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Titre : Crowdtuning: Auto-tuning Pragmatique et Reproductible via Crowdsourcing et Analyses 
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Mots clés : réglage automatique de compilateur, gestion des connaissances, reproductibilité des 
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Résumé : Le  réglage  des  heuristiques 
d'optimisation de compilateur pour de multiples 
cibles  ou  implémentations  d’une  même 
architecture est  devenu complexe.  De plus,  ce 
problème est  généralement traité  de façon ad-
hoc et consomme beaucoup de temps sans être 
nécessairement reproductible. Enfin, des erreurs 
de  choix  de  paramétrage  d’heuristiques  sont 
fréquentes  en  raison  du  grand  nombre  de 
possibilités  d’optimisation  et  des  interactions 
complexes entre tous les composants matériels 
et  logiciels.  La  prise  en  compte  de  multiples 
exigences,  comme  la  performance,  la 
consommation  d'énergie,  la  taille  de  code,  la 
fiabilité  et  le  coût,  peut  aussi  nécessiter  la 
gestion  de  plusieurs  solutions  candidates.  La 
compilation  itérative  avec  profil  d’exécution 
(profiling  feedback),  le  réglage  automatique 
(auto tuning) et l'apprentissage automatique ont 
montré  un  grand  potentiel  pour  résoudre  ces 
problèmes. Par exemple, nous les avons utilisés 
avec  succès  pour  concevoir  le  premier 
compilateur  qui  utilise  l'apprentissage  pour 
l'optimisation automatique de code. Il s'agit du 
compilateur  Milepost  GCC,  qui  apprend 
automatiquement  les  meilleures  optimisations 
pour  plusieurs  programmes,  données  et 
architectures  en  se  basant  sur  les 
caractéristiques  statiques  et  dynamiques  du 
programme.  Malheureusement,  son  utilisation 
en  pratique,  a  été  très  limitée  par  le  temps 
d'apprentissage  très  long  et  le  manque  de 
benchmarks et  de  données représentatives.  De 
plus, les modèles d'apprentissage « boîte noire » 
ne pouvaient pas représenter de façon pertinente 
les  corrélations  entre  les  caractéristiques  des 
programme  ou  architectures  et  les  meilleures 
optimisations.

Dans cette thèse, nous présentons une nouvelle 
méthodologie et un nouvel écosystème d’outils 
(framework)  sous  la  nomination  Collective 
Mind (cM).

L’objectif est de permettre à la communauté de 
partager  les  différents  benchmarks,  données 
d’entrée,  compilateurs,  outils  et  autres  objets 
tout en formalisant et facilitant la contribution 
participative aux boucles d’apprentissage.  Une 
contrainte  est  la  reproductibilité  des 
expérimentations  pour  l’ensemble  des 
utilisateurs  et  plateformes.  Notre  cadre  de 
travail  open-source et  notre  dépôt  (repository) 
public  permettent  de  rendre  le  réglage 
automatique  et  l'apprentissage  d’optimisations 
praticable.  De  plus,  cM  permet  à  la 
communauté  de  valider  les  résultats,  les 
comportements  inattendus  et  les  modèles 
conduisant  à  de  mauvaises  prédictions.  cM 
permet aussi de fournir des informations utiles 
pour  l'amélioration  et  la  personnalisation  des 
modules  de  réglage  automatique  et 
d'apprentissage ainsi que pour l'amélioration des 
modèles  de  prévision  et  l'identification  des 
éléments manquants. 

Notre analyse et évaluation du cadre de travail 
proposé  montre  qu'il  peut  effectivement 
exposer,  isoler  et  identifier  de  façon 
collaborative les principales caractéristiques qui 
contribuent  à  la  précision  de  la  prédiction  du 
modèle.  En  même  temps,  la  formalisation  du 
réglage automatique et de l'apprentissage nous 
permettent  d'appliquer  en  permanence  des 
techniques  standards  de  réduction  de 
complexité.  Ceci  permet  de  se  contenter  d'un 
ensemble  minimal  d'optimisations  pertinentes 
ainsi que de benchmarks et de données d’entrée 
réellement représentatifs.

Nous  avons  publié  la  plupart  des  résultats 
expérimentaux, des benchmarks et des données 
d’entrée  à  l'adresse  http://c-mind.org  tout  en 
validant nos techniques dans le projet EU FP6 
Milepost et durant  un stage de thèse HiPEAC 
avec STMicroelectronics.
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Tuning  general  compiler  optimization 
heuristics  or  optimizing  software  for  rapidly 
evolving  hardware  has  become  intolerably 
complex,  ad-hoc,  time  consuming  and  error 
prone  due  to  enormous  number  of  available 
design  and  optimization  choices,  complex 
interactions between all software and hardware 
components,  and  multiple  strict  requirements 
placed  on  performance,  power  consumption, 
size,  reliability  and  cost.  Iterative  feedback-
directed compilation, auto-tuning and machine 
learning have been showing a high potential to 
solve  above  problems.  For  example,  we 
successfully  used  them to  enable  the  world's 
first  machine  learning  based  self-tuning 
compiler, Milepost GCC, which automatically 
learns  the  best  optimizations  across  multiple 
programs, data sets and architectures based on 
static  and  dynamic  program  features. 
Unfortunately,  its  practical  use  was  very 
limited by very long training times and lack of 
representative  benchmarks  and  data  sets. 
Furthermore,  « black  box »  machine  learning 
models  alone  could  not  get  full  insight  into 
correlations  between  features  and  best 
optimizations.

In  this  thesis,  we  present  the  first  to  our 
knowledge methodology and framework, called 
Collective  Mind  (cM),  to  let  the  community 
share various bench marks, datasets, compilers,

tools and other artifacts while formalizing and 
crowdsourcing  optimization  and  learning  in 
reproducible  way  across  many  users 
(platforms).  Our  open-source  framework  and 
public  optimization  repository  helps  make 
auto-tuning  and  machine  learning  practical. 
Furthermore,  cM  let  the  community  validate 
optimization results, share unexpected run-time 
behavior  or  model  mispredictions,  provide 
useful  feedback  for  improvement,  customize 
common  auto-tuning  and  learning  modules, 
improve  predictive  models  and  find  missing 
features.  Our  analysis  and  evaluation  of  the 
proposed  framework  demonstrates  that  it  can 
effectively expose,  isolate  and collaboratively 
identify the key features that contribute to the 
model  prediction accuracy. At the same time, 
formalization  of  auto-tuning  and  machine 
learning  allows  us  to  continuously  apply 
standard  complexity  reduction  techniques  to 
leave a minimal set of influential optimizations
and  relevant  features  as  well  as  truly 
representative benchmarks and data sets.

We released most of the experimental results, 
benchmarks and data sets at http://c-mind.org
while validating our techniques in the EU FP6 
MILEPOST  project  and  during  HiPEAC 
internship at STMicroelectronics.
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1
Introduction

1.1 Introduction

Designers of new embedded architectures attempt to bring higher performance and

lower power across a wide range of programs while keeping time to market as short as

possible. These embedded architectures vary in performance, size, power consumption,

reliability, price and other characteristics depending on numerous available hardware

features such as processor architecture, number of cores, availability of specialized

hardware accelerators, working frequency, memory hierarchy and available storage.

However, delivering such resources for high performance computing or ultra low-power

for embedded systems is becoming intolerably complex, costly and error prone due to

limitations of available technology, huge number of available designs and optimization

choices, complex interactions between all software and hardware components, and

growing number of incompatible tools and techniques with ad-hoc, intuition based

heuristics. As a result, understanding and modeling of the overall relationship between

end-user algorithms, applications, compiler optimizations, hardware designs, data

sets and run-time behavior, essential for providing better solutions and computational

resources, have become infeasible as confirmed by numerous recent long-term interna-

tional research visions about future computer systems [5, 71, 38, 68, 67, 118]. On the

other hand, engineers often have to develop software that may end up running across

different, heterogeneous and possibly virtualized hardware in multiple embedded plat-

forms, desktops, HPC servers, data centers and cloud services. Such a rising complexity

of computer systems and limited development time usually force software engineers

to rely almost exclusively on existing compilers, operating systems and run-time li-

braries in a hope to deliver highly optimized, computational-efficient, scalable, reliable

and power-efficient executable codes across all available hardware. As a result, peak

1



CHAPTER 1. INTRODUCTION

performance of the new systems is often achieved only for a few previously optimized

and not necessarily representative benchmarks such as SPEC for desktops and servers

or LINPACK for TOP500 supercomputer ranking, while leaving most of the systems

severely underperforming and wasting expensive resources and power.

Automatic offline and online performance tuning of compilers to achieve satisfactory

portable performance is generally performed using empirical iterative compilation for

statically compiled programs, applying automatic compiler tuning based on feedback-

directed compilation. In this technique, static optimization model of a compiler is

replaced by an iterative search of the optimization space to empirically find the most

profitable solutions that improve execution time, compilation time, code size, power

and other metrics.

Bodin et al. [11] studied the applicability of iterative optimization for selecting the

best optimization for a program. They showed that by using profile feedback in the form

of execution time, a restricted non-linear search space could be effectively searched to

outperform the existing approaches.

Nisbet et al. [109] showed that genetic algorithm can be applied to iterative op-

timization problems. In their proposed approach, referred to as Genetic Algorithm

Parallelisation System (GAPS), they evaluate the application and performance benefit of

genetic algorithm optimization techniques to the compilation of loop-based programs

for parallel architectures. They showed that GAPS can deliver significant performance

improvement in parallel execution time.

Cooper et al. [30] targeted to reduce the size of the compiled code by applying the

genetic algorithm to find optimization sequence that generates small object codes. Their

evaluations on several benchmarks and comparisons with no-optimization or fixed

optimization techniques showed significant improvements.

Kisuki et al. [88] investigated the efficacy of iterative compilation on a combined

selection of tile sizes and unroll factors. They further evaluate the iterative strategies

based on genetic algorithms, random sampling and simulated annealing to select op-

timal tile sizes and unroll factors simultaneously. They compare their optimization

strategies with several existing techniques and showed that their techniques outperform

each of them on a variety of architectures.

Cooper et al. [29] focused on compile-execute-analyze feedback loop and proposed

a technique to reduce the execution time of iterative compilation. Their proposed

technique captures salient information about a program in a single run and uses this

information to predict its performance for different optimization sequences. Their

experiments showed that their proposed technique can significantly reduce the adaptive

compilation time.

Kulkarni et al [89] used genetic algorithm to find effective sequences of optimization

phases and providing the user with dynamic and static performance information that

can be used during an interactive compilation session to gauge the progress of improving
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the code. A peculiar shortcoming of all the techniques using genetic algorithm for

iterative compilation is that genetic algorithms can be unstable and their fixed-length

representation precludes their use in many problems.

Cooper et al. [31] explored different orders of optimization sequence to discover a

program-specific compilation sequence that minimizes an explicit, external objective

function. They showed that depending on the objective function selected, their proposed

technique can produce significant reduction in code size and execution time. However,

their technique requires large number of passes before it can discover a solution.

Triantafyllis et al. [133] came up with improvements over the traditional predic-

tive heuristic techniques by proposing a technique which uses the compiler writer’s

knowledge encoded in the heuristics to select a small number of promising optimization

alternatives for a given code segment. However, this technique is limited to the best

sequences categorized into a small tree of compiler options [28].

Fursin et al. [51] proposed a technique for guiding optimizations for numerical

applications based on iterative feedback-directed program restructuring. Using the

profiling techniques to find the best possible program variant, they showed signifi-

cant performance improvement as compared to the native static and platform-specific

feedback directed compilers.

Pan et al. [113] also focused on reducing the number of evaluations by proposing

a technique referred to as Combined Elimination (CE) which selectively turns off
optimizations until the best optimization is found for a new program. Their results

showed that the performance achieved by CE is close to the upper bound obtained by

an exhaustive search algorithm.

Code optimization for embedded devices must take into consideration the important

factors of power consumption, performance, memory space, etc. In order to deal with

these conflicting objectives, Heydemann et al. [69] formulated the iterative optimization

problem as a constraint optimization methodology to find a Pareto-optimal search space

among multiple objectives. They showed that they could find a deeper trade-off between

these objectives at the expense of minimum possible performance degradation. Hoste et

al. [74] further explored the same problem by automatically finding the Pareto-optimal

search space of the multiple objectives. They showed that their technique can produce

better optimization levels than GCC’s manually driven optimization levels and those

obtained through random sampling.

Franke et al. [46] further worked on finding best optimization sequences in a large

search space. Their technique comprised localization of specific areas of search space

to find the best candidate solution, while reducing the search time. Their experiments

demonstrated that their technique outperformed the existing techniques by significantly

reducing the execution time.

A common assumption prevelant in iterative compilation was that the best con-

figuration found for any arbitrary data set will work well with other data sets that a
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program uses. Fursin et al. [53] evaluated this assumption MiBench benchmark for 20

datasets per benchmark. They found that although the variability increases for many

optimizations, it is found to be small for the best optimization configuration and a

compromised optimization configuration across data sets can be found.

Chen et al. [20] evaluated iterative compilation for much larger data sets by creating

a huge, publicly available data set for 32 programs. They showed that despite of the

diversity of the data set, iterative compilation can be used to find a robust strategy for

all programs. They further showed that there exists at least one combination of compiler

optimizations that achieves 86% or more of the best possible speedup across all data

sets.

Fursil et al. [54] focused on speeding up the evaluations of a large number of

optimizations in iterative compilation using static multi-versioning of the most time-

consuming code sections, and a low-overhead run-time phase detection scheme. This

technique can speed up iterative search by several orders of magnitude and can be

beneficial during the training data generation stage of our models.

This approach requires little or no knowledge of the platform and can adapt pro-

grams to any given architecture. This approach is currently used in library generators

and adaptive tools [137, 97, 124, 117, 1, 44]. However, it is generally limited to search-

ing for combinations of global compiler optimization flags and tweaking a few fine-grain

transformations within relatively narrow search spaces. The main barrier to its wider

use is the excessive compilation and execution time needed in order to optimize each

program. This prevents a wider adoption of iterative compilation for general purpose

compilers.

This problem can be more effectively addressed using machine learning which

has the potential of reusing knowledge across iterative compilation runs, gaining the

benefits of iterative compilation while reducing the number of executions needed.

Machine learning has been actively promoted as a possible solution to cope with ever

rising complexity of computer systems including dramatically increasing number of

available program optimizations such as compiler flags for more than a decade.

Calder et al. [CGJ1997] used neural networks and decision trees for static branch

prediction at compile time. They trained the neural network with the input program

features associated with each branch in the training set such as control flow and op-code

information. This approach outperformed static heuristics [6, 14] by a considerable

margin.

In another work [129], an approach referred to as Meta optimization was introduced

to fine-tune compiler heuristics using genetic algorithm. As the experimental use-cases,

three optimizations were selected, namely hyper-block formation, register allocation and

data pre-fetching. They achieved significant improvements for hyper-block formation

and data pre-fetching. However, the heuristic for register allocation did not turn out to

be more effective as they were able to only achieve an average 2% improvement over the
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manually tune heuristic.

Monsifrot at el. [106] attempted to generate the optimization heuristic for a simple

optimization called loop unrolling. Though simple, it is difficult to devise a prediction

rule for this optimization. They constructed a classifier based on a decision tree to

predict loop unrolling in a program. This was a preliminary approach to show that

decision trees can be successfully used to learn the target-specific heuristics for loop

unrolling with a reasonable accuracy.

In another work [16], Cavazos et al. showed that supervised learning can be ef-

fectively used for predicting instruction scheduling. Though instruction scheduling

drastically reduces program’s execution time, it does have adverse effects on certain

blocks in the program. Hence, it is important to predict which part of the program

may be used for instruction scheduling. Using training features associated with the

instruction scheduling, Cavazos et al. built a supervised learning based classifier to

predict with acceptable accuracy whether scheduling a certain block in the program

will increase its overall execution performance.

Stephensonet al. [128] addressed the loop unrolling optimization in the context of

predicting unrolling factor (the degree of loop unrolling). Using the training features

associated with loop unrolling, they built a supervised learning based classifier to

predict loop unrolling factor with reasonable precision.

Agakov et al. [2] worked on speeding up the iterative optimization technique which

is affected by higher number of evaluations in large search spaces. This technique builds

a model of the program features and search space by offline training and directs the op-

timization algorithm to focus only on those areas of search space which have potentially

larger contribution, resulting in a substantial speed up of iterative compilation. In a

similar work [77], Ipak et al. used machine learning to build predictive design-space

models describing the relationship among design parameters. Their generated models

are capable to produce reasonably accurate performance estimates for different points

in the space and enable efficient discovery of tradeoffs among parameters in different

regions.

In a more recent work [17], Cavazos et al. used machine learning to build a predictive

model to correlate the performance counters of a program with the good optimization

options. Using their predictive models, they achieved a 10% average speedup over the

highest optimization setting the PathScale compiler on SPEC benchmarks.

Li et al. [94] addressed the problem of generating optimized sorting algorithms using

genetic algorithms and machine learning based classifiers. Their proposed approach is

able to select the best sorting algorithm as a function of the characteristics of the input

data. They showed that their technique performs significantly better than the many

conventional sorting implementations.

As an incremental approach, Dubach et al. [39] addressed the problem of finding

right optimizations for a program using machine learning by finding a mapping from
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the program features to a probability distribution over good optimization phases. An

important aspect of their approach was that it was able to adapt to architectural changes

without re-training the algorithm. When a new program needs to be compiled, the

best predicted executable is immediately generated, without iterative compilation and

without the need for a training phase specific for the target architecture.

Tournavitis et al. [132] proposed a profile-driven compiler-based auto parallelization

technique using machine learning. They used profiling data to extract actual control

and data dependences and integrated profile-driven parallelism detection and machine-

learning based mapping in a single framework. They also discussed the limitations of

existing auto-parallelization techniques and demonstrated that their proposed tech-

nique can significantly outperform the existing techniques. However, they did not

address the important problem of scalability.

Qilin et al. [95] addressed the problem of mapping computations to processing

elements automatically in a heterogeneous multiprocessors system. In this context, they

proposed an adaptive mapping technique based on offline training, referred to as Qilin,

and demonstrated its efficacy for mapping computations to processing elements on a

CPU+GPU machine. Their proposed technique can dynamically determine an effective

partitioning of work across heterogeneous resources, but targets only data-parallel

operations [17].

Since machine learning based compiler optimization is generally exposed to the

problem of dealing with theoretically infinite number of program features, identification

and selection of the best features from an infinitely large search space offers a dedicated

challenge. Leather et al. [93] addressed this problem by developing an optimized search

space described by a grammar and searched with genetic programming and predictive

modeling to find the best static features. However, the static features discovered are

those that can be summarized into a fixed-length feature vector. Also, their technique

only outperforms static source code features (such as, SRC) by only a couple of percent

on average.

Park et al. [114] used a graph-based characterization technique to predict the best

optimizations for a program. Their proposed techniques build a program’s control flow

graph which is then applied to support vector machine to prediction models with the

shortest path graph kernel. The authors showed that this method of characterizing

programs is competitive with previous characterization techniques.

Stock et al. [130] addressed the problem of automatic vectorization of compute-

intensive programs using machine learning. They predict the performance of SIMD

code using different machine learning models trained offline on the features extracted

from the generated assembly codes. The predictions were used at compile-time to

discriminate between numerous possible vectorized variants generated from the input

code. They evaluated their machine learning models on different computations and

showed good improvements over Intel ICC’s auto-vectorized code.

6



1.1. INTRODUCTION

Moore et al. [107] propose a technique to dynamically determine the application

affinity (thread-to-core mapping) in multi-core machines using machine learning. Re-

ferred to as AutoFinity, their proposed technique first gathers the training data for a

range of affinities and program behavior from the training programs. It then utilizes

machine learning methods to construct an action table which provides policies for

thread-to-core mappings. The generated policy is used at runtime to select a program’s

affinity. The policy can handle programs that were not part of the training and/or

thread counts that have not been considered by training.

In a recent work, Park et al. [115] presented a machine learning technique to se-

lect the best polyhedral optimizations for compute-intensive programs using limited

iterative search. They first used static cost models to reduce the set of candidate opti-

mizations and then predict the performance of each optimization with machine learning

models. They achieved significant performance improvement for various benchmarks

on multi-core platforms.

Kejariwal et al. [15] focused on inlining heuristic constraints for program optimiza-

tion. They built machine learning models to learn the correlation between inlining

vectors and program completion time. Combined with other global optimizations, the

machine learning based model selects an inlining vector that minimizes the comple-

tion time of a program. Their evaluations on GNU GCC compiler and optimized 22

combinations (program, input) from SPEC CINT2006 showed promising results.

Existing studies usually focus on a few positive outcomes (predictions) to improve

execution time, power consumption or other characteristics using some off-the-shelf

black-box classification and predictive modeling techniques such as SVM, neural net-

works or KNN [9, 70, 92], several optimizations and a few benchmarks combined with

several ad-hoc program or architecture features. Though undoubtedly interesting, such

limited studies can only demonstrate some potential of using machine learning for pre-

dictions but do not include deep and systematic analysis of the selection of a learning

algorithm and related features for large and realistic training sets which are the major

research challenges in the field of machine learning for decades, and far from being

solved [9].

Having drawn inspiration from the potential benefits of machine learning, we

introduced a novel compiler technology, called Milepost GCC, that can automatically

learn how to best optimize programs for configurable heterogeneous processors based

on the correlation between program features, run-time behavior and optimizations.

It also aims to dramatically reduce the time to market configurable or frequently

evolving embedded systems. Rather than developing a specialized compiler by hand for

each configuration, our machine learning based platform aims to produce optimizing

compilers automatically.

Our rigorous experimentation and analysis showed that machine learning based

program auto-tuning does outperform iterative compilation, but at the same time it
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can not be singled out as the best approach to guarantee optimal solution for all cases.

In order to find the strong feature-optimization correlation and to capture the precise

run-time dynamics for predicting the best transformations, machine learning requires a

huge training data set which should cover adequate number of possible scenarios and

observations. Obtaining such a huge data set for training with all unforeseen examples

is extremely difficult and hence limits the prediction accuracy. Therefore, we established

that machine learning alone can not serve this purpose as desired.

