N
N

N

HAL

open science

Crowdtuning: towards practical and reproducible
auto-tuning via crowdsourcing and predictive analytics
Abdul Wahid Memon

» To cite this version:

Abdul Wahid Memon. Crowdtuning: towards practical and reproducible auto-tuning via crowdsourc-
ing and predictive analytics. Intelligence artificielle [cs.Al]. Université Paris Saclay (COmUE), 2016.

Frangais. NNT: 2016SACLV037 . tel-01395556

HAL Id: tel-01395556
https://theses.hal.science/tel-01395556v1
Submitted on 10 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-01395556v1
https://hal.archives-ouvertes.fr

UNIVERSITE DE @W@;
VERSAILLES &=

[
u n I Ve rs Ite ST-QUENTIN-EN-YVELINES

PARIS-SACLAY UNIVErSIte PARIS-SACLAY

NNT : 2016SACLV037

THESE DE DOCTORAT
DE
L’UNIVERSITE PARIS-SACLAY
PREPAREE A
“UNIVERSITE DE VERSAILLES SAINT QUENTIN”

ECOLE DOCTORALE N° 580
Sciences et technologies de l'information et de la communication

Spécialité de doctorat Informatique

Par

M. Abdul Wahid Memon

Crowdtuning: Towards Practical and Reproducible Auto-tuning via Crowdsourcing and
Predictive Analytics

Thése présentée et soutenue a Versailles, le 17 Juin 2016 :

Composition du Jury :

Monsieur BARTHOU Denis Professeur, Université de Bordeaux Président
Monsieur BARTHOU Denis Professeur, Université de Bordeaux Rapporteur
Monsieur BASTOUL Cédric Professeur, Université de Strasbourg Rapporteur
Monsieur CASTRO Pablo de Oliveira Maitre de conférences, Université de Versailles Examinateur
HEYDEMANN Karine Maitre de conférences, Université Pierre et Marie Curie Examinatrice
Monsieur JALBY William Professeur, Université de Versailles Directeur de thése

Monsieur FURSIN Grigori Chercheur, cTuning Foundation, France Co-directeur de thése

ECOLE DOCTORALE

de l'information

o .
universite

PARIS-SACLAY

Sciences et technologies

et de la communication (STIC)

Titre : Crowdtuning: Auto-tuning Pragmatique et Reproductible via Crowdsourcing et Analyses

Prédictives

Mots clés : réglage automatique de compilateur, gestion des connaissances, reproductibilité des
ex- périmentations, I'optimisation du programme par crowdsourcing, apprentissage automatique,

partage de code et des données

Résumé: Le réglage des heuristiques
d'optimisation de compilateur pour de multiples
cibles ou implémentations d’une méme
architecture est devenu complexe. De plus, ce
probléme est généralement traité de facon ad-
hoc et consomme beaucoup de temps sans étre
nécessairement reproductible. Enfin, des erreurs
de choix de paramétrage d’heuristiques sont
fréquentes en raison du grand nombre de
possibilités d’optimisation et des interactions
complexes entre tous les composants matériels
et logiciels. La prise en compte de multiples
exigences, comme la performance, Ila
consommation d'énergie, la taille de code, la
fiabilité et le coflit, peut aussi nécessiter la
gestion de plusieurs solutions candidates. La
compilation itérative avec profil d’exécution
(profiling feedback), le réglage automatique
(auto tuning) et I'apprentissage automatique ont
montré un grand potentiel pour résoudre ces
problémes. Par exemple, nous les avons utilisés
avec succeés pour concevoir le premier
compilateur qui utilise I'apprentissage pour
I'optimisation automatique de code. Il s'agit du
compilateur Milepost GCC, qui apprend
automatiquement les meilleures optimisations
pour plusieurs programmes, données et
architectures en se basant sur les
caractéristiques statiques et dynamiques du
programme. Malheureusement, son utilisation
en pratique, a été trés limitée par le temps
d'apprentissage trés long et le manque de
benchmarks et de données représentatives. De
plus, les modéles d'apprentissage « boite noire »
ne pouvaient pas représenter de facon pertinente
les corrélations entre les caractéristiques des
programme ou architectures et les meilleures
optimisations.

Dans cette thése, nous présentons une nouvelle
méthodologie et un nouvel écosysteme d’outils
(framework) sous la nomination Collective
Mind (cM).

Université Paris-Saclay
Espace Technologique / Immeuble Discovery

L’objectif est de permettre a la communauté de
partager les différents benchmarks, données
d’entrée, compilateurs, outils et autres objets
tout en formalisant et facilitant la contribution
participative aux boucles d’apprentissage. Une
contrainte est la reproductibilit¢ des
expérimentations pour I’ensemble des
utilisateurs et plateformes. Notre cadre de
travail open-source et notre dépot (repository)
public permettent de rendre le réglage
automatique et l'apprentissage d’optimisations

praticable. De plus, cM permet a la
communauté¢ de valider les résultats, les
comportements inattendus et les modéles

conduisant a de mauvaises prédictions. cM
permet aussi de fournir des informations utiles
pour l'amélioration et la personnalisation des
modules de réglage automatique et
d'apprentissage ainsi que pour I'amélioration des
modeles de prévision et l'identification des
¢léments manquants.

Notre analyse et évaluation du cadre de travail
propos¢ montre qu'il peut effectivement
exposer, isoler et identifier de facon
collaborative les principales caractéristiques qui
contribuent a la précision de la prédiction du
mod¢le. En méme temps, la formalisation du
réglage automatique et de l'apprentissage nous
permettent d'appliquer en permanence des
techniques standards de réduction de
complexité. Ceci permet de se contenter d'un
ensemble minimal d'optimisations pertinentes
ainsi que de benchmarks et de données d’entrée
réellement représentatifs.

Nous avons publié la plupart des résultats
expérimentaux, des benchmarks et des données
d’entrée a l'adresse http://c-mind.org tout en
validant nos techniques dans le projet EU FP6
Milepost et durant un stage de thése HIPEAC
avec STMicroelectronics.

Route de I'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

ECOLE DOCTORALE

de l'information

o .
universite

PARIS-SACLAY

Sciences et technologies

et de la communication (STIC)

Title : Crowdtuning: Towards Practical and Reproducible Auto-tuning via Crowdsourcing and

Predictive Analytics

Keywords : compiler auto-tuning, knowledge management, reproducible expeirments,
crowdsourcing program optimization, machine learning, code and data sharing

Tuning general compiler optimization
heuristics or optimizing software for rapidly
evolving hardware has become intolerably
complex, ad-hoc, time consuming and error
prone due to enormous number of available
design and optimization choices, complex
interactions between all software and hardware
components, and multiple strict requirements
placed on performance, power consumption,
size, reliability and cost. Iterative feedback-
directed compilation, auto-tuning and machine
learning have been showing a high potential to
solve above problems. For example, we
successfully used them to enable the world's
first machine learning based self-tuning
compiler, Milepost GCC, which automatically
learns the best optimizations across multiple
programs, data sets and architectures based on
static and dynamic program features.
Unfortunately, its practical use was very
limited by very long training times and lack of
representative benchmarks and data sets.
Furthermore, « black box » machine learning
models alone could not get full insight into
correlations between features and Dbest
optimizations.

