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Laboratoire d’accueil : Centre de mathématiques et de leurs applications, UMR 8536
CNRS
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Abstract

In the field of computational anatomy, the Large Deformation Diffeomorphic Metric
Mapping (LDDMM) framework has proved to be highly efficient for addressing the pro-
blem of modeling and analysis of the variability of populations of shapes, allowing for the
direct comparison and quantization of diffeomorphic morphometric changes. However, the
analysis of medical imaging data also requires the processing of more complex changes,
which especially appear during growth or aging phenomena. The observed organisms are
subject to transformations over time that are no longer diffeomorphic, at least in a biolo-
gical sense. One reason might be a gradual creation of new material uncorrelated to the
preexisting one. The evolution of the shape can then be described by the joint action of a
deformation process and a creation process.

For this purpose, we offer to extend the LDDMM framework to address the problem
of non diffeomorphic structural variations in longitudinal data. We keep the geometric
central concept of a group of deformations acting on embedded shapes. The necessity for
partial mappings leads to a time-varying dynamic that modifies the action of the group of
deformations. Ultimately, growth priors are integrated into a new optimal control problem
for assimilation of time-varying surface data, leading to an interesting problem in the field
of the calculus of variations where the choice of the attachment term on the data, current
or varifold, plays an unexpected role. The underlying minimization problem requires an
adapted framework to consider a new set of cost functions (penalization term on the
deformation). This new model is inspired by the deployment of animal horns and will be
applied to it.

Keywords : computation anatomy, shape spaces, group of diffeomorphisms, large
deformation, growth model, variational method, optimal control, Riemannian metric.



Résumé en français

Dans le domaine de l’anatomie, à l’investissement massif dans la constitution de base
de données collectant des données d’imagerie médicale, doit répondre le développement
de techniques numériques modernes pour une quantification de la façon dont les patho-
logies affectent et modifient les structures biologiques. Le développement d’approches
géométriques via les espaces homogènes et la géométrie riemannienne en dimension in-
finie, initialisé il y a une quinzaine d’années par U. Grenander, M.I. Miller et A. Trouvé,
et mettant en œuvre des idées originales de d’Arcy Thompson, a permis de construire un
cadre conceptuel extrêmement efficace pour attaquer le problème de la modélisation et de
l’analyse de la variabilité de populations de formes.

Néanmoins, à l’intégration de l’analyse longitudinale des données, ont émergé des
phénomènes biologiques de croissance ou de dégénérescence se manifestant via des déforma-
tions spécifiques de nature non difféomorphique. On peut en effet observer lors de la
croissance d’un composant organique, une apparition progressive de matière qui ne s’ap-
parente pas à un simple étirement du tissu initial. Face à cette observation, nous propo-
sons de garder l’esprit géométrique qui fait la puissance des approches difféomorphiques
dans les espaces de formes mais en introduisant un concept assez général de déploiement
où l’on modélise les phénomènes de croissance comme le déploiement optimal progressif
d’un modèle préalablement replié dans une région de l’espace. Nous présentons donc une
généralisation des méthodes difféomorphiques classiques pour modéliser plus fidèlement
l’évolution de chaque individu d’une population et saisir l’ensemble de la dynamique de
croissance.

Nous nous appuyons sur l’exemple concret de la croissance des cornes animales. La
considération d’un a priori sur la dynamique de croissance de la corne, nous permet de
construire un chemin continu dans un espace de formes, modélisant l’évolution de la corne
de sa naissance, d’un état réduit à un point (comme l’état d’embryon pour un humain ou
de graine pour une plante) à un âge adulte quelconque de corne bien déployée. Au lieu
d’étirer la corne, nous anticipons l’arrivée de matière nouvelle en des endroits prédéfinis.
Pour cela, nous définissons une forme mère indépendante du temps dans un espace virtuel,
qui est progressivement plongée dans l’espace ambiant en fonction d’un marqueur temporel
prédéfini sur la forme mère.

Finalement, nous aboutissons à un nouveau problème de contrôle optimal pour l’assimi-
lation de données de surfaces évoluant dans le temps, conduisant à un problème intéressant
dans le domaine du calcul des variations où le choix pour la représentation des données,
courant ou varifold, joue un rôle inattendu. De plus, privilégier le mode de déploiement
naturel amène à considérer de nouveaux termes de pénalisation.
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Introduction et présentation des

travaux

Cette partie en français sera reproduite dans le Chapitre 1.

1 Motivation

Dans le domaine de l’anatomie, à l’investissement massif dans la constitution de bases

de données collectant des données d’imagerie médicale, doit répondre le développement de

techniques numériques modernes pour une quantification de la façon dont les patholo-

gies affectent et modifient les structures biologiques. Le développement d’approches

géométriques à travers les espaces homogènes et la géométrie riemannienne en dimen-

sion infinie, initialisé il y a une vingtaine d’années par U. Grenander, M.I. Miller [30], A.

Trouvé [50] et L. Younes [54], et mettant en oeuvre des idées originales de d’Arcy Thomp-

son [47], a permis de construire un cadre conceptuel extrêmement efficace pour aborder le

problème de la modélisation et de l’analyse de la variabilité de populations de formes [55],

conduisant à la naissance d’une nouvelle discipline appelée Anatomie computationnelle.

Ce concept d’espace de formes, reformalisé récemment par S. Arguillière [6, 7], exploite

l’action sur une population de formes de groupes de difféomorphismes munis d’une distance

invariante à droite pour induire une structure riemannienne sur cet ensemble.

Cette approche géométrique a produit des algorithmes efficaces (méthodes LDDMM

[10], Deformetrica [17, 18], champs stationnaires [8], DARTEL [2]) ayant déjà fait leurs

preuves sur des applications comme l’étude de l’hippocampe, en lien avec la maladie

d’Alzheimer, ou du planum temporale pour la schizophrénie, l’étude d’IRM pour la tri-

somie 21, l’analyse de la connectivité neuronale basée sur l’imagerie par tenseur de dif-

fusion (DTI), l’étude des malformations cardiaques, etc. Un bilan sur la recherche des

géodésiques dans les espaces de formes, de l’approche par l’équation d’Euler-Lagrange à

la reformulation Hamiltonienne, et mettant en avant les applications, est fait dans [48].

Données longitudinales et problématique

L’analyse longitudinale de données concerne le cas spécifique et plus complexe où

un sujet est représenté par une série temporelle d’un même type de données. Cette

analyse plus fine est motivée entre autres par l’étude clinique de maladies ou de traite-

ments se manifestant dans la durée et entrâınant des modifications progressives d’un or-

ganisme ciblé. La quantification de ces modifications au cours du temps est une piste

d’exploration importante pour la compréhension d’une maladie ou pour l’optimisation des
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Figure 1 – Entre deux formes similaires, il existe une déformation simple qui transforme
l’une en l’autre.

dosages de traitements lourds [41]. La méthode employée se déroule en deux temps. Une

modélisation unifiée des données passe par la reconstitution, pour chaque sujet d’une po-

pulation, de l’évolution continue partiellement observée par ses données longitudinales, ce

qui permet par la suite une analyse transversale de la population. La notion d’espaces de

formes vus comme des variétés riemanniennes est encore particulièrement adaptée à l’étude

d’évolutions de formes donnant lieu à de nombreuses méthodes basées sur le transport pa-

rallèle [44], les splines riemanniennes [51] ou la régression géodésique [42, 53, 25], incluant

l’inférence statistique et la variabilité spatio-temporelle d’une population de scénarios [19].

Relevons enfin que ces méthodes ne s’appliquent pas qu’au milieu médical, avec par exam-

ple une étude comparative de l’ontogenèse du crâne entre les chimpanzés et les bonobos

[22].

Figure 2 – L’apparition de petits os à la base de la main met en défaut les méthodes
d’appariements difféomorphiques pour modéliser des processus de croissance qui im-
pliquent de la création de nouvelle matière. Source: Musée d’archéologie et d’ethnologie
de l’Université Simon Fraser.

Jusqu’à présent, l’étude longitudinale de données s’est appuyée sur une hypothèse

d’homologie entre les observations qui ne permet pas néanmoins de décrire tous les phéno-

mènes biologiques pouvant intervenir au cours d’une évolution temporelle, en particulier

lors de processus de croissance ou de dégénérescence. Pour reconstruire, par exemple, la

croissance d’une main à partir d’un échantillon de trois âges différents, illustrée sur la

Figure 2, on pourrait chercher un flot de difféomorphismes qui produirait une solution
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globalement cohérente d’un point de vue biologique. Cependant, on peut observer au bas

de la main la formation progressive de nouveaux os, disjoints de leurs voisins. Dans cette

zone, il n’existe alors pas de bijection naturelle entre deux âges t1 et t2, dès lors qu’un

os présent à l’âge t2 n’existe pas encore à l’âge t1. Cet exemple illustre parfaitement

deux types de processus de croissance: un processus de déformation élastique qui peut

s’apparenter dans cet exemple à un étirement de la main dans son ensemble et un processus

de création quand la croissance résulte de la formation de matière nouvelle comme de

nouveaux os, une nouvelle couche de tissu organique, etc.

L’observation extérieure de la forme d’un organisme ne permet pas toujours de dis-

tinguer ces deux processus. Le développement d’une corne animale est alors un cas d’étude

idéal. Une corne est en effet un objet rigide qui se développe par extension à partir de

sa base. La nouvelle matière progressivement créée pousse en continu le reste de la corne

vers l’extérieur de la tête de l’animal. On peut donc supposer que globalement la corne

est seulement déplacée par des rotations et des translations. Le processus de création dans

cet exemple est donc dégagé de toute interaction avec d’autres phénomènes biologiques

pouvant obscurcir sa compréhension. Un difféomorphisme, entre deux âges d’une corne

donnée au cours de sa croissance, ne peut que produire un étirement de la petite corne

sur la plus grande. Ce type de déformation ne reproduit donc pas processus de croissance

réel. On aimerait au contraire avoir un plongement de la petite corne dans la grande

et être capable de modéliser la nouvelle tranche créée à la base de la corne (voir la Fi-

gure 3). En conclusion, un processus de création fait appel à des appariements partiels,

ce qui soulève la question de pouvoir délimiter l’image d’un tel appariement et de pouvoir

intégrer à l’évolution le complémentaire de cet image à savoir les parties de l’organisme

progressivement créées.

Actual developmentClassic diffeomorphic matching 

Figure 3 – Un difféomorphisme ne peut que produire un étirement d’une petite corne
sur une plus grande. On aimerait au contraire avoir un plongement de la petite corne
dans la grande pour pouvoir reproduire fidèlement le processus biologique qui génère le
développement d’une corne.

2 Présentation des travaux

2.1 Résumé

Cette thèse ouvre la voie sur les appariements par des déformations de nature non

difféomorphiques. L’hypothèse de départ pour compenser la perte d’homologie entre deux

formes, est de supposer que les évolutions liées à chaque individu, mais d’un même objet
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d’étude, partagent un processus de croissance commun. Le thème central de cette thèse

est alors de définir de nouveaux outils qui permettent l’étude statistique d’une population

de tels scénarios, en s’attachant à reproduire le plus fidèlement possible ce processus bi-

ologique. Tout en gardant l’approche géométrique d’un groupe de déformations agissant

sur un ensemble de formes, qui fait la puissance des approches difféomorphiques dans les

espaces de formes, le Chapitre 2 explore d’un point de vue ensembliste la recherche de

nouveaux modèles génératifs capables d’intégrer l’apparition de nouvelle matière au cours

d’un développement. Une seconde étape réalisée dans le Chapitre 3 est d’étudier la re-

construction d’un scénario soumis à un processus de croissance donné. La réécriture d’un

des modèles présentés au Chapitre 2 permet de conditionner par rapport à ce processus

un nouveau problème de contrôle optimal pour l’assimilation d’évolutions de formes. Ce

dernier conduit à un problème intéressant du domaine du calcul des variations, où le choix

du terme d’attache aux données, sur des courants ou sur des varifolds, joue un rôle inat-

tendu comme on le verra au Chapitre 4. Le Chapitre 3 aboutit à un concept assez général

de déploiement où l’on modélise les phénomènes de croissance comme le déploiement op-

timal progressif d’un modèle préalablement replié dans une région de l’espace. Sa mise

en application au Chapitre 5 invite à moduler le problème central de contrôle optimal à

travers de nouvelles fonctions de coût, qui pénalisent l’action du groupe de déformations,

pour tendre vers une modélisation au plus proche du processus biologique.

Le processus de croissance qui nous intéresse principalement peut être décrit au moyen

d’une foliation. Une foliation est une forme qui ressemble localement à une union de

formes parallèles de dimension plus petite (par exemple, les droites horizontales d’un plan

ou les cercles concentriques). Ces sous-formes sont appelées les feuilles de la foliation. Le

processus de croissance d’une corne induit l’addition progressive d’extensions régulières à

la base de la corne. Ces ensembles de nouveaux points forment les feuilles de la foliation

sous-jacente. Ils sont similaires à des disques ou à des cercles selon que la corne est

représentée par sa forme pleine ou par la surface qui délimite son bord. Avec ce point

de vue, le processus de croissance se décrit très simplement par l’apparition continue de

nouvelles feuilles.

L’introduction d’un système de coordonnées biologiques permet de modéliser et d’ex-

ploiter ce processus. Ce système est la donnée d’un espace X, appelé espace des coor-

données, et d’une fonction scalaire τ : X → R, appelée marqueur du temps de naissance

et dont les lignes de niveau forment les feuilles de la foliation sous-jacente. Cette fonc-

tion définit une collection de sous-ensembles Xt = {x ∈ X | τ(x) ≤ t} de X, de l’ensemble

des feuilles apparues au plus tard au temps t. Le scénario d’un individu peut alors être

paramétré par cette collection de sous-ensembles du système de coordonnées biologiques.

Ce dernier définit un invariant de la population étudiée permettant d’anticiper tout pro-

cessus de création. La Figure 4 illustre ce modèle sur le développement d’une corne.

Un objectif pratique de la thèse est, étant données quelques observations (Star
i )i d’une

corne à différents âges (ti)i, de produire des algorithmes numériques capables de recon-

struire le déploiement continu de cette corne de son plus jeune âge jusqu’au dernier. En

d’autres termes, il s’agit de générer un scénario de formes t 7→ St tel que Sti ≈ Star
i à

tout temps ti initialement donné. Nous verrons que la rigidité du développement d’une

corne permet à notre modèle de proposer un scénario à partir de la seule donnée d’un
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Figure 4 – A gauche, échantillon de six âges différents {t1, t2, . . . , 1} ∈ [0, 1] du
déploiement d’une corne représentée par une forme dans un espace ambiant fixé. A droite,
représentation du système de coordonnées biologiques (X, τ). Toute corne à droite est une
image d’un sous-ensemble Xt de X. Les couleurs correspondent aux lignes de niveau du
marqueur temporel τ .

âge final. Si on imagine que la corne à sa naissance est réduite à un point, on peut

reconstruire un chemin continu de formes initialisée par ce point et se terminant sur la

forme non dégénérée représentant l’âge final observé. Enfin, pour chaque application, le

scénario obtenu est codé par une variable de faible dimension qui peut être vue comme

une condition initiale anticipée et qui ouvre la voie sur une analyse statistique.

2.2 Organisation des chapitres :

Les Chapitres 2, 3, et 4 sont relativement indépendants. Le Chapitre 5 s’appuie sur le

problème d’appariement détaillé dans le Chapitre 3 et présente les expériences numériques

validant le modèle et ses variantes. Le contenu de chaque chapitre peut être résumé

comme suit (nous ferons référence aux sections du Chapitre 1 qui présentent le cadre

mathématique dans lequel se place cette thèse) :

Chapitre 2 : Appariements partiels et évolutions de croissance appariées

dans un espace de formes

Ce chapitre étudie les modèles génératifs en amont des problèmes d’appariement. Les

premières idées à l’origine de ce travail de thèse ont rapidement conduit au modèle présenté

dans le Chapitre 3. La remise en question des choix de modélisation nous a alors poussés à

rechercher l’objet atomique irréductible à la source des modèles de scénarios de croissance.

De la volonté de garder l’approche géométrique d’un ensemble de formes évoluant dans

un espace ambiant fixe E à travers un flot difféomorphique exercé sur cet espace, a alors

émergé ce que nous avons appelé des évolutions de croissance appariées (GMEs). Il s’agit

de la donnée d’un ensemble de formes (St)t∈T indexé par un ensemble de temps T ⊂ R et

évoluant dans E à travers un flot (φs,t)s≤t∈T décrivant la déformation de l’espace E entre

les paires d’instants (s, t). Pour s’affranchir de la contrainte d’homologie totale entre deux

états quelconques Ss et St, on impose alors uniquement une condition de plongement :

pour toute paire s ≤ t dans T ,

φs,t(Ss) ⊂ St .

On a donc un embôıtement successif à travers le flot de tous les âges de la forme

induisant un système de datation du scénario. La forme St est en effet composée d’une
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Figure 5 – Appariements partiels sous des contraintes illustrées par les différentes couleurs
qui délimitent les images cibles de chaque appariements.

part par l’image φs,t(Ss) d’un état antérieur, d’autre part par la création de nouveaux

points entre les temps s et t appelant à considérer le temps de naissance de chaque point.

Pour comprendre ce phénomène, l’objet atomique d’évolution de croissance appariée est

enrichie d’un jeu de fonctions attribuant un label à chaque point du scénario

τt : St → L, ∀t ∈ T .

Ces fonctions appelées marqueurs sont invariantes sous l’action du flot de sorte que chaque

point évoluant à l’intérieur du scénario conserve son label au cours du temps. Nous

dégagerons en particulier un marqueur du temps de naissance (birth tag) de chaque point

du scénario.

De cette brique élémentaire, on en revient alors à ce qui a fait la puissance des espaces

de formes. Les scénarios sont comparés les uns aux autres via des morphismes. En partic-

ulier, on peut regarder l’action d’un groupe G de déformations spatio-temporelles agissant

sur l’espace-temps E × T pour définir une structure Riemanienne sur nos espaces de

scénarios. Des scénarios élémentaires dits centrés mettent en évidence une décomposition

naturelle des orbites sous l’action de G pointant un motif de croissance commun à l’orbite

qui mènera à l’introduction du système de coordonnées biologiques dans les prochains

chapitres. Tout scénario est alors vu comme l’image d’un scénario centré.

Enfin, nous nous attachons tout au long du chapitre à identifier les paramètres mi-

nimaux permettant de reconstruire un scénario à partir du flot qui lui est associé. Le

choix de ces paramètres dépend des informations disponibles pour anticiper la position

des nouveaux points dans les problèmes de reconstruction de scénarios. Nous retrouvons

en particulier la fonction d’emplacement à la naissance (birth place function) qui apparâıt

naturellement pour les déploiements de corne où la zone de création des nouveaux points

est connue.

Transition vers le Chapitre 3

Nous fixons pour les chapitres suivants un intervalle de temps T = [0, 1]. Nous nous

intéressons à une population de formes dont le processus de croissance s’identifie à un

système de coordonnées biologiques (X, τ) où X est une sous-variété compacte à coins de

dimension k ≤ d et τ : X → [0, 1] joue le rôle de marqueur temporel qui induit un scénario
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centré dont la forme au temps t notée Xt est donnée par

Xt = {x ∈ X | τ(x) ≤ t} . (1)

Nous appellons points actifs au temps t ce sous-ensemble de l’espace des coordonnées X.

Ce système de coordonnées biologiques permet alors de paramétrer toute la population

par des morphismes de scénarios. Chaque morphisme s’assimile à une collection de cartes

(qt : Xt → Rd)t∈[0,1] qui peut être reconstruite par une fonction d’emplacement à la

naissance q̃ : X → Rd combinée à flot (φs,t)s<t∈[0,1] sur l’espace ambiant par

qt(x) = φτ(x),t(q̃(x)) pour tout x ∈ Xt (2)

et définissant la forme du nouveau scénario à tout instant t par

St = qt(Xt) .

Chapitre 3 : Reconstruction du déploiement d’une forme soumise à un

processus de croissance

Création de scénarios

Par définition, l’approche la plus naturelle pour générer un flot consiste à intégrer des

champs de vecteurs dépendant du temps v (cf Section 2.1.3). L’équation (2) se réécrit

alors pour tout x ∈ X et tout t ∈]τ(x), 1],

qt(x) = q̃(x) +

∫ t

τ(x)
vs(qs(x)) ds . (3)

Pour unifier les cartes qt : Xt → Rd, où l’on rappelle que Xt ⊂ X est défini par (1),

dans un seul espace de fonctions, il convient de déterminer une extension à X. Cette

extension dépend des informations connues. Dans notre cas, cette information initialisant

le plongement dans l’espace ambiant Rd est donnée par la fonction d’emplacement à la

naissance q̃ et on définit donc

qt(x) =


φτ(x),t(q̃(x)) if τ(x) ≤ t ,

q̃(x) sinon,

(4)

conduisant à ce que l’on appelle la dynamique de croissance (growth dynamic)

q̇t(x) = 11τ(x)≤tvt(qt(x)) =


vt(qt(x) if x ∈ Xt ,

0 sinon.

(5)

Retrouver la collection de cartes (qt : X → Rd)t∈[0,1] générée par un champ de vecteur v

amène ainsi à résoudre une équation intégrale où la condition initiale est donnée par

q0 = q̃ . (6)
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Ce choix d’extension implique que q̇t est rarement continue spatialement et cette

équation ne peut donc pas être définie dans C(X,Rd). L’étude de la régularité spatiale des

cartes s’effectue alors dans un second temps. Nous montrons entre autres que la régularité

spatiale des cartes qt dépend de la régularité en temps du flot (et donc du champ de vecteur

générateur). Cette nouveauté induite par la dynamique de croissance est due au fait que

la forme à son état final ne peut pas s’exprimer en fonction de la seule valeur finale du

flot : q1 6= φ0,1 ◦ q0. L’action partielle du flot sur la restriction au sous-espace Xt laisse

une trace sur la jonction entre Xt et son complémentaire. Nous montrons alors que les

cartes sont continues mais seulement différentiables presque partout. Néanmoins, si le flot

est continu en temps, i.e. v ∈ C([0, 1], V ), alors toutes les restrictions qt|Xt sont de classe C1.

Plus généralement, on propose un cadre théorique plus large où les évolutions de formes

sont générées via une action infinitésimale dépendante du temps

ξ : B × [0, 1]→ L(V,B) , (7)

où B est un espace de Banach contenant l’ensemble des cartes possibles entre X et l’espace

ambiant Rd. Nous généralisons ainsi l’approche d’espaces de formes présentée en Sec-

tion 2.1.2. La théorie de l’intégration dans un espace de Banach par S. Bochner [46],

étendant celle de l’intégrale de Lebesgue, permet de garantir l’existence d’un scénario

q ∈ C([0, 1], B) solution du problème de Cauchy

q̇t = ξ(qt,t)(vt) pour presque tout t ∈ [0, 1] , (8)

défini pour toute condition initiale q0 ∈ B et tout champ de vecteurs dépendant du

temps et de carré intégrable v ∈ L2([0, 1], V ). Pour retrouver la dynamique de croissance

(équation (5)), ξ est définie par

ξ(q,t)(v) = 11τ≤tv ◦ q .

Le choix de l’espace de Banach a priori B = L∞(X,Rd) à défaut d’un espace plus régulier

de type Cn(X,Rd) s’avère plus délicat que prévu (cf Chapitre 3).

Problème de contrôle optimal

La reconstruction d’un scénario à partir de la donnée d’un état final qtar(X) et d’une

fonction d’emplacement à la naissance q̃ : X → Rd consiste à trouver le flot (φs,t)s<t∈[0,1]

le plus simple possible tel que le morphisme généré (cf équation (2)) vérifie q1 = qtar.

Nous nous appuyons sur la recherche de flots géodésiques, présentée dans la Section 2.1.3,

générés par des champs de vecteurs d’un espace de Hilbert V . La recherche d’un flot

optimal paramétré par un champ de vecteurs dépendant du temps v ∈ L2([0, 1], V ) peut

alors être vu comme un problème de minimisation d’une énergie de type

E(v) =
1

2

∫ 1

0
C(vt, t) dt+A(v) , (9)
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où C est appelée fonction de coût et où la condition q1 = qtar est relaxée par un terme

d’attache aux données A : L2([0, 1], V )→ R (cf Section 2.3 et Chapitre 4).

En suivant l’approche classique des méthodes LDDMM présentée dans la Section 2.2.1,

le gradient de cette énergie s’exprime au moyen d’une variable moment p ∈ C([0, 1], B∗)

vérifiant

p1 = −dA(q1) ∈ B∗ , ṗt = −∂qξ(qt, t)(vt)∗ · pt , (10)

et de l’application moment définie par

Jξ : B ×B∗ × [0, 1] −→ V ∗

(q, p, t) 7−→ ξ∗(q,t) · p .

Cette notation abusive dA(q1) n’est proprement définie que dans le cas d’un espace de

coordonnées X discret où l’on peut définir directement le terme d’attache aux données A
sur l’espace des cartes B. Plus généralement, montrer l’existence et expliciter la nature

du multiplicateur de Lagrange p1 est un problème à part entière étudié au Chapitre 4 (cf

équation (17)).

Le gradient de l’énergie à tout instant t ∈ [0, 1] s’obtient alors par

∇vE(v)t = ∇vC(vt, t)−KV Jξ(qt, pt, t) , (11)

où KV : V ∗ → V est l’isomorphisme canonique pour l’espace de Hilbert V , menant di-

rectement à un algorithme de descente de gradient pour minimiser l’énergie E.

Nous utilisons alors l’élégance de l’approche hamiltonienne pour passer à un problème

d’optimisation sur le moment initial p0. Néanmoins, le système hamiltonien réduit en-

globant les solutions minimisantes dépend du temps. Il est défini par

Hr : B ×B∗ × [0, 1] −→ R
(q, p, t) 7−→ maxv∈V (p | ξ(q,t)(v))− C(v, t) ,

de sorte que les solutions minimisantes satisfont le système q̇t

ṗt

 =


∂Hr
∂p (qt, pt, t)

−∂Hr
∂q (qt, pt, t)

 .

Montrer l’existence de solutions définies sur l’intervalle complet [0, 1] demande quelques

observations préliminaires énoncées dans le paragraphe suivant. Une fois ce résultat établi,

on étudie la régularité au second ordre de l’hamiltonien pour mettre au point un algorithme

de descente de gradient optimisant le moment initial p0. L’énergie à minimiser s’écrit sous

la forme

E(q0, p0) =

∫ 1

0
C(qt, pt, t) dt+A(q1) , (12)

où l’on fait encore, pour simplifier, un abus de notation sur le terme d’attache aux données

A qui n’est défini que sur les cartes générées par les champs de vecteurs de L2([0, 1], V ).
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Spécificités liées à la dynamique de croissance

L’action infinitésimale liée à la dynamique de croissance n’est pas continue en temps.

Ce manque de régularité se répercute directement sur l’application moment associée, notée

ici J . Montrer sa continuité et dégager une borne fine de sa norme demande de réduire

l’espace des moments.

Un résultat classique de l’approche hamiltonienne dans le cadre LDDMM est la con-

servation de l’énergie d’un champ de vecteur optimal. Ici le système hamiltonien soumis

à la dynamique dépend donc du temps et nous perdons la conservation de l’énergie. Nous

montrons typiquement pour la dynamique de croissance que la norme de l’application mo-

ment est bornée par une fonction affine du temps, voire linéaire dans le cas de la corne.

On peut construire des exemples simples où cette majoration est optimale illustrant que la

norme de l’application moment est croissante. C’est la prise en compte, à chaque instant,

de l’ensemble des nouveaux points s’ajoutant à la forme prééxistente qui explique cette

propriété. Elle s’exprime très simplement pour des trajectoires t 7→ (qt, pt) homogènes

en espace et en temps, c’est-à-dire telles que (x, t) 7→ (|qt(x)|Rd , |pt(x)|Rd) soit à peu près

constante. Il existe alors en effet des constantes a ≥ 0 et b ≥ 0 telles que pour tout

t ∈ [0, 1],

|J (qt, pt, t)|V ∗ ≈ at+ b (13)

ou encore plus radicalement dans le cas des cornes

|J (qt, pt, t)|V ∗ ≈ at . (14)

Cette propriété semble satisfaisante à première vue. En effet, il parâıt naturel qu’un

scénario ayant une forme grandissante au cours du temps ait un flot de plus en plus

coûteux, agissant sur une plus grande partie de l’espace ambiant. Néanmoins, pour la

modélisation de déploiements de cornes au moyen de déformations rigides, nous verrons

au Chapitre 5 qu’un flot optimal devrait être généré par un champ de vecteurs de norme

constante. Pour corriger le modèle, nous jouons sur la fonction de coût C, initialement

fixée à

C(v, t) =
1

2
|v|2V .. (15)

Le cas le plus simple proposé est l’ajout d’une fonction scalaire ν : [0, 1]→ R∗+, croissante,

produisant une nouvelle fonction de coût

C(v, t) =
νt
2
|v|2V . (16)

Nous y faisons référence sous le nom de norme adaptée. Dans le cas des cornes, où la

norme de l’application moment peut être majorée par une fonction linéaire, nous sommes

amenés à autoriser cette fonction ν à s’annuler en 0.

Nous revenons alors à l’existence de solutions au système hamiltonien. L’existence

globale demande un contrôle de l’application moment. Ce contrôle ne peut s’obtenir que

sur des sous-espaces de l’espace initial des moments B∗, dépendant eux-mêmes du type

de cartes considéré. Moins la fonction de coût est pénalisante, plus la démonstration est
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contraignante sur le choix de ces espaces. L’exemple le plus important étant celui des

cornes où les cartes changent la topologie de l’espace des coordonnées X pour former la

pointe de la corne. Nous mettons alors au point un cadre de résolution assez général où

l’on peut choisir des couples de sous-espaces B0 ⊂ B et B∗1 ⊂ B∗ pour assurer l’existence

globale des solutions. Cette construction nécessaire à l’utilisation de fonctions de coût

dégénérées (lorsque ν(0) = 0) sera validée dans le Chapitre 4 où l’on montrera que les

solutions du problème de minimisation s’obtiennent bien à partir des sous-espaces choi-

sis. Sous ces conditions, on montre alors que l’application moment définie le long d’une

trajectoire t 7→ (qt, pt) peut être contrôlée en tout temps par les conditions initiales q0 et

p0.

Chapitre 4 : Existence et continuité des minimiseurs globaux pour la

dynamique de croissance

Ce chapitre regarde l’existence de minimiseurs globaux continus pour le problème

d’optimisation étudié au chapitre précédent, lorsque l’action infinitésimale ξ reproduit la

dynamique de croissance définie par l’équation (5). Les problèmes classiques d’appariement

de formes s’identifient généralement à la recherche d’une géodésique dans un espace choisi

GV de difféomorphismes avec conditions aux extrémités. La reconstruction d’un déploie-

ment à travers la dynamique de croissance ne contraint pas seulement les extrémités du

flot de difféomorphismes. En effet, l’état final q1 de la solution ne peut pas s’écrire comme

une image de l’état initial q0 par l’état final du flot φv1 mais dépend de toute l’évolution

du flot au cours du temps. L’énergie ne peut donc pas s’écrire sous la forme

E(φ1) = C(φ1) +A(φ1) .

Le flot optimal permettant d’approcher la cible n’est donc pas, a priori, une géodésique

de GV .

L’existence de solutions continues au problème de contrôle optimal étudié au chapitre

précédent ne peut donc pas se déduire de résultats généraux existant dans la littérature. Le

premier résultat du chapitre a été néanmoins plutôt inattendu. Nous montrons à travers

un contre-exemple que pour un terme d’attache aux données construit sur la représentation

de nos formes géométriques par des varifolds, l’existence de solutions continues peut être

mise en défaut. La différence entre les représentations courants et varifolds vis-à-vis du

modèle associé à la dynamique de croissance s’explique par le fait que des oscillations en

temps du champ de vecteurs v génèrent des oscillations en espace des formes qt(Xt). Les

courants par leur effet d’annulation sur ces oscillations spatiales permettent de bloquer ce

type de comportement.

La démonstration de l’existence de solutions continues dans le cadre défini par la

dynamique de croissance pour un terme d’attache aux données A de type courant, en

toute généralité, demande en premier lieu de s’assurer que les formes sont suffisamment

régulières pour être représentées par des courants. Rappelons en effet que les cartes qt
générées par des champs de vecteurs v ∈ L2([0, 1], V ) ne sont a priori ni C1 ni rectifiables.

Il est néanmoins possible de définir A sur L2([0, 1], V ) par densité de C([0, 1], V ), dont les
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champs v génèrent des cartes appartenant à C1(X,Rd).
L’étape suivante consiste à montrer l’existence de solutions dans L2([0, 1], V ). La

preuve s’appuie sur la linéarité envers la composante tangentielle décrivant une forme et

permettant de déduire la semi-continuité inférieure de ce terme d’attache. La continuité

d’un champ de vecteur v optimal n’en découle pas immédiatement. En effet, on a certes

montré précédemment la continuité de l’application moment, mais dans un cas restreint

où l’espace des moments peut s’identifier à un espace de fonctions sur X×∂X où ∂X est le

bord de X. Nous obtenons dans ce chapitre la continuité de tous les minimiseurs globaux

sans condition sur l’espace des moments permettant en retour de légitimer la restriction

de cet espace pour des scénarios générés par des champs de vecteurs continus en temps.

Plus précisément, considérons v et une variation δv tous deux dans C([0, 1], V ) et qv+εδv

le scénario généré par v + εδv pour ε ∈ R. Nous montrons au Chapitre 3 qu’il existe

δq ∈ C([0, 1], B) tel qu’au premier ordre, qv+εδv ≈ qv + εδq. Il existe alors pX1 ∈ C(X,Rn)

et p∂X1 ∈ C(∂X,Rd) tels que

A′(v; δv) = (p1 | δq1) (17)

=

∫
X
〈pX1 (x), δq1(x)〉RndHk(x) +

∫
∂X
〈p∂X1 (x), δq1(x)〉RndHk−1(x) , (18)

définissant le moment final p1 comme une fonction sur X et son bord ∂X. On note

l’apparition du rôle joué par ce bord ∂X qui donnera son impulsion initiale à l’application

moment (existence de la constante b > 0 dans l’équation (13), cf Chapitre 3).

Notons enfin qu’on profite de ce chapitre pour justifier la structure canonique retenue

pour décrire le système de coordonnées biologiques (X, τ) comme un produit direct X =

[0, 1] × X0 où la fonction de marquage τ s’identifie à la projection sur la première coor-

donnée. En adaptant le point de vue de la théorie de Morse, nous montrons que de nom-

breuses situations peuvent se ramener à ce cas canonique par l’action d’une déformation

spatiale de l’espace X transportant le marqueur τ . Une conséquence importante de cette

réécriture est la possibilité de s’affranchir des reparamétrisations en temps des scénarios

générés par une fonction d’emplacement à la naissance (voir également Chapitre 2).

Chapitre 5 : Applications numériques et résultats

Le Chapitre 5 met en pratique le modèle de croissance étudié au long de cette thèse.

Etant donnée une corne à un âge arbitrairement fixé à t = 1, nous nous concentrons

sur la reconstruction de son déploiement de sa naissance à t = 0 (état où la corne est

supposée réduite à un point) jusqu’à l’état final donné à t = 1. Toutes les expériences sont

effectuées avec des données synthétiques, construites à partir du modèle génératif présenté

aux Chapitres 2 et 3.

Pour mettre en avant le processus de création pure, nous modélisons les flots par des ro-

tations et des translations. Le modèle de base où la fonction de coût classique C est donnée

par l’équation (15) est alors inadapté parce qu’il ne permet pas d’initier correctement le

processus de croissance quand la forme est trop petite à la naissance. Nous utilisons par

conséquent de nouvelles fonctions de coût correspondant soit à une pondération en temps

de la pénalisation sur le flot (cadre de la norme adaptée) soit à l’ajout d’une contrainte sur
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la norme du champ de vecteurs (cadre de la norme contrainte). Le terme d’attache aux

données est déduit d’une représentation des surfaces par des varifolds orientés. Ces objets,

présentés dans la Section 2.3, ne semblent pas avoir été déjà utilisés pour des applications

numériques et trouvent tout leur intérêt face à des surfaces facilement orientables mais

ayant des extrémités pointues ou similaires à des tubes effilés. Pour sortir du cadre assez

spécifique des déformations affines, le chapitre se termine sur quelques expériences où les

champs de vecteurs sont modélisés avec un espace à noyau reproduisant (RKHS) à noyau

gaussien.

Cette thèse a été motivée par le besoin de nouveaux modèles permettant de dépasser

des observations pour décrire un phénomène biologique demandant de sortir du cadre

classique proposé par les méthodes LDDMM, afin de pouvoir intégrer des informations

complétant les données observées. Dans notre cas, il s’agit non seulement du processus de

création mais également de la quantification de ce processus. La validation des expériences

numériques s’attache donc tout particulièrement à ce dernier critère. Les différentes fonc-

tions de coût sont comparées par rapport aux normes des champs de vecteurs de la cible

et de la solution (Exemple 1). La souplesse du modèle est testée dans le but de pouvoir

identifier un comportement anormal comme un retard de croissance. Par opposition au

LDDMM classique, la construction de l’application moment, avec la dynamique de crois-

sance, s’effectue par un apport progressif de nouveaux moments initiaux qui donne cette

flexibilité et rend inutile l’appel à des reparamétrisations en temps pour détecter ce type

d’anomalies (Exemple 2). Enfin, le modèle intègre sans difficulté l’ajout de données à

des temps intermédiaires connus pour reconstruire un scénario par interpolation, ce qui

améliore les résultats d’une des expériences qui aurait pu approcher les limites du modèle

par la finesse et la courbure élevée de la corne étudiée (Exemple 3).

Quelques expériences supplémentaires sont effectuées pour observer l’optimisation pos-

sible de la position initial q0 (Exemple 5) ou encore l’effet de bord initial (Exemple 4).

Comme dans le cadre LDDMM classique, chaque scénario reconstruit est complètement

paramétré par les variables de faible dimension position initiale q0 et moment initial p0,

ouvrant la voix vers une analyse statistique de la population de scénarios étudiée.
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1 Motivation

In the field of anatomy, the massive investment in the acquisition of medical imaging

calls for the development of new numerical techniques. The emergence of large databases

demands efficient tools to model and analyze their variability. Already a few decades

ago, the willingness to help neuroscientists and diagnosticians in the analysis of the sub-

structures of the human brain led to a new discipline named Computational Anatomy by

Grenander and Miller in [30], Trouvé [50] and Younes [54]. The developed theory and

methods have been successfully applied in, as some examples among many others, the

study of the shape of Hippocampus in relation to the evolution of Alzheimer disease, sim-

ilar works on the planum temporale for schizophrenia, Down syndrome, the analysis of

brain connectivity based on DTI imaging, studies of heart shapes and malformations.

Instead of analyzing an object individually, the underlying philosophy in computational

anatomy is to study its relative position inside a set of related objects. To analyze the

relationships of an individual with the rest of the population, this set is modeled as a

mathematical space that can be equipped with a distance. With this point of view, the

distance allows then to estimate the mean, usually called a template or an atlas [21], and

the variance of a given population (or subset of the space) and to achieve a statistical

analysis of the population. The core of this framework is the construction of this distance.

It relies on the very simple idea, introduced by d’Arcy Thompson [47] in the beginning of

the 20th century, that the differences between related shapes, eventually highly complex

shapes, can be explained by simple diffeomorphic deformations as displayed in Figure 1.1.

From that, the first layer of the concept of shape spaces is a consistent collection of shapes

and diffeomorphic mappings between them. The structure of the mapping is somewhat

simple since it coincides with a group action of diffeomorphisms given by transport on

shapes and this induces the differential layer of most shape spaces as recently formalized

by Arguillière [6, 7]. The second layer is a metric layer inherited from the introduction of a

metric structure on the mappings satisfying the triangle inequality and coming from a right

invariant metric on the acting group of diffeomorphisms. This extra structure allows the

development of various shape population analysis [55]. A review on the characterization

of the geodesics in shape spaces from the Euler-Lagrange equation to the Hamiltonian

approach is conducted in [48], highlighting several applications.

In fine, this geometric approach of shape spaces has already afforded effective algo-

rithms for images or geometrical meshes as the Large Deformation Diffeomorphic Metric

Mapping (LDDMM) methods [10] (see Deformetrica [17, 18]), stationary LDDMM [8] or

DARTEL [2].

Longitudinal data set and problematic

Besides the cross-sectional variability analysis emerges the study of longitudinal data

sets. Each subject of a population is represented by a sequence of measurements at dif-

ferent times. Among many other examples, the interest for these more complex data is

motivated by the clinical studies of diseases or treatments that have a progressive impact

over time and therefore entail changes on these evolution scenarios [41]. Scientists want

thus to quantify these effects. For this purpose, given a population of longitudinal data

sets, a first step consists in retrieving the continuous evolution for each subject interpolat-
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Figure 1.1 – Given two similar shapes, there exists a simple deformation that matches
them.

ing his different measurements, then in performing a cross-sectional variability analysis on

these evolution scenarios. Shape spaces as Riemannian manifolds are also well adapted to

the study of shape evolutions and longitudinal analysis by various methods ranging from

parallel transport [44], Riemannian splines [51], geodesic regression [42, 53, 25] including

the inference from a population of a prototype scenario of evolution and its spatio-temporal

variability [19]. Although modeling evolution scenarios and analyzing their variations ap-

pear as two different processes, in a lot of situations they can both be achieved with the

diffeomorphic approach of the LDDMM framework. An example of application in an orig-

inal theme was the comparison of the endocranial ontogenies between chimpanzees and

bonobos [22].

Figure 1.2 – Inadequacy of diffeomorphic matching to model a growth process involving
creation of new material. Source: Simon Fraser University Museum of Archaeology and
Ethnology.

Up to now, the longitudinal analysis has been limited to the study of data sets with

homologous observations. Yet, in some situations this assumption seems inappropriate.

During the growth or the degeneration of an organism, the changes occurring over time

cannot always be modeled by diffeomorphic transformations, at least in a biological sense.

This situation happens for example when new material is created over time in specific

areas distinguishing this new material from the pre-existing shape. If one wants to retrieve

the continuous evolution of the hand displayed in Figure 1.2, one can consider a flow of
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diffeomorphisms that would globally give a biologically coherent explanation of the growth.

However, small bones are progressively emerging at the bottom of the hand and one cannot

explain by one-to-one correspondences between two ages the changes occurring in these

areas. This example illustrates two types of growth processes: a deformation process when

a living organism is deforming through time and an expansion process when the growth

results from the creation of new material. The observation of the shape without more

information may not always allow to distinguish these two processes. The development of

an animal horn is thus an interesting case study. Indeed, we assume that the base of the

horn plays the role of an active area where new material is progressively created pushing

outwards the rest of the horn. The horn is assumed to be rigid and is thus only subjected to

rotations and translations due to physical constraints. This example isolates the creation

process from the general deformation and reduces to its minimum any kind of distortions of

the shape due to other biological phenomena. As displayed in Figure 1.3, a diffeomorphic

matching of two horns can only provide a global stretching of the small to the large horn.

Yet, a gradual stretching of the horn does not reflect the biological evolution described

hereinabove. A creation process calls instead for partial inner matchings. It raises issues

as how to delimit the image of a partial mapping and how to anticipate the creation of

new material.

Actual developmentClassic diffeomorphic matching 

Figure 1.3 – A classic diffeomorphic matching would stretch the small horn to the large
one and would thus not reflect the actual development of the horn. Instead, we would
like to see an embedding of the small horn inside the target as much as a creation of new
material at the base.

2 Introduction to Computational Anatomy

2.1 Shape space

2.1.1 Group action

The central idea, introduced by d’Arcy Thompson, to compare shapes via deformations

requires to assume that given a population of shapes, any pair of them can be linked by

a deformation. It leads to the introduction of homogeneous spaces.

Definition 2.1. Given a group G acting on a set S, we say that S is a homogeneous space

if G acts transitively on S, i.e. for any pair (S1, S2) of S, there exists g ∈ G such that

g · S1 = S2.
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In other words, S has only one orbit under the action of G which can be written by

S = G · S0
.
= {g · S0 | g ∈ G} for any S0 ∈ S. Thus, if S is a set of shapes and if we fix a

shape S0 called for example a template, any other shape S ∈ S can be reconstructed by

a deformation of G applied to S0. Moreover, a classic result of group theory implies that

the set S is in bijection with G/G0 where G0
.
= {g ∈ G | g · S0 = S0} is the stabilizer of

S0. Hence, the set S can inherit the structure of G/G0.

Since biological shapes are embedded in an ambient space, denoted E and usually

equal to Rd, one can consider a group of deformations on the ambient space. G is usually

a subgroup of the group Diff`(Rd) of C`-diffeomorphisms on Rd. The natural action in

most cases is then the evaluation of the deformation g ∈ G on the shape S ∈ S :

g · S = g(S) .

In front of the wide variety of databases of shapes, as images, landmarks, curves, surfaces,

fiber sets, etc., this approach to compare embedded shapes through the deformations on

the ambient space offers a unified framework for registering this plethora of data types.

Example 2.1. Assume that we want to register a population of connected surfaces with

smooth boundary in the euclidean plan. These shapes can be represented by their boundaries

as smooth curves of the plan. This last set can be seen as the homogeneous space generated

by the orbit of the unit circle S1 under the action of the group of diffeomorphisms of the

plan Diff(R2).

Figure 1.4 – The action of a group G on a ho-
mogeneous set of shapes induces a complete
graph on the unstructured set. The equal-
ity S1 = g ·S0 creates an oriented edge from
S0 to S1. If G is equipped with a distance
dG, one can assign the weight dG(Id, g) to
this edge. One can then deduce a distance
on the set of shapes by considering the min-
imal paths in the graph.

The next step towards a shape space is to quantify the deformation induced by an

element g ∈ G. Indeed, if G is equipped with a distance dG, we can define for any pair

(S1, S2) in S

d(S1, S2) = inf
g∈G
{dG(Id, g) |S1 = g(S2)} . (1.1)

If dG is right-equivariant (i.e. d(g1h, g2h) = d(g1, g2) for any g1, g2, h ∈ G), then d satisfies

the triangle inequality and we have

Theorem 2.1. d is a pseudo-distance on S.

Proof. See [38].
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2.1.2 Infinitesimal action

The notion of shape spaces generalizes the previous results. It has been recently

unified by Arguillière [6, 7]. For any ` ≥ 1, we denote C`0(Rd) the Banach space of

C`-mappings v : Rd → Rd vanishing at the infinity, equipped with the usual sup norm

|v| .=
∑

α≤` |∂αv|∞ and Diff`0(Rd) the affine smooth manifold (Id + C`0(Rd)) ∩Diff`0(Rd) of

the C`-diffeomorphisms modeled on the Banach space C`0(Rd).

Definition 2.2. Let S be a Banach manifold equipped with a compatible complete distance

dS and ` ∈ N∗. Assume that the group Diff`0(Rd) continuously acts on S, according to the

action
Diff`0(Rd)× S −→ S

(φ, q) 7−→ φ · q .
(1.2)

We say that S is a shape space of order ` on Rd if the following conditions are satisfied:

1. The action is semi-Lipschitz, that is, for any q ∈ S, there exists kq > 0 such that

dS(φ1 · q, φ2 · q) ≤ kqdDiff`0(Rd)(φ1, φ2) for any φ1, φ2 ∈ Diff`0(Rd).

2. For any q ∈ S, the function Rq : φ 7→ φ · q is smooth with respect to the usual

norm on Diff`0(Rd). Its differential at Id ∈ Diff`0(Rd) is denoted ξq and called the

infinitesimal action of C`0(Rd).

3. For any k ∈ N, the following mappings are of class Ck :

ξ : S × C`+k0 (Rd) −→ TS

(q, v) 7−→ ξq(v) .

(1.3)

An element q ∈ S is called a shape, and Rd the ambient space.

The most usual shape spaces are the manifolds of all differentiable (or even topological)

embedding q : X → Rd of a compact Riemannian manifold X into Rd. The action is the

usual composition: φ · q = φ ◦ q.
This definition of shape space gives thus a general setting where a set S can inherit

the Riemannian structure of the group Diff`0(Rd). It actually induces a sub-Riemannian

distance on S for which the metric and geodesic completeness is guaranteed under some

compactness condition satisfied by the previous examples of embeddings q : X → Rd of a

compact Riemannian manifold X into Rd.

2.1.3 Groups of diffeormophisms with right invariant metric

A general approach to define a group action on a set of shapes embedded in an ambient

space is to consider the diffeomorphisms obtained by integrating time-varying vector fields.

The group generated depends then on the choice of the space V of vector fields. Two ways

are classically considered in the existing literature. The first is based on C∞ vector fields

with compact support and weak Sobolev norms (see [12, 11, 37]). The second, that we

will present here, consists in considering a Hilbert space V that satisfies some regularity
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conditions, so called admissibility conditions as introduced in [50]:

(HV )

∣∣∣∣∣∣∣
V ⊂ C2(Rd,Rd).
∃c > 0,∀x ∈ Rd,∀v ∈ V,
|v(x)|Rd + |dv(x)|∞ + |d2v(x)|∞ ≤ c|v|V .

(1.4)

This last approach led to the successful Large Deformation Diffeomorphic Metric

Mapping (LDDMM) framework [10, 9, 33, 39, 40] that offers a practical and efficient

possibility to construct such groups G with a right-invariant distance. The time-varying

vector fields are then modeled by L2([0, 1], V ) (denoted L2
V ). The flow φv generated by

any v ∈ L2
V is the unique solution of the integral equation:

φvt = Id +

∫ t

0
vs ◦ φvs ds . (1.5)

The group of diffeomorphisms generated by V is then defined by

GV
.
=
{
φv1 | v ∈ L2([0, 1], V )

}
. (1.6)

With the point of view of Section 2.1.2, GV is the orbit of the identity for the restriction

of the infinitesimal action to the subspace V :

ξ : GV × V −→ TφGV
(φ, v) 7−→ ξφ(v) = v ◦ φ .

(1.7)

The group GV is then equipped a right invariant distance.

Proposition 2.1. Under the (HV ) conditions, GV is a group and is complete for the

metric given by

dGV (Id, ϕ)
.
= inf

{
|v|L2

V

∣∣ v ∈ L2([0, 1], V ), ϕ = φv1

}
.

and extended by right invariance to dGV (ϕ,ψ) = dGV (Id, ψ ◦ ϕ−1).

Theorem 2.2 (Existence of geodesics in GV ). For any ϕ ∈ GV , there exists v ∈ L2
V such

that ϕ = φv1 and

dGV (Id, ϕ) = |v|L1
V

= |v|L2
V
.

Remark 2.1. The equality |v|L1
V

= |v|L2
V

implies that t 7→ |vt|V is a constant. This

geodesic path in GV has a thus constant speed.

These results are proved in [55] or [26] where more details can also be found.

One can now consider the action of GV on a set of shapes S. The distance previously

defined on shapes in equation (1.1) becomes

d(S1, S2) = inf
{
|v|L2

V

∣∣ v ∈ L2([0, 1], V ), S1 = φv1(S2)
}
. (1.8)

With this metric, the geodesics of GV become (locally) geodesics of S and give optimal

continuous paths of shapes between any pair of shapes in S. A path of diffeormorphisms
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t ∈ [0, 1] 7→ φvt ∈ GV gives the path of shapes t ∈ [0, 1] 7→ St ∈ S defined by

St
.
= φvt (S0) = φv0(S0) +

∫ t

0
vs ◦ φs(S0) ds = S0 +

∫ t

0
vs(Ss) ds . (1.9)

When shapes are modeled by mappings q : X → Rd, equation (1.9) can be rewritten

for any x ∈ X by:

qt(x)
.
= φvt (qt(x)) = q0(x) +

∫ t

0
vs(qs(x)) ds .

Again, with the point of view of Section 2.1.2 and when the infinitesimal action is defined

by equation (1.7), this last equation can be induced by

qt(x) = q0(x) +

∫ t

0
ξqs(vs)(x) ds . (1.10)

Note that at the end, the group of deformations GV is hidden and its role is completely

filled by V .

2.2 Inexact registration

We present now the resolution of a matching problem between two shapes by an optimal

deformation. This thesis and especially Chapter 3 will extend the method developed in

this section.

2.2.1 Optimal control problem

The inexact matching problem of a source shape S0 to a target shape Star consists in

finding a geodesic in GV that deforms S0 to an approximation of Star. This geodesic is

obtained by an optimal time-varying vector field v ∈ L2
V that minimizes an energy of the

type

E(φ) = dGV (Id, φ) +A(φ · S0) , (1.11)

where A, called the data attachment term, measures the discrepancy between two shapes

φ · S0 and Star. The existence of geodesics in GV ensures then that the energy can be

rewritten

E(v) = |v|2L2
V

+A(φv1 · S0) , (1.12)

where φv1 is the final point of the flow generated by v (see equation (1.5)).

We consider, here, that the shapes are represented by a Banach space B whose elements

are denoted q ∈ B. We will be indeed interested in this thesis by a space of mappings

of the type B = L∞(X,Rd). The data attachment term is then defined as a functional

A : B → R and we assume to simplify that A is of class C1. We also intend to keep the

general framework of an unknown infinitesimal action

ξ : B × [0, 1]→ L(V,B) . (1.13)
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With this setting, the energy to minimize is defined by

E(q0, v) =

∫ 1

0
C(vt) dt+A(q1) , (1.14)

where we integrate the initial shape as a variable and we also generalize the penalization

on the vector field v by a function C called the cost function. At last, we assume, in

addition of the (HV ) conditions (defined by equation (1.4)), that ξ and C satisfy

(Hξ)

∣∣∣∣∣∣∣
(i) ξ ∈ C1(B,L(V,B)) .

(i) There exists c > 0, such that for any q ∈ B ,
|∂qξq|op ≤ c .

(1.15)

(HC)

∣∣∣∣∣∣∣
(i) C ∈ C1(V,R) .

(ii) There exists c > 0, such that for any v ∈ V ,
|C(v)|+ |∇vC(v)|2V ≤ c|v|2V .

(1.16)

Proposition 2.2. Under the (HV ) and (Hξ) conditions, for any (q0, v) ∈ B × L2
V , there

exists a unique solution q ∈ C([0, 1], B) to the integral equation

qt = q0 +

∫ t

0
ξqs(vs) ds . (1.17)

We define then
Φ : B × L2

V −→ B

(q0, v) 7−→ q1 .
(1.18)

Φ is continuous.

Proof. See Chapter 3.

The energy (1.14) is thus defined for any (q0, v) ∈ B ×L2
V . A fundamental question is

the existence of a minimizer. Since the condition to exactly match the target is relaxed,

it does not result from the existence of geodesics in GV , even when ξ and C lead to the

initial setting.

Theorem 2.3. If for any q0 ∈ B, the functional v 7→ A(Φ(q0, v)) is weakly continuous

from L2
V to R and if C(v) tends to +∞ when |v|V tends to +∞, then the minimization of

the energy E given by equation (1.14) admits a solution.

Proof. See for example [26].

To explicit the gradient of E, let us introduce Jξ, called the momentum map [36],

that depends on the infinitesimal action ξ. It is defined as follows:

Definition 2.3. The momentum map is the application associated to ξ

Jξ : B ×B∗ −→ V ∗

(q, p) 7−→ ξ∗q · p ,
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so that we have for any v ∈ V (
Jξ(q, p) | v

)
=
(
p | ξq(v)

)
,

where ( . | . ) denotes the dual bracket, here, between B∗ and B. The variable p is called

the momentum.

We can now describe the local minimizers of the energy.

Theorem 2.4. Assume the (HV ), (HC) and (Hξ) conditions. For any (q0, v) ∈ B ×L2
V ,

the energy E and the function Φ(q0, v) 7→ q1 are Gâteaux-derivable and the Gâteaux-

derivative of the energy at (q0, v) in any direction (δq0, δv) ∈ B × L2
V is given by

E′
(
(q0, v); (δq0, δv)

)
= (p0 | δq0) +

∫ 1

0

(
dC(vt)− Jξ(qt, pt)

∣∣ δvt) dt ,
where p ∈ C([0, 1], B∗) satisfies for almost any t ∈ [0, 1],

p1 = −dA(q1) ∈ B∗ ṗt = −∂qξqt(vt)∗ · pt . (1.19)

Hence, the gradient of the energy with respect to the vector field is given at almost any

time t ∈ [0, 1] by

∇vE(q0, v)t = ∇vC(vt)−KV Jξ(qt, pt) , (1.20)

where KV : V ∗ → V is the canonical isomorphism of the Hilbert space V .

Proof. See Theorems 2.2 and 4.4 in Chapter 3.

When equation (1.20) admits a unique explicit solution, the theorem leads thus to a

first resolution method by a gradient descent on v.

Example 2.2. To retrieve the distance dGV , the cost function is usually given by

C(v) =
1

2
|v|2V .

Therefore, ∇vC(v) = v and given q0 ∈ B, any minimizer v∗ ∈ L2
V of E satisfies at any

time t ∈ [0, 1],

v∗t = KV Jξ(qt, pt) .

where (q, p) ∈ C([0, 1], B ×B∗) is defined by (1.17) and (1.19).

2.2.2 Hamiltonian approach and shooting

Interestingly, the set of coupled differential equations on q and p can be interpreted as

a Hamiltonian system of equations. Let us introduce the following Hamiltonian function

H : B ×B∗ × V −→ R
(q, p, v) 7−→ (p | ξq(v))− C(v)

(1.21)

or equivalently H(q, p, v) = (Jξ(q, p) | v)− C(v).

34



By construction, a minimizer v of the energy E is at any time a local extrema of the

functional V 3 v 7→ H(q, p, v). Moreover, the cost function is usually a quadratic function

on the norm of v. We will thus assume in the following that the derivative of this functional

admits a unique zero denoted v∗(q, p) or v∗ to simplify. This assumption allows to define

the reduced Hamiltonian as follows:

Hr : B ×B∗ −→ R
(q, p) 7−→ maxv∈V H(q, p, v) .

(1.22)

If v ∈ V maximizes the Hamiltonian, we have ∂vH(q, p, v) = 0 and therefore the partial

derivatives of Hr are given for any (q, p) ∈ B ×B∗ by:

∂qHr(q, p) = ∂qH(q, p, v∗) = ∂qξq(v
∗)∗ · p ,

∂pHr(q, p) = ∂pH(q, p, v∗) = ξq(v
∗) .

We can now state the central theorem that characterizes the solution of a matching

problem by the reduced Hamiltonian system:

Theorem 2.5. Assume the (HV ), (HC) and (Hξ) conditions. Consider (q0, v) ∈ B×L2
V

and q = Φ(q0, v) be the unique trajectory generated by v from the initial condition q0. Let

p be the retrograde solution of p1 = −dA(q1) and ṗt = −∂qξqt(vt)∗ · pt. Then for any

δv ∈ L2
V ,

∂E

∂v
(q0, v) · δv =

∫ 1

0

(
−∂H
∂v

(qt, pt, vt) | δvt
)
dt , (1.23)

where for almost any t ∈ [0, 1],

H(qt, pt, vt) = (pt | ξqt(vt))− C(vt) .

Moreover, if we assume that for any (x, y) ∈ B × B∗ the equation ∂vH(x, y, v) = 0

admits a unique solution, then if v locally minimizes E, the trajectory (q, p) satisfies at

almost any time the following Hamiltonian system
q̇t = ∂Hr

∂p (qt, pt)

ṗt = −∂Hr
∂q (qt, pt) ,

(1.24)

where Hr(qt, pt) = H(qt, pt, vt).

Proof. See Theorem 2.3 in Chapter 3.

This characterization of the solutions by the reduced Hamiltonian system (1.24) is a

weak form of the Pontryagin Maximum Principle [43].

Example 2.3 (Conservation property of the energy). We saw in Example 2.2 that when

C is the classic cost function given by C(v) = 1
2 |v|

2
V , any optimal vector field v∗ ∈ L2

V of

E satisfies at almost any time t ∈ [0, 1] the equation

v∗t = KV Jξ(qt, pt) .
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It results that

Hr(qt, pt) =
1

2
|Jξ(qt, pt)|2V ∗ =

1

2
|v∗t |2V .

Moreover, the Hamiltonian is always conserved during the evolution of (q, p) which implies

that at any time

Hr(qt, pt) = Hr(q0, p0) =
1

2
|v∗t |2V .

The norm of the optimal vector field is thus constant.

At last, this parameterization of any solution (q, p) by its initial position q0 and initial

momentum p0 enables to solve the inexact matching problem by an optimization of the

initial momentum. The new energy to minimize is of the type

E(q0, p0) =

∫ 1

0
C(qt, pt) dt+A(q1) , (1.25)

where (q, p) is generated by the reduced Hamiltonian system. It requires to prove the

existence and uniqueness of the solution (q, p) for any initial condition (q0, p0). We will

prove it in chapter 3 in a more general framework. The gradient of this energy can

be obtained with a method similar to the one described in Section 2.2.1. Namely, one

introduces the auxiliary variable (Q,P) of (q, p) that satisfies
Q̇t = ∂qC(qt, pt)− ∂p∂qHr(qt, pt) · Qt + ∂2

qHr(qt, pt) · Pt
Ṗt = ∂pC(qt, pt)− ∂2

pHr(qt, pt) · Qt + ∂q∂pHr(qt, pt) · Pt
Q1 = −dA(q1), P1 = 0 .

(1.26)

In practice, the derivatives of Hr appearing in these equations can be efficiently approxi-

mated using finite differences [5].

The Gateaux-derivative of the energy has then a particularly simple expression:

E′
(
(q0, p0); (δq0, δq0)

)
= −(Q0 | δq0)− (P0 | δp0) . (1.27)

leading to a new algorithm of gradient descent. An interest of this approach is to param-

eterize the solution with variables of smaller dimension paving the way for a statistical

analysis. Moreover, since a gradient descent’s algorithm usually returns an approximation

of a local minimizer, the gradient descent on the vector field does not provide a geodesic.

Conversely, the initial momentum extracted from this last optimization problem always

represents a geodesic.

2.2.3 Towards numerical applications

The deformations involved in the model are determined by the choice of the space

of vector fields V . Since V is continuously embedded in C`0(Rd) (see the (HV ) condi-

tions (1.4)), V is a Reproducing Kernel Hilbert Space (RKHS). Such spaces can be defined

from the choice of a kernel and in many practical situations, all the computations only

depends on the explicit expression of such kernel. We will now explicit the previous results

in the case of a discrete shape given as a set of points with a mesh. The space B is then

of the type (Rd)m and its elements are identified to mappings q : X → Rd where X is a

36



finite set. By the Riesz representation theorem, p can also be identified to such a mapping.

Then, with the notation of the previous sections, the momentum map is given by(
J (q, p) | v

)
=
∑
x∈X

p(x)T v(q(x)) .

Consider now a solution (q, p) ∈ C([0, 1], B2) generated by an optimal vector field v∗. With

the classic cost function given by C(v, t) = 1
2 |v|

2
V as presented in Example 2.2, v∗ must

satisfies the equation v∗t = KV Jξ(qt, pt) at almost all time t ∈ [0, 1]. With V an RKHS,

this leads for any y ∈ Rd to

v∗t (y) =
∑
x∈X

k(y, qt(x))pt(x) ,

where k : Rd × Rd → L(Rd) is the kernel of the RKHS. With a scalar Gaussian kernel,

this expression becomes

v∗t (y) =
∑
x∈X

e−
|y−qt(x)|

2

2σ2 pt(x) .

This optimal vector field is thus a linear combination of Gaussian blobs centered on the

points of the discrete shape.

Specific case of rigid deformations

To model rigid deformations, one can use the group of rotations and translations. This

group is the semidirect product Rd o SOd(R), for which V = Skewd × Rd where Skewd

is the space of skew-symmetric d× d matrices. Any optimal vector field v∗t = (A∗t , N
∗
t ) is

then given by

A∗t = projSkewd

∑
x∈X

pt(x)qt(x)T and N∗t =
∑
x∈X

pt(x) .

Algorithms

Given q0, we usually do not have an explicit expression of the critical points of the

energy. However, we can perform a standard gradient descent as described in Algorithm

1 and Algorithm 2 (remind that B = (Rd)m = B∗).

Algorithm 1 Gradient descent on v

1 - Given q0
0 ∈ B, initialize v0 ∈ L2

V at zero.
Then for any n ∈ N, given qn0 and vn :
2 - Integrate forward with equation (1.17) to get qn ∈ C([0, 1], B) the path generated by
vn ∈ L2

V .
3 - Compute pn1 = −dA(qn1 ).
4 - Integrate backward with equation (1.19) to get pn ∈ C([0, 1], B).
5 - Compute the gradient at vn : δvn = ∇vC(vnt )−KV Jξ(qnt , pnt ).
6 - Update the vector field by vn+1 = vn + εδvn for a small ε > 0.
7 - (Optional) Update qn0 by qn+1

0 = qn0 + εpn0 for a small ε > 0.
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Algorithm 2 Gradient descent on p0

1 - Given q0
0 ∈ B, initialize p0

0 ∈ B at zero.
Then for any n ∈ N, given qn0 and pn0 :
2 - Integrate forward with the Hamiltonian system (1.24) to get (qn, pn) ∈ C([0, 1], B2).

3 - Compute Qn1 = −dA(qn1 ), defined Pn1 = 0.
4 - Integrate backward with the second order Hamiltonian system (1.26) to get
(Qn,Pn) ∈ C([0, 1], B2).
4 - Update pn0 by pn+1

0 = pn0 + εPn0 for a small ε > 0.
5 - (Optional) Update qn0 by qn+1

0 = qn0 + εQn0 for a small ε > 0.

Additionally, the expressions of the gradient with respect to v (1.20) or to the initial

momentum p0 (1.27), also say how to optimize the initial condition q0. Typically, if q0

is partially known and a reconstruction has been guessed, we can optimize it under some

constraints (for example, inside a subset of the ambient space). This optimization should

of course be controlled, otherwise the initial condition would just tend straightforwardly

to the target.

At last, note that despite the existence of a solution, we do not have the uniqueness

of a global minimizer of E. We do not have much more information about the local

minimizers. The convergence speed of the gradient descent can quickly decrease in a

rather large neighborhood of a local minimizer.

2.3 Overview of currents and varifolds

The inexact matching setting with the presence of an attachment term is justified by

the fact that the homogeneous space M is not intended to accurately describe the real

data but is instead a set of (smooth) representatives sampling the data. Indeed, we do not

want to capture too small differences that could result from very specific characteristics

of an individual or from noise. The flexibility given by the group of deformations and

the precision of the attachment term (mostly the typical scale of these two elements)

will determine the level of details of the model and the independence with respect to local

noises. The aim of the data attachment term A is then to measure the shape dissimilarities

at close range. For shapes like curves or surfaces A can be chosen as the distance on

currents presented in [26, 27] or the distance on varifolds, more recently introduced in

[15]. Both of these choices enable to measure the discrepancy between shapes regardless

of the parameterization.

Throughout the text, we will adopt the following notation and definitions:

— X is a k-dimensional compact smooth submanifold of Rd, eventually orientable and

with boundary (X could also be only rectifiable).

—
∧k Rd, (0 ≤ k ≤ d) : k-times exterior product of Rd, which is a vector space of

dimension
(
n
k

)
spanned by the set of simple k-vectors ξ1 ∧ . . . ∧ ξk.

—
∧k Rd is equipped with the usual euclidean metric given for two simple k-vectors

ξ = ξ1 ∧ . . . ∧ ξk and ζ = ζ1 ∧ . . . ∧ ζk by the determinant of their Gram matrix:

〈ξ, ζ〉 = det(〈ξi, ζj〉i,j). In particular, |ξ| gives the volume of the corresponding

parallelotope.
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— C0(Rd, (
∧k Rd)∗) : the set of continuous k-dimensional differential forms on Rd van-

ishing at infinity. This space equipped with the infinite norm is thus a Banach

space.

— Hn is the n-dimensional Hausdorff measure on Rd. We remind that Hn is defined

as an outer measure on Rd that basically measures the n-dimensional volume of a

subset of Rd. In particular, when n = d, we have Hd = λd the Lebesgue measure.

Hn(X) is the k-volume of X if n = k, vanishes if n > k and equals +∞ when n < k.

— KH is the canonical isomorphism H∗ → H for any Hilbert space H.

The idea of currents or varifolds is similar to the notion of distributions. In both cases,

a shape is considered as a linear form on a space of test functions. These test functions

are evaluated and integrated on the shape. However, in order to capture the geometry of

the shape, these functions also depend at each point of the shape on the tangent space at

this point. The differences between currents and varifolds lies on the properties of these

test functions with respect to the tangent space.

We will call tangential data an object coding the tangent space at any point x ∈ X
with eventually its orientation (for example a normal vector). Let us denote formally T
the set of all possible tangent data. A test function is then a real function ω : Rd×T → R
and the linear form µX associated to X is formally defined by

µX(ω) =

∫
X
ω(x, T (x))dHk(x) , (1.28)

where T (x) ∈ T is the tangential data at the point x ∈ X.

2.3.1 Currents

We follow here the definition of currents as introduced by Vaillant and Glaunes in [28]

as the topological dual of C0(Rd, (
∧k Rd)∗).

Definition 2.4 (Current). A k-dimensional current on Rd is a continuous linear form on

C0(Rd, (
∧k Rd)∗).

In the case of currents, the tangential data at x ∈ X is given by an orthonormal

oriented basis (T1(x), . . . , Tk(x)) of the tangent space TxX. The test function at any point

x, ωx
.
= ω(x, ·) is a alternating multilinear form on (TxX)k and consequently does not

depend on the choice of the basis. X is thus oriented and considering the alternating linear

mapping (ζ1, . . . , ζk) 7→ ζ1 ∧ . . . ∧ ζk, one can consider that ωx ∈ (
∧k Rd)∗. In fine, X is

then identified to the current µX ∈ C0(Rd, (
∧k Rd)∗)′ defined for any ω ∈ C0(Rd, (

∧k Rd)∗)
by equation (1.28) or more precisely

µX(ω) =

∫
X
ωx(T1(x) ∧ . . . ∧ Tk(x))dHk(x) . (1.29)

Example 2.4. Let X be a close curve parameterized by a smooth immersion γ : S1 → Rd,
then

µX(ω) =

∫
S1
ωγ(θ)(γ

′(θ))dθ =

∫
S1
〈KRdωγ(θ), γ

′(θ)〉Rddθ .
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The change of variables formula ensures that this expression is independent of any positive

parameterization.

When k = 1 or k = d− 1,
∧k Rd = Rd and as described in the previous example, the

set of test functions can be identified to C0(Rd,Rd) :

Example 2.5. Let X be an oriented surface embedded in R3, then
∧2R3 = R3, ω ∈

C0(R3,R3) and

µX(ω) =

∫
X
〈ω(x), N(x)〉RddH2(x) ,

where N(x) is the unit normal vector at x given by the orientation of X.

2.3.2 Varifolds and oriented varifolds

The concept of varifolds is more general and we will even see in the end that for a non

trivial set of test functions oriented varifolds can be equivalent to currents.

Definition 2.5. The Grassmann manifold or Grassmannian of dimension k in Rd, de-

noted Gk(Rd), is the set of all k-dimensional linear subspaces of Rd.
The oriented Grassmann manifold of dimension k in Rd, denoted G̃k(Rd), is the set

of all oriented k-dimensional linear subspaces of Rd.

It is well-known that Gk(Rd) is a homogeneous space under the action of the orthogonal

group O(Rd). The stabilizer group of a k-dimensional subspace V of Rd is the product

space O(V )×O(V ⊥) and it results that

Gk(Rd) = O(Rd)/(O(Rk)×O(Rd−k)) .

If V is oriented, we have likewise

G̃k(Rd) = SO(Rd)/(SO(Rk)× SO(Rd−k)) ,

where SO(Rd) is the special orthogonal group of Rd.

Example 2.6. The application Gk(Rd) → Gd−k(Rd), V 7→ V ⊥ identifies Gk(Rd) to

Gd−k(Rd). When X is a curve or a shape of codimension 1, G1(Rd) = Gd−1(Rd) is

the set of lines through the origin, i.e. the real projective space P(Rd). Likewise, if the

orientation of Rd is fixed, G̃k(Rd) can be identified to G̃d−k(Rd) and G̃1(Rd) = G̃d−1(Rd)
to the sphere Sd−1.

The definition of a varifold is then given in [15] by:

Definition 2.6 (Varifold). A k-dimensional varifold on Rd is a Borel finite measure on

the product space Rd ×Gk(Rd). A non-oriented rectifiable set X of Rd of dimension k is

identified to the varifold µX ∈ C0(Rd ×Gk(Rd))′ defined for any ω ∈ C0(Rd ×Gk(Rd)) by

equation (1.28) or more precisely

µX(ω) =

∫
X
ω(x, TxX)dHk(x) . (1.30)
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Definition 2.7 (Oriented varifold). A k-dimensional oriented varifold on Rd is a Borel

finite measure on the product space Rd × G̃k(Rd). An oriented rectifiable set X of Rd of

dimension k is identified to the oriented varifold µX ∈ C0(Rd × G̃k(Rd))′ defined for any

ω ∈ C0(Rd × G̃k(Rd)) by equation (1.28).

Example 2.7. With the assumptions of Example 2.6, the set of test functions can be

identified respectively to C0(Rd×P(Rd)) for the varifolds or C0(Rd×Sd−1) for the oriented

varifolds. In this last case, when X is an oriented surface in R3 we get

µX(ω) =

∫
X
ω(x,N(x))dH2(x) ,

where N(x) is the unit normal vector at x given by the orientation of X.

A fundamental example of current or varifold is the Dirac associated to a point x ∈ Rd

and a tangential data T ∈ T defined for any test function ω : Rd × T → R by

δTx (ω) = ω(x, T ) .

Indeed, for any smooth shape X, its representation µX can locally be approximated by a

Dirac. Let U 3 x0 be a neighborhood of a point x0 ∈ X. Then

µU (ω) =

∫
U
ω(x, T (x))dHk(x) ≈

∫
U
ω(x0, T (x0))dHk(x) = δT (x0)

x0 (ω)Hk(U) . (1.31)

Therefore, a discrete shape given as a set of points with a mesh can be modeled by a sum

of weighted Diracs. Each cell of the mesh is approximated by the Dirac `δ
T (x)
x where x is

the center of the cell, T (x) is the tangential data at x and ` is the k-volume of the cell.

In fine, a discrete shape with n cells is modeled by a current or a varifold of the type

µX ≈
n∑
i=1

`iδ
T (xi)
xi .

2.3.3 Introduction of RKHSs

The Reproducing Kernel Hilbert Spaces (RKHS) are a very efficient tool to construct

a scalar product on currents or varifolds. They are particularly well-fitted to compute

distances between discretized shapes because of the simple expression of the scalar prod-

uct between two Diracs. The concept of RKHS allows to create Hilbert spaces W , each

one being continuously embedded in one of the different spaces of test functions previ-

ously introduced. By duality, the respective set of currents or varifolds is then naturally

embedded in the dual spaces W ′.