1.2 Motivation

The potential of machine learning for auto-tuning was now well-tested by us and we

already had a machine learning based compiler at hand which is the first of its kind.

However, along with the problem of insufficient training data set, we also realized

that the “black box” nature of machine learning algorithms together with the lack of

common experimental methodology and culture of sharing large, diverse and repro-

ducible experimental sets makes it too tedious or sometimes even impossible to validate

results of existing approaches and use them to improve compilers, applications and

architectures. All these issues started to raise many concerns about practicality and

scalability of our machine learning based approach for compilation and architecture in

realistic production scenarios.

Considering all the aforementioned problems, we established that machine learning

can not be used effectively as a standalone prediction system for compiler auto-tuning

without a collaborative approach of collecting the relevant experimental results from

the community and disseminating the artifacts in return. This led us to introduce the

innovative idea of using a combination of offline and online learning for this purpose. We

decided to collect the optimization results and codes from the community and replace

the related optimizations from our repository with the better ones after validation. This

further allows us to get new observations, thus leading to better feature-optimization

correlation and model adjustment to improve prediction accuracy through online

learning.

The research carried our in this thesis is motivated by the development of a novel,

scalable and extensible optimization methodology and public framework that attempts

to address all above-mentioned challenges in a cooperative and coherent way while

gradually unifying and validating existing ad-hoc techniques and tools. Instead of rely-

ing on a few positive and often non-reproducible experimental outcomes, we propose to

formalize and expose the whole optimization scenario including multiple optimization

choices and characteristics to the community or a workgroup in a modular and portable

way as a buildbot. By this way, we can easily distribute various optimization scenarios

among many participants and continuously explore available optimization choices for

all shared code and data set samples from the community in realistic environments
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while focusing on unexpected behavior and mispredictions. All behavior anomalies

can be continuously collected and exposed in a centralized repository to find most

optimal predictive models and correlating algorithm, program, architecture, data sets

and other features for a given scenario either automatically or through crowdsourcing

as it is currently successfully used in other sciences including biology and artificial

intelligence.

1.3 Cooperative research and experimentation

Many of the challenges and pitfalls pertaining to compiler performance tuning are

caused by the lack of a common experimental methodology, lack of interdisciplinary

background, and lack of unified mechanisms for knowledge building and exchange

apart from numerous similar publications, where reproducibility and statistical mean-

ingfulness of results as well as sharing of data and tools is often not even considered

in contrast with other sciences including physics, biology and artificial intelligence. In

fact, it is often impossible due to a lack of common and unified repositories, tools and

data sets. At the same time, there is a vicious circle, since initiatives to develop common

tools and repositories to unify, systematize, share knowledge (data sets, tools, bench-

marks, statistics, models) and make it widely available to the research and teaching

community are practically not funded or rewarded academically where a number of

publications often matter more than the reproducibility and statistical quality of the

research results. As a consequence, students, scientists and engineers are forced to resort

to some intuitive, non-systematic, non-rigorous and error-prone techniques combined

with unnecessary repetition of multiple experiments using ad-hoc tools, benchmarks

and data sets. Furthermore, we witness slowed down innovation, dramatic increase

in development costs and time-to-market for the new embedded and HPC systems,

enormous waste of expensive computing resources and energy, and diminishing at-

tractiveness of computer engineering often seen as “hacking” rather than systematic

science.

Our basic idea is to bring interdisciplinary community together to collaboratively

explore various research and experimental scenarios while explaining unexpected

behavior and mispredictions. However, unlike some other sciences where similar

approach has already been successfully used for years, it is not yet widely used in

design and optimization of computer systems due to at least two major problems:

variability in behavior of computer systems such as execution time and very complex and

continuously evolving experimental setups with multiple hard-wired ad-hoc and ever

changing tools and architectures combined with some tuning and analysis scripts while

often sharing results in non unified CSV, TXT and XLS files with some limited meta-

description or at most in MySQL and similar databases, as conceptually shown in Figure

5.2a. Usually, by the end of tedious development and experimentation, new versions of
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compilers, libraries, operating systems and architectures are already available making

results potentially outdated while problems possibly solved or considerably evolved.

1.4 Collective Mind: cooperative experimentation

We propose to use our recent Collective Mind framework and Hadoop-based repository

of knowledge (cM for short) [59, 100] to extract and share the open-source software

pieces together with various possible inputs and metadata at c-mind.org/repo. This

metadata is gradually extended by the community via popular, human readable and

easily extensible JSON format [83], currently describing how to build and run shared

pieces together with all dependencies on the specific hardware and software including

compilers, operating systems and run-time libraries. All these shared software pieces

are then continuously and randomly optimized and executed with different data sets

using distributed cM buildbot for Linux and Windows-based devices [100] or cM

node for Android devices [101] across shared computational resources provided by

volunteers. Such resources range from smartphones, tablets, laptops and desktops

to data centers, supercomputers and cloud services gradually covering all existing

hardware configurations and environments. Furthermore, the community can use

lightweight cM wrappers around identified software pieces within a real and possibly

proprietary applications to continuously monitor their behavior and interactions within

the software project. Similar to nature and biological species, such approach treats

all exposed and shared software pieces as computational species while continuously

tracking and learning their behavior versus different optimizations across numerous

hardware configurations, realistic software environments and run-time conditions. cM

infrastructure then continuously records only the winning solutions (optimizations for a

given data set and hardware) that minimize all or only monitored costs (execution time,

power consumption, code size, failures, memory and storage footprint, and optimization

time) of a given software piece on a Pareto frontier [90] in our public cM repository.

Software engineers can now assemble their projects from the cM plugins with contin-

uously optimized computational species. Such software projects can continuously and

collaboratively achieve better performance while reducing all costs across all hardware

thus making software engineering performance- and cost-aware. Furthermore, software

developers are now able to practically help compiler writers and hardware designers

improve their technology as conceptually shown in Figure 1.1b. Indeed, our approach

helps create the first to our knowledge public, realistic, large, diverse, distributed,

evolving and continuously optimized benchmark with related optimization knowledge

while gradually covering all possible software and hardware.

At the same time, we can also apply an extensible, top down methodology originat-

ing from physics when learning behavior of complex systems. The compiler community

first learns and optimizes coarse grain behavior of large shared software pieces in-
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Figure 1.1 – (a) Traditional computer engineering versus (b) Our new collaborative perfor-
mance and cost-aware software/hardware co-design as a web service.

cluding whole applications, library functions, kernels and most time consuming loops

versus global compiler optimization flags or other coarse-grain optimizations. After

enough knowledge is collected, the community can gradually move to finer grain levels

including just a few source lines or binary instructions versus all internal and individ-

ual compiler optimization decisions via our Interactive Compilation Interface. This

plugin-based interface is already available in mainline GCC [55], and we plan to add it

to LLVM in the future [59].

More importantly, our approach helps considerably improve existing methodology

on optimization and run-time adaptation prediction using machine learning. Current

methodology (used in most of the papers referenced in Section 1.1 and including ours)

usually focuses on showing that it is possible to predict one or several optimizations

to improve execution time, power consumption or some other characteristics using

some off-the-shelf machine learning techniques such as SVM, (deep) neural networks

or KNN [9, 70, 92] combined with a few ad-hoc program or architecture features. In

contrast, our growing, large and diverse benchmark allows the community for the first

time to apply methodology from sciences such as biology, medicine and AI based on

big data predictive analytics [68]. For this purpose, cM infrastructure continuously

classifies all winning species in terms of distinct optimizations and exposes them to

the community in a unified and reproducible way through the public repository. This,

in turn, allows our colleagues with interdisciplinary background to help the software

engineering community find the best predictive models for these optimization classes

together with relevant features from software species, hardware, data set and environment

11



CHAPTER 1. INTRODUCTION

state either manually or automatically. Such features (including extraction tool) and

predictive models are continuously added to the species using cM wrappers and their

meta-data thus practically enabling self-tuning software automatically adaptable to any

hardware and environment.

Importantly, cM continues tracking unexpected behavior (abnormal variation of

characteristics of species such as execution time, or mispredictions from current clas-

sification) in a reproducible way in order to allow the community improve predictive

models and find missing features that can explain such behavior. Also, in contrast with

using more and more complex and computationally intensive machine learning tech-

niques to predict optimizations such as deep neural networks [9, 70, 92], we decided to

provide a new manual option useful for compiler and hardware designers. This option

allows the community to combine existing predictive techniques as a cheap way to

quickly analyze large amount of data, with manually crafted human-readable, simple,

compact and fast rules-based models (decision trees) that can explain and predict opti-

mizations for a given computational species. Thus, we are collaboratively building a

giant optimization advice web service that links together all the shared software species,

optimizations and hardware configurations while resembling Wikipedia, IBM Watson

advice engine [45], Google knowledge graph [102] and a brain.

We understand that the success of our approach will depend on the active involve-

ment from the community. Therefore, we tried to make our approach as simple and

transparent to use as possible. For example, our light-weight cM version for Android

mobile systems [101] is a “one-button approach” allowing anyone to share their compu-

tational resources and tune shared computational species. At the same time, extraction

of software pieces from large applications is still semi-manual and may incur some costs.

Therefore we are gradually working on automating this process using plugin-based

capabilities in GCC and LLVM. Furthermore, together with participating companies and

volunteers, we already extracted, described and partially 1 shared 285 computational

species together with around 500 input samples 2 from major benchmarks and software

projects. We then validated our approach in STMicroelectronics during 3 months to

help our colleagues tune their production GCC compiler and improve real customer

software. During that time, we continuously optimized execution time, code size, com-

pilation time and power consumption of all shared computational species using at

least 5000 random combinations of compiler optimization flags on spare private cloud

servers and mobile phones. We also managed to derive 79 distinct optimization classes

covering all shared species (small real applications or hotspot kernels extracted from

large applications with their run-time data set either manually as we did in [54], or

using Codelet Finder from CAPS Enterprise as we did in the MILEPOST project [55],

1We cannot share extracted pieces from proprietary software but we still use them internally.
2We currently have more than 15000 input samples collected in our past projects for our shared

computational species [53, 103, 20]. However since they require more than 17GB of storage, at the moment
we decided to share only representative ones, i.e. which require distinct compiler optimization.
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or using semi-manual extraction of OpenCL/CUDA kernels combined with OpenME

plugin interface to extract run-time state [59]) that we correlated with program semantic

and dynamic features using SVM [to be presented in Section 2.5.3] and other predictive

analytics techniques. With the help of domain specialists (compiler engineers), we

then analyzed predictive models for end-user software, found meaningless correla-

tions, manually isolated problems 3, prepared and shared counter-example code sample,

found missing program and input features to fix wrong classifications, and developed

adaptive, self-tuning and statically compiled code. Finally, we managed to substitute

ad-hoc benchmark used at the architecture verification department of our industrial

partners with the minimal and realistic one based on derived optimization classes that

helped to dramatically reduce development and testing time.

These positive outcomes demonstrate how our approach can help eventually involve

the software engineering community into development and improvement of compilers

and hardware. We also show how continuously growing collective knowledge repository

accessible via unified web service can become an integral part of the practical software

and hardware co-design of self-tuning computer systems while decreasing all develop-

ment costs and time-to-market for new products. More importantly, the side effect of our

approach to share code and data in a reproducible way help support recent international

initiatives on reproducible research and sustainable software engineering [104].

1.5 Real-life motivating example

A couple of decades ago, my scientific advisor, Dr. Grigori Fursin, started developing

and analyzing various artificial neural networks as part of a possible non-traditional and

brain-inspired computer [48, 49, 50]. Such networks can mimic brain functions and are

often used for machine learning and data mining [9]. For example, Figure 1.2 shows one

of the oldest and well-known one-layer, fully interconnected, recurrent (with feedback

connections) Hopfield neural network [72]. It is a popular choice for function modeling,

pattern recognition and image filtering tasks including noise reduction. Implemented

as a software, this neural network has a fairly simple and regular code where each

neuron receives a weighted sum of all inputs of an image as well as outputs of all other

neurons. This sum is then processed using some neuron activation function including

sigmoid or linear ones to calculate the output value. The small and simple C kernel

presented in Figure 1.2 is one of many possible implementations of a threshold filter we

used as a part of a linear activation function, i.e. switching neuron output from 0 to

1 when its input meets a given threshold. Very simplistically, the quality of a neural

network is usually determined by its processing speed as well as capacity (maximum

amount of patterns or information that can be stored in such networks) and recognition

3In spite of many papers that present some simple automatic optimization predictions, our practical
and industrial experience with large data sets shows that it is currently not possible to fully automate this
process. Therefore, manual analysis is still often required similar to other natural sciences.
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Figure 1.2 – Conceptual example of pattern recognition, image filtering and character noise
reduction using Hopfield fully interconnected and recurrent neural network. Simple C kernel
is a part of a neuron activation function processing thresholds for all neurons.

accuracy (correct predictions versus failures). It heavily depends on the total number

of neurons, connections and layers [76], and is primarily limited by the speed and

resources of the available hardware including specialized accelerators. Hence, neural

network software/hardware co-design process always involves careful balancing of

performance versus all associated costs including storage size, memory footprint, energy

consumption, development time and hardware price depending on usage scenarios

and required time to market. Indeed, Grigori’s research on improving neural networks

requires many iterative runs of a slightly evolving modeling software with varying

parameters to maximize prediction accuracy. In this case, the main concern is about

minimizing compilation and execution time of each execution across available hardware.

However, when the best found network is found and deployed in a large data center

or cloud service (for example, for big data analysis), end users would like to minimize

all additional costs including energy and storage consumption across all provided

computer systems. Finally, when deploying neural networks in small, autonomic and

possibly mass-produced devices such as surveillance cameras and mobile phones or

future robots and Internet of Things objects, more strict requirements are placed on

software and hardware size, memory footprint, real time processing, and the cost of the

whole system.

Twenty years ago, the software engineering of neural networks was relatively straight-

forward. Users did not have a choice but to simply select the latest hardware with the

accompanying and highly tuned compiler to achieve nearly peak performance for their

software including for the code shown in Figure 1.2. Therefore, in order to innovate and
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process more neurons and their configurations, users usually had to wait for more than

a year until arrival of a new hardware. This hardware would likely double performance

of our software and provide more memory and permanent storage but often at a cost of

higher power consumption and thus dramatically rising electricity bill.

In contrast, we now have an impressive choice of hardware of all flavors which

our software can be executed on. Each year, there are numerous variations of proces-

sors appearing on the market with different features (properties) including frequency,

number of cores, cache size, ISA extensions, specialized hardware accelerators (such as

GPU and even revived semiconductor neural networks), power consumption and price.

Furthermore, we can now have easy access to large-scale parallel resources from home

via popular virtualized cloud services from Amazon, Google, Microsoft and others.

Therefore, the number of experiments we can now run is mainly limited by the price we

can afford to pay for computing services. At the same time, we also enjoy continuous

community-driven improvements of operating systems together with numerous free

or proprietary libraries and software development tools including popular optimizing

compilers such as GCC and LLVM. One may expect that with so many advances in the

computer technology, practically any recent compiler would generate the fastest and

most energy efficient code for such an old, simple, small and frequently used software

piece shown in Figure 1.2 across existing hardware. Nevertheless, since users pay for

experiments, together with Dr. Grigori Fursin, we eventually decided to validate their

performance/cost efficiency.

For the sake of accountability and reproducibility, we started gradually collecting

at c-mind.org/nnet-tuning-motivation various information about several computer

systems we used including their price, cost, available operating systems, compilers and

optimizations. Figure 1.3a shows a tiny subset of this multidimensional space of design

and optimization choices. At the same time, whenever running real experiments, we also

started recording their execution time and all associated costs including compilation

time, code size, energy usage, software/hardware price and utility bill. It is worth

mentioning that by performance tuning, we mean reducing execution time. However,

on modern out-of-order processors with complex memory hierarchy, the dependency

between performance and total execution time may be non-linear. Thus, depending on

user requirements, these characteristics have to be tuned separately.

We further decided to perform a simple and well-known optimization compiler flag

autotuning [1, 55] with at least 100 iterations to see whether there is still room for im-

provement over the fastest default compiler optimization level (-O3). Figure 1.3b shows

one of many possible 2D projections of the multidimensional space of characteristics

(which we consider as costs of running our experiments or tasks). We then gradually

track the winning solutions that maximize performance and at the same time minimize

all costs using our experience in physics and electronics, namely by applying Pareto

frontier filter [90].
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P1) Intel Core i5-2540M, 2.60GHz, 2 cores  D1) grayscale image 1, size=1536x1536 

P2) Qualcomm MSM7625A FFA, ARM Cortex A5, 1 GHz, 1 core D2) grayscale image 2, size=1536x1536 

P3) Allwinner A20 (sun7i), ARM Cortex A7, 1.6GHz, Mali400 GPU, 2 core  

P4) NVidia Quadro NVS 135M, 400MHz, 16 cores  O1) Windows 7 Pro SP1,  cost~170 euros 

 T1) 7.2E10  O2) O1 with MinGW32 

W1) 32 bit processor mode T2) 9.6E9  O3) OpenSuse 12.1, Kernel 3.1.10 

W2) 64 bit processor mode T3) 2.4E9 O4) Android 4.1.2, Kernel 3.4.0 

 T4) 1.0E9 O5) Android 4.2.2, Kernel 3.3.0 

X1) GCC 4.1.1, opt.flags~190, release date=2006  

X2) GCC 4.4.1, opt.flags~270, release date=2009  S1) Dell Laptop Latitude E6320, Mem=8Gb, 52W, 1200 euro 

X3) GCC 4.4.4, opt.flags~270, release date=2010  S2) Samsung Mobile GT-S6312, Mem=0.8Gb, 5W, 200 euros 

X4) GCC 4.6.3, opt.flags~320, release date=2012  S3) Polaroid Tablet MID0927, Mem=1Gb, 13W, 100 euros 

X5) GCC 4.7.2, opt.flags~340, release date=2012  S4) Semiconductor neural network,1.5years development  

X6) GCC 4.8.3, opt.flags~350, release date=2014  

X7) GCC 4.9.1, opt.flags~357, release date=2014   Y1) Performance (usually -O3) 

X8) LLVM 3.1, release date=2012   Y2) Size (usually -Os) 

X9) LLVM 3.4.2, release date=2014   Y3) -O3 -fmodulo-sched -funroll-all-loops 

X10) Open64 5.0, release date=2011   Y4) -O3 -funroll-all-loops 

X11) PathScale 2.3.1, release date=2006   Y5) -O3 -fprefecth-loop-arrays 

X12) NVidia CUDA Toolkit 5.0, release date=2012   Y6) -O3 -fno-if-conversion 

X13) Intel Composer XE 2011, cost = ~800euro   Y7) Auto-tuning with more than 6 flags (-fif-conversion) 

X14) Microsoft Visual Studio 2013  Y8) Auto-tuning with more than 6 flags (-fno-if-conversion)  
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Figure 1.3 – (a) A small subset of various hardware, software, development tools and opti-
mizations used in our research on neural networks in the past 20 years (P - processors, W -
processor mode, X - compiler, O - operating system, S - system, T - total number of processed
pixels or neurons, D - software data set, Y - compiler optimization used) (b) 2D projection of
the multidimensional space of characteristics together with winning solutions on the Pareto
frontier (all data and interactive graphs are available at c-mind.org/nnet-tuning-motivation).

We quickly realized that in contrast to the traditional wisdom, the latest technology

is not necessarily the fastest or most energy efficient and further optimization is always

required. For example, when moving from GCC 4.1.1 (released in 2006) to GCC

4.9.1 (released in 2014) , we observed a modest 4% improvement 4 in single core

4Similar to physics, we execute optimized code many times, check distribution of characteristics for
normality [43], and report expected value if variation is less than 3%.
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execution time of our neural network and 2% degradation in a code size on Intel

E6320 based system (released in 2008). However, 8 years old GCC 4.1.1 can achieve

27% improvement in execution time after auto-tuning (which comes at cost of 100

recompilations and executions as well as increasing binary size by 34%)! Interestingly, 8

years old PathScale 2.3.1 produces faster code than the latest version of GCC 4.9.1 and

LLVM 3.4.2! Furthermore, when using internal parallelization, LLVM 3.4.2 beats GCC

4.9.1 by about 23% but has a sub-linear scaling versus number of threads. In contrast, 2

years old GCC 4.6.3 achieves the best result and linear scaling versus number of threads

when using both parallelization and auto-tuning.

When running the same code on cheap, commodity mobile phones with ARM

architecture, the execution time increased dramatically by around 5 times! However,

the power consumption dropped by about 10 times! When trying to use specialized

hardware (GPUs or our semiconductor neural networks), we could increase execution

time by about tens to hundreds of times, but at a considerable development cost and

time to market. Furthermore, with time, we discovered that the same best found

optimization for one class of images can considerably degrade performance on another

class of images. We also encountered problems with cache contentions on multi-core

systems, sub-linear scaling on many core systems, unexpected frequency scaling, non-

deterministic I/O for large images, and many other problems that had to be addressed

by new optimizations. These issues can not be easily solved by static compilers due to

a fundamental problem of a lack of run-time information at compile time. Therefore,

we even tried to move to dynamic and possibly adaptive languages including Java and

Python but were not yet able to achieve similar performance while spending even more

energy and storage during just-in-time compilation.

Sadly and similar to many other scientists and software engineers, we now have to

waste considerable amount of our time on a tedious and ad-hoc navigation through the

current technological chaos to find some good hardware, software and optimization

solutions that can speed up our programs and reduce costs instead of innovating as

conceptually summarized in Figure 1.4.

Worse, software engineers are often not even aware of all available design and

optimization choices they have, to improve performance of their software and reduce

development and usage costs. Furthermore, costs that has to be minimized depend

on usage scenarios: in mobile systems running out of battery, one may want to fix a

power budget and then balance execution time and algorithm accuracy; in embedded

devices, code size and consumed energy may be more important than execution time; JIT

may require careful balancing of compilation and optimization times versus potential

performance gains, while users of data centers and supercomputers may care primarily

about both execution time and the price of computation. Therefore, we strongly believe

that current performance- and cost-blind software engineering has to be changed to

improve productivity and boost innovation in science and technology.
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Figure 1.4 – Example of gradually and manually crafted advices as decision trees to deliver
best performance and cost for our neural network depending on available resources, usage
scenarios (requirements) and data sets.

