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Abstract

In the field of computational anatomy, the Large Deformation Diffeomorphic Metric
Mapping (LDDMM) framework has proved to be highly efficient for addressing the pro-
blem of modeling and analysis of the variability of populations of shapes, allowing for the
direct comparison and quantization of diffeomorphic morphometric changes. However, the
analysis of medical imaging data also requires the processing of more complex changes,
which especially appear during growth or aging phenomena. The observed organisms are
subject to transformations over time that are no longer diffeomorphic, at least in a biolo-
gical sense. One reason might be a gradual creation of new material uncorrelated to the
preexisting one. The evolution of the shape can then be described by the joint action of a
deformation process and a creation process.

For this purpose, we offer to extend the LDDMM framework to address the problem
of non diffeomorphic structural variations in longitudinal data. We keep the geometric
central concept of a group of deformations acting on embedded shapes. The necessity for
partial mappings leads to a time-varying dynamic that modifies the action of the group of
deformations. Ultimately, growth priors are integrated into a new optimal control problem
for assimilation of time-varying surface data, leading to an interesting problem in the field
of the calculus of variations where the choice of the attachment term on the data, current
or varifold, plays an unexpected role. The underlying minimization problem requires an
adapted framework to consider a new set of cost functions (penalization term on the
deformation). This new model is inspired by the deployment of animal horns and will be
applied to it.

Keywords : computation anatomy, shape spaces, group of diffecomorphisms, large
deformation, growth model, variational method, optimal control, Riemannian metric.



Résumé en frangais

Dans le domaine de ’anatomie, & l'investissement massif dans la constitution de base
de données collectant des données d’imagerie médicale, doit répondre le développement
de techniques numériques modernes pour une quantification de la fagon dont les patho-
logies affectent et modifient les structures biologiques. Le développement d’approches
géométriques via les espaces homogenes et la géométrie riemannienne en dimension in-
finie, initialisé il y a une quinzaine d’années par U. Grenander, M.I. Miller et A. Trouvé,
et mettant en ceuvre des idées originales de d’Arcy Thompson, a permis de construire un
cadre conceptuel extrémement efficace pour attaquer le probleme de la modélisation et de
I’analyse de la variabilité de populations de formes.

Néanmoins, a l'intégration de l'analyse longitudinale des données, ont émergé des
phénomenes biologiques de croissance ou de dégénérescence se manifestant via des déforma-
tions spécifiques de nature non difféomorphique. On peut en effet observer lors de la
croissance d’un composant organique, une apparition progressive de matiere qui ne s’ap-
parente pas a un simple étirement du tissu initial. Face a cette observation, nous propo-
sons de garder 'esprit géométrique qui fait la puissance des approches difféfomorphiques
dans les espaces de formes mais en introduisant un concept assez général de déploiement
ol 'on modélise les phénomenes de croissance comme le déploiement optimal progressif
d’un modele préalablement replié dans une région de I’espace. Nous présentons donc une
généralisation des méthodes difféomorphiques classiques pour modéliser plus fidelement
I’évolution de chaque individu d’'une population et saisir ’ensemble de la dynamique de
croissance.

Nous nous appuyons sur ’exemple concret de la croissance des cornes animales. La
considération d’un a priori sur la dynamique de croissance de la corne, nous permet de
construire un chemin continu dans un espace de formes, modélisant ’évolution de la corne
de sa naissance, d’'un état réduit a un point (comme ’état d’embryon pour un humain ou
de graine pour une plante) a un age adulte quelconque de corne bien déployée. Au lieu
d’étirer la corne, nous anticipons 'arrivée de matiere nouvelle en des endroits prédéfinis.
Pour cela, nous définissons une forme mere indépendante du temps dans un espace virtuel,
qui est progressivement plongée dans I’espace ambiant en fonction d’un marqueur temporel
prédéfini sur la forme mere.

Finalement, nous aboutissons & un nouveau probleme de controle optimal pour 1’assimi-
lation de données de surfaces évoluant dans le temps, conduisant & un probleme intéressant
dans le domaine du calcul des variations ou le choix pour la représentation des données,
courant ou varifold, joue un roéle inattendu. De plus, privilégier le mode de déploiement
naturel ameéne a considérer de nouveaux termes de pénalisation.
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Introduction et présentation des
travaux

Cette partie en francais sera reproduite dans le Chapitre 1.

1 Motivation

Dans le domaine de ’anatomie, & I'investissement massif dans la constitution de bases
de données collectant des données d’imagerie médicale, doit répondre le développement de
techniques numériques modernes pour une quantification de la fagon dont les patholo-
gies affectent et modifient les structures biologiques. Le développement d’approches
géométriques a travers les espaces homogenes et la géométrie riemannienne en dimen-
sion infinie, initialisé il y a une vingtaine d’années par U. Grenander, M.I. Miller [30], A.
Trouvé [50] et L. Younes [54], et mettant en oeuvre des idées originales de d’Arcy Thomp-
son [47], a permis de construire un cadre conceptuel extrémement efficace pour aborder le
probléeme de la modélisation et de I’analyse de la variabilité de populations de formes [55],
conduisant a la naissance d’une nouvelle discipline appelée Anatomie computationnelle.
Ce concept d’espace de formes, reformalisé récemment par S. Arguilliere [6, 7], exploite
I’action sur une population de formes de groupes de difféomorphismes munis d’une distance
invariante & droite pour induire une structure riemannienne sur cet ensemble.

Cette approche géométrique a produit des algorithmes efficaces (méthodes LDDMM
[10], Deformetrica [17, 18], champs stationnaires [8], DARTEL [2]) ayant déja fait leurs
preuves sur des applications comme 1’étude de I’hippocampe, en lien avec la maladie
d’Alzheimer, ou du planum temporale pour la schizophrénie, I’étude d’IRM pour la tri-
somie 21, 'analyse de la connectivité neuronale basée sur I'imagerie par tenseur de dif-
fusion (DTI), I’étude des malformations cardiaques, etc. Un bilan sur la recherche des
géodésiques dans les espaces de formes, de I'approche par I’équation d’Euler-Lagrange a
la reformulation Hamiltonienne, et mettant en avant les applications, est fait dans [48].

Données longitudinales et problématique

L’analyse longitudinale de données concerne le cas spécifique et plus complexe ou
un sujet est représenté par une série temporelle d’'un méme type de données. Cette
analyse plus fine est motivée entre autres par 1’étude clinique de maladies ou de traite-
ments se manifestant dans la durée et entrainant des modifications progressives d’un or-
ganisme ciblé. La quantification de ces modifications au cours du temps est une piste
d’exploration importante pour la compréhension d’une maladie ou pour I'optimisation des

11
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Figure 1 — Entre deux formes similaires, il existe une déformation simple qui transforme
I'une en 'autre.

dosages de traitements lourds [41]. La méthode employée se déroule en deux temps. Une
modélisation unifiée des données passe par la reconstitution, pour chaque sujet d’une po-
pulation, de I’évolution continue partiellement observée par ses données longitudinales, ce
qui permet par la suite une analyse transversale de la population. La notion d’espaces de
formes vus comme des variétés riemanniennes est encore particulierement adaptée a I’étude
d’évolutions de formes donnant lieu & de nombreuses méthodes basées sur le transport pa-
rallele [44], les splines riemanniennes [51] ou la régression géodésique [42, 53, 25], incluant
I'inférence statistique et la variabilité spatio-temporelle d’une population de scénarios [19].
Relevons enfin que ces méthodes ne s’appliquent pas qu’au milieu médical, avec par exam-
ple une étude comparative de 'ontogenese du crane entre les chimpanzés et les bonobos
[22].

Figure 2 — L’apparition de petits os a la base de la main met en défaut les méthodes
d’appariements difféomorphiques pour modéliser des processus de croissance qui im-
pliquent de la création de nouvelle matiere. Source: Musée d’archéologie et d’ethnologie
de I’Université Simon Fraser.

Jusqu’a présent, I’étude longitudinale de données s’est appuyée sur une hypothese
d’homologie entre les observations qui ne permet pas néanmoins de décrire tous les phéno-
menes biologiques pouvant intervenir au cours d’une évolution temporelle, en particulier
lors de processus de croissance ou de dégénérescence. Pour reconstruire, par exemple, la
croissance d’une main a partir d’un échantillon de trois ages différents, illustrée sur la
Figure 2, on pourrait chercher un flot de difféomorphismes qui produirait une solution

12



globalement cohérente d’un point de vue biologique. Cependant, on peut observer au bas
de la main la formation progressive de nouveaux os, disjoints de leurs voisins. Dans cette
zone, il n’existe alors pas de bijection naturelle entre deux ages t; et to, des lors qu'un
os présent a ’age to n’existe pas encore a l'age t;. Cet exemple illustre parfaitement
deux types de processus de croissance: un processus de déformation élastique qui peut
s’apparenter dans cet exemple a un étirement de la main dans son ensemble et un processus
de création quand la croissance résulte de la formation de matiere nouvelle comme de
nouveaux os, une nouvelle couche de tissu organique, etc.

L’observation extérieure de la forme d’un organisme ne permet pas toujours de dis-
tinguer ces deux processus. Le développement d’une corne animale est alors un cas d’étude
idéal. Une corne est en effet un objet rigide qui se développe par extension a partir de
sa base. La nouvelle matiere progressivement créée pousse en continu le reste de la corne
vers l'extérieur de la téte de ’animal. On peut donc supposer que globalement la corne
est seulement déplacée par des rotations et des translations. Le processus de création dans
cet exemple est donc dégagé de toute interaction avec d’autres phénomenes biologiques
pouvant obscurcir sa compréhension. Un difféomorphisme, entre deux ages d’une corne
donnée au cours de sa croissance, ne peut que produire un étirement de la petite corne
sur la plus grande. Ce type de déformation ne reproduit donc pas processus de croissance
réel. On aimerait au contraire avoir un plongement de la petite corne dans la grande
et étre capable de modéliser la nouvelle tranche créée a la base de la corne (voir la Fi-
gure 3). En conclusion, un processus de création fait appel a des appariements partiels,
ce qui souleve la question de pouvoir délimiter I'image d’un tel appariement et de pouvoir
intégrer a 1’évolution le complémentaire de cet image a savoir les parties de I'organisme
progressivement créées.

.
S
— —
T~
Classic diffeomorphic matching Actual development

Figure 3 — Un difféomorphisme ne peut que produire un étirement d’une petite corne
sur une plus grande. On aimerait au contraire avoir un plongement de la petite corne
dans la grande pour pouvoir reproduire fidélement le processus biologique qui génere le
développement d’une corne.

2 Présentation des travaux

2.1 Résumé

Cette these ouvre la voie sur les appariements par des déformations de nature non
difféomorphiques. L’hypothése de départ pour compenser la perte d’homologie entre deux
formes, est de supposer que les évolutions liées a chaque individu, mais d’un méme objet
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d’étude, partagent un processus de croissance commun. Le theme central de cette these
est alors de définir de nouveaux outils qui permettent ’étude statistique d’une population
de tels scénarios, en s’attachant a reproduire le plus fidelement possible ce processus bi-
ologique. Tout en gardant I’approche géométrique d’un groupe de déformations agissant
sur un ensemble de formes, qui fait la puissance des approches difféomorphiques dans les
espaces de formes, le Chapitre 2 explore d’un point de vue ensembliste la recherche de
nouveaux modeles génératifs capables d’intégrer 'apparition de nouvelle matiere au cours
d’un développement. Une seconde étape réalisée dans le Chapitre 3 est d’étudier la re-
construction d’un scénario soumis a un processus de croissance donné. La réécriture d’un
des modeles présentés au Chapitre 2 permet de conditionner par rapport a ce processus
un nouveau probléme de controle optimal pour ’assimilation d’évolutions de formes. Ce
dernier conduit a un probléeme intéressant du domaine du calcul des variations, ou le choix
du terme d’attache aux données, sur des courants ou sur des varifolds, joue un roéle inat-
tendu comme on le verra au Chapitre 4. Le Chapitre 3 aboutit a un concept assez général
de déploiement ou ’on modélise les phénomenes de croissance comme le déploiement op-
timal progressif d’'un modele préalablement replié dans une région de l’espace. Sa mise
en application au Chapitre 5 invite a moduler le probleme central de controle optimal a
travers de nouvelles fonctions de cout, qui pénalisent ’action du groupe de déformations,
pour tendre vers une modélisation au plus proche du processus biologique.

Le processus de croissance qui nous intéresse principalement peut étre décrit au moyen
d’une foliation. Une foliation est une forme qui ressemble localement & une union de
formes paralleles de dimension plus petite (par exemple, les droites horizontales d’un plan
ou les cercles concentriques). Ces sous-formes sont appelées les feuilles de la foliation. Le
processus de croissance d’une corne induit I’addition progressive d’extensions régulieres a
la base de la corne. Ces ensembles de nouveaux points forment les feuilles de la foliation
sous-jacente. Ils sont similaires a des disques ou a des cercles selon que la corne est
représentée par sa forme pleine ou par la surface qui délimite son bord. Avec ce point
de vue, le processus de croissance se décrit tres simplement par I’apparition continue de
nouvelles feuilles.

L’introduction d’un systeme de coordonnées biologiques permet de modéliser et d’ex-
ploiter ce processus. Ce systeme est la donnée d’un espace X, appelé espace des coor-
données, et d’une fonction scalaire 7 : X — R, appelée marqueur du temps de naissance
et dont les lignes de niveau forment les feuilles de la foliation sous-jacente. Cette fonc-
tion définit une collection de sous-ensembles X; = {x € X |7(z) < t} de X, de 'ensemble
des feuilles apparues au plus tard au temps t. Le scénario d’un individu peut alors étre
paramétré par cette collection de sous-ensembles du systeme de coordonnées biologiques.
Ce dernier définit un invariant de la population étudiée permettant d’anticiper tout pro-
cessus de création. La Figure 4 illustre ce modele sur le développement d’une corne.

Un objectif pratique de la these est, étant données quelques observations (S"); d’une
corne a différents ages (¢;);, de produire des algorithmes numériques capables de recon-
struire le déploiement continu de cette corne de son plus jeune dge jusqu’au dernier. En
d’autres termes, il s’agit de générer un scénario de formes ¢ — S; tel que S;, =~ S &
tout temps ¢; initialement donné. Nous verrons que la rigidité du développement d’une
corne permet a notre modele de proposer un scénario a partir de la seule donnée d’un
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Figure 4 — A gauche, échantillon de six ages différents {t1,t2,...,1} € [0,1] du
déploiement d’une corne représentée par une forme dans un espace ambiant fixé. A droite,
représentation du systéme de coordonnées biologiques (X, 7). Toute corne & droite est une
image d’'un sous-ensemble X; de X. Les couleurs correspondent aux lignes de niveau du
marqueur temporel 7.

age final. Si on imagine que la corne a sa naissance est réduite a un point, on peut
reconstruire un chemin continu de formes initialisée par ce point et se terminant sur la
forme non dégénérée représentant I’age final observé. Enfin, pour chaque application, le
scénario obtenu est codé par une variable de faible dimension qui peut étre vue comme
une condition initiale anticipée et qui ouvre la voie sur une analyse statistique.

2.2 Organisation des chapitres :

Les Chapitres 2, 3, et 4 sont relativement indépendants. Le Chapitre 5 s’appuie sur le
probleme d’appariement détaillé dans le Chapitre 3 et présente les expériences numériques
validant le modele et ses variantes. Le contenu de chaque chapitre peut étre résumé
comme suit (nous ferons référence aux sections du Chapitre 1 qui présentent le cadre
mathématique dans lequel se place cette these) :

Chapitre 2 : Appariements partiels et évolutions de croissance appariées
dans un espace de formes

Ce chapitre étudie les modeles génératifs en amont des problemes d’appariement. Les
premieres idées a 'origine de ce travail de thése ont rapidement conduit au modele présenté
dans le Chapitre 3. La remise en question des choix de modélisation nous a alors poussés a
rechercher ’objet atomique irréductible a la source des modeles de scénarios de croissance.
De la volonté de garder ’approche géométrique d’un ensemble de formes évoluant dans
un espace ambiant fixe E a travers un flot difféomorphique exercé sur cet espace, a alors
émergé ce que nous avons appelé des évolutions de croissance appariées (GMEs). 11 s’agit
de la donnée d’un ensemble de formes (S;)ier indexé par un ensemble de temps T' C R et
évoluant dans E a travers un flot (¢s)s<ter décrivant la déformation de I'espace E entre
les paires d’instants (s, t). Pour s’affranchir de la contrainte d’homologie totale entre deux
états quelconques Ss et Sy, on impose alors uniquement une condition de plongement :
pour toute paire s <t dans T,

¢s,t(Ss) C St .

On a donc un emboitement successif a travers le flot de tous les ages de la forme
induisant un systéeme de datation du scénario. La forme S; est en effet composée d’une
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¢t41L(St)

¢s,t(Ss)

Figure 5 — Appariements partiels sous des contraintes illustrées par les différentes couleurs
qui délimitent les images cibles de chaque appariements.

part par l'image ¢s:(Ss) d'un état antérieur, d’autre part par la création de nouveaux
points entre les temps s et ¢t appelant a considérer le temps de naissance de chaque point.
Pour comprendre ce phénomene, 'objet atomique d’évolution de croissance appariée est
enrichie d’un jeu de fonctions attribuant un label a chaque point du scénario

TtISt—>L, VteT.

Ces fonctions appelées marqueurs sont invariantes sous ’action du flot de sorte que chaque
point évoluant & l’intérieur du scénario conserve son label au cours du temps. Nous
dégagerons en particulier un marqueur du temps de naissance (birth tag) de chaque point
du scénario.

De cette brique élémentaire, on en revient alors a ce qui a fait la puissance des espaces
de formes. Les scénarios sont comparés les uns aux autres via des morphismes. En partic-
ulier, on peut regarder I'action d’un groupe G de déformations spatio-temporelles agissant
sur l'espace-temps FE x T pour définir une structure Riemanienne sur nos espaces de
scénarios. Des scénarios élémentaires dits centrés mettent en évidence une décomposition
naturelle des orbites sous ’action de G pointant un motif de croissance commun a ’orbite
qui menera a l'introduction du systéme de coordonnées biologiques dans les prochains
chapitres. Tout scénario est alors vu comme l'image d’un scénario centré.

Enfin, nous nous attachons tout au long du chapitre a identifier les parametres mi-
nimaux permettant de reconstruire un scénario a partir du flot qui lui est associé. Le
choix de ces parametres dépend des informations disponibles pour anticiper la position
des nouveaux points dans les problemes de reconstruction de scénarios. Nous retrouvons
en particulier la fonction d’emplacement & la naissance (birth place function) qui apparait
naturellement pour les déploiements de corne ou la zone de création des nouveaux points
est connue.

Transition vers le Chapitre 3

Nous fixons pour les chapitres suivants un intervalle de temps 7' = [0, 1]. Nous nous
intéressons a une population de formes dont le processus de croissance s’identifie a un
systeme de coordonnées biologiques (X, 7) ou X est une sous-variété compacte a coins de
dimension k < d et 7 : X — [0, 1] joue le role de marqueur temporel qui induit un scénario
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centré dont la forme au temps ¢ notée X; est donnée par
Xi={zeX|7(x) <t}. (1)

Nous appellons points actifs au temps t ce sous-ensemble de I'espace des coordonnées X.
Ce systeme de coordonnées biologiques permet alors de paramétrer toute la population
par des morphismes de scénarios. Chaque morphisme s’assimile a une collection de cartes
(¢ @ X¢ — Rd)te[o,l] qui peut étre reconstruite par une fonction d’emplacement a la
naissance ¢ : X — R? combinée a flot (¢ +) s<te[o,1] sur I'espace ambiant par

@t(T) = br(a)(q(T)) pour tout z € Xy (2)
et définissant la forme du nouveau scénario a tout instant ¢ par

Sy = Qt(Xt) .

Chapitre 3 : Reconstruction du déploiement d’une forme soumise a un
processus de croissance

Création de scénarios

Par définition, 'approche la plus naturelle pour générer un flot consiste a intégrer des
champs de vecteurs dépendant du temps v (cf Section 2.1.3). L’équation (2) se réécrit
alors pour tout = € X et tout ¢ €|7(z), 1],

@) = d(z) + / valas(x)) ds (3)

Pour unifier les cartes ¢; : X; — RY, ot I'on rappelle que X; C X est défini par (1),
dans un seul espace de fonctions, il convient de déterminer une extension a X. Cette
extension dépend des informations connues. Dans notre cas, cette information initialisant
le plongement dans l’espace ambiant R¢ est donnée par la fonction d’emplacement a la
naissance ¢ et on définit donc

Or(a)e(q(x)) if T(z) <t,
q(z) sinon,
conduisant & ce que I'on appelle la dynamique de croissance (growth dynamic)
v(q(z) ifze Xy,
Gt(7) = L ()<pve(ae(z)) = (5)

0 sinon.

Retrouver la collection de cartes (¢; : X — Rd)te[o,l} générée par un champ de vecteur v
ameéne ainsi & résoudre une équation intégrale ou la condition initiale est donnée par

q =q- (6)
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Ce choix d’extension implique que ¢; est rarement continue spatialement et cette
équation ne peut donc pas étre définie dans C(X, ]Rd). L’étude de la régularité spatiale des
cartes s’effectue alors dans un second temps. Nous montrons entre autres que la régularité
spatiale des cartes ¢; dépend de la régularité en temps du flot (et donc du champ de vecteur
générateur). Cette nouveauté induite par la dynamique de croissance est due au fait que
la forme a son état final ne peut pas s’exprimer en fonction de la seule valeur finale du
flot : q1 # ¢0,1 0 go. L’action partielle du flot sur la restriction au sous-espace X; laisse
une trace sur la jonction entre X; et son complémentaire. Nous montrons alors que les
cartes sont continues mais seulement différentiables presque partout. Néanmoins, si le flot
est continu en temps, i.e. v € C([0, 1], V'), alors toutes les restrictions qt)x, sont de classe ch.

Plus généralement, on propose un cadre théorique plus large ou les évolutions de formes
sont générées via une action infinitésimale dépendante du temps

¢:Bx|0,1] - L(V,B), (7)

ou B est un espace de Banach contenant I’ensemble des cartes possibles entre X et ’espace
ambiant R?. Nous généralisons ainsi I'approche d’espaces de formes présentée en Sec-
tion 2.1.2. La théorie de l'intégration dans un espace de Banach par S. Bochner [46],
étendant celle de l'intégrale de Lebesgue, permet de garantir I'existence d’un scénario
q € C([0,1], B) solution du probléme de Cauchy

Gt = &gty (V) pour presque tout ¢ € [0, 1], (8)

défini pour toute condition initiale ¢y € B et tout champ de vecteurs dépendant du
temps et de carré intégrable v € L%([0,1], V). Pour retrouver la dynamique de croissance
(équation (5)), & est définie par

§(q7t) (’U) = ﬂTSt'U oq.

Le choix de I’espace de Banach a priori B = L™ (X, R?) a défaut d’un espace plus régulier
de type C"(X,R%) s’avere plus délicat que prévu (cf Chapitre 3).

Probléme de contréle optimal

La reconstruction d’un scénario & partir de la donnée d'un état final ¢**'(X) et d’une
fonction d’emplacement & la naissance ¢ : X — R? consiste & trouver le flot (¢s) s<te[0,1]
le plus simple possible tel que le morphisme généré (cf équation (2)) vérifie ¢; = ¢'*'.
Nous nous appuyons sur la recherche de flots géodésiques, présentée dans la Section 2.1.3,
générés par des champs de vecteurs d'un espace de Hilbert V. La recherche d’un flot
optimal paramétré par un champ de vecteurs dépendant du temps v € L2([0,1],V) peut

alors étre vu comme un probléeme de minimisation d’une énergie de type
1 1
Bw) = [ Clountydt+ AG), (9)
0
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ol C est appelée fonction de cofit et ol la condition g1 = ¢'3* est relaxée par un terme

d’attache aux données A : L2([0,1],V) — R (cf Section 2.3 et Chapitre 4).

En suivant 'approche classique des méthodes LDDMM présentée dans la Section 2.2.1,
le gradient de cette énergie s’exprime au moyen d’une variable moment p € C([0, 1], B¥)
vérifiant

p1=—dA(q) € B, Pt = —04&(at, ) (ve)* - pr, (10)
et de ’application moment définie par

Je:BxB*x[0,1] — Vv
(a,p.t) — &y P

Cette notation abusive d.A(qy) n’est proprement définie que dans le cas d’un espace de
coordonnées X discret ou 'on peut définir directement le terme d’attache aux données A
sur l'espace des cartes B. Plus généralement, montrer I'existence et expliciter la nature
du multiplicateur de Lagrange p; est un probleme a part entiere étudié au Chapitre 4 (cf
équation (17)).

Le gradient de I’énergie a tout instant ¢ € [0, 1] s’obtient alors par

VUE(U)t = VUC(Utat) - vag(%pt’t) 3 (11)

ou Ky : V¥ — V est Iisomorphisme canonique pour ’espace de Hilbert V', menant di-
rectement & un algorithme de descente de gradient pour minimiser ’énergie F.

Nous utilisons alors ’élégance de ’approche hamiltonienne pour passer a un probleme
d’optimisation sur le moment initial pg. Néanmoins, le systéeme hamiltonien réduit en-
globant les solutions minimisantes dépend du temps. Il est défini par

H,:Bx B*x[0,1] — R
(Q7p7 t) ——  maXyey (p ’ g(q,t) ('U)) - C(U, t) )

de sorte que les solutions minimisantes satisfont le systeme

. OH,
qt dap (qt7 Dt t)
pt - acng (qta D, t)

Montrer 'existence de solutions définies sur 'intervalle complet [0, 1] demande quelques
observations préliminaires énoncées dans le paragraphe suivant. Une fois ce résultat établi,
on étudie la régularité au second ordre de I’hamiltonien pour mettre au point un algorithme
de descente de gradient optimisant le moment initial pg. L’énergie & minimiser s’écrit sous
la forme

1
E(q0, po) = /0 Clgpent) dt + Alq) (12)

ou l'on fait encore, pour simplifier, un abus de notation sur le terme d’attache aux données
A qui n’est défini que sur les cartes générées par les champs de vecteurs de L2([0,1], V).
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Spécificités liées a la dynamique de croissance

L’action infinitésimale liée & la dynamique de croissance n’est pas continue en temps.
Ce manque de régularité se répercute directement sur 'application moment associée, notée
ici J. Montrer sa continuité et dégager une borne fine de sa norme demande de réduire
I’espace des moments.

Un résultat classique de I'approche hamiltonienne dans le cadre LDDMM est la con-
servation de 1’énergie d’'un champ de vecteur optimal. Ici le systeme hamiltonien soumis
a la dynamique dépend donc du temps et nous perdons la conservation de I’énergie. Nous
montrons typiquement pour la dynamique de croissance que la norme de I’application mo-
ment est bornée par une fonction affine du temps, voire linéaire dans le cas de la corne.
On peut construire des exemples simples ou cette majoration est optimale illustrant que la
norme de ’application moment est croissante. C’est la prise en compte, a chaque instant,
de I'ensemble des nouveaux points s’ajoutant a la forme prééxistente qui explique cette
propriété. Elle s’exprime tres simplement pour des trajectoires ¢ — (g, pr) homogenes
en espace et en temps, c’est-a-dire telles que (x,t) — (|q:(z)|ga, |pe(z)|ga) soit & peu pres
constante. Il existe alors en effet des constantes a > 0 et b > 0 telles que pour tout
te0,1],

\T (qt,pe, t) v+ = at +b (13)

ou encore plus radicalement dans le cas des cornes

|j(qtapta t)|V* ~at. (14)

Cette propriété semble satisfaisante a premiere vue. En effet, il parait naturel qu’un
scénario ayant une forme grandissante au cours du temps ait un flot de plus en plus
couteux, agissant sur une plus grande partie de I'espace ambiant. Néanmoins, pour la
modélisation de déploiements de cornes au moyen de déformations rigides, nous verrons
au Chapitre 5 qu'un flot optimal devrait étre généré par un champ de vecteurs de norme
constante. Pour corriger le modele, nous jouons sur la fonction de cout C', initialement
fixée a

Co,t) = %WV . (15)

Le cas le plus simple proposé est I’ajout d’une fonction scalaire v : [0, 1] — R, croissante,
produisant une nouvelle fonction de cott

1%
C(v,t) = %WV. (16)

Nous y faisons référence sous le nom de norme adaptée. Dans le cas des cornes, ou la
norme de 'application moment peut étre majorée par une fonction linéaire, nous sommes
amenés a autoriser cette fonction v a s’annuler en 0.

Nous revenons alors a l'existence de solutions au systeme hamiltonien. L’existence
globale demande un contréle de ’application moment. Ce controle ne peut s’obtenir que
sur des sous-espaces de ’espace initial des moments B*, dépendant eux-mémes du type
de cartes considéré. Moins la fonction de cout est pénalisante, plus la démonstration est
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contraignante sur le choix de ces espaces. L’exemple le plus important étant celui des
cornes ou les cartes changent la topologie de ’espace des coordonnées X pour former la
pointe de la corne. Nous mettons alors au point un cadre de résolution assez général ou
I’on peut choisir des couples de sous-espaces By C B et Bf C B* pour assurer l’existence
globale des solutions. Cette construction nécessaire a l'utilisation de fonctions de cotit
dégénérées (lorsque v(0) = 0) sera validée dans le Chapitre 4 ou I'on montrera que les
solutions du probléme de minimisation s’obtiennent bien a partir des sous-espaces choi-
sis. Sous ces conditions, on montre alors que I'application moment définie le long d’une
trajectoire t — (q¢, pr) peut étre contrdlée en tout temps par les conditions initiales qq et

bo-

Chapitre 4 : Existence et continuité des minimiseurs globaux pour la
dynamique de croissance

Ce chapitre regarde l'existence de minimiseurs globaux continus pour le probléeme
d’optimisation étudié au chapitre précédent, lorsque I'action infinitésimale £ reproduit la
dynamique de croissance définie par ’équation (5). Les problemes classiques d’appariement
de formes s’identifient généralement a la recherche d’une géodésique dans un espace choisi
Gy de difféomorphismes avec conditions aux extrémités. La reconstruction d’un déploie-
ment a travers la dynamique de croissance ne contraint pas seulement les extrémités du
flot de difféomorphismes. En effet, I’état final ¢; de la solution ne peut pas s’écrire comme
une image de I’état initial gy par I’état final du flot ¢} mais dépend de toute 1’évolution
du flot au cours du temps. L’énergie ne peut donc pas s’écrire sous la forme

E(¢1) = C(¢1) + A(g1) -

Le flot optimal permettant d’approcher la cible n’est donc pas, a priori, une géodésique
de Gv.

L’existence de solutions continues au probleme de controle optimal étudié au chapitre
précédent ne peut donc pas se déduire de résultats généraux existant dans la littérature. Le
premier résultat du chapitre a été néanmoins plutot inattendu. Nous montrons a travers
un contre-exemple que pour un terme d’attache aux données construit sur la représentation
de nos formes géométriques par des varifolds, I'existence de solutions continues peut étre
mise en défaut. La différence entre les représentations courants et varifolds vis-a-vis du
modele associé a la dynamique de croissance s’explique par le fait que des oscillations en
temps du champ de vecteurs v géneérent des oscillations en espace des formes ¢;(X;). Les
courants par leur effet d’annulation sur ces oscillations spatiales permettent de bloquer ce
type de comportement.

La démonstration de l'existence de solutions continues dans le cadre défini par la
dynamique de croissance pour un terme d’attache aux données A de type courant, en
toute généralité, demande en premier lieu de s’assurer que les formes sont suffisamment
régulieres pour étre représentées par des courants. Rappelons en effet que les cartes ¢
générées par des champs de vecteurs v € L%([0, 1], V) ne sont a priori ni C' ni rectifiables.

,V

Il est néanmoins possible de définir A sur L?([0, 1], V) par densité de C([0,1],V), dont les
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champs v géneérent des cartes appartenant & C!(X, Rd).

L’étape suivante consiste &4 montrer l'existence de solutions dans L2([0,1],V). La
preuve s’appuie sur la linéarité envers la composante tangentielle décrivant une forme et
permettant de déduire la semi-continuité inférieure de ce terme d’attache. La continuité
d’un champ de vecteur v optimal n’en découle pas immédiatement. En effet, on a certes
montré précédemment la continuité de ’application moment, mais dans un cas restreint
ou 'espace des moments peut s’identifier & un espace de fonctions sur X x X ou 90X est le
bord de X. Nous obtenons dans ce chapitre la continuité de tous les minimiseurs globaux
sans condition sur I’espace des moments permettant en retour de légitimer la restriction
de cet espace pour des scénarios générés par des champs de vecteurs continus en temps.
Plus précisément, considérons v et une variation dv tous deux dans C([0,1],V) et ¢V
le scénario généré par v + edv pour € € R. Nous montrons au Chapitre 3 qu’il existe
5q € C([0,1], B) tel qu’au premier ordre, ¢"*% ~ ¢ + edq. 1l existe alors pi* € C(X,R")
et p?¥X € C(0X,RY) tels que

Al (v;0v) = (p1]dq1) (17)

= [ oF @ m@)mart@ + [ 6% @)@t @), ()
X X

définissant le moment final p; comme une fonction sur X et son bord dX. On note

Papparition du roéle joué par ce bord X qui donnera son impulsion initiale a I’application

moment (existence de la constante b > 0 dans 1’équation (13), cf Chapitre 3).

Notons enfin qu’on profite de ce chapitre pour justifier la structure canonique retenue
pour décrire le systéeme de coordonnées biologiques (X, 7) comme un produit direct X =
[0,1] x X ou la fonction de marquage 7 s’identifie & la projection sur la premiére coor-
donnée. En adaptant le point de vue de la théorie de Morse, nous montrons que de nom-
breuses situations peuvent se ramener a ce cas canonique par ’action d’une déformation
spatiale de ’espace X transportant le marqueur 7. Une conséquence importante de cette
réécriture est la possibilité de s’affranchir des reparamétrisations en temps des scénarios
générés par une fonction d’emplacement a la naissance (voir également Chapitre 2).

Chapitre 5 : Applications numériques et résultats

Le Chapitre 5 met en pratique le modele de croissance étudié au long de cette these.
Etant donnée une corne & un age arbitrairement fixé a ¢ = 1, nous nous concentrons
sur la reconstruction de son déploiement de sa naissance a t = 0 (état ou la corne est
supposée réduite & un point) jusqu’a ’état final donné a t = 1. Toutes les expériences sont
effectuées avec des données synthétiques, construites a partir du modele génératif présenté
aux Chapitres 2 et 3.