A test function is defined on Rd × T . A RKHS W should thus be generated by a

positive kernel kW : (Rd × T )2 → R. The new space of test functions W is then given by

the completion of the vector space spanned by the fundamental functions kW ((x, T ), ·) :

(x′, T ′) ∈ Rd × T 7→ kW ((x, T ), (x′, T ′))
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for any (x, T ) ∈ Rd × T . Moreover, by definition of a RKHS,

KW δ
T
x = kW ((x, T ), ·) ,

where we recall that KW : W ′ → W is the canonical isomorphism of Hilbert spaces. It

results then that

δT
′

x′ (kW ((x, T ), ·)) = 〈δTx , δT
′

x′ 〉W ′ = kW ((x, T ), (x′, T ′)) . (1.32)

The construction of metrics via RKHSs becomes from there rather simple in practice

and can be induced by the choice of two real positive kernels on the ambient space E = Rn

and T (general situation). A kernel kE measures the distance between the positions of

two infinitesimal shapes and a kernel kT measures the distance between their respective

tangential data (the tangent space with eventually the orientation). The kernel kW is

finally given by the tensor product kE ⊗ kT defined for any (x, T ), (x′, T ′) ∈ Rd × T by

kW
(
(x, T ), (x′, T ′)

)
= kE(x, x′)kT (T, T ′) . (1.33)

At last, we can formally state the following proposition:

Proposition 2.3. Given an RKHS W generated by a kernel kW = kE⊗kT and two shapes

X and Y of dimension k modeled by µX , µY ∈W ′

〈µX , µY 〉W ′ =

∫
X

∫
Y
kE(x, y)kT (T (x), T (y)) dHk(y)dHk(x) . (1.34)

When X and Y are discretised and respectively modeled by the finite sums µX =
∑

i `
X
i δ

T (xi)
xi

and µY =
∑

j `
Y
j δ

T (yj)
yj , equation (1.34) becomes

〈µX , µY 〉W ′ =
∑
i

∑
j

`Xi `
Y
j kE(xi, yj)kT (T (xi), T (yj)) . (1.35)

Reality

Model

Figure 1.5 – Modeling of a triangle. A triangle
is approximated by the position of its center x, its

normal unit vector
−→
Nx and its area `x that can also

be coded as the length of its normal vector (`x
−→
Nx).

The first triangle is modeled by the linear form

µSx = `xδ
−→
Nx
x and the second by µSy = `yδ

−→
Ny
y . The

scalar product between these two Diracs is given by
equation (1.32) and compares simultaneously the
position of the centers (kE(x, y)) and the normal

vectors (kT (T (x), T (y)) = kT (
−→
Nx,
−→
Ny)).

Remark 2.2. Note that for the currents, the tangential kernel kT is necessarily given by

the usual scalar product on
∧k Rd.

Example 2.8 (Currents as oriented varifolds). G̃1(Rd) is set of lines through the origin

of Rd and can be identified to the unit sphere Sd−1. The Plücker embedding generalizes
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this idea and embeds G̃k(Rd) into the unit sphere of
∧k Rd. When the tangential kernel is

then given by the usual scalar product on
∧k Rd, currents are naturally embedded in the

associated RKHS W ′.

Example 2.9. With surfaces embedded in R3, the tangential data is given as the normal

vector. The Gaussian kernel leads then to the following scalar products

with currents: 〈δNxx , δ
Ny
y 〉W ′ = exp

(
−
|x−y|2

Rd
2σ2

)
〈Nx, Ny〉Rd ,

with oriented varifolds: 〈δNxx , δ
Ny
y 〉W ′ = exp

(
−
|x−y|2

Rd
2σ2

)
exp

(
−
|Nx−Ny |2Rd

2σ2
N

)
.

With varifolds, one can randomly orientate the normal vectors and define for any

RKHW WOV designed to model oriented varifolds

〈δT (x)
x , δT (y)

y 〉W ′ =〈1
2

(
δNxx + δ−Nxx

)
,
1

2

(
δ
Ny
y + δ

−Ny
y

)
〉W ′OV

=
1

4
〈δNxx , δ

Ny
y 〉W ′OV +

1

4
〈δNxx , δ

−Ny
y 〉W ′OV

+
1

4
〈δ−Nxx , δ

Ny
y 〉W ′OV +

1

4
〈δ−Nxx , δ

−Ny
y 〉W ′OV .

This leads for a Gaussian kernel to the scalar product

〈δT (x)
x , δT (y)

y 〉W ′ =

exp

(
−
|x− y|2R3

2σ2

)(
1

2
exp

(
−
|Nx −Ny|2R3

2σ2
N

)
+

1

2
exp

(
−
|Nx +Ny|2R3

2σ2
N

))
.

The common parameter σ gives the global scale of these two norms. For the varifolds, σN
is attached to the comparison of the normal vectors. Since these last ones are unit vectors,

σN can be fixed independently of the data.

Finally, once we fixed a RKHS W , we note µtar ∈ W ′ the identification of the target

shape and µv the identification of the final state of the solution generated by a vector field

v ∈ L2([0, 1], V ). The attachment term is then given by

A(v)
.
=

1

2

∣∣µv − µtar
∣∣2
W ′

. (1.36)

2.3.4 Differences between currents and varifolds

In the case of currents, the test functions are linear with respect to the tangential

data. Hence, the integration of two close tangent spaces with opposite orientations will

cancel their respective contributions. Indeed, for any test function ω and any couple

(x, T ) ∈ Rd × T , ω(x,−T ) = −ω(x, T ) so that δ−Tx + δTx = 0. This property makes the

currents resistant to the noise. However, as a downside, this linearity also prevents the

capture of structures like sharp spines or tails. See figures 1.6 and 1.7.

Remark 2.3. [15] is focused on varifolds with the aim to model non orientable shapes or

shapes with no rational orientation as fiber bundles (see Figure 1.8). So far, no research

has been found on the application of oriented varifolds in computer vision and the concept

remains rare in geometric measure theory.
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Figure 1.6 – Denote X the noisy red curve and
Y the smooth one. From a current point of view,
µX ≈ µY . Conversely, with varifolds, the length of
X is about twice the length of Y and this approx-
imation no longer holds.

Figure 1.7 – Example of shape for which currents
would be inadequate and that would rather call for
oriented varifolds.

Figure 1.8 – Example of white matter fiber bundle estimated from Diffusion Tensor Imag-
ing (DTI) illustrating the potential difficulty of consistent orientation of all differents fibers.
This figure is extracted from [20]. In this article prior to the work of Charon and Trouvé
on varifolds [15], the authors study the registration of such shapes modeled as currents.

Remark 2.4. All numerical experiments in this thesis have been achieved with the ori-

ented varifold model. This choice will be explained in chapter 5. However, we will see

in chapter 4 that unlike currents the existence of a solution to the problem of matching

growth scenarios is conserved neither with varifolds nor with oriented varifolds.

The discussion on currents and varifolds will be shortly extended in chapter 5. More

details on the Grassmann manifold can be found in [1] or on varifold from a more theo-

retical point of view in [3, 4].

3 Presentation of the work

3.1 Short summary

In this thesis, we open the door to non diffeomorphic deformations. The starting

hypothesis to compensate the loss of homology is to assume that a population of related

scenarios shares a common growth pattern. The central thread is to faithfully reproduce
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the biological evolution of an organism. A first step achieved in Chapter 2 is to explore

new models able to integrate the creation of matter over time from a set theory point

of view while keeping the geometric central concept making the essence and the strength

of shape spaces of a group of deformations acting on a set of shapes. A second step

conducted in Chapter 3 is to investigate the reconstruction of a scenario that satisfies

growth priors. These priors are integrated into a new optimal control problem for the

assimilation of time-varying shapes, leading to an interesting problem in the field of the

calculus of variations where the choice of the attachment term on the data, current or

varifold, plays an unexpected role as we will see in Chapter 4. At last, this underlying

minimization problem requires to consider new cost functions to penalize the action of the

group of deformations in order to favor the natural biological development as initiated in

Chapter 3 and applied in Chapter 5.

The typical evolution of the shapes we are interested in can be described by a foliation.

A foliation [24, 35] looks locally like a union of parallel shapes of smaller dimension called

the leaves of the foliation. As described for the horns, the creation process induces a

progressive addition of regular extensions at one boundary of the shape. To model the

regularity of this process, we assume that the set of new points extending at each time the

horn have usually the same shape and are locally parallel. They form therefore the leaves

of the foliation. When the horn is represented by a surface, the leaves are similar to circles.

For a full horn, the leaves are similar to disks. The introduction of a biological coordinate

system will model and allow to exploit this growth pattern. This system consists in a

space X called the coordinate space and a function τ : X → R called the birth tag whose

lower sets induce a collection of subset Xt = {x ∈ X | τ(x) ≤ t} of X. The evolution of an

individual can then be parameterized by this time-varying ordered collection of subsets of

the biological coordinate system. It allows thereby to anticipate the appearance of every

new point involved in the evolution of the shape. Figure 1.9 illustrates this model on the

development of a horn.

Figure 1.9 – Development of a horn. On the left, the horn is represented at six different
ages {t1, t2, . . . , 1} ∈ [0, 1], in the ambient space. On the right, an arbitrary representation
of the coordinate space X. Any horn on the left is an image of a subset of X. The colors
correspond to the level sets of the birth tag function τ and indicate when a leaf appears.

A practical goal of this thesis is, given few observations (Star
i )i of a horn at different

times (ti)i, to provide numerical algorithms able to retrieve its continuous development

from its youngest state to its oldest one. This means to generate a scenario t 7→ St
such that Sti ≈ Star

i for all the times (ti)i. We will see that our model can also produce

a path modeling the complete development of a horn from only one final observation.
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If we imagine the horn at its birth as reduced to a single point, we can construct a

continuous path from this point to a nontrivial shape at the final time matching the given

observation. In each application, the complete development of a horn produced by the

algorithm is encoded in a low-dimensional forecast initial condition, providing the support

to a statistical analysis.

3.2 Organization of the chapters :

Chapters 2, 3, and 4 are somewhat independent. Chapter 5 illustrates the matching

problem detailed in Chapter 3 by some numerical experiments to validate the model and

its variations. The contents of each chapter can be summarized as follows:

Chapter 2 : Partial Matchings and Growth Mapped Evolutions in Shape

Spaces

This chapter explores the generative models underlying the matching problems. The

first ideas behind this thesis quickly led to the model presented in Chapter 3. The ques-

tioning of modeling choices then pushed us to seek the irreducible atomic object at the

source of growth scenarios’ models. From the willingness to keep the geometric approach

of a set of shapes moving in a fixed ambient space E through a diffeomorphic flow applied

to this space, emerges what we called the growth mapped evolutions (GMEs). It consists

in a set of shapes (St)t∈T indexed by a time interval T ⊂ R and evolving in E through a

flow (φs,t)s≤t∈T that describes the deformation of the space E between any pairs of times

(s, t). To replace the constraint of exhaustive homology between any two shapes Ss and

St, we only impose an inclusion condition: for any pair s ≤ t in T ,

φs,t(Ss) ⊂ St .

Figure 1.10 – Inner partial matchings under constraints delimiting their image illustrated
by the different colors.

A growth mapped evolution is therefore a nested sequence of all ages of the shape

through the flow inducing dating system as the history of the creation process. The shape

St is indeed composed partly by the image φs,t(Ss) of a previous state and by the new

points that appeared between the time s and t calling to consider the time of birth of each

point. To understand this phenomenon, the atomic object of growth mapped evolution is
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enriched with a set of functions assigning a label to each point of the scenario

τt : St → L, ∀t ∈ T .

These functions called markers are invariant under the action of the flow, meaning that

each point within the scenario retains its label over time. We will exhibit in particular a

marker of the time of birth of each point of the scenario called the birth tag.

Once our objects are defined, we return to what made the power shape spaces. The

scenarios are compared with each other via morphisms. In particular, one can consider the

action of a group G of space-time deformation acting on the space-time E × T to define a

Riemannian structure on our scenarios spaces. Elementary scenarios said centered, whose

associated flow is reduced to the identity at all time, enlighten a natural decomposition

of the orbits under the action of G exhibiting a common growth pattern in orbit that will

lead to the introduction of the biological coordinate system in the following chapters. Any

scenario is then seen as the image of a centered scenario.

Finally, we focus throughout the chapter to identify the minimal set of parameters to

represent a scenario. The choice of these parameters depends on the available information

to anticipate the position of the new points in the matching problems. In particular, we

retrieve the birth place function that emerges naturally for the horn developments where

the creation area of the new points is known.

Transition to Chapter 3

The time interval T = [0, 1] is fixed for the following chapters. We are interested

in a population of time-varying shapes whose growth process is described by a biological

coordinate system (X, τ) where X is a compact k-dimensional submanifold with corners

and τ : X → [0, 1] plays the role of the birth tag. The lower sets of τ induce a centered

scenario whose shape at time t is denoted Xt and given by

Xt = {x ∈ X | τ(x) ≤ t} . (1.37)

The points of Xt are called active points at time t of the coordinate space X. This bio-

logical coordinate system allows then to parameterize the entire population via morphisms

of scenarios. Each morphism consists in a collection of mappings (qt : Xt → Rd)t∈[0,1] that

can be generated by a birth place function q̃ : X → Rd and a flow (φs,t)s<t∈[0,1] on the

ambient space. More precisely, we have for any t ∈ [0, 1] and for any x ∈ Xt,

qt(x) = φτ(x),t(q̃(x)) . (1.38)

The shape at any time t of the new scenario is then given by

St = qt(Xt) .
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Chapter 3 : Reconstruction of a Shape Development

Creation of scenarios

By definition, the most natural approach to generate a flow is to integrate a time-

varying vector field v (see Section 2.1.3). Equation (1.38) can then be rewritten for any

x ∈ X and any t ∈]τ(x), 1],

qt(x) = q̃(x) +

∫ t

τ(x)
vs(qs(x)) ds . (1.39)

To unify the mappings qt : Xt → Rd in a unique space of functions, where we recall

that Xt ⊂ X is defined by (1.37), one needs to extend them to the whole coordinate space

X. This extension depends on the prior information, given in our case by the birth place

function q̃. Hence, the simplest extension is the following one

qt(x) =


φτ(x),t(q̃(x)) if τ(x) ≤ t ,

q̃(x) otherwise,

(1.40)

leading to what we call the growth dynamic

q̇t(x) = 11τ(x)≤tvt(qt(x)) =


vt(qt(x) if x ∈ Xt ,

0 otherwise.

(1.41)

The retrieval of the collection of mappings (qt : X → Rd)t∈[0,1] generated by a time-varying

vector field v leads to solve an integral equation where the initial condition is given by

q0 = q̃. (1.42)

This choice of extension implies that q̇t is rarely spatially continuous and therefore this

equation cannot be set in C(X,Rd). The study of the spatial regularity of the mappings is

thus performed afterwards. We show among other things that the spatial regularity map-

pings qt depends on the temporal regularity of the flow (and thus of the generator vector

field). This novelty induced by the growth dynamic is due to the fact that the shape at

its final state cannot be expressed via the only final value of the flow: q1 6= φ0,1 ◦ q0. The

partial action of the flow on the restriction qt|Xt leaves a mark on the junction between

Xt and its complementary. One can then only show that the mappings are continuous

but only differentiable almost everywhere. However, if the flow is continuous in time, i.e.

v ∈ C([0, 1], V ), then all the restrictions qt|Xt are of class C1.

More generally, we offer a broader theoretical framework where the evolution of a shape

is generated via a time-dependent infinitesimal action

ξ : B × [0, 1]→ L(V,B) , (1.43)

where B is a Banach space that contains all the possible mappings between X and the
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ambient space Rd. It generalizes the approach of shape spaces presented in Section 2.1.2.

The theory of integration in a Banach space by S. Bochner [46], extending the Lebesgue

integral, ensures the existence and uniqueness of a scenario q ∈ C([0, 1], B) solution of the

Cauchy problem

q̇t = ξ(qt,t)(vt) for almost any t ∈ [0, 1] (1.44)

defined for any initial condition q0 ∈ B and any square integrable time-varying vector field

v ∈ L2([0, 1], V ). To retrieve the growth dynamic (equation (1.41)), ξ is then defined by

ξ(q,t)(v) = 11τ≤tv ◦ q .

The choice of the Banach space to represent the mappings, most naturally B = L∞(X,Rd),
is more delicate than expected (see Chapter 4).

Problem of optimal control

Building a scenario ending on a target final state qtar(X) given a birth place function

q̃ : X → Rd consists in finding the flow (φs,t)s<t∈[0,1] as simple as possible such that

the generated morphism (see equation (1.38)) satisfies q1 = qtar. This is done using the

construction of geodesic flows as presented in Section 2.1.3 generated by vector fields

of a Hilbert space V . The search for an optimal flow by a time-varying vector field

v ∈ L2([0, 1], V ) can then be seen as a minimization problem on an energy of the type

E(v) =
1

2

∫ 1

0
C(vt, t) dt+A(v) , (1.45)

where C is called the cost function and where the constraint q1 = qtar is relaxed by a data

attachment term A : L2([0, 1], V )→ R (see Section 2.3 and Chapter 4).

Following the standard approach presented in Section 2.2.1, the gradient of this energy

can be expressed via a momentum p ∈ C([0, 1], B∗) that satisfies

p1 = −dA(q1) ∈ B∗ ṗt = −∂qξ(qt, t)(vt)∗ · pt (1.46)

and via the momentum map defined by

Jξ : B ×B∗ × [0, 1] −→ V ∗

(q, p, t) 7−→ ξ∗(q,t) · p .

The abusive notation dA(q1) is only properly defined when the coordinate space X is a

discrete set. Otherwise, the data attachment term is actually not directly defined on the

space B and the existence and explicit formula of the Lagrange multiplier p1 is a significant

problem addressed in Chapter 4 (see equation (1.53)).

The gradient of the energy at any time t ∈ [0, 1] is then written

∇vE(v)t = ∇vC(vt, t)−KV Jξ(qt, pt, t) , (1.47)

where KV : V ∗ → V is the canonical isomorphism for the Hilbert space V . It leads to a

straightforward algorithm of gradient descent to minimize the energy E.
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The elegance of the Hamiltonian approach is used again to move towards an opti-

mization problem on the initial momentum p0. However, the reduced Hamiltonian system

defining the minimizing solutions depends on the time. It is defined by

Hr : B ×B∗ × [0, 1] −→ R
(q, p, t) 7−→ maxv∈V (p | ξ(q,t)(v))− C(v, t) .

Hence, the solutions generated by minimizers of E satisfy the system q̇t

ṗt

 =


∂Hr
∂p (qt, pt, t)

−∂Hr
∂q (qt, pt, t)

 .

The existence of solutions defined on the entire interval [0, 1] requires some preliminary

observations outlined in the next paragraph. Once this result is established, we study the

regularity of the Hamiltonian system to develop an algorithm that optimizes the initial

momentum p0. It relies on minimizing an energy of the type

E(q0, p0) =

∫ 1

0
C(qt, pt, t) dt+A(q1) , (1.48)

with again an abuse of notation on the data attachment term that is only defined on the

final mappings generated by the vector fields of L2([0, 1], V ).

Specific properties induced by the growth dynamic

The infinitesimal action related to the growth dynamic is not continuous in time. This

lack of regularity directly impacts the associated momentum map, denoted here by J . A

solution to guarantee the continuity and to exhibit a pertinent upper bound of its norm

is to reduce the space of momenta p.

A strength of the Hamiltonian approach for the LDDMM methods is to ensure that

the norm of an optimal vector field is conserved over time. Here, the Hamiltonian system

induced by a time-varying dynamic depends therefore on the time and we lose energy con-

servation. With the growth dynamic, we typically show that the norm of the momentum

map is bounded by an affine function of time, even linear in the case of horns. Simple

examples can be constructed where this upper bound is optimal, meaning that the norm

of the momentum map over a trajectory (qt, pt) is increasing. This results from the addi-

tional contribution at each time of the new points extending the shape. To highlight this

property, one can consider any trajectory t 7→ (qt, pt) that is homogeneous in space and

time, meaning that (x, t) 7→ (|qt(x)|Rd , |pt(x)|Rd) is approximately constant. There exist

then indeed two constants a ≥ 0 and b ≥ 0 such that for any t ∈ [0, 1],

|J (qt, pt, t)|V ∗ ≈ at+ b (1.49)

or even more drastically in the case of horns

|J (qt, pt, t)|V ∗ ≈ at . (1.50)
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This property appears satisfactory at first. Indeed, it seems natural that the flow

associated to the scenario of a growing shape over time is increasingly expensive as it

progressively acts on a larger part of the ambient space. However, when modeling growth

scenarios for the horns via rigid deformations, we will see in Chapter 5 that optimal flow

should be generated by a vector field of constant norm. To correct the model, we play

with the cost function C initially set at

C(v, t) =
1

2
|v|2V . (1.51)

The simplest example among a set of cost functions referred to as adapted norm setup is to

weight the previous classic cost function with an increasing scalar function ν : [0, 1]→ R∗+
as follows

C(v, t) =
νt
2
|v|2V . (1.52)

In the case of horns, the norm of the momentum map is controlled by linear function of

the time. It leads to additionally allow the possibility to have ν(0) = 0. We say then that

the setup is degenerated.

We finally return to the existence of the solutions to the Hamiltonian system. The

global existence requires a control on the momentum map. This control can only be

guaranteed on subspaces of B∗ for the initial momentum. Moreover, the choice of these

subspaces depends on the space of the mappings. For the main example of the horns,

the mappings change the topology of the coordinate space X to form the tip of the horn

(not without consequences). Hence, we develop a general resolution framework where we

can choose a pair of compatible subspaces B0 ⊂ B and B∗1 ⊂ B∗ to ensure the existence

of global solutions. This construction is required to use cost functions of the degenerate

adapted norm setup (where ν(0) = 0) and will be validated in Chapter 4 where we will

show that the solutions of the minimization problem are indeed obtained with the selected

subspaces. Under these conditions, we can then show that the momentum map defined

along a trajectory t 7→ (qt, pt) can be controlled at all times by the initial conditions q0

and p0.

Chapter 4 : Existence and Continuity of the Global Minimizers for the

Growth Dynamic

This chapter examines the existence of continuous global minimizers v to the optimiza-

tion problem discussed in the previous chapter when the infinitesimal action ξ reproduces

the growth dynamic defined by equation (1.41). In the usual approach of shape spaces,

the problem of matchings two shapes is to search a geodesic in a chosen space GV of dif-

feomorphisms with constraints on the ends. Retrieving an optimal growth scenario via the

growth dynamic does not only constrain the ends of the flow of diffeomorphisms. Indeed,

the final status q1 of a solution cannot be written as an image of the initial mapping q0 by

the final state of the flow φv1. It depends instead on the whole evolution of the flow over

time. In other words, the energy cannot be written as

E(φ1) = C(φ1) +A(φ1) .
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Thus, the optimal flow to reach a final target is usually not a geodesic of GV .

Hence, the soughtafter existence of continuous global minimizers v cannot be deduced

from existing general results in the literature. The first result of the chapter was rather

unexpected. We exhibit a setting with a data attachment term built on the representation

by varifolds where no global minimizers is continuous. The difference between representa-

tions by currents or varifolds, regarding the models associated to the growth dynamic, is

explained by the fact that oscillations in time of the vector field v generate oscillations in

space for the shapes qt(Xt). The currents through their cancellation effect on these spatial

oscillations can prevent this behavior.

Proving the existence of continuous minimizers within the framework defined by the

growth dynamic for a current data term attachment A first requires to ensure that the

shapes are sufficiently regular to be represented by currents. Let us recall that the map-

pings qt generated by vector fields v ∈ L2([0, 1], V ) are a priori neither C1 nor rectifiable.

It is yet possible to define A on L2([0, 1], V ) by density of C([0, 1], V ) whose vector fields

v generate mappings of C1(X,Rd).

The next step is to show the existence of solutions in L2([0, 1], V ). The proof is based

on the linearity to the tangential component of the current representation that allows to

deduce the lower semi-continuity of A. The continuity of an optimal vector field v does

not follow immediately. Indeed, we did show previously the continuity of the momentum

map but the momentum space was restricted to be identified with a space of functions on

X × ∂X where ∂X is the boundary of X. However, we show that this restriction is well-

grounded if the scenarios are generated by continuous vector fields in time. Moreover, the

central result of this chapter is the continuity of any global minimizer unconditionally on

the momentum space. Therefore, these two results validate the functional representation

of the momentum announced in the previous chapter. More precisely, consider v and a

variation δv both in C([0, 1], V ) and qv+εδv the scenario generated by v+εδv for any ε ∈ R.

We show in Chapter 3 that there exists δq ∈ C([0, 1], B) such that qv+εδv = qv + εδq+o(ε).

There exist then pX1 ∈ C(X,Rn) and p∂X1 ∈ C(∂X,Rd) such that

A′(v; δv) = (p1 | δq1) (1.53)

=

∫
X
〈pX1 (x), δq1(x)〉RndHk(x) +

∫
∂X
〈p∂X1 (x), δq1(x)〉RndHk−1(x) , (1.54)

ensuring the existence of the final momentum p1 and providing a pointwise expression as

a function on X and its boundary ∂X. Note the appearance of the role played ∂X that

gives the initial impulse to the momentum map, i.e. the existence of a constant b > 0 in

equation (1.49) (see Chapter 3).

At last, we detail in this chapter the foliated structure induced by the birth tag τ on

the coordinate space X when the creation process is regular meaning that the amount

of newly created points at each time, i.e. the level sets of τ , evolves smoothly. After

a brief presentation of submanifold with corners, we justify the canonical description of

the biological coordinate system (X, τ) via a direct product X = [0, 1] × X0 where τ is
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identified with the projection on the first coordinate. Indeed, with the point of view of the

Morse theory, we show that many situations can be reduced to this canonical case by the

action of spatial deformation of the space X carrying the tagging function τ . Note that

the study of the growth dynamic achieved in Chapter 3 and all the experiments conducted

in Chapter 5 are based on this specific system. The choice of the cost functions relies on

it as it provides a first estimation to quantify the creation process over time. Another

important consequence of this rewriting is the ability to overcome the reparameterizations

in time of the scenarios generated by a birth place function (see also Chapter 2).

Chapter 5 : Numerical Applications and Results

This chapter examines the algorithm to optimize the initial momentum p0 and applies

it to illustrate the matching problem detailed in Chapter 3. Given a horn at a final age

arbitrarily set at t = 1, the aim is to model its development from its birth at time t = 0

(state where the horn is reduced to a point) to the given final state t = 1. All experiments

are performed with synthetic data built from the generative model presented in Chapters

2 and 3.

To highlight the pure creation process, the flows are reduced to rotations and trans-

lations. The basic model where the classic cost function C is given by equation (1.51) is

unsuitable since it does not correctly initiate the growth process when the shape is too

small at its birth. We use therefore new cost functions corresponding either to a time-

varying weighting of the penalization on the flow (adapted norm setup) or to the addition

of a constraint on the norm of the vector field (constrained norm setup). The data attach-

ment term is derived from a representation of surfaces by oriented varifolds. It seems that

these objects, presented in Section 2.3, have not yet been used for numerical applications.

They find yet all their interest with easily orientable surfaces having structures like sharp

spines or tails. Since the model should not be limited to affine deformations, the chapter

concludes with some experiments with a Gaussian kernel RKHS to model vector fields.

This thesis was motivated by the need for new models to faithfully reproduce a bio-

logical phenomenon. It raises the issue to integrate additional prior information into the

traditional framework proposed by the LDDMM methods. In the case of growth scenar-

ios, the aim is to model the creation process but also to quantify it. The validation of

the numerical experiments focuses specifically on the latter criterion. The different cost

functions are compared regarding the goal to retrieve the norm of the vector field used to

generate the target (Example 1). The flexibility of the model is tested in order to evaluate

its ability to identify abnormal behavior such as growth delay. In contrast to the classic

LDDMM, building the momentum map with the growth dynamic through a gradual influx

of new initial momenta gives this flexibility and eliminates the need of reparametrizations

in time to detect such anomalies (Example 2). At last, the model integrates without dif-

ficulty the addition of input data at known intermediate times to reconstruct a scenario

by interpolation. It can improve the results of an experiment that could have approached

the limits of the model by the high sharpness and curvature of the studied horn (Example

3).

Some other experiments are performed to observe the optimization of the initial posi-
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tion q0 (Example 5) or the initial boundary effect (Example 4).

At last, as in the classic LDDMM framework, each scenario is completely characterized

by the low dimensional variables initial position q0 and initial momentum p0, paving the

way to a statistical analysis of the scenarios’ population.
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3.3 Glossary and notation

Throughout this thesis, shapes are modeled by mappings qt : X → Rd parameterized

by a space X called the coordinate space. Rd is called the ambient space. The subscript t

means that qt describes the shape at time t ∈ [0, 1]. A scenario is typically a continuous set

of mappings t ∈ [0, 1] 7→ qt. V is be a Hilbert space of vector fields on the ambient space

Rd and L2([0, 1], V ), eventually denoted L2
V , is the space of square integrable time-varying

vector fields.

Specific vocabulary:

— Biological coordinate system (X, τ) : indexation of the points of an time-varying

shape. The function τ : X → R is called the birth tag.

— Biological coordinate space or coordinate space X : set of all the coordinates used to

parameterize the shape over the time interval T of observation (fixed after Chapter

2 to T = [0, 1]).

— Xt = {x ∈ X | τ(x) ≤ t} : subset of the so called active points at time t. A point in

the complementary subset is called inactive.

— X{t} = {x ∈ X | τ(x) = t} : subset of the so called new points at time t, points that

appear exactly at time t. These subsets are called the leaves.

Basic notation:

— If t is a real variable and g is a derivable function of t, we denote gt = g(t) and

ġt = dg
dt (t).

— If g : E × [0, 1]→ F is a function with a time parameter, we note for any t ∈ [0, 1],

gt
.
= g(·, t) : E → F .

— LV : V → V ∗ and KV : V ∗ → V , KV = L−1
V , are the canonical isomorphisms

between a Hilbert space and its dual.

— Given a Hilbert space H, if f : H → R is a differentiable at x ∈ H, we denote

df(x) this differential and ∇xf(x) its gradient. Likewise, we denote ∂f
∂x1

or ∂x1f(x)

a partial differential and ∇x1f(x) the associated gradient.

— We denote B(b, r) the close ball of center b and radius r.

— AC denotes the class of absolutely continuous functions.

— Given two Banach spaces E and F , L(E,F ) denotes the set of continuous linear

operators between E and F . We also denote L(E) for L(E,E).
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Chapter 2

Partial Matchings and Growth

Mapped Evolutions in Shape

Spaces
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1 Introduction

Figure 2.1 – Illustration after D’Arcy Thompson’s works (1917). Given two similar shapes,
there exists a simple deformation that matches them.

In order to introduce the idea of foliated shapes, we return to the reference work of

D’Arcy Thompson. He illustrated through several examples that the differences between

related species could be explained by simple geometrical deformations. The Figure 2.1

gives the implicit matching of two different fishes. The deformation provides a coherent

mapping between the characteristic points of the fishes (head on head, eye on eye, fin on

fin, etc.). The position in the ambient space of a characteristic point is variable from one

fish to another, but the relative position of each point compared to the others is preserved

and is thereby a descriptor of the species. The deformation of the grid highlights this

consistence through a coordinate system common to the two fishes. Any point of the

shape has a label that depends on the species and not on its position. We call these labels

the biological coordinate system. It gives a general description of any individual of a

population of related shapes independently of “simple” deformations that can be applied

to them.

From a biological point of view, the matching of two fishes is not a geometrical matching

of shapes but a set of one-to-one correspondences between homologous points, including

in particular all the characteristic points. In Figure 2.1, these two processes coincide.

The geometry of the shapes gives enough information to obtain a meaningful mapping.

However, during a growth evolution, two shapes at different ages do not necessarily share

the same set of homologous points. In Figure 2.2, we extrapolate the drawings of D’Arcy

Thompson to examine growth or degeneration processes on some examples. On the left

on top, we compare two ages of an animal horn. Below, we represent an organism with a

foliated structure like an onion or the cross section of a tree trunk. Finally on the right,

an other representation of a foliated membrane, such as the human skin where the double

arrow indicates that we can read this example in both directions, as the growth or the

degeneration of an organic tissue.

In each case, we assume that new material is progressively created during the growth

at the boundary of the shape. The subsets of the new points created at each time, induce a

natural decomposition of the complete set of all the coordinates. These subsets have all the

59



Figure 2.2 – The creation of new material during a growth process is linked to the appear-
ance of new coordinates.

same shape: similar to lines for the horns or circles for the onion. They induce a collection

of foliated leaves meaning that the shape is locally similar to a connected disjoint union

of parallel lines. The creation of new material is thus linked to the appearance of new

coordinates. Consequently, the grids are either extended or shortened with the red or blue

lines. The biological coordinate system can thus code the pointwise homology between two

ages of a shape. The matching should thus be achieved via a partial mapping delimited

by the restriction to the black grids. Moreover, the biological coordinate system can help

us to anticipate the creation of new material.

Note that the example of the fishes could also illustrate the growth of a fish. Yet in

this case the growth process is similar to a scaling deformation and although one could

consider that we have a creation of new material stricto sensus, the homology structure

remains stable. The biological coordinates have already been introduced by Grenander

et al. in [31] where they study their diffeomorphic evolution in homogeneous situations

through elementary local deformations.

Subject 1

Subject 2

Subject 3

Template

t

t

t

t

Figure 2.3 – Shape space point of view on growth scenarios. What deformations between
scenarios ? A time warping ρ delays the growth of subject 1 with respect to the template.
A spatial mapping ψ generates subject 2 and to be as general as possible, one need to
allow at all time a new deformation so that ψ can be time dependent.
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To deal with some of the core issues about the processing of shape evolutions in the

context of growth, we propose in this chapter to follow a somewhat axiomatic point of view

that can be parallel to the development of the shape space point of view (see Figure 2.3).

In section 2, we first introduce a proper definition of the objects that are the atoms for

the study of partial mappings and growth evolutions (St)t∈T with the notion of growth

mapped evolutions incorporating the addition of a flow of mappings (φs,t)s≤t∈T providing

the homology correspondences between points within the evolution sequence. Then we

define a web of morphisms between the objects organizing the relationship between the

atoms. A core result will be to show in section 3 that part of this web can be interpreted as

coming from space-time group actions from which we can derive a metric on appropriate

orbits of growth mapped evolutions. We analyse further these orbits by showing the role of

the centered evolutions corresponding to pure expansion scenarios for which the homology

correspondences are trivial and on which a simple subgroup of space-time mappings can

act. In section 4, we show that under reasonable regularity assumptions, any growth

mapped evolution can be equipped with a tagging function, called the birth function,

that provides a consistent stratification of the evolving shapes generalizing the idea of

tree-ring dating to growth mapped evolutions. Finally, in section 5, we introduce a new

parameter, called the birth place function, to initialize a growth mapped evolution. This

new parameter will play a key role in the problem to retrieve the growth scenario of a

shape as studied in the next chapters of this thesis.

2 Growth mapped evolutions (GMEs)

2.1 Embedded shapes

We aim to model partial relations inside a collection of shapes with diffeomorphisms.

To compose and then compare these mappings require to consider shapes embedded in an

ambient space.

Definition 2.1 (Embedded shapes (ES)). — An embedded shape is a pair (E,S) where

E is a set called the embedding space or the ambient space and S ⊂ E.

— Inner partial matching: For any two embedded shapes A = (EA, SA) and B =

(EB, SB) the set Hom(A,B) of morphisms between A and B is given as the set

of invertible mappings φAB : EA → EB such that φAB(SA) ⊂ SB. We check

easily that if φAB ∈ Hom(A,B) and φBC ∈ Hom(B,C) then φAC
.
= φBC ◦ φAB ∈

Hom(A,C). Hom(A,B) will be denoted HomES(A,B). The morphisms will be called

inner partial matchings between embedded shapes.

— Define Hom∗(A,B) as the set of outer partial matchings ψAB : EA → EB such

that its inverse ψAB,−1 ∈ Hom(B,A) i.e. the set of invertible mappings ψAB such

that ψAB(SA) ⊃ SB. Obviously, if ψAB ∈ Hom∗(A,B) and ψBC ∈ Hom∗(B,C) then

ψAC = ψBC ◦ ψAB ∈ Hom∗(A,C).

— Define the symmetric matchings between two embedded shapes A and B as the

set of φAB ∈ Hom(A,B) such that φAB,−1 ∈ Hom(B,A) i.e. φAB ∈ Sym(A,B)
.
=

Hom(A,B) ∩Hom∗(A,B).
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Remark 2.1. The LDDMM point of view is deeply associated with the idea of homogeneous

spaces and diffeomorphic transformations of a shape SA into an other shape SB. This

corresponds to the notion of symmetric matching defined just above. Indeed, if φAB ∈
Sym(A,B), then since φAB ∈ Hom(A,B), we have φAB(SA) ⊂ SB and since φAB ∈
Hom∗(A,B) we have φAB,−1(SB) ⊂ SA i.e. SB ⊂ φAB(SA). Hence, φAB(SA) = SB and

φAB is an invertible mapping matching exactly SA to SB. Moreover, when the shapes are

embedded in a common ambient space E and if G is a group of invertible mappings on E,

we can associate to any φ ∈ G and any template object A0 = (E,S0) a transformed object

B = φ ·A0
.
= (E, φ(S0)) so that φ can be seen as an element in Sym(A0, φ ·A0).

Growth naturally induces inner partial mappings but the relations between homologous

points when they exist should be preserved through time. This leads to the introduction of

a set L of tags and of tagging functions. They will allow to add constraints to a matching

between two shapes SA and SB. Mainly, assume that SA and SB are partitioned and

given with predetermined correspondences between the parts of SA and SB. A tagging

function on both shapes can therefore encode these sought-after correspondences.

Definition 2.2 (Tagged embedded shapes (TES)). — A tagged shape over a set of tags

L is defined as A = (E,S, τ) where (E,S) is an embedded shape and τ : S → L.

— Hom(A,B) is given as the set of invertible mappings φAB : EA → EB such that

1. φAB(SA) ⊂ SB,

2. τB ◦ φAB = τA on SA,

3. φAB(SA) = τB,−1(τA(SA)).

The elements of Hom(A,B) are tag consistent inner partial matchings between em-

bedded shapes and Hom(A,B) is denoted HomTES(A,B)

See Figure 2.4 for an illustration. We will denote LA = τA(SA), LB = τB(SB), etc.

the set of tags involved on SA, SB, etc.

Remark 2.2. — If LA and LB are both reduced to a singleton and LA = LB, then

the inner partial mapping is actually a standard LDDMM matching. Note that the

condition LA = LB alone does not provide a standard matching (see the mapping

between C and D in Figure 2.4).

— If Hom(A,B) 6= ∅ then LA ⊂ LB. Indeed, if φAB ∈ Hom(A,B), then (1) and (2)

imply that τA(SA) = τB(φAB(SA)) ⊂ τB(SB). A strict inclusion corresponds from

the biological point of view to a creation of new points.

— The point (3) of the definition enforces every point of SB with a common tag of SA

to be reached by φAB. In other words, for any tag l ∈ LA ∩ LB, φAB induces an

invertible mapping between the level sets τA,−1(l) ⊂ SA and τB,−1(l) ⊂ SB.

— There is no constraint on the matching inside the respective level sets of τA and τB.

For example, if LA = {0} and LB = {0, 1}, then the tags only demarcates the subset

of SB to be matched with SA.

Remark 2.3 (Extension of ES into TES). From the opposite point of view, an inner partial

morphism φAB between two general embedded shapes A = (EA, SA) and B = (EB, SB)

induces a natural minimal pair of tagging functions given by τA constant equal to 0 and
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Figure 2.4 – A morphism φA,B ∈ HomTES(A,B) must match SA on the subset of SB

demarcated by the tag 0. The tag only defines the image set of the source shape inside the
target shape. Between B and C, the tag also imposes a constraint inside the image of SB.
The points of SB tagged by 0 are sent to the points of SC tagged by 0 and likewise for
the points tagged by 1. The arrows represent invertible mappings between the level sets
of the tagging functions, given by the restrictions of φAB, φBC and φCD. The appearance
of a new tag corresponds therefore to the creation of matter uncorrelated to the previous
shape. Otherwise, as between C and D, the shape is only deformed by φCD. We will say
that the evolution is given by pure deformation. Even without creation φCD is still
constrained by the tags.

τB equal to 0 on the image of SA and equal to 1 on the complement. By construction,

φAB is then tag consistent with τA and τB. Any tagging function τA on SA could also be

imported and extended to a tagging function on SB with respect to φAB. Indeed, we can

define τB
.
= τA ◦ φAB,−1 on φAB(SA) and τB = lB on the complement, with any lB /∈ LA

so that LB = LA t {lB}. Then again φAB becomes tag consistent with τA and τB.

These tag consistent inner partial mappings can be composed.

Proposition 2.1. If φAB ∈ HomTES(A,B) and φBC ∈ HomTES(B,C) then φAC
.
= φBC ◦

φAB ∈ HomTES(A,C).

Proof. Indeed, φAC(SA) = φBC(φAB(SA)) ⊂ φBC(SB) ⊂ SC , τC ◦φAC = τC ◦φBC ◦φAB =

τB ◦ φAB = τA and φAC(SA) = φBC(φAB(SA)) = φBC(τB,−1(τA(SA)). However, if

L0 ⊂ τB(SB) then

φBC(τB,−1(L0)) = τC,−1(L0) . (2.1)

Indeed φBC(τB,−1(L0)) ⊂ τ−1
C (L0). Conversely, if y ∈ τ−1

C (L0), since we have τ−1
C (L0) ⊂

τ−1
C (τB(SB)) we get y ∈ φBC(SB) so that there exists x ∈ SB such that φBC(x) = y.

Now, using (2), we get τC(y) = τB(x) so that τB(x) ∈ L0, x ∈ τB,−1(L0) and y ∈
φBC(τB,−1(L0)).

Using (2.1) for L0 = τA(SA), we get φBC(τB,−1(τA(SA)) = τC,−1(τA(SA)) = φAC(SA).

Definition 2.3 (Outer and symmetric tag consistent matchings). As we did previously,

we can define the set of outer tag consistent matchings Hom∗TES(A,B) and the set of

symmetric tag consistent matchings as SymTES(A,B) = HomTES(A,B) ∩Hom∗TES(A,B).

Remark 2.4. If two tagged embedded shapes share the same set of tags LA = LB,

then for any φ ∈ HomTES(A,B), Definition 2.2 says that φAB(SA) = τB,−1(τA(SA)) =
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τB,−1(LB) = SB, and φ ∈ SymTES(A,B). Conversely, if there exists φ ∈ SymTES(A,B),

then φAB(SA) = SB, LA = LB and again HomTES(A,B) = SymTES(A,B).

2.2 Growth mapped evolutions (GMEs)

A growth mapped evolution aims to model the growth scenario of an individual. The

different ages of the object are represented by a collection of shapes (St)t∈T in a fixed

ambient space E.

Definition 2.4 (Growth mapped evolution of embedded shapes). A growth mapped evo-

lution of embedded shapes (GME) in E indexed by T ⊂ R is given as

g = (T, (At)t∈T , (φs,t)s≤t∈T )

such that

1. At = (E,St) is an embedded shape for any t ∈ T ,

2. φs,t ∈ HomES(As, At) for any s ≤ t ∈ T ,

3. φs,t ◦ φr,s = φr,t for any r ≤ s ≤ t ∈ T .

We denote GME(T,E) the set of all such growth mapped evolutions.

Property (3) says that applying successively the deformations between time r and s

and between time s and t gives the deformation between r and t. Note that φt,t = Id. We

will also note φt,s = φ−1
s,t when s ≤ t. (φs,t)s≤t∈T will be called the flow of g.

Figure 2.5 – Illustration of a GME in an ambient space E.

At all time, the growing shape is formed by new points that just appeared and old

points.

Definition 2.5 (New points and old points). Let g = (T, (At)t∈T , (φs,t)s≤t∈T ) be a

GME. For any time s ∈ T and any point x ∈ Ss, we consider the evolution of x back-

wards and forwards through the deformation φ. It defines a path t 7→ xt = φs,t(x) in the

embedding space E. Now for any t ∈ T such that xt ∈ St, xt is called a new point at time

t or a new point of St if for any previous time r ∈ T , r < t, xr /∈ Sr, and called an old

point otherwise. Note at last that if xt ∈ St is a new point, for any following time r > t,

xr ∈ Sr.

The growth scenarios under tag constraints are defined likewise.

Definition 2.6 (Growth mapped evolution of tagged embedded shapes). A growth mapped

evolution of tagged embedded shapes (TGME) in E indexed by T ⊂ R is given as

g = (T, (At)t∈T , (φs,t)s≤t∈T )
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such that

1. At = (E,St, τt) is a tagged embedded shape in E for any t ∈ T ,

2. φs,t ∈ HomTES(As, At) for any s ≤ t ∈ T ,

3. φs,t ◦ φr,s = φr,t for any r ≤ s ≤ t ∈ T .

Remark 2.5 (Decomposition of the growth process). The evolution of a growing shape

can be described by the combination of two different processes. A pure deformation

process when there is no creation of new points and a pure expansion process when the

inner partial matching between two ages is reduced to the identity. In the first case, the

sets of tags, denoted Lt = τt(St), are constant. In the second case, the flow of the scenario

is trivial i.e. φs,t = Id for any s, t ∈ T .

New points correspond to the growth by expansion of the shape. A set of new points

comes necessarily with a new tag (or eventually several new tags).

Remark 2.6. Following Remark 2.2, the sets of tags (Lt)t∈T form a non decreasing se-

quence in the sense of set inclusion. This means, regarding the homology, that a shape

can only be expanding (the shape could yet shrink via a deformation similar to a scaling).

When two sets Ls and Lt are equal, the shape evolves only through a pure deformation. It

can be written for s < t ∈ T by

Ls  Lt ⇔ φs,t(Ss)  St .

Moreover, if there is no creation of points between times s and t, then there is no creation

between any intermediate times:

Ls = Lt ⇔ ∀r ∈ [s, t] ∩ T, Lr = Ls ⇔ ∀r ∈ [s, t] ∩ T, φr,t(Sr) = St .

Example 2.1 (Generation of a circle). Let us show how two growth mapped evolutions

can give two different explanations of the development of a circle. Let T = [0, 2π] be the

time interval of observations, E = R2, and St = {(cos(θ), sin(θ))|θ ∈ [0, t]} a collection of

arcs of the unit circle, growing from a point S0 = {(1, 0)} to the unit circle S2π = S1. Let

us define two GMEs gA and gB sharing E, T and (St)t∈T as previously introduced (see

Figure 2.6).

1. First scenario:

Complete gA with φAs,t = Id. The arcs are static. A new point appears at every

time t at the extremity (cos(t), sin(t)) ∈ E. The shape is only evolving by pure

expansion.

2. Second scenario:

Complete gB with φBs,t = Rt ◦ R−1
s where Rθ is the rotation of angle θ. Here the

arcs are gradually rotated and a new point appears at every time at the extremity

(1, 0) ∈ E. The speed of the rotation canceled exactly the speed of the creation of

new points so that the point at the extremity (1, 0) seems static.

In both cases, we have an expansion of the shape on its boundary, but in the second

scenario, new points are all created at the same location. The creation is constrained to a

specific area. This last case is similar to the development of an animal horn.
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Figure 2.6 – Illustration of Example 2.1. On the first row, the first scenario. Below, the
second scenario. The red arrows show where the shape is expanding and therefore point
to the direction in which the shape should be extending without any deformation. During
the second scenario, the ambient space is rotated as implied by the black arrows.

The tagging functions allow to encode a wide range of information to guide the recon-

struction of a coherent scenario. However, throughout this chapter, we will be interested

in one particular tagging function. As introduced in Remark 2.3, in some cases a canonical

temporal tag can extend a general GME to a TGME.

Example 2.2 (Minimal extension of a GME : Finite case.). For a GME defined on a

finite time set T = {tmin, . . . , ti, . . . , tmax}, we can construct by recurrence for any t ∈ T ,

the tagging functions τt : St → T by

— τtmin = tmin ,

— τti+1(x) =

{
τti ◦ φ−1

ti,ti+1
(x) if x ∈ φti,ti+1(Sti) ,

ti+1 otherwise.

Then the flow (φs,t)s<t∈T of the GME is consistent with this tag.

To enlighten this tag, consider a point x ∈ Ss and follow its evolution through the flow

backwards and forwards. The path t 7→ xt = φs,t(x) is defined in the embedding space E

since xt does not necessarily belong to St at the beginning of the evolution. Since the flow

is consistent with τ , t 7→ τt(xt) gives a constant value tbirth of T that is exactly the first

time t ∈ T such that xt ∈ St. According to Definition 2.5, xtbirth is a new point of Stbirth.

Then for any t ≥ tbirth, xt ∈ St. This tag is consequently called the birth tag of the GME.

Note that since T is finite, tbirth always exists.

In the next sections, we will see how to define rigorously the birth tag of any GME

on a compact set T . It will require some regularity conditions on the set of shapes to

ensure the existence of tbirth. We can yet already give an example on the circles where T

is a closed interval and exactly one point appears at each time.

Example 2.3 (Generation of a circle). Consider gA and gB as defined in Example 2.1.

As we saw previously, gA is expanding anticlockwise and gB is expanding clockwise. In

both cases, the shapes at any time t ∈ [0, 2π[ are the arc image of [0, t] ⊂ [0, 2π[ by the

function s 7→ (cos(s), sin(s)). Exactly one point appears at any time t ∈ T except for the

last time t = 2π (see the red arrows in Figure 2.6). In gA, this new point appears at the

position (cos(t), sin(t)) such that we define τAt (cos(t), sin(t)) = t. All the other points are

old points, so we import their tag from their older position. In gB, this new point appears

always at position (1, 0) such that we define τBt (1, 0) = t. Then again, all the other tags
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are determined to be consistent with the deformation. In fine, for any t ∈ T , we define

τAt : SAt → T and τBt : SBt → T displayed in Figure 2.7 and defined by

τAt (cos(θ), sin(θ)) = θ for any θ ∈ [0, t], θ 6= 2π ,

τBt (cos(θ), sin(θ)) = t− θ[2π] for any θ ∈ [0, t], θ 6= 2π .

Hence, (φAs,t)s<t∈T and (φBs,t)s<t∈T are respectively consistent with τA and τB so that gA

and gB can be extended to growth mapped evolutions of tagged shapes (TGMEs) and these

tagging functions are the birth tags as defined in Example 2.2 of gA and gB. See Fig-

ure 2.7.

Figure 2.7 – The shapes St (for t ∈ {π/2, π, 3π/4, 2π}) are colored in function of τt, on
top for gA and below for gB. The red indicates the points that just appeared at the end
of the growth process and the blue the first points.

Remark 2.7. The example of the circles illustrate the role of the flow to retrieve the

evolution of a growing shape. Note that (φBs,t)s<t∈T is not consistent with τA and likewise

(φAs,t)s<t∈T is not consistent with τB. The tagging functions allow to discriminate the

hypothetical scenarios.

2.3 Morphisms between GMEs

Morphisms between GMEs are the core of this framework. They allow us to generate a

set of GMEs sharing a common growth pattern and therefore to organize them. Following

the ideas illustrated in Figure 2.3, a morphism between two GMEs gA and gB requires a

time warping ρ between TA and TB. Then at any time t, a spatial mapping matches the

two ”shapes” A and B at age t and ρ(t) respectively. Moreover, these mappings must be

consistent with the respective flows of each GME. This means that (assume to simplify

that there is no time warping here) if we consider two points x ∈ SAs and y ∈ SBs at any

aligned ages s ∈ T , then the spatial mappings between the two GMEs send the evolution

of x in gA, t 7→ xt = φAs,t(x), to the evolution of y in gB, t 7→ yt = φBs,t(y). Finally if the

GMEs are tagged, the spatial mappings must also be consistent with the tags (modulo

again a mapping between the tag sets of gA and gB).

Definition 2.7. (i) For any two GMEs gA and gB, the set HomGME(gA, gB) of morphisms

between gA and gB is given by a time warping ρAB : TA → TB (non decreasing function)

and a set of spatial mappings (qABt : SAt → SB
ρAB(t)

)t∈TA, such that for any s ≤ t ∈ TA

(1) qABt (SAt ) = SBρAB(t) (2) φBρAB(s),ρAB(t) ◦ q
AB
s = qABt ◦ φAs,t

∣∣
SAs

.
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(ii) For any two TGMEs gA and gB, the set HomTGME(gA, gB) of morphisms bewteen gA

and gB is given by a time warping ρAB : TA → TB, a label mapping ηAB : LA → LB and

a set of spatial mappings (qABt : SAt → SB
ρAB(t)

)t∈TA, such that for any s ≤ t ∈ TA

(1) qABt (SAt ) = SBρAB(t) (2) φBρAB(s),ρAB(t) ◦ q
AB
s = qABt ◦ φAs,t

∣∣
SAs

.

Moreover, for any t ∈ TA and any y ∈ SB
ρAB(t)

, there exists x ∈ SAt such that qABt (x) = y

and

(3) τBρAB(t)(y) = ηAB(τAt (x)) .

When qABt is one-to-one, this means that τB
ρAB(t)

◦qABt = ηAB ◦τAt but this is not equivalent

to (3) if qABt is not one-to-one.

This definition can be illustrated by the following commutative diagram. On the top

row, a scenario gA, on the bottom row, its image gB.

SAs SAt SAu

SBρ(s) SBρ(t) SBρ(u)

qs

φAs,t

qt

φAt,u

qu

φB
ρ(s),ρ(t)

φB
ρ(t),ρ(u)

Remark 2.8. If qABs is invertible and ηAB = Id, point (3) in Definition 2.7 implies

that the mapping preserve the tags. If (LAt )t∈TA is moreover strictly increasing then any

time warping ρAB of HomTGME(gA, gB) is necessarily strictly increasing. Indeed, for any

s < t ∈ TA, LAs  LAt implies that LB
ρAB(s)

= LAs  LAt = LB
ρAB(t)

. Then since (LBt )t∈TB is

at least increasing, ρAB(s) < ρAB(t). Actually, the equalities (LAt = LB
ρAB(t)

)t∈TA define

here completely ρAB.

The next examples intend to illustrate some properties and issues of growth scenarios

generated as the images of a template scenario. It brings indeed the possibility for a shape

to enter in collision with itself and self-intersect during the evolution. This phenomena

happens when the spatial mapping qAB is not injective. Indeed, even if a flow induces a

diffeomorphic deformation of the ambient space, a new point of the shape can meet an old

one (see when the arcs of the circle are closing in the next example). We will see at the

end of this chapter, from our choice of modeling that we cannot distinguish shapes with a

collision point and shapes without collision point (to separate for example curves with or

without intersections). In practice, we aim for one-to-one mappings but with a possible

localized exception when the first state of a shape is degenerated. For example, at the

beginning of its growth, a horn is reduced to a point that will form its tip (see Chapter 4).

The different biological interpretations of a collision are linked to the complexity of

the third condition in Definition 2.7.

Example 2.4 (Collision and overlapping I). The development of the unit circle presented

in Example 4.1 can be seen as the image of a simpler TGME gI defined by a collection of

intervals
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— It = [0, t], t ∈ T I = [0, 1] ,

— φIs,t = Id ,

— τ It : It → T, x 7→ x .

gI is a static segment, extending on its right side. To retrieve the TGMEs gA and gB of

Example 2.3, the morphisms mIA : gI 7→ gA and mIB : gI 7→ gB can be defined by

— ρIA, ρIB : T I → T, t 7→ 2πt ,

— ηIA, ηIB : T I → T, t 7→ 2πt ,

— qIAt : It → St, x 7→ (cos(θ), sin(θ)), with θ = 2πx ,

— qIBt : It → St, x 7→ (cos(θ), sin(θ)), with θ = 2π(t− x) .

Indeed, all shapes are reduced to a singleton at time 0 so that necessarily in both cases

q∗0(0) = (1, 0) (where ∗ denote simultaneously a property for A and B). Then, Defi-

nition 2.7 (2) implies that once two points are mapped by a morphism, their respective

evolutions are also mapped together. Hence, since there is no deformation on gI and gA,

the spatial mappings qIAt are constant in time (x 7→ qIAt (x) for any x ∈ It). For the other

morphism, we get that qIBt (0) = φB0,2πt(q
IB
0 (0)) = (cos(2πt), sin(2πt)).

As regards the tags, in both cases, for any t ∈ T I such that t 6= 1, the spatial mappings

q∗t are one to one and the morphisms are consistent with the tags. Indeed, we can easily

check that

τA2πt(cos(θ), sin(θ)) = ηIA(x) = 2πx, with θ = 2πx ,

τB2πt(cos(θ), sin(θ)) = ηIB(x) = 2πx, with θ = 2π(t− x)

coincide with the tags introduced in Example 2.3.

At the end of the evolution, the segment [0, 1] is sent to the closed circle. The point (1, 0)

of the circle has two inverse images and only one of its inverses gives its label (adjusted by

η). It can a priori be seen as both a new point of S2π, as the image q∗1(1), and the initial

point of S0, as the image q∗1(0). Yet, when the inverse images have not been created at the

same time, it is necessarily the oldest one that gives its tag. More precisely, Definition 2.2

(2) imposes τ∗2π(1, 0) = τ∗2π(φ∗0,2π(1, 0)) = τ∗0 (1, 0) = 0.

Remark 2.9. Note in this example that since φAs,t = Id for any s, t ∈ T , the flow does not

play any role in the collision. It is the only consequence of the intrinsic expansion.

Moreover, when the spatial mappings are not invertible the apparent choice of tags in

the definition of the morphism is not as free as it could seem. We will progressively see

that the tags have a natural ordered structure induced by Definition 2.2.

Example 2.5 (Collision and overlapping II). Figure 2.8 illustrates the possibility of an

overlapping during the development of animal horns. When the deformations of the am-

bient space are given by diffeomorphisms, the evolution of the shape outside the areas of

creation is diffeomorphic. Hence, an overlapping can only start at the neighborhood of a

new point.

We turn back to our presentation of morphism between growth mapped evolutions and

describe now the composition laws.
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Figure 2.8 – Curved horns with and without overlapping. On these examples, we assume
that the apparition of new points occur at the base of the horns so that a collision can
only appear around this base. On the left, no collision should happen since the top of
the horn is moving away from the base of the horn. On the middle, the top of the horn
previously hit once the base, then the apparition of new points created the overlapping.
On the right, likewise, a collision and an important overlapping may be about to occur.

Proposition 2.2. i) If mAB ∈ HomGME(gA, gB) and mBC ∈ HomGME(gB, gC) are given

by

mAB = (ρAB, (qABt )t∈TA) and mBC = (ρBC , (qBCt )t∈TB ),

then mAC .
= mAB ◦mBC =

(
ρBC ◦ ρAB, (qBC

ρAB(t)
◦ qABt )t∈T

)
∈ HomGME(gA, gC).

Likewise,

ii) If mAB ∈ HomTGME(gA, gB) and mBC ∈ HomTGME(gB, gC) are given by

mAB = (ρAB, ηAB, (qABt )t∈TA) and mBC = (ρBC , ηBC , (qBCt )t∈TB ),

then mAC .
= mAB◦mBC =

(
ρBC ◦ρAB, ηBC ◦ηAB, (qBC

ρAB(t)
◦qABt )t∈T

)
∈ HomTGME(gA, gC).

Proof. We only check the transitivity of the composition for the TGMEs since it implies

immediately the same property for the GMEs. For any t ∈ TA, mAC is given by qACt =

qBC
ρAB(t)

◦ qABt , ρAC = ρBC ◦ ρAB and ηAC = ηBC ◦ ηAB. We verify the three properties of

Definition 2.7 (ii). For property (1), we have

qACt (SAt ) = qBCρAB(t)(S
B
ρAB(t)) = SCρBC(ρAB(t)) = SCρAC(t) .

Then for property (2), we have for any s ≤ t ∈ TA

φCρAC(s),ρAC(t) ◦ q
AC
s = φCρBC◦ρAB(s),ρBC◦ρAB(t) ◦ q

BC
ρAB(s) ◦ q

AB
s

= qBCρAB(t) ◦ φ
B
ρAB(s),ρAB(t) ◦ q

AB
s

= qBCρAB(t) ◦ q
AB
t ◦ φAs,t = qACt ◦ φAs,t .

Finally, for property (3) we see that for any r ∈ TA and for any z ∈ SCt with t = ρAC(r),

since mBC is a morphism, there exists y ∈ SBs with s = ρAB(r) such that qBCs (y) = z and

τCt (z) = ηBC(τBs (y)). Moreover, since mAB is a morphism, there exists x ∈ SAr such that

qAr (x) = y and τBs (y) = ηAB(τAr (x)). Thus, we have z = qBCs (y) = qBCs ◦ qABr (x) = qACr (x)

and

τCt (z) = ηBC(τBs (y)) = ηBC(ηAB(τAr (x))) = ηAC(τAr (x)) .
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3 Space of GMEs

3.1 Spatio-temporal group action

The definition of a set of morphisms connecting GMEs can be parallel to the first layer

of the construction of shape spaces. To go further, let us show that a large subset of

morphisms can be identified to a natural group action. Consider now that T = [tmin, tmax]

and E is a smooth manifold. Denote Diff(T )+, Diff(L) and Diff(E) the groups of C1

diffeomorphisms on T (increasing), L and E respectively. Denote TGME(T, L,E) the set

of growth mapped evolutions of tagged embedded shapes in the space E sharing the same

timeline T and the same set of tags L. Denote likewise GME(T,E) the set of GMEs on

T and E.

Proposition 3.1. Consider G(T, L,E)
.
= Diff(T )+ × Diff(L) × Diff(E)T and for any

Ψ = (ρ, η, ψ = (ψt)t∈T ), Ψ′ = (ρ′, η′, ψ′ = (ψ′t)t∈T ) ∈ G(T, L,E) the composition law

defined by

Ψ ∗Ψ′
.
= (ρ ◦ ρ′, η ◦ η′, (ψρ′(t) ◦ ψ′t)t∈T )) ∈ G(T, L,E) . (2.2)

Then, we have

i) (G(T, L,E), ∗) is a group with neutral element ΨId = (Id, Id, Id = (Idt)t∈T ) and

Ψ−1 = (ρ−1, η−1, (ψ−1
ρ−1(t)

)t∈T ).

ii) G(T, L,E) acts on TGME(T, L,E). For any gA ∈ TGME(T, L,E), any Ψ =

(ρ, η, ψ) ∈ G(T, L,E), we define gB
.
= Ψ · gA by

(1) SBρ(t) = ψt(S
A
t ) (2) φBρ(s),ρ(t) = ψt ◦ φAs,t ◦ ψ−1

s

(3) τBρ(t) = η ◦ τAt ◦ ψ−1
t

Ψ induces thus a morphism m = (ρ, η, (qABt )t∈T ) ∈ HomTGME(gA, gB) with qABt = ψt|
SAt

.

Likewise, G(T,E)
.
= Diff(T )+ ×Diff(E)T acts on GME(T,E).

Proof. The law in associative:((
ρ, η, (ψt)t∈T

)
◦
(
ρ′, η′, (ψ′t)t∈T

))
◦
(
ρ′′, η′′, (ψ′′t )t∈T

)
=
(
ρ ◦ ρ′ ◦ ρ′′, η ◦ η′ ◦ η′′,

(
ψρ′◦ρ′′(t) ◦ ψ′ρ′′(t) ◦ ψ

′′
t )t∈T

))
=
(
ρ, η, (ψt)t∈T

)
◦
(
ρ′ ◦ ρ′′, η′ ◦ η′′, (ψ′ρ′′(t) ◦ ψ

′′
t )t∈T

)
=
(
ρ, η, (ψt)t∈T

)
◦
((
ρ′, η′, (ψ′t)t∈T

)
◦
(
ρ′′, η′′, (ψ′′t )t∈T

))
.

The remaining part of i) is straightforward. Regarding ii), if gC = (ρ′, η′, ψ′) · gB then

SCρ′◦ρ(t) = ψ′ρ(t)(S
B
ρ(t)) = ψ′ρ(t) ◦ψt(S

A
t ), φCρ′◦ρ(s),ρ′◦ρ(t) = ψ′ρ(t) ◦φ

B
ρ(s),ρ(t) ◦ (φ′ρ(s))

−1 = (ψ′ρ(t) ◦
ψt)◦φAs,t◦(ψ−1

s ◦(ψ′ρ(s))
−1) = (ψ′ρ(t)◦ψt)◦φ

A
s,t◦(ψ′ρ(s)◦ψs)

−1 and τCρ′◦ρ(t) = η′◦τBρ(t)◦(ψ
′
ρ(t))

−1 =

(η′ ◦ η) ◦ τAt ◦ (ψ′ρ(t) ◦ ψt)
−1.

Example 3.1 (Spatial and temporal reparameterizations). The restrictions of G(T, L,E)

to the subgroups Diff(T )+ and Diff(E) define the basic reparameterizations in time or

in space of a growth evolution. For any ρ ∈ Diff(T ) and any ψ ∈ Diff(E), any g ∈
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TGME(T, L, T ), the new growth scenarios gρ
.
= (ρ, Id, Id) · g and gψ

.
= (Id, Id, ψ) · g are

given respectively by

gρ = (T, (E,Sρ−1(t), τρ−1(t))t∈T , (φρ−1(s),ρ−1(t))s≤t∈T ) ,

gψ = (T, (E,ψ(St), τt ◦ ψ−1)t∈T , (ψ ◦ φs,t ◦ ψ−1)s≤t∈T ) .

3.2 Centered growth mapped evolution and centering

Let us recall that we assume that T = [tmin, tmax] and E is a smooth manifold. We

also assume now that the flow (φs,t)s≤t∈T of a GME is a set of diffeomorphisms on the

ambient space (a subset of Diff(E)).

We introduced previously the concepts of pure deformation and pure expansion to

discriminate specific behaviors during a growth scenario. In the case of a pure expansion

at all time, we will say that the GME is centered:

Definition 3.1. We say that g is a centered growth mapped evolution of embedded shapes

if φs,t = Id for any s ≤ t ∈ T . The same notion is immediately extended to tagged

embedded shapes.

Figure 2.9 – Evolution of a centered scenario. The colors of the curves correspond to
the different tags. (The dot curves are drawn by anticipation to highlight the absence of
deformation.)

The first development of the unit circle (GME gA) defined in Example 2.1 is centered.

Another example is displayed in Figure 2.9.

Remark 3.1. When a GME is centered, we get that for any s ≤ t ∈ T , Ss = φs,t(Ss) ⊂ St
so that the shapes form a sequence of nested sets. In particular, with T = [tmin, tmax], any

shape St can be seen as a subset of the end shape Stmax.

If g is a centered TGME, then its tagging function is constant in time. We can write

for any t ∈ T , τt = τ|St.

We will see now that any GME g over an embedding space E can be transformed into

a centered one. This will have a important consequence on how we can model the GME.

Indeed, the set of these elementary scenarios in the orbit of g forms a small orbit for a

subgroup of G(T,E) much smaller. This new orbit highlights the growth process share

by the original orbit. Informally, it means that we can attach to any scenario g a less

complex scenario that still encodes how g is expanding independently of its shape.
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Proposition 3.2 (Centering a GME or a TGME). If g = (T, (E,St, τt)t∈T , (φs,t)s≤t∈T ) is

a growth mapped evolution of tagged embedded shapes and c ∈ T , then Φc = (Id, Id, (φt,c)t)

belongs to G(T, L,E) and defines a new element of TGME(T, L,E)

gc
.
= Φc · g .

gc is centered and called the centered evolution of g at time c. The mapping Φc does not

depend on the tagging function τ . The same construction can be applied to the GMEs.

Proof. Indeed, gc = (T , (E,St, τ t)t∈T , (φs,t)s≤t∈T ) is given by T = T , E = E and

(1) St
.
= φt,c(St) , (2) φs,t

.
= φt,c ◦ φs,t ◦ φc,s = Id ,

(3) τ t
.
= τt ◦ φc,t .

The action of Φc consists in pushing forward and pulling backward through the the

flow of the GME every shape St at time c. This gives for any time t ∈ T prior to c the

future image φt,c(St) ⊂ Sc of St at time c and gives a fictional inverse image φ−1
c,t (St) ⊃ Sc

at the earlier time c of the later shapes St when t > c. See an example on Figure 2.10.

Remark 3.2. Note that if g is a centered GME, g is its own centered evolution at any

time: for any c ∈ T, gc = g. Moreover, all centered evolutions of a general GME g are

equal up to an invertible spatial mapping: for any pair (c, c′) ∈ T , φc,c′ ∈ Diff(E) generates

an element Φc,c′ = (Id, (φc,c′)t) = Φc′ ∗ Φ−1
c of G(T,E) and gc′ = Φc,c′ · gc. The choice of

c is thus meaningless and tmin will be the reference.

Definition 3.2 (Initial centered evolution). For any GME g, when c = tmin, we call gc
the initial centered evolution of g. In the following, it will simply be denoted g and we will

denote Φ = (Id, (φt,tmin)t) (respectively Φ = (Id, Id, (φt,tmin)t) if g is a TGME) so that

g
.
= Φ · g and g

.
= Φ−1 · g . (2.3)

Remark 3.3 (Invertibility of the centering). Since Φ belongs to G(T,E) (respectively to

G(T, L,E)), the orbit of any GME g is generated by its initial centered evolution g i.e.

Og = Og ,

where Og = G(T,E) · g (resp. Og = G(T, L,E) · g).

Any general GME can thus be retrieved from its initial centered evolution and its flow.

This means that GMEs can be generated by centered evolutions and flows. Let us explicit

it in the case of TGMEs. Consider any centered evolution g∗ and any flow (φs,t)s≤t∈T
of Diff(E) that satisfies the transitive property (3) of Definition 2.4. Denote (St)t∈T its

set of shapes and τ∗ its tag (constant in time). Then Φ = (Id, Id, (φt,tmin)t) belongs to

G(T, L,E) so that g
.
= Φ−1 · g∗ belongs to TGME(T, L,E). This new TGME is defined by

g = (T, (E, (St), τt)t∈T , (φs,t)s<t∈T ) , (2.4)
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Figure 2.10 – On the first row, a general GME g. On the middle row, gtmin
the initial

centered evolution of g (see Definition 3.2). Below, the centered evolutions gti of g for
every times ti. On this last row, we do not display the trivial evolution on a time line of
each gti but only their final age with a track of every younger ages. Note that the flow is
similar to a rotation anticlockwise on the ambient space. Applying this flow to the initial
centered scenario restores the original scenario g (see Remark 3.3).

with

St
.
= φtmin,t(St) and τt

.
= τ∗ ◦ φt,tmin

∣∣St . (2.5)

Moreover, g∗ is the initial centered evolution of g.

Proposition 3.3 (Stability of centered TGMEs). The image of a centered TGME by an

element Ψ = (ρ, η, (ψt)t∈T ) ∈ G(T, L,E) is centered if and only if (ψt)t is constant in time.

Hence, it defines an action of the subgroup Diff(T )+×Diff(L)×Diff(E) of G(T, L,E) on

the subset of TGME(T, L,E) of centered evolutions.

Proof. For any gA, gB ∈ TGME(E) such that gA = Ψ · gB, gA and gB are centered if and

only if φAs,t = φBρ(s),ρ(t) = Id for any s ≤ t ∈ TA. Then ii) (2) in Proposition 3.1 gives that

ψs = ψt for any s, t ∈ TA.

Consequently, two TGMEs gA, gB ∈ TGME(T,E) are in the same G(T, L,E)-orbit if

and only if ḡA and ḡB are in the same Diff(T )+×Diff(L)×Diff(E)-orbit. On the diagram
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below, Ψ ∈ G(T, L,E) exists if and only if Ψ̄ ∈ Diff(T )+ ×Diff(L)×Diff(E) exists.

gA ḡA

gB ḡB

Ψ

ΦA

Ψ̄

ΦB

(2.6)

We have explicitly for Ψ = (ρ, η, (ψt)t∈T ) (remind in the following derivations that tmin =

ρ(tmin))

Ψ̄ = ΦB ◦Ψ ◦ (ΦA)−1

=
(
ρ, η, φBρ(t),ρ(tmin) ◦ ψt ◦ φ

A
tmin,t

)
=
(
ρ, η,

(
ψtmin ◦ φAt,tmin

◦ ψ−1
t

)
◦ ψt ◦ φAtmin,t

)
=
(
ρ, η, ψtmin ◦ φAtmin,tmin

)
= (ρ, η, ψtmin) .

In conclusion, we can reconstruct the G(T, L,E)-orbit of gA from ḡAtmin
, the action of

Diff(T )+×Diff(L)×Diff(E) to retrieve all the centered GMEs of the orbit and finally the

set of all diffeomorphic flows (φs,t)s≤t∈T on the ambient space. Again, the GMEs share

the same decomposition of their orbits. Figure 2.11 illustrates this structure.

*

Figure 2.11 – Growth Evolution Space. The gray area represents an orbit of centered GMEs
under the action of Diff(T )+ × Diff(E). The trivial evolution of each centered GME is
implicitly displayed by a unique shape. The action of the flows of the embedding space is
then represented by the vertical fibers.
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3.3 Metrics on GMEs

In this section, the ambient space is fixed to E = Rd. The aim, here, is to reproduce

the construction of a Riemannian structure on the spaces of growth mapped evolutions.

The first step is to consider a Reproducible Kernel Hilbert Space (RKHS) to model a sub-

space of TIdG(T,E) the tangent space at the Identity of the acting group of deformations

(see Figure 2.12). This subspace has then a canonical image in any other tangent space

TgG(T,E). These images allow then to build a subgroup of G(T,E) with all the paths

parallel to these subspaces (see Figure 2.13).

Figure 2.12 – Description of the tangent
space at Ψ = (ρ, (ψt)t∈T ) ∈ G(T,E). A
small variation of ρ is an 1D vector field on
T , denoted h, and a small variation of all
the (ψt)t is a time-varying vector field on
E, denoted ṽ.

Figure 2.13 – We consider all paths in
G(T,E) such that the velocity vector always
belongs to the image of H × Ṽ . These im-
ages are deduced by the differential of the
right translation in G(T,E).

Let us consider Ṽ , a RKHS of space-time functions ṽ : T ×E → E, and H a RKHS of

functions h : T → R on T vanishing at the boundaries of T and satisfying the regularity

assumptions {
supT×E(|ṽ(t, x)|+ |∂xṽ(t, x)|) ≤ K|ṽ|Ṽ ,
supT (|h(t)|+ |h′(t)|) ≤ K|h|H .

(2.7)

we have the following theorem:

Theorem 3.1. For any (h = (hs)s∈[0,1], ṽ = (ṽs)s∈[0,1]) ∈ L2([0, 1], H × Ṽ ), we have

existence and uniqueness of the flow
∂sψs(t, x) = ṽs(ρs(t), ψs(t, x)) ,

∂sρs(t) = hs(ρs(t)) ,

ρ0 = Id, ψ0 = Id ,

(2.8)

between s = 0 and s = 1. If we note Ψh,ṽ
1 = (ρ1, ψ1) the solution at time 1, then

GH×Ṽ (T,E)
.
= { Ψh,ṽ

1 | (h, ṽ) ∈ L2([0, 1], H × Ṽ )} (2.9)
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is a subgroup of G(T,E) and

D(Ψ,Ψ′) = inf{ ‖(h, ṽ)‖2 | Ψh,ṽ
1 ∗Ψ = Ψ′} (2.10)

is a right invariant distance on GH×Ṽ (T,E).

Proof. The existence and uniqueness of the flow is an adaptation of a similar proof given

in [52] where the condition (2.7) is an extension of the so called admissibility condition

introduced in [50]. Indeed, the existence and uniqueness of ρ follows immediately. Then,

one can consider separately the evolution of ψ at each time t. If t ∈ T is fixed, one can

introduce the control u defined for any (s, x) ∈ T ×E by us(x) = ṽs(ρs(t), x). We retrieve

thus the usual setting to build a group of spatial deformation and equation (2.7) ensures

that u satisfies the admissibility condition. We deduce thus the existence and uniqueness

of ∂sϕs(x) = us(ϕs(x)) and we have ψ(t, ·) = ϕ.