In this thesis, we present the first to our
knowledge methodology and framework, called
Collective Mind (cM), to let the community
share various bench marks, datasets, compilers,

Université Paris-Saclay
Espace Technologique / Immeuble Discovery

tools and other artifacts while formalizing and
crowdsourcing optimization and learning in
reproducible way across many users
(platforms). Our open-source framework and
public optimization repository helps make
auto-tuning and machine learning practical.
Furthermore, cM let the community validate
optimization results, share unexpected run-time
behavior or model mispredictions, provide
useful feedback for improvement, customize
common auto-tuning and learning modules,
improve predictive models and find missing
features. Our analysis and evaluation of the
proposed framework demonstrates that it can
effectively expose, isolate and collaboratively
identify the key features that contribute to the
model prediction accuracy. At the same time,
formalization of auto-tuning and machine
learning allows wus to continuously apply
standard complexity reduction techniques to
leave a minimal set of influential optimizations
and relevant features as well as truly
representative benchmarks and data sets.

We released most of the experimental results,
benchmarks and data sets at http://c-mind.org
while validating our techniques in the EU FP6
MILEPOST project and during HiPEAC
internship at STMicroelectronics.

Route de I'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Dedicated to my family and friends.

vii

Publications

(1]

Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski, Olivier
Temam, Mircea Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Courtois,
Francois Bodin, Phil Barnard, Elton Ashton, Edwin Bonilla, John Thomson, Christo-
pher Williams, and Michael F. P. O’Boyle. Milepost gcc: Machine learning enabled
self-tuning compiler. International Journal of Parallel Programming, 39:296-327,
2011. 10.1007/s10766-010-0161-2.

Grigori Fursin, Abdul Wahid Memon, Christophe Guillon, and Anton Lokhmotov.
Collective mind, part II: Towards performance-and cost-aware software engineering
as a natural science. arXiv preprint arXiv:1506.06256, 18th International Workshop
on Compilers for Parallel Computing (CPC’15) London, UK, January 2015.

Abdul Wahid Memon and Grigori Fursin. Crowdtuning: systematizing auto-tuning
using predictive modeling and crowdsourcing. In PARCO mini-symposium on "Ap-
plication Autotuning for HPC (Architectures)”, Munich, Allemagne, September 2013.

Shared Artifacts

All the benchmarks, datasets and tools pertaining to Collective Mind experimentations

have been shared for validation by community at c-mind.org/repo.

ix

c-mind.org/repo

Acknowledgements

First and foremost, I am grateful for the scientific and technical support of Dr. Grigori
Fursin to successfully complete this thesis. He has been very kind and cooperative
throughout my research work. His vast expertise in the domain of optimizing compilers,
machine learning, auto-tuning software and reproducibility of experiments has been a
great source of inspiration for me right from the beginning. His continuous support
and coordination always kept me on the right path throughout my PhD. I wish him all

the very best for his career.

I am thankful to Prof. William Jalby, my thesis director, for his scientific and adminis-
trative support. His polite attitude and cooperation has been a tremendous source of

encouragement for me.

I extend my gratitude to Pablo de Oliveira, Christophe Guillon, Umair Ali Khan, Chris-
tian Bertin, Yvan Roux, Yuriy Kashnikov, and Abdelhafid Mazouz for their technical
and moral support throughout my research work and thesis write-up. They have been

great friends and mentors for me throughout my PhD.

I am also very thankful to HEC!, Pakistan for awarding me Masters leading to PhD
scholarship and HiPEAC? for providing me the research grant to conduct research at

STMicroelectronics, France from August to December 2013.

Lastly, I am in debt to the continuous moral support of my parents, family and friends

during my PhD. I wish I could tell them how much I love them.

IHigher Education Commission
2European Network of Excellence on High Performance and Embedded Architecture and Compilation

xi

Contents

1 Introduction

1.1 Introduction e
1.2 Motivation e
1.3 Cooperative research and experimentation
1.4 Collective Mind: cooperative experimentation
1.5 Real-life motivating example L o L
1.6 Researchobjectives
1.7 Thesis contribution o
1.8 Thesis organization
2 Background

2.1 Introduction
2.2 Compilerbasics
2.3 Optimizingcompiler

2.3.1 Optimizing transformations
2.4 Iterative compilation (auto-tuning)
2.5 Machine learning for tuning compiler optimization

2.5.1 Decisiontrees

2.5.2 K-nearestneighbor (KNN)

2.5.3 Support vector machine (SVM)
2.6 Experiment crowdsouringo oL
2.7 SUMMATY . . . v v v ot e e e e e

3 Compiler auto-tuning

3.1 Introduction e
3.2 Experimentalsetup

3.2.1 Compiler

3.2.2 Optimizations oo

3.2.3 Platforms

10
13
18
19
20

23
23
23
25
25
29
31
32
33
34
35
36

37
37
37
37
38
39

xiii

Cco

NTENTS
3.2.4 Benchmarks and experiments 39
3.2.5 Collective optimization database 40
3.3 Multi-objective empirical iterative optimization 40
3.4 Summary e 47

MILEPOST GCC: Speeding up iterative compilation with machine learning 49

4.1 Introduction e 49
4.1.1 Milepost adaptive optimization framework 50
4.1.2 Milepost GCC and interactive compilation interface 51
4.1.3 Static program features 53

4.2 Predicting optimization passes with machine learning 54
4.2.1 Probabilistic machine learningmodel 57
4.2.2 Transductive machine learningmodel 60

4.3 Realistic optimization scenario of a production application 61

44 SUMMMATY . . . 0 vt vt e e e e e e 64

Crowdsourcing compiler auto-tuning practical with Collective Mind 65

5.1 Introduction 65

5.2 Collective Mind approach 65
5.2.1 Interdisciplinary collaborative methodology 66

5.3 Collective Mind infrastructure and repository 67
5.3.1 Data and parameter description and classification 70

5.3.2 OpenME interface for fine-grain analysis, tuning and adaptation . 73

5.4 Co-existence of multiple versions of tools and libraries 74
55 Summary 75
Crowdsourcing feature learning and model improvement 77
6.1 Introduction 77
6.2 Public research scenarios and experimental pipelines 77

6.2.1 Validating compiler auto-tuning (iterative compilation) 79

6.2.2 Validating machine learning (classification and predictive modeling) 80

6.3 Learning dataset features to enable adaptive software 85
6.4 Summary e 88
Conclusion and future work 89
Reproducing experiments 93
A.1 Grid5000 Framework 93

xiv

CONTENTS

A.1.1 Experimental setup on Grid5000 94

A.2 Sharing artifacts for reproducibility o oL 96
A.2.1 Compiler flagspruningo L. 96

A.3 Crowdsourcing auto-tuning using mobile devices 98
Bibliography 99

Xv

List of Figures

1.1
1.2

1.3

1.4

2.1
2.2
2.3

2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5

3.6

4.1

4.2

Traditional computer engineering vs. our collaborative platform 11

Conceptual example of pattern recognition, image filtering and character

noise reduction using Hopfield neural network 14

A small subset of various hardware, software, development tools and

optimizations used in our research on neural networks 16
Example of gradually and manually crafted advices as decision trees to

deliver best performance and cost for our neural network 18
Phases of compiler operation o e 24
CFGofmc.codelet-9.1 o o 27
Speedup achieved by enabling and disabling various transformations. Above

listed transformations are enabled by default at -O3. 29
Feedback-directed iterative compilation 30
Decision tree of -falign-functions optimization 33
Classification with KNN algorithm 34
Support vector machine. Lo oo o 35
Evolution of optimization flags and their parameters 38
Maximum exeuction time speedup using iterative compilation 41
Distribution of speedups during iterative compilation 42
Distribution of speedups on AMD platform during iterative compilation 44
Code size improvements and compilation time speedups for optimization

CASES . v v v v e e e e e e 45
Number of iterations needed to obtain 95% of the available speedup

using iterative compilation with uniform random distribution 45
Open framework to automatically tune programs and improve default

optimization heuristics L Lo o oo 51
GCC Interactive Compilation Interface: a) original GCC, b) Milepost GCC

with ICLand plugins e 52

xvii

LIST OF FIGURES

4.3

4.4
4.5
4.6

4.7
4.8

5.1
5.2
5.3

6.1
6.2

6.3

6.4

6.5
6.6
6.7

Comparison of optimizations yeilding the best performance for a given

PIOZIam oot tee
Euclidean distance for all programs based on static program features
Iterative compilation speedups on AMD and Intel

Speedups of iterative compilation on ARC with (i) random search strategy,

and (ii) Milepost feature learningmodels
Top levels of decision trees learnt for ARC.

