
HAL Id: tel-01395561
https://theses.hal.science/tel-01395561

Submitted on 10 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis and Simulation of Optimal Motions in Rock
Climbing

Simon Courtemanche

To cite this version:
Simon Courtemanche. Analysis and Simulation of Optimal Motions in Rock Climbing. Graphics
[cs.GR]. Université de Grenoble, 2014. English. �NNT : 2014GRENM082�. �tel-01395561�

https://theses.hal.science/tel-01395561
https://hal.archives-ouvertes.fr


THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial : 7 août 2006

Présentée par

Simon COURTEMANCHE

Thèse dirigée par Lionel REVÉRET

préparée au sein du Laboratoire Jean Kuntzmann (LJK)
et de l’école doclorale EDMSTII

Analyse et Simulation des Mouve-
ments Optimaux en Escalade

Thèse soutenue publiquement le 20 octobre 2014,
devant le jury composé de :

M. James L. CROWLEY
Professeur, Grenoble INP, Président
M. Franck MULTON
Professeur, Université de Rennes 2, Rapporteur
M. Laurent GRISONI
Professeur, Université de Lille 1, Rapporteur
M. Franck QUAINE
Maître de Conférences, Université Joseph Fourier, Examinateur
M. Thomas ROBERT
Chargé de Recherche, IFSTTAR, Examinateur

M. Lionel REVÉRET
Chargé de Recherche, Inria, Directeur de thèse





Résumé

À quel point les mouvements humains sont-ils optimaux ? Cette thèse aborde cette
question en se concentrant particulièrement sur les mouvements en escalade, étudiés
ici sous trois aspects complémentaires que sont la collecte expérimentale de séquences
de grimpe, l'analyse biomécanique de ces données, et la synthèse de gestes par op-
timisation temporelle. La marche fut l'objet de nombreux travaux, avec de bons
résultats notamment en animation [Mordatch 2013]. Nous nous intéressons ici spé-
cialement au problème original des mouvements d'escalade, dont la diversité et leur
caractère multicontact présentent une complexité intéressante pour l'évaluation des
caractéristiques du mouvement humain. L'hétérogénéité du répertoire gestuel ren-
contrée en escalade s'explique par plusieurs facteurs que sont l'évolution sur des
parois de formes variées, la multiplicité des niveaux d'expertise des pratiquants, et
des disciplines di�érentes au sein même de l'activité, à savoir le bloc, la di�culté, ou
encore l'escalade de vitesse. Notre démarche d'exploration de ce sport se décompose
en trois étapes : la collecte de données par une capture de mouvements multicaméra
avec marqueurs, couplée à un ensemble de capteurs de force montés sur un mur de
bloc en laboratoire ; une analyse du geste par dynamique inverse, prenant exclu-
sivement des données cinématiques pour entrées, basée sur une minimisation des
couples internes pour résoudre l'ambiguïté du multicontact, intrinsèque à l'activité
d'escalade, validée par comparaison avec les mesures capteurs ; et en�n, l'utilisation
d'un critère d'e�cacité énergétique pour synthétiser la meilleure temporisation as-
sociée à une séquence de déplacements donnés. Les enregistrements expérimentaux
se sont fait à l'université McGill qui dispose d'un mur instrumenté de 6 capteurs de
forces, et d'un dispositif de capture de mouvements 24 caméras, nous ayant permis
de collecter des données sur une population de 9 sujets. L'analyse de ces données
constitue la deuxième partie de cette thèse. Le dé� abordé est de retrouver les forces
externes et les e�orts internes à partir uniquement des déplacements du grimpeur.
Nous supposons pour cela une répartition optimale des e�orts internes. Après anal-
yse, cette répartition s'avère être plutôt uniforme que proportionnelle aux capacités
musculaires des di�érentes articulations du corps. Finalement, dans une troisième et
dernière partie, nous nous intéressons à la temporisation des gestes en escalade, en
prenant en entrée la trajectoire du grimpeur, éventuellement issue de cinématique
inverse pour s'a�ranchir de la nécessité d'une capture par marqueurs et caméras
infra-rouges. En sortie, une temporisation idéale pour cette trajectoire est trouvée.
Cette temporisation s'avère réaliste, mais manque d'une modélisation des instants
d'hésitation et de prise de décision, ainsi que d'un modèle d'établissements de con-
tact, phénomène présentant un délai temporel non pris en compte pour l'instant.





Abstract

How optimal are human movements ? This thesis tackles this issue by focusing
especially on climbing movements, studied here under three complementary aspects
which are the experimental gathering of climbing sequences, the biomechanical anal-
ysis of these data, and the synthesis of gestures by timing optimization. Walking
has been largely studied, with good results in animation [Mordatch 2013]. We are
interested here especially in the original question of climbing motions, whose diver-
sity and multicontact aspect present an interesting complexity for the evaluation
of the human motion characteristics. The heterogeneity of climbing gestures can
be linked to several factors which are the variety of wall shapes, the multiplicity
of climber skill levels, and di�erent climbing categories, namely bouldering, route
climbing or speed climbing. Our exploratory approach of this sport consists in three
steps: the data collection by multicamera marker-based motion capture, combined
with a set of force sensors mounted on an in-laboratory bouldering wall; a ges-
ture analysis by inverse dynamics, taking only kinematic data as inputs, based on
the minimization of internal torques to resolve the multicontact ambiguity, intrinsic
to the climbing activity, validated by comparison with sensor measurements; and
�nally, the use of the energy e�ciency criterion for synthesizing the best timing as-
sociated with a given sequence of movements. Experimental recordings were made
at McGill University which has a climbing wall instrumented of 6 force sensors,
and a motion capture device of 24 cameras, which allowed us to collect data on a
population of nine subjects. The analysis of these data is the second part of this
thesis. The addressed challenge is to �nd the external forces and internal torques
from the climber's movements only. To this end we assume an optimal distribution
of internal torques. After analysis, the distribution turns out to be rather uniform
than proportional to the muscle capacity associated to each body joint. Finally, in a
third and last part, we focus on the timing of climbing gestures, taking as input the
path of the climber, possibly after inverse kinematics in order to overcome the need
for a capture with markers and infrared cameras. As output, an optimal timing for
this path is found. This timing is realistic, but lacks of a modelization for hesitation
and decision making instants, as well as a model for the contact establishment, with
the associated temporal delay currently not taken into account.
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1.1 Context and Motivation

1.1.1 What is climbing

Climbing consists in moving on a given wall. The wall contains various protrusions
called the holds. The given path to follow is called the route. Each route has
its own di�culty which depends on the gestures involved by the holds, which can
be more or less energetic or complex, according to the slope of the wall, the size
and the shape of the holds, their spacing, and their respective positioning. Each
climber has his own muscular limits, gesture knowledge and preferences, making
the perception of the di�culty of a route relative to each climber. Nevertheless,
a common scale of di�culty for climbing routes can be established by averaging
the individual perception of a population of climbers. For a given route, for a
given climber, the question of �nding the sequence of movements, or moves, that
will enable the climber to reach the last hold is called a climbing problem. Each
climbing problem has several solutions that are more or less athletic, or require
more or less suppleness. If the climber is climbing at his maximum level, then he
has only one solution for sending1 the route. An example of such a situation is

1sending: solving a climbing problem
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Figure 1.1: Adam Ondra, world best climber, in the crux of Change, 9b+, world

hardest route. The only sequence of moves that works for this climber is ruled by the

environment shape and the laws of physics. Images are used with the kind permission

of their author Petr Pavlí£ek.
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shown �gure 1.1. One way to reach this solution is to tune the sequence of moves
to make them as e�cient as possible for the given problem, in order to have enough
energy for the whole ascent.

1.1.2 Bene�ts and needs

Climbing is a sport and has therefore all the bene�ts mentioned for instance by the
Secretary-General of the United Nations (U.N.), Ban Ki-moon: �Sport is increasingly
recognized as an important tool in helping the United Nations achieve its objectives,
in particular the Millennium Development Goals. By including sport in development
and peace programmes in a more systematic way, the United Nations can make full
use of this cost-e�cient tool to help us create a better world.� Via the U.N. O�ce on
Sport for Development and Peace (UNOSDP), the United Nations promote sport
as a powerful vehicle for positive social change and a means to promote education,
health, development and peace. According to the Sport for Development and Peace
International Working Group (SDP IWG), sport is seen to have the most bene�ts
in:

• Individual development

• Health promotion and disease prevention

• Promotion of gender equality

• Social integration and the development of social capital

• Peace building and con�ict prevention/resolution

• Post-disaster/trauma relief and normalisation of life

• Economic development

• Communication and social mobilisation

As a sport, climbing o�ers the advantage of maintaining the physical and mental
well-being. It also enhances the personality of an individual, is a good source of
entertainment and o�ers health bene�ts such as lowering the risks of diabetes and
heart diseases.

There are vertical locomotion needs present within the professional markets.
Example areas include rope access and con�ned spaces, tree care, energy and net-
work, framing and roo�ng, and vertical rescue. Training is needed in these areas,
and this thesis is also aimed to provide a visual support for professional training to
understand the forces involved while operating in various vertical environments.

1.1.3 Computer science and climbing

By including a biomechanical analysis, a climbing simulation environment could be
used for professional training in work-at-height and rescue activities, especially to
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prevent work injuries related to positioning. Indeed there exist currently no analysis
nor visualization tools to �nd and explain the best positioning for moving vertically.
Visualizing e�orts needed to perform a given motion would help to explain di�culties
encountered when climbing, and would improve the understanding of this sport.
Such a tool could be used as teaching support, and could help in the prevention of
injuries, which occur too frequently in this sport.

A climbing video game could be used to prepare climbing sessions. To that end,
a robust physical analysis of climbing motion is needed, as the one proposed in this
thesis. A focus is made on the gesture optimality, such that performance improve-
ments can be targeted. The optimality aspect of sport climbing is usually tackled
by athletes on a feeling level, and only a few books in sport science explain climbing
gestures on an e�ciency point of view [Hague 2006]. The optimal gesture issue
is currently receiving high interest in both computer graphics and robotics. This
thesis takes advantage of this ideal opportunity to bring computer science technolo-
gies into sport science in order to bring a computational support for performance
improvements.

The motion generation issue is shared by climbers and by graphics artists. In
both of these domains, the question of �nding the human movement sequence in
response to a given environment and task can be met. We propose in this thesis a
solution based on energy minimization in the speci�c case of a vertical environment,
which provide a way to automate motion generation. In the continuity of this thesis,
the converse problem could also be tackled: given an available energy level, what
environment can be climbed. Answering this question of computer assistance in
the design of climbing routes would help to adapt them to a wider public, such
as children and people with physical disabilities, for whom routes are not easy to
design.

1.2 Positioning and targeted issues

1.2.1 Physical simulation of human motion

Physically based character animation is an active domain in computer graphics.
The challenge is to produce natural motions of di�erent activities that have the
attributes and subtleties of real human motion. Hence, data driven methods are
popular approaches to generate natural motions, and feedback controllers have been
designed for successful balance during stepping [Yin 2007] and standing motions
[Macchietto 2009]. In the absence of motion capture, characters can still be animated
by other means, and some have proposed to control animation using low frequency
vibration modes of a character's mechanical model [Kry 2009]. Optimization is
another method widely used for generating plausible motion of animated characters
by minimizing energy and other objectives [Nunes 2012]. Dealing with complex
contact changes during optimization is a major challenge, which can be addressed by
breaking a motion into phases with simpler goals [Al Borno 2012], and with the use of
continuous auxiliary variables to help convergence [Mordatch 2012]. Optimization-
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based methods aim to produce plausible motion while focusing on only a small set of
important features [de Lasa 2010]. With minimal tuning, dexterous manipulation
and grasping can be animated from a single input pose [Liu 2009]. Constrained
optimization has also been used to design controllers through higher-level objectives,
for instance, contact constraints to generate a climbing controller [Jain 2009]. Mid-
level control structures are also useful in repetitive motions, such as certain grasping
and manipulation tasks [Andrews 2013]. Motion capture and force sensing was used
for capturing and resynthesizing grasping motions [Kry 2006]. [Aladdin 2012] started
the work on data driven climbing by focusing on optimization of static poses using
captured force and motion, and we are extending this work for dynamic motions.
Only few static poses can be simulated. In this thesis, entire climbing motions are
generated smoothly.

1.2.2 Challenge for a biomechanical model

In standing bipeds, as in quadrupeds, the displacement of a body segment is accom-
panied by muscular activity and mechanical changes involving other segments, which
contribute to the control of body balance. In rock climbing, the understanding of
how these forces are shared among the holds requires the solution of an under con-
strained problem, and this represents a real challenge in biomechanics [Delp 2007].
Previous results obtained with restricted simulated rock climbing movements have
shown that the supporting forces are controlled di�erently in the vertical and hori-
zontal directions [Quaine 1999]. During a single limb release without any dynamic
requirements, both vertical and horizontal forces increase on the side contralateral
to the moving limb, whereas only horizontal forces decreased on the ipsilateral hold.
This speci�c force sharing has been presented as the most appropriate motor strat-
egy to ensure body balance with minimum energy expenditure [Noé 2001]. One
aspect of this thesis is to extend these studies to more realistic simulations of the
whole body during the action of vertical locomotion. This has required the devel-
opment of new biomechanical approaches that combine whole body modeling and
optimization techniques to solve the support redundancy.

The numerous �nger degrees of freedom and hand muscles allow the hand to
adapt to the hold shape, and thus to perform a large number of gripping techniques
[Schweizer 2001]. Hence, depending on how handles are manipulated, supporting
forces are transmitted di�erently in the body. The capacity to grasp holds is the
prime factor for increasing the quality of the whole body balance, and the e�-
ciency and safety during rock climbing. To date, hand biomechanical analysis in
rock climbing has focused only on injuries with simulated hold requirements or on
cadaverous hands [Schö� 2007]. No studies have been conducted during an actual
rock climbing movement. From laboratory tasks with the hand �at on a table and
�ngers placed in adapted force devices, it is well documented that the forces exerted
by the �ngers are not di�erent between the �slope� and the �crimp� grip techniques,
whereas the addition of the thumb in the �crimp� grip allows for an increase of
20% in the supporting force [Quaine 2011]. However, nothing is known about the
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hand biomechanical behaviour during actual climbing. The large variation of size
and accuracy, from hand to whole body, is an important scienti�c and experimental
challenge.

1.2.3 Physically-based motion analysis from video

From monocular view to multiple camera systems, numerous works have dealt with
human motion tracking. Moeslund and Granum have provided a good survey on this
topic [Moeslund 2001]. We recently proposed an innovative method using multiple
cameras [Duveau 2012]. Our approach is based on the learning of a set of poses.
It has shown to reach state of the art accuracy on the commonly accepted evalua-
tion database HumaneEva in the computer vision community. Being based on the
learning of a set of poses, it will be necessary to adapt to an optimal set of poses for
climbing. The other set of related works is the usage of physics-based modeling for
information retrieval from video. Salzmann and Urtasun showed the bene�t of us-
ing physically-based model for the video tracking of simple objects [Salzmann 2011].
However, their framework is not adapted for our goal as we require the extraction
of complex motion of the whole body as well as contact forces. Brubaker et al.
presented a method to extract parameters of a physical model from optical data
[Brubaker 2009]. The drawback of this method is that it uses a penalty-based con-
tact method which is an oversimpli�cation of the contact physics. In this thesis, we
used a constrained-based method, and its accuracy has been proven by comparison
of the estimated contact forces with contacts measured at the climbing wall from
the animation lab in McGill University, Montreal. Similarly to [Vondrak 2012a], we
would need to couple these results using a physics-based simulation with our optical
motion tracking works.

1.3 Addressed Climbing Speci�cities

1.3.1 Holds and their quality

Solving a climbing problem means �nding the sequence of movements to climb a
given set of holds. The shape of the holds in�uences drastically the motion performed
by the climber to solve the proposed climbing problem. The �gure 1.2 illustrates
this concept. The di�erence between a good and a bad hold lies in the number of
muscles needed to take this hold, along with the amount of strength these muscles
must generate. For instance, if the hold is good enough to allow the hand palm to
be in contact with the hold and thus to generate more friction forces, the muscles
activating the �ngers tips will be relieved, and conversely, if only the �nger tips are
in contact, the climber will make stronger demands on the �nger muscles to use this
contact. Therefore, the climber avoids using holds that require more grip strength
than others, and consequently the observed body motions are in�uenced by the type
of hold available for the climb.

A similar phenomenon can be obtained when trying to walk or to run on toe
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tips, without heel contact. Much more energy is needed to transfer the whole body
weight through the toes until their tips if the heels do not touch the ground, than
if this transfer is stopped at the heels when they are in contact with the ground,
involving that the toes bear almost no weight. If the walker or the runner had to
go as far as possible, and had the choice, he or she would certainly choose to use
his or her heels, and this choice would a�ect the observed motion, similarly to the
previous explanation.

To sum up, to be able to climb as high as possible, climbers try to avoid using
holds requiring a powerful grip. In other words, climbing motions are adapted to
the shape of the holds available for the ascent.

1.3.2 The observed motion factors

Climbing motions are the result of several factors that are speci�c to this activity.
To understand these factors, we will explain in more details the process of climbing.
We then list the motion factors we have identi�ed. In this subsection we explain
the choices we have made for recording in and out-of-laboratory climbing motions,
on a bouldering wall and on a free climbing route.

Climbing disciplines We distinguish three main climbing disciplines: boulder-
ing, top-rope climbing and lead climbing. The �rst one consists in climbing with
no harness a wall about three meters high. The two others correspond to climbing
with a rope, and are gathered under the term free climbing. Free climbing is the
opposite of aid climbing. Aid climbing is a special climbing discipline older than
the free climbing where any arti�cial aid, such as ladders or hooks, can be used to
progress on the wall. All these disciplines do not take into account the time needed
to climb the route or the boulder, but only the di�culty of the climbing problem.
On the contrary, speed climbing is the discipline focussing on the ascent time. In the
following, we de�ne in more details the terms top-rope climbing and lead climbing,
and explain why we have chosen to collect top-rope climbing data instead of lead
climbing data.

Top-rope climbing Top-rope climbing is a way to climb routes taller than boul-
dering problems, which makes the fall dangerous without safety equipments. The
process is to pass the rope through a karabiner �xed at the top of the wall. The
climber ropes up at one extremity of the rope, and the belayer passes the other
extremity of the rope through a belay device. The rope is maintained tight enough
by the belayer, such that any hypothetical climber's fall can be safely stopped before
reaching the ground.

Lead climbing Lead climbing is similar to top-rope climbing, with the key dif-
ference that the rope is not passed through a karabiner at the route top, but must
be clipped to the wall by quickdraws every two or three meters during the climber's
ascent. The �gure 1.3 illustrates this clipping process. If the climber releases the
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Figure 1.3: The clipping process, occurring while lead climbing, disrupts the conti-

nuity of climbing movements.

holds, then a free fall phase starts, stopped by the belayer when the rope �nally
tightens, thanks to the last quickdraw that the lead climber has set. This potential
free fall phase makes the lead climbing more di�cult to study than top-rope climb-
ing, because having in mind this possibility, the climber can make safer movements
than he or she would ideally do to climb the route. This psychological stress and
anxiety is mentioned in [Sheel 2004] to be an important component of rock climbing.
The second disruptive factor of lead climbing is the quickdraw settings, which makes
the climber switching from the climbing task to a securing task. To remove these
two factors that could disrupt the observed motion, we choose to study top-rope
climbing.

Chalk usage Another factor that in�uences climbing motions is the use of powder
chalk to remove hand perspiration. Indeed, during the climbing e�ort, hands have
a tendency to perspire, which reduces the friction coe�cient between the hands and
the holds, making the climb harder. This issue is often overcome by bringing a chalk
bag for the climb, attached on the back of the harness. When hands perspire, the
climber moves them one after another inside this bag to dry them with the chalk. In
order to avoid those o� track motions, we asked the climber not to use chalk. Note
that liquid chalk could also have been used here, but the holds have been chosen
easy enough to avoid chalk at all.

On-sight and red-point The next identi�ed factor is the knowledge of the route
before the climb attempt. When the climber makes his �rst attempt in the ascent
of a given route, we say that he is climbing on-sight. If the climber does not success
to climb the route on-sight, he or she usually tries to improve the movements in
the following attempts in order to make them more e�cient, to be able to climb
the route more easily. Finally, when the climber successfully climb the route after
several attempts, the result is call a red-point. Redpoints have been brought in the
mid-1970s by Kurt Albert, a mathematics and physics teacher from the Frankenjura,
who painted red points at the bottom of the aid climbing routes he managed to free
climb. Usually on-sight and redpoint attempts implicitly assume that the climber
is on lead. Because similar phenomenons can be observed with the �rst and the
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next top-rope attempts, we will also use the terms on-sight and redpoint for top-
rope climbing. The on-sight motion factor has unfortunately been identi�ed after
the establishment of the capture protocol. Therefore, we mainly observed on-sight
climbing runs, which contains hesitation phases and motions that could have been
more e�cient after several tries.

Cameras The last factor we identi�ed is the presence of cameras, which can in-
crease the stress of the climber. Under the cameras, the observed motions are not
as natural as motions of free training sessions. A common solution used to that
problem in sport training is to bring the camera at each training sessions such that
the climber can be used to it. But this solution would have required more time than
the time we had for the recordings.

1.3.3 Energetics

In this subsection, the energetic model used in sport science for high-level climber
training is compared with the model used in recent animation works, which has been
borrowed from the biomechanics literature, and with the model used in this thesis.

Energetics in sport science Three exercise energy systems exist in climbing
[Guyon 2004]. The �rst one, the alactic anaerobic energy system, is involved in
short and intense e�orts, typically less than 10s. The second one, the lactic anaerobic
energy system, is involved in medium e�orts, with a duration between 15s and 3min.
The last one, the aerobic energy system, is involved in lower intensity e�ort which
can last up to several hours. These three energy systems operate simultaneously,
in di�erent proportions according to the nature of the climb, and according to the
level of the climber. [de Moraes Bertuzzi 2007] showed that elite climbers tend to
use more their aerobic energy system and less their alactic anaerobic energy system
than recreational climbers. According to [Guidi 1999], the three exercise energetic
systems, coming from athletics studies performed on runners, are not su�cient to
fully explain climbing performance, because a climbing e�ort is di�erent from a
running e�ort. The e�ort encounter in climbing is an intermittent e�ort, consisting
of 70% of observation phases, and 30% of e�ective motion [Dupuy 1989].

In computer graphics and biomechanics The metabolic energy expenditure
used in [Mordatch 2013] to simulate a character walking and running, �rst presented
in [Anderson 1999], relates the force generated by a muscle with the corresponding
needed thermal and mechanical energy. This model applies on Hill-type musculo-
tendon units. It consists of four terms which are the muscle activation heat rate,
the muscle maintenance heat rate, the muscle shortening heat rate, and the positive
mechanical work rate.

Our energetic model and model comparisons Our energetic model is ex-
pressed at joint level, and the energetic cost consists in squared joint torques inte-
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grated over time. As this model does not depend on joint positions nor joint ve-
locities, it is comparable to the activation and maintenance heat rate of the model
describe in the previous paragraph. These three energetic models, used in sport
science, in graphics and robotics and ours, are di�erent and complementary, as they
operate at di�erent observation levels. Indeed, human movements observed on an
energetics point of view, can be seen as a chain of transformations, starting with the
exercise energy systems (the �rst presented model) to convert food energy into mus-
cular energy, continuing with the metabolic energy expenditure model to convert
muscular energy into muscular forces, from which the joint torques can be deter-
mined, and �nally involving the joint level model to convert joint torques into body
motion. In this chain, we chose to be as close as possible to the body motion in
order to reduce the model complexity, and thus we worked at joint level.
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2.1 Related Work

Several works have already studied rock climbing. Most of them aimed at exploring
the physiological components of the performance in rock climbing. We review here
those studies, and mention the device they used to collect climbing data.