Consider then on L1([0, 1], H × Ṽ ) the operation
(
(h, ṽ), (g, w̃)

)
→ (h, ṽ) ? (g, w̃) de-

fined by s 7→
(
2(h2s, ṽ2s)11s≤1/2+2(g2s, w̃2s)11s>1/2

)
. This operation is stable on L1([0, 1], H×

Ṽ ) and we have Ψ
(h,ṽ)?(g,w̃)
1 = Ψh,ṽ

1 ◦ Ψg,w̃
1 . Moreover, the equality ‖(h, ṽ) ? (g, w̃)‖1 =

‖(h, ṽ)‖1 + ‖(g, w̃)‖1 ensures that

d(Ψ,Ψ′)
.
= inf{ ‖(h, ṽ)‖1 | Ψh,ṽ

1 ∗Ψ = Ψ′}

satisfies the triangle inequality and we deduce that it defines a right invariant distance on

GH×Ṽ (T,E)
.
= { Ψh,ṽ

1 | (h, ṽ) ∈ L1([0, 1], H × Ṽ )} . (2.11)

The last step is to show that we can retrieve the L2 norm by time reparameteriza-

tions. Consider (h, ṽ) ∈ L1([0, 1], H × Ṽ ) and ε > 0. Define the function sε : t 7→( ∫ t
0 |hr, ṽr| dr + εt

)
/(‖(h, ṽ)‖1 + ε). Then sε is absolutely continuous and strictly in-

creasing from [0, 1] to [0, 1]. Its inverse s 7→ tε(s) is also absolutely continuous and

we have t′ε(s) = (‖(h, ṽ)‖1 + ε)/
(
|htε(s), ṽtε(s)| + ε

)
a.e. Finally, if we define (g, w̃) by

(gs, w̃s)
.
= t′ε(s)(hs, ṽs), we have |(gs, w̃s)| ≤ ‖(h, ṽ)‖1 + ε for any s ∈ [0, 1], so that

(g, w̃) ∈ L∞([0, 1], H × Ṽ ) ⊂ L2([0, 1], H × Ṽ ) and ‖(g, w̃)‖2 ≤ ‖(g, w̃)‖1 ≤ ‖(h, ṽ)‖1 + ε.

Moreover, we have Ψg,w̃
1 = Ψh,ṽ

1 . Hence, we can define for any (h, ṽ) ∈ L1([0, 1], H × Ṽ )

a sequence ((g, w̃)n)n≥0 in L2([0, 1], H × Ṽ ) such that Ψ
(g,w̃)n
1 = Ψh,ṽ

1 for any n ≥ 0 and

lim inf ‖(g, w̃)n‖2 ≤ ‖(g, w̃)‖1. It follows that

GH×Ṽ (T,E)
.
= { Ψh,ṽ

1 | (h, ṽ) ∈ L2([0, 1], H × Ṽ )} (2.12)

and that d ≡ D.

This right invariant distance can be seen as the Riemannian distance for the metric

structure given at (Id, Id) ∈ GH×Ṽ (T,E) by the metric on H × Ṽ . Now, we are ready

to deduce a Riemannian structure induced by the action of the space-time deformation

groups GH×Ṽ (T,E) on any orbit Og0
.
= { Φ · g0 | Φ ∈ GH×Ṽ (T,E)}. The difference

between two scenarios g and g′ of the orbit Og0 is evaluated by the energy required to

generate the shortest path in GH×Ṽ (T,E) that deforms g to g′.

d(g, g′)
.
= inf{D((Id, Id),Ψ) | g′ = Ψ · g} . (2.13)
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At last we deduce from standard arguments on homogeneous spaces that

Theorem 3.2. The function d defines a pseudometric on the orbit Og0.

Proof. This follows from standard arguments when considering a right-invariant distance

on a group acting on a homogeneous space (see [38]).

4 Canonical temporal tag

A growth mapped evolution of tagged embedded shapes (TGME) is described by a

sequence of tagged embedded shapes (E,St, τt)t∈T and a flow (φs,t)s≤t∈T . The last remark

says that the first object is equivalent to a centered evolution. The main aim of this

framework is to exhibit a minimal set of parameters to describe an individual. We will see

in the next section that a centered evolution can be reduced (with one regularity condition)

to the set of points of one mega shape and a tag on this set. More precisely, the tag will

extract the shape at any given time t ∈ T from this mega shape.

4.1 Birth function and birth tag

Example 2.2 in Section 2 introduced a method to construct a temporal tag on any GME

with an finite indexing set T . This construction was then extended on the developments

of the unit circle in Example 2.3. In the two following sections, we will show that a large

class of GME can be equipped with a canonical temporal tag.

Denote § = (St)t∈T the time-varying shape as a single entity. A tagging function

(τt)t∈T allows to follow through the time a set of time-varying points inside § from their

creation to the end of the time index. The birth tag we introduced in the examples cited

above says exactly for any time-varying point when it appears in §. We will first introduce

an auxiliary function, the birth function, then formally define the birth tag and study

some of their properties. In the next section, we will ensure that this tag can extend a

GME to a GTME.

Consider a general GME g = (T, (E,St)t∈T , (φs,t)s≤t∈T ) on T = [tmin, tmax]. Recall

that we denote g = (T, (E,St)t∈T , (Id)s≤t∈T ) its initial centered evolution. Define for any

GME g

Sall
.
= ∪t∈Tφt,tmin(St)

reduced to Sall = ∪s∈TSt = Stmax if g is centered. Let us start with centered GMEs. The

growth process is given by pure expansion so that the shapes are simply nested and not

deformed.

Definition 4.1 (Birth function of a centered GME). When a GME g is centered, one can

introduce a function b : Sall → T called hereafter the birth function and defined by

b(x)
.
= inf{t ∈ T | x ∈ St} .

Note that since T is closed, b(x) ∈ T . This function determines the onset of a point x in

the evolution of shapes (St)t∈T .

The notion of birth function can be defined for any arbitrary GME as following:
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Definition 4.2 (Birth function for a general GME). The birth function b of a GME

g is defined as the birth function of its initial centered evolution g (see Definition 3.2).

Hence, b is defined on Sall = ∪t∈TSt = ∪t∈Tφt,tmin(St) and for any x ∈ Sall we have

b(x) = inf{t ∈ T | φtmin,t(x) ∈ St} .

Note that this definition is coherent with the previous one since a centered GME is its

own initial centered evolution. The birth function is thus defined on the projection Sall

of all shapes at time tmin. These birth dates can now be pushed forward to the original

shapes (St)t∈T to define the birth tag.

Definition 4.3 (Birth tag). For any GME g, we define a canonical temporal tag called

the birth tag and given by

τ bt : St → T, τ bt
.
= (b ◦ φt,tmin)|St . (2.14)

Note that for any x ∈ St, Definition 4.2 gives

τ bt (x) = inf{s ∈ T | φt,s(x) ∈ Ss} . (2.15)

Remark 4.1. When the GME is centered, the birth function and the birth tag coincide

i.e. τ bt = b for all t ∈ T .

Example 4.1 (Birth tags of the circles). In examples 2.1 and 2.3, two GMEs gA and gB

model the development of the unit circle. Let recall that T = [0, 2π], E = R2, and St =

{(cos(θ), sin(θ))|θ ∈ [0, t]} are common to gA and gB, but φAs,t = Id and φBs,t = Rt ◦ R−1
s

where Rθ is the rotation of angle θ. Then, for any t ∈ T , any θ ∈ [0, 2π[, we defined the

tags

τAt (cos(θ), sin(θ)) = θ ,

τBt (cos(θ), sin(θ)) = t− θ[2π] .

These tags are the birth tags as formalized in Definition 4.3. Note that τAt = bA for all

t ∈ [0, 2π]. See Figure 2.7.

Remark 4.2 (Continuity of the birth function). One can see in Figure 2.7 that on both

scenarios gA and gB, the collision happening at the end when the curve closes itself induces

a discontinuity of the birth function and the birth tag.

A natural question is to understand how the birth function characterizes a GME. In

order to extract some condensed parameters of a GME, we would like for a centered GME

that the birth function and the set of all points Sall allow to retrieve the evolution (and

then extend it to the general GMEs). However, the birth function does not precise if a

point x that appears at time t = b(x) belongs to St (for a centered GME). In other words,

is the infinium a minimum in Definition 4.1 ? For each label, the answer must be the same

for all associated points. Indeed, let us recall that the flow of a TGME is a set of tag

consistent partial matchings (see Definition 2.2 and Remark 2.2). This property enforces

all points associated to one label to belong to the same subset of shapes of the complete

evolution (St)t∈T .
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In fine, the answer requires some topological regularity on the set of shapes. Some

examples will be presented in Remark 4.6 to illustrate this property.

Definition 4.4 (Right continuity (RC)). We say that a GME g is right continuous if

for any t ∈ T and any decreasing sequence (tn)n≥0 of element of T converging to t we have

St =
⋂
n≥0

φtn,t(Stn) .

Remark 4.3. When g is centered the notion of right-continuity is reduced to the property

St =
⋂
n≥0

Stn .

Proposition 4.1. If g is a right continuous centered GME then for any t ∈ T

x ∈ St iff b(x) ≤ t .

Proof. Indeed, if x ∈ St, then by definition of b, we have b(x) ≤ t. Moreover, if b(x) < t,

then there exists s ∈ T , such that b(x) ≤ s < t so that x ∈ Ss ⊂ St. Now if b(x) = t and

x /∈ St, then there exists a decreasing sequence tn of elements of T converging to t such

that x ∈ Stn . Using the right continuity, we get x ∈ St which is a contradiction. Hence, if

b(x) = t, we have x ∈ St.

The proposition can be extended to any GME.

Proposition 4.2. If g is a right continuous GME then for any t ∈ T , any x ∈ St,

x ∈ φs,t(Ss) iff τ bt (x) ≤ s .

Proof. Indeed, if x ∈ φs,t(Ss), then by definition of τ bt , we have τ bt (x) ≤ s. Moreover,

τ bt (x) ≤ s⇒ b ◦ φt,tmin(x) ≤ s
⇒ φt,tmin(x) ∈ Ss
⇒ φtmin,s ◦ φt,tmin(x) ∈ Ss
⇒ φs,t(x) ∈ Ss .

In conclusion, given any right continuous centered GME g, the single shape Sall and

the birth function completely describe g. Explicitly, we have for any t ∈ T ,

St = {x ∈ Sall | b(x) ≤ t} .

Then, by Definition 3.2, any GME can be retrieved from its initial centered evolution and

its flow (φs,t)s<t∈T . It follows that

Corollary 4.1. A right continuous GME is characterized by these three parameters:

1. an embedded shape (E,Sall),
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2. a birth function b : Sall → T ,

3. a flow (φs,t)s<t∈T .

From a modeling point of view, these two last propositions say that under the right

continuous condition, if g is a centered GME, for any x ∈ Sall there exists a first shape

St containing x. Likewise if g is a general GME, if we follow any point through the

flow xt = φt(x) (such that φtmax(x) ∈ Stmax), there exists a first shape St containing xt.

Formally, the definition of b and τ b can be rewritten:

b(x) = min{t ∈ T | φtmin,t(x) ∈ St} ,
τ bt (x) = min{s ∈ T | φt,s(x) ∈ Ss} .

At last, the last proposition says that the birth tag demarcates at all time t, each

image of the previous shapes Ss in St : for any s < t ∈ T ,

φs,t(Ss) = {x ∈ St | τ bt (x) ≤ s} .

All these sets contain the old points of St (see Definition 2.5). The new points are exactly

the points such that τ bt (x) = t. This is the final ingredient to ensure that the birth function

or the birth tag of a GME gives a consistent stratification coding the complete creation

process during the evolution of the shape regardless of its spatial localization. This will

allow to extend any right continuous GME to a TGME.

Before this important result, we finish this section with few more technical remarks.

Remark 4.4. The right continuity is a necessary condition to Proposition 4.1 as soon as

T is not a discrete set. Indeed, if there exist t ∈ T and a decreasing sequence tn → t+

such that St  
⋂
n≥0 Stn. Then any x ∈

⋂
n≥0 Stn \ St verifies x /∈ St and b(x) ≤ t.

Remark 4.5 (Semi-continuity of the birth function). Under the right continuity condition,

the shapes (St)t∈T are the lower level sets of the birth function. If the shapes are closed,

the birth function is therefore lower semi-continuous.

4.2 Minimal extension of a growth mapped evolution of shapes (GME)

As announced, an interesting fact is that when g is a right continuous GME then one

can extend it to a TGME g̃ with the addition of the tagging sequence (τ bt )t∈T with values

in T . By construction, the birth tag τ b is indeed consistent with the flow as proved in the

next proposition.

Proposition 4.3. If g = (T, (E, (St)t∈T ), (φs,t)s<t∈T ) is a right continous GME with birth

function b and birth tag (τt)t∈T as defined by (2.14), then for any times s < t ∈ T
— τt ≤ t ,

— τt ◦ φs,t|Ss = τs ,

— if x ∈ St and τt(x) ∈ τs(Ss) then x ∈ φs,t(Ss) .

In particular, (τt)t∈T is a consistent tagging with respect to the flow (φs,t)s<t∈T and

g̃
.
= (T, (E, (St)t∈T ), (τt)t∈T , (φs,t)s<t∈T )
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is a TGME.

Proof. From (2.15), we get immediately that τt ≤ t and from (2.14) we get that τt ◦φs,t =

b ◦ φs,tmin = τs on Ss. The last point is a direct consequence of Proposition 4.2.

Definition 4.5. The extension g̃ of a right continuous GME g defined by the previous

proposition will be called the minimal extension of g.

Remark 4.6 (Examples about the right continuity). We present here two examples to

understand the right continuous condition.

— Let be T = [0, 2] and g a centered GME defined by a collection of intervals

It =

{
[0, t] if t ≤ 1 ,

[0, 1 + t] otherwise.

The collection is strictly increasing by pure expansion from I0 = {0} to I2 = [0, 3].

At each time, one point is created, except after time t = 1 where there is a jump.

We have I1 = [0, 1], then I1+ε = [0, 2 + ε] (for ε > 0). Consequently, for any time

sequence tn → 1+,
⋂
n≥0 Itn = [0, 2] so that g is not right continuous. The birth

function is then equal to

b(x) =


x if x ∈ [0, 1] ,

1 if x ∈ [1, 2] ,

x− 1 if x ∈ [2, 3] .

In particular, for any x ∈]1, 2], b(x) = 1, yet, x /∈ I1. Although the birth function

can still be defined, it cannot be extended to a tag because of the third condition of

Definition 2.2

φs,t(Ss) = τ−1
t (τs(Ss)).

Indeed, since for x = 1, x ∈ I1 and b(x) = 1, the birth tag s = 1 belongs to τ b1(I1).

Yet, I1 = [0, 1]  τ b,−1
t ([0, 1]) = [0, 2] for any t > 1.

— If we just modify I1 = [0, 1[, g is still not right continuous but we can extend it to a

TGME. If we assume that the shapes are closed, we can still generate an example.

Take T = [0, 3] and

It =


[0, t] if 0 ≤ t ≤ 1 ,

[0, 1] if 1 ≤ t ≤ 2 ,

[0, 1 + t] if 2 < t ≤ 3 .

Then b(2) = 2, yet 2 /∈ I2. Hence, g is not right continuous but we can show that it

can be extended to a TGME.

The (RC) condition is thus not necessary in general. Yet, it seems to be a reasonable

sufficient condition and its most important justification is to allow the birth function

to delimit the shapes (St)t∈T .

We can now state the central theorem on morphisms between minimal extensions of

GMEs.

82



Theorem 4.1. Let mAB = (ρAB, (qABs )s∈TA) be a morphism mAB : gA → gB between two

GMEs indexed by the closed intervals TA and TB such that

1. gA is centered, right continuous, defined on a topological embedding space EA and

SAs is compact for any s ∈ TA.

2. EB is a topological space.

3. The time warping ρAB : TA → TB is a increasing homeomorphism.

4. For any s ∈ TA, the spatial mapping qABs : SAs → SB
ρAB(s)

is continuous.

Then gB is right continuous. Moreover, there exists a morphism m̃AB = (ρAB, ηAB, (qABs )s∈TA)

between the minimal extensions g̃A and g̃B of gA and gB into TGMEs. At last, we

have necessarily ηAB|ρAB,−1(=(τB)) = ρAB and for any s ∈ TA and any y ∈ SBt , where

t = ρAB(s), that

τBρAB(s)(y) = ρAB

(
inf
SA,ys

τAs (x)

)
, (2.16)

where SA,ys
.
= { x ∈ SAs | qABs (x) = y}.

If ρAB(=(τA)) = =(τB), m̃AB is unique.

Proof. In the sequel, we use the notation qs for qABs , η for ηAB and ρ for ρAB. Let

tn → t+ be a decreasing sequence of elements in TB converging to t ∈ TB. Consider

y ∈
⋂
n≥0 φ

B
tn,t(S

B
tn) and let us show that y ∈ SBt . Since ρ is an increasing homeomorphism,

there exists a unique decreasing sequence (sn) in TA converging to s ∈ TA such that

ρ(sn) = tn. Therefore, y ∈
⋂
n≥0 φ

B
tn,t ◦ qsn(SAsn) and there exists xn ∈ SAsn such that

qsn(xn) = φBt,tn(y). Since gA is centered and SAs0 is compact, up to the extraction of a

subsequence, we can assume that xn converges to x ∈ ∩n≥0S
A
sn . We push forward every

point xn at time s0 but since gA is centered, we have xn = φAsn,s0(xn). The image in

gB of this new sequence is a constant sequence equal to y. Indeed, since the flows and

the spatial mapping q commute, we have qs0(xn) = qs0(φAsn,s0(xn)) = φBtn,t0(qsn(xn)) =

φBtn,t0(φBt,tn(y)) = φBt,t0(y).

On the left-hand side, we have qs0(xn) → qs0(x) (qs0 is continous), so that qs0(x) =

φBt,t0(y). Finally, we get y = φBt0,t(qs0(x)) = qs(φ
A
s0,s(x)) = qs(x). By right continuity of gA,

we have x ∈ SAs . Hence y ∈ qs(SAs ) = SBt so that we have proved that
⋂
n φ

B
tn,t(S

B
tn) ⊂ SBt .

Since the reverse inclusion is always true, we get that gB is right continuous.

Since gA is centered, note that for any s ∈ TA, τAs does not depend on s and is now

denoted τA. Let us prove first that if t = ρ(s), with s ∈ TA, y ∈ SBt and SA,ys = { x ∈
SAs | qs(x) = y} then we have for any t′ = ρ(s′) with s′ ∈ TA, s′ < s that

φBt,t′(y) ∈ SBt′ iff SA,ys ∩ SAs′ 6= ∅ . (2.17)

Indeed, φBt,t′(y) ∈ SBt′ iff there exists x ∈ SAs′ such that y = φBt′,t(qs′(x)) = qs(φ
A
s′,s(x)) =

qs(x) which is equivalent to SA,ys ∩ SAs′ 6= ∅.
The characterization of birth tags by Proposition 4.2 implies then that if x ∈ SA,ys ,

τBt (y) ≤ ρ(τA(x)) so that τBt (y) ≤ inf
x∈SA,ys

ρ(τA(x)). Now, if s′∗ = inf{ s′ ≤ s | s′ ∈
TA, SA,ys ∩ SAs′ 6= ∅ } then since TA is compact s′∗ ∈ TA and τBt (y) ≥ ρ(s′∗). More-

over, by right continuity we have SAs′∗ = ∩u>s′∗,u∈TAS
A
u and since SAs is compact and
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SA,ys closed (we assume that qs is continuous) there exists x∗ ∈ SAs′∗ ∩ S
A,y
s so that

τA(x∗) ≤ s′∗ and qs(x∗) = y. Hence τBt (y) ≥ ρ(τA(x∗)) and we have proved that

τBt (y) = inf
x∈SA,ys

ρ(τA(x)) = ρ(τA(x∗)). In conclusion, for the particular choice η = ρ,

m̃AB is a morphism between the minimal extensions g̃A and g̃B.

Finally, let us prove that η is completely determined on ρ−1(=(τB)). With the same

notation, let us introduce t′∗ = ρ(s′∗) and y′ = φBt,t′∗(y) = qs′∗(x∗). Let us show that

τA(SA,y
′

s′∗
) = {s′∗}. We have SA,y

′

s′∗
⊂ SA,ys so that τA(SA,y

′

s′∗
) ⊂ τA(SA,ys ). Now, for any x ∈

SA,y
′

s′∗
, since x ∈ SAs′∗ we have τA(x) ≤ s′∗. Hence, ρ(s′∗) = t′∗ = τBt′ (y

′) = τBt (y) = η(s′∗).

Note that the definition of the image tag is here a bit more precise than in the general

definition of morphisms between TGMEs (Definition 2.7). The uniqueness property above

allows us to transfer the birth tag of a GME on its images and to retrieve the birth tags

of these images:

Corollary 4.2. Let gA and gB be two GMEs and mAB a morphism such that

gB = mAB(gA) .

With the assumptions of the last proposition, if τA is the birth tag of gA, then the image

of this tag defined by equation (2.16) is the birth tag of gB.

Example 4.2. The birth tags of the two GMEs on the unit circle gA and gB are given in

Example 4.1. In Example 2.4, we introduced a source GME gI , the centered collection of

segments ([0, t])t∈T I , to generate gA and gB. The image of its birth tag gives indeed the

birth tags of gA and gB.

Remark 4.7 (Linked between time warpings and spatial mappings). For any centered

GME gA reparameterized by a time warping ρ into gB
.
= (ρ, Id) · gA, the birth function

becomes bB = ρ ◦ bA. In practice, if a centered GME is given by an encompassing em-

bedded shape (E,Sall) and a birth function b : Sall → T , a reparameterization in time is

equivalent to compose on the left the birth function with an invertible mapping. A spatial

mapping ψ : Sall → E acts on the birth function on the right. Yet, if ψ induces one-to-one

correspondences between the level sets of the birth functions, it can be seen as the action

of a time warping. Conversely, given ρ a time warping, the existence of a spatial mapping

to reproduce the action of ρ is not immediate and will be deepened in Chapter 4.

4.3 Factorisation of general tagging function

The next proposition says that the birth tag is always hidden under a general tag.

Proposition 4.4. [Temporal factorisation of the tags] Let g be a right continuous TGME

of tagged shapes over L and time indexed on T . Let (τt)t∈T be the family of tagging

functions in L and (τ bt )t∈T the birth tag (Definition 4.3). Then there exists a function

bL : L→ T , such that for any t ∈ T we have on St :

τ bt = bL ◦ τt . (2.18)
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Proof. It is sufficient to prove that for any s, t ∈ T , any x ∈ Ss and y ∈ St, if τs(x) = τt(y)

then τ bs (x) = τ bt (x). Let us first consider the case where s = t and assume that there exist

x, y ∈ St such that τt(x) = τt(y) and τ bt (x) < τ bt (y). Then there exists τ bt (x) ≤ u < τ bt (y)

so that φt,u(y) /∈ Su since τ bt (y) = inf{ s ∈ T | φt,s(y) ∈ Ss }. However, by right continuity

of g, τ bt (x) ≤ u implies that φt,u(x) ∈ Su and τt(y) = τt(x) ∈ τu(Su). Hence, y ∈ φu,t(Su)

which is a contradiction.

Now assume that s ≤ t are arbitrary in T . If τs(x) = τt(y) then τt(φs,t(x)) = τs(x) =

τt(y) so that τ bt (φs,t(x)) = τ bt (y). But τ bt (φs,t(x)) = b(φt,tmin(φs,t(x)) = b(φs,tmin(x)) =

τ bs (x).

Remark 4.8. The function bL defined a birth tagging of the label set L itself.

5 Birth place functions

Corollary 4.1 says that any right continuous GME g can be retrieved from the encom-

passing embedded shape (E,Sall), the birth function b : Sall → T and the flow (φs,t)s<t∈T .

More precisely, the shapes (St)t∈T can be retrieved as follows

St = {φtmin,t(x) |x ∈ Sall, b(x) ≤ t} . (2.19)

Indeed, the birth function b reconstructs with Sall the initial centered evolution g of g.

Then one can retrieve g by g = Φ−1 · g where Φ−1 = (Id, (φtmin,t)t∈T ) ∈ G(T,E). This is

to say that=

St = φtmin,t(St) .

where (St)t∈T are the shapes of g (see Proposition 3.2).

We will see in this section that one can consider another approach. Moreover, we will

extend it to more general morphisms eventually not invertible as introduced in Defini-

tion 2.7. We will see how to express a morphism mAB : gA → gB between two GMEs as

a function of the flow φB. Since gB = mAB(Φ−1 · gA), one can naturally assume that gA

is a centered evolution.

Recall the diagram that illustrates a morphism between two GMEs:

SAs SAt SAu

SBρ(s) SBρ(t) SBρ(u)

qs

φAs,t

qt

φAt,u

qu

φB
ρ(s),ρ(t)

φB
ρ(t),ρ(u)

Note that given a time-varying point xt through the flow inside the scenario gA or gB, one

can only follow it backwardly until its time of birth τ bt (xt) (that does not depend on t).

Inside the centered scenario gA, t 7→ xt is constant and τ bt (xt) = b(xt). This induces the

next proposition.

Proposition 5.1. Consider two GMEs gA and gB, and a morphism mAB = (ρ, (qABt )t∈TA).

Assume that gA is right continuous and centered and denote b its birth function. Then
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there exists a unique function q̃AB : SAall → EB, called the birth place function, such

that for any t ∈ TA, any x ∈ SAt ,

qABt (x) = φBρ(b(x)),ρ(t)(q̃
AB(x)) .

This function is given by

q̃AB(x)
.
= qABb(x)(x) .

Proof. It is an immediate consequence of Definition 2.7 (2). Indeed, if x ∈ SAt and s =

b(x), then assuming that gA is right continuous, we have x ∈ SAs and since mAB is a

morphism between two GMEs, we have qABt (x) = qABt (φAs,t(x)) = φBρ(s),ρ(t)(q
AB
s (x)) =

φBρ(b(x)),ρ(t)(q
AB
b(x)(x)).

The birth place function gives the location of the new points of gB.

Remark 5.1. The birth place function is independent of the time warping ρ. It only

depends on the spatial mapping and the birth function of the source GME.

Equation (2.19) makes explicit the image of a general scenario from its initial centered

evolution. With the birth place function, the new scenario is described by

SBρ(t) = {φBρ(b(x)),ρ(t)(q̃
AB(x)) |x ∈ SAt }

= {φBρ(b(x)),ρ(t)(q̃
AB(x)) |x ∈ SAall, b(x) ≤ t} . (2.20)

Conversely, we would like to understand if starting from an arbitrary function q̃ :

SAall → EB, an increasing function ρ : TA → TB and a flow (φs,t)s≤t∈TB on EB, then one

can define a target gB and a morphism mAB : g̃A → g̃B between the minimal extensions

as TGME.

Theorem 5.1. Let gA be a centered right continuous GME indexed by a (compact) time

index set TA with an associated continuous birth function bA and such that SAtmax
is

compact. Now for any continuous q̃ : SAall → EB, any homeomorphic increasing time

warping ρAB : TA → TB and any flow (φBt,t′)t≤t′∈TB of invertible mappings on EB such

that φBt,t′(y) is continous in t, t′ and y, we have:

1. gB
.
= (TB, (EB, SBt )t∈TB , (φ

B
s,t)s≤t∈TB ) where SB

ρAB(t)

.
= {φB

ρAB(bA(x)),ρAB(t)
(q̃(x)) | x ∈

SAt } is a right continous GME

2. if we defined for any s ∈ TA, qABs : SAs → SBρ(s) by qABs (x) = φB
ρ(bA(x)),ρ(s)

q̃(x) for

x ∈ SAs then mAB = (ρAB, (qAs )s∈TA) is a morphism between gA and gB that can be

extended to their minimal extension as TGME.

Proof. The proof is mainly a consequence of Theorem 4.1. Denote ρ for ρAB. For any

t ∈ TA, SAt = (bA ≤ t) is closed since bA is continuous and compact as a closed subset of the

compact set SAtmax
. It is quite immediate that gB is a GME. Consider indeed s < t ∈ TA.

For any y ∈ SBρ(s), there exists x ∈ SAs such that y = φB
ρ(bA(x)),ρ(s)

(q̃(x)). We have then

φBρ(s),ρ(t)(y) = φBρ(s),ρ(t) ◦ φ
B
ρ(bA(x)),ρ(s)(q̃(x)) = φBρ(bA(x)),ρ(t)(q̃(x)) (2.21)
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so that φBρ(s),ρ(t)(y) ∈ SBρ(t). Since ρ is a homeomorphism, it follows that for any s < t ∈ TB,

φBs,t(S
B
s ) ⊂ SBt so that φBs,t ∈ HomES((E,SBs ), (E,SBt )) and gB is a GME.

Let us prove now that mAB is a morphism between gA and gB as defined in Defini-

tion 2.7. By construction, for any t ∈ TA, SBρ(t) = qABt (SAt ). Since gA is centered, one

then needs to show that φBρ(s),ρ(t) ◦ q
AB
s = qABt |SAs which results directly from (2.21) where

y = qABs (x).

At last, since x → φB
ρ(bA(x)),ρ(s)

(q̃(x)) is continuous we get that qs is continous and

Theorem 4.1 gives that gB is right continuous and that mAB can be extended as defined

in Theorem 4.1.

Remark 5.2. Note that bB is not necessarily continuous. Indeed, in Example 2.4, bI =

τ Itmax
is continuous, but we saw in Remark 4.2 that bA and bB are not continuous.

The birth place function is a new descriptor of the spatial mapping between two GMEs.

Note that since the birth place function is not always an embedding (see Example 5.4 where

its image is reduced to a point), its image cannot replace the centered GME gA.

Theorem 5.1 will be the core of the growth model studied in this thesis built on a

centered evolution gA of the type:

Example 5.1. If t0 < t1 are two real numbers such that SAall = [t0, t1]×X0, where X0 is

a compact manifold with boundary and bA is the projection on the first coordinate, then

TA = [t0, t1], for any t ∈ TA, St = [t0, t]×X, bA is continuous, and gA is right continuous.

This centered evolution will play the role of the biological coordinate system pre-

sented in the introduction.

We end this section with few examples to highlight the birth place function.

Example 5.2. Define for t ∈ [0, 1], It = [0, t].

a) Consider EA = R, EB = R2 and TA = TB = [0, 1]. Let gA be a centered right

continuous GME given by SAt = It and gB be given by SBt = It×{t} and φBs,t = Id+(0, t−s)
the vertical translation. A morphism mAB : gA → gB can be defined by ρAB = Id and

qABt : It → It × {t} ,
x 7→ (x, t)

(we could actually show here with Definition 2.7 (2) that mAB is unique up to the choice

of ρAB). We also have bA(x) = x, for any x ∈ SAall (here SAall = Itmax = [0, 1]). Then

q̃AB(x)
.
= qABbA(x)(x) = (x, x) .

The image of the birth place function is thus the diagonal of the square [0, 1]×[0, 1]. It gives

the positions where appear all the new points of gB over the time. We can parameterize

the sets of gB by SBt = qABt (SAt ) = {φBx,t(q̃AB(x)) | x ∈ SAt } = {(x, t) | x ∈ SAt }.
b) An interesting fact is that the area of creation or the image of the birth place function

can be reduced to a point and still generates a non trivial GME. Let keep gA as introduced

in the previous example and define gB by SBt = {0} × It and φBs,t = Id + (0, t − s). A

morphism mAB : gA → gB can be defined by ρAB = Id and
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Example a Example b

Figure 2.14 – Illustration of Example 5.2. Example a: Two GMEs represent the evolution
of a segment. At the bottom is displayed gA, a segment embedded in R that evolves by
pure expansion on its right side. Above, gB evolves in R2. The segment is expanding on
its right side but also gradually translated upwards (with a constant velocity displayed by
the vector v). We point the shapes SBs and SBt at times s = 0.5 and t = 1. We circle
the image of the birth place function : the position of all new points of gB. Example b:
In this case, the evolution of gB is displayed along a timeline. Note that this evolution is
actually constrained in a straight line of the plan. It is now a vertical segment extending
by creation of new points at the bottom and gradually displaced upwards. The circled
image of the birth place function is displayed as a horizontal segment in R × TB and is
thus spatially reduced to a point.

qABt : It → It × {t} ,
x 7→ (0, t− x) .

Now, for any x ∈ SAall, we still have bA(x) = x, and thus,

q̃AB(x)
.
= qABbA(x)(x) = qABx (x) = (0, 0) .

Yet, we can fully reconstruct the sets SBt = {φBx,t(q̃AB(x)) | x ∈ SAt } = {(0, t−x) | x ∈ SAt }.

Example 5.3. For the horn as a surface, we assume that the creation of matter occurs

at the base of the horn and that locally this base (or the head of the animal) is flat. Then

the image of the birth place function is constrained to a plan and diffeomorphic to a disk.

The level sets of the birth function are close to circles, the head of the horn is a point at

the center of these level sets, and the boundary of the disk is the base of the final horn.

See Figure 2.15. A natural centered source GME can be a cone or a cylinder. With a

cone, note then that the birth place function is an embedding. However, if some collisions

happen as seen in Figure 2.8, the spatial mapping q is not invertible.

Example 5.4 (Degenerated BPF). Let refer again to the two GMEs gA and gB modeling

two developments of the unit circle as the images of a centered GME gI as presented in

Example 2.4. Let recall that T = [0, 2π], E = R2, and St = {(cos(θ), sin(θ))|θ ∈ [0, t]} are

common to gA and gB, but φAs,t = Id and φBs,t = Rt ◦ R−1
s where Rθ is the anticlockwise

rotation of angle θ. Then the images of their birth place function are

=(q̃IA) = S1 and =(q̃IB) = {(1, 0)} .
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Figure 2.15 – First row : two ages of a horn given at an intermediate time t1 ∈ [0, 1] and the
final time 1. The small horn is modeled by qt1(St1) and the large horn by q1(S1) = q1(Sall).
Second row: on the left, we can see the initial position of all the leaves that will gradually
appear to form the large horn. This shape is the union of qt1(St1) and q̃(Sall \ St1). On
the right, we display the virtual horn at time 0. It is a flat disc, set of initial positions
of every points, given by q̃(Sall). The sizes and points of view have been adjusted for a
better visibility but the colors give the pointwise correspondences between the figures.

Quantify the growth: note that for the centered GME gA, the amount of creation can be

measured by the spreading of its birth function. On the opposite for gB, it is quantified by

the flow. However, remark that we have an isometric transport by the flow. The creation

of matter comes as for gA by an intrinsic expansion but the phenomenon is hidden by the

action of flow.

The birth place function can thus be highly non injective and yet generate a non trivial

scenario. The flow (φBs,t)s<t on the ambient space EB is indeed able to separate the images

by the BPF of the foliated leaves ({x ∈ SAall | b(x) = t})t∈TA . Note however that the flow

cannot separate two points of the same leave that would appear at the same position in

EB (i.e. two points x, y ∈ SAall such that q̃AB(x) = q̃AB(y) and bA(x) = bA(y)).

6 Conclusion

6.1 Final parameters of a population

To end this chapter we recall and highlight the parameters fixed for a population

of related time-varying shapes and the free parameters modeling each individual of the

population. A population embedded in an ambient space E and evolving on a time interval

T can be defined from a set of centered evolutions. Denote one of them gX and (SXall, b
X)

its minimal parameters.

Then one can generate a general individual g image of gX by its flow (φs,t) and one of

the two following spatial mappings from SXall to E :

1. a spatial mapping qall : SXall → E that defines g by Sall
.
= qall(S

X
all) and by b(x)

.
=

inf bX(q−1
all (x)) for any x ∈ Sall. Then g is defined by

St
.
= {φtmin,t(x) |x ∈ Sall, b(x) ≤ t}. (2.22)

or
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2. a birth place function q̃ : SXall → E that defines g by

St
.
= {φρ(bX(x)),ρ(t)(q̃(x)) |x ∈ SXall, b

X(x) ≤ t} . (2.23)

Note here that q̃ is a mapping from location x ∈ SXall at a given time tmin to location q̃(x)

at different time of birth b(x). Hence, q̃ is a mapping across time in contrast with qall. This

last construction deviates from the approach of a group of spatio-temporal deformations

acting on a set of scenarios, as presented in Section 3. As we will see in Chapter 3, an

important consequence is that the spatial regularity of the generated scenarios will depends

on the temporal regularity of the flows that generate them.

At last, to determine only one centered evolution of a population, one can easily see

that a spatial deformation of the centered scenario gX can be absorbed by the mappings

qall and q̃ (by composition). One then need to know to how rewrite the time warping.

This question has been raised in Remark 4.7. One can easily notice that when gX has

the canonical type given is Example 5.1, it always exists a spatial mapping translating

the foliated leaves ({t} ×X0)t∈T to rewrite a time warping. Therefore, the time warping

can again be absorbed by the individual functions qall and q̃. Otherwise, we will see

in Chapter 4 how a lot of general centered scenarios can be reduced to this canonical

decomposition by a spatial mapping. This allow to conclude that one can fix the centered

evolution gX (inside the orbit generated by Diff+(T ) × Diff(E)) of the population and

retrieve all the individuals by one of the two previous methods. This scenario gX will play

the role of the biological coordinate system of the population.

In the next chapters, the second model will be exploited to reconstruct the scenario gA

of an individual from some observed times denoted (ObsA). The problem leads to complete

the following diagram with the individual input (ObsA) and the population input gX .

(
gX
) (

gA
)

(ObsA)

q̃A,φA

π

where π is the canonical projection.

6.2 Conclusion

As we have seen, the notions of growth mapped evolutions and tagged growth mapped

evolutions are quite effective to build a mathematical framework to handle important

issues on growth modeling and analysis from a mathematical point of view. Interestingly, a

Riemannian point of view can be developed on a space of growth mapped evolutions leading

to the idea of growth evolution spaces as infinite dimensional Riemannian manifolds. The

properties of such spaces can be understood thanks to the analysis of the space-time group

actions acting on them and the semi-direct structure of the interactions between space and

time.

Many interesting facts are emerging from this point of view as the key role of cen-

tered growth mapped evolutions and canonical temporal tagging. These two parameters

characterize the expansion process of a population of growth scenarios opening new di-
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rections for investigation on these processes. At last, the introduction of the birth place

function defines a new construction to generate growth scenarios paving the way for new

registration models able to integrate growth priors.
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Chapter 3

Reconstruction of a Shape

Development
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1 Introduction to the generative model

Longitudinal data analysis is the study of a population of time-varying shapes. It

requires to investigate a low-dimensional modeling of their evolution. The continuous

evolution of a time-varying shape, called the scenario of the shape, is usually only given

through a sample of data at a finite set of times. This chapter addresses the reconstruction

of theses scenarios. A core hypothesis is that all the scenarios of the studied population

follows a common growth process induced by a canonical centered growth mapped evo-

lution as introduced in Chapter 2. It allows to generate these scenarios by time-varying

vector fields leading a new optimal control problem for the assimilation of time-varying

shapes. At last, we are invited to tune this problem with new cost functions in order to

redefine an optimal development of the shapes.

1.1 Biological coordinate system

In order to model the evolution of a shape during a growth process, we developed in

Chapter 2 the concept of growth mapped evolution (GME) . A GME is given as a path of

shapes [0, 1] 3 t 7→ St and a flow of mappings (φs,t)s≤t such that for any pair s ≤ t ∈ [0, 1],

the flow deforms the older shape Ss into the younger one St: φs,t(Ss) ⊂ St. The shape St
is thus made of the image of Ss at time t and of a set of new points created in the time

interval ]s, t]. In this chapter, all the GMEs are defined on a global time interval fixed to

T = [0, 1].

When φs,t(Ss) = St for any s, t, the shape evolves through a pure deformation process

and we retrieve the standard dynamic through the flow. On the contrary, in the absence

of global deformation, φs,t = Id for any s, t so that the shape evolves by pure expansion

and we have Ss ⊂ St. This last type of scenario plays a central role and such GMEs are

called centered. Following D’Arcy Thompson’s ideas, these GMEs represent the biological

coordinate system of a set of homologous scenarios.

Figure 3.1 – Sequence of three discrete times to illustrate the development of a horn.

A biological coordinate system is a pair (X, τ) where X is a space called the

coordinate space and τ : X → [0, 1] the birth tag on X. It induces a set of shapes

Xt
.
= {x ∈ X | τ(x) ≤ t} , (3.1)

of the so called active points of the coordinate space X at time t. The birth tag indicates
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when a point x ∈ X starts to be active. The sets of points

X{t}
.
= {x ∈ X | τ(x) = t} (3.2)

are called the leaves of the coordinate space. This sequence of nested shapes Xt forms

a canonical scenario that describes the growth pattern of a population of related shapes.

Figure 3.2 displays for example this scenario when the biological coordinate system is fixed

to 
X

.
= [0, 1]× S1 ,

τ(x)
.
= t for any x = (t, x0) ∈ X .

(3.3)

At time 0, the shape is a circle. It growths into a cylinder under a pure expansion process

by the progressive adjunction of the leaves. Here, each leave X{t} = {t} × S1 is a circle.

Any shape Xt is a connected disjoint reunion of some of these leaves.

0

Figure 3.2 – Trivial scenario of the biological coordinate system.

The denomination of leaves emerges from this type of biological coordinate system

where the creation process is particularly regular. Indeed, the set of new points are all

diffeomorphic to a (k-1)-dimensional submanifold of X where k is the dimension of X.

Moreover, they are all parallel. The coordinate space X is thus a disjoint reunion of

these sets that induce a so called foliation on X. A foliation can be simply described

as a decomposition of a manifold into path-connected submanifolds, called leaves, such

that the manifold looks locally like a parallel union of these leaves. Each Xt inherits this

foliated structure. We refer to [24, 35] for more details. For a general biological coordinate

system, the existence of this foliation relies on the regularity of the birth tag τ as it will

be deepened in Chapter 4. We will yet retain the denomination of leaves in the general

case.

1.2 A new dynamic : evolution equations of a growing system

A general scenario (t 7→ St)t∈[0,1] is modeled on the biological coordinate space by a

sequence of spatial mappings t 7→ (qt : X → Rd). The shape St is given by the image

qt(Xt) of the active points of X. Depending on the injectivity of the mappings (qt)t,

the generated scenario follows the same expansion process as the biological coordinate

system. At each time t ∈]0, 1], a new leaf qt(X{t}) appears whose points have no biological

correspondence with the points of the younger shapes Ss, s < t.

Figure 3.3 illustrates two such types of scenario built on the coordinate system (X, τ)

given by equation (3.3). The only difference between these two types is the behavior of

the spatial mapping on the first leaf X{0}. For the first scenario, the spatial mapping is
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an embedding at all time. For the second one, qt is an embedding of all leaves but the

first one and qt(X{0}) is reduced to a point.

Figure 3.3 – Two examples of scenarios built on a given biological coordinate system (X, τ).
Each image scenario inherits the foliation of the biological coordinate system, enlightened
by the color gradient.

In these two examples, the last leaf is always included in the horizontal plane. The

birth place function introduced in Chapter 2 allows to express this constraint. This

constraint will be central to initiate the reconstruction of a scenario from a final state of

the shape. The birth place function q̃ : X → Rd of a scenario associated to a mapping q

is defined by

q̃(x) = qτ(x)(x) = φ−1
τ(x),1(q1(x)) .

It can be seen as the pull backward through the flow of each leaf q1(X{t}) of the final

shape to its initial position qt(X{t}) at time t = τ(x) when it appeared. The evolution

of this leaf can then be completely retrieved by the flow (φs,t)s≤t of the scenario: for any

x ∈ X and any t ∈ [τ(x), 1]

qt(x) = φτ(x),t(qτ(x)(x)) = φτ(x),t(q̃(x)) . (3.4)

To extend the mappings qt : Xt → Rd into homologous mappings on X, we then say that

qt(x) =


φτ(x),t(q̃(x)) if τ(x) ≤ t ,

q̃(x) otherwise.

(3.5)

If a point x ∈ X does not exist yet at time t, qt(x) returns its future place of birth. Hence,

we have

q0 = q̃. (3.6)

This mapping q0 is called the initial condition and the planar constraint can then easily be

written as a constraint on the image of q0. The shapes are then retrieved by the restriction

of these new mappings:

St = qt|Xt(Xt) .
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A flow (φs,t)s≤t∈[0,1] can be generated by a time-varying vector field on the ambient

space Rd. As for the construction of a group of diffeomorphisms (see Chapter 1), let us

therefore consider V a Hilbert space of diffeomorphisms on the ambient space Rd. Any

time-varying vector field v ∈ L2([0, 1], V ) induces a diffeomorphic flow on the ambient

space. The derivation of (3.5) invites us to consider the continuous time-varying mappings

q solutions of

q̇t(x) =


vt(qt(x)) if τ(x) ≤ t .

0 otherwise

= 11τ(x)≤t vt(qt(x)) , (3.7)

for a given initial condition q0 : X → Rd and a given v ∈ L2([0, 1], V ).

An important part of this chapter will consist in studying this approach to generate

continuous paths in a space B of mappings from X to Rd, by the set L2([0, 1], V ) of time-

varying vector fields of V . Equation (3.7) will be referred as the growth dynamic and

it will sometimes be rewritten

q̇t = 11τ≤t vt ◦ qt . (3.8)

1.3 Illustration of the generative model

We propose here few examples to illustrate the dynamic of the model. We consider

again the biological coordinate system given by X = [0, 1]× S1 ⊂ R3 and τ the projection

on the first coordinate. We recall that Figure 3.2 highlights the trivial scenario induced

by this system and Figure 3.3 offers two examples of image scenario.

For the first example, the initial position q0 is given by the projection of X on the

horizontal plane so that each leaf is sent on the unit circle of {0} ×R2. This localizes the

area where occurs all the creation of the growth process. The time-varying vector fields

acting on the ambient space are simple vertical translations (v ∈ L2([0, 1],R)) . Finally,

we present in Figure 3.4 one example of this setting where the scenario is generated by

a constant upward translation. In this example, one can see that the initial position of

the shape, given by q0, is not an embedding in the ambient space. This initial shape can

be seen as a compressed accordion that will be progressively unfolded. Since the flow, al-

though it is diffeomorphic, sees only gradually the shape, these mingled leaves can indeed

be separated over time. The flow will yet never be able to separate two points that appear

at the same time and at the same position.

In order to produce horns, the initial position covers now the complete unit disk. In

the next examples, we will play with a parameter ρ to generate different initial positions
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Figure 3.4 – Generation of a cylinder. From left to right, the initial position q0(X), an
intermediate position qt0(X) at time t0 ∈]0, 1[, the final position q1(X) and the biological
coordinate system (X, τ). This example shows a situation where q0 is not an embedding
and yet q1 is one. The cylinder at time 0 is completely folded flat on itself and it unfolds
gradually until the time 1 when it is fully grown. All the creation process occurs at the
base of the cylinder. Each newly created leaf pushes upwards the rest of the cylinder.

as follows:

q0 : [0, 1]× [0, 2π[ → {0} × R2

(t, θ) 7→
(
0, ρ(t) cos(θ), ρ(t) sin(θ)

)
,

(3.9)

where ρ : [0, 1] → [0, 1] is an increasing homeomorphism. The deformations are still

modeled by vertical translations and we consider three particular v ∈ L2([0, 1],R). One

is constant, one is increasing, and the last one is decreasing. Figure 3.5 gives then the

generated scenarios with also three different ρ where ρ′ is either constant, increasing or

decreasing. This figure only displays the final state of the scenarios. However, since their

flow are built with rigid deformations, the initial position and the foliation, induced by

the disjoint images of the leaves X{t}, allow to retrieve each scenario. These sets are

enlightened by the meshes of the shapes and the color gradient. One can thus compare

each result with a reference shape, fixed here as the cone. When the shape induces a

convex 3D shape, one can see that the growth of the scenario is delayed with respect to

the cone. Otherwise, this growth is accelerated. The middle column illustrates therefore

that the choice of the initial position can have the effect of a time warping on a scenario.

This justifies the decision to fix the biological coordinate system. They will therefore

not be submitted to optimization in the problem addressed in Section 2. Note that this

question has already been deepened in Chapter 2 but we will also return to it in Chapter 4.

Note at last, that even with a fixed system (X, τ), two distinct pairs (q0, v) can generate

the same final shape. In this last sentence, the word distinct implies that the images

(q0(X{t}))t∈[0,1] of the leaves by the two initial positions q0 are different from a set point of

view. However, the two evolutions t 7→ (St = qt(Xt)) are not equal (consider for example

the evolution of the base) .

Remark 1.1. Note, in Figure 3.5, that the spatial regularity at the top of the final shape

varies depending on the example.
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Figure 3.5 – “Horns” generated with different initial positions and vector fields. The
deformations are restrained to vertical upward translations whose amplitudes are displayed
in the first row. The first column shows the initial positions q0(X). We display in the
center of the table the final cones q1(X) resulting from this nine configurations. The aim
is to compare, regarding to the growth process, the variations of the solutions with respect
to the cone on the top left corner.

1.4 Presentation of the generative model properties

The previous introduction invites to study general integral equations of the type

qvt = q0 +

∫ t

0
f(qvs , vs, s) ds , (3.10)

where f is an application from B × V × [0, 1] to B with B and V two Banach spaces. We

will denote only q instead of qv to simplify the notation. V can be more generally seen as

a space of control. In our situation, it will be a space of vector fields on the ambient space

and more precisely a subspace of C2(Rd,Rd). The specificity of this model lies on the fact

that f depends on time in addition to the control v. A detailed study will be achieved in

Section 4. We will summarize here the main properties.

Remark 1.2. Equation (3.10) is the integral version of the standard equation

q̇t = f(qt, vt, t) , (3.11)

with a given initial condition q0 at time 0. However, we will see that the function t 7→
f(qt, vt, t) is not regular enough to imply the existence of a derivative at all time. In

Proposition 4.2, we will prove that a solution q of the integral equation (3.10) admits
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a time derivative q̇t at almost all time and that this derivative is integrable. This is a

property shared by any absolutely continuous function (definition recalled below) .

Definition 1.1. A function F : [0, 1] → B with values in a Banach space B is said

absolutely continuous if there exists a function f ∈ L1([0, 1], B) such that for any t ∈ [0, 1],

Ft =
∫ t

0 fs ds. The space of absolutely continuous functions with values in B will be denoted

AC([0, 1], B).

We will denote by (Hf ) and (HV ) few sets of regularity conditions on f and V that

will be introduced in Section 4. Mostly, it consists in the existence of time integrable

controls on f and v and their derivatives. Throughout this chapter, these conditions will

be progressively supplemented. They are gathered in Appendix B. Consider for now

(Hf
1 )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(i) For any t ∈ [0, 1], ft ∈ C1(B × V,B) .

(ii) There exists c > 0, such that for any (q, v, t) ∈ B × V × [0, 1],
∣∣∣∣∂f∂q (q, v, t)

∣∣∣∣
op

≤ c |v|V ,∣∣∣∣∂f∂v (q, v, t)

∣∣∣∣
op

≤ c (|q|B + 1) .

(HV
1 )

∣∣∣∣∣∣∣∣∣∣∣∣∣

(i) V ⊂ C2(Rd,Rd) .

(ii) There exists c > 0 such that

for any (x, v) ∈ Rd × V , we have{
|v(x)|Rd ≤ c|v|V (|x|Rd + 1),

|dv(x)|L(Rd,Rd) + |d2v(x)|L(Rd⊗Rd,Rd) ≤ c|v|V .

Proposition 1.1. Let f : B × V × [0, 1] → B be a function that satisfies the (Hf
1 )

conditions. Then one can define the function Φf that returns, for any initial condition

q0 ∈ B and any control v ∈ L2([0, 1], V ), the unique solution q ∈ AC([0, 1], B) of the

integral equation (3.10).

Φf : B × L2([0, 1], V ) −→ AC([0, 1], B)

(q0, v) 7−→ q : t 7→ q0 +
∫ t

0 f(qs, vs, s)ds .

Proof. See Theorem 4.2 and Proposition 4.2 and note (Hf
1 ) is actually reduced to (Hf

0 ).

Definition 1.2. When a space X is equipped with a temporal marker τ : X → [0, 1] and

B is a space of mappings q : X → Rd, we define the growth dynamic by the specific

function f : B × V × [0, 1]→ B

f(q, v, t) = (x 7→ 11τ(x)≤t v(q(x))) . (3.12)

We retrieve the setting introduced in the previous sections as well as the evolution

given by equation (3.7). We will progressively verify that under the (HV ) conditions, this

function f satisfies all the sets of conditions (Hf ).
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Remark 1.3 (Spatial regularity of the mappings). Although the vector fields are spatially

smooth, the indicator given by the temporal marker implies that f does not take values

in a space of continuous mappings. The reference space to model the shapes will thus be

L∞(X,Rd). The spatial regularity of qt thus demands a special attention. Nevertheless,

we will show that for an initial position q0 ∈ C(X,Rd), the continuity is preserved. That is

to say that the development q belongs to C([0, 1], C(X,Rd)). Moreover, unlike the standard

dynamic, a new characteristic appears here. The spatial regularity of qt depends on the

temporal regularity of the vector field. We will see that without more assumption on v, qt
is only differentiable almost everywhere.

Remark 1.4. The choice of the space B will play an unexpected role and we will see in

Section 3.5 that we will have to browse through more than one space.

Progressively the function f will be replaced by a more natural operator

ξ : B × [0, 1]→ L(V,B) ,

induced by the differentiation of the action of a group of diffeomorphisms, and there-

fore called infinitesimal action, as presented in Chapter 1. The introduction of this new

notation highlights the linearity with respect to the control v.

Definition 1.3. The operator ξ : B × [0, 1] → L(V,B) induced by the growth dynamic

is formally given by

ξ(q,t)(v) = (x 7→ 11τ(x)≤t v(q(x))) . (3.13)

Proposition 1.2. If B = L∞(X,Rd), the (HV
1 ) conditions ensure that the operator ξ

induced by the growth dynamic, given by equation (3.13), takes indeed values in L(V,B).

At last, Section 4.3 studies how a solution q = Φf (q0, v) reacts to some variations of

the initial condition and of the vector field. More precisely, consider two small variations

δq0 ∈ B and δv ∈ L2([0, 1], V ) that define for ε > 0 a new set of parameters qε0 = q0 + εδq0

and vε = v+εδv. The question is to study the link between the two solutions q = Φf (q0, v)

and qε = Φf (qε0, v
ε).

Let us recall the definition of directional derivative in Banach spaces.

Definition 1.4 (Gâteaux-derivative). Let f : E → F be an application between two

Banach spaces E and F . Let be x0, δx0 ∈ E. Define the application g : R → F given

by g(h) = f(x0 + hδx0). If g is derivable at 0, we say that f is Gâteaux-differentiable

at x0 in the direction δx0 and in this case, we note and define the Gâteaux-derivative

f ′(x0; δx0)
.
= g′(0).

This definition leads to consider the function g : R → B defined with the previous

notation by g(ε) = qε. Then Theorem 4.2 says that g is derivable at 0 and g′(0) is the

Gâteaux-derivative of Φf at point (q0, v) in the direction (δq0, δv). The expression of this

derivative is given in the next proposition.

Proposition 1.3. Consider f and Φf as defined in Proposition 1.1 and such that f

satisfies the (Hf
1 ) conditions. For any (q0, v) ∈ B × L2

V and any (δq0, δv) ∈ B × L2
V , the
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Gâteaux-derivative Φ′f (q0, v; δq0, δv) ∈ AC([0, 1], B) of Φf is defined by the unique solution

of the linearized equation

δqt = δq0 +

∫ t

0

∂f

∂q
(qs, vs, s) · δqs +

∂f

∂v
(qs, vs, s) · δvs ds .

In conclusion, if we denote δq = Φ′f (q0, v; δq0, δv), we have for any small ε and at any

time t ∈ [0, 1]

qεt ≈ qt + εδqt .

Note at last again that δq is not derivable at all time but absolutely continuous.

2 Optimal matching with a time dependent dynamic

2.1 Reconstitution of a growth scenario

We consider from now a longitudinal data set. Each individual of a given population

is represented by a sample of its evolution at a finite number of times. The main problem

addressed in this chapter is to retrieve, for any individual, its complete evolution on the

time interval [0, 1]. Consider thus a target scenario given by a collection of shapes (Star
i )i

at a finite number of intermediate times (ti)i ⊂ [0, 1] (with max{ti, i} = 1) . The aim

is to generate a continuous path (t 7→ St)t∈[0,1] such that Sti ≈ Star
i . Additionally, we

assume that the population shares a common growth pattern. Each evolution can thus be

represented by a growth scenario parameterized by a common biological coordinate system

(X, τ). With the notation of Proposition 1.1, we aim thus to find a good approximation

q ∈ C([0, 1], B) in the image of the generating function Φf .

The discrepancy between the data and a solution q ∈ C([0, 1], B) is estimated at the

different times ti with a data attachment term A of the form

n∑
i=1

d(Sti , S
tar
i )2 ,

where the shape Sti is induced by qti and d is a distance that depends on the type of

the data. To simplify the problem, we will assume throughout this chapter that n = 1.

The quality of a matching with respect to the data is measured by A(q1) for a general

functional

A : B → R+ .

An inexact registration problem between the trivial scenario of a biological coordinate

system and a final target shape can thus be generalized as a minimization problem on an

energy

E(q0, v) =

∫ 1

0
C(vt, t) dt+A(q1) , (3.14)

where v is a time-varying vector field that belongs to L2([0, 1], V ), q0 ∈ B is the initial

condition and q = Φf (q0, v) ∈ C([0, 1], B) is the development generated by v as previously

introduced (see Proposition 1.1). At last, this energy penalizes the deformation through
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a cost function C : V × [0, 1]→ R. We assume that

(HC)

∣∣∣∣∣∣∣∣
(i) C ∈ C1(V × [0, 1],R) .

(ii) There exists c > 0, such that for any (v, t) ∈ V × [0, 1],

|C(v, t)|+ |∇vC(v, t)|2V ≤ c|v|2V .

C is generally the square norm of V but we will have to explore other possibilities. We also

assume that A : B → R is of class C1. In our experiments, A will measure the difference

of the image of q1 and Star with the square norm of an Reproducing Kernel Hilbert Space

(RKHS) modeling a current space or a varifold space. In practice, this target Star will

usually induce a good estimation of the initial position q0 thanks to a biological prior that

restricts the area where the new points of the scenario can appear (see Chapter 5) .

2.2 Expression of the gradient via the momentum

The minimization of E is achieved by a gradient descent. A prerequisite to establish

the gradient of E is the introduction of the momentum.

2.2.1 The momentum

In order to compute an explicit formulation of the gradient, we define as in the classical

LDDMM framework a new variable p called the momentum.

Proposition 2.1 (Existence of the Momentum). If f satisfies the (Hf
1 ) conditions (defined

in the previous section), the momentum p ∈ AC([0, 1], B∗) associated to q = Φf (q0, v) is

the unique solution of the equation

ṗt = −∂f
∂q

(qt, vt, t)
∗ · pt , (3.15)

with the final condition

p1 = −dA(q1) ∈ B∗. (3.16)

Proof. Under the (Hf
1 ) conditions, t 7→ ∂f

∂q (qt, vt, t) belongs to L2([0, 1],L(B)). The time-

varying adjoint operator t 7→ ∂f
∂q (qt, vt, t)

∗ belongs thus to L2([0, 1],L(B∗)). The existence

and uniqueness of p are given by the linear Cauchy-Lipschitz formulation given in Corol-

lary 4.2.

Remark 2.1. As in the LDDMM framework (with the standard dynamic), the momentum

is a central element of the theory developed here. We will see in Example 2.1 that the

optimal vector field is parameterized by the trajectory q, its momentum p and the time

variable. With the Hamiltonian approach and via the shooting method, we will rewrite the

optimization problem with respect to the initial position q0 and the initial momentum p0.

2.2.2 Expression of the gradient

Theorem 2.1 (Expression of the gradient). Assume the (Hf
1 ), (HV

1 ) and (HC) conditions

and consider A : B → R of class C1. Let be (q0, v) ∈ B×L2
V and q = Φf (q0, v) the solution
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to the integral equation

qt = q0 +

∫ 1

0
f(qs, vs, s) ds .

Define the momentum p ∈ AC([0, 1], B∗) associated to q as the solution of

p1 = −dA(q1) ∈ B∗ ṗt = −∂f
∂q

(qt, vt, t)
∗ · pt . (3.17)

Consider the energy

E(q0, v) =

∫ 1

0
C(vt, t) dt+A(q1) .

Then the Gâteaux-derivative of the energy at the point (q0, v) is given in any direction

(δq0, δv) ∈ B × L2
V by

E′
(
(q0, v); (δq0, δv)

)
= (p0 | δq0) +

∫ 1

0

(
∂C

∂v
(vt, t)−

∂f

∂v
(qt, vt, t)

∗ · pt
∣∣∣∣ δvt) dt .

Hence, the gradient of the energy with respect to the vector field is given at any time

t ∈ [0, 1] by

∇vE(q0, v)t = KV

(
∂C

∂v
(vt, t)−

∂f

∂v
(qt, vt, t)

∗ · pt
)
, (3.18)

where KV : V ∗ → V is the canonical isomorphism.

Proof. Consider and denote δq = Φ′f (q0, v; δq0, δv) the Gateaux-derivative of Φf given in

Proposition 1.3. Since δq and p are absolutely continuous, t 7→ (pt | δqt) is also absolutely

continuous and we have then

(p1 | δq1) = (p0 | δq0) +

∫ 1

0

d

dt
(pt | δqt) dt = (p0 | δq0) +

∫ 1

0
(pt | δq̇t) + (ṗt | δqt) dt

= (p0 | δq0) +

∫ 1

0

(
pt

∣∣∣∣ ∂f∂q (qt, vt, t) · δqt +
∂f

∂v
(qt, vt, t) · δvt

)
−
(
∂f

∂q
(qt, vt, t)

∗ · pt
∣∣∣∣ δqt) dt

= (p0 | δq0) +

∫ 1

0

(
pt

∣∣∣∣ ∂f∂q (qt, vt, t) · δqt +
∂f

∂v
(qt, vt, t) · δvt

)
−
(
pt

∣∣∣∣ ∂f∂q (qt, vt, t) · δqt
)
dt

= (p0 | δq0) +

∫ 1

0

(
∂f

∂v
(qt, vt, t)

∗ · pt
∣∣∣∣ δvt) dt .

This expression is well defined since under the (Hf
1 ) assumption, there exists c > 0 such

that for any t ∈ [0, 1]∣∣∣∣∂f∂v (qt, vt, t)
∗ · pt

∣∣∣∣ ≤ c(|qt|B + 1)|pt|B∗ ≤ c(|q|∞ + 1)|p|∞.
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Therefore, define

δE =

∫ 1

0

(
∂C

∂v
(vt, t)

∣∣∣∣ δvt) dt+ (dA(q1) | δq1) (3.19)

=

∫ 1

0

(
∂C

∂v
(vt, t)

∣∣∣∣ δvt) dt− (p1 | δq1) (3.20)

= (p0 | δq0) +

∫ 1

0

(
∂C

∂v
(vt, t)−

∂f

∂v
(qt, vt, t)

∗ · pt
∣∣∣∣ δvt) dt . (3.21)

The existence of a gradient ∇vC(vt, t) ∈ V at any time t ∈ [0, 1] is given by the Riesz

representation theorem. The (HC) conditions ensures that this gradient is L2-integrable

so that the gradient of E is well defined. Note that (HC) conditions are satisfied when C

returns the square norm of v.

In fine, δE is finite and if e(ε) = E(qε0, v
ε), the Gâteaux-derivative of E is then equal

to

E′
(
(q0, v); (δq0, δv)

)
= e′(0) = δE .

Note that this theorem implies neither the existence of local minimizers of the energy

E nor the uniqueness. The existence of solutions is a problem studied in Chapter 4.

2.3 Momentum map

The function f is intended to model the infinitesimal action of v on q and should thus

always be linear with respect to v. We can thus rewrite it through an operator defined as

follows

ξ : B × [0, 1]→ L(V,B) ,

with for any (q, v, t) ∈ B × L2
V × [0, 1]

f(q, v, t) = ξ(q, t)(v) .

In the next sections, the dynamic will be fixed by ξ. If q = Φf (q0, v) is the solution

generated by v ∈ L2
V , at almost any time q̇t is given by

q̇t = ξ(qt, t)(vt) .

We will eventually denote ξt(q) for ξ(q, t). As we have introduced the (Hf ) conditions, we

will usually assume that ξ is of class C1 with respect to q and satisfies then

(Hξ
1)

∣∣∣∣∣∣∣∣∣∣∣

(i) ξt ∈ C1(B,L(V,B) for any t ∈ [0, 1] .

(ii) There exists c > 0 such that

|ξ(q, t)|L(V,B) ≤ c(|q|B + 1) and |∂qξ(q, t)|L(B,L(V,B)) ≤ c,
for any (q, t) ∈ B × [0, 1] .
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We can now introduce Jξ, usually called the momentum map and implicitly associ-

ated to ξ in this general study. Its definition is based on the linearity of ξ with respect to

v. Jξ will be the key to describe optimal vector fields.

Proposition 2.2 (Definition of the Momentum Map). The momentum map is the appli-

cation Jξ associated to ξ defined under the (Hξ
1) conditions by

Jξ : B ×B∗ × [0, 1] −→ V ∗

(q, p, t) 7−→ ξ∗(q,t) · p .

We have for any (q, p, t) ∈ B ×B∗ × [0, 1] and any v ∈ V

(Jξ(q, p, t) | v) =
(
p
∣∣ ξ(q,t)(v)

)
.

Proof. Let us verify that Jξ is well defined. Under the (Hξ) conditions, there exists c > 0

such that for any (q, p, t) ∈ B ×B∗ × [0, 1], |ξ(q, t)|L(V,B) ≤ c(|q|B + 1). Hence,

|Jξ(q, p, t)|V ∗ ≤ c(|q|B + 1)|p|B∗ (3.22)

and Jξ takes indeed its values in V ∗.

The regularity with respect to time of this momentum map will play an important role

in the next sections. At this stage, we start with the following proposition.

Proposition 2.3. Under the (Hξ
1) conditions, the momentum map is C1 with respect to

its two first variables.

Proof. Since under (Hξ
1), q 7→ ξt(q) is of class C1 for any t ∈ [0, 1], and p 7→ (p | δq) is

smooth for any δq ∈ B, we get immediately the result.

Theorem 2.1 can be rewritten with these new variables.

Theorem 2.2 (Expression of the Gradient via the Momentum Map). Assume the (Hξ
1),

(HV
1 ) and (HC) conditions and consider A : B → R of class C1. Let be (q0, v) ∈ B × L2

V

and q = Φξ(q0, v) the solution to the integral equation

qt = q0 +

∫ 1

0
ξ(qs,s)(vs) ds .

With the previously introduced momentum p ∈ C([0, 1], B∗) associated to q and momentum

map Jξ : B ×B∗ × [0, 1]→ V ∗, the Gâteaux-derivative at point (q0, v) of the energy

E(q0, v) =

∫ 1

0
C(vt, t) dt+A(q1)

is given in any direction (δq0, δv) ∈ B × L2
V by

E′
(
(q0, v); (δq0, δv)

)
= (p0 | δq0) +

∫ 1

0

(
∂C

∂v
(vt, t)− Jξ(qt, pt, t)

∣∣∣∣ δvt) dt .
Hence, the gradient of the energy with respect to the vector field is given at any time

t ∈ [0, 1] by

∇vE(q0, v)t = ∇vC(vt, t)−KV Jξ(qt, pt, t) . (3.23)
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Proof. It results from Theorem 2.1. We have

E′
(
(q0, v); (δq0, δv)

)
= (p0 | δq0) +

∫ 1

0

(
∂C

∂v
(vt, t)−

∂f

∂v
(qt, vt, t)

∗ · pt
∣∣∣∣ δvt) dt

= (p0 | δq0) +

∫ 1

0

(
∂C

∂v
(vt, t)− Jξ(qt, pt, t)

∣∣∣∣ δvt) dt
= (p0 | δq0) +

∫ 1

0
〈∇vC(vt, t)−KV Jξ(qt, pt, t), δvt〉V dt .

Remark 2.2. Note that equation (3.22) implies that for any pair (q, p) ∈ C([0, 1], B×B∗),
the associated momentum map is a L2-function of time interval [0, 1], i.e.(

t 7→ KV Jξ(qt, pt, t)
)
∈ L2

V .

Example 2.1. When C is given by the classic cost function

C(v, t) =
1

2
|v|2V ,

we have ∇vC(v, t) = v. Hence, given q0 ∈ B, any minimizer v∗ ∈ L2
V of E satisfies at any

time t ∈ [0, 1] the equation

v∗t = KV Jξ(qt, pt, t) .

We will consider other cost functions, but for all of them, an optimal vector field is always

build on KV Jξ(qt, pt, t) up to some weighting. The momentum map is thus in all cases

the main ingredient of an optimal vector field. Section 3.4 will present an important class

of cost functions. See Chapter 5 for another class of cost functions that we will use in our

numerical experiments.

Remark 2.3 (Time regularity of an optimal vector field). An important issue with time-

varying dynamics is that t 7→ ξt has no reason to be continuous. Consider for example

X = [0, 1], τ = Id and v ≡ y with y ∈ Rd a constant vector field. Then we have with the

growth dynamic for any q ∈ B = L∞([0, 1],Rd) and any t < t′ ∈ [0, 1]

|ξ(q, t)(v)− ξ(q, t′)(v)|∞ = |
(
x 7→ 11t<x≤t′y

)
|∞ = |y|Rd ,

so that ξt′ does not tend to ξt when t′ tends to t. Consequently and as mentioned before, we

have no control on the time regularity of the momentum map and thus on the continuity

of an optimal vector field.

2.4 Hamiltonian framework

The central Theorem 2.1 that gives the expression of the gradient to the energy, says

that given an initial condition q0 in B, any local minimizer v∗ ∈ L2
V of E(q0, ·) must satisfy

at any time t ∈ [0, 1] the equation

∂C

∂v
(v∗t , t)−

∂f

∂v
(qt, vt, t)

∗ · pt = 0 , (3.24)
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where q and p are the spatial mapping and the momentum associated to q0 and v∗.

This leads to the introduction of the following Hamiltonian function

H : B ×B∗ × V × [0, 1] −→ R
(q, p, v, t) 7−→ (p | f(q, v, t))− C(v, t) .

Then, an optimal trajectory (q, p) associated to a local minimizer v∗ is at any time a

local extrema of this Hamiltonian. Indeed, the partial derivatives of H are given for any

(q, p, v, t) ∈ B ×B∗ × V × [0, 1] by

∂H

∂q
(q, p, v, t) = −∂f

∂q
(q, v, t)∗ · p ,

∂H

∂p
(q, p, v, t) = f(q, v, t) ,

∂H

∂v
(q, p, v, t) =

∂f

∂v
(q, v, t)∗ · p− ∂C

∂v
(v, t) ,

∂H

∂t
(q, p, v, t) =

∂

∂t
(p | f(q, v, t))− ∂C

∂t
(v, t) ,

and in particular, equation (3.24) is equivalent to ∂H
∂v (qt, pt, v

∗
t , t) = 0 which is nothing but

a weak form of the Pontryagin Maximum Principle [43].

Usually, the cost function is a quadratic function on the norm of v. Hence, we will

assume in the following that the derivative of the application V 3 v 7→ H(q, p, v, t) admits

a unique zero that is the maximum of this application and we will note it v∗(q, p, t) or v∗

to simplify. This assumption allows to define the reduced Hamiltonian as follows:

Hr : B ×B∗ × [0, 1] −→ R
(q, p, t) 7−→ maxv∈V H(q, p, v, t) .

If v ∈ V maximizes the Hamiltonian, we have ∂H
∂v (q, p, v, t) = 0 and therefore, assuming

that v∗(q, p, t) is derivable with respect to q and p, the partial derivatives of Hr are given

for any (q, p, t) ∈ B ×B∗ × [0, 1] by :

∂Hr

∂q
(q, p, t) =

∂H

∂q
(q, p, v∗, t) +

∂H

∂v
(q, p, v∗, t) · ∂v

∗

∂q
(q, p, t) =

∂H

∂q
(q, p, v∗, t)

∂Hr

∂p
(q, p, t) =

∂H

∂p
(q, p, v∗, t) +

∂H

∂v
(q, p, v∗, t) · ∂v

∗

∂p
(q, p, t) =

∂H

∂p
(q, p, v∗, t)

∂Hr

∂t
(q, p, t) =

∂H

∂t
(q, p, v∗, t) +

∂H

∂v
(q, p, v∗, t) · ∂v

∗

∂t
(q, p, t) =

∂H

∂t
(q, p, v∗, t) .

We can now derive the characterization of the Gâteaux-derivative of the functional E

as well as the critical paths in term of the Hamiltonian.

Theorem 2.3. Assume the (Hf
1 ), (HV

1 ) and (HC) conditions and consider A : B → R
of class C1. Let be v ∈ L2([0, 1], V ), let q = Φf (q0, v) be the unique solution associated

to an initial condition q0 ∈ B and let p be the retrograde solution of p1 = −dA(q1) and

ṗt = −∂f
∂q (qt, vt, t)

∗ · pt. Then for any δv ∈ L2
V ,

∂E

∂v
(q0, v) · δv =

∫ 1

0

(
−∂H
∂v

(qt, pt, vt, t) | δvt
)
dt ,
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where for any t ∈ [0, 1],

H(qt, pt, vt, t) = (pt | f(qt, vt, t))− C(vt, t) .

Moreover, if for any (x, y, t) ∈ B × B∗ × [0, 1] the equation ∂vH(x, y, v, t) = 0 admits

a unique solution v∗(q, p, t) that is derivable with respect to q and p, then if t 7→ vt locally

minimizes E, the trajectory (q, p) ∈ AC([0, 1], B × B∗) satisfies at almost any time the

following Hamiltonian system 
q̇t = ∂Hr

∂p (qt, pt, t) ,

ṗt = −∂Hr
∂q (qt, pt, t) .

where

Hr(qt, pt, t) = H(qt, pt, vt, t) .

Proof. We saw in Theorem 2.1 that

∇vE(q0, v)t = KV

(
∂C

∂v
(vt, t)−

∂f

∂v
(qt, vt, t)

∗ · pt
)

= −KV

(
∂H

∂v
(qt, pt, vt, t)

)
.

Therefore, if v locally minimizes E, for almost any t ∈ [0, 1], vt is the unique solution

to ∂H
∂v (q, p, v, t) = 0, i.e. vt = v∗(qt, pt, t) as previously defined. Then we retrieve with

the partial derivatives of the reduced Hamiltonian ∂Hr
∂p (qt, pt, t) = q̇t and ∂Hr

∂q (qt, pt, t) =

−ṗt.

Remark 2.4. This theorem is an immediate application of the Pontryagin’s maximum

principle. When C(v, t) = 1
2 |v|

2
V , the application V 3 v 7→ H(q, p, v, t) admits a unique

local extremum that is its maximum. However, with some other interesting cost functions,

this application might have several local extrema. There exist yet Pontryagin’s maximum

principle theorems (in more specific configurations, for example, when V has a finite di-

mension) to prove that an optimal vector field v∗ is then the global maximum of the Hamil-

tonian [49].

This Hamiltonian can again be written with the operator ξ.

H(q, p, v, t) = (ξ∗(q,t) · p | v)− C(v, t) (3.25)

= (Jξ(q, p, t) | v)− C(v, t) . (3.26)

Example 2.2. We saw in Example 2.1 that when C is the classic cost function given by

C(v, t) = 1
2 |v|

2
V , any optimal vector field v∗ ∈ L2

V of E satisfies at any time t ∈ [0, 1] the

equation

v∗t = KV Jξ(qt, pt, t) .

It results that

Hr(qt, pt, t) =
1

2
|Jξ(qt, pt, t)|2V ∗ =

1

2
|v∗t |2V .
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Remark 2.5. An important novelty appears here. This Hamiltonian is not constant in

time. Its derivative with respect to t equals

dHr

dt
(qt, pt, t) =

∂Hr

∂q
(qt, pt, t) · q̇t +

∂Hr

∂p
(qt, pt, t) · ṗt +

∂Hr

∂t
(qt, pt, t)

= −ṗt · q̇t + ṗt · q̇t +
∂Hr

∂t
(qt, pt, t)

=
∂

∂t

(
pt | f(qt, v

∗
t , t)

)
− ∂C

∂t
(v∗t , t) .

