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Contrôle de la microstructure et des propriétés de transport d'al-

liages incommensurables de siliciure de manganèse pour la ther-

moélectricité

Ces premières pages en français constituent un résumé de la thèse qui est par la suite rédigée en

anglais. Dans un esprit de synthèse, ces quelques pages sont écrites autour d'une série de �gures qui

résument les faits marquants ainsi que les conclusions obtenues dans cette étude sur le contrôle de la

microstructure et des propriétés de transport d'alliages incommensurables de siliciure de manganèse

pour la thermoélectricité.

La thermoélectricité o�re la possibilité de convertir directement la chaleur en électricité et inver-

sement. Un générateur thermoélectrique est constitué de jonctions semi-conductrices de type n et p

connectées thermiquement en parallèle et électriquement en série [1]. Un gradient thermique appliqué

sur les faces du module force les électrons (dans le type n) et les trous (dans le type p) à migrer vers la

face froide, ce qui génère un courant électrique entrainé par le �ux de chaleur. L'e�cacité de conversion

d'un module thermoélectrique dépend de l'aptitude du matériau utilisé pour les jonctions à maintenir

un gradient thermique entre la source chaude et la face froide, à générer un voltage par e�et Seebeck

et à conduire un courant électrique. Ces propriétés sont traduites au sein d'un indice de performance

appelé �gure de mérite (zT) qui permet de comparer les matériaux thermoélectriques (voir �gure 1.a.).

Obtenir une telle combinaison de propriétés constitue un dé�t car elles sont inter-corrélées et

s'opposent [2], cependant le meilleur compromis est obtenu pour certains semi-conducteurs (thermo-

électriques) remplissant l'espace des propriétés entre les semi-conducteurs classiques et les métaux et

alliages (voir �gure 1.b.).

Appliquée au domaine de l'automobile la thermoélectricité permettrai de valoriser l'énergie dissipée

sous forme de chaleur (70 % de l'énergie primaire combustible) en produisant de l'électricité via un

générateur thermoélectrique placé sur le pot catalytique.

Cette thèse s'inscrit dans ce contexte ; elle vise à obtenir un matériau thermoélectrique semi-

conducteur de type p compatible avec une production de masse et respectant les critères de dévelop-

pement durable. Après une sélection des matériaux prenant en compte la performance dans la gamme

de température visée (300-500°C), le monopole et la pénurie des matières premières, la toxicité, le coût



et l'impact environnemental ; les siliciures et notamment les siliciures de manganèse (appelés Higher

Manganese Silicide, HMS, en anglais) de formule chimique MnSi7 ont été choisis (voir �gure 1.c.).

Figure 1 � Schéma d'un module thermoélectrique [1] et de la �gure de mérite (zT) (a). Diagramme
d'Ashby représentant la conductivité thermique en fonction de la conductivité électrique où l'on constate
que les matériaux thermoélectriques remplissent l'espace des propriétés entre les semi-conducteurs clas-
siques et les métaux et alliages (b). Critères pris en compte lors de la sélection des matériaux aboutissant
au siliciure de manganèse MnSi7 pour la jonction de type p (c).

Ces alliages sont des semi-conducteurs dégénérés de type p qui appartiennent à la famille des phases

Nowotny Chimney Ladder (NCL) de formule chimique générale MnXm (M : métal de transition ; X :

élément des groupes 13 ou 14 ; n et m des nombres entiers). Leur structure cristalline dérive de la

structure type TiSi2 dans laquelle les atomes M occupent les positions du Ti et forment un sous-

système quadratique de type β-Sn (Chimney en anglais, pour cheminée) et les atomes X sont arrangés

suivant la direction c et forment une hélice occupant les interstices du sous-système [M] (Ladder en

anglais, pour échelle) (voir �gure 2.a.). Ces deux sous-systèmes possèdent des périodes di�érentes

suivant la direction c ; la maille élémentaire des phases NCL est donc décrite par la relation suivante :

c = ncM = mcX



où cM représente le paramètre de maille du sous-système [M] et cX celui du sous-système [X].

Par conséquent, le ratio atomique X/M des composés MnXmest relié au ratio cM/cX par la relation

1.1 :

X

M
=
m

n
=

(
cM
cX

)
= 7 (1)

Pour des raisons de stabilité, les phases NCL respectent la règle des 14 électrons de valence par

métal de transition M [3, 4] (voir équation 1.2) :

X

M
=

14− eM
eX

(2)

avec eM et eX le nombre d'électrons de valence pour M et X respectivement.

Pour les composés HMS la phase idéale a pour formule Mn4Si7. De nombreux désaccords subsistent

dans la littérature quant à l'existence d'un mélange de phases commensurables ou à l'existence d'une

seule phase incommensurable [5, 6, 7, 8, 9], pour lever ces incertitudes nous avons réalisé une

étude systématique couplant la di�raction des rayons X et la di�raction des électrons

(chapitre 2).

Au sein de ses alliages, une singularité microstructurale est observée dans les alliages synthétisés par

la voie liquide : des �nes striations de composition MnSi uniformément distribuées perpendiculairement

à l'axe c dans la phase HMS [10, 11] (voir �gure 2.b.). La formation et la stabilité de ces striations

ne peut être expliquée par le diagramme de phase Mn-Si, cette étude propose donc d'étudier la

microstructure des alliages HMS et la façon dont elle change en fonction du procédé et

de la composition (chapitre 2).

De plus, la mesure des trois propriétés de transport thermoélectriques sur des monocristaux obtenus

par voie liquide a montré une forte anisotropie de celles-ci [10, 12, 13, 14, 15, 16, 17, 18] (voir �gure 2.c.).

De part la présence de la phase MnSi au sein des matériaux synthétisés, nous avons voulu déterminer

l'origine de l'anisotropie : intrinsèque à la phase HMS ou due à un e�et composite (HMS/MnSi). Grâce à

la compréhension des relations entre les phases, la microstructure et le procédé décrites dans le chapitre

2, la production de matériaux HMS purs a pu être réalisée.A�n de caractériser l'anisotropie, nous

avons développé la production de matériaux purs texturés (chapitre 3) a�n d'étudier les

propriétés intrinsèques de la phase HMS.



En�n, les propriétés de transport sont analysées (chapitre 4) a�n de révéler des tra-

jectoires dans l'espace des propriétés en vue d'une amélioration du niveau de maturité

technologique de ses alliages.

Figure 2 � Présentation des spéci�cités des alliages HMS : structure cristalline (a), microstructure
(b) et anisotropie des propriétés (c).

A�n de relever les nombreux dé�s scienti�ques de cette thèse, nous avons travaillé au sein du

paradigme de la science des matériaux : structure/microstructure/procédé/propriétés où l'on s'est

attaché a comprendre les relations entre ces quatre paramètres.

Du procédé au propriétés, les paramètres de la structure et de la microstructure peuvent être

utilisés a�n d'améliorer les performances thermoélectriques. Ces paramètres sont représentés sur la

�gure 3 où la zone grise regroupe les paramètres in�uencés par la chimie et en bleu ceux in�uencés

par la microstructure. Dans notre approche et en raison des spéci�cités des alliages HMS présentés

ci-dessus, nous avons choisi d'agir sur la structure, les striations de MnSi (composite) et les matériaux

texturés. Deux autres paramètres seront analysés de façon classique : le dopage et la porosité dans le

but d'étudier des matériaux très denses présentant un bon équilibre entre les propriétés électroniques

(conductivité électrique et coe�cient Seebeck).



Figure 3 � Lien entre les procédés et les propriétés : les paramètres de la structure et de la micro-
structure. La zone grise regroupe les paramètres in�uencés par la chimie et en bleu ceux in�uencés par
la microstructure.

L'originalité des résultats présentés ci-après réside dans le couplage entre la chimie du solide et la

métallurgie en vue de contrôler et d'améliorer ces matériaux pour une utilisation au sein de générateurs

thermoélectriques.

� Grâce à une stratégie développée durant cette thèse et basée sur une approche de groupe de

super espace (3+1)D, l'interprétation et l'indexation des diagrammes de di�raction des rayons

X ainsi que des clichés de di�raction a aboutit à l'identi�cation univoque de la phase HMS.

Ainsi, nous avons mis en évidence les relations suivantes :

� la présence des striations de MnSi est reliée à la formation d'un mélange de phases com-

mensurables durant la solidi�cation, alors que l'absence de striations indique la formation

d'une seule phase incommensurable.

� la transition commensurable-incommensurable peut être induite par post-procédé (densi�-

cation ou traitement thermique) ou par addition d'éléments d'alliage (Ge).



La �gure 4 présente deux cartes qui résument les e�ets du procédé et de la composition sur les

spéci�cités des alliages HMS ie. la présence des striations et le caractère inco/commensurable.

Figure 4 � Carte représentant l'évolution et les liens entre les paramètres structuraux et microstruc-
turaux en fonction du procédé pour un alliage non dopé (a) et pour un alliage dopé avec du Ge (b).
Les abréviations com. et incom. désignent le cararactère commensurable et incommensurable de la
phase HMS. Les abréviations SPS et TT désignent les post-procédés par Spark Plasma Sintering et par
Traitement Thermique.

� De plus, nous avons démontré par des expériences de couple de di�usion que la voie solide

conduit à la formation d'une phase incommensurable. Ce résultat a permis de développer une

nouvelle voie de synthèse tout solide assistée par densi�cation (Spark Plasma Sintering). Ainsi

le frittage réactif en voie solide entre des poudres de MnSi et de Si aboutit à des matériaux pur,

incommensurables et dépourvus de striations, en une seule étape.

� L'utilisation du procédé melt-spinning nous a permis d'obtenir des rubans texturés. La consoli-

dation par SPS de rubans empilés conduit à la formation de matériaux massifs texturés, purs,

incommensurables et dépourvus de striations MnSi. La �gure 6 présente la texture obtenue à

la surface d'un ruban où l'on observe majoritairement des grains de couleur bleu orientés selon

la direction <110>. L'analyse des �gures de pôles a permis de mettre en évidence une texture

de �bre où l'axe c de la structure cristalline possède une rotation libre autour de l'axe de crois-

sance [110] qui est parallèle à la direction normale. Ainsi, lors de la solidi�cation une croissance

préférentielle est imposée par le gradient thermique et la structure cristalline ce qui aboutit à

l'obtention de rubans texturés.



Grâce au matériaux texturés nous avons montré l'isotropie de la phase HMS. En�n, lors du

dopage au Ge de ces matériaux nous avons mis en évidence une anisotropie forte des propriétés

ouvrant de nouvelles perspectives pour améliorer les propriétés thermoélectriques.

Figure 5 � Description de la texture obtenue après melt-spinning sur la surface d'un ruban. La
cartographie EBSD (Electron BackScatter Di�raction) permet de visualiser simultanément les grains
ainsi que leur orientation cristallographique grâce au triangle standard (a). La �gure inverse de pôle
[001]ainsi que les �gures de pôles (110) et (001) décrivent le type de texture obtenue sur une échelle co-
lorée normalisée à 5. Ces �gures indiquent une texture de �bre avec l'axe [110] parallèle à ND (Normal
Direction) (b).

� Les performances thermoélectriques ont été mesurées pour les deux voies explorées pendant

cette thèse. Les résultats obtenus sont illustrés sous forme d'un diagramme d'Ashby (voir �gure

6) tracé à 500°C où le facteur de puissance S2σ (numérateur du zT) est représenté en fonction

de la conductivité thermique (dénominateur du zT). Au sein de ce diagramme la performance

augmente du coin en bas à droite vers le coin en haut à gauche. Les droites représentent des lignes



d'isoperformance : deux matériaux présents sur la même droite auront le même zT. On constate

que le frittage réactif est plus performant (zT=0.53) que la voie liquide classique. L'augmentation

de 23% du facteur de puissance pour le frittage réactif est obtenue par une augmentation de la

conductivité électrique attribuée à une augmentation de la mobilité des porteurs de charge. De

plus, le dopage au Ge pour une composition nominale Mn(Si0.992Ge0.008)1.73 permet d'atteindre

un zT de 0.58 pour la voie liquide. Cependant, une optimisation est encore nécessaire a�n d'égaler

les meilleures performances (zT 0.7) pour le frittage réactif.

Figure 6 � Diagrammes d'Ashby pour les matériaux thermoélectriques à 500°C. Chaque symbole repré-
sente un résultat issu de la littérature (en gris) ou un résultat obtenu durant cette thèse (en couleur).
Ce diagramme compare des deux voies de synthèse : voie liquide (rond bleu) et frittage réactif (triangle
rouge) ainsi que l'e�et du dopage (symboles vert) (b).

Ce travail a permis de remplir un objectif technologique grâce au développement de procédés de

production �ables et reproductibles permettant un contrôle de la composition et de la microstructure.

En�n, les dé�s scienti�ques ont été relevés grâce une étude systématique des relations entre le caractère

incommensurable, la microstructure et l'anisotropie dans le but d'optimiser les propriétés électroniques

et thermique.
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Introduction

The present thesis is dedicated to the study of thermoelectric materials: Higher Manganese Silicide

(HMS) based alloys that are p-type semiconductors. This work is part of a larger project that aims at

developing a thermoelectric generator composed of Silicide based alloys for automotive applications.

Although technological progress has moved at a staggering space in the past century, two of the most

important sectors in terms of greenhouse gas emissions (transport and electricity) remain largely reliant

on a heavily polluting concept dating back to the 19th Century: fossil fueled combustion continues to

drive the turbines in power plants and the pistons in cars, trains and buses. Towards improving vehicle

fuel economy, functional metallurgy is mandatory to provide a detailed understanding of enhanced

thermoelectric materials with considerable potential for large scale production.

The �rst chapter presents our global approach to improve thermoelectric materials for automo-

tive application. In order to insure the viability of our project, we have applied a materials selection

method which uses cost and sustainable requirements as constraints that materials must ful�ll. After

a careful review of the literature data, an essential aspect that must be controlled for materials imple-

mentation was highlighted: the high dispersion of performances due to heterogeneous microstructures.

This highlight requires a better understanding of the material science paradigm (processing, struc-

ture, microstructure and functional properties). In other words, coupling functional metallurgy and

solid-sate chemistry �elds is necessary for HMS optimization. The main challenges of this thesis are

(1) the establishment of a systematic method to fully characterize the HMS features by applying a

multidisciplinary approach, (2) the production of reliable pure HMS with controlled microstructure by

an optimization of the process, and (3) the investigation of textured bulk materials with respect to the

claimed anisotropy highlighted in the literature.

The second chapter is dedicated to the study of the relationship between structure and microstruc-

ture in HMS based alloys. A systematic approach is followed in order to thoroughly characterize the
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materials from as-cast state to bulk post-processed state. Two processes are studied: liquid-phase

and solid state synthesis and their in�uence on the HMS highlights is investigated. Thanks to this

systematic approach an innovative route to produce pure HMS alloys based on reactive sintering is

developed.

The third chapter presents HMS textured bulk materials obtained via the melt-spinning process.

The production of textured �akes with a �ber-like texture is evidenced in HMS brittle phase and re-

tained after post-processing by SPS. This part aims at discussing the anisotropy of pure HMS materials

produced without MnSi striations.

The fourth chapter aims at de�ning pathways in the thermoelectric materials properties space

in correlation to the processing, the doping and the texture e�ects. From optimized HMS alloys,

trajectories are drawn in the thermoelectric materials properties space, a necessary step to scale-up

their production.

Finally, this manuscript ends with a conclusion of the work initiated during these three years

and proposes some perspectives that could be developed in the future to bring HMS alloys closer to

large-scale waste heat harvesting applications.



Chapter 1

Motivations and objectives

This �rst chapter presents the positioning, challenges and objectives of this thesis which focuses on the

study of Higher Manganese Silicide (HMS) for thermoelectricity. Instead of enumerating a long list of

earlier studies, we have compiled the background, our bibliographic analysis, and the conclusions that

we drawn using four visual-thinking boards. Each of the sections is connected to a board.

The �rst one presents the topic and core concept addressed by this work which is concerned by

energy and environmental issues.

The second board exposes the materials choice to achieve a sustainable development of the ther-

moelectric technology for cars' waste heat recovery systems.

The third board describes the basics related to HMS and the progress we want to make beyond

the state-of-the-art.

The last board outlines the frame of this project and the approach.
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Motivations and objectives 1.1

1.1 Rationale

The worldwide growing demand for energy fed by the continuous development of humankind and the

consequent impact on both carbon emission and natural resource consumption are becoming a major

treat in terms of socio-economical, geo-political and environmental impacts. Innovative solutions are

required in energy production, transport, industry, information and communication technologies, in

order to decrease our high reliance on fossil fuels. However, the journey to renewable energy based-

systems is very challenging, it is why attempts to improve the e�cient use of fossil fuel are necessary

steps in reducing global consumption and carbon emission.

Transports account for about 20% of all carbon released into the atmosphere [1], thus car passengers

are a very good example of this incremental approach (see �gure 1.1.a.). To reduce this source of

emissions, several nations have target electrical vehicles sales up to around 10% of all cars sales by

2020.

However, a recent sustainable assessment of this measure [2] shows that achieving this development

on the scale and time envisaged is a tough challenge due to the high demand created for critical elements

(mainly Nd and Li) and the moderate contribution to the reduction of carbon emissions unless the

national grid is decarbonized (such as in France, thanks to nuclear power plants) (see �gure 1.1.b.).

If we want to achieve the passenger car emission objectives (from 130 g/km nowadays to 95 g/km by

2020), alternative solutions should be considered. Of course, cheating software cannot be considered

as a reasonable one, so we are left with at least two di�erent strategies: structure light-weighting and

energy e�ciency increase.

This thesis is concerned by the second strategy. Internal combustion engines are responsible for

a high amount of heat losses (> 50% of the total primary fuel energy). Harvesting this waste heat

may represent a very interesting opportunity to signi�cantly reduce global carbon footprint of road

transportation (see �gure 1.1.c.).

Thermoelectricity (TE) is a promising technology for waste heat recovery system due to its ability

to directly convert a heat �ow into electricity. TE generators (TEGs) are compact solid-state devices

with no moving parts [3]. They are silent, reliable and scalable, making them ideal for distributed

power generation and in applications where low maintenance need is crucial (see �gure 1.1.d.).
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Motivations and objectives 1.1

Figure 1.1: Rationale.
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However, TEGs have not yet found their way into mass production - they have only been sold

for low volume and speci�c applications where reliability (aerospace) or energy access (remote power

generation, camping products) are mandatory - despite the successful and plethoric development of

e�cient bulk TE materials (see �gure 1.1.e.). This is because the research and development of TE

materials have been only driven by the enhancement of the conversion e�ciency whereas the main

barrier arises from the inability to achieve sustainable scale-up of this technology for reasons exposed

hereafter.

This thesis is committed to contribute to the sustainable scale-up of the TE technol-

ogy.
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Motivations and objectives 1.2

1.2 Materials selection

Many limitations on the performances, cost and scalability of TE energy conversion systems are due

to the materials' intrinsic properties. The conversion e�ciency of TEGs depends on the ability of the

materials used to form the junctions (1) to maintain the thermal gradient between the hot source and

the cold sink, (2) to generate a voltage due to the Seebeck e�ect, and (3) to conduct an electrical

current. These material requirements are translated into a performance index, called the �gure of

merit (zT), which measures how well the materials can perform the job (see �gure 1.2.a.).