Magiera et al. [Magiera 2013] date the �rst research interests in rock climbing in
the late 1970s. A decade and a half later, Rougier and Blanchi [Rougier 1992] used
a vertical wall with four load cells measuring 1-D forces, to measure the maximal
voluntary contraction (MVC) a climber can generate. The MVC is de�ned as the
maximal force that can be generated voluntarily on a given agonist muscle group.
In [Rougier 1992], the MVC was approximated by using force measurements at the
contact points between the climber and the wall. They conclude that the MVC is
positively correlated with the expertise level of the climber, with a higher probability
when taking the MVC normalized by the climber's weight. Three other studies
[Testa 1999, Quaine 1999, Testa 2003] used the same setup, but with 3-D force
sensors, to assess the anticipatory postural adjustement in response to the task of
reaching a new hold from a quadrupedal posture. The last of those works also shows
that the forces involved in the posture adjustment vary with the age of the climber.

The large space needed to practice rock climbing is an issue for in-laboratory
studies of this activity. A workaround has been found by Booth et al. [Booth 1999],
who used a vertical climbing treadmill to measure the physiological response to a
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climbing e�ort. The physiology of climbing has also interested Mermier et al. [Mer-
mier 2000], who showed the importance of training for rock climbing performance,
and claims that the climbing excellence is not directly related to anthropometric
characteristics. This claim has been discussed by Watts [Watts 2004] by gathering
12 existing works on rock climbing physiology to deduct the anthropometric and
physiological performance factors, including that best climbers tend to be small with
a low body fat level. The same year, the work by Sheel [Sheel 2004] has showed that
the aerobic body capacity is a performance factor. Another interesting conclusion
of Sheel is the impact of a psychological factor on the physiological response to rock
climbing e�orts. Finally, the unique work of de Geuss et al. [de Geus 2006] shows
that several routes of the same di�culty can have di�erent physiological impacts
on the climber, depending on the style of the route. The technological innovation
associated to this work is a continuous measurement of physiological data while
climbing, enabled by portable devices.

An indoor climbing wall that can rotate has been used in a surgical context
by Schoe� et al. [Schoe� 2004]. In this work, they mesured the pressure in the
forearm muscles during climbing e�ort with a slit catherer. The aim was to evaluate
the dangerousness of that sport on the forearm muscles. Fortunately, climbing is
safe for the forearm muscles.

Sibella et al. [Sibella 2007] studied indoor climbing with a mocap system consist-
ing of 6 infared cameras and 12 markers. Their conclusions, based on the assessment
of the center of mass (CoM) motions, are that expert climbers minimize power dur-
ing their ascent. A couple of works also studied climbing movements by capturing
them with accelerometers [Schmid 2007, Pansiot 2008, Ladha 2013]. Accelerometers
have the advantage of being lighter to set up than an infrared-based capture sys-
tem, and can thus be used in a wider range of environments. The drawback of such
systems is the absence of absolute reference frame. Thus they are more sensitive to
drift.

3D force sensors mounted on climbing holds have been used in several works
[Fuss 2006, Fuss 2008a, Fuss 2008b]. The �rst of these works interestingly concluded
that powder chalk is far better than liquid chalk or a dry hand on clean surfaces,
and that on messy surfaces, a dry hand is better than a powder-chalked hand.
The two last studies are about the measure of contact forces applied on a hold
during a competition. With 90% con�dence they concluded that the competitor
ranks are correlated to the Hausdor� dimension of the contact force distribution,
this dimension summarizing the time of contact, that must be short, the amplitude
of the contact force, that must be small, the good use of contact frictions, and
the smoothness of the contact force through time. Lechner et al. [Lechner 2013]
con�rmed that result, with the breakthrough to have wireless 3D force sensors.

Finally, one of the most advanced works on the performance factors in rock
climbing has been done by Magiera et al. [Magiera 2013]. In this work a corre-
lation is established between the climber's peformance capacity, evaluated by the
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Works Climbers Force Sensors Physio MoCap
[Booth 1999] 7 none yes no
[Mermier 2000] 44 none yes no
[Schoe� 2004] 10 none yes no
[Watts 2004] 0 (review) none yes no
[Sheel 2004] 0 (review) none yes no
[de Geus 2006] 15 none yes no
[Magiera 2013] 30 none yes no
[Schmid 2007] 3 none no 10 accelerometers
[Pansiot 2008] 4 none no 1 accelerometer
[Ladha 2013] 53 none no 1 accelerometer
[Rougier 1992] 17 4 sensors (1D) no no
[Testa 1999] 5 4 sensors (3D) no no
[Quaine 1999] 6 4 sensors (3D) no no
[Testa 2003] 32 4 sensors (3D) no no

[Sibella 2007] 12 none no
6 cameras
12 markers

[Fuss 2006]
1 sensor type

[Fuss 2008a] 60
per session (4D)

no no
[Fuss 2008b]

[Lechner 2013] 21
1 wireless

no no
sensor (3D)

Our Work 9 6 sensors (6D) no
24 cameras
36 markers

Table 2.1: Characterization of the related works and our positionning with respect

to them. The column Physio refers to some physiological quantity measurements,

such as oxygen uptake, blood pressure, or heart rate for instance. The accelerome-

ters measure the acceleration in 3D. Camera and marker devices involve infra-red

cameras with passive markers.

max on sight1, and the max red point2, with physical, technical and mental charac-
teristics. Those characteristics include the �nger strength, mental endurance (eval-
uated with psychological tests), climbing technique, the reaction time, the ape index
and the oxygen uptake at anaerobic threshold.

The various features of the related works on climbing data capture presented
above are summarized in the table 2.1. Our positionning with respect to the previous
works is to capture both full 3D body motions thanks to 24 infared cameras and 36
markers, that we synchronize with six 6D force sensors mounted between the holds

1max on sight: hardest climb succeded on the �rst try, without any information on the ascent

before the attempt. The di�culty is quanti�ed with rating systems presented in table 2.2.
2max red point: hardest climb succeded after several tries, with eventually information on the

ascent given by someone else.
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and the wall, allowing us to have all the external contacts involved in the recorded
climbing runs. The second capture experiment presented in the following has not
such an excessive breakthrough, but is presented here as a simple and thus highly
reproducible data set.

2.2 Bouldering Data Capture

Bouldering is a type of climbing where no harness is needed due to the low height of
the wall. Usually the wall is about 3 meters high, which allows the climber to land
safely on pads in case of fall. The small size of the wall needed and the fact that
neither rope nor harness are needed makes this discipline a good technical choice
for the in-laboratory study of climbing motions.

2.2.1 Hardware and softwares, synchronization

This sub-section describes the devices used to collect the bouldering data. Those
data consist of both the 3D motion of the climber coupled with 6D measurements
of the external contact forces and torques used along the motion.

Wall structure

The climbing wall structure on which the hold sensors are mounted (�gure 2.1) has
been build by an expert carpenter. The climbing surface is a square of 2.42 meters
by 2.42 meters.

The wall has a negative slope of about four degrees. The slope has been com-
puted from the side lengths of the external triangles of the structure. Given the
following triangle

with known side lengths a, b and c, such that a+ b > c, a+ c > b and b+ c > a, i.e.
the triangle is not �at, the relations to convert the side lengths into their respective
opposite angles α, β and γ are given by

α = arccos

(
b2 + c2 − a2

2 b c

)
(2.1)

β = arccos

(
a2 + c2 − b2

2 a c

)
(2.2)

γ = π − α− β , (2.3)

which is an application of the law of cosines. The external triangle side lengths have
been measured between the three bolts that maintain this part of the wall structure.
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Figure 2.1: The instrumented bouldering wall used for the data capture. The holds

are mounted on 6D force sensors. On each side of the wall one can see the tripods

on which four of the 24 OtpiTrack cameras are mounted.
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Figure 2.2: The wall dimensions. All the lengths are in centimeters.

These lengths are reported on the right side of the �gure 2.2. With equations 2.1, 2.2
and 2.3, we computed the angles reported on the left side of the �gure. Assuming
that the bolts are centered on the central axis of the wood pieces they belong to,
and that the lower wood beam of each triangle is horizontal, we conclude that the
wall has a slope of −4◦.

The central climbing surface consists of a torsion box forming a chessboard of 6
by 6 cells. The cells of 36 cm high and 35 cm wide can be �lled with square wooden
plank on which the holds and sensors are attached. Each of those boards is linked
to the main structure by 8 bolts with butter�y nuts. This system of binding implies
that two people are needed to change the con�guration of the boards, one person
in front of the wall and one person behind the wall simultaneously. Moreover, to
change the 6 boards we have, 48 bolds need to be moved, which takes around one
hour, if we count the alignement issues. Therefore, only two board con�gurations
have been used for our data collection. The �rst con�guration can be seen in the
�gure 2.1, the second con�guration is shown in the �gure 2.4.

Along with the wall structure, a set of 34 arti�cial Metolius climbing holds of
diverse shapes is available. The holds are attached to the wooden hold support by
a central screw, which does not collide with the screws that attach the hold support
to the sensor. Indeed those last screws forms a circle with an empty interior.

Force sensors

The wall is equiped with six 6D force and torque sensors, from A-Tech Instruments
Ltd. They are mounted between two wooden planks, as shown on the �gure 2.3.

The size of the back sensor support and the size of the front hold support are the
same for all the hold-sensor structures. The screw hole positions on those supports
are also the same. By this way, the sensors can be placed in any wall cell. They can
also be exchanged each other, while keeping the same location for the hold center
location. We will further use this invariant for the calibration.

The sensor supports are rigidly attached to the wall framework. The pattern
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hold

hold support

sensor support

Figure 2.3: A hold mounted on one of the six force and torque sensors (left), and

its corresponding diagram (right).

of the bolts allow the support to be rotated of any number of quarter turns. The
sensor position on its support being ex-centered, the rotations are used to place the
sensor in any cell corner. The hold supports are designed such that they can not
touch the cell borders when the sensors are in place. The in-between space is about
three millimeters.

The sensors are connected to ampli�er boards, namely two AMTI MSA-6 Mini-
Amp's, which allow us to set up the sensitivity of the measurements. As there
are four sensor inputs per board, two boards are needed to connect the six sen-
sors. Those boards are themselves connected to a computer via an Analog Input
board, by CONTEC Co., Ltd. The data logger software is C-LOGGER, by the
same company. This whole device can capture data at 1000 fps, but to simplify
the synchronization process, we captured data at the same frequency as the motion
capture device, which is 100 fps.

Mocap system

Motion capture, or mocap, is a standard way to capture 3D motions. The principle
is that a set of several cameras emits and receives infrared light that re�ects on
small spherical markers, placed on the studied subject. After having recovered the
3D marker positions by triangulation, a skeletal model of the subject can be �tted on
the marker trajectories. We detail in this section, the characteristics of the mocap
device we used, the marker placements, the skeletal model, some calibration issues
and �nally some camera positioning issues.

An OptiTrack motion capture device with twenty-four V100:R2 cameras has
been used to capture the climber's motions. The camera resolution is 640 × 480,
and they capture data at 100 fps. Two of those 24 cameras can record low-quality
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Figure 2.4: The view from one of the two OptiTrack 2D video greyscale cameras.

2D grayscale videos. An example of those videos is shown in the �gure 2.4.
Several marker sets have been tested for the mocap, following the �nite number

choices provided by the OptiTrack Arena software to build the skeletal model to
be captured. The marker con�guration retained is exposed in the �gure 2.5. It
consists of 36 markers, associated with a skeleton of 18 rigid segments, and thus 17
joints. The skeleton model is presented in the �gure 2.6. The grey ellipsoids are a
visualization of the inertia matrices. Given the mass mb of a rigid body, and the
corresponding inertia matrix Ib in body frame, the ellipsoid semiaxes rx, ry and rz
are computed by inversing the system

Ib =
mb

5

 r2y + r2z 0 0

0 r2x + r2z 0

0 0 r2x + r2y

 . (2.4)

The charater mass distribution and inertial properties have been taken from the
OpenSim models [Delp 2007]. Those quantities are scale for each climber according
to its total mass.

The spine model includes three joints, located at the top of the spine, at the
bottom of the neck, and at the lumbar vertebrae. The software allows a post-
processing of the marker trajectories, in order to correct the automatic marker
labeling, needed for the �tting of the skeleton on the marker trajectories. The full
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checking of this labeling and its corrections for all the markers for a sequence of
30 seconds takes around 1 hour, when the correction is possible. To avoid a major
increase of this post-processing time, neither the foot ball motions nor the �nger
motions have been captured.

The calibration of the mocap cameras is done with a wand on which three
markers are rigidly attached. The TrackingTools software guides the process. The
calibration process can take up to two hours due to the slow convergence of the
calibration algorithm. Sometimes, the wand sweeping had to be done several times
because of the non-convergence of the calibration optimization. We have empirically
noticed that the quality of the calibration is improved by moving the wand slower,
probably due to camera blur. The camera calibration process must be done each
time a camera is moved. As the tripod cameras that are in front of the capture
room door (see �gure 2.1) are moved after each capture day, the calibration process
has been done in the morning of each capture day.

Those tripod cameras on each side of the wall has been placed in order to see
the markers between the climber and the wall. Two other cameras on the same plan
have been placed 50 cm above the wall. But for some captured motions, those six
side cameras appeared not to be enough. From time to time, we observed the disap-
pearance of some markers, leading to an erroneous skeletal motion reconstruction,
as discussed further in 2.2.4.

Sensor and mocap synchronization

In order to perform a dynamical analysis of the captured motions, the force recording
devices must be synchronized with the mocap system. Two synchronizations must
be done, one per ampli�er board. The method chosen is to hit two hold supports,
connected to the two ampli�er boards, at the beginning of each recorded sequence.
This hitting is done by the climber, such that the hitting motion is recorded by the
mocap system. The hit instant is then visually located on the corresponding force
curves (in C-LOGGER), and on the hand marker trajectories (in Arena). With these
two instants we can match the force measurement with the motion measurement.

This visual processing is ploted in the �gure 2.7. Its precision is estimated about
10 ms, which is the precision of the motion (see �gure 2.7b). With respect to this
precision we can neglect the precision lost in the downsizing of the sensor sampling
rate from 1000 fps to 100 fps. Therefore, we used this downsizing to reduce the
number of post-processing steps.

Another solution for data synchronization would have been a hardware synchro-
nization. This solution has not been retained, due to the heterogeneous set of devices
used in the data capture.

Having presented the hardware and softwares used to capture the motions needed
for our study, and how their temporal synchronization is done, we will now move
to some more theoretical concepts needed to spatially calibrate the mocap system
with the force sensors.



22 Chapter 2. Climbing Data Capture

(a) Frontside view of the marker set.

(b) Backside view of the marker set.

Figure 2.5: The location of the 36 markers used for the motion capture. The four

markers on each side of the ball of the feet are mounted on a hard plastic base,

attached to the climbing shoes via double face tape. The other markers are attached

to the motion capture suit with a hard Velcro base for the six hand markers and a

soft Velcro base for the other markers.
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Figure 2.6: The skeletal model used for the motion capture. The �tting of the

marker trajectories by inverse kinematics is done internally by OptiTrack. The Op-

tiTrack output does not include 3-D marker positions. All joints are ball joints.
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(b) Synchronization impact on the hand point of view, before synchronization.

Figure 2.7: The synchronization process. The impact is located with both (a) the

forces measured by the sensor, and (b) the motion of the hand.
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2.2.2 Frames, wrenches, and their manipulation

Frames, wrenches and the mathematical operators for their manipulate, namely
translations, rotations, and adjoints, constitute the core of this thesis. Complete
mathematical de�nitions exist in [Murray 1994], as well as e�cient implementations
(e.g. [Guennebaud 2010, Liu 2013]). Consequently, we focus here on providing the
intuition associated with those notions.

Frames and transformations

A frame, or coordinate frame, is de�ned by its origin and orientation. The origin
is a 3D point, and the orientation is a basis made of 3 orthonormal vectors. Those
vectors can be gathered to form the columns of a rotation matrix. Origin and
orientation are themselves de�ned in a frame. All frames are thus de�ned with
respect ot each others. We call the frame with origin (0, 0, 0) and with orientation
the unit basis vectors the world frame. By default all frames are de�ned with respect
to a world frame. Coordinates expressed in that frame are called world coordinates,
global coordinates or maximal coordinates. All other frames are called local frames,
and coordinates expressed in those frames are called local coordinates.

The rotation is to the orientation, what the translation is to the position. To
rotate an object, one needs an axis along which the rotation is performed, and an
angle to de�ne the amplitude of the rotation. In practice, those two quantities can
be stored in one 3D vector by multiplying the axis (a normalized vector) by the an-
gle. The advantage of this representation is that each angle-axis represents a unique
rotation, whereas rotation matrices or quaternions can represent an in�nite number
of rotations. Indeed, the di�erence between a rotation of two turns and no rotation,
i.e. a rotation of 0◦, can be made with angle-axes, but with quaternions, those two
rotations are exactly the same. Moreover with the angle-axis representation, angu-
lar velocities are directly de�ned by rotations (represented by 3D angle-axes, and
not by 3-by-3 matrices) divided by the time interval between the original and �nal
orientations. The three components of the vector de�ning such axis-angle represen-
tation are called the canonical coordinates, or the exponential map coordinates of a
rotation.

Given two orientations, i.e. two rotation matrices, only one rotation is needed
to transform the �rst orientation into the second one (Euler's Theorem). We will
illustrate this important theorem by showing how such a rotation can be constructed
geometrically. A mathematical proof of this theorem can be found in [Murray 1994].
Let's considere the rotation of a vector from one position into another, as the two
black vectors of the �gure 2.8. We want to �nd the angle-axis corresponding to this
rotation. As Rotations preserve angles, the rotation axis must forms equal angles
with the initial and �nal vectors. Thus all possible rotations belongs to the median
plan of these two vectors. Let's move to the rotation of frames, as illustrated by
�gure 2.9. By applying the previous reasonning, the rotation axis is found at the
intersection of the three median plans of the pairs of basis vector. The angle is then



26 Chapter 2. Climbing Data Capture

Intuitive Localization of Angle-Axes (vectors)

start position

angle-axes

trajectories

end position

Figure 2.8: Seven possible rotations for transforming a vector from a start position

(dotted black vector) to a end position (dashed black vector). All the angle-axes belong

to the median plan of those two vector positions.

obtained by projecting the bases in the plan orthogonal to the axis. This process
provides an intuitive localization of the angle-axis rotating two given frames.

A transformation, or a frame transformation, is an opperator that converts co-
ordinates from one frame into another frame. From the Euler's theorem, any frame
transformation can be expressed with one translation and one rotation.

We have �nally presented the spatial notions we will use to describe the motion
of any rigid body, namely frames and transformations. We will now present the
notions needed to describe the dynamical interaction between objects.

Forces and torques

The notion of force can be felt by holding a mass object in the hand, and observing
the action of this object on the palm of the hand. A force is also what is exerted on
shoulders when carying a heavy backpack. It is also what the �oor applies on the
feet when walking. A force has a point of application, a direction and a magnitude,
so we represent forces by vectors.

The torque is to the force, what the rotation is to the translation. There are as
much di�erences and similarities between the notion of torques and forces as there
are between rotations and translations. A torque is what a car wheel received to
turn. A torque is what is felt at the knees when doing squat down motions, or at
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start orientation

end orientation

median arcs

angle-axis

trajectories

Intuitive Localization of Angle-Axis (frames)

Figure 2.9: Angle-axis geometric construction for frame rotations. The axis (green)

is at the intersection of the median plans of the pair of basis vectors (red dotted arcs

intersection). The angle is found in the orthogonal plan to the green vector (middle

diagram).

the shoulders when carying heavy shopping bags. We represent torques by vectors.
Both torque vectors and rotation vectors (angle-axes) follows the same convention :
turning clockwise the vector goes forward, turning counterclockwise the vector goes
backward. The convention is illustrated by the angle-axes plotted in the �gure 2.8
with their associated trajectories.

Torques sum up at joints the muscle actuation. All the linear forces transmitted
by the muscles around a joint can be gathered into a single torque, which simpli�es
the reasonning. The similarity with rotations is obtained when considering the
translation of several points of a wheel, that can be more compactly expressed with
the wheel rotation. Joint torques are the coarser level for studying the human
motion actuation3. This level is therefore more convenient to manipulate than the
muscle actuation level.

Forces and torques are related by lever arms. This relation can be written by
the cross product

τ = p× f (2.5)

where f is the force producing the torque τ by the lever arm p. p is the vector from
the point of application of τ to the point of application of f . The direction of p
can be determining with the visual process proposed in the �gure 2.10. First, the
direction of τ is determined by thinking of how the arm would turn when applying
the force f (see �gure 2.10a). Second, the cross product direction is determined by
saying that we go from the left side argument of the cross product towards the right
side argument, when the two vectors start from the same point like two clock hands
(see �gure 2.10b). Finally, the relation between those two directions is established
(see �gure 2.10c).

3human motion actuation are the internal forces and torques involved in the human motion
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(a) τ direction (b) p direction (c) lever arm relation

Figure 2.10: Three visual steps to establish the lever arm torque-force relation.

Now that forces and torques have been presented, we can combine them to form
wrenches. Wrenches are transfered from frames to frames by adjoints.

Wrenches and adjoints

Wrenches and adjoints are respectively elements and operators evolving in R6. By
using real-life examples of wrenches, we aim to make this abstract mathematical
space more intuitive for physical applications.

A wrench is the combinaison of a force and a torque. To set the notations, let's
w ∈ R6 be a wrench. The force f and the torque τ associated to this wrench will
be arbitrarily written in the order

w =

[
f

τ

]
. (2.6)

f is the linear part or the linear components of the wrench. τ is the angular part.
τ is also called a moment. The di�erence between the terms torque and moment is
that a moment is the angular components of a wrench, whereas a torque is a wrench
with a null linear part. We will represent wrenches by the composition of straight
vectors for the linear part, and arc vectors for the angular part.

To illustrate the concept of wrench, let's consider we are trying to drive a screw
into a �at plank of wood using a manual screwdriver, without pre-drilling the hole.
Applying only a torque would lead to make the screw turning on itself, without
diving into the wood. On the contrary, applying only a force can only lead to
nailing the woodscrew into the wooden plank, and not driving it. In that case, the
quantity that our hand must apply to the screwdriver in order to obtain a clean
driving, is what we called a wrench.

Wrenches can be transfered from one point of application to other points of
application via rigid objects. This transfer a�ects the value of the wrench, but
not its global e�ect. In other words, wrenches are location dependent and wrench
transfer is conservative. To illustrate the notion of wrench transfer, we replace the
screwdriver of the previous example by an Allen key (see �gure 2.11). When placing
our hand on the longest side of the key, we change the point of application of the
wrench provided by our hand on the tool, as compared with the point of application
obtained with the screwdriver. But the wrench received by the woodscrew can be
identical as before if we change the wrench we generate at our hand location, and
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frame a

frame b

world frame

x

y

z

x
z

x

y

z

p

Longest side hand placement

Screwdriver style hand placement

Flat plank of wood
y

Figure 2.11: Wrench transfer illustration with an allen key. The wrenches wa (red)

and wb (blue) applied at two di�erent points of the Allen key (large dots), have the

same e�ect on the screw. For wb, a torque component on the x-axis local axis is

added to compensate for the torque resulting from the lever arm relation (see �gure

2.10c), when transfering wb from frame b to frame a.
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add some additional angular components. The new wrench is thus tranfered from
our hand to the screw head through the rigid Allen key. The intuition of the e�ect
of this transfer can be obtained by considering the two wrenches that we provide
when holding the two di�erent tools. The two provided wrenches are di�erent, but
result in the same e�ect on the screw head. The �rst wrench can thus be seen has
the result of the transfer of the second wrench to a new location, and vice versa.

