a sequence of blow-ups starting from the initial Fano fourfold):

• there exists a curve C ⊂ X such that for all D ∈ |L| there exists a point x ∈ Dsing ∩ C and
the union of these points is dense in C.

• there exists a surface S ⊂ X such that for all D ∈ |L| there exists a curve C ⊂ Dsing ∩ S and
the union of all such curves is dense in S.

We show that the first case satisfies the hypotheses of Lemma 3.11. The second case is similar.

Let |L|0 be the Zariski open set in |L| such that for all D ∈ |L|0 we have Dsing ⊂ Bs|L|. Denote
by U = {(D,x) |D ∈ |L|0, x ∈ Dsing} the universal family over |L|0 and take p1 and p2 to be the
projections on the first and second factor respectively.

Since every D ∈ |L|0 has an isolated singularity we have that p1 is a finite morphism and the
fiber of p2 over a point x ∈ C ∩Dsing is |L|x. As p2 is dominant, we obtain that

dim|L| = dimU = dim|L|x + dimC = dim|L|x + 1.

Remark 3.13. Let X be a smooth projective fourfold, D and D′ two effective divisors and C a
curve such that that TD|Cgen = TD′ |Cgen . If we blow up X along C, the strict transforms of D and
D′ will intersect along a surface.

Proof. Let µ1 : X1 → X be the blow-up of X along C with exceptional divisor E1 and denote by
D1 and D′1 the strict transforms of D and D′ respectively. Then the surfaces

Q := D1|E1 ' P(N ∗C/D) and Q′ := D′1|E2 ' P(N ∗C/D′),

coincide as the normal sheaves are the same by the commutative diagram:

0 → TCgen → TD|Cgen → NC/D → 0

= =

0 → TCgen → TD′ |Cgen → NC/D′ → 0,

which proves the remark.

Notation 3.14. In what follows, if

X X1
µ1oo . . .

µ2oo Xi
µioo . . .

µi+1oo

is a sequence of blow-ups, we set |L0| = | −KX | and we recursively define |Li| as the linear system
on Xi which is the proper transform of the system |Li−1|. The fact that | − KX | has no fixed
components implies that the same holds for all |Li|. It is perhaps important to stress that despite
the notation (which we use in the scope of not confusing divisors and linear systems), the linear
systems |Li| are not complete. The index i is a good way to keep track of the level that we are on:
as before, exceptional divisors of µi are denoted by Ei, while members of |Li| are denoted by Di,
D′i, D̃i etc.
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3.2.1 Log pairs with mobile boundaries

Throughout this study we sometimes need to focus not on individual properties of a general elephant,
but to examine the entire anticanonical system. This is especially present when discussing the
tangency lemma, but also when working with the linear systems involved in the above notation.
There is a notion of mobile log pair which takes this precise fact into consideration. Such a pair
(X,M) consists in a variety X and a formal finite Q-linear combination of linear systems M =∑
M〉 on X such that eachMi has no fixed component and each coefficient ai is nonnegative. The

notions of discrepancies, log terminality and log canonicity can be defined for such pair as for usual
log pairs. In particular, for a birational morphism µ : X ′ → X, the pullback µ∗(Mi) may obtain
fixed components from the exceptional divisors of µ. However, the proper transform µ−1(Mi) has
no fixed component. One can work with such pairs as with usual log pairs, by replacing each linear

system with its general member or with the Q−divisor
M1
j +M2

j + . . .+MN
j

N
for a sufficiently large

N . A more detailed account of this concept can be found in [CS16, §2.2] and [CP07, §.3.3], and also
in the works of Alexeev [Ale94] and Kollàr [Kol97].

We begin to examine the local picture around a singular point of a general elephant. In order to
obtain the equations in Theorem 3.8, we construct a sequence of blow-ups contradicting condition
(3.1) until we are only left with the possibilities in the statement. The choice of the first blow-up
depends on the nature of the singular point relative to the entire linear system |−KX |. Essentially,
there are two possible cases: fixed and moving singularities.

3.2.2 Fixed singularities

Let X be a four-dimensional Fano manifold and suppose that there exists a point x ∈ X such that
for all D ∈ |−KX | we have x ∈ Dsing. The point x is called a fixed singularity of the linear system
| −KX |.

Terminal Gorenstein singularities have been classified (refer to [Mor85a], [Rei87] and [Kol91])
into different classes of compound du Val singularities. They are isolated points defined by an
equation of the form:

g(x1, x2, x3) + x4h(x1, x2, x3, x4) = 0,

where h is arbitrary and g is the expression of an A-D-E surface singularity in the coordinates x1,
x2 and x3. However, as some of these cases overlap (for example a compound An singularity can
also be compound Dn+2), we choose a different way of organizing the local equations for x. We
nonetheless retain the fact that all these points are of multiplicity two on D.

We order the singularities of a general elephant according to the rank of the hessian of a local
equation, using the Morse Lemma for holomorphic functions:

Lemma 3.15. [AGZV12, Thm.11.1] There exists a neighborhood of a critical point where the rank
of the second differential is equal to k, in which a holomorphic function in n variables can locally
analytically be written as:

f(x1 . . . xn) = x2
1 + . . .+ x2

k + g(xk+1, . . . , xn),

where the second differential of g at zero is equal to zero, that is g is at least of degree three in the
variables xk+1, . . . , xn.

Here is the main result of this section:
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Theorem 3.16. Let X be a four-dimensional Fano manifold and suppose that there exists a point
x ∈ X such that for all D ∈ | − KX | we have x ∈ Dsing. Then around this point each general
elephant is defined by an equation of one of the following two forms:

x2
1 + x2

2 + x2
3 + x2

4 = 0 or x2
1 + x2

2 + x2
3 + x3

4 = 0.

Throughout the proof we repeatedly use the following lemma:

Lemma 3.17. Under the assumptions of Theorem 3.16, let µ1 : X1 → X be the blow-up of X
at the point x and E1 its exceptional divisor. Let |L1| be as defined in Notation 3.14. Then the
intersection Bs|L1| ∩ E1 is at most a curve.

Proof. Suppose that dim(Bs|L1| ∩ E1) = 3. This implies that E1 is a fixed component of each D1,
a contradiction since a strict transform doesn’t contain the exceptional divisor.

If Bs|L1|∩E1 contains a surface S, let µ2 : X2 → X1 be its blow-up and E2 the unique exceptional
divisor mapping onto S. As a general elephant D has multiplicity two at x, we have that S is either
a plane or a quadric cone. Therefore, the blow-up of X1 along S will either be smooth or singular
along the P1 above the vertex of the cone, respectively (in particular, the exceptional locus of µ2 is
irreducible). We compute the discrepancies ai and the coefficients ri, for i = 1, 2, as introduced in
Notation 3.2.

The dimensions of the centers give us that:

KX1 = µ∗1KX + 3E1

KX2 = µ∗2KX1 + E2,

where F consists of other exceptional divisors not mapping onto S. As E1 is smooth along S, we
have that µ∗2E1 = E′1 + E2, thus obtaining a1 = 3 and a2 = 4.

The computations of the ri depend on the multiplicity of x on D, which we denote by m1 ≥ 2
since D is singular at x. Set m2 ≥ 1 to be the multiplicity of D1 along S, then the coefficients are:

µ∗1D = D1 +m1E1

µ∗2µ
∗
1D = D2 +m1E

′
1 + (m1 +m2)E2,

where D2 ⊂ X2 is the strict transform of D1. Thus r1 = m1 and r2 = m1 +m2. Clearly

2r2 = 2(m1 +m2) ≥ 2m2 + 4 ≥ 6

is strictly larger than a2 + 1 = 5, hence by condition (3.1) we obtain a contradiction.

Definition 3.18. Let D be a divisor on a smooth variety X and take a point x ∈ D. Let µ : X1 → X
be a blow-up at a point x ∈ X, let D1 be the strict transform of D and E the exceptional divisor.
The tangent cone of D at x is the union of the tangent lines to D at x, which is clearly isomorphic
to D1∩E. Since D has terminal Gorenstein singularities, the tangent cone is necessarily a (possibly
reducible or non-reduced) quadric in P2.

From the point of view of the local equations, if we assume that x is the origin and that D
is given by the ideal I, the tangent cone of D at x is the variety whose ideal is in(I), the initial
ideal associated to I (i.e. the ideal generated by the lowest-degree homogenous components of all
polynomials in I).

As we apply the Morse Lemma, the second interpretation shows that the tangent cone is always
given by the quadratic terms of a local equation of the general elephant. Combining this with
the more geometric third interpretation will allow us to derive information on the singularities of
blow-ups.
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Proof of Theorem 3.16. Theorem 3.7 states that D is terminal, and by the classification of terminal
singularities (refer to [Mor85a], [Rei87] and [Kol91]) we obtain that the singularity is a point of
multiplicity two on D. We analyze each of the cases in the Morse Lemma. Namely, we are in one
of four situations corresponding to the rank of the hessian of a local expression of D:

Rank one: By Lemma 3.15, a general member of D ∈ | −KX | is locally given by:

x2
1 + g(x2, x3, x4) = 0,

where the degree of g is at least equal to three. The tangent cone D1∩E1 is singular along the entire
surface [0 : x2 : x3 : x4]. By Bertini’s Theorem all the singularities of general divisors in the linear
system |L1|E1 are contained in Bs|L1|E1 . Since Bs|L1|E1 = Bs|L1| ∩ E1 by (3.3), this contradicts
Lemma 3.17.

Rank two: In this case, the equation of a general D ∈ | −KX | is the following:

x2
1 + x2

2 + g(x3, x4) = 0,

where again g is of degree three or higher. The tangent cone is a union of two different planes in
E1 ' P3 which intersect along the line lD1 = [0 : 0 : x3 : x4] for a general D1 ∈ |L1|. Note that there
is no immediate contradiction, since by Lemma 3.17 the intersection Bs|L1| ∩E1 can be a curve C.
By Bertini’s Theorem the curve C contains lD1 as an irreducible component. Since there are only
finitely many irreducible components of C and an infinite numbers of strict transforms, the tangent
cones are in fact singular along the same component C1, that is the line lD1 = C1 is independent
of the choice of D. At this point, the first coefficients are a1 = 3 and r1 = 2 and condition (3.1) is
satisfied.

First suppose that a general D1 ∈ |L1| is singular along C1 and denote its multiplicity by m ≥ 2.
By blowing up X1 along C1 we obtain the coefficients a2 = 3 + 2 = 5 and r2 = m + 2, which
contradict condition (3.1) since a2 + 1 = 6 < 8 ≤ 2(m+ 2) = 2r2.

Thus both D1 and E1 are smooth at the generic point of C1 and their intersection is a surface
S which is singular along C1. This is precisely the previously mentioned tangent cone. As S is
singular and both jacobian matrices JE1 |C1 and JD1 |C1 are of maximal rank, we obtain that

TE1 |C1 = TD1 |C1 , ∀ D1 ∈ |L1| general.

Since D1 is tangent to E1 along C1, all general members D1 ∈ |L1| are therefore tangent along
C1.

Let µ2 : X2 → X1 be the blow up of X1 along C1, let E2 be its exceptional divisor and set
µ = µ1 ◦ µ2. We obtain the following coefficients:

KX2 = µ∗KX + 3E′1 + 5E2

µ∗D = D2 + 2E′1 + 3E2,

where D2 and E′1 are the strict transforms of D1 and E1 respectively. Take two distinct general
divisors D′1, D

′′
1 ∈ |L1|. As they are tangent at the generic point of C1, its blow-up µ2 will not

separate their strict transforms D′2 and D′′2 . Indeed, by Remark 3.13 we obtain that the two strict
transforms intersect along a surface S ⊂ X2. Similarly, using that TE1 |C1 = TD′1 |C1 , we have that
S is also contained in E′1. If µ3 : X3 → X2 is the blow-up of X2 along S, from the following
computations:

µ∗3E1 = E′1 + E3,
µ∗3E2 = E′2 + E3,
µ∗3D2 = D3 + E3,
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we obtain a3 = 9 and r3 = 6, where D3 is the strict transform of D2 through µ3. This again
contradicts condition (3.1).

Rank three: By Lemma 3.15, in this case the polynomial g only depends on the variable x4 and
modulo a change of coordinates the equation of a general anticanonical member D ∈ | −KX | is:

x2
1 + x2

2 + x2
3 + xk4 = 0,

where k ≥ 3. The strict transform D1 of such a divisor is either smooth or has a unique singularity
of multiplicity two at the point [0 : 0 : 0 : 1]. The rank of its hessian remains at least equal to three,
while the compound term becomes of degree k− 2. As before, the singularities of D1 are contained
in the curve C := Bs|L1| ∩ E1.

We show that in fact every general D1 is smooth, allowing us to conclude that k = 3. This is
essentially done by contradiction and using the same sequence of blow-ups as in rank two, only this
time we need to be more precise in order to obtain the tangency condition.

Step 1: Assume k > 3 and thus each general D1 ∈ |L1| is singular. Then these singularities are
contained in the same irreducible component of C. As in the previous case, this is immediate since
we have a finite number of irreducible components and an infinite number of divisors. Denote this
component by C1.

In what follows, let |L1|0 be the Zariski open set in |L1| such that for all D1 ∈ |L1|0 we have
D1,sing ⊂ Bs|L1|. Consider

U := {(D1, x1) | D1 ∈ |L1|0, x1 ∈ D1,sing ∩ C1} ⊂ |L1|0 ×X1

to be the universal family over |L1|0 and denote by p1 and p2 the projections on its two components.
Step 2: Two general members of |L1|0 are not singular at the same point of the curve C1. Choose

the first general member D′1 ∈ |L1|0 and let x1 ∈ C1 be its singular point. The set

F1 :=
{
D1 ∈ |L1|0| x1 ∈ D1,sing

}
is a fiber of p2, so it is closed. First observe that this set cannot be dense. Otherwise, every general
element D1 ∈ |L1|0 would be singular at c1, say of multiplicity m ≥ 2. Then by blowing up X1 at
c1 one would obtain a contradiction to condition (3.1), since a2 = 6 and r2 = 2 +m ≥ 4. Hence F1

is closed, but not dense, and by generality we can choose D′′1 in its complement, this way making
sure that its singular point does not coincide with c1.

Step 3: Having fixed D′1 and D′′1 as above, let P := 〈D′1, D′′1〉 to be the pencil that they generate.
Then the singular loci of the members of P cover the entire curve C1. The set

T = {(D1, x1) | D1 ∈ P, x1 ∈ D1,sing ∩ E1}

is a closed subset of U , and by Step 1 the second projection p2 : U → X1 maps it onto a closed
subset of C1. Using Step 2 and the continuity of p2, we conclude that its image must be all of C1.

Step 4: We obtain a contradiction and conclude that k = 3.
By Remark 3.12 we obtain that TD′1 |C1gen = TD′′1 |C1gen . Exactly as in the rank two case, we

blow up X1 along C1 and by Remark 3.13 we deduce that the strict transforms D′2 and D′′2 intersect
along a surface S. However, contrary to the rank two case, here the strict transform of E1 does not
contain S since the tangent cone is smooth at the generic point of C1.

By doing the same blow-up of X2 along S and using that S 6⊂ E1 we again arrive at a contra-
diction of condition (3.1) as the coefficients are a3 = 6 and r3 = 4.

Rank four: This case does occur, and it is precisely the one illustrated in the example 1.2 mentioned
in the introduction. Together with the only possible case in rank three, this proves the theorem.
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Note that throughout the proof, despite having started with a fixed singularity of | −KX |, we
have come across singularities of elements in |L1| ”moving” along a curve C1. We now see what
happens if that had already been the case for | −KX |.

3.2.3 Moving singularities

As usual, X is a four-dimensional Fano manifold. Proposition 3.1, 3 states that all general elephants
have isolated singularities. Consider the set

V := {x ∈ Dsing ∩ Bs| −KX | |D ∈ | −KX | general}.

If it contains a component of strictly positive dimension, we say that |−KX | has moving singularities
along the component in question. As all our computations are local and the base locus of | −KX |
is at most a surface, we analyze the two possible dimensions separately.

Before we start, we state a result of Kollàr that we use in the classification. For this we need to
introduce the following definition:

Definition 3.19. [Kol97, Def. 4.3] Let 0 ∈ H ⊂ X (where X is smooth at 0) be a hypersurface
singularity. In local coordinates H = (g = 0) and let g2 denote the quadratic part of g. We say that
H has singularities of type cA if either H is smooth or g2 has rank at least 2 as a quadratic form.

Theorem 3.20. [Kol97, Thm. 4.4] Let X be a smooth variety over a field of characteristic zero
and |B| a linear system of Cartier divisors. Assume that for every x ∈ X there is a B(x) ∈ |B|
such that B(x) is smooth at x (or x /∈ B(x)). Then a general member Bg ∈ |B| has only type cA
singularities.

The curve case

We are in the most elementary situation of a moving singularity: in the base locus of | −KX | there
exists a curve, which we denote by C0, such that for all general D ∈ | −KX | there exists a point
x ∈ Dsing ∩C0. Suppose that the set of such points is dense in C0. Here is the central result of this
section:

Theorem 3.21. Let X be a four-dimensional Fano manifold and using the terminology above
suppose that | −KX | has moving singularities along a curve C0. Then in a neighborhood of each
movable singular point in C0 the general elephant is locally defined by an equation of the form:

x2
1 + x2

2 + x2
3 + x2

4 = 0.

Just as we have done previously, a good approach is to start by blowing up C0, the difference
being that instead of focusing on a single point and a specific divisor, we must consider the entire
linear system. This discussion fits into the more general context of log pairs with mobile boundaries
mentioned in 3.2.1.

Global geometric context: Lemma 3.11 and Remark 3.12 imply that TD|C0gen
is independent of

D ∈ |−KX |. This means that by blowing up X along C0 the strict transforms of general elephants
will have a surface in common, as shown in Remark 3.13. Denote this blow-up by µ1 : X1 → X,
the exceptional divisor by E1 and the common surface by S1. By Bertini’s Theorem, if a general
divisor D is singular at a point x ∈ C0, then

D1,sing ∩ P2 ⊂ D1,sing ∩ P2 ∩ S1,
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where D1 is the strict transform of D and P2 is the fiber of the natural projection E1 → C0 mapping
onto x. In particular, this discussion allows for a precise description of the tangent cone of D at x:
we know that D1 ∩ E1 is either a double plane or a quadric cone, and it is the latter because S1

(which is invariant with respect to the choice of D ∈ |L|) cannot coincide with the P2 that maps
onto x.

Note that after this step the coefficients in Notation 3.2 are a1 = 2 and r1 = 1.

Local coordinates: The purpose of this discussion is to find a way to check if the strict transform
of a general elephant is singular, and then to analyze its singularities.

For simplicity, start by choosing coordinates on an open set U such that C0 is given by:

C0 : {x2 = x3 = x4 = 0}

and single out two general elephants: one denoted by D, which is singular at the origin and the
second, denoted by D̃, which is smooth inside U . By restricting U we may assume that the origin is
the only singular point of D and, up to a coordinate change, that the local equation of D̃ is precisely

x3 = 0.

This choice of coordinates, convenient for obtaining a straightforward expression of µ1, comes at
the expense of the precise form of D given by the Morse Lemma in Section 3.2.2.

Denote by µ1 : U1 → U the blow-up of U along C0. We choose the chart on U1 given by{
(x1, x2, x3, x4)(z2, z3)

∣∣∣∣ x3 = x2z2

x4 = x2z3

}
and the following local coordinates on it:

(u1, u2, u3, u4) −→ (u1, u4, u2u4, u3u4)(u2, u3).

Note that in this chart µ1 is given by

(u1, u2, u3, u4)→ (u1, u4, u2u4, u3u4),

the exceptional divisor E1 has the equation u4 = 0, the projective plane above the origin has the
equations u1 = u4 = 0 and D̃1 is given by u2 = 0. In what follows we will build different sequences of
blow-ups starting from µ1, recall that we use Notation 3.14 in the cases of both D and D̃ throughout.

We now combine the two perspectives. We know that the surface D1 ∩ E1 has two irreducible
components: S1 and the P2 which is situated above the origin in this coordinate charts. By inter-
secting them, we obtain a curve, denoted by C, which will contain the singularities of D1. Since
the singular point of D̃ is outside of U we have that S1 = D̃1 ∩ E1. From the previous paragraph
we obtain that the local expressions of S1 and C are

S1 = {u4 = u2 = 0} and C = {u1 = u4 = u2 = 0}.

If f is the local equation of D, write f = q+h where q is the quadratic part of f and h contains
higher order terms. Denote by MD = (mij)1≤i,j≤4 the matrix of q viewed as a quadratic form. This
is a symmetric matrix such that 2MD is the hessian of f at the origin.

Since C0 ⊂ D, we have that f contains no pure monomials in the variable x1. Moreover, as the
tangent spaces of D and D̃ coincide at every point of C0,gen, the jacobian matrix of f is proportional
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to the vector (0 0 1 0) at each point x ∈ C0,gen. We deduce that f also does not contain monomials
of type xk1x2 or xk1x4 and in particular MD is of the following form:

MD =


0 0 m13 0
0 m22 m23 m24

m13 m23 m33 m34

0 m24 m34 m44

 .

This matrix will be the main object of study in our case-by-case analysis.

Proof of Theorem 3.21. The argument is somewhat different in the two following situations:

Case 1: m13 6= 0.
Denote by f1 the local equation of D1 which was obtained from f . More precisely, if we take an

arbitrary monomial in f and trace it throughout this first blow-up we get :

f 3 m = xd1
1 x

d2
2 x

d3
3 x

d4
4 −→ m = ud1

1 u
d3
2 u

d4
3 u

d2+d3+d4−1
4 ∈ f1.

When restricting the jacobian matrix JD1 to C, the only remaining terms are the following :

JD1 |C =


0
0
0

m44u
2
3 + 2m24u3 +m22

 ,

thus the singular points of D1 are given by:{
u1 = u2 = u4 = 0

m44u
2
3 + 2m24u3 +m22 = 0

(3.4)

We are now ready to examine the cases corresponding to different ranks of MD.

Rank one: This case doesn’t occur because by Theorem 3.20 each moving singularity is of type
cA, meaning that the degree two part of f is at least of rank two as a quadratic form.