Execution time speedups (a), code size improvements (b) and compilation

time speedup (c) for BerkeleyDBon Intel

High level depiction of Collective Mind Framework and Repository (cM)
Conceptually depicted current ad-hoc experimentation

Event and plugin-based OpenME interface

Summary of the presented cooperative approach and practical buildbot .

Variation in execution time vs code size when crowdsourcing optimiza-

tion of an image corner detection application

Several distinct combinations of optimizations covering shared code and

dataset samples

Automatic detection of the relevant feature(s) to predict optimization

cluster.
Detecting missing dataset feature with the help of the community
Unexpected behavior helped to identify and share missing feature.

Concept of performance- and cost-aware self-tuning software assembled from cM

plugins. L e

xviii

List of Tables

3.1

4.1

6.1
6.2

Best found combinations of Milepost GCC flags to improve execution

time, code size and compilationtime L.
List of static program features currently available in Milepost GCC V2.1 . . .

Some of the top performing combinations of optimization flags in GCC .

Prediction accuracy when using optimized SVM with full cross-validation

from prior and current works respectively 0oL

Xix

Introduction

1.1 Introduction

Designers of new embedded architectures attempt to bring higher performance and
lower power across a wide range of programs while keeping time to market as short as
possible. These embedded architectures vary in performance, size, power consumption,
reliability, price and other characteristics depending on numerous available hardware
features such as processor architecture, number of cores, availability of specialized
hardware accelerators, working frequency, memory hierarchy and available storage.
However, delivering such resources for high performance computing or ultra low-power
for embedded systems is becoming intolerably complex, costly and error prone due to
limitations of available technology, huge number of available designs and optimization
choices, complex interactions between all software and hardware components, and
growing number of incompatible tools and techniques with ad-hoc, intuition based
heuristics. As a result, understanding and modeling of the overall relationship between
end-user algorithms, applications, compiler optimizations, hardware designs, data
sets and run-time behavior, essential for providing better solutions and computational
resources, have become infeasible as confirmed by numerous recent long-term interna-
tional research visions about future computer systems [5, 71, 38, 68, 67, 118]. On the
other hand, engineers often have to develop software that may end up running across
different, heterogeneous and possibly virtualized hardware in multiple embedded plat-
forms, desktops, HPC servers, data centers and cloud services. Such a rising complexity
of computer systems and limited development time usually force software engineers
to rely almost exclusively on existing compilers, operating systems and run-time li-
braries in a hope to deliver highly optimized, computational-efficient, scalable, reliable

and power-efficient executable codes across all available hardware. As a result, peak

CHAPTER 1. INTRODUCTION

performance of the new systems is often achieved only for a few previously optimized
and not necessarily representative benchmarks such as SPEC for desktops and servers
or LINPACK for TOP500 supercomputer ranking, while leaving most of the systems

severely underperforming and wasting expensive resources and power.

Automatic offline and online performance tuning of compilers to achieve satisfactory
portable performance is generally performed using empirical iterative compilation for
statically compiled programs, applying automatic compiler tuning based on feedback-
directed compilation. In this technique, static optimization model of a compiler is
replaced by an iterative search of the optimization space to empirically find the most
profitable solutions that improve execution time, compilation time, code size, power

and other metrics.

Bodin et al. [11] studied the applicability of iterative optimization for selecting the
best optimization for a program. They showed that by using profile feedback in the form
of execution time, a restricted non-linear search space could be effectively searched to

outperform the existing approaches.

Nisbet et al. [109] showed that genetic algorithm can be applied to iterative op-
timization problems. In their proposed approach, referred to as Genetic Algorithm
Parallelisation System (GAPS), they evaluate the application and performance benefit of
genetic algorithm optimization techniques to the compilation of loop-based programs
for parallel architectures. They showed that GAPS can deliver significant performance
improvement in parallel execution time.

Cooper et al. [30] targeted to reduce the size of the compiled code by applying the
genetic algorithm to find optimization sequence that generates small object codes. Their
evaluations on several benchmarks and comparisons with no-optimization or fixed
optimization techniques showed significant improvements.

Kisuki et al. [88] investigated the efficacy of iterative compilation on a combined
selection of tile sizes and unroll factors. They further evaluate the iterative strategies
based on genetic algorithms, random sampling and simulated annealing to select op-
timal tile sizes and unroll factors simultaneously. They compare their optimization
strategies with several existing techniques and showed that their techniques outperform
each of them on a variety of architectures.

Cooper et al. [29] focused on compile-execute-analyze feedback loop and proposed
a technique to reduce the execution time of iterative compilation. Their proposed
technique captures salient information about a program in a single run and uses this
information to predict its performance for different optimization sequences. Their
experiments showed that their proposed technique can significantly reduce the adaptive
compilation time.

Kulkarni et al [89] used genetic algorithm to find effective sequences of optimization
phases and providing the user with dynamic and static performance information that

can be used during an interactive compilation session to gauge the progress of improving

1.1. INTRODUCTION

the code. A peculiar shortcoming of all the techniques using genetic algorithm for
iterative compilation is that genetic algorithms can be unstable and their fixed-length

representation precludes their use in many problems.

Cooper et al. [31] explored different orders of optimization sequence to discover a
program-specific compilation sequence that minimizes an explicit, external objective
function. They showed that depending on the objective function selected, their proposed
technique can produce significant reduction in code size and execution time. However,

their technique requires large number of passes before it can discover a solution.

Triantafyllis et al. [133] came up with improvements over the traditional predic-
tive heuristic techniques by proposing a technique which uses the compiler writer’s
knowledge encoded in the heuristics to select a small number of promising optimization
alternatives for a given code segment. However, this technique is limited to the best

sequences categorized into a small tree of compiler options [28].

Fursin et al. [51] proposed a technique for guiding optimizations for numerical
applications based on iterative feedback-directed program restructuring. Using the
profiling techniques to find the best possible program variant, they showed signifi-
cant performance improvement as compared to the native static and platform-specific

feedback directed compilers.

Pan et al. [113] also focused on reducing the number of evaluations by proposing
a technique referred to as Combined Elimination (CE) which selectively turns off
optimizations until the best optimization is found for a new program. Their results
showed that the performance achieved by CE is close to the upper bound obtained by

an exhaustive search algorithm.

Code optimization for embedded devices must take into consideration the important
factors of power consumption, performance, memory space, etc. In order to deal with
these conflicting objectives, Heydemann et al. [69] formulated the iterative optimization
problem as a constraint optimization methodology to find a Pareto-optimal search space
among multiple objectives. They showed that they could find a deeper trade-off between
these objectives at the expense of minimum possible performance degradation. Hoste et
al. [74] further explored the same problem by automatically finding the Pareto-optimal
search space of the multiple objectives. They showed that their technique can produce
better optimization levels than GCC’s manually driven optimization levels and those

obtained through random sampling.