De�nition The adjoint is the mathematical operator that transfers a wrench from
one frame into another frame. If the frames are noted a and b, then this transfer
can be written

wa = AdTab wb , (2.7)

where wa and wb are the transfered wrench observed at frames a and b respectively,
and AdTab is the adjoint matrix transfering the wrench from b to a. To build this
adjoint matrix, we �rst assume that the frames a and b have the same orientation.
In that con�guration, the new wrench is obtained be adding to the former wrench
the torque coming from the lever arm equation 2.5. We obtain

wa =

[
I 0

p× I

]
wb , (2.8)

with I the 3-by-3 identity matrix, 0 the 3-by-3 zero matrix, and p× the cross product

matrix. Noting p =
[
px py pz

]T
, this last matrix is de�ned by

p× =

 0 −pz py
pz 0 −px
−py px 0

 . (2.9)

The direction of p is ruled by the lever arm de�nition. By using the �gure 2.10, we
can �gure out that p is the vector from the origin of frame a towards the origine
of frame b. Finally when the orientations are varying from frames to frames, we
need consider the frame in which p is expressed. We will label it frame c. In order
to applied equation 2.8, wrenches must be express with frames having the same
orientation. We thus add on each side of the adjoint matrix of equation 2.8, the
rotation matrices from b to c and from c to a. The complete adjoint de�nition is
then

AdTab =

[
Rab 0

Rac p
× Rcb Rab

]
, (2.10)

where Rcb is the rotation from the frame b to the frame c, in which p is expressed,
Rac is the rotation from frame c to frame a, and

Rab = Rac Rcb

is the rotation from frame b to frame a.
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The transpose notation for the adjoint comes from the original adjoint de�nition,
which established, similarly to wrenches, that linear and angular velocities can be
transfered from a frame a to a frame b by the relation

vb = Adab va , (2.11)

with va and vb the 6D vector with the linear and angular velocities of a solid,
observed at frame a and frame b respectively.

Example Let's write the wrench transfer equation 2.7 for the Allen key example
(�gure 2.11). The rotation to change the world frame orientation into the frame a
orientation is a rotation of α = 30◦ around the y axis. This is also the rotation to
go from the local coordinates of frame a, to the world coordinates. Similarly, the
frame b orientation is a β = −60◦ rotation about the y-axis. These two rotations
will be noted

Ra =

 cα 0 sα
0 1 0

−sα 0 cα

 , Rb =

 cβ 0 sβ
0 1 0

−sβ 0 cβ

 , (2.12)

where cα, sα, cβ and sβ are respectively cos(α), sin(α), cos(β) and sin(β). We decide
to write the vector p in the frame a, such that it has only a component on the x-axis,
which gives

pa =

 pax
0

0

 . (2.13)

The wrenches wa and wb are also expressed in local frames to reduce their number
of components, thus

wa =



0

fay
0

0

τay
0


, wb =



0

f by
0

τ bx
τ by
0


. (2.14)

Let's now transfer wb to wa, corresponding to a wrench transfer from frame b to
frame a, and �nd the condition for τ bx to vanish. In the equation 2.10 for our case, p
is expressed in the frame a, so the frame c is the frame a : Rac = I and Rcb = Rab.
If γ = −90◦, cγ = cos(γ) and sγ = sin(γ), we have

Rab =

 cγ 0 sγ
0 1 0

−sγ 0 cγ

 =

 0 0 −1

0 1 0

1 0 0

 . (2.15)

Rab transforms local coordinates from frame b to frame a (the x-coordinate in b gives
the z-coordinate in a). Conversely when looking at the �gure 2.11, where all is drawn
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in world coordinates, Rab rotates the frame a into the frame b (counterclockwise
rotation of 90◦). Finally equation 2.7 in our example gives

0

fay
0

0

τay
0


=



0 0 −1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 −1

−pax 0 0 0 1 0

0 pax 0 1 0 0





0

f by
0

τ bx
τ by
0


. (2.16)

We obtain fay = f by from the second line of this system, τay = τ by from the line 5,
and from the last line, τ bx = −paxf by , which is the condition to have no torque on the
z-axis in the frame a.

2.2.3 Sensor frame calibration

Once frames, wrenches, and their associated manipulation quantities have been
de�ned, we can use them to calibrate the force sensors. The calibration aims to
determine a commun frame between the sensors and the mocap. This process has
been described in [Aladdin 2012]. For the completness of this manuscript, and
because we took part to some technical discussions, we summarize the geometric
part of this process here, and add some complements.

Process overview

The main idea of the calibration process is to apply forces at a known location with
no torques. In the �gure 2.14, this point is the point C. The applied forces are
measured by the sensor at point S with some torque components. Knowing the
wrenches at the sensor, the tool center of pressure C, and assuming that there is
no torque at point C, the point S is obtained with the wrench transfer equation.
This process is detailed in the following two sections. The section �Tool center of
pressure� will describe a tool equiped with motion capture markers (�gure 2.12),
which is rotated around its tip (the center of pressure) to �nd the tip coordinates by
solving a least square system. The section �Sensor center of measure� will detail how
to use the wrench transfer equation to retrieve the relative position of the sensor
center of measure and the tool center of pressure.

Tool center of pressure

A center of pressure is where the wrench has no angular component in the plan
tangential to its linear components. In the case of a ground contacts for instance,
the center of pressure is uniquely de�ned as the intersection of the contact plan with
the line where the angular part of the wrench applied by the foot onto the ground has
only a component in the direction of the linear part of this wrench (see �gure 2.13).
For wrenches with no linear components, the center of pressure is thus not de�ned.
As the tool tip consists of a sharp nail, we can consider that the apply wrenches
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Figure 2.12: The calibration tool is equiped with mocap markers to de�ne the tool

frame.

Lower Leg

Foot

Ground

CoP

Equivalent 

Wrenches

Line for which

Figure 2.13: Center of pressure (CoP) for a ground-foot contact. The blue wrench

is the contact wrench, seen at a point below the heel. The red dashed line is the line

where the wrench equivalent to the blue wrench has no torque. The CoP is at the

intersection of this line and the ground.
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sensor frame

S

contact frame

C

world frame

tool frame 1

tool frame 2

calibration tool

Figure 2.14: The quantities used in the calibration process. C is the contact point

of the tool tip, corresponding to the tool center of pressure. S is the sensor center of

measure. xl is the local tool tip coordinates.
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have no angular component at the tip contact point. The center of pressure will
thus be the sharp extremity of the calibration tool.

To locate this center of pressure, n frames of the tool rotating around that point
are recorded. The origin and the orientation of the tool are arbitrarily set with
respect to the tool markers, and are locally consistent between all recorded frames.
The world orientation of the frame j, and the world origin position of the frame j
will be noted respectively

Rj , pj , ∀j ∈ 1..n. (2.17)

The aim is then to �nd a point of local tool coordinates xl and world coordinates C
verifying

Rj xl + pj = C, ∀j ∈ 1..n, (2.18)

which is a linear system of 3n equations for 6 unknowns. This equation can be
rearranged under the classical form

−R1 I

−R2 I
...

...
−Rn I


[
xl
C

]
=


p1
p2
...
pn

 , (2.19)

Finally, taking a number of frames n greater than 2, we can solve this system in the
least square sense.

Sensor center of measure

Knowing the world coordinates of the set of contact points C between the calibration
tool and the hold support, as well as a corresponding set of wrenches apply by the
tool, and measured at the sensor center, we can compute the sensor center S and
its orientation Rs (see �gure 2.14). To explain this calibration process, we start
with the mathematically simplest case with only one contact point and one wrench,
which is then incremented step by step to obtain the complete process.

Let's call s the sensor frame, and c the contact frame, with world aligned axes.
The force fc applied by the tool on C, and the wrench ws measured by the sensor
at S, are related by the wrench transfer equation 2.7, which gives us[

fc
0

]
= AdTcs ws. (2.20)

In this equation, AdTcs is the adjoint converting wrenches from frame s to frame
c. This adjoint depends on the vector from C to S, namely pcs. It also depends
on the orientation of frame s with respect to frame c, which is also Rs, the world
orientation of frame s, due to the world axis alignment of the frame c.

The system 2.20 has 6 equations for 9 unknowns, that the variables fc, pcs and
Rs consist of. Without losing information, the three �rst equations and the three
�rst unknowns are removed, leading to the system[

p×cs Rs Rs
]
ws = 0. (2.21)
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To have more equations than unknowns, several wrenches ws are recorded.
The use of a nonlinear solver is avoided by iteratively solve for pcs with Rs �xed,

and for Rs with pcs �xed. The �rst step is a least square solving in pcs. pcs is isolated
using a×b = −b×a. For the second step, we iteratively solve for small perturbations
of the current Rs

R′s = Rs
(
I + ω×

)
, (2.22)

leading to a sequence of least square systems in ω. (I + ω×) is the �rst order
approximation of a small rotation of exponential coordinates ω. The initialization of
pcs and Rs is done with a rough estimation, ensuring that the closest local minimum
is the solution we are looking for.

Finally, note that if (pcs, Rs) of the �gure 2.14 is a solution for the equation 2.21,
then for any rotation R, the pair (R pcs, RRs) is also a solution. Indeed, starting
from the left of equation 2.21 with this new candidate, as

(R pcs)
× = R p×cs R

T , (2.23a)

we have [
(R pcs)

×R Rs R Rs
]
ws = R

[
p×cs Rs Rs

]
ws = 0 , (2.23b)

because (pcs, Rs) veri�es equation 2.21. Thus (R pcs, R Rs) is also a solution for
equation 2.21. To overcome this singularity, we collect wrenches at three di�erent
points of contact, and add to the system 2.21 the known relative contact point
positions in the world frame, expressed in term of pcs's. By this way, the global
orientation of the points are constrained, leading to a unique solution for the sensor
frame orientation.

To conclude, given a set of three points of known global coordinates, and several
sensor measurements of wrenches produced by exercing linear wrenches at those
points, the sensor center is found by solving a system of equation with the sen-
sor orientation and the vectors from the contact points to the sensor center as
unkwowns. The �rst part of this system consists of the transfer equation of the
measured wrenches from the sensor center to the contact points, where the torque
components are supposed to vanish. The second part is the equality of the relative
positions of the contact points, expressed with the vectors from the contact points
to the sensor center. This last part, not mentioned in [Aladdin 2012], imposes the
global orientation of the contact points while solving for the cancellation of the
angular components of the measured wrenches.

Sensor frames in the wall structure frame

The sensors frames are calibrated with respect to the wall structure by the inter-
mediate use of the positions of the 6-by-6 cells in which the sensor supports are
embedded in.

These intermediate quantities reduce the time needed to calibrate the sensors,
at the cost of adding inaccuracies, brought by the irregularities of the wall building
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process. Those imprecisions occure both on the orthoganality and on the spacing
regularity of the cell borders, as well as on the regularity of the drilling pattern of
the holes used to insert the bolts that maintain the sensor supports, and the holes
to �x the sensors on their support. We estimate those imprecisions to be of a few
millimeters, which is acceptable in comparison with the assumption that the body
markers fastened to the mocap suit by Velcro supports, are rigidly attached to the
climber's body segments.

The wall frame is calibrated with respected to the mocap system by using four
markers placed on plastic supports glued to the wall structure. These supports
are represented in green in the �gure 2.2, and can be seen on the picture of the
�gure 2.1. The markers are placed after each calibration of the mocap device. They
are removed for the mocap recordings, to avoid the climber to be disturb by the
additional task of avoiding them.

The cell coordinates are recorded by measuring their top-left corner coordinates.
The calibration tool is used to that end. The sensor calibration process previously
described is then done inside a reference cell. The cell center is computed from
the cell corners. The calibrated sensor support can then be rotated around the cell
center in the wall plan by any multiple of 90◦, as allowed by the regular 8 bolts
pattern of the sensor support. It can then be translated to any other cell.

Therefore, knowing the calibration of the wall, thanks to the coordinates of four
markers �xed once for all on the wall, the sensor frames are retrieved from the
orientation of the sensor supports, and there discrete coordinates in the 6-by-6 cell
chessboard.

2.2.4 Capture sessions

The study of climbing motions implies the participation of climbers, and the design
of bouldering problems. This section describe the climbers involved in the capture
sessions, the boldering problems that we have proposed to them, the collected data
and their post-processing.

Climbers and bouldering problems

Nine climbers have participated to the data captures. Two beginners, two interme-
diate climbers, and �ve expert climbers. The beginners are men climbing for the
�rst or for the second time. The intermediate climbers are women climbing between
5.10d and 5.11b. The expert climbers are men with best redpoint ascent from 5.13a
to 5.14a. We will now explain this rating system.

Climbing routes and bouldering problems4 can be classi�ed according to their
di�culty on a 1-dimensional rating scale. This single dimension can not re�ect the
whole diversity of all the climbing routes and bouldering problems. For instance, a

4Route climbing and bouldering are two di�erent climbing disciplines. A route is about 10m or

20m high and both rope and harness are needed to climb. A boulder is about 3m high, thus no

harness is needed, just a safety crash pad.
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Free climbing Bouldering
Need Interpretation

YDS Fra. Hueco Bleau
3-4 1

Hiking.5.1 2
5.3 3
5.4 4a 1 week

Ladder movements.
5.5 4b
5.6 4c
5.7 5a 1 month Non-intuitive movements
5.8 5b 3 on good holds.
5.9 5c V0- 4-
5.10a 6a V0 4

1 year Medium holds with
5.10b 6a+ V0+ 4+

technical foot placements.
5.10c 6b V1 5
5.10d 6b+ V2 5+
5.11a 6c V3 6A

2 years
Very small handholds,

5.11b
6c+ V4 6A+

medium power movements.
5.11c
5.11d 7a

V5
6B Short powerfull or technical

5.12a 7a+ 6B+
5 years

overhanging sections.
5.12b 7b

V6
6C

5.12c 7b+ 7A Long apnea sections, due
5.12d 7c V7 7A+

10 years
to high muscle contraction.

5.13a 7c+
V8

7B
5.13b 8a 7B+

15 years
Tiny holds for very long

5.13c 8a+ V9 7C and speci�c movements.
5.13d 8b V10 7C+
5.14a 8b+ V11 8A to be gifted High precision movements at
5.14b 8c V12 8A+ strength and mental limits.
5.14c 8c+ V13 8B
5.14d 9a V14 8B+ to be special Physical and mental battle,
5.15a 9a+ V15 8C with random success.
5.15b 9b V16 8C+
5.15c 9b+

Table 2.2: Climbing grade equivalence estimation between the free climbing

Yosemite Decimal System (YDS), the free climbing french system (Fra.), the boul-

dering Hueco Tanks system (Hueco), the bouldering Fontainebleau system (Bleau),

our estimation of their associated prerequisites (Need), and our interpretation of the

grades. Free climbing ratings are established on lead. The provided times are the

practice durations for someone training twice to three times a week. As no absolute

rating scale exists, this table comes from several diverse sources, to which we add

our own experience.
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Step Description
Selected
runs %

0 Initial raw data. 513 100
1 Recording failures. 480 94
2 Removing static poses and marker tunings. 292 57
3 Obvious failure visualization. (�gure 2.15) 159 31
4 Thresholding joint velocity at 100 rad.s−1. 83 16
5 Blackman �ltering. (�gure 2.16) 83 16
6 Marker noise detection. 30 6
7 Final qualitative selection. 15 3

Table 2.3: McGill data selection process.

powerfull and tall climber can be confortable with dynamical movements, also called
dyno's, and stucks on problems with small movements but technical body position-
ing. On the contrary, a small and technical climber could have the exact opposite
di�culty, while climbing the same grades. Another more concrete example is the
work of de Geus et al. [de Geus 2006], who showed that the physiological response to
four routes of the same di�culty (7c) varies with the style of the route. Nevertheless,
the grades still represent the principal component of the diverse climbing di�culties.
The exact meaning of each grade is controversial, as well as their correspondance
from countries to countries, but for the non-climbing reader to understand what the
grades are, we provide our interpretation of those grades in the table 2.2.

The interpretation for the hardest grade has been established from the com-
ments by Ondra after his world �rst 9b+ ascent. These comments can be �nd
in [Ondra 2013]: �Success on such a hard route, consists of di�erent factors, such
as: huge amount of luck, good conditions, mental strength, and de�nitely a good
shape... and patience!� We have combining this comment with the observation of
the climb sequence at time 7'00� of the video (�gure 1.1), where the sound expresses
the whole di�culty of that sequence.

The design of the in-laboratory bouldering problems has been limited by the size
of the wall and the imposed number of holds, that must be the same as the number
of available sensors (6). The designed problem grades go from 3 to 5 (Bleau grades),
except for one problem which is 7B, designed to show the di�erence between hard
and easy bouldering motions.

Captured data description and post-processing

The e�ective data capture, after the test sessions for adjusting of camera positions,
has been done in eleven half-day sessions, with one climber per session. In average,
each session consists of 16 recordings, lasting 30 to 45 seconds. During a recording,
2 to 5 consecutive climbing runs can be done. The hold sensor positions have
been changed once in all. The holds mounted on the sensors have been changed at
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most once per session, and sometimes between two sessions. The underlying aim
of changing the wall con�guration was to collect a wide variety of motions. This
diversity has been collected to the detriment of the ability to compare performances
between climbers.

The main structure of a session consists of one or two warm up recordings, used
both for the sporting warm-up of the subject, and for technical adjustments, such as
the marker positioning, or the checking the software ability to record. The following
six to eight recordings are static motions, where the climber is asking to stay on
four holds with a still CoM, or moving the CoM slowly towards a limit position,
or to have a rest pose. The other recordings are the explorations by the climbers
of all the solutions, i.e. the di�erent climbing motions, he or she can �nd to the
given bouldering problem (1 solution = 1 successful run5). For the intermediate or
expert climbers on easy problems, this usually leads to about 20 di�erent solutions.
For the di�cult bouldering problem, only two solutions have been found. The
solution exploration took about 10 runs. Therefore, high level climbing requires the
adaptation to speci�c motions. Expert climbers have thus a wider motion repertory
than beginners, which can choose their favorite solution among the various set of
solution existing for an easy problem.

A total of 172 recordings have been captured. In order to the perform the motion
analysis presented in the next chapter, a selection has been done to re�ne these raw
data. This selection is presented in the table 2.3. For step 2, the static poses are
recordings where the climber is holding on the wall, and applies forces on the sensors
without moving. For step 4, the threshold of 100 rad.s−1 has been set arbitrarily. It
correspond to a joint angle variation of 1 rad (about 60◦) between two consecutive
frames.

For the step 6, the marker noise is detected. This noise has been noticed in the
Arena software, where the marker labeling can be checked. They occured when the
labeling of two markers is exchanged repeatedly, on several consecutive frames. This
problem has been noticed when some real markers are spatially too close to each
other, or when a ghost marker is detected close to a real marker, probably due to a
small number of cameras observing that marker. The noise control is done on the
linear acceleration of each body segment center. A segment is considered to contain
a noisy marker if its acceleration changes sign twice in less than 0.15 seconds.

The step 7 is based on two criteria. On one hand, we want to neglect the e�ect
of the joint torque cost at the �nger joints, which occures with certain types of holds
as describe in section 1.3.1. Consequently, we need motions performed on very good
holds. On the other hand, we chose the runs done by the climber who participated
to both experiments (the McGill bouldering, and the Top-Rope capture). Those
runs are outlined �gure 2.17.

In this manuscript, the terms run and sequence are two synonyms. The di�er-
ence is that a run is a technical climbing term refering to the sequence of moves

5A run is a sequence of consecutive moves between when the climber leaves the ground, and

when the climb stops, because the last hold is reached or because the climber falls.
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(a) The back markers are hidden by the wall.

(b) Marker confusion in a hand matching.

Figure 2.15: Two examples of obvious failures (left) in the OptiTrack marker

tracking process and their corresponding 2D video images (right). The brown dots

on the 3D images are the sensor centers.
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Figure 2.16: Normalized Blackman covolution kernel of 300ms wide.
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between the instant where the climber leaves the �oor and the last hold he reaches
before regaining the �oor, whereas a sequence is a more generic term. During the
capture of the 15 sequences presented in �gure 2.17, the wall con�guration has not
been changed. This con�guration is presented �gure 2.18. The pictures have been
extracted from the grayscale camera closest to the wall.

2.3 Top-Rope 2D-Video Capture

2.3.1 Capture protocol

The 2D-video capture has been done on one afternoon, on a vertical route of the
Espace Vertical 2 climbing hall, Grenoble. Three people, including two climbers
were present with 3 cameras, two of them being HDV 1080i cameras mounted on
tripods. The third one is a mobile camera. The two HDV cameras are positioned on
each side of the scene, at 8 meters of each other, and at 6 meters of the wall. They
are observing the �rst 4.5 meters of the route of 11 meters. The mobile camera is
between the two others, and follows the climbing ascents by rotating on itself. The
three cameras have a resolution of 1920×1080 pixels and a frame rate of 25 Hz (the
interleaved frame rate of the HDV 1080i is 50 Hz). The mobile camera is the only
one we used currently.

Eight climbing runs have been recorded on the same route, four runs per climber.
Seven other video sequences have been taking, one being a rotational scan of the
wall from a single point of view, and the others being targeted for the automatic cal-
ibration of the �xed cameras. The �rst climber is an intermediate climber, climbing
around 7a (see table 2.2). The second climber is a good climber, having redpointed
a 7c+ route. The climbed route is presented in the �gure 2.19. This route has been
rated at 5a. This low level has been chosen such that we can neglect the e�ect of
the �nger muscles.

2.3.2 3D reconstruction of wall

For the 3D reconstruction of the wall, we use the fact that the wall is a vertical plan.
From this assuption, we recover the 3D coordinates of the successive hand and foot
contacts with the wall. The contact instants are �rst selected on the video. The
images corresponding to contact instants are then extracted from the videos, and
the contacts coordinates are computed.

The wall structure is build with regular rectangular planks of 2.44 meters high by
1.22 meters wide. On each image of the moving camera from which the contacts need
to be retrieved, the 2D image coordinates of the plank corners are registred. Those
2D points are circled in red on the �gure 2.20. Knowing the 3D world coordinates
of the point of reference, an homography from the image to the world is computed.
The homography computation is done with the �tgoetrans Matlab function. For
sequences that do not have enough plank corners, we retrieve other ground truth
point coordinates from adjacent calibrated images that are shared by both images.
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McGill 1 McGill 2 McGill 3

McGill 4 McGill 5 McGill 6

McGill 7 McGill 8 McGill 9

McGill 10 McGill 11 McGill 12

McGill 13 McGill 14 McGill 15

Figure 2.17: The 15 sequences of our McGill climbing motion database, used for

the inverse dynamics evaluation, sampled every 1.5 seconds. The colors correspond

to the percentage of time advancement, with the following order: 0%

100%.
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Figure 2.18: Wall con�guration corresponding to the 15 McGill sequences. The

close-up of the bottom left hold has been taken from the other grayscale camera, which

is farest from the wall than this one. The blur is due to the low camera resolution

of 640× 480.
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Figure 2.19: A top-rope climbing sequence captured at Espace Vertical.
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Figure 2.20: The contact coordinate computation. The wall coordinates of the red

points have been measured. From their images coordinates we compute an homog-

raphy that allows us to retrieve the wall coordinates of the green points from their

image coordinates.

Finally, the 2D contact coordinates are extracted. Those points are drawn with
green circles in the �gure 2.20. The image coordinates are then converted into
3D world coordinates, by using the computed homographies. The resulting world
coordinates are shown in the �gure 2.21.

This process has been applied for the cleanest ascent of the climber that also
participate to the bouldering capture sessions. During this ascent, 45 contact sets
have been identi�ed, leading to a run of 44 movements. We de�ne a movement as
the motion between the release of a contact and the establishment of a new contact.
There can be either hand or foot movements. A total of 34 contact points have
been extracted from those contact sets. Contact points corresponding to the same
hold on several di�erent contact sets have been merged by computing their average
world coordinates. Note that with 44 movements, the climb is necessarily aerobic.
In other words, the climber needs to breath in order to climb, which is usually not
the case for bouldering movements.

If the wall would not have been planar, the 3D reconstruction could have been
done by using a structure from motion approach. As a proof of concept, we re-
constructed one of the bouldering walls of the University of Grenoble, as shown in
�gure 2.22. This reconstruction has been done using the system VisualSFM by Wu
[Wu 2011]. The input pictures have been taken with a Canon EOS 7D, of resolution
5184× 3456 pixels. We took 45 di�erent points of view, at about 3 and 5 meters of
the wall, with heights between 0.5 and 2.5 meters.
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(a) The numbering of the route holds.

pose
set of holds for each pose

num
foot hand

right left right left
1 1 2 5 6
2 3 2 5 6
3 3 2 9 6
4 4 2 9 6
5 4 5 9 6
6 4 5 9 10
7 6 5 9 10
8 6 7 9 10
9 6 7 11 10
10 6 6 11 10
11 9 6 11 10
...