Rank two: First we show that D1 is singular at Cgen, i.e. that all the coefficients of the degree
two equation in (3.4) are zero. Denote by Mij the 3× 3 minors in MD obtained by eliminating row
i and column j. Since MD has rank two, all of the Mij are zero. Note that

M44 = m2
13m22, M24 = m2

13m24 and M22 = m2
13m44,

and since m13 6= 0 the result is immediate.
By Lemma 3.11 and Remark 3.12, this implies that all elements in D1 ∈ |L1| are tangent along

S1. If we blow-up U1 along this surface, the strict transforms of these divisors will have a surface in
common, which is in its generic point defined by P(N ∗S1/D1

). Denote it by S2. We construct another
blow-up in order to obtain the following sequence :

U U1
µ1oo U2

µ2oo U3,
µ3oo

where µ2 and µ3 are the blow-ups of U1 along S1 and of U2 along S2 respectively. By computing
the coefficients introduced in Notation 3.2 :{

a2 = a1 + 1 = 2 + 1 = 3
r2 = r1 + 1 = 1 + 1 = 2

and

{
a3 = a2 + 1 = 4
r3 = r2 + 1 = 3
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we obtain an immediate contradiction to condition (3.1).

Rank three: All of the coefficients of the equation m44u
2
3 + 2m24u3 +m22 = 0 being equal to zero

would imply rank(MD) = 2. As

det(MD) = m2
13 × (m22m44 −m2

24) = 0,

we may assume, up to choosing a different chart on U1, that m44 6= 0. Since m22m44−m2
24 = 0, we

have a degree two equation with the double root u3 = −m24

m44
, namely

D1,sing =

(
0, 0, −m24

m44
, 0

)
.

Thus if MD is of rank three, the strict transform D1 has exactly one singular point, the same
being true for all general elephants. As D̃1 is smooth at D1,sing, the singular point does not coincide
for two general strict transforms. This means that in this case the linear system of strict transforms
|L1| has singularities that are moving inside of S1.

In order to show that these singularities will not cover the entire surface it suffices to prove that
Bs|L1| has a reduced structure at S1 (see discussion in Section 3.2.3 for details). This becomes
apparent when we look at the local equations: since as before m44, m24 and m22 cannot be all at
once equal to zero, the equation of D1 ∩ D̃1 = D1|{u2=0} contains at least one of the monomials
u3u4, u2

3u4 or u4, thus this intersection only contains S1 = {u2 = u4 = 0} with multiplicity one.
The singularities of general divisors in |L1| must then move along a curve C1 ⊂ S1. By Remark

3.12, all elements of |L1| must be tangent along C1. We want to explicitly construct the blow-up of
U1 along C1 and at the same time keep track of the singular points of D1.

In order to do this, we need to control the rank of the singularity of D1 so that we understand
whether the initial situation was improved by doing the first blow-up. We do a coordinate change
that brings the singular point onto the origin:

(u1, u2, u3, u4) 7→ (u1, u2, u3 +
m24

m44
, u4).

If f1 a local equation of D1 after this transformation, let f1 = q1 + h1, where q1 is the quadratic
part of f1. Denote by MD1 = (pij)1≤i,j,≤4 the matrix of q1 as a quadratic form.

We claim that p12 = m13 and MD1 is of the form:

MD1 =


0 p12 0 p14

p12 0 0 p24

0 0 0 0
p14 p24 0 p44

 . (3.5)

Indeed, take an arbitrary monomial of f and trace it throughout the first blow-up and the
coordinate change:

m = xd1
1 x

d2
2 x

d3
3 x

d4
4 −→ m = ud1

1 u
d3
2 u

d4
3 u

d2+d3+d4−1
4 −→

−→ m1 = ud1
1 u

d3
2

(
u3 −

m24

m44

)d4

ud2+d3+d4−1
4

Note that m1 splits into d4 +1 monomials of degrees d1 +d2 +2d3 +d4 +k−1, where k ∈ {0 . . . d4}.

Step 1: p22 = p23 = p33 = 0. A monomial in m1 contributing to MD1 will be of degree two and
it follows from the expression above that there will be none of type u2

2, u2u3 or u2
3. Indeed, for all

of these monomials we have d3 + k = 2, automatically increasing the total degree to at least three.

37



Step 2: p13 = 0. The monomial u1u3 can only be obtained if d1 = 1 and k = 1, while all other
powers are zero. This implies d4 = 1 and d3 = d2 = 0, thus the coefficient of u1u3 is 2m14 = 0.

Step 3: p12 = m13. As in the previous step, we obtain that the coefficient of u1u2 is 2m13.

Step 4: p34 = 0. The monomial u3u4 can be obtained from either x2x4 or x2
4 in f , corresponding

to k = 1, d4 = 2 and k = 1, d2 = d4 = 1 respectively. Its coefficient 2p34 will be

m44 × 2

(
−m24

m44

)
+ 2m24 = 0.

Step 5: p11 = 0. The contributions to p11 come from monomials of the form x2
1x2 and x2

1x4.

Because of the tangency condition relating the jacobian of D with that of D̃, the coefficients in f
of these two monomials are zero.

This proves the claim. We have thus obtained a much simpler matrix MD1 after the first blow-up,
though its rank can still be equal to three.

We now construct the second blow-up. Since we cannot change coordinates while maintaining
the format of MD1 , we will consider an arbitrary curve in S1 passing through the origin and denote
it by C1. This curve is smooth at the origin because of the general choice of D. Locally it is given
by: {

u2 = u4 = 0

g(u1, u3) = 0
,

where g is an arbitrary holomorphic function such that g(0, 0) = 0.
Denote by µ2 : U2 → U1 the blow-up of U1 along C1. One of the charts on U2 is given by{

(u1, u2, u3, u4)(t1, t2)

∣∣∣∣{ u2 = t1g(u1, u3)
u4 = t2g(u1, u3)

}
and we choose the following local coordinates on it: v1 := t1, v2 := t2, v3 := u1 and v4 := u3. The
chart becomes:

(v1, v2, v3, v4) −→ (v4, v1g(v3, v4), v3, v2g(v3, v4))(v1, v2).

In this chart the exceptional divisor E2 is given by g(v3, v4) = 0 and the projective plane above the
origin has the equations v3 = v4 = 0. The strict transform of E1, denoted by E′1, is given by v2 = 0.

Denote by D2 the strict transform of D1 through µ2. We will show that D2 is singular at the
origin and we will compute the rank of MD2 at this point. Indeed, consider an arbitrary monomial
in f1, denoted by m1 = ud1

1 u
d2
2 u

d3
3 u

d4
4 . Note that since S1 ⊂ D1 we have d2 + d4 > 0. As before, its

contribution to the local equation of D2 is

m1 = ud1
1 u

d2
2 u

d3
3 u

d4
4 −→ m2 = vd2

1 v
d4
2 v

d3
3 v

d1
4 g(v3, v4)d2+d4−1.

The partial derivatives of m2 vanish at the origin: consider for example ∂m
∂v3

, which is a sum of
two terms. The only situations in which it would not vanish at the origin are if (for the first term)
d3−1 = d2 = d4 = d1 = d2 +d4−1 = 0 or (for the second term) d2 = d4 = d3 = d1 = d2 +d4−2 = 0,
and neither can occur.

If the origin is not an isolated singular point, we are done. Indeed, if D2 is singular along an
entire curve, by Remark 3.12 all elements in |L2| are tangent along a surface denoted by S2. We
construct the following blow-up sequence:

U U1
µ1oo U2

µ2oo U3
µ3oo U4,

µ4oo
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where U3 = BlS2U2 and U4 = BlS3U3, where S3 = P(N ∗S2/D2
) is the surface that the strict transforms

of elements in |L2| have in common. The coefficients are:{
a2 = a1 + 2 = 4
r2 = r1 + 1 = 2

,

{
a3 = a2 + 1 = 5
r3 = r2 + 1 = 3

and

{
a4 = a3 + 1 = 6
r4 = r3 + 1 = 4

,

a contradiction to condition (3.1).

Assume now that the origin is an isolated singular point of D2. Then it is neither a fixed
singularity for the system |L2| nor is it a moving singularity along a surface. Indeed, a short
computation shows that D̃2 is smooth at the origin and Proposition 3.22 allows us to eliminate the
surface case if Bs|L2| has a reduced structure at S2,gen. If this is not the case, all elements in |L2| are
tangent along S2 and we repeat the sequence of blow-ups above in order to derive a contradiction.

We now proceed to determining the rank of this singularity. If a monomial in m2 is of degree
two then d2 + d4 = 1 and d1 + d3 = 1, in particular it comes from certain degree two monomials in
f1. Using that MD1 is of the form in (3.5), we obtain that MD2 has the following form:

MD2 =


0 0 0 p12

0 0 0 p14

0 0 0 0
p12 p14 0 0

 .

This is a rank two matrix, therefore we can apply the same strategy as in the case where MD

was of rank two : for the most part of the discussion, we know what we obtain geometrically without
having to perform any local computations. The process consists in doing three additional blow-ups
: the first along a curve and each of the other two along a suitably chosen surface. The coefficients
will not be exactly the same since we have already blown up two subvarieties, we will however obtain
the same type of contradiction.

In the end we will have constructed a sequence of five blow-ups :

U U1
µ1oo U2

µ2oo U3
µ3oo U4

µ4oo U5,
µ5oo

where as before U1 = BlC0U and U2 = BlC1U1. The morphisms µ3, µ4 and µ5 will be the blow-ups
along a curve C2 and two surfaces denoted by S3 and S4 respectively.

The choices of the centers are straightforward, we proceed exactly as in the previous rank two
case:

· C2 ⊆ U2 is the curve along which the singularities of general members of |L2| move,

· S3 ⊆ U3 is the surface along which general members of |L3| are tangent,

· S4 ⊆ U4 is the surface in Bs|L4| that exists because of this tangency, given by P(N ∗S3/D3
).

The only detail we need to additionally keep track of is the interaction between the exceptional loci.

We briefly come back to the local picture in order to eventually describe µ4. The first observation
is that after the change of coordinates, the origin belongs to both divisors E2 and E′1, the strict
transform of E1 through µ2. As the sequence of blow-ups does not depend on the coordinate choice,
we have just used a local computation to show that the singular point of the strict transform of a
general D ∈ |−KX | through µ1 ◦µ2 belongs to E′1 ∩E2. The same must be then true for the curve
formed precisely by these singular points, that is to say C2. This implies that both E2 and E′1 will
contribute to a3 and r3, the coefficients of E3 in Notation 3.2.
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We claim that the only exceptional divisor that S3 belongs to is E3. Indeed, a short computation
shows that

TE2 |C2,gen 6= T
D̃2
|C2,gen and TE′1 |C2,gen 6= T

D̃2
|C2,gen

where D̃2 is the strict transform of D̃ through µ1 ◦ µ2. As T
D̃2
|C2,gen = TD2 |C2,gen by Remark 3.12,

this proves that the divisor E4 will be disjoint from both strict transforms of E1 and E2, but will
have a surface in common with the strict transform of E3. At this stage, the coefficients are:{

a2 = a1 + 2 = 4
r2 = r1 + 1 = 2

,

{
a3 = a1 + a2 + 2 = 8
r3 = r1 + r2 + 1 = 4

and

{
a4 = a3 + 1 = 9
r4 = r3 + 1 = 5

,

which doesn’t yet allow us to conclude. The fifth blow-up is of the surface S4 ⊂ E4 defined above,
which may or may not also be included in E3. The two cases both lead us to a contradiction to
condition (3.1): {

a5 = a4 + a3 + 1 = 18
r5 = r4 + r3 + 1 = 10

or

{
a5 = a4 + 1 = 10
r5 = r4 + 1 = 6

.

Case 2: m13 = 0.

This is a degeneration of the previous situation and as such will be easier to exclude. Geomet-
rically, the condition says that the restriction D1|E1 is not reduced along the P2 above the origin.
As before, we have that

S1 = {u4 = u2 = 0} and C = {u1 = u4 = u2 = 0}.

The problem here is that D1 may be singular outside C: if we restrict the jacobian of D1 just to
the P2 above the origin, we obtain

JD1 |P2 =


0
0
0

m22 + 2m23u2 +m33u
2
2 + 2m34u2u3 + 2m24u3 +m44u

2
3

 1

which is included in C iff either m23 6= 0 while m22 = m33 = m34 = m24 = m44 = 0 or m33 6= 0 and
m22 = m23 = m34 = m24 = m44 = 0, both cases leading to D1 being singular along the entire curve
C. The latter is impossible since it would mean that the rank of MD is one and [Kol97, Thm. 4.4]
implies it should be at least equal to two. The former also leads to a contradiction: we have that
MD is of rank two and D1 is singular along a curve. We perform the same blow-ups as in the rank
two case and obtain the coefficients a3 = 4 and r3 = 3 which contradict condition (3.1).

Rank four: This is the case in the statement of Theorem 3.21. Following the same strategy of the
proof so far, the strict transform of a general elephant can either contain one or two singular points
and despite the lack of examples we have yet to find a reason for this situation not to occur.

1this is not the case if m13 6= 0, as the first row of JD1 |P2 is 2m13u2.

40



The surface case

Now that we have discussed the situation where the singularities of general elements in | − KX |
move along a curve C, we claim that this is the maximal-dimensional case that we need to consider.

The argument holds in the following more general case: let |L| be a linear system without fixed
components on a fourfold X. As before denote by |L|0 the Zariski open set in |L| such that for all
D ∈ |L|0 we have that Dsing ⊂ Bs|L|.

We show that the set
W = {x ∈ Dsing|D ∈ |L|0}

cannot contain a surface: we prove that if Bs|L| contains a reduced surface S, then in fact the
singular points of all general D ∈ |L|0 belong to a curve included in S.

We are only concerned with the smooth points x ∈ S, since the singular ones already belong
to a subset of the desired codimension. Fix a general element D ∈ |L|0 that is singular at x. The
divisor S ⊂ D is not Cartier at x, as otherwise all points in Dsing ∩ S would be singular points of
S. Since every M ∈ |L|D is Cartier at x we see that there exists another component R ⊂ M with
x ∈ R. We can then decompose |L|D as follows:

|L|D = S + |RD|, (3.6)

such that x ∈ Bs|RD|. Note that the linear system |RD| may have fixed components, as Bs|L|
possibly contains other surfaces aside from S.

We show that Bs|RD| is independent of the initial choice of D. Indeed, fix D′ ∈ |L| to be another
general element and through the same process construct |RD′ |. Then D ∩ D′ is a subscheme of
D having S as an irreducible component. Denote by T := Supp(D ∩ D′ \ S). We have that
||L|D|T = ||L|D′ |T = |L|T since the following diagram of restrictions is commutative:

H0(D,OD(L))

((
H0(X,OX(L))

66

((

H0(T,OT (L))

H0(D′,OD′(L))

66

By restricting (3.6) and the analogous decomposition of |L|D′ with respect to |RD′ | to T we
obtain that

|L|T = ST + |RD|T = ST + |RD′ |T .
So |RD|T = |RD′ |T , which means Bs|RD| = Bs|RD′ | since both base loci are included in T .

Proposition 3.22. Let |L| be a linear system without fixed components on a projective four-
dimensional manifold X. If S ⊂ Bs|L| is a reduced surface and all general elements in |L| are
smooth in codimension one, then the set W = {x ∈ Dsing |D ∈ |L|0} ∩ S is at most of dimension
one.

Proof. Since every x ∈ W is either a singular point of S or belongs to Bs|RD| ∩ S by the previous
discussion, it is enough to show that S ∩ Bs|RD| ( S. Indeed, suppose S ⊂ Bs|RD|, then we can
write

|L|D = 2S + |R′D|,
meaning that for every D′ ∈ |L| we have that the threefolds D and D′ are tangent along S. This is
equivalent to Bs|L| having a non-reduced structure at Sgen, which contradicts the hypothesis.
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Proof of Theorem 3.8. We now check that the hypotheses of Proposition 3.22 are true for a four-
dimensional Fano manifold X and the anti-canonical system | −KX |. Suppose for a contradiction
that Bs| − KX | (viewed as a scheme cf. Definition 3.3) has a non-reduced structure along an
irreducible surface S. By [Kaw00, Prop 4.2], if we consider two general elephants D and D′, they
give rise to an lc pair (D,D ∩ D′). But S is a component of D ∩ D′ of at least multiplicity two,
which gives rise to a discrepancy equal to −2, a contradiction.

We then apply Proposition 3.22 and conclude that the anticanonical system | −KX | either has
fixed singularities or singularities moving along a curve. By Theorem 3.16 and Theorem 3.21, we
obtain that locally analytically these points are of the form:

x2
1 + x2

2 + x2
3 + x2

4 = 0 or x2
1 + x2

2 + x2
3 + x3

4 = 0.
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Chapter 4

The bi-anticanonical system

The advances in Fujita’s Conjecture, particularly the works of Reider, Ein and Lazarsfeld and
Kawamata show that for a Fano variety X of dimension at most four we have that | − (n− 1)KX |
is base-point free for all n ≥ dimX. It is then natural to ask whether a general D ∈ | − 2KX |
is smooth, this being the middle ground between the mildly singular general elephants and the
base-point freeness of | − 3KX |.

Let Y1 and Y2 be two general elephants. As discussed in Proposition 3.6, the pair (X,Y1 + Y2)
is properly log canonical, it therefore admits a log-canonical center. The strategy is to determine
the existence of smooth members of | − 2KX | by extending sections from such an object.

If S = Y1∩Y2 and let C be a reduced (but not necessarily minimal) log-canonical center included
in S. This exists since S itself is a union of log-canonical centers. Using Theorem 2.17 for the pair
(X,Y1 + Y2) and the divisor −2KX , as −2KX − (KX + Y1 + Y2) is ample, we have that the map

H0(X,OX(−2KX))→ H0(C,OC(−2KX |C)) (4.1)

is surjective. We want to find smooth elements of | − 2KX |C |, which we will then extend to the
entire variety X.

We analyze a number of particular cases. The first one is that any center of dimension one of the
pair (X,Y1 +Y2) is nodal. In the works of Kawamata [Kaw97] and in a more general context Ambro
[Amb] it is shown that any finite union of log canonical centers is seminormal. The situation of the
nodal curve is a particular case of this situation. We expect that the same strategy of the proof of
Proposition smoothcenter works in the case of Gorenstein curves. In the general context one would
have to analyze the base-point freeness of the pull-back of | − 2KX |C | on the normalization of C.

Proposition 4.1. Suppose C is a center of the pair (X,Y1 + Y2) of at most dimension one, and
that if it is a curve, it is at most nodal. Then a general D ∈ | − 2KX | is smooth along C.

Remark 4.2. We formulated this proposition in terms of smoothness as it is the subject of the
chapter, however we prove something stronger, namely that for every center C as in the statement
we have that C∩Bs |−2KX | = ∅. We will use this particular statement when discussing Conjecture
4.8.

Proof. If dimC = 0, then C /∈ Bs |−2KX |. This is clear since all log canonical centers are irreducible,
therefore C is a point and we have H0(C,OC(−2KX |C)) ' C. Then the surjective map (4.1) is
non-zero, which would be impossible if C were included in the base locus.

If C is a curve, the strategy is to use an equivalent of the Subadjunction Theorem 2.18 to acquire
information about H0(C,OC(−2KX |C)).
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We claim that C ∩Bs | − 2KX | = ∅. First note that a singular point p ∈ Csing is a log canonical
center, and we have determined such a point misses Bs | − 2KX |.

The curve C may be singular (in particular Theorem 2.18 does not directly apply), but as we
have assumed it is at most nodal, therefore Gorenstein. This makes our job much easier.

We show that there exists an effective Q-divisor ∆ ⊂ C \ Csing such that

KC + ∆ ∼Q (KX + Y1 + Y2)|C ∼Q −KX |C . (4.2)

Indeed, let ν : C̃ → C be the normalization of C. The weak version of the Subadjunction Theorem
[Kol13, Thm-Defn.4.45] (proof in [BHN15, Lm.3.1] ) states that there exists an effective divisor ∆

C̃

on C̃ such that
K
C̃

+ ∆
C̃
∼Q ν

∗(KX + Y1 + Y2)|C (4.3)

and further if a point p ∈ C is an lc center, then we have a set-theoretical inclusion ν−1(p) ∈ ∆
C̃

.
As C is nodal, the preimage of each point p ∈ Csing consists of exactly two points p1 and p2, and
since p is an lc center we have that p1, p2 ∈ ∆

C̃
. We then write

K
C̃

= ν∗KC −
∑

p∈Csing(p1 + p2)

and by adding ∆
C̃

to both sides we obtain

K
C̃

+ ∆
C̃
∼Q ν∗KC + ∆′,

where ∆′ is an effective Q-divisor. Using (4.3), we conclude that there exists ∆ = ν∗(∆
′) ⊂ C \Csing

such that (4.2) holds.
We show that deg(−2KX |C) ≥ 2pa(C), where pa(C) is the arithmetic genus of C, allowing us

to conclude that Bs | − 2KX |C | = ∅. It suffices to show that

deg(−2KX |C −KC) ≥ 2 ⇔ deg(−KX |C + ∆) ≥ 2.

As C is nodal, we still have that deg(KC) = 2pa(C) − 2 by [Har77, Ex.1.9] and therefore cannot
be odd. As deg−KX |C ≥ 1, we obtain that deg(−2KX |C −KC) is both larger than one and even,
hence it is at least equal to two.

To complete the proof, we use [Har86, Prop.1.5]. This article enables us to apply many basic
facts about smooth curves to the nodal case, such as Serre duality or the criterion for base point
freeness of a linear system. As

deg(KC − (−2KX |C)) ≤ 2g − 2− 2g = −2 and
deg(KC − (2KX |C − p)) ≤ 2g − 2− 2g + 1 = −1

we obtain
h0(C,KC − (−2KX |C)) = h1(C,−2KX |C) = 0
h0(C,KC − (−2KX |C)) = h1(C,−2KX − p) = 0

for every point p ∈ C. Using the Riemann Roch formula, we see that

dim | − 2KX − p | = dim | − 2KX | − 1,

therefore | − 2KX |C | is base-point free, proving the claim. As all its sections extend from C to X
by (4.1), a general D ∈ | − 2KX | will be smooth along C.

We move to analyzing the case when the center is a surface S. We first show that this surface
cannot be contained in Bs | − 2KX |.
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Remark 4.3. If X is a Fano fourfold, then dimBs| − 2KX | ≤ 1.