1.6 Research objectives

The research objectives of this thesis are as follows.

1. Tuning compiler optimizations using machine learning which has the potential

of automatically adapting the internal optimization heuristic at function-level

granularity to improve execute time, code size and compilation time of a new

program on a given architecture.

2. Making machine learning based compilation a realistic technology for general-

purpose production compilers, extending the scope of currently available machine

learning based approaches to support higher number of architectures and compiler

flags, aggressive optimizations, and larger number of transformations.

3. To offer computer engineering community practical ways to automatically improve

software performance while reducing power consumption and other usage costs

across rapidly evolving computer systems.

4. To collaboratively solve the software optimization problems while improving

productivity of software developers.

5. Offering scientific community to share their most frequently used software pieces

together with various possible inputs and features and optimizing them to allow

the interdisciplinary community to collaboratively correlate the best found opti-

mizations with gradually exposed features from the software, hardware, data sets

18



1.7. THESIS CONTRIBUTION

and environment.

The most closely related work [19] discusses continuously tuning the GCC compiler

flags using a data center, however, like most other techniques it uses black box auto-

tuning with only several programs while focusing on a few speedups and without any

released tools. Finally, authors in [93] suggest to automatically derive combinations

of features from a compiler using grammars but only for one optimization (unrolling),

has no released infrastructure, and does not include analysis of the scalability of the

approach in presence of ever growing number of features, optimizations and programs.

Furthermore, the related features are often not even available in a system.

Therefore, to the best of our knowledge, we provide the first simple and practical

methodology and open-source framework to unify, formalize and connect together

available ad-hoc techniques and tools for auto-tuning and machine learning by using

recent advances in agile methodologies, web and crowdsourcing technology, and schema-

free repositories.

1.7 Thesis contribution

The scientific contribution in this thesis can be summarized as follows.

1. We introduce a machine learning based compiler (Milepost GCC) which is based

on a modular, extensible, self-tuning optimization infrastructure to automatically

learn the best optimizations across multiple programs and architectures based on

the correlation between program features, run-time behavior and optimizations.

Milepost consists of an interactive compilation interface and plugins to extract

program features and exchange optimization data with an open public repository

(cTuning.org)[32]. It can automatically adapt the internal optimization heuristic

at function-level granularity to improve execution time, code size and compilation

time of a new program on a given architecture.

2. On top of Milepost, we develop a collaborative framework, called Collective Mind

(cM), which serves as a distributed platform for cooperative formalization and

validation of program optimization (auto-tuning) and machine learning to make

it understandable, practical, reproducible and scalable.

3. We further envisage a novel experimental methodology in the Collective Mind to

continuously optimize and classify multiple code and data set samples shared by

the community while exposing, analyzing and solving unexpected behavior either

automatically or through crowdsourcing.

4. We implement the Collective Mind with two experimental setups to validate itera-

tive compilation and machine learning in two major companies and on several
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mobile embedded devices. The results discussed in the thesis show that the Col-

lective Mind effectively serves as a collaborative platform for sharing codes, data

set samples from major benchmarks, and optimizing real applications in terms of

execution time using at least 5000 combinations of GCC compiler optimization

flags currently deriving 79 distinct and pruned optimization classes.

5. As an elaborated proof of the concept, we also present a case study in an industrial

setup, where we exposed our framework’s mispredictions on a production code to

domain specialists who “deconstructed” and isolated the problem, prepared and

shared counter-example benchmark, and learned correct algorithm, program and

data set features to fix wrong classification.

6. Our white box approach helps to deliver minimal representative benchmark to

an architecture verification and testing department of our industrial partner. The

community now has an extensible tool set to continue analyzing all exposed

problems and find new features to improve and optimize predictive models.

1.8 Thesis organization

The rest of the thesis is organized as follows.

Chapter 2 gives the theoretical background of compiler optimization and its several

techniques. We also discuss the theoretical aspects of the key machine learning

concepts used in our experimental framework. At the end, we give an overview of

crowdsourcing which is an integral part of our collaborative framework.

Chapter 3 provides details of our experimental setup used for various evaluations in

the thesis. We then discuss compiler auto-tuning using iterative compilation and

show that iterative compilation does effectively tune optimization heuristics of a

compiler, but results in excessive search costs and execution time that motivate

the use of machine learning to learn optimizations across programs based on their

features.

Chapter 4 provides an overview and detailed architecture of our machine learning

based compiler, Milepost GCC. We briefly discuss its prediction models along

with its evaluation and comparison with iterative compilation.

Chapter 5 introduces the framework of our collaborative framework, the Collective

Mind. We also discuss the essentials of cooperative research and experimentation

as well as its major challenges. We then provide a comprehensive overview of our

public and open-source Collective Mind infrastructure and repository. At the end

of the chapters, we discuss several possible usage scenarios.
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Chapter 6 provides a detailed discussion about crowdsourcing, feature learning and

model improvement with our collaborative framework. We present several public

research scenarios and experimental pipelines as well as a detailed discussion on

learning data set features to enable adaptive software.

Chapter 7 summarizes the overall thesis and describes the potential future work.
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2
Background

2.1 Introduction

Compiler optimization is the core concept of this thesis. Hence, this chapter provides

an in-depth mechanism of optimizing compiler, its various transformations, and the

popular compiler optimization technique, the iterative compilation. Subsequently, we

describe the issues pertaining to iterative compilation and present machine learning as a

potential solution to cope with these issues. Since our proposed optimization framework

is based on machine learning, we provide theoretical background of several machine

learning algorithms used in our proposed framework. At the end, we describe the

concept of crowdsourcing which forms an integral part of our proposed optimization

methodology.

2.2 Compiler basics

A compiler is a program that translates from one input language, the source language

(e.g., C), to another output language, the target language (e.g., machine code for Pentium

processor series) [64]. Generally, a compiler consists of two parts: (i) analysis part that

decomposes a source code and applies a grammatical structure on the constituent parts

to create an intermediate form, and (ii) synthesis part that generates the target code from

the intermediate form [3].

Besides these two high-level parts, a compiler generally operates in multiple low-

level phases shown in Figure 2.1 and described as follows [3].

1. Lexical analyzer reads character stream of the source program and groups the

characters into meaningful sequences called lexemes. A token is formed for each
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Lexical Analyzer
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token stream
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Code Generator

Machine Dependent
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Machine Independent 
Code Optimzer

Intermediate representation

target machine code

target machine code

character stream

Figure 2.1 – Phases of compiler operation

lexeme (consisting of token class and an optional attribute) and passed to the

subsequent phase.

2. Syntax analyzer generates a syntax tree from the tokens generated by the lexical

analyzer that represents the grammatical structure of the token stream.

3. Semantic analyzer checks the semantic consistency with the language definition

from the information contained in the syntax tree. The relevant information is

saved either in the syntax tree or in a symbol table.

4. Intermediate code generator constructs one or more explicit low-level or machine-

like intermediate representation of the source program which is reproducible and

easy to translate in to the target machine.

5. Code optimizer attempts to improve the intermediate code for length reduction,

speed and power efficiency. Code optimization can be machine- dependent or

independent depending on whether the code is being optimized for a specific

machine or independent of the platform.
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6. Code generator maps the optimized intermediate code to the target language and

assigns registers to hold variables.

The core concept of the work proposed in this thesis is code optimization which

varies from compiler to compiler. The most aggressive form of code optimization coins

the concept of optimizing compiler which spends significant amount of time in the

optimization phase.

2.3 Optimizing compiler

With the advent of high-performance embedded devices having sophisticated comput-

ing components such as multiple Digital Signal Processors (DSPs), Graphics Processing

Units (GPUs) and other co-processors, the aggressive compiler and software optimiza-

tion has become indispensable. Though, code optimization is an integral phase of a

compiler, in order to meet the high computational demands and resource constraints of

modern computing devices, a rigorous code optimization is required. An optimizing

compiler performs an aggressive optimization of programs for reducing their run-time,

minimizing occupied memory, and decreasing power consumption [3]. Optimizing

compiler uses a sequence of algorithms, called optimizing transformations, on a given

source program to improve it in terms of execution time, code size, memory footprint

and power consumption.

2.3.1 Optimizing transformations

The programs written for older platforms do not reflect the design features of new

hardware designs and are ported to the new platforms without major changes due to

economical reasons. Hence, these programs suffer performance degradation on new

platforms and require to be improved to adapt to the new computing platform. This is

achieved by optimizing transformations which is a method of re-arranging a program’s

operations in order to improve its performance on the new platform without changing

the meaning of the program [51]. Some optimizing transformations used in the research

of this thesis are discussed in the following sections.

2.3.1.1 If-Conversion

If-conversion transforms all the control dependencies in a program into data dependen-

cies. This is achieved by removing a branch instruction around an instruction with a

predicate on the instruction. The instructions having true predicate execute as though

they are not predicated. On the other hand, the instructions having false predicate

execute as NOP instructions [21]. Following example shows the process of if-conversion

on a block of code. The code before if-conversion contains a branch which is replaced

by the if-conversion with predicated execution. Instead of testing a branch condition
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and executing only a single control-dependent path, both paths are executed and the

results are controlled by the predicates. The effect of if-conversion transformation can

be seen in Figure 2.2.

1 /∗ Before I f −conversion ∗/
2 i f ( cond ) Branch B1

3 v2 = MEM [ x ] ;
4 v1 = v2 + 1 ;
5 v0 = MEM [ v1 ] ;
6 B1 : v5 = v3 + v4 ;

1 /∗ Af ter I f −conversion ∗/
2 c1 , c2 = cond ;
3 v2 = MEM [ x ] <c2>;
4 v1 = v2 + 1 <c2>;
5 v0 = MEM [ v1 ] <c2>
6 B1 : v5 = v3 + v4 ;

2.3.1.2 Loop unrolling

Loop unrolling attempts to minimize a loop’s overhead incurred due to branch instruc-

tions by reducing the number of instructions that control the loop and replicating the

body of the loop. The instructions forming the loop’s body must be independent in

order to avoid data dependency. Loop unrolling results in reduction of the total number

of instructions executed by the CPU when the loop is executed. It is mainly because

the number of branch instructions and the loop control overhead (increment in the

control variable, testing condition to terminate the loop) is minimized. Loop unrolling

significantly improves a program efficiency by achieving increased instruction-level

parallelism and effective utilization of spatial locality of data items in memory [34].

Following simple example demonstrates loop unrolling. After unrolling, the following

code block is executed 20 times instead of 100.

1 /∗ Before loop unro l l i ng ∗/
2 for ( i = 0 ; i < 100; i = i + 1)
3 {
4 x [ i ] = sqrt ( x [ i ] ) ;
5 }

1 /∗ Af ter loop unro l l i ng ∗/
2 for ( i = 0 ; i < 100; i = i + 5)
3 {
4 x [ i ] = sqrt ( x [ i ] ) ;
5 x [ i + 1] = sqrt ( x [ i ] ) ;
6 x [ i + 2] = sqrt ( x [ i ] ) ;
7 x [ i + 3] = sqrt ( x [ i ] ) ;
8 x [ i + 4] = sqrt ( x [ i ] ) ;
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Figure 2.2 – Control flow graph of mc.codelet-9.1 constructed using a) gcc-4.6.3 -O3 b)
gcc-4.6.3 -O3 -fno-ifconversion
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9 }

2.3.1.3 Guessing branch probability

This transformation determines the probability of occurrence of conditional branches in

a program code. Based on the likelihood of the branches, the instructions are reordered

accordingly. The branches can be predicted using profile-based techniques which

involves producing a profile by several runs of a program and reordering the code after

analyzing the profile. Hence, profile-based branch prediction are cumbersome and time-

consuming [6]. The compiler generally uses heuristics to guess the branch probabilities

and predict the code arrangement during compile time. Nevertheless, this may result in

different object code for the same program during different compilations [10].

2.3.1.4 Function inlining

Function inlining is an optimization technique that aims to reduce the overhead involved

in calling a function and returning from it. This technique transforms all the discrete

functions of a program into a single function which is embedded directly in the code

structure where it is used to eliminate the function calling overhead such as saving

the state of the function, argument passing and retrieving function state from the

stack [36, 112]. Function inlining significantly improves a program’s performance in

terms of execution speed, memory utilization and energy consumption [86].

Consider the following code fragment.

1 f loat addition ( f loat a , f loat b )
2 {
3 return a + b ;
4 }
5
6 f loat subtract ( f loat a , f loat b )
7 {
8 return addition ( a , −b ) ;
9 }

The function addition() can be expanded in function subtract() as follows:

1 f loat subtract ( f loat a , f loat b )
2 {
3 return a + − b ;
4 }

This expansion can be further optimized as:

1 f loat subtract ( f loat a , f loat b )
2 {
3 return a − b ;
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4 }

Selecting an optimal combination of transformations presents a dedicated challenge

in compiler optimization. A transformation may result in overall performance improve-

ment in terms of execution time. On the other hand, it may drastically increase the

execution time of a program. In the same way, a combination of various transformations

selected under a compiler flag (for e.g. -O3) may or may not provide execution speedup.

We can not simply turn on all the transformations as a rule of thumb to achieve a

maximum speedup. Due to hundreds of possible transformations under a compiler

flag, determination of right combination of transformations is not trivial. Figure 2.3

shows the speedup achieved by enabling and disabling a specific transformation for a

benchmark. It is evident that while enabling a transformation for a specific benchmarks

does result in execution speed improvement, it increases the execution time for other

benchmark.

Transformation Codelet Enabled Disabled Speedup

if-conversion
video_x264_mc.codelet 5.94s 4.65s 1.28

Powerstone_auto2 5.36s 7.49s 0.85

unroll-loops
UTDSP_compress_arrays_SWP_4.1 5.94s 4.65s 1.28

SNU_RT_fibcall_1.1 5.36s 7.49s 0.85

guess-branch-probability
Powerstone_auto2 5.94s 4.65s 1.28

Video_x264_pixel 5.36s 7.49s 0.85

Figure 2.3 – Speedup achieved by enabling and disabling various transformations. Above
listed transformations are enabled by default at -O3.

2.4 Iterative compilation (auto-tuning)

Iterative optimization is a popular approach to adapting programs to new architectures

automatically using feedback-directed compilation [56]. This optimization approach

searches for the best optimization scheme for a target machine from a given set of

optimizations. This is achieved by compiling a program with a selected set of trans-

formations and their parameters and evaluating its impact on the target machine. The

evaluation is performed with a cost model which serves as the objective function of

the optimization process and determines the effectiveness of a compiled code on the

target machine. The process of iterative compilation continues until it converges to a

minimum cost which represents the best optimized code [99].

Figure 2.4 depicts the process of feedback-directed iterative optimization. The next

combination of the optimization based on the evaluation feedback is selected either

randomly by generating a random number, or by assigning pre-computed probabilities

to each optimizations. The probabilities of the optimizations change with respect to

the evaluation feedback and the good optimizations are selected with higher proba-

bilities [139]. Although feedback-directed iterative compilation is a natural way to
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Figure 2.4 – Feedback-directed iterative compilation

select the best optimization scheme for a target machine, it does have the following

disadvantages.

• In order to converge to the best optimization for a target machine, the search

space of iterative compilation must contain all the possible combinations of opti-

mizations. The huge search space results in a long compile and execution time to

optimize a given program which makes it infeasible for iterative compilation to

achieve a wider adoption by the modern industrial compilers [139, 56].

• It is difficult to build analytical models that can predict how different combinations

of optimizations will interact with each other [116].

• Iterative compilation often depends on the selection of the data set. With the

change of input data set, the performance of the target application may suffer

significant degradation [99].

In contrast to feedback-directed iterative compilation, machine learning can suc-

cessfully address the above mentioned issues by learning optimization strategies using

prior knowledge of other programs’ behavior. Following section provides a theoretical

background of some machine learning techniques pertinent to our proposed machine

learning based compiler optimization framework.
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2.5 Machine learning for tuning compiler optimization

Although iterative compilation is theoretically able to find the optimal compilation

settings needed to ensure portable performance on a specific architecture, it is costly

in terms of optimization time. Moreover, the search space is too large to explore all

possible optimizations. In order to address the issues pertaining to iterative com-

pilation, machine learning can be exploited to reuse the knowledge across iterative

compilation runs, gaining benefits of iterative compilation while reducing the number

of executions needed. Unlike iterative compilation that operates on a given static model,

machine learning operates on building an exclusive prediction model from the given

program features and corresponding optimizations in a dataset to make data-driven

decisions. Machine learning can be used in two possible ways for compiler optimization:

supervised learning and unsupervised learning.

• Supervised learning requires an offline dataset comprising program features with

accurately labelled classes of optimization. This approach requires collection

of various program features and experimentally determining their appropriate

classes (optimizations). A drawback of this approach is that it is able to deal with

only those observations which are included in the training dataset and largely mis-

predicts the new instances. A possible solution to this problem is to incorporate

new observations (program features) and re-train the learning framework on the

fly to adjust the prediction model. Examples of supervised learning algorithms

include Support Vector Machine (SVM), decision trees and K-Nearest Neighbor

(KNN), to name a few.

• In contrast to supervised learning, unsupervised learning builds a prediction

model by directly interacting with the learning environment without requiring

any given dataset. In this learning framework, an optimization is randomly

applied to a given program code and its outcome is analyzed to adjust the future

decisions. In this way, the learning proceeds in a direction in which better actions

(optimizations) are selected as more observations are analyzed. This learning

mimics human learning process which starts out with random actions and rectifies

its decisions as more experience is acquired. However, despite of its appealing

features, the time required to build an optimal prediction model for compiler

optimization using unsupervised learning is yet to be explored. Examples of

unsupervised learning include reinforcement learning, artificial neural networks

and deep learning, to name a few.

While collection and labelling of dataset offers a dedicated challenge in supervised

learning and turns out to be cumbersome, dealing with unforeseen observations is

another issue. It is nearly impossible to incorporate all the observations and scenarios

in the learning dataset. Likewise, starting out with no information (dataset) at hand and
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proceeding to optimal optimization decisions with reasonable convergence time is yet

another challenge in unsupervised learning. Hence, it is evident that none of the above

mentioned learning paradigms can be significantly effective if used independently.

The work carried out in this thesis is motivated by augmenting supervised learning

with a collaborative framework to incorporate users’ experience in the learning model

and constructing a dynamic prediction model for compiler optimization. Starting

out with a labelled dataset of program features, we train the learning algorithm with

supervised learning. In order to refine the learning accuracy and prediction model, new

observations are obtained from users’ experience through crowdsourcing (see Section

2.6). While the supervised learning directs the prediction model to the right path, the

feedback obtained from users’ experience and incorporation of new information to the

learning model further improves the prediction accuracy over time.

Before presenting a detailed description of our machine learning based compiler

optimization technique, it is pertinent to discuss the theoretical background of some

machine learning techniques that can be potentially used for compiler optimization.

2.5.1 Decision trees

A decision tree is a predictive model and a supervised learning technique in the form

of a graph where each node (called tree’s leaf) represents a test on an attribute (e.g.,

whether to unroll a loop or not) and its possible outcomes. The classification task starts

out with the tree’s root with the initial test on its attributes and follows the appropriate

branches. Tree traversal continues until the classification process encounters a leaf and

the given observation/example is mapped to the leaf’s class. Given the adequate number

of attributes, a decision tree maps a training set example to its appropriate class with a

high accuracy. However, an important aspect of training a decision tree is to find the

relationship between a class and its attributes such that the decision tree should be able

to correctly classify the examples not only from the training set, but also the unseen

examples. For a given problem, the number of different decision trees that correctly

classify a given example is usually very high. However, as a rule of thumb, the decision

tree with the simplest structure is known to better capture the structure inherent in the

problem [119]. Having said that, inadequate number of training examples may cause

the decision trees to overfit the training data [105]. In general, decision trees may suffer

from fragmentation, repetition and replication [80].

Figure 2.5 depicts the decision tree of -falign-functions optimization. The four static

program features (see Table 4.1) on which the optimization is performed are represented

by ft11, ft22, ft32 and tf46 and defined as follows: (i) ft11 represents the number of basic

blocks with number of instructions less then 15, (ii) ft22 is the number of binary integer

operations in the program, (iii) ft32 is the number of basic block where total number

of arguments for all phi-nodes is in the interval [1, 5], and (iv) ft46 is the number of

occurrences of integer constant zero. The decision tree in Figure 2.5 shows that based
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on the values of the features, how many of the given examples will go through -falign-
functions optimization. In the figure, −1(i) represents the number of programs which

will not be optimized based on the tested condition at each node. After traversing the

tree, only 6 programs out of 21 are found to be eligible for -falign-functions optimization.

ft32 <= 0

ft11 <= 2

ft46 <= 1

ft22 <= 1

Yes
No

Yes

Yes

Yes No

No

No

−1(3.0)

−1(2.0) 1(6.0)

1(8.0)

−1(2.0)

Figure 2.5 – Decision tree of -falign-functions optimization

2.5.2 K-nearest neighbor (KNN)

K-nearest neighbor is a classification and regression technique that maps a given ob-

servation to k training samples which are closest in distance to the given example. The

distance of the given example and the k training samples can be Euclidean distance (in

case of continuous variables) or Hamming distance (for discrete variables). The value of

k selected for classification depends on the problem and is calculated by heuristics.

The KNN problem can be mathematically described by Equation 2.1,

Ĉ(x) =
1
k


fi ∈Nk(x)ci (2.1)

where f = (f1, f2, ..., fn) is the input feature vector, Ĉ is the predicted class, and Nk is

the neighborhood of f defined by the k nearest neighbors fi in the training set and ci is

the class label of the ith instance of the training set.
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Figure 2.6 depicts the mapping of a given object represented by a star to its appro-

priate class with respect to the chosen neighborhood radius k. For k = 3, the object is

mapped to class A because there are more instances of class A in the vicinity of the

object surrounded by the radius k than class B. On the other hand, for k = 6, the object

is mapped to class B.

K = 6

K = 3

Class A

Class B

Figure 2.6 – Classification with KNN algorithm

It is evident that the classification accuracy of KNN algorithm is not only subjected

to the neighborhood radius k, but also largely depends on the nature of feature space.