Franke et al. [46] further worked on finding best optimization sequences in a large
search space. Their technique comprised localization of specific areas of search space
to find the best candidate solution, while reducing the search time. Their experiments
demonstrated that their technique outperformed the existing techniques by significantly

reducing the execution time.

A common assumption prevelant in iterative compilation was that the best con-

figuration found for any arbitrary data set will work well with other data sets that a

CHAPTER 1. INTRODUCTION

program uses. Fursin et al. [53] evaluated this assumption MiBench benchmark for 20
datasets per benchmark. They found that although the variability increases for many
optimizations, it is found to be small for the best optimization configuration and a

compromised optimization configuration across data sets can be found.

Chen et al. [20] evaluated iterative compilation for much larger data sets by creating
a huge, publicly available data set for 32 programs. They showed that despite of the
diversity of the data set, iterative compilation can be used to find a robust strategy for
all programs. They further showed that there exists at least one combination of compiler
optimizations that achieves 86% or more of the best possible speedup across all data

sets.

Fursil et al. [54] focused on speeding up the evaluations of a large number of
optimizations in iterative compilation using static multi-versioning of the most time-
consuming code sections, and a low-overhead run-time phase detection scheme. This
technique can speed up iterative search by several orders of magnitude and can be

beneficial during the training data generation stage of our models.

This approach requires little or no knowledge of the platform and can adapt pro-
grams to any given architecture. This approach is currently used in library generators
and adaptive tools [137, 97, 124, 117, 1, 44]. However, it is generally limited to search-
ing for combinations of global compiler optimization flags and tweaking a few fine-grain
transformations within relatively narrow search spaces. The main barrier to its wider
use is the excessive compilation and execution time needed in order to optimize each
program. This prevents a wider adoption of iterative compilation for general purpose

compilers.

This problem can be more effectively addressed using machine learning which
has the potential of reusing knowledge across iterative compilation runs, gaining the
benefits of iterative compilation while reducing the number of executions needed.
Machine learning has been actively promoted as a possible solution to cope with ever
rising complexity of computer systems including dramatically increasing number of
available program optimizations such as compiler flags for more than a decade.

Calder et al. [CGJ1997] used neural networks and decision trees for static branch
prediction at compile time. They trained the neural network with the input program
features associated with each branch in the training set such as control flow and op-code
information. This approach outperformed static heuristics [6, 14] by a considerable
margin.

In another work [129], an approach referred to as Meta optimization was introduced
to fine-tune compiler heuristics using genetic algorithm. As the experimental use-cases,
three optimizations were selected, namely hyper-block formation, register allocation and
data pre-fetching. They achieved significant improvements for hyper-block formation
and data pre-fetching. However, the heuristic for register allocation did not turn out to

be more effective as they were able to only achieve an average 2% improvement over the

1.1. INTRODUCTION

manually tune heuristic.

Monsifrot at el. [106] attempted to generate the optimization heuristic for a simple
optimization called loop unrolling. Though simple, it is difficult to devise a prediction
rule for this optimization. They constructed a classifier based on a decision tree to
predict loop unrolling in a program. This was a preliminary approach to show that
decision trees can be successfully used to learn the target-specific heuristics for loop

unrolling with a reasonable accuracy.

In another work [16], Cavazos et al. showed that supervised learning can be ef-
fectively used for predicting instruction scheduling. Though instruction scheduling
drastically reduces program’s execution time, it does have adverse effects on certain
blocks in the program. Hence, it is important to predict which part of the program
may be used for instruction scheduling. Using training features associated with the
instruction scheduling, Cavazos et al. built a supervised learning based classifier to
predict with acceptable accuracy whether scheduling a certain block in the program

will increase its overall execution performance.

Stephensonet al. [128] addressed the loop unrolling optimization in the context of
predicting unrolling factor (the degree of loop unrolling). Using the training features
associated with loop unrolling, they built a supervised learning based classifier to

predict loop unrolling factor with reasonable precision.

Agakov et al. [2] worked on speeding up the iterative optimization technique which
is affected by higher number of evaluations in large search spaces. This technique builds
a model of the program features and search space by offline training and directs the op-
timization algorithm to focus only on those areas of search space which have potentially
larger contribution, resulting in a substantial speed up of iterative compilation. In a
similar work [77], Ipak et al. used machine learning to build predictive design-space
models describing the relationship among design parameters. Their generated models
are capable to produce reasonably accurate performance estimates for different points
in the space and enable efficient discovery of tradeoffs among parameters in different
regions.

In a more recent work [17], Cavazos et al. used machine learning to build a predictive
model to correlate the performance counters of a program with the good optimization
options. Using their predictive models, they achieved a 10% average speedup over the
highest optimization setting the PathScale compiler on SPEC benchmarks.

Lietal. [94] addressed the problem of generating optimized sorting algorithms using
genetic algorithms and machine learning based classifiers. Their proposed approach is
able to select the best sorting algorithm as a function of the characteristics of the input
data. They showed that their technique performs significantly better than the many

conventional sorting implementations.

As an incremental approach, Dubach et al. [39] addressed the problem of finding

right optimizations for a program using machine learning by finding a mapping from

CHAPTER 1. INTRODUCTION

the program features to a probability distribution over good optimization phases. An
important aspect of their approach was that it was able to adapt to architectural changes
without re-training the algorithm. When a new program needs to be compiled, the
best predicted executable is immediately generated, without iterative compilation and

without the need for a training phase specific for the target architecture.

Tournavitis et al. [132] proposed a profile-driven compiler-based auto parallelization
technique using machine learning. They used profiling data to extract actual control
and data dependences and integrated profile-driven parallelism detection and machine-
learning based mapping in a single framework. They also discussed the limitations of
existing auto-parallelization techniques and demonstrated that their proposed tech-
nique can significantly outperform the existing techniques. However, they did not
address the important problem of scalability.

Qilin et al. [95] addressed the problem of mapping computations to processing
elements automatically in a heterogeneous multiprocessors system. In this context, they
proposed an adaptive mapping technique based on offline training, referred to as Qilin,
and demonstrated its efficacy for mapping computations to processing elements on a
CPU+GPU machine. Their proposed technique can dynamically determine an effective
partitioning of work across heterogeneous resources, but targets only data-parallel
operations [17].

Since machine learning based compiler optimization is generally exposed to the
problem of dealing with theoretically infinite number of program features, identification
and selection of the best features from an infinitely large search space offers a dedicated
challenge. Leather et al. [93] addressed this problem by developing an optimized search
space described by a grammar and searched with genetic programming and predictive
modeling to find the best static features. However, the static features discovered are
those that can be summarized into a fixed-length feature vector. Also, their technique
only outperforms static source code features (such as, SRC) by only a couple of percent

on average.

Park et al. [114] used a graph-based characterization technique to predict the best
optimizations for a program. Their proposed techniques build a program’s control flow
graph which is then applied to support vector machine to prediction models with the
shortest path graph kernel. The authors showed that this method of characterizing

programs is competitive with previous characterization techniques.

Stock et al. [130] addressed the problem of automatic vectorization of compute-
intensive programs using machine learning. They predict the performance of SIMD
code using different machine learning models trained offline on the features extracted
from the generated assembly codes. The predictions were used at compile-time to
discriminate between numerous possible vectorized variants generated from the input
code. They evaluated their machine learning models on different computations and

showed good improvements over Intel ICC’s auto-vectorized code.