Proof. Suppose by contradiction that S0 is an irreducible surface contained in the base locus of
| − 2KX |. As Bs| − 2KX | ⊆ Bs| − KX |, we have that S0 ⊆ Y1 ∩ Y2 = S, where Y1 and Y2 are as
above. As they are ample, S is connected. We are in one of two cases: either S0 = S is a minimal
log canonical center of the pair (X,Y1 + Y2), or there exists a center C ⊂ S0 such that dimC ≤ 1.
Either way, the map (4.1) is zero. In the first case, since S is minimal, it is klt, and we can apply
the effective Kawamata Nonvanishing theorem 2.19 to the pair (S, 0) and the divisor 2KS . We
obtain a first contradiction. If we are in the second case, using Riemann-Roch [Har86, Thm.1.3] for
the curve C and −2KX |C we conclude that the target of (4.1) is nontrivial, which is absurd since
we have just deduced that it is a surjective zero map. We conclude that Bs| − 2KX | is at most a
curve.

We now study the second particular case, in which the center is a surface. We further suppose
that S = Y1∩Y2 is smooth, then it is a surface of general type. What is more KX |S = KS is ample,
therefore S is minimal. The aim of what follows is to analyze the bicanonical system |2KS |. It is
already known by [BHPVdV04, VII,Thm.7.4] that if pg(S) ≥ 1 then this system is base point free,
therefore we are able to successfully extend the smooth sections to X. We now restrict to the case
where pg(S) = 0. A first step is to examine whether it is possible for the fixed part of |2KS | to
contain a smooth irreducible component of high multiplicity.

Proposition 4.4. Let S be a smooth surface with KS ample and pg(S) = 0. Then there exists
a reduced divisor D ∈ |2KS |, with the exception of the following situations in which K2

S = 4,
|2KS | = V + |M |, where |M | is the moving part of |2KS | and the V constitute its fixed part, with
the following numerical data:

· V = 2C0 + C1, where Ci are irreducible curves, such that:
C0 is a genus 1 curve such that C2

0 = −1,
C1 is a genus 0 curve such that C2

1 = −3,
M2 = KS ·M = 5 and KS · C0 = KS · C1 = 1.

· V = 2C0 + C1 + C2, where Ci are irreducible curves, such that:
C0 and C1 are genus 1 curves such that C2

0 = C2
1 = −1,

C2 is a genus 0 curve such that C2
2 = −3,

M2 = KS ·M = 4 and KS · C0 = KS · C1 = KS · C2 = 1.

· V = 2C0 + C1 + C2, where Ci are irreducible curves, such that:
C0 is a genus 1 curve such that C2

0 = −1,
C1 and C2 are genus 0 curves such that C2

1 = C2
2 = −3,

M2 = KS ·M = 4 and KS · C0 = KS · C1 = KS · C2 = 1.

This very last case is divided into two subcases, depending on the intersection of each component of
the fixed locus with the mobile part of the linear system. We give a detailed account of this during
the proof.

We first state three results that are relevant for the proof:

Remark 4.5. The fixed part of |2KS | contains no smooth elliptic curve C such that KS −C is nef
and big.
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Proof. We proceed by contradiction. Suppose C exists, then from the following exact sequence:

0→ OS(2KS − C)→ OS(2KS)→ OC(2KS)→ 0

we get the corresponding sequence in cohomology

H0(S,OS(−2KS))→ H0(C,OC(2KS))→ H1(S,OS(KS +KS − C)).

Since KS − C is nef and big, by the Kodaira vanishing theorem we obtain that the first arrow is
surjective. If C were a component of the fixed locus of 2KS , this would be the zero map, however
H0(C,OC(2KS)) = C2 since C is an elliptic curve and KS · C > 0. This proves the statement.

Another statement concerns the case in degree two:

Theorem 4.6. [Xia85, Thm3] Let S be a smooth minimal surface of general type with pg = 0 and
K2 = 2. Then the bicanonical map Φ2K is not associated to a genus two fibration, therefore it is a
surjection on P2.

Lastly, we are able to eliminate cases for which K2
S = 3, 4 thanks to the work of Weng in [Wen95],

in which he computes most of the intersection numbers for the fixed and moving components of
|2KS |.

Proposition 4.7. [Wen95, Cor.] Let S be a smooth minimal surface of general type with pg(S) = 0
and |2KS | = V + |M |, the decomposition of the bicanonical system into the fixed part V and the
moving part |M |. We assume that V 6= 0.

(1) Case K2
S = 3. We only have the following possibilities:

(a) KSM = 4, KSV = 2, M2 = 4, MV = 4, V 2 = 0;

(b) KSM = 5, KSV = 1, M2 = 5, MV = 5, V 2 = −3;

(c) KSM = 5, KSV = 1, M2 = 7, MV = 3, V 2 = −1;

(2) Case K2
S = 4. We only have the following possibilities:

(a) KSM = 4, KSV = 4, M2 = 4, MV = 4, V 2 = 4;

(b) KSM = 5, KSV = 3, M2 = 5, MV = 5, V 2 = 1;

(c) KSM = 6, KSV = 2, M2 = 4, MV = 8, V 2 = −4;

(d) KSM = 6, KSV = 2, M2 = 6, MV = 6, V 2 = −2;

(e) KSM = 6, KSV = 2, M2 = 8, MV = 4, V 2 = 0;

(f) KSM = 7, KSV = 1, M2 = 9, MV = 5, V 2 = −3;

(g) KSM = 7, KSV = 1, M2 = 11, MV = 3, V 2 = −1.

In particular, the number of irreducible components of the fixed part of |2KS | is at most 2 (resp.
4) when K2

S = 3 (resp. 4).

Proof of Proposition 4.4. The proof is split in various cases according to the number of irreducible
components contained in the fixed locus of |2KS |. The approach is essentially the same: we have a
main formula that describes |2KS |, which we intersect in turn with the canonical class, with each
component of the fixed locus and with the mobile part of |2KS |. We then deduce information on
the self-intersection of these divisors using the Hodge index theorem and use positivity properties
to derive contradictions. In some cases, not all these steps are necessary.
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The first two cases are the easiest. To fix notation, suppose that

|2KS | = V + |M | (4.4)

is the decomposition into the fixed, respectively mobile part of the bicanonical system of S.
If K2

S = 1, suppose we can write V = mC +B, where m ≥ 2 and C is irreducible. We intersect
both members of (4.4) with KS and obtain

2 = mCKS +BKS +MKS .

As all terms are positive, this can only happen if m = 2 and B = M = 0, KSC = 1. Because S is
a smooth dimension two complete intersection (of two smooth ample divisors), its Picard group is
torsion-free by the Lefschetz Theorem. This means C ∈ |KS |, contradicting the fact that pg(S) = 0.

If K2
S = 2, Theorem 4.6 concludes that p2(S) = 3. We write V = mC+B just as in the previous

case, this time we obtain that
4 = mCKS +BKS +MKS . (4.5)

Again, we cannot have B = M = 0, since this would imply m ∈ {2, 4}, therefore pg(S) 6= 0. We are
left with the following possibilities:

/ If KSM = 2 then B = 0, m = 2 and CKS = 1. The Hodge index theorem gives that
4 = (KSM)2 ≥ K2

SM
2 = 2M2, as well as 1 = (CKS)2 ≥ 2C2, therefore M2 ∈ {0, 1, 2} and

C2 is negative by adjunction. The adjunction theorem also implies that C2 and CKS are
congruent modulo 2, therefore C2 ∈ {−1,−3}. If we intersect (4.4) with M , we obtain that
4 = 2CM +M2, therefore M2 ∈ {0, 2} and CM ∈ {1, 2}. If we intersect (4.4) with C, we get
2 = 2C2 + CM , which is impossible.

/ If KSM = 1, then M2 ≤ 0 by the Hodge index theorem since 1 = (KM)2 ≥ K2M2 = 2M2.
As |M | does not have base components, we must have M2 = 0. There are two possibilities
given by (4.5): either (m,CKS , BKS) = (2, 1, 1) or (m,CKS , BKS) = (3, 1, 0).

– In the former case, as BKS = 1 we have that B is irreducible and further B2 is odd. If
we intersect (4.4) respectively with B and M , we obtain:

2 = 2CM +BM
2 = 2CB +B2 +BM,

which contradict each other with respect to the parity of BM .

– The latter case implies that B = 0. We intersect (4.4) with M and obtain 2 = 3CM ,
impossible.

/ The case M = 0 is impossible since p2(S) ≥ 2.

We repeatedly use Proposition 4.7 to prove our claim in the cases K2
S = 3 and K2

S = 4.
If K2

S = 3, suppose there exists a non-reduced curve in Bs|2KS |. By Proposition 4.7, the number
of irreducible components in the fixed locus of 2KS is at most two, thus V = 2C, where C is an
irreducible curve. Since 2KS = 2C + M and KSM ≥ 4 we obtain that KSC = 1 and KSM = 4.
But this corresponds to case (1.a) in Proposition 4.7, which also implies V 2 = 0, a contradiction
since degKC is always odd.

If K2
S = 4, we have further possibilities. We denote by C0 the non-reduced curve in the fixed

locus, which this time may contain up to four irreducible components. The condition KSM ≥ 4 is
still valid in this case.

Suppose C0 is the only curve in Bs|2KS |. We have the following cases, ranging from the highest
possible multiplicity of C0 to the lowest:
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/ 2KS = 4C0 + M. Then KSM = 4 and KSC0 = 1. We are thus in case (2.a) of Proposition
4.7, implying that (4C0)2 = 4, a contradiction.

/ 2KS = 3C0 + M . By the same type of considerations, we are either in case (2.a) or (2.b) in
Proposition 4.7, implying that (3C0)2 is either equal to 1 or 4, both leading to a contradiction.

/ 2KS = 2C0 + M . Firstly, KSM = 5 cannot happen for parity reasons. If KSM = 4 and
KSC0 = 2, then by case (2.a) we have that C2

0 = 1. But as degKC0 is always even, the
adjunction theorem gives us a contradiction.

If KSM = 6 and KSC0 = 1, we have that (2C0)2 ∈ {−4,−2, 0}, so C2
0 ∈ {−1, 0}. Again

by the adjunction theorem we have that C2
0 must be even, therefore it is equal to −1 and

C0 is an elliptic curve. In order to apply Remark 4.5 to the curve C0, one must check that
KS −C0 ≡ 1

2M is nef and big, which is clear as M2 = 8 > 0 and |M | is mobile. Therefore C0

is not in the base locus of |2KS |, a contradiction.

Suppose the fixed locus V contains an additional curve C1 (which can appear with higher
multiplicity). Here is a list of possibilities:

/ 2KS = 3C0 + C1 +M . By intersecting this relation with KS we obtain:

8 = 3KSC0 +KSC1 +KSM.

This forces KSC0 = KSC1 = 1 and KSM = 4, the corresponding case in Proposition 4.7
being (2.a), which implies V 2 = 4. Now (C1)2 has to be odd, and by the Hodge index theorem
we know that 1 = (KSC1) ≥ K2

SC
2
1 = 4C2

1 . The adjunction theorem states that C2 =
KC −KSC ≥ −2− 1 = −3, therefore C2

1 ∈ {−1,−3}. As

V 2 = 3(3C2
0 + 2C0C1) + C2

0 = 4,

clearly none of these two cases work.

/ 2KS = 2C0 + 2C1 +M . Intersection with the canonical class gives

8 = 2KSC0 + 2KSC1 +KSM.

Again we must have KSC0 = KSC1 = 1 (thus C2
0 and C2

1 must be odd) and KSM = 4, which
by Proposition 4.7 also results in V 2 = 4(C0 + C1)2 = 4. The relation C2

0 + C2
1 + 2C0C1 = 1

is impossible for parity reasons.

/ 2KS = 2C0 + C1 +M . The relation

8 = 2KSC0 +KSC1 +KSM

leaves room for two possibilities.

If KSM = 4, then KSC0 = 1 and KSC1 = 2 (thus C2
0 is odd and C2

1 must be even). Applying
the Hodge index theorem as before we obtain C2

0 ∈ {−1, −3} and C2
1 ∈ {0, −2}. Proposition

4.7 gives that V 2 = 4, so
4C2

0 + 4C0C1 + C2
1 = 4,

therefore C2
1 = 0 and C0C1 ∈ {2, 4}. Since

4 = 2KSC1 = 2C0C1 +MC1,
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we get that C0C1 = 2 and C2
0 = −1, so once again C0 is an elliptic curve. In oder to apply

Remark 4.5, we need to verify that KS−C0 ≡ 1
2(C1+M) is nef (the bigness is clear as M2 > 0).

This numerical case corresponds to (2.a) in Proposition 4.7, therefore we additionally know
that M2 = 4 and VM = 2C0M = 4.

Since (KS − C0)C1 = 0 is positive and |M | is mobile, we indeed have that 1
2(C0 + M) is nef

and thus C0 is not in the base locus of |2KS |, a contradiction.

If KSM = 5, we come across the case in the statement of our proposition, which we cannot
exclude using the current methods. Let us show that the intersection numbers match.

We are in case (2.b) of the proposition while also having KSC0 = KSC1 = 1. Firstly, the
adjunction theorem shows that C2

i is odd, and by the index theorem we obtain C2
i ∈ {−1,−3}

for i = 0, 1. We also know that V 2 = 2, i.e. 4C2
0 + 4C0C1 + C2

1 = 1. Congruence modulo 4
finds C2

1 = −3, and C2
0 + C0C1 = 1 means C0C1 ∈ {2, 4}.

By intersecting the formula for 2KS with C1 we get 2 = 2C0C1−3+MC1 ⇔ 2C0C1+MC1 = 5.
Since MC1 ≥ 0, we get C0C1 = 2 and MC1 = 1. Then C2

0 = −1 and as MV = 5, we have
2MC0 +MC1 = 5 so MC0 = 2.

Finally, suppose the fixed locus V contains an additional curve C2 (which can also appear with
higher multiplicity). The only case is:

/ 2KS = 2C0 + C1 + C2 +M . As

8 = 2KSC0 +KSC1 +KSC2 +KSM

and KSM ≥ 4 we must have KSM = 4 and KSC0 = KSC1 = KSC2 = 1. As before,
C2
i ∈ {−1,−3} for i = 0, 1, 2 by the adjunction theorem and the index theorem. This is the

case (2.a) in Proposition 4.7, i.e. we also know that V 2 = 4 and MV = 4:

4C2
0 + C2

1 + C2
2 + 4C0C1 + 4C0C2 + 2C1C2 = 4 (4.6)

2C0M + C1M + C2M = 4. (4.7)

By intersecting the formula for 2KS with C0, C1 and C2 we also have the following three
relations:

2 = 2C2
0 + C0C1 + C0C2 + C0M (4.8)

2 = 2C0C1 + C2
1 + C1C2 + C1M (4.9)

2 = 2C0C2 + C1C2 + C2
2 + C2M (4.10)

As M is nef and C0M ≤ 2 by (4.7), we have that 2− 2C2
0 ≥ C0C1 + C0C2 ≥ −2C2

0 .

We split this study into three cases: C2
1 6= C2

2 , C2
1 = C2

2 = −1 and C2
1 = C2

2 = −3.

– If C2
1 6= C2

2 then C2
1 + C2

2 = −4. By (4.6) we deduce that C1C2 is even. Again because
of parity, (4.9) and (4.10) give that both C1M and C2M are odd.

If they are equal, by (4.7) we immediately get C1M = C2M = C0M = 1. By (4.8) we
have that C0C1 +C0C2 is odd, and (4.6) implies that 1

2C1C2 is even, i.e. C1C2 is divisible
by 4. As at least one of C0C1 or C0C2 is strictly positive, by (4.9) and (4.10) we must
have C1C2 = 0. It is now clear that

(C2
0 , C

2
1 , C

2
2 , C0C1, C0C2, C1C2) = (−1,−1,−3, 1, 2, 0),
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up to a permutation of C1 and C2.

If on the other hand C1M 6= C2M , as they are both odd we obtain C0M = 0 by (4.7).
Without loss of generality we can assume C1M = 1 and C2M = 3. This time we have
that C0C1 + C0C2 is even, therefore by (4.6) we get that C1C2 is not divisible by 4. As
it cannot be larger than 6 because of (4.9) and (4.10), we obtain C1C2 = 2. We find the
following:

(C2
0 , C

2
1 , C

2
2 , C0C1, C0C2, C1C2) = (−1,−1,−3, 0, 0, 2),

which contradicts (4.8).

– If C2
1 = C2

2 = −1, then by (4.6) we have that C1C2 must be odd. We claim that C0C1

and C0C2 can not both be 0. Indeed, by (4.8) that would imply that C0M ≥ 4, which
contradicts (4.7). We may assume without loss of generality that C0C1 ≥ 1 and by (4.9)
we have

3 = 2− C2
1 = 2C0C1 + C1C2 + C1M ≥ 2 + 1 = 3,

therefore in order to verify the equality we must take C1M = 0 and C1C2 = C0C1 = 1.

As C0M ≤ 2, we again deduce from (4.8) that C0C2 ≥ 1. Then the inequality above
holds if we replace C1 by C2, we therefore obtain C2M = 0 and C0C2 = 1. By (4.7) we
get that C0M = 2 and finally

(C2
0 , C

2
1 , C

2
2 , C0C1, C0C2, C1C2) = (−1,−1,−1, 1, 1, 1).

This case is however eliminated using Remark 4.5. Indeed, we only need to check that
KS − C0 ≡ 1

2(C1 + C2 + M) is nef, as the bigness is clear since M2 = 4 and C2
1 =

C2
2 = −1. Since C1 and C2 have the same numerical data, we only verify this for C1.

As C2
1 + C1C2 + C1M = −1 + 1 + 0 = 0, the divisor is nef and we apply Remark 4.5 to

obtain a contradiction.

– If C2
1 = C2

2 = −3, C1C2 is again odd by (4.6). The relations (4.9) and (4.10) become:

5 = 2C0C1 + C1C2 + C1M (4.11)

5 = 2C0C2 + C1C2 + C2M. (4.12)

Since every term of the sums on the right hand side is non-negative, this means that
C0C1 and C0C2 are at most equal to two. The same holds for C0M because of (4.7). As
by (4.8) we have 2 − 2C2

0 = C0C1 + C0C2 + C0M ≤ 6 and C2
0 ∈ {−1,−3}, we deduce

C2
0 = −1. The relation (4.8) becomes

4 = C0C1 + C0C2 + C0M. (4.13)

Substituting what we know so far in (4.6) we obtain

4(C0C1 + C0C2) + 2C1C2 = 14. (4.14)

As C0M ≤ 2, by (4.13) we have C0C1 + C0C2 ∈ {2, 3, 4}, the last possibility being
excluded by (4.14). We deduce that C0M ∈ {1, 2} and by substituting these cases in the
relations above we obtain the following possibilities:

(C2
0 , C

2
1 , C

2
2 , C0C1, C0C2, C1C2) = (−1,−3,−3, 1, 2, 1) if C0M = 1 and

(C2
0 , C

2
1 , C

2
2 , C0C1, C0C2, C1C2) = (−1,−3,−3, 1, 1, 3) for C0M = 1.

In both instances, Remark 4.5 cannot be applied.
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We finish this chapter by proposing a more geometric conjecture:

Conjecture 4.8. Let X be a Fano fourfold. If Bs | − KX | ≤ 1, there exists a smooth element
D ∈ | − 2KX |.

Here is the motivation for this result: as before, we denote Y1 ∩ Y2 by S. If S is smooth and
irreducible, then it is a surface of general type and the hypothesis implies that h0(S,−KX |S) =
h0(S,KS) 6= 0. By previous results on minimal smooth surfaces of general type [BHPVdV04,
VII,Thm.7.4] we know that if pg(S) 6= 0 the bicanonical system |2KS | is base point free. Using (4.1)
we deduce that D ∈ | − 2KX | is smooth along S. But Bs | − 2KX | ⊂ Bs | −KX | ⊂ S, therefore we
have obtained the conclusion in this case. The situation where S is reducible is more complicated,
however information about the interactions of Bs | − 2KX | and the components of S can be derived
via Remark 4.2.

The case where S is singular is naturally more challenging. We show that Conjecture 4.8 holds
if S is reducible and briefly discuss the remaining case.

Proof of the reducible case. Suppose S = Y1∩Y2 is reducible, and write S =
d∑
i=1

Si, where d > 1 and

Si are reduced, distinct and irreducible, but not necessarily smooth. We know that | −KX |Yi | has
no fixed component, and further that Y1|Y2 is connected and smooth outside Bs | −KX |. For each
irreducible component Si ⊂ Y1 ∩ Y2 there exists Sj such that ∅ 6= Si ∩ Sj . As Si ∩ Sj is a union of
centers of dimension at most one of (X,Y1 +Y2) , Remark 4.2 implies that Bs |−2KX |∩Si∩Sj = ∅.

If dim(Bs | −KX |) = 0 or if | −KX | is base-point free, then Bs | − 2KX | ⊆ Bs | −KX | ⊆ Si ∩Sj ,
therefore we must have Bs | − 2KX | = ∅ thus a general D ∈ | − 2KX | is smooth.

If Si ∩ Sj ⊆ Bs | −KX |, we want to show, as in the smooth case, that | − 2KX |Si | is base-point
free. A short analysis of the morphism associated to | −KX |Y1 | shows that [Si] = [Sj ] ∈ Cl(Y1) for
all i, j = 1 . . . d.

Indeed, denote by W ⊆ P(| −KX |Y1 |) the image of Y1 through ϕ|−KX |Y1
| and by µ : Ỹ1 → Y1 a

desingularization of Y1. If ϕ : Ỹ1 → W is the composition of the two maps, we are in one of two
cases. Firstly, if dimW ≥ 2 then a divisor D ∈ | −KX |Y1 | is integral. In fact, we have that

µ∗| −KX |Y1 | = E + ϕ∗|H|,

where E is the exceptional locus and H is ample on W , therefore ϕ∗(H) is connected and irreducible

as Ỹ1 is smooth. If dimW = 1, as points on W are numerically equivalent, the same is true about
the fibers.

Therefore dSi ∼ −KX |Y1 and by the adjunction formula we have:

KSi = (KY1 + Si)Si = Si|Si =
1

d
(−KX |Si).

For any lc center Z ( Si of (X,Y1 +Y2), by Remark 4.2 we have that Bs | − 2KX | ∩Z = ∅. This
is equivalent to the fact that

Bs | − 2KX | ∩ Si ⊆ {x ∈ Si |Si is the minimal lc center of (X,Y1 + Y2) at x} =: B.

We are only interested in the points x ∈ B that are in the smooth locus of Y1. Indeed, if x ∈ Y1,sing,
it can be either a fixed singularity of multiplicity two, or a moving singularity (see Section 3.2.3
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in Chapter 3 for the definition). In both cases we obtain log canonical centers of dimension at
most one (we recall that moving singularities can at most describe a curve) which contain x, thus
contradicts Remark 4.2.