Noisy data can drastically reduce the classification accuracy. Hence, the training data

requires to be scaled and pruned appropriately before the training [139].

2.5.3 Support vector machine (SVM)

Support vector machine is a supervised learning approach to learn classification and

regression problems. SVM uses the principles from statistical theory to estimate a

function from a set of training examples, each containing a feature vector and the

corresponding label (class). In order to find the mapping between a given observation

and its class, SVM selects one function, from a given set of functions, which minimizes

a certain risk that the estimated function is different from the actual function [123].

To learn the best compiling settings, the feature vectors may comprise various pro-

gram characteristics such as trip count of loops, number of operations in a loop body,

the programming language, nesting levels of loops, number of instructions in a method,

number of branches, performance counters, microarchitecture- dependent or indepen-

dent characteristics, reactions to transformations, etc [122, 56]. The corresponding

classes in the training data may comprise sets of transformations, compiler flags, etc

that can be applied to the given program features.

SVM attempts to separate the classes by a function induced from the training data

set and to generalize a classifier for new observations. The goal of SVM optimization is

to separate the classes such that the distance between the nearest data points from all

the classes (called margin) is maximum. Without losing generality, in case of a two-class
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problem, we can perceive a boundary separating the two classes and representing a

classifier. Among various possible classifiers, one that maximally separates the classes

by maximizing margin is called optimal separating hyperplane, as shown in Figure

2.7. The data points from two classes, represented by vector x, are separated by two

hyperplanes. The maximum margin between the two hyperplanes is given by 2
||w|| , where

w is the normal vector to the hyperplanes. The objective of the SVM is to maximize the

margin by minimizing ||w|| with the constraint that there are no data points between the

two hyperplanes.

w
·x

−b
=
0

w
·x

−b
=
1

w
·x

−b
=
−1

2‖w‖

b‖w‖

w

Figure 2.7 – Data points separated by two maximum-margin hyperplanes in ax two-class
SVM problem

2.6 Experiment crowdsouring

Crowdsourcing forms an integral part of the collaborative compiler auto-tuning ap-

proach proposed in this thesis. It is an approach to combine human knowledge and

expertise with computing in order to cope with the availability of comprehensively

labeled data sets and expressive evaluation strategies. This is particularly helpful for

collecting training data for machine learning from the experiences of human experts.

By this way, we can continuously improve the prediction accuracy of machine learning

algorithms and the relevant useful information obtained from the continuously evolving

prediction models can be crowdsourced to the community. The basic motivation for the

volunteers taking part in this collaborative effort lies in challenging their skills to solve

a problem for a greater cause and serve the community.

Crowdsourcing is being used in conjunction with machine learning in a wide range of

domains where the discovery of missing features is of primary concern. Zou et al. [140]

proposed a formal framework for modeling feature discovery with a data set using crowd

queries. They successfully extracted salient feature names along with their labels on the
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data set. In another work [120], the authors used a combination of machine learning and

crowdsourcing for autonomous driving. Crowd contribution is utilized for collecting

complex 3D labels and tagging diverse scenarios for the evaluation of learning systems.

Wu et al. [138] used machine learning with crowdsourcing for better understanding

customer reviews. They use different machine learning algorithms to process reviews

from an offline data. The reviews with different prediction results from the algorithms

are passed to the human volunteers and their opinions are aggregated for the final

analysis. Other domains where machine learning has been used in combination with

crowdsourcing include collaborative audio enhancement [87], predicting the quality of

new contributors to the social networks [87], disaster relief systems [61], paraphrase

acquisition [13], classification of galaxies (Galaxy Zoo project) [84], online games [85]

and entrepreneurship [8], to name a few.

Having inspired from the benefits of crowdsourcing in machine learning, we utilize

crowdsourcing in our proposed collaborative framework for compiler auto-tuning,

the Collective Mind (cM), to distribute analysis and multi-objective off-line and on-

line auto-tuning of computer systems among many participants while utilizing any

available smart phone, tablet, laptop, cluster or data center. This is immensely effective

in continuously observing, classifying and modeling their realistic behavior. With

this technique, we can easily distribute various optimization scenarios among many

participants and continuously explore available optimization choices for all shared code

and data set samples from the community in realistic environments while focusing

on unexpected behavior and mispredictions. All behavior anomalies are continuously

collected and exposed in a centralized repository to find most optimal predictive models

and correlating algorithm, program, architecture, data set and other features for a given

scenario either automatically or through crowdsourcing as it is currently successfully

used in other sciences including biology and artificial intelligence. The crowdsourcing

approach used in the Collective Mind is discussed in detail in Chapter 5.

2.7 Summary

In this chapter, we discussed the basics of compiler architecture and argued why

compiler optimization is indispensable. We also discussed a special type of compiler,

the optimizing compiler, which is capable of performing several types of optimizing

transformations. We further discussed iterative compilation which is the most popular

type of compiler optimization but suffers from long compiling and execution time. We

then discussed some machine learning techniques which can be potentially used for

tuning compiler optimization. At the end, we described the theoretical background of

crowdsourcing technique which is a part of our proposed collaborative framework for

compiler optimization.
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3
Compiler auto-tuning

3.1 Introduction

Tuning optimization heuristics of an existing real-world compiler for multiple objectives

such as execution time, code size and compilation time is a non-trivial task. The

increasing complexity of compiler optimization over time is evident from the rapid

increase in compiler optimization flags and their corresponding parameters as shown in

Figure 3.1 for GCC. We demonstrate that iterative compilation can effectively solve this

problem, however often with excessive compiler optimization space search costs.

The chapter is organized as follows. The next section describes the experimental

setup used for compiler auto-tuning. We then describe how iterative compilation can

deliver multi-objective optimization.

3.2 Experimental setup

The tools, benchmarks, architectures and environment used in the demonstration of

iterative compilation are briefly described in this section. The same experimental setup

is also used in the development and evaluation of Milepost GCC described in Chapter 4.

3.2.1 Compiler

We considered several compilers for our research and development including Open64 [26],

LLVM/Clang [25, 23], ROSE [28], Phoenix [27], and GCC [24]. GCC was selected as it

is a mature and popular open-source optimizing compiler that supports 6+ front ends

for popular programming languages, has a large community, is competitive with the

best commercial compilers, and features a large number of program transformation
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Figure 3.1 – Evolution of optimization flags and their parameters in GCC

techniques including advanced optimizations such as the polyhedral transformation

framework (GRAPHITE) [134]. Furthermore, GCC is the only extensible open-source

optimizing compiler that supports more than 30 processor families. However, our

developed techniques are not compiler dependent. We selected GCC 4.4.4 as the base

for our machine-learning enabled self-tuning compiler.

3.2.2 Optimizations

There are approximately 225 flags available for tuning in the most recent version of

GCC (i.e. v5.1.0), most of which are considered by our framework. However, it is

impossible to validate all possible combinations of optimizations due to their number.

Since GCC has not been originally designed for iterative compilation, it is not always

possible to explore the entire optimization space by simply combining multiple compiler

optimization flags, because some of them are initiated only with a given global GCC

optimization level (-Os, -O1, -O2, -O3). We overcome this issue by selecting a global

optimization level -O1 .. -O3 first and then either turning on a particular optimization

through a corresponding flag -f<optimization name> or turning it off using -fno-

<optimization name> flag. In some cases, certain combinations of compiler flags or

passes cause the compiler to crash or produce incorrect program execution. We reduce

the probability of such cases by comparing outputs of programs with reference outputs.
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3.2.3 Platforms

We selected two general-purpose and one embedded processor for evaluation:

• AMD – a cluster of 16 AMD Opteron 2218, 2.6GHz, 4GB main memory, 2MB

L2 cache, running Debian Linux Sid x64 with kernel 2.6.28.1 (provided by

GRID5000 [63])

• Intel – a cluster of 16 Intel Xeon EM64T, 3GHz, 2GB main memory, 1MB L2 cache,

running Debian Linux Sid x64 with kernel 2.6.28.1 (provided by GRID5000)

• ARC – FPGA implementation of the ARC 725D reconfigurable processor, 200MHz,

32KB L1 cache, running Linux ARC with kernel 2.4.29

We specifically selected platforms that have been in the market for some time but

not outdated to allow a fair comparison of our optimization techniques with default

compiler optimization heuristics that had been reasonably hand-tuned.

3.2.4 Benchmarks and experiments

We use both embedded and server processors. Hence, we selected MiBench/cBench [65,

53, 52] benchmark suite for evaluation, covering a broad range of applications from

simple embedded functions to larger desktop/server programs. Most of the benchmarks

have been rewritten to be easily portable to different architectures; we use dataset 1

in all cases. We encountered problems while compiling 4 tiff programs on the ARC
platform and hence used them only on AMD and Intel platforms.

We use OProfile [111] with hardware counters support to perform non intrusive

function-level profiling during each run. This tool may introduce some overhead, so we

execute each compiled program three times and averaged the execution and compilation

time. In future, we plan to use more statistically rigorous approaches [131, 62]. For

this study, we selected the most time consuming function from each benchmark for

further analysis and optimization. If a program has several hot functions depending on

a dataset, we analyze and optimize them one by one and report separately. Analyzing

the effects of interactions between multiple functions on optimization is left for future

work.
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automotive_bitcount automotive_susan_c automotive_susan_e

bit_shifter (32.3%) susan_corners (98%) susan_edges (83%)

bit_count (20.9%) susan_thin (12%)

ntbl_bitcnt (18%)

automotive_susan_s automotive_qsort1 consumer_jpeg_c

susan_smoothing (99.9%) swap (33%) encode_mcu_AC_refine (28.8%)

compare (16.5%) encode_mcu_AC_first (11.6%)

jpeg_gen_optimal_table (10.5%)

consumer_jpeg_d consumer_tiff2bw consumer_tiff2rgba

jpeg_idct_islow (37.2%) LZWDecode (70.3%) LZWDecode (74%)

ycc_rgb_convert (21.9%) compresscontig (13.3%) horAcc8 (10.5%)

decode_mcu (15.5%)

consumer_tiffdither consumer_tiffmedian office_stringsearch1

LZWDecode (21%) create_colorcell (51%) strsearch (85%)

find1span (18.5%) get_histogram (11%)

fsdither (17.9%)

find0span (14.1%)

Fax3Encode2DRow (12.6%)

network_dijkstra network_patricia network_blowfish_d

dijkstra (45.3%) bit (26.3%) BF_encrypt (66.4%)

enqueue (12.8%) pat_insert (11.6%) BF_cfb64_encrypt (33%)

pat_search (8.9%)

network_blowfish_e security_rijndael_d security_rijndael_e

BF_encrypt (68%) decrypt (62.4%) encrypt (57.8%)

BF_cfb64_encrypt (31.3%) decfile (11.9%) encfile (14%)

telecom_adpcm_c telecom_adpcm_d telecom_CRC32

adpcm_coder (99.9%) adpcm_decoder (99.9%) crc32file (24.6%)

telecom_gsm

Calculation_of_the_LTP_parameters (50.6%)

Short_term_analysis_filtering (15.2%)

Autocorrelation (9.4%)

3.2.5 Collective optimization database

All experimental results were recorded in the public Collective Optimization Database

[33, 52, 60] at cTuning.org, allowing independent analysis of our results.

3.3 Multi-objective empirical iterative optimization

Iterative compilation is a popular method to explore different optimizations by executing

a given program on a given architecture and finding good solutions to improve program

execution time and other characteristics based on empirical search.

We selected 88 program transformations of GCC known to influence performance,

including inlining, unrolling, scheduling, register allocation, and constant propagation.

We selected 1000 combinations of optimization flags using a random search strategy

with 50% probability to select each flag and either turn it on or off. We use this strategy
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to allow uniform unbiased exploration of unknown optimization search spaces. In order

to validate the resulting diversity of program transformations, we checked that no two

combinations of optimizations generated the same binary for any of the benchmarks

using the MD5 checksum of the assembler code obtained through the objdump -d

command. Occasionally, random selection of flags in GCC may result in an invalid

code. In order to avoid such situations, we validated all generated combinations of

optimizations by comparing the outputs of all benchmarks used in our study with the

recorded outputs during reference runs when compiled with -O3 global optimization

level.

Figure 3.2 shows the best execution time speedup achieved for each benchmark

over the highest GCC optimization level (-O3) after 1000 iterations across 3 selected

architectures.
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Figure 3.2 – Maximum execution time speedups over the highest GCC optimization level
(-O3) using iterative compilation with uniform random distribution after 1000 iterations on
3 selected architectures.

It confirms results from previous research on iterative compilation and demonstrates

that it is possible to outperform GCC’s highest default optimization level for most

programs using random iterative search for good combinations of optimizations.

Several benchmarks achieve more than 2 times speedup while on average we reached

speedups of 1.33 and 1.4 for Intel and AMD respectively and a smaller speedup of

1.15 for ARC. This is likely due to simpler architecture and less sensitivity to program

optimizations. However, the task of an optimizing compiler is not only to improve

execution time but also to balance code size and compilation time across a wide range

of programs and architectures.

Figure 3.3 show high variation of execution time speedups, code size improvements

and compilation time speedups during iterative compilation across all benchmarks on
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Figure 3.3 – Distribution of execution time speedups, code size improvements and compilation
time speedups on Intel platform during iterative compilation (1000 iterations).
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3.3. MULTI-OBJECTIVE EMPIRICAL ITERATIVE OPTIMIZATION

Intel platform as violin graphs 1.

Multi-objective optimization in such cases depend on end-user usage scenarios:

improving both execution time and code size is often required for embedded applica-

tions, improving both compilation and execution time is important for data centers and

real-time systems, while improving only execution time is common for desktops and

supercomputers.

As an example, in Figure 3.4, we present the execution time speedups vs. code size

improvements and vs. compilation time for susan_c on the AMD platform. Naturally,

depending on optimization scenario, users are interested in optimization cases on the

frontier of the program optimization area.

Circles on these graphs show the 2D frontier that improves at least two metrics,

while squares show optimization cases where the speedup is also achieved on the third

optimization metric and is more than some threshold (compilation time speedup is

more than 2 in the first graph and code size improvement is more than 1.2 in the second

graph). These graphs demonstrate that for this selected benchmark and architecture

there are relatively many optimization cases that improve execution time, code size and

compilation time simultaneously. This is because many flags turned on for the default

optimization level (-O3) do not influence this program or even degrade performance

and take considerable compilation time.

Figure 3.5 summarizes code size improvements and compilation time speedups

achievable on Intel platform across evaluated programs with the execution time speedups

within 95% of the maximum available during iterative compilation.

We can observe that in some cases we can improve execution time, code size and

compilation time at the same time such as for susan_c and dijkstra for example. In some

other cases, without avoiding degradation of execution time for the default optimization

level (-O3), we can improve compilation time considerably (more than 1.7 times) and

code size such as for jpeg_c and patricia. Throughout the rest of the chapter, we will con-

sider improving execution time of primary importance, then code size and compilation

time. However, our self-tuning compiler can work with other arbitrary optimization

scenarios. Users may provide their own plugins to choose optimal solutions, for example

using a Pareto distribution as shown in [69, 74].

The pruned combinations of flags corresponding to Figure 3.5 which improves

execution time (speedup > 1.0), code size and compilation time across all cBench

programs and the specified platform architectures are presented in Table 3.1. The flags

that do not influence execution time, code size or compilation time have been iteratively

and automatically removed from the original combination of random optimizations

using CCC framework to simplify the analysis of the results. Some combinations

can reduce compilation time by 70% which can be critical when compiling large-

1Violin graphs are similar to box graphs, showing the probability density in addition to min, max and
interquartile.
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Figure 3.4 – Distribution of execution time speedups, code size improvements and compilation
time speedups for benchmarks susan_c on AMD platform during iterative compilation.
Depending on optimization scenarios, good optimization cases are depicted with circles on 2D
optimization area frontier and with squares where third metric is more than some threshold
(compilation time speedup > 2 or code size improvement > 1.2).

scale applications or for cloud computing services where a quick response time is

critical. The diversity of compiler optimizations involved demonstrates that the compiler

optimization space is not trivial and the compiler’s best optimization heuristic (-O3) is
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Figure 3.6 – Number of iterations needed to obtain 95% of the available speedup using
iterative compilation with uniform random distribution.

far from optimal. All combinations of flags found per program and architecture during

this research are available on-line in the Collective Optimization Database [33] to allow

end-users to optimize their programs or enable further collaborative research.

Finally, Figure 3.6 shows that it may take on average 70 iterations before reaching

95% of the speedup available after 1000 iterations (averaged over 10 repetitions) and is

heavily dependent on the programs and architectures. Such a large number of iterations

is needed due to an increasing number of aggressive optimizations available in the
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-O1 -fcse-follow-jumps -fno-tree-ter -ftree-vectorize

-O1 -fno-cprop-registers -fno-move-loop-invariants -fno-tree-copy-prop -fno-dce
-frename-registers -fno-tree-copyrename

-O1 -freorder-blocks -fschedule-insns -fno-tree-ccp -fno-tree-dominator-opts

-O2

-O2 -falign-loops -fno-cse-follow-jumps -fno-dce -fno-gcse-lm -fno-tree-copyrename
-fno-inline-functions-called-once -fno-schedule-insns2 -fno-tree-ccp -funroll-all-loops

-O2 -finline-functions -fno-omit-frame-pointer -fschedule-insns
-fno-split-ivs-in-unroller -fno-tree-sink -funroll-all-loops

-O2 -fno-align-jumps -fno-early-inlining -fno-gcse -fno-inline-functions-called-once
-fno-move-loop-invariants -fschedule-insns -fno-tree-copyrename -fno-tree-vrp
-fno-tree-loop-optimize -fno-tree-ter

-O2 -fno-caller-saves -fno-guess-branch-probability -fno-ira-share-spill-slots -fno-web
-fno-tree-reassoc -funroll-all-loops

-O2 -fno-caller-saves -fno-reorder-blocks -fno-strict-overflow -funroll-all-loops
-fno-ivopts

-O2 -fno-cprop-registers -fno-move-loop-invariants -fno-omit-frame-pointer
-fpeel-loops

-O2 -fno-dce -fno-guess-branch-probability -fno-strict-overflow
-fno-tree-dominator-opts -fno-tree-loop-optimize -fno-tree-reassoc -fno-tree-sink

-O2 -fno-ivopts -fpeel-loops -fschedule-insns

-O2 -fno-tree-loop-im -fno-tree-pre

-O3 -falign-loops -fno-caller-saves -fno-cprop-registers -fno-if-conversion -fno-ivopts
-freorder-blocks-and-partition -fno-tree-pre -funroll-all-loops

-O3 -fno-cprop-registers -fno-if-conversion -fno-peephole2 -funroll-all-loops
-falign-loops

-O3 -falign-loops -fno-delete-null-pointer-checks -fno-gcse-lm -fira-coalesce -fno-web
-fsched2-use-superblocks -fno-tree-vectorize -funsafe-loop-optimizations
-floop-interchange -fno-tree-pre -funroll-all-loops

-O3 -fno-gcse -floop-strip-mine -fno-move-loop-invariants -fno-predictive-commoning
-ftracer

-O3 -fno-inline-functions-called-once -frename-registers -fno-tree-copyrename
-fno-regmove

-O3 -fno-inline-functions -fno-move-loop-invariants

Table 3.1 – Best found combinations of Milepost GCC flags to improve execution time, code
size and compilation time after iterative compilation (1000 iterations) across all evaluated
benchmarks and platforms.

compiler where multiple combinations of optimizations can both considerably increase

or decrease performance, change code size and compilation time.
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Our experimental results suggest that iterative compilation can effectively generalize

and automate the program optimization process but can be too time consuming. The

total execution time for the first 70 iterations for telecom_adpcm_d is 323m and for net-

work_dijkstra, it is 16 mins. Hence, it is important to speed up iterative compilation

process.

3.4 Summary

In this chapter, we empirically demonstrated that iterative compilation can effectively

perform tuning of compiler optimizations, but the large number of evaluations required

for each program makes it impractical with respect to execution time, compilation

time and power consumption. Inspite of providing acceptable optimization results,

the optimization space in iterative compilation is too large to be effectively explored in

reasonable time. This motivates the use of machine learning techniques to mitigate the

need for per-program iterative compilation and learn optimizations across programs

based on their features. In the next chapter, we present the Milepost framework which

speeds up program optimization through machine learning.
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4
MILEPOST GCC: Speeding up iterative
compilation with machine learning

4.1 Introduction

Iterative compilation can considerably outperform existing compilers but at the cost

of excessive recompilation and program execution during optimization search space

exploration as shown in the previous chapter. Multiple techniques have been proposed

to speed up this process. For example, ACOVEA tool [1] utilizes genetic algorithms; hill-

climbing search [51] and run-time function-level per-phase optimization evaluation [54]

have been used, as well as the use of Pareto distribution [69, 74] to find multi-objective

solutions. However, these approaches start their exploration of optimizations for a

new program from scratch and do not reuse any prior optimization knowledge across

different programs and architectures.

In this chapter we demonstrate how machine learning can be effectively used for

tuning compiler optimization heuristics. We describe Milepost GCC [55], our open-

source machine learning-based compiler which consists of an Interactive Compilation

Interface (ICI) and plugins to extract program features and exchange optimization

data with a public repository (cTuning.org). It automatically adapts the internal

optimization heuristic at function-level granularity to improve execution time, code

size and compilation time of a new program on a given architecture.

The Milepost project takes an orthogonal approach based on the observation that

similar programs may exhibit similar behavior and require similar optimizations so

it is possible to correlate program features and optimizations, thereby predicting

good transformations for unseen programs based on previous optimization experi-

ence [106, 16, 128, 2, 73, 17, 60]. In the current version of Milepost GCC we use static
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program features (such as the number of instructions in a method, number of branches,

etc) to characterize programs and build predictive models. Naturally, since static fea-

tures may not be enough to capture run-time program behavior, we plan to add plugins

to improve program and optimization correlation based on dynamic features (perfor-

mance counters [17], microarchitecture-independent characteristics [73], reactions to

transformations [60] or semantically non-equivalent program modifications [47]).