This antagonist combination of properties controlling the performance of thermoelectrics makes

di�cult to design these materials. Notwithstanding, semiconductors provide the best compromise,

and early work on thermoelectricity put more emphasis on them (see �gure 1.2.b.) [4]. Over the past

40 years, alloys based on Bi2Te3, PbTe, skutterudites, clathrates and (Si,Ge) have been extensively

studied and optimized for their use as TE materials to perform very successfully in a variety of solid-

state power-generation applications [3, 5, 6, 7]. Unfortunately, none of the above materials would allow

a sustainable scale-up of the TE technology because their constituting elements are either toxic, scarce,

critical, and/or expensive. In addition to the design requirements (see �gure 1.2.c.), car makers and

their suppliers are concerned by risks from supply-chain disruption, price �uctuation and legislation.

These are very challenging targets for materials R&D, and materials choice must ful�ll these constraints

if we want to achieve sustainable scale-up of TEGs.

Inspired by the case study on electrical cars provided by M. Ashby in his last book [2], we have

examined the supply chain and availability of TE materials in order to make realistic choices of mate-

rials. If we consider only 10% of existing passenger car global production to implement TEGs (in order

to turn waste heat from the exhaust into a free electrical power source, see �gure 1.2.d.), it represents

8 million of vehicles per year [2]. The annual production of 8 million of cars, each containing about

1 kg of TE materials (this is the amount roughly needed to produce enough power), would requires

roughly 8000 tonnes of TE materials per year. The Her�ndahl-Hirschman Index (HHI) is a measure of

risk when the supply of a material is controlled by one or very few nations. An HHI above 0.2 indicates

severe supply-chain concentration. Charts in �gure 1.2.e. show that most of the state-of-the-art TE

materials are inadequate to achieve a sustainable development on a global scale because their supply

chain is at present inadequate (annual production too low and/or controlled by only few nations).
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Figure 1.2: Materials selection.
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We are left with the �nal choice � manganese and magnesium silicides � for the following reasons:

(1) they demonstrate TE performance in the temperature range 300-500°C, (2) they are stable even

in severe environmental conditions and require no increase in manufacturing complexity, key prop-

erties lacking in current state-of-the-art competitors, (3) they are not made of toxic elements, such

as unacceptable heavy metals that damage bio-systems, and (4) they are made of non-monopolistic,

non-critical and abundant constitutive elements.

This thesis focuses on the study of Higher Manganese Silicide, HMS.
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Motivations and objectives 1.3

1.3 HMS highlights and thesis' objectives

Figure 1.3 summarizes the background and issues related to the study of HMS, and outlines the major

objectives we propose to achieve in the present work.

HMS is a p-type degenerated semiconductor. It belongs to the group referred as Nowotny Chim-

ney Ladder (NCL) phases with the general chemical formula MnXm (M, transition metal element;

X, group 13 or 14 elements; n and m, integers) encountered in a variety of intermetallic compounds

such as VGe1.82, MoGe1.77 and RuSn1.5 [8, 9]. The crystal structure of the NCL phases derives from

TiSi2-type structure in which the atoms of M occupy the Ti positions and form a β-Sn tetragonal

sub-system (chimney), while the atoms X are re-arranged in the c-direction and form a helical ar-

rangement (ladders) occupying the interstice of the [M] sub-system (see �gure 1.3.a.). Whereas both

sub-systems are unchanged along the other two main crystallographic directions, their periods di�er

in the c direction. Consequently, the unit cell of NCL phase has a c-dimension which is equal to a

certain multiple of the [M] sub-system parameter cM and the [X] sub-system parameter cX leading to

a large lattice parameter in this direction:

c = ncM = mcX

Consequently, the X/M atomic ratio of the NCL compound MnXm is related with the cM/cX ratio

as follows 1.1:

X

M
=
m

n
=

(
cM
cX

)
= 7 (1.1)

For stability reason, the NCL phases follow the 14 Valence Electron Count (VEC) rule per M atoms

[10, 11] (see equation 1.2). The stability of a phase seems to be intimately related to the total number

of valence electrons per transition metal atoms. For transition metal groups 7, 8, and 9, there is a

preponderance of structures with 14 valence electrons per transition metal. So, the X/M ratio of a

particular binary NCL phase is controlled by the number of valence electrons of the M atoms:

X

M
=

14− eM
eX

(1.2)

with eM and eX the numbers of valence electrons for M and X respectively.
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Figure 1.3: Higher Manganese Silicide.
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For HMS the ideal VEC=14 value gives the chemical formula Mn4Si7. This is about the unambigu-

ous statements we can make for HMS. If we dig deeper things become much more confused. Indeed,

up to 8 distinct HMS phase have been reported - Mn4Si7, Mn11Si19, Mn15Si26, Mn27Si47, Mn7Si12,

Mn19Si33, Mn26Si45 and Mn39Si68 [12, 13, 14, 15, 16] - and a number of authors assumed either the

existence of a mixture of di�erent commensurate HMS phases or a single incommensurate phase.

Since the sixties and until now, each contribution of the literature to the debate results to a dis-

sonant cacophony of opinions across an increasing spectrum of interpretations. Instead of stacking a

new one, this work is an attempt at clarifying this issue around the HMS phase identi�-

cation (chapter 2). This is to be accomplished through a critical review of the claims and concepts

arising from the literature, a better control of the fabrication process of HMS and the application of

an approach to interpret the X-ray and electron di�raction patterns in a coherent and uni�ed manner.

Aside to these speci�c features of the crystal structure of HMS, investigations of the microstructure

of melted HMS reveal another special characteristic which is the presence of thin MnSi platelets

uniformly distributed perpendicular to the c-axis of HMS [17, 18] (see �gure 1.3.b.). Even if these

MnSi striations seem to be always observed (in melt-grown single crystal [17, 18, 19, 20], as well as

induction melted ingots [21, 22]) with a proportion of about 2 wt.% [19], and are almost impossible to

suppress in bulk HMS [19, 23], their formation is not unambiguously explained and the Mn-Si phase

diagram [24] appears useless to this respect.

One of the scienti�c objective of this thesis is to study the microstructure of HMS

materials and the way it changes with the processes and the composition (chapter 2).

Based on this understanding we should be able to produce highly pure HMS samples to

test their intrinsic transport properties (chapter 4).

To discuss the transport properties of HMS, we have plotted the power factor (the numerator of zT)

against the thermal conductivity (the denominator of zT) for all the HMS alloys from the literature

(see �gure 1.3.c.). In this materials properties space (so-called Ashby diagram) for thermoelectrics the

di�erent HMS materials of the state-of-the-art are represented by bubbles, and the TE performance

by lines of slopes equal to zT. Materials above the line have higher values of zT than those below it,

while materials lying on the same line perform equally well.

Charts shown on �gure 1.3.c. show that the properties of HMS materials span over a large range

of values: from 1.7 to 3.5 W/m.K for the thermal conductivity, from 7.10−4 to 2.10−3 W/m.K2 for

the power factor and from 0.27 to 0.67 for the �gure of merit. These important discrepancies result
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from the fact that HMS materials were prepared by a large variety of techniques that rely on the

consolidation of powders obtained by ball-milling [25, 26, 27, 28, 29, 30, 31, 32, 33, 34], arc-melting

[22, 35, 36, 37, 38, 39], melt-spinning [40, 41], gas atomization [42], ...

However, no pattern appears in the thermoelectric properties charts for HMS that could reveal

trends, process trajectories or ways processing route and composition in�uence the transport properties,

and from which we could have outlined design guidances to tune the performance of HMS. A careful

examination of the literature shows that most of the published thermoelectric properties of HMS were

obtained on samples having impurities: MnSi striations in melt grown HMS, Si and MnSi secondary

phases in solidi�ed ingots, and porosities in compacts. In fact, to our best knowledge, the intrinsic

properties of HMS have never been truly investigated, and we reach the same conclusion for the

anisotropy of the properties reported in several papers [17, 19, 43, 44, 45, 46, 47, 48] as well as the

doping/alloying e�ect.

Another scienti�c objective of this work is to carry out an analysis of the e�ect of

processes (chapter 4), Ge micro-substitutions (chapter 2) and crystallographic texture

on the transport properties (chapters 3 & 4).
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1.4 Project concept

The core concept of this project thesis revolves around developing scalable, sustainable and reliable

p-type thermoelectric materials with a good control of their microstructures and resulting properties.

To achieve e�cient thermoelectric devices, it is important to understand how manufacturing processes

enable to manipulate the properties of the selected thermoelectric material, i.e. HMS. This is why

emphasis is put on the microstructure and transport properties of HMS. An important endeavor

is also made to resolve several important questions raised by the state-of-the-art regarding (1) the

existence of di�erent commensurate phases or a single incommensurate HMS structure and (2) the

intrinsic anisotropy of the transport properties of HMS.

This work rely on a consortium (ANR project) involving two upstream academic partners (ICMCB

and the Institute Charles Gerhardt of Montpellier, ICGM), a technology integration center (Laboratory

for Innovative in New Energy Technologies and Nanomaterials, CEA-LITEN, in Grenoble), and a start-

up whose mission is to bring thermoelectric-enabled competitive energy recovery systems to the market

(Hotblock OnBoard) (see �gure 1.4.a.).

With respect to the design strategies of HMS alloys, this work rely on Density Functional Theory

(DFT) ab-initio calculations (from CEA-LITEN) used to derivate the phonon dispersion, velocity and

lifetime, and from which it is possible to estimate the contributions of phonons with di�erent mean free

path to the cumulative thermal conductivity of HMS. These simulations suggest that microstructural

parameters such as the grain size and the precipitates distribution cannot a�ect signi�cantly the

properties of HMS because their size scale is larger than the mean free path of the most contributive

phonons (less than 10 nm) [45].

From these insights, we have decided not to play with the nanostructuration as it is

commonly done when it comes to tune the properties of thermoelectrics, but instead

look at the structure, alloying (Ge and Cr doping) and anisotropy (see �gure 1.4.b.).

The interpretation of the microstructures of HMS alloys is based on computational thermodynamic

thanks to the thermodynamic assessment of the quaternary Cr-Ge-Mn-Si system provided by ICGM

[49, 24, 50, 51]. With respect to measuring thermoelectric transport properties, we have access to a

wide range of special techniques for material characterization and take full advantage of round-robin

testing campaigns to demonstrate the reproducibility of the transport properties of our TE materials.

Finally, this thesis illustrates that metallurgical approaches and solid state chemistry

concepts can be coupled together to study functional materials (see �gure 1.4.c.).
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Motivations and objectives 1.4

Figure 1.4: Project concept.
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Chapter 2

Microstructure control of HMS

In the previous chapter we have highlighted the speci�c features of the crystal structure of HMS

and the large discrepancies regarding the possible existence of di�erent commensurate phases or a

single one dimensionally incommensurate structure. This situation is due to the confusions that arise

from the number of various approaches applied to perform the di�cult task of identi�cation of HMS

phases. One of the objectives of this chapter is to contribute to the resolution of this long lasting

debate. The production of pure HMS alloys is another challenge due to the inevitable formation

of secondary phases during the solidi�cation of this incongruent compound. Another intriguing and

detrimental highlight associated to solidi�ed HMS microstructure is the systematic appearance of thin

MnSi platelet precipitates (striations) periodically distributed in the HMS grains, and for which the

formation cannot be explained by the Mn-Si phase diagram. This is an important issue towards the

characterization of the intrinsic functional properties of HMS and the control of its performance as

a matured thermoelectric material. Another objective of the work presented in this chapter is to

design the processing route allowing the production of highly pure and fully dense HMS materials in

a reproducible manner.

This is to be accomplished through the experimental investigations of the microstructural and

structural parameters associated with the synthesis of HMS. The goal is to evaluate the in�uence of the

composition (Mn/Si ratio), the process (liquid-phase, spark plasma sintering and reactive sintering),

the doping (Ge and Cr micro-substitutions) on the HMS highlights (7 value, inco/commensurate

character and lack or presence of MnSi striations).

Various techniques and approaches, coupling metallurgy and solid state chemistry, are combined
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Microstructure control of HMS

to characterize the microstructure of HMS materials and identify the particular MnSi7 phase:

� The microstructure is characterized with SEM, EPMA and EBSD techniques, and rationalized

using CALPHAD approach and the Scheil-Gulliver simulation.

� The structure is studied by re�ning the X-ray powder di�raction diagrams using a pattern-

matching approach based on a (3+1)D superspace group concept. This allows to treat the

di�erent HMS phases as a unique modulated superstructure with a modulated vector 7 in the c

direction. It is then possible to correlate the composition to the crystal structure via the value

of 7 and thus precisely identify which HMS phase is formed.

� The inco/commensurate character of HMS alloys is examined by electron di�raction in a trans-

mission electron microscope through the detection of spot anomalies.

This chapter is structured in four sections that propose a detailed process-dependent study of

microstructural and structural parameters for HMS based alloys.

The �rst section details the methodology we have developed to systematically study HMS alloys.

The second section is dedicated to the characterization of HMS alloys prepared by solidi�cation

and the e�ects of Ge and Cr doping on the microstructure and commensurability. The results are

discussed in the third section.

Finally, the fourth section introduces an innovative route to synthetize HMS alloys via reactive

sintering. The development of this new route is achieved thanks to the careful study of HMS formation

in the previous sections.

Through this chapter we will see how metallurgy and solid state chemistry �elds can be coupled to

gain a better understanding of HMS alloys.
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2.1 Methodology

In this �rst part, the experimental techniques and methods used to characterize and to interpret the

microstructure, the phases and the inco/commensurate character of HMS alloys will be presented.

Microstructure characterization and interpretation

Microstructural characterization was performed by Scanning Electron Microscopy (SEM, Vega Tescan).

The microstructures will be presented in Back-Scattered Electron (BSE) mode to image the chemical

contrast or in Secondary Electron (SE) mode for topography analysis. In addition, Electron Back-

Scattered Di�raction (EBSD) is also performed with EDAX system in order to analyze the grain size,

shape and orientation. Orientation Imaging Micrograph (OIM) of as-cast alloys highlights the grain

shape and crystallographic orientation simultaneously. A detailed description of the EBSD technique

will be presented in chapter 3 as this chapter is dedicated to the investigation of the texture in HMS

alloys. Electron Probe Micro-Analyzer (EPMA, CAMECA SX100) device is used to evaluate the phase

compositions.

The formation of the microstructures in the Mn-Si binary system and in the ternary Ge-Mn-Si

and Cr-Mn-Si systems will be interpreted with the help of the computational thermodynamic using

the ThermoCalc software and a CALPHAD description of the Cr-Ge-Mn-Si quaternary system in-

vestigated by the Institut Charles Gerhardt Montpellier (member of the present ANR consortium)

[1, 2, 3, 4]. The CALPHAD (CALculation of PHAse Diagrams) method can be understood as min-

imization process of the total Gibbs free energy from well established phenomenological models to

experimental values and observations. This requires that the Gibbs free energy of all the compet-

ing phases can be assessed. In order to generate the most accurate free energy functions, prototype

alloy samples were produced, and �rst principles calculations were carried out to complete the liter-

ature data. The results of the Density Functional Theory calculations were introduced as �pseudo-

experimental� parameters in order to complement the available data set. Emphasis was put on the

description of the phases involved in the microstructure of HMS-based alloys. The diamond_A4

solid solution was treated as a substitutional solid solution with one sub-lattice (Mn,Si,Ge)1. Its

molar Gibbs energy of mixing was expressed by a sub-regular solution model in which composition

dependence is based on the Redlich-Kister equation. The MnSi intermetallic phase was treated as a

stoechiometric compound exhibiting extensions in the ternary Cr-Mn-Si and Ge-Mn-Si systems. It

was described by the following sub-lattice model: (Cr,Mn)0.5(Ge,Si)0.5. In order to take into ac-
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count the narrow homogeneity range of the HMS phase in the binary Mn-Si system, this compound

was treated with four sub-lattices: (Mn)0.146(Mn,VA)0.22(Mn,Si)0.244(Si)0.39. HMS phase is mod-

eled with vacancies in Mn site and anti-sites for the Si site. To take into account the extensions in

the Cr-Mn-Si and Ge-Mn-Si systems, Cr and Ge where introduced in the 4 sub-lattices as follows:

(Cr,Mn)0.146(Cr,Mn,VA)0.22(Ge,Mn,Si)0.244(Ge,Si)0.39 leading to a Cr substitution on Mn sites and a

Ge one on Si sites. The thermodynamic parameters evaluated in the description of the Cr-Ge-Mn-Si

system are listed in table 2.1.

Figure 2.1 presents Mn-Si phase diagram and a zoom close to HMS phase �eld calculated using

ThermoCalc and the above thermodynamic description. HMS phase presents a non-congruent melting

point and its formation during cooling is the result of the invariant peritectic reaction:

MnSi + Liq � MnSi7

The solidi�cation of HMS alloy is achieved after the eutectic invariant reaction. From the phase

diagram the solidi�ed microstructure of HMS alloys is expected to contain primary MnSi dendrites,

HMS phase and Si eutectic aggregates.

Figure 2.1: Calculated Mn-Si binary phase diagram (a) and enlargement close to HMS phase �eld (b)
from CALPHAD assessment showing the non-congruent melt of HMS.
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Phase and Model Parameters (J/mol)

Diamond_A4
(Mn,Si,Ge)1

G(Diamond_A4,Si) = GSi
SER

G(Diamond_A4,Mn) = GMn
SER + 1 000

G(Diamond_A4,Ge) = GGe
SER

L(Diamond_A4,Mn,Si) = -21 330
0L(Diamond_A4,Ge,Mn) = 22 000
0L(Diamond_A4,Ge,Mn,Si) = -140 000

B20_MnSi
(Cr,Mn)0.5
(Ge,Si)0.5

G(B20_MnSi) = 29
G(B20_MnSi,Mn:Ge) = - 8 000 - 0.5*T + 0.5*GMn

bcc + 0.5*GSi
diam

L(B20_MnSi,Mn:Ge,Si) = 8 000
0L(Cr,Mn:Ge) = 700 - 27*T
1L(Cr,Mn:Ge) = -5 500 + 5*T
2L(Cr,Mn:Ge) = 6 500 - 7*T
0L(Cr:Ge,Si) = 6 000 - 1.5*T
1L(Cr:Ge,Si) = 100 + 3*T

MnSi7
(Cr,Mn)0.146
(Cr,Mn,VA)0.22
(Ge,Mn,Si)0.244
(Ge,Si)0.39

G(MnSi7,Mn:Mn:Si:Si) = -35 930 + 7.68*T + 0.366*GMn
SER +

0.634*GSi
SER

G(MnSi7,Mn:VA:Si:Si) = -12 000 + 4*T + 0.146*GMn
SER +

0.634*GSi
SER

G(MnSi7,Mn:Mn:Mn:Si) = -25 000 + T + 0.610*GMn
SER + 0.390*GSi

SER

G(MnSi7,Mn:VA:Si:Si) = -15 000 + 4*T + 0.146*GMn
SER +

0.634*GSi
SER

0L(MnSi7,Mn:Mn,VA:Si:Si) = -6 990
0L(MnSi7,Mn:Mn,VA:Mn,Si:Si) = 425 800
0L(MnSi7,Mn:Mn:Mn,Si:Si) = -4 460
G(MnSi7,Mn:Mn:Si:Ge) = -11 000 - 0.5*T + 0.366*GMn

bcc +

0.39*GGe
diam + 0.244*GSi

diam

G(MnSi7,Mn:Mn:Ge:Si) = -11 000 - 0.5*T + 0.366*GMn
bcc +

0.244*GGe
diam + 0.39*GSi

diam

G(MnSi7,Mn:Mn:Ge:Ge) = 0.366*GMn
bcc + 0.634*GGe

diam

G(MnSi7,Mn:VA:Ge:Ge) = 0.146*GMn
bcc + 0.634*GGe

diam

G(MnSi7,Mn:Mn:Mn:Ge) = 0.61*GMn
bcc + 0.39*GGe

diam

G(MnSi7,Mn:VA:Mn:Ge) = 0.39*GMn
bcc + 0.39*GGe

diam

G(MnSi7,Cr:Si) = -30 000 + 6*T + 0.366*GCr
bcc + 0.634*GGe

diam

0L(Mn:Mn:Si:Ge,Si) = -5 000
0L(Mn:Mn:Ge,Si:Si) = - 5 000
0L(Mn:Mn:Ge,Si:Ge,Si) = -7 000
0L(Cr:Ge,Si) = 5 000

Table 2.1: Model and optimized thermodynamic parameters for the phases involved during HMS for-
mation, VA designates vacancies and optimized values are in bold type [1, 2, 4, 3].
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HMS phase identi�cation

As mentioned in chapter 1, the need of identifying a particular HMS phase arises from the speci�city

of HMS. The di�culty of this task is due to the number of di�erent concepts and methods used to

describe the HMS structure, and there is a controversy regarding the existence of a series of di�erent

commensurate phases or a single incommensurate structure. It is commonly recognized that HMS

are Nowotny Chimney-Ladder phases based on two interpenetrating sub-systems: a β-Sn tetragonal

arrangement of Mn atoms (chimney) and a helical arrangement of Si atoms (ladders), with both being

aligned along the c-axis of the tetragonal unit cell (see �gure 2.2).