As Si is klt at the points in B \ Y1,sing (being a local minimal center), our goal is to show that
the linear system | −KX |Si | is base point free at the klt locus of Si. We prove this by adapting the
ideas in [Kaw00, Thm.3.1] to our context.

Take D ∈ | −KX |Si | and by the short exact sequence

0→ OSi(D)→ OSi(2D)→ OD(2D)→ 0.

We know that D is an ample Cartier divisor such that h0(Si, D) 6= 0, and that Si is slc by [Kaw00,
Prop.4.2]. In particular, this means we can apply the version for slc varieties of Kodaira’s vanishing
theorem [Fuj14, Thm.1.8]: as D −KSi =

(
1− 1

d

)
D is ample, we obtain that H1(Si, D) = 0. Note

that this does not hold in the case where S is not reducible. Therefore it is enough to prove the
freeness of |OD(2D)| in order to conclude.

We now apply the argument of Kawamata in [Kaw00, P rop.4.2]. Let m be an ideal sheaf of OD
of colength one (a priori this is the ideal corresponding to a point that can be singular). We show
that H1(D,m(2D)) = 0, which by the Serre duality is equivalent to showing Hom(m, ωD(−2D)) = 0,
where ωD ' OD(KSi + D). It’s easy to compute its degree: degωD = (KSi + D)D =

(
1 + 1

d

)
D2,

therefore degωD(−2D) =
(

1
d − 1

)
D2 < 0 since d ≥ 2. We conclude since χ(D,m) = χ(D,OD)− 1

by the definition of m.

If S is irreducible and singular, we use hypothesis to single out another anticanonical divisor Y3.
Let C = Y1 ∩ Y2 ∩ Y3 ⊂ Bs | −KX |, which is a (possibly singular) curve. Following the discussion
above, we are interested in points x ∈ Bs | − 2KX | ∩ Snorm such that x ∈ Yi,smooth. While so far
we have not been able to conclude in this case, there are several possible ways to approach this
problem:

1. If x is a smooth point of S, but not of C, we can deduce that x is an lc center of (X,Y1+Y2+Y3).
Indeed, the fact that C = Y1 ∩ Y2 ∩ Y3 is not smooth at x guarantees the existence of a two-
dimensional vector space V = TY1,x∩TY2,x. If we blow up X with center x, the strict transforms
of Y1 and Y2 will meet along a line l. After a second blow-up, this time along l, we obtain
that E2 is a log canonical place. The computations are similar to the ones in Chapter 3
and we do not reproduce them in their entirety, however for verification purposes we mention
that a1 = 3, r1 = 1 and a2 = 5, r2 = 2. The pair (X,Y1 + Y2 + Y3) is not necessarily lc, we
could however use its log-canonical threshold to obtain further information. Similarly, if x is
a singular point of S one could attempt finding a smaller-dimensional lc center of the pair
(X,Y1 + Y2) in order to contradict the minimality of S.

2. Another approach is to apply generalized results on Gorenstein curves to the case of C (see
[CFHR99, Thm.3.3]), which require adapting properties from the smooth case (such as 2-
connectedness of the bicanonical divisor on a minimal surface of general type) in order to
deduce base-point freeness of | − 2KX | on C, therefore at x.
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Chapter 5

Effective Nonvanishing

In this chapter, we further our study of the anticanonical system on a Fano variety by looking at
higher dimensional cases. We show how the Kawamata Effective Nonvanishing conjecture implies the
terminality result in Chapter 3 and, complementarily, we discuss the minimal necessary hypotheses
for this argument to work. We begin by stating the conjecture in its generality:

Conjecture 5.1. (Kawamata nonvanishing) Let D be a numerically effective Cartier divisor on a
normal projective variety X. If there exists an effective Q-divisor B such that the pair (X,B) is
Kawamata log terminal and such that the Q-Cartier divisor D− (KX +B) is big and nef, then the
bundle OX(D) has a non-zero global section.

This implies the following results:

Proposition 5.2. Let X be a normal projective variety with at most canonical Gorenstein singu-
larities, and let D be a Cartier divisor. Assume that Conjecture 5.1 holds, that KX ≡ 0 and D is
ample. Let Y ∈ |D| be a general member. Then the pair (X,Y ) is log-canonical. In particular, Y
is slc.

If X is of dimension three, this is shown in [Kaw00, Prop 4.2] without assuming Conjecture 5.1.
The main theorems we use throughout the proofs are stated in the preliminaries.

Proof. Remark that |D| is not empty precisely because we apply the Nonvanishing Conjecture to
D and the pair (X, 0).

Suppose the pair is not lc and let c < 1 be the log-canonical threshold such that (X, cY ) is
properly lc. Let W be a minimal center of the pair (X, cY ). Then by the Subadjunction formula for
lc centers (Theorem 2.18), there exists an effective Q-divisor B′ on W such that (KX + cY )|W ∼Q
KW +B′ and (W,B′) is klt.

As the divisor D − (KX + cY ) = (1 − c)Y is ample, we may apply Theorem 2.17 to the pair
(X, cY ) and the minimal center W , thus obtaining that the restriction map

H0(X,D)→ H0(W,D|W ) (5.1)

is surjective. We once again apply Conjecture 5.1, only this time to D|W and the pair (W,B′).
Indeed, we have that

D|W − (KW +B′) = D|W − (KX + cY )|W = (1− c)Y |W ,

and since this is ample we get that H0(W,D|W ) 6= 0. Since the map (5.1) is surjective, this implies
that W is not contained in the base locus of |D|, contradicting the fact that by Bertini’s theorem
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Ysing ⊂ Bs|D| and that W is a minimal lc center for the pair (X, cY ). Indeed, as YX\Bs|D| is SNC,
the identity map is a resolution of the pair (X \ Bs|D|, cY ). Since c < 1, the pair is klt, therefore
the non-klt locus is contained inside Bs|D|, a contradiction.

In order to show the next result, we need the following two statements, the first of which is also
known as inversion of adjunction:

Theorem 5.3. [Kol97, Thm.7.5] Let X be normal and S ⊂ X an irreducible Cartier divisor. Let
B be an effective Q− divisor and assume that KX + S +B is Q− Cartier. Then

• (X,S +B) is plt near S ⇔ (S,B|S) is klt

• (X,S +B) is lc near S ⇔ (S,B|S) is lc.

Lemma 5.4. [Flo13, Lemma 2.8] Let X be a normal variety and ∆ a divisor such that (X,∆) is klt.
Let H be an ample Cartier divisor on X and Y ∈ |H| a general element. Suppose that (X,∆ + Y )
is not plt and let c be the log canonical threshold. Then the union of all centers of log canonicity
of (X,∆ + cY ) is contained in the base locus of |H|.

Proposition 5.5. Suppose that Conjecture 5.1 holds. Let X be a smooth Fano manifold. Then
H0(X,−KX) 6= 0. Moreover, if D is a general member of the linear system | −KX |, we have the
following:

(a) D is integral and has at most canonical singularities

(b) D is smooth in codimension 2

(c) D has at most terminal singularities.

Proof. The first part of the statement immediately follows by applying Conjecture 5.1 forD = −KX .
(a) We first prove that D has at most canonical singularities by following the proof of [Flo13,

Prop. 4.1]. In this article, the result is stated in the case of Fano varieties of index n− 3, however
the strategy holds in the general case.

Suppose that the statement is false. Then the pair (D, 0) is not klt and by Theorem 5.3 this
impiles that (X,D) is not plt. Let c be the log canonical threshold of (X,D). By Lemma 5.4, the
pair (X, cY ) is plt in the complement of the base locus of | − KX |. Since (X, cD) is properly lc
there exists a minimal center W .

Using Theorem 2.18, there exists an effective Q-divisor B′ on W such that (KX + cD)|W ∼Q
KW + B′ and (W,B′) is klt. As Y ∈ | − KX | and c < 1, we obtain that the divisor KW + B′ is
anti-ample.

As the divisor −KX − (KX + cD) = (2− c)D is ample, we may apply Theorem 2.17 to the pair
(X, cD) and the minimal center W , thus obtaining that the restriction map

H0(X,−KX)→ H0(W,−KX |W ) (5.2)

is surjective. By applying Conjecture 5.1, only this time to −KX |W and the pair (W,B′), and
as the divisor −KX |W − (KW + B′) is ample (being the sum of two ample divisors) we get that
H0(W,−KX |W ) 6= 0. Since the map (5.2) is surjective, this implies that W is not contained in the
base locus of | −KX |, which is false by Lemma 5.4.

Assuming that D is not irreducible, let D1 and D2 be two of its components. Since −KX is
ample, their intersection will be nonempty and as D1 and D2 are lc centers, so will D1 ∩D2. This
contradicts the fact that the pair (X,D) is plt.
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(b) This argument follows the proof of [HV11, Thm.1.6]. Consider the restriction sequence:

0→ OX → OX(−KX)→ OD(−KX)→ 0.

Since h1(X,OX) = 0, we have a surjection

H0(X,OX(−KX))→ H0(D,OD(−KX)).

By Conjecture 5.1, the right side is nonzero. Further, a general element of the linear system |−KX |D|
is obtained by intersecting D with another element D′ ∈ |−KX |. By Proposition 5.2 we know that
for

S := D ∩D′ ⊂ | −KX |D|

general, the pair (D,S) is log-canonical. In particular, S is reduced and so the singular locus of S
has at least codimension 3 in X. By Bertini’s Theorem we know that both the singular loci of the
divisors D and D′ are contained in the base locus of | −KX |. In particular, they are contained in
S and more precisely since S is a complete intersection cut out by D and D′ we have

Dsing ⊂ Ssing and D′sing ⊂ Ssing.

Moreover, by inversion of adjunction (Theorem 5.3), the pair (X,D+D′) is log-canonical near the
divisor D.

We will now argue by contradiction and suppose that a general element in D ∈ |−KX | is singular
along a subvariety of codimension 2 in D. Take a general element Z in the pencil 〈D,D′〉 ⊂ |−KX |
spanned by D and D′. Then we have

Z ∩D = D ∩D′ = S,

so as above we see that Zsing ⊂ Ssing.
Since for a general member of the pencil Z ∈ 〈D,D′〉 we have

codimXZsing = 3 and codimXDsing ≥ 3,

there exists a subvariety V ⊂ Ssing such that codimXV = 3 and every general Z is singular along
V . By upper semicontinuity of the multiplicity, this shows that both D and D′ are singular along
V .

Let µ : X ′ → X be the blow-up of X along V . Since X is smooth along V , we have:

KX′ = µ∗KX + 2E,

where E is the exceptional divisor. Moreover, since D and D′ are singular along V we have:

µ∗D = D̃ + aE and µ∗D′ = D̃′ + bE,

where a and b are at least two. Thus the pair (X,D +D′) is not log-canonical, a contradiction.

(c) If we assume Conjecture 5.1, the proof of Proposition 3.6 can be carried out identically in
the arbitrary dimensional case. In fact, the only instance where the dimension hypothesis is used
is when bounding the dimension of the log-canonical center in order for the Nonvanishing Theorem
to apply. We will do the details in the more general Proposition 5.9.

We are therefore allowed to use condition (3.1) in order to prove that the singularities are
terminal in arbitrary dimension by following the steps of the proof of Theorem 3.7.
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We further want to determine exactly how loose the hypotheses can be, given that in practice
we do not need to apply the full generality provided by the Nonvanishing Conjecture in order to
obtain terminality. In fact, if this conjecture is proven in two particular cases (for Fano and Calabi
Yau varieties) as well as in dimension n− 2, one can deduce that D ∈ | −KX | is terminal when X
is a Fano manifold of dimension n. We list the complete statements for future reference:

Conjecture 5.6 (Effective nonvanishing for Fano varieties). If D is an anticanonical divisor on
an n-dimensional smooth projective Fano variety X, then the bundle OX(D) has a non-zero global
section.

Conjecture 5.7 (Effective nonvanishing for Calabi-Yau varieties). Let D be an ample Cartier
divisor on a normal projective Calabi-Yau variety Y with at most Gorenstein canonical singularities.
Then the bundle OX(D) has a non-zero global section.

Remark 5.8. Our principal tool in proving terminality is Proposition 3.6, which requires two
anticanonical sections, it is natural to demand that h0(X,−KX) ≥ 2. This condition automatically
follows if we suppose that weaker versions of Conjecture 5.1 hold: the existence of an anticanonical
divisor D ∈ |−KX | is the consequence of Conjecture 5.6 and by applying Conjecture 5.7 to the pair
(D, 0) and divisor −KX |D we obtain that h0(D,−KX |D) 6= 0. As X is Fano and all higher degree
cohomology of its structure sheaf vanishes, we have the following exact sequence

0→ H0(X,OX)→ H0(X,−KX)→ H0(D,−KX |D)→ 0.

We are therefore able to lift the section of −KX |D from D to X. Moreover, since H0(X,OX) ' C,
the condition h0(D,−KX |D) ≥ 1 implies exactly that h0(X,−KX) ≥ 2.

Proposition 5.9. Let X be a smooth Fano manifold of dimension n. Suppose Conjectures 5.6 and
5.7 hold, as well as Conjecture 5.1 for varieties of dimension at most n−2. If a general D ∈ |−KX |
is normal, then D has at most terminal singularities.

Proof. We follow the steps of Proposition 3.6. By Remark 5.8 we know that h0(X,−KX) ≥ 2. Let
D1 and D2 be two independent general divisors in |−KX |. We first remark that if H0(X,−KX) 6= 0
we can identically repeat part of the proof of (a) in Proposition 5.5 in order to show that general
elephants are irreducible in arbitrary dimension: any intersection of two irreducible components
leads to a log canonical center of the plt pair (X,D), where D ∈ | −KX |, a contradiction.

Step 1: We show that the pair
(
X, cD1+D2

2

)
is klt for all c < 2.

Suppose by contradiction that this is false, then the log-canonical threshold of the pair
(
X, D1+D2

2

)
is c0 < 2. Denote by C a minimal log-canonical center of

(
X, c0

D1+D2
2

)
. In Proposition 3.6 we in-

troduce this object in order to extend sections of −KX |C to X and obtain a contradiction. The
arbitrary dimensional equivalent of this will use the nonvanishing hypothesis of the statement,
therefore the first condition to verify is dimC ≤ n− 2.

Indeed, as Remark 3.4 holds in arbitrary dimension, we again have that the identity map is a
log resolution of

(
X \ Bs| −KX |, c0

D1+D2
2

)
, therefore the pair is klt, showing that C ⊂ Bs| −KX |.

Since D1 and D2 are irreducible, their intersection will be of codimension two, therefore

dimC ≤ dimBs| −KX | ≤ n− 2.

The hypotheses for applying Theorem 2.17 are independent of dimensions, thus we proceed
identically as in Proposition 3.6 in order to obtain the surjective map

H0(X,OX(−KX)) � H0(C,OC(−KX)).
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As this is the zero map since C ⊂ Bs| −KX |, it remains to verify that the target is non-trivial,
which we prove by applying the nonvanishing conjecture to C. Since C is a minimal center, it is
normal, only has rational singularities, and moreover it is of dimension at most n−2 by the previous
discussion. We need to produce a pair on C, which is generally done by applying Theorem 2.18.
This implies the existence of an effective divisor B ⊂ C such that the pair (C,B) is klt and(

KX + c0
D1 +D2

2

)
|C ∼Q KC +B.

This numerical data allows us to verify the positivity condition in the statement of Conjecture
5.1 applied to the pair (C,B) and the divisor −KX |C , and as in Proposition 3.6, we obtain a
contradiction because H0(C,OC(−KX)) 6= 0.

Let us now translate this into conditions on discrepancies. Set µ : X ′ → X to be a resolution,

let E =
m∑
i=1

Ei be its exceptional locus and recall (cf. Notation 3.2) that ai and ri are the following

coefficients:

• |µ∗D| = |D′|+
m∑
i=1

riEi, where D′ is the strict transform of D and ri > 0 for i ∈ {1 . . .m},

• KX′ = µ∗KX +
m∑
i=1

aiEi, where ai > 0, for all i ∈ {1 . . .m}.

The adjunction formula for a general elephant gives that:

KD′ = (µ|D′)∗KD +
m∑
i=1

(ai − ri)(Ei ∩D′) (5.3)

which means that the discrepancy of (D, 0) is inf
i
{ai − ri | Ei is µ|D-exceptional}. As the pair(

X, cD1+D2
2

)
is klt for all c < 2, we have that ai − cri > −1, ∀ i ∈ {1 . . .m} and therefore

ai + 1 ≥ 2ri, ∀ i.

In particular, this means that D has at most canonical singularities, and the aim of what follows
is to show that the discrepancy of the pair (D, 0) is non-zero. The only case in which the above
inequality doesn’t imply ai − ri > 0 is if both ai and ri are equal to one. Note that since we have
considered a log resolution, the intersection Ei ∩D′ is reduced for all i ∈ {1 . . .m}.

Step 2: We show that the case ai = ri = 1 does not come into play when computing the discrep-
ancies on a general D ∈ | −KX |, which completes the proof.

Since the coefficients do not depend on the choice of the resolution, we can assume that we have
been working with one in which all blow-ups were made along smooth centers.

Claim: We can only obtain ai = 1 for a given i ∈ {1 . . .m} if codimXµ(Ei) = 2.
Without loss of generality, we can assume we obtained this coefficient by doing the very last

blow-up of the resolution, denoted by We have that

am = λ+
m−1∑
i=1

aiνi

where λ = codimXm−1µm(Em) − 1 ≥ 1 and νi > 0 if and only if µm(Em) ⊂ Ei. Having am = 1
implies λ = 1 and νi = 0 ∀ i ∈ {1 . . .m − 1}. This proves the claim since the former condition
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shows that µm(Em) is exactly of codimension two in Xm−1, while the latter signifies that ψ does
not contract µm(Em).

As codimXψ(Ei) = 2 implies that the intersection Ei ∩D′ is not µ|D′-exceptional, this divisor
does not contribute to the discrepancy of the pair (D, 0) as computed in (5.3). Together with the
above inequality, this proves that the discrepancy can never be zero, therefore a general elephant
D has at most terminal singularities.

Note 5.10. In lower dimension, the number of sections in H0(X,−KX) can be computed by hand.
For instance, let us show that h0(X,−KX) ≥ 2 if X is a Fano fourfold.

We use the Riemann-Roch formula to compute χ(X,−tKX), which is the same as h0(X,−tKX)
by the Kodaira vanishing theorem. Using Serre duality we obtain an additional symmetry property:
for every integer t we have that χ(X,−tKX) = (−1)4χ(X,KX + tKX) = χ(X, (1 + t)KX).

In general, the Riemann-Roch formula for an n-dimensional projective variety X with at most
Gorenstein terminal singularities and a Cartier divisor D is the following:

χ(X, tD) =
Dn

n!
tn +

−KX ·Dn−1

2(n− 1)!
tn−1 +

(K2
X + c2(X))Dn−2

12(n− 2)!
tn−2 + p(t) + χ(X,OX),

where p(t) is a polynomial of degree n− 3 with no constant term.
As χ(X,OX) = 1 for any Fano variety and in our case dimX = 4, this becomes:

h0(X,−tKX) =
(−KX)4

4!
t4 +

(−KX)4

2 · 3!
t3 +

(−KX)4 + c2(X)(−KX)2

4!
t2 + st+ 1.

Using the symmetry property above for t = 1, we easily determine that s = c2(X)·(−KX)2

4! .
By Proposition 2.4 we have that c2 · (−KX) · (−KX) ≥ 0, therefore

h0(X,−KX) = (−KX)4

(
2

4!
+

1

2 · 3!

)
+

2c2(X) · (−KX)2

4!
+ 1 ≥ (−KX)4 · 1

6
+ 1 > 1.

Since h0(X,−KX) is an integer, we obtain the conclusion.
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Chapter 6

Examples in Weighted Projective
Spaces

6.1 Introduction

We start with the definition of our main object, the weighted projective space or WPS. All notations
follow [IF00]. Our goal is to build Fano varieties that can be described as complete intersections
in these spaces, and to study the base loci of their anticanonical systems. The reason for doing
this is that singularities of weighted projective spaces have a specific description as cyclic quotient
singularities. Subvarieties of these spaces having certain properties, such as quasismoothness and
well-formedness, only pick up the singularities of the ambient space, making them easier to analyze.

Definition 6.1 (WPS as a scheme, [IF00, Def.5.1]). Let Q = (a0, . . . , an) be an n + 1-tuple of
positive integers, which we refer to as the set of weights. Denote by |Q| the integer

∑
ai and

by S(Q) the polynomial ring C[T0 . . . Tn] graded by deg(Ti) = ai. The weighted projective space
P(a0, . . . , an) is the scheme defined by

P(a0, . . . , an) = Proj S(Q).

Note 6.2. Let x0, . . . , xn be the affine coordinates on An+1 and let the group C∗ act via:

λ · (x0, . . . , xn) = (λa0x0, . . . , λ
anxn).

Then P(a0, . . . , an) is the quotient (An+1 \ {0})/C∗. Under this group action, x0, . . . xn are the
homogeneous coordinates on P(a0, . . . an), which is an n-dimensional projective variety.

We now move to studying the singularities of these objects.

Definition 6.3 (Cyclic quotient singularity, [IF00, Def.5.13]). Let r > 0 and a1, . . . , an be integers
and let x1, . . . , xn be coordinates on An. Suppose that lµ.. r acts on An via:

xi 7→ εaixi for all i,

where ε is a fixed primitive rth root of unity. Given a normal variety X, we say that singularity Q ∈
X is a quotient singularity of type 1

r (a1, . . . , an) if (X,Q) is isomorphic to an analytic neighborhood
of (An, 0)/lµ.. r.
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Notation 6.4 ([IF00, Not.5.14]). Write Pi ∈ P(a0, . . . , an) for the point [0 : . . . : 0 : 1 : 0 : . . . : 0],
where the 1 is in the ith position. We call Pi a vertex, the 1-dimensional toric stratum PiPj an edge
etc. The fundamental simplex (that is, the union of all the coordinate hyperplanes P0 . . . P̂i . . . Pn,
where we use hats to denote vertices that are omitted) will be denoted by ∆.

Remark 6.5 (The singular locus of P(a0, . . . , an), [IF00, 5.15]).
Define hi1,i2,...,ik = hcf(ai1 , ai2 , . . . , aik). The vertex Pj is a singularity of type 1

aj
(a0, . . . , âj , . . . an),

which is not necessarily isolated. Each generic point P of the edge Pi1Pi2 has an analytic neighbor-
hood P ∈ U which is analytically isomorphic to (0, Q) ∈ A1 × Y , where Q ∈ Y is a singularity of
type 1

hi1,i2
(a0 . . . âi1 . . . âi2 . . . an). Similar results hold for higher dimensional toric strata, however

singularities may only occur on the fundamental simplex ∆.