In the situation of the Example 2.2, if the reduced Hamiltonian is not constant in time,

the norm of the optimal vector field also varies in time and we have more precisely

dHr

dt
(qt, pt, t) =

(
∂Jξ
∂t

(qt, pt, t)

∣∣∣∣ v∗t) .

We will see in Section 3 that with the growth dynamic this partial derivative of the

momentum map measures the appearance of new points. Hence, when there is no creation

at time t, we retrieve the classic LDDMM case and the norm of the vector field is constant.

Otherwise, when there is appearance of new points, this norm should increase.

Moreover, since the norm of v∗ varies, this new model on time-varying dynamics does

no longer generate geodesics on the group of deformations. This results from the fact that

with the growth dynamic for example, the final shape q1 does not depend anymore only on

the final deformation generated by v∗ but on the complete path or at least at every time

when new points are created.

2.5 Shooting method

This section presents a formal approach of the shooting method. The following results

will be proved in Sections 5.5 and 5.6.

We saw in the previous section that an optimal vector field or equivalently an optimal

path q ∈ C([0, 1], B) can be generated as a solution of the reduced Hamiltonian system.

These solutions are parameterized by an initial position q0 and an initial momentum p0.

Instead of playing with the vector field as the control in the set of paths, we can thus

define the initial momentum as the new control that can be optimized.

Denote y = Ψ(q0, p0) the unique solution of the reduced Hamiltonian system associated

to the initial condition (q0, p0) ∈ B × B∗. We have thus y ∈ C([0, 1], B × B∗) and at any

time t ∈ [0, 1],

yt = (qt, pt)

and

yt = y0 +

∫ t

0
h(ys, s) ds ,

where h is the symplectic gradient of Hr with respect to (q, p) defined as follows
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h : (B ×B∗)× [0, 1] −→ B ×B∗

((q, p), t) 7−→


∂Hr
∂p (q, p, t)

−∂Hr
∂q (q, p, t)

 (3.27)

With this notation, we introduce a new expression of the energy

Ê(y0) =
∫ 1

0 Ĉ(yt, t) dt+ Â(y1) ,

where Ĉ(yt, t) = C(v∗t , t) is equivalent to the old cost function and Â(y1) = A(q1) is

equivalent to the old attachment term. Therefore, if an initial momentum p0 and a time-

varying vector field v generate the same solution (q, p) ∈ C([0, 1], B × B∗) then the two

respective energies are equal

Ê(y0) = Ê(q0, p0) = E(q0, v) . (3.28)

In the following, we will not distinguish Ê, Ĉ and Â from E, C and A.

The method to explicit the gradient of the energy is the same as before, reduced to

two main steps and its conclusion as follows:

— The first step is to define the covariable of y as the momentum p is the covariable

of q. We introduce thus z1 = −dA(y1) ∈ (B × B∗)∗ and we integrate it backward

through the equation

żt =
∂C

∂y
(yt, t)−

∂h

∂y
(yt, t)

∗ · zt . (3.29)

— The second step is to establish that the Gâteaux-derivative Ψ′(y0; δy0) is given by

δyt = δy0 +

∫ t

0

∂h

∂y
(ys, s) · δys ds .

— Then we can write

E′(y0; δy0) =

∫ 1

0

(
∂C

∂y
(yt, t)

∣∣∣∣ δyt) dt+ (dA(y1) | δy1)

=

∫ 1

0

(
∂C

∂y
(yt, t)

∣∣∣∣ δyt) dt− (z1 | δy1)

=

∫ 1

0

(
∂C

∂y
(yt, t)

∣∣∣∣ δyt) dt− (z0 | δy0) +

∫ 1

0
(żt | δyt)− (zt | ˙δyt) dt

= −(z0 | δy0) +

∫ 1

0

(
∂C

∂y
(yt, t)− żt −

∂h

∂y
(yt, t)

∗ · zt
∣∣∣∣ δyt) dt

= −(z0 | δy0) .

At last, if we write at any time t the covariable zt as (Qt,Pt) ∈ B∗ × B∗∗, we get

more explicitly

E′
(
(q0, p0); (δq0, δq0)

)
= −(Q0 | δq0)− (P0 | δp0) . (3.30)
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The Gâteaux-derivative of the energy has thus a particularly simple expression leading

to a new algorithm of gradient descent. An interest of this approach is to parameterize

the solution with variables of smaller dimension paving the way for a statistical analysis.

Algorithm 3 Gradient descent on p0

1 - Given q0
0 ∈ B, initialize p0

0 ∈ B at zero.
Then for any n ∈ N, given qn0 and pn0 :
2 - Integrate forward with the Hamiltonian system (3.27) to get (qn, pn) ∈ C([0, 1], B2).

3 - Compute Qn1 = −dA(qn1 ), defined Pn1 = 0.
4 - Integrate backward with the second order Hamiltonian system (3.29) to get
(Qn,Pn) ∈ C([0, 1], B2).
4 - Update pn0 by pn+1

0 = pn0 + εPn0 for a small ε > 0.
5 - (Optional) Update qn0 by qn+1

0 = qn0 + εQn0 for a small ε > 0.

3 Applications with the growth dynamic

We will now apply the previous results in the setting of mappings from a biological

coordinate system (X, τ). We give the explicit expression of previous variables with the

growth dynamic given by the operator ξ : B × [0, 1]→ L(V,B) defined by

ξ(q,t)(v) = f(q, v, t) =
(
x 7→ 11τ(x)≤tv(q(x))

)
.

In order to remember that ξ is now fixed throughout this section, the momentum map

will be denoted J instead of Jξ, likewise with Φ.

The sets X{t} and Xt of new points and active points at time t, defined by (3.2) and (3.1),

will play an important role to understand the construction of an optimal scenario.

3.1 Discrete coordinate space

We assume that X is given as finite set of k points with a mesh. At any time t ∈ [0, 1], qt
is an element of B = (Rd)k with a mesh. Under the (HV

1 ) conditions, the (Hξ
1) conditions

are satisfied (see Proposition 4.3).

3.1.1 The momentum

The general definition of the momentum and its evolution are given in Proposition 2.1.

Here, with the Riez representation theorem, the momentum p can be seen as an element of

C([0, 1], (Rd)k). At time t = 1, p1 is given by definition as the gradient of the attachment

term A
dA(q1) · δq1 =

∑
x∈X
〈∇q1(x)A(q1), δq1(x)〉Rd

and p1 can thus be parameterized by X as follows

p1(x) = ∇q1(x)A(q1) ,

113



so that (p1 | δq1) = 〈p1, δq1〉(Rd)k . This pointwise expression is conserved by the backward

integration and we have at any time t ∈ [0, 1] for any y ∈ B = (Rd)k

(pt | y) =
∑
x∈X
〈pt(x), y(x)〉Rd .

In this configuration, the behaviors of q and p over time share a common pattern. For

any x in X, qt(x) and pt(x) are both static when x does not exist, i.e. t is smaller than

τ(x), and jointly active once x has appeared. Indeed, their dynamics are explicitly given

for any x ∈ X and at any time t ∈ [0, 1] by

q̇t(x) = 11τ(x)≤t vt(qt(x)) ṗt(x) = −11τ(x)≤t dvt(qt(x))T · pt(x) . (3.31)

3.1.2 Expression of the momentum map

As we said in Example 2.1, the momentum map is the main ingredient to define

optimal vector fields for all of the cost functions that we will consider. For any (q, p, t) ∈
(Rd)k × (Rd)k × [0, 1] and any v ∈ V , we have(

J (q, p, t) | v
)

= 〈p, 11τ≤t v ◦ q〉(Rd)k

=
∑

x∈X,τ(x)≤t

〈p(x), v(q(x))〉Rd .

Equivalently, J can be written

J (q, p, t) =
∑

x∈X,τ(x)≤t

δ
p(x)
q(x) ,

where for any (x, y) ∈ (Rd)2 and any v ∈ V , the functional δyx ∈ V ∗ is defined by

δyx(v) = 〈y, v(x)〉Rd .

The vector field associated to J via the canonical isomorphism KV has then an explicit

expression in both Gaussian RKHS and affine situations.

— When V is a RKHS with a kernel denoted kV , we have

KV J (q, p, t) =
∑

x∈X,τ(x)≤t

kV (q(x), ·)p(x) .

— In the specific case of rotations and translations, where V is the direct product

Skewd × Rd equipped with the usual norm, we have

KV J (q, p, t) =

projSkewd

 ∑
x∈X,τ(x)≤t

p(x)q(x)T

 ,
∑

x∈X,τ(x)≤t

p(x)

 .

Remark 3.1. The reader familiar with the LDDMM framework will recognize all these

equations. The difference with the classical model only resides in the addition of the

indicator function. Each point x ∈ X eventually contributes to v∗t with a combination
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of its position qt(x) and its momentum pt(x). However, here, the set of points involved at

each time or in other words the effective support of the vector field varies over time. At

every time t, the coordinate space X and likewise the shape qt(X) are divided in two parts:

1. the active part composed of all the points already appeared

Xt = {x ∈ X | τ(x) ≤ t},

2. the inactive part (its complementary) .

At time t, the vector field vt carries only the active part. Therefore, it is natural to obtain

an optimal vector field v∗t constructed only with the points of the active area and likewise,

as noticed before, the active points have their position and momentum moving whereas the

inactive points have a static position and momentum. See Figure 3.6.

Figure 3.6 – The active part of the shape modeling the horn is blue. The inactive part of
anticipated points goes from green to red. The arrows are the respective momenta pt(x)
at points qt(x).

Remark 3.2 (Continuity of the momentum map). We stated already that the momentum

map is of class C1 with respect to its two first variables. Since X is a finite set, the image

of τ is also a finite subset of [0, 1] and given q, p ∈ (Rd)k, the function

t 7→ J (q, p, t) =
∑
Xt

δ
p(x)
q(x)

is therefore piecewise constant. Given now a trajectory q ∈ C([0, 1], (Rd)k) and its associ-

ated momentum p ∈ C([0, 1], (Rd)k), thanks to Proposition 2.3,

t 7→ J (qt, pt, t)

is piecewise continuous as well as t 7→ KV J (qt, pt, t). More precisely, it is continuous on

any interval [ti, ti+1[ where ti and ti+1 are two consecutive values of τ(X). The jump at

time ti+1 is given by ∑
x∈X,τ(x)=ti+1

δ
pti+1 (x)

qti+1 (x) .

This jump is thus due to the contribution of the new points that appear at time ti+1. An

important remark here is that at any time t, for any x ∈ X such that τ(x) = t, we have
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qt(x) = q0(x) and pt(x) = p0(x). The jump at time ti+1 is thus equal to∑
x∈X,τ(x)=ti+1

δ
p0(x)
q0(x) .

Therefore, all jumps depend only on q0, p0 and τ .

Inside these intervals [ti, ti+1[, the evolution of KV J is the same as in the LDDMM

framework. Otherwise, the jumps result from the extension of the support of KV J with

the set of points that progressively appear (the new points that contribute in the sum) . We

will see however in the next section in a non discrete case, that if the creation of points

is smooth over time, the support of KV J increases continuously and this last one is then

also continuous.

3.1.3 Algorithm for the gradient descent

In fine, Algorithm 1 explicits an algorithm very similar to the LDDMM model to

construct a minimizer v∗. The main difference in practice is to trace at each discrete time

Algorithm 4 Gradient descent on v

1 - Initiate v0 ∈ L2
V at zero

Then for any n ∈ N, given q0 and vn,
2 - Compute qn ∈ C([0, 1], (Rd)k) the path generated by vn ∈ L2

V

3 - Compute pn1 = −∇A(qn1 ) and integrate it backward to construct pn ∈ C([0, 1], (Rd)k)

4 - Compute at any time the gradient at vnt : δvnt = ∇vC(vnt , t)−KV J (qnt , p
n
t , t)

5 - Update the vector field by vn+1 = vn + εδvn for a small ε > 0

ti ∈ [0, 1] the set of active points.

Additionally, Theorem 2.1 also allows to optimize the initial condition q0 if necessary.

Typically, if q0 is partially known and a reconstruction has been guessed, we can optimize

it under some constraints (for example, inside a subset of the ambient space) . This

optimization should of course be controlled, otherwise the initial condition would just

tend straightforward to the target. See an example in Chapter 5.

3.2 Continuous coordinate space

In this section, X is a compact submanifold eventually with corners. The evolution of

the shape is still given by the operator ξ : B × [0, 1]→ L(V,B) defined by

ξ(q, t)(v) =
(
x 7→ 11τ(x)≤tv(q(x))

)
.

The definition of B needs to be slightly refined to involve the boundary of X. We will see

indeed that ∂X will play an important role to explicit the momentum and the momentum

map.

Definition 3.1 (The B space). For any Borel set A ⊂ X, we define the measure µ on X

as follows

µ(A)
.
= Hk(A) +Hk−1(A ∩ ∂X) .
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We introduce then

B = L∞µ (X,Rd) (3.32)

the space of measurable functions from X to Rd defined µ-almost everywhere that are

essentially bounded. We note |q|∞,µ the essential supremum with respect to µ and define

|q|B
.
= |q|∞,µ.

One can easily verify that under the (HV
1 ) conditions, ξ is well defined for B =

L∞µ (X,Rd) and satisfies the (Hξ
1) conditions.

Remark 3.3 (Spatial regularity of the solution). Consider a smooth initial position q0 ∈
C∞(X,Rd). We will show in Section 4, that even if v ∈ C([0, 1], V ), the final shape q1 of

the solution q = Φ(v, q0) belongs to C1(X,Rd). However, if v is only square-integrable, q1

is a priori only differentiable almost everywhere (see Proposition 4.8).

Remark 3.4 (Definition of the attachment term). We recalled in Chapter 1 how to build

a distance on shapes based on their current representations. The currents are yet generally

used to model shapes that are at least rectifiable sets. The final shape q1 is thus not enough

regular when v is only integrable. We will show however in Chapter 4 that A can be

extended from its standard definition on

{q1 | q0 ∈ C∞(X,Rd), v ∈ C([0, 1], V ), q = Φ(q0, v)} ⊂ C1(X,Rd)

to

{q1 | q0 ∈ C∞(X,Rd), v ∈ L2
V , q = Φ(q0, v)} ,

the sets of all the shapes generated with the growth dynamic from smooth initial conditions.

Hence, we will define the attachment term A on this set only (subset of B) as a function

of q0 and v. In other words, the previous energy is not modified but is now written

E(q0, v) =

∫ 1

0
C(vt, t) dt+A(q0, v) .

At last, let us announce a central result of the next chapter.

Remark 3.5 (Continuity of an optimal vector field v∗). Following the previous remark,

we will also show in Chapter 4 that for any v ∈ L2
V , A is Gâteaux-differentiable with

respect to v and that E admits a minimizer. Moreover, any minimizer v∗ is continuous

with respect to time, i.e. v∗ ∈ C([0, 1], V ).

3.2.1 The momentum

In this general configuration, the nature of the momentum p strongly depends on the

attachment term A. As noted in Remark 2.3, the momentum map J is a priori not

continuous with respect to time. However, if the momentum belongs to an adequate

subspace of B∗, this continuity can be guaranteed. We will see that for a continuous

vector field, p can be identified to an element of such a space denoted hereafter B∗1 . The

last result of Chapter 4 says indeed that under the (HV
1 ) conditions, the evaluation of

the Gâteaux-derivative of A on δv can be rewritten as a linear form evaluated on δq1 and

define a pointwise momentum as follows:
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For any (q0, v) ∈ C∞(X,Rd)×C([0, 1], V ), there exists p1 ∈ C(X,Rd)×C(∂X,Rd) such

that for any (δq0, δv) ∈ C∞(X,Rd)× C([0, 1], V ),

A′(q0, v; δq0, δv) =

∫
X
〈pX1 (x), δq1(x)〉Rd dHk(x) +

∫
∂X
〈p∂X1 (x), δq1(x)〉Rd dHk−1(x) .

(3.33)

Remark 3.6. The fact that p1 is not an arbitrary distribution in C∞(X,Rd)′ but can

be represented by two simple continuous functions on X and ∂X will allow us to extend

important properties of optimal vector fields from the discrete case to the continuous case

for X. In the following, A does not have to be an attachment term built on currents but

only to satisfy this previous property (equation (3.33)).

To go further, one needs to show that the integration backward of p1 preserves its simple

pointwise representation as a pair of two continuous functions. It requires to introduce a

new space smaller than B∗. As for q, a space of continuous functions is not admissible since

the expression of ṗt under the growth dynamic involves the indicator 11τ≤t. It leads then

naturally to choose B∗1 = L∞(X,Rd) × L∞(∂X,Rd). The choice of B∗1 is here validated

by the two next propositions.

Proposition 3.1. If B = L∞µ (X,Rd) and B∗1 = L∞(X,Rd)× L∞(∂X,Rd), there exists a

continuous linear embedding of B∗1 into B∗.

Proof. One can show it directly or see Proposition 5.5 and Proposition 5.1.

Proposition 3.2. Assume the (HV
1 ) conditions. For any p1 ∈ B∗1 = L∞(X,Rd) ×

L∞(∂X,Rd) and any v ∈ L2([0, 1], V ), there exists a unique solution p ∈ AC([0, 1], B∗1)

that satisfies at almost all time

ṗXt (x) = 11τ(x)≤tdvt(qt(x))T · pXt (x) ṗ∂Xt (x) = −11τ(x)≤tdvt(qt(x))T · p∂Xt (x) . (3.34)

Proof. These equations are linear with respect to pt and B∗1 is a Banach space. In both

cases, (HV
1 ) allows to control the operators with the norm of vt so that they are both

square-integrable. The linear Cauchy-Lipschitz Corollary 4.2 ensures thus the existence,

uniqueness and stability of the momentum in this space on the time interval [0, 1].

3.2.2 Expression of the momentum map

The expression of the momentum map (see Definition 2.2) on the two previously in-

troduced spaces B and B∗1 is given by(
J (q, p, t) | v

)
=
(
p | 11τ(x)≤tv(q(x))

)
(3.35)

=

∫
X

11τ(x)≤t〈pX(x), v(q(x))〉Rd dHk(x) (3.36)

+

∫
∂X

11τ(x)≤t〈p∂X(x), v(q(x))〉Rd dHk−1(x) . (3.37)

As for the discrete shapes (see Remark 3.1), the momentum map is at any time t ∈ [0, 1]

built as an integral on the active part Xt = {x ∈ X | τ(x) ≤ t} ⊂ X. We have yet an

additional term built with the active points of the boundary of X.
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To highlight the role played by the time marker τ via the indicator function in this

equation, we assume now to simplify that X = [0, 1]×X0 with ∂X0 = ∅ and that τ is the

projection on the first coordinate. In this configuration, the boundary of X is given by

∂X =
(
{0} ×X0

)
∪
(
{1} ×X0

)
.

This is exactly the set of points that appear at times t = 0 and t = 1. The previous

equation becomes

(
J (q, p, t) | v

)
=

∫ t

0

∫
X0

〈pX(s, x0), v(q(s, x0))〉Rd dHk−1(x0)ds (3.38)

+

∫
X0

〈p∂X(0, x0), v(q(0, x0))〉Rd dHk−1(x0) (3.39)

+ 11t=1

∫
X0

〈p∂X(1, x0), v(q(1, x0))〉Rd dHk−1(x0) . (3.40)

This general example shows that when the new points appear regularly over time the

momentum map is continuous with respect to time (for t in [0, 1[) . The jump at

time t = 1 is here meaningless since the evolution stops at this time.

Remark 3.7 (Pointwise expression of p to continuity of J ). The existence of a pointwise

expression of the momentum implies thus the continuity of the momentum map with respect

to time and thus the continuity of an optimal vector field (see Example 2.1). The continuity

of an optimal vector field is yet not systematic with any attachment term. We will show

indeed that with an attachment term built on varifolds, the optimal vector fields are not

always continuous. However, note that with discrete shapes the attachment term does

not play any specific role in the pointwise expression of the momentum as long as it is

differentiable.

Remark 3.8. As we did in the previous section with a discrete coordinate space X, we

can explicit the momentum map and its image in the vector field space V . From equa-

tions (3.36) and (3.37), J can be rewritten

J (q, p, t) =

∫
X

11τ≤tδ
pX

q +

∫
∂X

11τ≤tδ
p∂X

q ,

where we recall that p = (pX , p∂X). Then if V is a RKHS with a kernel kV

KV J (q, p, t) =∫
X

11τ(x)≤tkV (·, q(x))pX(x) dHk(x) +

∫
∂X

11τ(x)≤tkV (·, q(x))p∂X(x) dHk−1(x)

and when we specify X = [0, 1] × X0 and τ the projection on the first coordinate, this
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expression becomes

KV J (q, p, t) =

∫ t

0

∫
X0

kV (·, q(s, x0))pX(s, x0) dHk−1(x0)ds

+

∫
X0

kV (·, q(0, x0))p∂X(0, x0) dHk−1(x0)

+ 11t=1

∫
X0

kV (·, q(1, x0))p∂X(1, x0) dHk−1(x0) .

Remark 3.9 (Time derivative and control on this derivative). We will prove in Section 5.4

(see Proposition 5.8) that the momentum map is derivable with respect to t almost every-

where: (
∂J
∂t

(q, p, t)

∣∣∣∣ ṽ) =

∫
X0

〈pX(t, x0), ṽ(q(t, x0))〉Rd dHk−1(x0) . (3.41)

When X is a discrete set, the jumps of the momentum map result from the appearance of

new points at the discrete times (ti)i=1:n ⊂ [0, 1]. Likewise here, at each time, the support

of the integral increases with the new layer X{t} = {t} ×X0. If we use as before the fact

that the points and the momenta of a new layer have not been displaced, i.e. that at any

time t, for any x ∈ X such that τ(x) = t we have qt(x) = q0(x) and pt(x) = p0(x), we get

for any trajectory q ∈ C([0, 1], B) with its momentum p ∈ C([0, 1], B∗1) that for any ṽ ∈ L2
V(

∂J
∂t

(qt, pt, t)

∣∣∣∣ ṽ) =

∫
X0

〈pXt (t, x0), ṽ(qt(t, x0))〉Rd dHk−1(x0) (3.42)

=

∫
X0

〈pX0 (t, x0), ṽ(q0(t, x0))〉Rd dHk−1(x0) . (3.43)

This last equation shows that the partial derivative with respect to time of the momentum

map only depends on the initial condition q0 and the initial momentum p0. This will play

an important role in the existence of solutions by shooting (Section 3.5).

3.3 Specific behavior of the momentum map with the growth dynamic

The previous pointwise decomposition of the momentum allow to suppose that the

norm of an optimal vector field increase with the apparition of new points. Although we

cannot explicitly show it, we can yet propose an upper bound of this norm by an increasing

function of time.

3.3.1 Discrete setup

With a discrete coordinate space, we saw that the momentum map is given for any

(q, p, t) ∈ B ×B∗ × [0, 1] and any v ∈ V by(
J (q, p, t) | v

)
=

∑
x∈X,τ(x)≤t

〈p(x), v(q(x))〉Rd (3.44)
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(note that B∗ = B = (Rd)k) . For any couple (q, p) ∈ C([0, 1], B ×B∗), there exists under

the (HV
1 ) conditions a constant c > 0 such that for any t ∈ [0, 1],

|KV J (qt, pt, t)|V ≤ c|p|∞(1 + |q|∞)
∑

x∈X,τ(x)≤t

1 .

Hence, n points periodically appear at each time i
m for i = 0, 1, . . . ,m and m ∈ N∗, we

get

|KV J (qt, pt, t)|V ≤ nc|p|∞(1 + |q|∞)
(
1 + floor(mt)

)
. (3.45)

3.3.2 General current setup

Let us recall the configuration presented in Section 3.2. X is a compact submanifold

given as X = [0, 1]×X0 with ∂X0 = ∅ and τ is the projection on the first coordinate. The

object space is given by B = L∞µ (X,Rd) and the momentum space by B∗1 = L∞(X,Rd)×
L∞(∂X,Rd) ↪→ B∗.

Proposition 3.3. There exists a real valued function m(r) defined for r ≥ 0 such that for

any (q, p) ∈ C([0, 1], B ×B∗1) and any time t ∈ [0, 1], we have

|KV J (qt, pt, t)−KV J (q0, p0, 0)|V ≤ m(|q|B + |p|B∗)t . (3.46)

Proof. We saw that the momentum map is given for any couple
(
q, (pX , p∂X)

)
∈ C([0, 1], B×

B∗1), any time t ∈ [0, 1] and any v ∈ V by

(
J (qt, pt, t) | v

)
=

∫ t

0

∫
X0

〈pXt (s, x0), v(qt(s, x0))〉Rd dHk−1(x0)ds (3.47)

+

∫
X0

〈p∂Xt (0, x0), v(qt(0, x0))〉Rd dHk−1(x0) (3.48)

+ 11t=1

∫
X0

〈p∂Xt (1, x0), v(qt(1, x0))〉Rd dHk−1(x0) . (3.49)

There exists then under the (HV
1 ) conditions a constant c > 0 such that for any t ∈ [0, 1],

|KV J (qt, pt, t)−KV J (q0, p0, 0)|V ≤ t
(
c|p|∞(|q|∞,µ + 1)Hk−1(X0)

)
+ 11t=1c|p∂X |∞(|q|∞,µ + 1)Hk−1(X0) .

3.3.3 Current setup: case of horns

In the current setup, the example of horns presents an additional interesting aspect. A

horn is not diffeomorphic to a product [0, 1]×X0 because of the tip of the horn. Yet, we

chose to keep this general configuration on X and allow the spatial mapping between X

and Rd to be not invertible. This characteristic leads to the introduction of a new space

B0 ⊂ B.
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Definition 3.2 (The B0 Space for the Horns). A class of function of L∞µ (X,Rd) is defined

Hk−1-almost everywhere on {0} ×X0. This allows to consider the subspace of functions

whose image of {0} ×X0 is reduced to a singleton. With B = L∞µ (X,Rd), we define

B0 = {q ∈ B | ∃y ∈ Rd, q(0, ·) = y Hk−1-a.e. on X0} . (3.50)

This space will reveal the role of the singularity induced by the tip of the horn and

hidden by the choice of X. The initial boundary formed by the first layer {0}×X0 actually

does not contribute to the support of the momentum map. We will see indeed in the next

chapter that if q1 ∈ B0 then for any x0 ∈ X0, we have p∂X1 (0, x0) = 0 so that at any time

t ∈ [0, 1], we have p∂Xt (0, x0) = 0. Since the momentum on the last layer {1} ×X0 is not

significant, when ∂X0 = ∅ so that ∂X = {0, 1} ×X0, we can do the approximation

∀t ∈ [0, 1], p∂Xt = 0 .

That is to say that the momentum lives in a new space B̃∗1 = L∞(X,Rd) ⊂ B∗1 .

Remark 3.10. Note that we introduced on both sides, for the shape q and its momentum

p, new spaces smaller than B and B∗.

These spaces refine even further the control on the momentum map.

Proposition 3.4. There exists a real valued function m(r) defined for r ≥ 0 such that for

any (q, p) ∈ C([0, 1], B0 × B̃∗1) and any time t ∈ [0, 1], we have

|KV J (qt, pt, t)|V ≤ m(|q|B + |p|B∗)t . (3.51)

where B0 is given by Definition 3.2 and B̃∗1 = L∞(X,Rd).

Proof. See Proposition 3.3.

Remark 3.11. As presented in Example 2.1, with the classic cost function C(v, t) =
1
2 |v|

2
V , the optimal vector field is equal to the momentum map :

v∗t = KV J (qt, pt, t) .

Equation (3.51) gives thus a strong information on the behavior of an optimal vector field.

Its norm increases no more than linearly and starts from 0. This phenomenon

can be explained quite naturally. When the horn starts to appear, the shape is reduced

to a single point which is the tip of the horn. The cost function prevents to pay for a

deformation that would have an insignificant impact. The vector field is therefore null at

time 0. Such vector fields are yet unable to create a sharp peak as required to model the top

of the horn. One can then deduce that the classic cost function is not adapted to the growth

dynamic, especially with horns. A new cost function is thus presented in the next section.

At last, note that the example of horns only highlights and amplifies a phenomenon that

will also appear with a tube or when the coordinate space X is discrete (see Chapter 5) .

3.4 New cost functions: Adapted norm setup

The previous study on the norm of the momentum map calls for new cost functions.
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Definition 3.3 (Adapted norm setup). We call the adapted norm setup the configu-

ration where the cost function C is given for any (v, t) ∈ V × [0, 1] by

C(v, t) =
1

2
〈v, `tv〉V ,

where `t ∈ L(V ) is a self-adjoint operator on V . We assume that t→ |`t|op is bounded on

[0, 1] and that there exists a strictly increasing function α : [0, 1]→ R+ such that α(0) = 0

and

α(t)|v|2V ≤ 〈v, `tv〉V . (3.52)

Proposition 3.5. In the adapted norm setup, for any t > 0, `t is invertible and |`−1
t |op ≤

α(t)−1. If α(0) 6= 0, this inequality is satisfied for any t ∈ [0, 1].

Proof. For any t ∈ [0, 1] such that α(t) 6= 0, `t is coercive. The invertibility results from

the Lax-Milgram theorem (see for example [14]). We deduce then from equation (3.52)

that for any v ∈ V
α(t)|`−1

t v|2V ≤ 〈v, `−1
t v〉V ≤ |`−1

t v|V |v|V ,

so that |`−1
t v|V ≤ 1

α(t) |v|V .

Definition 3.4 (Nondegenerate Adapted Norm Setup). We call the nondegenerate

adapted norm setup the adapted norm setup with the following additional assumption.

There exists α > 0 such that for any v ∈ V and any t ∈ [0, 1]

α|v|2V ≤ 〈v, `tv〉V .

Remark 3.12. The nondegenerate adapted norm setup is a subcase of the adapted norm

setup. Hence any results satisfied in the adapted norm setup holds in nondegenerate

adapted norm setup. The classic cost function C(v, t) = |v|2V is a specific case of the

nondegenerate adapted norm setup (take `t = Id for any t ∈ [0, 1]) .

Proposition 3.6. In the adapted norm setup, the function giving the optimal vector

field is defined when `t is invertible by

v∗t = v∗(q, p, t) = `−1
t KV Jξ(q, p, t) . (3.53)

Proof. The optimal vector field must satisfy at any time the equation

∂C

∂v
(vt, t)− Jξ(qt, pt, t) = 0

or equivalently in V

∇vC(vt, t) = `tvt = KV Jξ(qt, pt, t)

and the optimal vector field is given by

v∗t = v∗(qt, pt, t) = `−1
t KV Jξ(qt, pt, t) . (3.54)
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Example 3.1. When `t = Id at all time, we find the usual cost function C(v, t) = 1
2 |v|

2
V .

In practice, `t will be either scalar in general or blockwise scalar when V admits a canonical

decomposition as in the rotations-translation case where V = Ad × Rd.

Example 3.2. When the coordinate space X is discrete, the momentum map J is piece-

wise constant with respect to time (see Remark 3.2). It results from Remark 2.5 that the

time derivative of the reduced Hamiltonian is reduced for almost all time to

dHr

dt
(qt, pt, t) =

(
∂Jξ
∂t

(qt, pt, t)

∣∣∣∣ v∗t)− ∂C

∂t
(v∗t , t) (3.55)

= −〈v∗t , ˙̀
tv
∗
t 〉V . (3.56)

If ` > 0 is then a scalar function that is also constant between each appearance of new

layers, it comes that dHr
dt (qt, pt, t) = 0 and

Hr(qt, pt, t) = (Jξ(qt, pt, t) | v∗t )− C(v∗t , t) (3.57)

=
`t
2
|v∗t |2V . (3.58)

Therefore, the norm of the optimal vector field is constant between each appearance of new

layers.

3.5 Existence and uniqueness of the solutions by shooting

Among the solutions of the Hamiltonian system generated from any initial condition

(q0, p0) ∈ B×B∗ is the sought-after trajectory (q, p) ∈ C([0, 1], B)×C([0, 1], B∗) associated

to an optimal time-varying vector field v∗. Therefore, the optimization problem on v can be

replaced by an optimization problem on p0 as presented in Section 2.5 (Shooting Method).

This new point of view requires to guarantee the existence and uniqueness of a solution

(q, p) for any initial condition (q0, p0). We will prove it in Section 5 when f is linear and for

a reduced Hamiltonian system associated to the cost functions introduced in Section 3.4.

We summarize here the results.

We already saw that we are interested in smaller spaces than B and B∗. Smaller than

B if we add constraints on the shapes. Smaller than B∗ when the attachment term to the

data implies specific properties of the momentum that provides additional information on

the momentum map and therefore on the optimal vector field. One could also see this

as a possibility to add some constraints on the momentum and therefore on the vector

fields generated by the shooting. For this purpose, we introduce the notion of compatible

spaces with the initial setup (B, V, ξ) (see Section 5.2 for more details) . It allows to provide

one general theorem (Theorem 5.1) for the local existence of the solution and apply it to

the different configurations (Section 5.3). We will then prove the global existence of the

solutions for each situation (always with the growth dynamic) in Section 5.4.

When the coordinate space X is not discrete, we will assume to simplify that X =

[0, 1]×X0 with ∂X0 = ∅ and that τ is the projection on the first coordinate (we will refer

to this setup as tube case).

Theorem 3.1 (Global Solutions of the Reduced Hamiltonian System : Tube Case). As-

sume the (HV
1 ) conditions. Consider the nondegenerate adapted norm setup and
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assume that ` ∈ C1([0, 1],L(V )). Consider the Banach spaces

B0 = B = L∞µ (X,Rd)
B∗1 = L∞µ (X,Rd) .

Then for any initial condition (q0, p0) ∈ B0 × B∗1 , the reduced Hamiltonian system

associated to the growth dynamic

ξ(q,t)(v) = 11τ≤tv ◦ q

admits a unique solution (q, p) ∈ C([0, 1], B0 ×B∗1).

Moreover, there exists an increasing function ϕY : R+ → R+ such that for any

(q0, p0) ∈ B0 ×B∗1 and any t ∈ [0, 1], we have

|qt|B0 + |pt|B∗1 ≤ ϕ
Y (|q0|B0 + |p0|B∗1 ) .

Proof. See Theorem 5.3. Note that we identified L∞Hk(X,Rd)×L∞Hk−1(∂X,Rd) to L∞µ (X,Rd).

Remark 3.13. The theorem gives an interesting property of the solutions of the reduced

Hamiltonian in the nondegenerate adapted norm setup. They are locally bounded with

respect to the initial condition.

We will also give a similar theorem in the case of a discrete coordinate space X

with the same results (including the existence of ϕY ) .

The case of the horn in the continuous current setup

The study of the momentum map in Section 3.3 led us to the introduction of the

adapted norm setup to compensate the growth of the shape. In this setup, the cost

functions are given by

C(v, t) =
1

2
〈v, `tv〉V .

We saw in the different applications with the growth dynamic that the support of the

momentum map at any time is made of the active part of the shape (see Remark 3.1 and

Figure 3.6). This part at any time t ∈ [0, 1] is the set of points that actually exist in the

ambient space at this time

{qt(x) ∈ X | τ(x) ≤ t}.

The case of the horns is extreme because at the initial time, the shape is reduced to a single

point: the tip of the horn. When X is discrete, the counting measure gives a non-zero

weight to this point. Otherwise, with the Hausdorff measure, the momentum map is then

reduced to 0. In this last case and in order to get an optimal vector field with a constant

norm over time, we would like to make `t tends to 0 when t tends to 0. This specificity

requires a special care to prove the local existence. We impose then a control inversely

proportional to the speed of creation of new points. As we assume to simplify that τ is

the projection on the first coordinate of X = [0, 1]×X0, the appearance of new points is

thus linear (dτ = 1) which explains the factor 1
t in equation (3.59).
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Theorem 3.2 (Global Solutions of the Reduced Hamiltonian System : Horn Case).

Assume the (HV
1 ) conditions. Consider the adapted norm setup. Assume that ` ∈

C1([0, 1],L(V )) and that there exist M > 0 and s ∈ [0, 1[ two constants such that for any

t ∈]0, 1]

|`−1
t |op ≤

M

ts
· 1

t
. (3.59)

Consider the Banach spaces

B = L∞µ (X,Rd) ,
B0 = {q ∈ B | ∃y ∈ Rd, q(0, ·) = y Hk−1-a.e. on X0} ,

B̃∗1 = { p ∈ L∞µ (X,Rd) | p(x) = 0 Hk−1-a.e. on ∂X } and B∗1 = L∞µ (X,Rd) .

Then for any initial condition (q0, p0) ∈ B0 × B∗1 , the reduced Hamiltonian system

associated to the growth dynamic

ξ(q,t)(v) = 11τ≤tv ◦ q

admits a unique solution (q, p) ∈ C([0, 1], B0 ×B∗1).

Proof. See Theorem 5.2.

Remark 3.14. Note that we lost the control by the initial condition that we had in the

theorem for the tube case.

4 Theoretical study of the generative model

The generative model, presented in Section 1, involves integral equations of the type

qt = q0 +

∫ t

0
f(qs, vs, s) ds , (3.60)

where q evolves in a Banach space B, the flow is given by a function

f : B × V × [0, 1]→ B ,

and V is also a Banach space, often called the space of controls.

Remark 4.1. The theory of integration in a Banach space has been studied by Bochner

(1899-1982) and bears now its name. A brief overview of the main results needed hereafter

is given in Appendix A.

We will start to summarize few conditions satisfied by the space V that will be satisfied

in our applications.
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(HV
1 )

∣∣∣∣∣∣∣∣∣∣∣∣∣

(i) V ⊂ C2(Rd,Rd) .

(ii) There exists c > 0 such that

for any (x, v) ∈ Rd × V , we have{
|v(x)|Rd ≤ c|v|V (|x|Rd + 1),

|dv(x)|L(Rd,Rd) + |d2v(x)|L(Rd⊗Rd,Rd) ≤ c|v|V .

These conditions will be satisfied in our applications:

Lemma 4.1. i) If V is embedded in C2
0(Rd,Rd) (which we shall denote V ↪→ C2

0(Rd,Rd)),

then V satisfies the (HV
1 ) conditions.

ii) Let be V = Ad × Rd the direct product of antisymmetric matrices and translations

on Rd, equipped with the following norm depending on a parameter α > 0

|(A,N)|2V,α
.
= α|A|2Ad + |N |2Rd

.
= α tr(ATA) + |N |2Rd .

Then V satisfies the (HV
1 ) conditions.

iii) Under the (HV ) conditions, there exists c > 0 such that for any v ∈ V , any

x, y ∈ Rd

|v(x)− v(y)|Rd + |dv(x)− dv(y)|∞ ≤ c|v|V |x− y|Rd .

Proof. The last inequality results directly from the (HV
1 ) conditions.

If V ↪→ C2
0(Rd,Rd), then there is c1 ∈ R+, such that for all v ∈ V , |v|∞ + |dv|∞ +

|d2v|∞ ≤ c1 |v|V . This constant c1 satisfies the inequalities of (HV
1 ).

If V = Ad × Rd, since all norms on Ad are equivalent, there exists c2 ∈ R+ a constant

such that for any A ∈ Ad the operator norm |A|op is lower than c2|(A, 0)|V,α. We have

thus for any v = (A,N) ∈ V and any x ∈ Rd :

|v(x)|Rd = |Ax+N |Rd ≤ |A|op|x|Rd + |N |Rd ≤ c2α|A|Ad |x|Rd + |N |Rd
≤ (c2 + 1)(α|A|+ |N |)(|x|Rd + 1) ≤ (c2 + 1)|(A,N)|V (|x|Rd + 1) .

So we obtain the first inequality of (HV
1 ) with the constant c2 +1. And finally, |dv(x)|∞ =

|A|op ≤ c2|v|V and d2v ≡ 0 such that c2 + 1 also leads to the second inequality.

Let us also recall the Grönwalll’s lemma.

Lemma 4.2 (Grönwalll’s lemma). Let f and g be two positive measurable functions defined

on the interval [0, 1] and let c > 0 be a constant. Assume that f is bounded and that for

any t ∈ [0, 1],

f(t) ≤ c+

∫ t

0
f(s)g(s) ds .

Then for any t ∈ [0, 1],

f(t) ≤ c exp

(∫ t

0
g(s) ds

)
.
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4.1 Existence and uniqueness

For any metric space, B(b, r) will denote the close ball of center b and radius r.

Definition 4.1 (Locally Lipschitz Continuity). Let E and F be two Banach spaces. We

say that a function g : E → F is locally Lipschitz continuous if for any r > 0, the

restriction of g to the ball B(0, r) is Lipschitz continuous.

Definition 4.2. We define Lip locint(E × [0, 1], F ) the set of applications g such that

— for almost every t ∈ [0, 1], gt := g(·, t) is locally Lipschitz continuous,

— for any r > 0, if we note krt the Lipschitz constant of gt on the ball B(0, r) (defined

a.e.), then t 7→ krt is integrable on [0, 1].

4.1.1 Local existence

In order to prove the local existence and uniqueness of solutions, we need the following

variant of the Cauchy-Lipschitz theorem.

Theorem 4.1 (A Cauchy-Lipschitz theorem). Let B be a Banach space, b0 be a point of

B and f : B × [0, 1]→ B be a measurable function such that

— f ∈ Lip locint(B × [0, 1], B)

— there exists b ∈ B, such that
∫ 1

0 |f(b, t)|B dt <∞.

Then for any r > 0, there exists ε > 0 such that the Cauchy problem associated to f and

any initial condition (b0, t0) with |b0|B ≤ r and t0 ∈ [0, 1[ has a unique solution on the

interval [t0, t0 + ε] ∩ [0, 1].

Proof. The proof is based, as usual, on a fixed point method. Denote cb =
∫ 1

0 |f(b, t)|B dt
and consider r > |b|B. Let us first show that there exists m > 0 such that for any

b0 ∈ B(0, r) ∫ 1

0
|f(b0, t)|B dt ≤

m

2
. (3.61)

We have indeed∫ 1

0
|f(b0, t)|B dt ≤

∫ 1

0
|f(b, t)|B dt+

∫ 1

0
|f(b, t)− f(b0, t)|B dt

≤ cb +

∫ 1

0
krt |b− b0|B dt ≤ cb + 2r

∫ 1

0
krt dt < +∞ ,

where krt is the Lipschitz constant of f(·, t) on B(0, r) defined a.e.

Define then r′ = r + m so that for any b0 ∈ B(0, r), B(b0,m) ⊂ B(0, r′). Let kr
′
t be

the Lipschitz constant of f(·, t) on B(0, r′) defined a.e. Since t 7→ kr
′
t is integrable on the

compact interval [0, 1], there exists ε > 0 such that for any t0 ∈ [0, 1[,
∫ tε
t0
kr
′
t dt ≤ 1/2

where tε = min(tε, 1).

We can now prove the existence of a solution to the Cauchy problem for any initial con-

dition (t0, b0) ∈ [0, 1[×B(0, r) on the interval [t0, tε]. Consider thus (t0, b0) ∈ [0, 1[×B(0, r)
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and define the set of continuous functions E = C([t0, tε],B(b0,m)). E equipped with the

uniform norm is complete. Introduce finally the operator Tb0 : E → E given for any y ∈ E
and any t ∈ [t0, tε] by

Tb0y(t) = b0 +

∫ t

0
f(y(s), s) ds .

Let us show that Tb0 is well defined. We have for any y ∈ E∫ t

t0

|f(y(s), s)|B ds ≤
∫ t

t0

|f(b0, s)|B ds+

∫ t

t0

|f(y(s), s)− f(b0, s)|B ds

≤ m

2
+

∫ tε

t0

kr
′
s |y(s)− b0|B ds ≤

r

2
+m

∫ tε

t0

kr
′
s ds

≤ m.

In particular, |Tb0y(t)− b0|B ≤ m and thus Tb0y(t) ∈ B(b0,m). Moreover, Tb0y is continu-

ous. Indeed, for any t1 ≤ t2 in [t0, tε],

|Tb0y(t1)− Tb0y(t2)|B ≤
∫ t2

t1

|f(y(s), s)|B ds

≤
∫ t2

t1

|f(b0, s)|B + |f(y(s), s)− f(b0, s)|B ds

≤
∫ t2

t1

|f(b0, s)|B ds+m

∫ t2

t1

kr
′
s ds

and since t 7→ f(b0, t) and t 7→ kr
′
t are integrable, these integrals tend to 0 when t2 − t1

tends to 0. Therefore, Tb0 takes values in E. Let us show now that Tb0 is a contraction.

For any y, z ∈ E, we have

|Tb0y − Tb0z|∞ ≤
∫ tε

0
|f(y(t), t)− f(z(t), t)|B dt

≤
∫ tε

0
kr
′
t dt |y − z|∞ ≤

1

2
|y − z|∞ .

Consequently, Tb0 is a contraction and admits thus a unique fixed point in the complete

space E. This fixed point is the solution of the Cauchy problem. The uniqueness results

from the Grönwalll’s lemma. Let y and z be two solutions defined on any common time

interval [t0, tε] and both bounded by rε > 0. For any t ∈ [t0, tε], we have

|y(t)− z(t)|B ≤
∫ t

t0

|f(y(s), s)− f(z(s), s)|B ds

≤
∫ t

t0

krεs |y(s)− z(s)|B ds .

The Grönwalll’s lemma implies that for any t ∈ [t0, tε], |y(t)− z(t)|B = 0. Therefore, one

of the two solutions is an extension of the other one.

In order to apply the theorem in our situation and satisfy its assumptions in a general
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case, we define in the following corollary a set of conditions on the function f denoted by

(Hf
0 ).

Corollary 4.1. Let be f : B × V × [0, 1]→ B a function that satisfies the conditions

(Hf
0 )

∣∣∣∣∣∣∣
(i) There exists c > 0, such that for any (q, q′, v, t) ∈ B2 × V × [0, 1],{
|f(q, v, t)|B ≤ c|v|V (|q|B + 1),

|f(q, v, t)− f(q′, v, t)|B ≤ c|v|V |q − q′|B.

then for any initial condition q0 ∈ B and any control v ∈ L2([0, 1], V ), the Cauchy problem

associated to f

qt = q0 +

∫ t

0
f(qs, vs, s) ds

admits a unique maximal solution on an interval I ⊂ [0, 1] containing 0.

4.1.2 Global existence

Following a standard method to ensure global existence, we will show that a solution

never explodes in finite time. Without a global Lipschitz continuity, we need the control

offered by the (Hf
0 ) conditions. Assume thus that f verifies the (Hf

0 ) conditions. For any

initial condition q0 ∈ B and any control v ∈ L2([0, 1], V )(⊂ L1([0, 1], V )), if q ∈ C(I,B) is

the maximal solution associated to (q0, v), we have for all t ∈ I :

|qt|B ≤ |q0|B +

∫ t

0
|f(qs, vs, s)|B ds

≤ |q0|B +

∫ t

0
c|vs|V (|qs|B + 1) ds

and the Growall’s lemma applied to t 7→ |qt|B + 1 gives

|qt|B + 1 ≤ (|q0|B + 1) exp(

∫ t

0
c|vs|V ds) (3.62)

≤ (|q0|B + 1) exp(c|v|1) . (3.63)

Thus any partial solution is bounded and can be extended to [0, 1].

We can therefore summarize and define a function Φf that returns the solution asso-

ciated to an initial condition q0 and a control v.

Theorem 4.2. Let f : B×V × [0, 1]→ B be a function that satisfies the (Hf
0 ) conditions.

Let Φf be defined as follows

Φf : B × L2([0, 1], V ) −→ C([0, 1], B)

(q0, v) 7−→ q ,
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where q is the unique solution of the integral equation

qt = q0 +

∫ t

0
f(qs, vs, s) ds .

Φf is well defined.

Another important application of the Cauchy-Lipschitz theorem concerns the linearized

integral equations.

Corollary 4.2. Let B be a Banach space and L(B) be the space of continuous linear

operators on B. Let A1 ∈ L2([0, 1],L(B)) and A2 ∈ L2([0, 1], B) be two square-integrable

applications. Then for any b0 ∈ B, there exists a unique solution b ∈ C([0, 1], B) to the

integral equation

b(t) = b0 +

∫ t

0
A1(s) · b(s) +A2(s) ds .

Proof. This is a direct consequence of the previous theorem. With the notation of the

theorem, we define for any b ∈ B, any t ∈ [0, 1], f(b, t) = A1(t) · b + A2(t). Then f(·, t)
is Lipschitz continuous with the constant |A1(t)| and t 7→ |A1(t)| is integrable on [0, 1].

Moreover, f(0, t) = A2(t) is also integrable. The global existence is a direct consequence

of the Grönwalll’s lemma and the global Lipschitz continuity of f .

4.2 Temporal regularity

As discussed in Remark 1.2, we will see hereafter that the solutions given by Φf may not

admit a time derivative at all time. Proving the existence of this derivative at least almost

everywhere requires the notion of Bochner-Lebesgue points. The following definition and

results are presented in more details in the Appendix.

Definition 4.3. Let B be a Banach space and let be f ∈ L1([0, 1], B). A point t ∈ [0, 1]

is called Bochner-Lebesgue point if

lim
r→0

1

λ(B(t, r))

∫
B(t,r)

|f(t)− f(s)|B ds = 0 ,

where B(t, r) = [t− r, t+ r] ∩ [0, 1] and λ is the Lebesgue measure.

Proposition 4.1. Let be f ∈ L1([0, 1], B), t ∈ [0, 1] a Bochner-Lebesgue point of f and

(Ar)r>0 a collection of measurable non negligible sets containing t (i.e. for any r > 0,

t ∈ Ar and λ(Ar) > 0) . If there exists c ∈ R such that for any r > 0 we have:

Ar ⊂ B(t, r) and λ(B(t, r)) ≤ cλ(Ar) ,

then

lim
r→0

1

λ(Ar)

∫
Ar

|f(t)− f(s)|B ds = 0 .

Example 4.1. If f ∈ L1([0, 1], B) is continuous, one can show easily by uniform continuity

that any point of [0, 1] is a Bochner-Lebesgue point of f .
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Theorem 4.3. If f ∈ L1([0, 1], B), then almost every point t ∈ [0, 1] is a Bochner-Lebesgue

point.

This theorem implies some regularity on the time varying vector fields of L1([0, 1], V )

that we will use hereafter.

Proposition 4.2. Consider for any initial condition q0 ∈ B and any control v ∈ L2
V ,

the solution solution q = Φf (q0, v). Under the (Hf
0 ) conditions, we have for almost any

t ∈ [0, 1]

q̇t = f(qt, vt, t)

and this derivative is integrable.

Proof. Consider g : [0, 1] → B defined by g(t) = f(qt, vt, t). The (Hf
0 ) conditions imply

that there exists c > 0 such that at any time t ∈ [0, 1]

|g(t)|B ≤ c|vt|V (|qt|B + 1) ≤ c|vt|V (|q|∞ + 1) ,

so that g is integrable. Therefore, almost any t ∈ [0, 1] is a Bochner-Lesbesgue point of g

and Proposition 4.1 ensures that for any ε 6= 0

qt+ε − qt
ε

=
1

ε

∫ t+ε

t
f(qs, vs, s) ds =

1

ε

∫ t+ε

t
g(s) ds

tends to g(t) when ε tends to 0.

4.3 Directional derivative of the solution with respect to its parameters

We are now interested in the variations of the solution q = Φf (q0, v) with respect to

its parameters q0 and v. Recall that q is given at any time t ∈ [0, 1] by

qt = q0 +

∫ t

0
f(qs, vs, s) ds , (3.64)

where we have f : B × V × [0, 1] → B and where B and V are two Banach spaces. In

other words, we want to explicit the Gâteaux-derivative of Φf .

Let us fix (δq0, δv) ∈ B×L2([0, 1], V ) and define the application g : [0, 1]→ C([0, 1], B)

by

g(ε) = Φf (q0 + εδq0, v + εδv) .

If g is derivable at 0, then the Gâteaux-derivative of Φf in the direction (δq0, δv), denoted

Φ′f (q0, v ; δq0, δv), is g′(0).

Definition 4.4 (Linearized Equation). Let B and V be two Banach spaces and let f :

B×V × [0, 1]→ B be a function of class C1 with respect to its two first variables. Assume

that there exists c > 0 a constant such that for any q ∈ B, any v ∈ V , and any t ∈ [0, 1],

we have

(Hf
1 )


∣∣∣∣∂f∂q (q, v, t)

∣∣∣∣
op

≤ c |v|V ,∣∣∣∣∂f∂v (q, v, t)

∣∣∣∣
op

≤ c (|q|B + 1) .
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Then for any (δq0, δv) ∈ B×L2([0, 1], V ), there exists a unique solution δq ∈ AC([0, 1], B)

to the linear equation

δqt = δq0 +

∫ t

0

∂f

∂q
(qs, vs, s) · δqs +

∂f

∂v
(qs, vs, s) · δvs ds . (3.65)

This equation is called the linearized equation of q̇t = f(qt, vt, t).

Proof. Since the applications t 7→ |∂f∂q (qt, vt, t)| and t 7→ |∂f∂v (qt, vt, t)| are integrable on

[0, 1], it results directly from the Corollary 4.2 (the linear Cauchy-Lipschitz theorem) .

The absolute continuity is also immediate as in Proposition 4.2.

Theorem 4.4. Consider f and Φf as defined in Theorem 4.2. Under the (Hf
1 ) conditions,

the Gâteaux-derivative of Φf in the direction (δq0, δv) ∈ B×L2([0, 1], V ) exists and is given

by the unique solution of the linearized equation

δqt = δq0 +

∫ t

0

∂f

∂q
(qs, vs, s) · δqs +

∂f

∂v
(qs, vs, s) · δvs ds .

Proof. Note that the (Hf
1 ) conditions imply (Hf

0 ). Let us fix the following notation:

q = Φf (q0, v), for any ε ∈ [−1, 1], vε = v+ εδv, qε0 = q0 + εδq0, qε = Φf (qε0, v
ε). Finally, for

any ε 6= 0 and any t ∈ [0, 1], we introduce M ε
t =

∣∣∣ qεt−qtε − δqt
∣∣∣
B

. The proof consists thus

to show that this quantity t 7→ M ε
t tends uniformly to 0 when ε tends to 0. Let us start

with the following lemma.

Lemma 4.3. |qε − q|∞ = O(|ε|)

Proof. Under (Hf
1 ), we can write

|qεt − qt|B ≤ |εδq0|B +

∫ t

0
|f(qεs, v

ε
s, s)− f(qs, vs, s)|B ds

≤ |ε||δq0|B +

∫ t

0
|f(qεs, v

ε
s, s)− f(qs, v

ε
s, s)|B + |f(qs, v

ε
s, s)− f(qs, vs, s)|B ds

≤ |ε||δq0|B +

∫ t

0
sup

rs∈[0,1]

∣∣∣∣∂f∂q (qs + rs(q
ε
s − qs), vεs, s)

∣∣∣∣
op

|qεs − qs|B . . .

+ sup
rs∈[0,1]

∣∣∣∣∂f∂v (qs, vs + rs(v
ε
s − vs), s)

∣∣∣∣
op

|vεs − vs|V ds

≤ |ε||δq0|B +

∫ t

0
c|vεs|V |qεs − qs|B + c(|qs|B + 1)|vεs − vs|V ds

≤ |ε|
(
|δq0|B + c(|q|∞ + 1)|δv|1

)
+

∫ t

0
c|vεs|V |qεs − qs|B ds (q ∈ C([0, 1], B))

≤ |ε|
(
|δq0|B + c(|q|∞ + 1)|δv|1

)
exp(c|vε|1) (Grönwalll’s lemma) .

Finally, since for any |ε| < 1 we have |vε|1 ≤ |v|1 + |δv|1, we deduce that |qε − q|∞ =

O(|ε|).

We will now use the Grönwalll’s lemma to show the uniform convergence of M ε
t =
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∣∣∣ qεt−qtε − δqt
∣∣∣
B

.

M ε
t ≤

∫ t

0

∣∣∣∣f(qεs, v
ε
s, s)− f(qs, vs, s)

ε
− ∂f

∂q
(qs, vs, s) · δqs −

∂f

∂v
(qs, vs, s) · δvs

∣∣∣∣
B

ds

≤
∫ t

0

∣∣∣∣∂f∂q (qs, vs, s)

∣∣∣∣
op

M ε
s +

1

|ε|
Rεs ds ,

where Rεs is defined for any s ∈ [0, 1] by

Rεs =

∣∣∣∣f(qεs, v
ε
s, s)− f(qs, vs, s)−

∂f

∂q
(qs, vs, s) · (qεs − qs)−

∂f

∂v
(qs, vs, s) · (εδvs)

∣∣∣∣
B

.

In order to bound Rεs, we introduce the application gs : [0, 1]→ B defined by

gs(r) = f(qs + r(qεs − qs), v + r(vεs − vs), s)− f(qs, vs, s) .

Thus, gs(0) = 0, gs(1) = f(qεs, v
ε
s, s)− f(qs, vs, s) and if we note qr,εs = qs + r(qεs − qs) and

vr,εs = v + r(vεs − vs), we have

gs(1) =

∫ 1

0
g′s(r) dr =

∫ 1

0

∂f

∂q
(qr,εs , v

r,ε
s , s)(q

ε
s − qs) +

∂f

∂v
(qr,εs , v

r,ε
s , s)(v

ε
s − vs) dr .

Therefore,

Rεs =

∣∣∣∣ ∫ 1

0

(
∂f

∂q
(qr,εs , v

r,ε
s , s)−

∂f

∂q
(qs, vs, s)

)
(qεs − qs)

+

(
∂f

∂v
(qr,εs , v

r,ε
s , s)−

∂f

∂v
(qs, vs, s)

)
(εδvs) dr

∣∣∣∣
B

≤
∫ 1

0

∣∣∣∣∂f∂q (qr,εs , v
r,ε
s , s)−

∂f

∂q
(qs, vs, s)

∣∣∣∣ dr|qεs − qs|
+

∫ 1

0

∣∣∣∣∂f∂v (qr,εs , v
r,ε
s , s)−

∂f

∂v
(qs, vs, s)

∣∣∣∣ dr|εδvs| .
Let us note

αεs =

∫ 1

0

∣∣∣∣∂f∂q (qr,εs , v
r,ε
s , s)−

∂f

∂q
(qs, vs, s)

∣∣∣∣
op

+

∣∣∣∣∂f∂v (qr,εs , v
r,ε
s , s)−

∂f

∂v
(qs, vs, s)

∣∣∣∣
op

dr ,

so that

Rεs ≤ αεs(|qε − q|∞ + |εδvs|V ) .

Then, if we note

Bε =
1

|ε|

∫ 1

0
Rεs ds ,
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we get with the Grönwall’s lemma

M ε
t ≤ Bεexp(

∫ 1

0
|∂f
∂q

(qs, vs, s)| ds

≤ Bεexp(c|v|1) ,

where the constant c > 0 is given by (Hf
1 ). The final step is to prove that Bε tends to 0

when ε tends to 0.

Note that for any ε ∈ [−1, 1], s 7→ αεs is a square-integrable function on [0, 1]. Indeed,

it can roughly be bounded as follows

αεs ≤ sup
rs∈[0,1]

∣∣∣∣∂f∂q (qs + rs(q
ε
s − qs), vεs, s)

∣∣∣∣
op

+

∣∣∣∣∂f∂q (qs, vs, s)

∣∣∣∣ . . .
+ sup
rs∈[0,1]

∣∣∣∣∂f∂v (qs, vs + rs(v
ε
s − vs), s)

∣∣∣∣
op

+

∣∣∣∣∂f∂v (qs, vs, s)

∣∣∣∣
≤ c
(
|vεs|V + |vs|V + 2(|qs|B + 1)

)
≤ c
(
|vεs|V + |vs|V + 2(|q|∞ + 1)

)
.

Moreover, the previous lemma says that |qε − q|∞ = O(|ε|). There exists thus c′ > 0 a

constant such that for any ε ∈ [−1, 1], | q
ε−q
ε |∞ ≤ c

′. Hence,

Bε =
1

|ε|

∫ 1

0
Rεs ds

≤
∫ 1

0
αεs(
|qε − q|∞
|ε|

+ |δvs|) ds

≤
(∫ 1

0
(αεs)

2 ds

) 1
2
(∫ 1

0
(c′ + |δvs|)2 ds

) 1
2

.

Finally, since ∂f
∂q and ∂f

∂v are continuous, for any sequence εn → 0, s 7→ αεns tends to 0

almost everywhere. Thus, the Lebesgue’s dominated convergence theorem ensures that

|αεn |L2 tends to 0. Hence, M ε converges uniformly to 0.

4.4 Application to the growth dynamic

In our model, the shapes are parameterized by the coordinate space X so that the

object space can be given by B = L∞(X,Rd) where X is given as a submanifold of Rd.
According to the growth dynamic, f is defined by

f(q, v, t) = 11τ≤tv ◦ q ,

where v ◦ q : x 7→ v(q(x)).

We assume as before that the space of controls V satisfies the (HV
1 ) conditions (intro-

duced at the beginning of Section 4).
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4.4.1 Existence of the solution and dependence with respect to the parame-

ters

Lemma 4.4. If B = L∞(X,Rd) and f(q, v, t) = 11τ≤tv ◦ q, then the (Hf
0 ) conditions are

satisfied.

Proof. For any q, δq ∈ L∞(X,Rd) and any v ∈ V , (HV
1 ) ensures that there exists c > 0

such that

|v ◦ q|∞ ≤ c|v|V (|q|∞ + 1) and |(dv ◦ q) · δq|∞ ≤ c|v|V |δq|∞ .

Consequently, Theorem 4.2 ensures that for any initial condition q0 ∈ L∞(X,Rd)
and any time-varying vector field v ∈ L2([0, 1], V ), there exists a unique q = Φ(q0, v) ∈
C([0, 1], L∞(X,Rd)) such that for any t ∈ [0, 1],

qt = q0 +

∫ t

0
11τ≤t vs ◦ qs ds . (3.66)

More precisely, for any x ∈ X,

qt(x) =

{
q0(x) if t ≤ τ(x) ,

q0(x) +
∫ t
τ(x) vs(qs(x)) ds otherwise.

(3.67)

The existence of directional derivatives of the solution with respect to initial position

q0 and the control v lies on the (Hf
1 ) conditions given in Definition 4.4. Let us verify that

the function f associated to the growth dynamic satisfies these conditions. Consider F

defined by:

F : L∞(X,Rd)× V −→ L∞(X,Rd)
(q, v) 7−→ v ◦ q : x 7→ v(q(x)) .

F generates the standard infinitesimal action of the LDDMM setting. Under the (HV
1 )

conditions, F takes its values in L∞. Our model corresponds thus to the case f(q, v, t) =

11τ≤tF (q, v).

Proposition 4.3. Under the (HV
1 ) conditions, F is of class C1. More explicitly, we have

for any
(
(q, v), (δq, δv)

)
∈
(
L∞(X,Rd)× V

)2
∂F

∂v
(q, v) · δv = δv ◦ q ∂F

∂q
(q, v) · δq = (dv ◦ q) · δq .

In fine, if f is given by the growth dynamic, i.e. f(q, v, t) = 11τ≤tF (q, v), then f satisfies

(Hf
1 ).

Proof. The pointwise expressions of these derivatives are given by

∂F

∂v
(q, v) · δv : x 7→ δv(q(x))
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and
∂F

∂q
(q, v) · δq : x 7→ dv(q(x)) · δq(x) .

Indeed, F is linear with respect to v and under the (HV
1 ) conditions there exists c > 0

such that ∣∣∣∣∂F∂v (q, v) · δv
∣∣∣∣
∞
≤ c|δv|V (|q|∞ + 1)

and thus ∣∣∣∣∂F∂v (q, v)

∣∣∣∣
op

≤ c(|q|∞ + 1) .

Regarding the first variable, we have

|F (q + δq, v)− F (q, v)− (dv ◦ q) · δq|∞ = sup
x∈X
|v(q(x) + δq(x))− v(q(x))− dv(q(x)) · δq(x)|

≤ c

4
|v|V |δq|2∞ ,

where the last inequality results from the Taylor’s theorem with integral remainder applied

on the application g(r) = v(q(x) + rδ(x)) between 0 and 1. At last we have∣∣∣∣∂F∂q (q, v)

∣∣∣∣
op

≤ c|v|V .

We deduce that F is of class C1 and that f satisfies (Hf
1 ). Note that if v = (A,N) ∈ Ad×Rd,

we have

∂F

∂q
(q, v) · δq = A · δq .

Consequently, the Gâteaux-derivative of Φ at a point (q0, v) ∈ L∞(X,Rd)×L2([0, 1], V )

in the direction (δq0, δv) ∈ L∞(X,Rd) × L2([0, 1], V ) exists and is equal to the unique

solution, denoted δq, of the integral equation:

δqt = δq0 +

∫ t

0
11τ≤t ((dvs ◦ qs) · δqs + δvs · qs) ds . (3.68)

4.4.2 Spatial regularity of the solution

We investigate in this section the spatial regularity of a solution q = Φ(q0, v) generated

with the growth dynamic by a time-varying vector field v ∈ L2
V from an initial condition

q0 ∈ L∞(X,Rd).
We assume hereafter that X is a smooth k-dimensional Riemannian submanifold of

Rd (eventually with corners: for example, a convex or concave polygon is a submanifold

with corners - see Chapter 4 for more details) . We denote dX its associated Riemannian

distance. Let us also introduce:
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Definition 4.5. For any (x0, δx0) ∈ X × TX such that δx0 ∈ Tx0X, C(x0; δx0) denotes

the set of smooth paths x : [−1, 1] 3 t 7→ x(t) in X such that x(0) = x0 and ẋ(0) = δx0.

At any t ∈ [−1, 1], x(t) will be denoted xt.

Since the time derivative of qt is usually not continuous on X because of the indicator

function, we cannot solve the integral equation directly in a space of continuous functions

like (Cb(X,Rd), | · |∞) (the Banach space of the bounded continuous functions) . This

indicator function divides at each time t ∈ [0, 1] the coordinate space X into two parts:

the set of active points

Xt
.
= {x ∈ X | τ(x) ≤ t} (3.69)

and its complement Xc
t = X\Xt. Likewise, the shape qt(X) is divided in two parts. Hence,

since these two blocks have their own dynamic, it can induce some irregularity at the

boundary between the two parts. This boundary is the image of X{t} = {x ∈ X | τ(x) = t}.
Figure 3.7 illustrates the typical division of the shape modeling the development of a horn.

Figure 3.7 – Horn in the middle of its development. The colors correspond to the level
lines of the birth tag τ . The shape qt(X) is divided in two parts. The active part (in
blue) of real points and the inactive part (from green to red) of fictional points that will
progressively appear. At the boundary between these two parts, the shape admits two
half tangent planes.

Unlike the classic LDDMM framework, the spatial regularity of q is here strongly

linked to the temporal regularity of v. With the growth dynamic, when v is continuous

with respect to time, the shape admits two regular parts as described above. However, the

boundary layer X{t} plays a central role in the global regularity of the shape throughout

its evolution. When v has an irregularity at a time t0, the shape captures it and keeps

it at its layer qt(X{t0}) from time t0 to time 1. Figure 3.8 illustrates the impact of the

discontinuity of v on the generated shape.

The integrability of v maintains yet some regularity of the solution. A solution defined

on C([0, 1], L∞(X,Rd)) with a bounded continuous initial condition q0 will actually stay

in Cb(X,Rd). Indeed, the application of the Grönwall’s lemma (Lemma 4.2) specified at

any point x ∈ X (see equation (3.63)) gives

|qt(x)|Rd + 1 ≤ (|q0(x)|Rd + 1) exp(c|v|1) ≤ (|q0|∞ + 1) exp(c|v|1) . (3.70)
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Initial position, before the deformation

Figure 3.8 – The final state q1(X) displayed on the top left is a serrated curve with as many
discontinuities as its associated vector field v given on the right as real-valued function
modeling piecewise constant vertical translations upwards and downwards. The initial
position q0(X) is a segment. At the beginning of the scenario, the vector field is directed
downwards and the blue part of the segment is progressively displaced downwards while
the rest of the segment remains fixed. It creates the first slope of the final polygonal
curve. Once v becomes positive, the active part of the curve is displaced upwards and
the second slope is created. The final polygonal line has as many irregularities as v has
discontinuities.

Hence,

sup
t,x
|qt(x)|Rd <∞ . (3.71)

Moreover, we have

Proposition 4.4 (Spatial continuity of the solution). If q0 ∈ Cb(X,Rd) and τ ∈ C(X,R+)

then q belongs to C([0, 1], Cb(X,Rd)).

Proof. For any s, t ∈ R, we denote s ∧ t = min(s, t). We have

qt(y)− qt(x) = q0(y)− q0(x) +

∫ t

τ(y)∧t
vs(qs(y)) ds−

∫ t

τ(x)∧t
vs(qs(x)) ds

= q0(y)− q0(x)−
∫ τ(y)∧t

τ(x)∧t
vs(qs(x)) ds+

∫ t

τ(y)∧t
vs(qs(y))− vs(qs(x)) ds .

Finally,

|qt(y)− qt(x)|Rd ≤ |q0(y)− q0(x)|Rd +

∫ τ(y)∧t

τ(x)∧t
|vs(qs(x)|Rd ds

+

∫ t

τ(y)∧t
|vs(qs(y))− vs(qs(x))|Rd ds .

The second term of the right hand side can be bounded with a Cauchy-Schwartz inequality.

The third one can be bounded with the mean value theorem. Then, the (HV
1 ) conditions

and the lemma 4.1 can be applied to both upper bounds to give a constant c > 0 such
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that: ∫ τ(y)∧t

τ(x)∧t
|vs(qs(x))|Rd ds ≤

∫ τ(y)

τ(x)
c|vs|V (|qs|∞ + 1) ds (3.72)

≤ c(|q|∞ + 1)|τ(x)− τ(y)|1/2|v|2 (3.73)

and ∫ t

τ(y)∧t
|vs(qs(x))− vs(qs(y))|Rd ds ≤

∫ t

0
c|vs|V |qs(x)− qs(y)|Rd ds ,

where the uniform bound for q is given by equations (3.70) and (3.71). We can thus

conclude with the Grönwall’s lemma and the continuity of q0 and τ :

|qt(y)− qt(x)|Rd ≤
(
|q0(y)− q0(x)|Rd + c(|q|∞ + 1)|τ(x)− τ(y)|1/2|v|2

)
exp (c|v|1) .

Therefore, qt is continuous on X.

This result can easily be improved when v is bounded as follows:

Proposition 4.5 (Control on the vector field). Assume that q0 and τ are Lipschitz con-

tinuous and that t 7→ vt is uniformly bounded. Then for any x ∈ X, we have

sup
t∈[0,1]

∣∣qt(x)− qt(y)
∣∣
Rd = O(dX(x, y)) .

Proof. Consider the previous proof. Equation (3.73) becomes here∫ τ(y)

τ(x)
|vs(qs(x))|Rd ds ≤

∫ τ(y)

τ(x)
c|vs|V (|q|∞ + 1) ds

≤ c(|q|∞ + 1)|v|∞|τ(x)− τ(y)|R ,

leading to

|qt(y)− qt(x)|Rd ≤ (|q0(y)− q0(x)|Rd + c(|q|∞ + 1)|v|∞|τ(x)− τ(y)|R) exp (c|v|1) .

This upper bound does not depend on t and is a O(dX(x, y)).

We can be more precise on the spatial regularity of q without additional condition on

v. Further exploiting the integrability of v requires again the notion of Bochner-Lebesgue

point (see Definition 4.3). Theorem 4.3 says that almost any point of an integrable function

is a Bochner-Lesbesgue point. This implies some regularity on the time-varying vector

fields of L1([0, 1], V ). The next proposition enlightens the role of v:

Proposition 4.6. Consider v ∈ L2
V and q = Φ(q0, v) where q0 ∈ Cb(X,Rd). Any Bochner-

Lebesgue points of v is a Bochner-Lebesgue point of (s 7→ vs ◦ qs) ∈ L1([0, 1], Cb(X,Rd).

Proof. Consider t ∈ [0, 1]. Since q is continuous, t is a Bochner-Lebesgue point of q. Now,
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under the (HV
1 ) conditions, there exists c > 0 such that∫
|vs ◦ qs − vt ◦ qt|∞ ds ≤

∫
|(vs − vt) ◦ qs + (vt ◦ qs − vt ◦ qt)|∞ ds

≤ c
∫
|vs − vt|V (|q|∞ + 1) + |vt|V |qs − qt|∞ ds .

Therefore, if t is also a Bochner-Lebesgue point of v, then t is a Bochner-Lebesgue point

of s 7→ vs ◦ qs.

Consequently, the set of non Bochner-Lebesgue points of s 7→ vs ◦ qs is included in the

set of non Bochner-Lebesgue points of v.

Definition 4.6. Given v ∈ L2
V , define N ⊂ [0, 1] the subset of non Bochner-Lebesgue

points of v and

N = {x ∈ X | τ(x) ∈ N} , (3.74)

the associated level lines of τ . Then if τ is a submersion, N is a null subset of X.

Proposition 4.7. Assume that q0 ∈ Cb(X,Rd) is k0-Lipschitz continuous and that τ ∈
C1(X, [0, 1]) is a submersion (meaning that dτ(x) is surjective for any x ∈ X) . For any

x ∈ X \ N , we have under the (HV
1 ) conditions

sup
t∈[0,1]

∣∣qt(x)− qt(y)
∣∣
Rd = O(dX(x, y)) .

This property holds thus for the points x of almost any level lines of τ and these level lines

correspond to the Bochner-Lebesgue points of v.

Proof. Consider any x ∈ X \ N and any t ∈ [0, 1]. For any y ∈ X, denote ∆(y) =

−
∫ τ(y)∧t
τ(x)∧t vs(qs(x)) ds. We have as before

|qt(y)− qt(x)|Rd ≤ |q0(y)− q0(x)|Rd + |∆(y)|Rd +

∫ t

τ(y)∧t
|vs(qs(y))− vs(qs(x))|Rd ds

≤ k0dX(y, x) + |∆(y)|Rd +

∫ t

τ(y)∧t
|vs(qs(y))− vs(qs(x))|Rd ds . (3.75)

We still intend to apply the Grönwall’s lemma but this time we need to be more accurate

on the upper bound on ∆(y). Moreover, the next lemma will actually be useful in the

next proposition.

Lemma 4.5. If x ∈ X \ N

∆(y) = −(τ(y)− τ(x))vτ(x)(qτ(x)(x)) + o(τ(y)− τ(x)) .

Proof. We have

∣∣∆(y) + (τ(y)− τ(x))vτ(x)(qτ(x)(x))
∣∣
Rd ≤

∣∣∣∣∣
∫ τ(y)

τ(x)
(vs ◦ qs − vτ(x) ◦ qτ(x))ds

∣∣∣∣∣ (x) .
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Since x ∈ X \N , τ(x) is a Bochner-Lebesque point for (s→ vs ◦ qs) ∈ L1([0, 1], Cb(X,Rd))
and since h→ h(x) is a smooth mapping from Cb(X,R) to R we get the result.

From this lemma, we deduce that since τ is C1

|∆(y)| = O(τ(y)− τ(x)) = O(dX(x, y)) .

Now, using Grönwall’s lemma on equation (3.75) we get

|qt(y)− qt(x)|Rd ≤ (k0dX(y, x) + |∆(y)|Rd) exp(c|v|1) .

At last, note that the rate of convergence of |∆(y)| depends only on the regularity of τ

and s 7→ vs ◦ qs at the point x. Hence, it does not depend on t and

sup
t∈[0,1]

|qt(y)− qt(x)|Rd = O(dX(x, y)) .

Proposition 4.8 (Differentiability of the solution). Assume that q0 ∈ C1
b (X,Rd) and

τ ∈ C1(X, [0, 1]) is a submersion. Assume the (HV
1 ) conditions.