Figure 2.2: Example of Nowotny Chimney Ladder structure for Ru2Sn3 with a view down the c axis
(left) and a perpendicular view showing the helices (b) (reproduction of [5]).

Notwithstanding, there are two di�erent concepts to describe the structure of HMS: the concept

of several commensurate phases which di�er slightly in their composition and the concept of a single

one-dimensionally incommensurate phase. These two concepts arise from a simple structure building

principle: since the [Mn] and [Si] periods have di�erent length along the c-axis, di�erent numbers of

stacked sub-systems are possible to form a repeatable unit cell. If the ratio can be expressed as simple

integers the crystal structure can be represented by a single unit cell with a �nite parameter c. In

contrast, if the ratio is irrational, the lattice is in�nite in the c direction, and we then have to assume

an incommensurate modulated structure. In the concept of commensurate phases, a relative large unit

cell has to be assumed to account for the c-axis lengths di�erence. For this approach, the agreement

between the approximate commensurate structure and the observed X-ray re�ections is enhanced as

the number of independent positional �tting parameters increases. That is how four di�erent HMS

phases, i.e. Mn4Si7 [6], Mn11Si19 [7], Mn15Si26 [6, 8] and Mn27Si47 [9, 10], have been reported between

1964 and 1973 with atomic positions determined with X-ray di�raction. Their unit cell parameters

are reported in table 2.2.
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Parameters Mn4Si7 Mn11Si19 Mn15Si26 Mn27Si47

a 5.526 5.530 5.502 5.530

c 17.517 47.763 65.284 117.9

m 16 44 60 108

n 28 76 104 188

m/n 1.75 1.72727... 1.73333... 1.74074...

Table 2.2: Lattice parameters for Mn4Si7, Mn11Si19, Mn15Si26 and Mn27Si47 from [11, 12, 6, 10]. a
and c in Å, m and n respectively the numbers of Mn and Si atoms in the unit cell and the m/n ratio
are reported for the di�erent HMS phases.

Other commensurate phases, i.e. Mn7Si12, Mn19Si33, Mn26Si45 and Mn39Si68 have been mentioned

in high-resolution electron microscopy studies [13] and electron di�raction studies [13, 14, 15]. Their

identi�cation results from the methodology applied to interpret electron di�raction patterns. Due to

the long c-parameter, electron di�raction patterns for [uv0] zone axes contain intense spots and linear

sequence of regularly spaced weaker spots (see �gure 2.3).

Figure 2.3: Schematic representation of an electron di�raction pattern taken along [-120] zone axis.
The basic spot arising from [Mn] sub-system is highlighted with a red contour and in between the (000)
and (002) basic spots a sequence of 7 satellites spots is drawn.

According Ye and Amelinckx [13] and De Ridder and Amelinckx [14] the most intense spots are

basic re�ections arising from the tetragonal [Mn] sub-system, and with each of these basic spots the

row containing equidistant satellite spots are caused by the Si helix. These satellite re�ections denote

the periodicity and c-length of the Si helix, and so are the �nger print of a particular commensurate

HMS phase. When the sequences of satellites associated with di�erent basic spots do not match where
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they meet, it is interpreted as the manifestation of slight di�erence in cSi, and the method to derivate

the theoretical composition consists to �nd the common multiple for cMn and cSi. In other words, the

analysis of the spot positions and number is used to distinguish between di�erent HMS phases.

An alternative and perhaps better approach to describe the structure of HMS can be found in

the crystallography of aperiodic crystals (incommensurate modulated crystals, composite crystals and

quasicrystals) [16]. The building principle of incommensurate crystals considers a periodic superstruc-

ture in which the displacement of atoms are obtained as the value of a modulation function that does

not have a periodicity equaling the superlattice period (see �gure 2.4). Incommensurate composite

crystals are compounds that can characterized as the intergrowth of several incommensurately mod-

ulated subsystems. The resulting structure does not have translation symmetry but long-range order

exists, provided that the shapes and amplitudes of the modulation waves are known. Consequently, the

determination of the modulation vectors is the main task to identify to characterize incommensurate

crystals.

Figure 2.4: Crystal structures with displacement modulations for commensurate (a) and incommensu-
rate cases (b) (reproduction of [16]).

Because perfect long-range order exist in aperiodic crystals, they scatter X-rays (and electrons)

in the form of Bragg re�ections as periodic crystals do. Electron di�raction pattern of incommensu-

rate composite crystals are obtained as the superposition of di�raction patterns of each substructure

exhibiting basic re�ections surrounded by equally spaced satellite re�ections that result from the inter-

action between the sub-systems (see �gure 2.5). When the [Mn] and [Si] sub-systems have independent

periods along the c direction (incommensurate phase), the di�raction pattern exhibit spacing and ori-

entation anomalies of the satellite spots (see �gure 2.6) which reveal that the periodicity and position

of the Si helices changes continuously. For such situations, it can be conclude that the HMS phase is
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incommensurate. In contrast, if both [Mn] and [Si] sub-systems match for a given number of stacking

the satellites spots are superposed (see �gure 2.6) and for such situations it can be conclude that the

HMS phase is commensurate.

Figure 2.5: Schematic representation of an electron di�raction pattern taken along [-120] zone axis.
The basic spots arising from [Mn] and [Si] sub-systems are respectively highlighted with a red and green
contour, and in between the (0000) and (0020) [Mn] basic spots a sequence of 6 satellites spots is drawn
that are linear combinations of Mn and Si distances. In this description the spots are indexed with 4
indices.

Figure 2.6: Commensurate (left) and incommensurate (middle) di�raction patterns taken along [-120]
zone. For the incommensurate case spacing and orientation anomalies are represented. An example of
di�raction pattern taken along [-120] zone for HMS alloys showing spacing anomalies from Ye et al.
work [13] is reported (right).
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An elegant solution to index the di�raction patterns of composites crystals is provided by the

superspace group approach which involves four re�ection indices (hklm): 3 for the main Bragg re�ec-

tions of the basic structure (hkl) and a fourth (m) for the satellite re�ection. The superspace is a

4-dimensional space in which the �rst three coordinate axes represent the 3D physical space, and the

fourth coordinate axis represent the modulation [17].

In the case of HMS, only one modulation vector is required to describe the displacement of atoms

in the incommensurate c-direction. Based on these considerations, Kikuchi and Miyazaki [18, 19]

developed an approach that allow to uniformly treat all the HMS phases as a single compound MnSi7

where 7 is the ratio cMn/cSi. It is then possible to directly correlate the composition to the crystal

structure, provided that 7 is accurately determined. Miyazaki et al. [19] employed a high resolution

neutron powder di�raction technique and the superspace group approach to investigate the modulated

structure of HMS produced by arc-melting.

However, to our best knowledge, no structure analysis based on the re�nement of XRD and electron

di�raction data using the superspace group concept has been systematically applied to evaluate the

e�ect of the processing route on the structure of HMS. Inspired by the work of Kikuchi and Miyazaki,

we have performed a global least square re�nement of the X-ray di�raction diagrams (with JANA2006

software) to precisely extract the intensity and position of the peaks without structural model (pro�le-

matching using the Le Bail method).

To perform the pro�le matching we �rst �t the peaks corresponding to the [Mn] sub-system with

β-Sn type arrangement using a 3D space group: I41/amd. Secondly, we use a (3+1)D superspace

group: I41/amd(007)00ss to perform the complete pro�le re�nement including [Si] sub-system and

satellite peaks (see �gure 2.7). Each sub-system will be indexed with a space group with a common

a parameter and di�ers in c direction depending on the atomic arrangement. Increase the order in

satellites peaks is linked to an increase of their intensity with order.

The fundamental re�ections for [Mn], [Si] and satellites peaks are respectively denoted hkl0, hk0m

and hklm. With this approach a �ne change in 7 value is easily observed in the di�raction pattern and

results in a change on the position of the main peak of [Si] (1101) located near 42.5°. To illustrate this

point, simulated XRD pro�les obtained by �xing the 7 value are superposed and shown on �gure 2.8.
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Figure 2.7: Pro�le matching for [Mn] sub-system with I41/amd space group (a) and complete pro�le
matching with I41/amd(007)00ss (3+1)D superspace group (b). Observed (blue), calculated (red), and
di�erence (black) patterns of powder XRD for MnSi1.73 as-cast alloy measured at 298 K. Short vertical
lines below the pattern indicate positions of Bragg re�ections: black for [Mn], yellow for [Si] and green
for satellites. The red short lines indicate common re�ections of [Mn] and [Si]. The di�erence line
shows the agreement between the observed and calculated intensities. The XRD patterns are indexed
with 3 indices (a) and 4 indices (b) for respectively 3D space and (3+1)D superspace groups.

Figure 2.8: Simulated XRD patterns for di�erent values of c-axis ratio (7) illustrating the sensitivity
of the applied method.

We can see that a small variation of 7 value has a strong impact on the positions of the main peak

of [Si] (1101) and the satellite (211-1) meanwhile the main [Mn] peak (2110) is not a�ected. This

simulation highlights the sensitivity of the approach.

To perform this study long XRD acquisition conditions were used in order to limit the �uorescence

phenomenon of the Mn with the copper radiation and obtain high resolution data. XRD patterns were

collected for more than 60 h with a step of 0.0084 in 15° to 130° range on PANalytical X'Pert Pro Cu
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Kα1 device (equipped with a monochromator).

The re�nement of high resolution XRD patterns using the superspace group approach will provide

a precise measurement of the 7 value allowing to identify a particular commensurate phase, however

it is not enough to discriminate between a commensurate phase and an incommensurate compound

because it is not possible to experimentally distinguish between an irrational number and some rational

approximant. To solve this problem, we relied on electron di�raction technique as explained above.

Electron di�raction patterns were obtained thanks to Transmission Electron Microscopy (TEM,

JEOL 2100). The analysis of HMS alloys is performed on powder or on foils depending on their aim.

The foils are extracted from as-cast alloys by Focused Ion Beam (FIB) technique with Ga+ ions. The

di�raction patterns are observed with an axis zone permitting the observation along the c-axis of the

crystal structure: [-120] zone axis.
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2.2 Synthesis, structure and microstructure of HMS alloys

2.2.1 E�ect of the nominal composition

Experimental procedure

To investigate the microstructural parameters involved during HMS alloys production we choose a

liquid-phase process: arc melting technique (Bülher MAM-1 device) that is classically used to produce

HMS alloys. Commercial Mn (99.9%) and Si (99.9999%) chips provided respectively by Strem Chemical

CAS [7439-96-5] and Alfa Aesar CAS [7440-21-3] were weighted in appropriate amounts and placed in

the copper crucible of the arc melter. Batches of 4 g were melted three times under Argon atmosphere

in order to ensure the homogeneity of the samples. Pure titanium was melted prior to any melting step

to guarantee oxygen free atmosphere in the chamber. After the synthesis the samples were weighted

in order to control the losses. Samples exhibiting a loss less than 0.5% of sample mass were selected

for characterization.

Long annealing treatments were conducted on as-cast ingots to equilibrate the samples and explore

the structural stability of HMS. The thermal treatments were performed in quartz tubes (sealed under

vacuum) at 700°C and 900°C during 43 days followed by quench into water.

Four nominal compositions MnSi7 with 7=1.70, 1.73, 1.75 and 1.77 were prepared and are reported

in Mn-Si binary system (see �gure 2.9). The nominal compositions are selected to surround the region

close to HMS phase �eld. Through this set of experiments we sought for nominal composition in�uence

on HMS phase and secondary phases amount.
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Figure 2.9: Mn-Si binary phase diagram close to HMS phase �eld from CALPHAD assessment from
Berche et al. [1]. The four studied nominal compositions MnSi7 with 7=1.70, 1.73, 1.75 and 1.77
used to scan HMS phase �eld region are reported.

Microstructure characterization

Figure 2.10 presents the powder XRD patterns for the four as-cast compositions.

Figure 2.10: XRD patterns for four di�erent nominal compositions (7=1.70-1.77) as-cast. HMS phase
peaks are indexed with the commensurate Mn15Si26 phase (ICSD #15339). Si and MnSi secondary
phases are shown in green circle and blue square, respectively.

All the di�erent alloys exhibit HMS phase and di�erent secondary phases: MnSi for nominal

composition 7=1.70 and pure Si for 7=1.75 and 1.77. For 7=1.73 no secondary phases are detected

(within the detection limit of XRD technique). In addition, an increase in Si content from 7=1.75 to
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7=1.77 in nominal composition leads to an increase in pure Si phase amount. As expected for liquid

phase process the proportion of the secondary phases depends on the nominal composition.

The typical microstructures for the four as-cast alloys as a function of the nominal composition

are shown on �gure 2.11. Si eutectic aggregates located at HMS grain boundaries and primary MnSi

dendrites typical of HMS casted alloys are observed. Defects as micro-cracks are evidenced due to

thermal stress because of rapid melting and cooling rates during arc melting process. Phase composition

EPMA con�rm the presence of Si and MnSi in agreement with previous XRD results. For 7=1.73 a

low content of MnSi and Si secondary phases is evidenced on �gures 2.11.e. and 2.11.g. (not detected

by XRD).

Figure 2.11: BSE images for four di�erent nominal compositions (7=1.70-1.77) as-cast (a-d) and
detailed microstructures for 7=1.73 as-cast alloy (e-g).

To further analyze HMS alloys we will focus our analysis on MnSi1.73 as-cast alloy. Its microstruc-

ture is well interpreted from the calculated phase diagram shown on �gure 2.1 and the Scheil-Gulliver

simulation shown in �gure 2.12. The sequence of transformation leading to the microstructure is as

follows. At 1168°C the liquidus is reached and the alloy starts to solidify with nucleation of MnSi.
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Upon cooling the liquid moves along the liquidus line and reaches the peritectic point where it reacts

with the primary MnSi dendrites to form HMS. Because the rate of the peritectic reaction is too slow,

it does not go to completion and the remaining liquid follows the liquidus leading to the solidi�cation

of HMS. This regime remains until the liquid reaches the eutectic point at 1152°C where it completely

solidi�es without further cooling.

Figure 2.12: Solidi�cation path for an alloy of nominal composition MnSi1.73 calculated with Scheil-
Gulliver model.

Besides that when an additional polishing or etching step is performed on the alloy shown on

�gure 2.11.e., a new feature of the microstructure is evidenced into HMS matrix: MnSi striations

periodically distributed in each grain (see �gure 2.13). From the thermodynamic description of Mn-Si

phase diagram [1] the formation of the striations during the solidi�cation cannot be explained by the

two invariant phase transformations previously discussed.
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Figure 2.13: BSE images in crystallographic contrast highlighting MnSi striations in HMS matrix (a)
and enlargement (b) for MnSi1.73 as-cast alloy.

Figure 2.14 shows an OIM map where we can observe that the sample is composed of large grains of

few hundreds of µm. We can also note an orientation relation between the grain and the striations. As

a consequence, the inter-striation distance observed in 2D is function of the grain orientation. These

results are supported by the literature [20, 21] where striations with composition corresponding to

MnSi are found to be perpendicular to the c-axis of the crystal structure.

Figure 2.14: BSE image (a) and the corresponding OIM map (b) for MnSi1.73 as-cast alloy.

To characterize the striations a foil was extracted from an as-cast alloy (see �gure 2.15.a.). The

�ne short black lines correspond to the print of (001) basal planes, we therefore con�rm that MnSi

striations are parallel to (001) planes. A view of the foil analyzed by TEM is shown on �gure 2.15.b.
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where we can distinguish two striations.

Figure 2.15: BSE image of as-cast MnSi1.73 alloy (a) where MnSi striations orientation is found to be
parallel to the (001) basal planes (indicated with short black lines). View of TEM foil (b) extracted by
FIB technique where MnSi striation and the inter-striation region will be characterized.

The thickness of the striation measured on the TEM image shown on �gure 2.16.a. is about 30

nm. Close to the striations it is then possible to observe the atomic planes of HMS phase. The waves

formed by the atomic planes of the HMS matrix are due to the non-constant thickness of the foil. A

di�raction pattern (see �gure 2.16.b.) is taken in the center of the striation with a narrow diaphragm

(∼6 nm) and a di�raction ring pattern is produced meaning that the striation is amorphous. The

results obtained for the characterization of the striation are in agreement with Zhou et al. work [22].

Figure 2.16: View of the MnSi striation (a) and di�raction pattern of the analyzed zone (arrow) (b)
showing an amorphous behavior of the striation.

The thermal stability of MnSi striations is investigated by an annealing treatment at 1000°C during
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43 days. The microstructures before and after annealing are shown in �gure 2.17. We can see that

despite the thinness of the striations, they present a remarkable stability even at 1000°C and cannot be

solution treated. From Nishida et al. work [23] the stability of the MnSi striations in arc melted alloys

is observed after a thermal treatment at 1100°C. At this stage, additional information are needed to

understand the mechanism involved in the formation of the striations.

Figure 2.17: BSE images of MnSi striations in MnSi1.73 alloy before (a) and after annealing treatment
at 1000°C during 43 days (b).

HMS phase identi�cation

In order to evaluate if the nominal alloy composition forms a particular HMS phase, we performed

XRD pro�le matching analysis with the superspace group formalism for the 12 alloys: 4 di�erent

compositions and 3 di�erent thermal history (as-cast and equilibrated at 700°C and 900°C).

Figure 2.18 presents a typical pro�le matching performed on an as-cast sample with nominal

composition MnSi1.73. The re�ned lattice parameters from pro�le matching are: a=5.5237(9) Å,

cMn=4.3646(6) Å, cSi=2.5177(3) Å and c-axis ratio 7=1.7339(8).

Table 2.3 summarizes the pro�le matching re�nements for the 12 samples (as-cast and equilibrated).

From the re�ned lattice parameters slight changes are observed for c-axis ratio (7 ranges from 1.7334(7)

to 1.7389(2) value).
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Figure 2.18: Observed (blue), calculated (red), and di�erence (black) patterns of powder XRD for
MnSi1.73 as-cast alloy measured at 298 K. Short vertical lines below the pattern indicate positions of
Bragg re�ections: black for [Mn], yellow for [Si] and green for satellites. The red short lines indicate
common re�ections of [Mn] and [Si]. The di�erence line shows the agreement between the observed
and calculated intensities. The left �gure shows complete pro�le matching (a) and the right one shows
an enlargement (b). Peaks are indexed with the I41/amd(007)00ss superspace group.