Proof. We only deal with the situation of vertices and edges, the general case is an immediate
consequence of this discussion.

The vertex case is almost tautological. Suppose for simplicity that we want to study the type
of singularity we have at the vertex Pn ∈ P. Now Pn is the origin of the chart

Un = {[x0 : . . . : xn] ∈ P(a0 . . . an)| xn = 1},

so in order to finish the proof we show that Un = An/lµ.. an . Recall that P(a0, . . . , an) is described
by the action

λ · (x0, . . . , xn) = (λa0x0, . . . , λ
anxn),

thus when setting the last coordinate equal to one we still have to quotient by the residual action
of lµ.. an on the first n coordinates of each point.

Now consider P = [0 : . . . 0 : pn−1 : pn] to be a general point of the edge Pn−1Pn. Then P is the
origin of the chart

U := {[x0 : . . . : xn] ∈ P(a0, . . . , an)| xn = 1, xn−1 =
pn−1

p
an/an−1
n

}.

Next we need to determine an action of a certain cyclic group lµ.. r such that U ' An−1/lµ.. r. Since
we built U by intersecting Un with another chart, we can work with the residual action of lµ.. an
introduced in the vertex case. As before, if ε is a primitive an-th root of unity, Un is the quotient
of An by the action

ε · (x0 . . . xn−1, 1) = (εa0x0, . . . , ε
an−1xn−1, 1).

If we fix the (n − 1)-th coordinate equal to pn−1

p
an/an−1
n

, we again recover an action on the first n − 2

coordinates, namely that of ε ∈ lµ.. an such that εan−1 = 1. As lµ.. an−1 ∩ lµ.. an = lµ.. hcf(an−1,an) = lµ.. hn−1,n ,

we have obtained that P is a singularity of type 1
hn−1,n

(a0, . . . , an−2).

What follows is a list of useful properties of the Fano complete intersections that we construct.
Varieties with these properties can only inherit the singularities of the ambient space, which we can
later easily manipulate. All definitions have equivalents for general subvarieties X ∈ P (see [IF00,
§6]), however for us X is always a weighted complete intersection, which in many cases allows for a
definition that is easier to check.

Definition 6.6 (Weighted complete intersection, [IF00, Def.6.4]). Let I be a homogeneous ideal of
the graded ring S and define XI to be

XI = Proj(S/I) ⊂ P.
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Suppose furthermore that I is generated by a regular sequence {fi} of homogeneous elements of
S. Then XI ⊂ P is called a weighted complete intersection of multidegree {di = degfi}. In this
case, we denote by Xd1,...,dc ⊂ P(a0, . . . , an) a general element of the family of all weighted complete
intersections of multidegree {di}.

The generality of such a Xd1,...,dc is fundamental throughout the chapter, in particular for the
following definition:

Definition 6.7 (Linear cone, [IF00, Def.6.5]). Using the notation in Definition 6.6, if there exist
i ∈ {1 . . . c} and j ∈ {0 . . . n} such that di = aj , we say that Xd1,...,dc ⊂ P(a0, . . . , an) is a linear
cone. It is clear that in this case the weighted complete intersection is isomorphic to an intersection
of lower codimension, that is X

d1,...,d̂i,...dc
⊂ P(a0, . . . , âj , . . . an), or possibly a weighted projective

space.

Definition 6.8 ([IF00, Def.6.1]). Let X be a closed subvariety of a weighted projective space P
and p : A \ {0} → P the canonical projection. The punctured affine cone C∗X over X is given by
C∗X = p−1(X) and the affine cone CX over X is the completion of C∗X in An+1.

Notice that C∗ acts on C∗X to give X = C∗X/C∗.

Definition 6.9 ([IF00, Def.6.3]). Let X be a closed subvariety in P. We say that it is quasismooth
of dimension m if its affine cone CX is smooth of dimension m+ 1 outside its vertex 0.

All our weighted complete intersections will be either of codimension one or two. We discuss
the notion of quasismoothness in these two cases.

Remark 6.10. If X ⊂ P is quasismooth, its singularities are due to the C∗-action and hence are
cyclic quotient singularities. We will apply this property to the general elephant, since the ambient
Fano varieties that we construct will be smooth.

Definition 6.11 (Quasi-smoothness for hypersurfaces, [IF00, Thm.8.1]). The general hypersurface
Xd in P(a0, . . . , an) of degree d, where n ≥ 1 is quasismooth if and only if at least one of the
following holds:

1. there exists a variable xi for some i ∈ {1 . . . n} of weight d (therefore Xd is a linear cone),

2. for each k ∈ {1 . . . n} and every nonempty subset I = {i0, . . . , ik−1} of {0, 1, . . . , n}, we have:

(a) there exists a monomial xMI = xm0
i0
. . . x

mk−1

ik−1
of degree d, or

(b) for µ = 1 . . . k, there exist monomials xMI xeµ = xm0
i0
. . . x

mk−1

ik−1
xeµ of degree d, where {eµ}

are k distinct elements.

Definition 6.12 (Quasi-smoothness in codimension two, [IF00, Def.8.7]). The general codimension
2 weighted complete intersection Xd1,d2 in P(a0, . . . , an) of multidegree {d1, d2}, where n ≥ 2 is
quasismooth if and only if at least one of the following holds:

1. there exists a variable xi for some i ∈ {1 . . . n} of weight either d1 or d2, in which case Xd1,d2

is a linear cone, therefore we refer to Definition 6.11 to discuss its quasismoothness

2. for each k ∈ {1 . . . n} and every nonempty subset I = {i0, . . . , ik−1} of {0, 1, . . . , n}, we have
either:
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(a) there exists a monomial xM1
I of degree d1 and there exists a monomial xIM2 of degree d2

(b) there exists a monomial xM1
I of degree d1 and for µ = 1 . . . k, there exist monomials xM2

I xeµ
of degree d2

(c) there exists a monomial xMi of degree d2 and for µ = 1 . . . k − 1 there exist monomials

x
Mµ

I xµ of degree d1, where {eµ} are k − 1 distinct elements

(d) for µ = 1 . . . k there exist monomials x
M1
µ

I x1
µ of degree d1 and x

M2
µ

I x2
µ of degree d2, such

that {e1
µ} are k distinct elements, {e2

µ} are k distinct elements and {e1
µ, e

2
µ} contains at

least k + 1 distinct elements.

We now introduce a necessary notion for applying the adjunction formula for a weighted complete
intersection.

Definition 6.13 (Well formed WPS, [IF00, Def.5.22]). The weighted projective space P(a0, . . . , an)
is well formed if

hcf(a0, . . . , âi, . . . , an) = 1 for every i ∈ {0 . . . n}.

Even if a weighted projective space is not well formed, one can easily find a well formed weighted
projective space isomorphic to it. Indeed, if a0, . . . , an is the set of weights and q = hcf(a1, . . . , an)
then by [IF00, Lem.5.7] we have P(a0, . . . , an) = Proj S(a0, . . . , an) ' Proj S(a0, a1/q . . . , an/q). It
is therefore sufficient to only consider well formed weighted projective spaces in this thesis.

Definition 6.14 (Well-formedness of WCI, [IF00, Def.6.12]). The weighted complete intersection

Xd1,...,dc ⊂ P(a0, . . . , an)

is well formed if and only if

1. P(a0, . . . , an) is well formed

2. for all µ ∈ {1, . . . , c}, the highest common factor of any (n − 1 − c + µ) of the {ai}i∈{0...n}
must divide at least µ of the {dj}j∈{1...c}.

Theorem 6.15 (The Adjunction Formula, [IF00, Def.6.1]). If a weighted complete intersection
Xd1,...,dc in P(a0, . . . , an) is well formed and quasismooth, then ωX ' OX(

∑
di −

∑
aj). We define

the amplitude to be this difference of sums, usually denoting it by α.

In particular, this formula shows that for a Fano weighted complete intersection we have∑
aj −

∑
di > 0.

Example 6.16 ([IF00, Ex.6.15]). Here is an illustrative example showing that well-formedness is
mandatory to applying the adjunction formula: consider the surface S9 ⊂ P(1, 2, 2, 3). This surface
is both quasismooth and nonsingular, and if it is well formed then α = 1, therefore K2

S = 3
4 . But

the degree of a nonsingular surface is always an integer, therefore we have obtained a contradiction.

However, the following result shows that well-formedness only needs to be checked for dimensions
one and two:

Theorem 6.17 ([IF00, Def.6.17]). Let X = Xd1,...,dc in P(a0, . . . , an) be a quasismooth weighted
complete intersection of dimension greater than 2. Then:

1. either X is well formed
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2. or X is the intersection of a linear cone with other hypersurfaces (that is, ai = dλ for some i
and λ).

Remark 6.18. In case 2, the weighted complete intersection is isomorphic to either a complete
intersection of lower codimension, that is, X

d1,...,d̂λ,...dc
in P(a0, . . . , âi, . . . , an), or possibly a weighted

projective space.

Finally, we have a combinatorial relation between the degrees of the complete intersection and
the weights of the ambient projective space. We now have the necessary tools to produce relevant
examples of nontrivial base loci of anticanonical systems on Fano fourfolds.

Lemma 6.19 ([IF00, Lm.18.14]). Let Xd1...dc in P(a0, . . . , an) be a quasismooth weighted complete
intersection, but not an intersection of a linear cone with other hypersurfaces. Suppose also that
d1, . . . , dc and a0, . . . , an are in increasing order. Then:

(i) dc > an, dc−1 > an−1, . . . , and d1 > an−c+1

(ii) if dc−1 < an, then an|dc.

Proof. (i) Let fi be local equations for Xdi , i ∈ {1 . . . c}. Suppose by contradiction that dc >
an, . . . , dc−k+1 > an−k+1 and dc−k < an−k for some k ∈ {0 . . . c − 1}. Then di < an−k for all
i ≤ c− k, i.e. the polynomials f1, . . . , fn−k do not involve the variables xn−k, . . . , xn.

If Π is the coordinate (k + 1)-plane in An+1 given by

x0 = . . . = xn−k−1 = 0,

then f1, . . . , fn−k are identically zero on Π. Let Z = (fc−k+1 = . . . = fc = 0) ∩ Π. We have that
dimZ ≥ 1 and so Z \ 0 6= ∅. Let Q ∈ Z \ 0, then ∂fi/∂xj are zero at Q for all i ≤ c− k and for all
j ∈ {0 . . . n}. Therefore

rank

 ∂f1/∂x0(Q) . . . ∂f1/∂xn(Q)
...

...
∂fc/∂x0(Q) . . . ∂fc/∂xn(Q)

 ≤ k − c.
Thus Q ∈ C∗X is singular and so X is not quasismooth.
Case (ii) is treated likewise.

We also need to compute the cohomology of these weighted complete intersections. We start
with that of the ambient projective space:

Lemma 6.20 ([Dol82, §1.4]). • H i(P,OP(k)) = 0 for i 6= 0, n, k ∈ Z.

• Hn(P,OP(k)) = S−n−|Q|, where S is the polynomial ring with variables of weights Q.

Lemma 6.21 ([Dol82, §.3.4.3]). Let X = Xd1,...,dc = V (f1, . . . , fc) ⊂ P(a0, . . . , an) be a well-formed
quasismooth weighted complete intersection.

Let A be the graded ring S(a0, . . . , an)/(f1, . . . , fc) and An be the n-th graded part of A. Then

H i(X,OX(n)) '


An if i = 0
0 if i = 1, . . . ,dimX − 1
A−n−α if i = dimX

for all n ∈ Z.
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In particular, Lemma 6.20 shows the following: if X = Xd1,...,dc ⊂ P is a Fano quasismooth
weighted complete intersection that is not a linear cone, consider the elementary short exact se-
quence:

0→ IX → OP → OX → 0.

If we twist this with OP(
∑
ai −

∑
di) and use the previous cohomology results as well as the

Adjunction Formula 6.15, we obtain that H0(X,OX(−KX)) ' H0(P,OP(
∑
ai −

∑
di)) provided

that
∑
ai − 2

∑
di < 0. This will hold for all cases in which we analyze the base locus of | −KX |

throughout the chapter.

6.2 The hypersurface case

We start by determining all possibilities for a smooth Fano fourfold X to be a hypersurface in a
weighted projective space, that is we find the degree of the fourfold and the weights of the ambient
space. We then study the base loci of | −KX |.

First of all, in this discussions we will not consider the case of linear cones. If a degree d
hypersurface X ⊂ P is a linear cone, then automatically X is isomorphic to a weighted projective
space. As we want X to be a smooth Fano fourfold, we deduce that X ' P4, the only non-singular
weighted projective space of dimension four. But the anticanonical system of this space has an
empty base locus, thus providing no interesting new examples.

Theorem 6.22. There are exactly 10 families of smooth Fano 4-fold weighted hypersurfaces that
are not linear cones:

X2, X3, X4, X5 ∈ P(1, 1, 1, 1, 1, 1)

X4, X6 ∈ P(1, 1, 1, 1, 1, 2)

X6 ∈ P(1, 1, 1, 1, 1, 3)

X8 ∈ P(1, 1, 1, 1, 1, 4)

X6 ∈ P(1, 1, 1, 1, 2, 3)

X10 ∈ P(1, 1, 1, 1, 2, 5).

Proof of Theorem 6.22. Let X be a degree d hypersurface in P(a0, . . . , a5). By the Adjunction
Formula [Theorem 6.15], a Fano variety X must verify the following condition:∑

ai − d > 0. (6.1)

We will use the following

Remark 6.23. We deduce some general smoothness conditions for complete intersections:

1. As X is smooth, it must avoid the singular locus of P(a0, . . . , a5) and in particular the equation
of X should not be verified by the coordinates of the vertices introduced in Remark 6.5. If
we denote by f the defining function of X, this implies that for each i ∈ {0 . . . 5} for which
ai > 1, f contains a monomial of the type xmi . As X is a hypersurface of degree d, we get
that ai|d for all i = 0 . . . 5. The proof is identical in the general n-dimensional case.

2. By Remark 6.5, any common factor of at least two weights will produce a singular simplex ∆
in P(a0, . . . , a5). As Xd is Cartier since lcm(a0 . . . a5)|d and the linear system |Xd| is ample,
one of its general elements will always intersect such a simplex (even in the case where ∆ is
a line), thus inducing a singularity on X. We impose the condition that all weights ai are
pairwise coprime in order to obtain a smooth hypersurface.
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For the following, we assume ai are in increasing order. Using Remark 6.23, for all i = 0 . . . 5
we have that ai|d and all ai are pairwise coprime. By condition (6.1) and Lemma 6.19, we deduce
that

6a5 > d ≥ 2a5.

So d = λa5, where λ ∈ {2, 3, 4, 5} and condition (6.1) transforms into:

(a0 + . . .+ a4)− (λ− 1)a5 > 0. (6.2)

As the {ai} are pairwise coprime then
5∏
i=0

ai|d and so
4∏
i=0

ai|λ. We have the following cases:

(i) λ = 5. Then either (a0, . . . , a4) = (1, 1, 1, 1, 1) and by condition (6.2) we get a5 = 1, or
(a0, . . . , a4) = (1, 1, 1, 1, 5) and a5 ≤ 2, which is impossible by the initial convention on the
order of the ai.

(ii) λ = 4. The only possibilities are:

(a) (a0, . . . , a4) = (1, 1, 1, 1, 1) and a5 = 1

(b) (a0, . . . , a4) = (1, 1, 1, 1, 2) and a5 < 2

(c) (a0, . . . , a4) = (1, 1, 1, 1, 4) and a5 < 3,

and the last two also contradict the convention on the increasing order on the ai.

(iii) λ = 3. Either (a0, . . . , a4) = (1, 1, 1, 1, 1) and a5 ∈ {1, 2} or (a0, . . . , a4) = (1, 1, 1, 1, 3) and
a5 ≤ 3 (which contradicts the coprime condition).

(iv) λ = 2. Either (a0, . . . , a4) = (1, 1, 1, 1, 1) and a5 ∈ {1, 2, 3, 4} or (a0, . . . , a4) = (1, 1, 1, 1, 2) and
a5 ∈ {3, 5}.

We are left with exactly the hypersurfaces appearing in the statement. These are automatically
quasi-smooth since from the very beginning we required that ai|d.

We consider each case separately and find the base loci (if nonempty) of their anticanonical
systems.

1. X10 ∈ P(1, 1, 1, 1, 2, 5) is a Fano hypersurface with −KX = OX(1), thus the restriction
Y |X , where Y ∈ | − KX | is a general element, is isomorphic to a degree 10 hypersurface
in P(1, 1, 1, 2, 5). By further intersecting with elements in the same linear system, we obtain
that the base locus is zero-dimensional and of degree 10, given by an equation of the type
x2

5 + x5
4 = 0 in P(2, 5).

2. X6 ∈ P(1, 1, 1, 1, 2, 3) is a Fano hypersurface with −KX = OX(3), and by applying the same
method as before we obtain that Y |X is isomorphic to a degree 6 hypersurface in P(1, 1, 1, 1, 2).
However, the linear system of such hypersurfaces is very ample, since by [BR86, Lemma 4B.6]
it is enough to check that the algebra ⊕Γ(P,OP(k · 6H)) is generated by Γ(P,OP(6H)).

3. X8 ∈ P(1, 1, 1, 1, 1, 4) is a Fano hypersurface and OX(−KX) = OX(1). However, here the
anticanonical system will have an empty base locus, as by Lemma 6.21 we have h0(X,OX(1)) =
dim(C[x0 . . . x5]/(f8))1 = 5, where f8 is a local equation of X8 and C[x0 . . . x5] is the graded
polynomial ring corresponding to P(1, 1, 1, 1, 1, 4). This means that | −KX | has empty base
locus.
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4. X6 ∈ P(1, 1, 1, 1, 1, 3) has −KX = OX(2) and it is clear that the base locus of OP(2) is the
point [0 : . . . : 0 : 1], which doesn’t belong to X6.

5. X6 ∈ P(1, 1, 1, 1, 1, 2) has −KX = OX(1) and the base locus of OP(1) is [0 : . . . : 0 : 1] /∈ X6.

6. X4 ∈ P(1, 1, 1, 1, 1, 2) has −KX = OX(3), which is very ample by [BR86, Lemma 4B.6].

6.3 Complete intersection of two hypersurfaces

An immediate corollary of Definition 6.12 is the following:

Corollary 6.24 ([IF00, Cor.8.8]). Suppose Xd1,d2 in P is quasismooth and is not the intersection
of a linear cone with another hypersurface. We have the following:

(i) Every variable xi occurs in at least one of the defining equations.

(ii) All but at most one variable are in both equations.

(iii) If xi does not appear in one defining equation, then there is a monomial xmi occurring in the
other equation.

6.3.1 The examples

Example 6.25. X6,10 ⊂ P(1, 1, 1, 2, 2, 5, 5).
This complete intersection is a Fano variety with −KX = OX(1). Though quasismooth, it will

not be smooth since X6 contains the singular line {x0 = . . . = x4 = 0}, while X10 is very ample
on P. As sections of OX(1) only involve the first three variables, the base locus of | − KX | is
isomorphic to the curve C6,10 ⊂ P(2, 2, 5, 5). In this projective space, the linear system of degree
ten hypersurfaces |C10| is free, while in degree six all hypersurfaces contain P(5, 5) (since any degree
six equation cannot involve variables of weight five). This is precisely the base locus of |C6|, since
it includes the intersection of C ′ : x3

0 = 0 and C ′′ : x3
1 = 0, implying that it includes the entire base

locus.
By Bertini’s Theorem we have that C6,sing ⊂ P(5, 5), therefore C6,10,sing ⊂ X10 ∩ P(5, 5), which

is a finite number of points satisfying the equation

x2
2 + x2

3 + x2x3 = 0

As this base locus is not quasismooth, we cannot apply the adjunction theorem in order to find
its canonical class. A general element in |C6| has the equation

x3
0 + x3

1 + x2
0x1 + x0x

2
1 = 0⇔ (x0 + x1)(x0 + ix1)(x0 − ix1) = 0,

thus each member has three components that are part of |C2|. Each of these in turn will give a
quasismooth intersection with C10, and its canonical class will be OP(2,2,5,5)(−2), which means we
have obtained three rational curves.

Example 6.26. X6,6 ⊂ P(1, 1, 1, 2, 2, 3, 3).
This is a Fano manifold with −KX = OX(1), and similarly to the previous example it is easy

to deduce that Bs| −KX | ' X6,6 ⊂ P(2, 2, 3, 3). On the other hand, here the base locus is smooth,
as it is easy to show that the two singular lines in P(2, 2, 3, 3) aren’t cut at the same point by both
general surfaces of degree six. This allows the use of the adjunction formula Theorem 6.15 and we
deduce that KBs|−KX | = OP(2).

66



Remark 6.27. If we impose the condition that bothXd1 andXd2 be Cartier divisors on P(a0, . . . , a6)
such that Xd1,d2 is not a linear cone, one needs to verify the following two relations:

d1 + d2 ≤ a0 + . . . a6

lcm(a0, . . . , a6) | hcf(d1, d2),

where the first is the necessary for Xd1,d2 to be Fano and the second is the Cartier hypothesis, since
Pic(P(a0, . . . , an)) = Z is generated by [OP(lcm(a0, . . . , a6))] by [BR86, Thm7.1]. A straightforward
computation using Lemma 6.19 shows that the only occurring case of a smooth Xd1,d2 is that of
Example 6.26.
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Chapter 7

Del Pezzo surfaces with 1/3(1, 1)
singularities

7.1 Introduction

We classify non-smooth del Pezzo surfaces with 1
3(1, 1) points in precisely 29 qG-deformation fami-

lies. We structure the classification into six unprojection cascades, determine their biregular invari-
ants and their directed MMP together with a distinguished configuration of negative curves on the
minimal resolution. This overlaps with work of Fujita and Yasutake [FY].

The classification is summarised in Table 7.2 and Table 7.3, which also plot invariants and
provide good model constructions of surfaces in all families. With the exception of two surfaces,
the constructions are degeneration loci in simplicial toric varieties. In Section 7.5 we display the
construction models and explain the computations needed to verify that they coincide with the
surfaces we classified in Theorem 7.6 and Corollary 7.8. We refer to [CH] for details on the cases
that are not complete intersections in toric varieties.