(i) For any t ∈ [0, 1],

— the restriction of qt to the subset Xc
t = {x ∈ X | τ(x) > t} is of class C1 and we have

there dqt(x) = dq0(x)

— for any x ∈ X \ N such that τ(x) < t, qt : X → Rd is differentiable at x and dqt(x)

is the solution at time t of the integral equation

Lt(x) = dq0(x)− vτ(x)(qτ(x)(x))dτ(x) +

∫ t

τ(x)
dvs(qs(x)) ◦ Ls(x) ds (3.76)

defined on [0, 1].

(ii) Moreover, if v is continuous, i.e. v ∈ C([0, 1], V ), then for any t ∈ [0, 1[, qt is of class

C1 on the two level sets {x ∈ X | τ(x) > t} and {x ∈ X | τ(x) < t}. At last, q1 belongs to

C1(X,Rd).

Proof. (i) Recall that for any t ∈ [0, 1], the restriction of qt to the subset {x ∈ X | τ(x) > t}
is equal to q0, which gives the first point.

For any x ∈ X and any s ∈ [0, 1], we have dq0(x) ∈ L(TxX,Rd), dτ(x) ∈ L(TxX,R)

so that vτ(x)(qτ(x)(x))dτ(x) ∈ L(TxX,Rd) and dvs(qs(x)) ∈ L(Rd,Rd). The integral equa-

tion (3.76) is therefore well defined. Under the (HV
1 ) conditions, the existence and unique-

ness of a solution L(x) ∈ C
(
[0, 1],L(TxX,Rd)

)
results from the linear Cauchy-Lipschitz

theorem given in Corollary 4.2.

Now, for any smooth path x ∈ C(x0; δx0) centered on x0 ∈ X and of direction δx0 ∈
Tx0X (see Definition 4.5), there exist x̃0, δx̃0 ∈ Rk and a parameterization ϕ : U ⊂ Rk → X

such that x = ϕ(x̃) where for any ε ∈ [−1, 1], x̃ε = x̃0 + εδx̃0 and thus δx0 = dϕ(x0) · δx̃0.
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Define for any ε 6= 0, M ε
t =

∣∣∣ qt(xε)−qt(x0)
ε − Lt(x0) · δx0

∣∣∣
Rd

. The aim is thus to show

that if x0 ∈ X \ N then for any t > τ(x), M ε
t tends to 0 when ε tends to 0. We have

M ε
t ≤

∣∣∣∣q0(xε)− q0(x0)

ε
− L0(x0) · δx0

∣∣∣∣
Rd

+

∣∣∣∣∣
∫ τ(xε)

τ(x0)

vs(qs(x0))

ε
ds− dτ(x0) · δx0vτ(x0)(qτ(x)(x0))

∣∣∣∣∣
Rd

+

∣∣∣∣∣
∫ τ(xε)

τ(x0)
dvs(qs(x0)) · Ls(x0) · δx0 ds

∣∣∣∣∣
Rd

+

∣∣∣∣∣
∫ t

τ(xε)

vs(qs(xε))− vs(qs(x0))

ε
− dvs(qs(x0)) · Ls(x0) · δx0 ds

∣∣∣∣∣
Rd

.

Let us note T ε1 , T ε2 , T ε3 , and T ε4 these four terms. We have then

T ε1 =

∣∣∣∣q0(xε)− q0(x0)

ε
− dq0(x0)

∣∣∣∣
Rd

= o(1) .

Since x0 /∈ N , Lemma 4.5 says that T ε2 = o(1). Moreover, under the (HV
1 ) conditions,

there exists c > 0 such that

T ε3 ≤ c
∫ 1

0
11[τ(x0),τ(xε)]|vs|V |L|∞ ds .

The dominated convergence theorem ensures that for any sequence (εn)n∈N converging to

0, T εn3 tends also to 0 and thus T ε3 tends to 0 when ε tends to 0. At last, we will bound

the last term in order to apply the Grönwall’s lemma to the whole expression.

T ε4 ≤
∫ t

τ(xε)

∣∣dsvs(qs(x0))
∣∣
op
M ε
s ds+

∫ t

τ(xε)

1

|ε|
Rεs ds

where

Rεs =
∣∣vs(qs(xε))− vs(qs(x0))− dvs(qs(x0)) · (qs(xε)− qs(x0))

∣∣
Rd .

Denote for any r, s ∈ [0, 1], yr,εs = qs(x0) + r(qs(xε) − qs(x0)) and consider the function

gs : [0, 1]→ Rd defined by gs(r) = vs(y
r,ε
s )− vs(qs(x0)). One can then write that

vs(qs(x
ε))− vs(qs(x0)) = gs(1)− gs(0) =

∫ 1

0
g′s(r) dr =

∫ 1

0
dvs(y

r,ε
s ) ·

(
qs(xε)− qs(x0)

)
dr

and

Rεs =

∣∣∣∣∫ 1

0

(
dvs(y

r,ε
s )− dvs(qs(x0))

)
·
(
qs(xε)− qs(x0)

)
dr

∣∣∣∣
B

≤
∫ 1

0

∣∣dvs(yr,εs )− dvs(qs(x0))
∣∣
op

∣∣qs(xε)− qs(x0)
∣∣
Rd dr .

Since for any r ∈ [0, 1] and any s ∈ [0, 1], yr,εs tends to qs(x0) when ε tends to 0 and since

dvs is continuous, the integrand tends to 0. Moreover, according to Proposition 4.7, there
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exists m > 0 such that |qs(xε)−qs(x0)|
|ε| ≤ m is bounded. Then under the (HV

1 ) conditions,

∣∣dvs(yr,ε)− dvs(qs(x0))
∣∣
op

|qs(xε)− qs(x0)|
|ε|

≤ 2cm|vs|V .

Hence, the dominated convergence theorem ensures that for any s ∈ [0, 1], Rs
|ε| tends to 0

when ε tends to 0. Note also that since m does not depend on s, the same theorem ensures

that ∫ 1

0

Rεs
|ε|

ds −→
ε→0

0 .

In fine, the Grönwall’s lemma allows to write

M ε
t ≤ o(1) +

∫ t

τ(xε)

1

|ε|
Rεs ds+

∫ t

τ(xε)
|dsvs(qs(x))|M ε

s ds

≤ o(1) +

∫ 1

0

1

|ε|
Rεs ds+

∫ t

0
|dsvs(qs(x))|M ε

s ds

≤
(
o(1) +

∫ 1

0

1

|ε|
Rεs ds

)
exp(c|v|1) .

This proves the second point of (i).

(ii) If v is continuous, N is empty, and qt∣∣
τ<t

is differentiable every where. At last, we

can show that for any t ∈ [0, 1], Lt is continuous on Xt. Note that by construction, for

any x ∈ X, t 7→ Lt(x) is continuous so that

|L(x)|∞
.
= sup

t∈[0,1]
|Lt(x)|Rd <∞ .

The two first terms of Lt are continuous in space. Let be x ∈ Xt and y in a neighborhood

U ⊂ Xt of x. We have

|Lt(y)− Lt(x)|op ≤ |dq0(y)− dq0(x)|op + |vτ(y)(qτ(y)(y))dτ(y)− vτ(x)(qτ(x)(x))dτ(x)|op

+

∫ τ(y)

τ(x)
|dvs(qs(x)) ◦ Ls(x)|op ds

+

∫ t

τ(y)
|dvs(qs(x)) ◦ Ls(x)− dvs(qs(y)) ◦ Ls(y)|op ds .

By continuity in space of dq0, τ and dτ , and continuity in space and time of q and v,

ε1(y) = |dq0(y)−dq0(x)|op + |vτ(y)(qτ(y)(y))dτ(y)− vτ(x)(qτ(x)(x))dτ(x)|op tends to 0 when

y tends to x.

Under the (HV
1 ) conditions there exists thus c > 0 such that

ε2(y) =

∫ τ(y)

τ(x)
|dvs(qs(x)) ◦ Ls(x)|op ds ≤

∫ τ(y)

τ(x)
c|vs|V |Ls(x)|op ds ≤

∫ τ(y)

τ(x)
c|vs|V |L(x)|∞ ds ,

so that ε2(y) tends to 0 when y tends to x. Likewise, the constant c also satisfies for any
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y ∈ U∫ t

τ(y)
|dvs(qs(x))◦Ls(x)− dvs(qs(y)) ◦ Ls(y)|op ds

≤
∫ t

τ(y)
|dvs(qs(x)) ◦

(
Ls(x)− Ls(y)

)
|op ds

+

∫ t

τ(y)
|dvs(qs(x)) ◦ Ls(y)− dvs(qs(y)) ◦ Ls(y)|op ds

≤
∫ t

τ(y)
c|vs|V |Ls(x)− Ls(y)|op ds+

∫ t

τ(y)
c|vs|V |qs(y)− qs(x)|Rd |L(y)|∞ ds .

Using the Cauchy-Schwartz inequality and Proposition 4.7, we deduce that

ε3(y) =

∫ t

τ(y)
c|vs|V |qs(y)− qs(x)|Rd |L(y)|∞ ds

tends to 0 when y tends to x. Putting every piece together, the Grönwall’s lemma says

that

|Lt(y)− Lt(x)|op ≤ ε(y) exp(c|v|1) ,

where ε(y) = ε1(y) + ε2(y) + ε3(y) which ends the proof.

Remark 4.2. For any t ∈]0, 1], the level line X{t} = {x ∈ X | τ(x) = t} is the critical

boundary of points starting to move at time t. The previous proof could be adapted to show

that the shape has there two tangent spaces given by:

1. dq0(x) for the set of stationary points (when X{t} is seen as the extension of {x ∈
X | τ(x) > t})

2. dq0(x)− vτ(x)(qτ(x)(x))∇dτ(x) for the active points (when X{t} is seen as the exten-

sion of {x ∈ X | τ(x) < t} and when t is a Bochner-Lebesgue point of v) .

See Figure 3.7.

Remark 4.3. If x ∈ C(x0; δx0) is a path included in a level line of τ , ie. for any ε ∈ [−1, 1],

τ(xε) = τ(x0), then dτ(x0) · δx0 = 0 and we retrieve a standard behavior of the LDDMM

setting:

qt(xε)− qt(x0) = dqt(x) · δx0 +O(|ε|)

=

(
dq0(x) +

∫ t

τ(x)
dvs(qs(x)) ◦ dqs(x) ds

)
· δx0 +O(|ε|) .

In conclusion, we saw that the spatial regularity of the solution results from the tem-

poral regularity of the vector field. If v has a discontinuity at time t0 ∈]0, 1[, the regularity

of the shape will suffer on the whole level line X{t0} from time t0 and this accident will

remain throughout the end of the evolution (on the time interval ]t0, 1]) .

Remark 4.4 (Non injective mapping). The injectivity of q has never been requested. Note

that we saw in the proof of Proposition 4.4, that there exists M > 0 such that

|qt(y)− qt(x)|Rd ≤M
(
|q0(y)− q0(x)|Rd + |τ(x)− τ(y)|1/2

)
.
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Therefore, if two points x and y appear at the same time (i.e. belong to the same layer

X{t0}) and at the same place, then τ(x) = τ(y) and q0(x) = q0(y) and at all time t ∈ [0, 1],

qt(x) = qt(y).

However, if they appear at the same place but at different times τ(x) 6= τ(y), they can

evolve independently. If τ(x) < τ(y), then at time τ(x), qt(x) starts to leave the birth

place q0(x) = q0(y) but qt(y) remains still. Hence, at time τ(y) when qt(y) starts to move,

qt(x) and qt(y) have no reason to be equal and from this time they are carried by the flow

together and will never meet again.

5 Reduced Hamiltonian system properties

We assume hereafter that the dynamic of the model is given by an operator

ξ : B × [0, 1]→ L(V,B)

instead of a more general function f (see Section 1.4), i.e. we have formally

q̇t = ξqt,t(vt) .

The Hamiltonian function is then given by

H : B ×B∗ × V × [0, 1] −→ R
(q, p, v, t) 7−→ (p | ξ(q,t)(v))− C(v, t) .

Let us recall that we defined in Section 3.4, under the names of adapted norm setup

and nondegenerate adapted norm setup, two sets of cost functions of the common

type

C(v, t) =
1

2
〈v, `tv〉V .

5.1 Compatible spaces

In the next section, we will prove the local existence and uniqueness of solutions to

the reduced Hamiltonian system introduced in Section 2.4. This system is defined on the

product space B ×B∗ by  q̇t

ṗt

 =


∂Hr
∂p (qt, pt, t)

−∂Hr
∂q (qt, pt, t)

 .

However, we would like to establish the existence and the uniqueness of its solutions on a

smaller space product that we will note B0 ×B∗1 .

Example 5.1. When we consider B = L∞(X,Rd), we would like to constrain the mo-

menta in a space smaller than B∗. For example, we would like to keep B0 = B =

L∞(X,Rd) but to define a new space B1 = L1(X,Rd) and study the solutions of the

reduced Hamiltonian system in the subspace

B0 ×B∗1 = L∞(X,Rd)× L∞(X,Rd)
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of B ×B∗.

In order to ensure that the system is well defined and stable on the smaller space

B0 ×B∗1 , we introduce a notion of compatibility.

Definition 5.1. Let B, B0 and B1 be three Banach spaces. We say that (B0, B1) is

compatible with B if

B0
i0
↪→ B

i1
↪→ B1

with i0 and i1 two continuous linear embeddings such that the image i1(B) is dense in B1.

Moreover, we say that (B0, B1) is compatible with the system (B, V, ξ) if (B0, B1) is

compatible with B and if there exist two functions

ξ0 : B0 × [0, 1]→ L(V,B0) ,

ξ1 : B1 × [0, 1]→ L(V,B1) ,

such that at any time t ∈ [0, 1], ξt ◦ i0 = i0 ◦ ξ0
t and ξ1

t ◦ i1 = i1 ◦ ξt.

Proposition 5.1. Let be B, B0 and B1 three Banach spaces such that (B0, B1) is com-

patible with B. Then there exists a continuous linear embedding

B∗1
i∗1
↪→ B∗ .

Proof. This is a consequence of a well known result. Let E and F be two Banach spaces

and i : E → F a continuous linear mapping. Let us introduce i∗ : F ∗ → E∗, f 7→ f ◦ i.
For any f ∈ F ∗, i∗(f) = f ◦ i is continuous and |i∗(f)|E∗ ≤ |f |F ∗ |i|L(E,F ) so that i∗ is

also a continuous linear map. Assume now that i(E) is dense in F . Let be f ∈ F ∗,

if i∗(f) = f ◦ i ≡ 0, then f̃ = f|i(E) is null on the dense subset i(E) of F . Since f is

continuous on F , we get that f = 0.

In the following, up to the embedding i0 and i1 we will consider that B0 ⊂ B ⊂ B1

and consider ξ1 as an extension of ξ on B1 and ξ0 as the restriction of ξ to B0. Likewise,

up to the embedding i∗1 we will consider B∗1 as a subset of B∗.

We will consider throughout this section the previously introduced conditions

(Hξ
1)

∣∣∣∣∣∣∣∣∣∣∣

(i) ξt ∈ C1(B,L(V,B) for any t ∈ [0, 1] .

(ii) There exists c > 0 such that

|ξ(q, t)|L(V,B) ≤ c(|q|B + 1) and |∂qξ(q, t)|L(B,L(V,B)) ≤ c,
for any (q, t) ∈ B × [0, 1] .

The introduction of compatible spaces (B0, B1) calls yet for an additional set of conditions
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defined as follows:

(Hξ
B0,B1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(i) q → ξ1(q, t) is Gâteaux-differentiable at any location (q, t) ∈ B0 × [0, 1]

and its differential denoted ∂qξ
1(q, t) belongs to L(B1,L(V,B1)).

(ii) There exists q0 ∈ B0 such that

supt(|ξ0(q0, t)|L(V,B0) + |∂qξ1(q0, t)|L(B1,L(V,B1)) <∞ .

(iii) There exists c > 0 such that{
|ξ0(q, t)− ξ0(q′, t)|L(V,B0) ≤ c|q − q′|B0 ,

|∂qξ1(q, t)− ∂qξ1(q′, t)|L(B1,L(V,B1)) ≤ c|q − q′|B0 ,

for any q, q′ ∈ B0 and t ∈ [0, 1] .

Lemma 5.1. The (Hξ
1) and (Hξ

B0,B1
) conditions imply the following properties. There

exists c > 0 such that for any q, δq ∈ B0, any p ∈ B∗1 , any (t, v) ∈ [0, 1]× V , we have

(P1) |ξ0(q, t)|L(V,B0) ≤ c(|q|B0 + 1) ,

(P2) |ξ0(q, t)∗ · p|V ∗ ≤ c(|q|B0 + 1)|p|B∗1 ,
(P3) |∂qξ1(q, t)|L(B1,L(V,B1)) ≤ c(|q|B0 + 1) ,

(P4) |∂qξ1(q, t) · δq|L(V,B1) ≤ c|δq|B0(|q|B0 + 1) ,

(P5) (∂qξ(q,t)(v))∗ · p = (∂qξ
1(q, t)(v))∗ · p ∈ B∗1 ,

(P6) |(ξ0(q, t)− ξ0(q′, t))∗ · p|V ∗ ≤ c|p|B∗1 |q − q
′|B0 ,

(P7) |(∂qξ1(q, t)− ∂qξ1(q′, t)) · δq|L(V,B1) ≤ c|δq|B0 |q − q′|B0 .

Proof. These properties will be used in the proof of Proposition 5.3 and 5.4. (P1) and

(P3) result directly from (Hξ
B0,B1

). Then, for any q ∈ B0, ξ0(q, t) ∈ L(V,B0) so that

ξ0(q, t)∗ ∈ L(B∗0 , V
∗) and since B∗1 is continuously embedded in B∗0 , we deduce (P2) from

(P1). Since B is continuously embedded in B1, we deduce likewise (P4) from (P3).

Since B is continuously embedded in B1, for any t ∈ [0, 1], ξt and ξ1
t have the same

Gâteaux-derivatives at any location q ∈ B0 ⊂ B in any direction δq ∈ B ⊂ B1, i.e.

∂qξ(q,t) · δq = ∂qξ
1(q, t) · δq . (3.77)

It follows that ∂qξ(q,t) : B → L(V,B1) is continuous when B is equipped with the norm of

B1 and since B is dense in B1, it can be continuously extended and by uniqueness, this

extension is equal to ∂qξ
1(q, t). Hence, for any v ∈ V , since ∂qξ

1(q, t)(v)∗ ∈ L(B∗1) and we

have for any p ∈ B∗1 ,

(∂qξ(q,t)(v))∗ · p = (∂qξ
1(q, t)(v))∗ · p ∈ B∗1 .

At last, we have with (Hξ
B0,B1

) (iii), B∗1 ↪→ B∗0 that induces (P6) and B0 ↪→ B1 that

induces (P7).
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5.2 Local analysis of the reduced Hamiltonian system

In order to apply the Cauchy-Lipchitz Theorem 4.1, we need to establish some regu-

larity of the reduced Hamiltonian.

Proposition 5.2. Let E,F and G be three Banach spaces. Let be r > 0, we note B(0, r)

the ball of E of radius r. Let be f : B(0, r) → F and g : B(0, r) → G two functions. Let

b : F ×G→ H be a continuous bilinear function. Assume that f and g are both bounded

and Lipschitz continuous and note mf , mg, kf and kg four respective upper bounds of f ,

g and of their Lipschitz constants.

Then there exists cb > 0 such that B(0, r) 3 x 7→ b(f(x), g(x)) is Lipschitz continous

and the Lipschitz constant is bounded by cb(mfkg +mgkf ).

Proof. Since b is continuous, there exists cb > 0 such that for any (X,Y ) ∈ F ×G

|b(X,Y )|H ≤ cb|X|F |Y |G .

Then for any x, x′ ∈ B(0, r), we have

|b(f(x), g(x))− b(f(x′), g(x′))| ≤ |b(f(x), g(x)− g(x′)) + b(f(x)− f(x′), g(x′))|
≤ cb|f(x)||g(x)− g(x′)|+ cb|f(x)− f(x′)||g(x′)|
≤ cb(mfkg +mgkf )|x− x′|E .

Let us introduce a new class of functions.

Definition 5.2. We define Lip locunif (E × [0, 1], F ) the set of applications g such that

— for almost every t ∈ [0, 1], gt := g(·, t) is locally Lipschitz continuous,

— for any r > 0, if we note krt the Lipschitz constant of gt on the ball B(0, r) (defined

a.e.), then t 7→ krt is bounded on [0, 1].

We recall that we introduced the class Lip locint in Definition 4.1. The only difference

between these two classes lies on the properties of the Lipschitz constant krt (integrable or

uniformly bounded) .

Proposition 5.3. Let (B0, B1) be two Banach spaces compatible with the system

(B, V, ξ). Assume that w : B0 × B∗1 × [0, 1] → V is a function of class Lip locint. For

any r > 0 and almost any t ∈ [0, 1], assume that wt is locally bounded and note mr
t its

supremum on the ball B(0, r). Then under the (Hξ
B0,B1

) and (Hξ
1) conditions, if t 7→ mr

t

is integrable, the function

hw : B0 ×B∗1 × [0, 1] −→ B0 ×B∗1

(q, p, t) 7−→

 ξ(q,t)(w(q, p, t))

−(∂qξ(q,t))(w(q, p, t))∗ · p

 (3.78)

is of class Lip locint(B0 ×B∗1 × [0, 1], B0 ×B∗1) (with |(q, p)|B0×B∗1 = |q|B0 + |p|B∗1 ) .
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Proof. The proof results from the regulariy of ξ and Proposition 5.2.

We start our proof by checking that hw(q, p, t) ∈ B0 × B∗1 for any (q, p, t) ∈ B0 ×
B∗1 × [0, 1]. Since B0 and B1 are compatible with (B, V, ξ), we have for any (q, t, v) ∈
B0 × [0, 1]× V ,

ξ(q, t)(v) = ξ0(q, t) ∈ B0

and the first component of hw is in B0. Lemma 5.1 (P5) ensures then that for any

(q, p) ∈ B0 × B∗1 and any v ∈ V , we have (∂qξ(q, t)(v))∗ · p = (∂qξ
1(q, t)(v))∗ · p ∈ B∗1 so

that hw is thus well defined.

Note c > 0 the constant given by the (Hξ
B0,B1

) conditions and krt the Lipschitz constant

of wt on the ball B(0, r). Now, let E and F be two Banach spaces. The bilinear function

b : L(E,F ) × E → F , (L, x) 7→ L(x) is continuous and satisfies for any L ∈ L(E,F ) and

any x ∈ E,

|b(L, x)|F ≤ |L|op|x|E .

The bilinear function b∗ : L(E,F )× F ∗ → E∗, (L, x) 7→ L∗(x) is continuous and satisfies

for any L ∈ L(E,F ) and any x ∈ F ∗, any y ∈ E,

|(b∗(L, x) | y)| = |(L∗(x) | y)| = |(x |L(y))| ≤ |L|op|y|E |x|F ∗ ,

so that

|b∗(L, x)|E∗ ≤ |L|op|x|F ∗ .

To prove the proposition, we will use repeatedly the previous result.

Let us first consider the regularity of the first component of hw. For any t ∈ [0, 1] and

any r > 0, define the functions ft(q, p) = ξ0(q, t) and gt(q, p) = w(q, p, t) on B(0, r) the

ball of B0 × B∗1 . Then gt takes values in V and ft takes values in L(V,B0). Moreover,

we deduce from Lemma 5.1 (P1) that ft and gt satisfy the conditions of Proposition 5.2

and with the notation of the proposition we have mf ≤ c(r + 1), kf ≤ c, mg ≤ mr
t and

kg ≤ krt . Therefore, the first component of hwt is equal to b(ft(q, p), gt(q, p)), is Lipschitz

continuous on B(0, r) and the Lipschitz constant satisfies

krhw1,t ≤ mfkg +mgkf ≤ c(r + 1)krt +mr
t c .

We turn now to the regularity of the second component of hw. For any t ∈ [0, 1] and any

r > 0, define the functions ft(q, p) = ∂qξ
1(q, t) and gt(q, p) = w(q, p, t) on B(0, r) the ball

of B0 × B∗1 . Then gt takes values in V and ft takes values in L(V,L(B1)). Moreover,

we deduce from Lemma 5.1 (P3) that ft and gt satisfy the conditions of Proposition 5.2

and with the notation of the proposition we have mf ≤ c(r + 1), kf ≤ c, mg ≤ mr
t and

kg ≤ krt . Therefore, the function (q, p) 7→ (∂qξ
1(q, t))(w(q, p, t)) = b(ft(q, p), gt(q, p)) is

Lipschitz continuous on B(0, r) and the Lipschitz constant satisfies

krhalfway ≤ mfkg +mgkf ≤ c(r + 1)krt +mr
t c .

To end the proof, let us define, for any t ∈ [0, 1] and any r > 0, the functions ft(q, p) =

∂qξ
1(q, t)(w(q, p, t)) and gt(q, p) = p on B(0, r) the ball of B0 × B∗1 . Then gt takes values

in B∗1 and ft takes values in L(B1). Moreover, from the previous point, ft and gt satisfy
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the conditions of Proposition 5.2 and with the notation of the proposition we have mf ≤
c(r + 1)mr

t , kf ≤ c(r + 1)krt +mr
t c, mg ≤ r and kg ≤ 1. Therefore, the second component

of hwt is equal to b∗(ft(q, p), gt(q, p)), is Lipschitz continuous on B(0, r) and the Lipschitz

constant satisfies

krhw2,t ≤ mfkg +mgkf ≤ c(r + 1)mr
t + r(c(r + 1)krt +mr

t c)

≤ c(2r + 1)mr
t + cr(r + 1)krt .

Recall at last that t 7→ mr
t + krt is integrable. Hence, hwt is of class Lip locint(B0 × B∗1 ×

[0, 1] → V ). Indeed, on any ball of radius r > 0, its Lipschitz constant is bounded by

2c(r + 1)mr
t + c(r + 1)2krt and is thus integrable on [0, 1].

In the previous proposition, w plays the role of the optimal vector field v∗. This last

one is built on the momentum map. Its regularity depends thus on the regularity of the

momentum map. In the following, we will note the momentum map J instead of Jξ. Let

us recall that it is defined for any (q, p, t) ∈ B ×B∗ × [0, 1] by

J (q, p, t) = ξ∗(q,t) · p .

We note now Jt
.
= J (·, ·, t). The next proposition gives some regularity properties of

the momentum map and will allow to use hereafter Proposition 5.3.

Proposition 5.4. Let (B0, B1) be two Banach spaces compatible with the system (B, V, ξ).

The momentum map can be defined on B0×B∗1× [0, 1]. Then under the (Hξ
1) and (Hξ

B0,B1
)

conditions, for any t ∈ [0, 1], Jt belongs to C1(B0 × B∗1 , V
∗). Moreover, Jt and dJt

are locally bounded on B0 × B∗1 , uniformly with respect to t. Therefore, J belongs to

Lip locunif (B0 ×B∗1 × [0, 1], V ∗).

Proof. Under the condition Hξ
1 , the momentum map is defined on B ×B∗ so that we can

consider its restriction on B0 ×B∗1 ⊂ B ×B∗. The most challenging part is to check that

this restriction is C1 for the topology induced by associated norm on B0 ×B∗1 . The proof

lies on the properties established in Lemma 5.1.

To prove this, it is sufficient to check that there exists At ∈ C(B0×B1,L(B0×B∗1 , V ∗))
such that for any direction (δq, δp) ∈ B0 ×B∗1 we have in V ∗

(Jt(q + εδq, p+ εδp)− Jt(q, p))/ε −→
ε→0

At(q, p) · (δq, δp) . (3.79)

Consider

At(q, p) · (δq, δp) = (∂qξ(q, t) · δq)∗ · p+ ξ(q, t)∗ · δp .

Property (P2) and (P4) of Lemma 5.1 ensure that there exists c > 0 such that we have for

any (q, p, t) ∈ B0 ×B∗1 × [0, 1] and any (δq, δp) ∈ B0 ×B∗1 ,

|At(q, p) · (δq, δp)|V ∗ ≤ c|p|B∗1 |δq|B0(|q|B0 + 1) + c|δp|B∗1 (|q|B0 + 1) . (3.80)

We have therefore At(q, p) ∈ L(B0 ×B1, V ).

Let us check now that (q, p) → At(q, p) is continuous on B0 × B∗1 . For any (q′, p′) ∈
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B0 ×B∗1 , and any (δq, δp) ∈ B0 ×B∗1 we have

|(At(q′, p′)−At(q, p)) · (δq, δp)|V ∗
= |(∂qξ(q′, t) · δq)∗ · p′ − (∂qξ(q, t) · δq)∗ · p+ (ξ(q′, t)− ξ(q, t))∗ · δp|V ∗
≤ |(∂qξ1(q′, t)− ∂qξ1(q, t)) · δq|L(V,B1)|p′|B∗1

+ |∂qξ1(q, t) · δq|L(V,B1)|p′ − p|B∗1 + |(ξ(q′, t)− ξ(q, t))∗ · δp|V ∗ .

We have thus from (P7), (P4) and (P6) that there exists a constant c > 0, that does not

depend on the variables, such that

|(At(q′, p′)−At(q, p)) · (δq, δp)|V ∗
≤ c(|p′|B∗1 |q

′ − q|B0 |δq|B0 + |p′ − p|B∗1 |δq|B0(|q0|B0 + 1) + |δp|B∗1 |q
′ − q|B0) .

This upper bound tends to 0 when (q′, p′) tends to (q, p) so that we get At ∈ C(B0 ×
B∗1 ,L(B0 ×B∗1 , V ∗)).

The last thing to prove is equation (3.79). We have∣∣(J (q + εδq, p+ εδp, t)− J (q, p, t))/ε−A(q, p) · (δq, δp)
∣∣
V∗

≤ |p|B∗1
∣∣(ξ1(q + εδq, t)− ξ1(q, t)

)
/ε− ∂qξ1(q, t) · δq

∣∣
L(V,B1)

+
∣∣(ξ(q + εδq, t)− ξ(q,t)

)∗ · δp∣∣
V ∗
.

From (P6) we deduce that the last term tends to 0 when ε tends to 0 and since from

(Hξ
B0,B1

) we know that q → ξ1(q, t) is Gâteaux differentiable at any location q ∈ B0 we

get the result.

At this point, we have proved that Jt : ((q, p) → J (q, p, t)) ∈ C1(B0 × B∗1 , V ∗) and

that for any (q, p, t) ∈ B0 ×B∗1 × [0, 1] and any (δq, δp) ∈ B0 ×B∗1

dJt(q, p) · (δq, δp) = ξ∗(q,t) · δp+
(
∂qξ(q,t) · δq

)∗ · p .
Moreover, we get from (P2) and (3.80) that there exists c > 0 such that for any

(q, p, t) ∈ B0 ×B∗1 × [0, 1],

|Jt(q, p)|V ∗ = |ξ∗(q,t) · p|V ∗ ≤ c(|q|B0 + 1)|p|B∗1

and

|dJt(q, p)|L(B0×B∗1 ,V ∗) ≤ c(|q|B0 + 1)(|p|B∗1 + 1) .

The next theorem finally proves the local existence and uniqueness of the solutions

when the Hamiltonian is defined with the cost function of the adapted norm setup

C(v, t) =
1

2
〈v, `tv〉V .
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The core of the proof lies on the more general Proposition 5.3.

Theorem 5.1 (Local existence and uniqueness of the solutions to the reduced Hamiltonian

system). Let us consider the adapted norm setup. Let (B0, B1) be two Banach spaces

compatible with the system (B, V, ξ). Assume the (Hξ
1) and (Hξ

B0,B1
) conditions. Then

we have:

1. The momentum map J belongs to Lip locunif (B0 × B∗1 × [0, 1], V ∗) and Jt is locally

bounded on B0 × B∗1 . Note mr
t its supremum and krt its Lipschitz constant on the

ball B(0, r) of B0 ×B∗1 .

2. Assume that for any r > 0, the function t 7→ |`−1
t |(mr

t + krt ) belongs to L1([0, 1],R).

Then for any r > 0, there exists ε > 0 such that the Cauchy problem associated to

the reduced Hamiltonian system for any initial condition (q0, p0) ∈ B(0, r) in B0×B∗1
and t0 ∈ [0, 1[ has a unique solution on the interval [t0, t0 + ε]∩ [0, 1]. Moreover, this

solution stays in B0 ×B∗1 .

Proof. In the adapted norm setup, the optimal vector field is given by the function

v∗(q, p, t) = `−1
t KJ (q, p, t) .

The assumption of 2) allows to verify that v∗ satisfies the conditions of Proposition 5.3

in order to apply the Cauchy-Lipschitz Theorem 4.1. Note h the reduced Hamiltonian

system:

h(qt, pt, t) =

 q̇t

ṗt

 =


∂Hr
∂p (qt, pt, t)

−∂Hr
∂q (qt, pt, t)

 =

 ξ(qt,t)(v
∗
t )

−
(
∂qξt(qt)(v

∗
t )
)∗ · pt

 .

The compatibility assumption and Proposition 5.1 ensure that there exists a continuous

linear embedding

B0 ×B∗1 ↪→ B ×B∗ (3.81)

and implies that the system can be defined on B0×B∗1 and is stable. We have thus B0×B∗1
a Banach space and h : B0 ×B∗1 × [0, 1]→ B0 ×B∗1 a measurable function.

The second condition of the Cauchy-Lipschitz Theorem 4.1 is satisfied for the point

(q, p) = (0, 0). We have indeed for almost any t ∈ [0, 1], ∂Hr
∂q (0, 0, t) = 0 and since J is

linear with respect to p, v∗(0, 0, t) = 0 so that ∂Hr
∂p (0, 0, t) = 0.

Now, Proposition 5.4 says that J ∈ Lip locunif (B0×B∗1× [0, 1], V ∗) and that Jt is locally

bounded. Therefore, since for any t ∈]0, 1], `−1
t is linear and continuous, v∗t is also locally

bounded and locally Lipschitz continuous. Indeed, for any r > 0, the supremum and the

Lipschitz constant of v∗t restricted to the ball B(0, r) are respectively bounded by |`−1
t |mr

t

and |`−1
t |krt . The assumption t 7→ |`−1

t |(mr
t + krt ) ∈ L1([0, 1],R) implies thus that v∗ is

at least of class Lip locint. Proposition 5.3 says then that h belongs to Lip locint(B0 × B∗1 ×
[0, 1], B0 ×B∗1). The Cauchy-Lipschitz theorem can thus be applied.

Corollary 5.1. Let us consider the nondegenerate adapted norm setup. Then for any

set (B0, B1) compatible with the system (B, V, ξ) and that satisfies the (Hξ
1) and(Hξ

B0,B1
)
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conditions, there exists a unique maximal solution to the Cauchy problem associated to the

reduced Hamiltonian system for any initial condition (q0, p0) ∈ B0 × B∗1 . This solutions

stays in B0 ×B∗1 .

Proof. The assumption of point 2) of the previous theorem is always satisfied in the non-

degenerate adapted norm setup. Indeed, t 7→ `−1
t is bounded on [0, 1] (see Proposi-

tion 3.5). Moreover, with the notation of the theorem, Proposition 5.4 says that for any

t ∈ [0, 1] and any r > 0, mr
t and krt are bounded uniformly with respect to time. Hence,

for any r > 0, t 7→ |`−1
t |(mr

t + krt ) belongs to L1([0, 1],R).

5.3 Applications with the growth dynamic

Let us recall that the operator ξ : B × [0, 1] → L(V,B) induced by the growth

dynamic is formally given by

ξ(q,t)(v) = (x 7→ 11τ(x)≤t v(q(x))) . (3.82)

The next three configurations are defined with the growth dynamic and under the (HV
1 )

conditions. Theorem 5.1 and its Corollary 5.1 will allow us to show in each case the local

existence and uniqueness of solutions to the reduced Hamiltonian system.

Discrete coordinate space

The case of discrete shapes calls for the nondegenerate adapted norm setup and is thus

cover by Corollary 5.1. We have B = B∗ = (Rd)k and there is in general no reason to

work with any particular subspaces B0 or B∗1 .

Shapes with initial boundary

Consider the situation where X is a compact submanifold and q : X → Rd. The

choice of B∗1 depends then on the attachment term. For example, if the derivation of

the attachment term leads to a momentum that can be represented by an element of

L∞(X,Rd), the natural configuration is to define

B0 = B = L∞(X,Rd) ,
B1 = L1(X,Rd) .

We saw in Section 3.2 that the current attachment term leads to a situation a bit more

complex. Let us recall the B space introduced in Definition 3.1.

Example 5.2 (Tube Case). We defined a measure µ on X and we recall that for any

Borel set A ⊂ X, we have

µ(A) = Hk(A) +Hk−1(A ∩ ∂X) .

L∞µ (X,Rd) is the space of functions from X to Rd defined µ-almost everywhere and

bounded, quotiented by the space of null functions.

To avoid any confusion, we will note here L∞Hk(X,Rd) the usual L∞(X,Rd) associated

to the Hausdorff measure. When a class of function of L∞Hk(X,Rd) is defined Hk-almost
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everywhere on X, a class of function of L∞µ (X,Rd) is defined Hk-almost everywhere on
◦
X and Hk−1-almost everywhere on ∂X. We introduce then

B = L∞µ (X,Rd) ,
B0 = B ,

B1 = L1
µ(X,Rd) .

Proposition 5.5. Let be B = L∞µ (X,Rd). If ξ is given by the growth dynamic then

under the (HV
1 ) conditions, the couple (B0, B1) introduced in the Example 5.2 with

B0 = B ,

B1 = L1
µ(X,Rd) ,

is compatible with the system (B, V, ξ) and the (Hξ
B0,B1

) conditions are satisfied.

Proof. We note |q|∞,µ the essential supremum with respect to µ. (L∞µ (X,Rd), | · |∞,µ) is

a Banach space. Let us show now that (B0, B1) is compatible with B. We have trivially

B0 = B ↪→ B1 with B dense in B1. Therefore, (B0, B1) is compatible with B.

Under the (HV
1 ) conditions, there exists c > 0 such that for any q ∈ B, any t ∈ [0, 1]

and any v ∈ V
|ξt(q)(v)|B ≤ c|v|V (|q|∞,µ + 1) ≤ c|v|V (|q|B + 1) .

Consequently, ξ : B × [0, 1]→ L(V,B).

Moreover, we can extend ξ to B1. For any q ∈ B1, any t ∈ [0, 1] and any v ∈ V by

ξ1
t (q)(v) = 11τ≤t v ◦ q . (3.83)

We have then likely with the same constant c > 0 that for any q ∈ B1, any t ∈ [0, 1] and

any v ∈ V

|ξt(q)(v)|B1 ≤ c|v|V (|q|B1 + µ(X)) .

Consequently, ξ1 : B1 × [0, 1] → L(V,B1) and (B0, B1) is compatible with the system

(B, V, ξ).

Let us check now that ξ1 is Gâteaux differentiable as a function with values in L(V,B1)

at any location q ∈ B1 (and not only at location q ∈ B0) . Indeed, we have for any q ∈ B1,

δq ∈ B1 and v ∈ V

|(ξ1(q + εδq, t)(v)− ξ1(q, t)(v))/ε− 11τ≤t dv(q) · δq|B1 ≤
∫ 1

0
|dv(q + sεδq)− dv(q)) · δq|B1ds

≤
∫
X
c|v|V (2 ∧ ε|δq(x)|Rd)|δq(x)|Rddµ(x) ,

where we denote a∧b = min(a, b). We get indeed from HV
1 that |dv(x)−dv(y)| ≤ c|v|V |x−

y| and |dv(x) − dv(y)| ≤ |dv(x)| + |dv(y)| ≤ 2c|v|V . Using the dominated convergence

theorem, we get that
∫
X c(2 ∧ ε|δq(x)|)|δq(x)|dµ(x) → 0 as ε → 0 and ∂qξ

1(q, t)(v) · δq =
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11τ≤t dv(q) · δq for which we have

|11τ≤t dv(q) · δq|B1 ≤ c|v|V |δq|B1 ,

so that

∂qξ
1(q, t) ∈ L(B1,L(V,B1)) with |∂qξ1(q, t)|L(B1,L(V,B1)) ≤ c .

At last, for any q, q′ ∈ B0, any δq ∈ B1, any t ∈ [0, 1] and any v ∈ V

|(ξ(q,t) − ξ(q′,t))(v)|B0 ≤ c|v|V |q − q′|B0∣∣(∂qξ1
t (q)− ∂qξ1

t (q′)
)
(v) · δq

∣∣
B1
≤ c|v|V |q − q′|B0 |δq|B1 .

Therefore, the (Hξ
B0,B1

) conditions are satisfied.

Remark 5.1. An important point to note here is that even if ∂qξ
1(q, t) is defined for any

q ∈ B1 as an element of L(B1,L(V,B1)) from directional derivative, the continuity is only

on B0 for the topology of B0. In particular, ξ1(., t) is not C1 on B1 so that Hξ
1 cannot be

verified for B = B1.

In fine, since B1 can be identified with L1
Hk(X,Rd) × L1

Hk−1(∂X,Rd), we get that

B∗1 = L∞µ (X,Rd) ' L∞Hk(X,Rd)× L∞Hk−1(∂X,Rd) and we have as wanted

B0 = L∞µ (X,Rd) = B∗1 ,

and for any δq ∈ B0 and any p ∈ B∗1 , the action of p on δq is given by

(p | δq) =

∫
X
〈p(x), δq(x)〉Rd dµ(x)

and is well defined.

This configuration calls again for the nondegenerate adapted norm setup and the local

existence and uniqueness of the solutions of the reduced Hamiltonian system in B0 × B∗1
are given by Corollary 5.1.

Horns represented by currents

The horns with the current attachment term are a specific case of the previous configu-

ration. As we said in Section 3.3, the image of the first layer {0}×X0 is reduced to a point.

This implies that the boundary component of the momentum (of an optimal solution) is

null on this set. A class of function of L∞µ (X,Rd) is defined Hk−1-almost everywhere on

{0} ×X0. This allows to consider the following setup.

Definition 5.3 (Horn setup). We call the horn setup the following configuration.

Consider B = L∞µ (X,Rd) where X = [0, 1] ×X0, ∂X0 = ∅, τ is the projection on the

first coordinate and ξ given by the growth dynamic. The shapes are actually modeled by

the elements of

B0 = {q ∈ B | ∃y ∈ Rd, q(0, ·) = y Hk−1-a.e. on X0} . (3.84)
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We consider B1 = L1
µ(X,Rd) and the following subspace

B̃∗1 = { p ∈ L∞µ (X,Rd) | p(x) = 0 Hk−1-a.e. on ∂X } ' L∞Hk(X,Rd) (3.85)

of B∗1 = L∞µ (X,Rd).

Remark 5.2. Note that the more natural condition on the momenta would be p(x) =

0 Hk−1-a.e. on X0 but since ∂X = X0 ∪X1 and since the momenta associated to X1 play

no role in the evolution of the shape, we consider this subspace B̃∗1 to simplify the notation.

Proposition 5.6. Consider the horn setup. Under the (HV
1 ) conditions, (B0, B1) is

compatible with the system (B, V, ξ) and the (Hξ
B0,B1

) conditions are satisfied.

Proof. We note |q|∞,µ the essential supremum with respect to µ. (B, | · |∞,µ) is a Banach

space. Let us show that (B0, | · |∞,µ) is a Banach space. Let (qn)n≥0 be a Cauchy sequence

in B0. The sequence converges to a function q in B. By definition, for any n ≥ 0, there

exists yn ∈ Rd such that for µ-almost every x0 ∈ X0, qn(0, x0) = yn. The sequence (yn)n≥0

is a Cauchy sequence in Rd and converges thus to y ∈ Rd. We have finally

|q|{0}×X0
− y|∞,Hk−1 ≤ |q|{0}×X0

− yn|∞,Hk−1 + |yn − y|Rd
≤ |q|{0}×X0

− qn|{0}×X0
|∞,Hk−1 + |yn − y|Rd −→n→∞ 0 .

Therefore, Hk−1({x0 ∈ X0 | q(0, x0) 6= y}) = 0 so that q ∈ B0.

Since B0 is a closed subspace of B = L∞µ (X,Rd), stable for the growth dynamic, we

deduce immediately from Proposition 5.5 that (Hξ
B0,B1

) conditions hold.

Remark 5.3. Note in this last example that B0 is a strict closed subspace of B and

B * B1. Moreover, as mentioned previously, when consider the current data attachment

term, the momentum will be an element of B̃∗1 with is also a strict closed subspace of B1
∗ .

The interest of these specific momenta is to give a more explicit expression of the

momentum map. Its restriction to B0 × B̃∗1 × [0, 1] is indeed given by

(Jξ(q, p, t) | v) = (p | ξ(q,t)(v)) (3.86)

=

∫
X
〈p(x), ξ(q,t)(v)(x)〉Rd dHk(x) . (3.87)

As seen in Section 3.3, this integral expression of the momentum map implies a degenerate

behavior at time 0 : the norm of the momentum map tends to 0 when t tends to 0. To

counter this phenomenon, we use the cost function of the adapted norm setup with an

operator ` that also tends to 0 when t tends to 0. The function giving the optimal vector

field

v∗(q, p, t) = `−1
t KV J (q, p, t) (3.88)

is not defined at time 0 and the norm of `−1
t tends to +∞ when t tends to 0. We will thus

need to verify that v∗ still satisfies the conditions of Theorem 5.1.
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Proposition 5.7. Let us consider the combined adapted norm setup and horn setup.

Assume the (HV
1 ) conditions. Assume that there exist M > 0 and s ∈ [0, 2[ two constants

such that for any t ∈]0, 1]

|`−1
t |op ≤

M

ts
. (3.89)

Then there exists a unique maximal solution to the Cauchy problem associated to the

reduced Hamiltonian system for any initial condition (q0, p0) ∈ B0 × B̃∗1 . This solutions

stays in B0 × B̃∗1 .

Proof. Proposition 5.6 says that (B0, B1) is compatible with the system (B, V, ξ) and

the (Hξ
B0,B1

) conditions are satisfied.

Note also that for (q, p) ∈ B0 × B̃∗1 , if p = (∂qξ(q, t)(v))∗ · p then p ∈ B̃∗1 . Indeed, we

have p ∈ B1
∗ and p(x) = 11τ(x)≤tdv(q(x))∗ · p(x) µ-a.e. so that p(x) = 0 Hk−1-a.e. on ∂X

and p ∈ B̃∗1 . This implies that the reduced hamiltonian hv
∗

(see equation (3.78)) can be

restricted to hv
∗

: B0×B̃∗1× [0, 1]→ B0×B̃∗1 . To complete the proof, we need to show that

this restriction belongs to Lip locint((B0× B̃∗1 × [0, 1], B0× B̃∗1) and use our Cauchy-Lipschitz

Theorem 4.1.

Proceeding as in the proof Theorem 5.1 it is sufficient to check that v∗ : B0 × B̃∗1 ×
[0, 1]→ V is a function of class Lip locint. We need to show for mr

t the supremum and krt the

Lipschitz constant on the ball B(0, r) of B0×B̃∗1 of Jt that the function t 7→ |`−1
t |(mr

t +krt )

belongs to L1([0, 1],R) for any r > 0. The idea is to use the pointwise expression of the

momentum map to refine the results of Proposition 5.4. We deduce from equation (3.87)

and the decomposition of X that for any (q, p, t) ∈ B0 × B̃∗1 × [0, 1] and any v ∈ V , the

momentum map is given by

(
J (q, p, t) | v

)
=

∫ t

0

∫
X0

〈p(s, x0), v(q(s, x0))〉Rd dHk−1(x0)ds . (3.90)

Let c > 0 be the constant given by (HV
1 ). We have then∣∣(Jt(q, p) | v)

∣∣ ≤ tc|p|∞|v|V (|q|∞ + 1)Hk−1(X0)

≤ tc|p|B∗1 |v|V (|q|B0 + 1)Hk−1(X0) ,

so that mr
t ≤ tcr(r + 1)Hk−1(X0). Moreover, we have for any (δq, δp) ∈ B0 × B̃∗1∣∣(dJt(q, p) · (δq, δp) | v)

∣∣
=

∣∣∣∣∫ t

0

∫
X0

〈δp(s, x0), v(q(s, x0))〉Rd + 〈p(s, x0), dv(q(s, x0)) · δq(s, x0)〉Rd dHk−1(x0)ds

∣∣∣∣
≤
∫ t

0
c|δp|∞|v|V (|q|∞ + 1) + c|p|∞|v|V |δq|∞Hk−1(X0)ds

≤ tc|v|V (|q|∞ + |p|∞ + 1)(|δq|∞ + |δp|∞)Hk−1(X0)

≤ tc|v|V (|q|B0 + |p|B∗1 + 1)(|δq|B0 + |δp|B∗1 )Hk−1(X0) ,

so that krt ≤ tc(2r + 1)Hk−1(X0).

Consequently, there exists for any r > 0 a constant cr > 0 such that for any t ∈ [0, 1],
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we have

mr
t + krt ≤ tcr

and we deduce with equation (3.89) that the function t 7→ |`−1
t |(mr

t + krt ) belongs to

L1([0, 1],R) for any r > 0. So we can applied a localized version of Theorem 5.1 to

B0 × B̃∗1 that gives the local existence and uniqueness of the solutions to the reduced

Hamiltonian system and the stability with respect to B0 × B̃∗1 .

5.4 Specific theorems of global existence

We will now show that, in the previous configurations, the solutions do not explode.

The idea is for any solution (q, p) defined on a maximal interval I ⊂ [0, 1], to control the

reduced Hamiltonian I 3 t 7→ Hr(qt, pt, t) then deduce that neither q or p can explode.

The solution could thus be extended.

General coordinate space with the current norm

Given an initial condition (q0, p0) ∈ B0 × B̃∗1 , we just proved previously the existence

and uniqueness of a maximal solution (q, p) = Ψ(q0, p0) ∈ C(I,B0 × B̃∗1) with the growth

dynamic (i.e. ξ(q,t)(v) = 11τ≤tv ◦ q) in two configurations.

1. In the tube case, with the non degenerate adapted norm setup and with

B0 = B = L∞µ (X,Rd) ,

B̃∗1 = B∗1 = L∞µ (X,Rd) .

2. In the horn case, with the adapted norm setup and with

B = L∞µ (X,Rd) ,
B0 = {q ∈ B | ∃y ∈ Rd, q(0, ·) = y Hk−1-a.e. on X0} ,
B∗1 = L∞µ (X,Rd) ,

B̃∗1 = { p ∈ L∞µ (X,Rd) | p(x) = 0 Hk−1-a.e. on ∂X } ' L∞Hk(X,Rd) .

Note that the non degenerate adapted norm setup is a subcase of the adapted norm

setup. Consider now a maximal solution (q, p) = Ψ(q0, p0) ∈ C(I,B0 × B̃∗1) such that

I = [0, tmax[⊂ [0, 1]. We will show that this solution does not explode under the following

assumptions common to both cases

— the cost function satisfies the adapted norm setup (C(v, t) = 1
2〈v, `tv〉V (see Defini-

tion 3.3)),

— ` ∈ C1([0, 1],L(V )),

— B = L∞µ (X,Rd) and B∗1 = L∞µ (X,Rd).

The three propositions following the next lemma aim to give a control independent of

time on the momentum map and then on the reduced Hamiltonian. With this last control,

we will prove in one theorem for each of the above cases that the solution cannot explode

i.e. I = [0, 1].
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Lemma 5.2. The cost function is derivable with respect to time. Moreover, let α : [0, 1]→
R+ be a lower bound function associated with `t (see Definition 3.3). There exists c > 0

such that for any (q, p, t) ∈ B ×B∗ × [0, 1] and any v ∈ V we have

1. Hr(q, p, t) = C(v∗(q, p, t), t) = 1
2〈v
∗(q, p, t), `tv

∗(q, p, t)〉V ≥ 0 ,

2. |Jξ(q, p, t)|2V ∗ ≤
c

α(t)Hr(q, p, t) ,

3. |v∗(q, p, t)|V ≤
√

c
α3(t)

|Jξ(q, p, t)|V ∗ ,

where we recall that v∗t = `−1
t KV Jξ(qt, pt, t).

Proof. 1) We assume in the definition of the adapted norm setup that for any t ∈ [0, 1] and

any v ∈ V , C(v, t) = 1
2〈v, `tv〉V ≥ α(t)|v|2V ≥ 0. Moreover, we have the explicit expression

of the reduced Hamiltonian

Hr(q, p, t) = H(q, p, v∗t , t) = (Jξ(q, p, t) | v∗t )− C(v∗t , t)

= 〈KV Jξ(q, p, t), v∗t 〉V −
1

2
〈v∗t , `tv∗t 〉V =

1

2
〈v∗t , `tv∗t 〉V = C(v∗t , t) .

2) Let us consider v ∈ V , t ∈]0, 1] and w = `−1
t v. We have then

〈v, `−1
t v〉V = 〈w, `tw〉V ≥ α(t)|w|2V = α(t)|`−1

t v|2V .

Since |v|V = |`t ◦ `−1
t v|V ≤ |`t|op|`−1

t v|V , we get |`−1
t v|V ≥ 1

|`t|op |v|V and thus

〈v, `−1
t v〉V ≥

α(t)

|`t|2op
|v|2V .

Finally, since Hr(q, p, t) = 1
2〈KV Jξ(q, p, t), `−1

t KV Jξ(q, p, t)〉V , we have for t ∈ [0, 1]

Hr(q, p, t) ≥
α(t)

2|`t|2op
|Jξ(q, p, t)|2V ∗

and we get the result since t→ |`|op is continuous and so bounded.

3) At last, we have v∗t = `−1
t KV Jξ(qt, pt, t), so that |v∗(q, p, t)|V ≤ |`−1

t |op |Jξ(q, p, t)|V ∗ .
Since we get from Proposition 3.5 that |`−1

t |op ≤ 1
α(t) , we get the result.

The time derivative of the reduced Hamiltonian depends on the partial derivative with

respect to time of the cost function C and the momentum map Jξ. The first one does

not depends on the variable (q, p). The main issue is thus to control the evolution of the

momentum map. The next proposition shows that this evolution actually only depends

on the initial state of the variable.

Proposition 5.8 (Control on the Momentum Map). Under the (HV
1 ) conditions, the

momentum map admits a partial derivative with respect to time at almost every time.

Moreover, there exists a constant c > 0 such that for any t ∈ [0, tmax[∫ t

0

∣∣∣∣∂Jξ∂t (qs, ps, s)

∣∣∣∣
V ∗
ds ≤ c|p0|B∗(|q0|B + 1) . (3.91)
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Proof. Let recall that Jξ(q, p, t) = ξ∗(q,t) · p and that

ξ(q,t)(v) =
(
x 7→ 11τ(x)≤tv(q(x))

)
.

The function ξ is not derivable with respect to time in B = L∞µ (X,Rd). The pointwise

expression of the momentum allows yet to avoid this problem. When τ is written as

a projection in X = [0, 1] × X0, the expression of the momentum map is given (see

Section 3.2) for any q ∈ B, any p ∈ B∗1 , any t ∈ [0, 1[ and any ṽ ∈ V by

(Jξ(q, p, t) | ṽ) = (Jξ(q, p, 0) | ṽ) +

∫ t

0

∫
X0

〈p(s, x0), ṽ(q(s, x0))〉Rd dHk−1(x0)ds

= (Jξ(q, p, 0) | ṽ) +

∫ t

0

∫
X0

δ
p(s,x0)
q(s,x0)(ṽ) dHk−1(x0)ds .

Consider here g : [0, 1]→ V ∗ defined for almost all t by

g(t) =

∫
X0

δ
p(t,x0)
q(t,x0) dH

k−1(x0) .

The continuity of this function depends on the spatial regularity of q and p. However,

there exists under the (HV
1 ) conditions, a constant c > 0 such that for any y1, y2 ∈ Rd

|δy2y1 (ṽ)| ≤ c|ṽ|V |y2|Rd(|y1|Rd + 1) ,

so that∫ 1

0
|g(s)|V ∗ds ≤ c

∫ 1

0

∫
X0

|p(s, x0)|Rd(|q(s, x0)|Rd + 1) dHk−1(x0)ds

≤ c
∫
X
|p(x)|Rd(|q(x)|Rd + 1) dHk(x) ≤ c|p|B∗(|q|B + 1) <∞ . (3.92)

Therefore, g ∈ L1([0, 1], V ∗) implies that t 7→ Jξ(q, p, t) = Jξ(q, p, 0) +
∫ t

0 g(s) ds is abso-

lutely continuous on [0, 1[, derivable for almost every t ∈ [0, 1] and this derivative, when

there exists, is

∂Jξ
∂t

(q, p, t) = g(t) =

∫
X0

δ
p(t,x0)
q(t,x0) dH

k−1(x0) .

Moreover, if we consider again our solution (q, p) = Ψ(q0, p0) ∈ C([0, tmax[, B×B∗1), we

saw in Section 3.2 (equation (3.43)) that with the growth dynamic this partial derivative

does not depend on qt and pt but on the initial conditions q0 and p0. We have more

precisely at almost any time t ∈ [0, tmax[ and for any ṽ ∈ V(
∂Jξ
∂t

(qt, pt, t)

∣∣∣∣ ṽ) =

∫
X0

〈pt(t, x0), ṽ(qt(t, x0))〉Rd dHk−1(x0)

=

∫
X0

〈p0(t, x0), ṽ(q0(t, x0))〉Rd dHk−1(x0)

=

(
∂Jξ
∂t

(q0, p0, t)

∣∣∣∣ ṽ) .
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We get then the final equation by (3.92). Note that we could prove this result with the

coarea formula when X is a general submanifold and τ satisfies some simple regularity

conditions (smooth and dτ(x) 6= 0) .

Proposition 5.9 (Control on the Hamiltonian 1). Let ε ∈]0, tmax[.

1. The function t→ Hr(qt, pt, t) is absolutely continuous on [ε, tmax[.

2. There exists M > 0 such that for almost every time t ∈ [ε, tmax[,∣∣∣∣ ddt ln
(
1 +MHr(qt, pt, t)

)∣∣∣∣ ≤M2

(∣∣∣∣∂Jξ∂t (qt, pt, t)

∣∣∣∣
V ∗

+ 1

)
.

Proof. We have Hr(qt, pt, t) = 1
2〈KV Jξ(q, p, t), `−1

t KV Jξ(q, p, t)〉V . Moreover, since t → `

is C1 on [0, 1] and `t invertible for t > 0, we deduce that t→ `−1
t is C1 on ]0, 1[. Using the

fact that t→ J (qt, pt, t) is absolutely continuous on ]0, tmax[ we deduce the first point.

Then with the previous lemma, since α is non decreasing and α(ε) > 0 there exists

M > 0 such that a.e.∣∣∣∣dHr

dt
(qt, pt, t)

∣∣∣∣ ≤M |Jξ(qt, pt, t)|V ∗ ∣∣∣∣∂Jξ∂t (qt, pt, t)

∣∣∣∣
V ∗

+M |Jξ(qt, pt, t)|2V ∗

≤M
(
1 + |Jξ(qt, pt, t)|2V ∗

)(∣∣∣∣∂Jξ∂t (qt, pt, t)

∣∣∣∣
V ∗

+ 1

)
≤M (1 +MHr(qt, pt, t))

(∣∣∣∣∂Jξ∂t (qt, pt, t)

∣∣∣∣
V ∗

+ 1

)
.

Hence,∣∣∣∣ ddt ln
(
1 +MHr(qt, pt, t)

)∣∣∣∣ ≤ M
∣∣dHr
dt (qt, pt, t)

∣∣
1 +MHr(qt, pt, t)

≤M2

(∣∣∣∣∂Jξ∂t (qt, pt, t)

∣∣∣∣
V ∗

+ 1

)
.

Proposition 5.10 (Control on the Hamiltonian 2). For any ε ∈]0, tmax[, there exists an

increasing function ϕH : R+ → R+ such that for any t ∈ [ε, tmax[,

Hr(qt, pt, t) ≤
1

2
ϕH(|qε|B + |pε|B∗) +

1

2
ϕH(|q0|B + |p0|B∗)

and ϕH does not depend on (q, p).

Proof. We saw with the two previous propositions that the function [ε, tmax[3 t 7→ ln
(
1 +

MHr(qt, pt, t)
)
− ln

(
1 + MHr(qε, pε, ε)

)
is bounded by c1|p0|B∗(|q0|B + 1) + c2, where c1

and c2 are two positive constants independent of t, q and p. Therefore, there exists an

increasing function ϕH1 : R+ → R+ such that for any t ∈ [ε, tmax[,

Hr(qt, pt, t) ≤ Hr(qε, pε, ε) + ϕH1 (|q0|B + |p0|B∗) .

Likewise, we have for an M > 0 sufficiently large (but independent of qε and pε) that

Hr(qε, pε, ε) = C(v∗ε , ε) ≤ |`ε|op|v∗ε |2V ≤M |Jξ(qε, pε, ε)|V ∗ ≤ cM |pε|B∗(|qε|B + 1) ,
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so that there exists therefore another increasing function ϕH2 : R+ → R+ such that

Hr(qε, pε, ε) ≤ ϕH2 (|qε|B + |pε|B∗). We get then the conclusion with ϕH = 2(ϕH1 +ϕH2 ).

We just prove that the reduced Hamiltonian system does not explode in finite time.

The last step is to deduce that (q, p) is also bounded on [0, tmax[ and leads to the next

theorems where all the assumptions are recalled.

Theorem 5.2 (Global Solutions of the Reduced Hamiltonian System : Horn Case).

Assume the (HV
1 ) conditions. Consider the adapted norm setup. Assume that ` ∈

C1([0, 1],L(V )) and that there exist M > 0 and s ∈ [0, 2[ two constants such that for any

t ∈]0, 1]

|`−1
t |op ≤

M

ts
. (3.93)

Consider the Banach spaces

B = L∞µ (X,Rd) ,
B0 = {q ∈ B | ∃y ∈ Rd, q(0, ·) = y Hk−1-a.e. on X0} ,

B̃∗1 = { p ∈ L∞µ (X,Rd) | p(x) = 0 Hk−1-a.e. on ∂X } and B∗1 = L∞µ (X,Rd) .

Then for any initial condition (q0, p0) ∈ B0 × B̃∗1 , the reduced Hamiltonian system associ-

ated to the growth dynamic

ξ(q,t)(v) = 11τ≤tv ◦ q

admits a unique solution (q, p) ∈ C([0, 1], B0 × B̃∗1).

Proof. Let us show that our local solution (q, p) defined on [0, tmax[ is bounded. The

lemma gives us for any ε ∈]0, 1] a constant M > 0 such that for any t ∈ [ε, tmax[

|v∗(qt, pt, t)|2V ≤MHr(qt, pt, t)

and we have from the previous proposition

Hr(qt, pt, t) ≤
1

2
ϕH(|qε|B + |pε|B∗) +

1

2
ϕH(|q0|B + |p0|B∗) .

It follows that

|v∗(qt, pt, t)|V ≤M
1
2

(
1

2
ϕH(|qε|B + |pε|B∗) +

1

2
ϕH(|q0|B + |p0|B∗)

) 1
2

. (3.94)

Now, since (Hξ
B0,B1

) is satisfied, the properties (P1) and (P3) of Lemma 5.1 are true.

If we apply the Grönwall’s lemma and using (P1), we deduce that there exists c > 0 such
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that for any t ≥ ε

|qt|B0 ≤ |qt|B0 + 1 ≤ (|qε|B0 + 1) +

∫ t

ε

∣∣ξ(qs,s)(v
∗
s)
∣∣
B0

ds

≤ (|qε|B0 + 1) +

∫ t

ε
c|v∗s |V (|qs|B0 + 1) ds

≤ (|qε|B0 + 1) exp(c

∫ tmax

ε
|v∗s |V ds) ,

Equation (3.94) shows that
∫ tmax

ε |v∗s |V ds is bounded and m = supt∈[ε,tmax[ |qt|B0 is thus

also bounded. Likewise, using (P3), we have

|pt|B∗1 ≤ |pε|B∗1 +

∫ t

ε
|∂qξs(qs)(v∗s)|L(B1) |ps|B∗1 ds

≤ |pε|B∗1 +

∫ t

ε
c|v∗s |V |ps|B∗1 (|qs|B0 + 1) ds

≤ |pε|B∗1 exp(c(m+ 1)

∫ tmax

ε
|v∗s |V ds) .

We deduce that the solution is bounded (since it is continuous on [0, ε]) and could thus

be extended. Since we assume that the solution was maximal, this is a contradiction that

proves the theorem.

Remark 5.4. We explained that in the case of a horn, we are interested into cost functions

such that `t tends to 0 when t tends to 0+. Note however that this theorem obviously

includes the simplest case where |`−1
t |op is uniformly bounded on [0, 1].

Theorem 5.3 (Global Solutions of the Reduced Hamiltonian System : Tube Case). As-

sume the (HV
1 ) conditions. Consider the nondegenerate adapted norm setup and

assume that ` ∈ C1([0, 1],L(V )). Consider the Banach spaces

B0 = B = L∞µ (X,Rd)
B∗1 = L∞µ (X,Rd) .

Then for any initial condition (q0, p0) ∈ B0 ×B∗1 , the reduced Hamiltonian system associ-

ated to the growth dynamic

ξ(q,t)(v) = 11τ≤tv ◦ q

admits a unique solution (q, p) ∈ C([0, 1], B0 ×B∗1).

Moreover, there exists an increasing function ϕY : R+ → R+ such that for any

(q0, p0) ∈ B0 ×B∗1 and any t ∈ [0, 1], we have

|qt|B0 + |pt|B∗1 ≤ ϕ
Y (|q0|B0 + |p0|B∗1 ) .

Proof. The proof is essentially the one of the previous theorem. All the properties satisfied

for any ε > 0 are now true for ε = 0 and this ensures the existence of the solution on [0, 1].

Replacing ε by 0 also leads to the existence of ϕY . We have indeed with the previous
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notation

|v∗(qt, pt, t)|V ≤M
1
2
(
ϕH(|q0|B + |p0|B∗)

) 1
2 .

Since | · |B = | · |B0 and B∗1 ↪→ B∗, we can rewrite

|v∗(qt, pt, t)|V ≤ ψ(|q0|B0 + |p0|B∗1 ) ,

where ψ : R+ → R+ is an increasing function.

Finally, we have m = supt∈[0,1] |qt|B0 ≤ (|q0|B0 + 1) exp(cψ(|q0|B0 + |p0|B∗1 )) and then

supt∈[0,1] |pt|B∗1 ≤ |p0|B∗ exp(cmψ(|q0|B0 + |p0|B∗1 )).

Discrete coordinate space

In this section, assume that X is a finite set of k points with a mesh. Denote

{t0, t1, . . . , tn} with 0 = t0 ≤ t1 ≤ . . . ≤ tn = 1 the image of the temporal marker

τ : X → [0, 1]. Consider B = Rk×d = B∗ and the nondegenerate adapted norm

setup (see Section 3.4). Let us recall that t 7→ `−1
t is thus defined at any time and

uniformly bounded. Assume additionally that ` is of class C1 on each interval [ti, ti+1[.

Lemma 5.3. There exists M > 0 such that for any (q, p, t) ∈ B × B∗ × [0, 1] and any

v ∈ V

1. Hr(q, p, t) ≥ 0 ,

2. |Jξ(q, p, t)|2V ∗ ≤MHr(q, p, t) ,

3. |v∗(q, p, t)|V ≤M |Jξ(q, p, t)|V ∗ .

Proof. The proof is essentially the one of the lemma 5.2 but here t 7→ `−1
t is uniformly

bounded.

Proposition 5.11. For any (q, p) ∈ B × B∗, the function t 7→ Hr(q, p, t) is piecewise

continuous and derivable on any interval [ti, ti+1[. There exists an increasing function

ϕ : R+ → R+ such that for any i ∈ J0, n − 1K, if (q, p) ∈ C([ti, tmax[, B × B∗) is a local

solution of the reduced Hamiltonian system with an initial condition given at time ti, then

for any t ∈ [ti, tmax[⊂ [ti, ti+1[,

Hr(qt, pt, t) ≤ ϕ(Hr(qti , pti , ti)) .

Proof. We have for any (q, p, t) ∈ B ×B∗ × [0, 1] (see Example 3.2)

Hr(q, p, t) =
1

2
(J (q, p, t) | v∗(q, p, t)) =

1

2
(J (q, p, t) | `−1

t KV J (q, p, t)) .

We saw in Section 3.1 (Remark 3.2) that the momentum map is constant with respect to

time with on each interval [ti, ti+1[. The reduced Hamiltonian evaluated on a solution is

continuous and derivable with respect to time on any interval [ti, ti+1[. We have explicitly

(see Example 3.2)

dHr

dt
(qt, pt, t) = −∂C

∂t
(v∗t , t) = −〈v∗t , ˙̀

tv
∗
t 〉V .
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Therefore, with the previous lemma and since t 7→ ˙̀
t is uniformly bounded on any interval

[ti, ti+1[, there exist M1,M2,M3 > 0 such that for any i ∈ J0, n− 1K and any t ∈ [ti, ti+1[∣∣∣∣dHr

dt
(qt, pt, t)

∣∣∣∣ ≤M1|v∗t |2V ≤M2|Jξ(qt, pt, t)|2V ∗ ≤M3Hr(qt, pt, t) .

Finally, we deduce that
∣∣ d
dt ln(1 +Hr(qt, pt, t))

∣∣ ≤ M3 and that there exists an increasing

function ϕ : R+ → R+ such that for any i ∈ J0, n − 1K, for any solution (q, p) defined on

[ti, tmax[ and any t ∈ [ti, tmax[

Hr(qt, pt, t) ≤ ϕ(Hr(qti , pti , ti)) .

Theorem 5.4 (Global Solutions of the Reduced Hamiltonian System : Discrete Case).

Assume the (HV
1 ) conditions. Assume that X is a finite set of k points with a mesh.

Denote {t0, t1, . . . , tn} with 0 = t0 ≤ t1 ≤ . . . ≤ tn = 1 the image of the temporal marker

τ : X → [0, 1]. Consider B = (Rd)k = Rk×d and the nondegenerate adapted norm

setup. Assume that ` is of class C1 on each interval [ti, ti+1[.

Then for any initial condition (q0, p0) ∈ B ×B, the reduced Hamiltonian system asso-

ciated to the growth dynamic

ξ(q,t)(v) = 11τ≤tv ◦ q

admits a unique solution (q, p) ∈ C([0, 1], B ×B).

Moreover, there exists an increasing function ϕY : R+ → R+ such that

|q|∞ + |p|∞ ≤ ϕY (|q0|B + |p0|B)

and ϕY does not depend on (q, p).

Proof. The previous proposition says that given a local solution defined on an interval

[ti, tmax[⊂ [ti, ti+1[, the reduced Hamiltonian t 7→ Hr(qt, pt, t) admits an upper bound on

[ti, tmax[ that depends only on Hr(qti , pti , ti). We can show as before with the Grönwall’s

lemma (see the proof of Theorem 5.2 and 5.3) that t 7→ (qt, pt) admits also an upper bound

on [ti, tmax[ that depends only on (qti , pti) and can thus be extended to the whole interval

[ti, ti+1]. For any initial condition (q0, p0), there exists thus by induction a global solution

defined on [0, 1].

Now consider the function ϕ of the previous proposition. Under the (HV
1 ) conditions,

it exits c > 0 such that we have at any point of discontinuity of the reduced Hamiltonian
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system

Hr(qti+1 , pti+1 , ti+1) = Hr(qti+1 , pti+1 , t
−
i+1) +

∑
τ(x)=ti+1

〈pti+1(x), v∗i+1(qti+1(x))〉Rd

= Hr(qti+1 , pti+1 , t
−
i+1) +

∑
τ(x)=ti+1

〈p0(x), v∗i+1(q0(x))〉Rd

≤ ϕ(Hr(qti , pti , ti)) +
∑

τ(x)=ti+1

〈p0(x), v∗i+1(q0(x))〉Rd

≤ ϕ(Hr(qti , pti , ti)) + c|p0|B|v∗i+1|V (|q0|B + 1)

≤ ϕ(Hr(qti , pti , ti)) + cM
1
2 |p0|B(|q0|B + 1)Hr(qi+1, pi+1, ti+1)

1
2 .

A basic study of the variations of the real valued function g(x) = −x + a + b
√
x (with

a, b ∈ R+) allows to conclude. Indeed, g is increasing (if b > 0) then strictly decreasing on

R+. We have g(0) = a = ϕ(Hr(qti , pti , ti)) ≥ 0. There exists thus a unique point x0 such

that g(x) ≥ 0 implies that x ≤ x0. Moreover, x0 depends only on a and b and when a or

b increases, x0 increases. Hence, Hr(qi+1, pi+1, ti+1) is bounded by an increasing function

of Hr(qti , pti , ti) and |p0|B(|q0|B + 1). By induction, Hr(qi+1, pi+1, ti+1) is bounded by an

increasing function of Hr(q0, p0, 0) and |p0|B(|q0|B + 1). At last, we have Hr(q0, p0, 0) =

O(|p0|B(|q0|B + 1)). Hence, there exists an increasing function ϕH : R+ → R+ such that

for any t ∈ [0, 1],

Hr(qt, pt, t) ≤ ϕH(|q0|B + |p0|B)

and as before, we deduce from the Grönwall’s lemma the existence of another increasing

function ϕY : R+ → R+ such that for any solution (q, p) = Ψ(q0, p0)

|q|∞ + |p|∞ ≤ ϕY (|q0|B + |p0|B) .

5.5 Second order regularity of the reduced Hamiltonian system

We presented in section 2.5 the shooting method to perform a matching by an opti-

mization of the initial momentum. We defined a new energy and expressed its gradient

under some regularity assumption on the reduced Hamiltonian system that we will prove

here. We will assume to simplify that the optimal vector field is directly given by the

momentum map (it would be enough to assume that there exists M > 0 such that for any

(q, p, t) ∈ B ×B∗ × [0, 1], |v∗|V ≤M |Jξ(q, p, t)|V ∗) .

Let us recall the reduced Hamiltonian system given by the function

h : (B ×B∗)× [0, 1] −→ B ×B∗

(y, t) 7−→


∂Hr
∂p (y, t)

−∂Hr
∂q (y, t)

 ,

where a couple of variable (q, p) is now denoted y.

In this small section, we will show that ht : y 7→ h(y, t) is of class C1 and that t 7→
∂h
∂y (y, t) is integrable. The regularity of h will result of the set of conditions (Hξ

2) given by
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(Hξ
2)

∣∣∣∣∣∣∣∣∣
(i) For any t ∈ [0, 1], ξt ∈ C2(B,L(V,B)) .

(ii) There exists c > 0, such that for any (q, t) ∈ B × [0, 1],∣∣∣∂2ξ∂q2
(q, t)

∣∣∣
op
≤ c .

Proposition 5.12. If the optimal vector field is defined by v∗(q, p, t) = KV Jξ(q, p, t), then

under the (Hξ
1) and (Hξ

2) conditions, ht is of class C1. Moreover, there exists an increasing

function ϕh : R+ → R+ such that∣∣∣∣∂h∂y (y, t)

∣∣∣∣ ≤ ϕh(|y|B×B∗) ,

where |y|B×B∗ = |q|B + |p|B∗. Hence, for any continuous curve y ∈ C([0, 1], B × B∗), the

function t 7→ ∂h
∂y (yt, t) is integrable.

Proof. Let recall that Jξ(q, p, t) = ξ∗(q,t) · p and (Hξ
1) is

(Hξ
1)

∣∣∣∣∣∣∣∣∣∣∣

(i) ξt ∈ C1(B,L(V,B) for any t ∈ [0, 1] .

(ii) There exists c > 0 such that

|ξ(q, t)|L(V,B) ≤ c(|q|B + 1) and |∂qξ(q, t)|L(B,L(V,B)) ≤ c,
for any (q, t) ∈ B × [0, 1] .