The contribution in the context of this thesis includes the maintainance of Milepost

GCC, and its evaluation by a number of empirical experiments on GRID5000, GCC ICI

extension, migration to a new GCC compiler, statistical analysis and flag pruning. The

next section describes the overall framework and is followed by a detailed description

of Milepost GCC and the Interactive Compiler Interface. This is then followed by a

discussion of the features used to predict good optimizations. The experimental setup

used in the evaluation of Milepost GCC platform is described in Section 3.2.

4.1.1 Milepost adaptive optimization framework

The Milepost framework shown in Figure 4.1 uses a number of components including (i)

a machine learning enabled Milepost GCC with Interactive Compilation Interface (ICI)

to modify internal optimization decisions, (ii) a Continuous Collective Compilation

Framework (CCC) to perform iterative search for good combinations of optimizations

and (iii) a Collective Optimization Database (COD) to record compilation and execution

statistics in the common repository. Such information is later used as training data for

the machine learning models. We use public COD that is hosted at cTuning.org [33,

52, 60]. The Milepost framework proceeds in two distinct phases, in accordance with

typical machine learning practice: training and deployment.

4.1.1.1 Training

During the training phase we need to gather information about the structure of programs

and record how they behave when compiled under different optimization settings. Such

information allows machine learning tools to correlate aspects of program structure,

or features, with optimizations, building a strategy that predicts good combinations of

optimizations.

In order to train a useful model, a large number of compilations and executions are

needed as training examples. These training examples are generated by CCC [18, 52],

which evaluates different combinations of optimizations and stores execution time,

profiling information, code size, compilation time and other metrics in a database. The

features of the program are also extracted from Milepost GCC and stored in the COD.

Plugins allow fine grained control and examination of the compiler, driven externally

through shared libraries.
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Figure 4.1 – Open framework to automatically tune programs and improve default optimiza-
tion heuristics using predictive machine learning techniques, Milepost GCC with Interactive
Compilation Interface (ICI) and program features extractor, CCC Framework to train ML
model and predict good optimization passes, and COD optimization repository at cTuning.org.

4.1.1.2 Deployment

Once sufficient training data is gathered, multiple machine learning models can be

created. Such models aim to correlate a given set of program features with profitable

program transformations to predict good optimization strategies. They can later be

re-inserted as plugins back to Milepost GCC or deployed as web-service at cTuning.org.

The last method allows continuous update of the machine learning model based on

collected information from multiple users. When encountering a new program, Milepost

GCC determines the program’s features and passes them to the model to predict the

most profitable optimizations to improve execution time or other metrics depending on

the user’s optimization requirements.

4.1.2 Milepost GCC and interactive compilation interface

Current production compilers often have fixed and black-box optimization heuristics

without the means to fine-tune the application of transformations. This section describes

the Interactive Compilation Interface (ICI) [75] which unveils a compiler and provides

opportunities for external control and examination of its optimization decisions with

minimal changes. To avoid the pitfall of revealing intermediate representation and

libraries of the compiler to a point where it would overspecify too many internal

details and prevent further evolution, we choose to control the decision process itself,

granting access only to the high-level features needed for effectively taking a decision.

Optimization settings at a fine-grained level, beyond the capabilities of command line
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options or pragmas, can be managed through external shared libraries, leaving the

compiler uncluttered. By replacing default optimization heuristics, execution time,

code size and compilation time can be improved.

We decided to implement ICI for GCC and transform it into a research-oriented self-

tuning compiler to provide a common, stable, and extensible compiler infrastructure

shared by both academia and industry, aiming to improve the quality, practicality and

reproducibility of research, and make experimental results immediately useful to the

community. The internal structure of ICI is shown in Figure 4.2.
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Figure 4.2 – GCC Interactive Compilation Interface: a) original GCC, b) Milepost GCC with
ICI and plugins

We separate ICI into two parts: low-level compiler-dependent and high-level com-

piler independent. The main reason of this separation is to keep high-level iterative

compilation and machine learning plugins invariant when moving from one compiler

to another. At the same time, since plugins now extend GCC through external shared

libraries, experiments can be performed with no further modifications to the underlying

compiler.

External plugins can transparently monitor execution of passes or replace the GCC

Controller (Pass Manager), if desired. Passes can be selected by an external plugin which

may choose to drive them in a very different order than that currently used in GCC.

They even allow construction of different pass orderings for each and every function in

the program being compiled. This mechanism simplifies the inclusion of new analysis

and optimization passes to the compiler.

In an additional set of enhancements, a coherent event and data passing mechanism

enables external plugins to discover the state of the compiler and to be informed as
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it changes. At various points in the compilation process, events (IC Event) are raised

indicating decisions about transformations. Auxiliary data (IC Data) is registered if

needed.

Using ICI, we can now substitute all default optimization heuristics with external

optimization plugins to suggest an arbitrary combination of optimization passes during

compilation without the need for any project or Makefile changes. Together with

additional routines needed for machine learning, such as program feature extraction,

our compiler infrastructure forms the Milepost GCC. We added a ‘-Oml’ flag which calls

a plugin to extract features, queries machine learning model plugins and substitutes

the default optimization levels.

In this work, we do not investigate optimal orders of optimizations since that requires

detailed information about dependencies between passes to detect legal orders; we plan

to provide this information in the future. Hence, we examine the pass orders generated

by compiler flags during iterative compilation and focus on selecting or deselecting

appropriate passes that improve program execution time, compilation time or code size.

4.1.3 Static program features

Milepost GCC’s machine learning models predict the best GCC optimization to apply

to an input program based on its program structure or program features. The program

features are typically a summary of the internal program representation and charac-

terize essential aspects of a program that help to distinguish between good and bad

optimizations. The current version of ICI allows to invoke auxiliary passes that are

not part of GCC’s default compiler optimization heuristics. These passes can monitor

and profile the compilation process or extract data structures needed for generating

program features.

During compilation, a program is represented by several data structures, imple-

menting the intermediate representation (tree-SSA, RTL, etc.), control flow graph (CFG),

def-use chains, loop hierarchy, etc. The data structures available depend on the compi-

lation pass currently being performed. For statistical machine learning, the information

about these data structures is encoded in a constant size vector of numbers (i.e. features).

This process is called feature extraction and facilitates reuse of optimization knowledge

across different programs.

We implemented an additional ml-feat pass in GCC to extract static program features.

This pass is not invoked during default compilation but can be called using an extract_
program_static_features plugin after any arbitrary pass, when all data necessary to

produce features is available.

In Milepost GCC, feature extraction is performed in two stages. In the first stage,

a relational representation of the program is extracted; in the second stage, the vector

of features is computed from this representation. In the first stage, the program is
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considered to be characterized by a number of entities and relations over these en-

tities. The entities are a direct mapping of similar entities defined by the language

reference, or generated during compilation. Examples of such entities are variables,

types, instructions, basic blocks, temporary variables, etc.

A relation over a set of entities is a subset of their Cartesian product. The relations

specify properties of the entities or the connections among them. We use a notation

based on logic for describing the relations — Datalog is a Prolog-like language but with

a simpler semantics, suitable for expressing relations and operations upon them [136,

135].

To extract the relational representation of the program, we used a simple method

based on the examination of the include files. The main data structures of the compiler

are built using struct data types, having a number of f ields. Each such struct data

type may introduce an entity, and its f ields may introduce relations over the entity,

representing the including struct data type and the entity representing the data type of

the f ield. This data is collected by the ml-feat pass.

In the second stage, we provide a Prolog program defining the features to be com-

puted from the Datalog relational representation, extracted from the compiler’s internal

data structures in the first stage. The extract_program_static_features plugin invokes a

Prolog compiler to execute this program, resulting in a vector of features (as shown in

Table 4.1) which later serves to detect similarities between programs, build machine

learning models and predict the best combinations of passes for new programs. More

details about aggregation of semantical program properties for machine learning based

optimization are provided in [108].

4.2 Predicting optimization passes with machine learning

The Milepost approach to learning optimizations across programs is based on the

observation that similar programs may exhibit similar behavior for a similar set of

optimizations [2, 60], and hence we try to apply machine learning techniques to correlate

their features with most profitable program optimizations. In this case, whenever we

are given a new unseen program, we can search for similar programs within the training

set and suggest good optimizations based on their optimization experience. In order

to test this assumption, we selected the combination of optimizations which yields

the best performance for a given program on AMD, see reference in Figure 4.3. We

then applied all these “best” combinations to all other programs and reported the

performance difference, see applied to. It is possible to see that there is a fairly large

amount of programs that share similar optimizations.

In the next subsections, we introduce two machine learning techniques to select

combinations of optimization passes based on the construction of a probabilistic model
and a transductive model on a set of M training programs, and then use these models to
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predict “good” combinations of optimization passes for unseen programs based on their

features.

There are several differences between the two models: first, in our implementation,

the probabilistic model assumes each attribute is independent, whereas the proposed

transductive model also analyzes interdependencies between attributes. Second, the

probabilistic model finds the closest programs from the training set to the test program,

whereas the transductive model attempts to generalize and identify good combinations

of flags and program attributes. Therefore, it is expected that in some settings, programs

will benefit more from the probabilistic approach, whereas, in others programs will be

improved more by using the transductive method depending on the size of the training

set, the number of samples of the program space, as well as program and architecture

attributes.
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Figure 4.3 – % difference between speedup achievable after iterative compilation for “applied
to” program and speedup obtained when applying best optimization from “reference” program
to “applied to” program on AMD. “-” means that best optimization was not found for this
program.

In order to train the two machine learning models, we generated 1000 random

combinations of flags turned either on or off as described in Section 3.3. Such a number

of runs is small relative to the size of the optimization space yet it provides enough

optimization cases and sufficient information to capture good optimization choices. The

program features for each benchmark, the flag settings and execution times formed
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ft1 Number of basic blocks in the method
ft2 Number of basic blocks with a single successor
ft3 Number of basic blocks with two successors
ft4 Number of basic blocks with more then two successors
ft5 Number of basic blocks with a single predecessor
ft6 Number of basic blocks with two predecessors
ft7 Number of basic blocks with more then two predecessors
ft8 Number of basic blocks with a single predecessor and a single successor
ft9 Number of basic blocks with a single predecessor and two successors
ft10 Number of basic blocks with a two predecessors and one successor
ft11 Number of basic blocks with two successors and two predecessors
ft12 Number of basic blocks with more then two successors and more then two predecessors
ft13 Number of basic blocks with number of instructions less then 15
ft14 Number of basic blocks with number of instructions in the interval [15, 500]
ft15 Number of basic blocks with number of instructions greater then 500
ft16 Number of edges in the control flow graph
ft17 Number of critical edges in the control flow graph
ft18 Number of abnormal edges in the control flow graph
ft19 Number of direct calls in the method
ft20 Number of conditional branches in the method
ft21 Number of assignment instructions in the method
ft22 Number of binary integer operations in the method
ft23 Number of binary floating point operations in the method
ft24 Number of instructions in the method
ft25 Average of number of instructions in basic blocks
ft26 Average of number of phi-nodes at the beginning of a basic block
ft27 Average of arguments for a phi-node
ft28 Number of basic blocks with no phi nodes
ft29 Number of basic blocks with phi nodes in the interval [0, 3]
ft30 Number of basic blocks with more then 3 phi nodes
ft31 Number of basic block where total number of arguments for all phi-nodes is in greater then 5
ft32 Number of basic block where total number of arguments for all phi-nodes is in the interval [1, 5]
ft33 Number of switch instructions in the method
ft34 Number of unary operations in the method
ft35 Number of instruction that do pointer arithmetic in the method
ft36 Number of indirect references via pointers (“*” in C)
ft37 Number of times the address of a variables is taken (“&” in C)
ft38 Number of times the address of a function is taken (“&” in C)
ft39 Number of indirect calls (i.e. done via pointers) in the method
ft40 Number of assignment instructions with the left operand an integer constant in the method
ft41 Number of binary operations with one of the operands an integer constant in the method
ft42 Number of calls with pointers as arguments
ft43 Number of calls with the number of arguments is greater then 4
ft44 Number of calls that return a pointer
ft45 Number of calls that return an integer
ft46 Number of occurrences of integer constant zero
ft47 Number of occurrences of 32-bit integer constants
ft48 Number of occurrences of integer constant one
ft49 Number of occurrences of 64-bit integer constants
ft50 Number of references of a local variables in the method
ft51 Number of references (def/use) of static/extern variables in the method
ft52 Number of local variables referred in the method
ft53 Number of static/extern variables referred in the method
ft54 Number of local variables that are pointers in the method
ft55 Number of static/extern variables that are pointers in the method
ft56 Number of unconditional branches in the method

Table 4.1 – List of static program features currently available in Milepost GCC V2.1
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the training data for each model. All experiments were conducted using leave-one-out

cross-validation. This means that for each of the N programs, the other N − 1 programs

are used as training data. This guarantees that each program is unseen when the model

predicts good optimization settings to avoid bias.

4.2.1 Probabilistic machine learning model

Our probabilistic machine learning method is similar to that of [2] where a probability

distribution over “good” solutions (i.e. optimization passes or compiler flags) is learnt

across different programs. This approach has been referred to as Predictive Search

Distributions (PSD) [12]. However, unlike prior work [2, 12] where such a distribution

is used to focus the search of compiler optimizations on a new program, we use the

learnt distribution to make one-shot predictions on unseen programs. Thus, we do not

search for the best optimization, we automatically predict it.

Given a set of training programs T 1, . . . ,TM , which can be described by feature

vectors t1 . . . ,tM , and for which we have evaluated different combinations of optimization

passes (x) and their corresponding execution times (or speed-ups) y so that we have

for each program T j an associated dataset Dj = {(xi , yi)}N j

i=1, with j = 1, . . .M, our goal

is to predict a good combination of optimization passes x∗ minimizing y∗ when a new

program T ∗ is presented.

We approach this problem by learning a mapping from the features of a program

t to a distribution over good solutions q(x|t,θ), where θ are the parameters of the dis-

tribution. Once this distribution has been learnt, prediction for a new program T ∗ is

straightforward and is achieved by sampling at the mode of the distribution. In other

words, we obtain the predicted combination of flags by computing:

x∗ = argmax
x

q(x|t,θ). (4.1)

In order to learn the model it is necessary to fit a distribution over good solutions to

each training program beforehand. These solutions can be obtained, for example, by

using uniform sampling or by running an estimation of distribution algorithm (EDA,

see [91] for an overview) on each of the training programs. In our experiments we use

uniform sampling and we choose the set of good solutions to be those optimization set-

tings that achieve at least 98% of the maximum speed-up available in the corresponding

program-dependent dataset.

Let us denote the distribution over good solutions on each training program by

P (x|T j ) with j = 1, . . . ,M. In principle, these distributions can belong to any parametric

family. However, in our experiments we use an Independent and Identically Distributed

(IID) model where each of the elements of the combination are considered independently.

In IID model, all the good solutions have the same probability distribution as the

others and all are mutually independent.In other words, the probability of a “good”
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combination of passes is simply the product of each of the individual probabilities

corresponding to how likely each pass is to belong to a good solution. This is a reasonable

and realistic model to provide simplicity.

P (x|T j ) =
L

ℓ=1

P (xℓ |T j ), (4.2)

where L is the length of the combination.

Once the individual training distributions P (x|T j ) are obtained, the predictive distri-

bution q(x|t,θ) can be learnt by maximization of the conditional likelihood or by using

k-nearest neighbor methods. In our experiments we use a 1-nearest neighbor approach

(Figure 4.4 shows Euclidean distances between all programs with a visible clustering).

In other words, we set the predictive distribution q(x|t,θ) to be the distribution cor-

responding to the training program that is closest in feature space to the new (test)

program.
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Figure 4.4 – Euclidean distance for all programs based on static program features normalized
by feature 24 (number of instructions in a method).

Figure 4.5 compares the speedups achieved after iterative compilation using 1000

iterations and 50% probability of selecting each optimization on AMD and Intel after one-

shot prediction using probabilistic model or simply after selecting the best combination

of optimizations from the closest program. Interestingly, the results suggest that simply

selecting the best combination of optimizations from a similar program may not perform
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Figure 4.5 – Speedups achieved when using iterative compilation on (a) AMD and (b) Intel
with random search strategy (1000 iterations; 50% probability to select each optimization;),
when selecting best optimization from the nearest program and when predicting optimization
using probabilistic ML model based on program features.

well in many cases; this may be due to our random optimization space exploration

technique - each “good” combination of optimizations includes multiple flags that do

not influence performance or other metrics on a given program, however some of them

can considerably degrade performance on other programs. On the contrary, probabilistic

approach helps to filter away non-influential flags statistically and thereby improve

predictions.
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4.2.2 Transductive machine learning model

We describe a new transductive approach where optimization combinations themselves

are used, as features for the learning algorithm, together with program features. The

model is then queried for the best combination of optimizations out of the set of

optimizations that the program was compiled with. Many learning algorithms can be

used for building the ML model. In this work we used a decision tree model [40] to ease

analysis of the resulting model.

As in the previous section, we try to predict whether a specific optimization com-

bination will obtain at least 95% of the maximal speedup possible. The feature set

consists of the flags/passes and the extracted program features, obtained from Milepost

GCC. Denoting the vector of extracted features from the i-th program by ti , i = 1, . . . ,M

and the possible optimization passes by xj , j = 1, . . . ,N , we train the ML model with

a set of features which is the cross-product of x× t, such that each feature vector is a

concatenation of xj and ti . This is akin to multi-class methods which rely on single

binary classifiers (see [42] for a detailed discussion of such methods). The target for the

predictor is whether this combination of program features and flags/passes combination

will give a speedup of at least 95% of the maximal speedup.

Once a program is compiled with different optimization settings (either an ex-

haustive sample, or a random sample of optimization combinations), all successfully

compiled program settings are used as a query for the learned model together with

the program features, and the flag setting which is predicted to have the best speedup

is used. If several settings are predicted to have the same speedup, the one which

exhibited, on average, the best speedup with the training set programs, is used.

Figure 4.6 compares the speedups achieved after iterative compilation using 1000

iterations and 50% probability of selecting each optimization on ARC and after one-shot

prediction using probabilistic and transductive models. It shows that our probabilistic

model can automatically improve the default optimization heuristics of GCC by 11%

on average while reaching 100% of the achievable speedup in some cases. On the

other hand, transductive model improves GCC by only a modest 5%. However, in

several cases it outperforms the probabilistic model: susan_s, dijkstra, rijndael_e, qsort1

and strinsearch1 likely due to a different mechanism of capturing the importance of

program features and optimizations. Moreover, transductive (decision tree) model has

an advantage that it is much easier to analyze the results. For example, Figure 4.7 shows

the top levels of the decision trees learnt for ARC. The leafs indicate the probability

that the optimization and program feature combinations which reached these nodes

will be in the top 95% of the speedup for a benchmark. Most of these features found

at the top level characterize the control flow graph (CFG). This is somehow expected,

since the structure of the CFG is one of the major factors that may affect the efficiency of

several optimizations. Other features relate to the applicability of the “address-taken”
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operator to functions that may affect the accuracy of the call-graph and of subsequent

analysis using it. To improve the performance of both models, we intend to analyze the

quality and importance of program features and their correlation with optimizations in

the future.
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Figure 4.6 – Speedups achieved when using iterative compilation on ARC with random
search strategy (1000 iterations; 50% probability to select each optimization;) and when
predicting best optimizations using probabilistic ML model and transductive ML model based
on program features

4.3 Realistic optimization scenario of a production application

Experimental results from the previous section show how to optimize several standard

benchmarks using Milepost GCC. In this section we show how to optimize a real

production application using Milepost technology combined with machine learning

model from Section 4.2.1. For this purpose, we selected the open-source Berkeley

DB library (BDB) which is a popular high-performance database written in C with

APIs to most other languages. For evaluation purposes we used an official internal

benchmarking suite and provided support of the CCC framework to perform iterative

compilation in a same manner as described in Section 3.3, in order to find the upper

bounds for execution time, code size and compilation time.

For simplicity, we decided to use a probabilistic machine learning model from

Section 4.2.1. Since BDB is relatively large (around 200,000 lines of code) we selected

the 3 hottest functions, extracted features for each function using Milepost GCC and

calculated Euclidean distance with all programs from our training set (MiBench/cBench)

to find the five nearest neighbours. Then, depending on the optimization scenario, we

selected the best optimizations from those programs to (a) improve execution time while

not degrading compilation time (b) improve code size while not degrading execution
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ft6: Number of basic 
blocks with 

a two predecessors 
and one 

successor < 18

ft38: Number of times 
the address 

of a function 
is taken (’&’ 
in C). < 16.5

Yes

ft9: Number of basic 
blocks with 

a single predecessor 
and two 

successors < 15.5

No

0.038008
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-O < 0.5

No

0.031966

Yes

ft16: Number of edges 
in the control 

flow graph < 193.5
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0.24367
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No

0

Yes

0.69581

No

Figure 4.7 – Top levels of decision trees learnt for ARC.

time and (c) improve compilation time while not degrading execution time. Figure 4.8

shows the achieved execution time speedups, code size improvements and compilation

time speedups over -O3 optimization level when applying selected optimizations from

the most similar programs to BerkeleyDB for these three optimization scenarios.

These speedups are compared to the upper bound for the respective metrics achieved

after iterative compilation (200 iterations) for the whole program. The programs on

the X-axis are sorted by distances starting from the closest program. In the case of

improving execution time, we show significant speedup across the functions. For

improving compilation time we are far from the optimal solution because it is naturally

associated with the lowest optimization level, while we have been focusing also on not

degrading execution time of -O3. Overall, the best results were achieved when applying

optimizations from tiff programs that are closer in the feature space to the hot functions

selected from BerkeleyDB, than any other program of the training set.

We added information about the best optimizations from these 3 optimization sce-

narios to the open online Collective Optimization Database [33] to help users and

researchers validate and reproduce such results. These optimization cases are refer-

enced by the following cTuning RUN_ID reference numbers: 24857532370695782,
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Figure 4.8 – Execution time speedups (a), code size improvements (b) and compilation time
speedup (c) for BerkeleyDB on Intel when applying optimizations from 5 closest programs
from MiBench/cBench (based on Euclidean distance using static program features of 3 hottest
functions) using several optimization scenarios.