This work is part of a program to understand mirror symmetry for orbifold del Pezzo sur-
faces [ACC+16, KNP, OP, Tve, Pri, CKP] and it is aimed specifically at giving evidence for the
conjectures made in [ACC+16].

7.1.1 The results

The classification and its cascade structure

Definition 7.1. A 1
n(a, b) point is a surface cyclic quotient singularity C2/lµ.. n where lµ.. n acts linearly

on C2 with weights a, b ∈
(

1
nZ
)
/Z. We always assume no stabilisers in codimension 0, 1, that is,

hcf(a, n) = hcf(b, n) = 1.

A del Pezzo surface is a surface X with cyclic quotient singularities and −KX ample.

The Fano index of X is the largest positive integer f > 0 such that −KX = fA in the Class
group ClX.

Remark 7.2. We view a del Pezzo surface X with quotient singularities as a variety. Such a surface
is in a natural way a smooth orbifold (or DM stack), but we mostly ignore this structure. Thus for
us ClX is the Class group of Weil divisors on X modulo linear equivalence. In particular, although
KX is a Cartier divisor on the orbifold, we think of it as a Q-Cartier divisor on the underlying
variety (the coarse moduli space of the orbifold) and then to say that it is ample is to say that a
positive integer multiple is Cartier and ample.
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See [ACC+16] for a discussion of qG-deformations of del Pezzo surfaces with cyclic quotient
singularities. In particular, it is explained there that the singularity 1

3(1, 1) is qG-rigid and the
degree d = K2 is locally constant in qG-families.

We classify qG-deformation families of del Pezzo surfaces with k ≥ 1 1
3(1, 1) points. What

is more, [CH, §7] shows that with the exception of X4, 1/3, X5, 2/3 and X6, 1 (all of which have
h0(X,−KX) = 0), all other families admit a qG-degeneration to a toric surface.

The following two theorems are the main results of this chapter:

Theorem 7.3. There are precisely 3 qG-deformation families of del Pezzo surfaces with k ≥ 1
1
3(1, 1) points and Fano index f ≥ 2. They are:

(1) S1, 25/3 = P(1, 1, 3) with k = 1, K2 = 25
3 and f = 5;

(2) B1, 16/3: the family of weighted hypersurfaces X4 ⊂ P(1, 1, 1, 3) with k = 1, K2 = 16
3 and f = 2;

(3) B2, 8/3: the family of weighted hypersurfaces X6 ⊂ P(1, 1, 3, 3) with k = 2, K2 = 8
3 and f = 2.

Theorem 7.4. There are precisely 26 qG-deformation families of del Pezzo surfaces with k ≥ 1
1
3(1, 1) points and Fano index f = 1. The numerical invariants of these surfaces are shown in
Table 7.3 in Section 7.5. In that table Xk, d denotes the unique family with k 1

3(1, 1) points, K2 = d
and f = 1. The table also gives a good model construction of a surface X in all families.

Next we discuss the finer structure of the classification.

Definition 7.5. A negative curve on X is a compact curve C ⊂ X with negative self-intersection
number C2 < 0. We say that a projective curve C ⊂ X is a (−m)-curve if C2 = −m. Note that
in general m ∈ Q. Let P1, . . . , Pk ∈ X be the singular points and denote by X0 = Xnonsing =
X \ {P1, . . . Pk} the nonsingular locus of X. A (−1)-curve C ⊂ X0 is called a floating (−1)-curve.

Theorem 7.3 and Theorem 7.4 are a straightforward logical consequence of the minimal model
program and the following, which is proved in Section 7.4:

Theorem 7.6. Let X be a del Pezzo surface with k ≥ 1 1
3(1, 1) points. If X has no floating

(−1)-curves, then X is one of the following surfaces, all constructed in Table 7.2 and 7.3 and in the
statement and proof of Theorem 7.21:

(1) k = 1 and either X is a surface of the family of weighted hypersurfaces B1, 16/3 = X4 ⊂
P(1, 1, 1, 3), or X = S1, 25/3 = P(1, 1, 3). Here B1, 16/3 and S1, 25/3 are surfaces of anticanonical

degrees 16
3 and 25

3 respectively, both containing exactly one singular point of type 1
3(1, 1);

(2) k = 2 and either X = X2, 17/3, or X is a surface of the family of weighted hypersurfaces

B2, 8/3 = X6 ⊂ P(1, 1, 3, 3), where B2, 8/3 is a surface of anticanonical degree 8
3 containing two

singular points of type 1
3(1, 1);

(3) k = 3 and X = X3, 5;

(4) k = 4 and X = X4, 7/3;

(5) k = 5 and X = X5, 5/3;

(6) k = 6 and X = X6, 2.

Remark 7.7. With the exception of families B1, 16/3, B2, 8/3, all the surfaces in Theorem 7.6 are
qG-rigid: in other words, they are the only isomorphism class of surfaces in that family.
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Theorem 7.21 of Section 7.4 is a more precise version of Theorem 7.6 just stated. In particular,
the statement of Theorem 7.21 in Section 7.4 has images showing the directed MMP for X that
provide a birational construction of X, and pictures of a distinguished configuration of negative
curves in the minimal resolution f : Y → X.

In all cases, we could have pushed the analysis to the point where we could have made a list of
all negative curves on Y and X, and computed generators of the nef cones Nef Y , Nef X. We did
not pursue this as we don’t have a compelling reason to do so.

Surfaces with a given k are all obtained by a cascade—the terminology is due to [RS03]—of
blow-ups of smooth points starting with one of the surfaces in Theorem 7.6. In our case, a cascade
signifies a sequence of del Pezzo surfaces with 1

3(1, 1) singularities in which two elements differ by a
blow-up of a smooth point or, conversely, by a contraction of a floating (−1)−curve. Each sequence
we consider is of maximal length: the surfaces at the bottom of the cascade are ”minimal” in this
sense (all of the remaining extremal rays pass through the singular points), while those at the top
will have the lowest possible anticanonical degree while preserving the ampleness of −KX .

Corollary 7.8. (1) A surface of the family X1, d is the blow-up of 25/3− d ≤ 8 nonsingular points
on P(1, 1, 3). If d < 16/3, then it is also the blow-up of a surface of the family B1, 16/3 in
1 ≤ 16/3− d ≤ 5 nonsingular points;

(2) A surface of the family X2, d is the blow-up of 17/3 − d ≤ 5 nonsingular points on X2, 17/3.
If d < 8/3, then it is also the blow-up of a surface of the family B2, 8/3 in 1 ≤ 8/3 − d ≤ 2
nonsingular points;

(3) A surface of the family X3, d is the blow-up of 5− d ≤ 4 nonsingular points on X3, 5;

(4) A surface of the family X4, d is the blow-up of 7/3− d ≤ 2 nonsingular points on X4, 7/3;

(5) A surface of the family X5, 2/3 is the blow-up of a nonsingular point on X5, 5/3;

(6) X6, 1 is the blow-up of a nonsingular point on X6, 2.

Remark 7.9. In the cases k = 1 and k = 2, Corollary 7.8 is not an immediate consequence of
Theorem 7.6. Indeed, given a surface X, it is clear that a sequence of contractions of floating
(−1)-curves leads to one of the surfaces listed in Theorem 7.6. We need to check, in addition, that:

(1) If X → B1, 16/3 is the blow-up of a nonsingular point, there is an alternative sequence of 4
blow-downs of floating (−1)-curves starting from X and ending in P(1, 1, 3);

(2) If X → B2, 8/3 is the blow-up of a nonsingular point, then there is an alternative sequence of 4
blow-downs of floating (−1)-curves starting from X and ending in the surface X2, 17/3.

These facts are easy to verify from the explicit birational constructions given in Theorem 7.21.

7.2 Invariants

Here X is a surface of one of the 29 families of Del Pezzo surfaces with k ≥ 1 1
3(1, 1) points, and

X0 = Xnonsing = X \ SingX is the nonsingular locus of X. The main scope of the study of the
following invariants is to obtain a bound for the number of possible 1

3(1, 1) singularities on X. This
will be the starting point in our classification. We are interested in:

(i) k, the number of singular points of X;
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(ii) K2 = K2
X , the anticanonical degree of X. It is obvious that K2

X > 0 and K2
X ≡

k
3 (mod Z);

(iii) h0(X,−KX), an integer ≥ 0 and, more generally, h0(X,−nKX) for all integers n ≥ 0;

(iv) r = ρ(Y ) = ρ(X) + k, the Picard rank of the minimal resolution f : Y → X;

(v) n = e(X0) = ĉ2(X) − k/3 = 2 + ρ(X) − k, where e is the (homological) topological Euler
number and ĉ2(X) = c2(T̂X) is the orbifold second Chern class of X;

(vi) σ, the defect of X, defined as follows: let L = H2(Y ;Z), viewed as a unimodular lattice by
means of the intersection form, let N = 〈−3〉⊥ k ⊂ L be the sublattice spanned by the (−3)-
curves, and let N = {v ∈ L | ∃d ∈ Z with dv ∈ N} be the saturation of N in L, then, for
some integer σ > 0, N/N ∼= Fσ3 . Indeed, note that N/N ⊂ N∗/N where N∗ = Hom(N,Z) and
N ⊂ N∗ the natural inclusion given by the quadratic form. Note that N∗/N is 3-torsion and
isomorphic to (Z/3Z)k, so N/N is also 3-torsion. Equivalently, σ = k−rk Im[N⊗F3 → L⊗F3].
We prove in Lemma 7.14 below that Fσ3 ∼= H1(X0;Z);

Since in this chapter we focus the birational constructions and the classification, these are the
only invariants we need to consider. In the paper [CH] we take this further in order to find the
complete intersection models: for each of these families, we compute the number of moduli, the
Fano index and the fundamental group π1(X0). This information is plotted in the Tables in Section
7.5.

Remark 7.10. The Riemann-Roch [Rei87, § 3] and Noether formula state:

h0(X,−KX) = 1 +K2
X −

k

3
and K2

X = 12− n− 5k

3

so one can compute h0(X,−KX), n and r from k and K2
X (vanishing implies that h0(X,−nKX) =

χ(X,−nKX) for n ≥ 0).
It is easy from these data to compute the Poincaré series PX(t) =

∑
n≥0 t

nh0(X,−nKX):

PX(t) =
1 +

(
K2
X − 1− k

3

)
t+
(
K2
X + 2k

3

)
t2 +

(
K2
X − 1− k

3

)
t3 + t4

(1− t)2(1− t3)

Remark 7.11. • If X admits a toric qG-degeneration, then n = e(X0) ≥ 0. Indeed, in this
case n is the number of T -cones of the Fano polygon corresponding to the toric degenerate
surface, see [AK].

• If X admits a toric qG-degeneration, then h0(X,−KX) ≥ 1. Indeed, by the Riemann–Roch
formula, h0(X,−KX) is constant on a qG family and if X0 is toric then H0(X0,−KX0) 6= (0)
since it contains at least the toric boundary divisor of X0.

• It follows [K+92, Chapter 10] from the generic semi-positivity of T̂X [KM99, 1.8 Corollary]
that ĉ2(X) ≥ 0.

The main result of this section is Proposition 7.15 where we derive an almost exact table of
invariants of del Pezzo surfaces with 1

3(1, 1) points from elementary lattice theory and elementary
covering space theory. These methods are surprisingly effective in producing an almost exact table
of invariants and we hope that they can be useful in other problems of classification of orbifold del
Pezzo surfaces. We use the result in Section 7.4 to cut down on the cases we need to consider in
the proof of theorems 7.6 and 7.21. We start with a study of the defect invariant.

71



Lemma 7.12. Using the notation introduced in Section 7.2, k − r/2 ≤ σ ≤ k/2.

Proof. N/N ⊂ N∗/N is totally isotropic where N∗/N is endowed with the discriminant quadratic
form, hence σ = dimF3 N/N ≤ 1

2 dimF3 N
∗/N = k

2 . Also, Im[N ⊗ F3 → L⊗ F3] is totally isotropic,
hence it has dimension ≤ r/2, thus the kernel has dimension ≥ k − r/2.

Remark 7.13. In fact one can do better, but we won’t need to do so here. For example, if k = 2,
then the discriminant bilinear form A(x, y) = x2 + y2 has no isotropic vector, hence σ = 0 in this
case.

Lemma 7.14. H1(X0;Z) ∼= Fσ3 .

Proof. Denote by E = ∪ki=1Ei ⊂ Y the exceptional divisor of the minimal resolution morphism
Y → X, and note that of course X0 = Y \E. Because Y \E is smooth, the Poincaré homomorphism
H i
c(Y \ E;Z) → H4−i(Y ;Z) is an isomorphism. The long exact sequence for compactly supported

cohomology fits into a commutative diagram:

H2(Y ;Z) // H2(E;Z) // H3
c (Y \ E;Z) // H3(Y ;Z) = (0)

L // N? // Fσ3 // (0)

We proceed to making our first significant restriction on the number of cases, bounding the
number of possible singularities k on X and correlating it to the degree of the canonical class
K2 = K2

X :

Proposition 7.15. k ≤ 6 and moreover:

(1) If k = 1 then K2 ≡ 1/3 (mod Z) and 1/3 ≤ K2 ≤ 25/3;

(2) If k = 2 then K2 ≡ 2/3 (mod Z) and 2/3 ≤ K2 ≤ 20/3;

(3) If k = 3 then K2 ≡ 0 (mod Z) and 1 ≤ K2 ≤ 5;

(4) If k = 4 then K2 ≡ 1/3 (mod Z) and 1/3 ≤ K2 ≤ 10/3;

(5) If k = 5 then K2 ≡ 2/3 (mod Z) and 2/3 ≤ K2 ≤ 8/3;

(6) If k = 6 then K2 ≡ 0 (mod Z) and 1 ≤ K2 ≤ 2.

Remark 7.16. It follows from the proof of Theorems 7.6 and 7.21 that the possibilities k = 2,K2 =
20/3; k = 4,K2 = 10/3; k = 5,K2 = 8/3 do not actually occur.

Proof of Proposition 7.15. By [KM99, 1.8 Corollary] the orbi-tangent bundle is generically semi-
positive, and then by [K+92, Chapter 10] ĉ2 = n + k/3 ≥ 0. It follows from this that K2 =
12− n− 5k

3 ≤ 12− 4k
3 . By using K2 ≡ k/3 (mod Z) and:

0 < K2 ≤ 12− 4k

3
and h0(X,−K) = 1 +K2 − k/3 ≥ 0

we immediately conclude that k ≤ 7. Indeed, if k = 8 the first set of inequalities forces K2 = 2/3
but this would imply h0(X,−K) = 1 + K2 − 8/3 = 1 + 2/3 − 8/3 = −1 < 0, a contradiction.
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Similarly, when k = 7 the first inequality gives 1/3 ≤ K2 ≤ 7/3, but K2 = 1/3 does not occur
because it would imply h0(X,−K) = 1 + 1/3− 7/3 = −1, again a contradiction. With a bit more
work we can exclude a few more cases: if k = 1, then K2 = 31/3 implies r = 0, K2 = 28/3 implies
r = 1 and both are impossible because r = k + ρ(X) > k. Similarly, k = 2 and K2 = 26/3 implies
r = 2, impossible; k = 3 and K2 = 8 implies r = 3, also impossible. Thus k ≤ 7 and we are left
with the following possibilities:

(1) If k = 1 then K2 ≡ 1/3 (mod Z) and 1/3 ≤ K2 ≤ 25/3;

(2) If k = 2 then K2 ≡ 2/3 (mod Z) and 2/3 ≤ K2 ≤ 23/3;

(3) If k = 3 then K2 ≡ 0 (mod Z) and 1 ≤ K2 ≤ 7;

(4) If k = 4 then K2 ≡ 1/3 (mod Z) and 1/3 ≤ K2 ≤ 19/3;

(5) If k = 5 then K2 ≡ 2/3 (mod Z) and 2/3 ≤ K2 ≤ 14/3;

(6) If k = 6 then K2 ≡ 0 (mod Z) and 1 ≤ K2 ≤ 4;

(7) If k = 7 then K2 ≡ 1/3 (mod Z) and 4/3 ≤ K2 ≤ 7/3.

We are still quite some way from proving what we need. We exclude the remaining possibilities by
studying the invariant σ. The key observation is that, by Lemma 7.12, we have that σ ≥ k−r/2 so,
for example, if k = 2 and K2 = 23/3, we must have r = 3 and then σ > 0. It is easy to see that this
case does not occur: by Lemma 7.14 H1(X0;Z) ∼= Fσ3 , so by covering space theory there is a 3-to-1
covering Y → X, étale above X0, from a surface Y , necessarily a del Pezzo surface, with 1/3(1, 1)
points and degree K2

Y = 3× 23
3 = 23 and we already know that such a surface does not exist.

As another example, k = 7, K2 = 4/3 implies σ ≥ 2 so there is a 9-to-1 cover Y → X from a
del Pezzo surface Y with 1/3(1, 1) points and K2

Y = 12 and we know that such a surface does not
exist.

In Table 7.1 we summarise the cases where we can definitely conclude σ > 0. All but two are
excluded at once by the same method (the other two cases actually occur) and the result follows.

k K2 r σ Occurs

2 23/3 3 > 0 No
3 6 5 > 0 No
3 7 4 > 0 No
4 13/3 7 > 0 No
4 16/3 6 > 0 No
4 19/3 5 > 1 No
5 8/3 9 > 0 No
5 11/3 8 > 0 No
5 14/3 7 > 1 No
6 1 11 > 0 Yes
6 2 10 > 0 Yes
6 3 9 > 1 No
7 4/3 11 > 1 No
7 7/3 10 > 1 No

Table 7.1: Necessarily defective possibilities
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All other possibilities are excluded by the same method, except k = 5, K2 = 8/3, σ ≥ 1: this
possibility is not excluded at this point, and it is not excluded by the statement of Proposition 7.15.
Table 7.1 states that it does not occur, but this fact will only follow from the proof of theorems 7.6
and 7.21 in Section 7.4.

7.3 MMP

In the proof of Theorem 7.6 in Section 7.4 we systematically use the following elementary result,
which we state without proof. Analogous statements for surfaces with canonical singularities can
be found in [Mor85b, Fur86].

Theorem 7.17. Let X be a projective surface having k× 1
3(1, 1), n2×A2, and n1×A1 singularities.

Assume that k + 2n2 + n1 ≤ 6.

Let f : X → X1 be an extremal contraction. Then exactly one of the following holds:

(E) f : (X,E) → (X1, P ) is a divisorial contraction. Denote by Y → X and Y1 → X1 the
minimal resolutions, and E′ ⊂ Y the proper transform of the exceptional curve. Then E′ ⊂ Y is a
(−1)-curve meeting transversely at most one exceptional curve of Y → X above each singularity,
and one of the following holds:

(E.1) E is contained in the nonsingular locus. Then E is a (−1)-curve and we call it a floating
(−1)-curve;

(E.2) (A1 contraction) E contains one A1-singularity, P ∈ X1 is a nonsingular point;

(E.3) (A2 contraction) E contains one A2-singularity, P ∈ X1 is a nonsingular point;

(E.4) E contains one 1
3(1, 1)-singularity, P ∈ X1 is a A1-point;

(E.5) E contains one 1
3(1, 1)-singularity and one A1 singularity, P ∈ X1 is a nonsingular point;

(E.6) E contains two 1
3(1, 1)-singularities, P ∈ X1 is an A2-point.

(C) X1 = P1, that is, f is generically a conic bundle. Denote by F ⊂ X a special fibre of f , and
by Y → X and Y1 → X1 the minimal resolutions and F ′ ⊂ Y the proper transform of F . Then F ′

is a (−1)-curve and one of the following holds:

(C.1) F contains two A1-singularities, and F ′ meets each of the (−2)-curves transversely;

(C.2) F contains one 1
3(1, 1)-singularity and one A2 singularity, and F ′ meets the (−3)-curve and

one of the (−2)-curves transversely.

(D) X1 = {pt} is a point, that is, X is a del Pezzo surface of Picard rank one, and X is one of
the following surfaces:

(D.1) P2;

(D.2) P(1, 1, 2) (this surface has exactly one A1 singular point);

(D.3) P(1, 2, 3) (this surface has exactly one A1 and one A2 singularities);
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(D.4) P2/µ3 where µ3 acts with weights 1, ω, ω2. This surface has exactly 3×A2 singularities;1

(D.5) P(1, 1, 3).

Remark 7.18. Consider the class of projective surfaces X be having k × 1
3(1, 1), n2 × A2, and

n1 × A1 singularities and k + 2n2 + n1 ≤ 6. It follows from the previous statement that a MMP
starting from a surface in the class only involves surfaces in the class.

The directed minimal model program In the proof of theorems 7.6 and 7.21 in the following
section, we run the MMP starting with a del Pezzo surface with 1

3(1, 1) points.
In all cases, we perform extremal contractions in the order that they are listed in Theorem 7.17

above: that is, we first contract all the floating (−1)-curves, then we contract a ray of type (E.2) if
available, or else one of type (E.3), etc.

We call this the directed MMP.

Lemma 7.19. Let X be a del Pezzo surface with k ≥ 1 1
3(1, 1) singular points. Assume that X

contains no floating (−1)-curves. Denote by

X = X0
ϕ0−→ . . . −→ Xi−1

ϕi−1−→ Xi −→ . . .

the contractions and surfaces occurring in a MMP for X (not necessarily directed).

(1) All surfaces Xi are del Pezzo surfaces.

(2) Denote by fi : Yi → Xi the minimal resolution of Xi and let C ⊂ Yi be a (reduced and
irreducible) curve with negative self-intersection C2 = −m. Then:

(2.1) if C is fi-exceptional, then m = 2 or 3,

(2.2) if C is not fi-exceptional, then m = 1 and C intersects at least one fi-exceptional curve.
In particular, none of the surfaces Xi contain a floating (−1)-curve.

Proof of Lemma 7.19. We prove the statement by induction on i. We first show that Xi is a del
Pezzo surface. Suppose Xi−1 is del Pezzo and let E ⊂ Xi−1 be the effective divisor such that
KXi−1 = ϕ?i−1KXi + aE, a > 0. Let Γ ⊂ Xi be a curve. Denoting by Γ′ ⊂ Xi−1 the proper
transform, we have that:

KXi · Γ = KXi · ϕi−1 ?Γ
′ = ϕ?i−1(KXi) · Γ′ = (KXi−1 − aE) · Γ′ < 0.

As K2
Xi
> K2

Xi−1
, by the Nakai-Moishezon criterion we conclude that −KXi is ample.

Assuming that (2.1) holds for Xi−1, then it also holds for Xi, by the structure of divisorial
contractions listed in Theorem 7.17.