...
...

...
...

35 24 23 27 26
36 24 23 27 31
37 25 23 27 31
38 25 26 27 31
39 25 26 32 31
40 25 27 32 31
41 28 27 32 31
42 28 27 32 33
43 29 27 32 33
44 29 30 32 33
45 29 30 34 33

(b) The ordered sequence of contacts, as

observed in the video. The pose num col-

umn contains pose numbers. The other

columns contain hold numbers.

Figure 2.21: The 2D contact coordinates after homography computation (a), and

the sequence of contacts (b), observed in the sequence of �gure 2.19. The red circles

are used to compute the image-to-world transformation. The green circles are the

retrieved contact points.
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Figure 2.22: Proof of concept of the 3D reconstruction of a non-planar wall, using

VisualSFM [Wu 2011]. The two images are the front view and the side view of a

textured point cloud (2 million points), reconstructed from 45 high-de�nition images.

(see text for details)
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3.1 Introduction

In this chapter, we present a method to estimate contact forces and joint torques of
a human performance from motion data only. This is known to be an ill-posed prob-
lem as several force con�gurations are equally consistent with the laws of physics
for a single given kinematic con�guration. Along the line of previous works in the
estimation of the dynamics of motion, we improve the accuracy of the estimation of
the exact values of contact forces. Our approach is based on minimization of joint
torques and considers contact forces as free variables. This optimization introduces
weighting parameters which are used to enforce smooth transition of contacts and
muscle preferences of the performer while respecting the laws of physics as a hard
constraint. We have tested two categories of motion, walking at di�erent speed as
standard inverse dynamics examples and climbing on an arti�cial wall as it typ-
ically yields challenging situations with multiple contacts. We demonstrate that
our framework can estimate contact forces up to 5% of the body weight (%BW)
for walking and 22%BW for climbing on the McGill dataset, by comparison with
ground truth measurement from force plates and sensors.
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Figure 3.1: Prediction of contact forces and joint torques. Blue arrows corre-

spond to contact forces, magenta arrows to torque axis, magnitude is proportional to

amplitude.

Contacts shape the interaction with the environment. They support locomo-
tion through their cooperation with the internal torques applied by muscles. For a
given mechanical model of articulated bodies, once contact forces are known, internal
torques at joints can be computed from kinematic data. This process is known as In-
verse Dynamics. In biomechanics, the method of choice for measuring contact forces
is to use force plates. While extremely accurate, they are costly and cumbersome to
operate. For motion analysis, there is a clear interest to be able to evaluate contact
forces, and thus internal torques, from motion data only, removing the needed of
force sensors. This motion data can be obtained either from motion capture or from
video tracking. The pioneering work of Brubaker et al. [Brubaker 2009] showed that
location and timing of contacts could be automatically inferred from motion data.
Their work relies on a parametric model of contact which approximates the true
forces. We build on this approach as a �rst step for contact detection but with
the goal of delivering accurate measurement of the true contact forces from motion
data only, without a parametric model. Besides the application in biomechanics for
motion analysis, Inverse Dynamics is also a useful component for physically based
motion synthesis approaches: given a kinematic plan, Inverse Dynamics provides
the necessary torques to apply. As such, estimation of dynamics from video also
bene�ts to physically-based animation techniques [Vondrak 2012b].
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Estimation of multicontact forces from kinematic data alone is fundamentally an
ill-posed problem. Typically, from the observation of only the body pose of a person
hanging on a bar with both hands, nothing reveals if the person is using strong
forces and torques on the left arm only, or the reverse, or, most likely, a balance
between left and right arms. This ambiguity is even more critical for complex
contact scenarios such as climbing, which are addressed in this thesis, and have
constituted the primary motivation for the development of our method. The overall
approach of this chapter is to evaluate how well this ambiguity can be resolved
using a criteria of minimal internal torques. Our formulation does not rely on
a parametric model of contact and delivers an accurate estimation of the forces.
Recent work on inverse dynamics from the robotic literature for motion control
of autonomous robots follows a similar strategy [Righetti 2013], as well as recent
work in biomechanics [Robert 2013]. The core of our method is to characterize the
ambiguity of the multiple contact points through the choice of a set of weighting
parameters in an optimization for minimal internal torques and accurate estimation
of the values of contact forces across time.

We show for locomotion and climbing tasks that default values for weighting
parameters are already enough to produce accurate estimates of contact forces. All
of our motion data have been recorded in parallel with exact measurement of contact
forces for ground truth evaluation. We show results for locomotion and climbing on
an arti�cial wall as a situation with complex interactions and multiple contacts.

3.2 Related Work

Extraction of physical properties from video has been explored for free fall of rigid
bodies [Bhat 2002], and more recently with instantaneous impacts [Salzmann 2011].
We focus here on a speci�c problem related to human motion. Similar to that of
Brubaker et al. [Brubaker 2009], the purpose of our work is to provide methods to
estimate contact forces directly from motion data only, obtained by motion capture
or by video tracking [Balan 2005, Urtasun 2006]. We show that a concise formulation
allows us to evaluate the exact contact force value without the need for a parametric
model. The work of Brubaker et al. [Brubaker 2009] estimates both the location and
timing of contacts. Our work is a continuation in this line of thought in an attempt
to show that vision-based system can be used to deliver measurements of dynamics.
The parametric model of Brubaker et al. [Brubaker 2009] allows the detection of
contacts, but it does not always agree with accurate measurement of contact forces.
Typically, their parametric model generates contact forces with respect to the local
geometrical con�guration at the point of contact only. In contrast, our formulation
takes into account the global con�guration of body posture and its impact on contact
forces, even if the local geometry of the contact point is constant. Using a criteria
of joint torque minimum, we show through evaluation with ground truth data from
force plates that we can improve the accuracy of contact force estimates.

The criterion of optimality has been recently explored in robotics by Righetti et
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al. [Righetti 2013]. Inverse dynamics is used in their case to control an autonomous
robot. No contact forces are measured to plan the torque motor program, and these
forces must be evaluated automatically. We share the same requirement but with
a goal related to motion analysis and biomechanics. In particular, we show that
accurate estimation of contact forces is possible for human locomotion and we com-
pare to ground truth. Interestingly, such an optimization-based approach introduces
parameters that can be related to the strength of muscles. The importance of the
setting of those parameters has been studied by Robert et al. [Robert 2013]. Their
experience consists in standing up from the seat of a car with a helping handle for
the hand, which is a multicontact scenario. Some contact forces are measured and
used in the contact force estimation, some forces are measured and used as ground
truth and the other contact forces are not measured and are recovered by the al-
gorithm. They showed that the ground truth forces are better recovered with joint
torque weights proportional to the joint torque limits than with uniform joint torque
weights. We �nd the converse result in our case.

Our work is also related to previous attempts in the computer animation commu-
nity to estimate physical parameters from motion capture in order to re-used motion
in a physical simulation [Liu 2005]. This work combines a human body model with
a penalty-based model for contacts and rest pose, which introduces sti�ness param-
eters that must be estimated. We formulate the parameter estimation problem in
a more general way and show that the true contact forces can be recovered. Our
formulation introduces weights to the optimization that relate to the physiological
strength of muscles in a more general way, without the bias of a parametric model.

Several recent works show the bene�t of using physics modeling as a prior for
human motion tracking [Vondrak 2012a], and for human motion recovery [Wei 2010,
Vondrak 2012b]. It allows the integration of additional information to avoid foot
skating, predicts a few time steps (frames) in advance or brings additional motion
constraints to monocular videos based on dynamic information. At the core of
physical modeling is the de�nition of a good contact model, and we propose here a
method to estimate these forces reliably.

Contacts are continuously established and released across time. For motion
synthesis, Mordatch et al. [Mordatch 2012] present a similar optimization-based
framework to ours, which evaluates possible contacts and intensities. In their case,
they split motion into phases with discrete changes of weights in the optimization
of contact forces. We introduce a parametric model for contact transition which
accounts for the natural timing of interaction with the environment.

3.3 Inverse Dynamics Formulation

Our input for the inverse dynamics problem consists solely of kinematic data. The
output consists of the contact forces and the joint torques to actuate body links.
This is an ill-posed problem and our approach is to optimize for minimal torques.
Contact forces are also introduced into the optimization through a parametric model
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We split this equation between the actuated joint part

τ = S
(
Mq̈ + h− J>c λ

)
(3.2)

and the non-actuated root part

S (Mq̈ + h) = S J>c λ (3.3)

where S = [06×n I6×6] ∈ R6×(n+6) is the root-selection matrix.
If there are more than two contact points (k > 6), this last equation cannot be

used to recover the contact forces λ from kinematic data only. There is an in�nite
number of solutions which respect the constraints and laws of physics. Similar to the
work of Righetti et al. [Righetti 2013], we follow a criteria of optimality on contact
forces and internal torques. In their case, the goal is the autonomous actuation of
the robot, so they focus on the derivation of a torque controller. In our case, we focus
on motion analysis and the estimation of contact forces. In addition, we introduce
a speci�c model for continuous contact transitions, to deal with the appearance and
disappearance of contacts.

3.3.2 Disambiguation by minimization of torques and forces

The minimization of external forces is formulated using two quadratic functions for
the torques and the contact forces. That is,

min
τ ,λ

1

2
τ>Wττ +

1

2
λ>Wλλ (3.4)

where Wτ ∈ Rn×n, and Wλ ∈ Rk×k are de�nite positive diagonal matrices.
To reduce the number of unknowns and the number of constraint equations, we

implicitly include the actuation part of the Newton-Euler equation in the minimiza-
tion, as in [Wei 2010], by injecting equation 3.2 into equation 3.4. This gives

min
λ

1

2
λ>
(
JcS

>WτSJ
>
c + Wλ

)
λ − (Mq̈ + h)>S>WτSJ

>
c λ (3.5)

such that S J>c λ = S (Mq̈ + h) (3.6)

Fλ ≤ 0 (3.7)

where F ∈ Rd×k is polyhedral friction constraint matrix. We use a Coulomb model
to account for frictional e�ect of contacts [Stewart 1996]. F projects the contact
forces on the outward normals of the facets of the polyhedral friction cone. We do
not use the classical multiple force components on the cone generative vectors, as
this would lead to much more unknowns.

To solve the system de�ned by equations 3.5, 3.6, and 3.7, we must de�ne the
positive de�nite diagonal matrices Wτ and Wλ. The values of these coe�cients
directly impact the result of the inverse dynamics computation. As a �rst intuition,
when a contact is established, the cost of the contact force must be much lower
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Figure 3.3: Prediction of contact forces (Dark blue, ground truth - Light blue,

prediction) and joint torques (magenta) for climbing.
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than the cost of the joint torques, such that the joint torques rule the contact force
generation. Conversely, this contact cost must be much higher than the joint torque
cost when the contact is broken, in order to obtained the joint torques associated
to none in-air contact forces. Consequently, we a�ect a high value to coe�cients of
Wλ when no contact occurs, and a low value when a contact is established. Our
experiments have shown that the values 104 and 10−4, respectively, provide good
results. It logically follows thatWτ needs to be set to an intermediate value between
these two extremes. In order to account for the fact that legs produce more torques
than arms, we set in a �rst approximation a weight value of 3000 to arms, 300 for
the knees and 100 for all other actuators.

Creation and localization of the contact points are geometrically determined.
The approach of Brubaker et al. [Brubaker 2009] uses a penalty-based approach
with a sigmoid on the distance of the contact to the ground, and could be used here
as preprocess to estimate contact locations and timing. For the sake of simplifying
the implementation, we perform a geometric detection of contact locations and use a
threshold on the velocity of some reference points to establish contacts at the hands
and feet. For noisy input motions, an external user adjusts the contact instants
thanks to a graphics user interface. If the contact is established, then its Wλ is set
to the low value in order to only weakly penalize the contact forces; otherwise, it
is set to a high value. In human locomotion, contacts are not reduced to impulses,
but instead follow a continuous trajectory, increasing and decreasing smoothly. We
show now how we model this property.

3.3.3 Contact transition model

On contact detection, a �rst approach would be to switch the value of the contact
weights Wλ directly from the high to the low value in a single discretized time
step. This results in discontinuities on contact transitions, both in the estimation
of contact forces and internal torques. Instead, we use a parametric model of the
transition. The transition is modeled as a linear interpolation of an exponent over
a time duration of 250ms, between the high value of 104 for a transition from no
contact to 10−4 for full contact:

w(αt) = 10−4αt+4(1−αt) (3.8)

where αt ∈ [0, 1] parameterizes the timing between the two contact events over a
250ms window, from no contact to full contact. The equation is easily inverted for
the reverse phenomenon.

The values of this parametric model, amplitude and timing, have been deter-
mined experimentally and prove to work well for our case. As future work, we plan
to optimize them directly from the data using a parametric formulation. Such an
approach of continuous weights in optimization of contact forces can be related to
the recent works of Mordatch et al. [Mordatch 2012] for motion synthesis where
contact locations are optimized to ful�ll a kinematic objective.
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Joint Motion Robert et al. McGill

Hip

Flexion 185 89
Extension 190 157
Abduction 190 243
Adduction 190 86
Internal Rotation 60 90
External Rotation 60 38

Knee

Flexion 100 110
Extension 168 142
Internal Rotation 20 44
External Rotation 20 124

Ankle

Dorsi�exion 126 12
Plantar�exion 126 164
Inversion 20 45
Eversion 20 105

Shoulder

Flexion 92 64
Extension 67 175
Abduction 71 50
Adduction 67 145
Internal Rotation 52 154
External Rotation 33 19

Elbow

Flexion 77 112
Extension 46 78
Pronation 15 21
Supination 15 77

Wrist

Flexion 185 102
Extension 190 31
Abduction 190 73
Adduction 190 52

Lumbar

Flexion 143 159
Extension 234 84
Right Bending 159 115
Left Bending 159 122
Left Axial Rotation ∅ 95
Right Axial Rotation ∅ 91

Neck

Flexion 100 7
Extension 100 2
Right Bending ∅ 3
Left Bending ∅ 5
Left Axial Rotation ∅ 1
Right Axial Rotation ∅ 1

Table 3.1: Joint torque limits (N.m) obtained from the literature [Robert 2013] and

from the McGill dataset.
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In order to be useful for animation or biomechanics, continuity in estimation of
contact forces and joint torques is an important issue. As a �rst approach, one might
consider that results from the naive transition model could be smoothed. Doing so
would result in modifying the value of forces in a way which is violating the laws
of physics. By smoothing the weight parameters of the optimization rather than
the output of this optimization, it allows to perform a �ltering of the forces while
staying in the null-space of the under-constrained structure of the inverse dynamics
problem, and as such laws of physics are strictly respected.

3.3.4 Joint torque weighting

Four di�erent joint torque weightings have been evaluated. Each of them are nor-
malized at 103 such that the weights lie in the upper part of the range of the contact
force weights

[
10−4, 104

]
. The lower part of this range is reserved for the crossing of

the contact weights, occurring for instance during the double stance phase of walking
motions. The two �rst weightings operate on the projection of the joint torque on
the basis vectors of the joint frames of the character. The �rst one contains uniform
weights. The second one, the limb speci�c weighting, has weights of 3000 for the
arms, 300 for the knees and 100 for all other actuators. We call the two others the
quadratic and the linear weights. They both operate on the projection of the joint
torques on anatomical axes. The de�nition of these axes follows the recommenda-
tions of the International Society of Biomechanics [Wu 1995, Wu 2002, Wu 2005]. To
visualize them, we used the software OpenSim [Delp 2007]. The quadratic weights
is the squared inverse of standard joint torque limits, as in [Robert 2013]. The linear
weights comes from our speci�c measurement of joint torque limits from the McGill
climbing database (�gure 2.17). These limits are the maximal torques obtained with
sensor based inverse dynamics, i.e. by transferring the contact forces measured by
the sensors into joint torques (equation 3.2). The weights are then the absolute
inverse of these torque limits. The table 3.1 contains the two sets of limits we used.

3.4 Experiments and Validation

We explore two categories of motion: walking and climbing. For both, we compare
our results with ground truth data. Input kinematic data are obtained from motion
capture.

For the walking sequences, we �rst used data from OpenSim software [Delp 2007].
OpenSim is widely used in the biomechanics community and we used the data it
provides for a walking example as ground truth for both contact forces and joint
torques. We performed additional experiments with a standard force plate for a
walk at di�erent speed.

Climbing on arti�cial wall presents interesting challenge as it typically involves
multiple contact points. In order to compare to ground truth data in this situation,
we equipped an arti�cial climbing wall with force sensors on six holds for about a 2.5
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Figure 3.4: Prediction of contact forces at both feet and joint torques at hip, knee

and ankle for walking.
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Figure 3.5: Prediction of contact forces at one feet for walking at increasing speed.

meters vertical range. We evaluate here the quality of the prediction of the contact
forces.

3.4.1 Standard inverse dynamics examples

Reference walking As a �rst evaluation, we used the kinematic and dynamic
data proposed for the walking example in the OpenSim software. Figure 3.4 shows
the comparison between our estimation of contact forces and joint torques with
contact forces measurement and the computed joint torques from OpenSim. The
contact establishments and breakings are modeled with a transitions window of
250ms. The vertical and horizontal contact forces are quite well recovered. The
average shapes of the joint torques are also well computed, but the detailed shapes
di�er. We noticed experimentally that the shape of the feet in�uences a lot the joint
torques, whereas the contact forces were less sensitive to this parameter. The shape
of each foot is represented by three points of contact with the ground. The location
of these points is procedurally deduced from a geometrical model of the foot. As
the foot is rotating during the stance phase, these points transit from the heel to
the toe, bounding implicitly the position of the foot center of pressure.

Walking at di�erent speed We performed an experiment of walking with in-
creasing velocity. As the subject walks faster, it is interesting to observe how the
pro�le of contacts evolves. As shown by the force plate measurement, the slow walk
exhibits a rather �at pro�le during contact. As the speed increases, the contact
evolves toward a situation with two maxima, one at the reception of the foot at heel
strike, and one at toe o� as the contact is used to push the foot forward. In addi-
tion, some forces increase progressively on the axis parallel to the walking direction.
Figure 3.5 shows the comparison between the measured ground reaction force and
our prediction. It shows that our approach is able to recover the precise pro�le of
contact forces.
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Figure 3.6: Prediction of contact forces at hands and feet for climbing. For each

of the four contacts, the subplot at the bottom shows the contact transition, sin-

gle step (orange) and interpolated (green). The other subplot shows contact forces

from the ground truth data (blue), single step contact transition with limb speci�c

weights (orange), interpolated contact transition with limb speci�c weights (green),

and interpolated contact transition with uniform weights (purple).

3.4.2 Climbing with limb speci�c weights

Climbing inherently involves several simultaneous contact points at hands and feet.
As such, it presents an interesting challenge for the ill-posed problem of contact
estimation from kinematic data only. Similar to our walking validation, we compare
the climbing results of our approach to ground truth data. Figure 3.6 details the
results for four contacts (hands and feet). For each contact, we use a single point of
application for the force, geometrically located at the body part in contact.

Figure 3.6 illustrates how the transition model for a given contact improves not
only the estimation of the associated force, but also the entire system. It clearly
shows the bene�t of having a global approach for contact modeling rather than a
local parametric model for the problem of force value estimation. In addition, the
�gure 3.6 compares the e�ect of specializing torque distribution between joints using
the Wτ matrix. Compared to a uniform distribution, a�ecting more weights to legs
by decreasing the speci�c value in Wτ improves the results. At the beginning of the
sequence, the subject is approaching the wall by walking. This explains why contact
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forces are estimated at the feet but do not appear on the ground truth measurement.
Note that these forces follow a standard walking pattern at the beginning. Figure
3.3 shows 3D results for a selection of frames.

3.4.3 Climbing with anatomical weights

State-of-the-art evaluation The 15 sequences of the McGill database are used
to evaluate the approach of Robert et al. [Robert 2013], which uses the quadratic
weights de�ned previously. We compare them with the uniform weights. The red
and blue curves of the �gure 3.7a show the 95% con�dence intervals of the sum
of the norms of the 4 di�erences between the estimated contact forces by inverse
dynamics, and the measured contact forces. The uniform weights give signi�cantly
less errors in 11 cases over 15, and with 68% of con�dence, the error is decreased
in all cases. The weighting of [Robert 2013] is thus less suited than a uniform
weighting for our climbing database. But in [Robert 2013], quadratic weights gave
better results than uniform weights, therefore, the ideal weighting might depends
on the observed activity.

Activity-speci�c joint torque limits The linear weights learned on the McGill
dataset are used to obtain the green curve in the �gure 3.7. In 12 cases out of 15, our
torque weights decrease signi�cantly (95%) the contact force errors, when compared
with the weighting of Robert et al. [Robert 2013], and has no signi�cant e�ect on
the other cases. The comparison between our weighting versus a uniform weighting
at 95% con�dence leads to no signi�cance di�erences except in one case (McGill
8) where the uniform weights are better. With 68% con�dence, our weighting is
signi�cantly better in 3 cases out of 15, worse for the sequence 8 and not signi�cantly
di�erent for the other cases. The sequence 8 is plotted at 4 fps in �gure 3.8. The
main move of this climbing run is a dyno (i.e. a jump) without the left foot. This
high speed motion make it di�cult to capture. To quantify this di�culty, we call
the inertia error the quantity

Ierr =
||
∑Nb

i=1Miai − F ext||
||
∑Nb

i=1Mig||
(3.9)

computed at each frame. Nb is the number of body segments, the Mi's are their
masses, the ai's their linear acceleration at a given frame, F ext the sum of the linear
external forces measured by the sensors at that frame, and g is the gravity constant.
Ierr represents the consistency of on one hand the masses estimation, the MoCap
and the �lter process, with on the other hand the sensor measurement. The table
3.2 lists the inertia errors for the McGill sequences and the selection we performed
on them for the evaluation. We selected the frames for which the error is less than
10% of BW. The sequence 8 has the highest selection rate and the highest inertia
error before and after selection. Therefore, this sequence, which is the only case
where uniform weights are better than ours, could be an outlier.
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Figure 3.7: Comparison of the contact force errors for 3 sets of joint torque weights.

The �rst two sets are obtained from the torque limits of table 3.1, and the third set

is a uniform weighting. All values are in percentage of body weight (%BW). The

vertical segments represent the con�dence intervals at 95% (3.7a) and at 68% (3.7b)

arround the mean contact force error.
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Figure 3.8: Sequence 8 plotted at 4 fps. Each image is shifted toward the right for

more lisibility.

Seq. Size Inertia error Selection Inertia error after selection
(#) (# frames) (%BW) (%) (%BW)
1 333 4.73 ± 3.29 94.9 4.11 ± 2.27
2 253 3.78 ± 2.24 99.6 3.65 ± 2.06
3 309 4.03 ± 2.48 98.4 3.73 ± 2.02
4 289 5.75 ± 3.81 88.9 4.52 ± 2.20
5 357 3.39 ± 2.90 98.3 3.09 ± 1.83
6 321 5.83 ± 4.78 91.0 4.36 ± 2.09
7 221 4.68 ± 3.25 94.6 3.81 ± 1.94
8 233 12.14 ± 8.63 65.2 5.47 ± 2.42
9 249 11.00 ± 9.48 66.3 5.02 ± 2.30
10 425 3.13 ± 2.83 97.4 2.75 ± 1.98
11 349 4.69 ± 3.60 95.7 3.83 ± 2.58
12 553 6.97 ± 6.43 83.2 4.15 ± 2.52
13 369 7.13 ± 7.25 85.9 4.22 ± 1.90
14 529 4.79 ± 3.26 90.7 3.90 ± 2.30
15 553 2.34 ± 1.26 99.8 2.34 ± 1.26

Table 3.2: Inertia error of each sequences as de�ned in equation 3.9. The selection

includes all frames for which the error is less than 10% of BW. The notation . ± .
means the average value plus or minus the standard deviation.
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Seq. Plantar�exion Di�erence
(#) max torque (N.m) from 126 (%)
1 111 -12
2 110 -13
3 106 -16
4 141 12
5 139 10
6 138 10
7 125 -1
8 186 48
9 163 29
10 118 -6
11 132 5
12 117 -7
13 144 14
14 125 -1
15 149 18

Table 3.3: Ankle plantar�exion maximum torques (in N.m) obtained by inverse

dynamics without ankle costs. The third column is the di�erence in percentage from

the corresponding literature limit [Robert 2013].