17268781782733561 and 9072658980980875. The default run related to -O3 optimiza-

tion level is referenced by 965827379437489142. We also added support for pragma

#ctuning-opt-case UID that allows end-users to explicitly force Milepost GCC to con-

nect combinations of optimizations found by other users during empirical collective

search and referenced by UID in COD to a given code section instead of using machine

learning.
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4.4 Summary

In this chapter, we showed that our machine learning based compiler, Milepost GCC,

has a potential to automate the tuning of compiler heuristics for a wide range of archi-

tectures and multi-objective optimization such as improving execution time, code size,

compilation time and other constraints while considerably simplifying overall compiler

design and time to market. Having said that, machine learning requires a huge dataset

of good solutions with diverse features, i.e., having a few best optimization solutions

across many benchmarks to map features to correct optimizations and program char-

acterization. Since all the possible observations and scenarios can not be foreseen and

presented during training, machine learning based auto-tuning does not deliver desired

prediction accuracy for all optimization cases. Moreover, the training is too long which

includes data collection and data cleansing and there are no representative benchmarks,

datasets or shared models to be improved by the community. In order to enhance

machine learning dataset and include new observations, we need a collaborative effort

to collect the experimental data from the community and crowdsource the relevant

optimizations in return. In the next chapter, we describe our collaborative framework

for compiler optimization, the Collective Mind, which is based on our machine learn-

ing based compiler Milepost GCC. Collective Mind framework further enhances the

capabilities of our compiler and addresses the aforementioned issues by incorporating

new information into its repository, learning new observations, disseminating the best

optimizations to the community and allowing the community to improve the shared

modules, benchmarks and datasets.
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5
Crowdsourcing compiler auto-tuning
practical with Collective Mind

5.1 Introduction

In this chapter, we describe the framework of our practical, collaborative and publicly

available solution to cope with the problems discussed in Chapter 1 using a collaborative

knowledge management system called Collective Mind (cM) [98, 58]. The cM comprises

a repository and infrastructure with unified web interfaces and online advise system.

This collaborative framework preserves and shares many artifacts including hundreds

of codelets, numerical applications, data sets, models, universal experimental analysis

and auto-tuning pipelines, self-tuning machine learning based meta compiler, and

unified statistical analysis and machine learning plugins in a public repository to

initiate systematic, reproducible and collaborative research and development in which

experiments and techniques are validated, ranked and improved by the community.

The chapter is organized as follows. We start with the formalization of the eventual

needs of end-users and system developers or providers. Afterwards, we describe the

Collective Mind infrastructure and repository in detail.

5.2 Collective Mind approach

End-users generally need to perform some tasks (playing games on a console, watching

videos on mobile or tablet, surfing Web, modeling a new critical vaccine on a super-

computer or predicting a new crash of financial markets using cloud services) either

as fast as possible or with some real-time constraints while minimizing or amortizing

all associated costs including power consumption, soft and hard errors, and device or
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service price. Therefore, end-users or adaptive software require a function that can

suggest most optimal design or optimization choices c based on properties of their tasks

and data sets p, set of requirements r, as well as current state of the computing system s

under consideration:

c = F(p,r,s)

This function is associated with another function representing behavior of a user

task running on a given system depending on properties and choices:

b = B(p,c,s)

This function is of particular importance for hardware and software designers that

need to continuously provide and improve choices (solutions) for a broad range of

user tasks, data sets and requirements while trying to improve own return on invest-

ment (ROI) and reduce time to market. In order to find optimal choices, it should be

minimized in presence of possible end-user requirements (constraints). However, the

fundamental problem is that nowadays this function is highly non-linear with such a

multi-dimensional discrete and continuous parameter space which is not anymore pos-

sible to model analytically or evaluate empirically using exhaustive search [137, 51]. For

example, b is a behavior vector that can now include execution time, power consump-

tion, compilation time, code size, device cost, and any other important characteristic;

p is a vector of properties of a task and a system that can include static program

features [106, 129, 2, 55], data set properties, hardware counters [17, 81], system con-

figuration, and run-time environment parameters among many others; c represents

available design and optimization choices including algorithm selection, compiler and

its optimizations, number of threads, scheduling, processor ISA, cache sizes, memory

and interconnect bandwidth, frequency, etc; and finally s represents the state of the

system during parallel execution of other programs, system or core frequency, cache

contentions and so on.

5.2.1 Interdisciplinary collaborative methodology

Current multiple research projects mainly show that it is possible to use some off-the-

shelf on-line or off-line adaptive exploration (sampling) algorithms combined with some

existing models to approximate above function and predict behavior, design and opti-

mization choices for 70-90% cases but in a very limited experimental setup. In contrast,

our ambitious long-term goal is to understand how to continuously build, enhance,

systematize and optimize hybrid models that can explain and predict all possible behaviors
and choices while selecting minimal set of representative properties, benchmarks and

data sets for predictive modeling [96]. We reuse our interdisciplinary knowledge in

physics, quantum electronics and machine learning to build a new methodology that

66



5.3. COLLECTIVE MIND INFRASTRUCTURE AND REPOSITORY

can effectively deal with rising complexity of computer systems through gradual and

continuous top-down problem decomposition, analysis and learning. We also develop a

modular infrastructure and repository that allows to easily interconnect various avail-

able tools and techniques to distribute adaptive probabilistic exploration, analysis and

optimization of computer systems among many users [125, 22] while exposing unex-

pected or unexplained behavior to the community with interdisciplinary backgrounds

particularly in machine learning and data mining through unified web interfaces for

collaborative solving and systematization.

5.3 Collective Mind infrastructure and repository

Eventually, we started searching for a possible solution that could liberate software

developers from the tedious and not necessarily relevant job of continuous optimization

and accounting while gradually making existing software performance- and cost-aware.

At first, we tried to create a simple database of optimizations and connect it to some

existing benchmarking and auto-tuning tools to keep track of all optimizations [52, 55].

However, when trying to implement it within production environments of our industrial

partners, we faced several severe problems including difficulty to expose all design and

optimization choices from continuously evolving software, and difficulty to reproduce

performance numbers collected from different machines. This eventually pushed us to

develop a full-fledged repository of knowledge with unified web services (Collective

Mind or cM for short) similar to ones that helped successfully systematize research and

experimentation in biology, genomics and other natural sciences. Such repository should

be able to keep the whole auto-tuning setups with all dependencies including optimized

software, data sets and auto-tuning tools. This, in turn, should allow us to distribute the

whole auto-tuning setups among many users to crowdsource software optimization (or

any other experimentation) in a reproducible way while considerably reducing usage

costs. Briefly 1, cM helps to decompose software into standalone pieces interconnected

through cM wrappers. Such light-weight wrappers currently support major languages

including C, C++, Fortran, Python, PHP and Java, and allow the community to gradually

expose various design and optimization choices c, features f, dependencies on other

software and hardware, monitored characteristics (costs) b and environment state s in

a unified way through extensible JSON format [83]. Figure 5.1 depicts the high-level

view of Collective Mind framework and repository.

The software pieces can be extracted and then shared together with their wrappers

and data set samples in the Hadoop-enabled [126] cM repository. For example, with the

help of our colleagues and supporters, we already gradually and semi-automatically

extracted and shared 285 software pieces (codelets) together with several thousand

1Though we provide minimal information about Collective Mind framework in this chapter, it should
be enough to understand proposed concepts. However, in case of further interest, more details can be
found in [59, 100]
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Figure 5.1 – Collective Mind Framework and Repository (cM) help to decompose any complex
software into pieces with light-weight wrappers that expose design and optimization choices,
measured characteristics, features and environment state in a unified and mathematical
way(using vectors). It was developed to unify and systematize software autotuning, make it
practical and reproducible, and distribute it among numerous computing resources such as
mobile phones and data centers shared by volunteers [59, 100].

data set pairs from several real software projects as well as 8 popular benchmark suits

including NAS, MiBench, SPEC2000, SPEC2006, Powerstone, UTDSP and SNU-RT.

Recently Pablo et al. [35] proposed an open source framework Codelet Extractor and

REplayer(CERE). CERE finds and extracts the hotspots of an application as codelets.

This can liberate software engineers from developing their own ad-hoc and complex

tuning setups in favor of implementing common auto-tuning pipelines consisting of

shared software pieces, data sets, tools and optimization space exploration modules.

Such pipelines can then be easily shared and distributed across a large number of

diverse computer systems either using open source cM buildbot or a small cM node that

can deploy experiments on Android-based devices [101]. cM will then continuously

“crawl” for better optimizations for all shared software pieces, data sets and compilers,

while recording experiments in a reproducible way in the public cM repository at

c-mind.org/repo.

At a coarse-grain level, modules serve as wrappers around existing command line

tools such as compilers, source-to-source transformers, code launchers, profilers, among

many others. Such modules are written in python for portability and productivity

reasons, and can be launched from command line in a unified way using Collective

Mind front-end cm as following:

cm ⟨ module name or UID ⟩ ⟨ command ⟩ ⟨ unified meta information ⟩ – ⟨ original cmd ⟩

These modules enable transparent monitoring of information flow, exposure of vari-
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ous characteristics and properties in a unified way (meta information), and exploration

or prediction of design and optimization choices, while helping researchers to abstract

their experimental setups from constant changes in the system. Internally, modules can

call each other using just one unified cM access function which uses a schema-free easily

extensible nested dictionary that can be directly serialized to JSON as both input and

output as following:

r = cm_kernel.access({’cm_run_module_uoa’:<module name or UID>,

’cm_action’:<command>,

parameters})

where command in each module is directly associated with some function. Since JSON

can also be easily transmitted through Web using standard http post mechanisms,

we implemented a simple cM web server that can be used for P2P communication or

centralized repository during crowdsourcing and possibly multi-agent based on-line

learning and tuning.

Each module has an associated storage that can preserve any collections of files

(whole benchmark, data set, tool, trace, model, etc) and their meta-description in a

JSON file. Thus, each module can also be used for any data abstraction and includes

various common commands standard to any repository such as load, save, list, search, etc.

We use our own simple directory-based format as following:

.cmr/<Module name or UID>/<Data entry UID>

where .cmr is an acronym for Collective Mind Repository. In contrast to using SQL-based

database in the first cTuning version that was fast but very complex for data sharing or

extensions of structure and relations, a new open format allows users to be database and

technology-independent with the possibility to add, update, delete and share entries or

repositories in whole using standard OS functions and tools like SVN, GIT or Mercury,

or easily convert them to any other format or database if necessary. Furthermore, cM can

transparently use open source JSON-based indexing tools such as ElasticSearch [126] to

enable fast and powerful queries over schema-free meta information. Now, any research

artifact will not be lost and can now be referenced and directly found using the so called

cID (Collective ID) of the format: ⟨ module name or UID ⟩:⟨ data entry or UID ⟩.
Such infrastructure allows researchers and engineers to connect existing or new

modules into experimental pipelines like “research LEGO” with exposed characteristics,

properties, constraints and states to quickly and collaboratively prototype and crowd-

source their ideas or production scenarios such as traditional adaptive exploration of

large experimental spaces, multi-objective program and architecture optimization or

continuous on-line learning and run-time adaptation while easily utilizing all available

benchmarks, data sets, tools and models provided by the community. Additionally,

single and unified access function enables transparent reproducibility and validation of
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any experiment by preserving input and output dictionaries for a given experimental

pipeline module. Furthermore, we decided to keep all modules inside repository thus

substituting various ad-hoc scripts and tools. With an additional cM feature to install

various packages and their dependencies automatically (compilers, libraries, profilers,

etc) from the repository or keep all produced binaries in the repository, researchers now

have an opportunity to preserve and share the whole experimental setup in a private or

public repository possibly with a publication.

We started collaborative and gradual decomposition of large, coarse-grain compo-

nents into simpler sub-modules including decomposition of programs into kernels or

codelets [141] to keep complexity under control and possibly use multi-agent based or

brain inspired modeling and adaptation of the behavior of the whole computer system

locally or during P2P crowdsourcing. Such decomposition also allows community to

first learn and optimize coarse-grain behavior, and later add more fine-grain effects

depending on user requirements, time constraints and expected return on investment

(ROI) similar to existing analysis methodologies in physics, electronics or finances.

5.3.1 Data and parameter description and classification

In traditional software engineering, all software components and their APIs are usually

defined at the beginning of the project to avoid modifications later. However, in our case,

due to ever evolving tools, APIs and data formats, we decided to use agile methodology

together with type-free inputs and outputs for all functions focusing on quick and

simple prototyping of research ideas. Only when modules and their inputs and outputs

become mature or validated, then (meta)data and interfaces are defined, systematized

and classified. However, they can still be extended and reclassified at any time later. For

example, any key in an input or output dictionary of a given function and a given module

can be described as “choice”, “(statistical) characteristic”, “property” and “state”, besides

a few internal types including “module UID”, “data UID” or “class UID” to provide

direct or semantic class-based connections between data and modules. Parameters can

be discrete or continuous with a given range to enable automatic exploration. Thus, we

can easily describe compiler optimizations; data set properties such as image or matrix

size, architecture properties such as cache size or frequency, represent execution time,

power consumption, code size, hardware counters; categorize benchmarks and codelets

in terms of reaction to optimizations or as CPU or memory bound, and so on.

Our proposed framework provides a practical and evolutionary approach based on

the aforementioned formalization of objectives of various research projects where the

community gradually provides simple wrappers for the tools used including compilers,

source-to-source transformers, code launchers, profilers to transparently monitor all

information flow in experimental setups as shown in Figure 5.2b.

At the same time, researchers gradually expose various characteristics of behav-
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Figure 5.2 – (a) Conceptually depicted current ad-hoc experimentation; (b) wrappers developed by
the community around existing tools to gradually expose behavior (characteristics), choices, features
and system state using unified JSON input and output format; (c) wrappers and modules chained
together as LEGO to implement various experimentation scenarios within a public buildbot that can
be collaboratively explored and improved by the community.

ior b, choices c, system state s and features f (meta information) from this flow only
when needed to implement a given research scenario using popular and human readable,

language-independent and easily extensible JSON data format [83] based on combina-

tions of string keys, values, lists and dictionaries as in the following example:

{"characteristics":{

"execution_times": ["10.3","10.1","13.3"],

"code_size": "131938", ...},

"choices":{

"os":"linux", "os_version":"2.6.32-5-amd64",

"compiler":"gcc", "compiler_version":"4.6.3",

"compiler_flags":"-O3 -fno-if-conversion",

"platform":{"

"processor":"intel_xeon_e5520", "l2":"8192",

"memory":"24" ...}, ...},

"features":{

"semantic_features": {"number_of_bb": "24", ...},

"hardware_counters": {"cpi": "1.4" ...}, ... }

"state":{

"frequency":"2.27", ...}

}
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From past experience in building community-based frameworks, we noticed that

researchers are not always good programmers and naturally care more about quick

prototyping of their research ideas rather than drowning in complex specifications

for experiments that may be even thrown away in the end. Therefore, in contrast

to other frameworks, we decided to get rid of pre-defined data specifications and rigid
SQL-based databases which are difficult or even impossible to extend in rapidly evolving
projects in favor of agile methodology [4] which is gaining more popularity recently and

noSQL databases to let community derive the most simple, appropriate and backward

compatible specification just enough for their needs and only when research scenario

and modules are validated and can be shared with a wide community. JSON perfectly

fits such approach and is now backed up by many companies, supported by most of

the recent languages, web technologies and schema-free repositories [126], and can be

easily used for web services and P2P communication during experimentation.

Therefore, each wrapper has an associated file to describe the information flow

(input and output) using our own flat JSON format to be able to reference any key in the

complex JSON hierarchy using just one string. Such flattened key always starts with

# followed by #key if it is a dictionary key or @position_in_a_list if it is a value in a list.

For example, flattened key for the second execution time “10.1” in the above dictionary

example is "##characteristics#execution_time@1". By now, we prepared the following

description of the information flow enough to validate many existing auto-tuning and

machine learning techniques.

"flattened_json_key":{

"type": "text" | "dict" | "list" | "integer" | "float" | "category" | "uid",

"characteristic": "yes" | "no",

"feature": "yes" | "no",

"state": "yes" | "no",

"has_choice": "yes" | "no",

"choices": ["list of strings if categorical choice"],

"explore_start": "start number if numerical range",

"explore_stop": "stop number if numerical range",

"explore_step": "step if numerical range",

"can_be_omitted": "yes" | "no",

}

This specification is currently under constant extension. Finally, we introduce

modules that perform mathematical and other actions on unified JSON inputs and

outputs (similar to filters in electronics) or simply chain wrappers and other modules

into experimental pipelines within a public buildbot to quickly prototype research ideas

using existing components or gradually convert existing ad-hoc experimental setups to

a unified format as shown in Figure 5.2c. Wrappers and modules are written in Python
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for productivity and portability reasons (though technically any language can be used),

and can easily call each other using one unified API function with input and output

JSON, thus substituting and unifying all ad-hoc experimentation scripts, or can be

invoked from the command line by just prefixing original tool with a buildbot front-end

as following:

buildbot_fe ⟨wrapper/module name or UID⟩ ⟨action_function⟩@unified_input.json −− ⟨original CMD⟩

Each wrapper or module has an assigned unique ID and an associated directory

storage of format .repository/⟨wrapper/module name or UID⟩/⟨data entry UID⟩ to preserve

any related research artifact with an associated meta-description such as features or

classification in a JSON file thus effectively abstracting data access. For example,

module source.code can preserve all code samples, module dataset will keep all data sets,

wrapper compiler will keep description of various compilers and their tuning parameters,

module model will keep various shared predictive models with different parameters,

module experiment.result will keep auto-tuning results and so on. Meta description is

transparently indexed using open-source JSON-based ElasticSearch framework [126]

allowing fast and complex search queries.

5.3.2 OpenME interface for fine-grain analysis, tuning and adaptation

Most of the current compilers, applications and run-time systems are not prepared

for easy and straightforward fine-grain analysis and tuning due to associated software

engineering complexity, sometimes proprietary internals, possible compile or run-

time overheads, and still occasional disbeliefs in effective run-time adaptation. Some

extremes included either fixing, hardwiring and hiding all optimization heuristics from

end-users or oppositely exposing all possible optimizations, scheduling parameters,

hardware counters, etc. Some other available mechanisms to control fine-grain compiler

optimization through pragmas can also be very misleading since it is not always easy

or possible to validate whether optimization was actually performed or not. Instead

of developing yet more source-to-source tools or binary translators and analyzers,

we developed a simple event-based plugin framework called Interactive Compilation

Interface (ICI) to “open up” previously hardwired tools for external analysis and tuning.

ICI was written in plain C originally for Open64 and later for GCC, requires minimal

instrumentation of a compiler and helps to expose or modify only a subset of program

properties or compiler optimization decisions through external dynamic plugins based

on researcher needs and usage scenario. This interface can easily evolve with the

compiler itself, has been successfully used in the MILEPOST project to build machine-

learning self-tuning compiler [55], and is now available in mainline GCC. Based on this

experience, we developed a new version of this interface (OpenME) [125] that is used

to “open up” any available tool such as GCC, LLVM, Open64, architecture simulator,

etc., in a unified way as shown in Figure 5.3a, or any application, for example, to

train predictive scheduler on heterogeneous many-core architectures [81] as shown in

73



CHAPTER 5. CROWDSOURCING COMPILER AUTO-TUNING PRACTICAL WITH CM

          

(a) (b) 

Figure 5.3 – Event and plugin-based OpenME interface to “open up” rigid tools (a) and
applications (b) for external fine-grain analysis, tuning and adaptation, and connect them to
cM

Figure 5.3b.

5.4 Co-existence of multiple versions of tools and libraries

Yet another challenge that makes experimentation and life of computer researchers and

engineers very exciting is continuously changing tools and libraries. Presented approach

with tool wrappers and an artifact repository helps to elegantly solve this problem. We

naturally consider packages and libraries as research artifacts (or choices) too and there-

fore moved them to a repository with an associated unified module to be able to install

any given package on a given user machine on demand while automatically resolving all

dependencies. A special OS-dependent script is always created during installation to set

up binary, includes and library paths and all other necessary environment variables in-

side a wrapper just before tool execution. We already prepared packages and installation

scripts compatible with our buildbot for most of the versions of popular compilers, tools

and libraries, including GCC, LLVM, ICC, Open64/PathScale compilers, PGI compilers,

ROSE infrastructure, Oracle JDK, VTune, visual studio compilers, NVidia GPU toolkit,

perf, gprof, GMP, MPFR, MPC, PPL, LAPACK and others to relieve community from

this burden. Interestingly, we can use the same repository as an installation target thus

providing an opportunity to researchers to preserve and share their whole experimental

setups in private or public repositories possibly with a publication while referencing

any research artifact directly using the format similar to DOI: ⟨wrapper/module name or

UID⟩:⟨data entry UID⟩.
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5.5 Summary

This chapter provided an in-depth overview of our collaborative framework and reposi-

tory, the Collective Mind, for compiler auto-tuning and showed how we can collabora-

tively share benchmarks, datasets and models with the community. The next chapter

explains how do we cope with the unexpected behavior and unforeseen scenarios by col-

laboratively discovering missing features, thus improving model prediction accuracy.
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6
Crowdsourcing feature learning
and model improvement

6.1 Introduction

The cM framework is subjected to continuous evolution and improvement. This ne-

cessitates discovering missing features for enhancing its repository and improving

model prediction accuracy. This is only possible when we offer the community to share

their experimental results, benchmarks and code for continuously incorporating new

observations into the knowledge-base for better model prediction.

In this chapter, we formalize the current research on auto-tuning and machine

learning allowing to implement various research scenarios as shared experimental

pipelines. For the proof of the concept, we describe two experimental scenarios to

validate compiler auto-tuning and machine learning combined with continuous and

incremental complexity reduction. We also present a case study demonstrating our

methodology in practice to expose missing features, improve compiler optimizations

and make a real image processing application adaptive at run-time.