Pour mettre en avant le processus de création pure, nous modélisons les flots par des ro-
tations et des translations. Le modele de base ou la fonction de cott classique C' est donnée
par 1’équation (15) est alors inadapté parce qu’il ne permet pas d’initier correctement le
processus de croissance quand la forme est trop petite a la naissance. Nous utilisons par
conséquent de nouvelles fonctions de cout correspondant soit a une pondération en temps
de la pénalisation sur le flot (cadre de la norme adaptée) soit a 'ajout d’une contrainte sur
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la norme du champ de vecteurs (cadre de la norme contrainte). Le terme d’attache aux
données est déduit d’une représentation des surfaces par des varifolds orientés. Ces objets,
présentés dans la Section 2.3, ne semblent pas avoir été déja utilisés pour des applications
numériques et trouvent tout leur intérét face a des surfaces facilement orientables mais
ayant des extrémités pointues ou similaires a des tubes effilés. Pour sortir du cadre assez
spécifique des déformations affines, le chapitre se termine sur quelques expériences ou les
champs de vecteurs sont modélisés avec un espace a noyau reproduisant (RKHS) & noyau
gaussien.

Cette these a été motivée par le besoin de nouveaux modeles permettant de dépasser
des observations pour décrire un phénomene biologique demandant de sortir du cadre
classique proposé par les méthodes LDDMM, afin de pouvoir intégrer des informations
complétant les données observées. Dans notre cas, il s’agit non seulement du processus de
création mais également de la quantification de ce processus. La validation des expériences
numériques s’attache donc tout particulierement a ce dernier critere. Les différentes fonc-
tions de cout sont comparées par rapport aux normes des champs de vecteurs de la cible
et de la solution (Exemple 1). La souplesse du modele est testée dans le but de pouvoir
identifier un comportement anormal comme un retard de croissance. Par opposition au
LDDMM classique, la construction de ’application moment, avec la dynamique de crois-
sance, s’effectue par un apport progressif de nouveaux moments initiaux qui donne cette
flexibilité et rend inutile ’appel a des reparamétrisations en temps pour détecter ce type
d’anomalies (Exemple 2). Enfin, le modele integre sans difficulté 'ajout de données a
des temps intermédiaires connus pour reconstruire un scénario par interpolation, ce qui
améliore les résultats d’une des expériences qui aurait pu approcher les limites du modele
par la finesse et la courbure élevée de la corne étudiée (Exemple 3).

Quelques expériences supplémentaires sont effectuées pour observer ’optimisation pos-
sible de la position initial gy (Exemple 5) ou encore effet de bord initial (Exemple 4).

Comme dans le cadre LDDMM classique, chaque scénario reconstruit est complétement
paramétré par les variables de faible dimension position initiale gy et moment initial pg,
ouvrant la voix vers une analyse statistique de la population de scénarios étudiée.
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1 Motivation

In the field of anatomy, the massive investment in the acquisition of medical imaging
calls for the development of new numerical techniques. The emergence of large databases
demands efficient tools to model and analyze their variability. Already a few decades
ago, the willingness to help neuroscientists and diagnosticians in the analysis of the sub-
structures of the human brain led to a new discipline named Computational Anatomy by
Grenander and Miller in [30], Trouvé [50] and Younes [54]. The developed theory and
methods have been successfully applied in, as some examples among many others, the
study of the shape of Hippocampus in relation to the evolution of Alzheimer disease, sim-
ilar works on the planum temporale for schizophrenia, Down syndrome, the analysis of
brain connectivity based on DTI imaging, studies of heart shapes and malformations.

Instead of analyzing an object individually, the underlying philosophy in computational
anatomy is to study its relative position inside a set of related objects. To analyze the
relationships of an individual with the rest of the population, this set is modeled as a
mathematical space that can be equipped with a distance. With this point of view, the
distance allows then to estimate the mean, usually called a template or an atlas [21], and
the variance of a given population (or subset of the space) and to achieve a statistical
analysis of the population. The core of this framework is the construction of this distance.
It relies on the very simple idea, introduced by d’Arcy Thompson [47] in the beginning of
the 20" century, that the differences between related shapes, eventually highly complex
shapes, can be explained by simple diffeomorphic deformations as displayed in Figure 1.1.
From that, the first layer of the concept of shape spaces is a consistent collection of shapes
and diffeomorphic mappings between them. The structure of the mapping is somewhat
simple since it coincides with a group action of diffeomorphisms given by transport on
shapes and this induces the differential layer of most shape spaces as recently formalized
by Arguilliere [6, 7]. The second layer is a metric layer inherited from the introduction of a
metric structure on the mappings satisfying the triangle inequality and coming from a right
invariant metric on the acting group of diffeomorphisms. This extra structure allows the
development of various shape population analysis [55]. A review on the characterization
of the geodesics in shape spaces from the Euler-Lagrange equation to the Hamiltonian
approach is conducted in [48], highlighting several applications.

In fine, this geometric approach of shape spaces has already afforded effective algo-
rithms for images or geometrical meshes as the Large Deformation Diffeomorphic Metric
Mapping (LDDMM) methods [10] (see Deformetrica [17, 18]), stationary LDDMM [8] or
DARTEL [2].

Longitudinal data set and problematic

Besides the cross-sectional variability analysis emerges the study of longitudinal data
sets. Each subject of a population is represented by a sequence of measurements at dif-
ferent times. Among many other examples, the interest for these more complex data is
motivated by the clinical studies of diseases or treatments that have a progressive impact
over time and therefore entail changes on these evolution scenarios [41]. Scientists want
thus to quantify these effects. For this purpose, given a population of longitudinal data
sets, a first step consists in retrieving the continuous evolution for each subject interpolat-
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Figure 1.1 — Given two similar shapes, there exists a simple deformation that matches
them.

ing his different measurements, then in performing a cross-sectional variability analysis on
these evolution scenarios. Shape spaces as Riemannian manifolds are also well adapted to
the study of shape evolutions and longitudinal analysis by various methods ranging from
parallel transport [44], Riemannian splines [51], geodesic regression [42, 53, 25] including
the inference from a population of a prototype scenario of evolution and its spatio-temporal
variability [19]. Although modeling evolution scenarios and analyzing their variations ap-
pear as two different processes, in a lot of situations they can both be achieved with the
diffeomorphic approach of the LDDMM framework. An example of application in an orig-
inal theme was the comparison of the endocranial ontogenies between chimpanzees and
bonobos [22].

Figure 1.2 — Inadequacy of diffeomorphic matching to model a growth process involving
creation of new material. Source: Simon Fraser University Museum of Archaeology and
Ethnology.

Up to now, the longitudinal analysis has been limited to the study of data sets with
homologous observations. Yet, in some situations this assumption seems inappropriate.
During the growth or the degeneration of an organism, the changes occurring over time
cannot always be modeled by diffeomorphic transformations, at least in a biological sense.
This situation happens for example when new material is created over time in specific
areas distinguishing this new material from the pre-existing shape. If one wants to retrieve
the continuous evolution of the hand displayed in Figure 1.2, one can consider a flow of

27



diffeomorphisms that would globally give a biologically coherent explanation of the growth.
However, small bones are progressively emerging at the bottom of the hand and one cannot
explain by one-to-one correspondences between two ages the changes occurring in these
areas. This example illustrates two types of growth processes: a deformation process when
a living organism is deforming through time and an expansion process when the growth
results from the creation of new material. The observation of the shape without more
information may not always allow to distinguish these two processes. The development of
an animal horn is thus an interesting case study. Indeed, we assume that the base of the
horn plays the role of an active area where new material is progressively created pushing
outwards the rest of the horn. The horn is assumed to be rigid and is thus only subjected to
rotations and translations due to physical constraints. This example isolates the creation
process from the general deformation and reduces to its minimum any kind of distortions of
the shape due to other biological phenomena. As displayed in Figure 1.3, a diffeomorphic
matching of two horns can only provide a global stretching of the small to the large horn.
Yet, a gradual stretching of the horn does not reflect the biological evolution described
hereinabove. A creation process calls instead for partial inner matchings. It raises issues
as how to delimit the image of a partial mapping and how to anticipate the creation of
new material.

-~
S
— —)-
T~
Classic diffeomorphic matching Actual development

Figure 1.3 — A classic diffeomorphic matching would stretch the small horn to the large
one and would thus not reflect the actual development of the horn. Instead, we would
like to see an embedding of the small horn inside the target as much as a creation of new
material at the base.

2 Introduction to Computational Anatomy

2.1 Shape space
2.1.1 Group action

The central idea, introduced by d’Arcy Thompson, to compare shapes via deformations
requires to assume that given a population of shapes, any pair of them can be linked by
a deformation. It leads to the introduction of homogeneous spaces.

Definition 2.1. Given a group G acting on a set S, we say that S is a homogeneous space
if G acts transitively on S, i.e. for any pair (S1,S2) of S, there exists g € G such that
qg- Sl = 82.
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In other words, § has only one orbit under the action of G which can be written by
S=G-Sy={g-S0|g € G} for any Sy € S. Thus, if S is a set of shapes and if we fix a
shape Sy called for example a template, any other shape S € § can be reconstructed by
a deformation of G applied to Sy. Moreover, a classic result of group theory implies that
the set S is in bijection with G/Gp where Go = {g € G |g- So = So} is the stabilizer of
So. Hence, the set S can inherit the structure of G/Gy.

Since biological shapes are embedded in an ambient space, denoted F and usually
equal to R, one can consider a group of deformations on the ambient space. G is usually
a subgroup of the group Diff’ (R?) of C’-diffeomorphisms on RY. The natural action in
most cases is then the evaluation of the deformation g € G on the shape S € S :

g-5=9(5).

In front of the wide variety of databases of shapes, as images, landmarks, curves, surfaces,
fiber sets, etc., this approach to compare embedded shapes through the deformations on
the ambient space offers a unified framework for registering this plethora of data types.

Example 2.1. Assume that we want to register a population of connected surfaces with
smooth boundary in the euclidean plan. These shapes can be represented by their boundaries
as smooth curves of the plan. This last set can be seen as the homogeneous space generated
by the orbit of the unit circle S' under the action of the group of diffeomorphisms of the
plan Diff (R?).

Figure 1.4 — The action of a group G on a ho-
mogeneous set of shapes induces a complete
graph on the unstructured set. The equal-
ity S1 = g+ S creates an oriented edge from
So to S1. If G is equipped with a distance

: q' q dg, one can assign the weight dg(Id, g) to

DN . <7 A this edge. One can then deduce a distance

“ Sy A on the set of shapes by considering the min-
V TR imal paths in the graph.

The next step towards a shape space is to quantify the deformation induced by an
element g € G. Indeed, if G is equipped with a distance dg, we can define for any pair

(S1,52)in S

d(S1,52) = Jnf, {da(Id, g)| 51 =g(S2)} - (1.1)

If d¢ is right-equivariant (i.e. d(gih, g2h) = d(g1, g2) for any g1, g2, h € G), then d satisfies
the triangle inequality and we have

Theorem 2.1. d is a pseudo-distance on S.

Proof. See [38]. O
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2.1.2 Infinitesimal action

The notion of shape spaces generalizes the previous results. It has been recently
unified by Arguilliere [6, 7]. For any ¢ > 1, we denote C§(RY) the Banach space of
Cl-mappings v : R — R? vanishing at the infinity, equipped with the usual sup norm
] = 3, <4 |0av|oo and Diff§(R?) the affine smooth manifold (Id + C§(R%)) N Diff§(R?) of
the C’-diffeomorphisms modeled on the Banach space C4(RY).

Definition 2.2. Let S be a Banach manifold equipped with a compatible complete distance
ds and ¢ € N*. Assume that the group Diffé(Rd) continuously acts on S, according to the

action
Diffy(R) x § — S
(1.2)

We say that S is a shape space of order ¢ on R® if the following conditions are satisfied:

1. The action is semi-Lipschitz, that is, for any q € S, there exists ky > 0 such that
d8(¢1 q, ¢2 : Q) < kquiﬁé(Rd)((bl? ¢2) fO’I’ any ¢17 ¢2 € Diﬁé(Rd)'

2. For any q € S, the function Ry : ¢ — ¢ - q is smooth with respect to the usual
norm on Diff§(R?). Its differential at 1d € Diff§(RY) is denoted &, and called the
infinitesimal action of C§(RY).

3. For any k € N, the following mappings are of class C* :

£€: SxCSMRY — TS

(¢, v) — &§(v).
An element q € S is called a shape, and R% the ambient space.

The most usual shape spaces are the manifolds of all differentiable (or even topological)
embedding ¢ : X — R? of a compact Riemannian manifold X into R%. The action is the
usual composition: ¢ -q = ¢ oq.

This definition of shape space gives thus a general setting where a set S can inherit
the Riemannian structure of the group Diffg(]Rd). It actually induces a sub-Riemannian
distance on S for which the metric and geodesic completeness is guaranteed under some
compactness condition satisfied by the previous examples of embeddings ¢ : X — R? of a
compact Riemannian manifold X into R9.

2.1.3 Groups of diffeormophisms with right invariant metric

A general approach to define a group action on a set of shapes embedded in an ambient
space is to consider the diffeomorphisms obtained by integrating time-varying vector fields.
The group generated depends then on the choice of the space V' of vector fields. Two ways
are classically considered in the existing literature. The first is based on C* vector fields
with compact support and weak Sobolev norms (see [12, 11, 37]). The second, that we
will present here, consists in considering a Hilbert space V that satisfies some regularity
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conditions, so called admissibility conditions as introduced in [50]:

V c C3(R% RY).
(H") Je>0,Ve e R Vo eV, (1.4)
|0(2)|ga + |dv(2)] o + [d0(2) |00 < c|v]v,

This last approach led to the successful Large Deformation Diffeomorphic Metric
Mapping (LDDMM) framework [10, 9, 33, 39, 40] that offers a practical and efficient
possibility to construct such groups G with a right-invariant distance. The time-varying
vector fields are then modeled by L?([0,1],V) (denoted L%). The flow ¢* generated by
any v € L%/ is the unique solution of the integral equation:

t
¢“g:1d+/ vy 0 6" ds . (1.5)
0
The group of diffeomorphisms generated by V' is then defined by
Gy = {¢}|v e L*([0,1],V)} . (1.6)

With the point of view of Section 2.1.2, Gy is the orbit of the identity for the restriction
of the infinitesimal action to the subspace V :

f: GVxV — T¢GV

(p,v) +— &(v)=vog. (1.7)

The group Gy is then equipped a right invariant distance.
Proposition 2.1. Under the (H") conditions, Gy is a group and is complete for the
metric given by

ey (14, 9) = inf { ol 3, [v € L2(0,1], V), 0 = 67 } .

and extended by right invariance to dg,, (¢,%) = dg, (Id,¢ o o7 1).

Theorem 2.2 (Existence of geodesics in Gy). For any ¢ € Gy, there exists v € L}, such
that ¢ = ¢ and
dey, (1d, ) = |U‘L%/ = ML%,-

Remark 2.1. The equality ]v|L%/ = |U|L%/ implies that t — |v|y is a constant. This
geodesic path in Gy has a thus constant speed.

These results are proved in [55] or [26] where more details can also be found.

One can now consider the action of Gy on a set of shapes S§. The distance previously
defined on shapes in equation (1.1) becomes

A(S1, S2) = inf {Jolzg, [v € L([0,1], V). $1 = 6{(S2) | - (18)

With this metric, the geodesics of Gy become (locally) geodesics of S and give optimal
continuous paths of shapes between any pair of shapes in S. A path of diffeormorphisms
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t €10,1] — ¢} € Gy gives the path of shapes ¢t € [0,1] — S; € S defined by

t ¢
St = &7 (So0) = 06(S0) + /0 vs 0 ¢s(So) ds = Sp + /0 vs(Ss) ds. (1.9)

When shapes are modeled by mappings ¢ : X — R¢, equation (1.9) can be rewritten
for any = € X by:

Mmiw@@»:mw+é%@umw

Again, with the point of view of Section 2.1.2 and when the infinitesimal action is defined
by equation (1.7), this last equation can be induced by

t
qt(x) = qo(z) + /0 &g, (vs) () ds . (1.10)

Note that at the end, the group of deformations Gy is hidden and its role is completely
filled by V.

2.2 Inexact registration

We present now the resolution of a matching problem between two shapes by an optimal
deformation. This thesis and especially Chapter 3 will extend the method developed in
this section.

2.2.1 Optimal control problem

The inexact matching problem of a source shape Sy to a target shape S'™ consists in
finding a geodesic in Gy that deforms Sy to an approximation of S*. This geodesic is
obtained by an optimal time-varying vector field v € L%/ that minimizes an energy of the

type
E(¢) = day, (1d, ¢) + A(¢ - So) , (1.11)

where A, called the data attachment term, measures the discrepancy between two shapes
¢ - So and S*. The existence of geodesics in Gy ensures then that the energy can be
rewritten

B(v) = ol + A} - S0 (1.12)

where ¢} is the final point of the flow generated by v (see equation (1.5)).

We consider, here, that the shapes are represented by a Banach space B whose elements
are denoted ¢ € B. We will be indeed interested in this thesis by a space of mappings
of the type B = L>®(X,R%). The data attachment term is then defined as a functional
A: B — R and we assume to simplify that A is of class C'. We also intend to keep the
general framework of an unknown infinitesimal action

£:Bx[0,1] = L(V,B). (1.13)

32



With this setting, the energy to minimize is defined by

1
Blao.v) = [ Clodt +Alar), (1.14)

where we integrate the initial shape as a variable and we also generalize the penalization
on the vector field v by a function C called the cost function. At last, we assume, in
addition of the (H") conditions (defined by equation (1.4)), that ¢ and C satisfy

(i) € € CY(B,L(V,B)).
(H) (i) There exists ¢ > 0, such that for any ¢ € B, (1.15)
104€qlop < €.
(i) C € C(V,R).
(HY) (ii) There exists ¢ > 0, such that for any v € V',
1C)| + [VoC ()} < clof}. (1.16)

Proposition 2.2. Under the (H") and (H®) conditions, for any (qo,v) € B x L%, there
exists a unique solution q € C([0, 1], B) to the integral equation

t
@ = Qo —I—/O &, (vs)ds . (1.17)

We define then
: 2
¢: BxL, — B (1.18)
(q0,v) +— aq1.

® is continuous.
Proof. See Chapter 3. [

The energy (1.14) is thus defined for any (go,v) € B x L?,. A fundamental question is
the existence of a minimizer. Since the condition to exactly match the target is relaxed,
it does not result from the existence of geodesics in Gy, even when £ and C lead to the
initial setting.

Theorem 2.3. If for any qo € B, the functional v — A(P(qo,v)) is weakly continuous
from L%, to R and if C(v) tends to +0o when |v|y tends to +oo, then the minimization of
the energy E given by equation (1.14) admits a solution.

Proof. See for example [26]. O

To explicit the gradient of F, let us introduce J¢, called the momentum map [36],
that depends on the infinitesimal action £. It is defined as follows:

Definition 2.3. The momentum map is the application associated to &

Je: BxB* — V*
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so that we have for any v € V

(Te(q,p) [v) = (p|&(v))

where (.| .) denotes the dual bracket, here, between B* and B. The variable p is called
the momentum.

We can now describe the local minimizers of the energy.

Theorem 2.4. Assume the (H), (H®) and (HS) conditions. For any (qo,v) € B x L?,,
the energy E and the function ®(qo,v) — ¢ are Gateauz-derivable and the Gateaux-
derivative of the energy at (qo,v) in any direction (8qo,6v) € B x L%, is given by

1
E'((q0,v); (6g0,0v)) = (po | 6g0) +/ (dC(ve) — Te(ar, pe) | Svr) dt
0
where p € C([0,1], B*) satisfies for almost any t € [0, 1],

p1 = —dA(q1) € B* Pt = —0g&q, (ve)" - Pt - (1.19)

Hence, the gradient of the energy with respect to the vector field is given at almost any
time t € [0,1] by
VoE(qo0,v): = VioC(vi) — Kv Te(as, pt) » (1.20)

where Ky : V* — V is the canonical isomorphism of the Hilbert space V .

Proof. See Theorems 2.2 and 4.4 in Chapter 3. O

When equation (1.20) admits a unique explicit solution, the theorem leads thus to a
first resolution method by a gradient descent on v.

Example 2.2. To retrieve the distance dg,,, the cost function is usually given by
1
Cw) = 5ol

Therefore, V,C'(v) = v and given qy € B, any minimizer v* € L%/ of E satisfies at any
time t € [0, 1],
vy = KvJe(qt, pe) -

where (q,p) € C([0,1], B x B*) is defined by (1.17) and (1.19).

2.2.2 Hamiltonian approach and shooting

Interestingly, the set of coupled differential equations on ¢ and p can be interpreted as
a Hamiltonian system of equations. Let us introduce the following Hamiltonian function

H: BxB*xV — R

@pv)  — (&) - CW) (1.21)

or equivalently H(g,p,v) = (Je(g.p) | v) - C(v).
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By construction, a minimizer v of the energy FE is at any time a local extrema of the
functional V' 5 v — H(q,p,v). Moreover, the cost function is usually a quadratic function
on the norm of v. We will thus assume in the following that the derivative of this functional
admits a unique zero denoted v*(gq, p) or v* to simplify. This assumption allows to define
the reduced Hamiltonian as follows:

H.: BxB* — R

(1.22)
(¢,p) +— maxyey H(q,p,v).

If v € V maximizes the Hamiltonian, we have 0, H (¢, p, v) = 0 and therefore the partial
derivatives of H, are given for any (¢,p) € B x B* by:

aqu(qvp) = aqH(q7p>U*) = ang(v*)* 'pa
OpH; (¢, p) = OpH(q, p,v") = &(v7).

We can now state the central theorem that characterizes the solution of a matching
problem by the reduced Hamiltonian system:

Theorem 2.5. Assume the (HY), (H) and (H) conditions. Consider (qo,v) € B x L%
and ¢ = ®(qo,v) be the unique trajectory generated by v from the initial condition qo. Let

p be the retrograde solution of p1 = —dA(q1) and py = —04&q,(ve)* - pr. Then for any
v e L,

OF L7 oH
%(QOW) -0V :/0 (‘m(%,pt,vt) | 5Ut> dt, (1.23)

where for almost any t € [0, 1],

H(qt,pt,ve) = (pt | &g, (v1)) — C(vr) -

Moreover, if we assume that for any (xz,y) € B x B* the equation 0,H(x,y,v) = 0
admits a unique solution, then if v locally minimizes E, the trajectory (q,p) satisfies at
almost any time the following Hamiltonian system

(jt == 837[_11;7“(%57])15)
(1.24)
pt = _8{£T (qtvpt) )
where H,(qt,pt) = H(qt, pe, vt)-
Proof. See Theorem 2.3 in Chapter 3. O

This characterization of the solutions by the reduced Hamiltonian system (1.24) is a
weak form of the Pontryagin Maximum Principle [43].

Example 2.3 (Conservation property of the energy). We saw in Example 2.2 that when

C' is the classic cost function given by C(v) = %|v|%/, any optimal vector field v* € L%, of

E satisfies at almost any time t € [0, 1] the equation

v = Ky Je(qe,pe) -
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It results that

1 1
H; (g, pt) = §\~7§(Qt,pt) %/ = 5’”?’%/
Moreover, the Hamiltonian is always conserved during the evolution of (q,p) which implies

that at any time
1
H; (gt pr) = Hr (g0, po) = §|Uf|%/-

The norm of the optimal vector field is thus constant.

At last, this parameterization of any solution (g, p) by its initial position gy and initial
momentum pg enables to solve the inexact matching problem by an optimization of the
initial momentum. The new energy to minimize is of the type

1
(g0, po) = /0 Clagespe) dt + Alqy) (1.25)

where (q,p) is generated by the reduced Hamiltonian system. It requires to prove the
existence and uniqueness of the solution (¢, p) for any initial condition (qg,pp). We will
prove it in chapter 3 in a more general framework. The gradient of this energy can
be obtained with a method similar to the one described in Section 2.2.1. Namely, one
introduces the auxiliary variable (Q,P) of (¢q,p) that satisfies

Q1 = 0,C (a1, pt) — OpOgHy(ar, 1) - Q¢ + O2Hy (g, pt) - P
Pr = 0pC(ae, pt) — 02 Hy(qr, pt) - Qi + Og0pHy(qr, p1) - P (1.26)
Q1= —dA(q1), P1=0.

In practice, the derivatives of H, appearing in these equations can be efficiently approxi-
mated using finite differences [5].
The Gateaux-derivative of the energy has then a particularly simple expression:

E'((0,0); (890, 090)) = —(Qo | dg0) — (Po | dpo) - (1.27)

leading to a new algorithm of gradient descent. An interest of this approach is to param-
eterize the solution with variables of smaller dimension paving the way for a statistical
analysis. Moreover, since a gradient descent’s algorithm usually returns an approximation
of a local minimizer, the gradient descent on the vector field does not provide a geodesic.
Conversely, the initial momentum extracted from this last optimization problem always
represents a geodesic.

2.2.3 Towards numerical applications

The deformations involved in the model are determined by the choice of the space
of vector fields V. Since V is continuously embedded in C§(R%) (see the (H") condi-
tions (1.4)), V is a Reproducing Kernel Hilbert Space (RKHS). Such spaces can be defined
from the choice of a kernel and in many practical situations, all the computations only
depends on the explicit expression of such kernel. We will now explicit the previous results
in the case of a discrete shape given as a set of points with a mesh. The space B is then
of the type (R%)™ and its elements are identified to mappings ¢ : X — R? where X is a
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finite set. By the Riesz representation theorem, p can also be identified to such a mapping.
Then, with the notation of the previous sections, the momentum map is given by

(T(a:p)|v) = p(@) v(g(x)).

zeX

Consider now a solution (g, p) € C([0, 1], B?) generated by an optimal vector field v*. With
the classic cost function given by C(v,t) = 3|v[3, as presented in Example 2.2, v* must
satisfies the equation v; = Ky J¢(q¢, p¢) at almost all time ¢ € [0,1]. With V' an RKHS,
this leads for any y € R? to

(@) = 3 k. a(@)pe(a)

reX

where k : R x RY — L(R?) is the kernel of the RKHS. With a scalar Gaussian kernel,
this expression becomes

. e @)
viy) =Y e 2t py(a).

rzeX

This optimal vector field is thus a linear combination of Gaussian blobs centered on the
points of the discrete shape.

Specific case of rigid deformations

To model rigid deformations, one can use the group of rotations and translations. This
group is the semidirect product R? x SO4(R), for which V' = Skew, x R? where Skewy
is the space of skew-symmetric d x d matrices. Any optimal vector field v; = (A}, N;°) is
then given by

AF = Projsiewy Y, pi()a(z)” and Ny = pi(x).
zeX zeX

Algorithms

Given qg, we usually do not have an explicit expression of the critical points of the
energy. However, we can perform a standard gradient descent as described in Algorithm
1 and Algorithm 2 (remind that B = (RY)™ = B*).

Algorithm 1 Gradient descent on v

1 - Given ¢ € B, initialize v° € L?, at zero.

Then for any n € N, given ¢ and v" :

2 - Integrate forward with equation (1.17) to get ¢" € C([0, 1], B) the path generated by
v" € L%/.

3 - Compute p} = —dA(q}).

4 - Integrate backward with equation (1.19) to get p" € C([0, 1], B).

5 - Compute the gradient at v™ : Jv" = V,C(v}") — KvJe(qf, pY)-

6 - Update the vector field by v"*! = v™ 4 edv™ for a small € > 0.

7 - (Optional) Update gy by qgﬂ = qy + epg for a small € > 0.
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Algorithm 2 Gradient descent on pg

1 - Given q8 € B, initialize p8 € B at zero.
Then for any n € N, given ¢f and pj :
2 - Integrate forward with the Hamiltonian system (1.24) to get (¢",p") € C([0, 1], B?).

3 - Compute QF = —dA(q}), defined P}* = 0.

4 - Integrate backward with the second order Hamiltonian system (1.26) to get
(Qn,P") e C([0,1], B?).

4 - Update pf; by ng = pi + €Py for a small € > 0.

5 - (Optional) Update gj by q6‘+1 = qf + €Qf for a small € > 0.

Additionally, the expressions of the gradient with respect to v (1.20) or to the initial
momentum py (1.27), also say how to optimize the initial condition go. Typically, if go
is partially known and a reconstruction has been guessed, we can optimize it under some
constraints (for example, inside a subset of the ambient space). This optimization should
of course be controlled, otherwise the initial condition would just tend straightforwardly
to the target.

At last, note that despite the existence of a solution, we do not have the uniqueness
of a global minimizer of £. We do not have much more information about the local
minimizers. The convergence speed of the gradient descent can quickly decrease in a
rather large neighborhood of a local minimizer.

2.3 Overview of currents and varifolds

The inexact matching setting with the presence of an attachment term is justified by
the fact that the homogeneous space M is not intended to accurately describe the real
data but is instead a set of (smooth) representatives sampling the data. Indeed, we do not
want to capture too small differences that could result from very specific characteristics
of an individual or from noise. The flexibility given by the group of deformations and
the precision of the attachment term (mostly the typical scale of these two elements)
will determine the level of details of the model and the independence with respect to local
noises. The aim of the data attachment term A is then to measure the shape dissimilarities
at close range. For shapes like curves or surfaces A can be chosen as the distance on
currents presented in [26, 27| or the distance on varifolds, more recently introduced in
[15]. Both of these choices enable to measure the discrepancy between shapes regardless
of the parameterization.

Throughout the text, we will adopt the following notation and definitions:

— X is a k-dimensional compact smooth submanifold of R, eventually orientable and
with boundary (X could also be only rectifiable).

— A"R?, (0 < k < d) : k-times exterior product of R, which is a vector space of
dimension (Z) spanned by the set of simple k-vectors & A ... A &.

— /\k R? is equipped with the usual euclidean metric given for two simple k-vectors
E=6N...N& and ( = (L A ... A, by the determinant of their Gram matrix:
(€,¢) = det({&,¢j)iy). In particular, [£| gives the volume of the corresponding
parallelotope.
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— Co(R%, (AFRD*) : the set of continuous k-dimensional differential forms on R? van-
ishing at infinity. This space equipped with the infinite norm is thus a Banach
space.

— H" is the n-dimensional Hausdorff measure on R%. We remind that H" is defined
as an outer measure on R? that basically measures the n-dimensional volume of a
subset of R?. In particular, when n = d, we have H? = A% the Lebesgue measure.
H"(X) is the k-volume of X if n = k, vanishes if n > k and equals 400 when n < k.

— Kp is the canonical isomorphism H* — H for any Hilbert space H.

The idea of currents or varifolds is similar to the notion of distributions. In both cases,
a shape is considered as a linear form on a space of test functions. These test functions
are evaluated and integrated on the shape. However, in order to capture the geometry of
the shape, these functions also depend at each point of the shape on the tangent space at
this point. The differences between currents and varifolds lies on the properties of these
test functions with respect to the tangent space.

We will call tangential data an object coding the tangent space at any point x € X
with eventually its orientation (for example a normal vector). Let us denote formally T
the set of all possible tangent data. A test function is then a real function w : R x T — R
and the linear form py associated to X is formally defined by

) = [ wla T@)iH @), (1.28)

where T'(z) € T is the tangential data at the point x € X.

2.3.1 Currents

We follow here the definition of currents as introduced by Vaillant and Glaunes in [28]
as the topological dual of Co(RY, (\F R%)*).

Definition 2.4 (Current). A k-dimensional current on R? is a continuous linear form on
Co(RY, (A" RY)").

In the case of currents, the tangential data at x € X is given by an orthonormal
oriented basis (71(z),...,Ti(z)) of the tangent space T, X. The test function at any point
T, wy = w(z,-) is a alternating multilinear form on (7,X)* and consequently does not
depend on the choice of the basis. X is thus oriented and considering the alternating linear
mapping ((1,...,Ck) = ¢ A ... Ak, one can consider that w, € (/\k RY*. In fine, X is
then identified to the current uy € Co(R%, (A¥ R%)*) defined for any w € Co(RY, (AFR?)*)
by equation (1.28) or more precisely

px(w) = /X ol Ty (@) A+ ATy (a))dHE () (1.29)

Example 2.4. Let X be a close curve parameterized by a smooth immersion v : St — R¢,
then

@) = [ s (7000 = | (s o).+ (0)) st
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The change of variables formula ensures that this expression is independent of any positive
parameterization.

When k=1or k=d—1, /\k R? = R? and as described in the previous example, the
set of test functions can be identified to Co(R?,RY) :

Example 2.5. Let X be an oriented surface embedded in R3, then /\2 R} =R3 we
Co(R3,R?) and

i () = /X (w(x), N(2))padH(z).

where N(x) is the unit normal vector at x given by the orientation of X.

2.3.2 Varifolds and oriented varifolds

The concept of varifolds is more general and we will even see in the end that for a non
trivial set of test functions oriented varifolds can be equivalent to currents.

Definition 2.5. The Grassmann manifold or Grassmannian of dimension k in R?, de-
noted G1(R?), is the set of all k-dimensional linear subspaces of R?.

The oriented Grassmann manifold of dimension k in R?, denoted G(R?), is the set
of all oriented k-dimensional linear subspaces of RY.

It is well-known that G (R?) is a homogeneous space under the action of the orthogonal
group O(R?). The stabilizer group of a k-dimensional subspace V of R? is the product
space O(V) x O(V+) and it results that

Gr(R?) = ORY)/(O(R") x ORT™")).
If V is oriented, we have likewise
Gr(R?) = SOR?)/(SO(R") x SOR'™)),
where SO(RY) is the special orthogonal group of R?.

Example 2.6. The application Gi(R?) — Gq_r(R?), V s VL identifies Gi(R?) to
Ga_x(RY). When X is a curve or a shape of codimension 1, G1(RY) = Gg4_1(R?) is
the set of lines through the origin, i.e. the real projective space P(RY). Likewise, if the
orientation of R? is fived, Gx(R?) can be identified to Gq_r(R?) and G1(R?) = Gy4_1(R?)
to the sphere S 1.

The definition of a varifold is then given in [15] by:

Definition 2.6 (Varifold). A k-dimensional varifold on R? is a Borel finite measure on
the product space R? x G1(R?). A non-oriented rectifiable set X of R? of dimension k is
identified to the varifold ux € Co(R? x Gi(RY)) defined for any w € Co(R? x Gi(RY)) by
equation (1.28) or more precisely

px (w) = /X w(z, Ty X)dH* (z). (1.30)
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Definition 2.7 (Oriented varifold). A k-dimensional oriented varifold on R is a Borel
finite measure on the product space R% x ék(]Rd). An oriented rectifiable set X of R of
dimension k is identified to the oriented varifold ux € Co(R* x Gr(R%)) defined for any
w € Co(R? x Gp(RY)) by equation (1.28).

Example 2.7. With the assumptions of Example 2.6, the set of test functions can be
identified respectively to Co(R? x P(R?)) for the varifolds or Co(R? x S¥1) for the oriented
varifolds. In this last case, when X is an oriented surface in R? we get

px (w) :/ w(z, N(z))dH? (),
X
where N(x) is the unit normal vector at x given by the orientation of X.