Moreover, Proposition 5.4 in Section 5.2 says that

Jξ(q, p, t)| ≤ c|p|B∗(|q|B + 1) (3.95)

and ∣∣∣∣∂Jξ∂q
(q, p, t)

∣∣∣∣+

∣∣∣∣∂Jξ∂p
(q, p, t)

∣∣∣∣ ≤ c(|q|B + |p|B∗ + 1) .

If we denote h1 and h2 the two components of h, we have

h1(q, p, t) = ξ(q,t)(v
∗) and h2(q, p, t) =

(
∂qξ(q,t)(v

∗)
)∗ · p .

Hence, since Jt is of class C1, (q, p) 7→ v∗(q, p, t) is of class C1, and since ξt is of class C2,

h is of class C1 with respect to (q, p). Moreover, any term of both partial derivatives of

h with respect to q or p are bounded by strictly increasing functions of |q|B, |p|B∗ and

|v∗|V . Therefore, with the addition of equation (3.95), there exists an increasing function

ϕh : R+ → R+ such that ∣∣∣∣∂h∂y (y, t)

∣∣∣∣ ≤ ϕh(|y|B×B∗) ,

where |y|B×B∗ = |q|B + |p|B∗ . In particular, since ϕh does not depend on time, we have

for any continuous curve y ∈ C([0, 1], B × B∗) that supt

∣∣∣∂h∂y (yt, t)
∣∣∣ ≤ ϕh(|y|∞) and that

the function t 7→ ∂h
∂y (yt, t) is thus integrable on [0, 1].
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Application

We extend the conditions on V as follows

(HV
2 )

∣∣∣∣∣∣∣∣∣∣∣

(i) V ⊂ C3(Rd,Rd) .

(ii) There exists c > 0, such that for any (x, v) ∈ Rd × V , we have{
|v(x)|Rd ≤ c|v|V (|x|Rd + 1),

|dv(x)|∞ + |d2v(x)|∞ + |d3v(x)|∞ ≤ c|v|V .

Proposition 5.13. Consider B = L∞(X,Rd). If ξ is given by the growth dynamic the

(HV
2 ) conditions imply (Hξ

2).

Proof. We will show that the function

F : L∞(X,Rd)× V −→ L∞(X,Rd)
(q, v) 7−→ v ◦ q

is of class C2. Proposition 4.3 says that ∂F
∂q (q, v) · δq = (dv ◦ q) · δq and ∂F

∂v (q, v) · δv = δv ◦ q
(note that F is not C1 for L1(X,Rd)). Therefore, we have

∂2F

∂q2
(q, v) · (δq, δq′) = (d2v ◦ q) · (δq, δq′), ∂2F

∂v2
(q, v) = 0,

∂2F

∂q∂v
(q, v) · (δq, δv) =

∂2F

∂v∂q
(q, v) · (δv, δq) = (dδv ◦ q) · δq .

Indeed, under the (HV
2 ) assumption, there exists c > 0 such that∣∣∣∣∂F∂q (q + δq′, v) · δq − ∂F

∂q
(q, v) · δq − (d2v ◦ q) · (δq, δq′)

∣∣∣∣
∞

≤ |d3v|∞|δq|∞|δq′|2∞ ≤ c|v|V |δq|∞|δq′|2∞

and∣∣∣∣∂F∂v (q + δq, v) · δv − ∂F

∂q
(q, v) · δv − (dδv ◦ q) · δq

∣∣∣∣
∞
≤ |d2δv|∞|δq|2∞ ≤ c|δv|V |δq|2∞ .

It follows that there exists c > 0 such that for any (q, v) ∈ L∞(X,Rd)× V ,∣∣∣∣∂2F

∂q2
(q, v)

∣∣∣∣ ≤ c|v|V ∂2F

∂v2
(q, v) = 0

∣∣∣∣ ∂2F

∂q∂v
(q, v)

∣∣∣∣ =

∣∣∣∣ ∂2F

∂v∂q
(q, v)

∣∣∣∣ ≤ c .
These partial derivatives are all continuous. Hence, F is of class C2 and also ξt(q)(v) =

11τ≤tF (q, v).

5.6 Directional derivative of the solution with respect to its parameters

The Gâteaux-derivative of the solutions to the shooting system is the last ingredient

to give an expression of the gradient of the energy and allow an algorithm of gradient

descent on the initial momentum p0 (see Section 2.5). The proof presented here to ensure

the existence of this Gâteaux-derivative requires that the solutions y = Ψ(y0) are locally
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bounded with respect to the initial condition. We will assume to simplify that X is a

discrete set, i.e. B = (Rd)k.
As before we can define the linearized equation of the reduced Hamiltonian system

δyt = δy0 +

∫ t

0

∂h

∂y
(ys, s) · δys ds . (3.96)

Since the application t 7→
∣∣∣∂h∂y (yt, t)

∣∣∣ is integrable on [0, 1], the Corollary 4.2 (linear Cauchy-

Lipschitz) ensures the existence and the uniqueness of such functions for any δy0 ∈ B×B∗.
The same corollary also guarantees the existence and uniqueness of the covariable z defined

as introduced previously by z1 = −dA(y1) ∈ (B ×B∗)∗ and

zt = z1 −
∫ 1

t

∂C

∂y
(ys, s)−

∂h

∂y
(ys, s)

∗ · zs ds , (3.97)

where the function t 7→
∣∣∣∂C∂y (yt, t)

∣∣∣ is integrable thanks to the (HC) conditions.

Theorem 5.5. We denoted Ψ(q0, p0) the unique solution in C([0, 1], B×B∗) to the reduced

Hamiltonian system of initial conditions y0 = (q0, p0). The Gâteaux-derivative of Ψ in the

direction δy0 = (δq0, δp0) ∈ B × B∗ exists and is given by the unique solution of the

linearized equation

δyt = δy0 +

∫ t

0

∂h

∂y
(ys, s) · δys ds .

Proof. For any ε ∈ [−1, 1], denote qε0 = q0 + εδq0, pε0 = p0 + εδp0, and yε = Φ(qε0, p
ε
0). For

any ε 6= 0 and any t ∈ [0, 1], consider M ε
t =

∣∣∣yεt−ytε − δyt
∣∣∣
B×B∗

. The proof consists thus to

show that this quantity t 7→ M ε
t tends uniformly to 0 when ε tends to 0. It starts with

the following lemma.

Lemma 5.4. |yε − y|∞ = O(|ε|) .

Proof. Let us show that for ε small enough, yε is bounded independently of ε. Theorem 5.4

says that the solutions y = Ψ(y0) are locally bounded with respect to the initial condition.

More precisely, there exists an increasing function ϕY such that for any (q0, p0) ∈ B ×B∗

if (q, p) = Ψ(q0, p0) then |q|∞ + |p|∞ ≤ ϕY (|q0|B + |p0|B∗). Therefore, for any |ε| ≤ 1,

|qε|∞ + |pε|∞ ≤ ϕY (|qε0|B + |pε0|B∗)
≤ ϕY (|q0 + εδq0|B + |p0 + εδp0|B∗)
≤ ϕY (|q0|B + |δq0|B + |p0|B∗ + |δp0|B∗) .

With |y|B×B∗ = |q|B + |p|B∗ , it leads to

|yε|∞ ≤ ϕY (|y0|B×B∗ + |δy0|B×B∗) .

According to Proposition 5.12, there exists another increasing function ϕh : R+ → R+
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such that for any (y, t) ∈ (B ×B∗)× [0, 1],∣∣∣∣∂h∂y (y, t)

∣∣∣∣ ≤ ϕh(|y|B×B∗) .

For any s, r ∈ [0, 1], denote yr,εs = ys+r(y
ε
s−ys) and consider the application gs : [0, 1]→ B

defined by gs(r) = h(yr,εs , s)− h(ys, s). Then, gs(0) = 0, gs(1) = h(yεs, s)− h(ys, s) and

h(yεs, s)− h(ys, s) =

∫ 1

0
ġs(r) dr =

∫ 1

0

∂h

∂y
(yr,εs , s)(y

ε
s − ys) dr. (3.98)

We have then

|yεt − yt|B×B∗ ≤ |εδy0|B×B∗ +

∫ t

0
|h(yεs, s)− h(ys, s)|B×B∗ ds

≤ |ε||δy0|B×B∗ +

∫ t

0
sup
r∈[0,1]

∣∣∣∣∂h∂y (yr,εs , s)
∣∣∣∣
op

|yεs − ys|B×B∗ ds

≤ |ε||δy0|B×B∗ +

∫ t

0
sup
r∈[0,1]

ϕh(|yr,εs |B×B∗)|yεs − ys|B×B∗ ds

≤ |ε||δy0|B×B∗ +

∫ t

0
ϕh(2|ys|B×B∗ + |yεs|B×B∗)|yεs − ys|B×B∗ ds

≤ |ε||δy0|B×B∗ +

∫ t

0
ϕh(3ϕY (|y0|B×B∗ + |δy0|B×B∗))|yεs − ys|B×B∗ ds

≤ |ε||δy0|B×B∗ exp
(
ϕh(3ϕY (|y0|B×B∗ + |δy0|B×B∗))

)
,

where the last inequality results from the Grönwall’s lemma. Since this upper bound does

not depend on time, we have thus |yε − y|∞ = O(|ε|).

We will now use again the Grönwall’s lemma to show the uniform convergence of

M ε
t =

∣∣∣yεt−ytε − δyt
∣∣∣
B×B∗

.

M ε
t ≤

∫ t

0

∣∣∣∣h(yεs, s)− h(ys, s)

ε
− ∂h

∂y
(ys, s) · δys

∣∣∣∣
B×B∗

ds

≤
∫ t

0

∣∣∣∣∂h∂y (ys, s)

∣∣∣∣
op

M ε
s +

1

|ε|
Rεs ds ,

where Rεs is defined for any s ∈ [0, 1] by

Rεs =

∣∣∣∣h(yεs, s)− h(ys, s)−
∂h

∂y
(ys, s) · (yεs − ys)

∣∣∣∣
B×B∗

.
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In order to control Rεs, consider again yr,εs = ys + r(yεs − ys). Equation (3.98) leads to

Rεs =

∣∣∣∣∫ 1

0

(
∂h

∂y
(yr,εs , s)−

∂h

∂y
(ys, s)

)
(yεs − ys) dr

∣∣∣∣
B×B∗

≤
∫ 1

0

∣∣∣∣∂h∂y (yr,εs , s)−
∂h

∂y
(ys, s)

∣∣∣∣
op

dr|yεs − ys|B×B∗

≤ αεs|yε − y|∞ ,

where

αεs =

∫ 1

0

∣∣∣∣∂h∂y (yr,εs , s)−
∂h

∂y
(ys, s)

∣∣∣∣
op

dr .

Denote at last

Bε =
1

|ε|

∫ 1

0
Rεs ds .

The Grönwall’s lemma implies then that

M ε
t ≤ Bεexp

(∫ 1

0

∣∣∣∣∂h∂y (ys, s)

∣∣∣∣ ds) .

and we saw previously that t 7→
∣∣∣∂h∂y (ys, s)

∣∣∣ is integrable. The final step is to prove that

Bε tends to 0 when ε tends to 0.

Note that for any ε ∈ [−1, 1], s 7→ αεs is an integrable function on [0, 1]. Indeed, we

have as in the proof of lemma 5.4

αεs ≤ sup
rs∈[0,1]

∣∣∣∣∂h∂y (yrs,εs , s)

∣∣∣∣
op

+

∣∣∣∣∂h∂y (ys, s)

∣∣∣∣
op

≤ ϕh(3ϕY (|y0|B×B∗ + |δy0|B×B∗)) + ϕh(|ys|B×B∗)
≤ ϕh(3ϕY (|y0|B×B∗ + |δy0|B×B∗)) + ϕh(|y|∞)

and this bound does not depend on ε.

Moreover, the same lemma says that |yε − y|∞ = O(|ε|). There exists thus c > 0 a

constant such that for any ε ∈ [−1, 1], |y
ε−y
ε |∞ ≤ c. Hence,

Bε =
1

|ε|

∫ 1

0
Rεs ds

≤
∫ 1

0
αεs
|yε − y|∞
|ε|

ds

≤ c
∫ 1

0
αεs ds .

Finally, since ∂h
∂y is continuous, for any sequence εn → 0, s 7→ αεns tends to 0 almost every

where. The Lebesgue’s dominated convergence theorem ensures that |αεn |L1 tends to 0.

Hence, M ε converges uniformly to 0.

172



6 Conclusion

We have studied in this chapter a generative model to create growth scenarios by time-

varying vector fields as used in the classic construction of a group of diffeomorphisms. This

construction leads to effective numerical implementations thanks to the introduction of

reproducing kernel of Hilbert spaces. The model required a specific theoretical analysis

since unlike the standard approach, the infinitesimal action of the vector field depends on

time. The main issue raised by this novelty lies in the spatial regularity of the generated

mappings that represent a new scenario.

This generative model allowed us to address the problem to retrieve the continuous

evolution of a time-varying shape from its final state. It led to a new optimal control

problem where the time dependency played again an important role. We extended the

Hamiltonian approach used to describe the optimal solutions. The main consequence

was yet the lost of the conservation property of an optimal vector field. To balance this

phenomenon, we introduced new cost functions that required yet to refine the analysis

of the minimization problem. Given a time-dependent dynamic, we defined a flexible

framework to ensure the existence of the solutions to the new Hamiltonian system. In

fine, a soughtafter growth scenario is encoded in a forecast initial position and initial

momentum (q0, p0), providing the support to a statistical analysis.

Note at last that our model is able to produce a continuous path from a degener-

ated shape reduced to a point to a completely grown shape as for example a compact

submanifold of any finite dimension.

7 Appendix A: Bochner integral

7.1 Integration in Banach spaces

In this subsection, B is a Banach space over the field R, I is a compact interval of R
endowed with the Lebesgue measure denoted λ. We are interested in integrating functions

f : I → B. There is a theory of integration of such functions introduced by Bochner (see

for example [46]).

Definition 7.1. We define two sets of functions : FFV , the finite valued measurable func-

tions, called as well simple functions, and FCV , the countable valued measurable functions.

FFV :=

 g : I → B, g(t) =
k∑
j=1

bj11Ej (t), k ∈ N

 ,

FCV :=

 g : I → B, g(t) =
∞∑
j=1

bj11Ej (t)

 ,

where the bj are vectors of B and the (Ej)j∈N are pairwise disjoint measurable subsets of

I.

Definition 7.2 (Bochner measurable function). A function f : I → B is called measurable

if there exists a sequence (fn)n∈N of finite valued measurable functions, fn ∈ FFV , such

that f is the limit almost everywhere of (fn)n.
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Proposition 7.1 (cf Schwabik-Ye : Corollary 1.1.8). A function f : I → B is measurable

if and only if there exists a sequence (fn)n∈N of countable valued measurable functions,

fn ∈ FCV , such that f is the uniform limit almost everywhere of (fn)n.

Definition 7.3 (Integrability). Assume that g is a simple function given for any t ∈ I by

g(t) =
∑k

j=1 bj11Ej (t), we define the integral of g : I → B as:

∫
I
g(t) dt :=

k∑
j=1

bjλ(Ej) .

We now say that a general function f : I → B is Bochner integrable if there exists a

sequence of simple functions (fn)n∈N such that (fn) converges almost everywhere to f and

if lim
∫
I |fn(t)− f(t)|B dt = 0. In this case, we define the integral of f as:∫

I
f(t) dt := lim

n→∞

∫
I
fn(t) dt .

We let the reader look in Schwabik-Ye for more details on the Bochner theory. We will

focus on the few following results :

Theorem 7.1 (Density of continuous functions). C∞(I,B) is dense in Lp(I,B), 1 ≤ p ≤
∞.

Proof. For any function f : I → B, we will note |f |B the function I 3 t 7→ |f(x)|B. Let

be f ∈ Lp(I,B) for p < ∞ and let be ε > 0. We will successively show that f can be

approximated for the Lp-norm by a countable valued function, a finite valued function

and a finite combination of smoothed indicator functions.

— By the previous proposition, there is a countable valued measurable function h ∈
FCV

h(t) =

∞∑
j=1

bj11Ej (t)

such that |f−h|∞ is arbitrarily small over a complement of a negligeable set. Because

λ(I) <∞, it follows that |f−h|p is also arbitrary small and since |h|p ≤ |f−h|p+|f |p,
h belongs to Lp(I,B).

— Let (hn)n ∈ FFV be the partial sums of h : hn =
∑n

j=1 bj11Ej (t). Since the Ej
are disjoint, for any t ∈ I, |hn(t)|B =

∑n
j=1 |bj |B11Ej (t) and by the scalar monotone

convergence theorem, we have |hn|B → |h|B in Lp(I,R+), as n → +∞. Moreover,

we have

|h− hn|pB =

∫
I
|h(t)− hn(t)|pB dt =

∫
I
|
∑
j>n

bj11Ej (t)|
p
Bdt

=

∫
I

∑
j>n

|bj |B11Ej (t)

p

dt = ||h|B − |hn|B|pp .

Therefore |f − hn|p ≤ |f − h|p + |h− hn|p can be arbitrarily small.
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— We approximated f with hn a finite valued function, now we just have to smooth our

finite number of indicator functions 11Ej but these functions are scalar, they belong

to L1(I,R) (since λ(Ej) < λ(I) <∞) and C∞(I,R) is dense in L1(I,R).

7.2 Bochner-Lebesgue points

The Lebesgue differentiation theorem states that for almost every point, the value of

an integrable function is the limit of infinitesimal averages taken about the point. The

proof relies on the density of smooth functions in L1(R). We can now extend this result of

real analysis to the Bochner integrable functions. This section is adapted from [45]. We

will denote for any x ∈ I, r > 0, B(x, r) = [x− r, x+ r] ∩ I.

Definition 7.4. For any f ∈ L1(I,B), a point t ∈ I is called Bochner-Lebesgue point of

f if

lim
r→0

1

λ(B(x, r))

∫
B(x,r)

|f(x)− f(t)|B dt = 0 .

The mean here achieved on B(x, r) can also be done on a more general collection of

sets converging to {x}. We will for example need it on semi-intervals of the type ([x, r])r.

Proposition 7.2. Let be f ∈ L1(I,B), t ∈ I a Bochner-Lebesgue point of f and (Ar)r>0

a collection of measurable non negligible sets containing x (i.e. for any r > 0, x ∈ Ar and

λ(Ar) > 0) . If there exists c ∈ R such that for any r > 0 we have:

Ar ⊂ B(x, r) and λ(B(x, r)) ≤ cλ(Ar) ,

then

lim
r→0

1

λ(Ar)

∫
Ar

|f(x)− f(t)|B dt = 0 .

Proof. We just have to notice that for every r > 0 :

1

λ(Ar)

∫
Ar

|f(x)− f(t)|B dt ≤
c

λ(B(x, r))

∫
B(x,r)

|f(x)− f(t)|B dt .

The Hardy-Littlewood maximal operator is a significant non-linear operator used in

real analysis. We recall its definition on locally integrable functions :

Definition 7.5 (Hardy-Littlewood maximal operator). The Hardy-Littlewood maximal

operator M applied to f ∈ L1
loc(R,R) defines a function (Mf) : R → R given for any

x ∈ R by :

Mf(x) = sup
r>0

1

λ(B(x, r))

∫
B(x,r)

|f(t)|B dt .
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Proposition 7.3 (Inequality of Hardy-Littlewood). For any function f ∈ L1(R) and any

c > 0, we have

λ({Mf > c}) ≤ 3

c
|f |1 .

Theorem 7.2. If f ∈ L1(I,B), then almost every point t ∈ I is a Bochner-Lebesgue point

of f .

Proof. This proof is the same of the real case (B = Rd), only one specificity appears when

we need to approximate f by a continuous function. Consider the family of operators

(Trf)r>0 defined for any x ∈ B by

(Trf)(x) =
1

λ(B(x, r))

∫
B(x,r)

|f(x)− f(t)|B dt

and

(Tf)(x) = limr→0(Trf)(x) .

Let us show that Tf = 0 almost everywhere. Let be c > 0 and n ∈ N∗. The previous

theorem gives us g ∈ C(I,B) such that |f − g|1 ≤ 1
n . Let us note h = f − g. Since g is

continuous, Tg = 0. Then we have :

(Trh)(x) ≤ 1

λ(B(x, r))

∫
B(x,r)

|h(t)|B dt+ |h(x)|B

and

Th ≤M |h|B + |h(x)|B .

Since Trf ≤ Trg + Trh, we have Tf ≤ Tg + Th ≤ M |h|B + |h|B. Hence, {Tf > 2c} ⊂
{M |h|B > c}∪{|h|B > c}. As |h|1 ≤ 1

n , we have on one side λ({|h|B > c}) ≤ |h|1c ≤
1
nc and

on the other side we have by the inequality of Hardy-Littlewood that λ({M |h|B > c}) ≤
3|h|1
c ≤ 3

nc . In conclusion, we have :

∀c > 0, ∀n ∈ N∗, λ(Tf > 2c) ≤ 4

cn
.

So for all c > 0, λ(Tf > c) = 0 which proves that almost every point of I is a Bochner-

Lebesgue point of f .
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8 Appendix B: Regularity conditions

We summarize in the following table the regularity conditions used throughout this

chapter.

(HV
1 )

V ⊂ C2(Rd,Rd) .
∃c > 0,∀(x, v) ∈ Rd × V ,{
|v(x)|Rd ≤ c|v|V (|x|Rd + 1) ,

|dv(x)|∞ + |d2v(x)|∞ ≤ c|v|V .

(HV
2 )

V ⊂ C3(Rd,Rd) .
∃c > 0,∀(x, v) ∈ Rd × V ,{
|v(x)|Rd ≤ c|v|V (|x|Rd + 1) ,

|dv(x)|∞ + |d2v(x)|∞ + |d3v(x)|∞ ≤ c|v|V .

(HC)

C ∈ C1(V × [0, 1],R) .

∃c > 0,∀(v, t) ∈ V × [0, 1] ,

|C(v, t)|+ |∇vC(v, t)|2V ≤ c|v|2V .

(Hf
0 )

∃c > 0,∀q, q′ ∈ B, ∀v ∈ V,∀t ∈ [0, 1] ,{
|f(q, v, t)|B ≤ c|v|V (|q|B + 1) ,

|f(q, v, t)− f(q′, v, t)|B ≤ c|v|V |q − q′|B .

(Hf
1 )

∀t ∈ [0, 1], ft ∈ C1(B × V,B) .

∃c > 0,∀(q, v, t) ∈ B × V × [0, 1] ,
∣∣∣∣∂f∂q (q, v, t)

∣∣∣∣
op

≤ c |v|V ,∣∣∣∣∂f∂v (q, v, t)

∣∣∣∣
op

≤ c (|q|B + 1) .

(Hξ
1)

∀t ∈ [0, 1], ξt ∈ C1(B,L(V,B) .

∃c > 0,∀(q, t) ∈ B × [0, 1] ,

|∂qξt(q)|op ≤ c .

(Hξ
2)

∀t ∈ [0, 1], ξt ∈ C2(B,L(V,B)) .

∃c > 0,∀(q, t) ∈ B × [0, 1] ,∣∣∣∣∂2ξ

∂q2
(q, t)

∣∣∣∣
op

≤ c .

(Hξ
B0,B1

)

∀t ∈ [0, 1], ξt ∈ C1
(
B0,L(V,B1)

)
.

∃c > 0,∀q, q′ ∈ B0, ∀t ∈ [0, 1] ,{
|ξ(q,t) − ξ(q′,t)|L(V,B0) ≤ c|q − q′|B0 ,

|∂qξt(q)− ∂qξt(q′)|L(B1,L(V,B1)) ≤ c|q − q′|B0 .
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1 Introduction

We presented in the previous chapters a general framework to model the growth of a

horn by a continuous time-varying shape built on a biological coordinate system (X, τ)

where X is a compact smooth manifold and τ : X → [0, 1] the birth tag. The shape is

represented by a path of mappings (qt : X → Rd)t∈[0,1] ⊂ B in a Banach space B. The

deformation of the shape is partially modeled by a space of vector fields V on the ambient

space Rd. The birth tag τ indicates a creation process that completes the description of the

shape’s deformation. The evolution of t 7→ qt is thus given by the action of a time-varying

vector field v defined via the birth tag by

q̇t(x) = 11τ(x)≤t v(q(x)) .

This dynamic, called growth dynamic, is studied in Chapter 3. We defined a set of

admissibility conditions on V to ensure the existence of a function

Φ(v) : L2([0, 1], V )→ C([0, 1], B)

that returns, for any given initial condition q0 ∈ B, the unique solution of the integral

equation

qt = q0 +

∫ t

0
11τ≤t vs ◦ qs ds .

We investigated the reconstitution of a development via the inexact matching of an

initial condition q0 to an implicit target Star. This problem can be expressed as a mini-

mization problem on an energy of the type

E(v) =

∫ 1

0
C(vt, t) dt+A(v) , (4.1)

where v belongs to L2([0, 1], V ), the initial mapping q0 ∈ B is fixed and q = Φ(q0, v) ∈
C([0, 1], B). Moreover, C : V × [0, 1] → R and A : L2

V → R are two applications usually

called the cost function and the data attachment term. They respectively penalize the

deformation induced by v and the discrepancy between the target and the final shape

q1(X).

The model induced by the growth dynamic raises a new issue. The continuity of

the global minimizers of the energy is no longer free. Indeed, the sought-after solution

q = Φ(q0, v) depends on the complete evolution of the time-varying vector field v even at

its last state q1. Let us recall that conversely, under the classic dynamic, the final shape q1

only depends on the final diffeomorphism on the ambient space generated by v. Moreover,

the spatial regularity of q1 depends on the temporal regularity of v. The existence of

continuous solutions v∗ ∈ C([0, 1], V ) to the minimization problem is thus a crucial point.

The choice of the data attachment term plays an unexpected role in this problem studied

in the Section 2 and 4.

At last, we will see in Section 5 that the continuity of these optimal vector fields

ensures the existence of a pointwise expression of the momentum. This allows to explicit

the momentum map (as done in Chapter 3) in the general situation where X is a compact
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manifold.

2 Discontinuity for varifold data term

This section highlights a counterexample to the existence of continuous minimizers of

the energy when the attachment term is build on a space of varifolds. We present a first

counterexample in a 2D case that will then be adapted to a 3D case.

2.1 Setting of the counterexample

We aim for a particularly simple situation to produce a counterexample. The shape

is a horn modeled by a curve in R2. The coordinate space should be defined by X =

[0, 1] × {−1, 1} and the birth tag τ by the projection on the first coordinate. However,

to simplify the notation, the curve will be parameterized by the interval I = [−1, 1]

and the birth tag will be defined for any r ∈ I by τ(r)
.
= |r|. The initial condition is

given by q0(r) = (r, 0). The horn is thus initially flattened on the horizontal segment

[−1, 1] × {0} ⊂ R2. This means that as for the 3D case, all the creation occurs at the

base of the horn. The tip of the horn is thus modeled by the point 0 ∈ I and appears at

the origin of R2. The horn grows from the center and extends progressively towards the

boundaries {−1} and {1} of its base. The deformations are reduced to vertical translations

and the space of vector fields V is canonically identified to R. For any v ∈ L2([0, 1],R),

the growth dynamic is given by

q̇t(r) = (0, v(t))1|r|≤t

and qt(r) = (r,1|r|≤t
∫ t
|r| v(s)ds). The shape at its final age t = 1 is given by q1(r) = γv(r)

where γv : [−1, 1]→ R2 is defined by

γv(r) = (r,

∫ 1

|r|
v(s)ds) . (4.2)

Note that the curve γv is symmetric about the vertical axis {0} × R.

The underlying problem of calculus of variations is provided by a penalization term∫ 1
0 v

2(s)ds and a data attachment term modeled on varifolds that we will now introduce.

As presented by Charon and Trouvé [15], and recalled in Chapter 1, the curves are modeled

by the dual of a reproducing kernel Hilbert space (RKHS) W on C0(R2×G1(R2),R) where

G1(R2) is the Grassmanniann of all lines through the origin of R2. W ′ represents then a

space of varifolds. In all generality, a varifold µ ∈ W ′ evaluated on a function ω ∈ W is

given by

µ(ω) =

∫
R2×G1(R2)

ω(x, V )dµ(x, V ) , (4.3)

where for any Borel subset A ⊂ R2 × G1(R2), µ(A) = H2({y ∈ R2 | (y, V ) ∈ A}). For

any v ∈ L2([0, 1],R), the varifold associated to the curve γv is denoted µv ∈ W ′ and it is
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defined for any ω ∈W by

µv(ω) =

∫ 1

−1
ω(γv(r), Trγv)|γ̇v(r)|dr , (4.4)

where Trγv is the line of G1(R2) generated by the vector γ̇v(r) = (1,−v(r)) (defined a.e.).

With the symmetry of the curve, this expression can be rewritten

µv(ω) =
1∑
i=0

∫ 1

0
ω(Si(γv(r)), S

i(Trγv))
√

1 + v2(r)dr , (4.5)

where S1 = S is the symmetry with respect to the vertical axis through origin and S0 = Id.

The kernel of the RKHS W is denoted kW and given by the tensor product kE ⊗ kT
of a kernel kE(x, y) on the ambient space R2 and a kernel kT (u, v) on the Grassmannian

G1(R2). We will assume that the target horn is also given by a parametric function

γvtar : [−1, 1] → R2 produced by a “vector field” vtar ∈ L2([0, 1],R). The comparison of

the two curves γv and γvtar is then achieved by the estimation of the distance between µv
and µvtar in W ′, this is to say with the norm |µv − µvtar |W ′ .

Finally, the problem consists in minimizing the energy given by the sum of the penal-

ization term on v and this data attachment term

EλW (v)
.
=

1

2

∫ 1

0
v(r)2dr +

λ

2
|µv − µvtar |2W ′ . (4.6)

Our aim is to know if the regularization L2 on v and the data attachment term on

varifolds ensure the continuity of global minimizers of EλW . We will prove the following

theorem:

Theorem 2.1. There exist vtar ∈ L2([0, 1],R), λ > 0 and W such that no global minizer

v∗ of EλW given by (4.6) is a continuous function on [0, 1]. Moreover, one can assume that

vtar ∈ C∞([0, 1],R).

Remark 2.1 (RKHS properties). Denote ω = KW (µv − µvtar), where KW : W ′ → W is

the canonical isomophism of Hilbert spaces. By construction of a RKHS, ω is given at any

(x, V ) ∈ R2 ×G1(R2) by

ω(x, V ) =

∫
R2×G1(R2)

kW
(
(x, V ), (y, V ′)

)
d(µv − µvtar)(y, V ′) . (4.7)

Let us recall then that |µv − µvtar |2W ′ = (µv − µvtar)(ω) and

∂

∂v

1

2
|µv − µvtar |2W ′ =

(
∂

∂v
µv

)
(ω) . (4.8)

2.2 Proof of theorem 2.1

We will consider a perturbation parameterized by ε ≥ 0 of a degenerate constant

kernel kW ≡ 1. The solutions of the optimization problem associated to this kernel will

be especially easy to explicit.
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Definition 2.1. We fix kT ≡ 1 and kE is given by a set of kernels kε(x, y) = ρ(ε|x−y|2R2)

where ρ is a positive function such that ρ(0) = 1, ρ̇ is bounded on R and ρ̇(0) < 0. They

generate a set of kernels kε ⊗ kT that do not see the tangential directions. Each kernel

kε⊗ kT for ε ≥ 0 produces a RKHS denoted Wε. The test functions do thus not depend on

the Grassmanniann component. We will write ω(x) instead of ω(x, V ) and dµ(x) instead

of dµ(x, V ). Since Wε depends on ε, the energy will be denoted Eλ(ε, v) to refer to EλWε
(v).

This construction could probably be extended to a symmetric situation with a pertur-

bation k′ε′ of kT . Note yet that it would require to investigate the spatial regularity of the

curve γv. Hence, we will only consider kT ≡ 1.

The first step is to study the problem with the degenerate kernel. When ε = 0, the

kernel kW0 = k0⊗kT is constant and W0 is a 1-dimensional space whose elements ω are all

constant. In this case, the expression of the data attachment term is particularly simple:

|µv − µvtar |2W ′0 =

∫∫
R2×R2

k0(x, y)d(µv − µvtar)(x)d(µv − µvtar)(y)

=

(∫
R2

1d(µv − µvtar)(x)

)2

=

(∫ 1

−1
|γ̇v(t)| − |γ̇vtar(t)|dt

)2

= (`(v)− `(vtar))2 ,

where `(v) measures the length of the curve generated by v

`(v) = 2

∫ 1

0

√
1 + v2(t)dt . (4.9)

Finally, the energy in this case is given by

Eλ(0, v) =
1

2

∫ 1

0
v(t)2dt+

λ

2
(`(v)− `(vtar))2 . (4.10)

The global minimizers have then an explicit expression given by the following propo-

sition.

Proposition 2.1. Assume that `0 = 4λ`(vtar)
4λ+1 > 2. Then v∗ ∈ L2([0, 1],R) is a global

minimizer of Eλ(0, ·) if and only if we have at almost all time v∗(t)2 = `20/4 − 1. In

particular, if v∗ ∈ C([0, 1],R) then v∗ is constant.

Proof. We have the next elementary lemma:

Lemma 2.1. If `0 = 4λ`(vtar)
4λ+1 > 2, then `0 minimizes

P (`)
.
=
`2/4− 1

2
+
λ

2
(`(vtar)− `)2

on R. Moreover, if v ∈ L2([0, 1],R) satisfies v(t)2 = `2/4 − 1 a.e. where ` ∈ R, then

Eλ(0, v) = P (`).
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Define for ` ≥ 2, the function ρ` : R→ R by

ρ`(z)
.
=
z2

2
− `

2

√
z2 + 1.

This function is even, tends to +∞ when |z| tends to +∞ and ρ̇`(z) = 0⇔ z− `
2

z√
z2+1

=

0⇔ (z = 0 or z2 = `2

4 − 1). Therefore, ρ` admits two minimizers that satisfy{
z2 = `2/4− 1 > 0

ρ`(z) = −(`2/4 + 1)/2
.

It results that the minimum of

R`(v)
.
=

∫ 1

0
ρ`(v(t))dt

is reached at v∗ ∈ L2([0, 1],R) if and only if v∗(t)2 = `2/4− 1 a.e.

By construction, these minimizers are exactly the solutions of the constrained opti-

mization problem ∣∣∣∣∣ minL2

∫
v(t)2dt

with `(v) = `
.

Indeed, `(v∗) = 2
∫ 1

0

√
v∗(t)2 + 1dt = ` and if there exists another v ∈ L2([0, 1],R) such

that `(v) = ` and
∫ 1

0 v(t)2dt <
∫ 1

0 v
∗(t)2dt then R`(v) < R`(v

∗) which is absurd.

Consequently, any minimizer v∗ ∈ L2([0, 1],R) of Eλ(0, ·) satisfies v∗(t)2 = `20/4 − 1

a.e. where `0 = `(v∗) is defined on [2,+∞[ and must minimize ` 7→ Eλ(0, v∗) = `2/4−1
2 +

λ
2 (`(vtar) − `)2, i.e. `0 = 4λ`(vtar)

1+4λ > 2. Moreover, there exist exactly two continuous

minimizers in L2([0, 1],R) ∩ C([0, 1],R) given by v+ ≡
√
`20/4− 1 and v− = −v+.

Figure 4.1 – On the left. Solutions generated by the continuous minimizers v+ and v−.
Each color is associated to a length `0. The dot line is the image of the initial position,
i.e. the base of the horn. On the right. Solutions generated by a set of discontinuous
minimizers v∗ at fixed `0 (and v+ on the top).

Remark 2.2. Note that with the degenerate kernel kW ≡ 1, the energy has continuous

global minimizers. However, they are only two of an infinite number of solutions. Fig-

ure 4.1 illustrates on its left the two curves generated by v+ and v− for four given lengths

`0. Figure 4.1 illustrates on its right few examples where `0 is fixed. The condition to be

a minimizer leads to a large set of different type of curves. Assume now that the target is
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some kind of sinusoidal curve. One can then easily see that from a spatial point of view,

the two curves γv+ and γv− are probably the less optimal solutions among the complete

set of solutions γv∗. Hence, as soon as the kernel kW is perturbed and allowed to capture

some spatial position of the target, one can expect that the new energies associated to v+

and v− are higher than the energy of at least one other solution v∗.

Hypothesis: There exists v∗, such that for any ε > 0 small enough,

Eλ(ε, v+) > Eλ(ε, v∗) and Eλ(ε, v−) > Eλ(ε, v∗) .

The next step to prove the theorem is to investigate the minimizers of v 7→ Eλ(ε, v)

where ε > 0. The following proposition will establish that if some of these minimizers are

continuous, they necessary lie in a neighborhood of v+ or v− (the two continuous global

minimizers of Eλ(0, v)). Analyzing the variations of ε → Eλ(ε, v) will then indicate that

in some situations these minimizers cannot be global minimizers.

Proposition 2.2. Assume that `0 = 4λ`(vtar)
4λ+1 > 2. If for any ε > 0 small enough, there

exists a continuous global minimizer vε of Eλ(ε, ·), then

lim
ε→0

(
min(|vε − v+|∞, |vε − v−|∞)

)
= 0 , (4.11)

where v+ ≡
√
`20/4− 1 and v− = −v+ are the only continuous global minimizers of

Eλ(0, ·).

Proof. Denote ωv(ε, ·) = KWε(µv − µvtar). Since kW is reduced to kE , the tangential

component of the varifold µv − µvtar can be ignored and we have (see Remark 2.1)

ωv(ε, ·) =

∫
R2

kε(·, y)d(µv − µvtar)(y) .

We then symmetrize ωv as follows

ωSv (ε, x)
.
=

1∑
i=0

ωv(ε, S
i(x)) =

1∑
i=0

∫
R2

ρ(ε|Si(x)− y|2)d(µv − µvtar)(y) ,

where S is the reflection across the vertical axis so that

µv(KWε(µv − µvtar)) =

∫ 1

0
ωSv (ε, γv(r))

√
v(r)2 + 1dr .

Note that for any v ∈ L2

lim
ε→0

ωSv (ε, ·) ≡ 2(`(v)− `(vtar)) . (4.12)

One can easily prove that v 7→ Eλ(ε, v) is differentiable with respect to v and we have for
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any δv ∈ L2

(
∂Eλ

∂v
(ε, v)

∣∣ δv) =

∫ 1

0
v(t)δv(t)dt+ λ

(
∂

∂v
µv
∣∣ δv) (KWε(µv − µvtar))(

∂Eλ

∂v
(ε, v)

∣∣ δv) =

∫ 1

0
v(t)δv(t)dt

+ λ

∫ 1

0

((
∂2ω

S
v (ε, γv(t))

∣∣ (0, ∫ 1

t
δv(s)ds

))√
v2(t) + 1 + ωSv (ε, γv(t))

v(t)δv√
v2(t) + 1

)
dt ,

where ∂2ω
S
v (ε, x) is the derivative of ωSv with respect to x. Denote

αε,v(s)
.
=

∫ s

0

(
∂2ω

S
v (ε, γv(t))

∣∣ (0, 1)
)√

v2(t) + 1dt ,

so that
∂Eλ

∂v
(ε, v) =

(
1 + λ

ωSv (ε, γv)√
v2 + 1

)
v + αε,v .

Note then that |αε,v|∞ = O(ε). Indeed,

∂2ω
S
v (ε, x) = ε

1∑
i=0

Si
(∫ 1

0
2(Si(x)− y)ρ′(ε|Si(x)− y|2)d(µv − µvtar)(y)

)

and since ρ′ is bounded on R we deduce that for any bounded neighborhood of (0, 0) in

R+ × L2([0, 1],R), we have |∂2ω
S
v (ε, γv)|∞ = O(ε) and

|αε,v|∞ = O(ε) . (4.13)

Assume now that for any ε > 0, there exists a continuous solution vε that minimizes

Eλ(ε, ·). It must thus satisfy(
1 + λ

ωvε(ε, γvε)√
v2
ε + 1

)
vε + λαε,vε = 0 a.e. (4.14)

Hence, for ε small enough, equations (4.14) and (4.13) imply that there exist M > 0 and

βε ≥ 0 such that at almost any time t ∈ [0, 1] we have either

|(
√
v2
ε (t) + 1− βε| ≤Mε1/2

√
v2
ε (t) + 1 or |vε(t)| ≤Mε1/2 . (4.15)

According to equation (4.12), we have more precisely βε = 2λ(`(vtar)− `(vε)) + o(1).

To go further let us first show that the length of the curves (γε)ε≥0 converge.

Lemma 2.2. `(vε) tends to `0 = `(v0).

Proof. We have

Eλ(0, vε) ≤ Eλ(ε, vε) + o(1) ≤ Eλ(ε, v0) + o(1) ≤ Eλ(0, v0) + o(1) . (4.16)

Left and right inequalities result from the continuity of Eλ(·, v). Since vε minimizes

Eλ(ε, ·), the central inequality is also true. Consider now `0 = 4λ`(vtar)
4λ+1 > 2 and the poly-
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nomial P (`) = 1
2(`2/4−1)+ λ

2 (`(vtar)− `)2 from Lemma 2.1. We have then `(v0) = `0 and

Eλ(0, v0) = P (`(v0)) = P (`0). Moreover, if for any ε > 0, we define δvε ≡
√
`(vε)2/4− 1,

then `(δvε) = `(vε) and Eλ(0, δvε) ≤ Eλ(0, vε) (see proof of Proposition 2.1). It results

from equation (4.16) and Lemma 2.1 that

P (`(vε)) = Eλ(0, δvε) ≤ P (`0) + o(1).

At last, since `0 minimizes P , we have

P (`0) ≤ P (`(vε)) ≤ P (`0) + o(1) .

Hence, since P is continuous and lim±∞ P = +∞, we have `(vε) = `0 + o(1) = `(v0) +

o(1).

We will now prove that the first case of equation (4.15) is the only one true. Denote for

any ε > 0, Aε
.
= {t ∈ [0, 1] | |

√
v2
ε (t) + 1−βε| ≤ O(ε1/2)

√
v2
ε (t) + 1} and `ε

.
= 2(λR(Aε)βε+

(1 − λR(Aε)) (where λR is the Lebesgue measure), then `ε = `(vε) + O(ε1/2). Lemma 2.2

implies then that `ε = `0 +o(1). Moreover, βε = 2λ(`(vtar)−`(vε))+o(1) and `(vtar)−`0 =

`0/(4λ) so that the lemma also implies that 2βε = `0 + o(1). Finally, we deduce that

λR(Aε) = 1 + o(1).

Therefore, there exists M ′ > 0 such that for almost any t ∈ [0, 1],

|vε(t)2 − (`20/4− 1)| ≤M ′ε .

Since vε is continuous and `0 > 2, it follows that vε satisfies either

|vε − v+|∞ ≤M ′ε or |vε − v−|∞ ≤M ′ε .

And finally,

lim
ε→0

(
min(|vε − v+|∞, |vε − v−|∞)

)
= 0 .

The final step to prove the theorem is to study the variations of Eλ(·, v) with respect

to ε at a global minimizer v = v∗. The aim is to show that the energy around v+ and v−

increases too fast, with respect to ε, to allow any v in their neighborhood to be a global

minimizer of Eλ(ε, ·). As announced in Remark 2.2, the idea is to compare the geometric

properties of all the minimizers of Eλ(0, ·). We will thus rewrite the gradient of this energy

via some geometric descriptors.

Definition 2.2. Denote xv the centroid of the curve γv defined by

xv
.
=

1

`(v)

∫
R2

xdµv(x) (4.17)

and V (v) the associated variance defined by

V (v)
.
=

1

`(v)

∫
R2

|x− xv|2dµv(x) . (4.18)
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Lemma 2.3. The function ε→ Eλ(ε, v) is derivable and for ε = 0, we have

∂Eλ

∂ε
(0, v) =

− λρ′(0)

((
`(vtar)− `(v)

)(
`(v)V (v)− `(vtar)V (vtar)

)
+ `(v)`(vtar)|xvtar − xv|2

)
.

Proof. The proof depends neither on the dimension of the ambient space nor the dimension

of the varifolds. Let assume that the ambient space is Rd and let us start to establish

with varifolds the algebraic formulae for the variance (V (X) = E[X2]− E[X]2). For any

v ∈ L2, we have

`(v)V (v) =

∫
Rd
|x− xv|2dµv(x)

=

∫
Rd
|x|2 + |xv|2 − 2〈x, xv〉 dµv(x)

=

∫
Rd
|x|2 dµv(x) + |xv|2 − 2xv

∫
Rd
x dµv(x)

=

∫
Rd
|x|2 dµv(x)− `(v)|xv|2 .

Then, one can easily show that ε 7→ Eλ(ε, v) is derivable and that

∂Eλ

∂ε
(0, v) =

∂

∂ε

λ

2

∣∣µv − µvtar∣∣W ′ε
∣∣∣∣
ε=0

=
∂

∂ε

λ

2

∫∫
Rd×Rd

ρ(ε|x− y|2)d(µv − µvtar)(x)d(µv − µvtar)(y)

∣∣∣∣
ε=0

=
λ

2
ρ′(0)

∫∫
Rd×Rd

|x− y|2d(µv − µvtar)(x)d(µv − µvtar)(y)

=
λ

2
ρ′(0)

∫∫
Rd×Rd

(|x|2 + |y|2 − 2〈x, y〉)d(µv − µvtar)(x)d(µv − µvtar)(y)

= λρ′(0)
( (
`(v)− `(vtar)

) ∫
Rd
|x|2d(µv − µvtar)(x)︸ ︷︷ ︸
a

−
(∫

Rd
xd(µv − µvtar)(x)

)2

︸ ︷︷ ︸
b

)
.

The terms denoted by a and b can be rewritten as follows:

a =
(
`(v)− `(vtar)

) ∫
Rd
|x|2d(µv − µvtar)(x)

=
(
`(v)− `(vtar)

)(∫
Rd
|x|2dµv(x)−

∫
Rd
|x|2dµvtar(x)

)
=
(
`(v)− `(vtar)

)(
`(v)V (v)− `(vtar)V (vtar)

)
+ `(v)2|xv|2 − `(v)`(vtar)|xv|2 + `(vtar)2|xvtar |2 − `(v)`(vtar)|xvtar |2
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and

b =
∣∣∣ ∫
Rd
xd(µv − µvtar)(x)

∣∣∣2
=
∣∣∣ ∫
Rd
xdµv(x)−

∫
Rd
xdµvtar(x)

∣∣∣2
=
∣∣`(v)xv − `(vtar)xvtar

∣∣2
= `(v)2|xv|2 + `(vtar)2|xvtar |2 − 2`(v)`(vtar)〈xv, xvtar〉 .

Then a− b is equal to

a− b =
(
`(v)− `(vtar)

)(
`(v)V (v)− `(vtar)V (vtar)

)
− `(v)`(vtar)

(
|xv|2 + |xvtar |2 − 2〈xv, xvtar〉

)
=−

(
`(vtar)− `(v)

)(
`(v)V (v)− `(vtar)V (vtar)

)
− `(v)`(vtar)

∣∣xv − xvtar∣∣2 .
We retrieve the announced formula.

We exhibit now a condition to the existence of a sequence (vεn)n ⊂ L2 such that εn → 0

and for any n ≥ 0, vεn is a continuous global minimizer of Eλ(εn, .).

Proposition 2.3. Assume that `0 = 4λ`(vtar)
4λ+1 > 2. If there exists a decreasing sequence

εn → 0 such that vεn is a continuous global minimizer of Eλ(εn, 0) then for any global

minimizer v∗ of Eλ(0, ·), we have

min

(
∂Eλ

∂ε
(0, v+),

∂Eλ

∂ε
(0, v−)

)
≤ ∂Eλ

∂ε
(0, v∗) , (4.19)

where v+ and v− are the only two continuous global minimizers of Eλ(0, ·) (they are

constant and defined by v+ ≡
√
`20/4− 1 and v− = −v+).

Proof. Denote vn = vεn . According to Proposition 2.2, either v+ or v− is an accumulation

point of (vn)n. Assume that (vn)n converges to v+ (one can extract a subsequence if

necessary) and consider v∗ a global minimizer of Eλ(0, ·). The continuity of (ε, v) 7→
∂εE

λ(ε, v) on a neighborhood of (0, v+) implies then that

Eλ(εn, v
∗) ≥ Eλ(εn, vn) = Eλ(0, vn) + εn∂εE

λ(0, vn) + o(εn)

= Eλ(0, vn) + εn∂εE
λ(0, v+) + o(εn)

≥ Eλ(0, v∗) + εn∂εE
λ(0, v+) + o(εn)

≥ Eλ(εn, v
∗)− εn∂εEλ(0, v∗) + εn∂εE

λ(0, v+) + o(εn) .

In fine, we have εn
(
∂εE

λ(0, v+)− ∂εEλ(0, v∗) + o(1)
)
≤ 0 and we deduced as wanted that

∂εE
λ(0, v+) ≤ ∂εEλ(0, v∗).

Likewise, if (vn)n converges to v−, we get that ∂εE
λ(0, v−) ≤ ∂εEλ(0, v∗).

In conclusion, one needs to find a target, a well-chosen λ and v∗ a global minimizer

of Eλ(0, ·) such that the inequality (4.19) is invalidated. It would consequently exist a

deleted neighborhood of ε = 0 (meaning a neighborhood of ε = 0 without 0) for which
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there exists no continuous global minimizer of Eλ(ε, .). The sought-after vector fields vtar

and v∗ must thus induce
∂Eλ

∂ε
(0, v∗) <

∂Eλ

∂ε
(0, vα) , (4.20)

where vα ∈ {v+, v−}. Let us recall that we chose a decreasing function ρ (which is the case

of most usual kernels used to model varifolds) so that ρ′(0) < 0. Since all optimal curves

have the same length, one can define `0 = `(v∗) = `(vα) and according to Proposition 2.3,

this inequality (4.20) is equivalent to(
`(vtar)− `0

)
V (v∗) + `(vtar)|xvtar − xv∗ |2 <

(
`(vtar)− `0

)
V (vα) + `(vtar)|xvtar − xvα |2 .

Moreover, if we can have 4λ`(vtar)
4λ+1 > 2 then `0 = 4λ`(vtar)

4λ+1 and `(vtar)− `0 = 1/(4λ+ 1). In

fine, the counterexample must satisfy

V (v∗)

4λ+ 1
+ `(vtar)|xvtar − xv∗ |2 <

V (vα)

4λ+ 1
+ `(vtar)|xvtar − xvα |2 . (4.21)

Let us construct it explicitly. Consider for example vtar(t) = a1t≤1/2 with a > 0. The

target curve cvtar is then given by t→ (t, a(1/2− t)+) and we have `(vtar) = (1+
√
a2 + 1),

xvtar =
(

0,

√
a2 + 1

1 +
√
a2 + 1

a

4

)
(4.22)

and

xvα =
(

0,
α

2

√
`2

4
− 1
)
, (4.23)

where we assume that λ is large enough so that ` = 4λ`(vtar)
4λ+1 > 2.

Figure 4.2 – The target ctar is the blue curve. The red curve is cv+ where v+ is the
positive unique global continuous minimizer of Eλ(0, v). The pink curve belongs to the
set of curves generated by the vs,∗. The three dots in the middle are the respective centroid
of the curves. One can see on this figure that x2

s −x2
vtar is strictly positive and it increases

when s tends to 0 (the pink dot tends to the red dot when s tends to 0).

It results that the optimal continuous solution is vα = v+. Let us introduce a set of

vector fields (vs,∗)s≥0 defined by

vs,∗(t) =
√
`2/4− 1(1t<1−2s + sign(t− (1− s))1t≥1−2s) .
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We have v+ = v0,∗ and for any s ≥ 0, (vs,∗)2 + 1 ≡ `2/4 so that vs,∗ is a global minimizer

of Eλ(0, ·) that is not continuous when s > 0. In order to prove inequality (4.21), we just

have to show that the derivative with respect to s of

s 7→ V (vs,∗)

4λ+ 1
+ `(vtar)|xvtar − xvs,∗ |2

is strictly negative on a neighborhood of s = 0+.

Denote xs
.
= xvs,∗ . We have

xs =
(

0,
(
s2 + (1− 2s)(1− 2s)/2

)√
`2/4− 1

)
=
(

0,
(
3s2 − 2s+

1

2

)√
`2/4− 1

)
.

One can easily show that d
ds(|xvtar − xvs,∗ |

2)|s=0 < 0. It follows that d
ds(V (vs,∗))|s=0 ≤ 0.

If we denote xs = (x1
s, x

2
s) then s 7→ x1

s is constant and dx2s
ds |s=0

< 0. At last, we need to

show that there exist a and λ such that x2
s−x2

vtar > 0. Assume then that λ is close to +∞
so that ` = `(vtar) + o(1). Then since the sign of g(a) =

√
`2/4− 1/2 −

√
a2+1

1+
√
a2+1

a/4 =

x2
s − x2

vtar + o(1) where ` = (1 +
√
a2 + 1) is strictly positive when a > 0 (see Figure 4.2),

we deduce the final result.
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Figure 4.3 – Plot of the function g

In conclusion, we showed that for any a > 0, if λ is large enough and ε > 0 small

enough, the energy Eλ(ε, .) admits no global minimizer in C([0, 1],R) ∩ L2([0, 1],R). Let

us remark additionally that this is not a consequence of the discontinuity of vtar. Indeed,

one can easily replace vtar by an approximation in C∞ with respect to the L2-norm and

deduce the same result.

Remark 2.3. Note that this counterexample could not be applied to the currents. Indeed,

the choice of the kernel kT is not open and the canceling effect of this kernel on opposite

normal vectors would reduce the length of the set of curves generated by the vs,∗ (the pink

curve displayed in Figure 4.2).

2.3 Extension to the 3D case

As in the 2D case, we attempt now to show the following theorem for surfaces in R3.

Theorem 2.2. There exist vtar ∈ L2([0, 1],R), λ > 0 and W such that EλW has no time-

continuous global minimizer.
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The main ideas of the proof remain the same. We consider as in Definition 2.1 a

similar set of RKHS Wε whose kernel is given by kε(x, y) = ρ(ε|x − y|2R3) where ρ is

positive, ρ(0) = 1 and ρ′(0) < 0. Proposition 2.4 will establish that EλW0
admits again

exactly two continuous global minimizers v+ and v− among an infinite number of global

minimizers. Proposition 2.5 will then show that the continuous solutions relative to ε > 0

lie necessary in a neighborhood of v+ or v−. At last, we will present a situation where

the continuity is a constraint too restrictive as there exist global minimizers of EλW0
more

stable with respect to ε than v+ and v−. In other words, if the energy increases more slowly

around a discontinuous minimizer v∗ than around v+ and v−, the existence of continuous

global minimizers of EλWε
for ε in a deleted neighborhood of 0 is excluded. As before,

this will require to compare the gradients of EλW0
with respect to ε at the minimizers of

v 7→ EλW0
(v). We will denote again Eλ(ε, ·) = EλWε

.

The coordinate space X is now the unit disc, equipped with the polar coordinate

system. Points at their initial position are given by q0(θ, r) = (r cos θ, r sin θ, 0). The birth

tag τ is equal to the radius τ(θ, r) = r. The growth dynamic is as before limited to vertical

translations:

v ∈ L2([0, 1],R), q̇t(θ, r) = (0, 0, vt)11τ≤t .

The energy only refers to the final state of the shape. Thus, defining γv(θ, r) = q1(θ, r),

it follows that any “vector field” v ∈ L2([0, 1],R) generates a surface described by the

parametric function

γv(θ, r) = (r cos θ, r sin θ,

∫ 1

r
vs ds) . (4.24)

Let Jγv be the Jacobian determinant of γv,

∂θγv(θ, r) = (−r sin θ, r cos θ, 0) , Jγv(θ, r) = |∂θγv(θ, r) ∧ ∂rγv(θ, r)|
∂rγv(θ, r) = (cos θ, sin θ,−vr) , Jγv(θ, r) = Jγv(r) = r

√
1 + v2

r .

The linear form µv ∈W ′ representing the horn γv is given for any ω ∈W by

µv(ω) =

∫
R3×G2(R3)

ω(x, V ) dµv(x, V ) =

∫ 2π

0

∫ 1

0
ω(γv(θ, r), Tγv(θ,r)γv)r

√
1 + v2

r drdθ ,

where Tγv(θ,r)γv is tangent plane at γv(θ, r). The energy functions to minimize, associated

to the spaces Wε, are unchanged

Eλ(ε, v) =
1

2

∫ 1

0
v2
t dt+

λ

2
|µvtar − µv|2W ′ε .

Consider now the case ε = 0. The kernel of W0 is the constant unit kernel. By analogy

with the 2D case, the area of the surface γv is denoted `(v) and we have

`(v) = |µv|2W ′0 =

∫ 2π

0

∫ 1

0
r
√

1 + v(r)2 drdθ (4.25)

= 2π

∫ 1

0
r
√

1 + v(r)2 dr . (4.26)
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Remark 2.4. Note that for any v ∈ L2([0, 1], V ), we have `(v) ≥ π. The growth process

can only expand the initial unit disc.

In the degenerate situation (for ε = 0 and kW0 ≡ 1) the energy is thus given by

Eλ(0, v) =
1

2

∫ 1

0
v(t)2 dt+

λ

2

(
`(vtar)− `(v)

)2
.

The next proposition will establish the minimizers of this energy. For this purpose,

given any constant c ≥ 1, we will say that v ∈ L2([0, 1], V ) satisfies the (Pc) property if

(Pc)

∣∣∣∣∣∣∣
for almost any time t ∈ [0, 1],

v2(t) =

{
0 if t ≤ 1

c

(ct)2 − 1 otherwise.

Proposition 2.4. For any λ ≥ 0, there exists a unique constant c0 ≥ 1 such that:

v∗ ∈ L2([0, 1],R) is a global minimizer of Eλ(0, ·) if and only if it satisfies the (Pc0)

property.

Additionally, c0 = 1 if and only if `(vtar) ≤ π + 1/(2πλ). In this last case, v∗ ≡ 0 is

the unique global minimizer of Eλ(0, ·).

Proof. The proof is similar as the one of Proposition 2.1. Introduce for c ≥ 1

ρc(z, t) =
z2

2
− ct

√
z2 + 1 ,

defined on R × [0, 1]. Given t ∈ [0, 1], the function ρc(z, t) reaches its minimum at z = 0

if t ≤ 1
c and at zc=̇±

√
(ct)2 − 1 otherwise. Thus v ∈ L2([0, 1],R) minimizes∫ 1

0
ρc(v(t), t) dt =

1

2

∫ 1

0
v(t)2 dt− c

2π
`(v)

if and only if it satisfies the (Pc) property. Now, if vc satisfies (Pc) then

`(vc) = 2π

∫ 1

0
t
√

1 + v2
c (t) dt

= 2π

(∫ 1
c

0
t dt+

∫ 1

1
c

t
√

(ct)2 dt

)

= 2π

(
1

2c2
+ c

[
t3

3

]1

1
c

)

=
2π

3
c+

π

3

1

c2
.

Denote ˆ̀ : [1,+∞[→ R the function defined by

ˆ̀(c) =
2π

3
c+

π

3

1

c2
(4.27)

and remark that ˆ̀ is a bijection from [1,+∞[ to [π,+∞[. (Pc) characterizes the minimizers

of the constrained optimization problem
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∣∣∣∣∣ minL2

∫
v2
t dt

with `(v) = ˆ̀(c)
.

Therefore, (Pc) also determines exactly the minimizers of Eλ(0, ·) when c minimizes

g(c) = Eλ(0, vc) =
1

2

∫ 1

1
c

(ct)2 − 1 dt+
λ

2
(ˆ̀(c)− `(vtar))2

=
1

2

(
c2

[
t3

3

]1

1
c

− (1− 1

c
)

)
+
λ

2

(
2π

3
c+

π

3

1

c2
− `(vtar)

)2

=
c2

6
+

1

3c
− 1

2
+
λ

2

((
2π

3
c+ π

1

c2

)2

+ `(vtar)2 − 2`(vtar)

(
2π

3
c+

π

3

1

c2

))2

=

(
1

6
+
λ

2

(
2π

3

)2
)
c2 + C +

(
1

3
+
λ

2

(
2π

3

)2
)

1

c
+
λ

2

(π
3

)2 1

c4

− λ

2

2π

3
`(vtar)

(
2c+

1

c2

)
,

where C is the constant λ
2 `(v

tar)2 − 1
2 .

Since the uniqueness of c is required, let us study the variations of this function. We have

g′(c) =

(
1

3
+ λ

(
2π

3

)2
)
c−

(
1

3
+
λ

2

(
2π

3

)2
)

1

c2
− λ

2

(
2π

3

)2 1

c5
.+ λ

2π

3
`(vtar)

(
1

c3
− 1

)
and

g′′(c) =

(
1

3
+ λ

(
2π

3

)2
)

+ 2

(
1

3
+
λ

2

(
2π

3

)2
)

1

c3
+ 5

λ

2

(
2π

3

)2 1

c6
− 3λ

2π

3
`(vtar)

1

c4
.

For c ≥ 1, g′′ = 0 is thus equivalent to h(c) = 0 where h(c) = c4g′′(c). The derivative of h

is given by

h′(c) = 4

(
1

3
+ λ

(
2π

3

)2
)
c3 + 2

(
1

3
+
λ

2

(
2π

3

)2
)
− 10

λ

2

(
2π

3

)2 1

c3

= c−3Q(c3) ,

where Q(X) = 4
(

1
3 + λ

(
2π
3

)2)
X2 + 2

(
1
3 + λ

2

(
2π
3

)2)
X − 10λ2

(
2π
3

)2
.

Therefore, since Q is strictly increasing on [1,+∞[ and Q(1) = 2, h′ > 0 and h is

strictly increasing on [1,+∞[. Moreover, `(vtar) ≥ π so there exists s ≥ 1 such that

`(vtar) = sπ. Then h(1) = 1 + 2π2λ(1− s) and h(1) < 0 is equivalent to s > 1 + 1/(2π2λ).

Under this condition, g′′ has only one zero and g′ is decreasing then increasing. Otherwise,

g′ is strictly increasing.

Finally, since g′(1) = 0, g has always only one global minimum on [1,+∞[. Addition-

ally, if `(vtar) ≤ π + 1/(2πλ), the minimizer is c0 = 1 and corresponds to the solution

v∗ ≡ 0. Otherwise, c0 > 1.
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Figure 4.4 – Plot of the norm of any optimal vector field. The (Pc) condition on this
example is defined with c = 4.5 so that `(v) ≈ 3π. The area of the surface has tripled
with respect to its initial position.

Remark 2.5. As in the 2D case, the energy associated to the degenerate kernel admits

two continuous global minimizers

v+(t)
.
= 11t> 1

c0

√
(c0t)2 − 1 and v−

.
= −v+ . (4.28)

They are again surrounded by an infinite number of discontinuous global minimizers. How-

ever, these two solutions are not constant anymore. Indeed, in the 2D case, a constant

vertical translation creates at all time the same amount of new matter measured by the

length of the curve just created above the base between two times t and t + δt. In the 3D

case, the surface created by a constant vertical translation between two times t and t+ δt

is similar to a cylinder whose radius increases with t. The penalization term on v tends

thus to accelerate the creation over time (see the new cost functions in Chapter 2 and 5).

As before, we will now follow the continuous global minimizers of v 7→ Eλ(ε, v) when

ε tends to 0 and show that they belong to a neighborhood of v+ or v−.

Proposition 2.5. Assume that λ > 0, `(vtar) > π + 1/(2πλ) and that for ε ≥ 0 small

enough, there exists a global continuous minimum vε of Eλ(ε, ·). Then

lim
ε→0

(
min(|vε − v+|∞, |vε − v−|∞)

)
= 0 (4.29)

where v+ and v− are the only continuous global minimizers of Eλ(0, ·).

Proof. We first show the convergence of the areas.

Lemma 2.4. Denote `0 = ˆ̀(c0) = `(v0), then `(vε) tends to `0.

Proof. Consider the function ˆ̀ defined by equation (4.27). Recall that ˆ̀ is a bijection

from [1,+∞[ to [π,+∞[ and as we said in Remark 2.4, that for any v ∈ L2
V , `(v) ≥ π.

Therefore, for any ε ≥ 0, there exists a unique cε ≥ 1 such that `(vε) = ˆ̀(cε). Let us show

that

Eλ(0, vε) ≤ Eλ(ε, vε) + o(1) ≤ Eλ(ε, v0) + o(1) ≤ Eλ(0, v0) + o(1) .
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Left and right inequalities result from the continuity of Eλ(·, v). Since vε minimizes

Eλ(ε, ·), the central inequality is also true. Moreover, Proposition 2.4 ensures that for

any vcε that satisfies (Pcε), we also have Eλ(0, vcε) ≤ Eλ(0, vε). We introduced in the

proof of Proposition 2.4 a function g that satisfies for any ε ≥ 0, g(cε) = Eλ(0, vcε).

Moreover, c0 is the unique minimum of g. It results that

g(c0) ≤ g(cε) ≤ g(c0) + o(1) .

Hence, g(cε) tends to g(c0) and since g is continuous and increases around +∞, cε tends

to c0. The continuity of ˆ̀ ensures at last that ˆ̀(cε) tends to ˆ̀(c0) so that `(vε) converges

as announced to `0 = ˆ̀(c0) = `(v0).

For any ε ≥ 0, vε is a zero of the gradient with respect to v of the energy

Eλ(ε, v) =
1

2

∫ 1

0
v2
t dt+

λ

2
|µv − µvtar |2W ′ε .

Consider ωv(ε, ·) = KWε(µv − µvtar) given for any x ∈ R3 by

ωv(ε, x) = KWε(µv − µvtar)(x) =

∫
R3

ρ(ε|x− y|2) d(µv − µvtar)(y) ,

so that

µv(KWε(µv − µvtar)) =

∫ 2π

0

∫ 1

0
ω(ε, γv(θ, r))r

√
1 + v2

r drdθ .

We have then for any variation δv ∈ L2([0, 1],R)(
∂vE

λ(ε, v)
∣∣ δv) =

∫ 1

0
vt δvt dt+ λ

(
∂vµv | δv

)
(KWε(µv − µvtar))

=

∫ 1

0
vt δvt dt

+λ

∫ 2π

0

∫ 1

0

(
∂2ωv(ε, γv(θ, r))

∣∣ (0, 0,∫ 1

r
δvs ds)

)
r
√

1 + v2
r + ωv(ε, γv(θ, r))

rvrδvr√
1 + v2

r

drdθ ,

with ∂2ωv(ε, x) = 2ε
∫
R3 ρ

′(ε|x− y|2)(x− y) d(µv − µvtar)(y). Denote at last

zε,v(r) =

∫ 2π

0
rωv(ε, γv(θ, r)) dθ

αε,v(s) = λ

∫ 2π

0

∫ s

0

(
∂2ωv(ε, γv(θ, r))

∣∣ (0, 0, 1)
)
r
√

1 + v2
r drdθ .

The gradient can thus be written

∇vEλ(ε, v) =

(
1 + λ

zε,v√
1 + v2

)
v + αε,v .
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We have as before limε→0 ωv(ε, ·) ≡ `(v)− `(vtar) and therefore

lim
ε→0

zε,v(t) = −2πt(`(vtar)− `(v)) .

Moreover, on any bounded neighborhood of (0, 0) of R+×L2([0, 1], V ), γv is bounded, dµv
and dµvtar are finite, so that with ρ′ bounded we have

|∂2ωv(ε, γv)|∞ = O(ε) and |αε,v|∞ = O(ε) .

Now, a continuous minimizers of Eλ(ε, ·) must satisfy(
1 + λ

zε,vε√
1 + v2

ε

)
vε + αε,vε = 0 . (4.30)

Hence, there exist for ε > 0 small enough M > 0 and βε ≥ 0 such that we have either

(i)
∣∣∣√1 + vε(t)2 − tβε

∣∣∣ ≤Mε
1
2

√
1 + vε(t)2 or (ii) |vε(t)| ≤Mε

1
2 .

More precisely, denote β0 = 2πλ(`(vtar)− `0) then Lemma 2.4 implies that βε = β0 + o(1).

Note that if β0 ≤ 0, then vε tends to 0 so that `(vε) tends to π and Lemma 2.4 implies that

`0 = π. It results that if β0 ≤ 0 then `(vtar) ≤ `0 = π. Hence, since `(vtar) > π+ 1/(2πλ),

Proposition 2.4 ensures that `0 > π so that vε does not tend to 0 and β0 > 0.

Denote as before for any ε > 0, Aε
.
= {t ∈ [0, 1] | |

√
v2
ε (t) + 1− tβε| ≤Mε

1
2

√
v2
ε (t) + 1}.

If t ∈ Aε, then

1−Mε
1
2 ≤ (1−Mε

1
2 )
√

1 + v2
ε (t) ≤ tβε ≤ βε ,

so that Aε ⊂ [1−Mε
1
2

βε
, 1]. Consequently, vε tends uniformly to 0 on [0, 1

β0
[ and since vε is

continuous, this is also true on [0, 1
β0

].

Now, if t ∈ Aε is large enough, v2
ε (t) admits a lower bound strictly positive. This will

allow us to show that if t ∈ Aε, then [t, 1] ⊂ Aε. For any t ∈ Aε

tβε ≤ (1 +Mε
1
2 )
√

1 + v2
ε . (4.31)

Consider a small α > 0 and let us show that for ε > 0 small enough, Iα =] 1
β0

(1+α), 1] ⊂ Aε.
There exists η > 0 such that for any ε < η, we have

1. for any t ∈ Iα, tβε ≥ 1 + α/2,

2. 1 +Mε
1
2 ≤ (1 + α/2)(1 + α/3)−

1
2 and Mε

1
2 ≤ α/4.

Equation (4.31) ensures then that for any ε < η, if t ∈ Iα ∩Aε, then

v2
ε (t) ≥

α

3
. (4.32)

Conversely, if t ∈ Iα ∩Acε where Acε = [0, 1] \Aε, then

v2
ε (t) ≤

α

4
. (4.33)

Since vε is continuous, either Iα ∩ Aε or Iα ∩ Acε is empty. Since `(vε) tends to `0 > π, it
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results that for α and η small enough, for any ε < η, Iα =] 1
β0

(1 + α), 1] ⊂ Aε.
Finally, vε converges uniformly to 0 on [0, 1

β0
] and

√
1 + v2

ε converges uniformly to

t 7→ β0t on [ 1
β0
, 1]. In other words, this uniform limit satisfies the (Pc) property for c = β0.

Additionally, equation (4.30) says that any minimizer of Eλ(0, ·) must also satisfy (Pc).

Proposition 2.4 ensures the uniqueness of this constant c when (Pc) characterizes the

minimizers of Eλ(0, ·). Consider then v+ and v− the two continuous global minimizers of

Eλ(0, ·). Since vε is continuous, we just prove that there exists M ′ > 0 such that for any

ε > 0

|vε − v+|∞ ≤Mε or |vε − v+|∞ ≤Mε .

As before, we will now show that if such a sequence exists, then the energy, considered

on a neighborhood of ε = 0+, must remain minimal on a neighborhood in L2 of the limit

v+ or v− of the sequence (or both if the sequence oscillates).

Proposition 2.6. If there exists a decreasing sequence εn → 0 such that vεn is a continuous

global minimizers of Eλ(εn, ·) then for any global minimizers v∗ of Eλ(0, ·), we have

min
(
∂εE

λ(0, v+), ∂εE
λ(0, v−)

)
≤ ∂εEλ(0, v∗) . (4.34)

Proof. According to Proposition 2.5, there exists a subsquence of (vεn)n which converges

either to v+ or v−. The proof of Proposition 2.3 can then be applied here.

The final step is to construct the counterexample for which inequality (4.34) does not

occur. Recall the geometric expression of ∂εE
λ given by Lemma 2.3 :

∂εE
λ(0, v) = λρ′(0)

((
`(vtar)− `(v)

)(
`(vtar)V (vtar)− `(v)V (v)

)
− `(v)`(vtar)|xvtar − xv|2

)
,

where

xv =
1

`(v)

∫
x dµv(x) V (v) =

1

`(v)

∫
|x− xv|2 dµv(x) .

Since all global minimizers of Eλ(0, ·) have the same length, denote `0 = `(v∗) = `(v+)

and since ρ′(0) < 0, a counterexample should thus lead to a couple (v∗, v+) satisfying:

V (v∗)
[
`(vtar)− `0

]
+ `(vtar)|xvtar − xv∗ |2 < V (v+)

[
`(vtar)− `0

]
+ `(vtar)|xvtar − xv+ |2 .

(4.35)

We exclude the negative continuous solution v− as it is easy to show that for a target

above the plane Z = 0, this solution will not be approached by any global minimizer

of Eλε for ε > 0. Moreover, we have explicitly V (v+) = V (v−) and if γvtar ⊂ (Z ≥ 0),

|xvtar − xv+ | < |xvtar − xv− |.

Proposition 2.7. There exists a target such that for λ large enough inequality (4.35)

occurs.

As we saw earlier, the minimization of Eλ(0, ·) admits either a unique solution (equal

to 0) or an infinite number of solutions. In this last case, there are only two continuous
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solutions. One can observe that these solutions are those which, at a fixed area, produce the

most widely deployed surface. We will show with the following example that this property

can be very restrictive. The partial derivative of Eλ with respect to ε at (0, v), where v

is a minimum, measures the stability of this minimum with respect to small variations

of ε. Intuitively, the best candidate among this infinite number of solutions, is the one

which generates the surface that is geometrically the closest to the target. The previous

expression gives an explicit description of this closeness according to the attachment term

we chose. It requires a small variance and a centroid close the target’s one. Here is then

a possible example.

The idea is to create a compact accordion. It will allow to create a surface with a large

area that yet remains close to the horizontal plane. Consider a target generated by one of

the following vector fields

vtar
n (t) = nhsn(t) , with

[0, 1]
sn−→ {−1, 1}

t 7→ 11bntc=0[2] − 11bntc=1[2] ,

with n ∈ N, h ∈]0, 1] a scale constant. Figure 4.5 displays an example for n = 21 and

h = 0.1.

Figure 4.5 – From left to right: the target, the vector field which generates it from the unit
disc with vertical translations, a radial cut of the surface (plot of the vertical component
zvtar(r)).

Let us recall that

γv(θ, r) = (r cos θ, r sin θ,

∫ 1

r
vs ds) .

Denote zv the third component of γv. It satisfies for v = vtar
n , for any r ∈ [0, 1], |zvtarn (r)| =

|
∫ 1
r v

tar
n (s) ds| ≤ h. Moreover, `(vtar

n ) = 2π
√

1 + (nh)2. Therefore, no matter the choice

of n, the target shape remains concentrated in D × [−h,+h] (where D is the unit disc).

Yet, one can fix its area as large as necessary by increasing n.

The solutions v∗ that minimize Eλ(0, ·) are characterized by the (Pc) property with a

optimal constant c to define and such that `(v∗) = ˆ̀(c) denoted again `0. One can easily
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show that if λ tends to +∞, `0 tends to `(vtar). For λ large enough, we have thus

`0 = ˆ̀(c) =
2π

3
c+

π

3c2
≈ 2π

√
1 + (nh)2 = `(vtar) .

If hn is large enough, one can do the approximation c ≈ 3hn.

Let us compare v+ and v∗n defined for any t ∈ [0, 1] by

v+(t) = 11t> 1
c

√
(ct)2 − 1 and v∗n(t) = sn(t)v+(t) ,

where n is given by the choice of the target. They both satisfy (Pc). These two vector

fields are displayed in Figure 4.7 and the surfaces that they generate are presented in

Figure 4.6. When n increases, the continuous solution grows in space when the other one

remains concentrated since |zv∗n(r)| ≤ 1
n

√
c2 − 1 ≈ 3h.

Figure 4.6 – Surfaces generated from two solutions for the matching of the surface displayed
in Figure 4.5. On the left: with the discontinuous vector field snv

+, on the right: with
the continuous vector field v+

Figure 4.7 – On the left: v∗n = snv
+, on the right: v+.