Nominal composition State a (Å) cMn (Å) cSi (Å) 7

1.70

As-cast 5.5235(5) 4.3651(6) 2.5181(4) 1.7334(8)

Equilibrated at 700°C 5.5248(7) 4.3652(2) 2.5118(3) 1.7378(6)

Equilibrated at 900°C 5.5255(0) 4.3650(1) 2.5101(8) 1.7389(2)

1.73

As-cast 5.5237(9) 4.3646(6) 2.5177(3) 1.7339(8)

Equilibrated at 700°C 5.5256(5) 4.3648(1) 2.5117(3) 1.7377(7)

Equilibrated at 900°C 5.5255(0) 4.3650(1) 2.5101(8) 1.7389(2)

1.75

As-cast 5.5234(6) 4.3646(0) 2.5178(3) 1.7334(7)

Equilibrated at 700°C 5.5252(7) 4.3650(0) 2.5117(8) 1.7378(1)

Equilibrated at 900°C 5.5236(8) 4.3648(5) 2.5171(1) 1.7340(7)

1.77

As-cast 5.5237(1) 4.3647(3) 2.5176(6) 1.7336(4)

Equilibrated at 700°C 5.5250(3) 4.3651(2) 2.5119(8) 1.7377(2)

Equilibrated at 900°C 5.5234(7) 4.3648(2) 2.5176(7) 1.7336(7)

Table 2.3: Re�ned lattice parameters a, cMn, cSi and 7 obtained by pro�le matching for the four
nominal compositions (7=1.70, 1.73, 1.75 and 1.77). Each nominal composition is analyzed in the
as-cast, equilibrated at 700°C and 900°C state.
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A close examination of the peak shape shows an asymmetric broadening of the Si re�ections (see

�gure 2.19.a.). To our knowledge, it is the �rst time that such observations are reported. Peak broad-

ening can arise from various phenomena such as stresses, strains, crystallize size, powder morphology,...

However, we cannot invoke such origins because in the present case Mn re�ections are not a�ected by

the broadening but only the peaks arising from Si helices and to a less extend those resulting from the

interaction between both sub-systems. This suggests that the broadening is intimately related to the

period of the Si sub-system. As visible in the simulated pattern (see �gure 2.19.b.), the asymmetric

broadening can results from the mixture of di�erent HMS phases. From this simulation, we can assume

that the as-cast MnSi1.73 alloy is composed of the three di�erent commensurate phases: Mn15Si26 (i.e.

7=1.73333...) is the preponderant phase, and Mn11Si19 (i.e. 7=1.72727...) and Mn4Si7 (i.e. 7=1.75)

phases are present in minority. Another explanation we can put forward to explain the asymmetric

broadening of particular peaks is the existence of disorder of the helical arrangement of Si atoms along

c-axis of the [Mn] sub-system. In others words we cannot exclude that such broadening of Si peaks is

due to an incommensurate structure.

Figure 2.19: Enlargement in PM for as-cast MnSi1.73 alloy (a) and simulated XRD patterns of the
four commensurate phases superposed on experimental data for as-cast MnSi1.73 alloy (b).

In an attempt to clarify this point, we have performed di�raction analysis in the [-120] HMS zone

axis. The experiment was carried out on the FIB foil showed on �gure 2.15.b. A typical di�raction

pattern taken along [-120] HMS zone axis of the as-cast MnSi1.73 alloy composition is provided in �gure

2.20. The most intense spots are due to the basic re�ections arising from the tetragonal [Mn] sub-

system, i.e. 0020, 4200 marked with red contour and for [Si] sub-system the spot 0001 is highlighted

with a green contour. With each of these basic spots a row containing 6 weaker equidistant satellite
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spots are caused by the Si helix periodicity. The satellite spots are not shifted with respect to the

basic spots (there is no spacing neither orientation anomalies observed in the di�raction pattern of the

analyzed as-cast MnSi1.73 alloy). It should be noted that the satellite spots are sharp, they intensity

decrease with increasing order. One can conclude that the Si lattice period is well de�ned.

Figure 2.20: Indexed commensurate di�raction pattern with [-120] zone axis (number 4 according to
�gure 2.21) taken in the inter-striation zone for an as-cast MnSi1.73 alloy.

Di�raction patterns were taken across the foil and the intensity of satellites spots was found to vary

(see �gure 2.21). The intensity of satellites spots increases from the center of the inter-striation region

to the edges. This phenomenon is due to the lattice period, if the atomic sequence is well de�ned we

can see many satellites peaks due to an increase in their intensity. In others words, if the ordering

sequence of the helical Si atoms is periodically repeated the di�raction pattern will present a large

number of satellite spots. We evidenced on a bulk sample in between two striations a continuously

graded sequence in satellite spots intensity. The ordering sequence is well de�ned close to the striation

and disorder is introduced when we get far to the striation.
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Figure 2.21: Di�raction patterns taken across the foil for an as-cast MnSi1.73 alloy. The diameter of
the circle corresponds to the diaphragm surface. MnSi striations location are indicated with two white
lines. This series of di�raction patterns highlights a change in satellite spot intensities between two
MnSi striations.

Casted materials present a mixture of HMS commensurate phases evidenced thanks to XRD and TEM

analysis.

MnSi amorphous striations are periodically distributed in HMS matrix and are stable till 1000°C.

The nominal composition controls the amount of secondary phases but doesn't a�ect HMS structural

highlights.

2.2.2 E�ect of the spark plasma sintering

Ingots are too brittle in as-cast condition due to cracks and poor mechanical properties (pure elastic

behavior). Thus, a post-processing step is required to improve their mechanical behavior and make

them suitable for properties measurement and the fabrication of thermoelectric legs. The ingot is

ground and consolidated by spark plasma sintering technique.

Densi�cation Spark Plasma Sintering (SPS) technology was used to shape and densify the materials

studied in this thesis. SPS is a non conventional technology that belongs to the Field Assisted Sintering

Technology (FAST). SPS experiments were performed with Dr. Sinter lab 515S that is an Electrical

Current Applied Sintering (ECAS) with uni-axial pressure. The sintering can be done under vacuum

(<10 Pa) or with speci�c atmosphere. The electrical current that is delivered by series of DC current
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pulses will increase the sample temperature thanks to Joule heating. In our case we have �x this

ON-OFF DC pulsed current path at 12:2 (12 ON and 2 OFF). During the sintering few volts and an

intensity up to 8000 A are applied that allows a very fast increase/decrease in temperature (hundreds

of °C/min), the maximum heating rate is 500°C/min. For this technique no inductive nor capacitive

e�ect is found only resistive e�ect is observed. The temperature is controlled by a pyrometer placed

outside the chamber and pointing in a central hole designed in the mold. This technique can be used to

many purposes: densi�cation, reactive sintering, di�usion study, graded materials, welding, coating,...

The advantages of this technique are numerous: sintering without additive, short time cycle, uniform

density, high productivity and energy gain,... leading to high quality materials with low process cost,

controlled porosity or highly dense materials [24].

The sintering cycle optimized for HMS alloys is shown on �gure 2.22, various dwell temperatures

are applied in this thesis depending on their aim.

Figure 2.22: SPS cycle optimized for HMS alloys where the pressure is applied during the dwell.

The in�uence of the SPS parameters: heating/cooling rates, duration of the dwell , pressure cycle

have been �xed after a set of experiments to end with their best combination to produce bulk dense

HMS pellets. The sintering is achieved in a carbon die of 10 mm diameter that can support a maximum

pressure of 100 MPa and a temperature of 2500°C. The pellets are done with 1.2 g of powder (sieved

up to 40 µm) and the powder is surrounded by �exible graphite (Papyex ®) during the sintering.

The best sintering conditions were explored to end with highly dense materials in order to measure

intrinsic transport properties (chapter 4). To this end, the dwell temperature was varied from 850°C

to 1100°C every 50°C and the 6 corresponding microstructures after SPS densi�cation are shown on

�gure 2.23. This optimization was achieved on MnSi1.73 grounded powders.
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Figure 2.23: E�ect of SPS dwell temperature on the densi�cation of MnSi 1.73 grounded powders. At
1100°C the MnSi striations are removed from HMS matrix. The relative density is calculated from
theoretical density of 5.159 for HMS.

The decrease in porosity content due to the increase of the dwell temperature leads to highest

relative density for T=1100°C. In parallel, for this sintering temperature the MnSi striations are

removed from HMS matrix.

The re�ned lattice parameters from pro�le matching performed on as-SPS material sintered at

1100°C are: a=5.5247(5) Å, cMn=4.3656(4) Å, cSi=2.5135(5) Å and c-axis ratio 7=1.7368(4). The

7 value is consistent with the values previously evidenced and no signi�cant change is observed for

cell parameters. A detailed analysis of the di�raction pattern (see �gure 2.24) shows that SPS post-

processing results in a change in peaks pro�les from asymmetric (in the as-cast condition) to symmetric

for the main peak of [Si] (1101) and the second one (211-1).
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Figure 2.24: Enlargement in pro�le matching for as-SPS material sintered at 1100°C were (1101) [Si]
peak presents a symmetric pro�le.

In addition, the electron di�raction pattern exhibit spacing and orientations anomalies as shown

on �gure 2.25. A view of the particle where TEM di�raction was performed is presented with the

corresponding di�raction pattern. The zone axis is kept as [-120] to compare the material in as-cast

and as-SPS states.

Figure 2.25: View of the powder of as-SPS material sintered at 1100°C were TEM analysis was per-
formed (a) and the corresponding di�raction pattern (b) taken with [-120] zone axis.

Thanks to the spot intensities along c-axis extracted from the di�raction patterns we can compare

the as-cast and as-SPS materials (see �gure 2.26). For the as-SPS state, the sequence of satellites

spots associated with di�erent basic spots do not match where they meet. Spacing and orientations
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anomalies are observed which indicates that the structure is incommensurate. In light of these facts,

it can be stated that after SPS the MnSi striations are removed from HMS matrix leading to an

incommensurate HMS phase.

Figure 2.26: Enlargement of di�raction patterns along c-axis and the corresponding spot intensities for
as-cast (a) and as-SPS 1100°C (b) states for MnSi1.73 alloy.

After post-processing by SPS at 1100°C casted materials are free of MnSi striations.

From XRD and TEM analysis after SPS the incommensurate character of HMS phase is associated

with a change in the [Si] (1101) peak pro�le from asymmetric broadening for as-cast state to symmetric.

2.2.3 E�ect of the micro-substitutions

In this section we sought for a systematic evaluation of the e�ect of two alloying elements used in the

literature as doping elements. Cr and Ge elements are selected to be respectively substituted on the

Mn and Si atomic sites of HMS crystal structure; a modi�cation of the periodicity of Mn and Si period

is expected.

Since the previous section suggests that there is a causal relationship between the lack/presence of

striations and the inco/commensurate character of the HMS phase, the perturbation of the periods with

doping elements might a�ect the microstructure. We sought for a correlation between microstructure

and structure.
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Synthesis Arc melted materials with Ge (99.99%) chips and Cr (99%) powder respectively provided

by Good Fellow CAS [7440-56-4] and by Strem Chemicals CAS [7440-47-3] were obtained through the

same process as explained in 1.2.1.

Core-shell duplex microstructure of Mn(Si,Ge)1.73

Germanium is evidenced in the literature as a good doping element for HMS. Usually a doping el-

ement has an in�uence on the structure due to substitution, on physical properties (band gap) [25]

and can change the nature of the grain boundaries (segregation of the doping element) [26, 27]. In

HMS alloys Ge doping was found to a�ect the MnSi distribution in HMS matrix [28]. Composi-

tion Mn(Si0.992Ge0.008)1.73 is thereafter studied because this composition presents good thermoelectric

properties with maximum ZT of 0.6 at 560°C [28].

Figure 2.27 shows the typical microstructure of solidi�cation of this alloy. In addition to the presence

of (Si,Ge) secondary phase, one of the most striking feature associated with Ge micro-substitutions is

the core/shell microstructure of the HMS grains exhibiting an homogeneous region at the edges and a

re�ned striated region in the center.

Figure 2.27: BSE images of Mn(Si0.992Ge0.008)1.73 as-cast alloy showing the core/shell duplex mi-
crostructure of HMS grains (a) and enlargement of the striated region (b).

EPMA analysis evidence that this duplex microstructure is associated to a gradient of Ge from the

center to the edge of each grain. The striation-free region is richer in Ge than the striated region (see
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table 2.4).

Composition (at.%) Mn Si Ge

HMS
with striations 36.9 63.0 0.1

without striations 36.6 63.0 0.4

Table 2.4: EPMA on HMS phase for Mn(Si0.992Ge0.008)1.73 as-cast alloy. For each zone three points
were measured and the average compositions are presented.

This results suggest that above a concentration threshold of Ge the formation of the MnSi striations

is prevented. This was veri�ed with an alloy of nominal composition: Mn(Si0.97Ge0.03)1.73. The

obtained microstructure is presented on �gure 2.28 where HMS phase is entirely striation free. It is to

note that the (Si,Ge) secondary phase amount increases since Ge amount is higher.

Figure 2.28: BSE image of Mn(Si0.97Ge0.03)1.73 as-cast alloy showing a complete striation free HMS
phase and (Si,Ge) secondary phase.

The projection of the liquidus surface in the ternary system is calculated along with the solidi�cation

paths for the two alloys with 0.8 at.% and 3 at.% of Ge on �gure 2.29.a. The projection of the liquidus

surface shows the monovariant lines that separate the liquidus surfaces. During the solidi�cation the

liquidus composition goes down the liquidus surface, crosses the HMS domain and follows the peritectic

line until it reaches the eutectic line which corroborates the structural observations.
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Figure 2.29: Projection of the liquidus (calculated every 10°C) in the Ge-Mn-Si ternary phase diagram
and solidi�cation paths for 0.8 at.% (in green) and 3 at.% (in blue) Ge substitutions (a). Distribution
of Ge in HMS phase for 0.8 at.% and 3 at.% Ge substitutions (b) during the solidi�cation showing a
concentration threshold.

Figure 2.29.b. shows the calculated composition changes of the HMS phase as a function of the

mole fraction of solids: as the amount of solid increases during the solidi�cation, the Ge concentration

in the HMS phase increases too. This phenomena, called micro-segregation, explains the observed

concentration gradient inside the HMS grains as evidenced by EPMA. By comparison of the Scheil-

Gulliver simulation performed for 0.8 at.% and 3 at.% Ge substitution on Si sites, respectively, we can

deduce that the composition threshold above which the formation of the MnSi striations is avoided at

about 0.2 at.%.

The core/shell microstructure observed by SEM results in the doubling of the Si peaks on the XRD

patterns as shown on �gure 2.30. Between 42-43°, two Si peaks are well de�ned. In order to re�ne

this XRD pattern two HMS phases with di�erent 7 values are required. The re�ned lattice parameters

from pro�le matching are listed in table 2.5.

The �rst phase (7∼1.72) exhibits a symmetric peak whereas the second one (7∼1.73) exhibits an

asymmetric peak. By comparison with an undoped alloy (see �gure 2.19), the phase with c-axis ratio

value close to 7∼1.73 can be attributed to the striated HMS phase, and consequently the peak at

7∼1.72 arises from the striation-free zone. This conclusion is further supported by the XRD pattern of

Mn(Si0.97Ge0.03)1.73 alloy which exhibits a single symmetric Si peak between 42-43° (see �gure 2.30.b).
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Figure 2.30: Enlargement in pro�le matching for Mn(Si0.992Ge0.008)1.73 as-cast alloy (a) and XRD
pro�les for 0.8 and 3 % at. for Mn(Si,Ge)1.73 as-cast alloys.

Nominal composition State a (Å) cMn (Å) cSi (Å) 7

Mn(Si0.992Ge0.008)1.73 As-cast
5.5192(3) 4.3651(7) 2.5380(0) 1.7199(2)

5.5232(4) 4.3669(4) 2.5228(4) 1.7309(6)

Mn(Si0.97Ge0.03)1.73 As-cast 5.5200(7) 4.3666(5) 2.5388(8) 1.7199(1)

Table 2.5: Re�ned parameters from pro�le matching for Mn(Si0.992Ge0.008)1.73 and
Mn(Si0.992Ge0.008)1.73 as-cast alloys. For Mn(Si0.992Ge0.008)1.73 as-cast alloy two HMS phases
are re�ned due to the core/shell duplex microstructure. The second phase in italic means that this
phase is in minority.

The [-120] HMS electron di�raction pattern observed for the striated region (center of the grain) and

for the striation-free region (edge of the grain) evidence a commensurate structure for both regions (see

�gure 2.31). Facing these results to XRD analysis, we can associate the asymmetric peak (7∼1.73) to a

mixture of commensurate HMS phases as for the undoped alloy (see �gure 2.19) and the symmetric peak

(7∼1.72) to a single doped commensurate HMS phase. It is to note that the decrease in satellite spots

intensity previously observed for an undoped alloy is not evidenced when Ge atoms are substituted

in Si position, which can be attributed to an increase of the periodicity of the Si helices due to the

insertion of Ge.
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Figure 2.31: View of the TEM foils and the corresponding di�raction patterns for the striated region
(a) and for the striation-free region (b) of HMS for Mn(Si0.992Ge0.008)1.73 as-cast alloy.

Figure 2.32 presents the lattice parameters variation with micro-substitution rate. As expected

from Ge substitution on Si sites cMn parameter is not a�ected. In parallel, cSi increases with the

substitution rate whereas a parameter follows the opposite trend. Ge insertion in the crystal structure

leads to an extension in c direction associated to a shrinkage in a direction. Above 0.8 at.% no further

increase (decrease) is observed for cSi (for a) parameter showing the limit of solubility of Ge. This

�nding is important with respect to the thermoelectric properties because it shows that above 0.8

at.%, an increase of Ge will not lead to an increase of the doping but will results to the formation of

a larger amount of (Si,Ge) secondary phase. This is the reason why thermoelectric properties will be

measured on 0.8 at.% Ge substituted alloy in chapter 4.
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Figure 2.32: Evolution of the lattice parameters a, cMn and cSi for Mn(Si1−xGex)1.73 as-cast alloys
with x=0, 0.8 and 3 at.%. The striated HMS phase is reported with squares and the HMS striation
free region with circles.

The formation of the secondary phase and the Ge gradient is consistent with combined XRD, TEM,

EMPA and Scheil-Gulliver analysis.

The duplex core/shell microstructure of the Mn(Si0.992Ge0.008)1.73 alloy results from Ge micro-

segregation:

� striated region: mixture of undoped commensurate HMS phases

� striation free region: single Ge-doped commensurate HMS phase

E�ect of thermal treatments and spark plasma sintering on the microstructure of Mn(Si0.992,Ge0.008)1.73

Herein, we present the microstructure evolution of the Mn(Si0.992Ge0.008)1.73 alloy during annealing

at 1000°C (see �gure 2.33) and sintering (see �gure 2.36), respectively.

Figure 2.33 shows the rapid changes that occurs during annealing at 1000°C. First, we observe a
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change in the shape of the MnSi phase from platelet (striations) to spheres. This process of spheroidiza-

tion occurs very rapidly (after 1h at 1000°C) and is followed by the complete dissolution of MnSi

striations after 1 day at the same temperature. It is important to note that the situation was totally

di�erent for undoped alloys (see �gure 2.17) for which we observed the thermal stability of the MnSi

striations up to 43 days at 1000°C. Since we have previously evidenced that an increase of the Ge

content above a concentration threshold of 0.2 at.% prevents the formation of MnSi striations, we

can attribute their complete dissolution after annealing as the result of the homogenization of the Ge

concentration. This assumption is corroborated by EPMA analysis (see table 2.6). This would imply

a di�usion coe�cient of 10−14 m2/s for Ge atoms.