A fundamental example of current or varifold is the Dirac associated to a point z € R?
and a tangential data T' € T defined for any test function w : R x 7 — R by

6L (w) = w(z,T).

Indeed, for any smooth shape X, its representation px can locally be approximated by a
Dirac. Let U > zy be a neighborhood of a point zg € X. Then

o (@) = /U (e, T(x))dH* (z) ~ /U (o, T(o))dH¥ () = TE Wy HHU) . (131)

Therefore, a discrete shape given as a set of points with a mesh can be modeled by a sum
(x)

of weighted Diracs. Each cell of the mesh is approximated by the Dirac 659{ where z is
the center of the cell, T'(x) is the tangential data at x and ¢ is the k-volume of the cell.

In fine, a discrete shape with n cells is modeled by a current or a varifold of the type

[ix ~ ieiagffz') .
i=1

2.3.3 Introduction of RKHSs

The Reproducing Kernel Hilbert Spaces (RKHS) are a very efficient tool to construct
a scalar product on currents or varifolds. They are particularly well-fitted to compute
distances between discretized shapes because of the simple expression of the scalar prod-
uct between two Diracs. The concept of RKHS allows to create Hilbert spaces W, each
one being continuously embedded in one of the different spaces of test functions previ-
ously introduced. By duality, the respective set of currents or varifolds is then naturally
embedded in the dual spaces W'.

A test function is defined on R? x 7. A RKHS W should thus be generated by a
positive kernel ky : (R? x T)? — R. The new space of test functions W is then given by
the completion of the vector space spanned by the fundamental functions ky ((z,T),-) :

(', T e REX T = kyw((z,T), (2, T")
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for any (x,T) € R? x T. Moreover, by definition of a RKHS,
KW(SE = kW((l’,T), ) 3

where we recall that Ky : W' — W is the canonical isomorphism of Hilbert spaces. It
results then that
on (kw (@, T), ) = (67,6 ywr = kw (2, T), (', T")) . (1.32)

x> Y’

The construction of metrics via RKHSs becomes from there rather simple in practice
and can be induced by the choice of two real positive kernels on the ambient space £ = R"
and T (general situation). A kernel kg measures the distance between the positions of
two infinitesimal shapes and a kernel kp measures the distance between their respective
tangential data (the tangent space with eventually the orientation). The kernel ky is
finally given by the tensor product kg ® kr defined for any (x,T), (z/,T') € R? x T by

kw ((z,T), (2", T")) = kg(z, 2" )kr(T,T"). (1.33)

At last, we can formally state the following proposition:

Proposition 2.3. Given an RKHS W generated by a kernel kyy = kp®kr and two shapes
X and Y of dimension k modeled by ux,uy € W’

T /X /Y ki, y)er (T(x), T(y)) dH* () dH () (1.34)

When X andY are discretised and respectively modeled by the finite sums px =), zf&ff”“’”

and py =3 _; €Y<5 ), equation (1.34) becomes
(x, iy )wr = Y Y 65 k(@ yy)kr (T(x:), T(yy)) - (1.35)

i

Figure 1.5 — Modeling of a triangle. A triangle
is approximated by the position of its center z, its

%“

normal unit vector N, and its area ¢, that can also
Reality be coded as the length of its normal vector (¢, N,).
The first trlangle is modeled by the hnear form

=4, 5NI and the second by us, = ¢, 5 he
scalar product between these two Diracs is given by
equation (1.32) and compares simultaneously the

position of the centers (kg(z, g})) Egd the normal
Model vectors (kr(T'(x),T(y)) = kr(Nz, Ny)).

Remark 2.2. Note that for the currents, the tangential kernel kr is necessarily given by

the usual scalar product on /\k RY.

Example 2.8 (Currents as oriented varifolds). G1(R%) is set of lines through the origin
of R® and can be identified to the unit sphere S* 1. The Plicker embedding generalizes
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this idea and embeds G, (RY) into the unit sphere of /\k RY. When the tangential kernel is
then given by the usual scalar product on /\k R?, currents are naturally embedded in the
associated RKHS W'.

Example 2.9. With surfaces embedded in R3, the tangential data is given as the normal
vector. The Gaussian kernel leads then to the following scalar products

_ 2
with currents: (6=, (5évy>w/ = exp (— |x232Rd) (Nz, Ny)ra ,
—_ul2 Nz—N. 2
with oriented varifolds: — (6)=, 5£,Vy>w, = exp <_ |x252Rd) exp <_ 20;'@) )
N

With wvarifolds, one can randomly orientate the normal vectors and define for any
RKHW Woy designed to model oriented varifolds

1, N _N,

5(5yy+5y Nwe,
1 N 1 _N,

:Z<5§:\7zv(5yy>w’ov +1<6CJC\TI’6y we,

1, N, 1, -N
+Z<6xNz7éyy>WbV+Z<5xNI75y y>W<’)V'

x 1 —
<5$( )755(y)>w, :<§(5in + 0 Nz)7

This leads for a Gaussian kernel to the scalar product

(0, 8y

I (y)>

wh =

2 2 2
xr — 1 N, — N, 1 N, + N,
exp —7| Yl — exp —7| a 5 vl + —exp —7| a 5 vl )
202 2 2075 2 20%;

The common parameter o gives the global scale of these two norms. For the varifolds, on
1s attached to the comparison of the normal vectors. Since these last ones are unit vectors,
on can be fixed independently of the data.

Finally, once we fixed a RKHS W, we note u'™ € W’ the identification of the target
shape and p the identification of the final state of the solution generated by a vector field
v € L([0,1],V). The attachment term is then given by

1

Av) = 5 " — Mtar‘iv, . (1.36)

2.3.4 Differences between currents and varifolds

In the case of currents, the test functions are linear with respect to the tangential
data. Hence, the integration of two close tangent spaces with opposite orientations will
cancel their respective contributions. Indeed, for any test function w and any couple
(z,T) € R x T, w(x,~T) = —w(z,T) so that ;7 + 67 = 0. This property makes the
currents resistant to the noise. However, as a downside, this linearity also prevents the
capture of structures like sharp spines or tails. See figures 1.6 and 1.7.

Remark 2.3. [15] is focused on varifolds with the aim to model non orientable shapes or
shapes with no rational orientation as fiber bundles (see Figure 1.8). So far, no research
has been found on the application of oriented varifolds in computer vision and the concept
remains rare in geometric measure theory.
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Figure 1.6 — Denote X the noisy red curve and
Y the smooth one. From a current point of view,
wx ~ py. Conversely, with varifolds, the length of
X is about twice the length of Y and this approx-
imation no longer holds.

Figure 1.7 — Example of shape for which currents
would be inadequate and that would rather call for
oriented varifolds.

Figure 1.8 — Example of white matter fiber bundle estimated from Diffusion Tensor Imag-
ing (DTT) illustrating the potential difficulty of consistent orientation of all differents fibers.
This figure is extracted from [20]. In this article prior to the work of Charon and Trouvé
on varifolds [15], the authors study the registration of such shapes modeled as currents.

Remark 2.4. All numerical experiments in this thesis have been achieved with the ori-
ented varifold model. This choice will be explained in chapter 5. However, we will see
in chapter 4 that unlike currents the existence of a solution to the problem of matching
growth scenarios is conserved neither with varifolds nor with oriented varifolds.

The discussion on currents and varifolds will be shortly extended in chapter 5. More
details on the Grassmann manifold can be found in [1] or on varifold from a more theo-
retical point of view in [3, 4].

3 Presentation of the work

3.1 Short summary

In this thesis, we open the door to non diffeomorphic deformations. The starting
hypothesis to compensate the loss of homology is to assume that a population of related
scenarios shares a common growth pattern. The central thread is to faithfully reproduce
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the biological evolution of an organism. A first step achieved in Chapter 2 is to explore
new models able to integrate the creation of matter over time from a set theory point
of view while keeping the geometric central concept making the essence and the strength
of shape spaces of a group of deformations acting on a set of shapes. A second step
conducted in Chapter 3 is to investigate the reconstruction of a scenario that satisfies
growth priors. These priors are integrated into a new optimal control problem for the
assimilation of time-varying shapes, leading to an interesting problem in the field of the
calculus of variations where the choice of the attachment term on the data, current or
varifold, plays an unexpected role as we will see in Chapter 4. At last, this underlying
minimization problem requires to consider new cost functions to penalize the action of the
group of deformations in order to favor the natural biological development as initiated in
Chapter 3 and applied in Chapter 5.

The typical evolution of the shapes we are interested in can be described by a foliation.
A foliation [24, 35] looks locally like a union of parallel shapes of smaller dimension called
the leaves of the foliation. As described for the horns, the creation process induces a
progressive addition of regular extensions at one boundary of the shape. To model the
regularity of this process, we assume that the set of new points extending at each time the
horn have usually the same shape and are locally parallel. They form therefore the leaves
of the foliation. When the horn is represented by a surface, the leaves are similar to circles.
For a full horn, the leaves are similar to disks. The introduction of a biological coordinate
system will model and allow to exploit this growth pattern. This system consists in a
space X called the coordinate space and a function 7 : X — R called the birth tag whose
lower sets induce a collection of subset X; = {x € X | 7(x) <t} of X. The evolution of an
individual can then be parameterized by this time-varying ordered collection of subsets of
the biological coordinate system. It allows thereby to anticipate the appearance of every
new point involved in the evolution of the shape. Figure 1.9 illustrates this model on the
development of a horn.

b D

qty Xh) (Irz(sz Gty XlJ qty Xm

" T 0
s Xu[
PoX T8

X

X "T

Figure 1.9 — Development of a horn. On the left, the horn is represented at six different
ages {t1,t2,...,1} € ]0,1], in the ambient space. On the right, an arbitrary representation
of the coordinate space X. Any horn on the left is an image of a subset of X. The colors
correspond to the level sets of the birth tag function 7 and indicate when a leaf appears.

A practical goal of this thesis is, given few observations (Sf**); of a horn at different
times (t;);, to provide numerical algorithms able to retrieve its continuous development
from its youngest state to its oldest one. This means to generate a scenario t — S;
such that Sy, ~ S’}ar for all the times (t;);. We will see that our model can also produce
a path modeling the complete development of a horn from only one final observation.
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If we imagine the horn at its birth as reduced to a single point, we can construct a
continuous path from this point to a nontrivial shape at the final time matching the given
observation. In each application, the complete development of a horn produced by the
algorithm is encoded in a low-dimensional forecast initial condition, providing the support
to a statistical analysis.

3.2 Organization of the chapters :

Chapters 2, 3, and 4 are somewhat independent. Chapter 5 illustrates the matching
problem detailed in Chapter 3 by some numerical experiments to validate the model and
its variations. The contents of each chapter can be summarized as follows:

Chapter 2 : Partial Matchings and Growth Mapped Evolutions in Shape
Spaces

This chapter explores the generative models underlying the matching problems. The
first ideas behind this thesis quickly led to the model presented in Chapter 3. The ques-
tioning of modeling choices then pushed us to seek the irreducible atomic object at the
source of growth scenarios’ models. From the willingness to keep the geometric approach
of a set of shapes moving in a fixed ambient space F through a diffeomorphic flow applied
to this space, emerges what we called the growth mapped evolutions (GMEs). It consists
in a set of shapes (S¢)ier indexed by a time interval 7' C R and evolving in E through a
flow (¢s¢)s<ter that describes the deformation of the space E between any pairs of times
(s,t). To replace the constraint of exhaustive homology between any two shapes Sg and
St, we only impose an inclusion condition: for any pair s <t in 7T,

¢s,t(Ss) C St .

¢s.u(ss)
¢t.u(st)

Figure 1.10 — Inner partial matchings under constraints delimiting their image illustrated
by the different colors.

A growth mapped evolution is therefore a nested sequence of all ages of the shape
through the flow inducing dating system as the history of the creation process. The shape
S; is indeed composed partly by the image ¢s.(Ss) of a previous state and by the new
points that appeared between the time s and ¢ calling to consider the time of birth of each
point. To understand this phenomenon, the atomic object of growth mapped evolution is
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enriched with a set of functions assigning a label to each point of the scenario
TtZSt—)L, VteT.

These functions called markers are invariant under the action of the flow, meaning that
each point within the scenario retains its label over time. We will exhibit in particular a
marker of the time of birth of each point of the scenario called the birth tag.

Once our objects are defined, we return to what made the power shape spaces. The
scenarios are compared with each other via morphisms. In particular, one can consider the
action of a group G of space-time deformation acting on the space-time E x T to define a
Riemannian structure on our scenarios spaces. Elementary scenarios said centered, whose
associated flow is reduced to the identity at all time, enlighten a natural decomposition
of the orbits under the action of G exhibiting a common growth pattern in orbit that will
lead to the introduction of the biological coordinate system in the following chapters. Any
scenario is then seen as the image of a centered scenario.

Finally, we focus throughout the chapter to identify the minimal set of parameters to
represent a scenario. The choice of these parameters depends on the available information
to anticipate the position of the new points in the matching problems. In particular, we
retrieve the birth place function that emerges naturally for the horn developments where
the creation area of the new points is known.

Transition to Chapter 3

The time interval T = [0,1] is fixed for the following chapters. We are interested
in a population of time-varying shapes whose growth process is described by a biological
coordinate system (X, T) where X is a compact k-dimensional submanifold with corners
and 7 : X — [0, 1] plays the role of the birth tag. The lower sets of 7 induce a centered
scenario whose shape at time ¢ is denoted X; and given by

Xi={zr e X|71(x) <t}. (1.37)

The points of X; are called active points at time ¢ of the coordinate space X. This bio-
logical coordinate system allows then to parameterize the entire population via morphisms
of scenarios. Each morphism consists in a collection of mappings (¢; : X; — Rd)te[()’l} that
can be generated by a birth place function § : X — R? and a flow (¢s,t)s<te[0,1} on the
ambient space. More precisely, we have for any ¢ € [0, 1] and for any x € Xy,

Qt(‘r) - ¢T(x),t(qN<x)) : (138)
The shape at any time ¢t of the new scenario is then given by
Sy = qi(Xy) -
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Chapter 3 : Reconstruction of a Shape Development
Creation of scenarios

By definition, the most natural approach to generate a flow is to integrate a time-
varying vector field v (see Section 2.1.3). Equation (1.38) can then be rewritten for any
z € X and any t €]7(x), 1],

qt(z) = q(z) + / vs(gs(x)) ds. (1.39)

To unify the mappings ¢; : X; — R? in a unique space of functions, where we recall
that X; C X is defined by (1.37), one needs to extend them to the whole coordinate space
X. This extension depends on the prior information, given in our case by the birth place
function ¢. Hence, the simplest extension is the following one

Gra)e(d(z)) if7(z) <t,
) = (1.40)
q(x) otherwise,

leading to what we call the growth dynamic

ve(q(z) ifze Xy,

@t(z) = Lry<ve(q(x)) = (1.41)
0 otherwise.

The retrieval of the collection of mappings (¢; : X — Rd)te[o,l} generated by a time-varying
vector field v leads to solve an integral equation where the initial condition is given by

9 =q. (1.42)

This choice of extension implies that ¢; is rarely spatially continuous and therefore this
equation cannot be set in C(X,R%). The study of the spatial regularity of the mappings is
thus performed afterwards. We show among other things that the spatial regularity map-
pings ¢; depends on the temporal regularity of the flow (and thus of the generator vector
field). This novelty induced by the growth dynamic is due to the fact that the shape at
its final state cannot be expressed via the only final value of the flow: ¢1 # ¢¢.1 © go. The
partial action of the flow on the restriction ¢y, leaves a mark on the junction between
X; and its complementary. One can then only show that the mappings are continuous
but only differentiable almost everywhere. However, if the flow is continuous in time, i.e.
v € C([0,1],V), then all the restrictions gy, are of class C'.

More generally, we offer a broader theoretical framework where the evolution of a shape
is generated via a time-dependent infinitesimal action

¢:Bx|0,1] - L(V,B), (1.43)
where B is a Banach space that contains all the possible mappings between X and the
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ambient space R?. It generalizes the approach of shape spaces presented in Section 2.1.2.
The theory of integration in a Banach space by S. Bochner [46], extending the Lebesgue
integral, ensures the existence and uniqueness of a scenario ¢ € C([0, 1], B) solution of the
Cauchy problem

Gt = gty (V1) for almost any ¢ € [0, 1] (1.44)

defined for any initial condition gy € B and any square integrable time-varying vector field
v € L2([0,1], V). To retrieve the growth dynamic (equation (1.41)), £ is then defined by

g (V) =l vogq.

The choice of the Banach space to represent the mappings, most naturally B = L>®(X, R?),
is more delicate than expected (see Chapter 4).

Problem of optimal control

Building a scenario ending on a target final state ¢**"(X) given a birth place function
d : X — R? consists in finding the flow (¢s,t)s<teo] as simple as possible such that
the generated morphism (see equation (1.38)) satisfies ¢ = ¢'¥. This is done using the
construction of geodesic flows as presented in Section 2.1.3 generated by vector fields
of a Hilbert space V. The search for an optimal flow by a time-varying vector field
v € L2([0,1],V) can then be seen as a minimization problem on an energy of the type

1
E(v) = ;/0 C(vg, t) dt + A(v), (1.45)

where C is called the cost function and where the constraint ¢; = ¢*** is relaxed by a data
attachment term A : L2([0,1],V) — R (see Section 2.3 and Chapter 4).

Following the standard approach presented in Section 2.2.1, the gradient of this energy
can be expressed via a momentum p € C([0, 1], B*) that satisfies

p1 = —dA(q) € B Pr = —08(qt, t)(ve)" - pu (1.46)
and via the momentum map defined by
Je:BxB*x[0,1] — Vv
(¢,p,1) — & P

The abusive notation d.A(q;) is only properly defined when the coordinate space X is a
discrete set. Otherwise, the data attachment term is actually not directly defined on the
space B and the existence and explicit formula of the Lagrange multiplier p; is a significant
problem addressed in Chapter 4 (see equation (1.53)).

The gradient of the energy at any time ¢ € [0, 1] is then written

VUE(U)t = VUC(vt7 t) - vaﬁ(tht) t) ) (147)

where Ky : V* — V is the canonical isomorphism for the Hilbert space V. It leads to a
straightforward algorithm of gradient descent to minimize the energy FE.
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The elegance of the Hamiltonian approach is used again to move towards an opti-
mization problem on the initial momentum py. However, the reduced Hamiltonian system
defining the minimizing solutions depends on the time. It is defined by

H,.:BxB*x|[0,1] — R
(Qapa t) >  maXyevy (p | g(q,t) (U)) - C(Ua t) :

Hence, the solutions generated by minimizers of E satisfy the system

Qt a(‘gT (qt7 Dt, t)
Dt - 65? (qt,pt,t)

The existence of solutions defined on the entire interval [0, 1] requires some preliminary
observations outlined in the next paragraph. Once this result is established, we study the
regularity of the Hamiltonian system to develop an algorithm that optimizes the initial
momentum pg. It relies on minimizing an energy of the type

1
Ego po) = /0 Clgpert) dt + Ala) (1.48)

with again an abuse of notation on the data attachment term that is only defined on the
final mappings generated by the vector fields of L2([0, 1], V).

Specific properties induced by the growth dynamic

The infinitesimal action related to the growth dynamic is not continuous in time. This
lack of regularity directly impacts the associated momentum map, denoted here by 7. A
solution to guarantee the continuity and to exhibit a pertinent upper bound of its norm
is to reduce the space of momenta p.

A strength of the Hamiltonian approach for the LDDMM methods is to ensure that
the norm of an optimal vector field is conserved over time. Here, the Hamiltonian system
induced by a time-varying dynamic depends therefore on the time and we lose energy con-
servation. With the growth dynamic, we typically show that the norm of the momentum
map is bounded by an affine function of time, even linear in the case of horns. Simple
examples can be constructed where this upper bound is optimal, meaning that the norm
of the momentum map over a trajectory (g, p;) is increasing. This results from the addi-
tional contribution at each time of the new points extending the shape. To highlight this
property, one can consider any trajectory t — (g, pt) that is homogeneous in space and
time, meaning that (z,t) — (|q:(z)|ga, |pe(z)|ga) is approximately constant. There exist
then indeed two constants a > 0 and b > 0 such that for any ¢ € [0, 1],

T (qes e, t) v ~ at +b (1.49)

or even more drastically in the case of horns

T (qe, pe, t)|v+ =~ at. (1.50)
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This property appears satisfactory at first. Indeed, it seems natural that the flow
associated to the scenario of a growing shape over time is increasingly expensive as it
progressively acts on a larger part of the ambient space. However, when modeling growth
scenarios for the horns via rigid deformations, we will see in Chapter 5 that optimal flow
should be generated by a vector field of constant norm. To correct the model, we play
with the cost function C' initially set at

1
C(v,t) = §|U\%/. (1.51)

The simplest example among a set of cost functions referred to as adapted norm setup is to
weight the previous classic cost function with an increasing scalar function v : [0, 1] — R*.
as follows

Clu,t) = %Ivl%- (1.52)

In the case of horns, the norm of the momentum map is controlled by linear function of
the time. It leads to additionally allow the possibility to have v(0) = 0. We say then that
the setup is degenerated.

We finally return to the existence of the solutions to the Hamiltonian system. The
global existence requires a control on the momentum map. This control can only be
guaranteed on subspaces of B* for the initial momentum. Moreover, the choice of these
subspaces depends on the space of the mappings. For the main example of the horns,
the mappings change the topology of the coordinate space X to form the tip of the horn
(not without consequences). Hence, we develop a general resolution framework where we
can choose a pair of compatible subspaces By C B and B} C B* to ensure the existence
of global solutions. This construction is required to use cost functions of the degenerate
adapted norm setup (where v(0) = 0) and will be validated in Chapter 4 where we will
show that the solutions of the minimization problem are indeed obtained with the selected
subspaces. Under these conditions, we can then show that the momentum map defined
along a trajectory ¢ — (g, pt) can be controlled at all times by the initial conditions g
and py.

Chapter 4 : Existence and Continuity of the Global Minimizers for the
Growth Dynamic

This chapter examines the existence of continuous global minimizers v to the optimiza-
tion problem discussed in the previous chapter when the infinitesimal action & reproduces
the growth dynamic defined by equation (1.41). In the usual approach of shape spaces,
the problem of matchings two shapes is to search a geodesic in a chosen space Gy of dif-
feomorphisms with constraints on the ends. Retrieving an optimal growth scenario via the
growth dynamic does not only constrain the ends of the flow of diffeomorphisms. Indeed,
the final status ¢; of a solution cannot be written as an image of the initial mapping gg by
the final state of the flow ¢7. It depends instead on the whole evolution of the flow over
time. In other words, the energy cannot be written as

E(¢1) = C(¢1) + A(o1) -

o1



Thus, the optimal flow to reach a final target is usually not a geodesic of Gy.

Hence, the soughtafter existence of continuous global minimizers v cannot be deduced
from existing general results in the literature. The first result of the chapter was rather
unexpected. We exhibit a setting with a data attachment term built on the representation
by varifolds where no global minimizers is continuous. The difference between representa-
tions by currents or varifolds, regarding the models associated to the growth dynamic, is
explained by the fact that oscillations in time of the vector field v generate oscillations in
space for the shapes ¢;(X¢). The currents through their cancellation effect on these spatial
oscillations can prevent this behavior.

Proving the existence of continuous minimizers within the framework defined by the
growth dynamic for a current data term attachment A first requires to ensure that the
shapes are sufficiently regular to be represented by currents. Let us recall that the map-
pings ¢; generated by vector fields v € L%([0,1],V) are a priori neither C! nor rectifiable.
It is yet possible to define A on L?([0,1],V) by density of C([0,1],V) whose vector fields
v generate mappings of C!(X,R%).

The next step is to show the existence of solutions in L?([0,1], V). The proof is based
on the linearity to the tangential component of the current representation that allows to
deduce the lower semi-continuity of A. The continuity of an optimal vector field v does
not follow immediately. Indeed, we did show previously the continuity of the momentum
map but the momentum space was restricted to be identified with a space of functions on
X x 0X where 0X is the boundary of X. However, we show that this restriction is well-
grounded if the scenarios are generated by continuous vector fields in time. Moreover, the
central result of this chapter is the continuity of any global minimizer unconditionally on
the momentum space. Therefore, these two results validate the functional representation
of the momentum announced in the previous chapter. More precisely, consider v and a
variation dv both in C([0,1], V) and ¢"+t%" the scenario generated by v+ edv for any € € R.
We show in Chapter 3 that there exists 6q € C([0, 1], B) such that ¢"+” = ¢¥ +edq+o(e).
There exist then pf € C(X,R") and p{X € C(0X,R?) such that

A'(v;v) = (p1]0q1) (1.53)

— [ 0¥ @ sm@endr @) + [ 6 @), 0m @) d @), (150
X X

ensuring the existence of the final momentum p; and providing a pointwise expression as

a function on X and its boundary 0X. Note the appearance of the role played 0.X that

gives the initial impulse to the momentum map, i.e. the existence of a constant b > 0 in

equation (1.49) (see Chapter 3).

At last, we detail in this chapter the foliated structure induced by the birth tag 7 on
the coordinate space X when the creation process is regular meaning that the amount
of newly created points at each time, i.e. the level sets of 7, evolves smoothly. After
a brief presentation of submanifold with corners, we justify the canonical description of
the biological coordinate system (X, 7) via a direct product X = [0,1] x Xy where 7 is
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identified with the projection on the first coordinate. Indeed, with the point of view of the
Morse theory, we show that many situations can be reduced to this canonical case by the
action of spatial deformation of the space X carrying the tagging function 7. Note that
the study of the growth dynamic achieved in Chapter 3 and all the experiments conducted
in Chapter 5 are based on this specific system. The choice of the cost functions relies on
it as it provides a first estimation to quantify the creation process over time. Another
important consequence of this rewriting is the ability to overcome the reparameterizations
in time of the scenarios generated by a birth place function (see also Chapter 2).

Chapter 5 : Numerical Applications and Results

This chapter examines the algorithm to optimize the initial momentum pg and applies
it to illustrate the matching problem detailed in Chapter 3. Given a horn at a final age
arbitrarily set at ¢ = 1, the aim is to model its development from its birth at time t = 0
(state where the horn is reduced to a point) to the given final state ¢ = 1. All experiments
are performed with synthetic data built from the generative model presented in Chapters
2 and 3.

To highlight the pure creation process, the flows are reduced to rotations and trans-
lations. The basic model where the classic cost function C' is given by equation (1.51) is
unsuitable since it does not correctly initiate the growth process when the shape is too
small at its birth. We use therefore new cost functions corresponding either to a time-
varying weighting of the penalization on the flow (adapted norm setup) or to the addition
of a constraint on the norm of the vector field (constrained norm setup). The data attach-
ment term is derived from a representation of surfaces by oriented varifolds. It seems that
these objects, presented in Section 2.3, have not yet been used for numerical applications.
They find yet all their interest with easily orientable surfaces having structures like sharp
spines or tails. Since the model should not be limited to affine deformations, the chapter
concludes with some experiments with a Gaussian kernel RKHS to model vector fields.

This thesis was motivated by the need for new models to faithfully reproduce a bio-
logical phenomenon. It raises the issue to integrate additional prior information into the
traditional framework proposed by the LDDMM methods. In the case of growth scenar-
ios, the aim is to model the creation process but also to quantify it. The validation of
the numerical experiments focuses specifically on the latter criterion. The different cost
functions are compared regarding the goal to retrieve the norm of the vector field used to
generate the target (Example 1). The flexibility of the model is tested in order to evaluate
its ability to identify abnormal behavior such as growth delay. In contrast to the classic
LDDMM, building the momentum map with the growth dynamic through a gradual influx
of new initial momenta gives this flexibility and eliminates the need of reparametrizations
in time to detect such anomalies (Example 2). At last, the model integrates without dif-
ficulty the addition of input data at known intermediate times to reconstruct a scenario
by interpolation. It can improve the results of an experiment that could have approached
the limits of the model by the high sharpness and curvature of the studied horn (Example
3).

Some other experiments are performed to observe the optimization of the initial posi-
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tion go (Example 5) or the initial boundary effect (Example 4).

At last, as in the classic LDDMM framework, each scenario is completely characterized
by the low dimensional variables initial position ¢y and initial momentum pg, paving the
way to a statistical analysis of the scenarios’ population.
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3.3

Glossary and notation

Throughout this thesis, shapes are modeled by mappings ¢; : X — R? parameterized

by a space X called the coordinate space. R? is called the ambient space. The subscript ¢

means that ¢; describes the shape at time ¢ € [0, 1]. A scenario is typically a continuous set

of mappings ¢t € [0,1] — ¢;. V is be a Hilbert space of vector fields on the ambient space

R? and L?([0,1], V), eventually denoted L?,, is the space of square integrable time-varying

vector fields.

Specific vocabulary:

Biological coordinate system (X,7) : indexation of the points of an time-varying
shape. The function 7 : X — R is called the birth tag.

Biological coordinate space or coordinate space X : set of all the coordinates used to
parameterize the shape over the time interval T of observation (fixed after Chapter
2 to T =10,1]).

X, ={x € X|7(x) <t} : subset of the so called active points at time t. A point in
the complementary subset is called inactive.

Xy ={x € X|7(z) =t} : subset of the so called new points at time ¢, points that
appear exactly at time ¢. These subsets are called the leaves.

Basic notation:

If ¢t is a real variable and g is a derivable function of ¢, we denote g; = g¢(t) and
gt = Zf?(ﬁ

If g: E x[0,1] = F is a function with a time parameter, we note for any ¢ € [0, 1],
g =g(,t): E— F.

Ly :V - V*and Ky : V¥ -V, Ky = L‘_,l, are the canonical isomorphisms
between a Hilbert space and its dual.

Given a Hilbert space H, if f : H — R is a differentiable at * € H, we denote
df (x) this differential and V, f(x) its gradient. Likewise, we denote (,;97’1 or Oy, f(z)
a partial differential and V, f(x) the associated gradient.

We denote B(b,r) the close ball of center b and radius r.
AC denotes the class of absolutely continuous functions.

Given two Banach spaces F and F, L(E,F') denotes the set of continuous linear
operators between E and F. We also denote L(E) for L(E, E).
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1 Introduction

(After Thompson 1917.) 5

Figure 2.1 — Illustration after D’ Arcy Thompson’s works (1917). Given two similar shapes,
there exists a simple deformation that matches them.

In order to introduce the idea of foliated shapes, we return to the reference work of
D’Arcy Thompson. He illustrated through several examples that the differences between
related species could be explained by simple geometrical deformations. The Figure 2.1
gives the implicit matching of two different fishes. The deformation provides a coherent
mapping between the characteristic points of the fishes (head on head, eye on eye, fin on
fin, etc.). The position in the ambient space of a characteristic point is variable from one
fish to another, but the relative position of each point compared to the others is preserved
and is thereby a descriptor of the species. The deformation of the grid highlights this
consistence through a coordinate system common to the two fishes. Any point of the
shape has a label that depends on the species and not on its position. We call these labels
the biological coordinate system. It gives a general description of any individual of a
population of related shapes independently of “simple” deformations that can be applied
to them.

From a biological point of view, the matching of two fishes is not a geometrical matching
of shapes but a set of one-to-one correspondences between homologous points, including
in particular all the characteristic points. In Figure 2.1, these two processes coincide.
The geometry of the shapes gives enough information to obtain a meaningful mapping.
However, during a growth evolution, two shapes at different ages do not necessarily share
the same set of homologous points. In Figure 2.2, we extrapolate the drawings of D’Arcy
Thompson to examine growth or degeneration processes on some examples. On the left
on top, we compare two ages of an animal horn. Below, we represent an organism with a
foliated structure like an onion or the cross section of a tree trunk. Finally on the right,
an other representation of a foliated membrane, such as the human skin where the double
arrow indicates that we can read this example in both directions, as the growth or the
degeneration of an organic tissue.

In each case, we assume that new material is progressively created during the growth
at the boundary of the shape. The subsets of the new points created at each time, induce a
natural decomposition of the complete set of all the coordinates. These subsets have all the
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Figure 2.2 — The creation of new material during a growth process is linked to the appear-
ance of new coordinates.

same shape: similar to lines for the horns or circles for the onion. They induce a collection
of foliated leaves meaning that the shape is locally similar to a connected disjoint union
of parallel lines. The creation of new material is thus linked to the appearance of new
coordinates. Consequently, the grids are either extended or shortened with the red or blue
lines. The biological coordinate system can thus code the pointwise homology between two
ages of a shape. The matching should thus be achieved via a partial mapping delimited
by the restriction to the black grids. Moreover, the biological coordinate system can help
us to anticipate the creation of new material.

Note that the example of the fishes could also illustrate the growth of a fish. Yet in
this case the growth process is similar to a scaling deformation and although one could
consider that we have a creation of new material stricto sensus, the homology structure
remains stable. The biological coordinates have already been introduced by Grenander
et al. in [31] where they study their diffeomorphic evolution in homogeneous situations
through elementary local deformations.

Subject 2

o OOO Et

\/\1 /—/Tb’
p
oQO O O Template
\[f\p * 1)
i DD

Subject 3

Subject 1

Figure 2.3 — Shape space point of view on growth scenarios. What deformations between
scenarios 7 A time warping p delays the growth of subject 1 with respect to the template.
A spatial mapping 1 generates subject 2 and to be as general as possible, one need to
allow at all time a new deformation so that ¢ can be time dependent.
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To deal with some of the core issues about the processing of shape evolutions in the
context of growth, we propose in this chapter to follow a somewhat axiomatic point of view
that can be parallel to the development of the shape space point of view (see Figure 2.3).
In section 2, we first introduce a proper definition of the objects that are the atoms for
the study of partial mappings and growth evolutions (S;)icr with the notion of growth
mapped evolutions incorporating the addition of a flow of mappings (¢s+)s<ter providing
the homology correspondences between points within the evolution sequence. Then we
define a web of morphisms between the objects organizing the relationship between the
atoms. A core result will be to show in section 3 that part of this web can be interpreted as
coming from space-time group actions from which we can derive a metric on appropriate
orbits of growth mapped evolutions. We analyse further these orbits by showing the role of
the centered evolutions corresponding to pure expansion scenarios for which the homology
correspondences are trivial and on which a simple subgroup of space-time mappings can
act. In section 4, we show that under reasonable regularity assumptions, any growth
mapped evolution can be equipped with a tagging function, called the birth function,
that provides a consistent stratification of the evolving shapes generalizing the idea of
tree-ring dating to growth mapped evolutions. Finally, in section 5, we introduce a new
parameter, called the birth place function, to initialize a growth mapped evolution. This
new parameter will play a key role in the problem to retrieve the growth scenario of a
shape as studied in the next chapters of this thesis.

2 Growth mapped evolutions (GMEs)

2.1 Embedded shapes

We aim to model partial relations inside a collection of shapes with diffeomorphisms.
To compose and then compare these mappings require to consider shapes embedded in an
ambient space.

Definition 2.1 (Embedded shapes (ES)). — An embedded shape is a pair (E, S) where
E is a set called the embedding space or the ambient space and S C E.