1.1. INTRODUCTION

Moore et al. [107] propose a technique to dynamically determine the application
affinity (thread-to-core mapping) in multi-core machines using machine learning. Re-
ferred to as AutoFinity, their proposed technique first gathers the training data for a
range of affinities and program behavior from the training programs. It then utilizes
machine learning methods to construct an action table which provides policies for
thread-to-core mappings. The generated policy is used at runtime to select a program’s
affinity. The policy can handle programs that were not part of the training and/or

thread counts that have not been considered by training.

In a recent work, Park et al. [115] presented a machine learning technique to se-
lect the best polyhedral optimizations for compute-intensive programs using limited
iterative search. They first used static cost models to reduce the set of candidate opti-
mizations and then predict the performance of each optimization with machine learning
models. They achieved significant performance improvement for various benchmarks

on multi-core platforms.

Kejariwal et al. [15] focused on inlining heuristic constraints for program optimiza-
tion. They built machine learning models to learn the correlation between inlining
vectors and program completion time. Combined with other global optimizations, the
machine learning based model selects an inlining vector that minimizes the comple-
tion time of a program. Their evaluations on GNU GCC compiler and optimized 22

combinations (program, input) from SPEC CINT2006 showed promising results.

Existing studies usually focus on a few positive outcomes (predictions) to improve
execution time, power consumption or other characteristics using some off-the-shelf
black-box classification and predictive modeling techniques such as SVM, neural net-
works or KNN [9, 70, 92], several optimizations and a few benchmarks combined with
several ad-hoc program or architecture features. Though undoubtedly interesting, such
limited studies can only demonstrate some potential of using machine learning for pre-
dictions but do not include deep and systematic analysis of the selection of a learning
algorithm and related features for large and realistic training sets which are the major
research challenges in the field of machine learning for decades, and far from being
solved [9].

Having drawn inspiration from the potential benefits of machine learning, we
introduced a novel compiler technology, called Milepost GCC, that can automatically
learn how to best optimize programs for configurable heterogeneous processors based
on the correlation between program features, run-time behavior and optimizations.
It also aims to dramatically reduce the time to market configurable or frequently
evolving embedded systems. Rather than developing a specialized compiler by hand for
each configuration, our machine learning based platform aims to produce optimizing
compilers automatically.

Our rigorous experimentation and analysis showed that machine learning based

program auto-tuning does outperform iterative compilation, but at the same time it

CHAPTER 1. INTRODUCTION

can not be singled out as the best approach to guarantee optimal solution for all cases.
In order to find the strong feature-optimization correlation and to capture the precise
run-time dynamics for predicting the best transformations, machine learning requires a
huge training data set which should cover adequate number of possible scenarios and
observations. Obtaining such a huge data set for training with all unforeseen examples
is extremely difficult and hence limits the prediction accuracy. Therefore, we established

that machine learning alone can not serve this purpose as desired.

1.2 Motivation

The potential of machine learning for auto-tuning was now well-tested by us and we
already had a machine learning based compiler at hand which is the first of its kind.
However, along with the problem of insufficient training data set, we also realized
that the “black box” nature of machine learning algorithms together with the lack of
common experimental methodology and culture of sharing large, diverse and repro-
ducible experimental sets makes it too tedious or sometimes even impossible to validate
results of existing approaches and use them to improve compilers, applications and
architectures. All these issues started to raise many concerns about practicality and
scalability of our machine learning based approach for compilation and architecture in

realistic production scenarios.

Considering all the aforementioned problems, we established that machine learning
can not be used effectively as a standalone prediction system for compiler auto-tuning
without a collaborative approach of collecting the relevant experimental results from
the community and disseminating the artifacts in return. This led us to introduce the
innovative idea of using a combination of offline and online learning for this purpose. We
decided to collect the optimization results and codes from the community and replace
the related optimizations from our repository with the better ones after validation. This
further allows us to get new observations, thus leading to better feature-optimization
correlation and model adjustment to improve prediction accuracy through online

learning.

The research carried our in this thesis is motivated by the development of a novel,
scalable and extensible optimization methodology and public framework that attempts
to address all above-mentioned challenges in a cooperative and coherent way while
gradually unifying and validating existing ad-hoc techniques and tools. Instead of rely-
ing on a few positive and often non-reproducible experimental outcomes, we propose to
formalize and expose the whole optimization scenario including multiple optimization
choices and characteristics to the community or a workgroup in a modular and portable
way as a buildbot. By this way, we can easily distribute various optimization scenarios
among many participants and continuously explore available optimization choices for

all shared code and data set samples from the community in realistic environments

1.3. COOPERATIVE RESEARCH AND EXPERIMENTATION

while focusing on unexpected behavior and mispredictions. All behavior anomalies
can be continuously collected and exposed in a centralized repository to find most
optimal predictive models and correlating algorithm, program, architecture, data sets
and other features for a given scenario either automatically or through crowdsourcing
as it is currently successfully used in other sciences including biology and artificial

intelligence.

1.3 Cooperative research and experimentation

Many of the challenges and pitfalls pertaining to compiler performance tuning are
caused by the lack of a common experimental methodology, lack of interdisciplinary
background, and lack of unified mechanisms for knowledge building and exchange
apart from numerous similar publications, where reproducibility and statistical mean-
ingfulness of results as well as sharing of data and tools is often not even considered
in contrast with other sciences including physics, biology and artificial intelligence. In
fact, it is often impossible due to a lack of common and unified repositories, tools and
data sets. At the same time, there is a vicious circle, since initiatives to develop common
tools and repositories to unify, systematize, share knowledge (data sets, tools, bench-
marks, statistics, models) and make it widely available to the research and teaching
community are practically not funded or rewarded academically where a number of
publications often matter more than the reproducibility and statistical quality of the
research results. As a consequence, students, scientists and engineers are forced to resort
to some intuitive, non-systematic, non-rigorous and error-prone techniques combined
with unnecessary repetition of multiple experiments using ad-hoc tools, benchmarks
and data sets. Furthermore, we witness slowed down innovation, dramatic increase
in development costs and time-to-market for the new embedded and HPC system:s,
enormous waste of expensive computing resources and energy, and diminishing at-
tractiveness of computer engineering often seen as “hacking” rather than systematic

science.

Our basic idea is to bring interdisciplinary community together to collaboratively
explore various research and experimental scenarios while explaining unexpected
behavior and mispredictions. However, unlike some other sciences where similar
approach has already been successfully used for years, it is not yet widely used in
design and optimization of computer systems due to at least two major problems:
variability in behavior of computer systems such as execution time and very complex and
continuously evolving experimental setups with multiple hard-wired ad-hoc and ever
changing tools and architectures combined with some tuning and analysis scripts while
often sharing results in non unified CSV, TXT and XLS files with some limited meta-
description or at most in MySQL and similar databases, as conceptually shown in Figure

5.2a. Usually, by the end of tedious development and experimentation, new versions of

CHAPTER 1. INTRODUCTION

compilers, libraries, operating systems and architectures are already available making

results potentially outdated while problems possibly solved or considerably evolved.