Although the set of joint torque limits is a major component for optimization-
based inverse dynamics, other factors were included in the previous evaluation. In
the following we quantify the importance of several parameters other than the joint
torque limit set. These parameters are the inclusion or exclusion of the character
ankle torques in the torque minimization, the inclusion of torque bound limits as
inequality constraints for the quadratic program or not, and the use of either a
linear or a quadratic torque limits-to-weight conversion. These two last parameters
were included in the above comparison between the method of Robert et al. and
our results. Finally an original method to determine the anatomical directions is
presented.

The ankle weights The inverse dynamics can be improved in some cases by
removing the ankle weights, which is done by setting the corresponding weights to
0 in the Wτ matrix of the cost function equation 3.4. To show the consistency of
this process, the table 3.3 compares the main ankle axis (plantar�exion1) torque
maxima obtained without ankle weights, with the standard value of [Robert 2013].
The average signed di�erence of +6% shows that our results are consistent with
standard values. The average max torque value is 134 N.m. The �gure 3.9 shows
the e�ect of the ankle weights on the contact force errors. Surprisingly, suppressing

1plantar�exion: the foot moves down
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Figure 3.9: In�uence of the ankle torques minimization. The continuous curves

are the methods retained for the �nal comparison. They all include the ankle torque

minimization. The dashed curves correspond to results obtained without ankle torque

minimization. The con�dence intervals, plotted vertically, are at 95%.
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(a) with ankle weights (b) without ankle weights

Figure 3.10: E�ect of setting the ankle torque weights to zero on sequence 15 at

3�48. Dark blue arrows are the contact forces measured by the sensors. Light blue

arrows are the contact forces estimated by inverse dynamics.

the ankle cost reduces signi�cantly the error for 3 sequences over 15 for our results
and for the uniform weighting. In order to understand these improvements, a frame
where it occurs is displayed in the �gure 3.10. The motion performed by the climber
at this instant was to move his CoM closer to the wall in order to load his right
foot and to unload his left hand for reaching the �nal hold. At this instant, the
dorsi�exion2 maximum angle is reached, leading to the ability for the climber to
generate as much passive plantar�exion torques as desired, and therefore bypassing
totally the need of minimizing it. Conversely the sequence 9 is always better with
ankle torque weights. This sequence is plotted at 4 fps in �gure 3.11, with the
ground truth torques in magenta. At the beginning (dark blue frame) and at the
middle (dark green frame) of this sequence, which are the most torque consuming
instants, the torques are almost equally distributed between the right ankle, the
right knee, the right hip, the lumbar joint, and the right shoulder, showing that for
energetic motions, the limits weighting play a more important role than for easy
motions.

2dorsi�exion: the foot moves up



68 Chapter 3. Inverse Dynamics with Contact Force Prediction

(a) back view

(b) right view

Figure 3.11: Sequence 9 at 4 fps with ground truth torques, right shifted every

frame for visibility.

Torque bound limits We do not use joint torque bound limits, whereas [Robert 2013]
does. The �gure 3.12 shows the e�ect of setting bound limits on joint torques as
inequalities in addition to the weighted minimization of the joint torques. These
plots shows no signi�cant di�erences on the resulting contact errors when the com-
putation is done with or without bound limits on the joint torques. The torque
limits choosen by Robert et al. are lower than our ground truth joint torque max-
ima, i.e. computed with sensor data, for the joints the most involved in climbing
motions (e.g. shoulder adduction3, knee extension). The McGill motions thus re-
quire torques above standard torque limits, leading to some infeasibilities for the
quadratic program with standard bound limits. Therefore we remove bound lim-
its because their only signi�cant e�ect is to reduce the feasibility of the quadratic
program.

Limit-to-weight conversion We evaluated two di�erent methods to convert
joint torque limits into joint torque weights. The �rst one is linear (weight =

3adduction: the upper limb moves down laterally
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Figure 3.12: In�uence of other factors on the inverse dynamics errors. The two

factors tested are the inclusion or not of bound limits on joint torques and the

quadratic vs linear limit-to-weight conversion. The vertical segments are the 95%

con�dence intervals.
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set Robert et al. Ours Uniform
limits 108 ± 68 91 ± 56 100 ± 0.0
linear weights 0.018 ± 0.019 0.035 ± 0.087 0.01 ± 0.0
quadratic weights 0.00068 ± 0.00124 0.00847 ± 0.04283 0.0001 ± 0.0
normalized
limits 0.1459 ± 0.0915 0.1464 ± 0.0906 0.171 ± 0.0
linear weights 0.121 ± 0.123 0.065 ± 0.161 0.171 ± 0.0
quadratic weights 0.083 ± 0.152 0.034 ± 0.171 0.171 ± 0.0

Table 3.4: Analysis of limits and weights variations by means and standard devia-

tions (mean ± s.d.). For the �rst three rows, the limits are in N.m, linear weights

are in N−1.m−1, and quadratic weights are in N−2.m−2. For the last three rows,

the quantities are normalized, so there is no unit. The normalization is done at 1

here. As described previously, the �nal weights are then multiplied by 103.

1/limit), and the second one is quadratic (weight = 1/limit2). We use the linear
weighting, whereas in [Robert 2013], the quadratic weighting is used. These weight-
ings are evaluated in the �gure 3.12, with both standard and McGill limits. The
linear conversion improves signi�cantly the results in 17 cases over 30 (with 95% of
con�dence), and does not change signi�cantly the results for the other cases. This
improvement is not due to the fact that the linear conversion makes the weights
closer to uniform weights. Indeed, the table 3.4 shows the mean and standard devi-
ation of the three evaluated sets of limits, with the mean and standard deviation of
their associated weights with both linear and quadratic limit-to-weight conversions,
and the same for the corresponding normalized sets, as the weights are normalized
after conversion in our algorithm (see section 3.3.4). The standard deviation of the
normalized quadratic weights of Robert et al. is 0.152, whereas the standard devi-
ation of our normalized linear weights is 0.161. This shows that the �rst weighting
is closer to a uniform weighting than the second one, thus the closeness to the uni-
formity is not the criteria that explains the improvement of the linear conversion.
The explanation of this improvement will be illustrated with an abstract example.
Let's consider the quadratic program

min
fa,fb

wa
2
f2a +

wb
2
f2b (3.10)

s. t. fa + fb = fext (3.11)

where fa and fb are some 1-D actuation forces, wa and wb are their associated
weights and fext is an arbitrary force that the actuation forces must reach. Let's
consider that the limits of the actuation forces are respectively Fa and Fb. The
system 3.10, 3.11 can be solved using Lagrangian multipliers and Mapple, which
gives the solution

f∗a =
wb

wa + wb
fext and f∗b =

wa
wa + wb

fext. (3.12)
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The ratio f∗a/f
∗
b = wb/wa is thus linearly proportional to the weight ratio. Con-

sequently, normalizing the force by their maxima in equation 3.10, i.e. using a
quadratic weighting, gives a �nal force ratio of f∗a/f

∗
b = (Fa/Fb)

2, whereas using a
linear weighting leads to a �nal force ratio of f∗a/f

∗
b = Fa/Fb. We conclude that in

this case, the linear limit-to-weight conversion better respect the force limit propor-
tions. Respecting the limit proportion is especially useful in the extreme case where
fext = Fa + Fb, meaning that all the available forces are needed. With quadratic
weights, equation 3.12 becomes

f∗a = F 2
a

Fa + Fb
F 2
a + F 2

b

and f∗b = F 2
b

Fa + Fb
F 2
a + F 2

b

. (3.13)

Except in the degenerated case where Fa = Fb, this equation gives that f∗a 6= Fa
and f∗b 6= Fb, but equation 3.11 tells that f∗a + f∗b = Fa +Fb, so one of the actuation
force must exceed its limits. On the contrary, with a linear weighting, equation 3.12
becomes f∗a = Fa and f∗b = Fb, and the character is able to reach its global limit
while respecting its individual actuator limits.

Anatomical directions The anatomical directions are determined using succes-
sively two inverse dynamics optimizations. The anatomical weightings presented in
table 3.1, are implemented by projection of joint torques on the anatomical direc-
tions corresponding to the given weights. This projection is done in the equation
3.4. Using a quadratic term in this equation leads to the lost of the sign of the
projected torque component, and has for consequence the confusion between the
opposite anatomical directions. Such pairs of directions can have di�erent weights,
as it is the case for the knee �exion and the knee extension for instance. To avoid
this confusion, two inverse dynamics computations are needed. The �rst one uses an
arbitrary set of weights (the odd lines in table 3.1). The resulting torques are then
projected on the anatomical axes, and one direction in each opposite pair of direc-
tions is selected. Then the inverse dynamics is recomputed with the new weights.
This process is not exact as we observed that between the �rst and the second opti-
mization, the ankle torque can switch from inversion4 to eversion for instance, but
at least the directions bearing the biggest torques, such as the �exion or extension
of almost every joints for instance, are well estimated.

3.5 Conclusion

Following a criteria of minimal torques and contact forces, we showed that the full
inverse dynamics problem can be accurately solved from motion data alone, for hu-
man activities such as walking or climbing. While not as accurate as force plates,
our simple formulation opens the possibility of easily estimating useful dynamic
data for motion analysis and physically based animation. It builds upon previous
contributions in this area by increasing the accuracy of results that can be expected

4inversion: foot internal rotation around its horizontal main axis, the little toe goes down
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from such a motion-based approach, and by providing an original evaluation of this
method on climbing motions. Our approach works well when the performance itself
is actually optimal. In the climbing situation for example, if a subject in a still posi-
tion on four holds pushes equally on all holds so that his pose does not change, the
true non-optimal forces will not be recovered. To summarize, our approach is able
to recover dynamics for an optimal usage of forces. This is a limitation but covers
most of the cases in standard locomotion. Our work also addresses another issue
concerning contact: how contact forces are smoothly established and broken. Cur-
rently, our procedural model of transition is based on �xed parameters for amplitude
and duration. As force measurement are available from our experimental setup, it
will be interesting to automatically learn these parameters and quantify how much
they speci�cally relate to the situation or to the subject's physical characteristics.
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4.1 Introduction

Human motion synthesis is the art of making a 3D human-like character moving in
a virtual environment. Once the character and the environment have been modeled,
the next step is to determine the temporal behavior of the character's degrees of
freedom with respect this environment, which is the issue addressed in this chapter.
Although an artist alone could �nely tune each movement of the character with some
carefully designed 3D interface, we demonstrate in this chapter how the analysis
of physical quantities related to the wanted motion could save hours of works to
such an artist. Whereas most of the previous works consider the total duration
and sometimes the instants of the di�erent events as input data, we transversally
consider that the known quantities are the place where the events occur, and that
the unknowns are the instants of these events along with the total duration of the
task to perform. The precise case of climbing motions have been chosen, where
the particularly restricted environment lets a few choices to the character on the
path to follow, and a focus can be made on the timing with which the movements
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are performed. A major advantage of optimizing solely on the timing is the low
dimensionality of the problem to resolved, enabling a detailed study of the behavior
of the proposed algorithm.

The previous approaches in physically-based motion synthesis mainly focus on
motions such as walking or running, where the environment is made of a continuous
in�nite plan. In such environment, two of the most di�cult tasks to tackle are on one
hand the posture control, which is largely under-constrained due to the multiplicity
of the gestures a character can perform on the ground, and on the other hand the
balance maintaining, because the polygon of support is made most of the time of
one foot during walking or running. Our work tackles a new kind of motions where
the environment is made of a sparse set of protrusions vertically distributed called
the holds, used for the ascent. This special environment resolved the two previously
mentioned di�culties by providing a restricted path to the climber, imposing the
gestures to do, and by enabling to have most of the time three contacts with the
environment among the hands and the feet, ensuring that the balance can always
be maintained.

In addition to kinematic restrictions due to the holds, we moreover assume that
the climber tries to reduce his energy consumption to be able to climb as high as
possible, without running out of energy. This minimization is especially needed in
climbing, where the arms are as mush used as the legs. The upper limbs being the
weaker limbs, usually not included in locomotion tasks, minimizing the energy is a
necessity in climbing, as opposed to bipedal locomotion, where the lower limbs can
be used in various non optimal ways without running out of energy.

Although the climbing activity has already be tackled by roboticians almost
a decade ago, the aim of those studies are di�erent than ours. Indeed the driven
criteria for the control of multi-legged robots is the stability of the controller, leading
to quasi static motions. In our case, we can a�ord to be close to stability edges by
focusing solely on the e�ciency of the motion, to produce human-like instead of
robot-like motions. The resulting motions are optimal, as observed among trained
climbers, whose experimented techniques lead to �uid motions, without hesitation.

Finally, timing optimization is a convenient way to address the human-like char-
acter motion synthesis problem, as it brings a simple 1D formulation. This simplicity
allows us to tackle more complex motions and longer sequences. It also allows us
to analyze �nely the output of the optimizer, in order to accurately interpret con-
vergence failures and measure the quality of the results. For example, a comparison
is made in this chapter between the segmented optimization technique with the
corresponded all-at-once optimization, with the interesting conclusion that the two
results di�er.

In the following, the related work is reviewed before presenting the formulation
of the timing optimization problem. In the section results, we provides two timing
optimization examples on bouldering examples where the motion is based on a few
MoCap keyposes, on which the convergence of our algorithm is analyzed in details.
Then a longer example is tackled, along with the evaluation of the drawbacks and
bene�ts of the segmented optimization.
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4.2 Related Work

Physics-based 3D character animation has been studied for more than 25 years. One
of the earliest works on this subject [Witkin 1988] de�nes spacetime constraints for
optimizing a trajectory for the Luxo lamp. Given the start pose, the end pose and
the contact instants, a trajectory that respects the Newton's second law is found.
The main di�culty of this optimization problem is its size, which is the number
of control frames times the number of degrees of freedom (DoFs) of the character.
Popovic and Witkin [Popovi¢ 1999] overcome this issue by prede�ning the motion on
high level body handles. Similarly, high-level motion planning is used by Mordatch
et al. [Mordatch 2010] to control locomotion in a varied environment, and by Al
Borno et al. [Al Borno 2012] to satis�ed varied user objectives. Others directly
optimize the full-body controllers for gait cycle on a planar terrain [Wampler 2009],
or the optimization parameters for a given motion [Liu 2005]. The tractability
of spacetime optimizations can also be obtained with monocular videos to guide
the optimization [Wei 2010], or with motion graphs to reduce the search space
[Safonova 2008, Ren 2010], or even by using an analytical gradient for the external
forces and for the character momentum, as in [Fang 2003]. In this last work, a
physically valid motion from a reference motion of a character of 22 DoFs is found,
but the whole timing is provided as input, and no internal actuation is computed.
In our case, those two last quantities are optimized to increase the realism of the
result.

Recently, the spacetime optimization has been generalized by Mordatch et al.
[Mordatch 2012] to more complex characters in an open-loop context. In their
formulation, the overall movement time T , is partitioned into K phases of 0.5s. The
character state is optimized at phase boundaries, and the overall motion is obtained
by cubic spline interpolation of those intermediate states. Thus the resulting motion
is spatially optimal, that is to say optimal for a �x time window. Conversely, our
method �nds the temporal optimum, which is the optimal motion for a �xed spatial
trajectory.

The second main approach for physically-based character animation has been his-
torically the design of speci�c controllers for human, monopedal and quadrupedal
locomotion [Raibert 1991, Hodgins 1995, Coros 2011]. If these controllers were
gathered in a broad repertoire of lifelike motor skills, Faloutsos et al. [Falout-
sos 2001] show how they would be composed to produce longer and more varied
animation sequences. A general method to design speci�c controllers for bipedal lo-
comotion, is formalized with SIMBICON [Yin 2007], which consists of a �nite state
machine where at each state the character is guided towards a target pose, thanks to
proportional-derivative (PD) controllers. Wang et al. [Wang 2010, Wang 2012] use
SIMBICON to parameterize a spacetime optimization of the human gait, whereas
Vondrak et al. [Vondrak 2012b] combine it with monocular video tracking to control
human walking, jumping and gymnastics.

Realtime with physically-based animations can be obtained by sequentially op-
timizing each frame of the animation individually. By this way, the full character
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can track a given motion [da Silva 2008, Macchietto 2009, Liu 2010, Brown 2013],
or some body features can be controlled by o�ine user handles [Abe 2007], that can
even be combined with a state machine [Jain 2009, de Lasa 2010]. In comparison
with spacetime approaches, the drawback of such methods is the ability to only
satisfy instantaneous objectives. Another way to obtain realtime physically-based
animation is to combine it with online user interactions, as in [Laszlo 2000]. In
this work, simple 2D characters are controlled by PD-controllers, guided by some
user commands interfaced with mouse and keyboard. For sensitive motions such as
successive jumps with a back-�ip for instance, checkpoints are used for the creation
of the animation. A more recent example of such realtime interaction is the online
game QWOP [Foddy 2008], a game where an Olympian must run a 100 meter race,
controlled by the player with the keys Q and W to lift right and left thigh, and O
and P to control the calves. Although this kind of interactive controllers provides
addictive games, they require hours of training to obtain realistic motions. Thus
there use in character animation, where o�ine tuning of the motion is often used to
obtained �ne details, is questionable.

As opposed to realtime, the issue of physics-based animation can also be tackled
by considering the realism of the model itself on an anatomical point of view. Follow-
ing this criteria, detailed musculoskeletal models have been designed and animated
for simulating the human breathe [Zordan 2006], the neck movements [Lee 2006], the
full upper body [Lee 2009], the softness of the skin [Jain 2011], and the lower body
[Wang 2012]. In this last work, a realistic human lower limb model is optimized to
obtain the activation parameters of a walker and a runner. The optimization is ini-
tialized with hand-tuned values based on the work of Geyer and Herr [Geyer 2010].
The gait cycle is made of 4 states, with transitions occurring either at the foot strike
instants, or when the horizontal center of mass (CoM) position with respect to the
ankles is above a given value. The CoM horizontal target velocity is also given. In
our case, the speed of the CoM is optimized instead of given. While very appealing
for their anatomical realism, the high complexity of the models presented in this
paragraph makes them di�cult to control in the context of acyclic and relatively
long motion. Moreover, both precise anatomical models and complex activation
patterns are available in the case of well biomechanically studied activities such as
walking or running, but these models cannot be generalized directly for a drastically
di�erent and less studied activity such as climbing.

In robotics, several climbing robots already exist. In [Bretl 2005], a random
sampling is used to �nd feasible climb trajectories for a planar three-limb robot
and for a 3D four-limb robot. In [Linder 2005], a planar four-limb climbing robot
is controlled by a similar method, with 1D force sensors at the robot end-e�ectors
to control the contact establishment, and with a basic video-based hold detection
(the holds contain green LEDs). These three mentioned robots evolve on nearly
vertical walls, with quasi static motions. Indeed in robotics, the main required
feature is the stability of the robot, and the optimality of its movements is often
neglected. Conversely our work focuses on the optimality of climbing motions. A
survey on climbing robots [Chu 2010] classi�es them into six categories according
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to there locomotion mechanism: legged, wheel-driven, tracked, translation, cable-
driven and combined; and into �ve categories according to their adhesion device:
suction, magnetic, gripping, railguided, and biomimetic. If our simulated climber
were a robot, it would fall in the categories legged and biomimetic.

Finally, it is interesting to notice the similarity of our work with the work of Mc-
Cann et al. [McCann 2006], where an input MoCap motion is retimed by changing
the total duration of the sequence. The key di�erence here, is that in their case,
the total duration of the animation is an input parameter, whereas in our case, the
duration is optimized. Note that this duration is given in most of the synthesis
works mentioned above. However, this parameter is crucial in motion synthesis,
because it acts upon the whole animation by constraining the average velocity to
perform the given tasks. Moreover, the optimization of this parameter is not as
obvious as it could appear at �rst sight. Indeed, the smoothest motion obtained
with time bounded optimization by minimizing for instance average squared joint
torques or accelerations, is not anymore a good objective as it leads to in�nitely long
animations. Another major di�erence with [McCann 2006] is that they are focusing
on a fast computation of almost single-contact motions, whereas we are focusing
on the accuracy of highly multi-contact motions. Therefore, their resolution of the
multi-contact inverse dynamics problem consists solely on feasible contact forces,
and thus an interpolation of some scatter solutions is enough to obtain a continuous
range of solutions used for the retiming. In our case, we do not rely on a �xed set of
precomputed contact forces, but directly on the minimization of joint torques with
fully varying contact forces, which is particularly needed to obtain energy e�ciency
in highly multi-contact contexts. Finally, the main input of [McCann 2006] is a full
MoCap sequence, whereas only sparse end-e�ector positions are needed in our case.

4.3 Problem Formulation

4.3.1 Continuous timing optimization formulation

This section describes the context of the timing optimization. The inputs are the
geometry and inertial properties of a climber, and the bouldering problem or the
route to climb, described either by a series of keyposes of the climber, of by a
sequence of holds to take. The outputs are a realistic continuous climbing path to
follow, as well as the optimal timing along this path that minimizes the joint torques
needed for the ascent. The timing optimization is summarized �gure 4.1.

We have a character with nj ∈ N joints. In practice, we have nj = 18 joints,
including 4 hinge joints, 1 root joint and nj − 5 ball joints. Each non-root joint
connects two rigid bodies together, forming an articulated tree of rigid bodies. The
character evolves in the generalized coordinates space G = Rd. In practice, d = 49

(= 3× (nj − 5) + 4 + 6).

The character's trajectory is an interpolation of keyposes in G. This interpo-
lation is a composition of linear interpolation, inverse kinematics, 1D cubic splines
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Figure 4.1: Problem formulation. The aim is to optimize for the timing, t(s), de-

�ned on the parametric space [0, 1], knowing the parametric curve, q(s), representing

the spatial climbing path, with no timing. The parametric coordinate, s, evolves in

[0, 1]. q(t) represents the timed trajectory of the climber.

and quaternion cubic splines. The interpolation is described by the function

q : [0, 1] −→ G
s 7−→ q(s),

(4.1)

where s is the parametric coordinate of the trajectory. s = 0 means that the climber
is at the beginning of the climbing path, and s = 1 means that the climber is at the
end of the path. q(s) represents the character joint con�guration associated with a
given parametric coordinate s.

The originality of our work is to consider that the time is evolving in the para-
metric space, and that the mapping between the parametric coordinates and the
generalized coordinates is �xed and independent of the time. Thus the time is a
function of the parametric coordinates, which we can write

t : [0, 1] −→ [0, T ]

s 7−→ t(s).
(4.2)

The overall problem is to �nd this timing function t(s). This involves �nding the
total time of the climbing run T , and the mapping between parametric coordinates
and temporal points of [0, T ]. This objective is depicted in the �gure 4.1. For the
function t(s) to be well de�ned, we assume that the �nal parametric coordinates are
increasing with the time.

The main di�culty for implementing the timing optimization described above,
is to de�ne the samplings for the parametric space [0, 1] and for the timing space
[0, T ], from which the optimization variables are de�ned. There are four levels of
sampling, outlined here and then detailed later.

• Level 1: Input keyposes parametric sampling, which is set once for all before
the optimization.
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Figure 4.2: De�nition of the parametric coordinates for the input keyposes (skeys),

for the virtual sub-keyposes (ssubkeys), and for the optimization variables (sx). Here,

Nkeys = 5 and Nx = 12.

• Level 2: Parametric sampling for the optimization variables, which is �xed
in the parametric space, but the associated points of the timing space are
optimized.

• Level 3: Temporal sampling for the inverse dynamics computation, which is
regularly spaced in the temporal space, with a number of samples �xed once
for all before the optimization.