— Inner partial matching: For any two embedded shapes A = (EA,SA) and B =
(EB,SB) the set Hom(A, B) of morphisms between A and B is given as the set
of invertible mappings ¢ 1 BEA — EPB such that $2B(S4) c SB. We check
easily that if 3B € Hom(A, B) and $P¢ € Hom(B,C) then ¢A¢ = ¢BC o ¢pAB ¢
Hom(A, C). Hom(A, B) will be denoted Homgg(A, B). The morphisms will be called
inner partial matchings between embedded shapes.

— Define Hom*(A, B) as the set of outer partial matchings V2P : EA — EB such
that its inverse 1A% ~1 € Hom(B, A) i.e. the set of invertible mappings P such
that YpAB(S4) o SB. Obviously, if v*P € Hom*(A, B) and v2¢ € Hom*(B, C) then
¢AC’ _ wBC ° wAB c Hom*(A, C)

— Define the symmetric matchings between two embedded shapes A and B as the
set of 4P € Hom(A, B) such that ¢AP~! € Hom(B, A) i.e. ¢*P € Sym(A, B) =
Hom(A, B) N Hom*(A, B).
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Remark 2.1. The LDDMM point of view is deeply associated with the idea of homogeneous
spaces and diffeomorphic transformations of a shape S into an other shape SB. This
corresponds to the notion of symmetric matching defined just above. Indeed, if $4B €
Sym(A, B), then since ¢*P € Hom(A, B), we have ¢4 (S4) C SB and since ¢p1P ¢
Hom*(A, B) we have ¢AB~1(SB) c §4 i.e. SB c ¢AB(S4). Hence, p2B(S4) = SB and
®AB is an invertible mapping matching exactly S to SB. Moreover, when the shapes are
embedded in a common ambient space E and if G is a group of invertible mappings on F,
we can associate to any ¢ € G and any template object Ag = (E,Sy) a transformed object

B=¢- Ay = (E,¢(So)) so that ¢ can be seen as an element in Sym(Ap, ¢ - Ap).

Growth naturally induces inner partial mappings but the relations between homologous
points when they exist should be preserved through time. This leads to the introduction of
a set L of tags and of tagging functions. They will allow to add constraints to a matching
between two shapes S4 and SB. Mainly, assume that S4 and S? are partitioned and
given with predetermined correspondences between the parts of S4 and SP. A tagging
function on both shapes can therefore encode these sought-after correspondences.

Definition 2.2 (Tagged embedded shapes (TES)). — A tagged shape over a set of tags
L is defined as A = (E,S,T) where (E,S) is an embedded shape and T : S — L.
— Hom(A, B) is given as the set of invertible mappings &AB . EA — EB such that
1. ¢AB(S4) c S5,
2. 780 ¢pAB =14 on S4,
3. ¢AB(84) = rB1(r4(84)).
The elements of Hom(A, B) are tag consistent inner partial matchings between em-
bedded shapes and Hom(A, B) is denoted Homrgs(A, B)

See Figure 2.4 for an illustration. We will denote L4 = 74(S4), LB = 7B(SP), etc.
the set of tags involved on S4, SB, etc.

Remark 2.2. — If L* and LB are both reduced to a singleton and L* = LB, then
the inner partial mapping is actually a standard LDDMM matching. Note that the
condition LA = LP alone does not provide a standard matching (see the mapping
between C' and D in Figure 2.4).

— If Hom(A, B) # 0 then LA C LP. Indeed, if 2B € Hom(A, B), then (1) and (2)
imply that 74(S4) = 7B(¢pAB(54)) c 7B(SP). A strict inclusion corresponds from
the biological point of view to a creation of new points.

— The point (3) of the definition enforces every point of S® with a common tag of S4
to be reached by ¢AB. In other words, for any tagl € LA N LB, 4B induces an
invertible mapping between the level sets T471(1) € S and 78~1(1) c SP.

— There is no constraint on the matching inside the respective level sets of 74 and 5.
For example, if LA = {0} and LB = {0,1}, then the tags only demarcates the subset
of ST to be matched with SA.

Remark 2.3 (Extension of ES into TES). From the opposite point of view, an inner partial
morphism ¢AP between two general embedded shapes A = (E4,S4) and B = (EB, SP)
induces a natural minimal pair of tagging functions given by T constant equal to 0 and
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LA = {0} LE ={0,1} L¢ ={0,1,2} LP ={0,1,2}

Figure 2.4 — A morphism ¢*® € Homrgs(A4, B) must match S4 on the subset of S
demarcated by the tag 0. The tag only defines the image set of the source shape inside the
target shape. Between B and C, the tag also imposes a constraint inside the image of SZ.
The points of SP tagged by 0 are sent to the points of S¢ tagged by 0 and likewise for
the points tagged by 1. The arrows represent invertible mappings between the level sets
of the tagging functions, given by the restrictions of ¢48, $BC and ¢“P. The appearance
of a new tag corresponds therefore to the creation of matter uncorrelated to the previous
shape. Otherwise, as between C' and D, the shape is only deformed by ¢“P. We will say
that the evolution is given by pure deformation. Even without creation ¢¢P is still
constrained by the tags.

78 equal to 0 on the image of S and equal to 1 on the complement. By construction,

A on 84 could also be

»4B is then tag consistent with T and 2. Any tagging function T
imported and extended to a tagging function on ST with respect to ¢AB. Indeed, we can
define 78 = 74 0 pAB~1 on ¢AB(SA) and 8 = 1B on the complement, with any 1P ¢ LA

so that LB = LA U {I1B}. Then again &AB becomes tag consistent with T and 5.
These tag consistent inner partial mappings can be composed.

Proposition 2.1. If $48 € Homrgs(A, B) and ¢P¢ € Homrgs(B, C) then ¢A¢ = ¢BC o
¢AB € HomTES(A, C)

Proof. Indeed, $A€(§4) = $5C (648 (54)) C $5C(8P) C S¢, 109 = 10045C 0gAB =
8 0 4B = 74 and ¢AC(S4) = ¢BC(pAB(S4)) = HPC (B (rA(S4)). However, if
Lo € 7B(SP) then

67 (rP 7N (Lo)) = 797 (Lo) - (2.1)

Indeed ¢PC (7B:=1(Ly)) C 751 (Lo). Conversely, ify € 75" (Lo), since we have 7' (Lg) C

7o (TB(SB)) we get y € ¢PY(SP) so that there exists x € SP such that ¢PC(z) = y.

Now, using (2), we get 7¢(y) = 75(x) so that 78(x) € Lo, x € 7871(Lg) and y €
950 (rB 1 (Ly)).

Using (2.1) for Ly = 74(S4), we get B¢ (B 1(r4(S4)) = 771 (14(54)) = ¢4C(54).

O

Definition 2.3 (Outer and symmetric tag consistent matchings). As we did previously,
we can define the set of outer tag consistent matchings Hompps(A, B) and the set of
symmetric tag consistent matchings as Symrgg(A, B) = Homrgrs(A, B) N Hompg(A, B).

Remark 2.4. If two tagged embedded shapes share the same set of tags LA = LB,
then for any ¢ € Homrrs(A, B), Definition 2.2 says that $4B(S4) = rB~1(r4(84)) =
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B=1(LB) = SB, and ¢ € Symyps(A, B). Conversely, if there exists ¢ € Symygs(A, B),
then ¢AB(S4) = S8, LA = LB and again Homrgs(A, B) = Symrgs(A, B).

2.2 Growth mapped evolutions (GMEs)

A growth mapped evolution aims to model the growth scenario of an individual. The
different ages of the object are represented by a collection of shapes (S;)ier in a fixed
ambient space F.

Definition 2.4 (Growth mapped evolution of embedded shapes). A growth mapped evo-
lution of embedded shapes (GME) in E indexed by T C R is given as

g= (T, (At)teTv (¢s,t)s§teT)

such that
1. Ay = (E,S;) is an embedded shape for any t € T,
2. ¢sr € Homgg(As, Ay) for any s <t eT,
3. P50 brs= Pt foranyr <s<tel.
We denote GME(T, E) the set of all such growth mapped evolutions.
Property (3) says that applying successively the deformations between time r and s

and between time s and ¢ gives the deformation between r and ¢. Note that ¢;; = Id. We
will also note ¢ s = qﬁs_tl when s <t. (¢s+)s<ter Will be called the flow of g.

Figure 2.5 — Illustration of a GME in an ambient space F.

At all time, the growing shape is formed by new points that just appeared and old
points.

Definition 2.5 (New points and old points). Let g = (T, (A¢)ter, (¢s.t)s<teT) be a
GME. For any time s € T and any point x € S, we consider the evolution of x back-
wards and forwards through the deformation ¢. It defines a path t — x; = ¢s4(x) in the
embedding space E. Now for anyt € T such that xy € Sy, xy is called a new point at time
t or a new point of S; if for any previous time r € T, r < t, x, ¢ Sy, and called an old
point otherwise. Note at last that if x4 € Sy is a new point, for any following time r > t,
Ty € S,.

The growth scenarios under tag constraints are defined likewise.

Definition 2.6 (Growth mapped evolution of tagged embedded shapes). A growth mapped
evolution of tagged embedded shapes (TGME) in E indezed by T C R is given as

g = (T, (At)ter, (Pst)s<teT)
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such that
1. Ay = (E, Sy, 1) is a tagged embedded shape in E for anyt € T,
2. ¢st € Homrps(As, Ay) for any s <t eT,
3. G510 Prs=py foranyr <s<teT.

Remark 2.5 (Decomposition of the growth process). The evolution of a growing shape
can be described by the combination of two different processes. A pure deformation
process when there is no creation of new points and a pure expansion process when the
inner partial matching between two ages is reduced to the identity. In the first case, the
sets of tags, denoted Ly = 1,(St), are constant. In the second case, the flow of the scenario
is trivial i.e. ¢gp =1d for any s,t € T.

New points correspond to the growth by expansion of the shape. A set of new points
comes necessarily with a new tag (or eventually several new tags).

Remark 2.6. Following Remark 2.2, the sets of tags (Li)ier form a non decreasing se-
quence in the sense of set inclusion. This means, regarding the homology, that a shape
can only be expanding (the shape could yet shrink via a deformation similar to a scaling).
When two sets Ls and Ly are equal, the shape evolves only through a pure deformation. It
can be written for s <t €T by

Ls Q Lt = ¢s,t(ss) Q St-

Moreover, if there is no creation of points between times s and t, then there is no creation
between any intermediate times:

Li=L, & Vrels,t|nT, L,=L; < VrelstnT, ¢(Sy)=>5.

Example 2.1 (Generation of a circle). Let us show how two growth mapped evolutions
can give two different explanations of the development of a circle. Let T = [0,2m] be the
time interval of observations, E = R?, and Sy = {(cos(#), sin(0))|0 € [0,t]} a collection of
arcs of the unit circle, growing from a point Sy = {(1,0)} to the unit circle Sor = S'. Let
us define two GMEs g* and g® sharing E, T and (S;)ier as previously introduced (see
Figure 2.6).

1. First scenario:
Complete g with qﬁﬁt = Id. The arcs are static. A new point appears at every
time t at the extremity (cos(t),sin(t)) € E. The shape is only evolving by pure
expansion.

2. Second scenario:
Complete gB with qbft = Ry o R;' where Ry is the rotation of angle 6. Here the
arcs are gradually rotated and a new point appears at every time at the extremity
(1,0) € E. The speed of the rotation canceled exactly the speed of the creation of
new points so that the point at the extremity (1,0) seems static.

In both cases, we have an expansion of the shape on its boundary, but in the second
scenario, new points are all created at the same location. The creation is constrained to a
specific area. This last case is similar to the development of an animal horn.
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Thlalete)

Figure 2.6 — Illustration of Example 2.1. On the first row, the first scenario. Below, the
second scenario. The red arrows show where the shape is expanding and therefore point
to the direction in which the shape should be extending without any deformation. During
the second scenario, the ambient space is rotated as implied by the black arrows.

The tagging functions allow to encode a wide range of information to guide the recon-
struction of a coherent scenario. However, throughout this chapter, we will be interested
in one particular tagging function. As introduced in Remark 2.3, in some cases a canonical
temporal tag can extend a general GME to a TGME.

Example 2.2 (Minimal extension of a GME : Finite case.). For a GME defined on a
finite time set T = {tmin, - - ti, - - -, tmax }, we can construct by recurrence for anyt € T,
the tagging functions 7 : Sy — T by

 Ttmin — tmin )

— T, (;E) _ { Tt; © qbt:-,ltH_l (l‘) Zfl' € Czl)ti,thtl (Sti)7
tit1 otherwise.
Then the flow (¢st)s<ter of the GME is consistent with this tag.

To enlighten this tag, consider a point x € Sy and follow its evolution through the flow
backwards and forwards. The path t — z; = ¢g1(x) is defined in the embedding space E
since xy does not necessarily belong to Sy at the beginning of the evolution. Since the flow
is consistent with 7, t — 1¢(x¢) gives a constant value tyien of T that is exactly the first
time t € T such that x; € S;. According to Definition 2.5, x4, ., 1S a new point of St -
Then for any t > tyirth, Tt € S¢. This tag is consequently called the birth tag of the GME.
Note that since T s finite, tpirtn always exists.

In the next sections, we will see how to define rigorously the birth tag of any GME
on a compact set T'. It will require some regularity conditions on the set of shapes to
ensure the existence of tpitn. We can yet already give an example on the circles where T’
is a closed interval and exactly one point appears at each time.

Example 2.3 (Generation of a circle). Consider g% and g® as defined in Example 2.1.
A is expanding anticlockwise and g® is expanding clockwise. In
both cases, the shapes at any time t € [0,2n] are the arc image of [0,t] C [0,2n[ by the

function s — (cos(s), sin(s)). Ezactly one point appears at any time t € T except for the

As we saw previously, g

last time t = 27 (see the red arrows in Figure 2.6). In g, this new point appears at the
position (cos(t), sin(t)) such that we define T (cos(t), sin(t)) = t. All the other points are
old points, so we import their tag from their older position. In g®, this new point appears
always at position (1,0) such that we define 7°(1,0) = t. Then again, all the other tags

66



are determined to be consistent with the deformation. In fine, for any t € T, we define
A SA = T and 7P - SP — T displayed in Figure 2.7 and defined by

2 (cos(0), sin(0)) = 0 for any 6 € [0,t],0 # 2w,

7B (cos(8), sin(6)) = t — [2x] for any 6 € [0,t],0 # 2.
Hence, (¢£t)s<t€T and (¢£t)s<t€T are respectively consistent with 74 and 78 so that g4
and gP can be extended to growth mapped evolutions of tagged shapes (TGMEs) and these

tagging functions are the birth tags as defined in Example 2.2 of g4 and ¢®. See Fig-
ure 2.7.

YT Ye T

gB\
; g )

| min(7)

Figure 2.7 — The shapes S; (for t € {n/2,m,37/4,27}) are colored in function of 74, on
top for g” and below for ¢®. The red indicates the points that just appeared at the end
of the growth process and the blue the first points.

Remark 2.7. The example of the circles illustrate the role of the flow to retrieve the
evolution of a growing shape. Note that (¢£t)s<t€T is not consistent with T and likewise
(¢ét)s<t€T is not consistent with 8. The tagging functions allow to discriminate the
hypothetical scenarios.

2.3 Morphisms between GMEs

Morphisms between GMEs are the core of this framework. They allow us to generate a
set of GMEs sharing a common growth pattern and therefore to organize them. Following
the ideas illustrated in Figure 2.3, a morphism between two GMEs ¢4 and ¢ requires a
time warping p between T4 and T5. Then at any time ¢, a spatial mapping matches the
two ”shapes” A and B at age t and p(t) respectively. Moreover, these mappings must be
consistent with the respective flows of each GME. This means that (assume to simplify
that there is no time warping here) if we consider two points z € S4 and y € SP at any
aligned ages s € T, then the spatial mappings between the two GMEs send the evolution
of zin ¢4, t — zy = gbét@), to the evolution of y in g%, t — y; = ft(y). Finally if the
GMEs are tagged, the spatial mappings must also be consistent with the tags (modulo
again a mapping between the tag sets of g2 and ¢%).

Definition 2.7. (i) For any two GMEs g* and g7, the set Homgue (g2, g7) of morphisms
between g and gP is given by a time warping pAP : T4 — TB (non decreasing function)
and a set of spatial mappings (¢i'B : S — SﬁB(t))teTA, such that for any s <t € T4

(1) g7 (S{') = Shin (2) GPan (g pany 0 6" =60 o ¢§4,t‘sé‘ '
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(ii) For any two TGMEs g4 and g®, the set Homraug (g, gP) of morphisms bewteen g
and g8 is given by a time warping pAB : T4 — T8, a label mapping n*B : LA — LB and
a set of spatial mappings (¢i*P : SP — Sﬁg(t))teTA, such that for any s <t € T4

(1) qu(SiA) = 5543(15) (2) ¢pBAB(s)’pAB(t) © Q?B = qu 0 gbét‘sf .

Moreover, for any t € T and any y € S;BAB(t)’ there exists x € S{* such that ¢i*P(z) =y
and

(3) Thin oy () = 0P (7 ()

A

When ¢i*B is one-to-one, this means that TfiB(t) oqf'B = nAB ot/ but this is not equivalent

to (3) if ¢i*B is not one-to-one.

This definition can be illustrated by the following commutative diagram. On the top
row, a scenario g“, on the bottom row, its image g%.

2 #7,

A st A tyu N A
SA < SA « , 5
q{ l{h lqu
B < ,gB . ., gB

¢

PO 6B PO 6B P

Remark 2.8. If ¢2P is invertible and n*B = 1d, point (3) in Definition 2.7 implies
that the mapping preserve the tags. If (Lf)teTA 18 moreover strictly increasing then any
time warping p*B of Homrame (92, gP) is necessarily strictly increasing. Indeed, for any
s<teTA, L4 ¢ LY implies that LEAB(S) =LA¢ L) = LEAB(t)' Then since (LP),crs is
at least increasing, pAB(s) < pAB(t). Actually, the equalities (L{* = LEAB(t))tGTA define
here completely p*B.

The next examples intend to illustrate some properties and issues of growth scenarios
generated as the images of a template scenario. It brings indeed the possibility for a shape
to enter in collision with itself and self-intersect during the evolution. This phenomena
happens when the spatial mapping ¢4® is not injective. Indeed, even if a flow induces a
diffeomorphic deformation of the ambient space, a new point of the shape can meet an old
one (see when the arcs of the circle are closing in the next example). We will see at the
end of this chapter, from our choice of modeling that we cannot distinguish shapes with a
collision point and shapes without collision point (to separate for example curves with or
without intersections). In practice, we aim for one-to-one mappings but with a possible
localized exception when the first state of a shape is degenerated. For example, at the
beginning of its growth, a horn is reduced to a point that will form its tip (see Chapter 4).

The different biological interpretations of a collision are linked to the complexity of
the third condition in Definition 2.7.

Example 2.4 (Collision and overlapping I). The development of the unit circle presented
in Exzample 4.1 can be seen as the image of a simpler TGME g’ defined by a collection of
intervals
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— L;=10,t],teT! =10,1],
— ¢l =1d,
— 1 LTz,
g’ is a static segment, extending on its right side. To retrieve the TGMEs g* and ¢® of
Ezample 2.3, the morphisms m'4 : g — g4 and m'B : ¢! — ¢B can be defined by
— plA pIB Tl 5 Tt 27t
— pfA BTl 5 Tt — 27t
— ¢l I = S,z (cos(0), sin(0)), with 0 = 27z,
— qlB: I, = Sy, x> (cos(0), sin(0)), with § = 2r(t — z) .
Indeed, all shapes are reduced to a singleton at time 0 so that necessarily in both cases
¢3(0) = (1,0) (where % denote simultaneously a property for A and B). Then, Defi-
nition 2.7 (2) implies that once two points are mapped by a morphism, their respective
evolutions are also mapped together. Hence, since there is no deformation on ¢ and g*,
the spatial mappings qf* are constant in time (x — ¢l4(x) for any x € I;). For the other
morphism, we get that ¢l P(0) = gzbgf%t(qéB(O)) = (cos(2mt), sin(27t)).
As regards the tags, in both cases, for any t € T' such that t # 1, the spatial mappings
g; are one to one and the morphisms are consistent with the tags. Indeed, we can easily
check that

Tzért(cos(e), sin(0))
Tﬁrt(cos(ﬂ), sin(@))

n'(x) = 2rx, with 6 = 27z,
n'B(z) = 2mz, with 0 = 2n(t — x)

coincide with the tags introduced in Example 2.3.

At the end of the evolution, the segment [0,1] is sent to the closed circle. The point (1,0)
of the circle has two inverse images and only one of its inverses gives its label (adjusted by
n). It can a priori be seen as both a new point of Sar, as the image gi (1), and the initial
point of So, as the image qi(0). Yet, when the inverse images have not been created at the
same time, it is necessarily the oldest one that gives its tag. More precisely, Definition 2.2

(2) imposes 75,(1,0) = 73,(95 5 (1,0)) = 73(1,0) = 0.

Remark 2.9. Note in this example that since ¢ét =Id for any s,t € T, the flow does not
play any role in the collision. It is the only consequence of the intrinsic expansion.

Moreover, when the spatial mappings are not invertible the apparent choice of tags in
the definition of the morphism is not as free as it could seem. We will progressively see
that the tags have a natural ordered structure induced by Definition 2.2.

Example 2.5 (Collision and overlapping II). Figure 2.8 illustrates the possibility of an
overlapping during the development of animal horns. When the deformations of the am-
bient space are given by diffeomorphisms, the evolution of the shape outside the areas of
creation is diffeomorphic. Hence, an overlapping can only start at the neighborhood of a
new point.

We turn back to our presentation of morphism between growth mapped evolutions and
describe now the composition laws.
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Figure 2.8 — Curved horns with and without overlapping. On these examples, we assume
that the apparition of new points occur at the base of the horns so that a collision can
only appear around this base. On the left, no collision should happen since the top of
the horn is moving away from the base of the horn. On the middle, the top of the horn
previously hit once the base, then the apparition of new points created the overlapping.
On the right, likewise, a collision and an important overlapping may be about to occur.

Proposition 2.2. i) If m?? € Homgug (g, ¢7) and mB¢ € Homgume(g?, ¢©) are given

by

mA = ("8 (¢1*P)jera)  and  mPC = (0P, (¢PO)ern),
then mA¢ = mAB o mBC = (pBC o pAB, (qu%@) 0 ¢{*B)er) € Homamr (g2, 9°).
Likewise,

ii) If mAP € Homrame (g2, ¢%) and mP¢ € Homrame (98, g¢) are given by

AB AB _AB AB B B B B
m (P ) Tl ( )tETA) and m ¢ (p ¢ )7 C) (qt C)tETB)7
then mA< = m"PomPC = (pFCopAB nFConP (¢7G; \ 0q/'P)ier) € Homrame(g?, 99).

Proof. We only check the transitivity of the composition for the TGMEs since it implies
immedia‘cely the same property for the GMEs. For any t € T4, mA¢ is given by thC =
& AB(t) o g*B, pAC = pBC o pAB and nA¢ = nBC o nAB. We verify the three properties of
Definition 2.7 (i7). For property (1), we have

PO = o (Sjan () = Sgrepanqy) = Sgac -

Then for property (2), we have for any s <t € T4

C AC _ , C BC
Ppac(5),pAC(1) O ds = DpBOopAB(5) pBCopAB(1) © ApAB(s) © I

BC B AB
= dpn(p) © 9 2020 ° %

BC A
= quB( Oqt ¢st = qt o¢s,t'

Finally, for property (3) we see that for any r € T4 and for any z € S¢ with t = pA¢(r)

BC ;

)

is a morphism, there exists y € S with s = pAZ(r) such that ¢®(y) = z and
AB

since m

78(2) = nB¢ (B (y)). Moreover, since m*? is a morphlsm there eXIStS x € SA such that
¢ (z) = y and 78(y) = 4B (74 (x)). Thus, we have z = ¢P(y) = ¢PC 0 ¢AB(2) = ¢4 ()
and

7 (2) = P97 B (y)) = nPC B (7 (2))) = (7 (@)
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3 Space of GMEs

3.1 Spatio-temporal group action

The definition of a set of morphisms connecting GMEs can be parallel to the first layer
of the construction of shape spaces. To go further, let us show that a large subset of
morphisms can be identified to a natural group action. Consider now that T' = [tmin, tmax]
and F is a smooth manifold. Denote Diff(T)", Diff(L) and Diff(E) the groups of C*
diffeomorphisms on 7T (increasing), L and F respectively. Denote TGME(T, L, E) the set
of growth mapped evolutions of tagged embedded shapes in the space E sharing the same
timeline 7" and the same set of tags L. Denote likewise GME(T, E) the set of GMEs on
T and E.

Proposition 3.1. Consider G(T,L,E) = Diff(T)" x Diff(L) x Diff(E)T and for any

U= (pny = Witer), V' = (0,0 ,¢" = (Wi)er) € G(T,L,E) the composition law
defined by

W \IJ, = (,0 o p,a 7o 77,7 (wp’(t) o d);)tGT)) € G(Ta La E) . (22)

Then, we have

i) (G(T,L,E), ) is a group with neutral element Viqg = (Id,Id,Id = (Id;)ter) and
= (ot () ) eer)-

i) G(T,L,E) acts on TGME(T,L,E). For any ¢* € TGME(T,L,E), any ¥ =
(p,n, ) € G(T, L, E), we define g% = - g2 by

(1) S5y = e(S7) (2) D) () = Wt © Doy 05

U induces thus a morphism m = (p,n, (¢*8)ier) € Homrame (94, 97) with ¢'B = D) -
t
Likewise, G(T, E) = Diff(T)* x Diff(E)T acts on GME(T, E).

Proof. The law in associative:

((p, 1, (Y)ier) © (0,1, <w£>teT)) o (0", 0", (W) )eer)
= (p op op o on, (Vpeprry © Wiy © Y )teT))
= (p: 1, (Y1)eer) © (,0 op" s on", (W oy )tET)
= (p.n, (We)eer) © ((97777(¢t)t€T) o (p 1" ( t/)teT)>-
The remaining part of i) is straightforward. Regarding i), if ¢ = (¢/,7n/,%') - g® then
Sprontty = Yoty (Spiny) = Yy © Ue(S7), ¢p rop(s) plop(t) = Wp(t) Bpts1.o) © (Fpi) ™ = (W ©

U)o (U 16(1 ) 1) = (1] 000000 o) and 7 = af o7 o)1 =
(' om)orito (w;,(t) S

O

Example 3.1 (Spatial and temporal reparameterizations). The restrictions of G(T, L, E)
to the subgroups Diff(T)T and Diff(E) define the basic reparameterizations in time or
in space of a growth evolution. For any p € Diff(T) and any ¢ € Diff(E), any g €
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TGME(T, L, T), the new growth scenarios g° = (p,1d,Id) - g and g¥ = (Id,Id, %) - g are
given respectively by

9" = (T, (E,Sy-1(), Tp-1 (1) teT> (Pp-1(s),p-1(t))s<teT) »
g¥ = (T, (B, ¢(St), 70 Vier, (10 dsp 0™ )s<ser) .

3.2 Centered growth mapped evolution and centering

Let us recall that we assume that T = [tmin, tmax] and E is a smooth manifold. We
also assume now that the flow (¢s¢)s<ter of a GME is a set of diffeomorphisms on the
ambient space (a subset of Diff(F)).

We introduced previously the concepts of pure deformation and pure expansion to
discriminate specific behaviors during a growth scenario. In the case of a pure expansion
at all time, we will say that the GME is centered:

Definition 3.1. We say that g is a centered growth mapped evolution of embedded shapes
if psp = 1Id for any s < t € T. The same notion is immediately extended to tagged
embedded shapes.

St

: < % t
ty to t3

Figure 2.9 — Evolution of a centered scenario. The colors of the curves correspond to
the different tags. (The dot curves are drawn by anticipation to highlight the absence of
deformation.)

The first development of the unit circle (GME ¢g4) defined in Example 2.1 is centered.
Another example is displayed in Figure 2.9.

Remark 3.1. When a GME is centered, we get that for any s <t €T, Sy = ¢5+(Ss) C St
so that the shapes form a sequence of nested sets. In particular, with T = [tmin, tmax|, any
shape S; can be seen as a subset of the end shape St .

If g is a centered TGME, then its tagging function is constant in time. We can write
foranyt €T, o = 7g,.

We will see now that any GME ¢ over an embedding space F can be transformed into
a centered one. This will have a important consequence on how we can model the GME.
Indeed, the set of these elementary scenarios in the orbit of g forms a small orbit for a
subgroup of G(7T, E) much smaller. This new orbit highlights the growth process share
by the original orbit. Informally, it means that we can attach to any scenario g a less
complex scenario that still encodes how g is expanding independently of its shape.
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Proposition 3.2 (Centering a GME or a TGME). If g = (T, (E, St, T¢)ter, (¢st)s<ter) 18
a growth mapped evolution of tagged embedded shapes and c € T', then ®. = (Id,1d, (¢1,)¢)
belongs to G(T, L, E) and defines a new element of TGME(T, L, E)

?c = (I)C *g-
g, is centered and called the centered evolution of g at time c. The mapping ®. does not
depend on the tagging function 7. The same construction can be applied to the GMEs.

PT’OOf. Indeed? yc = (Ta (Ea gt)?t)tGTa (as,t)SStGT) is given by T = Ta E = F and

(1) §t = ¢t,c(5t) ) (2) as,t = ¢t,c o (Z)s,t o ¢c,s - Ida

O]

The action of ®. consists in pushing forward and pulling backward through the the
flow of the GME every shape S; at time c. This gives for any time ¢t € T prior to ¢ the
future image ¢ (S¢) C S. of Sy at time ¢ and gives a fictional inverse image qb;tl(St) DS
at the earlier time c of the later shapes S; when ¢ > ¢. See an example on Figure 2.10.

Remark 3.2. Note that if g is a centered GME, g is its own centered evolution at any
time: for any ¢ € T, g, = g. Moreover, all centered evolutions of a general GME g are
equal up to an invertible spatial mapping: for any pair (¢,c’) € T, ¢ € Diff(E) generates
an element . = (Id, (e )t) = P * @1 of G(T,E) and Gy = P - G,. The choice of
c 1s thus meaningless and ty;, will be the reference.

Definition 3.2 (Initial centered evolution). For any GME g, when ¢ = tyin, we call g,
the initial centered evolution of g. In the following, it will simply be denoted § and we will
denote ® = (Id, (¢141,,.,)¢) (respectively ® = (1d,1d, (¢r 4., )¢) if g is a TGME) so that

g=d.g and g=o1.3. (2.3)

Remark 3.3 (Invertibility of the centering). Since ® belongs to G(T, E) (respectively to
G(T,L,E)), the orbit of any GME g is generated by its initial centered evolution g i.e.

Og - Og,

where Oy = G(T,E) - g (resp. Oy = G(T,L,E) - g).

Any general GME can thus be retrieved from its initial centered evolution and its flow.
This means that GMEs can be generated by centered evolutions and flows. Let us explicit
it in the case of TGMEs. Consider any centered evolution g, and any flow (¢st)s<ter
of Diff(E) that satisfies the transitive property (3) of Definition 2.4. Denote (Sy)ier its
set of shapes and T, its tag (constant in time). Then ® = (Id,Id, (¢14,,,)t) belongs to
G(T,L,E) so that g = ®~'-g, belongs to TGME(T, L, E). This new TGME is defined by

g = (T7 (E7 (St)7 Tt)tETv <¢S,t)s<t6T) ) (2'4)
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Figure 2.10 — On the first row, a general GME g. On the middle row, g; . the initial
centered evolution of g (see Definition 3.2). Below, the centered evolutions g, of g for
every times ¢;. On this last row, we do not display the trivial evolution on a time line of
each g;, but only their final age with a track of every younger ages. Note that the flow is
similar to a rotation anticlockwise on the ambient space. Applying this flow to the initial
centered scenario restores the original scenario g (see Remark 3.3).

with
St = ¢tmin7t(§t) (J/Ild Tt = ?* o) ¢t’tmi“|5t . (25)

Moreover, g, is the initial centered evolution of g.

Proposition 3.3 (Stability of centered TGMESs). The image of a centered TGME by an
element ¥ = (p,n, (Yi)ier) € G(T, L, E) is centered if and only if (1) is constant in time.
Hence, it defines an action of the subgroup Diff(T)* x Diff (L) x Diff(F) of G(T, L, E) on
the subset of TGME(T, L, E) of centered evolutions.

Proof. For any g%, g% € TGME(E) such that g4 = U - g%, g4 and ¢® are centered if and
only if d)ﬁt = gzbﬁs) o(t) = Id for any s <t € T4. Then ii) (2) in Proposition 3.1 gives that
Vs = iy for any s,t € TA. O

Consequently, two TGMEs ¢4, g € TGME(T, E) are in the same G(T, L, E)-orbit if
and only if g* and g? are in the same Diff(T)* x Diff(L) x Diff (E)-orbit. On the diagram
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below, ¥ € G(T, L, E) exists if and only if ¥ € Diff(T)* x Diff(L) x Diff(FE) exists.

A -
gt ——— g4
lqz l\p
B oB -B
g ——— 43
We have explicitly for ¥ = (p, 7, (¥4)ter) (remind in the following derivations that tpiy =
P(tmin))
U =3B0Wo (4!
A
= <p7 7, ¢ﬁt),p(tmin) ° wt © ¢tminvt>
= (p7 777 (¢tmin o ¢£tmin ° d);l) ° ’I’Z)t o ¢£ﬂin7t)
= (p7 ?7’ 'lptmin o ¢énin:tmin)
= (p7 "77 wtmin) °

In conclusion, we can reconstruct the G(T, L, E)-orbit of g4 from gf?n ..» the action of
Diff(T')* x Diff (L) x Diff(E) to retrieve all the centered GMEs of the orbit and finally the
set of all diffecomorphic flows (¢s)s<ter on the ambient space. Again, the GMEs share
the same decomposition of their orbits. Figure 2.11 illustrates this structure.

L ek

s A A

(625wt

(¢g?2)5<t

Figure 2.11 — Growth Evolution Space. The gray area represents an orbit of centered GMEs
under the action of Diff(T)* x Diff(E). The trivial evolution of each centered GME is
implicitly displayed by a unique shape. The action of the flows of the embedding space is
then represented by the vertical fibers.
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3.3 Metrics on GMEs

In this section, the ambient space is fixed to E = R?. The aim, here, is to reproduce
the construction of a Riemannian structure on the spaces of growth mapped evolutions.
The first step is to consider a Reproducible Kernel Hilbert Space (RKHS) to model a sub-
space of TigG(T, E) the tangent space at the Identity of the acting group of deformations
(see Figure 2.12). This subspace has then a canonical image in any other tangent space
T,G(T,E). These images allow then to build a subgroup of G(T, F) with all the paths
parallel to these subspaces (see Figure 2.13).