Figure 2.33: BSE images of as-cast (a) and thermal treated Mn(Si0.992Ge0.008)1.73 alloys at 1100°C
during: 1 h and 1 day (b).
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Composition (at.%) Mn Si Ge

As-cast
with striations 36.9 63.0 0.1

without striations 36.6 63.0 0.4

Annealed at 1000°C without striations 37.2 62.4 0.4

As-SPS at 1100°C without striations 36.9 62.7 0.4

Table 2.6: EPMA on Mn(Si0.992Ge0.008)1.73 alloys before and post-processing showing that both As-SPS
and annealed materials are leading to a single doped striation free HMS phase.

Figure 2.34.a. shows the experimental XRD patterns for the Mn(Si0.992Ge0.008)1.73 alloy in the

as-cast state and after annealing at 1000°C during 1h and 43 days. The microstructure of the alloys

annealed during 43 days at 1000°C is similar to what is obtained after 1 day. The re�ned lattice

parameters are recapitulated in table 2.7. When annealing time increases, the peak associated with the

7∼1.72 phase increases (homogenous doped HMS) while the peak corresponding to the 7∼1.73 phase

(striated HMS) progressively disappears. We can observe that the peak corresponding to 7∼1.72 is

symmetric which is associated with the formation of an incommensurate HMS phase as evidenced on

the electron di�raction pattern shown on �gure 2.35.

Figure 2.34: Evolution of the XRD pro�les with annealing time for Mn(Si0.992Ge0.008)1.73 alloys show-
ing the transformation of HMS duplex microstructure to homogeneous one (a). Comparison of XRD
pro�les for Mn(Si0.992Ge0.008)1.73 alloys after post-processing (b) leading to two di�erent 7 values.
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Nominal composition State a (Å) cMn (Å) cSi (Å) 7

Mn(Si0.992Ge0.008)1.73 As-cast
5.5192(3) 4.3651(7) 2.5380(0) 1.7199(2)

5.5232(4) 4.3669(4) 2.5228(4) 1.7309(6)

Mn(Si0.992Ge0.008)1.73 Annealed at 1000°C 43 days 5.5205(0) 4.3658(1) 2.5327(9) 1.7237(1)

Mn(Si0.992Ge0.008)1.73 Annealed at 1000°C 1 h
5.5199(1) 4.3653(1) 2.5344(6) 1.7223(8)

5.5259(3) 4.3680(5) 2.5152(7) 1.7366(1)

Mn(Si0.992Ge0.008)1.73 As-SPS 1100°C 5.5256(4) 4.3671(6) 2.5179(2) 1.7344(3)

Table 2.7: Re�ned parameters from pro�le matching for Mn(Si0.992Ge0.008)1.73 alloys before and post-
processing. The second phase in italic means that this phase is in minority.

Figure 2.35: Di�raction pattern from TEM analysis for annealed 1000°C 43 days (a) and as-SPS (b)
Mn(Si0.992Ge0.008)1.73 alloys.

Sintering by SPS leads to the total disappearance of the striations and the homogenization of

the microstructure and Ge content, but surprisingly the sintered sample (as-SPS) exhibits XRD and

electron di�raction patterns slight di�erent compared to the annealed: it has a single and symmetric

Si peak between 42-43° and spot anomalies but the 7 value is about 1.73 as observed for the undoped

alloy. So, despite the same Ge substitution rate, di�erent processing routes lead to the stabilization of

di�erent HMS phases.
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Figure 2.36: BSE images of as-SPS material sintered at 1100°C for Mn(Si0.992Ge0.008)1.73 alloy.

At 1000°C the MnSi striations are removed in HMS phase leading to an homogenous HMS microstruc-

ture.

Both post-processed materials present a symmetric peak on XRD patterns and anomalies in electron

di�raction patterns associated to an incommensurate homogeneous doped HMS phase. However, the

c-axis ratio stabilized is post-processed dependent:

� 7∼1.72 for annealed state

� 7∼1.73 for as-SPS state

Random duplex microstructure of (Mn,Cr)Si1.73

Two compositions are thereafter studied to highlight the Cr micro-substitution e�ect on HMS phase:

(Mn0.995Cr0.005)Si1.73 and (Mn0.97Cr0.03)Si1.73 (see �gure 2.37). For the 0.5 at.% as-cast alloy we

observe no change compared to the undoped alloy: MnSi striations are homogeneously distributed in

all the HMS grains. For the 3 at.% as-cast alloy a perturbation of the MnSi striations is observed but

contrary to Ge e�ect the perturbation is not associated to the grain shape: from center to edge. In

this case the MnSi striations are randomly distributed in HMS phase as showed on �gure 2.37.c.
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Figure 2.37: BSE images of (Mn0.995Cr0.005)Si1.73 (a) and (Mn0.97Cr0.03)Si1.73 (b) as-cast showing a
random duplex microstructure when Cr content is increased.

EPMA analysis con�rms that the two regions are associated to di�erent Cr content, similar to what

was previously discussed for the Ge (see table 2.8).

Composition (at.%) Mn Cr Si

0.5 at% with striations 35.1 0.2 64.7

3 at.%
with striations 34.5 0.7 64.8

without striations 33.6 1.5 64.9

Table 2.8: EPMA on HMS phase for (Mn0.995Cr0.005)Si1.73 and (Mn0.97Cr0.03)Si1.73 as-cast alloys.
For each zone three points were measured and the average compositions are presented.

From XRD pro�le matching performed on the 3 at.% as-cast alloy we con�rm the coexistence of

two HMS phases (see �gure 2.38 and table 2.9) corresponding to the two microstructural states of

HMS phase.
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Nominal composition State a (Å) cMn (Å) cSi (Å) 7

(Mn0.995Cr0.005)Si1.73 As-cast 5.5230(8) 4.3644(2) 2.5173(6) 1.7337(2)

(Mn0.97Cr0.03)Si1.73 As-cast
5.5237(1) 4.3681(1) 2.5320(6) 1.7251(2)

5.5273(3) 4.3696(1) 2.5192(6) 1.7344(8)

Table 2.9: Re�ned parameters from pro�le matching for (Mn0.995Cr0.005)Si1.73 and (Mn0.97Cr0.03)Si1.73
as-cast alloys. For (Mn0.97Cr0.03)Si1.73 as-cast alloy two HMS phases are re�ned due to the random
duplex microstructure. The second phase in italic means that this phase is in minority.

In addition, XRD pro�les between 0.5 at.% to 3 at.% highlight the microstructural change from

fully striated HMS to duplex microstructure. According to what was stated for Ge micro-substitution

the two regions evidenced for (Mn0.97Cr0.03)Si1.73 alloy can be attributed to two di�erent HMS phases:

commensurate doped (7∼1.72 symmetric peak) and commensurate undoped (7∼1.73 asymmetric peak)

(see �gure 2.38).

Figure 2.38: Enlargement in pro�le matching for (Mn0.97Cr0.03)Si1.73 as-cast alloy (a) and pro�les for
0.5 and 3 at.% of Cr for as-cast alloys. Change from striated to duplex is evidenced.

Cr micro-substitution on Mn position has an important e�ect on the microstructure of arc-melted

HMS alloys.

Contrary to what is found for Ge, a random duplex microstructure is evidenced with Cr.

For Cr microsubstitution it is necessary increase the amount of Cr to observe a concentration threshold

and thus the duplex microstructure.
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Duplex microstructures interpretation

We evidenced experimentally that the micro-substitutions of Ge on Si sites and Cr on Mn sites are

leading to the same e�ects: the progressive disappearance of the MnSi striations and to the formation

of an HMS phase with 7∼1.72. However, we can notice two di�erences in the concentration threshold

and on the duplex microstructures morphologies. We showed that the core/shell duplex microstructure

obtained for Ge was due to the micro-segregation e�ect, in others words due to an enrichment of Ge

afront of the moving liquid/solid interface during the solidi�cation. As shown on �gure 2.39 the

situation di�ers for Cr micro-substitution. In this case, we observe a decrease of the Cr concentration

of the liquidus and of the HMS phase upon cooling. The di�erent behaviors observed for Ge and Cr

are due to the high solubility of Cr in MnSi phase (see �gure 2.40). As a consequence most of the

Cr is incorporated in the MnSi phase leading to depleted liquidus and HMS phases. These results

are supported by EMPA analysis where Cr concentration in the striation free region increases with

the substitution content whereas for Ge micro-substitution this value is stable with respect to the

substitution (see tables 2.4 and 2.8).

Figure 2.39: Projection of the liquidus (calculated every 20°C) in the Cr-Mn-Si ternary phase diagram
and solidi�cation paths for 0.5 at.% (in green) and 3 at.% (in blue) alloys (a). Projection of the
liquidus in the Ge-Mn-Si ternary phase diagram and solidi�cation paths for 0.5 at.% (in green) and 3
at.% (in blue) alloys (b).
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Figure 2.40: Distribution of Cr (a) and Ge (b) in the phases (Liquid, MnSi, HMS and (Si,Ge)) during
the solidi�cation for (Mn0.97Cr0.03)Si1.73 and Mn(Si0.992Ge0.008)1.73 as-cast alloy, respectively.

The di�erent microstructural features associated with Ge and Cr duplex microstructures are consistent

with Scheil-Gulliver simulation.

2.3 Discussion

The investigations by XRD and electron di�raction we have performed on solidi�ed and sintered HMS

phases have revealed the intriguing nature of this NCL compound which can exist either as (i) a

mixture of commensurate composite crystals which slightly di�er in composition but are structurally

closely related, or (ii) a single incommensurate modulated phase.

We have evidenced that the commensurate phases result from solidi�cation while the commensurate-

incommensurate transition occurs during sintering by SPS. We have also observed that commensurate

phases are separated by amorphous regions (so-called MnSi striations). Finally, shown on �gure 2.41

are the composition (7 values) of the HMS phases, determined from XRD analysis as a function of the

temperature and the nominal alloy composition, reported in the calculated Mn-Si phase diagram along

with the results from the literature. We can note a continuous composition shift with temperature

changes and a narrow homogeneity range. These observations di�er from the interpretation proposed

by Allam et al. [29] and Kikuchi et al. [18] who assumed a step-wise succession of two line-compounds

(�rst-order phase transition). We do not agree either with the assumption of Berche et al. [1] who de-

scribe the HMS phase as a solid solution to explain the homogeneity range whereas our results suggest
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the coexistence of multiple discrete and fully ordered structures.

Figure 2.41: Mn-Si binary phase diagram close to HMS phase �eld from CALPHAD assessment from
Berche et al. [1] (in gray) and experimental phase transformations from Allam et al. [29] (in green)
and from Kikuchi et al. [18] (in blue). Our experimental points for the four nominal compositions
(7=1.70, 1.73, 1.75 and 1.77) as-cast and equilibrated at 700°C and 900°C are reported (in red).

This situation can be recognized as in�nitely adaptive structures [30] for which every composition

orders into a superlattice which can accommodate subtle changes in composition by a change in the

number of its sub-units. This situation has been rationalized by a model introduced by McMillan

[31] in which an array of atoms connected with harmonic springs interacts with a periodic potential.

The potential modulates the chain and if it is strong enough, it can lock the chain into commensurate

structures. By analogy, for HMS, it is the ability of the Si helices to adjust to an almost continuous

series of Mn/Si ratio that leads to the existence of a large number of commensurate phase. With this

scheme, the MnSi striations can be understood as walls separating two di�erent commensurate regions,

and the e�ects of Ge and Cr micro-substitutions as the result of perturbations of the Si helices and the

Mn periodic potential, respectively. It is also to note that the locking into commensurate phases occurs

only during solidi�cation, and that additional post-processing in the solid state induce the formation

of an incommensurate structure. Adopting the designation of Aubry [32], it appears that the �devil's

staircase� � leading to the formation of consecutive commensurate phases (with di�erent periods) as

a function of temperature � takes place between the peritectic and the eutectic invariant reaction.

These ideas are supported by three additional sets of experiments. The �rst one is the no-e�ect of

elements that cannot enter in the [Mn] or [Si] sub-systems. This is for example the case for La and

W. As shown in �gure 2.42, additions of these elements in various amounts do not change the density
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number of the MnSi striations, whereas substitution on Mn sites by Cr or on Si sites by Ge leaded

to a tremendous enhancement of the MnSi striations number and their total disappearance above a

concentration threshold.

Figure 2.42: BSE images for MnSi1.73X0.001 and MnSi1.73X0.1 as-cast alloys for X=La (a,b) and for
X=W (c,d) showing a typical striated HMS phase. The increase in X elements is leading to an increase
of the secondary phases: (La,Mn)Si2 and (W,Mn)Si2 without disturbing the distribution of the MnSi
striations.

The second con�rmation is provided by the striation-free microstructure obtained for a solidi�ed

eutectic composition (see �gure 2.43). In such alloy, the HMS phase is incommensurate (see �gure

2.44) and do not present any MnSi striations.
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Figure 2.43: BSE images of as-cast Mn32Si68 alloy (a) and enlargement (b).

Figure 2.44: Enlargement in pro�le matching showing symmetric pro�le (a) and di�raction pattern
from TEM analysis on powder with [-120] zone axis (b) for as-cast Mn32Si68 alloy. Looking at the
corresponding XRD pattern on we can see that the [Si] (1101) peak presents symmetric pro�le. The
re�ned lattice parameters from pro�le matching are: a=5.5271(1) Å, cMn=4.3654(6) Å, cSi=2.5012(2)
Å and c-axis ratio 7=1.7453(3). From TEM analysis is performed the incommensurate character is
con�rmed.

The third evidence arises from di�usion couple experiments between Si and MnSi (see �gures 2.45

and 2.46). As shown on the SEM image and the EPMA composition pro�le across the di�usion couple,

the interdi�usion zone consists of a single HMS phase with composition corresponding to 7=1.7 and

lacking of MnSi striations. This result further con�rms that the formation of commensurate phases

and the concomitant MnSi walls (striations) result exclusively from solidi�cation.
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Figure 2.45: Experimental procedure for di�usion couple experiment. MnSi ingot and pure Si were
ground in a mortar to obtain powders that were sieved up to 40 µm. After this step, both MnSi and Si
powders were densi�ed by SPS at 1100°C and 1300°C respectively for 10 min under 100 MPa and under
vacuum. The two Si and MnSi pellets were metallographically polished and placed in a graphite mold in
order to perform the bonding by SPS. The solid state di�usion activated by SPS process was performed
at 1100°C under 40 MPa during 1 h in order to create an Inter-Di�usion Zone (IDZ) between the two
block halves.

Figure 2.46: BSE image of Si/MnSi di�usion couple (a) and composition pro�les of Si and Mn across
the IDZ showed on SEM image by the red dash line (b).

Figure 2.47 summarizes the importance of the processing route and substitution on the microstruc-

tural highlights of HMS, i.e. its commensurability and the presence of MnSi striations. We have

evidenced that the occurrence of MnSi striations is related to the formation of a mixture of com-

mensurate phases during solidi�cation, whereas the absence of striations denote the formation of a

single doped commensurate structure. The commensurate-incommensurate transition can be induced

by post-processing (SPS or thermal treatments) or alloying (micro-substitution). Moreover, as demon-

strated by di�usion couple experiments, the formation of an incommensurate structure is favored when

the liquid phase is not involved during the synthesis of HMS. This result suggests a new synthesis route

for HMS via a solid state reaction, i.e. reactive sintering between Si and MnSi powders, that will be

explored hereafter.
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Figure 2.47: Maps facing the microstructural and structural parameters evolution with the post-
processing (a) and with Ge micro-substitution (b). Com. and Incom. abbreviations are used to
designate commensurate and incommensurate character.
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2.4 Innovative processing route for HMS-based materials

Experimental procedure The idea is to mix Si and MnSi powders in appropriate amount (nominal

composition 1.73) in order to create HMS bulk pellets after SPS: the synthesis and consolidation of

HMS will be done in one-single step avoiding the formation of any secondary phases. Prior to reactive

sintering both powders were mixed in an agate mortar during 5 min to ensure an homogeneous mix. In

order to rule out a possible in�uence of the SPS, Natural Sintering (NS) is achieved in order to compare

HMS characteristics. The two procedures are presented in �gure 2.48. The natural sintering of the

pellet formed by a mix of cold pressed Si and MnSi powders is done in a Tantalum tube sealed under

Argon atmosphere that is then placed in a quartz tube sealed under vacuum for thermal treatment.

Figure 2.48: Experimental procedures for reactive sintering (RS) (a) and natural sintering (NS) (b).
Binary phase diagram Si-Ge showing a continuous solid solution between Si and Ge elements (c).

From the Si-Ge binary phase diagram presented on �gure 2.48.c. we can see a continuous solid

solution between Si and Ge elements. This allow the study of RS doped samples with Ge, the synthesis

of such materials was achieved by mixing MnSi and (Si,Ge) powders in appropriate amounts. The

(Si,Ge) composition is �xed depending on the desired Ge nominal composition.

Figure 2.49 shows the obtained microstructures after reactive sintering that exhibit low porosity

(con�rmed by a relative density measured by Archimedes principle of 99.5%) and single phase HMS

without any striations. For the Ge-doped sample it is to note that some MnSi primary particles are

evidenced due to incomplete reaction.
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Figure 2.49: BSE images of reactive sintered alloys: undoped (a,c) and Ge-doped (b).

The microstructure of the natural sintered sample is shown on �gure 2.50.a. where we can see

that the formation of the HMS phase is achieved (even if Si and MnSi primarily particles that didn't

react are still present in the sample). As the sintering is pressure free the microstructure presents a

large amount of porosity. However, since HMS phase is created it is possible to check the lack of MnSi

striations in the HMS phase for this sample (see �gure 2.50.b.).

Table 2.10 and �gure 2.51 presents the XRD analysis for the three studied alloys.

The value of c-axis ratio 7 found is in similar to as-SPS alloys issued from liquid-phase process. In

addition, symmetric peaks are evidenced on the XRD pro�les suggesting an incommensurate character

of these alloys.

For the Ge-doped sample obtained via reactive sintering the Ge concentration from EMPA analysis

is found to be the same as a doped alloy obtained through liquid-phase process (see �gure 2.11).
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Figure 2.50: BSE images of the microstructure of natural sintered alloy (a) and enlargement (b).

Nominal composition State a (Å) cMn (Å) cSi (Å) 7

MnSi1.73 RS 1100°C 5.5250(5) 4.3646(4) 2.5083(5) 1.7400(4)

MnSi1.73 NS 1100°C 5.5232(0) 4.3643(4) 2.5120(2) 1.7373(8)

Mn(Si0.992Ge0.008)1.73 RS 1100°C 5.5228(5) 4.3654(6) 2.5223(3) 1.7307(2)

Table 2.10: Re�ned parameters from pro�le matching for MnSi1.73 obtained by reactive sintering (RS)
and natural sintering (NS) and Mn(Si0.992Ge0.008)1.73 alloy obtained by reactive sintering (RS).

Figure 2.51: XRD pro�les for natural sintering and for reactive sintering: undoped and Ge-doped.
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Composition (at.%) Mn Si Ge

Reactive sintering without striations 37.5 62.1 0.4

As-SPS without striations 36.9 62.7 0.4

Table 2.11: EPMA on Mn(Si0.992Ge0.008)1.73 alloy for reactive sintering and as-SPS.