1.4 Collective Mind: cooperative experimentation

We propose to use our recent Collective Mind framework and Hadoop-based repository
of knowledge (cM for short) [59, 100] to extract and share the open-source software
pieces together with various possible inputs and metadata at c-mind.org/repo. This
metadata is gradually extended by the community via popular, human readable and
easily extensible JSON format [83], currently describing how to build and run shared
pieces together with all dependencies on the specific hardware and software including
compilers, operating systems and run-time libraries. All these shared software pieces
are then continuously and randomly optimized and executed with different data sets
using distributed ¢cM buildbot for Linux and Windows-based devices [100] or cM
node for Android devices [101] across shared computational resources provided by
volunteers. Such resources range from smartphones, tablets, laptops and desktops
to data centers, supercomputers and cloud services gradually covering all existing
hardware configurations and environments. Furthermore, the community can use
lightweight cM wrappers around identified software pieces within a real and possibly
proprietary applications to continuously monitor their behavior and interactions within
the software project. Similar to nature and biological species, such approach treats
all exposed and shared software pieces as computational species while continuously
tracking and learning their behavior versus different optimizations across numerous
hardware configurations, realistic software environments and run-time conditions. cM
infrastructure then continuously records only the winning solutions (optimizations for a
given data set and hardware) that minimize all or only monitored costs (execution time,
power consumption, code size, failures, memory and storage footprint, and optimization

time) of a given software piece on a Pareto frontier [90] in our public cM repository.

Software engineers can now assemble their projects from the cM plugins with contin-
uously optimized computational species. Such software projects can continuously and
collaboratively achieve better performance while reducing all costs across all hardware
thus making software engineering performance- and cost-aware. Furthermore, software
developers are now able to practically help compiler writers and hardware designers
improve their technology as conceptually shown in Figure 1.1b. Indeed, our approach
helps create the first to our knowledge public, realistic, large, diverse, distributed,
evolving and continuously optimized benchmark with related optimization knowledge
while gradually covering all possible software and hardware.

At the same time, we can also apply an extensible, top down methodology originat-
ing from physics when learning behavior of complex systems. The compiler community

first learns and optimizes coarse grain behavior of large shared software pieces in-

10

http://c-mind.org/repo

1.4. COLLECTIVE MIND: COOPERATIVE EXPERIMENTATION

. (a) Traditional computer engineering
p— Practically no feedback <
v P §o e Rt R \
Hardware | Compiler —_ Softwan:e -
development ! development engineering
A few ad-hoc berichmarks and data sets Real software
Verification, i Semi-manual tuning p erfo:: m.ance/ cost
validation : of optimization analysis is often left
and testing i heuristic to the end or not
: considered at all
years . months, years months, years

:
continuous feedback how to improve hardware T
and any sdftware including compilers

A
1
1
1
1
1
1

c-mind.org/repo
*Public/in-house repository of optimization knowledge
*Distributed performance and cost tracking and tuning
i buildbot
i « Classification of all software vs optimization advices

(b) performance and cost aware software engineering

’

Figure 1.1 — (a) Traditional computer engineering versus (b) Our new collaborative perfor-
mance and cost-aware software/hardware co-design as a web service.

cluding whole applications, library functions, kernels and most time consuming loops
versus global compiler optimization flags or other coarse-grain optimizations. After
enough knowledge is collected, the community can gradually move to finer grain levels
including just a few source lines or binary instructions versus all internal and individ-
ual compiler optimization decisions via our Interactive Compilation Interface. This
plugin-based interface is already available in mainline GCC [55], and we plan to add it
to LLVM in the future [59].

More importantly, our approach helps considerably improve existing methodology
on optimization and run-time adaptation prediction using machine learning. Current
methodology (used in most of the papers referenced in Section 1.1 and including ours)
usually focuses on showing that it is possible to predict one or several optimizations
to improve execution time, power consumption or some other characteristics using
some off-the-shelf machine learning techniques such as SVM, (deep) neural networks
or KNN [9, 70, 92] combined with a few ad-hoc program or architecture features. In
contrast, our growing, large and diverse benchmark allows the community for the first
time to apply methodology from sciences such as biology, medicine and Al based on
big data predictive analytics [68]. For this purpose, cM infrastructure continuously
classifies all winning species in terms of distinct optimizations and exposes them to
the community in a unified and reproducible way through the public repository. This,
in turn, allows our colleagues with interdisciplinary background to help the software
engineering community find the best predictive models for these optimization classes

together with relevant features from software species, hardware, data set and environment

11

CHAPTER 1. INTRODUCTION

state either manually or automatically. Such features (including extraction tool) and
predictive models are continuously added to the species using cM wrappers and their
meta-data thus practically enabling self-tuning software automatically adaptable to any

hardware and environment.

Importantly, cM continues tracking unexpected behavior (abnormal variation of
characteristics of species such as execution time, or mispredictions from current clas-
sification) in a reproducible way in order to allow the community improve predictive
models and find missing features that can explain such behavior. Also, in contrast with
using more and more complex and computationally intensive machine learning tech-
niques to predict optimizations such as deep neural networks [9, 70, 92], we decided to
provide a new manual option useful for compiler and hardware designers. This option
allows the community to combine existing predictive techniques as a cheap way to
quickly analyze large amount of data, with manually crafted human-readable, simple,
compact and fast rules-based models (decision trees) that can explain and predict opti-
mizations for a given computational species. Thus, we are collaboratively building a
giant optimization advice web service that links together all the shared software species,
optimizations and hardware configurations while resembling Wikipedia, IBM Watson

advice engine [45], Google knowledge graph [102] and a brain.

We understand that the success of our approach will depend on the active involve-
ment from the community. Therefore, we tried to make our approach as simple and
transparent to use as possible. For example, our light-weight cM version for Android
mobile systems [101] is a “one-button approach” allowing anyone to share their compu-
tational resources and tune shared computational species. At the same time, extraction
of software pieces from large applications is still semi-manual and may incur some costs.
Therefore we are gradually working on automating this process using plugin-based
capabilities in GCC and LLVM. Furthermore, together with participating companies and
volunteers, we already extracted, described and partially ! shared 285 computational
species together with around 500 input samples ? from major benchmarks and software
projects. We then validated our approach in STMicroelectronics during 3 months to
help our colleagues tune their production GCC compiler and improve real customer
software. During that time, we continuously optimized execution time, code size, com-
pilation time and power consumption of all shared computational species using at
least 5000 random combinations of compiler optimization flags on spare private cloud
servers and mobile phones. We also managed to derive 79 distinct optimization classes
covering all shared species (small real applications or hotspot kernels extracted from
large applications with their run-time data set either manually as we did in [54], or
using Codelet Finder from CAPS Enterprise as we did in the MILEPOST project [55],

IWe cannot share extracted pieces from proprietary software but we still use them internally.

2We currently have more than 15000 input samples collected in our past projects for our shared
computational species [53, 103, 20]. However since they require more than 17GB of storage, at the moment
we decided to share only representative ones, i.e. which require distinct compiler optimization.

12

1.5. REAL-LIFE MOTIVATING EXAMPLE

or using semi-manual extraction of OpenCL/CUDA kernels combined with OpenME
plugin interface to extract run-time state [59]) that we correlated with program semantic
and dynamic features using SVM [to be presented in Section 2.5.3] and other predictive
analytics techniques. With the help of domain specialists (compiler engineers), we
then analyzed predictive models for end-user software, found meaningless correla-
tions, manually isolated problems °, prepared and shared counter-example code sample,
found missing program and input features to fix wrong classifications, and developed
adaptive, self-tuning and statically compiled code. Finally, we managed to substitute
ad-hoc benchmark used at the architecture verification department of our industrial
partners with the minimal and realistic one based on derived optimization classes that

helped to dramatically reduce development and testing time.

These positive outcomes demonstrate how our approach can help eventually involve
the software engineering community into development and improvement of compilers
and hardware. We also show how continuously growing collective knowledge repository
accessible via unified web service can become an integral part of the practical software
and hardware co-design of self-tuning computer systems while decreasing all develop-
ment costs and time-to-market for new products. More importantly, the side effect of our
approach to share code and data in a reproducible way help support recent international

initiatives on reproducible research and sustainable software engineering [104].