Let now C be a (−m)-curve on Yi that is not contracted by fi, then since −KYi + f?i KXi ≥ 0
we have that:

−KYi · C = f?i (−KXi) · C + (−KYi + f?i KXi) · C ≥ f?i (−KXi) · C = −KXi · fi ?C > 0.

Then KC = (KYi +C)|C < 0, therefore C is a rational curve and KYi ·C = m−2 < 0 implies m = 1,
that is, C ⊂ Y is a (−1)-curve, and the image Ci = fi(C) ⊂ Xi is a floating (−1)-curve. Now Ci does
not contain the image of the ϕi−1-exceptional curve: otherwise, the proper transform C ′ ⊂ Yi−1

1X is the toric surface obtained by blowing up 3 vertices on the hexagon of lines of a degree 6 nonsingular del
Pezzo surface. Explicitly, it is a cubic surface given by xyz = t3.
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would be a curve of negative self-intersection C ′ 2 < −1 not contracted by fi−1 : Yi−1 → Xi−1,
contradicting (2.1) for Xi−1. Thus, Ci is the image of a floating (−1)-curve in Xi−1 and then in
fact, by descending induction on i, Ci is the image of a floating (−1)-curve on X, a contradiction
to the main assumption that these do not appear. This shows (2.2).

Remark 7.20. In Section 7.4 we use the following type of argument very frequently. Suppose that

X = X0
ϕ0−→ . . . −→ Xi

ϕi−→ Xi+1
ϕi+1−→ Xi+2 . . .

is the sequence of contractions and surfaces occurring in a directed MMP for X. If ϕi is of type
(E.6), then ϕi+1 is not of type (E.3). Indeed denote by fi : Yi → Xi the minimal resolution. If ϕi+1

is of type (E.3), the proper transform C ⊂ Yi+1 of the curve contracted by ϕi+1 is a (−1)-curve,
and its proper transform on Yi is a (−1)-curve that shows that a contraction of type (E.3) or (E.4)
was available on Xi in the first place, and this is a contradiction.

7.4 Trees

This is the main section of this chapter. We prove Theorem 7.21, from which Theorem 7.6 of the
introduction immediately follows. The proof uses Proposition 7.15. Before we begin constructing
the surfaces, we take apart the first case and explain how to read the contractions on this example.

Theorem 7.21. Let X be a del Pezzo surface with k ≥ 1 1
3(1, 1) singular points. If X has no

floating (−1)-curves, then it is one of the following surfaces. The images show the sequence of
contractions and surfaces of the directed MMP for X providing a birational construction of it,
followed by—and separated by a double horizontal rule—a picture of the minimal resolutions of the
surfaces of the MMP showing a configuration of curves on them:

• In the images showing the sequence of contractions we record the singularities on each inter-
mediate surface. For example, “2× 1/3 +A2” signifies a surface with two 1

3(1, 1) singularities
and one A2 singularity.

• In the pictures showing the minimal resolutions the contracted curves are in bold and their
images are denoted by a bold point.

(1) k = 1 and either X = B1, 16/3 (the first case pictured), or X = P(1, 1, 3) (the second case
pictured):

1 x 1/3 A1 (E.2)(E.4)

(1,1,3)¶

0 0(E.2)(E.4)

0

0

¶x¶
1 1

0

0-1

-1
-1

-2

0 0

-3

3
0

0-1

-1
-1

-3-1

76



(2) k = 2 and either X = B2, 8/3 (the first case pictured), or X2, 17/3 (the second case):

2 x 1/3 1/3 + A1 (E.2)(E.4)

0

0-1

-1-3-1

-1

(E.2)

-1

-1

-1

-1

-3

-1

-1

-1

-2

(E.4)

-1

-1

-1

-1

-3

-1

-1

-1
-1

-3

-3

3

00
(E.2)

-1

-1

-2

-3

0

1

-1

-1

-3

0

1-3
-1 (E.4)

1 x 1/3 A1 (E.2)(E.4)

(1,1,3)¶

¶x¶
1 1

0 0
(E.2)(E.4)

0

0-2

(E.4)

0

0-1

-1
-1

(3) k = 3 and X = X3, 5:

3 x 1/3 2 x 1/3 + A1

0 0

-3

3

-3

-1

-1

-3

-2

0

1

-3

-3

-3

0

0

-1-1

-1

(E.4) (E.5)

(E.5)(E.4) (1,1,3)¶
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(4) k = 4 and X = X4, 7/3:

4 x 1/3 3 x 1/3 + A1
(E.2) 3 x 1/3 (E.4) 2 x 1/3 + A1 (E.5) (1,1,3)¶(E.4)

-1

-1

-3

0

0

-1-1

-1

-3

-3

-1

-1
-1

-1
-1

-3

-3

-3

-2

-3

-1

-1
-3

0

1

-3

3

00

-1

-1-1

-1
-1

-3

-3

-3
-3 -2

-1
(E.4) (E.2) (E.4)

(E.5)(E.4)

(5) k = 5 and X = X5, 5/3:

5 x 1/3 4 x 1/3 + A1
(E.4) (E.5)3 x 1/3 + 2 x  A1(E.4)

2 x 1/3 +  A1 (E.5)(E.5) (1,1,3)¶

-2

-3

-1

-1
-3

0

1

-3

3

00(E.5)(E.5)

(E.5)

-3

-1

-3

-1

-3

-1
-2-2

-1-1

(E.4)

-3

-1

-3

-1

-3

-1
-2-3

-1-1

-1

-3

-1

-3

-1

-3

-1 -3-3

-1-1

-1

(E.4)

-1
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(6) k = 6 and X = X6, 2:

6 x 1/3 4 x 1/3 + A2
(E.6) (E.6) 3 x A2

(E.6) 2 x 1/3 + 2 x A2

-1 -1

-1

-1

-1

-3

-3

-3

-3

-3

-3
(E.6)

-2

-2

-2
-2

-2

-2-1

-1

-1

(E.6) (E.6)

-1

-1-1

-1

-2
-2

-2

-2

-3

-3
-1

-1

-1

-1
-1

-3

-3

-3

-3

-2 -2-1

We go back to the case where k = 1 in order to explain the image:

For k = 1 we obtain either X = B1, 16/3 (the first case pictured), or X = P(1, 1, 3) (the second case
pictured):

1 x 1/3 A1 (E.2)(E.4)

(1,1,3)¶

0 0(E.2)(E.4)

0

0

¶x¶
1 1

0

0-1

-1
-1

-2

0 0

-3

3
0

0-1

-1
-1

-3-1

We start with one 1
3(1, 1) singularity on our surface X. We are either on P(1, 1, 3) whose Picard

number equals one, or we have a sequence of two contractions available: a contraction of type (E.4),
followed by one of type (E.2). This is the first row of the picture, depicting the effects of applying
the directed MMP to X. Underneath the horizontal rule, we describe what happens to the minimal
resolution Y of X during this process. If X = P(1, 1, 3) this is trivial and we have only to draw its
minimal resolution, the Hirzebruch surface F3.

However, if we are in the other case, denote the contraction morphisms by X → X1 → X2 =
P1 × P1 and Y → Y1 → Y2 = P1 × P1 respectively. Y contains a pentagon of curves various self-
intersections, notably the (−3)−curve is the exceptional curve above the 1

3(1, 1) singularity. Out of
the four (−1)-curves that intersect it, the one in bold is that which corresponds to the extremal ray
of the (E.4) contraction on X. It will naturally induce a contraction on Y and the image of this
curve is depicted as a bold point. The intersection numbers on the new surface change accordingly.
The curves that are to be contracted next are also in bold. Note that when considering (E.2), though
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with X1 → X2 only one curve is contracted, Y1 → Y2 is a contraction of two curves: by starting
with the bold (−1)-curve, the (−2)-curve becomes of self-intersection (−1) and is automatically also
contracted. We then obtain the representation of P1 × P1 with the usual two rulings.

Proof. In all cases we run the directed MMP for X. In other words, at each step we choose rays
exactly in the order that they are listed in Theorem 7.17. The figures in the statement show the
sequence of contractions as they occur in the directed minimal model program.

We begin the proof by drawing a tree representing the directed MMPs that can potentially
occur (Figure 7.1 is an example). For each branch, corresponding to a sequence of contractions, we
construct a configuration of curves on the minimal resolution Y . In many cases, the configuration
of curves shows that at some stage in the MMP there was the option of performing a contraction
higher up in the list of Theorem 7.17: that is, the MMP represented by that branch is not directed
and hence it does not actually occur. At the end we are left with the directed MMPs that actually
take place.

Here we only treat in detail the cases k = 4 and k = 6; the other cases are very similar and can
be done by the same methods. Figures 7.6 to 7.9 at the end of the proof list the remaining trees
for all k.

The k = 4 case We first argue that the sequence of extremal contractions of the directed MMP
must be one of those shown on Figure 7.1.

In the argument that follows we denote by

X = X0
ϕ0−→ . . . −→ Xi−1

ϕi−1−→ Xi −→ . . .

the sequence of contractions and surfaces occurring in a directed MMP for X. Also we denote by
fi : Yi → Xi the minimal resolutions. By Theorem 7.17, ϕ0 is either of type (E.6) or (E.4) and we
claim that (E.6) does not occur.

Suppose for a contradiction that ϕ0 is an (E.6) contraction. By Theorem 7.17, ϕ1 is of type
(E.3), (E.4) or (E.6): indeed, ϕ1 can not be a conic bundle because X1 has an odd number of
singular points and from the classification of fibres every special fibre has two singularities on it,
and it is clear from the classification that X1 is not a del Pezzo surface with ρ = 1.

By Remark 7.20, (E.3) can not follow (E.6). If ϕ1 is of type (E.4), then this contraction would
have been already available on X0, a contradiction. Finally, if ϕ1 is of type (E.6), X2 has 2 × A2

singularities and then, by Theorem 7.17, ϕ2 is of type (E.3): just as before, none of the ρ = 1 del
Pezzo surfaces have 2×A2 singularities, and from the classification of fibres ϕ2 can not be a conic
bundle. But again (E.3) can not follow (E.6).

All of this shows that ϕ0 is of type (E.4), therefore X1 has 3× 1
3(1, 1) + A1 singularities. Thus

ϕ1 can be of type (E.2), (E.4), (E.5) or (E.6), and we claim that the last two do not occur.
Suppose for a contradiction that ϕ1 is of type (E.5). X2 is a del Pezzo surface with 2× 1

3(1, 1)
singularities. By the case k = 2 of the theorem, which we assume to have already proved, ϕ2 is of
type (E.4) and this contraction was available on X1, a contradiction.

If ϕ1 is of type (E.6) the surface X2 has A1 + A2 + 1
3(1, 1) singularities. The contraction ϕ2

can not be of type (E.2), (E.4) or (E.5) because otherwise the same contraction would have been
available on X1. It can not be of type (E.3) either because by Remark 7.20 (E.3) can not follow
(E.6). By Theorem 7.17 these were the only possibilities thus this case does not occur.

If ϕ1 is of type (E.2) then X2 is a del Pezzo surface with k = 3 and the tree continues as in the
k = 3 case, which we assume already known.

If ϕ1 is of type (E.4) then X2 has 2×A1 + 2× 1
3(1, 1) singularities.

The next contraction ϕ2 is not of type (E.2) because it would have been available earlier.
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If ϕ2 were of type (E.6) then X3 would have A2 + 2A1 singularities. The next contraction ϕ3

is not of type (E.2) because it would have been available earlier; it is not of type (E.3) because by
Remark 7.20 (E.3) does not follow (E.6); it is not of fibering type because X3 has an odd number
of singularities; and X3 is not a del Pezzo surface with ρ = 1 by the classification of Theorem 7.17.

Thus, ϕ2 is not of type (E.2) or (E.6) and it can be only of type (E.4) or (E.5), which can be
shown to lead respectively to the two remaining possibilities in Figure 7.1.

Figure 7.1: k = 4 tree of possibilities

4 x 1/3 3 x 1/3 + A1
(E.2) 3 x 1/3 (E.4) 2 x 1/3 + A1

(E.5) (1,1,3)

ρ≤7

¶

ρ≤6 ρ≤5 ρ≤4 ρ≤3

k=3 case

2 x 1/3 + 2 x A1 1/3 + 3 x A1
(E.4) (E.4) 4 x A1

2 x (C.1)

(E.4)

(E.5) 1/3 + A1
(E.5) ¶ ¶x¶or2 1 1

(E.4)

We now explore the branches of this tree one at a time and show that only one actually occurs.

Case 1 (E.4) + (E.2) + (E.4) + (E.5)

If this sequence of contractions occurs, then Y must contain the configuration of curves depicted
in Figure 7.2 below. The figure shows the effect of the contractions of the MMP on the minimal
resolutions: the contracted curves are in bold, as are the points onto which they map.

Figure 7.2: A picture of the configuration of negative curves for k = 4, Case 1
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-2
-1

(E.4) (E.2)
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Y Y1

Y3 Y4

(E.2)

Y2

Looking more closely at how Y is built from Y4 = F3 by a sequence of blow-ups, we argue that
Y must have more negative curves, shown in Figure 7.3 below.

We use the following result:
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Remark 7.22. Let X be a smooth del Pezzo surface and C ⊂ X an irreducible rational curve with
positive self intersection. Then C moves in a free linear system. Indeed, the map H0(X,OX(C))→
H0(C,OC(C)) is surjective because −KX is ample. Since C2 > 0 we have that OC(C) is base point
free and the conclusion immediately follows from the vanishing of H1(X,OX).

Figure 7.3: A better picture of the configuration of negative curves for k = 4, Case 1
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Indeed, the point P4 ∈ Y4 that is the image of the exceptional curve in Y3 does not lie on the
(−3)-curve and then by Remark 7.22 we can choose a configuration of curves as shown in the Figure
displaying P4 as the intersection of a fibre and a curve of self-intersection +3. At the next step we
need to blow up a point P3 ∈ Y3 on the (−2)-curve and not contained in any other negative curve.
By Remark 7.22 again, we can “move” the curve with self-intersection 1 until it contains P3 as in
the figure. At the next step again we need to blow up a nonsingular point P2 ∈ Y2 not lying on
any negative curve, and we use Remark 7.22 to “move” the two curves with self-intersection 0 until
they both contain P2.

We are left with the minimal resolution of the surface X4,7/3.

Case 2 (E.4) + (E.4) + (E.4) + (E.4)

We contract one (−1)-curve intersecting each (−3)-curve on Y and end up with a surface fibering
over P1, denoted by Y4, corresponding to an extremal contraction X4 → P1 having two singular
fibers of type (C.1). As Y4 is a nonsingular surface, we next run the classical Minimal Model
Program for Y4 relative to the existing fibration Y4 → P1, which ends in a Segre surface Fk, and we
claim that we can assume that k = 0:

82



-3
-3

-3
-3

-1

-1
-1

-1
-1

-1

-1

-1
-2
-2

-2
-2

MMP

Y Y4

0

0

0

0

Indeed, since all negative curves left on Y4 have self-intersection ≥ −2, the same is true about
Fk. We are left with k ∈ {0, 1, 2}. If k = 2, this leads to a (−2)-curve on Y not contracted by the
morphism to X, contradicting lemma 7.19. If on the other hand k = 1 then by choosing the last
contraction differently we would have landed on F0.

00
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0

0
-1

Y Y4

MMP

Y8

-2 -2

-2

-1 -10

-3

-3

-3

-1
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-1

-1

-1

-1

-1
-1

The horizontal ruling of F0 transforms to a free linear system of (0)-curves intersecting two of
the opposing (−2)-curves in the special fibers on Y4, depicted as a dashed line in the figure. As
both of these (−2)-curves contain a point that is to be blown up in the process of building Y , we
denote by the dotted line the (0)-curve passing through the point P4 ∈ Y4 that is the image of
the exceptional curve in Y3 corresponding to the last (E.4)-type contraction (as well as its strict
transform on Y ). Exactly before this contraction is performed, in Y3 (and, ultimately, also in Y ),
the dotted line is a (−1)-curve intersecting only the (−1)-curve that is to be contracted and the
(−2)-curve on the other special fiber. This means that an (E.2)-type contraction was available on
X3, which contradicts the fact that a directed MMP was used in obtaining X4. Therefore this case
does not occur.

Case 3 (E.4) + (E.4) + (E.5) + (E.5)

In this case the minimal resolutions must contain the following configurations of curves:
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Y
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smooth

smooth
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(E.5) (E.5)(E.4)+(E.4)

Y2 Y3 Y4

Since the resulting surface X4 is smooth and rationally connected and, by Lemma 7.19, it
contains no negative curves, it is either P2 or P1 × P1. In the case of the projective plane, looking
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more closely at how Y is built from Y4 = P2 by a sequence of blow-ups, we see that Y must have
the negative curves shown in the following figure:
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Y Y2 Y3 Y4

11

Note that after having done the first two steps of the MMP, Y2 contains two (−1)-curves showing
that two (E.2)-type contractions were available on X2, which proves that the MMP is not directed
and that this case does not occur.

If Y4 = P1 × P1 we reach a contradiction without having to study the minimal resolution of X.
Indeed, the following figure shows the contraction Y3 → Y4:

0 0

0

0

0

0
-3

-1

-1

-1 -2

(E.5)

Y3 Y4

From the picture it is clear that an (E.4)-type contraction was available on X3, a contradiction.
This case also does not occur, and the only surface with four 1

3(1, 1) points is the one described in
Case 1.

The k = 6 case We argue that the sequence of extremal contractions of the directed MMP is one
of the two shown in Figure 7.4.

We use the same notations as in the k = 4 case, i.e we denote by

X = X0
ϕ0−→ X1

ϕ1−→ . . . −→ Xi−1
ϕi−1−→ Xi −→ . . .

the sequence of contractions and surfaces occurring in a directed MMP forX and by fi : Yi → Xi the
minimal resolutions. Proposition 7.15, which we use repeatedly in the course of the proof, implies
that ρ(X) ∈ {1 . . . 5}. By Theorem 7.17, ϕ0 is either of type (E.4) or (E.6) and we claim that (E.4)
does not occur.

Suppose for a contradiction that ϕ0 is an (E.4) contraction, then X1 has 5 × 1
3(1, 1) + A1

singularities. Theorem 7.17 implies that ϕ1 is either of type (E.2), (E.4), (E.5) or (E.6): indeed,
ϕ1 can not be a conic bundle because X1 contains singularities of type 1

3(1, 1) but none of type A2,
and it is clear from the classification that X1 is not a del Pezzo surface with ρ = 1.

If ϕ1 is of type (E.2), then X2 is a del Pezzo surface with k = 5 singularities. As we assume
the case k = 5 is known, this implies that X2 = X5,5/3, a contradiction since ρ(X2) ≤ 3 while
ρ(X5,5/3) = 5.
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If ϕ1 is a type (E.4) contraction, the surface X2 has 4 × 1
3(1, 1) + 2 × A1 singularities and its

Picard number is at most three. From this surface, only contractions of type (E.2), (E.4) and (E.6)
are possible: once again ϕ2 cannot be of fibering type because of the presence of 1

3(1, 1) singularities
and the absence of those of type A2, and by Theorem 7.17 it is not a del Pezzo surface of ρ = 1.

We show that none of these possibilities occur. Indeed, if ϕ2 is of type (E.2), the del Pezzo
surface X3 has ρ ≤ 2 and 4 × 1

3(1, 1) + A1 singularities. The following contraction ϕ3 cannot be a
fibration because the number of singularities is even, and X3 cannot be of Picard rank one by the
classification in Theorem 7.17. Since a second (E.2) contraction should have already been performed
as ϕ1, ϕ3 can only be of type (E.4), (E.5) or (E.6). These lead to surfaces of ρ = 1 and singularities
of type 3× 1

3(1, 1) + 2×A1, 3× 1
3(1, 1) and 2× 1

3(1, 1) +A1 +A2 respectively, none of which appear
in the list in Theorem 7.17.

The same reasoning holds if ϕ2 is of type (E.4). In this case, the del Pezzo surface X3 has ρ ≤ 2
and 3 × 1

3(1, 1) + 3 × A1 singularities. By the classification in Theorem 7.17, X3 is clearly not a
conic bundle over P1, nor does it have ρ = 1. The next contraction ϕ3 can be either of type (E.2),
(E.4), (E.5) or (E.6) and leads to a surface X4 of Picard rank one. The first three cases result in
at least two points of type 1

3(1, 1) on X4, while the contraction of type (E.6) means that X4 has
1
3(1, 1)+A2 +3×A1 singularities. None of these correspond to one of the ρ = 1 surfaces in Theorem
7.17, since the only surface of this type containing a 1

3(1, 1) point is P(1, 1, 3).

Finally, if ϕ2 is of type (E.6), then X3 has 2× 1
3 +2×A1 +A2 singularities. Theorem 7.17 implies

that the only possible contractions on X3 are of type (E.3) and (E.6). Indeed, the odd number of
singularities and the presence of two 1

3(1, 1) points allow us to respectively eliminate the possibilities
of ϕ3 being of fibering type and X3 having ρ = 1. A contraction of type (E.2) would have been
available earlier in the directed MMP since by performing ϕ2 no new singularities of type A1 were
created. The same is true for contractions of type (E.4) and (E.5) which, if available, should have
been done prior to the one of type (E.6). As before, both contractions would lead to a non-existent
del Pezzo surface of ρ = 1: if ϕ3 is of type (E.3), then X4 has 2× 1

3 + 2×A1 singularities and if ϕ3

is of type (E.6) we obtain 2×A1 + 2×A2 singularities, a contradiction to Theorem 7.17.

If ϕ1 is of type (E.5), the del Pezzo surface X2 has exactly four 1
3(1, 1) points. From our

discussion in the case k = 4 we obtain that X2 = X4,7/3 and since ρ(X2) ≤ 2 and ρ(X4,7/3) = 5,
this is a contradiction.

If ϕ1 is of type (E.6), X2 has 3× 1
3 + A1 + A2 singularities. This surface is not of Picard rank

one, and by theorem 7.17 it is not a conic fibration, as it has an odd number of singularities and
too many 1

3(1, 1) points. Since by remark 7.20 a contraction of type (E.3) cannot follow one of type
(E.6) and considering the order of the contractions in the directed MMP, the only possibility left is
that ϕ2 is of type (E.6). X3 now has singularities of type 1

3 +A1 + 2×A2 and no further divisorial
contractions are available, again because we cannot follow with one of type (E.3) and all other
possiblities would have been performed earlier. The singularities on X3 do not however correspond
to any of the surfaces of ρ = 1 in Theorem 7.17, nor can they be paired on singular fibers of a conic
fibration, for instance because there is only one point of type A1. We have thus exhausted all the
possibilities for ϕ1.