Solid state synthesis route leads to the formation of highly pure HMS materials without MnSi striations.

XRD patterns suggest that this synthesis route results in the formation of incommensurate HMS phase

unlike the liquid-phase route.
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2.5 Conclusion

In this chapter, we have developed a strategy based on the (3+1)D superspace group approach to

interpret and index both XRD and electron di�raction patterns and unequivocally identify HMS phases.

Our results reveal that the liquid-phase processes lead to the formation of a mixture of commensurate

HMS phases separated by thin MnSi walls, whereas post-processing and solid state synthesis routes

result in the formation of one homogeneous incommensurate phase. We conclude that, contrary to the

repeated claims of several authors, it is not possible (or very improbable) to stabilize a desired speci�c

commensurate HMS phase (in bulk). Instead, several distinct commensurate phases coexist in bulk

alloys. This could be related to the structural �exibility of the Si helices in the Mn channels.

From a more technological point of view, we have set up processing routes to produce highly pure

and fully dense bulk HMS materials in a reproducible manner, i.e. SPS post-processing of casted

alloys and one-single step reactive sintering, respectively. The transport properties and thermoelectric

performance of the materials thus obtained will be characterized in chapter 4.

Figure 2.52: Process pathway for HMS based-alloys.
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Chapter 3

Crystallographic texture control in

HMS

The work presented in this chapter aims at developing crystallographically textured HMS materials.

The underlying idea is to exploit the expected high anisotropy of the transport properties of this

compound as an additional degree of freedom to tune the thermoelectric performance.

Another strong aspect of this chapter is the endeavor that is made to produce highly pure grain

oriented HMS in bulk form, allowing for the �rst time to unambiguously characterize the intrinsic

transport properties along di�erent crystallographic directions. This point is very important because

it has not been fully resolved until now. Indeed, the hundreds of citations mentioning the anisotropy

refer to the same seven papers [1, 2, 3, 4, 5, 6, 7] among which six report the properties of melt-grown

single crystals. As we have shown in chapter 2, HMS materials produced by liquid-phase processes

are in fact MnSi/HMS layered composites (formation of MnSi striations), so we cannot exclude that

the apparent anisotropy measured in these studies would be in fact induced by the oriented plate-like

metallic precipitates of MnSi.

Aside from crystal growth methods used to obtain single crystals [4], the development of crystallo-

graphic texture in HMS has been explored in the literature only by application of high magnetic �elds

meant to align HMS powders towards magnetically favored directions before sintering [3]. An increase

of 40% of the electrical conductivity was achieved in c-axis oriented materials. The main disadvantage

of this approach arises from the fact that it is not scalable since a high magnetic �eld (10 T) is required.

Texture development in bulk materials generally occurs by deformation, and various thermome-
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chanical techniques were successfully applied on thermoelectric compounds exhibiting a signi�cant

amount of plasticity at elevated temperature [8]. Unfortunately, HMS alloys present a purely elastic

mechanical behavior so thermomechanical processing such as rolling or extrusion is not applicable.

Consolidation under hot unixial compression can also yield to strongly textured materials provided

that the starting powders possess crystallographically anisotropic morphologies. This occurs for me-

chanically ground powders of Bi2Te3 alloys due to the easy cleavage of certain planes [9] and in several

thermoelectric oxides as discussed by Medlin et al. [10]. We have decided to explore a variant of this

technique from the experience acquired during this thesis, namely that ground powders of HMS show

an isotropic morphology so they would be useless for the present purpose. To circumvent this issue, the

idea is to produce anisotropic �akes that will align under compression to give crystallographic textured

compacts. We have selected the melt-spinning process because it usually leads to the production of

�akes in brittle materials and it can induce grain alignment along preferred growth directions due to

the high thermal gradient that is developed through the material thickness during cooling. Another at-

tractive aspect of the melt-spinning is the grain re�nement due to high cooling rates, for improvement

of both thermoelectric properties and mechanical behavior [11, 12].

The main purpose of this study is to evaluate the degree of grain orientation that can be obtained

in the melt-spun �akes and retain in the bulk form after a subsequent consolidation by spark plasma

sintering.

In the �rst section of this chapter, we present the experimental procedure established to produce

oriented HMS materials and summarize the characterization techniques used to investigate the mi-

crostructural parameters of the materials thus obtained. The texture development and evolution in

the melt-spun �akes and the bulk consolidated materials are evidenced by mean of electron backscat-

ter di�raction, in sections 2 and 3, respectively. The possible avenues for improvement of texture are

discussed in the last section.

.
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3.1 Experimental procedure

3.1.1 Fabrication of crystallographic textured HMS based materials

The procedure developed to produce bulk grain oriented HMS materials is summarized in �gure 3.1.

Figure 3.1: Experimental procedure for the production of isotropic and textured materials with melt-
spinning process.

Production of �akes by melt-spinning

Melt-spinning is a technique to rapidly solidify liquid metals and it is widely used to produce metallic

glasses, nanostructured alloys and highly metastable phases [13, 14, 15, 16]. Obtaining HMS �akes

is achieved by dropping an inductively melted alloy on a rotating wheel usually made of copper that

allows a fast quenching (up to ∼106°C/s) due to the high thermal conductivity of the copper.

The HMS �akes were obtained with a Melt Spinner SC from Edmund Bühler GmbH; using a quartz

tube with a 0.5 mm diameter nozzle, an overpressure of 350 mbar of Argon and a copper wheel linear

speed of 38.5 m/s (i.e. 46 Hz). Prior to the �ake production a secondary vacuum was established in

the chamber of the melt-spinner. The experiments were performed with 4 g arc melted ingots and

after solidi�cation the �akes are selected for characterization (∼3 g), the losses are due to splash and

balls created during the solidi�cation.

The HMS �akes are typically 1-2 mm wide, around 20 µm thick and less than 1 cm in length.

Experimentally, the melt-spinning conditions were optimized to maximize the production of �akes.

Hereafter, the surface in contact with the copper wheel will be called the contact surface and

the opposite surface will be called the free surface. For all the samples of this chapter the nominal

composition of the alloys is �xed at 7=1.73.
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Consolidation of the �akes by SPS

The melt-spun �akes (2.6 g per pellet) were stacked in a graphite die and consolidated by SPS under

various conditions in order to �nd the optimal dwell temperature leading to the best compromise

between grain growth and high density. Another set of samples were prepared from ground �akes in

order to obtain isotropic materials for comparison with staked �akes. The ground �akes were densi�ed

under the same conditions as ground powder from arc melted route (see �gure 3.2). For these two

materials the sintering cycle is identical as previously presented in chapter 2.

Figure 3.2: Detailed experimental procedure for isotropic and textured materials.

Figure 3.3 shows the microstructures in the transverse direction of the stacked pellets as a function

of the dwell temperature (850°C to 1100°C). The average grain size is calculated thanks to the intercept

method [17]. For this analysis several SEM images where used to analyze 1225 intercepts leading to

an uncertainty of 2%. The average grain size values are reported on SEM images on �gure 3.3. They

range from 8 to 17 µm as sintering temperature increases from 850°C to 1100°C. At 1000°C the relative

density is found to be close to 100% and a further increase in temperature leads to an excessive grain

growth. At lower temperature the relative density is decreased. In light of these results, we �xed the

dwell temperature at 1000°C.
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Figure 3.3: SEM images as a function of the dwell temperature for the stacked �akes densi�ed by SPS
at: 950°C (a), 1000°C (b), 1050°C (c) and 1100°C (d); with their respective average grain size and
relative density. The average grain size is determined by the intercept method. The density of the
materials is measured by Archimedes principle and the relative density is calculated from theoretical
density of 5.159 g/cm3 for HMS.

3.1.2 Texture analysis

Electron BackScatter Di�raction (EBSD) is a technique used to determine the orientation of crystal-

lized materials. This analysis is used to highlight the grain parameters: size, orientation, boundary

character, texture and phase identity of a polycrystalline sample. EBSD analysis was performed in the

SEM chamber with an EDAX accessory. The �gure 3.4 shows the experimental setup.

The sample is highly tilted at 70° towards the detector where the di�racted electrons are collected

in order to maximize the retro-di�usion coe�cient. The primary electron beam interacts with the

crystallographic planes that are in Bragg position: 2dhkl sin 8 =nλ. The two resulting di�racted sur-

faces are conical and the pair of cones corresponds to the {hkl} and {-h-k-l} family planes. Their

interception with a phosphor screen leads to a pair of lines also called Kikuchi bands (due to the low

value of 8 i.e. the large opening of the cones). Bright Kikuchi bands correspond to planes in the crystal
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lattice and the width of bands is dependent upon electron wavelength and lattice plane spacing.

Figure 3.4: EBSD setup in the SEM chamber (left) and sample axis de�nition (right).

The sample is generally set along with the reference coordinate of the measurement. Three direc-

tions are de�ned to correlate the crystal to the sample frame:

� ND: Normal Direction

� TD: Transverse Direction

� RD: Rolling Direction or Reference Direction

In our study, the reference is set as a function of the �ake's shape or staked pellet (see �gure 3.4).

The EBSP (Electron BackScatter Patterns) contains the angular relationship between the planes,

the symmetry of the crystal and orientation information. The patterns are collected with an acceler-

ating voltage of 20 kV, an incident beam current of 4 nA and a working distance of 17 mm.

As evidenced in chapter 2, the superlattice of HMS phases can become very complicated. Due to

their resemblance apart from the c-axis length, the smallest HMS phase Mn4Si7 is selected in order

to reduce the complexity of the crystal structure. This choice is supported by the work of Orekhov et

al. where the Mn4Si7 phase was successfully used with a high con�dence index to study doped HMS

crystals grown by Bridgman technique [18].

A phase �le was created for HMS alloys based on the structure of the commensurate Mn4Si7 phase

(ICSD # 97393) were 8 Kikuchi bands are needed to index the EBSP. The phase �le data are listed

on table 3.1 and the selected Kikuchi bands for HMS analysis along with an indexed EBSP are shown

on �gure 3.5.
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Mn4Si7 with space group: P-4c2

Atom # Site x y z Occ.

Mn 1 2c 0 0 0 0.25

Mn 2 4i 0.5 0 0.06508(2) 0.5

Mn 3 4h 0.5 0.5 0.12639(3) 0.5

Mn 4 4i 0 0.5 0.19137(3) 0.5

Mn 5 2a 0 0 0.250 0.25

Si 1 8j 0.15715(13) 0.2015(2) 0.11253(4) 1

Si 2 8j 0.32270(12) 0.844419(12) 0.18189(4) 1

Si 3 4e 0.33130(12) 0.33130(12) 0.250 0.5

Si 4 8j 0.34518(10) 0.2274(1) -0.03800(6) 1

Table 3.1: Mn4Si7 phase �le for OIM software used to index the isotropic and textured materials. The
�rst three rows indicate the di�erent Mn and Si atoms and their Wyco� position, the three following
rows report the atomic position in the crystal structure (x,y,z) and the last one: Occ. is the abbreviation
for the occupancy.

Kikuchi band Fhkl dhkl

00-6 29.7 2.919

1-2-3 29.7 2.275

1-2-4 25.3 2.152

1-1-7 28.7 2.107

2-20 33.4 1.953

1-1-8 23.1 1.910

0-3-4 32.6 1.698

3-38 19.8 1.119

Figure 3.5: List of the 8 Kikuchi bands selected to index HMS phase (left) and an example of a
di�raction pattern where the all the Kikuchi bands are correctly indexed (right). Fhkl is the structure
factor and dhkl is the interplanar spacing.
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Sample preparation EBSD analysis requires a highly polished surface (free of deformation and

pollution) that will guaranty a good quality of the EBSP; as the di�raction comes from the surface of

the sample (from 10 to 50 nm in depth).

The preparation of the sample is done thanks to a classical mirror polishing performed with SiC

papers (320 to 4000) and a �nal polishing step with diamond solutions (3 and 1 µm) on a synthetic

nap (MD-Nap from Struers). In order to reveal the Kikuchi bands a mechanochemical preparation

with a colloidal silica polishing suspension (MasterMet2 from Buehler, 0.02 µm) is performed with a

vibratory polisher (VibroMet2 from Buehler) during 3h, 40% of vibrations and 3 loads. This �nal step

removes the minor deformations and leads to a stress-free surface. In order to study the cross-section of

the �akes they are maintained perpendicular to the polishing surface thanks to a metallic clip trapped

in the conducting resin.

Data analysis The data are analyzed thanks to the Orientation Imaging Microscopy (OIM�) soft-

ware from EDAX. From Kikuchi di�raction patterns it is possible to build di�erent texture plots (PF,

IPF,...) and maps: orientation, grain size, grain boundaries,...

Hereafter we summarize the di�erent plots and maps used during this chapter along with a brief

de�nition.

� Pole Figure (PF): in a PF (hkl), an orientation is described by the position of the equivalent pole

planes {hkl} of the crystal. A pole �gure is the stereographic projection on the sample plane of

the pole density distribution for a family of planes {hkl} in all the directions of the sample. If

a sample presents no preferential orientation the points will be randomly spread whereas in a

textured sample points will be focused in a speci�c region.

� Inverse Pole Figure (IPF): is used to easily illustrated the orientations of a sample with a color

representation. The IPF shows the position of a sample direction in the crystal frame. Due to the

crystal symmetry the representation can be restricted to the standard triangle. The minimum

display area triangle changes from symmetry to symmetry and the one for tetragonal system is

showed on �gure 3.6. Full red, green and blue are attributed to grains whose <001>, <100>

and <110> directions, respectively, are parallel to the projection of the IPF. The intermediate

orientations are colored by RGB mixture of primary components.
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Figure 3.6: Standard triangle in the normal direction for a tetragonal structure.

� Image Quality (IQ) map: shows the quality of the EBSP with a gray scale where black color is

attributed to blurred Kikuchi diagrams and white to distinct ones. This map is useful to locate

the grain boundaries that will appear in black or dark gray.

� IPF map: shows the microstructure of a sample where each grain is colored as a function of its

crystallographic orientation.

� Crystal direction map: shows the directions of interest along with the corresponding area frac-

tions. The directions are given with a tolerance (°) extracted from pole plot analysis.

� Grain size map: shows the distribution of grain sizes along with the corresponding area fractions.

The color scale is set depending on the sample grain sizes and on the aim of this representation.
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3.2 Characterization of the melt-spun �akes

3.2.1 Structure and microstructure

Figure 3.7 presents the topographies of the contact and free surfaces of a �ake. Opposite surfaces

present a very di�erent aspect: the contact surface shows surface roughness due to the footprints

of the argon bubbles trapped during the experiment. Contrary to the free surface that presents a

roughness due to the free grain growth. At this side of the �ake several islands exhibiting di�erent

grain sizes are observed.

Figure 3.7: SE images of the contact surface (a) and free surface (b) of one as-spun HMS �ake with
composition MnSi1.73.

The two enlargements of both surfaces on �gure 3.8 show that the shape of the grains is �at on the

contact side leading to a low roughness contrary to what is observed in the free surface. We can also

notice a re�nement of the Si eutectic aggregates present on both surfaces that were already highlighted

in arc-melted samples. It is to notice that MnSi primary dendrites were not evidenced.

The grain size is re�ned compared with arc-melting process: from hundreds of µm to tens, however

the optimized conditions of melt-spinning do not lead to a nanostructuration.
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Figure 3.8: Enlarged SE images of the contact surface (a) and free surface (b) of one as-spun �ake of
MnSi1.73.

In order to measure the average grain size at the �ake surface a map highlighting the grains

distribution is presented on �gure 3.9. The grains are smaller than 15 µm, mainly distributed from 0

to 10 µm and the average grain size is found to be 6 µm. Between the arc melting and melt-spinning

techniques the grain size is at least divided by 20, showing a great grain size re�nement.

Figure 3.9: Grain size map (a) and grain size variation (b) at the �ake's surface. The colored scale
highlights the grain size distribution from 0 to 20 µm.

Figure 3.10 shows an image used to measure the thickness of the �akes that is found to vary

in the range 15-25 µm. The thickness of the �akes is very sensitive to the processing parameters:

melt temperature, wheel temperature or gas pressure. During the experiment these conditions can be

slightly changed from the �rst drop to the ending one and lead to a variation in the �ake's thickness
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[19]. In addition, elongated grains in the direction of the thermal gradient are found in the thickness

of the �akes between the contact surface and the free surface (see �gure 3.10). MnSi striations are

also evidenced. As evidenced in chapter 2 for arc-melted samples the presence of MnSi striations was

always related to the formation of a mixture of commensurate HMS phases and associated to the

asymmetric broadening of the [Si] and satellites peaks in the XRD patterns. To verify either or not it

is the case for melt-spun �akes, we perform an XRD analysis.

Figure 3.10: BSE images in crystallographic contrast of the cross-section of the �akes taken in crys-
tallographic contrast (a) and enlargement (b).

Pro�le matching re�nement performed on powder is shown on �gure 3.11 and the re�ned lattice

parameters from pro�le matching are: a=5.5218(1) Å, cMn=4.3653(2) Å, cSi=2.5225(2) Å and c-axis

ratio 7=1.7305(4).

Figure 3.11: Pro�le matching for melt-spun MnSi1.73 alloy: complete (a) and enlargement (b).

Figure 3.12.a. focuses on [Si] peak (1101) where we can observe the expected asymmetric broad-
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ening. According to the simulated XRD patterns (see �gure 3.12), the main contributions arises from

the re�ections of Mn11Si19 (7=1.72727...) and Mn15Si26 (7=1.73333...). For the arc melted samples

the main contributions were Mn15Si26 and Mn27Si47. It appears that the formation of HMS phase

with smaller c parameter is formed by the melt-spinning.

Figure 3.12: Enlargement in pro�le matching for melt-spun MnSi1.73 alloy (a) and simulated XRD
patterns of the four commensurate HMS phases superposed on experimental data for melt-spun MnSi1.73
alloy (b).

These results con�rm the main structural and microstructural parameters associated to a liquid-

phase process (mixture of commensurate HMS phases and presence of MnSi striations) and highlight

three di�erences with arc-melted samples: the grain size, the lack of MnSi dendrites and a change in

the distribution of HMS commensurate phases. We will hereafter focus on the textural study of the

�akes thanks to EBSD analysis.

Melt-spun HMS �akes present a mixture of commensurate phases and exhibit MnSi striations which

are typical characteristics observed with liquid-phase processes.

Re�ned grain size is found compared to as-cast samples and an elongated grain shape are evidenced

within the thickness of the �akes.

3.2.2 Grain orientation

Figure 3.13 presents a IQ+IPF map along with the IPF and texture plots of a �ake surface (normal

direction) and the IQ+IPF map of the cross-section of a �ake (transverse direction) are shown on �gure

3.14. The surface presents cracks resulting from the �akes preparation as HMS is a brittle material.
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Figure 3.13: IQ+IPF map (a), IPF [001] (b), PF (110) (c), PF (001) (d) and PF (100) (e) at the
surface of the �ake. More than 8000 grains are analyzed. The texture is normalized on a scale of 5
and the maximum of texture is indicated above each IPF and PF.

Figure 3.14: IPF+IQ map of the cross-section of a �ake.

On the surface, the grain orientation along the <110> direction (blue grains) is obvious while the

grain orientation in the cross-section is nearly isotropic with a slight preferential orientation along the

<001> direction (red grains). The IPF along the normal direction [001] (see �gure 3.13.b.) clearly
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re�ects the orientation of grains along the <110> direction.