T | T | G(T, E)

Figure 2.12 — Description of the tangent
space at ¥ = (p, (Yi)rer) € G(T,E). A
small variation of p is an 1D vector field on
T, denoted h, and a small variation of all
the (¢)¢ is a time-varying vector field on
FE, denoted ©.

Figure 2.13 — We consider all paths in
G(T, F) such that the velocity vector always
belongs to the image of H x V. These im-
ages are deduced by the differential of the
right translation in G(T, E).

Let us consider V, a RKHS of space-time functions v : T'x E — E, and H a RKHS of
functions A : T — R on T vanishing at the boundaries of T" and satisfying the regularity
assumptions

(2.7)

supry p(|0(t, 2)| +|0:0(t, 2)]) < Kol ,
supp(|h(t)| + [ (1)]) < KTh|m .

we have the following theorem:

Theorem 3.1. For any (h = (hs)scjo1,0 = (0s)sefo,1) € L*([0,1], H x V), we have
existence and uniqueness of the flow

aS¢S(ta :Z:) = {}S(pS(t)7 T;Z)s(t¢ SL’)) )
9sps(t) = hs(ps(t)) (2.8)
po =1d, o =1d,

between s =0 and s = 1. If we note \If?’ﬁ = (p1, 1) the solution at time 1, then

G (T, E) = { % | (h,®) € L*([0,1], H x V)} (2.9)
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is a subgroup of G(T, E) and
D(U, V') = inf{ ||(h,®)|]2 | O™« ¥ = '} (2.10)

is a right invariant distance on G (T, E).

Proof. The existence and uniqueness of the flow is an adaptation of a similar proof given
in [52] where the condition (2.7) is an extension of the so called admissibility condition
introduced in [50]. Indeed, the existence and uniqueness of p follows immediately. Then,
one can consider separately the evolution of ¢ at each time ¢t. If ¢ € T is fixed, one can
introduce the control u defined for any (s,z) € T'x E by us(x) = 05(ps(t), z). We retrieve
thus the usual setting to build a group of spatial deformation and equation (2.7) ensures
that u satisfies the admissibility condition. We deduce thus the existence and uniqueness
of Osps(x) = us(ps(x)) and we have ¥(t,-) = ¢.

Consider then on L'([0, 1], H x V) the operation ((h,0),(g,w)) — (h,0) * (g, w) de-
fined by s — (2(has, 2s) L g<1/2+2(g2s, w25)115>1/2). This operation is stable on L!([0, 1], H x
V) and we have \Il(h’ﬁ)*(g’ﬂ’) = \I'h’ﬁ o \1151“1’. Moreover, the equality [[(h, D) x (g, w)|1 =
(R, )|[1 + ||(g, w)]|1 ensures that

d(W, W) = inf{ ||(h, ®)[[1 | U1+ U =0’}
satisfies the triangle inequality and we deduce that it defines a right invariant distance on

Gy (T, E) = { U™ | (h, %) € L}([0,1], H x V)}. (2.11)

The last step is to show that we can retrieve the L? norm by time reparameteriza-
tions. Consider (h,?) € LY([0,1],H x V) and € > 0. Define the function s. : ¢t
(fg \hr, Oy dr + €t)/(||(h,®)|l1 + €). Then s. is absolutely continuous and strictly in-
creasing from [0,1] to [0,1]. Its inverse s +— t.(s) is also absolutely continuous and
we have t.(s) = (|[(h,0)|l1 + €)/ (|t (s)> Ot (5)| + €) a.e. Finally, if we define (g, w) by
(gs,ws) = t.(s)(hs,0s), we have |(gs,ws)| < ||(h,?)]1 + € for any s € [0,1], so that
(9.@) € L([0.1]. 7 x V) € L2([0,1), 1 x V) and (g, @) < (g, @)1 < (k. )]s+
Moreover, we have U¥’ b =T, - Hence, we can define for any (h,®) € L'([0,1], H x V)
a sequence ((g, W)n)n>0 in L2([O 1], H x V) such that lllgg Bn \Illlw for any n > 0 and
liminf [|(g, w),||2 < ||(g,w)|1. It follows that

Gy (T, E) = { WP | (h, %) € L*([0,1], H x V)} (2.12)
and that d = D. I

This right invariant distance can be seen as the Riemannian distance for the metric
structure given at (Id,Id) € Gy, (T, E) by the metric on H x V. Now, we are ready
to deduce a Riemannian structure induced by the action of the space-time deformation
groups G, (T, E) on any orbit Op = { ®-¢° | ® € Gy, (T, E)}. The difference
between two scenarios g and g’ of the orbit Oy is evaluated by the energy required to
generate the shortest path in G, (7T, E) that deforms g to ¢'.

d(g,g") = inf{D((Id,1d),¥) | ¢ = ¥ - g} . (2.13)
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At last we deduce from standard arguments on homogeneous spaces that
Theorem 3.2. The function d defines a pseudometric on the orbit Ogp.

Proof. This follows from standard arguments when considering a right-invariant distance
on a group acting on a homogeneous space (see [38]). O

4 Canonical temporal tag

A growth mapped evolution of tagged embedded shapes (TGME) is described by a
sequence of tagged embedded shapes (E, S¢, ¢ )ter and a flow (¢s¢)s<ter. The last remark
says that the first object is equivalent to a centered evolution. The main aim of this
framework is to exhibit a minimal set of parameters to describe an individual. We will see
in the next section that a centered evolution can be reduced (with one regularity condition)
to the set of points of one mega shape and a tag on this set. More precisely, the tag will
extract the shape at any given time ¢ € T" from this mega shape.

4.1 Birth function and birth tag

Example 2.2 in Section 2 introduced a method to construct a temporal tag on any GME
with an finite indexing set T'. This construction was then extended on the developments
of the unit circle in Example 2.3. In the two following sections, we will show that a large
class of GME can be equipped with a canonical temporal tag.

Denote § = (St)ier the time-varying shape as a single entity. A tagging function
(1¢)ter allows to follow through the time a set of time-varying points inside § from their
creation to the end of the time index. The birth tag we introduced in the examples cited
above says exactly for any time-varying point when it appears in §. We will first introduce
an auxiliary function, the birth function, then formally define the birth tag and study
some of their properties. In the next section, we will ensure that this tag can extend a
GME to a GTME.

Consider a general GME g = (T, (E, St)ter, (¢st)s<ter) on T = [tmin, tmax|. Recall
that we denote g = (T, (E, St)ter, (Id)s<ter) its initial centered evolution. Define for any
GME ¢

Sall = UteT Pt t,0:n (St)

reduced to San = User St = St if ¢ is centered. Let us start with centered GMEs. The
growth process is given by pure expansion so that the shapes are simply nested and not
deformed.

Definition 4.1 (Birth function of a centered GME). When a GME g is centered, one can
introduce a function b: Sy — T called hereafter the birth function and defined by

b(z) =inf{t € T | x € S;}.

Note that since T is closed, b(x) € T. This function determines the onset of a point x in
the evolution of shapes (Si)ter-

The notion of birth function can be defined for any arbitrary GME as following:
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Definition 4.2 (Birth function for a general GME). The birth function b of a GME
g is defined as the birth function of its initial centered evolution g (see Definition 3.2).
Hence, b is defined on Sa1 = Uper St = UteT Pt 1, (St) and for any x € San we have

b(l’) = inf{t eT ’ gf)tmimt(l') € St} .

Note that this definition is coherent with the previous one since a centered GME is its
own initial centered evolution. The birth function is thus defined on the projection Sy
of all shapes at time t;,. These birth dates can now be pushed forward to the original
shapes (S¢)ier to define the birth tag.

Definition 4.3 (Birth tag). For any GME g, we define a canonical temporal tag called
the birth tag and given by

Ttb : St — T7 Ttb = (b © ¢t:tmin)‘st N (214)
Note that for any x € Sy, Definition 4.2 gives
0 (x) = inf{s € T | ¢ys(x) € Ss}. (2.15)

Remark 4.1. When the GME is centered, the birth function and the birth tag coincide
ie. T =10 forallt €T.

Example 4.1 (Birth tags of the circles). In examples 2.1 and 2.3, two GMEs g and ¢®
model the development of the unit circle. Let recall that T = [0,27], E = R?, and S; =
{(cos(8), sin(6))|6 € [0,t]} are common to g and gB, but ¢ét =1d and ¢&; = Ry o R*
where Ry is the rotation of angle 8. Then, for any t € T, any 0 € [0,27[, we defined the
tags

These tags are the birth tags as formalized in Definition 4.3. Note that /* = b4 for all
t €10,2x]. See Figure 2.7.

Remark 4.2 (Continuity of the birth function). One can see in Figure 2.7 that on both
scenarios g4 and gB, the collision happening at the end when the curve closes itself induces
a discontinuity of the birth function and the birth tag.

A natural question is to understand how the birth function characterizes a GME. In
order to extract some condensed parameters of a GME, we would like for a centered GME
that the birth function and the set of all points S,y allow to retrieve the evolution (and
then extend it to the general GMEs). However, the birth function does not precise if a
point x that appears at time ¢ = b(x) belongs to S; (for a centered GME). In other words,
is the infinium a minimum in Definition 4.1 ? For each label, the answer must be the same
for all associated points. Indeed, let us recall that the flow of a TGME is a set of tag
consistent partial matchings (see Definition 2.2 and Remark 2.2). This property enforces
all points associated to one label to belong to the same subset of shapes of the complete

evolution (St)¢er.
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In fine, the answer requires some topological regularity on the set of shapes. Some
examples will be presented in Remark 4.6 to illustrate this property.

Definition 4.4 (Right continuity (RC)). We say that a GME g is right continuous if
foranyt € T and any decreasing sequence (tn)n>0 of element of T' converging to t we have

St =) Gt (St) -

n>0

Remark 4.3. When g is centered the notion of right-continuity is reduced to the property

Sp=1{) Sk,

n>0
Proposition 4.1. If g is a right continuous centered GME then for anyt € T

Proof. Indeed, if x € S, then by definition of b, we have b(x) < t. Moreover, if b(x) < t,
then there exists s € T, such that b(z) < s < t so that v € Sy C S;. Now if b(z) =t and
x ¢ Sy, then there exists a decreasing sequence t,, of elements of T' converging to ¢ such
that x € Sy, . Using the right continuity, we get « € S; which is a contradiction. Hence, if
b(x) = t, we have x € S;. O

The proposition can be extended to any GME.

Proposition 4.2. If g is a right continuous GME then for anyt € T, any x € S,
x € ¢s(Ss) iff (z) <s.
Proof. Indeed, if z € ¢54(Ss), then by definition of 77, we have 77(z) < s. Moreover,

T(2) < 5= b0 Grp, (1) < s

= ¢t7tmin (;L‘) € gS
= ¢tmin75 ° (Z)tatmin (x) € SS
= Qﬁs’t(l‘) S Ss .

O]

In conclusion, given any right continuous centered GME g, the single shape Sy and
the birth function completely describe g. Explicitly, we have for any ¢t € T,

Sy = {x € San | b(z) <t}

Then, by Definition 3.2, any GME can be retrieved from its initial centered evolution and
its flow (¢s+)s<ter. It follows that

Corollary 4.1. A right continuous GME is characterized by these three parameters:

1. an embedded shape (E,San),
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2. a birth function b: Say — T,
3. a flow (¢S,t)s<t€T-

From a modeling point of view, these two last propositions say that under the right
continuous condition, if g is a centered GME, for any x € S there exists a first shape
S; containing z. Likewise if g is a general GME, if we follow any point through the
flow z; = ¢¢(x) (such that ¢, (x) € St,..), there exists a first shape S; containing ;.
Formally, the definition of b and 7° can be rewritten:

b(z) =min{t € T | ¢y, +(z) € S},
Ttb(x) =min{s € T | ¢ s(x) € Ss}.

At last, the last proposition says that the birth tag demarcates at all time t, each
image of the previous shapes S in S : for any s <t €T,

¢s.(Ss) = {w € S| 77(x) < s}.

All these sets contain the old points of Sy (see Definition 2.5). The new points are exactly
the points such that 77(x) = ¢. This is the final ingredient to ensure that the birth function
or the birth tag of a GME gives a consistent stratification coding the complete creation
process during the evolution of the shape regardless of its spatial localization. This will
allow to extend any right continuous GME to a TGME.

Before this important result, we finish this section with few more technical remarks.

Remark 4.4. The right continuity is a necessary condition to Proposition 4.1 as soon as
T is not a discrete set. Indeed, if there exist t € T and a decreasing sequence t, — t

such that Sy & (1,5 St,- Then any x € (),5¢ St, \ St verifies x ¢ Sy and b(z) <.

Remark 4.5 (Semi-continuity of the birth function). Under the right continuity condition,
the shapes (Si)ier are the lower level sets of the birth function. If the shapes are closed,
the birth function is therefore lower semi-continuous.

4.2 Minimal extension of a growth mapped evolution of shapes (GME)

As announced, an interesting fact is that when g is a right continuous GME then one
can extend it to a TGME § with the addition of the tagging sequence (7)ier with values
in T. By construction, the birth tag 7° is indeed consistent with the flow as proved in the
next proposition.

Proposition 4.3. If g = (T, (E, (St)ter), (¢s,t)s<ter) is a right continous GME with birth
function b and birth tag (1¢)ter as defined by (2.14), then for any times s <t €T

7Tt§t7

— Tt © gbs,t‘ss = Ts;
— ifx € S; and 7(x) € T4(Ss) then x € ¢g+(Ss) .

In particular, (1¢)ier is a consistent tagging with respect to the flow (¢s1)s<ter and

= (T,(E,(St)ter), (Tt)ter, (Ps,t)s<teT)
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is a TGME.

Proof. From (2.15), we get immediately that 7 <t and from (2.14) we get that 7,0 ¢s; =
bo¢s i = Ts on Ss. The last point is a direct consequence of Proposition 4.2. O

Definition 4.5. The extension g of a right continuous GME g defined by the previous
proposition will be called the minimal extension of g.

Remark 4.6 (Examples about the right continuity). We present here two examples to
understand the right continuous condition.

— Let be T =1[0,2] and g a centered GME defined by a collection of intervals

=) o ifts1,
PTY (0,141 otherwise.

The collection is strictly increasing by pure expansion from Iy = {0} to Is = [0, 3].
At each time, one point is created, except after time t = 1 where there is a jump.
We have I} = [0,1], then I1+e = [0,2 + €] (for e > 0). Consequently, for any time
sequence t, — 17, (5oL, = [0,2] so that g is not right continuous. The birth
function is then equal to

x if x € [0,1],
bz) =< 1 if x € [1,2],
x—1 ifze(2,3].

In particular, for any x €]1,2], b(z) = 1, yet, x ¢ 1. Although the birth function
can still be defined, it cannot be extended to a tag because of the third condition of
Definition 2.2

G5t (Ss) = 7';1 (75(S5))-

Indeed, since for v =1, x € Iy and b(x) = 1, the birth tag s = 1 belongs to TP(I1).
Yet, I = [0,1] € 727 1([0,1]) = [0,2] for any t > 1.

— If we just modify I; = [0,1[, g is still not right continuous but we can extend it to a
TGME. If we assume that the shapes are closed, we can still generate an example.
Take T = [0,3] and

[0, t] if0<t<1,
I; =< [0,1] ifl1<t<2,
0,14+¢t if2<t<3.
Then b(2) = 2, yet 2 ¢ Iy. Hence, g is not right continuous but we can show that it
can be extended to a TGME.

The (RC) condition is thus not necessary in general. Yet, it seems to be a reasonable
sufficient condition and its most important justification is to allow the birth function
to delimit the shapes (St)ier.

We can now state the central theorem on morphisms between minimal extensions of

GMEs.
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Theorem 4.1. Let mA8 = (pA8 (¢2B),cra) be a morphism mAB . g4 — ¢B between two
GMEs indexed by the closed intervals T and T® such that
1. g* is centered, Tight continuous, defined on a topological embedding space E* and
S4 is compact for any s € T4,

2. EB is a topological space.

3. The time warping pAB : T4 — TP is a increasing homeomorphism.
A

S

. For any s € , the spatial mapping qi~ : — S, 1S continuous.
4. F T4, the spatial ing ¢P + S{ = Sl is conti

= (p*B, 0B, (4'P) era)

between the minimal extensions §* and B of g4 and ¢P into TGMEs. At last, we

AB|
o

Then gP is right continuous. Moreover, there exists a morphism mAP

have necessarily n
t = pAB(s), that

AB,—1(3(7B)) = pAB and for any s € TA and any y € SP, where

B __ _AB . A
Toan(s(Y) =P (;gfy T, (w)) : (2.16)
where Sf’y ={zc S;“ ’ qu(af =y}

If pAB(S(14)) = S(B), mAPB is unique.

Proof. In the sequel, we use the notation ¢, for qSAB, n for nB and p for pAB. Let
t, — tT be a decreasing sequence of elements in 7% converging to t € T®. Consider
Y€ N0 qbfi ,t(SgL ) and let us show that y € SP. Since p is an increasing homeomorphism,
there exists a unique decreasing sequence (s,) in T4 converging to s € T such that
p(sn) = tn. Therefore, y € (N5 0f ; © gs,(S24) and there exists z, € S2 such that
s, (xn) = &F, (y). Since g? is centered and 52 is compact, up to the extraction of a
subsequence, we can assume that x, converges to = € ﬁnZOSi . We push forward every
point z, at time sg but since gA is centered, we have z, = (ﬁfn 0 (zp). The image in
g of this new sequence is a constant sequence equal to y. Indeed, since the flows and
the spatial mapping ¢ commute, we have g5, () = ¢s,( ;‘LSO (zn)) = O 4 (s, (Tn)) =
¢i,t0(¢t§tn (y)) = ¢Et0 (y)

On the left-hand side, we have gs, () — ¢s,(x) (gs, is continous), so that gs,(z) =
¢P,, (y). Finally, we get y = ¢ (45, (%)) = ¢s(¢2 ,(x)) = qs(x). By right continuity of g,
we have z € Sf. Hence y € qs(Sf) = SP so that we have proved that N, (bt]i,t(sji) c SP.
Since the reverse inclusion is always true, we get that ¢ is right continuous.

Since g4 is centered, note that for any s € T4, TSA does not depend on s and is now
denoted 74. Let us prove first that if ¢t = p(s), with s € T4, y € SP and St = {z e
S4| gs(x) = y} then we have for any ¢ = p(s') with s’ € T4, s’ < s that

ory(y) e S iff SMVNSSA£D. (2.17)

Indeed, ¢/, (y) € Sf? iff there exists = € S2 such that y = ¢7 (s (x)) = q5(¢§,s(x)) =
qs(x) which is equivalent to S N S4 0.

The characterization of birth tags by Proposition 4.2 implies then that if x € s Y
B(y) < p(t4(x)) so that 78 (y) < inf_ gy p(tA(z)). Now, if s, = inf{ s’ < s | s €
TA, S&Mn S4 % 0 } then since T4 is compact s, € T4 and 78(y) > p(s,). More-
over, by right continuity we have Sﬁ = Ny ,ueTAS,f and since S4 is compact and
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S closed (we assume that gs is continuous) there exists z, € S4 N S so that

(z,) < s, and g¢s(z.) = y. Hence 78(y) > p(r4(z,)) and we have proved that

B(y) = inf iy p(t4(x)) = p(7*(x)). In conclusion, for the particular choice n = p,

mAP is a morphism between the minimal extensions §4 and §%.

3(7P)). With the same
notation, let us introduce ¢, = p(s,) and y' = qSEt,*(y) = ¢y (7+). Let us show that

*
TA(SA’y/) = {s}}. We have Sﬁ’yl C S so that TA(Sﬁ’y/) C TA(Sf’y). Now, for any = €

sl

Finally, let us prove that 7 is completely determined on p~

Sﬁ’yl, since z € S7 we have 74(z) < s,. Hence, p(s}) = t, = 72(y) = 72 (y) = n(s}). O

Note that the definition of the image tag is here a bit more precise than in the general
definition of morphisms between TGMEs (Definition 2.7). The uniqueness property above
allows us to transfer the birth tag of a GME on its images and to retrieve the birth tags
of these 1mages:

Corollary 4.2. Let g% and g® be two GMEs and m”®B a morphism such that

B AB(

g% =mB(g?).

g
With the assumptions of the last proposition, if T2 is the birth tag of g, then the image
of this tag defined by equation (2.16) is the birth tag of g®.

Example 4.2. The birth tags of the two GMEs on the unit circle g* and g® are given in
Example 4.1. In Example 2.4, we introduced a source GME g', the centered collection of
segments ([0,t]);e71, to generate g? and gB. The image of its birth tag gives indeed the
birth tags of g and ¢®.

Remark 4.7 (Linked between time warpings and spatial mappings). For any centered
GME ¢* reparameterized by a time warping p into gB = (p,Id) - g4, the birth function
becomes bB = p o bA. In practice, if a centered GME is given by an encompassing em-
bedded shape (E, San) and a birth function b : Say — T, a reparameterization in time is
equivalent to compose on the left the birth function with an invertible mapping. A spatial
mapping ¥ : San — E acts on the birth function on the right. Yet, if 1 induces one-to-one
correspondences between the level sets of the birth functions, it can be seen as the action
of a time warping. Conversely, given p a time warping, the existence of a spatial mapping
to reproduce the action of p is not immediate and will be deepened in Chapter 4.

4.3 Factorisation of general tagging function

The next proposition says that the birth tag is always hidden under a general tag.

Proposition 4.4. [Temporal factorisation of the tags] Let g be a right continuous TGME
of tagged shapes over L and time indexed on T. Let (1¢)ier be the family of tagging
functions in L and (7)) the birth tag (Definition 4.3). Then there exists a function
bl L — T, such that for any t € T we have on S; :

P=blor. (2.18)
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Proof. Tt is sufficient to prove that for any s,t € T, any x € S5 and y € S, if 75(x) = 7(y)
then 72(x) = 7P(2). Let us first consider the case where s = ¢ and assume that there exist
z,y € Sy such that 7(x) = 7(y) and 7°(x) < 77(y). Then there exists 77(z) < u < 77(y)
so that ¢, (y) & Sy since 7P(y) = inf{ s € T' | ¢1s(y) € Ss }. However, by right continuity
of g, 7P(x) < u implies that ¢, (z) € S, and 7(y) = 7(x) € 7, (Sy). Hence, y € ¢u1(Sy)
which is a contradiction.

Now assume that s <t are arbitrary in 7. If 75(x) = 7(y) then 7 (¢s(x)) = 75(z) =
1) s that 7 (6ux)) = 7). Bt (000(2) = Bt (Gua(1)) = o (1) =
To(x). O

Remark 4.8. The function b" defined a birth tagging of the label set L itself.

5 Birth place functions

Corollary 4.1 says that any right continuous GME g can be retrieved from the encom-
passing embedded shape (E, Su;1), the birth function b : Suy — T' and the flow (¢s¢)s<ter-
More precisely, the shapes (S;)icr can be retrieved as follows

St = {Ptoin,t () |2 € San, b(w) < t}. (2.19)

Indeed, the birth function b reconstructs with S, the initial centered evolution g of g.
Then one can retrieve g by g = @1 - g where ®~! = (Id, (¢1,,,, +)ter) € G(T, E). This is
to say that=

St = bt (St) -

where (S;)ier are the shapes of g (see Proposition 3.2).

We will see in this section that one can consider another approach. Moreover, we will
extend it to more general morphisms eventually not invertible as introduced in Defini-
tion 2.7. We will see how to express a morphism m4? : g4 — ¢® between two GMEs as
a function of the flow ¢Z. Since g% = mAB(®~1 . §4), one can naturally assume that g4
is a centered evolution.

Recall the diagram that illustrates a morphism between two GMEs:

o2t o
A . s,t A . t,u N A
Ss St 4 Su
qsl/ ‘/Qt ‘/Qu
SB ey gB . . QB
t
A U P

Note that given a time-varying point z; through the flow inside the scenario g or g?, one
can only follow it backwardly until its time of birth 77(z;) (that does not depend on t).
Inside the centered scenario g, t + x4 is constant and 77 (x;) = b(z;). This induces the
next proposition.

Proposition 5.1. Consider two GMEs g** and g%, and a morphism mA8 = (p, (¢/*),c74).
Assume that g” is right continuous and centered and denote b its birth function. Then
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there exists a unique function ¢AP : SA — EB, called the birth place function, such
that for any t € T4, any x € S{,

G 2(2) = 6By o (1 (@)

This function is given by
§'P (x) = gy (@) .

Proof. Tt is an immediate consequence of Definition 2.7 (2). Indeed, if z € S* and s =

b(x), then assuming that g* is right continuous, we have z € S4 and since m4? is a
morphism between two GMEs, we have ¢/\Z(z) = q{‘B(qﬁﬁt(x)) = f(s) p(t)(qu(w)) =
¢B (qb( )( )) O

The birth place function gives the location of the new points of g&.

Remark 5.1. The birth place function is independent of the time warping p. It only
depends on the spatial mapping and the birth function of the source GME.

Equation (2.19) makes explicit the image of a general scenario from its initial centered
evolution. With the birth place function, the new scenario is described by

S8 = {8 o0 (@5 (@) | € S}
= {Srp) o0 (@7 (@) |2 € S5, b(x) <t} (2.20)

Conversely, we would like to understand if starting from an arbitrary function ¢ :
Sﬁl — EB, an increasing function p : T4 — T5 and a flow (¢s¢)s<ters on EP . then one

AB .

can define a target ¢ and a morphism mA? : G4 — §P between the minimal extensions

as TGME.

Theorem 5.1. Let g? be a centered right continuous GME indexed by a (compact) time
index set T with an associated continuous birth function b and such that Sélax 18
compact. Now for any continuous q : Sﬁl — EB, any homeomorphic increasing time
warping pAB : TA — TB and any flow (¢ft,)t§t/€TB of invertible mappings on EB such

that ¢B,(y) is continous in t,t' and y, we have:

1. gB = (TBa (EB7 StB)tET37 (¢£t)s§teTB) where SﬁlB(t) = {¢pBAB(bA(x))7pAB(t) (d(‘r)) | S
SA Y is a right continous GME

2. if we defined for any s € T4, ¢B . SA4 — SB(S) by ¢AB(z) = ¢p(bA(x) ( ) for
x € S& then m"B = (pA8 (¢} sera) is a morphism between g and gP that can be

extended to their minimal extension as TGME.

Proof. The proof is mainly a consequence of Theorem 4.1. Denote p for pAZ. For any

t e T4, S = (b < t)is closed since b is continuous and compact as a closed subset of the

compact set an . 1t is quite immediate that ¢® is a GME. Consider indeed s < t € TA.
B : A _ 4B ~

For any y € 5, there exists z € ST such that y = (Z)p(bA(z)),p(s) (¢(x)). We have then

09100 W) = Bp(s).p(6) © Bpl@),006) (A@)) = Bppay) o (@()) (2:21)
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so that gb (), p(t ( ) € Sp(t) Since p is a homeomorphism, it follows that for any s < t € T'5,

5.(8P) c SP so that ¢F, € Homgs((E, SP), (E, SP)) and g* is a GME.

AB is a morphism between ¢ and ¢? as defined in Defini-

tion 2.7. By construction, for any ¢ 6 T4 S’EZ) = qt (Sf‘). Since g4 is centered, one

Let us prove now that m

then needs to show that qﬁp(s) o) © qAB = q{‘ 154 which results directly from (2.21) where

y = ¢ (x).
At last, since z — (pr(bA(x))p(s) (q(x)) is continuous we get that ¢s is continous and
Theorem 4.1 gives that ¢? is right continuous and that m“? can be extended as defined

in Theorem 4.1. O

Remark 5.2. Note that b® is not necessarily continuous. Indeed, in Example 2.4, b =
I

Ti e 18 cOntinuous, but we saw in Remark 4.2 that b4 and bB are not continuous.

The birth place function is a new descriptor of the spatial mapping between two GMEs.
Note that since the birth place function is not always an embedding (see Example 5.4 where
its image is reduced to a point), its image cannot replace the centered GME g4.

Theorem 5.1 will be the core of the growth model studied in this thesis built on a
centered evolution g4 of the type:

Example 5.1. If tg < t; are two real numbers such that Sa” = [to, t1] x Xo, where X is
a compact manifold with boundary and b? is the projection on the first coordinate, then
T4 = [to, t1], for anyt € T4, Sy = [to,t] x X, b* is continuous, and g is right continuous.

This centered evolution will play the role of the biological coordinate system pre-
sented in the introduction.

We end this section with few examples to highlight the birth place function.

Example 5.2. Define fort € [0,1], I; = [0, t].

a) Consider EA = R, EP = R? and T4 = TP = [0,1]. Let g* be a centered right
continuous GME given by S{* = I, andg be gzven by SP = I;x{t} and d)st = 1d+(0,t—s)
the vertical translation. A morphism mAB : g4 — g8 can be defined by pAB =1Id and

thBI It — ItX{t},
x = (x,1)

(we could actually show here with Definition 2.7 (2) that mAB is unique up to the choice
of pAB). We also have b (x) = z, for any x € S%, (here SA4, = I,... = [0,1]). Then

PP () = gl () = (22).

The image of the birth place function is thus the diagonal of the square [0,1]x[0,1]. It gives

the positions where appear all the new points of g over the time. We can parameterize
the sets of g% by SP = ¢{*"(S{') = {62,(q*%(«)) | x € '} = {(w,1) | x € S{'}.

b) An interesting fact is that the area of creation or the image of the birth place function
can be reduced to a point and still generates a non trivial GME. Let keep g as introduced
in the premous example and define g® by SP = {O} x Iy and gi)st =Id+ (0,t —s). A
morphism mAB : g4 — ¢B can be defined by p*P =1d and
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SB T > |
B
9B // gB | I g
="t |
AB O s
¢ > T m .
- - o sy 8P
Example a Example b

Figure 2.14 — Illustration of Example 5.2. Example a: Two GMEs represent the evolution
of a segment. At the bottom is displayed ¢, a segment embedded in R that evolves by
pure expansion on its right side. Above, g? evolves in R?. The segment is expanding on
its right side but also gradually translated upwards (with a constant velocity displayed by
the vector v). We point the shapes SZ and SP at times s = 0.5 and ¢t = 1. We circle
the image of the birth place function : the position of all new points of ¢%. Ezxample b:
In this case, the evolution of g7 is displayed along a timeline. Note that this evolution is
actually constrained in a straight line of the plan. It is now a vertical segment extending
by creation of new points at the bottom and gradually displaced upwards. The circled
image of the birth place function is displayed as a horizontal segment in R x T8 and is
thus spatially reduced to a point.

inBZ It — ItX{t},
x = (0,t—x).

Now, for any x € Sﬁl, we still have b*(z) = x, and thus,
PP) = 8 (1) = (@) = (0,0).
Yet, we can fully reconstruct the sets SP = {¢5,(¢*P(x)) | x € 57} = {(0,t—=) | = € S{*}.

Example 5.3. For the horn as a surface, we assume that the creation of matter occurs
at the base of the horn and that locally this base (or the head of the animal) is flat. Then
the image of the birth place function is constrained to a plan and diffeomorphic to a disk.
The level sets of the birth function are close to circles, the head of the horn is a point at
the center of these level sets, and the boundary of the disk is the base of the final horn.
See Figure 2.15. A natural centered source GMFE can be a cone or a cylinder. With a
cone, note then that the birth place function is an embedding. However, if some collisions
happen as seen in Figure 2.8, the spatial mapping q is not invertible.

Example 5.4 (Degenerated BPF). Let refer again to the two GMEs g and g® modeling
two developments of the unit circle as the images of a centered GME g' as presented in
Ezample 2.4. Let recall that T = [0,27], E = R?, and S; = {(cos(0), sin())|0 € [0,t]} are
common to g? and g®, but qSét = Id and gbft = Ry o R;! where Ry is the anticlockwise
rotation of angle 8. Then the images of their birth place function are

$(g') = ¢! and 3(q'") = {(1,0)}.
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Figure 2.15 — First row: two ages of a horn given at an intermediate time ¢; € [0, 1] and the
final time 1. The small horn is modeled by g, (St,) and the large horn by ¢1(S1) = ¢1(San)-
Second row: on the left, we can see the initial position of all the leaves that will gradually
appear to form the large horn. This shape is the union of g (S, ) and ¢(San \ St ). On
the right, we display the virtual horn at time 0. It is a flat disc, set of initial positions
of every points, given by ¢(San). The sizes and points of view have been adjusted for a
better visibility but the colors give the pointwise correspondences between the figures.

Quantify the growth: note that for the centered GME g*, the amount of creation can be
measured by the spreading of its birth function. On the opposite for gB, it is quantified by
the flow. However, remark that we have an isometric transport by the flow. The creation
of matter comes as for g by an intrinsic expansion but the phenomenon is hidden by the
action of flow.

The birth place function can thus be highly non injective and yet generate a non trivial
scenario. The flow (¢£t) s<t on the ambient space EP is indeed able to separate the images
by the BPF of the foliated leaves ({z € S4,|b(x) = t});cra. Note however that the flow
cannot separate two points of the same leave that would appear at the same position in
EB (ie. two points z,y € S4, such that §45(x) = 2B (y) and b*(z) = b2 (y)).

6 Conclusion

6.1 Final parameters of a population

To end this chapter we recall and highlight the parameters fixed for a population
of related time-varying shapes and the free parameters modeling each individual of the
population. A population embedded in an ambient space E and evolving on a time interval
T can be defined from a set of centered evolutions. Denote one of them g% and (S, %)
its minimal parameters.

Then one can generate a general individual g image of g% by its flow (¢s,+) and one of
the two following spatial mappings from Sﬁl to E :

1. a spatial mapping q.y : S;fl — F that defines g by Su1 = qau(S;fl) and by b(x) =
inf b (¢4 (x)) for any = € San. Then g is defined by

St = {Gtyint(z) |2 € San, b(z) < t}. (2.22)
or
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2. a birth place function ¢ : S;fl — F that defines g by
St = {p(ox () p(0) (@(2)) | 2 € S, b (2) < 1} (2.23)

Note here that ¢ is a mapping from location x € S;fl at a given time ¢y, to location ¢(x)
at different time of birth b(x). Hence, G is a mapping across time in contrast with g,y. This
last construction deviates from the approach of a group of spatio-temporal deformations
acting on a set of scenarios, as presented in Section 3. As we will see in Chapter 3, an
important consequence is that the spatial regularity of the generated scenarios will depends
on the temporal regularity of the flows that generate them.

At last, to determine only one centered evolution of a population, one can easily see
that a spatial deformation of the centered scenario ¢g* can be absorbed by the mappings
gan and ¢ (by composition). One then need to know to how rewrite the time warping.
This question has been raised in Remark 4.7. One can easily notice that when ¢* has
the canonical type given is Example 5.1, it always exists a spatial mapping translating
the foliated leaves ({t} x Xg)ter to rewrite a time warping. Therefore, the time warping
can again be absorbed by the individual functions g,; and ¢. Otherwise, we will see
in Chapter 4 how a lot of general centered scenarios can be reduced to this canonical
decomposition by a spatial mapping. This allow to conclude that one can fix the centered
evolution gX (inside the orbit generated by Diff*(T) x Diff(E)) of the population and
retrieve all the individuals by one of the two previous methods. This scenario g* will play
the role of the biological coordinate system of the population.