All of this shows that ϕ0 can not be of type (E.4), thus it is a contraction of type (E.6) and all
the divisorial contractions that follow must be of the same type. The surface X1 can not be of ρ = 1
or of fibering type since it has too many 1

3(1, 1) points and an odd number of singularities, thus ϕ1

is also an (E.6) contraction. As depicted in Figure 7.4, by Theorem 7.17 we have two possiblities:
either X2 is a conic bundle with two special fibres of type (C.2), or one last divisorial contraction
is available, leading to the ρ = 1 surface (D.4).
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Figure 7.4: k = 6 tree of possibilities

6 x 1/3 4 x 1/3 + A2
(E.6) (E.6) 3 x A2

ρ≤5 ρ≤4 ρ≤3 ρ≤2

2 x (C.2)

(E.6) 2 x 1/3 + 2 x A2

Both instances occur and, as we will see, they lead to the same surface X. This makes sense since
at the very beginning of the MMP there are a total of six contractions of the same type available
and at each step we choose one at the expense of two others. Depending on their configuration we
stop after either two or three contractions, thus obtaining two end products of the directed MMP
for the same X.

Case 1 (E.6) + (E.6) + (E.6)

The curve configuration for this case is:
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Looking more closely at how Y is built from Y3—the surface of Picard rank one having three
singular points of type A2 described in Theorem 7.17 —by a sequence of blow-ups, we see that Y
must have the negative curves shown in the following figure:
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Case 2 (E.6) + (E.6)

This sequence ends with a conic fibration having two singular fibers. On the minimal resolutions,
the contractions are the following:
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Figure 7.5: Configuration of curves for k = 6, Case 2
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We again proceed to run the nonsingular minimal model program for the surface Y2 relative to
the current fibration over P1. As before, we eventually reach a surface Fk, where k ∈ {0, 1, 2}, and
we choose the sequence of contractions such that k is maximal. Figure 7.5 shows that all (−3)-
curves on Y either already existed on the special fibers of Y2 or they come from blowing up points
inside these fibers. Thus if k = 2, the (−2)-section remains as such even on Y , which is impossible
according to lemma 7.19. By maximality, k = 1, and then the minimal resolutions must have the
negative curves shown in the following figure:
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Cases 1 and 2 are two different directed MMPs starting from the del Pezzo surface X6,2.

We further give the trees of possibilities for the four remaining cases. When constructing the
tree for a surface with k0 singularities, we are allowed to use the final working cases for the surfaces
with k < k0 points of type 1

3(1, 1). This not only shortens the process, but also allows us to further
exclude certain sequences of contractions. Indeed, suppose that in the k0 tree a branch leads to a
del Pezzo surface with singularity content k× 1

3(1, 1), where k < k0. If the sequence in the statement
of Theorem 7.21 for k doesn’t correlate with the directed MMP obtained thus far in the k0 tree,
then the entire branch can be removed.

Figure 7.6: k = 1 Tree

1 x 1/3 A1
(E.2)

ρ≤9 ρ≤8 ρ≤7

(E.4) ¶ ¶x¶or2 1 1

(1,1,3)¶
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Figure 7.7: k = 2 Tree

2 x 1/3 1 x 1/3 + A1
(E.2) 1 x 1/3 (E.4) A1

(E.2)

ρ≤6 ρ≤5

k=1 case
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(E.4)

(E.4) ¶x¶
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(C.1)

(1,1,3)¶

Figure 7.8: k = 3 Tree

3 x 1/3 2 x 1/3 + A1
(E.2) 2 x 1/3 (E.4) 3 x 1/3 + A1
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1 x 1/3
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Finally, using the techniques presented so far in this section will lead to a systematic elimination
of the branches so that we are left with exactly the surfaces in the statement.

7.5 Tables

Tables 7.2 and 7.3 summarise the classification and provide constructions for a general surface
in each family. We explain how to read the tables. We focus on Table 7.3 since Table 7.2 is a
straightforward illustration of Theorem 7.3. We then show, in the particular case of X1,10/3, that
the toric data leads to the surface which we found using the classification.

The symbol Xk, d in the first column of Table 7.3 signifies the family of surfaces X with k singular
points, degree K2

X = d and f = 1: the next three columns display the invariants h0(X,−KX), the
rank r = rkH2(Y ;Z) = ρ(Y ) = k+ρ(X) where Y is the minimal resolution of X, and the dimension
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Figure 7.9: k = 5 Tree

5x1/3 4x1/3 + A1
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of the family.

In all cases except X1, 7/3, X5, 5/3, X5, 2/3, X6, 2 and X6, 1, the next column shows a well-formed
simplicial toric variety F and line bundles L1, . . . , Lc on F such that a general complete intersection
of type (L1, . . . , Lc) on F is a quasi-smooth and well-formed surface of the family Xk, d. The
last column computes the cone Nef F . This information is necessary to verify that the following
conditions hold:

(a) the Li ∈ Nef F and

(b) −KF − Λ ∈ AmpF , where Λ =
∑c

i=1 Li.

Since, by the adjunction formula, −KX = −(KF + Λ)|X is ample, the constructions make it
manifest that X is a Fano variety. We then verify that a general complete intersection of type
(L1, . . . , Lc) on F has k 1

3(1, 1) singularities, and compute k and the anticanonical degree d = K2
X .

We explain in more detail how to read the information in the last two columns, and reference
[CH] for details on the five remaining cases.

The typical entry

All cases except X1, 7/3, X5, 5/3, X5, 2/3, X6, 2 and X6, 1 are typical. In a typical case, the table gives

the weight matrix of an action of C× l on Cm such that F = Cm//(C× l) and, to the right of this
and separated by a vertical line, a sequence of column vectors representing the line bundles Li.

For example, the entry for X4, 4/3 shows that an example of a surface X with k = 4 singularities

and K2 = 4
3 can be constructed as a complete intersection of two general sections of the line bundles

L1 = (2, 4) and L2 = (4, 2) in the Fano simplicial toric variety F given by weight matrix:

x0 x1 x2 x3 x4 x5

1 2 2 1 1 0
0 1 1 2 2 1

and Nef F = 〈(2, 1), (1, 2)〉 (the notation is explained fully in Section7.6 below). Here Λ = L1 +L2 ∼
(6, 6), −(KF + Λ) ∼ (1, 1) and −KF ∼ (7, 7) are all ample.
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Remark 7.23. Now that we have established what we are looking for, let us discuss the motivation
of obtaining this precise type of model. In [ACC+16] mirror symmetry for a locally qG-rigid del
Pezzo surface is stated in terms of a qG-degeneration to a toric surface: thus it is crucial for us
to determine which families admit such a degeneration. The mirror symmetry conjecture B of
[ACC+16] computes the quantum orbifold cohomology of a locally qG-rigid surface X from data
attached to the toric qG-degeneration. In order to compute the quantum orbifold cohomology of a
surface X by the known technology of abelian/nonabelian correspondence and quantum Lefschetz
[CFKS08, CG07, Tse10], and thus give evidence for conjecture B of [ACC+16], we need a model
of X as a complete intersection in a rep quotient variety (cf. [CH, Def.10]). In this context, we
need conditions (a) and (b) to control the asymptotics of certain I-functions, and this motivates our
constructions here. Conditions (a) and (b) are of course also natural from a purely classification-
theoretic perspective. Paper [OP] computes (part of) the quantum orbifold cohomology of our
surfaces.

Table 7.2: del Pezzo surfaces with 1/3(1, 1) and f > 1

Name h0(X,−KX) r No. moduli Model Construction f

S1, 25/3 9 2 -8 P(1, 1, 3) 5

B1, 16/3 6 5 -2 X4 ⊂ P(1, 1, 1, 3) 2

B2, 8/3 3 8 2 X6 ⊂ P(1, 1, 3, 3) 2

Table 7.3: del Pezzo surfaces with 1/3(1, 1) and f = 1

Name h0(X,−KX) r No. moduli Weights and Line bundles Nef F

X1, 22/3 8 3 −6
1 1 2 0

0 1 3 1

1 2

1 3

X1, 19/3 7 4 −4

1 3 3 0 0

0 2 1 1 0

1 2 0 0 1

3 0 0

2 1 0

2 0 1

X1, 16/3 6 5 −2
1 1 0 0 0 1

0 0 1 1 3 3

1 0

0 1

X1, 13/3 5 6 0
1 1 3 1 0 4

0 0 0 1 1 1

1 1

0 1

X1, 10/3 4 7 2
1 1 2 1 0 0 2 2

0 0 1 2 1 1 2 2

2 1

1 2

X1, 7/3 3 8 4
F = wGr(2, 5) and OF (2)⊕ 4

where w =
(
1
2 ,

1
2 ,

1
2 ,

3
2 ,

3
2

) 1

X1, 4/3 2 9 6 1 1 2 2 3 4 4 1

Continued on next page.
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Continued from previous page.

Name h0(X,−KX) r No. moduli Weights and Line bundles Nef F

X1, 1/3 1 10 8 1 2 3 5 10 1

X2, 17/3 6 5 -4
1 1 2 3 0 4

−1 0 1 3 1 2

2 1

1 1

X2, 14/3 5 6 -2
1 1 0 0 −1 0

0 1 1 3 1 4

1 0

1 1

X2, 11/3 4 7 0

1 0 0 1 0 1 2

0 1 0 0 1 1 2

0 0 1 1 1 4 4

3 1 1

1 3 1

4 4 4

X2, 8/3 3 8 2
1 1 1 1 0 3

0 0 1 3 1 3

1 1

1 3

X2, 5/3 2 9 4
1 1 2 1 0 4

0 1 3 3 1 6

2 1

3 3

X2, 2/3 1 10 6 1 2 2 3 3 4 6 1

X3, 5 5 6 -4

1 0 0 1 0

0 1 −1 1 0

0 0 1 1 3

1 1 0

1 0 0

1 1 1

X3, 4 4 7 -2

1 −1 1 0 0 0

−1 1 0 0 0 1

2 1 0 1 0 0

1 2 0 0 1 0

0 1 0 1 0 1 2

0 0 1 0 1 2 1

1 2 1 2 2 2 2

1 1 2 2 2 4 4

X3, 3 3 8 0
1 1 1 0 0 2

0 0 1 1 3 3

1 0

1 1

X3, 2 2 9 2
1 3 2 0 −1 4

0 0 1 1 1 2

2 0

1 1

X3, 1 1 10 4

1 0 0 2 1 1 4

0 1 0 1 2 1 4

0 0 1 1 1 2 4

2 1 1

1 2 1

1 1 2

X4, 7/3 2 9 0
1 0 0 −1 −1 0

0 3 3 2 1 6

0 −1

1 2

X4, 4/3 1 10 2

1 0 0 0 2 1 1 1 2 3

0 1 0 0 1 2 1 1 2 3

0 0 1 0 1 1 2 1 3 2

0 0 0 1 1 1 1 2 3 2

2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

X4, 1/3 0 11 4 2 2 3 3 3 6 6 1

Continued on next page.
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Continued from previous page.

Name h0(X,−KX) r No. moduli Weights and Line bundles Nef F

X5, 5/3 1 10 0
F and D(s) where

s : E ⊗ L→ E∨ as in [CH, § 3.3]

X5, 2/3 0 11 2 F and L⊕2 as in [CH, § 3.4]

X6, 2 1 10 -2

F/lµ.. 3 (see [CH, § 2.2.5])

where F has weights

1 −1 1 0 0 0

1 0 0 1 0 0

0 1 0 0 1 0

−1 1 0 0 0 1

1 0 0 1 0

1 1 0 1 1

0 1 1 1 1

0 0 1 0 1

X6, 1 0 11 0
P3/lµ.. 3 and O(3) where

lµ.. 3 acts with weights 1
3 ,

1
3 ,

2
3 ,

2
3

7.6 Computations

In what follows, we recall how to build a toric variety from the data in the table and how to compute
its singularities.

From a GIT quotient to a fan Consider a rank r lattice L∗ ∼= Zr and denote by G the torus with
character group L∗. Consider now Z∗m, denote by xi the standard basis elements, let D : Z∗m → L∗
be a group homomorphism such that the Di = D(xi) span a strictly convex cone C ⊂ L∗R. D dualises
to a group homomorphism G→ C×m and hence G acts on Cm.

Definition-Remark 7.24. It is easy to see [Ahm] that:

(1) Choose a basis of L∗ ∼= Zr and identify D with a r×m matrix, which we call the weight matrix.
G acts faithfully if and only if the rows of D span a saturated sublattice of Zr, if and only if
the hcf of all the r × r minors of D is 1. A matrix satisfying this condition is called standard.

(2) G acts faithfully on the divisor Di = (xi = 0) ⊂ Cm if and only if the matrix D î =

(D1 . . . , D̂i, . . . , Dm) obtained from D by removing the i-th column, is standard.

Definition 7.25. The homomorphism D : Z∗m → L∗ is well-formed if both the weight matrix D
and the D î for all i = 1, . . . ,m are standard.

Remark 7.26. We can take GIT quotients for any D; however, if D is the divisor homomorphism of
some toric variety XΣ, then D is well-formed. The aim of the considerations that follow is precisely
to state that the converse is also true.

Given an element ω ∈ L∗R, which we refer to as a stability condition, we can form the GIT
quotient

Xω := Cm//ωG,
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which we detail below. There is a wall-and-chamber decomposition of C ⊂ L∗R, called the secondary
fan, and if stability conditions ω1, ω2 lie in the same chamber then the GIT quotients Xω1 , Xω2

coincide. More precisely, the walls of the decomposition are the cones of the form 〈Di1 , . . . , Dik〉 ⊂
L∗R that have codimension one. The chambers are the connected components of the complement
of the union of all the walls; these are r-dimensional open cones in C. By construction, a chamber
is the intersection of the interiors of the simplicial r-dimensional cones 〈Di1 , . . . , Dir〉 ⊂ L∗R that
contain it. Choose now a chamber, and pick a stability condition ω in it. Given such an ω, the
irrelevant ideal Iω ⊂ C[x1, . . . , xm] is

Iω =
(
xi1 · · ·xir | ω ∈ 〈Di1 , . . . , Dir〉

)
the unstable locus is Zω = V (Iω); and the GIT quotient is the bona fide quotient

Xω = (Cm \ Zω)/G .

Note that Iω, Zω and the quotient Xω depend only on the chamber that ω sits in and not on ω
itself. Given such an ω we can also form a simplicial fan Σ where

σ ∈ Σ if and only if ω ∈ 〈Di | i 6∈ σ〉

and Σ also depends only on the chamber that ω sits in.

Charts on GIT quotients We explain how to set up an explicit atlas of charts on Xω =
[(Cm\Zω)/G], which we use repeatedly in the calculations needed to validate the entries of Table 7.3.
Fix a well-formed D : Z∗m → L∗, choose a basis of L∗, identify D with an integral r ×m matrix.
We have that Cm \ Zω is a union of G-invariant open subsets:

Cm \ Zω =
⋃

{(i1,...,ir)|ω∈〈Di1 ,...,Dir 〉}

Ui1,...,ir where Ui1,...,ir = {xi1 6= 0, . . . , xir 6= 0} ⊂ Cm

Let now Vi1,...,ir = {xi1 = · · · = xir = 1} ⊂ Cm, then [Ui1,...,ir/G] = [Vi1,...,ir/lµ.. ] where lµ.. is the
finite subgroup of G that fixes Vi1,...,ir . Concretely, lµ.. is the finite group with character group A,
the cokernel of the homomorphism:

Di1,...,ir = (Di1 , . . . , Dir) : Z∗ r → L∗

Complete intersections in toric varieties Consider a well-formed D : Z∗m → L∗ as above.
Fix a chamber of the secondary fan, a stability condition in it, and let F = XΣ be the corresponding
simplicial toric variety. (the models constructed here are such that F is always Fano, and we assume
that ω = D1 + · · · + Dm is the anticanonical divisor of F . This assumption however is irrelevant
for the present discussion.) We consider complete intersections X ⊂ F of general elements of linear
systems |L1|, . . . , |Lc| where Li ∈ L∗ are G-linearised line bundles, that is, line bundles on XΣ.2

The space of sections H0(F,Li) is the vector subspace of C[x1, . . . , xm] with basis consisting of
monomials xv ∈ C[x1, . . . , xm] where v ∈ Z∗m has homogeneity type Li, that is D(v) = Li. Let
fi ∈ H0(F,Li), then V (f1, . . . , fc) is stable under the action of G, and we consider the subvariety
X = (V (f1, . . . , fc) \ Zω)/G ⊂ F :

2More precisely, line bundles on the canonical DM stack of XΣ.
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Definition 7.27. 1. X ⊂ F is quasi-smooth if either: V (f1, . . . , fc) ⊂ Zω, or

V (f1, . . . , fc) \ Zω ⊂ Cm \ Zω

is a smooth subvariety of codimension c;

2. Suppose that X ⊂ F is quasi-smooth. We say that X is well-formed if the following holds:
For all toric strata S ⊂ F with nontrivial stabilizer, S ⊂ X implies codimX S ≥ 2.

7.6.1 A sample computation

In the column labelled “Weights and Line bundles,” all lines of Table 7.3, except those corresponding
to families X1, 7/3, X5, 5/3, X5, 2/3, X6, 2 and X6, 1, list a well-formed weight matrix

D : Z∗m → L∗ = Zr

for constructing a simplicial toric variety F and, to the right of it and separated by a vertical
line, a list of column vectors Li ∈ Zr, representing line bundles on F such that X is a complete
intersection of general members of the |Li|. The last column is a list of column vectors in Zr, the
generators of Nef F , which is the chamber of the secondary fan that contains the stability conditions
that give F as GIT quotient. In all cases it is immediate to verify that the Li ∈ Nef F and that
−KF − Λ ∈ AmpF where Λ =

∑
Li. In particular it follows from this that X is a Fano variety.

Family X1, 10/3

As stated in Corollary 7.8, a surface X in this family is either: (i) The blow-up of P(1, 1, 3) at d = 5
general points; or (equivalently) (ii) The blow-up of B1, 16/3 at d = 2 general points.

According to the table, a surface in this family can be constructed as a codimension 2 complete
intersection of type L1 = (2, 2), L2 = (2, 2) in the (manifestly well-formed) simplicial toric variety
F with weight matrix:

x0 x1 x2 x3 x4 x5

1 1 2 1 0 0

0 0 1 2 1 1

and Nef F = 〈L+ 2M, 2L+M〉, where L = (1, 0) and M = (0, 1) are the standard basis vectors of
L∗. Note that both L1, L2 are ample, and −(KF + L1 + L2) ∼ L+M is ample.

First we examine all the charts of F and verify that X is a quasi-smooth well-formed complete
intersection with 1× 1

3(1, 1) singularities. Finally we calculate K2
X = 10/3.

The chamber is 〈x2, x3〉, so the irrelevant ideal for the given stability condition is

Irr = (x0, x1, x2)(x3, x4, x5),

and the charts are the Uij with i ≤ 2, 3 ≤ j.
Let us first look at the chart U03 = {x0 6= 0, x3 6= 0}. Considering V03 = {x0 = x3 = 1} ⊂ C6 it

is immediate that:

U03 =
1

2
(0, 1, 1, 1)x1,x2,x4,x5

the quotient of V03
∼= C4 with coordinates x1, x2, x4, x5 by the action of lµ.. 2 with weights (0, 1, 1, 1).

We see that the x1-axis C is a curve toric stratum of the 4-fold F with stabilizer lµ.. 2 at the generic
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point. We claim that C ∩X = ∅. Indeed C = {x2 = x4 = x5 = 0} is the toric variety with weight
matrix:

x0 x1 x3

1 1 1

0 0 2

Note, however, that this matrix is not well-formed. Applying the algorithm in [Ahm], we see that
C, together with the line bundles L1|C , L2|C , is the toric variety with well-formed weight matrix

x0 x1 x3

1 1 0

0 0 1

and line bundles L1|C = L2|C = (1, 1), which is manifestly the same as P1 with L1|C = L2|C = O(1).
It is clear that the two restriction maps H0(F,Li) = 〈x0x3, x1x3〉 → H0(C,Li|C) are surjective and
thus two general members of L1 and L2 do not intersect anywhere on C.

The chart U13 is very similar; and the charts U04, U05, U14, U15 are smooth and it is immediate
that none of the strata passing through those charts are contained in the base locus of |Li|; thus,
we only need to look at U23.

Considering V23 = {x2 = x3 = 1} ⊂ C6 it is easy to see that:

U23 =
1

3
(1, 1, 1, 1)x0,x1,x4,x5

the quotient of V23
∼= C4 with coordinates x0, x1, x4, x5 by the action of lµ.. 3 with weights (1, 1, 1, 1).

Denote by fi ∈ H0(F,Li) general members: the monomials x0x3, x1x3, x2x4, x3x4 all appear in fi
with nonzero coefficient, thus the surface X must contain the origin of this chart, it is quasi-smooth
there, and it has a singularity 1/3(1, 1) there. This completes the verification that X is well-formed
and has 1× 1/3(1, 1) singularities.

We now compute the degree of X. The Chow ring of F is generated by L = (1, 0) and M = (0, 1)
with the relations L2(2L+M) = 0, (L+2M)M2 = 0 (corresponding to the components (x0, x1, x2),
(x3, x4, x5) of Irr), and, for example, L2M2 = 1/3 obtained by looking at the chart U23. From this
information, we get that L3M = −(1/2)L2M2 = −1/6 and L4 = −(1/2)L3M = 1/12 and similarly
M4 = 1/2, M3L = −1/6 and then it is easy to compute:

K2
X = L1L2(−KF −L1−L2)2 = (2L+2M)2(L+M)2 = 4(L+M)4 = 4

( 1

12
− 4

6
+

6

3
− 4

6
+

1

12

)
=

10

3
.
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Soc. Math. France, 113(1):23–51, 1985.

100


	Introduction
	Fano manifolds
	Previous results
	Main results
	Outlook

	Preliminaries
	Fano varieties
	Singularities of pairs

	Fano fourfolds
	Terminality
	Separating strict transforms
	Log pairs with mobile boundaries
	Fixed singularities
	Moving singularities


	The bi-anticanonical system
	Effective Nonvanishing
	Examples in Weighted Projective Spaces
	Introduction
	The hypersurface case
	Complete intersection of two hypersurfaces
	The examples


	Del Pezzo surfaces with 1/3(1,1) singularities
	Introduction
	The results

	Invariants
	MMP
	Trees
	Tables
	Computations
	A sample computation