1.5 Real-life motivating example

A couple of decades ago, my scientific advisor, Dr. Grigori Fursin, started developing
and analyzing various artificial neural networks as part of a possible non-traditional and
brain-inspired computer [48, 49, 50]. Such networks can mimic brain functions and are
often used for machine learning and data mining [9]. For example, Figure 1.2 shows one
of the oldest and well-known one-layer, fully interconnected, recurrent (with feedback
connections) Hopfield neural network [72]. It is a popular choice for function modeling,
pattern recognition and image filtering tasks including noise reduction. Implemented
as a software, this neural network has a fairly simple and regular code where each
neuron receives a weighted sum of all inputs of an image as well as outputs of all other
neurons. This sum is then processed using some neuron activation function including
sigmoid or linear ones to calculate the output value. The small and simple C kernel
presented in Figure 1.2 is one of many possible implementations of a threshold filter we
used as a part of a linear activation function, i.e. switching neuron output from 0 to
1 when its input meets a given threshold. Very simplistically, the quality of a neural
network is usually determined by its processing speed as well as capacity (maximum

amount of patterns or information that can be stored in such networks) and recognition

3In spite of many papers that present some simple automatic optimization predictions, our practical
and industrial experience with large data sets shows that it is currently not possible to fully automate this
process. Therefore, manual analysis is still often required similar to other natural sciences.

13

CHAPTER 1. INTRODUCTION

11 . . . [[]]]
mnii Image filters: noise reduction 11
III“I , B&W threshold “l
||||I = Classifiers: pattern recognition =
[][]

0
* m
[[— pﬁ+> 0 yes / no

‘0’ otherwise

PO

(tmp1>T)?1:0; ¥ _ i
v1 = *matrix_ptr1++; 10 - threshold | -

} neuron input

v1 = *matrix_ptr1++; 23. . . :
for (=01 <N*N; i++) { g} Neuron. i
tmp1 = abs(v1); 5 activation
*matrix_ptr2++ = § A qnct:p n. : f

Figure 1.2 — Conceptual example of pattern recognition, image filtering and character noise
reduction using Hopfield fully interconnected and recurrent neural network. Simple C kernel
is a part of a neuron activation function processing thresholds for all neurons.

accuracy (correct predictions versus failures). It heavily depends on the total number
of neurons, connections and layers [76], and is primarily limited by the speed and
resources of the available hardware including specialized accelerators. Hence, neural
network software/hardware co-design process always involves careful balancing of
performance versus all associated costs including storage size, memory footprint, energy
consumption, development time and hardware price depending on usage scenarios
and required time to market. Indeed, Grigori’s research on improving neural networks
requires many iterative runs of a slightly evolving modeling software with varying
parameters to maximize prediction accuracy. In this case, the main concern is about
minimizing compilation and execution time of each execution across available hardware.
However, when the best found network is found and deployed in a large data center
or cloud service (for example, for big data analysis), end users would like to minimize
all additional costs including energy and storage consumption across all provided
computer systems. Finally, when deploying neural networks in small, autonomic and
possibly mass-produced devices such as surveillance cameras and mobile phones or
future robots and Internet of Things objects, more strict requirements are placed on
software and hardware size, memory footprint, real time processing, and the cost of the
whole system.

Twenty years ago, the software engineering of neural networks was relatively straight-
forward. Users did not have a choice but to simply select the latest hardware with the
accompanying and highly tuned compiler to achieve nearly peak performance for their

software including for the code shown in Figure 1.2. Therefore, in order to innovate and

14

1.5. REAL-LIFE MOTIVATING EXAMPLE

process more neurons and their configurations, users usually had to wait for more than
a year until arrival of a new hardware. This hardware would likely double performance
of our software and provide more memory and permanent storage but often at a cost of

higher power consumption and thus dramatically rising electricity bill.

In contrast, we now have an impressive choice of hardware of all flavors which
our software can be executed on. Each year, there are numerous variations of proces-
sors appearing on the market with different features (properties) including frequency,
number of cores, cache size, ISA extensions, specialized hardware accelerators (such as
GPU and even revived semiconductor neural networks), power consumption and price.
Furthermore, we can now have easy access to large-scale parallel resources from home
via popular virtualized cloud services from Amazon, Google, Microsoft and others.
Therefore, the number of experiments we can now run is mainly limited by the price we
can afford to pay for computing services. At the same time, we also enjoy continuous
community-driven improvements of operating systems together with numerous free
or proprietary libraries and software development tools including popular optimizing
compilers such as GCC and LLVM. One may expect that with so many advances in the
computer technology, practically any recent compiler would generate the fastest and
most energy efficient code for such an old, simple, small and frequently used software
piece shown in Figure 1.2 across existing hardware. Nevertheless, since users pay for
experiments, together with Dr. Grigori Fursin, we eventually decided to validate their

performance/cost efficiency.

For the sake of accountability and reproducibility, we started gradually collecting
at c-mind.org/nnet-tuning-motivation various information about several computer
systems we used including their price, cost, available operating systems, compilers and
optimizations. Figure 1.3a shows a tiny subset of this multidimensional space of design
and optimization choices. At the same time, whenever running real experiments, we also
started recording their execution time and all associated costs including compilation
time, code size, energy usage, software/hardware price and utility bill. It is worth
mentioning that by performance tuning, we mean reducing execution time. However,
on modern out-of-order processors with complex memory hierarchy, the dependency
between performance and total execution time may be non-linear. Thus, depending on

user requirements, these characteristics have to be tuned separately.

We further decided to perform a simple and well-known optimization compiler flag
autotuning [1, 55] with at least 100 iterations to see whether there is still room for im-
provement over the fastest default compiler optimization level (-O3). Figure 1.3b shows
one of many possible 2D projections of the multidimensional space of characteristics
(which we consider as costs of running our experiments or tasks). We then gradually
track the winning solutions that maximize performance and at the same time minimize
all costs using our experience in physics and electronics, namely by applying Pareto
frontier filter [90].

15

http://c-mind.org/nnet-tuning-motivation

CHAPTER 1. INTRODUCTION

P1
P2
P3

Intel Core i5-2540M, 2.60GHz, 2 cores
Qualcomm MSM7625A FFA, ARM Cortex A5, 1 GHz, 1 core
Allwinner A20 (sun7i), ARM Cortex A7, 1.6GHz, Mali400 GPU, 2 core

D1) grayscale image 1, size=1536x1536
D2) grayscale image 2, size=1536x1536

P4) NVidia Quadro NVS 135M, 400MHz, 16 cores 01) Windows 7 Pro SP1, cost~170 euros
T1)7.2E10 02) 01 with MinGW32

WH1) 32 bit processor mode T2) 9.6E9 03) OpenSuse 12.1, Kernel 3.1.10

W2) 64 bit processor mode T3) 2.4E9 04) Android 4.1.2, Kernel 3.4.0
T4) 1.0E9 05) Android 4.2.2, Kernel 3.3.0

X1) GCC 4.1.1, opt.flags~190, release date=2006

X2
X3
X4
X5
X6
X7

GCC 4.4.1, opt.flags~270, release date=2009
GCC 4.4.4, opt.flags~270, release date=2010
GCC 4.6.3, opt.flags~320, release date=2012
GCC 4.7.2, opt.flags~340, release date=2012
GCC 4.8.3, opt.flags~350, release date=2014
GCC 4.9.1, opt.flags~357, release date=2014 Y1