More precisely, for any surface generated by v ∈ L2, the centroid belongs to the vertical

axis through the origin. When xv+ will move upwards when n increase, we have conversely

for any n

|xvtarn | ≤ max
r
|zvtarn (r)| ≤ h and |xv∗n | ≤ max

r
|zv∗n(r)| ≤ 3h .
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Likewise, for any v ∈ L2

V (v) =
1

`(v)

∫
R3

|x− xv|2 dµv(x)

=
1

`(v)

∫
(r cos θ)2 + (r sin θ)2 + |zv(r)− xv|2 dµv(x)

=
1

`(v)

2π

3
+

1

`(v)

∫
|zv(r)− xv|2 dµv(x) .

It follows that

V (v∗n) ≤ 2π

3`0
+ (6h)2 and V (v+) =

2π

3`0
+

1

`0

∫
|zv+(r)− xv+ |2 dµv+(x) .

In fine, if nh is fixed, V (v+) and |xvtarn − xv+ |
2 are fixed and strictly positive. Yet in

the same time, if h tends to 0, V (v∗n) can be reduced to the minimal variance over the

vector fields that satisfy (Pc) and |xvtarn − xv∗n |
2 tends to 0. Therefore, the inequality

V (v∗)
[
`(vtar)− `0

]
+ `(vtar)|xvtar − xv∗ |2 < V (v+)

[
`(vtar)− `0

]
+ `(vtar)|xvtar − xv+ |2

can be satisfied.

In conclusion, note that v∗ = snv
+ might not be the best candidate to minimize

∂εE
λ(ε, ·) on a neighborhood of ε = 0, but it was easy to demonstrate that it is strictly

better than v+ for n and λ large enough. As in the 2D case, one could generate similar

surfaces with a smooth function sn. This counterexample is not built on the discontinuity

of vtar.

At last, as pointed in Remark 2.5, this 3D example highlights a property of the optimal

vector field that did not appear in the 2D case. With the growth dynamic, the norm of

the optimal vector field tends to increase over time.

3 Foliation on the biological coordinate system

The development of a time-varying shape is modeled by a mapping between the bio-

logical coordinate system (X, τ) and the ambient space Rd. In order to study the growth

dynamic in Chapter 3, we assumed that the coordinate space X has a canonical decompo-

sition in a direct product for which the birth tag τ is the projection on the first coordinate.

This setting reflects a regularity of the birth tag that plays a role in the evolution of an

optimal vector field in the registration problem.

The coordinate space X is then not a regular manifold. We have thus to investigate

the boundary of X and the profile of the birth tag τ : X → [0, 1] that will give to X a

structure of foliated manifold.

We will assume that X is a k-dimensional manifold with corners. We start with

some properties of manifolds with corners. For more details, we refer to [13, 35].
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3.1 Manifolds with corners

An orthant of Rd is a subset {(x1, . . . , xd) ∈ Rd | εixi ≥ 0 for any i ∈ {1, . . . , d}} where

εi ∈ {−1, 1}. A semi-orthant is a subset of Rd defined by specifying the signs of some of

the coordinates. The simplest examples of semi-orthant are the sets Rd−p × Rp+ where

p ∈ {0, . . . , d}.
A k-dimensional manifold with corners extends the definition of regular manifolds (in

the usual sense) to allow the shape to locally resemble a semi-orthant of Rk. At any

x0 ∈ X, there exists a chart (U,ψ)

U −→ Rk−p × Rp+
x 7→ (x1, . . . , xk−p, y1, . . . , yp) ,

(4.36)

centered at x0, i.e. ψ(x0) = (0, · · · , 0) between a open set U 3 x0 and a semi-orthant

Rk−p × Rp+ for an integer p = p(x0) ≥ 0 called the depth of x0. For a regular manifold,

p is always null. When p(x) > 0, x belongs to the boundary ∂X of X. This boundary is

a (k-1)-dimensional manifold with corners. If p takes values only in {0, 1} on X, then X

is called a manifold with boundary and ∂X is a regular manifold. See Figure 4.8 for two

examples of compact manifolds with corners. We will assume that the transition maps

are of class C∞. The depth can be seen as a function p : X → {0, . . . , k} that induces a

natural stratification of X. Given any x ∈ X, there exists a maximal (k-p(x))-dimensional

connected regular manifold that contains x, denoted Mx. These sets are the connected

components of the inverse images of p. X is the disjoint union of these sets and ∂X is the

disjoint union of all the sets of non maximal dimension.

Example 3.1. Consider x a point of the full cube. If p(x) = 0, Mx =
◦
X is the interior

of the cube. If p(x) = 1, respectively p(x) = 2, Mx is the face, respectively the edge, of

the cube that contains x. At last, if p(x) = 3, Mx = {x} is a vertex.

Figure 4.8 – Examples of manifolds with corners for k = 3. The colors of the points
correspond to the value of the depth: cyan when p = 1, blue when p = 2, red when p = 3.
The depth of any point in the interior of the shape is null. The full cube acts as the
reference since for any manifold of dimension 3, there exists a local chart to map any of
its point to a point of the cube with equal depth.

For any x ∈ X, the tangent space TxX is generated by
(

∂
∂x1

, · · · , ∂
∂xk−p

, ∂
∂y1

, · · · , ∂
∂yp

)
for the local coordinates associated to ψ, with p = p(x), and TxMx is the (k-p)-dimensional

subspace of TxX generated by
(

∂
∂x1

, · · · , ∂
∂xk−p

)
.

Example 3.2. When p(x) = 0, TxMx = TxX. Consider now the manifolds X given in

Figure 4.8. When p(x) = 1, x belongs locally to a regular surface painted in cyan and
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TxMx is the tangent plane to this surface. When p(x) = 2, x belongs locally to a regular

curve painted in blue and TxMx is the tangent line to this curve. When p(x) = 3, the

depth is maximal and dimTxMx = 0.

The tangent space at any point x of the cube is identified to R3. Yet, when x belongs to

the boundary, one might want to reduced this space to the minimal semi-orthant through

x that encompasses the cube. More precisely, when p(x) > 0, the tangent space TxX is

divided in two disjoint sets

T+
x X = TxMx ⊕

p⊕
j=1

R+
∂

∂yj
T−x X = −T+

x X \ TxMx . (4.37)

=

k−p⊕
i=1

R
∂

∂xi
⊕

p⊕
j=1

R+
∂

∂yj
, (4.38)

The vectors of the first set are called inward pointing tangent vectors. Given a vector field

u on X with values in T+X, this definition allows to follow any path in X directed by u

and be ensured that it does not end outside X (one could then extend the definition of

the exponential map for Riemannian manifolds as a map between T+
x X and X).

Proposition 3.1. Consider u a C∞ vector field on X. For any x0 ∈ X, there exist ε > 0

and a smooth curve γ : Iε → X such that γ(0) = x0 and γ̇(t) = u(γ(t)) where Iε 3 0 is an

interval defined as follows:

1. if u(x0) ∈ Tx0Mx0 and if there exists U ⊂ X a neighborhood of x0 such that for any

x ∈ U , u(x) ∈ T+
x X, then Iε =]− ε, ε[,

2. if u(x0) ∈ T+
x0X, Iε = [0, ε[,

3. if u(x0) ∈ T−x0X, Iε =]− ε, 0].

Moreover, γ locally lies in Mx0 if and only if there exists U ⊂ X a neighborhood of x0

such that for any x ∈ U ∩Mx0, u(x) ∈ TxMx0.

Proof. Denote p = p(x0). The existence of γ in a local chart (U,ψ) is a standard

Cauchy-Lipschitz problem in Rk but we need to verify the stability of the solution in

Rk−p × Rp+. Denote (x1, . . . , xk−p, y1, . . . , yk) the coordinates associated to (U,ψ). The

local image v : ψ(U) ⊂ Rk−p × Rp+ → Rk of u is given by v(x1, . . . , xk−p, y1, . . . , yk) =

(α1, . . . , αk−p, β1, . . . , βp) where α and β are given by the unique decomposition u(x) =∑k−p
i=1 αi

∂
∂xi

+
∑p

j=1 βj
∂
∂yj

. One can extend v to a C∞ vector field on Rk and deduce the

existence of a solution γ that satisfies γ̇ = v ◦ γ.

When p = 0, Tx0Mx0 = T+
x0X = Tx0X ' Rk and 1. is immediate. Otherwise, denote

V = ψ(U) ⊂ Rk−p × Rp+ and let us prove in each case that γ(Iε) ⊂ V .

1. The conditions of the first point imply that γ̇(0) = v(0) ∈ Rk−p and that we have

on U \ {0} small enough, βj ≥ 0. There exists thus ε > 0 such that γ(]− ε, ε[) ⊂ V .

2. u(x0) ∈ T+
x0X is equivalent to βj ≥ 0 and thus γ̇(0) = v(0) ∈ Rk−p × Rp+. The

integration forward is thus stable and there exists ε > 0 such that γ([0, ε[) ⊂ V .

3. Conversely, u(x0) ∈ T−x0X is equivalent to βj < 0. It follows that −γ̇(0) = −v(0) ∈
Rk−p × Rp+. The integration backward is thus stable.
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Regarding the last assertion the necessary condition is immediate. The sufficient condition

is equivalent to the case p = 0. One can consider the restriction of the chart to U∩Mx.

As we saw previously, the boundary of X is a disjoint union of regular submanifolds

of X of maximal dimension. A natural question is to know if the solutions generated by

u are stable with respect to Mx0 . For example, if x0 belongs to an edge of the cube,

one might want γ to be included in this edge. The last assertion of Proposition 3.1 gives

the condition to this stability. Note that when p(x0) = k, Mx0 is reduced to {x0} so

that any path in Mx0 is constant equal to x0. It brings conversely the question to move

from a regular submanifold to another one. When p(x) > 0, Mx is the boundary of a

larger manifold and any point x ∈ Mx can then jump into it so that its depth decreases.

One can easily show by its definition that locally the depth along a path cannot increase.

According to the proposition, as opposed to the necessary and sufficient condition for the

stability, if u(x0) ∈ T+
x0X \ Tx0Mx0 , the path γ exitsMx0 and for ε > 0 small enough, we

have for any t ∈]0, ε[, p(γ(t)) < p(x0). More precisely, with the notation of the proposition

if u(x) =
∑p

j=1 βj
∂
∂yj

where β admits exactly n non zero coordinates then u(x) is a tangent

vector pointing toward an adjacent (k-p+n)-dimensional submanifold My.

Consider for example a corner x of the cube. This corner is at the intersection of p = 3

half hyperplanes. It can locally jump into one of the

(
p

n

)
= 3 edges (n = 1),

(
p

n

)
= 3

faces (n = 2) or the interior of the cube (n = 3).

We will be especially interesting in the case n = 1. It involves then the set of tangent

vectors

(TxX)(1) =

p⋃
j=1

R∗+
∂

∂yj
. (4.39)

3.2 Regularity of the birth tag and foliation

In Chapter 3, we assumed that X could be written as a direct product space X =

[0, 1] × X0 for which the birth tag τ : X → [0, 1] would be given by the projection on

the first coordinate. When a horn is modeled as a surface, the coordinate space is fixed

to X = [0, 1] × S1. All the level sets of τ are diffeomorphic to a circle. In this example,

X0 = S1 is a regular manifold but X is a manifold with boundary. Likewise, when the

horn is full, X = [0, 1] × D1, where D1 denotes the unit disc of R2 and the level sets are

diffeomorphic to a disc. In this example X0 = D1 is a manifold with boundary and X is

a manifold with corners. The maximal depth is 2 and the respective points belong to the

boundary of X{0}
.
= τ−1({0}) = {0} × D1 and X{1}

.
= τ−1({1}). We highlight one last

interesting example that could be pertinent to study the atrophy of subcortical structures

in the brain due to degenerative diseases (see for example [56]). These shapes could be

modeled by an onion structure X = [0, 1]× S2 to analyze thickness data.

We will show, now, that this canonical decomposition of X as a direct product of

manifolds is not reductive since more general situations can be reduced to this case. We

assume that X is a k-dimensional manifold with corners and that τ is a surjective

submersion of class C∞, meaning that dτ(x) is surjective for any x ∈ X or equivalently

that τ has no critical points. We will see that, under some additional regularity conditions,
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this function induces a foliation on the manifold X. This means that it locally decomposes

X as a union of parallel submanifolds of smaller dimension. These submanifolds are called

the leaves of the foliation. For more details on foliated manifolds, see [35, 24].

We denote for any t ∈ [0, 1] the so-called leaf

X{t}
.
= τ−1({t}) , (4.40)

which is the subset of X whose points are called new points of X at time t. Since τ is

surjective, X is the disjoint union of the leaves X{t} for t ∈ [0, 1]. The sets X{t} for t ∈]0, 1[

are called inner leaves. We will call X{0} and X{1} outer leaves of X. They belong to the

boundary of X.

Lemma 3.1. (X{0} ∪X{1}) ⊂ ∂X .

Proof. If x ∈ X1 and x /∈ ∂X then there exists a chart (U,ψ) centered on x to an open

set V 3 0 of Rk. Moreover, τ ◦ ψ−1 is maximal at 0 so that x is a critical point of τ . Yet,

τ is a submersion which leads to a contradiction. Likewise, X{0} ⊂ ∂X.

Remark 3.1. The leaves X{t} are compact manifolds with corners. For any t ∈ [0, 1]

and any x ∈ X{t}, TxX{t} ⊂ ker(dτ(x)). Although τ is a submersion, the dimensions of

these leaves can vary from 0 to k − 1. Indeed, consider a chart (U,ψ) centered at x ∈ ∂X
to Rk−p × Rp+. The tangent space of a level set τ−1(x) is included in an hyperplane of

Rk. Its intersection with Rk−p × Rp+ is then a n-dimensional semi-orthant where n ∈
{k − p, . . . , k − 1}. The most degenerated situation occurs when p = k and for example

ker(d(τ ◦ ψ−1)(0)) ⊂ (1, . . . , 1)⊥. Conversely, if there exists x ∈ X{t} such that p(x) = 0,

then dimX{t} = k − 1.

For example, consider X a square or a cube that lies on a corner at the origin so that

one of its diagonal follows the vertical axis and consider τ the projection on this diagonal.

Then X{0} and X{1} are the south corner and north corner.

We will then assume that:

(Hτ )

∣∣∣∣∣∣∣
i) if x ∈ ∂X \ (X{0} ∪X{1}) then TxMx + ker(dτ(x)) = TxX ,

ii) for i = 0, 1 if x ∈ X{i} then ker(dτ(x)) = TxXi .

(4.41)

Remark 3.2. Since τ is a submersion, ker(dτ(x)) is a (k-1)-dimensional space of TxX.

The first condition of (4.41) implies that for any x ∈ X{t} where t ∈]0, 1[, if x ∈ ∂X, then

TxMx 6⊂ ker(dτ(x)) and there exists u ∈ TxMx such that dτ(x) · u 6= 0.

The (Hτ ) conditions is intended to ensure that all the leaves are diffeomorphic as it will

be proved in the next proposition. The first point of (4.41) is a transversality condition.

It implies that the intersection of an inner leaf X{t} and the boundary ∂X is a (k-2)-

dimensional submanifold with corners. The second point partially answers to the issues

raised by Remark 3.1. The ends X{0} and X{1} are (k-1)-dimensional manifolds.

We can investigate furthermore the decomposition of X in leaves with the ideas of the

Morse theory. A Morse function is a smooth function f : M → R on a compact manifold

that admits no degenerate critical points. The time marker τ , that we assumed to be a
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submersion, will play the role of the Morse function. A fundamental theorem of the Morse

theory says that

Theorem 3.1. If f is a smooth real-valued function on a manifold M such that f−1([a, b]),

with a < b, is compact, and there are no critical values between a and b. Then Ma =

f−1({a}) is diffeomorphic to Mb = f−1({b}).

We will prove a similar result in the more general case of a manifold with corners:

Proposition 3.2. Under the (Hτ ) conditions given by (4.41), there exists a submersion

π : X → X{1} of class C∞ such that for any t ∈ [0, 1], π|X{t} is a C∞ diffeomorphism

between X{t} and X{1}. Moreover, x 7→ (τ(x), π(x)) is a C∞ diffeomorphism between

X and the product manifold [0, 1] × X{1}. The image of the time marker τ on this last

manifold is the projection on the first coordinate.

Our coordinate space admits thus a canonical decomposition as a product manifold

[0, 1] × X{1} where X{1} is a compact manifold with corners. In our examples, X{1}
is mostly a regular or with boundary. According to this proposition, all the leaves are

diffeomorphic to X{1}. This means that the topology of the leaves cannot change during

the development of the shape. Such a change would induce a critical point for the time

marker.

At last, note that we will choose the first leaf as reference, meaning that we will write

X = [0, 1]×X{0} which is just a change of notation since all the leaves are diffeomorphic.

3.3 Proof of Proposition 3.2

The proof starts as in the Morse setup by providing a C∞ vector field on X that will

generate a flow similar to a gradient flow.

Lemma 3.2. There exists u a C∞ vector field on X such that for any x ∈ X, we have

1. dτ(x) · u(x) = 1,

2. (a) if x ∈ ∂X \ (X{0} ∪X{1}), then u(x) ∈ TxMx,

(b) if x ∈ Xi for i = 0, 1, then

(−1)iu(x) ∈ (TxMx)(1) .
=

p(x)⋃
j=1

(
TxMx ⊕ R+

∂

∂yj

)

where (x1, . . . , xk−p, y1, . . . , yp) are local coordinates associated to a chart (U,ψ)

centered at x to the semi-orthant Rk−p × Rp+ and p = p(x) is the depth of x.

Remark 3.3. Since we want the leaves to be diffeomorphic to each other, the flow gen-

erated by u needs to conserve the depth. The conditions (2a) ensures this property (see

Proposition 3.1). The situation is yet different for the outer leaves X{0} and X{1} since

they are embedded in the boundary of X. A point along a path from X{0} to X{1} will thus

have its depth decrease when exiting X{0}, remain constant while crossing all the inner

leaves, and increase at the very end.
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Remark 3.4. Note in condition (2b) that (TxMx)(1) does not depend on the choice of

the chart. Moreover, since u is of class C∞ and TxXi = ker(dτ(x)), one could show that

if (2b) is replaced by (−1)iu(x) ∈ T+
x Xi then (2a) allows to retrieve the initial condition

(2b).

Proof. Recall that the transition maps are of class C∞. We will establish for any x ∈ X
the existence of a neighborhood Ux ⊂ X and a C∞ vector field ux(·) on Ux that satisfies

the required conditions on Ux. By linearity of these conditions, one can then consider a

partition of unity to prove the final result. Note that the first condition can be relaxed

to dτ(x) · u(x) > 0 (consider α : X → R∗+ defined by α(x) = dτ(x) · u(x) then ū = u/α).

Consider for any x ∈ X a chart (Ux, ψ) centered at x to the semi-orthant Rk−p×Rp+ where

p = p(x) and denote (x1, . . . , xk−p, y1, . . . , yp) the associated coordinates. The idea of the

proof is to select one coordinate xi or yj and define ux
.
= ∂

∂xi
or ux

.
= ∂

∂yj
on Ux.

— Let be x /∈ ∂X (i.e. p(x) = 0). Since dτ(x) 6= 0, there exists necessarily one

coordinate xi such that ∂τ
∂xi

(x) > 0 and by continuity this inequality is conserved on

a small neighborhood of x in Ux. We define thus ux
.
= ∂

∂xi
.

— Let be x ∈ ∂X \ (X{0} ∪ X{1}) (so that p(x) > 0). Equation (4.41) implies that

TxMx 6⊂ ker(dτ(x)) (see Remark 3.2). By definition TxMx is generated by the

vectors
(

∂
∂xi

)
i∈{1,...,k−p}

. There exists thus i ∈ {1, . . . , k − p} such that ∂τ
∂xi

(x) > 0

and one can conclude as before.

— Let be x ∈ X{0}. From Lemma 3.1, p(x) > 0. Equation (4.41) implies that TxMx ⊂
ker(dτ(x)) and therefore for any i ∈ {1, . . . , k − p}, ∂τ

∂xi
(x) = 0. Since dτ(x) 6= 0,

there exists then j ∈ {1, . . . , p} such that ∂τ
∂yj

(x) > 0.

We can now prove Proposition 3.2.

Proof. The sketch of the proof is standard and relies on the flow generated by u. Propo-

sition 3.1 ensures that for any t ∈ [0, 1] and any xt ∈ X{t}, there exist ε > 0 and a unique

path γ : s 7→ xs on I =]t − ε, t + ε[∩[0, 1] that satisfies the equation γ̇ = u ◦ γ. More-

over, since τ(xt) = t and ∂
∂sτ(xs) = dτ(xs) · u(xs) = 1, this solution satisfies at any time

s ∈]t − ε, t + ε[, τ(xs) = s. Since X is compact, the solution can be extended to [0, 1].

Hence, for any x ∈ X, there exists a unique path [0, 1] 3 s 7→ xs such that xτ(x) = x.

One can then define π : X → X{1} by π(x) = x1. Let us show that π is of class C∞. For

any x ∈ X \X{1}, u(x) ∈ T+
x X and since u is of class C∞, there exists for any x ∈ X \X{1}

a chart (U,ψ) centered at x such that u|U = ∂
∂x1

. Consider then ϕh : U ′ ⊂ U → U

defined by ϕh(x) = xt+h for t = τ(x) and h > 0. Then ψ ◦ ϕh ◦ ψ−1 is the translation

by the vector (h, 0Rk−1) and for U ′ and h small enough, ϕh is well defined and is a C∞

diffeomorphism between U ′ and ϕh(U ′). Moreover, given x1 ∈ X{1}, there exists a path

[0, 1] 3 s 7→ xs and therefore there also exist x ∈ X \X{1} and a chart (U,ψ) centered at

x such that x1 ∈ U . One can then define U ′ 3 x such that x1 ∈ ϕh(U ′ ∩ Xτ(x)) and ϕh
is thus a C∞ diffeomorphism between U ′ ∩Xτ(x) and a neighborhood of x1. For any path

[0, 1] 3 s 7→ xs, for any s ∈ [0, 1[, there exists ϕh such that xs+h = ϕh(xs) and for s large

enough xs+h = x1. Since [0, 1] is compact, one can extract a finite number of functions

ϕh such that for any s ∈ [0, 1], xs 7→ x1 is given by composition of these functions. We
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deduce at last that π is a submersion of class C∞. Moreover, for any x ∈ X \ X{1},
τ(ϕh(x)) = τ(xt+h) = t+ h i.e. ϕh(x) ∈ X{t+h} and ϕh can thus be extended to X{t}. By

uniqueness of the solutions of ẋ = u(x), ϕh is one-to-one. It results that for any t ∈ [0, 1[,

ϕh : X{t} → X{t+h} is a C∞ diffeomorphism and by composition ϕh can be defined for any

h ∈ [0, 1− t].
In fine, π can be rewritten for any x ∈ X by π(x) = ϕ1−τ(x)(x) and we prove that

f : x 7→ (τ(x), π(x)) is a bijective C∞ submersion from X to [0, 1] × X{1}. Indeed, the

surjectivity is immediate and for any x, y ∈ X, if f(x) = f(y), denote t = τ(x) = τ(y),

then f(x) = (t, ϕ1−t(x)) = f(y) = (t, ϕ1−t(y)). Since ϕ1−t is injective on X{t}, f is

injective.

4 Existence of continuous minimizers in the current case

4.1 Reminder on differential geometry

We will assume from here that X is a k-dimensional submanifold with corners and

we will use the classical notation Hk for the k-dimensional Hausdorff measure on Rd.
We remind that Hk is defined as an outer measure on Rd that basically measures the

k-dimensional volume of a subset of Rd. In particular, when k = d, we have Hd = λd the

usual Lebesgue measure. If M is a p-dimensional submanifold of Rd, then Hk(M) is the

k-volume of M if p = k, vanishes if p < k and equals +∞ when k < p.

The interior product will highlight the linearity property of the currents with respect

to the tangential data.

Definition 4.1. The interior product is defined to be the contraction of a differential form

with a vector field. Thus if v is a vector field on the manifold M , then

ιv : (ΛkM)∗ → (Λk−1M)∗

is the map which sends a (k-1)-form ω to the (k-1)-form ιvω defined by the property that

for any m ∈M , (k-1)-vector ξ1 ∧ · · · ∧ ξk−1, ξi ∈ TmM ,

(ιvω)(m)
(
ξ1 ∧ · · · ∧ ξk−1

) .
= ω(m)

(
v(m) ∧ ξ1 ∧ · · · ∧ ξk−1

)
.

Hence, ι is linear with respect to v.

The corollary 4.1, given hereafter, results from the Stokes’ theorem and the Cartan’s

formula and will play a central role to exploit the linearity of the current representation

with respect to the tangential data of a shape.

Theorem 4.1 (Stokes’ theorem). Let M be an oriented compact k-dimensional differential

manifold with corners. For any differential (k-1)-form ω of class C1∫
M
dω =

∫
∂M

ω .

Proof. See [35].
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The Lie derivative of differential forms with respect to vector fields in the direction of a

vector field v expresses how a current associated to a shape X varies when X is deformed

in the direction of v. More precisely, given a flow φt such that φ0 = Id and φ̇t|t=0
= v

Lvω = lim
t→0

φ∗tω − ω
t

=
∂

∂t
φ∗tω|t=0

. (4.42)

It follows that

∂

∂t
µφt(X)(ω)|t=0

= µX(Lvω) . (4.43)

Theorem 4.2 (Cartan’s formula). Let ω be a differential form of class C1 and v a vector

field then

Lvω = dιvω + ιvdω .

Proof. See [34] (in french) Lemma 7.2.1 and 10.3.2.

We will apply the Cartan’s formula in a particularly simple case. The manifold M is

embedded in [0, 1]×M and the deformation is the translation among the first coordinate.

Corollary 4.1. We denote v = ∂t the vector field defined at any point (t,m) ∈ [0, 1]×M
by (1, 0TmM ) and Mt = {t} ×M then

∂

∂t

(∫
Mt

ω

) ∣∣∣
t=0

=

∫
∂M

ιvω +

∫
M
ιvdω .

Proof. We deduce from the Cartan’s formula that

∂

∂t

(∫
Mt

ω

) ∣∣∣
t=0

=
∂

∂t

∫
M
φ∗tω|t=0

=

∫
M
Lvω =

∫
M
dιvω + ιvdω .

The Stokes’ theorem allows then to conclude.

4.2 Definition of the current representation with the growth dynamic

We return to the problem of the reconstitution of a scenario t 7→ St whose final state

is known and given by a shape denoted Star. The scenario is modeled on a biological

coordinate system (X, τ) and generated by a initial position q0 ∈ L∞(X,Rd) and a time-

varying vector field v ∈ L2
V . More precisely, the development q : [0, 1]×X → Rd is defined

by the ODE in L∞(X,Rd)
q̇t(x) = v(t, qt(x))1τ(x)≤t . (4.44)

We will assume here that the initial position q0 belongs to C∞(X,Rd). Regarding the

space of vector field V , we will assume the following conditions:

(HV
1 )

∣∣∣∣∣∣∣∣∣∣
i)V ⊂ C2(Rd,Rd) .
ii) There exists c > 0 such that for any v ∈ V and any x ∈ Rd ,{

|v(x)|Rd ≤ c|v|V (|x|Rd + 1) ,

|dv(x)|∞ + |d2v(x)|∞ ≤ c|v|V .

(4.45)
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It ensures the existence and uniqueness of a solution to the previous ODE (see Chapter 3).

We want to minimize an energy of the type:

E(v)
.
=

∫ 1

0
|vt|2V dt+ λA(Star, q1(X)) ,

where Star is the target shape, A the data attachment term and λ > 0 a weight parameter.

To consider a data attachment term built from a distance on a space of currents requires

to investigate the regularity of the final shape q1(X). A current cannot be defined from

an L∞ mapping. So far, currents as varifolds have been applied to model shapes that are

least rectifiable sets.

Initial position, before the deformation

Figure 4.9 – The final state q1(X) displayed on the top left is a serrated curve with as many
discontinuities as its associated vector field v given on the right as real-valued function
modeling vertical translations upwards and downwards. The initial position q0(X) is a
segment. This example is essentially the 2D analogue of the 3D shape illustrated in
Figure 4.5

We saw in the previous chapter that the spatial regularity of qt is related to the

temporal regularity of v. Even when the initial condition q0 is smooth, if v is any element

of L2
V , we can only show that q1 is differentiable almost everywhere. In Figure 4.9, we

illustrate the impact of the discontinuity of v on the generated shape (rectifiable yet on

this basic example, but not C1).

However, we did show in Chapter 3 that if v is time continuous, q1 is then of class C1.

Its differential is given for any x ∈ X by

dq1(x) = dφτ(x),1(q0(x)) ◦
(
dq0(x)− vτ(x)(q0(x))dτ(x)

)
, (4.46)

where φs,t is the flow of v on the ambient space Rd. It is well-known that under the (HV
1 )

conditions, this flow is of class C1 and has a differential continuous in time and space

[26, 55]. Note yet that when V is a general RKHS, it actually requires to assume that V

is continuously embedded in C2
0(Rd) the space of C2 mappings v : Rd → Rd vanishing at

the infinity, equipped with the usual sup norm. However, this assumption is not satisfied

when the deformations belong to the group of rotations and translations on the ambient

space for which the existence and the regularity of the differential of the flow are hopefully

immediate. To encompass this last situation, we will thus only assume the less restrictive

(HV
1 ) conditions for the results presented hereafter.

Hence, to define properly a current associated to q1(X), we will extend a definition
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based on continuous trajectories v ∈ C([0, 1], V ) to all the solutions generated by L2
V .

Let us first recall how we can represent a shape by a current. Consider M is a smooth

oriented k-dimensional submanifold and denote for any x ∈ M , (T1(x), . . . , Tk(x)) an

orthonormal oriented basis of the tangent space TxM . Then M is then identified to the

current µM ∈ C0(Rd, (
∧k Rd)∗)′ defined for any ω ∈ C0(Rd, (

∧k Rd)∗) by

µM (ω) =

∫
M
ω(x)(T1(x) ∧ . . . ∧ Tk(x))dHk(x) . (4.47)

We can now define the current associated to the final mapping q1 generated by a continuous

vector field.

Definition 4.2. For any v ∈ C([0, 1], V ), the current associated to the mapping q1 : X →
Rd is defined for any ω ∈ C0(Rd, (

∧k Rd)∗) by

µv(ω) =

∫
X
q∗1ω =

∫
X
ω(q1(x))

(
∂q1

∂x1
(x) ∧ . . . ∧ ∂q1

∂xk
(x)

)
dx1 . . . dxk . (4.48)

The key of the next proposition is to use the density C([0, 1], V ) in L2([0, 1], V ) to

extend by continuity the definition of µv to L2([0, 1], V ). For this purpose we rewrite

equation (4.48) with the foliation of X given by its tagging function τ . With the result of

the previous section, we can assume that X = [0, 1]× B where B is an oriented compact

manifold with corners so that τ is just the projection on the first coordinate (for any

(t, b) ∈ [0, 1]×B, τ(t, b) = t). In this case, we introduce the set of submanifolds (Yt)0<t<1

of Rd that are the images of Bt
.
= {t} ×B by q0. Moreover, we will assume that

(Hq0) The restriction of q0 to an inner leaf X{t} (t ∈]0, 1[) is a smooth immersion between

X{t} and Rd.

This condition ensures that for almost every t ∈ [0, 1] the restriction q0 : Bt → Yt is a C1

diffeomorphism.

Remark 4.1. The initial condition q0 has no reason to be an embedding of the whole

coordinate space X. See for example the scenarios in Figure 4.10 where its image is

reduced to a point. However, to ensure that a scenario generated by q globally corresponds

to the trivial scenario induced by the coordinate system (see Chapter 2 and 3), we want

each leaf X{t} to be embedded in Rd. Some exceptions are yet allowed, typically for the

outer leaves X{0} and X{1}. It is for example necessary to model the tip of the horn.

We can now extend for any L2
V -scenario the definition of the current associated to its

final age. The proof lies on the fact that almost all the restrictions of q1 to the leaves X{t}
are of class C1.

Proposition 4.1. The function v 7→ µv defined for v ∈ C([0, 1], V ) has a unique continu-

ous extension (
L2([0, 1], V ), | · |L2

V

)
−→

(
C0(Rd, (ΛkRd)∗), | · |∞

)∗
v 7−→ µv : ω 7→

∫ 1
0

[∫
Yt
ι(ht−vt)φ

∗
t,1ω

]
dt ,

(4.49)

where (φs,t)s≤t is the flow of v, φ∗t,1ω is the pullback of ω by φt,1, ι is the interior product
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and ht is the unique vector field on Yt defined for almost any t ∈ [0, 1] and any x ∈ Bt by

ht(q0(x)) = ∂q0
∂t (x).

Proof. Let us call here ϕ the application v 7→ µv given by Definition 4.2 when v ∈
C([0, 1], V ) and ϕ the application defined here by equation (4.49). We will first show that

ϕ and ϕ coincides on v ∈ C([0, 1], V ). Then, we will show that ϕ is indeed a continuous

linear application.

We decompose X = [0, 1] × B with a partition of unity of B. Hence, we just have

to consider the case of a support [0, 1] × U where (U,ψ) is a coordinate chart around

a point b ∈ B (consistent with the orientation). We can thus define a local coordinate

system x = (t, b1, · · · , bk−1) on [0, 1] × U and we have ∂q1
∂bi

(x) = dφt,1(q0(x)) ◦ ∂q0
∂bi

(x) and
∂q1
∂t (x) = dφt,1(q0(x)) ◦

(∂q0
∂t (x)− vt(q0(x))

)
= dφt,1(q0(x)) ◦ (ht − vt)(q0(x)). Therefore,

∫
[0,1]×U

q∗1ω =

∫
[0,1]×U

ω(q1(t, b))

(
∂q1

∂t
(t, b)

k−1∧
i=1

∂q0

∂bi
(t, b)

)
db1 · · · dbk−1dt

=

∫
[0,1]×U

ω(φt,1(q0(t, b)))(
dφt,1(q0(t, b)) ◦ ∂q1

∂t
(t, b)

k−1∧
i=1

dφt,1(q0(t, b)) ◦ ∂q0

∂bi
(t, b)

)
db1 · · · dbk−1dt

=

∫ 1

0

[∫
B

(φ∗t,1ω)(q0(t, b))

(
(ht − vt)(q0(t, b))

k−1∧
i=1

∂q0

∂bi
(t, b)

)
db1 · · · dbk−1

]
dt

=

∫ 1

0

[∫
Yt

ι(ht−vt)φ
∗
t,1ω

]
dt .

Now, we have supt∈[0,1] |dφt,1| = C1(|v|2
L2
V

), dq0 is also bounded X, so that ht and vt are

bounded on q0(X) and therefore∣∣∣∣∫ 1

0

[∫
Yt

ι(ht−vt)φ
∗
t,1ω

]
dt

∣∣∣∣ ≤ |ω|∞C2(|v|2L2
V

) , (4.50)

where C1 and C2 are increasing functions independent of v and ω. Consequently, for

any v ∈ L2
V , ϕ(v) = µv belongs to C0(Rd, (ΛkRd)∗)∗ and ϕ is continuous due to the

regularity of the interior product and of φt,1. Hence, since C([0, 1], V ) is dense in L2
V and

(C0(Rd, (ΛkRd)∗), | · |∞)∗ is a Banach space, ϕ is the unique continuous extension of ϕ.

Remark 4.2. Note that µv is not exactly the current associated to the image q1(X).

Indeed, even if q1 is differentiable, it might not be an embedding. Two counter-examples

are presented in Figure 4.10. In the first case, the direction of the development is suddenly

reversed twice so that the curve is folding on itself. Hence, if we refer to number of inverse

images of each point of q1(X) as a thickness of the shape, then the thickness here is equal

to 1 or 3. On the second case, the curve completely overwrites itself, so that the thickness

is equal to 2 on each point.

This phenomenon depends on q0 and v and cannot be anticipated. The current associ-

ated to our shapes counts therefore these repetitions. However, in the first scenario, since
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Figure 4.10 – Two examples of scenarios. In both situations, X is a segment but q0(X) is
reduced to a point. On top, v is given by piecewise constant vertical translations upwards
and downwards, modeled by real-valued function. The final image is a segment but when
v changed its sign, the curve folded on itself. The scenario is displayed again on the left
but we slightly separated the multiple fibers of the curve. One can think to a magic
trick where colored attached strings are pulling out from the initial position point. On
the bottom, the scenario is generated by a constant rotation anticlockwise. The ambient
space is exactly rotated twice during the time interval [0, 1]. We display the development
of the curves with three colors depending of the thickness : dark for 1, blue for 2 and red
for 3. The green star on the bottom is just displayed to highlight the evolution of one
specific point.

the orientation is reversed twice and by linearity of the currents with respect to the tangen-

tial data, the repetition is canceled and we have µv(ω) =
∫
q1(X) ω. On the second example,

the orientation is the same on each layer so that µv(ω) = 2
∫
q1(X) ω. At last, note that in

practice, these situations should not happen with optimal vector fields. The penalization

of v should prevent these artifacts. Generating a cancel effect via an overlapping should

induce an additional cost on v with yet no reduction of the data attachment term since the

current would be the same without this overlapping. Likewise, the gain of thickness as in

the second example is necessary taken from spatial correspondences with the target shape

and should therefore not be profitable (at least for a metric with a reasonable scale so that

the position of the points are enough discriminated).

4.3 Existence of global minimizers in L2([0, 1], V )

We can now consider a target generated by a vector field vtar and represent the solution

and the target with currents. We denote as before µtar and µv the associated currents

defined by equation (4.49). Unlike the varifolds, the currents provides a data attachment

term that ensures the existence of continuous vector fields that minimizes the energy

E(v)
.
=

1

2

∫ 1

0
|v|2V dt+

λ

2
|µtar − µv|2W ′ ,
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where W is now a RKHS embedded in the space of test functions C0(Rd, (
∧k Rd)∗). How-

ever, this result is not immediate. In this section, we will first prove the existence of a

solution in L2([0, 1], V ). The expression of the current µv given by Proposition 4.1 enlight-

ens and isolates the specificity of our generated shapes. It also allows to show a central

property of the current attachment terms that is not verified by the varifold attachment

terms: the lower semi-continuity (l.s.c.) on L2
V .

Proposition 4.2. For any ω ∈ C0(Rd, (ΛkRd)∗), the application v → µv(ω) is continuous

with respect to the weak topology of L2
V . In particular, v → |µtar − µv|2W ∗ is l.s.c. with

respect to the weak topology.

Proof. We recall partially the assumptions on the space of vector fields V

(HV
1 )

∣∣∣∣∣ There exists c > 0 such that for any v ∈ V and any x ∈ Rd ,
|v(x)|Rd ≤ c|v|V (|x|Rd + 1) .

(4.51)

Consider a weakly convergent sequence vn ⇀ v∞ in L2
V , we have for any ω ∈ C0(Rd, (ΛkRd)∗)

|µvn(ω)− µv∞(ω)|

≤
∣∣∣∣∫ 1

0

[∫
Yt

ιvnt −v∞t φ
v∞,∗
t,1 ω

]
dt

∣∣∣∣+

∣∣∣∣∫ 1

0

[∫
Yt

ιht−vnt (φv
n,∗
t,1 ω − φv

∞,∗
t,1 ω)

]
dt

∣∣∣∣ . (4.52)

The first term of the right-hand side is a continuous linear form ` on L2
V evaluated on

vn − v∞. This is where the linearity of the currents attachment terms on the tangential

data plays its role. Indeed, we have for any u ∈ L2
V

|`(u)| =
∣∣∣∣∫ 1

0

[∫
Yt

ιutφ
v∞,∗
t,1 ω

]
dt

∣∣∣∣
≤ sup

t,y∈Yt
|φv
∞,∗
t,1 ω(y)|∞

∣∣∣∣∫ 1

0

[∫
Yt

|ut(y)|Rd dHk−1(y)

]
dt

∣∣∣∣
≤ sup

t,y∈Yt
|dφv∞t,1 |k∞|ω(y)|∞

∣∣∣∣∫ 1

0

[∫
Yt

c(|y|Rd + 1)|ut|V dHk−1(y)

]
dt

∣∣∣∣
≤ c sup

t,y∈Yt
|dφv∞t,1 |k∞|ω(y)|∞ sup

t,y∈Yt
(|y|Rd + 1) sup

t
vol(Yt)

∫ 1

0
|ut|V dt

≤ c′|u|L2
V
,

where vol(Yt) is the volume of Yt. Consequently, since (vn)n weakly converges to v∞,

`(vn − v∞) converges to 0. The second term can be bounded as follows∣∣∣∣∫ 1

0

[∫
Yt

ιht−vnt (φv
n,∗
t,1 ω − φv

∞,∗
t,1 ω)

]
dt

∣∣∣∣ ≤ m1m2 ,
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where m1 = supt,y∈Yt |φ
v∞,∗
t,1 ω(y)− φv

n,∗
t,1 ω(y)|∞ tends to 0 and

m2 = sup
t
vol(Yt)

(
sup
X

∣∣∣∣∂q0

∂t
(x)

∣∣∣∣+ c sup
t,y∈Yt

(|y|Rd + 1) |vn|L2
V︸ ︷︷ ︸

≤supn |vn|L2
V

)
.

We already know that if a sequence (vn)n weakly converges to v∞ then (t, y) → φvnt,1(y)

converges compactly to (t, y)→ φv∞t,1 (y). Moreover, since (vn)n is weakly convergent, (vn)n
is bounded, so that finally this upper bound tends to 0. Therefore, the function v 7→ µv,

with values in C0(Rd, (ΛkRd)∗)∗, is continuous with respect to the weak topology of L2
V

and the first result is proved.

Moreover, since W is continuously embedded into C0(Rd, (ΛkRd)∗), there exists c′ > 0

such that for any linear form ` ∈ C0(Rd, (ΛkRd)∗)∗, |`(ω)| ≤ |`|∞|ω|∞ ≤ c′|`|∞|ω|W so that

|`|W ∗ ≤ c′|`|∞. It follows that for any ω ∈ W , µvn(ω) tends to µv∞(ω), i.e. µvn weakly

converges to µv∞ in W ∗. Hence, µvn(µtar) = 〈µvn , µtar〉W ∗ tends to 〈µv∞ , µtar〉W ∗ and

since the square norm of a Hilbert space is always lower semi-continuous with respect to

the weak topology, we deduce that

|µtar − µv∞ |2W ∗ = |µtar|2W ∗ − 2〈µv∞ , µtar〉W ∗ + |µv∞ |2W ∗
≤ |µtar|2W ∗ − 2 lim〈µv∞ , µtar〉W ∗ + lim |µvn |2W ∗
≤ lim

(
|µtar|2W ∗ − 2〈µvn , µtar〉W ∗ + |µvn |2W ∗

)
≤ lim |µtar − µvn |2W ∗ .

This proposition induces a first main result: the existence of a solution in L2([0, 1], V )

of the energy

E(v) =
1

2
|v|2L2

V
+
λ

2
|µtar − µv|2W ∗ .

Theorem 4.3. Consider X = [0, 1] × B where B is a compact oriented manifold with

corners and τ the projection on the first coordinate of X. Assume that q0 ∈ C∞(X,Rd).
Consider the standard cost function

C(v) =
1

2

∫ 1

0
|vt|2V dt .

Under the (Hq0) and (HV
1 ) conditions, the energy defined for any v in L2([0, 1], V ) by

E(v) = C(v) +
λ

2
|µv − µtar|2W ∗

admits a global minimizer.

Proof. Note that E is always positive. Let (vn)n be a minimizing sequence of E. One

can easily show that (vn)n is bounded and we can then assume that vn weakly converges

in L2
V . Denote v∞ this limit. Proposition 4.2 says that E is lower semi-continuous with

respect to the weak topology of L2
V . It follows that E(vn) tends to E(v∞) so that v∞

minimizes E.
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Remark 4.3. One can generalize the previous theorem with a cost function C that satisfies

C(v) tends to +∞ when |v|L2
V

tends to +∞. In Chapter 3, we presented a set of cost

functions (in the so-called adapted norm setup) similar to

C(v) =
1

2

∫ 1

0
αt|vt|2V dt ,

where α : [0, 1] → R+. The theorem can thus be applied as soon as α admits a strictly

positive lower bound, which will always be the case when the coordinate space X is a discrete

set. However, we saw in the case of horns or more generally when Hk−1(q0(X)) = 0 that

we are interested in functions α that tends to 0 at time 0. This could thus require deeper

investigation.

4.4 Continuity of the global minimizers

At this point, the continuity of a minimizer v∗ of E is not acquired. This continuity

is yet necessary to provide an algorithm of shooting on the momentum (see Chapter 3).

We will show now that all minimizers belong to C([0, 1], V ), which is not true when the

attachment term is defined on varifolds. The outline of the proof is simple. We will show

that E is differentiable with respect to v and study the critical points of E. We keep

the assumptions of the previous theorem. We assume in this section that W is a RKHS

embedded in the space of C1 differential forms C1
0(Rd, (

∧k Rd)∗).
We recall a standard result on the flow of a vector field.

Proposition 4.3. Assume the (HV
1 ) conditions given by equation (4.45). Let be v, δv ∈ L2

V

and introduce the variations vεt = vt+εδvt of v in the direction δv where ε ∈ [0, 1]. Consider

φεs,t the flow of vε, meaning that φεs,t = φεt ◦ φ
ε,−1
s where φεt is the unique solution on [0, 1]

of

φεt = Id +

∫ 1

0
vεs ◦ φεs ds .

Then, the application ε→
(
φεs,t(y), dφεs,t(y)

)
is of class C1. We have for any y ∈ Rd,

∂

∂ε
φεs,t(y)

∣∣
ε=0

=

∫ t

s
dφu,t(φs,u(y)).δvu(φs,u(y)) du

and

∂

∂ε
dφεs,t(y)

∣∣
ε=0

=

∫ t

s

[
d2φu,t(φs,u(y))dφs,u(y)

]
δvu(φs,u(y))

+ dφu,t(φs,u(y))dδvu(φs,u(y))dφs,u(y) du .

4.4.1 Differentiability of the current representation

A first step consists in studying the directional derivative of the current

µv(ω) =

∫ 1

0

[∫
Yt

ιht−vtφ
∗
t,1ω

]
dt
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with respect to the vector field v. Let be v, δv ∈ L2
V and consider vεt = vt + εδvt where

ε ∈ [0, 1] and φεs,t its flow. From the linearity of the interior product, we have

µvε(ω) =

∫ 1

0

[∫
Yt

ιht−vεtφ
ε,∗
t,1ω

]
dt (4.53)

=

∫ 1

0

[∫
Yt

ιht−vtφ
ε,∗
t,1ω

]
dt− ε

∫ 1

0

[∫
Yt

ιδvtφ
ε,∗
t,1ω

]
dt . (4.54)

We will address the derivation with respect to ε of these two terms separately and we start

with the first one that we denote:

g(ε) =

∫ 1

0

[∫
Yt

ιht−vtφ
ε,∗
t,1ω

]
dt .

In order to rewrite g, let us introduce some notation. The variables are grouped in pairs:

νεs(y) = (vεs(y), dvεs(y)) ,

ϕεs(y) = (φεs,1(y), dφεs,1(y)) ,

δνs(y) =
∂

∂ε
νεs(y)

∣∣
ε=0

,

δϕs(y) =
∂

∂ε
ϕεs(y)

∣∣
ε=0

.

Hence, δνs(y) = (δvs(y), dδvs(y)) and it results from Proposition 4.3 that for any s ∈ [0, 1],

for any y ∈ Rd, δϕs(y) ∈ Rd × L(Rd) is given by

δϕs(y) =

∫ 1

s
Ast (y) · δνt(φs,t(y))dt , (4.55)

where (t, y) 7→ Ast (y) belongs to C([0, 1]× Rd,L(Rd × L(Rd))).

Given ω ∈ W , define fω : (Rd × L(Rd)) → (ΛkRd)∗ such that fω(ϕεt(y)) = (φε,∗t,1ω)y.

This is to say that for any k-vector ξ1 ∧ · · · ∧ ξk ∈ ΛkRd,

fω(ϕεt(y))(ξ1 ∧ · · · ∧ ξk) = ω(φεt,1(y))
(
dφεt,1(y)ξ1 ∧ · · · ∧ dφεt,1(y)ξk

)
.

We can easily check that fω is C1. At last, we get

g(ε)
.
=

∫ 1

0

[∫
Yt

ιht−vtfω(ϕεs)

]
dt .

Let us show now that g is derivable in 0 and let us explicit this derivative.

Lemma 4.1. Consider the application

g(ε)
.
=

∫ 1

0

[∫
Ys

ιhs−vs(f ◦ ϕεs)
]
ds . (4.56)
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Then g is derivable and there exists t 7→ J at an application in C([0, 1], V ∗) such that

g′(0) =

∫ 1

0
J as (δvs)ds . (4.57)

Proof. Denote K =
⋃
s∈[0,1] Ys, i.e. K = q0(X) and since q0 ∈ C(X,Rd) and X is compact,

K is bounded. We apply the Leibniz’s rule to derive under the integral sign so that we

get

g′(0) =

∫ 1

0

[∫
Ys

ιhs−vs(dϕf(ϕs) · δϕs)
]
ds

=

∫ 1

0

[∫
Ys

ιhs−vsdϕf(ϕs)

∫ 1

s
Ast · (δνt ◦ φs,t) dt

]
ds

=

∫ 1

0

[∫
Ys

∫ 1

s
ιhs−vs

(
Ast (y)∗dϕf(ϕs)

)
· (δνt ◦ φs,t) dt

]
ds ,

where Ast (y)∗ denotes the adjoint operator of Ast (y) ∈ L(Rd,L(Rd)). For any y ∈ Ys,

the integrand ιhs−vs
(
Ast (y)∗ dϕf(ϕs(y)) · (δνt(φs,t(y))

)
belongs to (ΛkRd)∗ and we want to

bound its norm independently of y to guarantee its integrability. This will come from the

(HV
1 ) conditions that gives a spatial control of the elements of V and their differential.

For any y ∈ Ys, the application Ast (y)∗ dϕf(ϕs(y)) belongs to L
(
Rd×L(Rd), (ΛkRd)∗

)
and can be identified to an element of (ΛkRd)∗ ⊗ (Rd × L(Rd))∗. Moreover, for any

ζ ∈ (ΛkRd)∗ ⊗ (Rd × L(Rd))∗, consider lζy : V → (ΛkRd)∗ by

lζy(u) = ζ
(
u(y), du(y)

)
.

Then lζy is linear and under the (HV
1 ) conditions, there exists cV ∈ V , such that for any

u ∈ V , for any y ∈ K, if µ = (u, du), then

|lζy(u)|(ΛkRd)∗ = |ζ(µ(y))|(ΛkRd)∗

≤ |ζ|(ΛkRd)∗⊗(Rd×L(Rd))∗ |µ(y)|Rd×L(Rd)

≤ cV |u|V sup
y∈K

(1 + |y|Rd)|ζ|(ΛkRd)∗⊗(Rd×L(Rd))∗ .

Hence, lζy belongs to (ΛkRd)∗ ⊗ V ∗ and

|lζy|(ΛkRd)∗⊗V ∗ ≤ cV sup
y∈K

(1 + |y|Rd)|ζ|(ΛkRd)∗⊗(Rd×L(Rd))∗ .

We can therefore apply Fubini’s theorem to get that for any u ∈ V

J at (u)
.
=

∫ t

0

(∫
Ys

ιhs−vs

(
l
(Ast )

∗dϕf(ϕs)
φs,1

(u)
))

ds . (4.58)

Finally, since t→ Ast (y) is continuous, we deduce easily that t 7→ J at is continuous.

To study the second term of µε in equation (4.54), we introduce the next lemma.

Lemma 4.2. Define for a given ω ∈ C1
0(Rd, (ΛkRd)∗) the function t 7→ J bt such that for

219



any u ∈ V
J bt (u) =

∫
Yt

ιu(ω) . (4.59)

Then J b is a continuous function defined from [0, 1] to V ∗.

Proof. For any t ∈ [0, 1], J bt is linear on V and with the (HV
1 ) conditions, there exists

c > 0 such that for any u ∈ V ,

|J bt (u)| ≤
∫
Yt

|u(y)|Rd |ω(y)|∞dHk−1(y)

≤ c sup
y∈K

(1 + |y|Rd) vol(Yt)|ω|∞|u|V .

Thus, J bt ∈ V ∗. Moreover, we can show that t → J bt is derivable (and in particular

continuous). From the spatial regularity of any u ∈ V , we deduce that ωu
.
= ιu(ω) ∈

C1(Rd, (Λk−1Rd)∗). Now, under the (Hq0) conditions, we can pull backward the integrand

of J b :

J bt (u) =

∫
{t}×B

q∗0ω
u .

Therefore, if ∂
∂t is the vector field on X defined at any point (t, xB) ∈ [0, 1] × B by

(1, 0TxBB), then ∂
∂t generates a flow ψt on X satisfying ψt(s, xB) = (s + t, xB). Thus,

α
.
= q∗0ω

u ∈ C1(X,Λk−1T ∗X) is a (k-1)-form on X and it results from the Cartan’s

formula and the Stokes’ theorem that

d

dt
J bt (u) =

d

dt

∫
{t}×B

α =

∫
{t}×B

ι ∂
∂t
dα+

∫
{t}×∂B

ι ∂
∂t
α . (4.60)

4.4.2 Continuity of the minimizers

Finally, we can conclude that all solutions are continuous and the next theorem recalls

all assumptions.

Theorem 4.4. Consider X = [0, 1] × B where B is a compact oriented manifold with

corners and τ the projection on the first coordinate of X. Assume that q0 ∈ C∞(X,Rd).
Under the (Hq0) and (HV

1 ) conditions, if v∗ ∈ L2([0, 1], V ) minimizes the energy defined

by

E(v) =
1

2

∫ 1

0
|v|2V dt+

λ

2
|µv − µtar|2W ∗ ,

then v∗ belongs to C([0, 1], V ).

More precisely, for any (v, δv) in L2
V × L2

V , the application ε 7→ g(ε)
.
= E(v + εδv) is

derivable at 0 and we have

g′(0) =

∫ 1

0
〈vt, δvt〉dt+ λ

∫ 1

0

[∫
Yt

ιht−vt(
∂φ∗t,1ω

∂v
.δv)

]
dt− λ

∫ 1

0

[∫
Yt

ιδvtφ
∗
t,1ω

]
dt

=

∫ 1

0
LV vt(δvt) + J at (δvt)− J bt (δvt) dt ,
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where KV and LV = K−1
V are the isomorphisms between V and V ∗, ω = KW (µv − µtar),

J a,J b ∈ C([0, 1], V ∗) are defined by equations (4.58) and (4.59) and ht is the unique

vector field on Yt defined for almost any t ∈ [0, 1] and any x ∈ Bt by ht(q0(x)) = ∂q0
∂t (x).

Proof. We have

∂

∂ε

1

2
|µv − µtar|2W ∗

∣∣
ε=0

=
∂

∂ε
µvε(ω)

∣∣
ε=0

.

The expression of µvε(ω) is given by equation (4.54) and its derivative with respect to ε is

given above in Section 4.4.1.

At last, if v∗ minimizes E then LV v
∗
t = J bt − J at for almost every t ∈ [0, 1]. Since J a

and J b are continuous, t 7→ v∗t = KV (J bt − J at ) is continuous at any t ∈ [0, 1].

Remark 4.4. One can easily generalize this theorem with a cost function on L2
V of the

type C(v) = 1
2

∫ 1
0 C(vt, t)dt. More precisely, assume that there exists ` ∈ C([0, 1], V ∗) such

that for any t ∈ [0, 1], ∂C
∂v (v, t) = `t(v) and `t is invertible. If v∗ ∈ L2([0, 1], V ) minimizes

the energy

E(v) =
1

2

∫ 1

0
C(vt, t)dt+

λ

2
|µv − µtar|2W ∗ ,

then for any t ∈ [0, 1]

v∗t = `−1
t

(
KV (J bt − J at )

)
.

It will follow that v∗ ∈ C([0, 1], V ).

Remark 4.5. Note that J b − J a can be identified with the momentum map J . See

Chapter 3.

Remark 4.6. Note that J b0 is always null. Moreover, if Hk−1(Yt) is null, then J at is also

null. In the case of the horn, Y0 represents the tip of the horn. It is thus reduced to a

point, so that we retrieve the fact that v∗0 is necessary null. See Chapter 3.

5 Continuous pointwise expression of the momentum

The continuity of the global minimizers of the energy allows to explicit the momentum.

This is the key point to explicit then the momentum map with a general coordinate space

X (i.e. non discrete) and therefore to explicit an optimal vector field. This result cannot

be directly prove with the varifolds and the growth dynamic since it also implies the

continuity of the momentum map and thus of all global minimizers of the energy (see

Chapter 3).

We saw in Chapter 3 that in order to explicit the gradient of the energy

E(q0, v) =

∫ 1

0
C(vt, t) dt+A(v) , (4.61)

one could use in the discrete model (i.e. for X = (Rd)k) the fact that there exists a final

momentum p1 ∈ L∞(X,Rd)) = (Rd)k such that

A′(v; δv) = 〈p1, δq1〉(Rd)k .
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The aim of this section is to show in the general case of a compact manifold X, the

existence of an equivalent pointwise momentum variable p1 acting on δq1, and to give its

expression.

5.1 A lemma

Let X be a smooth orientable compact manifold of dimension k (possibly with corners)

and let M = R×X be the cylinder generated by X so that M is again a smooth orientable

manifold (possibly with corners). Let us introduce for any ε ∈ R the submanifold Mε =

{ε} × X of M . The tangent space at a point (ε, x) is identified with R × TxX and ∂
∂ε

denotes the vector field defined at any point (ε, x) by (1, 0TxX).

Lemma 5.1. Let f : M → N be a C1 mapping from M to a smooth manifold N and ω be

a C1 k-form on N . Consider for ε ∈ R

g(ε)
.
=

∫
Mε

f∗ω ,

where f∗ω denotes the pull-back of ω by f . Then we have:

1. The function g belongs to C1(R,R) and

g′(ε) =

∫
Mε

ι ∂
∂ε
f∗dω +

∫
∂Mε

ι ∂
∂ε
f∗ω . (4.62)

2. There exist two functions a : X → T ∗N and b : X → T ∗N such that for any x ∈ X,

a(x) and b(x) belong to T ∗f0(x)N and

g′(0) =

∫
X
a(x) (δf(x)) dHk(x) +

∫
∂X

b(x) (δf(x)) dHk−1(x) , (4.63)

where f0 = f ◦ j0, δf = ∂
∂εf ◦ jε|ε=0

and jε : X → Mε is the trivial embedding given

by jε(x) = (ε, x). Moreover, a and b only depend on f0 and ω.

Proof. ∂
∂ε is a smooth vector field generating a flow ψt on M that satisfies ψt(ε, x) =

(ε + t, x). If α
.
= f∗ω, α is a C1 k-form on M and g(ε + h)

.
=
∫
Mε
ψ∗h(α) so that we get

from the Cartan formula

g′(ε) =

∫
Mε

£ ∂
∂ε
α =

∫
Mε

ι ∂
∂ε
dα+

∫
∂Mε

ι ∂
∂ε
α . (4.64)

Since α = f∗ω and dα = d(f∗ω) = f∗(dω), we retrieve the equation (4.62). Now if

fε
.
= f ◦ jε, then

g′(0) =

∫
j0(X)

ι ∂
∂ε
f∗dω +

∫
j0(∂X)

ι ∂
∂ε
f∗ω

=

∫
X
j∗0

(
ι ∂
∂ε
f∗dω

)
+

∫
∂X

j∗0

(
ι ∂
∂ε
f∗ω

)
. (4.65)

We can explicit these two terms. Consider a coordinate chart (U,ϕ), then the first term
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of the right-hand side of (4.65) can be rewritten

∫
U
dω(f0(x))

(
∂f

∂ε
(0, x) ∧

k∧
i=1

∂f

∂xi
(0, x)

)
dx1 · · · dxk .

Consider now a coordinate chart (∂U, ϕ) from an open set ∂U of ∂X, then the second

term of the right-hand side of (4.65) can be rewritten

∫
∂U
ω(f0(x))

(
∂f

∂ε
(0, x) ∧

k−1∧
i=1

∂f

∂xi
(0, x)

)
dx1 · · · dxk−1 .

Finally, since ω and f are of class C1, the integrands of these two terms are both

continuous linear forms applied to δf(x) = ∂f
∂ε (0, x) and they only depend on f0 and

ω.

5.2 Application

We will apply this lemma in a general situation. The shape q1 : X → Rd generated by

a vector field v ∈ L2
V ([0, 1], V ) is given by an operator Φ where X is a compact submanifold

with corners. We will although assume that Φ need to be restricted to continuous vector

field to ensure the regularity of q1. Yet, we do not specify that v generates q1 with the

growth dynamic. We consider a space of currents W ↪→ C1
0(Rd,ΛkRd). The current

generated by v is denoted µv.

Theorem 5.1. Consider

Φ : L2([0, 1], V )→ C(X,Rd)

such that

1. For any v ∈ C([0, 1], V ), Φ(v) ∈ C1(X,Rd) and ∂xΦ(v) is continuous with respect to

v.

2. Φ is Gateaux-derivable and for any δv ∈ L2
V , v 7→ Φ′(v; δv) is continuous.

If v and δv belong to C([0, 1], V ) and if W ↪→ C1
0(Rd,ΛkRd), then there exists pX1 ∈

C(X,Rn) and p∂X1 ∈ C(∂X,Rd) such that

∂

∂ε

∣∣∣∣
ε=0

|µvε − µtar|2W ∗ =

∫
X
〈pX1 (x), δq1(x)〉RndHk(x)

+

∫
∂X
〈p∂X1 (x), δq1(x)〉RndHk−1(x) .

Proof. Let be v and δv in C([0, 1], V ) and denote for any ε ∈ R, vε = v + εδv, qε1 = Φ(vε),

δqε1 = Φ′(vε; δv). Consider f : R×X → Rd, defined by f(ε, x) = qε1(x) and let us show that

f is of class C1. We have for any ε ∈ R, qε1 ∈ C1(X,Rd) and δqε1 ∈ C(X,Rd). Moreover,

since dq1 and δq1 are continuous with respect to v, dqε1 and δqε1 are continuous with respect

to ε.
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Now, we just have to notice that

∂εf(ε, x) = δqε1(x) ,

∂xf(ε, x) = dqε1(x) .

Since these partial derivatives are continuous, it follows that f is of class C1.

Finally, we have

µvε(ω) =

∫
X

(qε1)∗ω =

∫
Mε

f∗ω .

Hence, if we apply Lemma 5.1 to f(ε, x) = qε1(x) so that ∂f
∂ε ◦ j0 = δq1, we get

∂

∂ε

∣∣∣∣
ε=0

|µvε − µtar|2W ∗ =
∂

∂ε

∣∣∣∣
ε=0

µvε(ω)

=

∫
X
dωq1(x)

(
δq1(x) ∧

d∧
i=1

dq1(x) · TXi (x)

)
dHk(x)

+

∫
∂X
ωq1(x)

(
δq1(x) ∧

d−1∧
i=1

dq1(x) · T ∂Xi (x)

)
dHk−1(x) ,

where (q1, δq1) = (qε1, δq
ε
1) for ε = 0, ω = KW (µv−µtar) ∈W and (TXi )i is an orthonormal

basis of TxX, the tangent space at x ∈ X and (T ∂Xi )i is an orthonormal basis of Tx∂X,

the tangent space at x ∈ ∂X.

For any x ∈ X or any x ∈ ∂X, these two integrands are linear with respect to δq1(x).

There exist thus for any x ∈ X, a unique vector pX1 (x) ∈ Rd and likewise for any x ∈ ∂X,

a unique vector p∂X1 ∈ Rd such that we get the final result. Moreover, since q1 and ω are

of class C1, pX1 and p∂X1 are continuous.

Remark 5.1. Note that with the usual regular conditions on V , this theorem can be applied

to the classic dynamic as the growth dynamic.

6 Conclusion

We examined in this chapter the existence and regularity of global minimizers v to the

optimization problem discussed in the previous chapter when the infinitesimal action ξ

reproduces the growth dynamic. These questions lie on the choice of the data attachment

term. We exhibited two counterexamples for the varifold representation. These situations

highlighted the lack of spatial regularity of a shape generated by a discontinuous time-

varying vector field t 7→ vt. This issue is well addressed by the current representation

that has a regularization effect of the shapes. We proved indeed, with a data attachment

term built on a current representation, the existence of global minimizers as well as their

continuity.

We detailed in this chapter the foliated structure induced by the birth tag τ on the

coordinate space X when the creation process is regular meaning that the amount of

newly created points at each time, i.e. the level sets of τ , evolves smoothly. We justified
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the canonical description of the biological coordinate system (X, τ) via a direct product

X = [0, 1] × X0 where τ is identified with the projection on the first coordinate. An

important consequence of this rewriting is the ability to overcome the reparameterizations

in time of the scenarios generated by the biological coordinate system (see Chapter 2).

In the last section, we established a pointwise expression of the final momentum p1.

This expression plays a key role to describe the solutions of the optimization problem. The

study of the growth dynamic achieved in Chapter 3 and the calibration of the optimization

problem by new cost functions are based on this pointwise expression that allows to exploit

the previous decomposition of the biological coordinate system.
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Chapter 5

Numerical Study of the Growth

Model
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1 Introduction

From the point of view of one to one correspondences between homologous points, a

growth process can be described by the nonlinear combination of two different processes:

a deformation process when a living organism is deforming through time and an expansion

process when the growth results from the creation of new material. The observation of the

shape without more information does not allow to distinguish these two processes. The

development of a horn is thus a interesting case study. We consider indeed a population

of horn sharing a basic common pattern defined as follows. The base of the horn plays

the role of an active area where new leaves are gradually created pushing outwards the

rest of the horn. The horn is assumed to be rigid and is thus only subjected to rotations

and translations due to the physical constraints (see figure 5.1). This example allows to

isolate the creation process from the general deformation and reduce to its minimum any

kind of distortions of the shape due to other biological phenomena.

Actual developmentClassic diffeomorphic matching 

Figure 5.1 – A classic diffeomorphic matching would stretch the small horn to the large
one and would thus not reflect the actual development of the horn. Instead, we would like
to see an embedding of the small horn inside the target and additionally creation of new
material at the base.

The aim is, given few observations at different times of a horn, to reconstruct its

continuous development from its youngest state to its oldest one. We will see that our

model can actually produce a path modeling the complete deployment of a horn from only

one observation. If we imagine the horn at its birth as reduced to a single point, we can

construct an optimal continuous path from this point to a nontrivial shape matching the

given observation. In fine, the complete evolution is encoded in a forecast initial position

and its momentum (q0, p0), providing the support to a statistical analysis.

In order to model the evolution of a shape during a growth process, we developed in

Chapter 2 the concept of growth mapped evolution (GME). A GME is given as a path of

shapes [0, 1] 3 t 7→ St and a flow of mappings (φs,t)s≤t such that for any pair s ≤ t ∈ [0, 1],

the flow deforms the older shape Ss into the younger one St: φs,t(Ss) ⊂ St. The shape

St is thus made of the image of Ss at time t and of a set of new points created in the

time interval ]s, t]. When φs,t(Ss) = St for any s, t, the shape evolves through a pure

deformation process and we retrieve the standard dynamic through the flow. On the

contrary, in the absence of global deformation, φs,t = Id for any s, t so that the shape

evolves by pure expansion and we have Ss ⊂ St. This last type of scenario plays a central

role and such GMEs are called centered. Following D’Arcy Thompson’s ideas, these GMEs

represent the biological coordinate system of a set of homologous scenarios.
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Figure 5.2 – Sequence of three discrete times to illustrate the development of a horn.

1.1 Biological coordinate system

A biological coordinate system is a pair (X, τ) where X is a space called the

coordinate space and τ : X → [0, 1] the birth tag on X. It induces a set of shapes

Xt
.
= {x ∈ X | τ(x) ≤ t} , (5.1)

of the so called active points of the coordinate space X at time t. In this chapter, the

biological coordinate system is fixed to
X

.
= [0, 1]× S1 ,

τ(x)
.
= t for any x = (t, x0) ∈ X .

(5.2)

When X is a discrete set, it will be defined by X = {0, t1, . . . , tn−1, 1} × X0 where 0 <

t1 < . . . < tn−1 < 1 and X0 a finite subset of S1. A biological coordinate system can be

itself identified to the growth scenario of a shape. The sequence of nested shapes Xt, here

given by Xt = [0, t]× S1, forms a canonical scenario that describes the growth pattern of

a population of related shapes. Figure 5.3 displays this scenario in our situation. At time

0, the shape is a circle. It growths into a cylinder under a pure expansion process by the

progressive adjunction of identical circles. These circles are given by the sets of points

X{t}
.
= {x ∈ X | τ(x) = t} = {t} × S1 .

Any shape Xt is a connected disjoint reunion of some of these sets called the leaves of

the shape.

0

Figure 5.3 – Trivial scenario of the biological coordinate system.
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A general scenario (t 7→ St)t∈[0,1] is modeled on the biological coordinate space by a

sequence of spatial mappings t 7→ (qt : X → Rd). The shape St is given by the image

qt(Xt) of the active points of X. Depending on the injectivity of the mappings (qt)t,

the generated scenario follows the same expansion process of the biological coordinate

system. At each time t ∈]0, 1], a new leaf qt(X{t}) appears whose points have no biological

correspondence with the points of the older shapes Ss, s < t.

Figure 5.4 illustrates two such types of scenario built on the coordinate system (X, τ).

The only difference between these two types is the behavior of the spatial mapping on the

first leaf X{0}. For the first scenario, the spatial mapping is an embedding at all time. For

the second one, qt is an embedding of all leaves but the first one and qt(X{0}) is reduced

to a point.

Figure 5.4 – Two examples of scenarios built on the biological coordinate system (X, τ).

In these two examples, the last leaf is always included in the horizontal plane. The

birth place function introduced in Chapter 2 allows to express this constraint. The

birth place function q̃ : X → Rd of a scenario associated to a mapping q is defined by

q̃(x) = qτ(x)(x) = φ−1
τ(x),1(q1(x)) .

It can be seen as the pull backward through the flow of each leaf q1(X{t}) of the final

shape to its initial position qt(X{t}) at time t = τ(x) when it appeared. The evolution

of this leaf can then be completely retrieved by the flow (φs,t)s≤t of the scenario: for any

x ∈ X and any t ∈ [τ(x), 1]

qt(x) = φτ(x),t(qτ(x)(x)) = φτ(x),t(q̃(x)) . (5.3)

To extend the mappings qt : Xt → Rd into homologous mappings on X, we then say that

qt(x) =


φτ(x),t(q̃(x)) if τ(x) ≤ t ,

q̃(x) otherwise.

(5.4)

Hence, we have

q0 = q̃. (5.5)

This mapping q0 is called the initial condition and the planar constraint can then easily
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be written as a constraint on the image of q0.

Remark 1.1. The birth place function can be highly non injective. For example as we

will see in Section 6.4 with the tube, all the new leaves can appear at the same place. The

flow of a scenario is able to separate two different leaves. However, if two points of the

same leaf X{t} appear at the same position, they will never be separated.

1.2 Reconstitution of a growth scenario

In this chapter, we will study surfaces embedded in R3 whose scenario is consistent

with the biological coordinate system previously defined. Assume that a target scenario is

given by (Star
i )i a collection of shapes at a finite number of intermediate times (ti)i ⊂ [0, 1]

(with max{ti, i} = 1). The aim is to retrieve its complete development from its creation at

time 0 to its final age at time 1. In practice, it leads to generate a scenario (t 7→ St)t∈[0,1]

such that Sti ≈ Star
i .

We developed in Chapter 3 a generative model based on an initial position q0 : X →
Rd and the growth dynamic

q̇t = 11τ≤tvt ◦ qt ,

where v is a time-varying vector field on Rd (v ∈ L2([0, 1], V )).

An inexact registration between two scenarios consists then in minimizing an energy

that penalizes on one side the deformation with a cost function C and on the other

side the discrepancy between the two scenarios at the different times ti with a data

attachment term A of the type

A(q0, v) =

n∑
i=0

d(Svti , S
tar
i )2 .

Remark 1.2. Note as we saw in Chapter 4, that in some critical cases where the shape

is folding on itself, the current or the varifold µS modeling the form Svt = {qt(x) |x ∈ Xt}
can be different from the one µv defined to represent the mapping qt : Xt → Rd.

The energy to minimize can thus be written

E(q0, v) =

∫ 1

0
C(vt, t) dt+A(q0, v) .

In all our experiments we will present different tools to specify this general model

presented in Chapter 3. As we saw in this chapter, an optimal solution v∗ ∈ L2
V must

then satisfy at all time

∇vC(v∗t , t)−KV J (qt, pt, t) = 0 , (5.6)

where KV : V ∗ → V is the canonical isomorphism and J is the momentum map whose

expression will be recalled in equations 5.10 and 5.11.

1.3 Deformation spaces

The deformations involved in the model are determined by the choice of the space of

vector fields V . This space is usually a Reproducing Kernel Hilbert Space (RKHS) and

the representations of the data rely thus on the choice of the kernel.
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The choice to study animal horns intended to avoid the ill-posed distinction between

diffeomorphic and intrinsic changes. For example, one can think to the question of how to

balance the emergence of new matter and the stretching of a shape. In order to exclude

this issue, the numerical applications will be mainly performed with affine transformations.

These transformations respect the idea that once a portion of the horn has appeared, it

behaves as a solid. It is not deformed, only displaced.

Rigid deformations

The group of rotations and translations is the semi-direct product Rd o SOd(R), for

which V = Ad × Rd, where Ad is the space of skew-symmetric matrices. The space V is

then naturally equipped with a set of norms with a parameter α ∈ R∗+ defined for any

v = (A,N) ∈ Ad × Rd by

|v|2V,α
.
= α tr(ATA) + |N |2Rd . (5.7)

The rotations are applied to the horn from the center of its base.

Remark 1.3. In practice, we will work in R3 and actually only use vertical translations.

The space V is then reduced to V = A3 × R(0, 0, 1). We will therefore project at every

time the optimal translation on the vertical axis.

The numerical experiments to retrieve the development of an animal horn will mainly

be achieved with this space of vector fields.

Reproducing kernel Hilbert space with scalar Gaussian kernel (RKHS)

The case study of horns with rigid deformations is a first step to initiate the study of

growth models. Yet, the presented model also works with non rigid deformations. In order

to pave the way for more general applications, we will present in the end few experiments

with a RKHS with a scalar Gaussian kernel:

kV : Rd × Rd −→ R
(x, y) 7−→ exp

(
− |x−y|

2

2σ2

)
.

(5.8)

2 Cost functions

2.1 Inadequacy of the classic cost function

An important novelty appears with the growth dynamic. When there is no creation

on a small interval I ⊂ [0, 1], we retrieve the classic LDDMM case and the norm of the

vector field is constant on I. Otherwise, when there is appearance of new points, this

norm should increase. More explicitly, we have in the discrete setup when V is a RKHS
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with a kernel noted kV

KV J (q, p, t) =
∑
x∈X
τ(x)≤t

kV (q(x), ·)p(x) (5.9)

=
∑
x∈X
τ(x)≤t

exp

(
−|q(x)− ·|2

2σ2
V

)
p(x) . (5.10)

In the case of rotations and translations, where V is the direct product Skewd × Rd

equipped with the usual norm, this equation becomes

KV J (q, p, t) =

projSkewd

 ∑
x∈X
τ(x)≤t

p(x)q(x)T

 ,
∑
x∈X
τ(x)≤t

p(x)

 . (5.11)

We call Xt = {x ∈ X, τ(x) ≤ t} the support of KV J (q, p, t). The sequence of the supports

at times ti is increasing

Xti ⊂ Xti+1

and therefore, the norm of KV J should in general be increasing.