6.2 Public research scenarios and experimental pipelines

Optimization formalization allows researchers to implement most of the current auto-

tuning techniques as a mathematical problem in terms of multiple characteristics

(behavior), choices and features while easily reusing and chaining together well-known

interdisciplinary techniques as buildbot plugins including normality test to analyze

variation of experimental results and detect behavior anomalies [43], Pareto frontier

filter to leave only optimal solutions during multi-objective optimization [90, 74] and
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complexity reduction and differential analysis techniques [121, 82] to continuously

isolate behavior anomalies, compact experimental data on the fly, leave only influ-

ential optimization dimensions (choices), related features and most accurate models.

Furthermore, common optimization framework and cooperative methodology allows

community to share multiple code and sample data sets and collaboratively explore

large optimization spaces using our public buildbot while making use of machine

learning statistically meaningful as conceptually summarized in Figure 6.1.
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Figure 6.1 – Summary of the presented cooperative approach and practical buildbot to collaboratively
and semi-automatically learn and improve behavior of computer systems using complete public
experimental pipelines including code and dataset samples, tools, models, features and all other
associated artifacts shared, analyzed and improved by the interdisciplinary community.

However, our approach also requires radical change in mentality of researchers when

defining experiments that can be collaboratively explored through spare computational

resources including mobile phones or cloud services. Rather than focusing on a few pos-

itive speedups from auto-tuning or prediction from machine learning that are relatively

straightforward and can now be continuously shared in the public repository to directly

improve end-user’s applications, compilers, and run-time systems, researchers will

need to prepare such experimental pipelines that can continuously “crawl” for unusual or

unexpected behavior of computer systems and models when spare resources become available:

1 while ( true )
2 lsr = get_list_of_available_spare_resources ( )
3 i f len ( lsr ) > 0 :
4 sr=random ( lsr )
5 lep=get_list_of_shared_experimental_pipelines ( get_features ( sr ) )
6 i f len ( lep ) > 0 :
7 ep=run_pipeline ( sr , random ( lep ) , timeout ( lsr ) )
8 save_and_prune_expected_results ( ep , sr )
9 expose_unusual_behavior ( ep , sr )
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If a researcher has difficulties explaining results, mathematical formalization of a

problem also allows exposing it to an interdisciplinary community that can help analyze

and understand domain-specific problems (anomalies) while manually finding related

features in the whole software and hardware stack to improve predictions which is

currently practically impossible to generalize and automate until deep learning becomes

practical and powerful enough [70, 92]. In the next sections, we will demonstrate

how to use our approach to validate several well-known and far from being solved

problems including automatic compiler flag tuning and prediction. Based on our

practical experience and feedback from our industrial partners, it now takes just a

few days rather than months to implement such scenarios as Python-based buildbot

modules and wrappers (plugins), thus considerably increasing productivity and return

on investment when prototyping research ideas.

6.2.1 Validating compiler auto-tuning (iterative compilation)

As the first practical usage of the presented approach and framework, our industrial

partners desperately required practical compiler flag auto-tuning that has been well-

known for decades, far from being solved and is getting tougher with years. However,

in contrast to existing ad-hoc setups, we can now design an experimental pipeline as

such to automatically and recursively query its all connected tool wrappers for available

choices and monitor characteristics in a provided computer resource such as code and

data set samples, compilers and their optimizations, execution time, power consumption,

and hardware counters’ profilers, and so on. These choices and behavior characteristics

are aggregated in a JSON dictionary as json_c and json_b respectively. Such dictionaries

can quickly become complex, for example, to accommodate other tuning techniques

particularly on function, loop and instruction levels. Therefore, we use our flat JSON

format introduced in Section 5.3.1, to flatten above dictionaries into vectors c and b

together with their descriptions c_desc and b_desc that are automatically obtained

from all associated tool wrappers.

The first relatively straightforward usage scenario allows end-users to crowdsource
program optimization. In such scenario, a user just needs to provide some basic meta

information about compilation and execution command lines for a given program, and

use our buildbot web front-end or command line to mark characteristics to monitor and

choices to explore including compilers, data sets, flags, or anything else available in the

system, select preferable shared search strategy plugin that can be random, probabilistic,

genetic, among many others, and chain available filters to process empirical data on

the fly if needed. Importantly, unification of experimental results in a vector form

simplifies and enables usage of multiple publicly available visualization, data mining

and analytics web services for example from Google or available in various packages

for Python, R, Weka, MATLAB, SciLab, and other popular tools. As example, we ran

experimental pipeline to continuously optimize real image corner detection program
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Figure 6.2 – Variation in execution time vs code size when crowdsourcing optimization of an image
corner detection application with a fixed dataset on Samsung Galaxy Series mobile phone with ARMv6
830MHz processor when randomly selecting compiler flags for Sourcery GCC 4.7.2. Yellow point
represents -O3 and red circles show Pareto frontier. This data will be available for validation at the
conference.

using our colleagues’ Android-based mobiles (mainly Samsung Galaxy Series), Sourcery

GCC v4.7.2 with randomly generated combination of compiler flags of format -O3 -f(no-
)optimization_flag –parameter param=random_number_from_range, and chained Paretto

frontier filter for three characteristics (execution time, code size and compilation time)

required by our partners. Figure 6.2 shows 2D visualization of the multi-dimensional

optimization and characteristic space using Google Web Services. Before exploring

multiple optimization choices on an available resource, note that we validate existing

results using default choice configuration vector c_def such as -O3 for compilers (shown

by a yellow point on a figure) or even several randomly selected points from an explored

space. If the difference on any characteristic dimension is more than some threshold

(currently set as 2%), we skip such computer resource and provide opportunity to

record this case as suspicious including all inputs and outputs for further validation and

analysis by the community as described later in Section 6.2.2. Now, a user can easily

select optimal cases shared by the community depending on the further application

usage, i.e. the fastest variant (or probably with some balance in code size) to be used in

a smart phone or cloud service, or smallest variant if it is used in some tiny devices with

very limited resources, for example to support recent “Internet of Things” initiative.

6.2.2 Validating machine learning (classification and predictive modeling)

Optimization formalization and unification in our framework opens up another interest-

ing possibility to crowdsource a global problem solving in compilation and architecture

while avoiding explosion in the amount of experimental data. For example, we would

like to understand if machine learning can be really efficient in predicting compiler

optimizations. Current experimental scenarios attempt to address this problem by
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-O3 -fif-conversion -fno-ALL
-O3 –param max-inline-insns-auto=88 -finline-functions -fno-ALL
-O3 -fregmove -ftree-vrp -fno-ALL
-O3 -fomit-frame-pointer -fpeel-loops -ftree-fre -fno-ALL
-O3 -falign-functions -fomit-frame-pointer -ftree-ch -fno-ALL
-O3 -ftree-dominator-opts -ftree-loop-optimize -funswitch-loops -fno-ALL
-O3 -ftree-ccp -ftree-forwprop -ftree-fre -ftree-loop-optimize -fno-ALL
-O3 -finline-functions -fivopts -fprefetch-loop-arrays -ftree-loop-optimize -ftree-vrp
-fno-ALL
-O3 -fdce -fgcse -fomit-frame-pointer -freorder-blocks-and-partition -ftree-reassoc
-funroll-all-loops -fno-ALL
-O3 -fivopts -fprefetch-loop-arrays -fsched-last-insn-heuristic -fschedule-insns2 -
ftree-loop-optimize -ftree-reassoc -ftree-ter -fno-ALL
-O3 -fforward-propagate -fguess-branch-probability -fivopts -fmove-loop-invariants
-freorder-blocks -ftree-ccp -ftree-ch -ftree-dominator-opts -ftree-loop-optimize -ftree-
reassoc -ftree-ter -ftree-vrp -funroll-all-loops -funswitch-loops -fweb -fno-ALL

Table 6.1 – Some of the top performing combinations of optimization flags in GCC 4.6.3 out of 79
found optimization clusters found across Intel E5520 architecture using our buildbot on a local data
center and several ARM-based mobile phones. Meta flag -fno-ALL means that all other optimization
flags have been switched off when applying complexity reduction plugin and leaving only most
influential flags.

selecting a few benchmarks, tune each of them on a given platform for a few months,

collecting a large amount of training data and then show that it is possible to build a

model with some ad-hoc static/semantic or dynamic features to predict optimizations,

usually from the same training set using cross-validation. Though technically correct,

such approach is focusing only on “positive outcomes”, prone to the same “big data”

problem as described before and usually results in very limited studies covering a small

part of computer systems that do not help to understand whether a model will predict

well in industrial setup with many more benchmarks and features available. Instead,

we would like to create and continuously update a pool of top performing optimizations

for any given compiler that are different than -O3 and continuously cluster all available

benchmarks in terms of those optimizations. The idea is that the benchmarks in the

same optimization cluster naturally also share some features that can be used for pre-

diction. At the same time, we would like to focus not only on high speedups (positive

results) but also on slowdowns (negative results that are currently overlooked by the

community) to be able to hint compiler designers that there is a possible problem with

the internal optimization heuristic as it is simply not possible to add these optimization

flags to -O3 to improve all the benchmarks.

We reused and extended experimental pipeline from the previous section to address

above problems using spare computer resources and shared code and dataset samples

while solving a problem of small training sets and more importantly focusing on both

positive and negative results (“unexpected behavior”). To demonstrate our approach,

we used developed buildbot to continuously optimize 285 shared code and dataset com-
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binations from 8 popular benchmarks including NAS, MiBench, SPEC2000, SPEC2006,

Powerstone, UTDSP and SNU-RT in terms of execution time on a local cloud service

with 100 nodes, Intel E5520 processor (2.27GHz frequency, 8Mb last level cache) and

GCC 4.6.3, using either the pool of top performing optimization combinations or at least

5000 random combinations of flags during 5 months. Whenever a new top performing

combination of optimizations was found outside the pool, we applied it to all shared

programs to perform online clustering while removing all redundant combinations that

produce speedup similar to the new combination across all benchmarks. So far, our

buildbot has found 79 distinct combinations of optimizations (optimization clusters)

that cover all shared code and data set samples. Table 6.1 present some of the top

performing pruned combinations of flags.
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Figure 6.3 – (a) 79 distinct combinations of optimizations (optimization clusters) covering all 285
shared code and dataset samples on Intel E5520, GCC 4.6.3 and at least 5000 random combinations
of flags together with maximum speedup achieved within each optimization cluster; (b) number of
benchmarks with speedup at least more than 1.1 for a given cluster; (c) number of benchmarks with
speedup less than 0.96 (slowdown) for a given cluster.

Figure 6.3 shows maximum speedups achieved for each optimization cluster across

all benchmarks together with the number of benchmarks which achieve the highest

speedup using this optimization (or at least more than 1.1) and the number of bench-

marks with speedups less than 0.96 (slowdown) for the same optimization. For example,

distinct combination of optimizations -O3 -fif-conversion -fno-ALL achieved maximum

speedup on 7 benchmarks (including 1.17 speedup on at least one of these benchmarks)

and slowdowns for 13 benchmarks. Note that unlike previous works, such clustering

of continuously pruned combinations of optimization flags together with reproducible

experimental setup cab already help compiler developers from our industrial partners

to isolate and possibly solve code size, compilation time and performance regressions or

other problems in production compilers, thus considerably enhancing existing buggy
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Number of code and
dataset samples

Prediction accuracy
using optimized SVM

12 (from prior work) [55] 87%
285 from current work 56%

Table 6.2 – Prediction accuracy when using optimized SVM with full cross-validation for 12 and
285 code and dataset samples from prior and current works respectively combined with all available
semantic features (from MILEPOST GCC) and dynamic features (from hardware counters).

buildbots. Furthermore, it helps to automatically systematize and prune large collec-

tions of benchmarks and data sets, leaving only representative ones for a given research

problem (such as leaving only one code and related data set sample per optimization

cluster). However, more importantly, it makes use of machine learning more under-

standable since all benchmarks in red clusters with maximum speedups are distinct -

we just need to build a predictive model to associate a previously unseen program with

one unique cluster.

At this stage, most of the existing works would attempt to build a predictive model

using some off-the-shelf machine learning technique such as SVM or KNN and a few

ad-hoc features. We also decided to validate such approach using SVM model from

R package with full cross-validation for all 285 benchmarks used in our study and

only 12 from the previous work on MILEPOST GCC [55]. Our feature vector f was

automatically generated using 56 semantic features available in MILEPOST GCC (ex-

tracted for each benchmark at -O1 optimization level after pre pass) combined with 30

hardware counters ("cycles", "instructions", "cache-references", "cache-misses", "L1-dcache-loads",

"L1-dcache-load-misses", "L1-dcache-prefetches", "L1-dcache-prefetch-misses", "LLC-prefetches",

"LLC-prefetch-misses", "dTLB-stores", "dTLB-store-misses", "branches", "branch-misses", "bus-

cycles", "L1-dcache-stores", "L1-dcache-store-misses", "L1-icache-loads", "L1-icache-load-misses",

"LLC-loads", "LLC-load-misses", "LLC-stores", "LLC-store-misses", "dTLB-loads", "dTLB-load-

misses", "iTLB-loads", "iTLB-load-misses", "branch-loads", "branch-load-misses") obtained using

standard performance monitoring tool perf available in most Linux distributions by

default.

Table 6.2 summarizes results of our modeling. When using just a few benchmarks,

prediction accuracy is quite high and supports findings from other papers including [55].

However, interestingly, when adding considerably more benchmarks, prediction ac-

curacy drops dramatically and starts exhibiting close to random behavior (50%). In

order to understand such behavior, we decided to take a closer look at one of the opti-

mization clusters and “deconstruct” it. We noticed that optimization combination -O3
-fif-conversion -fno-ALL is one of the simplest ones in our pool while having 7 bench-

marks with positive speedup and 10 with negative ones. Unification of feature vectors in

our framework allows to apply standard complexity reduction to incrementally remove

all features one by one while rebuilding model and maintaining an adequate level of

prediction accuracy. Naturally, it can also be done using statistical techniques such

as ANOVA or PCA [17], but since we would like to isolate possible problem, we need
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Figure 6.4 – Automatic detection of the relevant feature(s) to predict optimization cluster "-O3
-fno-if-conversion -fno-ALL" using complexity reduction. However, we manually converted several
code samples to provide counter examples that invalidated this feature and showed that using small
training sets in many current studies can be totally misleading.

precise analysis. Our pruning left only one semantic feature from MILEPOST GCC

(ft29) that counts the number of basic blocks where the number of phi-nodes is greater

than 3. Visualization at Figure 6.4 helps us to derive a decision that count of ft29 greater

than 0 can effectively separate the two classes with only 3 mispredictions out of 17.

In an industrial setup, we also need to understand whether this feature makes sense

and how to use this information to improve a compiler. Therefore, we exposed all these

experimental data to our industrial colleagues and compiler developers who confirmed

experimental results but could not explain this feature. Considering that confirming

relevance of a feature may not be straightforward, we decided to try to find a counter

example instead to invalidate this result. We selected a simple blocksort function from

bzip2 that has 0 phi-nodes and tried to manually add phi-nodes by transforming source

code as following (added lines are highlighted):

1 . . .
2 vo la t i l e in t sum , value = 3 ;
3 int sumA = 0;
4 int sumB = 0;
5 int sumC = 0;
6 for ( j = ftab [ ss⟨⟨8] & ( ~ ( ( 1 ⟨⟨ 21) ) ) ; j⟨copyStart [ ss ] ; j++)
7 k = ptr [ j ] − 1 ;
8 sumA += value;
9 sumB += value;

10 sumC += value;
11 . . .

This manual transformation added 3 PHI nodes to the code, resulting in a change

of ft29 threshold value from 0 to 1 while speedup remained the same. We performed

similar transformation in a few other benchmarks that did not influence the original

speedup while changing ft29 from 0 to any number thus invalidating original decision
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separating 2 classes and showing that our model is misleading. At the same time,

we shared all counter examples in a buildbot repository thus providing code samples

with unusual and reproducible optimization behavior similar to buggy buildbot where

samples causing compiler crashes are continuously collected and analyzed.

From this example, it is evident that our community has often been using machine

learning for compiler optimization in a wrong way: the fundamental problem is that

many popular off-the-shelf statistical models were originally developed for pattern

recognition and can work well only with a large amount of training data and features

available such as thousands or even millions of public images. Our training set even

with numerous features and hundreds of benchmarks is simply too small to build

statistically meaningful model. At the same time, relatively high prediction accuracy on

very small training sets can now be explained by finding some meaningless hyperplanes

in a sparse feature space while failing to find any relevant correlation. This finding

supports our idea to move away from “black box” machine learning approaches at least

at this stage while focusing our effort to add much more benchmarks and use knowledge

of domain specialists to collaboratively search and explain relevant features.

6.3 Learning dataset features to enable adaptive software

Though we demonstrated how our approach and methodology can help automate

classification of shared software species to improve optimization predictions, it still

did not solve another fundamental problem of static compilation - lack of run-time

information. On the other hand, since cM continuously records unexpected behavior, it

helped to automatically detect that one of the real customer’s software species (image

B&W threshold filter from a surveillance camera application similar to one shown

in Figure 1.2) requires two distinct optimizations with around 20% improvement in

execution time on Intel Core i5-2540M across all shared images (data set samples) as

shown in Figure 6.5.

In order to understand such behavior, we can now reuse the same clustering method-

ology to classify available data sets and expose those features that can explain such

behavior and separate optimization classes. Compiler designers again helped us analyze

this software species and gradually identified a suspicious “sub-species”, causing an

unusual behavior: (temp1 ⟩ T) ? 255 : 0. One optimization class included “if conver-

sion” transformation, which added several predicated statements that may degrade

performance if additional branches are rarely taken due to a few additional useless

cycles to check branch condition. At this stage, compiler designers concluded that it

is a well-known run-time dependency which is difficult or even impossible to solve in

static compilers. Nevertheless, one of the volunteers noticed that some images shown

in Figure 6.5 were captured during the day and some during the night. This helped us

find new, simple and relevant feature related to both data set and the environment state
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Dataset Class 

Optimization class 

Class 1 Class 2 

Shared data set sample1 
+21.5% ± 1.5% 
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execution time 

-8.2% ± 1.5% 
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Shared data set sample2 
-11.9% ± 1.5% 

 
degradation in 
execution time 
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I 
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Figure 6.5 – Detecting missing dataset feature "time of the day" with the help of the commu-
nity. Such feature enables adaptive software species that performs well across all inputs.

“time of the day” that effectively separated two optimization classes.

At the same time, when analyzing multiple executions of image corner detection

benchmark on a smart phone as shown in Figure 6.2, we noticed occasional 4x difference

in execution times. Normally, most of the studies would simply skip such experiment.

However, now we have an opportunity to record, reproduce and visualize such cases as

shown in Figure 6.6.

Execution time (sec.) 
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st
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n 

Feature: CPU frequency 

Class A              Class B 

Figure 6.6 – Unexpected behavior helped to identify and share missing feature.

Simple analysis showed that our phone was often in the low power state at the

beginning of the experiments and then gradually switched to the high-frequency state

(4x difference in frequency). Though obvious, this information allowed us to add CPU

frequency scaler to the pipeline and universal feature, state and choice vectors f, s, and

c respectively together with cpufreq wrapper, thus using exposed “unexpected behavior”

to improve public experimental pipeline and help community to avoid pitfalls in their

next experiments while gradually extending collection of features in our system.

This real example demonstrates how our approach can help collaboratively find
missing and nontrivial features that may not even exist and have to be exposed to improve

86



6.3. LEARNING DATASET FEATURES TO ENABLE ADAPTIVE SOFTWARE

optimization prediction. Furthermore, our approach helped substitute the threshold

filter in the customer’s real software by a shared cM plugin consisting of two differently

optimized clones of this filter and a compact decision tree. This decision tree selects

an appropriate clone at run-time based on the features of a data set, hardware and

environment state used. Therefore, our Collective Mind approach can also help make

statically compiled software easily adaptable to different contexts as conceptually shown

in Figure 6.7.
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Figure 6.7 – Concept of performance- and cost-aware self-tuning software assembled from cM
plugins.

Moreover, such software will be continuously optimized with the help of the com-

munity while maximizing its performance, minimizing development costs, improving

productivity of software engineers and reducing time to market. Interestingly, cM

approach can also help solve “big data problem” that we experienced in the first public

cTuning framework [52, 55]. Rather than collecting and preserving all possible infor-

mation from participating users, we can validate incoming data against existing models

and save only unexpected behavior. We believe that presented approach can eventually

enable performance- and cost-aware software engineering. We envisage that instead of

struggling to integrate various ad-hoc optimization heuristics to their software projects

similar to one shown in Figure 1.4, engineers will simply need to expose various features

from data sets, software, hardware and environment state for their software pieces.

These features will then be correlated with the top performing optimizations either

automatically or with the help of the community to gradually minimize execution time,

power consumption, code size, compilation time, faults, and other costs.
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6.4 Summary

This chapter demonstrated how to validate, share, enhance and systematize our past

research knowledge and practical experience particularly on program optimization and

machine learning (largely overlooked by our community) using crowdsourcing. Pre-

sented evolutionary community-driven approach and practical, portable, plugin-based

framework help to unify and connect together existing ad-hoc tools while liberating

researchers and particularly students or reviewers from a tedious and sometimes impos-

sible task of re-implementing ad-hoc experimental setups from numerous publications.

It also helps researchers to quickly prototype their ideas in days rather than months

by reusing and customizing shared experimental setups and data while focusing all

their efforts and creativity on either solving existing problems while reusing, improving

and optimizing shared predictive models, finding missing features or exposing existing

contributing features, or developing truly novel approaches.

88



7
Conclusion and future work

The computer engineering community has been desperately trying to find some practical

ways to automatically improve software performance while reducing power consump-

tion and other usage costs across numerous and rapidly evolving computer systems for

several decades [5, 38, 118, 66, 71]. In this thesis, we presented a novel and practical

approach inspired by natural sciences and Wikipedia that may help collaboratively

solve this problem while improving productivity of software developers. The biggest

challenge in this approach is to connect together, systematize and make practical various

techniques and tools from different interdisciplinary domains often overlooked by our

community into a coherent, extensible and top-down optimization and classification

methodology.