S1) Dell Laptop Latitude E6320, Mem=8Gb, 52W, 1200 euro
S2) Samsung Mobile GT-S6312, Mem=0.8Gb, 5W, 200 euros
S3) Polaroid Tablet MID0927, Mem=1Gb, 13W, 100 euros
S4) Semiconductor neural network,1.5years development

Performance (usually -03)

)
X8) LLVM 3.1, release date=2012 Y2) Size (usually -Os)
X9) LLVM 3.4.2, release date=2014 Y3) -O3 -fmodulo-sched -funroll-all-loops
X10) Open64 5.0, release date=2011 Y4) -03 -funroll-all-loops
X11) PathScale 2.3.1, release date=2006 Y5) -O3 -fprefecth-loop-arrays
X12) NVidia CUDA Toolkit 5.0, release date=2012 Y6) -03 -fno-if-conversion
X13) Intel Composer XE 2011, cost = ~800euro Y7) Auto-tuning with more than 6 flags (-fif-conversion)
X14) Microsoft Visual Studio 2013 Y8) Auto-tuning with more than 6 flags (-fno-if-conversion)
(a)
35 1 1) P10O3W2 X1Y1T2D1 A) P305W1X1Y1T4D1
2) P10O3W2 X7Y1T2D1 B) P305W1X4Y1T4D1
“<30 ¢ 3) P1O3W2 X1Y7T2D1 C) P30O5W1X4Y7T4D1
a3 4) P103W2 X7Y5T2D1 D) P305W1X6Y1T4D1
3 $1 5) P1O3W2X11Y1T2D1 E) P305W1X6Y7 T4D1
o 25 6) P1O3W2 X9Y1T2D1 F) P305W1X9Y1T4D1
£ 7) P103W2 X3Y7T2D1
"E le 8) P103W2 X4Y8T2D2) P204W1 X1Y1T4D1
o 20 - * ® 9) PIOITWIX14Y1T3D1 Il) P204W1 X6Y1T4D1
'g . 10) P101W1X13Y1T2D1
0 15 %. ‘“‘B 11) P1O3W2 X7Y8T2D2 §) P403W1X12Y1T1D1
o & D1". 2 .
() E. 3 30 ‘
c *¢ el 5
g 10 - e ‘ P Available resource: P1, one core
- AValaE e, 11
87 2 e resour(;e:g'-, oo
&5 Tangpy " e, A S
Available resource: P1, two cores
0 T T T T 1
5000 10000 15000 20000 25000 30000
Program binary size (bytes)
(b)

Figure 1.3 — (a) A small subset of various hardware, software, development tools and opti-
mizations used in our research on neural networks in the past 20 years (P - processors, W -
processor mode, X - compiler, O - operating system, S - system, T - total number of processed
pixels or neurons, D - software data set, Y - compiler optimization used) (b) 2D projection of
the multidimensional space of characteristics together with winning solutions on the Pareto
frontier (all data and interactive graphs are available at c-mind.org/nnet-tuning-motivation).

We quickly realized that in contrast to the traditional wisdom, the latest technology
is not necessarily the fastest or most energy efficient and further optimization is always
required. For example, when moving from GCC 4.1.1 (released in 2006) to GCC
4.9.1 (released in 2014) , we observed a modest 4% improvement * in single core

4Gimilar to physics, we execute optimized code many times, check distribution of characteristics for
normality [43], and report expected value if variation is less than 3%.

16

http://c-mind.org/nnet-tuning-motivation

1.5. REAL-LIFE MOTIVATING EXAMPLE

execution time of our neural network and 2% degradation in a code size on Intel
E6320 based system (released in 2008). However, 8 years old GCC 4.1.1 can achieve
27% improvement in execution time after auto-tuning (which comes at cost of 100
recompilations and executions as well as increasing binary size by 34%)! Interestingly, 8
years old PathScale 2.3.1 produces faster code than the latest version of GCC 4.9.1 and
LLVM 3.4.2! Furthermore, when using internal parallelization, LLVM 3.4.2 beats GCC
4.9.1 by about 23% but has a sub-linear scaling versus number of threads. In contrast, 2
years old GCC 4.6.3 achieves the best result and linear scaling versus number of threads

when using both parallelization and auto-tuning.

When running the same code on cheap, commodity mobile phones with ARM
architecture, the execution time increased dramatically by around 5 times! However,
the power consumption dropped by about 10 times! When trying to use specialized
hardware (GPUs or our semiconductor neural networks), we could increase execution
time by about tens to hundreds of times, but at a considerable development cost and
time to market. Furthermore, with time, we discovered that the same best found
optimization for one class of images can considerably degrade performance on another
class of images. We also encountered problems with cache contentions on multi-core
systems, sub-linear scaling on many core systems, unexpected frequency scaling, non-
deterministic I/O for large images, and many other problems that had to be addressed
by new optimizations. These issues can not be easily solved by static compilers due to
a fundamental problem of a lack of run-time information at compile time. Therefore,
we even tried to move to dynamic and possibly adaptive languages including Java and
Python but were not yet able to achieve similar performance while spending even more

energy and storage during just-in-time compilation.

Sadly and similar to many other scientists and software engineers, we now have to
waste considerable amount of our time on a tedious and ad-hoc navigation through the
current technological chaos to find some good hardware, software and optimization
solutions that can speed up our programs and reduce costs instead of innovating as

conceptually summarized in Figure 1.4.

Worse, software engineers are often not even aware of all available design and
optimization choices they have, to improve performance of their software and reduce
development and usage costs. Furthermore, costs that has to be minimized depend
on usage scenarios: in mobile systems running out of battery, one may want to fix a
power budget and then balance execution time and algorithm accuracy; in embedded
devices, code size and consumed energy may be more important than execution time; JIT
may require careful balancing of compilation and optimization times versus potential
performance gains, while users of data centers and supercomputers may care primarily
about both execution time and the price of computation. Therefore, we strongly believe
that current performance- and cost-blind software engineering has to be changed to

improve productivity and boost innovation in science and technology.

17

CHAPTER 1. INTRODUCTION

‘ User task | {' Advices from practical knowledge and experience

e N\
Need smallest
code?

Need most energy
1 Technolodical chaos efficient code?
| GCCaBx LL\)\M 36 Berf

: frequency hardware p

genetic (I:g(lij?l 7 functloneounters

! algorithms ass
128 thread plnnlné‘i"el P Can afford

: reorderlng { S

1 OpenMPARM V8 MPI'\ OpenCL Can ‘:aff.ord specialized

| pri ds il specialized 5 Need cheapest
1 liabilit UDA 4.x O/nte/ SaNdyBr/ ge ! hardware?

preliability = NWTRE hardware? hardware

ARM v6 per Phase

6CCa1x LLVM 3.0 reconflguraﬁom !
 Ceas., MVS2013 Hupp MEMOTY T
! data storage size polyhedral$i2 XLC : o anord

ioxccutwon time transformations : develop new

v 3.2 564 oreaidGe1 20 &algszg k hardware? [Solution 6 J [Solution 7 J

SSE4 scheduling ACC11.0 |
MKLbaﬂdW‘dth GCC4.4.x BCCA6X
iLLVM 2. 9 1cc F\mpleScalarcloddet 'jﬁ(z‘s
process PgﬁleTestaro BésfzeAmlp Bl"%nlgi
oop-leve!
‘ thdca M 2.7 VTune
i threads T |cc 10.1 threads
| Phoenix progragrgor tfu!n TAU
! contentionivel leve) IPA" g
i cachesize algoyithm precision

Need fastest
compilation