In the next chapters, the second model will be exploited to reconstruct the scenario g
of an individual from some observed times denoted (Obs“). The problem leads to complete
the following diagram with the individual input (Obs?) and the population input g*.

(%) — s ()

where 7 is the canonical projection.

6.2 Conclusion

As we have seen, the notions of growth mapped evolutions and tagged growth mapped
evolutions are quite effective to build a mathematical framework to handle important
issues on growth modeling and analysis from a mathematical point of view. Interestingly, a
Riemannian point of view can be developed on a space of growth mapped evolutions leading
to the idea of growth evolution spaces as infinite dimensional Riemannian manifolds. The
properties of such spaces can be understood thanks to the analysis of the space-time group
actions acting on them and the semi-direct structure of the interactions between space and
time.

Many interesting facts are emerging from this point of view as the key role of cen-
tered growth mapped evolutions and canonical temporal tagging. These two parameters
characterize the expansion process of a population of growth scenarios opening new di-
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rections for investigation on these processes. At last, the introduction of the birth place
function defines a new construction to generate growth scenarios paving the way for new
registration models able to integrate growth priors.
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Chapter 3

Reconstruction of a Shape
Development
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1 Introduction to the generative model

Longitudinal data analysis is the study of a population of time-varying shapes. It
requires to investigate a low-dimensional modeling of their evolution. The continuous
evolution of a time-varying shape, called the scenario of the shape, is usually only given
through a sample of data at a finite set of times. This chapter addresses the reconstruction
of theses scenarios. A core hypothesis is that all the scenarios of the studied population
follows a common growth process induced by a canonical centered growth mapped evo-
lution as introduced in Chapter 2. It allows to generate these scenarios by time-varying
vector fields leading a new optimal control problem for the assimilation of time-varying
shapes. At last, we are invited to tune this problem with new cost functions in order to
redefine an optimal development of the shapes.

1.1 Biological coordinate system

In order to model the evolution of a shape during a growth process, we developed in
Chapter 2 the concept of growth mapped evolution (GME). A GME is given as a path of
shapes [0,1] 5 ¢ — S; and a flow of mappings (¢s+)s<+ such that for any pair s <t € [0, 1],
the flow deforms the older shape Sy into the younger one Si: ¢+(Ss) C Si. The shape S;
is thus made of the image of S at time ¢ and of a set of new points created in the time
interval |s, t]. In this chapter, all the GMEs are defined on a global time interval fixed to
T =10,1].

When ¢, :(Ss) = S; for any s, t, the shape evolves through a pure deformation process
and we retrieve the standard dynamic through the flow. On the contrary, in the absence
of global deformation, ¢s; = Id for any s,t so that the shape evolves by pure expansion
and we have S; C S;. This last type of scenario plays a central role and such GMEs are
called centered. Following D’Arcy Thompson’s ideas, these GMEs represent the biological
coordinate system of a set of homologous scenarios.

¢s,u(Ss)
bt,u(St)

Figure 3.1 — Sequence of three discrete times to illustrate the development of a horn.

A biological coordinate system is a pair (X,7) where X is a space called the
coordinate space and 7 : X — [0, 1] the birth tag on X. It induces a set of shapes

Xe={re X|7(x) <t}, (3.1)
of the so called active points of the coordinate space X at time ¢. The birth tag indicates
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when a point z € X starts to be active. The sets of points
Xy = {r e X|1(x) =t} (3.2)

are called the leaves of the coordinate space. This sequence of nested shapes X; forms
a canonical scenario that describes the growth pattern of a population of related shapes.
Figure 3.2 displays for example this scenario when the biological coordinate system is fixed
to

X =10,1] x St,

(3.3)

T(z) =t forany xz = (t,z0) € X.

At time 0, the shape is a circle. It growths into a cylinder under a pure expansion process

by the progressive adjunction of the leaves. Here, each leave Xy = {t} x St is a circle.
Any shape X; is a connected disjoint reunion of some of these leaves.

!
]
)

Xo X Xi, Xi, Xi Xt Xy

1 1

Figure 3.2 — Trivial scenario of the biological coordinate system.

The denomination of leaves emerges from this type of biological coordinate system
where the creation process is particularly regular. Indeed, the set of new points are all
diffeomorphic to a (k-1)-dimensional submanifold of X where k is the dimension of X.
Moreover, they are all parallel. The coordinate space X is thus a disjoint reunion of
these sets that induce a so called foliation on X. A foliation can be simply described
as a decomposition of a manifold into path-connected submanifolds, called leaves, such
that the manifold looks locally like a parallel union of these leaves. Each X; inherits this
foliated structure. We refer to [24, 35] for more details. For a general biological coordinate
system, the existence of this foliation relies on the regularity of the birth tag 7 as it will
be deepened in Chapter 4. We will yet retain the denomination of leaves in the general
case.

1.2 A new dynamic : evolution equations of a growing system

A general scenario (t +— Si)ico,1) is modeled on the biological coordinate space by a
sequence of spatial mappings ¢ — (¢ : X — R?). The shape S; is given by the image
qt(X¢) of the active points of X. Depending on the injectivity of the mappings (¢)¢,
the generated scenario follows the same expansion process as the biological coordinate
system. At each time ¢ €]0, 1], a new leaf ¢;(X {t}) appears whose points have no biological
correspondence with the points of the younger shapes Ss, s < t.

Figure 3.3 illustrates two such types of scenario built on the coordinate system (X, 7)
given by equation (3.3). The only difference between these two types is the behavior of
the spatial mapping on the first leaf Xyy. For the first scenario, the spatial mapping is
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an embedding at all time. For the second one, ¢; is an embedding of all leaves but the
first one and ¢;(X{oy) is reduced to a point.

qt, (Xe,) 46, (Xe,) 5 (Xty) e, (X, 5 x E ;
1 o

L A

G (Xy) 2 (Xen) @ea(Xey) ey (X))

Figure 3.3 — Two examples of scenarios built on a given biological coordinate system (X, 7).
Each image scenario inherits the foliation of the biological coordinate system, enlightened
by the color gradient.

In these two examples, the last leaf is always included in the horizontal plane. The
birth place function introduced in Chapter 2 allows to express this constraint. This
constraint will be central to initiate the reconstruction of a scenario from a final state of
the shape. The birth place function § : X — R? of a scenario associated to a mapping ¢
is defined by

q(r) = Ar(z) (z) = ¢T_(1z),1((h(x)) .
It can be seen as the pull backward through the flow of each leaf q1(Xy)) of the final
shape to its initial position qt(X{t}) at time ¢ = 7(z) when it appeared. The evolution
of this leaf can then be completely retrieved by the flow (¢ ¢)s<; of the scenario: for any
z € X and any t € [7(z), 1]

Qt(x) = ¢T($),t(QT($) (il?)) = ¢T($),t(q(x)) : (34)

To extend the mappings ¢; : X; — R? into homologous mappings on X, we then say that

Gra)e(d(z)) if () <t,
(o) = (3.5)
q(z) otherwise.

If a point € X does not exist yet at time ¢, ¢;(x) returns its future place of birth. Hence,
we have

9 =q. (3.6)

This mapping qq is called the initial condition and the planar constraint can then easily be
written as a constraint on the image of ¢y. The shapes are then retrieved by the restriction
of these new mappings:

St = qr)x,(Xt) -
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A flow (¢st)s<tec(0,1] can be generated by a time-varying vector field on the ambient
space R%. As for the construction of a group of diffeomorphisms (see Chapter 1), let us
therefore consider V' a Hilbert space of diffeomorphisms on the ambient space R?. Any
time-varying vector field v € L?([0,1],V) induces a diffeomorphic flow on the ambient
space. The derivation of (3.5) invites us to consider the continuous time-varying mappings
q solutions of

ve(q(z)) if r(x) <t.

0 otherwise

= L)<t vi(qe (7)), (3.7)

for a given initial condition g : X — R% and a given v € L2([0,1],V).

An important part of this chapter will consist in studying this approach to generate
continuous paths in a space B of mappings from X to R?, by the set L2([0, 1], V) of time-
varying vector fields of V. Equation (3.7) will be referred as the growth dynamic and
it will sometimes be rewritten

gt =lr<tvroq. (3.8)

1.3 Illustration of the generative model

We propose here few examples to illustrate the dynamic of the model. We consider
again the biological coordinate system given by X = [0,1] x S' € R? and 7 the projection
on the first coordinate. We recall that Figure 3.2 highlights the trivial scenario induced
by this system and Figure 3.3 offers two examples of image scenario.

For the first example, the initial position ¢y is given by the projection of X on the
horizontal plane so that each leaf is sent on the unit circle of {0} x R?. This localizes the
area where occurs all the creation of the growth process. The time-varying vector fields
acting on the ambient space are simple vertical translations (v € L?([0,1],R)). Finally,
we present in Figure 3.4 one example of this setting where the scenario is generated by
a constant upward translation. In this example, one can see that the initial position of
the shape, given by qg, is not an embedding in the ambient space. This initial shape can
be seen as a compressed accordion that will be progressively unfolded. Since the flow, al-
though it is diffeomorphic, sees only gradually the shape, these mingled leaves can indeed
be separated over time. The flow will yet never be able to separate two points that appear
at the same time and at the same position.

In order to produce horns, the initial position covers now the complete unit disk. In
the next examples, we will play with a parameter p to generate different initial positions
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Figure 3.4 — Generation of a cylinder. From left to right, the initial position go(X), an
intermediate position g, (X) at time ¢o €]0, 1, the final position ¢;(X) and the biological
coordinate system (X, 7). This example shows a situation where ¢y is not an embedding
and yet g1 is one. The cylinder at time 0 is completely folded flat on itself and it unfolds
gradually until the time 1 when it is fully grown. All the creation process occurs at the
base of the cylinder. Each newly created leaf pushes upwards the rest of the cylinder.

as follows:

q: [0,1] x [0,27] — {0} x R?
(3.9)
(t,0) — (0, p(t) cos(0), p(t) sin(ﬂ)) ,

where p : [0,1] — [0,1] is an increasing homeomorphism. The deformations are still
modeled by vertical translations and we consider three particular v € L?([0,1],R). One
is constant, one is increasing, and the last one is decreasing. Figure 3.5 gives then the
generated scenarios with also three different p where p’ is either constant, increasing or
decreasing. This figure only displays the final state of the scenarios. However, since their
flow are built with rigid deformations, the initial position and the foliation, induced by
the disjoint images of the leaves Xy, allow to retrieve each scenario. These sets are
enlightened by the meshes of the shapes and the color gradient. One can thus compare
each result with a reference shape, fixed here as the cone. When the shape induces a
convex 3D shape, one can see that the growth of the scenario is delayed with respect to
the cone. Otherwise, this growth is accelerated. The middle column illustrates therefore
that the choice of the initial position can have the effect of a time warping on a scenario.
This justifies the decision to fix the biological coordinate system. They will therefore
not be submitted to optimization in the problem addressed in Section 2. Note that this
question has already been deepened in Chapter 2 but we will also return to it in Chapter 4.
Note at last, that even with a fixed system (X, 7), two distinct pairs (go,v) can generate
the same final shape. In this last sentence, the word distinct implies that the images
(qo(X{4}))eejo,) of the leaves by the two initial positions gg are different from a set point of
view. However, the two evolutions ¢t — (S; = ¢:(X;)) are not equal (consider for example
the evolution of the base) .

Remark 1.1. Note, in Figure 3.5, that the spatial regularity at the top of the final shape
varies depending on the example.
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Figure 3.5 — “Horns” generated with different initial positions and vector fields. The
deformations are restrained to vertical upward translations whose amplitudes are displayed
in the first row. The first column shows the initial positions go(X). We display in the
center of the table the final cones ¢;(X) resulting from this nine configurations. The aim
is to compare, regarding to the growth process, the variations of the solutions with respect
to the cone on the top left corner.

1.4 Presentation of the generative model properties

The previous introduction invites to study general integral equations of the type

t
@ =0+ / F(q?,vs, 5) ds, (3.10)
0

where f is an application from B x V' x [0,1] to B with B and V' two Banach spaces. We
will denote only ¢q instead of ¢ to simplify the notation. V' can be more generally seen as
a space of control. In our situation, it will be a space of vector fields on the ambient space
and more precisely a subspace of C2(R% R%). The specificity of this model lies on the fact
that f depends on time in addition to the control v. A detailed study will be achieved in
Section 4. We will summarize here the main properties.

Remark 1.2. Equation (3.10) is the integral version of the standard equation

d = f(qe,ve,t), (3.11)

with a given initial condition qy at time 0. However, we will see that the function t —
f(qi, v, t) is not regular enough to imply the existence of a derivative at all time. In
Proposition 4.2, we will prove that a solution q of the integral equation (3.10) admits
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a time derivative ¢ at almost all time and that this derivative is integrable. This is a
property shared by any absolutely continuous function (definition recalled below) .

Definition 1.1. A function F : [0,1] — B with values in a Banach space B is said
absolutely continuous if there exists a function f € L'([0,1], B) such that for any t € [0,1],
F, = fg fsds. The space of absolutely continuous functions with values in B will be denoted

Ac([0, 1], B).

We will denote by (H7) and (H") few sets of regularity conditions on f and V that
will be introduced in Section 4. Mostly, it consists in the existence of time integrable
controls on f and v and their derivatives. Throughout this chapter, these conditions will
be progressively supplemented. They are gathered in Appendix B. Consider for now

(i) For any t € [0,1], f; € C}(B x V, B).

(11) There exists ¢ > 0, such that for any (¢,v,t) € B x V x [0,1],
0

(H{) ‘a{;(q,v,t)

‘W(q’v,t)

<clvly,
op

<c(lglp+1).
op

ov

(i) V C C*(R% R?).
(7i) There exists ¢ > 0 such that
(HY) for any (x,v) € R? x V, we have

[v(2)|ga < clv]y(|zlga +1),
|dv(x)| pra ray + |dP0(2)] £(Ragre R < V]V

Proposition 1.1. Let f : B x V x [0,1] — B be a function that satisfies the (H{)
conditions. Then one can define the function ®y that returns, for any initial condition
qo € B and any control v € L?([0,1],V), the unique solution q¢ € AC([0,1], B) of the
integral equation (3.10).

®;: BxLX0,1,V) — Ac([0,1], B)

(q0,v) gt qo+ [y f(gs,vs, 8)ds.

Proof. See Theorem 4.2 and Proposition 4.2 and note (H { ) is actually reduced to (Hg ). O

Definition 1.2. When a space X is equipped with a temporal marker 7 : X — [0,1] and
B is a space of mappings q : X — R?, we define the growth dynamic by the specific
function f: BxV x[0,1] - B

f(%vvt) = (.’L‘ = ﬂT(z)StU(Q(x))) : (312)

We retrieve the setting introduced in the previous sections as well as the evolution
given by equation (3.7). We will progressively verify that under the (H") conditions, this
function f satisfies all the sets of conditions (HY).
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Remark 1.3 (Spatial regularity of the mappings). Although the vector fields are spatially
smooth, the indicator given by the temporal marker implies that f does not take values
i a space of continuous mappings. The reference space to model the shapes will thus be
L®(X,RY). The spatial regularity of q; thus demands a special attention. Nevertheless,
we will show that for an initial position qo € C(X,R?), the continuity is preserved. That is
to say that the development q belongs to C([0,1],C(X,R%)). Moreover, unlike the standard
dynamic, a new characteristic appears here. The spatial regularity of q; depends on the
temporal regqularity of the vector field. We will see that without more assumption on v, g
1s only differentiable almost everywhere.

Remark 1.4. The choice of the space B will play an unexpected role and we will see in
Section 3.5 that we will have to browse through more than one space.

Progressively the function f will be replaced by a more natural operator
¢:Bx|0,1] - L(V,B),

induced by the differentiation of the action of a group of diffeomorphisms, and there-
fore called infinitesimal action, as presented in Chapter 1. The introduction of this new
notation highlights the linearity with respect to the control v.

Definition 1.3. The operator £ : B x [0,1] — L(V, B) induced by the growth dynamic
1s formally given by

‘S(q,t) (1}) = (I’ — ﬂr(x)gtv(q(x))) . (313)

Proposition 1.2. If B = L¥(X,R%), the (H)) conditions ensure that the operator ¢
induced by the growth dynamic, given by equation (3.13), takes indeed values in L(V, B).

At last, Section 4.3 studies how a solution ¢ = ®¢(qo, v) reacts to some variations of
the initial condition and of the vector field. More precisely, consider two small variations
8qo € B and dv € L*([0,1],V) that define for € > 0 a new set of parameters q§ = qo + €5qo
and v = v+edv. The question is to study the link between the two solutions ¢ = ®¢(qgo,v)
and ¢¢ = ® (g5, v°).

Let us recall the definition of directional derivative in Banach spaces.

Definition 1.4 (Gateaux-derivative). Let f : E — F be an application between two
Banach spaces E and F. Let be xg,0xg € E. Define the application g : R — F given
by g(h) = f(xo + hdxzg). If g is derivable at 0, we say that f is Gateaux-differentiable
at xo in the direction dxg and in this case, we note and define the Gateauz-derivative

f'(@o; 0w0) = ¢'(0).

This definition leads to consider the function g : R — B defined with the previous
notation by g(e) = ¢°. Then Theorem 4.2 says that g is derivable at 0 and ¢’(0) is the
Gateaux-derivative of ® ¢ at point (qo,v) in the direction (dqo, év). The expression of this
derivative is given in the next proposition.

Proposition 1.3. Consider f and ®; as defined in Proposition 1.1 and such that f
satisfies the (H{) conditions. For any (qo,v) € B x L2 and any (8qo, 6v) € B x L%, the
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Gateauz-derivative @}(qo, v;0qo, 0v) € AC([0,1], B) of ®y is defined by the unique solution
of the linearized equation

t
dq: = 0qo +/0 g;(QS7U57 s) - 0qs + %(Q&Ua‘a 5) - 6vsds.

In conclusion, if we denote dq = <I>’f (qo,v; 6qo, dv), we have for any small € and at any
time ¢t € [0, 1]
g =~ qr + €6q; .

Note at last again that dq is not derivable at all time but absolutely continuous.

2 Optimal matching with a time dependent dynamic

2.1 Reconstitution of a growth scenario

We consider from now a longitudinal data set. Each individual of a given population
is represented by a sample of its evolution at a finite number of times. The main problem
addressed in this chapter is to retrieve, for any individual, its complete evolution on the
time interval [0,1]. Consider thus a target scenario given by a collection of shapes (Sf");
at a finite number of intermediate times (¢;); C [0,1] (with max{¢;,i} = 1). The aim
is to generate a continuous path (¢t — St)te[o,l] such that S, ~ S¥'. Additionally, we
assume that the population shares a common growth pattern. Each evolution can thus be
represented by a growth scenario parameterized by a common biological coordinate system
(X, 7). With the notation of Proposition 1.1, we aim thus to find a good approximation
q € C([0,1], B) in the image of the generating function ®;.

The discrepancy between the data and a solution ¢ € C([0, 1], B) is estimated at the
different times t; with a data attachment term A of the form

n

Z d(Stw Szpar)2 )

i=1

where the shape Sy, is induced by ¢;, and d is a distance that depends on the type of
the data. To simplify the problem, we will assume throughout this chapter that n = 1.
The quality of a matching with respect to the data is measured by A(q1) for a general

functional
A:B—R".

An inexact registration problem between the trivial scenario of a biological coordinate
system and a final target shape can thus be generalized as a minimization problem on an
energy

1
E(qo,v):/0 C(v, t)dt + A(q1) , (3.14)

where v is a time-varying vector field that belongs to L?([0,1],V), qo € B is the initial
condition and ¢ = ®¢(qo, v) € C([0, 1], B) is the development generated by v as previously
introduced (see Proposition 1.1). At last, this energy penalizes the deformation through
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a cost function C': V x [0,1] — R. We assume that

(i) C € CH(V x [0,1],R).
(HC) (7i) There exists ¢ > 0, such that for any (v,t) € V x [0, 1],
IC(v, )]+ [VuC(v, )]} < clol}.

C is generally the square norm of V but we will have to explore other possibilities. We also
assume that A : B — R is of class C!. In our experiments, A will measure the difference
of the image of ¢; and S* with the square norm of an Reproducing Kernel Hilbert Space
(RKHS) modeling a current space or a varifold space. In practice, this target S** will
usually induce a good estimation of the initial position ¢g thanks to a biological prior that
restricts the area where the new points of the scenario can appear (see Chapter 5).

2.2 Expression of the gradient via the momentum

The minimization of E is achieved by a gradient descent. A prerequisite to establish
the gradient of E is the introduction of the momentum.

2.2.1 The momentum

In order to compute an explicit formulation of the gradient, we define as in the classical
LDDMM framework a new variable p called the momentum.

Proposition 2.1 (Existence of the Momentum). If f satisfies the (H{) conditions (defined
in the previous section), the momentum p € AC([0, 1], B*) associated to g = ®f(qo,v) is
the unique solution of the equation

. 0 N
Pt = _ég(qbvtyt) Pt (315)
with the final condition
p1 = —dA(q1) € B". (3.16)

Proof. Under the (H{) conditions, ¢ — g—g(qt,vt,t) belongs to L%([0, 1], £(B)). The time-
varying adjoint operator t — %{;(Qu vg, t)* belongs thus to L2([0, 1], £L(B*)). The existence

and uniqueness of p are given by the linear Cauchy-Lipschitz formulation given in Corol-
lary 4.2. O

Remark 2.1. As in the LDDMM framework (with the standard dynamic), the momentum
is a central element of the theory developed here. We will see in Example 2.1 that the
optimal vector field is parameterized by the trajectory q, its momentum p and the time
variable. With the Hamiltonian approach and via the shooting method, we will rewrite the
optimization problem with respect to the initial position qo and the initial momentum pg.

2.2.2 Expression of the gradient

Theorem 2.1 (Expression of the gradient). Assume the (H{), (HY) and (H) conditions
and consider A : B — R of class C'. Let be (qo,v) € Bx L} and ¢ = ®¢(qo,v) the solution
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to the integral equation
1
qt = qo +/ f(QS7U573)d5-
0

Define the momentum p € AC([0,1], B*) associated to q as the solution of

. 0 *
p1 = —dA(q1) € B Dt = —a';(Qttht) Pt - (3.17)

Consider the energy
1
Ego.v) = / Clvs, 1) dt + Alq1) .
0

Then the Gateaux-derivative of the energy at the point (qo,v) is given in any direction
(6q0,6v) € B x L2, by
5Ut> dt .

Hence, the gradient of the energy with respect to the wvector field is given at any time
te[0,1] by

1
(a0, 0356, 00)) = (o 600) + [ (G5 0n8) = vty

oC of

Vo) = Kv (G0 (00) = S aont) o) (3.19

where Ky : V* — V is the canonical isomorphism.

Proof. Consider and denote dqg = @}(qo, v;6qo, 0v) the Gateaux-derivative of ®; given in
Proposition 1.3. Since dg and p are absolutely continuous, t — (p; | dg;) is also absolutely
continuous and we have then

1 d 1 ) )
(a6 = (o 600) + [ 5ol G)dt = (o G0) + [ 11800 + | 5)

1 0 0
= (po | dqo0) +/0 <pt <9§(Qt’vt’t) -0q; + %(Qtavtat) : 5Ut)

0
- (ai;(Qtavtat)* - Pt
1 0 0
= (po|dqo) +/0 <pt (9':;(%7%775) -0q; + afi(@tavt,t) : 5Ut)

0
- (Pt 8£<Qt’vt’t) : 5%) dt
1
0 .
= (po|dqo) +/0 (a‘z(quvt,t) - Dt

(51]75) dt.

This expression is well defined since under the (H { ) assumption, there exists ¢ > 0 such
that for any ¢ € [0, 1]

0
‘é::(qt) V¢, t>* - Dt

< c(lgt|B + 1)|pt B+ < c(|dloo + 1)]P]oo-
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Therefore, define

e
5E—A <8U(’Ut,t)

Lroc 0
—mlom)+ [ (Gotond) - ol tant)” m

m) dt + (dA(1) | 541) (3.19)

m) dt — (p1 | 5q1) (3.20)

(5vt> dt | (3.21)

The existence of a gradient V,C(vy,t) € V' at any time ¢ € [0, 1] is given by the Riesz
representation theorem. The (H) conditions ensures that this gradient is L2-integrable
so that the gradient of F is well defined. Note that (H®) conditions are satisfied when C
returns the square norm of v.

In fine, F is finite and if e(e) = E(qf, v), the Gateaux-derivative of E is then equal
to

E'((q0,v); (6q0,6v)) = €'(0) = 6E.
O

Note that this theorem implies neither the existence of local minimizers of the energy
E nor the uniqueness. The existence of solutions is a problem studied in Chapter 4.
2.3 Momentum map

The function f is intended to model the infinitesimal action of v on g and should thus
always be linear with respect to v. We can thus rewrite it through an operator defined as
follows

¢:Bx|[0,1] - L(V,B),
with for any (¢,v,t) € B x L}, x [0,1]

f(qvv’t) = €(Q7t)(v) :

In the next sections, the dynamic will be fixed by &£ If ¢ = ®¢(qo,v) is the solution
generated by v € L%/, at almost any time ¢ is given by

G = &(qe, ) (ve) -

We will eventually denote &(q) for £(q,t). As we have introduced the (H/) conditions, we
will usually assume that £ is of class C' with respect to ¢ and satisfies then

(i) & € CY(B, L(V, B) for any t € [0,1].

(HE) (71) There exists ¢ > 0 such that

1

1€(q,t)|cv,By < c(lgls + 1) and |0,£(q, ) 2(B,c(v,B)) < ©
for any (¢,t) € B x [0,1].
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We can now introduce J¢, usually called the momentum map and implicitly associ-
ated to £ in this general study. Its definition is based on the linearity of £ with respect to
v. Je¢ will be the key to describe optimal vector fields.

Proposition 2.2 (Definition of the Momentum Map). The momentum map is the appli-
cation J¢ associated to & defined under the (Hf) conditions by

Je:BxB*x[0,1] — v
(Q7p7t) — gikq’t) ‘P
We have for any (q,p,t) € B x B* x [0,1] and any v € V

(jE(vavt) |U) = (p ’ g(q,t)(v)) .

Proof. Let us verify that J¢ is well defined. Under the (H®) conditions, there exists ¢ > 0
such that for any (¢,p,t) € B x B* x [0,1], |£(¢,?)|z(v,B) < c(|g|s + 1). Hence,

|\ Te(a,p,t)lv+ < c(lalp + 1)Ipl s+ (3.22)

and J; takes indeed its values in V*. UJ

The regularity with respect to time of this momentum map will play an important role
in the next sections. At this stage, we start with the following proposition.

Proposition 2.3. Under the (Hf) conditions, the momentum map is Ct with respect to
its two first variables.

Proof. Since under (Hf), q — &(q) is of class C! for any t € [0,1], and p — (p|dq) is
smooth for any dq € B, we get immediately the result. O

Theorem 2.1 can be rewritten with these new variables.

Theorem 2.2 (Expression of the Gradient via the Momentum Map). Assume the (H 15 ),
(HY) and (H®) conditions and consider A: B — R of class C*. Let be (go,v) € B x L},
and q = ®¢(qo,v) the solution to the integral equation

1
a = qo+ /0 E(gs,s)(Vs) ds .

With the previously introduced momentum p € C([0, 1], B*) associated to q and momentum
map Je : B x B* x [0,1] = V*, the Gateauz-derivative at point (qo,v) of the energy

1
El(go,v) = /0 Clor,tydt + Algr)

is given in any direction (6qo,dv) € B X L%/ by

1
B (a0 03 0o 60)) = (o) + [ (G 00) = Teaont)

5’Ut> dt.

Hence, the gradient of the energy with respect to the wvector field is given at any time
t €10,1] by
VUE(QO>U)t = VUC(Utvt) - vaf(qtaptat) . (323)
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Proof. 1t results from Theorem 2.1. We have

1
E'((q0,v); (6g0,0v)) = (po | 6g0) +/0 <aaf(vt,t) - gf:(q“”t’t)* ‘Pt

6Ut> dt
51),5) dt

1
= (po | 6qo) +/ (VoC(vg,t) — Ky Te(qe, pis t), 0vg)vdt .
0

Lrac
= (po|dqo) +/0 <6v(vt’t) — Je(a, e, t)

O

Remark 2.2. Note that equation (3.22) implies that for any pair (q,p) € C(]0,1], B x B*),
the associated momentum map is a L?-function of time interval [0, 1], i.e.

(t = Ky Je (g, pist)) € L2 .

Example 2.1. When C is given by the classic cost function
1
C(Uat) = §|U‘%/ )

we have V,C(v,t) = v. Hence, given qo € B, any minimizer v* € L%/ of E satisfies at any
time t € [0, 1] the equation
’U;( = vag(qtaptat) .

We will consider other cost functions, but for all of them, an optimal vector field is always
build on Ky J¢(qi,pt,t) up to some weighting. The momentum map is thus in all cases
the main ingredient of an optimal vector field. Section 3.4 will present an important class
of cost functions. See Chapter 5 for another class of cost functions that we will use in our
numerical experiments.

Remark 2.3 (Time regularity of an optimal vector field). An important issue with time-
varying dynamics is that t — & has no reason to be continuous. Consider for example
X =[0,1], 7=1d and v =y with y € R? a constant vector field. Then we have with the
growth dynamic for any q € B = L>([0,1],R?) and any t < t' € [0,1]

[€(a.t)(v) = €(q, ) (V)]oo = (2 = Ltcazrry) oo = Ylga,

so that & does not tend to & when t' tends to t. Consequently and as mentioned before, we
have no control on the time reqularity of the momentum map and thus on the continuity
of an optimal vector field.

2.4 Hamiltonian framework

The central Theorem 2.1 that gives the expression of the gradient to the energy, says
that given an initial condition ¢ in B, any local minimizer v* € L%/ of E(qo, -) must satisfy
at any time ¢ € [0, 1] the equation

oC of

%(Urvt) - %(Qtwti)* pe =0, (3.24)
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where ¢ and p are the spatial mapping and the momentum associated to gg and v*.
This leads to the introduction of the following Hamiltonian function

H:BxB*xVx|[0,1] — R
(Qapvvat) — (p|f(Q>v>t)) _C(Uat)'

Then, an optimal trajectory (q,p) associated to a local minimizer v* is at any time a
local extrema of this Hamiltonian. Indeed, the partial derivatives of H are given for any
(q,p,v,t) € Bx B* xV x[0,1] by

OH _of .
%(Q7p7vat) - %(Q7U7t) p7

H

ai(q b,v, t) f<Q7U7t)7
OH
ov
OH

of . ac
(q p,v 7t) - %(q')?}?t) P — %(U7t)7

0 oC
o —(¢,p,v,t) = E)t(p!f(q,v t)) — 5 - (v,t),

and in particular, equation (3.24) is equivalent to %—Ij(qt, pt, vf, t) = 0 which is nothing but
a weak form of the Pontryagin Maximum Principle [43].

Usually, the cost function is a quadratic function on the norm of v. Hence, we will
assume in the following that the derivative of the application V' 3 v — H(q,p,v,t) admits
a unique zero that is the maximum of this application and we will note it v*(q,p, t) or v*
to simplify. This assumption allows to define the reduced Hamiltonian as follows:

H,:Bx B*x[0,1] — R
(¢:p1) > maxyey H(g,p,v,t).
If v € V maximizes the Hamiltonian, we have %—Ij(q,p,v,t) = 0 and therefore, assuming

that v*(q,p,t) is derivable with respect to ¢ and p, the partial derivatives of H, are given
for any (¢,p,t) € B x B* x [0,1] by :

O oty =2 gm0y + 2 g ) 2 apt) = Pgp ot )
aq Q7p7 - 8q Q)p)v ) 8U q?p?v ) a qp7 - 8(] q7p7v b
oH, _oH . OH . o OH .
ap (Cbpat) - 87]9((]71),@ 7t) + 61; (%pav at) 8 (q D, ) ap (%pav at)
O oty = apo )+ ZPgpor ) 2@ty = gt 1)
ot q,p,t) = ot q,p,v, v q,p, v, ot q,p,t) = ot q,p,v ,1).

We can now derive the characterization of the Gateaux-derivative of the functional F
as well as the critical paths in term of the Hamiltonian.

Theorem 2.3. Assume the (H{), (HY) and (H®) conditions and consider A : B — R
of class C'. Let be v € L*([0,1],V), let ¢ = ®f(qo,v) be the unique solution associated
to an initial condition qo € B and let p be the retrograde solution of p1 = —dA(q1) and
Pt = —?T{;(Qt,vt,t)* -pt. Then for any Sv € L,

OF Y oH
%(Q(bv) : 6U = /0\ (_&}(thhvht) ’5Ut> dt;
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where for any t € [0,1],
H(qt, pe,ves t) = (pe| f (e, ves t)) — Clug, B) -

Moreover, if for any (x,y,t) € B x B* x [0,1] the equation 0,H(x,y,v,t) = 0 admits
a unique solution v*(q,p,t) that is derivable with respect to q and p, then if t — v; locally
minimizes E, the trajectory (q,p) € AC([0,1], B x B*) satisfies at almost any time the
following Hamiltonian system

Cjt = 88}11;4 (qt7pt7t) 3

Py = —65? (g, e, t) .

where
Hr(qtvpht) - H(qtvptvvtvt) .

Proof. We saw in Theorem 2.1 that

oC 0 OH
Va0l = Ky (5 00 = o laron)” 1) ==K (G pmn))

Therefore, if v locally minimizes F, for almost any ¢ € [0, 1], v; is the unique solution

to %—f(q,p,v,t) = 0, i.e. vy = v*(q4,pt,t) as previously defined. Then we retrieve with

the partial derivatives of the reduced Hamiltonian 8;{; (gt pt,t) = ¢+ and %(Qt,pt,t) =

—Dt- O]

Remark 2.4. This theorem is an immediate application of the Pontryagin’s mazimum
principle. When C(v,t) = %|v|%/, the application V-2 v — H(q,p,v,t) admits a unique
local extremum that is its mazimum. However, with some other interesting cost functions,
this application might have several local extrema. There exist yet Pontryagin’s maximum
principle theorems (in more specific configurations, for example, when V has a finite di-
mension) to prove that an optimal vector field v* is then the global mazimum of the Hamil-
tonian [49].

This Hamiltonian can again be written with the operator .