• Level 4: Temporal sampling for the �nal rendered animation, which is regu-
larly spaced in the temporal space, with a varying number of samples, in order
to match the rendering framerate.

The keypose sampling and the optimization variable sampling are detailed in
the section 4.3.2. The inverse dynamics sampling is described in the section 4.3.3.
The �nal rendering sampling is not detailed. Finally the section 4.3.4 presents the
cost function evaluation, computed on the inverse dynamics samples.

4.3.2 Trajectory sampling to de�ne discrete optimization variables

The keyposes, de�ning the climb trajectory by interpolation, are also called keyframes,
or keys. Their number is noted Nkeys. The parametric coordinates of the keyposes,
noted skeys, is set before the optimization as a regular sampling between 0 and 1.
The �gure 4.2 illustrates this sampling when Nkeys = 5. To re�ne the timing opti-
mization, we add several virtual sub-keyposes between the original input keyposes.
Their number is noted Nsubkeys. The parametric coordinates of the sub-keyposes,
noted ssubkeys, are also regularly sampled.

The aim of the timing optimization is to �nd the timing function t(s). This
function is discretized at each sub-keyposes, such that the problem becomes to
know the time instants at which the climber goes through each sub-keypose. For
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Figure 4.3: The optimized quantities, or optimization variables, noted x, are the

time intervals between sub-keyposes (in blue). In this example, the number of un-

knowns for the optimization, Nx, is 6. This is also the size of sx, which are the

parametric coordinates associated to x.

the timing function t(s) to be well de�ned, we need that the parametric coordinate s
increases when the time t increases, such that the function from t to s is bijective, and
thus t(s) exists and is an increasing function of s. To ensure this last property along
the sub-sampling, we take as optimization variables x, the time intervals between
two successive parametric coordinates in ssubkeys, and constrain x to be positive.
The parametric coordinates related to x, noted sx, are therefore in-between the
parametric coordinates of the sub-keyposes. The size of x, noted Nx, is thus the
number of sub-keypose intervals (Nsubkeys − 1).

To summarize, the input keyposes are re�ned with intermediate sub-keyposes.
The optimization variables are de�ned as the time duration between two succes-
sive sub-keyposes, as represented �gure 4.3. The convertion from the optimization
variable x = (x1, . . . , xNx) to the timing tsubkeys = (t0, . . . , tNx) is obtained by

tsubkeys : ti+1 =

{
0 if i = 0,

ti + xi otherwise,
∀i ∈ 0..Nx. (4.3)

Thus the total time of the sequence

T =

Nx∑
i=1

xi, (4.4)

which is also tNx , is thus implicitly included in the optimization.

4.3.3 Timing resampling for inverse dynamics

The inverse dynamics operates on constant time intervals, and our cost function
is based on an inverse dynamics computation to evaluate the cost of the climb.
Therefore, a resampling of the subkeys timing is needed to convert the time-varying
pairs {ssubkeys, tsubkeys}, into time-regular pairs {sid, tid}, that is to say pairs sampled
at a regular time step. An example is shown �gure 4.4.

The number of inverse dynamics frames, Nid, is constant to ensure the continuity
of the cost function, and is set before the optimization. This number is used with
the total time T of the trajectory obtained by summing the optimization variables
(equation 4.4), to obtain the timestep for the inverse dynamics

∆id =
T

Nid − 1
. (4.5)
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Figure 4.4: The resampling of the parametric-regular pairs {ssubkeys, tsubkeys}, into
the time-regular pairs {sid, tid}. Here, the optimization size Nx = 6, which equals the

size of ssubkeys minus 1, and the number of frames for the inverse dynamics Nid = 13,

which equals the size of tid. The green color represents quantities for the green path of

the �gure 4.1, where the parametric coordinates are used as intermediate quantities

to go from the time space to the character pose space.

Note that ∆id is not the �nal time step of 25 fps or 100 fps, but is a time step
varying during the optimization. Ideally, the cost function should be a continuous
function of Nid, such that the �nal time step could be used directly, but this feature
is let for future works.

Once the inverse dynamics timestep is de�ned, the inverse dynamics timing tid
is computed with the relation

tid : tk = (k − 1)∆id, ∀k = 1..Nid. (4.6)

tid is then used to obtain the related parametric coordinates sid, by a cubic spline
interpolation of the pairs {tsubkeys, ssubkeys}. The corresponding Matlab command
is

sid = spline(tsubkeys, ssubkeys, tid). (4.7)

For details about this 1-D cubic spline interpolation, one can look at the online
documentation of the Matlab's spline function. An illustration of this function is
provided �gure 4.4.

Finally the trajectory for the inverse dynamics is computed by interpolating the
keyframes in the generalized coordinate space

qid = ikqspline(skeys, qkeys, sid). (4.8)

The subkeys are not needed anymore, as they are themselves de�ned from the inter-
polation of the keyframes. The ikqspline function consists of two steps. First a cubic
spline interpolation is used for the hinge joints and for the root translations, and
a quaternion cubic spline interpolation is used for the ball joints. Then the world
coordinates of the contact points on the hands and feet are linearly interpolated.



82 Chapter 4. Motion Synthesis by Timing Optimization

Finally, the limbs are adjusted procedurally to match the contact points by inverse
kinematics. The quaternion cubic spline interpolation is implemented from the work
on quaternion cubic spline by J. McEnnan [McEnnan 2003]. By using a procedural
inverse kinematics, guided by cubic spline interpolation, we ensure that the hands
and the feet do not get into the wall (at least when it is concave), and do not move if
they are identical on two successive keyframes. Moreover, the obtained trajectory is
continuous, which would not be the case with a classic nonlinear inverse kinematics,
producing independent local minima along the trajectory. We have thus de�ned qid,
which are the frames on which the timing cost function is computed.

4.3.4 Timing cost

The timing cost consists of both the actuation needed to follow the climbing tra-
jectory qid with the timing tid, and a contact term ensuring that the current timed
trajectory can be done without using contact forces when contact points are not
touching the wall. The actuation term, based on joint torques, represents the e�ort
needed to perform the motion. The joint torques computation is presented in the
subsection �torques�, which provides some complements to the chapter 3. The sub-
section �contact cost� tackles the issue of the plausibility evaluation of the contact
forces. A �nal subsection �nonlinear objective� is dealing with the proper de�nition
of the nonlinear cost function.

Torques

The �rst step for the inverse dynamics computation is the velocity and acceleration
computations. This computation is done by �nite di�erence of the trajectory frames
qid. The associated velocities, q̇id, are computed by backward di�erence, and the
accelerations, q̈id, are computed by central di�erence. We set the unde�ned bounds,
which are the �rst velocity and the last acceleration, to zero. In practice, the �nite
di�erence is perform in maximal coordinates to simplify the derivation of the Coriolis
and centrifugal terms.

In a next step, the known quantities of the equation of motion are gathered in
a single vector

h = Mq̈i + C(qi, q̇i), (4.9)

where M is the generalized mass matrix and C gathers the Coriolis, centrifugal and
gravitational terms. This known h vector is then projected to isolate its root part
hr, which is not actuated, and its actuated part hτ . These two vectors enables us to
write on the one hand, the joint torques τ as a linear function of the contact forces
fc, and on the other hand, the only equality constraint on the contact forces, which
is of dimension 6.

τ(fc) = hτ − JTτ fc (4.10)

hr = JTr fc (4.11)
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where JTr transfers wrenches from contact points to the root frame (which can
be actually any frame, including the world origin for instance), and sums these
transfered wrenches. JTτ transfers wrenches from contact points to joint locations,
and project them on the actuation axes. They consists of any triplet of orthogonal
axes for ball joints, and the hinge axes for hinge joints. A straightforward future
work would be to use anatomical axes, as in chapter 3. Note that the anatomical
axes are not orthogonal in general, as they are de�ned by successive Euler angles.
Thus an actuation redundancy occurs when using anatomical axes, which does not
occur with the orthogonal axes we use in this chapter. Nevertheless, the anatomical
axes provide a way to interpret the computed torque components, which can be used
by an external user to weight them for the actuation cost evaluation. Ideally, the
redundancy of anatomical axes should be avoided by nonlinear inverse dynamics,
instead of quadratic based inverse dynamics. The second one, less accurate but
faster, could eventually be used as initialization of the �rst one.

In a �nal step, by building on two previous works on inverse dynamics [Wei 2010,
Mordatch 2013], we obtain the contact forces fk needed to produce the trajectory
by solving at each frame k from 1 to Nid, the quadratic program

fk = argmin
fc

τ(fc)
TWττ(fc) + fTc Wkfc (4.12)

such that hr = JTr fc (4.13)

Fcfc ≤ 0, (4.14)

where we inject in (4.12) the force-torque linear relation (4.10) to end up with only
the contact forces as unknowns. In our case, with a single contact point per hand
and per foot, we end up with only 12 unknowns. Taking also τ as unknown would
have increased this number of unknowns by 49. The joints weights Wτ are set such
that weaker joints, such as the wrists or the neck, are more costly than the stronger
ones, such as the leg joints. Wτ does not depend on the frame number, whereas
the contact weights Wk are computed at each frame k, as explained in the next
subsection. Fc is a friction cone. To reduce the number of variables, we do not use
the classical friction basis vectors for Fc, which would imply to have one contact
force component per cone generator vector. Instead, Fc projects the contact forces
fc on the outward normals of the facets of the polygonal friction cones. This enables
us to use up to 8 facets per cone, without a�ecting the size of the cost function to
minimize (4.12). From the optimal contact forces fk, the corresponding per frame
joint torques τk are retrieved with the equation 4.10.

Contact cost

The contact cost Wk is used twice in our optimization framework. On one hand,
it is used frame by frame to computed the best contact forces, independently at
each frame k, given the current timing. This usage has been presented in the last
subsection. On the other hand, the contact cost of the whole trajectory is used to
decide how the timing should evolve to give a more plausible motion. This will be
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presented in the next subsection. This subsection focuses on the component of the
contact cost that guides both level of optimization (per frame, and on the whole
trajectory) to determine the �nal contact forces, which is the per-frame contact
weight matrix Wk. This matrix tells the optimizers if a contact point is allowed to
generate forces, or not.

The major di�erence between the contact weighting of the chapter 3, focusing
solely on inverse dynamics, and the one used in this chapter, also dedicated to motion
synthesis, is that the �rst one relies on contact time instants, whereas the second
one relies on spatial contact kinematics, and is thus independent of time instants.
Indeed, the inverse dynamics of chapter 3 applies a smooth contact transition just
after the contact establishment and just before the contact breaking. During this
transition, the contact point does not move (up to MoCap noise). Conversely here,
the contact transitions are done on the spacial localization of the contact point, just
before the contact establishment and just after the contact breaking. Despite less
accurate, this process is straightforward to implement, and is thus used in state-of-
the-art physics-based motion synthesis [Mordatch 2013], but should be changed in
future works to increase the contact model accuracy.

We set nc = 4 contact points locally �xed on the character, one per hand and
one per foot. We call them local points. nh holds can be used for the climb. These
holds are the environment contact points, and are represented by one 3D point each.
There are Nid frames. For each frame k, for each local point i, of world coordinates
pk,i, the distance between pk,i and the environment, noted dk,i, is computed as the
closest distance between the local point and the set of holds, which gives

∀k ∈ 1..Nid,∀i ∈ 1..nc, dk,i = min
j∈1..nh

||pk,i − p′j ||, (4.15)

with pk,i the world coordinates of the local point on the climber, and p′j the hold
coordinates. The local point velocity, vk,i = ṗk,i, is computed by �nite di�erence.
The contact availability, noted αk,i = α(dk,i, vk,i), is expressed by a scalar value
in [0, 1]. 1 means an available contact, i.e. a local point on the climber that can
generate forces, and 0 means a local point that can not be used as contact. The
availability is a function of the distance and the velocity of the local point. Those
quantities are converted from [0,+∞[ to [0, 1[ with the sigmoid function

σ(x) =
1− tanh(k1x− k2)

2
, (4.16)

where x can be either distance or velocity, and k1, k2 ∈ R a some scalar constants
detailed just after the next equation. The contact availability is then computed as
a product of both the distance sigmoid and the velocity sigmoid

αk,i = α(dk,i, vk,i) = σ(dk,i) σ(vk,i). (4.17)

The constants k1 and k2 are set to 30 and 3 respectively, such that α has the shape
plotted in the �gure 4.5. With this shape, if the local point is at 1 cm from a
hold, with a velocity of 1 cm.s−1, then α = 0.99, which means that the contact is



4.3. Problem Formulation 85

−0.15
0.15

0

1

(m.s
−1

)point velocitypoint distance (m)

α

Figure 4.5: The availability function α turns o� contact forces if the potential

contact point, a local point on the climber, is far from the environment, or if this

point is moving.

established. If the distance is 10 cm and the velocity 10 cm.s−1, then α = 0.25 and
the contact is approximately not established. Finally, at 15 cm of distance and 15
cm.s−1 of velocity, α = 0.002, i.e. the contact is de�nitely not established.

The contact availability value is then converted into weight for the objective
functions. The range of the contact weights is arbitrarily set to [10−4, 104]. A high
contact weight value means a costly contact, i.e. a contact that should not be used
because it does not exist in practice. Conversely low values are set for contacts
that can freely give forces to the climber. The availability-to-cost conversion is
implemented with the logarithmic barycentric interpolation

wk,i = 10−4αk,i+4(1−αk,i), (4.18)

valid for each frame k, and for each local point i. To be able to use these weights
with the contact forces in the quadratic form fTc Wkfc, the are gathered per frame
and rearranged in a diagonal matrix :

Wk =



wk,1 0 0

0

0

0 wk,1 0

0 0 wk,1

0

wk,2 0 0

0 wk,2 0

0 0 wk,2

0

wk,3 0 0

00 wk,3 0

0 0 wk,3

0

wk,4 0 0

0 wk,4 0

0 0 wk,4



(4.19)

Each triplet of columns corresponds to the x-, y- and z-axis components of the
contact force generated at a given local point on the climber, at a given frame k.
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For instance the �rst triplet corresponds to the right foot contact force and the last
triplet corresponds to the left hand contact force.

Nonlinear objective

The nonlinear energy minimization is the second optimization level. As opposed
to the �rst one, which operates frame by frame, this one operates on the whole
trajectory to optimize for its timing. Like the previous one, the objective function
to minimize contains both joint torques, modelizing the internal energy consumption
of the climber, and contact forces, modelizing the plausibility of the motion.

At a frame k, the joint actuation is a vector noted τk. This vector has d = 49

components, one component per generalized coordinate. These components are
noted with the index j ∈ 1..d. In other words

τk =
[
τk,1 τk,2 . . . τk,j . . . τk,d

]T
. (4.20)

The joint torque consumption is evaluated per component by squared integration of
its value, τj(t), over the climb time t. The joint torque consumption on the whole
trajectory for component j, noted τ̃j , is then

τ̃j =

∫ T

0
τ2j (t)dt (4.21)

≈ ∆id

Nid∑
k=1

τ2k,j . (4.22)

τj(t) is the continuous joint torque function of time for component j. ∆id is the
inverse dynamics timestep as de�ned in equation 4.5. The joint torque consumptions
per component are then rearranged in one vector and weighted, to give the actuation
consumption

τ̃ = Wτ

[
τ̃1 τ̃2 . . . τ̃j . . . τ̃d

]T
. (4.23)

This actuation consumption is the �rst part of the nonlinear objective function.
The second part of the nonlinear objective function is the air-contact consump-

tion, which indicates the amount of contact forces that are generated at the climber's
points that do not touch the wall. This is done by multiplying the contact forces by
0 if the contact is established, or by a positive value if it is not. We found empirically
that a range of [0, 1] gives better results than a range of [10−4, 104]. Consequently
we use 1− α instead of Wk to penalize the forbidden forces. At the frame k, there
are Nc = 3 × nc = 12 contact force components, that we index with the letter l,
such that

fk =
[
fk,1 fk,2 . . . fk,l . . . fk,Nc

]T
. (4.24)

fk is de�ned in equation 4.12. The conversion from contact component index l ∈
1..Nc to contact index i ∈ 1..nc is ensured by the function i(l) = floor( l−13 ) + 1.
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Similarly to the actuation consumption, the air-contact consumption, noted f̃ , of
components f̃l, is integrated over the climb time, which gives

f̃l =

∫ T

0
(1− αi(l))f2l dt (4.25)

≈ ∆id

Nid∑
k=1

(1− αk,i(l))f2k,l, ∀l ∈ 1..Nc (4.26)

and f̃ =
[
f̃1 f̃2 . . . f̃l . . . f̃Nc

]T
. (4.27)

αi(l) and fl are the continuous function associated respectively to the discretized
functions αk,i(l) (equation 4.17) and fk,l (equations 4.24).

Finally the optimal timing is found by minimizing the norm of the vector con-
taining both τ̃ and f̃ , which gives

min
x

∣∣∣∣∣∣∣∣[ τ̃f̃
]∣∣∣∣∣∣∣∣ . (4.28)

The solution to this program is a series of interval times, as explained in the �gure
4.3. A resampling similar to the one presented in the �gure 4.4 must then be
performed to obtain a regular timing of the �nal video timestep.

4.4 Results

The timing optimization has been applied in two cases presented in the following.
The �rst case presents two short bouldering sequences where keyposes are computed
from MoCap data, and the second case presents a longer sequence where keyposes
are computed by inverse kinematics. For each case, a detailed analysis of the input
parameters is provide. The input parameter analysis constitutes the main part of
this section. Finally, the longer sequence evaluation ends up with a video-based
ground-truth comparison.

4.4.1 Bouldering motion

This �rst series of results shows the application of the optimal timing for bouldering
motions containing ballistic phases with energetic impulse phases. We chose to
reproduce two sequences of the McGill database such that ground truth timings
and keyframes are available. Note that we do not use whole MoCap sequences as
input. Instead, only a few keyframes a taken, that could be easily replaced by
keyframes modeled by an artist using any standard 3D modeling software. The
MoCap timing is not used as input, but only for the evaluation.

Input keyframes and contacts

The �gure 4.6 presents the keyframes used for the bouldering examples. The input
keyframes controlling the path of the climb have been chosen such that the interpo-
lated path is as close as possible to the path of the original MoCap sequence. Those
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(a) Keyframes for the example 1, from McGill 8. (see �gure 2.17)

(b) Keyframes for the example 2, from McGill 9.

Figure 4.6: The input keyframes for the two bouldering examples and their para-

metric coordinates. To obtain those poses, �rst a set of poses is extracted from the

MoCap data. Second, the limbs of the climber are adjusted by inverse kinematics for

the local contact points to match the holds.
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Figure 4.7: Pre-process of the input data by inverse kinematics. Top row, the

MoCap output. Bottom row, the hands and the feet have been adjusted on the holds.

We use a full-body iterative inverse kinematics to stay as close as possible to the

input data.

keyframes can be interpreted as the extrema of the climber's path. The �gure 4.7
shows the preprocess of the input keyframes. The keyframe generation is done in
two steps. The �rst step is the extraction of the MoCap poses wanted to build the
keyframes. The second step is the adjustment of the climber's limbs to match the
holds when a contact is supposed to be established. Indeed, due to MoCap impreci-
sion, the hands and the feet of the climber are skating on the holds instead of staying
still during a contact. The local contact points on the climber's end e�ectors are
therefore replaced exactly on the holds if they are supposed to be in contact.

The potential contact points are presented �gure 4.8. The �rst set of contacts,
the red dots of the �gures 4.8a and 4.8b, are the local contact points on the climber.
They are �xed on the character end e�ectors, namely the hands and the feet, and
move with them. The second set of potential contact points are the holds avail-
able for the climb, represented by the brown spheres of the �gures 4.8c and 4.8d.
Each hold is modelized by only one potential contact point. This contact point
has been estimated by averaging the positions of the local points in the original
MoCap sequences. They are localized on the surface of the brown spheres, and are
the farthest point from the wall on this surface. Both local and global contacts are
continuously present during the whole timing optimization and on the whole se-
quence. The fundamental di�erence between local and global contacts is that only
local contacts can generate forces on the character, at any time, but forces without
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(a) local hand contact points (b) local foot contact points

(c) world contacts for example 1 (d) world contacts for example 2

Figure 4.8: The input contacts for the bouldering examples. The �rst row depicts

the contact points locally �xed on the climber. The second row shows the two sets of

holds for the bouldering examples.

contact establishment are penalized.

Qualitative results

The �gures 4.9 to 4.12 show the comparison of di�erent initial timings with their
related optimal timings for both examples. The �gure 4.13 and 4.14 show the
comparison of optimal timings and ground truth timings for both examples. Each
sequence is plotted at 10 fps and each frame has been shifted toward the right, pro-
ducing an arti�cial horizontal displacement that were not included in the computed
climbing trajectories.

For both examples and for the three presented initializations (slow, fast and
medium speed), the timing for the push-o� and the in-air phases is well recovered,
showing the e�ciency of the optimization for ballistic motions. On the contrary, the
timing for the �rst move and for the landing are slower for the ground truth than for
the optimal timing. For those phases, either the input motion is not optimal, or our
modelization is incomplete or not suitable for the task performed by the climber.
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Figure 4.9: Example 1, top: fast initialization, bottom: optimum. The color bar is

the parametric coordinate space. The horizontal axis is the time, at 10 fps.

Figure 4.10: Example 1, top: slow initial timing, bottom: related optimum.
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Figure 4.11: Example 2, an initial fast timing (top left), the optimal solution

obtained with this initialization (botton), and the four motion phases in parametric

space (top right).

Figure 4.12: Example 2, slow initialization (top) and corresponding optimal timing

(bottom). The time step between two successive hold patterns is 0.1 second. The time

step between two dark brown hold patterns is 0.5 second.
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Figure 4.13: Example 1, optimal timing for a medium-speed initialization (top),

approximated ground truth timing (bottom). The ground truth timing is available

only at each keyframe.

Figure 4.14: Same as above for the example 2.
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Quantitative results

The optimal solutions for the examples 1 and 2 are presented quantitatively in
the �gure 4.15. For each graph, four di�erent optimal timings, corresponding to
four di�erent initialization are plotted. The di�erent initializations converge to
the similar optimal timing, except at the end of the example 1, and at parametric
coordinate 0 and 0.33 for the example 2. Moreover, the ground (red dashed line)
in quite well recovered between parametric coordinates 0.14 and 0.71 for the �rst
example, and between 0.44 and 0.78 for the second example, which correspond to
the ballistic phase of the motion, as mentioned in the qualitative evaluation above.

The cost function values are presented in the table 4.1. For the example 1,
the mean total cost is 364 ± 68 at initialization and 234 ± 12 at convergence. The
standard deviation reduction is thus of 82.3%. For the example 2, the initial cost is
441± 84 and the �nal cost is 234± 1. In this case the standard deviation reduction
is of 98.5%. These high percentage of reduction shows that the solutions are close
to global minima.

initial timing
initial cost (norm) optimal cost (norm)

intervals
actuation contact both actuation contact both
(N.m.s) (N.s) (∅) (N.m.s) (N.s) (∅)

ground truth 172.3 275.3 324.8 139.8 209.7 252.1
const. 30 ms 270.5 343.6 437.3 125.9 190.9 228.6
const. 100 ms 156.8 245.4 291.2 129.1 191.5 230.9
const. 150 ms 212.2 341.8 402.3 125.6 187.9 226.0

(a) Example 1, cost function values.

initial timing
initial cost (norm) optimal cost (norm)

intervals
actuation contact both actuation contact both
(N.m.s) (N.s) (∅) (N.m.s) (N.s) (∅)

ground truth 197.9 322.0 378.0 163.3 249.0 297.7
const. 30 ms 328.1 404.3 520.7 160.5 250.3 297.3
const. 100 ms 183.1 309.2 359.3 160.8 251.4 298.4
const. 150 ms 253.2 436.1 504.2 160.8 247.9 295.5

(b) Example 2, cost function values.

Table 4.1: Initial and �nal cost function values (equation 4.28). The columns

�actuation�, �contact� and �both� contain respectively the actuation consumption, the

air-contact consumption and the total cost (root of squared sum of the �rst two

columns).
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(b) Example 2, same as above.