2.1.1 Infinitesimal action of a deformation and growth

This property of the vector field seems prima facie appreciable. Indeed, since the shape

is growing, the energy required to deform it should also be increasing. However, we have to

distinguish the groups of diffeomorphisms built with global deformations (especially rigid

deformations) from the groups built with local deformations (like RKHS whose kernel has

a local support) (see Figure 5.5).

The infinitesimal action of a deformation through the growth dynamic can be inter-

preted in two main parts. At a time t, the local action on the last leaf appeared will define

with the initial position the amount of creation of matter at time t+δt. Anywhere else the

action defines the evolution of the old part of the shape through the standard dynamic.

With local deformations, these two parts are more or less independent. But, with rigid

deformations, these two parts are inseparable.

In the case of the horn, the weight of the rotations and translations is directly linked to

the amount of creation of new matter on the base of the horn (see Figure 5.6). A natural

approach to reproduce real observations is to consider that this amount of creation is

rather constant with respect to time than linear. This is thus in contradiction with the

model.

In Figure 5.7, we illustrate the kind of results we can get so far. The model is not

able to create efficiently the sharp tip of the horn. This inadequacy induces a considerable

slowdown of the convergence of the gradient descent.
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Figure 5.5 – Translation of two segments with a Gaussian kernel (left column) and with
the group R2 of translations in the plan (right column). In all cases, the global translation
is given by the two identical blue arrows. The blob in the left column illustrates the scale
of the kernel. With a Gaussian kernel, the translation of the segment is given by the sum
of the momenta through a convolution with the kernel with respect to their position (see
equation 5.10). Otherwise, the translation is the sum of all momenta independently of
their position (see equation 5.11). In the first case, the norm of the deformation depends
on the size of the segment (see explicit equation 5.28). Conversely, with the Euclidean
norm on R2, the norm of the deformation is the norm of the translation and does not
depend on the size of the segment.

Figure 5.6 – Example of development
with the growth dynamic when the de-
formations are reduced to vertical trans-
lations. The vertical expansion of horn
is equivalent to the global deformation.
Note yet that if we want to quantify the
complete amount of expansion, we also
have to consider the horizontal compo-
nent due to the birth position of points
to appear. On the top right corner is dis-
played a top view of the younger horn
with the points to appear at their birth
position.

2.1.2 Additional property of the rotations and translations Group

The balance between the rotations and the translations in our growth model depends

of course on the norm defined on V = Ad×Rd but also on the scale of the shape. We give a

heuristic figure (see Figure 5.8) to explain this property. Regarding the optimal matching

for a horn, the model tends to favor the translations to deploy the horn at the beginning

then to favor the rotations toward the end of the development. Figure 5.9 illustrates this

phenomenon: we display after a basic matching with the classic cost function the norms of

the two components of the optimal vector field respectively associated to the rotations and

the translations. The natural development of a horn requires yet to avoid this behavior.

We will see with the adaptive norm how to fix this balance.
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Figure 5.7 – Result of a matching with the classic cost function. On the left after 20k
iterations, on the right after 200k iterations (i.e. 1day of runtime).

Figure 5.8 – Comparaison of rotation and trans-
lation displacements. Consider two matchings of
the green point to the green cross and of the blue
point to the blue cross. In both cases, we give one
rotation and one translation leading to an approx-
imate match. For both green and blue matchings,
we use the same rotation of angle α. Yet the sec-
ond translation is three times more expensive than
the first one.
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Figure 5.9 – Comparison of the norms of the deformations between the solution (in blue)
and the target (in red) for the experiment displayed in Figure 5.7 (on the right). We display
separately the norms of the skew-symmetric matrices and the norms of the translations
over the time interval [0, 1].

2.1.3 Alternatives and conclusion

The previous observations show that the current theoretical solution is not adapted to

model the development of a horn. One can then either change the cost function or the data

attachment term in the energy. The addition of intermediate times of the development

to favor the convergence of the solution toward the actual development is not enough to
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modify the global behavior of the solution. Note yet that it does improve the results

of some numerical experiments and it will be exploited (see Section 3.3, 6.3 and 7.2).

The choice of varifolds over currents also helps to avoid the cancellation of the tip of the

horn. At last, an additional landmark on the tips of the horns to match can force the

convergence. In order to balance the fact that the support of the vector field is increasing

it would yet request to apply a strong weight on the contribution of the tip so that the

vector field would primarily be build on this single point. This possibility does not seem

reasonable.

In conclusion, one has to change the cost function. In the following sections, we will

present different cost functions and explicit the gradient of the energy in each case. We

will apply the theorem showed in Chapter 3. An interesting aspect of these new models

is that the new cost functions do not require much more computational time in contrast

to the addition of intermediate times (that also requires more data).

2.2 Adaptive norm: rotations and translations

2.2.1 Aim

For any time-variant vector field v = L2([0, 1], V ), the classic cost function leads in the

expression of the energy to the global regularization term

R(v) =
1

2

∫ 1

0
|vt|2V dt .

The deformation is thus uniformly penalized over time. The idea of the adapted norm

is simple. It involves a time-dependent weight to create a time-variant penalization as

follows

∀ v = L2([0, 1], V ), Rν(v)
.
=

1

2

∫ 1

0
νt|vt|2V dt , (5.12)

where ν belongs to C∞([0, 1],R∗+). The initial growth model tends to generate optimal

vector fields with an increasing norm. Since we would rather like to have a norm more or

less constant, this weighting function should increase the penalization over time. Hence,

ν will be an increasing function of the time. In Chapter 3, we showed that with a dis-

crete coordinate space X this function does not need to tends to 0 at time 0+. In our

experiments, ν will be almost linear with a special care of time 0.

The space of vector fields is now fixed to V = Ad × Rd. For any v ∈  L2([0, 1], V ), we

note its canonical decomposition v = (A,N) and at each time t ∈ [0, 1],

vt = (At, Nt) ∈ Ad × Rd .

As explained previously around the Figure 5.8 and 5.9, applied to the horn developments,

this space brings another issue of balance between the rotations and the translations.

We recall that V is equipped with the norm |v|2V,α = α |A|2 + |N |2 where α is a strictly

positive constant. We apply the same concept of weighted penalization to handle this

issue. The constant α is replaced by another scalar function that we will still denote

α ∈ C∞([0, 1],R∗+) to create a penalization on the skew-symmetric matrix increasing over
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time. In fine, we get

∀ v = L2([0, 1], V ), Rν,α(v)
.
=

1

2

∫ 1

0
νt|vt|2V,αt dt =

1

2

∫ 1

0
νt
(
αt|At|2Ad + |N |2Rd

)
dt .

(5.13)

As for ν, since the size of the horn is increasing, the function α should also be increasing.

The problem of time 0 is yet a bit more complicated even with the discrete setup. Indeed,

let us recall that at any time t, the optimal vector field is built as an integration of

contributions of any point of the actual shape at time t. At time 0, the shape is reduced

to a single point. This single point allows in the discrete configuration to generate a non

zero initial vector field. However, if this point is located at the center of the ambient

space, the model cannot generate an initial rotational impulse. Consider the expression

of the momentum map given by equation 5.11. Let us note its canonical decomposition

KV J = (KAJ ,KNJ ). Then the first component applied to a solution (q, p) at time 0 is

KAJ (q0, p0, 0) = projAd

 ∑
x∈X
τ(x)=0

p0(x)q0(x)T


At the beginning, the horn is reduced to its tip. We assume this tip to be in the center

of the base (see Figure 5.16 for an example of initial position) which is the point 0 of Rd.
We have thus for any x ∈ X such that τ(x) = 0, q0(x) = 0 and consequently

KAJ (q0, p0, 0) = 0 .

In summary, if we note the optimal vector field v∗ = (A∗, N∗), at the beginning of the

development, we can have v∗0 6= 0 but we will always have A∗0 = 0.

We end this section with some notations. The time-variant parameter α implies to

change the norm on V over time. Each norm | · |V,αt induces a specific isomorphism

KV
αt : V ∗ → V . For any l ∈ V ∗, KV

αt(l) is defined as the unique element of V such that for

any v ∈ V ,

l(v) = 〈KV
αt(l), v〉V,αt .

Throughout the next sections, we will hence use the notation KV
α when α is a constant

and KV
αt otherwise. Likewise, we will note KA

α or KA
αt these isomorphims composed with

the projection on the first component and simply KN the composition with the second

component since this last one does not depend on the parameter α.

2.2.2 New cost function and energy

In order to retrieve the regularization term defined by equation 5.13, we define a new

cost function given for any v ∈ V and any t ∈ [0, 1] by

Cν,α(v, t)
.
=
νt
2
|v|2V,αt . (5.14)
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This cost function is smooth and for any (v, t) ∈ V × [0, 1] and any δv ∈ V , if v = (A,N)

we have

∂C

∂v
(v, t) · δv = 〈νtv, δv〉V,αt .

Consequently, we have as expected

E(q0, v) =

∫ 1

0
C(vt, t) dt+A(q1) =

1

2
|v|2L2

V ,ν,α
+A(q0, v) .

At last, since we have

∇vE(q0, v)t =
∂C

∂v
(vt, t)− J (qt, pt, t)

= νtvt −KV
αtJ (qt, pt, t) ,

any local minimizer v∗ ∈ V of E must satisfy at any time t ∈ [0, 1]

v∗t = v∗(qt, pt, t) =
1

νt
KV
αtJ (qt, pt, t) .

2.3 Constrained norm: general situation

2.3.1 Aim

Another solution is to consider the classic energy

E(q0, v) =

∫ 1

0

ν

2
|vt|2V dt+A(q0, v)

and minimize it under the constraint that for any t ∈ [0, 1],

|vt|2V = ct ,

where ν is a constant and c : [0, 1] → R+ is a smooth known function. Note that this

constraint requires some additional information on the target. However, numerical exper-

iments show that one does not need a precise estimation of ct.

2.3.2 New cost function and energy

For this purpose, we apply the augmented Lagrangian method. This method is detailed

for example in [32] and was also recently used in [5]. The constraint is turn into an additive

penalization term in the energy. For this purpose, we define a new cost function given for

any v ∈ V and any t ∈ [0, 1] by

Cλ,γ(v, t)
.
=
ν

2
|v|2V −

λt
2

(|v|2V − ct) +
γ

2
(|v|2V − ct)

2 . (5.15)

The method consists alternately in minimizing the energy and updating the parameters
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λ and γ. Assume that we obtained an optimal control vn of the function

En(q0, v) =

∫ 1

0
Cλn,γn(v, t) dt+A(q0, v) ,

then λ is updated according to

λn+1
t = λnt −

γn

2
(
∣∣vn+1
t

∣∣2
V
− ct)

and we choose γn+1 ∈]γn,+∞[ with many possible variants (but it is not required to

increase γ toward +∞).

This cost function is smooth and for any (v, t) ∈ V × [0, 1] and any δv ∈ V , we have

∇vC(v, t) =
(
ν − λt + 2γ(|v|2 − ct)

)
v .

With the notation ∂vE(q0, v) · δv =
∫ 1

0 < (∇vE)t, δvt >V dt, it follows that

(∇vE)t = νvt − λtvt + 2γ(|vt|2 − ct)vt −KV J (qt, pt, t) .

Consequently, any local minimizer v ∈ V of E can be written at any time t ∈ [0, 1]

vt = ntK
V Jt ,

where nt satisfies (
ν + 2γ(n2

t

∣∣KV Jt
∣∣2 − ct)− λt)nt − 1 = 0 .

Since this expression can have multiple solutions in R, we look for the one that maximize

the Hamiltonian (see Chapter 3).

Proposition 2.1. With the cost function defined by equation 5.15, the maximum of the

Hamiltonian

v 7→ H(q, p, v, t) = (J (q, p, t) | v)− C(v, t)

is given by

vt = ntK
V Jt ,

where nt is the largest root of the polynomial

R(X) = 2γ
∣∣KV Jt

∣∣2X3 + (ν − λt − 2γct)X − 1 .
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Proof.

Hr(q, p, t) = max
v∈V

(J (q, p, t) | v)− C(v, t)

= max
v∈V

(Jt | v)− ν

2
|v|2V +

λt
2

(|v|2V − ct)−
γ

2
(|v|2V − ct)

2

= max
nt∈R

nt|KV Jt|2V −
ν

2
n2
t

∣∣KV Jt
∣∣2 +

λt
2

(n2
t

∣∣KV Jt
∣∣2 − ct)− γ

2
(n2
t

∣∣KV Jt
∣∣2 − ct)2

= max
X∈R
−γ

2

∣∣KV Jt
∣∣4X4 − (

ν

2
− λt

2
− γct)

∣∣KV Jt
∣∣2X2 + |KV Jt|2VX −

γc2t
2
− λtct

2

= max
X∈R
−γ

2

∣∣KV Jt
∣∣2X4 − (

ν

2
− λt

2
− γct)X2 +X .

The right hand side of this last expression is the sum of a pair polynomial and an increasing

affine function. Therefore, its maximum is reached at the largest zero of its derivative.

The derivative of this polynomial is the polynomial −R introduced above.

2.4 Constrained norm: rotations and translations

In the specific case of the group of rotations and translations, a general constraint

as introduced above will not solve the issue of balance previously presented between the

rotations and the translation. We will thus refine the constraint as follows.

2.4.1 Aim

We consider the space V = Ad × Rd. For any v ∈  L2([0, 1], V ), we note v = (A,N) its

canonical decomposition and at each time t ∈ [0, 1],

vt = (At, Nt) ∈ Ad × Rd .

We recall then that V is equipped with the norm |v|2V,α = α |A|2 + |N |2. We want to

minimize the energy

E(q0, v) =
ν

2

∫ 1

0
|vt|2V,α dt+A(q0, v) ,

under the constraint that for any t ∈ [0, 1],{
|At|2Ad = cAt ,

|Nt|2Rd = cNt .
(5.16)

where cA and cN are smooth known functions.
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2.4.2 New cost function and energy

The augmented Lagrangian method leads then to introduce the new cost function

Cλ,γ(v, t)
.
=
ν

2
|vt|2V,α

− λAt
2

(|At|2Ad − c
A
t ) +

γA

2
(|At|2Ad − c

A
t )2

− λNt
2

(|Nt|2Rd − c
N
t ) +

γN

2
(|Nt|2Rd − c

N
t )2

and to minimize the new energy

E(q0, v) =

∫ 1

0
Cλ,γ(vt, t) dt+A(q0, v) .

2.4.3 Gradient of the cost function

We have

∇vC(vt, t) = νvt

− λAt
(

1

α
At, 0

)
+ 2γA(|At|2 − cAt )

(
1

α
At, 0

)
− λNt

(
0, Nt

)
+ 2γN (|Nt|2 − cNt )

(
0, Nt

)
.

With the notation KV
α Jt = (KA

αJt,KNJt), the gradient of the energy

(∇vE)t = ∇vC(vt, t)−KV
α Jt

admits two components with respect to the spaces Ad and Rd. It can be rewritten (∇vE)t =

(∇AE)t + (∇NE)t where

(∇AE)t = νAt −
λAt
α
At + 2

γA

α
(|At|2 − cAt )At −KA

αJt ,

(∇NE)t = νNt − λNt Nt + 2γN (|Nt|2 − cNt )Nt −KNJt .

2.4.4 Expression of a minimizer

A zero of this gradient is thus written

v∗t = (atK
A
αJt, ntKNJt) ,
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where at and nt are respectively the largest root of the polynomials:

RA(X) = νX − λAt
α
X + 2

γA

α

(
X2
∣∣KA

αJt
∣∣2 − cAt )X − 1

= 2
γA

α

∣∣KA
αJt

∣∣2X3 +

(
ν − λAt

α
− 2

γA

α
cAt

)
X − 1

RN (X) = 2γN
∣∣KNJt

∣∣2X3 + (ν − λNt − 2γNcNt )X − 1 .

2.5 Combined cost functions in the rotations and translations case

At last, since the adapted norm and the constrained norm are two complementary

tools, it seems natural to combined them. We exploited it in the case of rotations and

translations. With the same notations as before, we summarize here this new setup. Note

that with the right choice of parameters, we can always retrieve either the adapted norm

setup or the constrained norm setup.

2.5.1 Energy

E(q0, v) =

∫ 1

0
C(vt, t) dt+A(q0, v)

=
νt
2

∫ 1

0
|vt|2V,αt dt

− λAt
2

∫ 1

0
(|At|2Ad − c

A
t ) dt+

γA

2

∫ 1

0
(|At|2Ad − c

A
t )2 dt

− λNt
2

∫ 1

0
(|Nt|2Rd − c

N
t ) dt+

γN

2

∫ 1

0
(|Nt|2Rd − c

N
t )2 dt

+A(q0, v) .

2.5.2 Gradient of the cost function

∇vC(vt, t) = νtvt

− λAt
(

1

αt
At, 0

)
+ 2γA(|At|2 − cAt )

(
1

αt
At, 0

)
− λNt

(
0, Nt

)
+ 2γN (|Nt|2 − cNt )

(
0, Nt

)
.

2.5.3 Expression of a minimizer

With the notation KV
α Jt = (KA

αtJt,K
NJt), we have

v∗t = (atK
A
αtJt, ntK

NJt) ,
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where at and nt are respectively the largest root of the polynomials:

RA(X) = νtX −
λAt
αt
X + 2

γA

αt

(
X2
∣∣KA

αtJt
∣∣2 − cAt )X − 1

= 2
γA

αt

∣∣KA
αtJt

∣∣2X3 +

(
νt −

λAt
αt
− 2

γA

αt
cAt

)
X − 1 .

RN (X) = 2γN
∣∣KNJt

∣∣2X3 + (νt − λNt − 2γNcNt )X − 1 .

3 Data attachment term

3.1 RKHS of currents and varifolds

We recalled in Chapter 1 how to identify smooth shapes to linear forms on some spaces

of test functions independently of the parameterization of these shapes. Reproducing

Kernel Hilbert Spaces (RKHSs) allow then to compute very efficiently distances between

these shapes. We give here a computational approach. We will focus here on discrete

surfaces embedding in R3. More details on currents and varifolds can be found in [28, 26,

15].

Locally, a surface S can be encoded by a position and a unit normal vector, i.e. a pair

(x,
−→
Nx) ∈ R3×S2. A test function is then a function ω : R3×S2 → R and the pair (x,

−→
Nx)

is associated to the Dirac δ
−→
Nx
x defined by δ

−→
Nx
x (ω) = ω(x,

−→
Nx). Figure 5.10 introduces with

triangles how we will model triangulated surfaces.

Reality

Model

Figure 5.10 – Modeling of a triangle. A triangle
is approximated by the position of its center x, its

normal unit vector
−→
Nx and its area `x that can also

be coded as the length of its normal vector (`x
−→
Nx).

The first triangle is approximated by `xδ
−→
Nx
x .

A small triangle is approximated by a linear form of the type µx = `xδ
−→
Nx
x . Given a

space of test functions W , this representative µx : W → R is applied to any ω ∈W by

µx(ω) = `xω(x,
−→
Nx) .

The union of two triangles is then represented by a sum µx + µy. More generally, a

triangulated surfaces can be approximated by a finite sum

S ≈ µ =
∑
x

`xδ
−→
Nx
x (5.17)
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and we have

µ(ω) =
∑
x

`xω(x,
−→
Nx) . (5.18)

The construction of metrics via RKHSs becomes from there rather simple in practice

and can be induced by the choice of two real positive kernels on the ambient space E = Rn

and on the set of tangential data T (general situation). These two kernels generate the

RKHS W , i.e. the set of test functions. A kernel kE measures the distance between the

positions of two infinitesimal shapes and a kernel kT measures the distance between their

respective tangential data (here, a unit normal vector with eventually the orientation).

We can now explicit a scalar product between two shapes represented in W ′ by two

sums of Diracs as in equation (5.18). Thanks to the RKHS properties, we have

〈δ
−→
Nx
x , δ

−→
Ny
y 〉W ′ = δ

−→
Nx
x

(
kE(·, y)kT (·,

−→
Ny)

)
= kE(x, y)kT (

−→
Nx,
−→
Ny) . (5.19)

The scalar product between two shapes S ≈ µS =
∑

x `xδ
−→
Nx
x and S′ ≈ µS′ =

∑
y `yδ

−→
Ny
y

is then deduced by linearity:

〈µS , µS′〉W ′ =
∑
x

∑
y

`x`ykE(x, y)kT (
−→
Nx,
−→
Ny) . (5.20)

Finally, we return now to the definition of a data attachment term to compare a target

shape to a deformed source shape. Once we have fixed a RKHS W , we denote µtar ∈ W ′

the representative of the target shape and µv ∈ W ′ the representative of the final state

of the solution generated by a vector field v ∈ L2([0, 1], V ). The data attachment term is

then given by

A(q0, v) =
1

2

∣∣µv − µtar
∣∣2
W ′

. (5.21)

Note that this brief overview is common to currents and varifolds. We can now present

three examples WC , WV and WOV of RKHSs whose dual embeds respectively currents,

non-oriented varifolds or oriented varifolds. The only differences between these RKHSs lie

in the choice of the kernels.

1. When kT is the usual scalar product on R3, the dual of generated RKHS embeds

currents and we have for example with a Gaussian kernel kE :

〈δ
−→
Nx
x , δ

−→
Ny
y 〉W ′C = exp

(
−
|x− y|2R3

2σ2

)
〈
−→
Nx,
−→
Ny〉R3 .

2. In the case of non-oriented varifolds, a trick as suggested in [15] is to define T as

the set of oriented tangent spaces and then to symmetrize a kernel kT with respect
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to the orientation. We get for example with two Gaussian kernels:

〈δ
−→
Nx
x ,δ

−→
Ny
y 〉W ′V =

exp

(
−
|x− y|2R3

2σ2

)(
1

2
exp

(
−
|Nx −Ny|2R3

2σ2
N

)
+

1

2
exp

(
−
|Nx +Ny|2R3

2σ2
N

))
.

3. The advantage of varifolds in our situation is their non linearity with respect to

the tangent space that enables them to model sharp tails as the tip of horns (see

Chapter 1). Since shapes like horns are easily oriented, there is no reason to call for

non-oriented varifolds. In our experiments, we used a Gaussian kernel for kE and a

little more complex kernel for kT :

〈δ
−→
Nx
x , δ

−→
Ny
y 〉W ′OV

.
= exp

(
−
|x− y|2R3

2σ2

)
exp

(
−
|
−→
Nx −

−→
Ny|2R3

2σ2
N

)
〈
−→
Nx,
−→
Ny〉R3 . (5.22)

The choice of the additional euclidean scalar product to the kernel kT actually facil-

itates the computation but moreover when σN tends to +∞ it retrieves the scalar

product of W ′C on currents. Figure 5.11 illustrates the differences on the gradient of

the attachment term for a small and a large σN .

Figure 5.11 – Opposite gradient of the attachment term built with the metric given by
equation 5.22. Current model on the left (σN = 999), oriented varifold model on the
right (σN = 1). Note how the distribution of the gradient on the tip of the horn is more
important with the oriented varifold norm. In both case the scale σ of the spatial kernel
is equal to the radius of the base of the horn.

We also computed the energy of the introductory experiment with the classic cost

function (see Figure 5.7) with the scalar product defined by equation 5.22 with σN = 99999

and σN = 1. Let us recall that the energy is the sum of the cost function C and the

attachment term A.
σN = 99999

Iterations C A Energy

20k 0.3423 2.7009 3.0433

200k 0.3695 0.5407 0.9102

σN = 1

Iterations C A Energy

20k 0.3423 10.6736 11.0160

200k 0.3695 2.4765 2.8459

We can see that the norm on oriented varifolds (σN = 1) amplifies significantly the

difference between the two steps of the gradient descent.

Figure 5.12 illustrates the role played by the orientation of shapes. Note yet that if one

might not know the true orientation and generate it randomly, the matching could then

246



Figure 5.12 – Two matchings by rotation of two crosses. In both case, the doted cross is the
source, the other one is the target. On the left side, the lines are not oriented. They should
thus be modeled by varifolds and the natural deformation would be a rotation clockwise.
On the right side, the lines are oriented. They could thus be modeled by currents or non
oriented varifolds and the natural deformation would be a rotation anticlockwise.

be irrelevant and misled. This situation is typical in the case of matching of fiber bundles

(see for example [20] on white matter fiber). The orientation on horns can prevent some

local minimums. Figure 5.13 displays a case where the boundary of the two horns meet

with a wrong correspondence. This situation could be a local minimum of the energy.

Figure 5.13 – Without orientation the attachment term could not distinguish the two
boundaries in the grey area. The separation of these two parts would thus partially
increase the energy and could lead to a local minimum.

3.2 Additional landmark

For the specific case of the horn, we add a penalization on the tip of the horns. This tip

is the point image by q of the first leaf X{0}. Consider any x̂ ∈ X{0}, the new attachment

term can then be defined by

A(q0, v) =
chead

2
d(q1(x̂), ŷtar) +

cdata

2

∣∣µv − µtar
∣∣2
W ′

,

where ŷtar is the tip of the target horn and d could be simply defined for any u1, u2 ∈ Rd

as the L2 distance between u1 and u2

d(u1, u2) =
∣∣u1 − u2

∣∣2 .
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However, we preferred to localize the influence of this attachment term through a Gaussian

blob

d(u1, u2) = 1− exp

(
−
∣∣u1 − u2

∣∣2
σhead

)
.

It allows to delay the influence of this term. Indeed, since the horns might have a high

curvature, the gradient descent does naturally not lead the tip of the horn straightforward

to its landmark target and force this behavior might actually be a brake. Hence, with this

last distance, as long as the tip q1(x̂) is far away from the tip of the target, we stand in a

flat area of d.

Without this additional landmark, the tips of both horns have no particular reason

to be matched together. This single landmark gives a strong input toward the natural

structure of the temporal foliation (see Figure 5.15). Note that the group of rotations and

translations is yet rigid enough to avoid the behavior displayed in the figure. Nevertheless,

this additional attachment term leads the last step of the gradient descent to a better visual

result because at some point, we fall below the scale of details of the general attachment

term (current or varifold type).

Figure 5.14 – Illustration of the contribution of the Gaussian-L2 landmark on the tip of
the horns (pointed in red). On each row, we display two steps of a gradient descent. The
black horn is the target, the green horn is the solution (in progress) at its final state. The
blue blob represents the Gaussian blob window of the landmark attachment term. On the
second example (on the bottom), the matching of the two landmarks is counterproductive
at the beginning of the gradient descent. The Gaussian filter remedies this inconvenience.
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Figure 5.15 – Reconstituted example of a perfect geometric match of the final shape to its
target without landmark correspondence. The algorithm fails yet to retrieve a coherent
scenario to model the growth of the horn as highlighted by the temporal stratification of
the generated shape. The arrow points the flat tip of the generated horn. Note however
that this situation is very unlikely with the group of rotations and translations, especially
when the translations of V are reduced to vertical translations.

3.3 Intermediate times in the input data

Since we want to retrieve an evolution and not only perform a matching to the final

state, the intermediate states should have an important role in this model. The rigidity of

the rotations and translations can allow to bypass them in some case : for example with

simple horns (i.e. with regular growth and low curvature). We will see otherwise and with

a Gaussian kernel their influence on the trajectory.

Let v ∈ L2([0, 1], V ) be a vector field that generates a scenario t 7→ Svt . Assume that a

target scenario is given by a collection (Star
i )i of shapes at a finite number of intermediate

times (ti)i ⊂ [0, 1] (with max{ti, i} = 1). Given a distance d on shapes, the discrepancy

between the two scenarios can be estimated at the different times ti by an attachment

term A of the form

A(q0, v) =

n∑
i=1

d(Svti , S
tar
i ) .

Let us recall that the shape Svti is given by the image qti(Xi) of the set

Xi = {x ∈ X | τ(x) ≤ ti}

of active points of the coordinate space X at time ti. If the shapes are modeled by currents

or varifolds in a RKHS W ′ and these are respectively denoted µvi ∈ W ′ for the solution

generated by v and µtar
i ∈W ′ and for the target, the attachment term can be

A(q0, v) =

n∑
i=1

cdata
i

2

∣∣µvi − µtar
i

∣∣2
W ′
,

where a set of real positive coefficients (cdata
i )i can be added to weight the terms.

Once again, we can add the Gaussian-L2 distance on landmarks dL on each pair of
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tips of the horns. With the previous notations, the final attachment term is given by

A(q0, v) =
n∑
i=1

chead

2
dL(qti(x̂), ŷtar

i ) +
cdata
i

2

∣∣µvi − µtar
i

∣∣2
W ′
.

4 Presentation of the algorithms and code

The code used is entirely performed with Matlab. We recall briefly the classic gradient

descent on the vector field.

Algorithm 5 Gradient descent on v

1 - Initialize v0 ∈ L2
V at zero.

Then for any n ∈ N, given q0 and vn,
2 - Compute qn the solution generated by vn ∈ L2

V .
3 - Compute pn1 = −dA(qn1 ) and integrate it backward to construct t 7→ pnt over [0, 1].
4 - Compute the gradient at vn: t 7→ δvnt = ∇vC(vnt )−KV Jf (qnt , p

n
t ).

5 - Update the vector field by vn+1 = vn + εδvn for a small ε > 0.

However, all the experiments are actually achieved with the Gradient descent on the

momentum (Shooting). It results from the transformation of the initial problem of match-

ing to an optimization problem of the initial momentum p0. The new energy to minimize

is of the type

E(q0, p0) =

∫ 1

0
C(v∗(qt, pt, t), t) dt+A(q0, v) , (5.23)

where (q, p) is generated by the reduced Hamiltonian system. We will modulate this prob-

lem with the new cost functions presented in Section 2. The gradient of this energy requires

to introduce the auxiliary variable (Q,P) of (q, p) presented hereafter. The gradient has

then a particularly simple expression:

〈∇E(q0, p0), (δq0, δq0)〉 = −〈Q0, δq0〉 − 〈P0, δp0〉 . (5.24)

The code for the gradient descent in this situation is given in Algorithm 2. We present

Algorithm 6 Gradient descent on the momentum (Shooting)

1 - Initialize: q0 = init(Star) and p0 = 0.
2 - Integrate forward: (q1, p1) = compute.forward(q0, p0).
3 - Compute the co-variables: Q1 = gradient.attachment.term(q1,Star), P1 = 0.
4 - Integrate backward: (Q0,P0) = compute.backward(q, p,Q1,P1).
5 - Update the parameters: (q0, p0) = update(q0, p0).

here the steps 2 to 5 of the algorithm. The initialization will be discussed further below

in Section 5. To simplify, we will only assume that the target is given at the final time.

In practice, A only depends on the target Star and on the final shape q1 generated by the

forward equations.
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4.1 Compute forward

The function compute.forward performs a integration forward with a Runge Kutta

method (RK2). It requires to compute the derivatives

(q̇t, ṗt) = compute.qpdot(qt, pt, t) ,

given by the system 
q̇t = 11τ≤tv

∗(qt, pt, t)(qt) ,

ṗt = −11τ≤t
(
dv∗(qt, pt, t)(qt)

)∗ · pt . (5.25)

The optimal vector field v∗(q, p, t) must satisfies the equation

∇vC(vt, t)−KV J (qt, pt, t) = 0 .

In all situations, this vector field is built on the momentum map KV J up to some

projections and weighting. We will explicit it in each case after a brief description of the

momentum map.

4.1.1 Momentum map

For a RKHS with a kernel kV , we have

KV J (q, p, t) =
∑

x∈X,τ(x)≤t

kV (·, q(x))p(x)

and thus for any u, δu ∈ Rd

dKV J (q, p, t)(u) · δu =
∑

x∈X,τ(x)≤t

(
∂1kV (u, q(x))δu

)
p(x) .

When kV is a scalar Gaussian kernel, we will always use the classic cost function so

that

v∗t = KV J (qt, pt, t) .

At any time t ∈ [0, 1], we need thus to compute for any x ∈ X such that τ(x) ≤ t

q̇t(x) =
∑

x′∈X,τ(x′)≤t

kV (qt(x), qt(x
′))pt(x

′)

=
∑

x′∈X,τ(x′)≤t

exp

(
−|qt(x)− qt(x′)|2

2σ2
V

)
pt(x

′)

and

ṗt(x) =
∑

x′∈X,τ(x′)≤t

− 1

2σ2
V

exp

(
−|qt(x)− qt(x′)|2

2σ2
V

)
(pt(x

′)T pt(x))(qt(x)− qt(x′)) .

When the kernel generates the direct product of antisymmetric matrices and transla-
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tions on Rd, i.e. V = Ad × Rd, we have

KV J (q, p, t) =
(
KA
αJ (q, p, t),KNJ (q, p, t)

)
=

 1

α
projAd

 ∑
x∈X,τ(x)≤t

p(x)q(x)T

 ,
∑

x∈X,τ(x)≤t

p(x)


and for any u ∈ Rd

dKV J (q, p, t)(u) = KA
αJ (q, p, t) .

Hence, if v∗ = (A∗, N∗), the forward equations are given by
q̇t = 11τ≤tA

∗
t qt +N∗t ,

ṗt = 11τ≤tA
∗
t pt .

(5.26)

From these equations, we can now describe each specific setup. Hereafter, we will mark

the cost function with subscripts to indicate the main parameters. Note however than for

the constrained norm, the cost functions depend on the two constants ν and α.

4.1.2 Adaptive norm

The cost function is given by

Cα,ν(v, t) =
νt
2
|v|2V,αt .

The optimal vector field is given by

v∗(q, p, t) =
1

νt
KV
αtJ (qt, pt, t) .

4.1.3 Constrained norm: general situation

The cost function is given by

Cλ,γ(v, t) =
ν

2
|v|2V,α −

λt
2

(|v|2V − ct) +
γ

2
(|v|2V − ct)

2 .

The optimal vector field is given by

v∗(q, p, t) = ntK
V
α J (q, p, t) ,

where nt = n(q, p, t) is the largest root of the polynomial:

R(X) = 2γ
∣∣KV

α Jt
∣∣2X3 + (ν − λt − 2γct)X − 1 .
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4.1.4 Constrained norm: rotations and translations

The cost function is given by

Cλ,γ(v, t) =
ν

2
|v|2V,α

− λAt
2

(|A|2Ad − c
A
t ) +

γA

2
(|A|2Ad − c

A
t )2

− λNt
2

(|N |2Rd − c
N
t ) +

γN

2
(|Nt|2Rd − c

N
t )2 .

The optimal vector field is given by

v∗(q, p, t) = (A∗t , N
∗
t ) = (atK

A
αJt, ntKNJt) ,

where at and nt are respectively the largest root of the polynomials:

RA(X) = 2
γA

α

∣∣KA
αJt

∣∣2X3 +

(
ν − λAt

α
− 2

γA

α
cAt

)
X − 1 ,

RN (X) = 2γN
∣∣KNJt

∣∣2X3 + (ν − λNt − 2γNcNt )X − 1 .

4.1.5 Combined cost functions in the rotations and translations case

The cost function is given by

Cα,ν,λ,γ(v, t) =
νt
2
|v|2V,αt

− λAt
2

(|A|2Ad − c
A
t ) +

γA

2
(|A|2Ad − c

A
t )2

− λNt
2

(|N |2Rd − c
N
t ) +

γN

2
(|Nt|2Rd − c

N
t )2 .

The optimal vector field is again given by

v∗(q, p, t) = (A∗t , N
∗
t ) = (atK

A
αtJt, ntK

NJt) ,

where at and nt are respectively the largest root of almost the same polynomials RA and

RN defined above where however the constants α and ν depends now on time:

RA(X) = 2
γA

αt

∣∣KA
αtJt

∣∣2X3 +

(
νt −

λAt
αt
− 2

γA

αt
cAt

)
X − 1 ,

RN (X) = 2γN
∣∣KNJt

∣∣2X3 + (νt − λNt − 2γNcNt )X − 1 .

Note that when the parameters λ and γ are null, we retrieve the coefficient of the adapted

norm setup : at = nt = 1
νt

.

253



4.2 Compute backward

The function compute.backward performs a integration backward of a covariable (or

dual variable) (Q,P ) with a Runge Kutta method (RK2). Let us recall the definition of

these covariables (see Chapter3 for the details). For any trajectory y = (q, p) ∈ C([0, 1], B×
B∗), the covariable (Q,P ) associated to (q, p) is initialized at time t = 1 by

Q1 = −dA(q1) and P1 = 0 .

They then satisfy the system
Q̇t = ∂qC(v∗(qt, pt, t), t)− ∂p∂qHr(qt, pt, t) · Qt + ∂2

qHr(qt, pt, t) · Pt ,

Ṗt = ∂pC(v∗(qt, pt, t), t)− ∂2
pHr(qt, pt, t) · Qt + ∂q∂pHr(qt, pt, t) · Pt .

(5.27)

The second derivatives of the Hamiltonian are computed by finite difference (see [5]). Note

that in the case of rotations and translations, these derivatives have yet an expression

simple enough to be used.

We explicit now the gradient of the cost function for a general RKHS V or for rotations

and translations. The optimal time-varying vector field at any time t, v∗t depends only on

yt = (qt, pt) and t. We replaced then the notation C(v∗t , t) by C(yt, t).

4.2.1 General RKHS

With the classic cost function, we have

C(yt, t) =
1

2
|v∗(yt, t)|2V

=
1

2

∑
x∈X
τ(x)≤t

∑
x′∈X
τ(x′)≤t

p(x′)TkV (q(x′), q(x))p(x) . (5.28)

Since Hr(yt, t) = 1
2 |v
∗(yt, t)|2V = C(yt, t), we have as with the standard dynamic

∇qC(yt, t) = −ṗt , (5.29)

∇pC(yt, t) = q̇t . (5.30)

4.2.2 Rotations and translations

In the case of rotations and translations, the constrained norm setup generates for any

t ∈ [0, 1] the coefficients a and n that depend on yt = (qt, pt). The gradient of the cost

function becomes thus slightly more complicated since we have to compute the derivatives

of these two coefficients with respect to yt. With the combined cost function, we recall

that v∗ is the solution at all time t ∈ [0, 1] of

∂vC(v∗t , t) = J (qt, pt, t) .
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If we rewrite C(·, t) as a function of yt, C(yt, t)
.
= C(v∗(yt, t), t), we have then

∂yC(yt, t) · δy = ∂vC(v∗t , t) ◦ ∂yv∗t · δyt
= J (yt, t) ◦ ∂yv∗(yt, t) · δyt
= ∂y

(
J (y′t, t) | v∗(yt, t)

)
|y′=y

· δyt

= ∂y
(
at〈KA

αtJ
′
t ,K

A
αtJt〉+ nt〈KNJ ′t ,KNJt〉

)
|y′=y

· δyt

= ∂yat · δyt|KA
αtJt|

2 + ∂ynt · δyt|KNJt|2 + (∂yJt · δyt | v∗t )
= ∂yat · δyt|KA

αtJt|
2 + ∂ynt · δyt|KNJt|2 + (δpt | ξqt,t(v∗t )) + (∂qξqt,t(v

∗
t )
∗ · pt | δqt)

= ∂yat · δyt|KA
αtJt|

2 + ∂ynt · δyt|KNJt|2 + (δpt | q̇t) + (−ṗt | δqt) .

The variables a and n are roots of the polynomials RA and RN . Consider RA as a

functional of the variables (y, t, a) and assume that a is a simple root then on a small

neighborhood of (y, t), there exists a unique root a(y, t) of X 7→ RA(y, t,X) and we have

thus locally RA(y, t, a(y, t)) = 0. We denote at = a(y, t) and derive this expression.

∂ya(y, t) · δy = −∂yR
A(y, t, a(y, t)) · δy

∂aRA(y, t, a(y, t))

= −
4γ

A

α a
3
t

6γ
A

α |KA
αJt|

2 a2
t + (ν − λAt

α − 2γ
A

α c
A
t )

(
∂yJt · δy |KA

αJt
)

= −
4γ

A

α a
3
t

6γ
A

α |KA
αJt|

2 a2
t + (ν − λAt

α − 2γ
A

α c
A
t )

1

α

(
〈δp, 11τ≤tA · q〉B − 〈11τ≤tA · p, δq〉B

)
.

Likewise,

∂yn(y, t) · δy = −∂yR
N (y, t, n(y, t)) · δy

∂nRN (y, t, n(y, t))

= − 4γNn3
t

6γN |KNJt|2 n2
t + (ν − λNt − 2γNcNt )

(
∂yJt · δy |KNJt

)
= − 4γNn3

t

6γN |KNJt|2 n2
t + (ν − λNt − 2γNcNt )

〈δp, 11τ≤tN〉B .

4.3 Update

The update is simply given by{
q0 = q0 + µqQ0 ,

p0 = p0 + µpP0 .
(5.31)

The step size (µq, µp) of the gradient descent is slightly increased after each successful step

and decreased when the energy increases.

In some case, especially when we want to interpolate intermediates times, the gradient

P0 is smoothed before the update. This is achieved by a convolution with a Gaussian with
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respect to space (q0(x) ∈ X) and time (τ(x) ∈ [0, 1]) as follows:

SmoothP0 =
∑
x′∈X

exp

(
−|q0(x)− q0(x′)|2

2σ2
p

)
exp

(
−|τ(x)− τ(x′)|2

2σ2
τ

)
P0(x′) .

We could have smooth P0 with respect to spatial localization in the coordinate space

(x ∈ X). The choice of using q0 brings the geometry of the shape in the ambient space.

However, since the shape has not been deployed yet, the addition of the time correlation

is then important since q0 can be strongly not injective (see the example of the tube).

5 Numerical experiments: general settings

5.1 Model

The meshes all have the same structure : 3× l×L points. We will indeed only consider

horns or tubes. This means that the shape at time 0 is reduce to one leaf of l points in R3.

For the horns, this leaf is merged to a single point to model the end of the tip. Otherwise,

this leaf is a curve that will form the first boundary of the shape. Then, the L− 1 other

leaves of l new points of R3 will gradually appear during the development. The leaves

always appear at regular time intervals. For example if L = 2k+ 1, at half time the shape

is formed by the k + 1 first leaves.

The time discretization of the interval [0, 1] used for the integration steps (forward and

backward) is equal to the image of τ . Which means that L = T . Refine this discretization

did not seem to improve significantly the results in the following examples. However,

in Section 7, to display the norm of the optimal vector field obtained, we compute the

associated trajectory one more time at the end of the algorithm with a finer discretization

to show that between the appearance of two successive leaves, the dynamic is classic (no

creation from a discrete point of view) and the norm is thus constant.

For most experiences displayed below, we will give the runtime of the algorithm. Since

the decision to stop the gradient descent can be quite subjective, we will give the average

time for 100 iterations then the full time associated to the results as they are displayed.

5.2 Initial position

Once the number of leaves and the number of points of the meshes are fixed, the first

step to create a scenario is to generate its initial position. Let us recall that the initial

position can be seen as the pull backward through the flow of each leaf q1(X{t}) of the

final shape to its position qt(X{t}) at time t when it appeared.

In order to generate a horn target, we define the form of the last leaf that will be the

base of the target at its final state and compute a linear reduction of this leaf toward the

center that will be the tip of the horn at its birth. To initialize the algorithm, the initial

position q0 is defined likewise via the base of the target. We compute a linear reduction

of the base (closed polyline) to generate the L initial leaves.

In Section 6.4, we will see that the initial position of a tube is very different. Since

every leaves of the tube have a similar shape, their pull backward at their initial position
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Figure 5.16 – Generation of the initial position from the base of the target.

leads to a superimposition in the plan embedding the creation process (as for the horns)

of circular curves eventually completely identical.

5.3 Target simulation

All our experiments are achieved with simulated target shapes. These targets are

simulated with the generative model implied by the growth dynamic. We create a flat

initial position as presented above on the right side of Figure 5.16, a deformation and

we compute the target’s growth scenario. All our targets are generated by rotations and

translations (i.e. we generate a deformation from V = Ad × Rd). We will note hereafter

vtar = (Atar, N tar) the vector field that generates the target.

To be more accurate, we only use vertical translations. Since we also always work in

R3, it leads to

V = A3 × R(0, 0, 1) .

In all our experiments, the meshes of the target and the solutions have the same

number of points. This implies that for both shapes the new leaves appear at the same

time. The alignment of the leaves when the shapes are displayed one over the other allows

then to visually measure the correlation of the evolution of each pair of leaves. Since this

alignment can be disturbingly perfect, we add a slight noise to the target. The scale of

this noise is not significant with respect to the scale of the attachment term on the shape.

It will just allow to clear any doubt when the matching of the leaves with the target

are visually perfect. The comparisons between the results and the target (final shape,

development, deformation) will then be done with the initial data but the algorithm runs

with these noisy targets (see Figure 5.17).

5.4 Parameters of the data attachment term

We refer to Section 3 for the notations. The scale with respect to the position is given

by

σ = r ,
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Figure 5.17 – Example of a target (on the right) and its noisy version used in the algorithm.
In case of intermediate times, we will apply this noise to every input shape.

where r is the radius of the base of the horn. The scale of the kernel that compares the

unit normal vector does not depend on the shape and is either fixed to

σN = 1

or

σN >> 1

to retrieve a current attachment term.

In case of multiple intermediate times of the growth scenario of the target, we have to

choose the weights of the different terms induced by these input in the attachment term.

These weight are given by

A(q0, v) =
n∑
i=1

chead

2
d(qti(x̂), ŷtar(i)) +

cdata
i

2

∣∣µvi − µtar
i

∣∣2 .
We tried few possibilities to define cdata as a decreasing coefficient with respect to time.

It appeared that choosing cdata constant gave better results.

5.5 Parameters of the cost function

A general expression of the cost function embedding every cases described previously

is given by

Cα,ν,λ,γ(v, t) =
νt
2
|v|2V,αt

− λAt
2

(|A|2Ad − c
A
t ) +

γA

2
(|A|2Ad − c

A
t )2

− λNt
2

(|N |2Rd − c
N
t ) +

γN

2
(|Nt|2Rd − c

N
t )2 .

The adapted norm setup corresponds to the case λ ≡ γ ≡ 0 and the constrained norm

setup corresponds to the case α and ν constant. For this last setup, we always use the

exact norm of the vector field that generates the target (i.e. cA = |Atar|2 and cN = |N tar|2

with the notations introduced above).

Besides the global relative weight of all these parameters, we need to choose for the

adapted norm parameters α and ν their evolution in time. We tried on a basic horn (as in
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the first example we will see) few possibilities (linear, t 7→ ln(1 + t), t 7→
√
t) and a linear

function of the time seemed to be the best solution. We use thus the increasing sequence

r1, . . . , rL of the radius of the L leaves of q0 to initiate α and ν. In fine, we just have

to adjust two constants to weight these two sequences. At this point however, we have

α(0) = ν(0) = 0. To obtain two strictly positive coefficients, we replace the radius r1 = 0

associated to the tip of the horn by r1 = 1
1+lr2 (since there is a ratio of 1 point against

1 + l points between the two first leaves).

Figure 5.18 – Solution after 1 iteration of gradient descent with too high constraints (on
the top, the target, on the bottom, the solution).

Remark 5.1 (Soft Constraint : Initialization). When the horn is long and curved as

in Section 6.3, the coefficients λ and γ must be chosen really small (note that they will

increase during the gradient descent) otherwise quite unpleasant behaviors can be produced

during the first steps of the gradient descent. Indeed, the constraints will strongly increase

the weight of the rotation and the horn will rotated around its base. The energy will

decrease compared to the flat disc that is the shape at the beginning but then there is no

chance to recover a shape close to a horn (see Figure 5.18).

Remark 5.2 (Soft Constraint : Update). Besides a soft initialization of the constraints,

we also keep these constraints relatively soft through the update as described in the recall

of the augmented Lagrangian method (in Section 2.3). The main reason is to show that we

do not need a strong constraint to obtain good results and therefore if we do not have the

initial information, we could still proceed to the constrained gradient descent with a rough

estimation of the norm. Moreover, we will see with the rotations that this constraint can

be tricky because the algorithm does not equally treat every axes of rotation.

Remark 5.3 (Balance of the Parameters between the Cost Function and the Attachment

Term). We observed that with the constrained norm, the global weight of the cost function

in the energy is much less important than with a classic cost function. With the Gaussian

kernel, we choose the coefficient of the cost function such that at the steady-state the cost

function and the attachment term have the same order of magnitude.
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6 Numerical experiments: rotations and translations

We present in this section four examples of matchings with the deformation group of

rotations and translations. For all the experiments, the aim is to retrieve the complete

development of the shape over time. The faithful recovering of the development will be

evaluated by visual comparison of the shapes, of the norm of the vector fields or of the

laddering of the leaves. The different cost functions previously introduced will be fully

exploited and compared throughout these examples. We recall that the constrained norm

setup applies a constraint on the norm of the optimal vector field, the adapted norm setup

changes the weight on this norm over time to favor the growth at the beginning of the

development and the combined setup mixes this two tools.

For Examples 1, 2 and 4, the only input data is the final state of the target. For

Example 3, the horn being more complex, we also consider some intermediate times of the

development of the target. In Example 4, the horns are exchanged for tubes: besides the

exploration of other types of shapes, it will highlight the complexity of horns with their

singularity at the top. At last, the optimization of the initial position will be explored in

Example 5.

6.1 Example 1 - Cost functions competition

For this first example, we consider a simple horn with a low curvature and a regular

growth pattern. This means that the norm of the vector field used to generate the target

is constant (see the red curves in Figure 5.20).

From a shape point of view, we can say from Figure 5.19 that the development is very

well recovered. The perfect alignment of the horizontal leaves between the solution and

the target at the final state reflects by itself the quality of the matching on the whole

development. In all experiments, the target and the solution have willingly the same

number of leaves in order to observe this alignment (see Section 5.3).

The transverse curves however seem to slightly diverge at the top of the horns. This

indicates that the deformation associated to the solution is not exactly the one used to

generate the target. This difference will be deepened hereafter.

Regarding the norm of the vector fields, let us note |A∗| and |N∗| the norms of the

skew-symmetric matrices and the norm of the translations for a solution and likewise |Atar|
and |N tar| the respective norms associated the target, all defined on the time interval [0, 1]

of the development of the horns. Figure 5.20 compares for each setup these norms for the

solution (in blue) and for the target (in red). As a first observation, |N∗| is no longer

null at time 0 and although |A∗| is always null at time 0 (as explained in Section 2.2),

it jumps immediately for t > 0 towards |Atar|. These behaviors are thus quite different

from those observed with the classic function in Figure 5.9. Moreover, the norms with

the contrained norm setup are not perfectly recovered because we chose to apply a soft

constraint as explained in Remark 5.2. They are even softer in the combined setup but as

we can observe it is enough to force the jump of |A∗| at t = 0+.

An interesting property of the group of rotations and translations is that the momenta

can only be rotated over time. Hence, their norms remain constant and the initial momen-

tum allows to visualize how the vector field v∗ is built. The initial momentum with the

adapted norm displayed in Figure 5.21 is homogeneous. This implies that all the points
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Both Combined

Constrained Norm

Adapted Norm

Figure 5.19 – We display on each row the development of the solution overlayed with the
target’s development. These three experiments have been computed in 30 minutes for
the adapted norm setup and 1 hour for the two other setups. The time required for 100
iterations of the gradient descent lies in all cases around 30sec.
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Figure 5.20 – Comparison of the norms of the deformations between the solution (in blue)
and the target (in red). From left to right, with the adapted norm setup, the combined
setup, and the constrained norm setup. We display separately in each case the norms
of the skew-symmetric matrices and the norms of the translations over the time interval
[0, 1].

contribute to v∗ with equal importance. On the contrary, with the constrained norm the

initial momentum is concentrated around the first leaves. This initial momentum looks

similar to the one obtained with the classic cost function (see Figure 5.22). The con-

straints seem thus to generate the same solution but to accelerate the convergence of the

gradient descent when the adapted norm setup tends to create a different solution. The
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Figure 5.21 – Initial momentum p0 on the initial position q0. From left to right, with
the adapted norm setup, the combined setup, and the constrained norm setup. Note how
the initial momentum p0 is concentrated on the first points around the tip in the case of
the constrained norm. We take here the opportunity to remind that with the shooting
method on the initial momentum, the initial momentum and position encode the whole
development of the shape.

main difference between these two momenta is the orientation around the tip of the horn.

In Figure 5.22, the momentum is mainly directed upwards in the middle. This can be

explained by the balance issue between the rotations and the translations as discussed in

Section 2.1 (see Figure 5.8): the model favors the translations over the rotations at the

beginning of the development.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 5.22 – Initial momentum with the
classic cost function. The final state of
the horn is displayed in Figure 5.7 (result
after 200k iterations).
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Figure 5.23 – Coefficients in the equa-
tion of the optimal vector field v∗ =
(atK

A
αJt, ntKNJt) obtained with the

constrained norm setup (see Section 2.4).

6.1.1 Horizontal rotation

Figure 5.20 reveals that the skew-symmetric matrix is always underestimated by the

algorithm. We tried to adjust the weight between A and N but the problem lies elsewhere.

As noticed previously and as it can be observed again on Figure 5.24, the vertical lines

on the horns slightly diverge on their way from the base to the top. These lines highlight

how the horn turns on itself during its development and ends twisted (the emerging part

of the shape is rotated but the future points remains static at their initial position which
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creates the twist effect).

Figure 5.24 – Comparison of the horizon-
tal rotations through the vertical lines be-
tween the solution in the combined setup
(on the left) and the target (on the right).
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Figure 5.25 – To complete Figure 5.24,
we display here t 7→ ωt the angular ve-
locity vector of the solution in the com-
bined setup (in blue) and the target (in
red) (equivalent to A∗ and Atar).

This type of deformation leaves the horn almost invariant unless under a high cur-

vature (or for example completely invariant for a regular cone). Hence, as confirmed by

Figure 5.25, the algorithm ignores the vertical component of the angular velocity vector

equivalent to the skew-symmetric matrix. In Example 6.3 the horn will have a higher

curvature that will enforce the algorithm to retrieve this horizontal rotation.

Remark 6.1. Let us recall that to apply a constraint on the norm, we always use the

exact norm of the vector field that generates the target (i.e. cA = |Atar|2 and cN = |N tar|2

with the notations of Section 2.4). This choice can thus lead to a bad setting of these

parameters. A strong constraint that takes into account a large horizontal rotation can be

in conflict with an optimal solution. We tried on this example to apply a strong constraint.

The algorithm does not retrieve the horizontal rotation but twists in a wrong direction the

tip of the horn to compensate for the lack of rotation. Moreover, we also ran the algorithm

under a soft constraint with different values of cA and cN with success on this example.

This shows a large flexibility of the constrained norm setup.

6.1.2 Additional landmark on the tip of the horn

Figure 5.26 displays the result of the matching with the adapted norm but without

landmarks on the tip of the horns. We can observe that the tip of the horn has been

turned inside. At the beginning of the gradient descent, the tip of the horn is outside. At

some point, the generated horn becomes close to the target but bigger. We can assume

that the momentum of the tip of the horn is used to recalibrate the deformation. The

momentum on this particular point is used more than the others because the position of

the tip of the horn barely change the shape at the scale of the global attachment term.

On the bottom of the figure, we can observe that all the initial localized momenta are

directed upward except the one of the tip. After the end of the algorithm, we computed

one more time the covariable P0 and looked at the tip point. Although the gradient Q1 of

the attachment term displayed on the right side of the figure tends to push the tip outside
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Figure 5.26 – Matching without landmarks on the tip of the horns. On the left, the overlay
of the solution and the target at time 1. On the right, the solution at time 1 with the
gradient Q1 of the attachment term. On the bottom, the initial momentum p0 on the
initial position q0.

the horn (it requires a strong zoom on the figure to observe it), the vertical component of

P0 at the tip point was still negative.

Remark 6.2. This problem of the tip illustrates well an important property of the model.

When the localized momenta of the last leaves determines only the evolution of their area

of the shape, the momenta of the first leaves plays a role on the evolution of the whole

shape. The dependence of these last momenta to the whole shape is accentuated in the

case of the horn since the relative size of their local area tends to 0. We will see another

situation with the example of a tube in Section 6.4.

Remark 6.3. At last, a natural question is to consider a basic setup with the classic cost

function and this additional landmark on the tip of the horn. A strong weight on this

landmark accelerates indeed the convergence of the algorithm and offers a non null initial

vector field (which allows to create the tip of the horn instead of a flat top). However, this

setup accentuates the concentration of the momentum on the tip of the horn as commented

before. The momentum tends to a Dirac on the landmark. An optimal vector field would

thus be built on a punctual momentum. This solution could be enough for simple horns

but becomes quickly inadequate for more complex horns.

6.2 Example 2 - Non constant growth

Now that the model is optimized to favor vector field with a constant norm, an inter-

esting question is to test its flexibility. Indeed, if we think to the applications in medical

imaging, one would like to be able to detect abnormal growth. The vector field vtar used

to generate the target in this example has a non constant norm. The parameters of the

constraint takes into account this variation since we fixed as before for any t ∈ [0, 1],

cAt = |Atar
t |2 and cNt = |N tar

t |2. Surprisingly, the adapted norm setup, that should promote

a constant growth, achieved a better matching than the constrained norm setup.
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Constrained Norm
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Figure 5.27 – We display on each row the development of the solution overlayed with the
target’s development, then the final state q1 in each case and the target. Note that besides
the issue on the tip of the horn for the constrained norm setup, the horizontal rotation is
slightly better recovered with the adapted norm setup.
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Figure 5.28 – Comparison of the deformations between the solution (in blue) and the target
(in red). On the left, with the adapted norm setup. On the right, with the constrained
norm setup. We display separately in each case the norms of the skew-symmetric matrices
and the norms of the translations over the time interval [0, 1].

For this example, we only performed three updates of the Lagrangian coefficients. The

constraint seem strong enough to retrieve the global behavior of the development. We tried

several settings of parameters without resolving the issue at the tip of the horn for the

constrained norm setup. Note that as for the first example with the classic cost function,

the horn is globally recovered with the first step of the gradient descent, then the energy

continues to decrease very slowly (see Figure 5.30). It would be interesting to deepen this

problem and find a way to accelerate the convergence.
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Figure 5.29 – Observation of the norm of the mean initial momentum p0 on each leaf with
the adapted norm setup: ti 7→ |mean{p0(x) | τ(x) = ti}|R3 . On the left, for the previous
Example 1 where the expected norm of v∗ is constant, in the middle, for this Example
2. On the right, norm of the optimal vector field v∗ for Example 2. The addition of a
new leaf of initial momenta at each time of creation ti explains the ability of the model to
highlight delay in the growth.
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Figure 5.30 – Evolution of the energy during the gradient descent with the constrained
norm setup. We cut the 50 first iterations. The three pikes at the beginning correspond
to the update of the Lagrangian parameters. Time for 100 iterations : 27.5 sec (250k
iterations : 18 hours). Comparison with the adapted norm setup : time for 100 iterations
: 21 sec (25k iterations : 1,5 hour). (size of the mesh in both cases : 3× 6× 13).

6.3 Example 3 - Intermediate times

We saw with the previous examples than in a case of a short horn, the final state is

enough to retrieve very well the growth dynamic of the horn during its complete devel-

opment. In the next example, we generate a much longer horn with a higher curvature.

We will here compare the result of the matching with and without intermediate times.

Four intermediate times of the horn are added to the input data (see Section 5.4 for the

expression of the data attachment term). In both situations, we will use the combined

norms setup. The results are displayed in Figure 5.31 to 5.33.
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Figure 5.31 – Display of the final state q1 of the solution overlayed with the target from
two points of view. On the top row, without intermediate times. On the bottom row, with
intermediate times. The matching of the final shape is better with intermediate times.
Moreover, we can also already see here that the horizontal rotations are better recovered
with the intermediate times. Indeed, if we look closely, we can see the longitudinal lines
diverging on the first row. This difference will striking on the complete development (see
Figure 5.32).

With intermediate times

Without intermediate times

Figure 5.32 – We display on each row the development of the solution overlayed with the
target’s development. On the top row, without intermediate times. On the bottom row,
with intermediate times. The growth dynamic of the development is significantly better
retrieved with the intermediate times. Note that with intermediate times, the average
time for 100 iterations is 72 sec (110k iterations : 22 hours) and without intermediate
times, the average time for 100 iterations is 40 sec (230k iterations : 25 hours).
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We see on this example that the horizontal rotation that might leave the final shape

invariant has a deep impact on the growth scenario of the horn’s development. Without

the additional information of few intermediate times, the model does not retrieve this

component of the deformation. Figure 5.33 gives a finer analysis of the situation.
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Figure 5.33 – We display here the angular velocity vector t 7→ ωt associated to the skew-
symmetric matrices of the solution A∗ (in blue) and of the target Atar (in red). On the
left side, for the solution without intermediate times. On the right side, for the solution
with intermediate times through three different points of view of the same figure. Note
that the target has a vector ω more or less constant over time, evolving as a small wave.
In the first case, we can observe an important change of the solution at the end. The
rotation on itself of the horn is adjusted only at the end of its development. This explains
the differences at the beginning of the development on the first row of Figure 5.32.

Remark 6.4. On this example, the Lagrangian parameters have been updated in both cases

about 50 times. The constraint needed yet to be treated carefully. Indeed, when the norms

converge faster than the shapes, the gradient descent tends to end prematurely.
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Figure 5.34 – Comparison of the deformations between the solution (in blue) and the
target (in red). On the left, without intermediate times. On the right, with intermediate
times. We display separately in each case the norms of the skew-symmetric matrices and
the norms of the translations over the time interval [0, 1].

6.4 Example 4 - Boundary effect

The attachment term built with metrics on currents and varifolds grants an important

role to the boundary of the shapes. The Cartan’s formula shows that the optimal vector

field is given as an integral operator on two domains, the shape and its boundary, with

their respective volume form. The dependence of these two terms in the discretization of

the shapes with respect to the number of points has been studied for example in [16]. Here,

we give a new example of shapes : tubes. The coordinate space remains X = [0, 1] × S1

and the birth tag is the projection of the first coordinate. Yet, the image of the first leaf

is now a close curve. This changes completely the form of the initial position. Instead of

a disc as for the horns, the initial leaves could be here all superimposed into one single

curve. We display in Figure 5.37 the initial momentum on the initial position.

We will see that the existence of a boundary attenuates slightly the issues discussed

in Section 2.1 but does not solve them. At the initial time 0, the shape is not anymore

reduced to a point but to a curve. This implies that v∗0 6= 0 even before the discretization

of the shape.

In this specific example, the attachment term is reduced to the oriented varifold norm.

No landmark is added on the initial boundary.

In the three experiments displayed in Figure 5.35, the final state of the target is always

perfectly recovered. However, from left to right the laddering of the leaves becomes more

regular. With the classic cost function, the development of the tube strongly accelerates

over time as the thickness of the slices increases from the top to the bottom. On the

contrary, with the constrained norm setup the thickness of the slices is almost constant.

These observations are corroborated by norms of the vector fields displayed in Figure 5.36.

In the last setup, these norms for the target and the solution are almost perfectly equal.

We took indeed the opportunity on this example to strengthen the constraint in the

constrained norm setup (mainly by the number of update of the Lagrangian parameters
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Figure 5.35 – We display on the top row the solution overlayed with the target at time
1. On the second row, we display the momentum of the solution at time 1. From left to
right, the results are produced with the classic cost function, the adapted norm setup and
the constrained norm setup.

: 12 against 3 for the two first examples). The evolution of the energy for this setup is

displayed in Figure 5.38.
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Figure 5.36 – Comparison of the deformations between the solution (in blue) and the
target (in red). From left to right, with the classic cost function, with the adapted norm
setup and the constrained norm setup. We display separately in each case the norms of the
skew-symmetric matrices and the norms of the translations over the time interval [0, 1].
Note that for shapes with boundary like these tubes and unlike horns, |A∗| is no longer null
at time 0. In every setup, the runtime for 100 iterations is 32 sec. In the two first cases,
the algorithm had roughly converged after 8min (1500 iterations). We let the algorithm
run a bit longer for the constrained norm setup, as an example, with 7000 iterations (i.e.
30min).
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Figure 5.37 – Initial momentum p0 on the initial position q0.

This example also allows to illustrate the possibility for the initial position q0 : X → Rd

to be highly non injective. If the creation process occurs at a specific fixed area independent

of the time, each leaf appears at the same position of the other ones. Hence the set

{q0(X{t}), t ∈ [0, 1]} of all initial position of the leaves would be reduced here to one close

curve.
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Figure 5.38 – Evolution of the energy during the gradient descent with the constrained
norm setup. The peaks correspond to the updates of the Lagrangian coefficients. These
updates are achieved at a minimal interval of 500 iterations and below a given threshold
for the slope of the energy curve. We cut the 50 first iterations.

Remark 6.5. We can observe on this example that the runtimes of the algorithm is shorter

than for the horns. The time for 100 iterations is equivalent, but the algorithm converges

much faster. This is due to the difficulty to match the peak of horns. The main part of

the horn is retrieved quickly but then the most part of the gradient descent is dedicated to

the peaks.

Remark 6.6. On this experiment, the initial position is exactly the one used to generate

the target. We will see in the next example that we could have proceed without this input.

Without the initial position of the target, we could have compute a interpolation, similar

to that described in Section 5.2, from the base of the target to the projection of its top

boundary in the initial plan.
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6.5 Example 5 - Optimization of the initial position

To finish the numerical experiments with the
group of rotations and translations, we gen-
erate a target with a disturbance of the po-
sitions of the initial leaves. Figure 5.39 dis-
plays the initial position of the target. Unlike
before, the arrangement of the leaves is no
longer regular. The external curve that mod-
els the base is close to a circle but the next
curves are then gradually deformed into el-
lipses. This behavior can hardly be estimated
from the final state of the target. Hence, the
initial position q0 is initialized here as before:
as a linear reduction of the base (last leaf) of
the target (see Section 5.2).
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Figure 5.39 – Initial position of the tar-
get.

The algorithm is applied with the combined norms setup. The constraint on the norm

is rather high to compensate the freedom induced by the relaxation of the initial position.

Figure 5.40 – Display of the final state q1 of the solution overlayed with the target from two
points of view. The black arrows point the few areas where the matching is non optimum.
Figure 5.24 displayed a similar front view of the horn and highlights how, here, the horn
strongly tapers from the base to the top.

During the gradient descent, q0 is updated by the equation

q0 = q0 + µqQ0 .

Yet, q0 is then projected in the horizontal plane. The optimization of q0 in this example

is rather successful. We can observe in Figure 5.41 how the leaves have been transformed

from circles (in cyan) to ellipses (in blue) and perform a close match to the initial position of

the target (in red) after this optimization. The gradient Q0 has been smooth as described

for P0 in Section 4.3 and cancel on the boundary. The balance between the optimization

of p0 and q0 has yet not been deepen. Note that one or few additional intermediate times

would be a strong input in this typical situation. One could for example expect to resolve

the issue pointed by the arrow on the left in Figure 5.40. Indeed, the initialization of
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Figure 5.41 – Deformation of the initial position q0. On the left, the initial positions of
the solution at the first step of the algorithm (in cyan) and at the end of the algorithm
(blue dash line). On the right, comparison of the optimized initial position of the solution
(blue dash line) with the initial position of the target (in red).

the initial position would be more accurate with the simple input of the bases of the

intermediate times (i.e. a distribution of few leaves of the initial position of the target

that we could interpolate).
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7 Numerical experiments: RKHS with a Gaussian kernel

To retrieve the rigidity of the rotations and translations, we used a large scale for the

Gaussian kernel of V (see Figure 5.54). In the two following example, a landmark on the

tip of the shape was added to estimate the data attachment term.

7.1 Example 1 - The cone

The cone is the first example we tested with simply translations. Its construction is

almost perfectly retrieved after few iterations (with the adapted norm as the constrained

norm). A Gaussian kernel produces a result a bit less regular as displayed in Figure 5.42.

Five intermediate times are used to ensure the regularity of the development.

Figure 5.42 – Development of a cone. The faded evolution is the target. These five
intermediate states of the target have been used to estimate the data attachment term
during the gradient descent.
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Figure 5.43 – Square norm of the vector
field. The time subdivision is refined by
a factor of 5. Between the birth of two
leaves, the growth dynamic is reduced
to the standard dynamic and the norm
of the vector field is constant.
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Figure 5.44 – Initial momenta p0 on the
initial position q0. The arrangement of
the momentum (concentrated around the
tip) is strongly linked to the scale of the
kernel. Here, we have : σV = 0.9
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Figure 5.45 – Partial information on the
amount of creation at the base of the cone
measured by the thickness of every new
slice. In blue for the solution, in red for
the target.
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Figure 5.46 – Evolution of the thickness
of each slice of the cone over time. The
first slice is the part of the cone between
the two first leaves and its thickness is
displayed by the first curve (the longest
one).

As discussed in Section 2.1.1, the growth process is more complex to exhibit with non

rigid deformations like here. A constant amount of creation at the base of the horn is no

longer linked to a constant norm of the vector field as before. The norm of the vector

field also depends on the size of the shape and the scale of the kernel. We can observe

on Figure 5.42 that the growth retrieved by the algorithm seems too strong during the

beginning of the development then too slow. Indeed, on the last three states displayed,

the leaves are farther apart on the top of the cone then they become closer. However,

the growth is not anymore reduced to the creation process on the base since we can also

observe that the thickness between two leaves tends to increase slightly over time.

To deepen these observations, we display on Figure 5.45 the thickness between the last

two leaves appeared at each appearance of a new leaf. It measures thus the amount of

pure creation over time at the base of the cone (we only measure the thickness here but we

could then estimate the mass). The growth of the target is perfectly regular (red constant

curve). For the solution, besides a difficulty at the first times, this quantity decreases

strongly. However, the algorithm compensates this lack of creation by stretching the cone

afterwards. Indeed, Figure 5.46 displayed the thickness of each slice (part of the cone

between two leaves) of the cone over time. The thickness of the 3 first slices are rather

constant but the next slices continue to grow during all the evolution of the shape.

The start of each horizontal lines corresponds to its thickness at the appearance of the

second leaf that delimits its boundary. Hence, connecting the beginning of each line with

the faded curve restores the blue curve of Figure 5.45.
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Figure 5.47 – Evolution of the energy during the gradient descent. Time for 100 iterations
: 4min. Global runtime : 1h45 (size of the mesh : 3× 10× 25).

7.2 Example 2 - Basic horn

We take the opportunity on this last example to observe the impact of intermediate

times. The orientation of the leaves are much better retrieved with the intermediate

times. Yet, the global curvature of the horn struggles to emerge in this last setup (see also

Figure 5.49 and 5.50). Moreover, the two red slices are smaller than expected while the

blue, the cyan and the green slices have been gradually spread during the development.

On the other hand, the thickness of the slices without intermediate times are globally

more regular. At last, we observe for the cone as for the basic horn, a tendency to see

the thickness of the layers increase from the bottom to the top. Moreover, this thickness

increases during the development of the shape illustrating that the growth process can

also results from deformations as soon as we leave the rigid setting.

With intermediate times

Without intermediate times

Figure 5.48 – Development of the horn with and without intermediate times. The faded
evolution is the target. On the first row, the matching only included the final state of the
target. On the second row, all the intermediate states displayed have been used in the
gradient descent.
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Figure 5.49 – Final state of the horn without intermediate times. On the left, the result
at time 1. On the right, the target. In the middle, the overlay of both.

Figure 5.50 – Final state of the horn with intermediate times. On the left, the result at
time 1. On the right, the target. In the middle, the overlay of both.

Figure 5.51 displays the initial momenta p0 on the initial position q0. In both cases,

the momenta have been smoothed during their optimization as described in Section 4.3.

It led to a significant improvement especially with intermediate input. This operation did

not seem necessary with the group of rotations and translations (see previous Example 3).
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Figure 5.51 – Initial momenta p0 on the initial position q0. On the left, without inter-
mediate times. On the right, with intermediate times. Note that although the gradient
of the momentum is smoothed with a significant impact in the result, the optimal initial
momentum is in the end not very smooth.
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t -> |vt|
2, Simple (blue) and Multi (red)
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Figure 5.52 – Square norm of the vector field. Blue curve for the solution without inter-
mediate times, red curve for the solution with intermediate times.
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Figure 5.53 – Evolution of the energy during the gradient descent. On the left, without
intermediate times. Time for 100 iterations : 23sec (size of the mesh : 3 × 10 × 9). On
the right, with intermediate times. Time for 100 iterations : 40sec (size of the mesh :
3× 10× 9, 4 intermediate and final times). Global runtime for both experiments : 50mn.

7.2.1 Scale of the deformation

Let us recall that the Gaussian kernel is given by

kV : Rd × Rd −→ R
(x, y) 7−→ exp

(
− |x−y|

2

2σ2

) (5.32)

and that the optimal vector field v∗ is given at time t as the sum of the contribution of

every active point x ∈ X, τ(x) ≤ t via their current position and momentum:

v∗t =
∑

x∈X,τ(x)≤t

kV (·, qt(x))pt(x) .

Figure 5.54 highlights the scale of the deformations used in these two experiments.

We display on the same horn two vector fields with different scales σV , generated by the
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same Dirac momentum (arbitrary chosen) attached to the tip of the horn. Note that for

the smallest scale, the acceleration of the norm of the optimal vector field is stronger than

for the largest scale (see the global slopes on Figure 5.52). Despite this acceleration, the

flexibility of the smallest scale seems to favor a more regular creation process as discussed

above regarding the thickness of the layers.
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Figure 5.54 – The vector fields displayed on each horn are both generated by a Dirac mo-
mentum on the tip of the horn. It can be seen for a general momentum as the contribution
of one active point to the optimal vector field. Each picture illustrates one scale. The scale
on the left is σV = 0.5 as used without the intermediate times and on the right, σV = 0.7
as used with the intermediate times.
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8 Conclusion

We examined in this chapter the algorithm to optimize the initial momentum p0 and

applied it to illustrate the matching problem detailed in Chapter 3. We modulated this

problem with new cost functions corresponding either to a time-varying weighting of the

penalization on the flow (adapted norm setup) or to the addition of a constraint on the

norm of the vector field (constrained norm setup). We applied a new data attachment

term using the representation of surfaces by oriented varifolds. It was joined with a local

landmark attachment term to refine the result at small scale around the landmark.

This thesis was motivated by the need for new models to faithfully reproduce a bio-

logical phenomenon. It raises the issue to integrate additional prior information into the

traditional framework proposed by the LDDMM methods. In the case of growth scenar-

ios, the aim is to model the creation process but also to quantify it. The validation of

the numerical experiments focused specifically on the latter criterion. The different cost

functions were compared regarding the goal to retrieve the norm of the vector field used to

generate the target. The flexibility of the model was tested in order to evaluate its ability

to identify abnormal behavior such as growth delay. In contrast to the classic LDDMM,

building the momentum map with the growth dynamic through a gradual influx of new

initial momenta gives this flexibility and eliminates the need of reparametrizations in time

to detect such anomalies.

The model integrated without difficulty the addition of input data at known inter-

mediate times to reconstruct a scenario by interpolation. It can improve the results of

an experiment that could have approached the limits of the model by the high sharpness

and curvature of the studied horn. We also experimented the optimization of the initial

position q0 and investigated the initial boundary effect. Since the model should not be

limited to affine deformations, the chapter is concluded with some experiments with a

Gaussian kernel RKHS to model vector fields.

At last, as in the classic LDDMM framework, each scenario is completely characterized

by the low dimensional variables initial position q0 and initial momentum p0, paving the

way to a statistical analysis of the scenarios’ population.

280



Bibliography

[1] P. A. Absil, R. Mahony, and R. Sepulchre. Riemannian geometry of grassmann

manifolds with a view on algorithmic computation. Acta Appl. Math., 80:199–220,

2004.

[2] J. Ashburner and K.J. Friston. Diffeomorphic registration using geodesic shooting

and Gauss-Newton optimisation. Neuroimage, 55(3-3):954-967, 2011.

[3] W. Allard. On the first variation of a varifold. Annals of mathematics, 95(3), 1972.

[4] F. Almgren. Plateau’s Problem: An Invitation to Varifold Geometry. Student Math-

ematical Library, 1966.
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