H(q’pv v, t) = (gqu?t) P ‘ U) - C(U, t) (325)
= (Je(g,p,t) [v) = C(v,1). (3.26)

Example 2.2. We saw in Example 2.1 that when C' is the classic cost function given by
C(v,t) = $|v|3, any optimal vector field v* € L2, of E satisfies at any time t € [0,1] the
equation

vy = KvJe(qt,pe,t) -
It results that

1 1,
Hr(qtapt7t) = §‘u7£(qt7pt7t)’%/* = i‘vt ‘%/ .
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Remark 2.5. An important novelty appears here. This Hamiltonian is not constant in
time. Its derivative with respect to t equals

dH,
dt

O0H, . OH, . OH,
t) = =" t) - = t) - = t
(at,pe,t) 94 (a1, pe:t) - G + o (g1, pe:t) - Pt + 5 (qt, e, t)

T

.. .. 0
:_pt'Qt‘i'pt'Qt‘FW(Qtaptat)

o . oC , ,
= &(p“f(qtavt’t)) - E(Utat)'

In the situation of the Fxample 2.2, if the reduced Hamiltonian is not constant in time,
the norm of the optimal vector field also varies in time and we have more precisely

*
vt) .

We will see in Section 3 that with the growth dynamic this partial derivative of the

dH,
dt

ON:
(Qtvpta t) = (J(qtapta t)

momentum map measures the appearance of new points. Hence, when there is no creation
at time t, we retrieve the classic LDDMM case and the norm of the vector field is constant.

Otherwise, when there is appearance of new points, this norm should increase.

Moreover, since the norm of v* wvaries, this new model on time-varying dynamics does
no longer generate geodesics on the group of deformations. This results from the fact that
with the growth dynamic for example, the final shape q1 does not depend anymore only on
the final deformation generated by v* but on the complete path or at least at every time
when new points are created.

2.5 Shooting method

This section presents a formal approach of the shooting method. The following results
will be proved in Sections 5.5 and 5.6.

We saw in the previous section that an optimal vector field or equivalently an optimal
path ¢ € C([0,1], B) can be generated as a solution of the reduced Hamiltonian system.
These solutions are parameterized by an initial position gy and an initial momentum pyg.
Instead of playing with the vector field as the control in the set of paths, we can thus
define the initial momentum as the new control that can be optimized.

Denote y = ¥(qo, po) the unique solution of the reduced Hamiltonian system associated
to the initial condition (qo,po) € B x B*. We have thus y € C([0, 1], B x B*) and at any
time ¢ € [0, 1],

Yt = (qt,pt)

and .
Yt =yo+/ h(ys,s) ds,
0

where h is the symplectic gradient of H, with respect to (g, p) defined as follows
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h : (BxB*)x[0,1] — B x B*

%L (q,p,1)

(@pht) (3.27)

OH,
dq (Q7p7 t)
With this notation, we introduce a new expression of the energy

E(yo) = fol Clys,t) dt + A(y1),

where C(y;,t) = C(v},t) is equivalent to the old cost function and A(y1) = A(q) is
equivalent to the old attachment term. Therefore, if an initial momentum py and a time-
varying vector field v generate the same solution (¢,p) € C([0,1], B x B*) then the two
respective energies are equal

E(yo) = E(go,po) = E(qo,v) - (3.28)

In the following, we will not distinguish £, C' and A from E, C and A.
The method to explicit the gradient of the energy is the same as before, reduced to
two main steps and its conclusion as follows:

— The first step is to define the covariable of y as the momentum p is the covariable
of g. We introduce thus z; = —dA(y1) € (B x B*)* and we integrate it backward
through the equation

oC Oh

b=, nt) = 5 (W) 2 (3.29)

— The second step is to establish that the Gateaux-derivative W' (yo; dyo) is given by
©oh
dyr = 0yo —|—/0 @(ys,s) - Oys ds.
— Then we can write

Lo
B/ (40 6y0) — /0 ( © 1ot)| 60 ) e+ (@A) 1501)
1

Dy
oC
—/0 <8y(yt7t) 0y
Lroc
—/0 (ay(yt,t) 0y

e . Oh .
— (el o) + | (8y<yt,t>—zt—8y<yt,t>

= —(Zo ‘ (5y0) .

dt — (21 ]5y1)

N—— —— 0

1
dt — (20 | dyo) —i—/ (¢ 0ye) — (2¢ | Oyy) dt
0

6yt) dt

At last, if we write at any time ¢ the covariable z; as (Q¢, P;) € B* x B*™, we get
more explicitly

E'((g0,p0); (390, 990)) = —(Qo | dg0) — (Po | dpo) - (3.30)
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The Gateaux-derivative of the energy has thus a particularly simple expression leading
to a new algorithm of gradient descent. An interest of this approach is to parameterize
the solution with variables of smaller dimension paving the way for a statistical analysis.

Algorithm 3 Gradient descent on pg

1 - Given q8 € B, initialize p8 € B at zero.
Then for any n € N, given ¢f and pj :
2 - Integrate forward with the Hamiltonian system (3.27) to get (¢",p") € C([0, 1], B?).

3 - Compute QF = —dA(q}), defined P" = 0.

4 - Integrate backward with the second order Hamiltonian system (3.29) to get
(Qn,P") e C([0,1], B?).

4 - Update pf; by ng = pi + €Py for a small € > 0.

5 - (Optional) Update g by qg”rl = qf +€Qf for a small € > 0.

3 Applications with the growth dynamic

We will now apply the previous results in the setting of mappings from a biological
coordinate system (X, 7). We give the explicit expression of previous variables with the
growth dynamic given by the operator £ : B x [0,1] — L£(V, B) defined by

f(q,t)(v) = f(Q7Uat) = ($ = nT(a:)St’U(Q('r))) .

In order to remember that £ is now fixed throughout this section, the momentum map
will be denoted J instead of J¢, likewise with @.

The sets Xy;) and X; of new points and active points at time ¢, defined by (3.2) and (3.1),
will play an important role to understand the construction of an optimal scenario.

3.1 Discrete coordinate space

We assume that X is given as finite set of k points with a mesh. At any time ¢ € [0,1], ¢
is an element of B = (R?)* with a mesh. Under the (H}) conditions, the (H' f ) conditions
are satisfied (see Proposition 4.3).

3.1.1 The momentum

The general definition of the momentum and its evolution are given in Proposition 2.1.
Here, with the Riez representation theorem, the momentum p can be seen as an element of
C([0,1], (R)*). At time ¢t = 1, p; is given by definition as the gradient of the attachment
term A

dA(ql) 0q = Z <vq1 (I)A(ql)’ oq1 (x»Rd

zeX

and p; can thus be parameterized by X as follows

pl(ZL‘) = vq1(a€)A(CI1) )
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so that (p1|dq1) = (p1, (5q1>(Rd)k. This pointwise expression is conserved by the backward
integration and we have at any time ¢ € [0, 1] for any y € B = (R%)*

(e y) = 5 (pi(a), y() g

zeX

In this configuration, the behaviors of ¢ and p over time share a common pattern. For
any z in X, q;(x) and pi(z) are both static when x does not exist, i.e. t is smaller than
7(z), and jointly active once x has appeared. Indeed, their dynamics are explicitly given
for any z € X and at any time t € [0, 1] by

Ge(2) = Lr(z)<t ve(a:(2)) Be(@) = — Lo a)<e dve(qe(2))" - pe() (3.31)

3.1.2 Expression of the momentum map

As we said in Example 2.1, the momentum map is the main ingredient to define
optimal vector fields for all of the cost functions that we will consider. For any (q,p,t) €
(RHE x (R?)* x [0,1] and any v € V, we have

(j(qvpv t) | 1)) = <p7 ]]-TSt v o Q>(Rd)k

— Z (p(z),v(q()))Ra -

zeX,7(x)<t

Equivalently, J can be written

Tapt)= Y o,

zeX,r(x)<t

where for any (z,y) € (RY)? and any v € V, the functional §% € V* is defined by

9z (v) = (y, v(@))pa -

The vector field associated to J via the canonical isomorphism Ky has then an explicit
expression in both Gaussian RKHS and affine situations.

— When V is a RKHS with a kernel denoted &y, we have

KvJ(gpt)= Y, kv(g(), )p(x).

zeX,(x)<t

— In the specific case of rotations and translations, where V is the direct product
Skew,g x R? equipped with the usual norm, we have

KVJ(Q7p>t) = prOjSkewd Z p($)Q(x)T ) Z p(l‘)
zeX,m(x)<t zeX,m(x)<t

Remark 3.1. The reader familiar with the LDDMM framework will recognize all these
equations. The difference with the classical model only resides in the addition of the

indicator function. FEach point x € X eventually contributes to vy with a combination
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of its position q.(x) and its momentum py(x). However, here, the set of points involved at
each time or in other words the effective support of the vector field varies over time. At
every time t, the coordinate space X and likewise the shape q;(X) are divided in two parts:

1. the active part composed of all the points already appeared
Xy ={zx e X|7(x) <t}

2. the inactive part (its complementary) .

At time t, the vector field vy carries only the active part. Therefore, it is natural to obtain
an optimal vector field v} constructed only with the points of the active area and likewise,
as noticed before, the active points have their position and momentum moving whereas the
inactive points have a static position and momentum. See Figure 3.6.

T(x) <t:

Active momenta py

T(x)>t:

Inactive momenta p;

—_—

‘§§s,

Figure 3.6 — The active part of the shape modeling the horn is blue. The inactive part of
anticipated points goes from green to red. The arrows are the respective momenta p;(x)
at points ¢ (x).

Remark 3.2 (Continuity of the momentum map). We stated already that the momentum
map is of class C' with respect to its two first variables. Since X is a finite set, the image
of T is also a finite subset of [0,1] and given q,p € (R?)*, the function

_ p(z)
Xy
is therefore piecewise constant. Given now a trajectory q € C([0,1], (R))*) and its associ-

ated momentum p € C([0, 1], (RY)¥), thanks to Proposition 2.3,

t— j(qtvptat)

is piecewise continuous as well as t — Ky J(qt,pt,t). More precisely, it is continuous on
any interval [t;,t;+1] where t; and t;y1 are two consecutive values of 7(X). The jump at

Pt; 1 (w)
Z 5Qti+1 (z) -

z€X,7(x)=tit1

time t;y+1 1S given by

This jump is thus due to the contribution of the new points that appear at time t;1 1. An
important remark here is that at any time t, for any x € X such that 7(x) = t, we have
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qt(z) = qo(z) and pi(x) = po(x). The jump at time t;y1 is thus equal to

>
zeX,T(x)=tit+1
Therefore, all jumps depend only on qo, po and T.

Inside these intervals [t;, ti+1[, the evolution of Ky J is the same as in the LDDMM
framework. Otherwise, the jumps result from the extension of the support of Ky J with
the set of points that progressively appear (the new points that contribute in the sum). We
will see however in the next section in a non discrete case, that if the creation of points
18 smooth over time, the support of Ky J increases continuously and this last one is then
also continuous.

3.1.3 Algorithm for the gradient descent

In fine, Algorithm 1 explicits an algorithm very similar to the LDDMM model to
construct a minimizer v*. The main difference in practice is to trace at each discrete time

Algorithm 4 Gradient descent on v

1 - Initiate v° € L2, at zero

Then for any n € N, given gg and v™,

2 - Compute ¢" € C([0, 1], (R%)*) the path generated by v" € L%

3 - Compute p} = —V.A(q}) and integrate it backward to construct p™ € C([0, 1], (R%)¥)

4 - Compute at any time the gradient at v : Jvp = V,C(vi',t) — Kv J (¢, pi, t)
5 - Update the vector field by vt = v™ + efv™ for a small € > 0

t; € [0,1] the set of active points.

Additionally, Theorem 2.1 also allows to optimize the initial condition ¢q if necessary.
Typically, if qg is partially known and a reconstruction has been guessed, we can optimize
it under some constraints (for example, inside a subset of the ambient space). This
optimization should of course be controlled, otherwise the initial condition would just
tend straightforward to the target. See an example in Chapter 5.

3.2 Continuous coordinate space

In this section, X is a compact submanifold eventually with corners. The evolution of
the shape is still given by the operator £ : B x [0, 1] — L(V, B) defined by

5(%75)(7)) = (gj = ]lT(x)Stv(Q(x))) .

The definition of B needs to be slightly refined to involve the boundary of X. We will see
indeed that 0.X will play an important role to explicit the momentum and the momentum

map.

Definition 3.1 (The B space). For any Borel set A C X, we define the measure p on X

as follows

n(A) =HF(A) + H L (AN 0X).
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We introduce then
__ 100 d
B = L“ (X,R%) (3.32)

the space of measurable functions from X to R® defined p-almost everywhere that are
essentially bounded. We note |q|so, the essential supremum with respect to p and define

IQ|B = IQ‘OO,[,L'

One can easily verify that under the (H|") conditions, ¢ is well defined for B =
L (X, R?) and satisfies the (Hf) conditions.

Remark 3.3 (Spatial regularity of the solution). Consider a smooth initial position gy €
C>®(X,R%). We will show in Section 4, that even if v € C([0,1],V), the final shape q, of
the solution ¢ = ®(v,qo) belongs to C*(X,RY). However, if v is only square-integrable, q
is a priori only differentiable almost everywhere (see Proposition 4.8).

Remark 3.4 (Definition of the attachment term). We recalled in Chapter 1 how to build
a distance on shapes based on their current representations. The currents are yet generally
used to model shapes that are at least rectifiable sets. The final shape q1 is thus not enough
reqular when v is only integrable. We will show however in Chapter 4 that A can be
extended from its standard definition on

{Q1 IQO € Coo(Xde)7v € C([()’ 1]7 V)vq = (I)(QOa'U)} C Cl(Xde)

to
{g1 190 € C®(X,RY),v € L}, q = ®(qo,v)},

the sets of all the shapes generated with the growth dynamic from smooth initial conditions.
Hence, we will define the attachment term A on this set only (subset of B) as a function
of qo and v. In other words, the previous energy is not modified but is now written

1
E(qo,v) = /O C(vg, t) dt + A(qo,v) .

At last, let us announce a central result of the next chapter.

Remark 3.5 (Continuity of an optimal vector field v*). Following the previous remark,
we will also show in Chapter 4 that for any v € L%/, A is Gateauz-differentiable with
respect to v and that E admits a minimizer. Moreover, any minimizer v* is continuous
with respect to time, i.e. v* € C([0,1],V).

3.2.1 The momentum

In this general configuration, the nature of the momentum p strongly depends on the
attachment term A. As noted in Remark 2.3, the momentum map J is a priori not
continuous with respect to time. However, if the momentum belongs to an adequate
subspace of B*, this continuity can be guaranteed. We will see that for a continuous
vector field, p can be identified to an element of such a space denoted hereafter B. The
last result of Chapter 4 says indeed that under the (H{') conditions, the evaluation of
the Gateaux-derivative of A on dv can be rewritten as a linear form evaluated on dg; and
define a pointwise momentum as follows:
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For any (qo,v) € C(X,R%) x C([0,1],V), there exists p; € C(X,R%) x C(0X,R%) such
that for any (dqo,dv) € C®(X,R%) x C([0,1],V),

A (g0, v; 540, 60) = /X (¥ (1), 801 (2)) o AHF () + /6 (@), b)) ).
(3.33)

Remark 3.6. The fact that py is not an arbitrary distribution in C>°(X,R%) but can
be represented by two simple continuous functions on X and 0X will allow us to extend
important properties of optimal vector fields from the discrete case to the continuous case
for X. In the following, A does not have to be an attachment term built on currents but
only to satisfy this previous property (equation (3.33)).

To go further, one needs to show that the integration backward of p; preserves its simple
pointwise representation as a pair of two continuous functions. It requires to introduce a
new space smaller than B*. As for ¢, a space of continuous functions is not admissible since
the expression of p; under the growth dynamic involves the indicator 1,<;. It leads then
naturally to choose B} = L®(X,RY) x L®(0X,R%). The choice of B} is here validated
by the two next propositions.

Proposition 3.1. If B = L?(X, RY) and Bf = L>®(X,R?) x L®(0X,RY), there exists a

continuous linear embedding of B into B*.

Proof. One can show it directly or see Proposition 5.5 and Proposition 5.1. O

Proposition 3.2. Assume the (H}) conditions. For any py € Bf = L®(X,R%) x
1

L®(0X,RY) and any v € L*([0,1],V), there exists a unique solution p € AC([0,1], B
that satisfies at almost all time

b7 (@) = Lyy<adve(ae (@)™ -pif (@) 9% (2) = —Lry<dve(a(@)” - p ¥ (2). (3.34)

Proof. These equations are linear with respect to p; and By is a Banach space. In both
cases, (H{') allows to control the operators with the norm of v; so that they are both
square-integrable. The linear Cauchy-Lipschitz Corollary 4.2 ensures thus the existence,
uniqueness and stability of the momentum in this space on the time interval [0, 1]. O

3.2.2 Expression of the momentum map

The expression of the momentum map (see Definition 2.2) on the two previously in-
troduced spaces B and Bj is given by

(T(@.p.0)|0) = (p] Ly y<s0la(a)) (3.35)
= [ et (@), v(ala)ne a1 @) (3.36)
4 / 1, (o)< 07 (2), 0(q(2)) e AHE () (3.37)

0X

As for the discrete shapes (see Remark 3.1), the momentum map is at any time ¢ € [0, 1]
built as an integral on the active part X; = {z € X |7(x) < ¢t} C X. We have yet an
additional term built with the active points of the boundary of X.
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To highlight the role played by the time marker 7 via the indicator function in this
equation, we assume now to simplify that X = [0, 1] x Xy with 0Xy = () and that 7 is the
projection on the first coordinate. In this configuration, the boundary of X is given by

90X = ({0} x Xo) U ({1} x Xo) .

This is exactly the set of points that appear at times ¢t = 0 and t = 1. The previous
equation becomes

(T(@.p.t)|v) = /0 /X (0 (5, 20), 0(q(s, 20))) s AHE(20)ds (3.38)
+ / (07X (0, 20), 0(g(0, 20)) s dH* (o) (3.39)
Xo
ey / 7Y (1, 20), 0(q(1, 20)))ga AHE N (w0) . (3.40)
Xo

This general example shows that when the new points appear regularly over time the
momentum map is continuous with respect to time (for ¢ in [0,1[). The jump at
time ¢ = 1 is here meaningless since the evolution stops at this time.

Remark 3.7 (Pointwise expression of p to continuity of 7). The existence of a pointwise
expression of the momentum implies thus the continuity of the momentum map with respect
to time and thus the continuity of an optimal vector field (see Example 2.1). The continuity
of an optimal vector field is yet not systematic with any attachment term. We will show
indeed that with an attachment term built on varifolds, the optimal vector fields are not
always continuous. However, note that with discrete shapes the attachment term does
not play any specific role in the pointwise expression of the momentum as long as it is
differentiable.

Remark 3.8. As we did in the previous section with a discrete coordinate space X, we
can explicit the momentum map and its image in the vector field space V. From equa-
tions (3.36) and (3.37), J can be rewritten

j(qvpvt) :/ ]]-TSt(SgX +/ ]lT§t558X s
X 0X

where we recall that p = (pX,p?X). Then if V is a RKHS with a kernel ky

va(q7p7t) =

/Xﬂr(x)<t/fv(-ﬂ(fv))px(w) d?-{,k(x)—i—/ax () <ikv (- q(2))p"* (z) dH ! (2)
and when we specify X = [0,1] x Xo and 7 the projection on the first coordinate, this
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expression becomes

.&ﬂwm=AA%WMMMﬂ@%MWﬂw%
+-j/ k(- (0, 20))p?X (0, 20) dH* (o)
Xo

+ ﬂtl/ kV(‘,(](l,l’o))an(l,xO) deil(‘TO) .
Xo

Remark 3.9 (Time derivative and control on this derivative). We will prove in Section 5.4
(see Proposition 5.8) that the momentum map is derivable with respect to t almost every-

oJ
<8t(q’p7 t)

When X is a discrete set, the jumps of the momentum map result from the appearance of
new points at the discrete times (t;)i=1.n, C [0, 1]. Likewise here, at each time, the support
of the integral increases with the new layer X = {t} x Xo. If we use as before the fact
that the points and the momenta of a new layer have not been displaced, i.e. that at any
time t, for any x € X such that 7(x) =t we have q:(z) = qo(z) and p(z) = po(x), we get
for any trajectory g € C([0,1], B) with its momentum p € C([0,1], Bf) that for any © € L}

where:

8) = [ 0¥ ) a2t ). (3.41)

oJ
<at((1t7pt7 t)

@)a&@ﬁmwﬁ@mmmwwﬁ%m> (3.42
=A@mwm@mwmemy (3.43)

This last equation shows that the partial derivative with respect to time of the momentum
map only depends on the initial condition qy and the initial momentum py. This will play

an important role in the existence of solutions by shooting (Section 3.5).

3.3 Specific behavior of the momentum map with the growth dynamic

The previous pointwise decomposition of the momentum allow to suppose that the
norm of an optimal vector field increase with the apparition of new points. Although we
cannot explicitly show it, we can yet propose an upper bound of this norm by an increasing

function of time.

3.3.1 Discrete setup

With a discrete coordinate space, we saw that the momentum map is given for any
(¢,p,t) € B x B* x [0,1] and any v € V by

(T(@p.)v) = > (p@)v(q(z)))pa (3.44)



(note that B* = B = (R%)¥). For any couple (¢,p) € C([0, 1], B x B*), there exists under
the (H}') conditions a constant ¢ > 0 such that for any ¢ € [0, 1],

KvT (@opn Oy < cplo( +lde) S 1.

zeX,T(x)<t
Hence, n points periodically appear at each time % fori =0,1,...,m and m € N*, we
get
| Ky T (g, pe: t)|v < nelploo(l + ]q|oo)(1 + ﬂoor(mt)) . (3.45)

3.3.2 General current setup

Let us recall the configuration presented in Section 3.2. X is a compact submanifold
given as X = [0, 1] x Xy with 90X = () and 7 is the projection on the first coordinate. The
object space is given by B = Li°(X, R9) and the momentum space by B} = L>®(X,R?) x
L®(0X,RY) — B*.

Proposition 3.3. There exists a real valued function m(r) defined for r > 0 such that for
any (¢,p) € C([0,1], B x BY) and any time t € [0, 1], we have

\KvJ (g1, pe,t) — Kv T (qo,po,0)|v < m(|g|B + [p|B=)t . (3.46)

Proof. We saw that the momentum map is given for any couple (g, (p*, an)) € C([0,1], Bx
BY), any time t € [0,1] and any v € V' by

t
(T (@ pent) | v) = /0 /X (0 (5, 20), 0(a1(5, 20))) s ML (0) s (3.47)
[P 0,20), 000, 70) )t 20) (3.48)
Xo
+]1t1/ P?* (1, 20), v(g(1, 20)))ga dH* " (20) . (3.49)
Xo

There exists then under the (H}') conditions a constant ¢ > 0 such that for any ¢ € [0, 1],

|\Kv T (qt,p,t) — Kv I (qo,p0,0)|[y < ¢ (C‘p|oo(’CJ|oo,u + 1)7'[k_1(X0)>
+ Lym1e|p® oo (|glooys + 1)HF(X0) -

3.3.3 Current setup: case of horns

In the current setup, the example of horns presents an additional interesting aspect. A
horn is not diffeomorphic to a product [0, 1] x X because of the tip of the horn. Yet, we
chose to keep this general configuration on X and allow the spatial mapping between X
and R? to be not invertible. This characteristic leads to the introduction of a new space
By C B.
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Definition 3.2 (The By Space for the Horns). A class of function of L7 (X, RY) is defined
HF 1 almost everywhere on {0} x Xo. This allows to consider the subspace of functions
whose image of {0} x Xo is reduced to a singleton. With B = L7°(X, RY), we define

By={qe B|3yeR? q0,)=y H 1-a.e. on Xo}. (3.50)

This space will reveal the role of the singularity induced by the tip of the horn and
hidden by the choice of X. The initial boundary formed by the first layer {0} x X actually
does not contribute to the support of the momentum map. We will see indeed in the next
chapter that if ¢; € By then for any xo € X, we have p?* (0, z0) = 0 so that at any time
t € [0,1], we have p?* (0, z0) = 0. Since the momentum on the last layer {1} x X{ is not
significant, when 90Xy = ) so that X = {0,1} x Xy, we can do the approximation

vtel0,1], p?¥ =o0.

That is to say that the momentum lives in a new space vi = L®(X,R%) C Bj.

Remark 3.10. Note that we introduced on both sides, for the shape q and its momentum
p, new spaces smaller than B and B*.

These spaces refine even further the control on the momentum map.
Proposition 3.4. There exists a real valued function m(r) defined for r > 0 such that for
any (¢,p) € C([0,1], By x BY) and any time t € [0, 1], we have
|Kv T (g, pes ) lv < m(lglB + |plB-)t - (3.51)

where By is given by Definition 3.2 and B = L®(X,R%).
Proof. See Proposition 3.3. O

Remark 3.11. As presented in Example 2.1, with the classic cost function C(v,t) =
%\v[%,, the optimal vector field is equal to the momentum map :

U: = KVj(qt)pt)t) .

Equation (3.51) gives thus a strong information on the behavior of an optimal vector field.
Its norm increases no more than linearly and starts from 0. This phenomenon
can be explained quite naturally. When the horn starts to appear, the shape is reduced
to a single point which is the tip of the horn. The cost function prevents to pay for a
deformation that would have an insignificant impact. The vector field is therefore null at
time 0. Such vector fields are yet unable to create a sharp peak as required to model the top
of the horn. One can then deduce that the classic cost function is not adapted to the growth
dynamic, especially with horns. A new cost function is thus presented in the next section.
At last, note that the example of horns only highlights and amplifies a phenomenon that
will also appear with a tube or when the coordinate space X is discrete (see Chapter 5).

3.4 New cost functions: Adapted norm setup

The previous study on the norm of the momentum map calls for new cost functions.
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Definition 3.3 (Adapted norm setup). We call the adapted norm setup the configu-
ration where the cost function C' is given for any (v,t) € V x [0,1] by

1
C(v,t) = 5@;@:”)\/7

where £y € L(V) is a self-adjoint operator on V. We assume that t — |€t|op is bounded on
[0,1] and that there exists a strictly increasing function « : [0,1] — Ry such that a(0) =0
and

a(t)v]Z < (v, o)y . (3.52)

Proposition 3.5. In the adapted norm setup, for any t > 0, ¢y is invertible and |€;1|op <
a(t)™L. If a(0) # 0, this inequality is satisfied for any t € [0,1].

Proof. For any t € [0, 1] such that «(t) # 0, ¢; is coercive. The invertibility results from
the Lax-Milgram theorem (see for example [14]). We deduce then from equation (3.52)
that for any v € V

a6 vfy < (v, 7 o)y < [ olvloly

so that |6 'v|y < $|v|v. O
Definition 3.4 (Nondegenerate Adapted Norm Setup). We call the nondegenerate

adapted norm setup the adapted norm setup with the following additional assumption.
There exists o > 0 such that for any v € V and any t € [0, 1]

alvlf < (v, )y .

Remark 3.12. The nondegenerate adapted norm setup is a subcase of the adapted norm
setup. Hence any results satisfied in the adapted morm setup holds in nondegenerate
adapted norm setup. The classic cost function C(v,t) = |v|} is a specific case of the
nondegenerate adapted norm setup (take ¢y = Id for any t € [0,1]).

Proposition 3.6. In the adapted norm setup, the function giving the optimal vector
field is defined when 0; is invertible by

vf =v*(q,p,t) = ;' KvJe(q,p,t) - (3.53)

Proof. The optimal vector field must satisfy at any time the equation

oC

%(Ut,t) — Je(q,pe,t) =0

or equivalently in V'
VoC(vg, t) = byvy = Ky Te(qt, pt t)

and the optimal vector field is given by

’U: - U*(qtvpt7t) - gt_lKVt-Tf(thta t) . (354)
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Example 3.1. When ¢, = Id at all time, we find the usual cost function C(v,t) = 3|v|}.
In practice, £y will be either scalar in general or blockwise scalar when V' admits a canonical
decomposition as in the rotations-translation case where V.= Ag x RY.

Example 3.2. When the coordinate space X is discrete, the momentum map J s piece-
wise constant with respect to time (see Remark 3.2). It results from Remark 2.5 that the
time derivative of the reduced Hamiltonian is reduced for almost all time to

dH, ON:
dt (Qtaptut) - (atg(qnpht)

vt) — a(vt,t) (3.55)

= — (v}, b}y (3.56)

If £ > 0 is then a scalar function that is also constant between each appearance of new
layers, it comes that %(qt,pt,t) =0 and

Hy(qe, pis t) = (Te(qe pest) | vf) — C(vg, 1) (3.57)
b\
= Et v} (3.58)

Therefore, the norm of the optimal vector field is constant between each appearance of new
layers.

3.5 Existence and uniqueness of the solutions by shooting

Among the solutions of the Hamiltonian system generated from any initial condition
(qo,po) € B x B* is the sought-after trajectory (¢, p) € C([0, 1], B) xC(]0, 1], B*) associated
to an optimal time-varying vector field v*. Therefore, the optimization problem on v can be
replaced by an optimization problem on pg as presented in Section 2.5 (Shooting Method).
This new point of view requires to guarantee the existence and uniqueness of a solution
(g, p) for any initial condition (go, pg). We will prove it in Section 5 when f is linear and for
a reduced Hamiltonian system associated to the cost functions introduced in Section 3.4.
We summarize here the results.

We already saw that we are interested in smaller spaces than B and B*. Smaller than
B if we add constraints on the shapes. Smaller than B* when the attachment term to the
data implies specific properties of the momentum that provides additional information on
the momentum map and therefore on the optimal vector field. One could also see this
as a possibility to add some constraints on the momentum and therefore on the vector
fields generated by the shooting. For this purpose, we introduce the notion of compatible
spaces with the initial setup (B, V, &) (see Section 5.2 for more details) . It allows to provide
one general theorem (Theorem 5.1) for the local existence of the solution and apply it to
the different configurations (Section 5.3). We will then prove the global existence of the
solutions for each situation (always with the growth dynamic) in Section 5.4.

When the coordinate space X is not discrete, we will assume to simplify that X =
[0,1] x X with X = () and that 7 is the projection on the first coordinate (we will refer
to this setup as tube case).

Theorem 3.1 (Global Solutions of the Reduced Hamiltonian System : Tube Case). As-
sume the (HY') conditions. Consider the nondegenerate adapted norm setup and
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assume that £ € C1([0,1],L£(V)). Consider the Banach spaces
By = B = LY(X,RY)
Bf = LY (X,RY).

Then for any initial condition (qo,po) € Bo x Bf, the reduced Hamiltonian system
associated to the growth dynamic

g(q,t)(v) =1l,;<voq

admits a unique solution (q,p) € C([0,1], By x BY).
Moreover, there exists an increasing function ¢¥ : Rt — RT such that for any
(g0, po) € Bo x B} and any t € [0, 1], we have

gl Bo + IpelBr < © (lq0] By + [P0l B7) -

Proof. See Theorem 5.3. Note that we identified L5, (X, R?)x L0, _, (9X,RY) to L2 (X, RY).
O

Remark 3.13. The theorem gives an interesting property of the solutions of the reduced
Hamiltonian in the nondegenerate adapted morm setup. They are locally bounded with
respect to the initial condition.

We will also give a similar theorem in the case of a discrete coordinate space X
with the same results (including the existence of ¢Y¥).

The case of the horn in the continuous current setup

The study of the momentum map in Section 3.3 led us to the introduction of the
adapted norm setup to compensate the growth of the shape. In this setup, the cost
functions are given by

1
C(v,t) = 5(1}, L)y .

We saw in the different applications with the growth dynamic that the support of the
momentum map at any time is made of the active part of the shape (see Remark 3.1 and
Figure 3.6). This part at any time ¢ € [0, 1] is the set of points that actually exist in the
ambient space at this time

{@(z) € X |7(z) < t}.

The case of the horns is extreme because at the initial time, the shape is reduced to a single
point: the tip of the horn. When X is discrete, the counting measure gives a non-zero
weight to this point. Otherwise, with the Hausdorff measure, the momentum map is then
reduced to 0. In this last case and in order to get an optimal vector field with a constant
norm over time, we would like to make ¢; tends to 0 when ¢ tends to 0. This specificity
requires a special care to prove the local existence. We impose then a control inversely
proportional to the speed of creation of new points. As we assume to simplify that 7 is
the projection on the first coordinate of X = [0, 1] x X, the appearance of new points is

thus linear (dr = 1) which explains the factor + in equation (3.59).
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Theorem 3.2 (Global Solutions of the Reduced Hamiltonian System : Horn Case).
Assume the (HY) conditions. Consider the adapted morm setup. Assume that { €
CL([0,1], £(V)) and that there exist M > 0 and s € [0, 1] two constants such that for any
t €]0,1]

0 op <

M 1
= .- 3.59
. (3.59)

Consider the Banach spaces

B=LY(X,R%,
By={geB|IyeR’ q0,)=y H" " -ae on Xo},
BNik ={pe LZO(X,Rd) | p(z) =0 H*¥ t-a.e. on X } and B} = LZO(X,Rd),

Then for any initial condition (qo,po) € Bo x Bf, the reduced Hamiltonian system
associated to the growth dynamic

g (v) = lrpvog

admits a unique solution (q,p) € C([0,1], By x BY).

Proof. See Theorem 5.2. O

Remark 3.14. Note that we lost the control by the initial condition that we had in the
theorem for the tube case.

4 Theoretical study of the generative model

The generative model, presented in Section 1, involves integral equations of the type

t
qt = qo + / f(an Vs, 3) dS, (360)
0
where ¢ evolves in a Banach space B, the flow is given by a function
f:BxVx][0,1] — B,

and V is also a Banach space, often called the space of controls.

Remark 4.1. The theory of integration in a Banach space has been studied by Bochner
(1899-1982) and bears now its name. A brief overview of the main results needed hereafter
s given in Appendix A.

We will start to summarize few conditions satisfied by the space V' that will be satisfied
in our applications.
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(i) V C C*(R%, RY).
(7i) There exists ¢ > 0 such that
(HY) for any (z,v) € RY x V, we have

[v(@)|ga < clv]y(|z|ga +1),
|dv()| pra ey + |d*0(2)] £(ragre R < V]V

These conditions will be satisfied in our applications:

Lemma 4.1. i) If V is embedded in C2(R? RY) (which we shall denote V — C2(R%,RY) ),
then V satisfies the (H}) conditions.

ii) Let be V- = Ag x R? the direct product of antisymmetric matrices and translations
on R?, equipped with the following norm depending on a parameter o > 0

(A, N)I¥0 = al AL, + N[z = atr(ATA) + N3 .

Then V satisfies the (HY) conditions.

iii) Under the (H") conditions, there exists ¢ > 0 such that for any v € V, any
z,y € RY

(@) = v(y) e + |dv(z) — dv(y)|oo < clvfy|z = ylga-

Proof. The last inequality results directly from the (H]") conditions.