Figure 4.15: Various initializations (x0's) and corresponding optima (xopt's) for

the examples 1 and 2. The horizontal axis is the parametric coordinate axis. Each

point on this axis thus corresponds to a point on the interpolated path. The vertical

gray lines are the keyposes. The y-axis are optimization values which are interval

times between two successive sub-keyframes, as explained in �gure 4.3.
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4.4.2 Input parameters sensitivity and setting

In return for the simple, uncluttered aspect of nonlinear program formulations, the
parameters of nonlinear solvers are di�cult to set up. In order to demonstrate
the di�culty of their adjustment and how we overcome this task, the following
subsections deal with the quality of the results with respect to the input settings
of the timing optimization solver. We chose to use a gradient-based solver as in
[Mordatch 2013], but the Covariance Matrix Adaptation (CMA) Evolution Strategy
[Hansen 2006] could also have been used, as in [Al Borno 2012]. The �ve parameters
evaluated in detail in this section are:

1. Finite di�erence spacing

2. Gradient descent stop criterion

3. Spacing and stop criterion combination

4. Nonlinear solver choice

5. Sampling sensitivity

Finite di�erence spacing

As we use a gradient-descent-based optimization, with a gradient computed by �nite
di�erence, the convergence depends mainly on the quality of this gradient. To
evaluate this quality, we compute the gradients at several optimization points, for
a logarithmic range of �nite di�erence spacings going from 10−10s to 10−1s. These
gradients have been normalized for their comparison. We de�ne the con�dence
range for the �nite di�erence spacing as the set of spacing values leading to similar
gradients. For the example 1 (�gure 4.16), this con�dence range is evaluated to[
10−5, 10−3

]
. For �gure 4.17a, this range is

[
10−8, 10−2

]
, and for �gure 4.17b, it is[

10−6, 10−4
]
. We observe that the con�dence range is thinner at the optimum than

at the initialization for the second example, which is not the case for the �rst one,
showing the dependence of this range on the observed example. From this study, the
value of ∆g = 10−5 is retained, as a compromise between precision and reliability.

The range of con�dence of the �nite di�erence spacing can also be evaluated
in a more concise way by using the gradient norms, as in �gure 4.18. For norms,
the con�dence range is de�ned by the �at horizontal segments. The previous ranges
become in this case

[
10−5, 10−3

]
,
[
10−8, 10−2

]
and

[
10−6, 10−2

]
respectively. Except

for the upper bound of the last range, the ranges of con�dence are the same as the
ones found with the gradient shapes. The gradient norm is thus a reliable estimator
for the con�dence range for the gradient spacing.

Gradient descent stop criterion

The stop criterion for the gradient descent is the minimal amount of variation on
the unknown x, noted ∆k. To evaluate the quality of the convergence for a given
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(a) Gradients at the initial timing, close to the ground truth.
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(b) Gradients at the optimal timing.

Figure 4.16: For the example 1, comparison of the component values of normalized

gradients of the cost function, for �nite di�erence spacing from 10−10s to 10−1s, at

an initial timing close to the ground truth, and at the corresponding optimal timing.

The optimality is obtained with ∆g = 10−6, and with the stop criterion ∆k = 10−4.
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(a) Gradients close to the ground truth.

5 10 15 20 25
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

component id

n
o

rm
a

liz
e

d
 g

ra
d

ie
n

t 
c
o

m
p

o
n

e
n

t 
v
a

lu
e

 

 
 ∆

g
 = 10

−1

 ∆
g
 = 10

−2

 ∆
g
 = 10

−3

 ∆
g
 = 10

−4

 ∆
g
 = 10

−5

 ∆
g
 = 10

−6

 ∆
g
 = 10

−7

 ∆
g
 = 10

−8

 ∆
g
 = 10

−9

 ∆
g
 = 10

−10

(b) Gradients at the optimal timing.

Figure 4.17: Same as previous page for example 2.
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Figure 4.18: Using gradient norms to summarize �gures 4.16 and 4.17.

∆k, we use the nearness of the optimal solutions for the 4 di�erent initializations.
Each initialization is a vector of size Nx, noted x0. The four di�erent x0's used are
constant vectors of 0.03s, 0.1s and 0.15s, and a timing close to the ground truth
timing.

The �gure 4.19 shows this evaluation for the example 1. For this example,
∆k ≤ 10−8 makes the program to stay at the initialization, leading to very di�erent
timing optima. On the contrary, the solutions with ∆k = 10−5 are the most similar.
The �gure 4.20 presents the same study for the example 2. For this case the best
convergence is also obtained for ∆k = 10−5.

Note that the optimal timing di�erences between parametric coordinates 0.86
and 1.0 in the �rst example are not as obvious in the second example. Moreover for
the second example, ∆k ≤ 10−8 gives optimal timings that are not the initial values,
except for x0 = 0.03, which is not the case in the example 1. Thus the convergence
behavior depends also on the input motion.

To be able to process more systematically the convergence quality, we compute
the standard deviations of the optimal timings. By this way, most of the information
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Figure 4.19: Example 1, convergence variations for stop criteria (∆k) from 10−9s

to 10−1s. The �nite di�erence spacing is ∆g = 10−5. Each color represents 4

solutions obtained with 4 di�erent initializations.
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Figure 4.20: Same study as in the previous page for the example 2.
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(a) Example 1, standard deviations.
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(b) Example 2, standard deviations.

Figure 4.21: Convergence indicator 1: Standard deviations of the four optimal

solutions for each ∆k values.
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(a) Example 1, minimal cost.
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(b) Example 2, minimal cost.

Figure 4.22: Convergence indicator 2: The minimal costs among the 4 optimal

solutions for each ∆k.

of �gures 4.19 and 4.20 can be gathered in 1-D values, as shown in the �gure 4.21.
Along with this �rst indicator of the convergence quality, a second indicator can be
used, which is the minimal cost among the four optimal costs corresponding to the
di�erent timings. The �gure 4.22 presents these costs for the studied examples. By
combining these four graphs, we can con�rm the choice of ∆k = 10−5.

The x0 having lead to the cost minima of �gure 4.22 are shown in the 2 tables of
�gure 4.23. We conclude from these tables that there is no best initialization, and
that the initialization close to the ground truth (g.t.) surprisingly gives the best
cost only in 11% of the studied cases. The ground truth is thus not always the best
initialization.

Spacing and stop criterion combination

Although the standard deviation and the minimal cost give less information than the
direct observation of the optimal timings, their dimension of 1 allows us to evaluate
the inter-dependency of the two input parameters ∆g and ∆k in 2-D graphs, as
presented in the �gures 4.24 and 4.25. In these graphs, the con�dence region for
the parameters ∆g and ∆k is de�ned as the dark blue area. The white dashed lines
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∆k 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

min cost x0 0.1 0.1 0.03 0.03 0.15 0.1 0.15 0.1 0.1

(a) Example 1, min cost / x0 correspondence.

∆k 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

min cost x0 g.t. 0.15 0.15 0.1 0.15 0.15 g.t. 0.15 0.15

(b) Example 2, min cost / x0 correspondence.

Figure 4.23: The initial timings that give the minimal costs of �gure 4.22.

∆g\∆k 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

10−1 0.1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

10−2 0.15 0.15 0.03 0.15 0.1 0.03 0.15 0.1 0.15

10−3 0.1 g.t. 0.03 0.03 0.1 0.03 0.1 0.1 0.1

10−4 0.1 g.t. 0.03 0.03 0.1 0.03 0.1 0.1 0.1

10−5 0.1 0.1 0.03 0.03 0.15 0.1 0.15 0.1 0.1

10−6 0.1 g.t. 0.03 0.03 0.1 0.03 0.1 0.03 0.1

10−7 0.1 0.1 0.1 0.03 0.15 0.1 0.15 0.03 0.1

10−8 0.1 0.1 0.1 0.15 0.1 0.1 0.1 0.1 0.1

10−9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

(a) Example 1, min cost / x0 correspondence for the �gure 4.24b.

∆g\∆k 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

10−1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

10−2 g.t. 0.15 0.15 0.1 0.03 0.15 0.15 0.1 0.15

10−3 0.15 g.t. 0.15 0.1 g.t. 0.1 g.t. 0.15 0.15

10−4 g.t. g.t. 0.15 0.1 0.03 0.15 0.15 0.15 0.15

10−5 g.t. 0.15 0.15 0.1 0.15 0.15 g.t. 0.15 0.15

10−6 0.03 0.03 0.15 0.15 0.15 0.03 g.t. 0.1 0.15

10−7 g.t. g.t. g.t. g.t. g.t. g.t. g.t. g.t. 0.1

10−8 g.t. g.t. g.t. 0.03 0.15 0.03 0.03 0.03 0.03

10−9 0.1 0.1 0.1 0.1 0.1 g.t. 0.1 g.t. 0.1

(b) Example 2, min cost / x0 correspondence for the �gure 4.25b.

Table 4.2: The initializations that gave the best optimal timings, chosen among the

four candidates x0 ≈ ground truth (g.t.), x0 = 0.03s, x0 = 0.1s and x0 = 0.15s.
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Figure 4.24: Example 1, convergence evaluation for the parameters ∆g and ∆k.
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(b) Example 2, optimal costs. Corresponding initializations are printed table 4.2b.

Figure 4.25: Example 2, same as previous page.
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correspond to the curves of �gures 4.21 and 4.22. The two white numbers inside
each graph are the two smallest values in the graph.

The �gures 4.24 and 4.25 show that the standard deviation is not convex in
the space ∆g�∆k. Therefore, a gradient-descent-based optimization in this space
would not success, unless starting close to the solution. This justi�es the brute force
evaluation we used here.

From those four plots, we con�rm the choice of ∆g = 10−5, because the two cost
minima and one minimal standard deviation are obtained with this value, and the
choice of ∆k = 10−5, because it has led to the 2 minima for the standard deviation,
1 minimal cost and one second minimal cost. Actually those graphs are the ones
which have been used for bootstrapping the two previous parameter evaluations.

The table 4.2 presents the best initializations corresponding to the �gures 4.24b
and 4.25b. By observing the dark blue area in the two tables, we con�rm that no
initialization is always the best. In this wider study, the ground truth initialization
is the best for 15.4% of the studied cases. This percentage is 16.0% for x0 = 0.03s,
36.4% for x0 = 0.1s and 32.1% for x0 = 0.15s. x0 = 0.1s has thus a tendency to
give better results.

Nonlinear solver choice

Two solvers have been tested, each of them with its own algorithm. The �rst solver
is the function dtrnlspbc from the Intel Math Kernel Library (MKL). This solver
uses the Trust-Region algorithms [Conn 2000] to solve nonlinear least square prob-
lems with linear bound constraints. The second solver is our own implementation of
a gradient descent algorithm, with an exponential step size adaptation. This algo-
rithm has been designed to be easily implementable. For more technically advanced
adaptive gradient descent algorithms, one could look for instance at the work by
Hazan et al. [Hazan 2007]. The algorithm 1 presents in pseudo-code the adaptive
gradient descent method we propose. The idea behind the algorithm is to increase or
decrease the step size as far as possible on an exponential scale, after each gradient
computation.

The MKL solver has 5 di�erent stop criteria, corresponding to the minimal
precision on the x variation (∆k in our case), on the trust region size, on the cost
variation, on the cost value and on the norm of its gradient. To allow a comparison
with our gradient descent having only a single stop criterion, all the parameters of
MKL are set to ∆k. Note that most of the MKL parameters are not used in our
case solely to preserve the simplicity of the algorithm. If a more robust algorithm
is needed, those criteria can be directly added by taking the variable update as
example.

The results obtained with MKL are shown in �gures 4.26 and 4.27. Similarly to
the previous results, Trust-Region results show non-convex spaces, as we can see at
the bottom of �gures 4.26b, 4.27a and 4.27b, as well as with the blue nuances of the
con�dence region �gure 4.26a. As opposed to the previous graphs, the con�dence
region has no lower bound on ∆k (the horizontal axis), even after having increased
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Inputs : F : Rn → R (cost function), x0 ∈ Rn (initialization), ∆g ∈ R
(gradient computation spacing), ∆k ∈ R (step unit, stop
criterion)

Output: x ∈ Rn (local minimum of F)

1 x← x0
2 k ← 0

3 repeat

4 G ← normalized gradient of F at x on spacing ∆g

5 S(k) := x− 2k∆k G // exponential step function

6 if F(S(k)) < F(x)

7 while F(S(k + 1)) < F(S(k))

8 k ← k + 1 // increase step size

9 else

10 while F(S(k)) > F(S(k − 1))

11 k ← k − 1 // decrease step size

12 update← ||x − S(k)||
13 x← S(k)

14 until update < ∆k

Algorithm 1: Exponentially adaptive gradient descent

global min s.d. (ms) global min cost
example 1 example 2 example 1 example 2

Ours 8.6 4.2 226 292

MKL 9.3 3.4 230 300

Table 4.3: Numerical comparison of our algorithm with MKL.

the range of evaluation up to the lower bound ∆k = 10−13. The explanation is
that the Trust-Region algorithm evaluates the step size for the gradient descent
independently of ∆k unlike the previous algorithm, but based on the current Trust-
Region size. We suspect that similar results would be obtained with our algorithm
by initializing k (in the algorithm 1) to a higher number, such as 50 for instance.

The table 4.3 gathers the minima obtained with both algorithms. Our algorithm
gives the best minimal cost for both examples, and the standard deviation is better
in our case for the example 1. Therefore we chose to use our algorithm instead of
MKL for the timing optimization. Furthermore, in our case no license is needed,
which facilitates the parallelization on a cluster of computers for instance.
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Figure 4.26: Example 1, same graphs as in �gure 4.24 computed with a Trust-

Region algorithm, instead of the algorithm 1.



4.4. Results 109

0.00340.0034

∆

k

∆

g

 

 

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

optima s.d.

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(a) Example 2, Trust-Region standard deviations.

300.26300.26

∆

k

∆

g

 

 

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

min cost

305

310

315

320

325

330

335

340

345

350

355

(b) Example 2, Trust-Region optimal costs.

Figure 4.27: Example 2, Trust-Region results corresponding to the �gure 4.25.
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Fig. Description
4.28

Optimal
for each plot, Nid is varying, Nx = constant.

4.29
timings

for each plot, Nid = constant, Nx is varying.
4.30 Nid ' Nx, Nid ' 2Nx and Nid ' 3Nx.
4.31 Optimal costs.
4.32 Computation time.
4.33 Min x-component value checking. (lower bound = 1ms)
4.34 Number of cost evaluations checking. (max = 105 calls)

Table 4.4: Sampling study, �gure list.

Sampling sensitivity

In this subsection we study the convergence behavior with respect to the 2 sampling
parameters, which are the number of frames used for the inverse dynamics computa-
tion Nid, and the number of optimization variables Nx. For this study, the example
1 is solved using the algorithm 1, with the parameters ∆g = 10−5s, ∆k = 10−5s

and x0 = 0.1s, and the aim is to �nd similar timings for di�erent pairs of Nid�Nx.
The table 4.4 provides the list of the di�erent plots, and the table 4.5 gives the
associated conclusions.

The Nid�Nx space is sampled with a 10-by-10 grid, with the Nid range going
from 20 to 200, and the Nx range going from 14 to 140. The size of the grid has
been chosen to be less than the number of cores we used for the evaluation. The
computation has been done on 116 Intel cores, with speeds from 2.4 GHz to 3.3 GHz.
The total CPU time (or user time) is 19 days and 12 hours. The real time is about
1 night. The details of the computation time can be found in the �gure 4.32. The
lower bound for Nx has been chosen to be twice the number of keyframe intervals,
which is 7 for the example 1. The lower bound for Nid has been chosen to be
approximately three times this number. The upper bounds have been chosen as
ten times the lower bounds, according to the maximal time of computation that we
wanted to be around 12 hours.

Interestingly, some noise in the optimal timing is observed when Nid ≤ Nx (see

Fig. Conclusions
4.28 No correlation between optima similarities and Nx variations.
4.29 Slight correlation between optima similarities and Nid variations.
4.30 No obvious similarity correlations. Timing noise occurs for Nid ' Nx.
4.31 The cost function depends strongly on Nid.
4.32 The computation time is less than 1h i� Nid +Nx < 130.
4.33 The x lower bound is reached mostly for Nid < Nx.
4.34 The algorithm converges in most of the cases.

Table 4.5: Sampling study, per �gure conclusions.
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Figure 4.28: Sampling study, comparison of optimal timings for several Nid values,

at Nx constant. The horizontal axes are the parametric coordinates. The vertical

axes are the sub-keyframe time intervals times the total number of intervals (Nx).

Dashed lines: maximum number of cost function evaluations reached. Dotted lines:

x lower bound reached (1ms).
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Figure 4.29: Same as previous page, plotted at constant Nid values.
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Figure 4.30: Several optimal timings around the magenta dashed lines of the plots

p.115.
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Figure 4.31: Sampling study, minimal cost.
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Figure 4.33: Sampling study, minimal x-component value.
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�gure 4.30a). Indeed with these values, some x components can be reduced up to
the lower bound if the next components are increased, while preserving a smooth
trajectory for the inverse dynamics frames. Some x components are therefore uncon-
strained and can move freely while the optimizer is running. We can conclude that
by default, x has a tendency to diverge if it is uncontrolled. A slight regularization
on x in the cost function could solve this issue.

The �gures 4.28 to 4.30 surprisingly contradict the intuition that the thinner the
samplings are, the better the solutions are, with an exception for the �gure 4.29j,
which gives the highest optimal timing similarities with Nid = 200 and Nx ≥ 56.
These results could be due to an error in the deployment of the program on the
cluster, which has been done by �ashing1 the program. Another explanation could
be that the thinnest samplings reach the machine precision, leading to aberrant
optimal timings. A last hypothesis could be that the strong dependency of the cost
function on the Nid parameter (see �gure 4.31) leads to very di�erent behaviors
of the algorithm with respect to Nid variations. The veri�cation of these three
hypotheses is let for future works.

If one would have to choose two values, then Nid = 200 and Nx ≥ 56 could be
retained by observing the �gure 4.29j, but the corresponding computation times are
about 10 hours per optimization. Assuming these values gives roughly the timing
shapes we want, the �rstNx that gives an approximation of these shapes in the �gure
4.28 is Nx = 28 (�gure 4.28b). In this sub�gure, the choice Nid = 100 seems to be
the best compromise between the computation time and the approximation of the
wanted timing shapes, which gives the �nal relations Nx ' 4Nkeys and Nid ' 4Nx

as the best choices.

Parameter setting conclusion

Quantitatively, the algorithm 1 gives the absolute best results, and also presents
the technical advantage of being licence-free, which is better for the reproducibility
of the results, and for cluster computations. About setting the parameters of this
algorithm, the best choices are a spacing for the gradient computation ∆g = 10−5s

and a stop criterion ∆k = 10−5s. These values are inside the con�dence region
for the algorithm convergence, and gives the best results among the 81 candidates
we evaluated. Finally, the constant interval time of 0.1s as starting point gives
the best results among the four tested initializations, better than the approximated
ground truth timing. The optimal timings have proved to be almost global optima.
For the sampling, the best compromise is obtain for Nx ' 4Nkeys and Nid ' 4Nx.
Further studies are needed to increase the robustness of the cost function to the Nid

variations.
To conclude qualitatively this study, the setting of the input parameters could

also have been the purpose of a big enclosing optimization, which would then have
been the third level of optimization, taking into accounting the per frame least
square solving for the cost function evaluations. Such an optimization scheme has

1�ashing: copy past from one computer to another
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already been used in [Liu 2005], but with only two optimization levels, where the
aim was to determine the optimization parameters for which an input motion is
the optimal solution. But each new stacked level of optimization brings also a
new set of parameters that must be set, and at the end the setting of the top
level parameters must be done by an external user. In the case of [Liu 2005], the
advantage is that the top level has only a couple of parameters, whereas the lower
one contains 147 parameters. Two solutions are conceivable to avoid an in�nite
stacking of optimization levels : the graphical study previously presented, and a
self-optimizer, which would optimize its own parameters. Nevertheless, this last
solution seems quite fancy as the initialization and the stop criteria can not be
avoided.

4.4.3 Long sequence

Once the timing algorithm and its associated parameters has been validated on a
short sequence with available MoCap for keyframe generation, we turn to a longer
sequence of a vertical climb of 10.5m, without MoCap data. A focus is made on the
validations of the aspects of this problem that di�er from the bouldering example,
which are the trajectory generation, a new e�ect of the trajectory sampling, and
the segmentation of the optimization issue. Finally, once these new elements have
been validated, a detailed ground truth timing evaluation is provided. This section
is organized as follow:

1. Input data presentation

2. Output overview

3. Generation of keyposes by inverse kinematics

4. Trajectory generation by keypose interpolation

5. Visual e�ect of the Nid�Nx sampling

6. E�ect of cutting the optimization into segments

7. Ground truth timing comparison

Input data presentation

The input data for the long sequence experiment are on one hand, the climber, and
on the other hand, the route to climb. The climber is the same as the one used in the
previous bouldering experiments. He has the same local contact points and has the
default pose plotted in the �gure 4.35a, representing the default climbing posture.
The route contains a set of holds, as shown in the �gure 4.35b, and the order in
which these holds should be taken, as depicted in the table 4.6. These quadruplets
of holds to take has been numbered from A1 to G3, A1-A7 being the �rst 7 sets of
holds, B1-B7 being the sets 8 to 14, etc. This sequence includes two hand matchings
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1 2 3 4 5 6 7

A

B

C

D

E

F

G

Table 4.6: The input contact sequence for the Espace Vertical example (row-wise

ordered).
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(cells B7 and C4), one foot matching (cell B3), two double contact moves (B4-B5 and
D4-D5), and several foot cross-overs (e.g. A2-A3, D4-D7), re�ecting the multiplicity
of the movements encountered in rock climbing.

Output overview

The output of our algorithm is displayed �gure 4.36. As for previous the results,
each frame has been translated toward the right, producing an arti�cial horizontal
displacement that does not exist in the original route trajectory. At each frame, the
camera is vertically traveled to follow the climber, also producing an arti�cial e�ect
of a treadmill motion. In this �gure, we can see a �uent ascent of the route (no
discontinuity in the motion), with a fast but plausible total time of 13.5s for the
10.5m of the route. Indeed, this time is 2.5 times slower than the 2012 world record
in speed climbing, which is 5.88s for 10m, showing the realism of this computed
optimal timing.

In the following, we provide a thinner evaluation of this result, by tackling in
the following order the items

• Generation of keyposes by inverse kinematics

• Trajectory generation by keypose interpolation

• Visual e�ect of the Nid�Nx sampling

• E�ect of cutting the optimization into segments

• Ground truth timing comparison

Generation of keyposes by inverse kinematics

The climber's keyposes are obtained by inverse kinematics. This process starts by
positioning the CoM of the default pose at the center of the 4 holds to take. Then
this CoM is translated 25 cm away from the wall. Finally, the four limbs of the
climber are adjusted such that the hands and the feet touch the holds to take. The
table 4.7 shows the results of this process. These results can be evaluated with the
ground truth shown in the table 4.8. By comparison of these two tables, we notice
that the ankles are well adjusted to recover the full extension poses (A3, A4, F7,
G1). The backstepping leg positions are also well recovered (e.g. E2, E7, F6), as
well as the leg orientations for the foot cross-over sections (A2-A3, D4-D7). On the
other hand, the head movements during the observation phases are missing (e.g. B3,
B6, F2), and the torso position and orientation is not always accurately recovered
(e.g. C6, E1, F3), leading to incorrect leg and arm con�gurations.

Trajectory generation by keypose interpolation

The keypose interpolation is done in the three steps presented �gure 4.37. First,
keyposes are interpolated with quaternion cubic splines, which choose by default the
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0.0 sec 0.5 sec 1.0 sec 1.5 sec 2.0 sec

2.5 sec 3.0 sec 3.5 sec 4.0 sec 4.5 sec

5.0 sec 5.5 sec 6.0 sec 6.5 sec 7.0 sec

7.5 sec 8.0 sec 8.5 sec 9.0 sec 9.5 sec

10.0 sec 10.5 sec 11.0 sec 11.5 sec 12.0 sec

12.5 sec 13.0 sec 13.5 sec

Figure 4.36: Physically optimal timing for the Espace Vertical sequence. The

horizontal axis is the time. The brown poses are time spacing marks of 0.5 second.