The backbone of our approach is a public repository of optimization knowledge at

c-mind.org/repo. It allows the software engineering community to gradually share their

most frequently used software pieces (computational species) together with various

possible inputs and features. All shared species are then continuously and randomly

optimized and executed with randomly selected inputs either as standalone pieces or

within real software across numerous mobile phones, laptops and data centers pro-

vided by volunteers using our recent Collective Mind framework (cM). In contrast

with a very few existing public repositories, notably SPEC and Phoronix benchmarking

platforms [127, 110], cM also continuously classifies best found optimizations while

exposing unexpected behavior in a reproducible way. This, in turn, allows the interdis-

ciplinary community to collaboratively correlate found classes with gradually exposed

features from the software, hardware, datasets and environment state either manually or

using popular big data predictive analytics [9, 68]. Resulting predictive models are then

integrated into cM plugins together with several pre-optimized (specialized) versions of

a given species that maximize performance and minimize costs across as many inputs,
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hardware and environment states as possible, as described in [96]

Software engineers can now assemble self-tuning applications just like “LEGO” from

the shared cM plugins with continuously optimized species. Such software not only can

adapt to the running hardware and context, but also continue improving its performance

and minimize usage costs when more collective knowledge is available. This can help

change current computer engineering methodology since software engineers do not

have to wait anymore until hardware or compilers become better. Instead, the software

engineering community gradually creates a large, diverse and realistic benchmark

together with a public and continuously improving optimization advice system that

helps improve and validate future compilers and hardware. For example, we envision

that our approach will also help simplify compilers and convert them into generic

libraries of code analysis, optimization and generation routines orchestrated by cM-like

frameworks.

To avoid the fate of many projects that vanish shortly after publication, we agreed

with our partners to share most of the related code and data at our public optimization

repository to continue further community-driven developments. For example, with the

help of our supporters, we already shared around 300 software species and collected

around 15000 possible data sets. At the same time, we also shared various features as

cM meta-data from our past research on machine learning based optimization includ-

ing MILEPOST semantic code properties [55], code patterns and control flow graph

extracted by our GCC/LLVM Alchemist plugin [59], image and matrix dimensions

together with data set sizes from [96], OS parameters, system descriptions, hardware

performance counters, CPU frequency and many others.

Public availability of such a repository and open source cM infrastructure allowed

us to validate our approach in several major companies. For example, we demonstrated

how our industry colleagues managed to enhance their in-house benchmarking suites

to considerably improve optimization heuristics of their production GCC compiler for a

number of ARM and Intel based processors while detecting several architectural errors

during validation of new hardware configurations. Finally, presented approach helped

to convert an important customer statically compiled image processing application

into a self-tuning one that maximizes performance to reach real time constraints and

minimize all other costs including energy, overall development and tuning effort, and

time to market.

As a part of the future work, we plan to simplify as much as possible the experience

of software engineers and volunteers wishing to participate in our project. Therefore,

we are currently extending our cM framework to automate identification, extraction

and sharing of the frequently used and most time consuming software pieces and their

features in real programs. For this purpose, we plan to use and extend our Interactive

Compilation Interface for GCC and LLVM while connecting cM framework with Eclipse

IDE [41] to simplify integration of our cM wrappers and performance/cost monitor-
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ing plugins with real applications, with Docker [37] and CARE [78] to automatically

detect all software dependencies for sharing, and with Phoronix open benchmarking

infrastructure [110] to add even more realistic software pieces to our repository. This

community-driven effort continues [57].
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A
Reproducing experiments

A.1 Grid5000 Framework

The ever-increasing computing requirements have necessitated the use of large-scale,

highly parallel computing systems. Modern computers, no matter how much powerful,

cannot meet the existing computing requirements required by the complex algorithms.

This has led to the development of massive-scale, distributed computing systems in the

form of grid. A grid is a collection of huge number of clusters working in parallel on a

given (complex) problem which is beyond the capabilities of a single computer. Among

the most notable grids all over the world, Grid5000 is a large-scale and reconfigurable

infrastructure developed in France in 2003 to support experimental-driven research

in parallel and distributed systems. Grid5000 has been used as a testbed in all the

experimens performed in our research. It offers a highly reconfigurable, controllable and

monitorable experimental platform by providing access to a large amount of resources

including 1000 nodes and 8000 CPU cores, grouped in homogeneous clusters and

featuring various technologies such as 10G Ethernet, Infiniband, GPUSs and Xeon PHI,

etc. Additionally, Grid5000 has the following salient features [7][63].

• Adaptibility, reconfigurability and controllability.

• In-depth analysis and monitoring of large-scale distributed systems (high-performance

computing, grids, peer-to-peer systems, cloud computing, and others).

• Support for the reproducibility of the experimental results pertaining to bench-

marking, simulations and any other domain.

• Constant evolution and support for the major technological trends and state-of-

the-art innovations related to distributed and parallel systems from hardware as
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well as software perspective.

In the next sections, we describe the steps involved in carrying out experimentations on

Grid5000 testbed and our exeprimental setup.

A.1.1 Experimental setup on Grid5000

The steps involved in conducting an experiment on Grid5000 is as follows.

A.1.1.1 Reservation of resources

The first step requires locating and reserving the resources for the intended experiment.

The reservation of resources can be performed either (i) by manually searching the

resources with their description in a web interface and then making a reservation or (ii)

by specifying the experimentation requirement to the system which in turn allocates

the appropriate resources.

A.1.1.2 Deployment

This step involves deploying the experimental apparatus on the resources. The deploy-

ment may be performed either by using pre-configured environments or by installing

user-specified environments. An environment usually comprises a compressed file of

the operating system image and a kernel file specifying which kernel to boot.

The default scheme of Grid5000 generally allocates a larger part of the disk space to

the temporary file system (/tempfs) which is flushed out at each restart of the system.

The other part of the disk space is reserved for the root file system where the image is

copied. We customized the default environment by integrating our software and data

comprising compilers, performance monitoring tools, benchmarks, and the collective

mind framework with the image file consisting of the operating system and the kernel.

The is useful for copying the whole experimental apparatus for each experimentation

without requiring to copy the software and the data for each experiment. We also

customized the Grid5000 allocated disk space by reserving more space for the root file

system where our image is copied and reducing the space for temporary file system. For

partitioning the disk space accordingly, we run the following script.

1 −−−
2 SetDeploymentEnvUntrusted :
3 create_partition_table :
4 substitute :
5 − action : send

6 file : partitions

7 destination : $KADEPLOY_TMP_DIR

8 name : send_partitions

9 − action : exec

10 name : partitioning_with_parted
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11 command : parted −a optimal /dev/sda −−script $ ( cat $KADEPLOY_TMP_DIR/←↪
partitions )

12 # add formating step to kadeploy
13 format_deploy_part :
14 post−ops :
15 − action : run

16 name : format_with_mkfs

17 file : format

18 SetDeploymentEnvKexec :
19 create_partition_table :
20 substitute :
21 − action : send

22 file : partitions

23 destination : $KADEPLOY_TMP_DIR

24 name : send_partitions

25 − action : exec

26 name : partitioning_with_parted

27 command : parted −a optimal /dev/sda −−script $ ( cat $KADEPLOY_TMP_DIR/←↪
partitions )

28 # add formating step to kadeploy
29 format_deploy_part :
30 post−ops :
31 − action : run

32 name : format_with_mkfs

33 file : format

34 # we don ' t need those both step so we escape i t .
35 format_tmp_part :
36 substitute :
37 − action : exec

38 name : remove_format_tmp_part_step

39 command : /bin/true
40 format_swap_part :
41 substitute :
42 − action : exec

43 name : remove_format_swap_part_step

44 command : /bin/true

1 mklabel msdos

2 u GB mkpart primary 0% 6%
3 u GB mkpart primary 6% 100%
4 align−check optimal 1
5 align−check optimal 2

A.1.1.3 Automating deployment

Grid5000 currenlty has over 500 users who usually require several nodes for experi-

mentation. This results in huge delays in node availability for new users. Instead of

constantly monitoring the node availability, we automate the deployment process such

that our image is copied as soon as a node is available. We run the following script for

automatic node deployment.

1 # ! / b in /sh
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2
3 # Put comments here
4
5 NODE_FILE=$OAR_FILE_NODES
6
7 i f [ −z " $NODE_FILE " ] ; then

8 echo "ERROR : Machines Unavai lable "
9 exit

10 fi

11
12 kadeploy −e sid−x64−base−1.1−unipf −f $OAR_FILE_NODES

13
14 a=1
15 for node in $ ( cat $NODE_FILE | uniq ) ; do

16 scp −o StrictHostKeyChecking=no /home/orsay/awmemon/setup/CBench/←↪
automotive_susan_e/$a . txt root@$node : / root/ccc/apps/ccc−−bench−list . txt

17 scp −o StrictHostKeyChecking=no /home/orsay/awmemon/setup/CBench/←↪
automotive_susan_e/run$a root@$node : / root/ccc−−run−bench

18 scp −o StrictHostKeyChecking=no /home/orsay/awmemon/ccc−run−−glob−flags . sh ←↪
root@$node : / root/ccc/apps/

19 ssh −o StrictHostKeyChecking=no root@$node /root/chima
20 let " a=a+1 "
21 echo $node

22 done

23
24 sleep 13h

A.2 Sharing artifacts for reproducibility

The Collective Mind’s ctuning repository contains all the supported packages(compilers,

libraries and tools), benchmarks, datasets, and scenarios ( 1.5Gb). The repository can be

downloaded at https://drive.google.com/file/d/0B-wXENVfIO82UEdyYWdpSGIt-eWs/

view?usp=sharing.

The shared repository can be downloaded at https://drive.google.com/file/d/

0B-wXENVfIO82T3B4TklVakxnNXM/view?usp=sharing

The latest release of Collective Mind framework is available at http://sourceforge.

net/projects/c-mind/files/latest/download

A.2.1 Compiler flags pruning

As mentioned in Section 5.3, 285+ codelets extracted from several popular benchmakrs

are shared as part of Collective Mind framework. In this section, we show some of the

codelets with their best found combination of flags using Collective Mind. We also show

(in blue), the semi-manually pruned combination of flags.

-O3 -falign-functions -falign-jumps -fno-align-labels -falign-loops -fno-asynchronous-unwind-tables -fno-branch-count-reg -
fbranch-target-load-optimize2 -fbtr-bb-exclusive -fcaller-saves -fno-combine-stack-adjustments -fcommon -fcompare-elim -
fconserve-stack -fcprop-registers -fcrossjumping -fno-cse-follow-jumps -fno-cx-limited-range -fdce -fdefer-pop -fno-delete-
null-pointer-checks -fdevirtualize -fno-dse -fno-early-inlining -fexpensive-optimizations -fforward-propagate -fno-gcse -fno-
gcse-after-reload -fgcse-las -fgcse-lm -fgcse-sm -fno-graphite-identity -fguess-branch-probability -fno-if-conversion -fno-if-
conversion2 -fno-inline-functions -finline-functions-called-once -finline-small-functions -fno-ipa-cp -fno-ipa-cp-clone -fipa-
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matrix-reorg -fipa-profile -fipa-pta -fipa-pure-const -fipa-reference -fipa-sra -fivopts -fjump-tables -fmath-errno -fno-
loop-block -floop-flatten -floop-interchange -fno-loop-parallelize-all -floop-strip-mine -fmerge-constants -fno-modulo-sched
-fmove-loop-invariants -fno-omit-frame-pointer -foptimize-register-move -fno-optimize-sibling-calls -fpeel-loops -fpeephole -
fpeephole2 -fpredictive-commoning -fno-prefetch-loop-arrays -fregmove -frename-registers -fno-reorder-blocks -fno-reorder-
blocks-and-partition -freorder-functions -frerun-cse-after-loop -freschedule-modulo-scheduled-loops -fsched-critical-path-
heuristic -fsched-dep-count-heuristic -fno-sched-group-heuristic -fno-sched-interblock -fsched-last-insn-heuristic -fsched-
pressure -fno-sched-rank-heuristic -fno-sched-spec -fsched-spec-insn-heuristic -fsched-spec-load -fsched-spec-load-dangerous
-fsched-stalled-insns -fsched-stalled-insns-dep -fno-sched2-use-superblocks -fschedule-insns -fschedule-insns2 -fshort-enums
-fsigned-zeros -fsel-sched-pipelining -fno-sel-sched-pipelining-outer-loops -fsel-sched-reschedule-pipelined -fno-selective-
scheduling -fno-selective-scheduling2 -fsignaling-nans -fsingle-precision-constant -fno-split-ivs-in-unroller -fsplit-wide-types
-fstrict-aliasing -fno-thread-jumps -ftrapping-math -ftree-bit-ccp -fno-tree-builtin-call-dce -ftree-ccp -ftree-ch -ftree-copy-
prop -ftree-copyrename -fno-tree-cselim -fno-tree-dce -ftree-dominator-opts -ftree-dse -fno-tree-forwprop -fno-tree-fre -ftree-
loop-distribute-patterns -ftree-loop-distribution -fno-tree-loop-if-convert -fno-tree-loop-if-convert-stores -ftree-loop-im -fno-
tree-loop-ivcanon -ftree-loop-optimize -ftree-lrs -ftree-phiprop -ftree-pre -fno-tree-pta -fno-tree-reassoc -ftree-scev-cprop -
ftree-sink -fno-tree-slp-vectorize -fno-tree-sra -ftree-switch-conversion -fno-tree-ter -ftree-vect-loop-version -fno-tree-vectorize
-fno-tree-vrp -fno-unroll-all-loops -fno-unsafe-loop-optimizations -fno-unsafe-math-optimizations -funswitch-loops -fno-variable-
expansion-in-unroller -fvect-cost-model -fno-web

-O3 -fguess-branch-probability -fivopts -fmove-loop-invariants -frename-registers -fsched-critical-path-heuristic -fsched-
pressure -fschedule-insns -ftree-ccp -ftree-ch -ftree-dominator-opts -ftree-loop-optimize -fno-ALL

mc.codelet__9.1

-O3 -falign-functions -fno-align-jumps -fno-align-labels -falign-loops -fasynchronous-unwind-tables -fno-branch-count-reg -
fno-branch-target-load-optimize2 -fbtr-bb-exclusive -fcaller-saves -fno-combine-stack-adjustments -fno-common -fcompare-
elim -fconserve-stack -fno-cprop-registers -fcrossjumping -fno-cse-follow-jumps -fno-cx-limited-range -fdce -fno-defer-
pop -fdelete-null-pointer-checks -fno-devirtualize -fno-dse -fno-early-inlining -fno-expensive-optimizations -fno-forward-
propagate -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fno-gcse-sm -fno-graphite-identity -fguess-branch-probability -fif-
conversion -fif-conversion2 -finline-functions -fno-inline-functions-called-once -fno-inline-small-functions -fno-ipa-cp -fno-
ipa-cp-clone -fipa-matrix-reorg -fipa-profile -fipa-pta -fipa-pure-const -fno-ipa-reference -fipa-sra -fno-ivopts -fno-jump-
tables -fno-math-errno -floop-block -floop-flatten -fno-loop-interchange -fno-loop-parallelize-all -fno-loop-strip-mine -fmerge-
constants -fmodulo-sched -fmove-loop-invariants -fomit-frame-pointer -foptimize-register-move -foptimize-sibling-calls -
fpeel-loops -fpeephole -fpeephole2 -fpredictive-commoning -fprefetch-loop-arrays -fno-regmove -fno-rename-registers -
freorder-blocks -freorder-blocks-and-partition -freorder-functions -frerun-cse-after-loop -freschedule-modulo-scheduled-
loops -fno-sched-critical-path-heuristic -fsched-dep-count-heuristic -fno-sched-group-heuristic -fno-sched-interblock -fno-sched-
last-insn-heuristic -fsched-pressure -fsched-rank-heuristic -fno-sched-spec -fno-sched-spec-insn-heuristic -fsched-spec-load -
fsched-spec-load-dangerous -fsched-stalled-insns -fno-sched-stalled-insns-dep -fsched2-use-superblocks -fno-schedule-insns
-fschedule-insns2 -fno-short-enums -fsigned-zeros -fno-sel-sched-pipelining -fno-sel-sched-pipelining-outer-loops -fsel-sched-
reschedule-pipelined -fno-selective-scheduling -fno-selective-scheduling2 -fsignaling-nans -fno-single-precision-constant -fsplit-
ivs-in-unroller -fsplit-wide-types -fstrict-aliasing -fthread-jumps -ftrapping-math -ftree-bit-ccp -ftree-builtin-call-dce -
fno-tree-ccp -ftree-ch -ftree-copy-prop -fno-tree-copyrename -fno-tree-cselim -fno-tree-dce -fno-tree-dominator-opts -fno-tree-
dse -ftree-forwprop -fno-tree-fre -fno-tree-loop-distribute-patterns -fno-tree-loop-distribution -ftree-loop-if-convert -fno-tree-
loop-if-convert-stores -fno-tree-loop-im -fno-tree-loop-ivcanon -fno-tree-loop-optimize -fno-tree-lrs -ftree-phiprop -fno-tree-pre
-ftree-pta -fno-tree-reassoc -ftree-scev-cprop -ftree-sink -fno-tree-slp-vectorize -ftree-sra -fno-tree-switch-conversion -ftree-
ter -fno-tree-vect-loop-version -fno-tree-vectorize -ftree-vrp -funroll-all-loops -funsafe-loop-optimizations -fno-unsafe-math-
optimizations -fno-unswitch-loops -fno-variable-expansion-in-unroller -fno-vect-cost-model -fweb

-O3 -fcaller-saves -fdce -fguess-branch-probability -fmove-loop-invariants -fomit-frame-pointer -fsched-dep-count-
heuristic -fsched2-use-superblocks -fschedule-insns2 -ftree-copy-prop -ftree-ter -ftree-vrp -fno-ALL

pixel.codelet__3.1

-O3 -falign-functions -falign-jumps -fno-align-labels -falign-loops -fno-asynchronous-unwind-tables -fno-branch-count-reg
-fno-branch-target-load-optimize2 -fbtr-bb-exclusive -fcaller-saves -fcombine-stack-adjustments -fno-common -fcompare-
elim -fconserve-stack -fcprop-registers -fno-crossjumping -fcse-follow-jumps -fcx-limited-range -fdce -fdefer-pop -fdelete-
null-pointer-checks -fno-devirtualize -fdse -fno-early-inlining -fno-expensive-optimizations -fno-forward-propagate -fno-gcse
-fgcse-after-reload -fno-gcse-las -fgcse-lm -fgcse-sm -fgraphite-identity -fno-guess-branch-probability -fif-conversion -fif-
conversion2 -finline-functions -fno-inline-functions-called-once -fno-inline-small-functions -fno-ipa-cp -fipa-cp-clone -fipa-
matrix-reorg -fipa-profile -fipa-pta -fipa-pure-const -fipa-reference -fno-ipa-sra -fivopts -fjump-tables -fmath-errno -fno-
loop-block -floop-flatten -floop-interchange -fno-loop-parallelize-all -floop-strip-mine -fno-merge-constants -fno-modulo-sched
-fno-move-loop-invariants -fno-omit-frame-pointer -fno-optimize-register-move -fno-optimize-sibling-calls -fpeel-loops -fno-
peephole -fpeephole2 -fpredictive-commoning -fprefetch-loop-arrays -fregmove -fno-rename-registers -freorder-blocks -fno-
reorder-blocks-and-partition -fno-reorder-functions -frerun-cse-after-loop -freschedule-modulo-scheduled-loops -fno-sched-
critical-path-heuristic -fsched-dep-count-heuristic -fsched-group-heuristic -fsched-interblock -fno-sched-last-insn-heuristic -
fsched-pressure -fno-sched-rank-heuristic -fno-sched-spec -fno-sched-spec-insn-heuristic -fno-sched-spec-load -fsched-spec-
load-dangerous -fsched-stalled-insns -fno-sched-stalled-insns-dep -fsched2-use-superblocks -fno-schedule-insns -fschedule-
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insns2 -fno-short-enums -fsigned-zeros -fno-sel-sched-pipelining -fsel-sched-pipelining-outer-loops -fsel-sched-reschedule-
pipelined -fselective-scheduling -fselective-scheduling2 -fno-signaling-nans -fsingle-precision-constant -fno-split-ivs-in-
unroller -fsplit-wide-types -fstrict-aliasing -fthread-jumps -fno-trapping-math -fno-tree-bit-ccp -fno-tree-builtin-call-dce -
ftree-ccp -fno-tree-ch -ftree-copy-prop -ftree-copyrename -ftree-cselim -ftree-dce -fno-tree-dominator-opts -fno-tree-dse -
ftree-forwprop -fno-tree-fre -fno-tree-loop-distribute-patterns -fno-tree-loop-distribution -ftree-loop-if-convert -fno-tree-loop-if-
convert-stores -ftree-loop-im -ftree-loop-ivcanon -ftree-loop-optimize -fno-tree-lrs -fno-tree-phiprop -fno-tree-pre -fno-tree-pta
-ftree-reassoc -ftree-scev-cprop -fno-tree-sink -ftree-slp-vectorize -ftree-sra -ftree-switch-conversion -ftree-ter -ftree-vect-
loop-version -fno-tree-vectorize -ftree-vrp -funroll-all-loops -fno-unsafe-loop-optimizations -funsafe-math-optimizations -fno-
unswitch-loops -fno-variable-expansion-in-unroller -fvect-cost-model -fno-web

-O3 -fcse-follow-jumps -fdce -fgraphite-identity -fregmove -freorder-blocks -ftree-copy-prop -ftree-forwprop -ftree-
loop-optimize -ftree-ter -ftree-vrp -fno-ALL

dct.codelet__18.1

Best combination of flags for all 285+ shared codelets and their corresponding

pruned combination of flags is publicly available at https://github.com/awam/opts_

prune_pub.

A.3 Crowdsourcing auto-tuning using mobile devices

There is also a continuing effort for crowdtuning using mobile phones and tablets.

Collective Mind Node[101] is a result of such effort and is available for all Android

based smartphones and tablets at https://play.google.com/store/apps/details?

id=com.collective_mind.node. Mobile devices participating in continuous crowdtun-

ing can be viewed at http://ctuning.org/crowdtuning-mobiles. Information per-

taining to to mobile processors can be obtained at http://ctuning.org/crowdtuni-

ng-processors. Crowdtuning results for benchmarks using mobile devices is available

at http://ctuning.org/crowdtuning-results.
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