The analysis of the texture plot (110) shown on �gure 3.13.c. indicates that the material develops

a �ber texture in which the [110] axis is oriented parallel to normal direction and posses a free rotation

around this axis. The central spot is due to the (110) planes whereas the (-110) planes are shown by

the external ring at 90° from normal direction. This texture leads to a c-axis that is uniformly oriented

in the rolling plane describing a ring-like, as observed on the pole �gure (001) (see �gure 3.13.d.) that

is the reason why we cannot observe (001) planes (red color) at the �ake's surface. Finally, the pole

�gure (100) (see �gure 3.13.e.) highlights that the (100) planes are uniformly oriented around 45° from

the normal direction..

In order to quantify the texture of the �ake �gure 3.15 shows the crystal direction map where the

(110) and (001) planes are highlighted in blue and red respectively. The (110) planes represent half of

the analyzed area at the �ake's surface whereas the (001) planes are not evidenced.

Figure 3.15: Crystal direction map where (110) and (001) planes are highlighted respectively in blue
and red at the surface of the �ake. For each plane the area fraction is indicated showing that half of
the grains are oriented in <110> direction whereas (001) oriented planes are not evidenced.
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3.2.3 Discussion about the texture development

Figure 3.16 describes the texture that is developed in melt-spun HMS �akes as evidenced by EBSD

analysis. The crystal structure of HMS is drawn with respect to the cross-section in order to highlight

the (110) planes preferentially oriented parallel to the �ake's surface and the c-axis that is isotropically

distributed in the equatorial plane (�ring-like�). This �ber-like texture that is developed during the

solidi�cation is determined by the preferential growth direction and the thermal gradient.

Figure 3.16: Description of the texture of the �akes. The planes (001), (110) and (100) are drawn in
the tetragonal structure (left) and their respective orientation is drawn on the cross-section and on the
3D representation of a �ake (right).

At the beginning of the solidi�cation, when the �rst HMS crystallites start to form in contact

with the copper wheel, those with the preferred direction aligned towards the direction of heat �ux

(perpendicular to the wheel surface, in others words throughout the �akes thickness) will be promoted,

preventing the growth of the others orientations.

From a general point of view, the preferred growth direction is strongly correlated to the crystal

structure and the direction of heat conduction, however more factors can interplay so it is di�cult to

predict the preferred orientation of the growing solid-liquid interface.

In their theoretical study, Chattopadhyay et al. [20], predicted that for tetragonal (bct) crystals the

growth rate along the <110> direction is the fastest among all other directions because it corresponds

to the higher atomic density. These results are in agreement with the experimental work of Weinberg

and Chalmers [21] where <110> is found to be the preferred orientation of bct-tin, whereas O'Hara [22]
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considered that pure tin grows in a direction 12° away from <110>. As discussed by Chattopadhyay

et al. [20], the resultant growth direction of bct is selected by the combined e�ect from the <110> and

<100> directions. The directions we observed for HMS, mainly <110> and to a less extend <100>,

match well the predicted and observed preferential growth of others tetragonal crystals.

It is also interesting to note that the thermal conductivity of HMS crystals is supposed to be two

times higher in directions perpendicular to the c-axis, so the growth of HMS is expected to be favored

in these directions where the thermal conductivity is increased with respect to the thermal gradient.

Melt-spun �akes are posses a �ber-like texture of the (110) planes at their surface.

3.3 Characterization of the bulk samples

3.3.1 Structure and microstructure

Figure 3.17 presents the microstructures of the ground and stacked compacts after SPS consolidation.

Figure 3.17: BSE images taken in crystallographic contrast for ground (a) and stacked (b) compacts.

Contrary to what is observed for ground materials from arc melting route (chapter 2) the grain

morphology of melt-spun samples is uniform with less porosity at grain boundaries. Stacked materials

made of staked �akes presents the cleanest grain boundaries. In addition, for both samples MnSi

striations are not observed in HMS phase after post-processing.

Table 3.2 shows the re�ned parameters obtained for the melt-spun materials after SPS. In com-

parison with the melt-spun material (�gure 3.12.a.) no signi�cant changes are evidenced in the cell

parameters.
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Material SPS a (Å) cMn (Å) cSi (Å) 7

Ground 1100°C 5.5247(6) 4.3643(1) 2.5075(4) 1.7404(8)

Stacked 1000°C 5.5222(2) 4.3639(4) 2.5172(0) 1.7336(5)

Table 3.2: Re�ned lattice parameters a, cMn, cSi and 7 obtained by pro�le matching for ground and
stacked compacts after post-processing.

However, contrary to what was observed in chapter 2 for casted samples the asymmetric broadening

of the [Si] peak (1101) is still present after post-processing for the textured sample (see �gure 3.18).

As observed in the di�raction pattern (see �gure 3.19) HMS is incommensurate.

Figure 3.18: Enlargement in pro�le matching for ground (a) and stacked (b) materials.

Figure 3.19: Di�raction pattern of the stacked material taken along [-120] zone axis the on powder
showing the incommensurate character of HMS phase. The incommensurate character is con�rmed
after analysis of several di�raction patterns performed on di�erent powder particles.
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The microstructures of consolidated compacts present a uniform grain size distribution with a low

porosity content, clean grains boundaries and without MnSi striations.

After post-processing the incommensurate character is evidenced for ground and stacked bulk materials.

3.3.2 Texture

Ground compacts Figure 3.20 presents an IQ+IPF map along with the IPF for an ground

pellet. As expected this pellet is fully isotropic and do not present any texture.

Figure 3.20: IQ+IPF map (a) and IPF [001] (b) of the isotropic pellet in the normal direction. More
than 2500 grains are analyzed. The texture is normalized on a scale of 5 and the maximum of texture
is indicated above the IPF.

Stacked compacts Figure 3.21 presents the IQ+IPF maps in the normal and transverse direc-

tions along with the corresponding IPF and texture plots. The stacking of the �akes is easily observed

in the transverse cut. From IPF analysis (see �gures 3.21.b. and e.) we con�rm the presence of mainly

oriented (001) grains in the transverse direction and mainly oriented (110) grains in the normal direc-

tion. The pole �gure (001) (see �gure 3.21.c.) of the transverse direction con�rms the development

of the c-axis ring-like texture within the thickness of the �akes. And the pole �gure (110) (see �gure

3.21.f.) of the normal direction presents a typical �ber-like texture similar to the one obtained at the

�ake's surface.

After SPS we successfully retain the texture of the �akes leading to a textured bulk material.
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However, a diminution of the maximum of the pole �gure is observed.

Figure 3.21: IQ+IPF map, IPF [001] and PF (001) of the textured pellet in the transverse direction
(a,b and c) and in the normal direction (d,e and f) where more than 1500 grains are analyzed. The
texture is normalized on a scale of 5 and the maximum of texture is indicated above each IPF and PF.

Figure 3.22 shows the crystal direction map where the (110) planes are highlighted in blue and

in comparison to the �ake's surface previously analyzed we observe a decrease of about 10% in their

area fraction (from 0.488 to 0.376). This decrease comes from �ake's rotation, sliding, crushing and

bending that can occur during their stacking in the graphite die before the densi�cation.
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Figure 3.22: Crystal direction map where (110) planes are highlighted in blue. The area fraction is
indicated showing close to 40% of the area fraction is oriented in <110> direction. More than 800
grains are analyzed.

Textured bulk HMS samples are successfully obtained through melt-spinning followed by SPS procedure

even if a diminution of the texture is observed.

3.3.3 Possible avenue for texture strengthening

The issues related to the imperfect stacking of the �akes during the sample preparation being hardly

avoidable, an alternative solution to enhance the texture of the �nal compacts would be to start with

texturally stronger �akes.

As discussed in the book of F.J. Humphreys and M. Matherly [23], a texture can be strengthen

during annealing due to a phenomena called oriented growth. The underlying mechanism is that

some orientations of grains have a growth advantage compared to others because their grain boundary

mobility is higher. There is evidence that the mobilities are dependent on grain boundary orientation so

that certain orientation relationships are associated with a rapid growth rate [24]. It is this relationship

between the fast-growing orientations and boundary structure which can enhance the texture of grain
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oriented materials during annealing because the misorientation distribution is altered. To this respect,

it was observed that special boundaries which have a high density of coincidence sites often exhibit

fast rates of growth.

To take advantage of this oriented growth phenomena, we have investigated the e�ect of annealing

on the crystallographic texture of the melt-spun HMS �akes. The annealed texture is shown on �gure

3.23. It is observed that grain growth results in substantial strengthening of the �ber like texture of

the �akes. This suggests a strategy for enhancing the texture of bulk HMS materials by using annealed

�akes during consolidation.

Figure 3.23: IPF and 110 PF for as-spun �ake (a, b and c) and thermal treated �ake at 1000°C during
7 days (d, e and f) where respectively more than 8000 and 1000 grains are analyzed. The average grain
growth (from 6 to 18 µm) is correlated to an increase of the maximum of pole �gures 110 (orange to
red) from 3.20 to 4.97. In addition, from crystal direction map analysis the area fraction of (110)
planes at the surface is increased of 5% after thermal treatment. It is important to note that when
we measure the texture after grain growth, we have fewer grains contributing to the texture spread so
it can introduce a bias in the orientation distribution and give the impression of a stronger texture.
To avoid this artefact, we have increased the sampling so we are con�dent with the veracity of texture
enhancement during annealing.
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3.4 Conclusion

In this work, we have fabricated <110> grain oriented MnSi1.73 bulk materials by consolidation of

anisotropic �akes produced by melt-spinning. Due to the high cooling rate experienced by the melt

during melt-spinning, the formation of secondary phases classically observed in casted samples (see

chapter 2) is strongly limited, leading to fully dense and highly pure bulk HMS materials with clean

grain boundaries, and free of MnSi striations. In melt-spun �akes, the mixture of commensurate HMS

phases formed during rapid solidi�cation is shifted towards short c-axis length compared to the arc

melting route. After consolidation by SPS the incommensurable character of the bulk HMS materials

is also con�rmed.

The crystallographic texture of the melt-spun �akes and the consolidated compacts was charac-

terized by EBSD. For the �akes, the �ber-like texture of the (110) planes results from solidi�cation

of undercooled melt proceeding with preferential growth in the <110> crystallographic direction. Af-

ter consolidation of stacked �akes by spark plasma sintering, the texture is retain but weaken in the

compacts.

The resulting crystallographic texture will permit to measure the transport perpendicular to the

<001> direction (perpendicular to c-axis) and in plane (001) which provide a mean to evaluate, for the

�rst time, the e�ect of grain orientation by it-self (without the in�uence of MnSi striations (see �gure

3.24). However, we will not have access to the thermoelectric properties parallel to c-axis. These

points, as well as the in�uence of the various process on the transport properties of HMS, will be

addressed in the next chapter.

Figure 3.24: Anisotropy study in HMS alloys.
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Chapter 4

Thermoelectric properties

In this chapter, we present and discuss the transport properties (Seebeck coe�cient, thermal and

electrical conductivities) of the pure HMS and Ge-doped materials produced from the manufacturing

routes developed in chapters 2 and 3. For commodity reasons, they are summarized in table 4.1. All

these materials are fully dense, highly pure, and present a homogeneous microstructure consisting in

the single incommensurate HMS phase. They di�er only by the manufacturing route, the doping and

the texture.

The �rst section presents the experimental procedure used to measure the transport properties.

In the second section, we use properties charts to appreciate how particular parameters and man-

ufacturing processes in�uence the properties of HMS materials.
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Manufacturing
process

Liquid phase route
Solid state

route

Name AC GI MS MSO RS

Description

As-cast

ingots

produced by

arc-melting

Materials

produced by

SPS consoli-

dation of

ground

ingots

Materials

produced by

densi�cation

of ground

melt-spun

�akes

Textured

materials

obtained by

consolida-

tion of

stacked

melt-spun

�akes

Materials

produced by

reactive

sintering of

MnSi and Si

powders

during con-

solidation in

the SPS

Related
chapter

2 2 3 3 2

Table 4.1: Recap of the studied materials obtained from liquid phase processes (arc-melting and melt-
spinning) and solid-state synthesis (reactive sintering).
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4.1 Experimental procedure

Power factor The Power Factor (PF=S2σ in W/m.K) was measured on rectangular bars of 3*3*7

mm3 size (ZEM-3, Ulvac GmbH) where the electrical conductivity and the Seebeck coe�cient are

simultaneously measured under helium atmosphere. A switching technique of four-point direct current

gives the electrical conductivity and a static direct current method based on the slope voltage versus

temperature-di�erence curves measures the Seebeck coe�cient.

Thermal conductivity The thermal conductivity is calculated thanks to the following relationship:

κ = ραCp where ρ is the density (kg.m−3) measured by Archimedes principle, α the thermal di�usivity

(m2.s−1) is measured by Laser Flash di�usivity (LFA 457, Netzsch) under argon and Cp the heat

capacity (J.kg−1.K−1) measured by Di�erential Scanning Calorimetry (DSC 850 PerkinElmer) under

argon.

Cp was measured on ground undoped materials sintered at 1100°C from arc-melting and melt-

spinning routes and compared to the data of the literature (see �gure 4.1). We can see that our

results are in agreement with both experimental and theoretical values. In addition, we con�rm the

independence of the Cp with respect to the process (i.e. the microstructure).

Figure 4.1: Cp values for ground materials from arc-melting (black circle) and melt-spinning (blue
square) routes sintered at 1100°C. Experimental (light gray) [1] and theoretical (dark gray) [2] Cp

values from the literature are also reported.

Stacked compacts In order to characterize the stacked compacts obtained after SPS in the two

directions several cuts are performed and shown on �gure 4.2.
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Squares of 6x6 mm² and ∼1 mm of thickness were cut to measure the thermal conductivity. A

rectangular bar was extracted from the middle of the previous squares to measure the electronic

transport properties. The blue part was used to investigate the microstructural parameters.

Due to the measurement setup, the power factor and the thermal conductivity for one direction

need to be measured in a di�erent cut. Thus, the cut in the normal direction (parallel to the stacking

of the ribbons) will permit to measure the κ ⊥ to c-axis and power factor in plane (001) and the cut in

the transverse direction the measurement of the two complementary κ in plane (001) and power factor

⊥ to c-axis.

Figure 4.2: Sample cuts for thermoelectric measurements on stacked compacts. The normal direction
allows the measurement of κ ⊥ to c-axis and power factor (PF) in plane (001) meanwhile the transverse
cut leads to κ in plane (001) and power factor (PF) ⊥ to c-axis.

Starting powders The ground materials are made from densi�ed powders issued from arc melted

ingots and as-spun �akes. The reactive sintered materials are obtained from a densi�ed mixture of

MnSi and Si/(Si,Ge) powders.

The MnSi alloy was prepared by arc melting technique and the powder XRD pattern con�rms the

synthesis of pure MnSi compound obtained from the melt through congruent melting point (see �gure

4.3).
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Figure 4.3: Powder XRD patterns: theoretical (ICSD # 71830) and as-cast for MnSi compound showing
a pure synthesis.

Figure 4.4 presents the morphology of the four starting powders after the sieving step (40 µm). For

all the powders, angular shape due to the brittle mechanical comportment of the ingots and �akes is

observed and a rough estimation leads to a particle range from tens of µm to hundreds of nanometers.

Laser granulometry (Mastersizer 2000, Malvern) was used to get an accurate characterization of

the powders (see �gure 4.5). The detection limit of the equipment is 50 nm. The distribution width

is de�ned by three values D10, D50 and D90. The D50, median, represents the diameter where half

of the population lies below this value. Similarly, D10 and D90 are respectively the limits for 10

and 90 percent of the population. The volume distribution shows a non-symmetric and monomodal

distribution for the powders from MnSi1.73 �akes, Si and MnSi ingots with a shoulder at low values and

average sizes respectively around 27, 14 and 21 µm. Powder from MnSi1.73 ingot present a bimodal

distribution with two main contributions respectively around 2 and 40 µm. The distribution of sizes

ranges from 300 nm to 80 µm for the four powders. The converted results in number distribution

showed that the majority of the particles are down to 2 µm (brittle mechanical behavior).

Figure 4.4: SE images of ground MnSi1.73 ingot (a), MnSi1.73 �akes (b), MnSi ingot (c) and pure
commercial Si (d). The powders after sieving (40 µm) exhibit angular shape.
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Distribution (µm) D10 D50 D90
MnSi1.73 ingot 1.1 10.4 50.9
MnSi1.73 �akes 3.9 26.7 54.3

MnSi 3.7 13.8 29.0
Si 3.8 21.1 46.9

Distribution (µm) D10 D50 D90
MnSi1.73 ingot 0.4 0.6 1.2
MnSi1.73 �akes 0.3 0.5 0.8

MnSi 0.5 0.8 1.9
Si 0.3 0.5 0.9

Figure 4.5: Particles size distribution in volume (a) and number (b) of powders from MnSi1.73 ingot
(blue), MnSi1.73 �akes (purple), MnSi ingot (green) and pure commercial Si (red) after sieving (40
µm). D10, D50 and D90 values (µm) for each powder are presented above the curves for the volume
and number distributions.
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4.2 Results

4.2.1 Transport properties and thermal behavior

Figure 4.6 shows the thermal dependence of the transport properties of HMS materials studied in

chapters 2 and 3. They all behave as degenerated semiconductors. For the electrical conductivity

and the Seebeck coe�cient opposite trends are classically observed, with an increase of the Seebeck

with temperature and a decrease for the electrical conductivity. For these two properties the bipolar

e�ect is observed around 500°C. At low temperature due to phonon-phonon scattering the thermal

conductivity decreases whereas after 500°C the thermal conductivity increases due to the bipolar e�ect

(creation of electron/hole pairs).

From the literature data the reported transport properties around 500°C range as follows:

� thermal conductivity from 1.7 to 3.5 W/m.K.

� electrical conductivity from 1.4 104 to 4.7 104 S/m.

� Seebeck coe�cient from 1.9 10−4 to 2.4 10−4 V/K.

Figure 4.6: Thermal dependencies of the thermal conductivity (a), electrical conductivity (b) and See-
beck coe�cient (c) for the materials investigated during thesis.
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Our values stand in the literature ranges and span from 2.5 to 3.1 W/m.K for the thermal con-

ductivity, from 1.8 104 to 4.1 104 S/m for the electrical conductivity and from 2.1 10−4 to 2.4 10−4

V/K for the Seebeck coe�cient. Hole dominant carrier behavior providing the p-type conduction (i.e.

positive Seebeck coe�cient) is con�rmed. As observed in the literature, for HMS based alloys the

highest variability is observed for the electrical conductivity.

4.2.2 Power factor/thermal conductivity trade-o�s

In this section, we use property charts to appreciate how particular parameters and manufacturing

processes in�uence the properties of HMS materials. The chart shows always two set of properties: the

power factor - which is the product of the square of the Seebeck coe�cient and the electrical conduc-

tivity (numerator of the �gure of merit zT) - is plotted against the thermal conductivity (denominator

of zT). As explained in chapter 1, the positions occupied by the materials on the charts illustrate their

performance as the �gure of merit increases from the bottom right to the upper left corner. In addition

of our materials, we have represented the results from the literature. A total of 30 HMS-based alloys

gives the ranges of properties for this class of thermoelectric materials.

We have classi�ed the ways the properties change into 3 categories:

� Microstructure to illustrate the e�ect of porosities and secondary phases.

� Process and doping to compare how the liquid-phase and solid state (reactive sintering) pro-

cesses enable to manipulate the properties, and how Ge doping change the property pro�les.

� Texture and doping to explore the true intrinsic anisotropy of HMS.