The camera is traveling vertically to follow the climber.
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1 2 3 4 5 6 7

A

B

C

D

E

F

G

Table 4.7: The output keyposes, computed by inverse kinematics on the contact

sequence.
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1 2 3 4 5 6 7

A

B

C

D

E

F

G

Table 4.8: Ground truth for the inverse kinematics output.
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(a) Shortest path for quaternion cubic spline interpolation of keyposes C4 and C5.

(b) Longest path interpolation for the right shoulder.

(c) Contact linear interpolation.

Figure 4.37: Steps of the keypose interpolation with the move C4-C5.
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Figure 4.38: Joint angular limit cone. The red arrow is the axis of symmetry of

the cone. The angle between this axis and the upper arm axis must be higher than

the cone angle.

shortest path between joint orientations. Then angular joint limits are controlled
on shoulders and on hips with a limit cone, as in �gure 4.38, and the interpolation
is recomputed with the longest paths where joint dislocations have been observed.
Finally, we linearly interpolate the world position of the local contact points, guided
by the previous interpolation, to avoid the hands and the feet to break through the
wall.

The di�erence between the angular limit cone we used and the axis/twist angular
limits of [Macchietto 2009] is that we do not use the identity transformation as the
center of the allowed angle cone. Indeed this would make the coronal plan2 of the
climber a symmetric plan for the shoulder range of motion, but in practice it is not
the case. The right elbow can almost touches the left shoulder when passing ahead
of the torso, but is far from touching it when passing behind the torso. Moreover,
despite the axis/twist angular limits allow thinner representation of joint angular
limits, the limits we used based on the angle between the upper limb axis and the
cone axis are more intuitive to set up, which is important if the end user is an artist.

Visual e�ect of the Nid�Nx sampling

This subsection shows that Nid = 150 leads to an unwanted visual artefact, avoided
with Nid = 400. The �gure 4.39 presents the frames used for the cost function
evaluation with these two total numbers of cost frames at the optimal timing ob-
tained with Nx = 132. In the �gure 4.39a, the frames 37 and 38 are identical,

2coronal plan: vertical plan containing both shoulders
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nid 35 36 37 38 39 40 41 /150

time 3.06 3.15 3.24 3.33 3.42 3.51 3.60 (sec)

(a) Using Nid = 150.

93 94 95 96 97 98 99 /400

3.12 3.15 3.18 3.22 3.25 3.28 3.32
100 101 102 103 104 105 106

3.35 3.39 3.42 3.45 3.49 3.52 3.56
107 108 109 110 111 112 113

3.59 3.62 3.66 3.69 3.72 3.76 3.79

(b) Using Nid = 400.

Figure 4.39: Visual comparison of two inverse dynamics samplings for moves B4-

B6.
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showing that it is less costly to stop and then to do a big step between frames 38
and 39 than to pass by the extremal position B5, where the left foot touches the
wall. This phenomenon constitutes a second candidate to explain the timing noise
previously observed (�gure 4.30a). If the �nal time step is 25 fps for instance, the
in-air slow down at Nid indices 37 and 38 is noticeable, as between frame indices 36
and 40, which is roughly the range of in�uence of the slow down, 0.36 second have
passed, leading to 9 output video frames. The higher sampling rate �gure 4.39b
where Nid = 400 resolves this artefact. Here the sampling does not allow anymore
to avoid the keypose B5. The climber must then slow down on the whole trajectory
segment between keyposes B4 and B6 to be able to take an impulse on the left
foot at keypose B5 in order to change its trajectory for the next move. This higher
sampling rate thus lead to a more natural output timing.

E�ect of cutting the optimization into segments

Optimizing the timing on the whole climbing route with the parameters of �gure 4.39
for instance took respectively 5 h 15 for �gure 4.39a and 6 h 40 for �gure 4.39b. To
reduce this computation time, the optimization is segmented, as in [Al Borno 2012]
for instance. The originality of our study is to evaluate the quality of the segmented
optimization with respect to the corresponding all-at-once optimization. In the
�gure 4.40, the timings for the moves B4-B5, D1-D2 and E5-E6 are computed with
an increasing segment width from 1 keypose interval to 13 keypose intervals. All
results have been computed with x0 = 0.1s, except for the move E5-E6 with 9
keypose intervals, which is the only case where several initializations have been tested
to �nally choose x0 = 0.09s, as showed �gure 4.43. By zooming on the moves of
interest (�gure 4.41) we see that timing for the central moves are similar for 7 keypose
intervals and more. Moreover, as shown in the �gure 4.42, the computation time
drastically increases between the interval sizes 7 and 9, from 20min to 1h. Therefore,
the segmentation size of 7 keypose intervals is chosen for the segmented optimization,
whereas in [Al Borno 2012], two successive windows of 0.5s are arbitrarily chosen
to constitute each optimization segment.

Optimal timings computed in a single large optimization are plotted �gure 4.44.
Their related computation times are gathered in the table 4.9. The optima are
quite close to their initializations, except for the keypose B5. On the contrary,
segmented optimizations lead to much better convergences, as plotted �gure 4.45,
with the corresponding computation times gathered in the table 4.10. These last
optima still contain some outliers, highlighted in yellow, that can be removed by a
post-selection as used for the �gure 4.46. This post-selection is made possible due
to the overlapping segments. Indeed for each move, the timing for the 3 previous
moves and the 3 next moves are also computed. The timing of every move is thus
computed 7 times, with more or less accuracy, as shown in the cyan curves of �gure
4.40 : the farthest we are from the central move, the less accurate is the timing. We
thus use the 3 central moves to compute outlier timings, by choosing among those
candidates the timing the closest to the mean timing of those candidates.
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Figure 4.40: Optimal timings for moves B4-B5, D1-D2 and E5-E6 with several

segment widths.
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Figure 4.41: Close up of the previous results on the segments of interest.
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Figure 4.42: Average computation time for each segment width.
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Figure 4.43: Several initializations for move E5-E6, width 9 intervals.

x0 0.03 0.13 0.15 0.1
Computation time 3 h 57 11 h 24 1 h 01 6 h 42

Table 4.9: Computation time for the timing optimization of the 44 moves, computed

all-at-once on a 3.3 GHz computer.



4.4. Results 131

in
te

rv
a

l 
ti
m

e
 (

s
e

c
)

Timing by Large Single Optimization

 

 

A1 A2 A3 A4 A5 A6 A7 B1 B2 B3 B4 B5 B6 B7 C1 C2 C3 C4 C5 C6 C7 D1 D2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Constant timing of 0.03 second.

Constant timing of 0.10 second.

Constant timing of 0.13 second.

Constant timing of 0.15 second.

Optimal timing, with x0 = 0.03.

Optimal timing, with x0 = 0.10.

Optimal timing, with x0 = 0.13.

Optimal timing, with x0 = 0.15.

parametric coordinate

in
te

rv
a

l 
ti
m

e
 (

s
e

c
)

D2 D3 D4 D5 D6 D7 E1 E2 E3 E4 E5 E6 E7 F1 F2 F3 F4 F5 F6 F7 G1 G2 G3
0

0.05

0.1

0.15

0.2

Figure 4.44: Espace Vertical optimal timings computed all-at-once.
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Figure 4.45: Optimal timings computed by segments of 7 intervals.
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Figure 4.46: Segmented timing optimization with post interval selection.
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x0 0.03 0.13 0.15 0.10 0.10
Average time 1 h 06 35 min 35 min 22 min 22 min

Standard deviation 45 min 24 min 26 min 16 min 15 min
Minimum 1 min 23 1 min 01 53 sec 1 min 33 1 min 35
Maximum 3 h 02 1 h 34 1 h 57 1 h 15 1 h 06
CPU speed (GHz) 2.4 (66%), 3.3 (20%), 2.7 (14%) 2.4 3.3

Table 4.10: Computation time statistics for the timing optimization of the 44

moves, computed individually.

Ground truth timing comparison

The average of the four optimal timings found previously by segmented optimization
is compared to the ground truth timing in the �gure 4.47. In this �gure, a clear
slowing down can be seen for the moves B4-B6. Two hypotheses can be established
to explain this slowing down. First, we may argue that the move B5-B6 is more
e�cient when using a ballistic motion, i.e. when starting quite fast and then letting
the gravity change the body velocity without making much e�ort against it. Indeed,
this is the only large move with only two contact points, which are moreover on the
same side of the body (right hand and right foot). For this particularly di�cult
move, a ballistic move is thus more needed than for the others, less di�cult. The
second explanation is found at the pose B5 itself, where both the torso and the
left leg must change their velocity direction by 90◦. Indeed, the main trajectory of
the move B4-B5 is a 45◦ right diagonal ascent, whereas the main trajectory of the
move B5-B6 is a 45◦ left diagonal ascent. This drastic change of direction requires
a slowing down to avoid a high acceleration at the keypose B5, which would be very
costly in term of joint torques.

Still in the �gure 4.47, the optimal timing is faster than the ground truth tim-
ing. This di�erence can be mainly explained by contact establishment latency and
hesitation or observation phases, as shown �gures 4.48 to 4.52. In these �gures,
the time spent by the climber in those phases is delimited by the red time instants.
This time is carried over to the table 4.11, where a comparison is made with the
timing di�erences between the optimal timing and the ground truth timing. These
last temporal di�erences are interval time between sub-keyposes. As there are three
sub-keypose intervals per keypose interval, we multiplied them by three to obtain
keypose interval time as unit. In the table 4.11, the three contact establishment
latencies observed in the video correspond to the di�erences between the optimal
timing and the ground truth timing. For the two hesitation phases, the video time
di�erences correspond to two thirds of the graph time di�erences. We hypothesize
that the last third of these di�erences could correspond to the contact establishment
at the two extremities of the corresponding keypose intervals. These �ve timing dif-
ferences show that up to the contact establishments and the hesitation times, the
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Ground Truth Comparison
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15.16 15.20 15.24 15.28 15.32 15.36 15.40 15.44 15.48 15.52

15.56 15.60 15.64 15.68 15.72 15.76 15.80 15.84 15.88 15.92

15.96 16.00 16.04 16.08 16.12 16.16 16.20 16.24 16.28 16.32

16.36 16.40 16.44 16.48 16.52 16.56 16.60 16.64

Figure 4.48: Contact establishment at pose B2. The numbers are time instants

in second in the original video. The red numbers are the start instant of the es-

tablishment, when the hand touches the hold, and the end instant, when the foot

moves.
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43.64 43.68 43.72 43.76 43.80 43.84 43.88 43.92 43.96 44.00

44.04 44.08 44.12 44.16 44.20 44.24 44.28 44.32 44.36 44.40

44.44 44.48 44.52 44.56 44.60 44.64 44.68 44.72 44.76 44.80

Figure 4.49: Contact establishment at pose E5.

47.64 47.68 47.72 47.76 47.80 47.84 47.88 47.92 47.96 48.00

48.04 48.08 48.12 48.16 48.20 48.24 48.28 48.32 48.36 48.40

48.44 48.48 48.52 48.56 48.60 48.64 48.68 48.72 48.76 48.80

48.84 48.88 48.92 48.96

Figure 4.50: Contact establishment at pose F1.



138 Chapter 4. Motion Synthesis by Timing Optimization

28.20 28.24 28.28 28.32 28.36 28.40 28.44 28.48 28.52 28.56

28.60 28.64 28.68 28.72 28.76 28.80 28.84 28.88 28.92 28.96

29.00 29.04 29.08 29.12 29.16 29.20 29.24 29.28 29.32 29.36

29.40 29.44 29.48 29.52

Figure 4.51: Hesitation phase for move C4-C5 : The right hand goes toward a

hold, but does not take it.

41.00 41.04 41.08 41.12 41.16 41.20 41.24 41.28 41.32 41.36

41.40 41.44 41.48 41.52 41.56 41.60 41.64 41.68 41.72 41.76

41.80 41.84 41.88 41.92 41.96 42.00 42.04 42.08 42.12 42.16

42.20 42.24 42.28 42.32 42.36 42.40 42.44 42.48 42.52 42.56

Figure 4.52: Hesitation phase for move E2-E3 : The right foot stops behind the

left leg, and then passes in front of it.
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(a) D5-D6: smearing (b) F4: undercling (c) F6: ine�cient move

Figure 4.53: Close-up on three particular keyposes to explain three di�erences

between ground truth / 3 and our results.

optimal timing is close to the observed timing.

To be able to validate the overall shape of the optimal timing, we assume that
the contact establishment time, which corresponds to a fraction of the time when
both hands and both feet are in contact, is proportional to the time spent in-
between contacts, when a hand or a foot is moving. This has already be suggested
by [Guidi 1999] who mentioned that the proportion of e�ective motion and other
instants are about 30% and 70% of the total climbing time respectively, based on
the work by [Dupuy 1989]. Therefore, we divide the ground truth timing by 3, in
order to suppress the 70% of no-motion time that we do not modelize, and to focus
on the time during which the climber is moving. In the �gure 4.47, this comparison
highlights another kind of di�erences at move D5-D6 and at keyposes F4 and F6.
These instants are shown �gure 4.53. The two �rst di�erences are due to the hold
modeling. Indeed, the hold models are cost-free bilateral contacts for the hands
and unilateral contacts with a friction coe�cient of 0.8 for the foot, with the same

Instant Figure
Observed Di�erence with

Explanation
latency (s) the optimum (s)

B2 4.48 0.96 0.9
Contact

E5 4.49 0.76 0.75
establishment

F1 4.50 0.96 0.9
C4-C5 4.51 0.76 1.2

Hesitation
E2-E3 4.52 0.68 1.05

Table 4.11: The latency observed in the video and the corresponding delay between

optimal timing and ground truth timing in the �gure 4.47.
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contact normal for all the foot contacts corresponding to a vector bent at 30◦ from
the vertical axis, towards the wall normal. This contact model is erroneous for the
move D5-D6 (�gure 4.53a) where the left foot of the climber is smearing the wall,
i.e. it pushes the wall where there is no hold using only the friction between the
wall and the shoe to progress, and for the keypose F4 (�gure 4.53b), where the
left hand takes an undercling hold, i.e. a hold oriented in a downward direction.
For both these instants, the contact normal should be respectively normal to the
wall and in a downward direction. These modeling errors are then propagated to
optimal timing errors. The third di�erence (�gure 4.53c) highlights an ine�cient
move corresponding to a faster ground truth / 3 timing than the optimal timing.
Indeed, at this instant, the climber has released his left hand before having put his
right foot on the wall. The move is thus done with two contact points instead of
three. The strength needed by the two limbs involved in these contacts is thus higher
than the one that would have been needed if a supplementary limb was available to
help supporting the climber for this move. In this case, the optimal timing is thus
better than the observed timing. Therefore, the di�erences between our optimal
timing and the ground truth / 3 timing are explained by contact modelization
inaccuracies and non-optimal ground truth.

4.5 Conclusion

In the case of climbing motions, we showed that a realistic timing can be synthesized
from the minimization of internal joint torques and the penalization of in-air contact
forces, providing a continuous contact model. Moreover, the motion restrictions
brought by the speci�c environment on which the climber evolves, allows to modelize
realistic climbing paths by procedural inverse kinematics and quaternion cubic spline
interpolations. A ground truth comparison based on a video sequence showed the
accuracies and limitations of our approach, which is accurate for movements in-
between contacts, but lacks some human factors, such as contact transition models
or a decision making process.

The contact establishment and breaking latency observed in the previous chapter
is con�rmed in the case of motion synthesis, although the di�erence between contact
transitions and observation instants is not obvious. On one hand, the contact change
latency could be due to the need for the �ngers to be precisely adjusted to the shape
of the holds at the hand contact establishments. This precision necessitates some
�nger perception feedback involving a time consuming loop between the �nger touch,
the brain stimulation and the neuronal back response toward the �nger muscles for
readjustment. This loop could be simulated by random or constant delays of a few
milliseconds of immobility at each contact establishment. On the other hand, the
latency could be explained by the Hill muscle model, where the spring characteristics
of the musculo-tendon units (MTUs) involve a delay between the muscle activation
and the joint torque generation, needed by the tendons to be tightened. Instead of
going down to the accurate but complex MTU modeling, this phenomenon could be
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incorporated directly at joint level with a Hill-style model based on angular springs,
bringing an implicit activation time.

The phases where the climber hesitates, observes the route, and takes decisions
on the gestures to perform, cannot be modelized by a physical analysis. They could
nevertheless be added in our physically-based approach as supplementary inputs,
containing where the climber will hesitate, or will need to think about the ascent.
Corresponding temporal pauses would be added at those points in the trajectory to
optimize before each cost function evaluation. On the contrary, the choice of the
order of the holds to take and adjustments on the climber's postures can be obtained
by an optimization approach. Indeed, each of the various spatial possibilities has a
particular cost, implying that a minimum exists and can be chosen for the synthesis.
Moreover, the �nite number of possibilities for the contact sequence makes an ex-
haustive test possible. Note that such an approach would be prohibitively expensive
for ground motions for instance, but is a�ordable for climbing motions as soon as
the environment kinematic restrictions are taken into account. The tractability of
the optimized spatial control could also be increased by taking into account joint
angular limits and the climber's self intersections to reduce the motion search space.

Finally the timing problem alone is enough to improve the realism of the anatom-
ical model. The right next work in this direction is to add the �ngers and their
related costs. This would allow to quantify the di�culty associated to a given hold
and thus to take into account in the cost function the shape of the holds. In prac-
tice, the �nger cost is the dominant factor of di�culty in climbing [Guidi 1999].
Therefore, we suspect this factor to in�uence drastically the synthesized motions.
An intermediate straightforward step toward a complete hand model is to add as
input the quality of each hold. This quality can be modelized as additional weights
in the hand contact costs. The other ways to improve the contact models are to
add the contact normals as inputs, and to di�erentiate friction coe�cients according
to the hold characteristics, for making the di�erence between an handle and a �at
hand hold for instance, as we have shown that these modelization issues in�uence
the resulting optimal timing.
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0.0 sec 0.5 sec 1.0 sec 1.5 sec

2.0 sec 2.5 sec 3.0 sec 3.5 sec

4.0 sec 4.5 sec 5.0 sec 5.5 sec

6.0 sec 6.5 sec 7.0 sec 7.5 sec
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8.0 sec 8.5 sec 9.0 sec 9.5 sec

10.0 sec 10.5 sec 11.0 sec 11.5 sec

12.0 sec 12.5 sec 13.0 sec 13.5 sec

14.0 sec 14.5 sec 15.0 sec 15.5 sec 16.0 sec

Figure 4.54: The Espace Vertical motion synthesis after thin evaluation.





Chapter 5

Discussion and Perspectives

In this thesis, climbing motion has been studied through the capture of dynamic
data, the analysis of motion by inverse dynamics and the motion synthesis by timing
optimization. The contributions of this work have been the capture of calibrated 6D
forces and climbing motion data with an instrumented bouldering wall, equipped
with 6 force sensors and 24 infra-red cameras; the development of a joint-based
sensor-free inverse dynamics algorithm for multi-contact motions, with a continuous
contact transition model; and the generation of a long and realistic climbing motion
sequence, from solely successive external contact sets.

The limitations concerning the data capture are �rst, the synchronization process
between the force sensors and the MoCap system and second, the marker labelling
and tracking process. A hardware synchronization between sensors and cameras
would allow to go bellow 10 ms of temporal precision. This functionality is not an
available feature of the devices currently used, and could necessitate some electronic
original developments. Concerning the spatial precision, the current tracking black-
box we used allowed us to work with only 10% of the captured data. Increasing this
percentage of usable motion could be done �rst by correcting manually the erroneous
marker labels by means of the graphic user interface (GUI) that already exists un-
der a private licence (Optitrack, Natural Point), or second by extracting individual
marker trajectories from binary MoCap intermediate �les and �nding a better la-
belling and tracking algorithm. Finally for the large scale environment, the data
capture process could be complemented by adding precise environment shapes, with
the use of structure from motion techniques for detailed geometric model recording.
On the wall, this would allow to identify individual hold shapes in order to assess
their quality and to modelize �nger positioning, that would bring the possibility to
evaluate �nger joint costs, the key-value of the energy cost of climbing motions. Ap-
plying structure from motion on the climber itself would allow to adapt the climber's
model to various body shapes and to render di�erent climber's appearance, includ-
ing its texture the day of the capture, which could be interesting for developing a
texture-based environment-aware monocular motion capture algorithm for instance.

Inverse dynamics based on a least squares minimization of wrenches projected
on anatomical joint axes has shown two main limitations. On one hand, the dif-
ferentiation between opposite anatomical directions sharing the same axis, such as
knee �exion and extension for example, can not be determined in one pass. This is
problematic for including precisely joint torque limits in least squares computations
because most of the main joint axes have quite di�erent opposite torque maxima. On
the other hand, for joints with at least 2 DoFs, anatomical axes obtained from Euler
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angles are not orthogonal in general and can lead to axes sharing the same joint
wrench component after its projection, leading to miscounted wrench costs. This
inaccuracy could be resolved with a nonlinear algorithm where the wrench would
not be projected, but each axis component would be added to produce the wrench
needed for the motion to be perform. We suspect that this more time-consuming
algorithm could be initialized with the wrenches resulting from the current fast least-
square algorithm. This nonlinear joint level model would be an intermediate step
between the least-square joint model currently used, and the complex and non-linear
MTU-based actuation model, providing a range of compromises between accuracy
and tractability ready to be used for various case studies.

Regarding motion synthesis, the main direction of improvement for our results is
the implementation of the inter-movement phases, which are the instants when no
hand nor foot is moving, and which contain hand or foot prehension adjustments,
wall observations, hesitations, rest phases and decision making instants. Ideally for
climbers, most of these events should not occur as they are energy consuming. Our
work allow us to clearly identify the motions resulting from optimizing biomechanical
constraints, and the unwanted behaviors due to cognitive or neurological constraints,
which is the di�erence between our results and the observations. For graphics usage,
di�erent ways are conceivable to improve the realism of the simulated motions cor-
responding to the di�erent elements constituting the inter-movement phases. The
rest instants could be obtained by an advanced physiological energy model, which
would assess the evolution of the available amounts of energy with respect to the
di�erent exercise energy systems (lactic/alactic, aerobic/anaerobic), and adjust the
speed of the climb accordingly. The head movements and body posture adjust-
ments for observing the wall could be obtained by simulating the �eld of view of
the climber, who would be constrained to see the holds being taken just before their
grasping. Latencies could be added for simulating the neuronal process of wide area
observations. The hesitation, prehension adjustments and decision making instants
can be simulated either by adding both temporal and spacial noise to the motion,
or by designing a GUI for external user interventions.

For sport performance applications, improving the realism as mentioned above
is not needed, except for the energy model. Indeed, a more accurate energy model
would allow better optimality predictions, but all other items can be seen as elements
that the climber should avoid ideally. Therefore, the major di�culty for providing
to sport professionals or competitors a training tool for the gesture improvement,
is �nding a medium that would be accepted by this community. [Kajastila 2014]
proposed a �rst attempt in this direction with a augmented bouldering wall on which
real-time graphic information is display thanks to a video projector coupled with
a Kinect camera. According to them, the use of such a wall would be better in a
climbing gym as a separated wall. This drawback is probably due to the unusual
equipments from a climber's point view, as well as the needed to project a massive
light on the wall, disturbing the wall aspect. We suspect the community welcoming
to be much higher if the deployment would be done under mobile platforms such
as Android for instance, or based on small GoPro-type cameras coupled with a
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laptop for outdoor sessions, as those devices are already well known and used by
the potential end-users. The breakthrough needed for applying our method on
such light systems is the drastic reduction of the computational cost. The most
plausible way for this reduction appears to be the conversion of the non-linear timing
optimization into a quadratic program by some analytical or symbolic computations.
The starting point being the analytical derivation of the climber's trajectory velocity
and acceleration, as initiated by the work of [McEnnan 2003].
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