Microstructure

Except in the work Bernard-Granger et al. [1] from which HMS compacts with high relative densi-

ties (99.8%) were obtained, the literature data give thermoelectric properties measured on samples

exhibiting either an important amount of porosities (relative densities ranging between 75 and 97%)

and/or a signi�cant amount of secondary phases (MnSi, Si), making quite hazardous the evaluation

of the intrinsic transport properties of HMS and the explore of the underlying physics controlling the

properties.

In an attempt to tie it all together, we have measured the transport properties of compacts ex-

hibiting various amount of porosities and impurities. They were prepared by the manufacturing routes
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described in chapter 2 by tuning the sintering temperature (from 950°C to 1100°C) and the nominal

alloy composition (7=1.73, 1.75 and 1.77). The results are plotted on �gure 4.7. The arrows illustrate

the pathways followed when the relative density increases (in red) and when the amount of secondary

phase decreases (in black).

We can conclude that the best material is obtained for the highest density and the lowest impurity

content which result from the following conditions: 1100°C for the sintering temperature and 7=1.73

for the nominal composition (see �gure 4.8). Such a trend is not a big surprise but it nicely illustrates

the great sensitivity of the power factor towards both porosity and impurities whereas the thermal

conductivity changes only slightly. It also shows that consolidation of the as-cast ingots is a mandatory

step as the important amount of impurity and porosity in the solidi�ed microstructures moves the power

factor and the resulting zT far downwards.

In the case of undoped materials, the best zT of 0.43 at 500°C is obtained for the ground compact

MnSi1.73 densi�ed at 1100°C. This set of composition (7=1.73) and sintering temperature (1100°C)

provides highly pure and fully dense HMS materials as shown in chapter 2.

Figure 4.7: Thermoelectric material property chart at 500°C. Ground ingots (GI) with nominal com-
position MnSi1.73 as a function of the dwell temperature: 950°C (in blue), 1000°C (in green), 1050°C
(in orange) and 1100°C (in red). Materials with di�erent nominal compositions ( 7=1.73, 1.75 and
1.77) are represented for GI (circles: red for 1.73, pink for 1.75 and purple for 1.77) and MS (squares:
dark blue for 1.73, medium blue for 1.75 and light blue for 1.77). The properties of an as-cast (AC)
MnSi1.73 material presenting cracks are also reported. The data from the literature for doped (in dark
gray), undoped (in medium gray) and composites (in light gray) materials are reported.
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Figure 4.8: SE images and their relative density for GI materials as a function of the SPS dwell
temperature: 950°C (a), 1000°C (b), 1050°C (c) and 1100°C (d). The density of the materials is
measured by Archimedes principle and the relative density is calculated from theoretical density of
5.159 g/cm3 for HMS.

Undoped material produced by SPS consolidation of ground ingot with nominal composition MnSi1.73

presents a zT=0.43 at 500°C.

Process and doping

Figure 4.9.a. compares the performances of HMS alloys as a function of the processes. The new

route (so called reactive sintering) developed in the chapter 2 were HMS alloys have been produced

by solid-state di�usion between MnSi and Si particles exhibit an improvement of 23% in zT compared

to classical liquid-phase processes, i.e. zT=0.53 at 500°C, one of the best for undoped samples of the

state-of-art.

In addition, the improvement of the performances for Ge-doped HMS alloys (with nominal com-

position Mn(Si0.992Ge0.008)1.73) for doped ingots and MnSi/(Si,Ge) reactive sintering is presented on

�gure 4.9.b. For the liquid-phase process route an improvement of 32% in zT is reached whereas for the

reactive sintering route this improvement is limited at 6% in zT due to the presence of MnSi residual

primary particles (already evidenced in chapter 2) which adversally increase the thermal conductivity.
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However, it is reasonable to expect a potential zT of 0.63 for Ge-doped reactive sintered materials if

the reaction is complete, reaching to the best materials of the state-of-art.

By comparison of our doped samples with the literature we can observe that a similar zT of 0.58 is

achieved by Zhou et al. [3] for the same Ge nominal composition. They produce the Ge-doped materials

through induction melting followed by Hot Pressing at 900°C during 60 min. Since no relative density

is reported and looking at the low value of the thermal conductivity this sample might contain a non

negligible amount of porosities. From the point of view of the application (design requirements) an

high electrical conductivity is preferred at equiperformant zT, hence our results match with this trend

(3.8 104 S/m compared to 3.0 104 S/m for Zhou et al. [3]) so we believe that rationalizing processes

and doping e�ects will support e�cient thermoelectric development.

Figure 4.9: Thermoelectric material property charts at 500°C. Comparison between liquid-phase pro-
cesses (black circle:GI and blue square:MS) and reactive sintering (RS) (red triangle) routes (a). Com-
parison between Mn(Si0.992Ge0.008)1.73 materials from GI (blue circle) and RS MnSi/(Si,Ge) (blue
triangle) process (b). The data from the literature for doped (in dark gray), undoped (in medium gray)
and composites (in light gray) materials are reported. The Ge-doped samples from the literature are
highlighted with a blue contour.

As shown in �gures 4.10 and 4.11, the reactive sintering process and the Ge additions move upwards

the zT compared to the liquid-phase process and the undoped materials, respectively, mainly because

the electrical conductivity is enhanced whereas the others properties do not change signi�cantly. Elec-

trical conductivity is governed by the concentration and the mobility of the charge carriers, the �rst

one can be a�ected by solutes (doping/alloying elements) and the second by both the solutes and the

microstructure. With respect to the e�ect of the manufacturing route, in the absence of Hall measure-

115



Thermoelectric properties 4.2

ments, we can reasonably suppose that the observed changes re�ect the sensitivity of the hole mobility

to the microstructure, i.e. the charge carriers can be scattered by obstacles such as precipitates and

grain boundaries.

Figure 4.10: Total thermal conductivity (a), electronic (Kele) and lattice (Klat) thermal contributions to
the thermal conductivity (b), Seebeck coe�cient (c) and electrical conductivity (d) for undoped MnSi1.73
materials from GI (black circle), RS MnSi/Si (red triangle) and MS (blue square).
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Figure 4.11: Total thermal conductivity (a), electronic (Kele) and lattice (Klat) thermal contri-
butions to the thermal conductivity (b), Seebeck coe�cient (c) and electrical conductivity (d) for
Mn(Si0.992Ge0.008)1.73 materials (light blue) obtained from GI (circle) and RS MnSi/(Si,Ge) (trian-
gle). Undoped materials obtained from GI and RS are also reported with black circle and red triangle,
respectively.

As shown in chapter 2 and �gures 4.12 and 4.13, the only distinguishing parameters between ma-

terials issued from liquid-phase and reactive sintering routes are the amount and neatness of the grain

boundaries. In reactive sintered materials, grain boundaries present less porosity and Si impurities, so

the density of the scattering centers is decreased. With respect to the e�ect of Ge, it is either attributed

to a change of the density number of MnSi striations or to an increase of the carrier concentration

[4, 3, 5]. The �rst mechanism can be understood as the scattering e�ect of the microstructure (platelet

precipitates) and the second as a doping e�ect. We can now clarify this point since the property

measurements have been performed on doped and undoped samples having the same microstructure,

i.e. homogeneous and free of MnSi striations in all cases. Our results suggest that the enhancement

of the electrical conductivity of HMS with Ge addition is more likely due to an increase of the carrier
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concentration. Since Ge is electroneutral for HMS, its positive e�ect was interpreted from �rst princi-

ple calculations as the re�ect of changes in the density of states near the Fermi level due to disruption

of the Si helices [4].

Figure 4.12: Grain size map, area fractions and average grain size for GI (a) and RS (b) materials.
The colored scale highlights the grain size distribution from 0 to 50 µm.

Figure 4.13: BSE images for the GI (a) and RS (b) materials.

Reactive sintering process is leading to one of the best zT (0.53 at 500 °C) for undoped materials with

an innovative cost saving process, consistent with automotive design requirements.

Ge doping is e�ective in increasing the performance (zT=0.58 for liquid-phase process), however an

optimization is needed to further increase the zT for Ge-doped solid-state route.

Texture and doping

Figure 4.14 shows the positions occupied by the crystallographically textured MnSi1.73 material, and

the concomitant e�ect of Ge-doping (0.8 at.%), in the thermoelectric properties chart.

Very surprisingly, the undoped sample exhibit approximatively the same properties in the nor-
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mal and transverse direction (respectively, perpendicular to the c-direction and in-plane), whereas

we observe a tremendous e�ect of the grain orientation in Ge-doped samples having similar texture

strength:

� zT=0.27 is obtained in the quasi-isotropic direction

� zT=0.53 in the direction ⊥ to c-axis

Figure 4.14: Thermoelectric material property chart at 500°C. MnSi1.73 (green diamond) and
Mn(Si0.992Ge0.008)1.73 (light blue diamond) MSO materials. The properties measured in the direc-
tion ⊥ to c-axis are associated to �lled diamond and the ones in plane direction with open diamond.
The data from the literature for doped (in dark gray), undoped (in medium gray) and composites (in
light gray) materials are reported.

As shown in �gure 4.14, the properties measured on grain oriented samples in the direction perpen-

dicular to c-axis and in-plane (quasi-isotropic) suggest that HMS exhibit a high degree of transport

properties isotropy. This is in contradiction with what is claimed in the literature.

From a careful review of the available literature data the anisotropy in transport properties in

HMS alloys is reported in 8 papers from which 6 are dealing with single crystals where the presence

of MnSi striations are reported [6, 7, 8, 9, 10, 11, 12, 13]. As a consequence the measurement of the

thermoelectric properties perpendicular and parallel to the c-axis are in�uenced by the presence of such

oriented plate-like metallic precipitates in HMS that are su�cient to induce anisotropy, as suggested

by Levinson [6]. In addition, Ivanova et al. highlighted that a strong reduction of the anisotropy is

observed in Ge-doped single crystals [9]. As previously shown in chapter 2 the Ge microsubstitution

was e�ective in preventing the formation of MnSi striations. Thus, the fact that the Ge-doped single
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crystals are becoming isotropic is an additional argument to prove that the claimed anisotropy of HMS

is due to the presence MnSi striations. This statement is supported by Engstrom et al. work [11]

where most of Silicides alloys present isotropic properties. It is clear that no study has measured the

intrinsic properties of HMS phase in the directions perpendicular and parallel to c-axis, it was always

the properties from a lamellar composite HMS/MnSi.

We end with two papers that have reported the anisotropy of the properties in bulk textured

materials [12, 13]. In a work recently published [13], the authors report an enhancement of about 10%

of the zT value of HMS compacts in the direction parallel to the pressing direction compared to the

transverse direction. Despite the lack of EBSD analysis, it was claimed from XRD patterns a preferred

crystallographic orientation in parallel to the pressing direction. This assumption is very speculative so

we tried to reproduce their results. Figure 4.15 shows the microstructure of HMS compacts obtained

from consolidation of ground ingots. As shown by the EBSD analysis, the material thus obtained does

not present any crystallographic texture.

Figure 4.15: IQ+IPF map (a) and IPF [001] (b) of the GI material in the normal direction. More
than 1500 grains are analyzed. The texture is normalized on a scale of 5 and the maximum of texture
is indicated above the IPF.

Unlike texture undoped HMS, grain oriented Ge-doped HMS samples show a higher electrical

conductivity perpendicular to the c-direction compared to the in plane direction while the Seebeck

coe�cient and the thermal conductivity are almost independent of the texture (see �gure 4.16). From

our best knowledge it is the �rst time that such unique characteristic, in which the relationship between
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the crystallographic texture and the transport properties is expressed only through doping. The lack

of orientation dependence we observed for pure HMS has evidenced the isotropy of the transport

properties of this compound, so the origin of the texture dependence for doped samples must have

another origin.

Figure 4.16: Total thermal conductivity (a), electronic (Kele) and lattice (Klat) thermal contributions
to the thermal conductivity (b), Seebeck coe�cient (c) and electrical conductivity (d) for undoped
MnSi1.73 (green diamond) and Mn(Si0.992Ge0.008)1.73 (light blue diamond) MSO materials. The prop-
erties measured in the direction ⊥ to c-axis are associated to �lled diamond and the one in plane with
open diamond. Undoped material from MS route and presenting isotropic properties is reported (blue
square).

Several papers show that texture can drastically alters the grain boundary misorientation distri-

bution [14, 15]. Garcia et al. [14] have studied the relationship between crystallographic texture and

grain boundary character. They established that �ber-like textured samples (as it is the case for our

textured HMS materials) exhibit a high density of low-angle misorientations while random materials

have a high probability of large-angle misorientation. Moreover, the anisotropy of the grain boundary
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segregation is a phenomena that has been reported for long time [16, 17]. Several studies also evi-

denced that the segregation occurs preferentially more at high-energy boundaries than low-energy ones

[18, 19]. Finally, since the grain boundary energy depend on the grain boundary character, one can

expect that crystallographic texture may induce a selective segregation, and thus create percolative

paths for charge carrier in speci�c directions. Experimental investigations combining maps of grain

boundary misorientations and 3D atomic maps would be useful to verify this scenario (see for example

Herbig et al. [20]), and to this respect, our grain oriented samples o�er a reliable mean to evaluate the

e�ect of the grain boundary texture on the thermal and electronic transport properties.

For undoped highly pure textured bulk materials that do not present MnSi striations the anisotropy

in the transport properties is not observed.

For Ge doped textured compact a strong splitting is observed between the two directions.
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4.3 Conclusion

We have characterized the transport properties and evaluated the thermoelectric performance of pure

and Ge-doped HMS materials produced via di�erent manufacturing processes. Using property charts

to track the material pathways, we have outlined and discussed the e�ect of the microstructure,

process, doping and texture of the transport properties of HMS. It has been shown that our materials

compete well with the state-of-the-art (best zT=0.67 at 500°C for Al-doped MnSi1.75 prepared by gas

atomization process followed by SPS consolidation).

We have reported that for crystallographically textured HMS materials, the relationship between

texture strength and electrical conductivity showed a unique behavior in which the electrical conduc-

tivity is independent of the grain orientation for pure (undoped) HMS while it becomes highly sensitive

for Ge-doped HMS. Adequate analysis of the grain boundary texture and segregation is required to

gain a better understanding of the underlying physic controlling the link between crystallographic tex-

ture, doping and transport properties. Nevertheless this study opens up new directions for enhancing

the thermoelectric properties through the interplay between texture (control of the grain boundary

character) and doping (leading to segregation), i.e. engineering of the anisotropy of the grain boundary

segregation.
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Conclusion

This thesis aimed at manufacturing sustainable thermoelectric HMS-based materials for large-scale

waste heat harvesting applications with the following characteristics:

� Demonstrated thermoelectric performance for p-type in the temperature range 300-500°C.

� Non-toxic, non-critical and abundant constituting elements.

� High chemical and thermal stability of the material.

� Low raw material cost.

Our approach was based on metallurgical and solid state chemistry concepts which entail that both the

structure and the microstructure represent the links to be studied between processes and properties.

The main technological challenge was to develop a manufacturing route to produce MnSi1.73 alloys

with the right composition and microstructure by means of a reliable and scalable process.

� We have demonstrated the e�ciency of the liquid-phase process followed by SPS consolidation

to obtain highly dense and homogeneous materials.

� An innovative processing route based on reactive sintering was shown to enhance the performance

of the materials thus obtained.

� In order to fabricate crystallographically textured materials, rapid cooling by the melt-spinning

technique was successfully applied.

The main scienti�c challenge was to gain a better understanding of the materials highlights including

its commensurability, microstructure and anisotropy in order to optimize the electronic and thermal

transport properties.
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� A great e�ort was dedicated to the development of a strategy based on the (3+1)D superspace

group approach in order to interpret and index both XRD and electronic di�raction patterns and

unequivocally identify HMS phases. We evidenced that several distinct commensurate phases

always coexist in as-cast state, and the commensurate-incommensurate transition that occurs,

depending of the applied processes. Our results revealed that the liquid-phase processes lead to

the formation of a mixture of commensurate HMS phases separated by thin MnSi walls, whereas

post-processing and solid state synthesis routes result in the formation of one homogeneous

incommensurate phase.

� It was also revealed the relationship between crystallographic texture and transport properties of

HMS alloys. Electrical conductivity showed a unique behavior in which the electrical conductivity

is independent of the grain orientation for pure (undoped) HMS while it becomes highly sensitive

for Ge-doped HMS. Therefore, we evidenced that pure HMS phase (without MnSi striations)

presents isotropic transport properties.

� Ashby diagrams were used to track the pathways in the thermoelectric material properties space,

the present work stressed the e�ect of the microstructure, process, doping and texture of the

transport properties of HMS. With a thermal conductivity of 2.5 W/m.K, an electrical conduc-

tivity of 3.8 104 S/m, a Seebeck coe�cient of 2.2 10−4 V/K, and a resulting of zT=0.58 at 500°C,

our best Ge-doped HMS material compete well with the state-of-the-art.

The above progresses that were made beyond the state-of-art during this thesis provide the following

prospects for future works:

� Optimize and scale-up the reactive sintering route based on a easy scalable process to investigate

the durability of such processed materials during service use.

� Investigate a new way to enhance the thermoelectric properties through the interplay between

texture (control of the grain boundary character) and doping (leading to segregation). The

engineering of the anisotropy of the grain boundary with di�erent doping elements could provide

new insights for HMS development.









Abstract

Generating electricity from waste heat by means of thermoelectric generators may represent a very in-

teresting opportunity to signi�cantly reduce the impact of road transportation. In this context, Higher

Manganese Silicide (HMS) based alloys are studied as p-type semiconductors to achieve a sustainable

scale-up of this technology. Through a strategy coupling metallurgy and solid state chemistry, this

work revisits the knowledge on HMS and reveals the relationship between the phases, the microstruc-

ture and the manufacturing process. This systematic study has lead to the establishment of design

guidance to maximize the performance and thus, to a new synthesis route. In addition, the production

of grain oriented and highly pure HMS materials evidences the isotropy of the transport properties of

HMS. Finally, this study suggests a relationship between grain boundary texture and segregation in

doped-HMS, opening new directions for enhancing thermoelectric properties.

Keywords: functional metallurgy, solid state chemistry, Higher Manganese Silicide, thermoelectric-

ity, texture, microstructure, inco/commensurate.

Résumé

Valoriser l'énergie perdue sous forme de chaleur par les moteurs thermiques en électricité via des

générateurs thermoélectriques permettrai de diminuer l'empreinte carbone des transports routiers. Une

sélection des matériaux basée sur des critères de performance, de coût et de développement durable a

conduit au choix du siliciure de manganèse MnSi7 (semi-conducteur de type p). En s'appuyant sur une

approche couplant la métallurgie et la chimie du solide, ce travail revisite l'état de l'art sur ces alliages

et révèle les relations entre la structure (inco/commensurabilité), la microstructure et le procédé. Une

meilleure compréhension de ces liens a permis d'acquérir un contrôle plus précis des microstructures,

et par conséquent d'optimiser les propriétés thermoélectriques, et a conduit à la mise au point d'une

nouvelle voie de synthèse pour MnSi7. De plus, la production de matériaux purs et texturés a permis

de mettre en évidence l'isotropie des propriétés de transport de la phase MnSi7. En�n, cette étude

suggère une relation entre la texture des joints de grains et la ségrégation dans des alliages dopés,

ouvrant de nouvelles perspectives pour améliorer les propriétés thermoélectriques.

Mots-clés: Métallurgie fonctionnelle, chimie du solide, siliciures de manganèse, thermoélectricité,

texture, microstructure, inco/commensurabilité.
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