If V < C3(R?RY), then there is ¢; € R, such that for all v € V, |[v]eo + |dv]eo +
|d?v|o0 < c1 [v|y. This constant ¢; satisfies the inequalities of (H}).

If V= A4 x R?, since all norms on Ag are equivalent, there exists ¢ € Ry a constant
such that for any A € A, the operator norm |A|,, is lower than c3|(A4,0)|v,. We have
thus for any v = (A, N) € V and any = € R? :

[0(z)|re = |Az + Nlga < |Alop|z[ga + |Nlga < caaf Ala,|@]ga + |Nga
< (2 + D(alA[ + IN)(|z|ra + 1) < (c2 + DI(A, Ny (Jx]ge + 1)

So we obtain the first inequality of (H{") with the constant co+ 1. And finally, |dv ()]s =
|Alop < c2lv]y and d?v = 0 such that ¢z + 1 also leads to the second inequality. O

Let us also recall the Gronwalll’s lemma.

Lemma 4.2 (Gronwalll’s lemma). Let f and g be two positive measurable functions defined
on the interval [0,1] and let ¢ > 0 be a constant. Assume that f is bounded and that for
any t € [0,1],

t
ﬂwSc+Af@M@Ma

< e ([ o(s)as)
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4.1 Existence and uniqueness

For any metric space, B(b,r) will denote the close ball of center b and radius 7.

Definition 4.1 (Locally Lipschitz Continuity). Let E and F' be two Banach spaces. We
say that a function g : E — F is locally Lipschitz continuous if for any r > 0, the
restriction of g to the ball B(0,r) is Lipschitz continuous.

Definition 4.2. We define Lip'%S(E x [0,1], F) the set of applications g such that

int
— for almost every t € [0,1], g: := g(+,t) is locally Lipschitz continuous,

— for any r > 0, if we note kj the Lipschitz constant of g; on the ball B(0,r) (defined
a.e.), then t — ki is integrable on [0, 1].

4.1.1 Local existence

In order to prove the local existence and uniqueness of solutions, we need the following
variant of the Cauchy-Lipschitz theorem.

Theorem 4.1 (A Cauchy-Lipschitz theorem). Let B be a Banach space, by be a point of
B and f: B x [0,1] — B be a measurable function such that

— feLiple(Bx|0,1], B)

int

— there exists b € B, such that fol |f(b,t)|pdt < oco.

Then for any r > 0, there exists € > 0 such that the Cauchy problem associated to f and
any initial condition (bo,to) with |bo|p < r and ty € [0,1] has a unique solution on the
interval [to, to + €] N[0, 1].

Proof. The proof is based, as usual, on a fixed point method. Denote ¢, = fol |f(b,t)|pdt
and consider r > |b|p. Let us first show that there exists m > 0 such that for any
by € B(O, ’I”)

1
/0 | f(bo, )| B dt < % (3.61)

We have indeed

/ | f(bo,1) |Bdt</ | f(b,1) |Bdt+/ |f(b,t) — f(bo,t)|pdt

gcb+/ kt|b—b0|3dt§cb+2r/ Kl dt < +oo,
0 0
where k] is the Lipschitz constant of f(-,¢) on B(0,r) defined a.e.

Define then 7 = r 4 m so that for any by € B(0,7), B(by,m) C B(0,7'). Let kI be
the Lipschitz constant of f(-,#) on B(0,r') defined a.e. Since t — k} is integrable on the
compact interval [0, 1], there exists ¢ > 0 such that for any to € [0,1], ft; k{/ dt < 1/2
where t. = min(t,, 1).

We can now prove the existence of a solution to the Cauchy problem for any initial con-
dition (to,bo) € [0,1[xB(0,r) on the interval [tg,tc]. Consider thus (to,bo) € [0, 1[xB(0,r)
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and define the set of continuous functions E = C([to, tc], B(bp,m)). E equipped with the
uniform norm is complete. Introduce finally the operator Tj, : E — E given for any y € E
and any t € [to, te| by

ﬂw@=%+Afw@ﬁM&

Let us show that T, is well defined. We have for any y € E

t t t
t £ (y(s), s)|B ds < t | (bo, )| ds + t £ (y(s),s) = f(bo,s)| B ds

te , te ,
gm+/'%w@%m@g;+m k' ds

2 to to
<m.

In particular, |Ty,y(t) — bo|p < m and thus Tp,y(t) € B(by, m). Moreover, Tj,y is continu-
ous. Indeed, for any t; <ty in [to, t],

|ﬂwm%4mmm3s/ﬂﬂma®mw

t1

to
< [ 1009l + 1(0().5) = £(bo, ) ds
t1

to

to ,

< [ 10 9lpds+m [ kds
t1 t1

and since t — f(bg,t) and t — k] " are integrable, these integrals tend to 0 when ty —

tends to 0. Therefore, T3, takes values in E. Let us show now that Ty, is a contraction.

For any y,z € E, we have

te
Inw—ﬂﬂmﬁélﬂmmw—ﬂdmﬂbﬁ
te

, 1
< ki dtly—2|oo§§\y—2|oo.
0

Consequently, Ty, is a contraction and admits thus a unique fixed point in the complete
space E. This fixed point is the solution of the Cauchy problem. The uniqueness results
from the Gronwalll’s lemma. Let y and z be two solutions defined on any common time
interval [to, ] and both bounded by 7. > 0. For any ¢ € [to, t.], we have

y(®) ==l < | 1f(y(s),5) = f(=(5), 5)|p ds

< [ Keluts) — =) nds.

to

The Gronwalll’s lemma implies that for any t € [to, t], |y(t) — z(t)|p = 0. Therefore, one
of the two solutions is an extension of the other one. O

In order to apply the theorem in our situation and satisfy its assumptions in a general
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case, we define in the following corollary a set of conditions on the function f denoted by
(H).
Corollary 4.1. Let be f: B xV x [0,1] — B a function that satisfies the conditions

(i) There exists ¢ > 0, such that for any (¢,q,v,t) € B x V x [0,1],
(H]) (@0, 0)l < clolv(lals +1),
|f((],'U,t) - f(q,,U,t>’B < C|U|V|q - q/|B‘

then for any initial condition qo € B and any control v € L*([0,1],V), the Cauchy problem
associated to f

t
a4 =q +/ f(gs,vs, 8)ds
0

admits a unique mazximal solution on an interval I C [0,1] containing 0.

4.1.2 Global existence

Following a standard method to ensure global existence, we will show that a solution
never explodes in finite time. Without a global Lipschitz continuity, we need the control
offered by the (Hg ) conditions. Assume thus that f verifies the (Hg ) conditions. For any
initial condition go € B and any control v € L2([0,1],V)(c L'([0,1],V)), if ¢ € C(I, B) is
the maximal solution associated to (go,v), we have for all t € I :

t
|mBs%m+/’ﬂ%%»mm5
0
t
g%m+/dmw@m+n@
0

and the Growall’s lemma applied to t — |q:|p + 1 gives

t
[@elB +1 < (lqo|lB +1) exp(/ clvs|v ds) (3.62)
0

< (lg0lB + 1) exp(cfv]1) - (3.63)

Thus any partial solution is bounded and can be extended to [0, 1].

We can therefore summarize and define a function ® that returns the solution asso-
ciated to an initial condition gy and a control v.

Theorem 4.2. Let f : BxV x[0,1] — B be a function that satisfies the (H({) conditions.
Let @ be defined as follows

®;: BxL*[0,1,V) — C([0,1],B)

(q07v) — q,
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where q is the unique solution of the integral equation

t
qt = qo +/ f(gs,vs, ) ds.
0

& is well defined.

Another important application of the Cauchy-Lipschitz theorem concerns the linearized
integral equations.

Corollary 4.2. Let B be a Banach space and L(B) be the space of continuous linear
operators on B. Let Ay € L?([0,1],£(B)) and Ay € L*([0,1], B) be two square-integrable
applications. Then for any by € B, there exists a unique solution b € C([0,1], B) to the
integral equation

b(t) = by + /Ot A1(s) - b(s) + Ag(s) ds.

Proof. This is a direct consequence of the previous theorem. With the notation of the
theorem, we define for any b € B, any t € [0,1], f(b,t) = Ai(t) - b+ Aa(t). Then f(-,t)
is Lipschitz continuous with the constant |A;(¢)| and ¢ — |A;(t)| is integrable on [0, 1].
Moreover, f(0,t) = As(t) is also integrable. The global existence is a direct consequence
of the Gronwalll’s lemma and the global Lipschitz continuity of f. O

4.2 Temporal regularity

As discussed in Remark 1.2, we will see hereafter that the solutions given by ®; may not
admit a time derivative at all time. Proving the existence of this derivative at least almost
everywhere requires the notion of Bochner-Lebesgue points. The following definition and
results are presented in more details in the Appendix.

Definition 4.3. Let B be a Banach space and let be f € L*([0,1], B). A point t € [0,1]
1s called Bochner-Lebesgue point if

1 -
1 ST o, O~ SOl ds =0,

where B(t,r) = [t — r,t + 7] N [0,1] and X is the Lebesgue measure.

Proposition 4.1. Let be f € L'([0,1], B), t € [0,1] a Bochner-Lebesgue point of f and
(Ay)r>0 a collection of measurable non negligible sets containing t (i.e. for any r > 0,
t € Ay and A\(A,) > 0). If there exists ¢ € R such that for any r > 0 we have:

A, C B(t,r) and A(B(t, 7)) < cA(Ar),

then

1

}%/W/mlf(t)f(S)leSZO.

Example 4.1. If f € L'(]0, 1], B) is continuous, one can show easily by uniform continuity
that any point of [0,1] is a Bochner-Lebesgue point of f.
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Theorem 4.3. If f € L([0,1], B), then almost every pointt € [0,1] is a Bochner-Lebesgue
point.

This theorem implies some regularity on the time varying vector fields of L!([0,1], V)
that we will use hereafter.

Proposition 4.2. Consider for any initial condition qo € B and any control v € L?,,
the solution solution q = ®¢(qo,v). Under the (H(J;) conditions, we have for almost any

te[0,1]
Gt = f(qt, v, t)
and this derivative is integrable.

Proof. Consider g : [0,1] — B defined by ¢(¢t) = f(q¢,vi,t). The (H({) conditions imply
that there exists ¢ > 0 such that at any time ¢t € [0, 1]

9@ < clolv(|als +1) < cluilv (lgloo + 1),

so that g is integrable. Therefore, almost any t € [0, 1] is a Bochner-Lesbesgue point of g
and Proposition 4.1 ensures that for any € # 0

q —q 1 t+e 1 t+e
die A _ 2 f(gs,vs,8)ds = — g(s)ds
€ €/ € J;

tends to g(t) when € tends to 0. O

4.3 Directional derivative of the solution with respect to its parameters

We are now interested in the variations of the solution ¢ = ®£(qo,v) with respect to
its parameters gp and v. Recall that ¢ is given at any time ¢ € [0, 1] by

t
gt = 40 +/ f(QSa Us, 5) ds, (364)
0

where we have f : B x V x [0,1] — B and where B and V are two Banach spaces. In
other words, we want to explicit the Gateaux-derivative of ®.
Let us fix (6qo, dv) € B x L*([0,1], V) and define the application g : [0, 1] — C([0, 1], B)
by
g(e) = ®¢(qo + €dqo, v + €dv) .

If g is derivable at 0, then the Gateaux-derivative of ®; in the direction (dqo, dv), denoted
(g0, v ; 6q0, 0v), is ¢'(0).

Definition 4.4 (Linearized Equation). Let B and V be two Banach spaces and let f :
B xV x[0,1] = B be a function of class C* with respect to its two first variables. Assume
that there exists ¢ > 0 a constant such that for any q € B, any v € V, and any t € [0, 1],
we have

<clvlv,
op

of
‘aq(% v, t)

(s
L

<c(lglp+1).
op
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Then for any (8qo, 6v) € B x L2([0,1], V), there exists a unique solution 6q € AC([0, 1], B)
to the linear equation

t
dqr = dqo + /0 Z(q871}5’ s) - 0qs + %(Q&Ua‘a 5) - 6vsds. (3.65)

This equation is called the linearized equation of ¢ = f(qi, ve, t).

Proof. Since the applications ¢ +— \g—]qc(qt,vt,tﬂ and t +— |%(qt,vt,t)| are integrable on
[0,1], it results directly from the Corollary 4.2 (the linear Cauchy-Lipschitz theorem) .
The absolute continuity is also immediate as in Proposition 4.2. O

Theorem 4.4. Consider f and ®y as defined in Theorem 4.2. Under the (H{) conditions,
the Gateaus-derivative of ® ¢ in the direction (5qo,dv) € Bx L*([0,1], V) exists and is given
by the unique solution of the linearized equation

tof of
5Qt—5qo+/0 Fq(q&vms)'6QS+%(QS7U535)'5U5dS-

Proof. Note that the (H{ ) conditions imply (Hg ). Let us fix the following notation:
q = ®¢(qo,v), for any € € [—1,1], v° = v+ €dv, ¢f = qo + €dqo, ¢° = P(qf, v°). Finally, for

any € # 0 and any t € [0, 1], we introduce Mf = @ —0qs 5 The proof consists thus

to show that this quantity ¢ — My tends uniformly to 0 when e tends to 0. Let us start
with the following lemma.

Lemma 4.3. |¢° — ¢loc = O(|€])
Proof. Under (H{), we can write
t
g6 =l < el + [ 17(a50509) = F(auyns)lmds
0

t
< |€H5QO|B +/ \f(qg,vﬁ, S) - f(qs,U;S)‘B + |f(q5,v§,s) - f(QS7U87 S)’B ds
0

t 8f
<lellsmla+ [ sup |2 @)t )] - ada
0 rs€[0,1] q op
+ sup 87(5137'03 + Ts(vg - Us)>3) ”U; - US|Vd8
rs€[0,1] v op

¢
< |6||5€/0|B+/ clvglvlgs — asl + ellas B + D|vg — vslv ds
0
t
< |€|(\5CJO|B+C(|Q|oo+1)|5U!1)+/ clvglvlgs —aslpds (g € C([0,1], B))
0
< le|(|6qo] B + c(|glos + 1)[0v|1)exp(c|v]1) (Grénwalll’s lemma) .

Finally, since for any |e| < 1 we have |[v°[y < |v[1 + [dv]1, we deduce that |¢° — ¢l =
O(le]). O

We will now use the Gronwalll’s lemma to show the uniform convergence of My =
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€

gog ot ’

5
t
i< [
0

t

<),

0

where R is defined for any s € [0, 1] by

f(QE7U§78)_f(QS7v57S) _g _g
c g (q87v873) 0qs 9 (QSavswg) 0vs

ds
B

1
gi}c(qs, vs, )| M+ ?RE ds,

op el

0 0
6£(QSa Vs, 5) : (QE - QS) af (QS7US> ) : (65Us)

Rg - ‘f(q;,UE,S) - f(q8>vs’ 8) -
B

In order to bound R, we introduce the application g5 : [0,1] — B defined by
QS(T) = f(QS + T(Q; - q8)7 v+ T(UZ - 'Us)a 5) - f(QSa Vs, 3) .

Thus, gs(0) = 0, gs(1) = f(q5,vE, 8) — f(gs, vs, s) and if we note g5 = ¢s + (¢S — ¢s) and
vy = v+ 7(vE — vs), we have

1 , 18 o
0= [ = [ Zae e -0+ 5

€

(gh,ve, s)(vs — vs) dr.

Therefore,

— Te e 8f €
- ‘/ (8 qs 9 5 7 aq (q87U855)> (qs QS)

0
<f 267 §67 - a‘z(QS)Usus)> (661)8) dr
</

B

0

0
aif( qs s ’ )_5Z(QS)U878)

o)

drlqs — qs|

’f‘€

8f T,€ _87f
3 (05505 8) = 505, vs, 8)| drleduy] .

Let us note

of
* oy

op ‘

t|of
dq

dr,

op

¢ e of
(qg’ 71}7; 78) - v (QS’USaS)

r,€ T,€ a
(05,05, 5) = (e 2s)

so that

R < o5(1¢° — qloo + |€dus]y) .

Then, if we note

€ 1 ! €
B :W des,
€l Jo
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we get with the Gronwall’s lemma

¢ ~ pe bof
Mt < B eXp( |67(q3,1)3,5)|d5
0 q
< Bfexp(c|v]1),
where the constant ¢ > 0 is given by (H { ). The final step is to prove that B¢ tends to 0

when € tends to 0.

Note that for any € € [—1,1], s — af is a square-integrable function on [0, 1]. Indeed,
it can roughly be bounded as follows

of of
o < sup | ==(gs +7s(qs — ¢s), V5, s +‘ s, Vs, S)| ...
w8 8q( ( ) )Op aq( )
of ¢ ‘3f
+ sup |5-(qs, Vs +1s(Vg — Vs), S + | 5—(4s, Vs, S
v 0 ( ) )op 5y ( )

< c(Jvglv + |vsly +2(lgs|B + 1))
< c(Jvglv + Jvslv + 2(|gloo + 1)) -

Moreover, the previous lemma says that |¢° — gloo = O([€]). There exists thus ¢’ > 0 a
constant such that for any € € [—1, 1], \@\m < (. Hence,

1
B¢ = / RS ds
lel Jo

1 € _
< / oég(M + |6vg]) ds
0 ’€|

< </01(a§)2ds>é </01(c/+ |5vs|)2ds>é .
of

Finally, since 34 and % are continuous, for any sequence ¢, — 0, s — a;" tends to 0
almost everywhere. Thus, the Lebesgue’s dominated convergence theorem ensures that
|am| 2 tends to 0. Hence, M€ converges uniformly to 0. O

4.4 Application to the growth dynamic

In our model, the shapes are parameterized by the coordinate space X so that the
object space can be given by B = L®(X,R%) where X is given as a submanifold of R
According to the growth dynamic, f is defined by

f(Q7U7t) = ]17—§t'l)oq,

where vogq:z— v(q(z)).

We assume as before that the space of controls V satisfies the (H{") conditions (intro-
duced at the beginning of Section 4).
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4.4.1 Existence of the solution and dependence with respect to the parame-
ters

Lemma 4.4. If B = L®(X,R%) and f(q,v,t) = l,<;v o q, then the (Hg) conditions are
satisfied.

Proof. For any ¢,5q € L>°(X,R%) and any v € V, (H{") ensures that there exists ¢ > 0
such that

[vo gleo < cfvly([gloc + 1) and |(dv o g) - dqlec < cfv]v]0glo -

O]

Consequently, Theorem 4.2 ensures that for any initial condition gy € L*>(X,R%)
and any time-varying vector field v € L?([0,1],V), there exists a unique ¢ = ®(qo,v) €
C([0,1], L>=(X,R%)) such that for any t € [0, 1],

t
qt = qo + / I;<tvs0qgsds. (3.66)
0

More precisely, for any = € X,

@(x) = { () ife < rla), (3.67)

qo(x) —i—f:(x) vs(gs(x))ds  otherwise.

The existence of directional derivatives of the solution with respect to initial position
qo and the control v lies on the (H { ) conditions given in Definition 4.4. Let us verify that
the function f associated to the growth dynamic satisfies these conditions. Consider F
defined by:

F: L®X,RHxV — L®(X,R%)
(q,v) — voq:xz—v(q(r)).

F' generates the standard infinitesimal action of the LDDMM setting. Under the (HY
conditions, F takes its values in L>°. Our model corresponds thus to the case f(q,v,t) =
]lTStF((L U)'

Proposition 4.3. Under the (H{/) conditions, F is of class C'. More explicitly, we have
for any ((q,v), (8g, v)) € (L=(X,R?) x V)2

oF oF

S (@.v) - du=duog g (@) -00= (dvog) g,

In fine, if f is given by the growth dynamic, i.e. f(q,v,t) = 1.<;F(q,v), then f satisfies
().

Proof. The pointwise expressions of these derivatives are given by

aaf(q,v) “0v = du(q(z))
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and
oF

Bg (9 v) - 0q i@ du(g(z)) - 0g(x) .
Indeed, F is linear with respect to v and under the (H}) conditions there exists ¢ > 0
such that

oF
%(%”) v N < cldv|v(lgleo + 1)
and thus
oF
— < 0o+ 1).
o] < et

Regarding the first variable, we have
[F(q+ dq,v) — F(q,v) — (dvoq) - dqle = sup [v(g(x) + dq(x)) — v(g(x)) — dv(q(x)) - 5q(x)]
BAS

C
< Z’U|V|5Q‘go )

where the last inequality results from the Taylor’s theorem with integral remainder applied
on the application g(r) = v(q(z) + rd(z)) between 0 and 1. At last we have

OF
' < clly .

aiq(% 1))

op

We deduce that Fis of class C* and that f satisfies (H{) Note that if v = (A, N) € AgxR?,
we have

F
- 5qg=A-0q.
8q(q,v) q q

O]

Consequently, the Gateaux-derivative of ® at a point (qgo,v) € L>®(X,R%)x L2([0,1],V)
in the direction (8qo,0v) € L>®(X,R%) x L%([0,1],V) exists and is equal to the unique
solution, denoted dq, of the integral equation:

t
0qr = dqo + / 1<t ((dvsoqs) - 6gs + dvs - qs) ds. (3.68)
0

4.4.2 Spatial regularity of the solution

We investigate in this section the spatial regularity of a solution ¢ = ®(qg, v) generated
with the growth dynamic by a time-varying vector field v € L%, from an initial condition
qo € L>®(X,R%).

We assume hereafter that X is a smooth k-dimensional Riemannian submanifold of
R? (eventually with corners: for example, a convex or concave polygon is a submanifold
with corners - see Chapter 4 for more details). We denote dx its associated Riemannian
distance. Let us also introduce:
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Definition 4.5. For any (xg,0x9) € X x TX such that dxg € Ty, X, C(xo;dx9) denotes
the set of smooth paths x : [=1,1] 3 t — x(t) in X such that x(0) = z¢ and £(0) = dxo.
At any t € [—1,1], x(t) will be denoted x;.

Since the time derivative of ¢; is usually not continuous on X because of the indicator
function, we cannot solve the integral equation directly in a space of continuous functions
like (Cy(X,R%),| - |so) (the Banach space of the bounded continuous functions). This
indicator function divides at each time ¢ € [0, 1] the coordinate space X into two parts:
the set of active points

X ={z e X|7(x) <t} (3.69)

and its complement X{ = X'\ X;. Likewise, the shape ¢;(X) is divided in two parts. Hence,
since these two blocks have their own dynamic, it can induce some irregularity at the
boundary between the two parts. This boundary is the image of Xy = {z € X |7(z) = t}.
Figure 3.7 illustrates the typical division of the shape modeling the development of a horn.

Figure 3.7 — Horn in the middle of its development. The colors correspond to the level
lines of the birth tag 7. The shape ¢(X) is divided in two parts. The active part (in
blue) of real points and the inactive part (from green to red) of fictional points that will
progressively appear. At the boundary between these two parts, the shape admits two
half tangent planes.

Unlike the classic LDDMM framework, the spatial regularity of ¢ is here strongly
linked to the temporal regularity of v. With the growth dynamic, when v is continuous
with respect to time, the shape admits two regular parts as described above. However, the
boundary layer Xy plays a central role in the global regularity of the shape throughout
its evolution. When v has an irregularity at a time tg, the shape captures it and keeps
it at its layer ¢:(Xy,y) from time #o to time 1. Figure 3.8 illustrates the impact of the
discontinuity of v on the generated shape.

The integrability of v maintains yet some regularity of the solution. A solution defined
on C([0,1], L=®(X,R%)) with a bounded continuous initial condition gy will actually stay
in Cp(X,R%). Indeed, the application of the Gronwall’s lemma (Lemma 4.2) specified at
any point x € X (see equation (3.63)) gives

|9:(2) [ra + 1 < (lg0(2) e + 1) exp(e|v]1) < (|goloo + 1) exp(efv]r) - (3.70)
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Initial position, before the deformation

Figure 3.8 — The final state ¢; (X ) displayed on the top left is a serrated curve with as many
discontinuities as its associated vector field v given on the right as real-valued function
modeling piecewise constant vertical translations upwards and downwards. The initial
position go(X) is a segment. At the beginning of the scenario, the vector field is directed
downwards and the blue part of the segment is progressively displaced downwards while
the rest of the segment remains fixed. It creates the first slope of the final polygonal
curve. Once v becomes positive, the active part of the curve is displaced upwards and
the second slope is created. The final polygonal line has as many irregularities as v has
discontinuities.

Hence,

Sup lge(2)|ga < 0. (3.71)

Moreover, we have

Proposition 4.4 (Spatial continuity of the solution). If g € Cp(X,R%) and 7 € C(X,RY)
then q belongs to C([0,1],Cy(X,RY)).

Proof. For any s,t € R, we denote s At = min(s,t). We have

t t

valaa(y)) ds — / vs(gs(2)) ds

()Nt

a(¥) — (@) = qo(y) — qol) + /

(y)nt

T(y)At t
— 20(y) — 0(e) - / oalgs()) ds + / 0s(s (1)) — s (s () ds
()AL T(y)At
Finally,
T(y)At
1ge(y) — qu(@)lpe < lao(y) — qo(@)lpe + / @) ds
T(x )N\t

[ o) vl ds,

(y)nt

The second term of the right hand side can be bounded with a Cauchy-Schwartz inequality.
The third one can be bounded with the mean value theorem. Then, the (H{") conditions
and the lemma 4.1 can be applied to both upper bounds to give a constant ¢ > 0 such
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that:

T(y)At 7(y)
[ adelseds < [ cluly ol + 1 ds (3.72)
T(x)At 7(z)
< c(lglos + 1)|7(x) = (1) [V/]0]2 (3.73)

and

[ tolano) = on(as()lg ds < /0 clvalvlgs(2) — gs(y) g ds

(y)nt

where the uniform bound for ¢ is given by equations (3.70) and (3.71). We can thus
conclude with the Gronwall’s lemma and the continuity of gg and 7 :

90(y) = ar(@)lgs < (1a0(y) = 0(@) e + (laloe + 1)) = 7|20l ) exp (cloly) -

Therefore, ¢; is continuous on X. O

This result can easily be improved when v is bounded as follows:

Proposition 4.5 (Control on the vector field). Assume that qo and T are Lipschitz con-
tinuous and that t — vy 1s uniformly bounded. Then for any x € X, we have

sup |q:(z) — qi(y)|ga = Oldx(z,y)).
t€[0,1]

Proof. Consider the previous proof. Equation (3.73) becomes here

™(y) ™(y)
[ ta@lsads < [ clulv(lalo + 1) ds
7() 7(2)

< c(lgloe + Dlvlool7(2) = 7() R ,

leading to

19:(y) = ¢1(@)ra < (l90(y) = @o(2)|ra + c(lgloc + D[v]oo|T(z) = T(Y)|r) exp (c|v]1) -

This upper bound does not depend on ¢ and is a O(dx (z,y)). O

We can be more precise on the spatial regularity of ¢ without additional condition on
v. Further exploiting the integrability of v requires again the notion of Bochner-Lebesgue
point (see Definition 4.3). Theorem 4.3 says that almost any point of an integrable function
is a Bochner-Lesbesgue point. This implies some regularity on the time-varying vector
fields of L1([0,1],V). The next proposition enlightens the role of v:

Proposition 4.6. Consider v € L%/ and ¢ = ®(qo,v) where qo € Cp(X,RY). Any Bochner-
Lebesgue points of v is a Bochner-Lebesgue point of (s — vs o qs) € L*([0,1],Cy(X,RY).

Proof. Consider t € [0, 1]. Since ¢ is continuous, ¢ is a Bochner-Lebesgue point of ¢. Now,
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under the (H{") conditions, there exists ¢ > 0 such that

/|vsoqs—vtoqt|oodss/|<vs—vt>oqs+(vtoqs—vtoqt)\oods
< c/\vs — vl (ldloe + 1) + [velvgs — oo ds.

Therefore, if ¢ is also a Bochner-Lebesgue point of v, then ¢ is a Bochner-Lebesgue point
of s — v 0 qs. ]

Consequently, the set of non Bochner-Lebesgue points of s +— v5 0 g5 is included in the
set of non Bochner-Lebesgue points of v.

Definition 4.6. Given v € L%/, define N C [0,1] the subset of non Bochner-Lebesgue
points of v and

={zreX|7(zx)e N}, (3.74)
the associated level lines of 7. Then if T is a submersion, N is a null subset of X .

Proposition 4.7. Assume that qo € Cy(X,R?) is ko-Lipschitz continuous and that T €
CY(X,[0,1]) is a submersion (meaning that dr(z) is surjective for any x € X ). For any
r € X \ N, we have under the (H\") conditions

sup |qi(z) — q(y)|pe = Oldx (z,y)).

t€[0,1]
This property holds thus for the points x of almost any level lines of T and these level lines
correspond to the Bochner-Lebesgue points of v.

Proof. Consider any = € X \ N and any ¢ € [0,1]. For any y € X, denote A(y) =
- fT(y X\tt vs(gs(x)) ds. We have as before

t

19:(y) = 41(2)|ga < 190(y) = q0(2)|ga + [A(Y)[re +/ [0s(45(¥)) — vs(gs(2))|pa ds

T(y)At
< kodx (4, 2) + |A(y) [ga + / ) @@ ads. 79

We still intend to apply the Gronwall’s lemma but this time we need to be more accurate
on the upper bound on A(y). Moreover, the next lemma will actually be useful in the
next proposition.

Lemma 4.5. Ifx € X \ N

Proof. We have

|A®y) + (7(y) = 7(2)vr(a) (@r @) (@) | ga <




Since € X \ WV, 7(x) is a Bochner-Lebesque point for (s — vs0qs) € L'([0,1],Cy(X,R%))
and since h — h(z) is a smooth mapping from Cp(X,R) to R we get the result.
O

From this lemma, we deduce that since 7 is C*

|A(y)| = O(7(y) — 7(x)) = O(dx(z,y)) -

Now, using Gronwall’s lemma on equation (3.75) we get

:(y) — qi () |ga < (kodx (y,2) + |A(y)|ra) exp(clv]r) .

At last, note that the rate of convergence of |A(y)| depends only on the regularity of 7
and s — vs 0 g5 at the point . Hence, it does not depend on ¢ and

sup [qi(y) — @ (z)|ga = O(dx(z,9)) -
te(0,1]

O]

Proposition 4.8 (Differentiability of the solution). Assume that qo € CH(X,R%) and
T € CY(X,[0,1]) is a submersion. Assume the (H{) conditions.
(i) For any t € [0, 1],

— the restriction of q; to the subset Xf = {x € X | 7(z) >t} is of class C' and we have
there dgi(z) = dqo(x)

— for any x € X \ N such that 7(x) < t, ¢ : X — R? is differentiable at x and dg;(x)
1s the solution at time t of the integral equation

t

Li(x) = dgo(2) — vr(2)(4r(a)(2))dT(2) + / " dvs(gs(x)) o Ls(x) ds (3.76)

defined on [0, 1].

(i) Moreover, if v is continuous, i.e. v € C([0,1],V), then for any t € [0,1], ¢: is of class
Cl on the two level sets {x € X |7(z) >t} and {z € X |7(x) < t}. At last, q1 belongs to
Cl(X,R%).

Proof. (i) Recall that for any ¢ € [0, 1], the restriction of ¢; to the subset {z € X | 7(z) > t}
is equal to qg, which gives the first point.

For any x € X and any s € [0,1], we have dgo(z) € L(T,X,R%), dr(z) € L(T,X,R)
so that v (¢r(x)(2))dT(7) € L(T: X, R?) and dvs(gs(z)) € L(R?,R?). The integral equa-
tion (3.76) is therefore well defined. Under the (H{") conditions, the existence and unique-
ness of a solution L(z) € C([0,1], £(T,X,RY)) results from the linear Cauchy-Lipschitz
theorem given in Corollary 4.2.

Now, for any smooth path = € C(xg;0x0) centered on xy € X and of direction dz( €
T2, X (see Definition 4.5), there exist g, dzp € R* and a parameterization p : U C RF — X
such that © = ¢(Z) where for any € € [—1, 1], Z. = 2 + €02y and thus dxg = dy(z0) - 0Z0.
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Define for any € # 0, My = ’M — Ly(zo) -53:0’Rd. The aim is thus to show
that if 29 € X \ NV then for any ¢t > 7(z), Mf tends to 0 when € tends to 0. We have

Me < |0E) =000 p o
€ R?
(@) yy(qs(z
+ / vs(as(20)) ;o dr(20) - 0207 (z0) (¢r(z) (%0))
7(z0) € ®

T(ze)
+ / dvs(gs(xo)) - Ls(xg) - dxo ds
7(z0)

R4

s [ elaled) Z el g, (g, 1)) -1 (a0) 520

(we) €

Rd

Let us note 17, T, T5, and T} these four terms. We have then

qo(we) — qo(zo)

Tf =
! €

— dqo(xo)

Rd

Since 2o ¢ N, Lemma 4.5 says that 75 = o(1). Moreover, under the (H}) conditions,
there exists ¢ > 0 such that

1
Tgf S C/O ]1[7(10)77(16)]|US|V|L|00 ds.

The dominated convergence theorem ensures that for any sequence (€,,)nen converging to
0, T5"™ tends also to 0 and thus T tends to 0 when e tends to 0. At last, we will bound
the last term in order to apply the Gronwall’s lemma to the whole expression.

t

t
1
T; < / ’dsvs(qs(xo))’ong ds + / HR; ds
T(IG) T(me)

where

RS = ‘”s(qé’(xe» —5(gs(w0)) — dvs(gs(x0)) - (gs(ze) — qS(xO))‘Rd .

Denote for any r,s € [0,1], ys'° = gs(wo) + r(gs(xe) — gs(xo)) and consider the function
gs : [0,1] = R? defined by g,(r) = vs(ys) — vs(gs(z0)). One can then write that

1

1
00(s(2%)) — va(gs(0)) = (1) — ga(0) = /0 gl(r) dr = /O dos(7) - (as(e) — ga(0)) dr

and

RS =

S

1
/0 (dea() — dva(gs(0))) - (g5(x20) — ga(z0)) dr

B

1
< / |dvs(y) — dvs(Qs(xO))’Op |95 () — qs(w0) | ga dr -
0

Since for any r € [0,1] and any s € [0, 1], ys° tends to gs(x¢) when € tends to 0 and since
dvg is continuous, the integrand tends to 0. Moreover, according to Proposition 4.7, there
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exists m > 0 such that w < m is bounded. Then under the (H}) conditions,

€ qs\Te) — Gs\T
|d1}s(y ’ ) - d?)s(qs(vxo))’op’ ( >|€| ( 0)| S 20m|1}3‘v .

Hence, the dominated convergence theorem ensures that for any s € [0, 1], % tends to 0
when € tends to 0. Note also that since m does not depend on s, the same theorem ensures

that .
/ &ds—ﬂ).
0

|6| e—0
In fine, the Gronwall’s lemma allows to write

t 1 t
Mi <o)+ [ Rtds [ fdowslao) M5 ds

T(xe) ‘6‘ T(xe)

1 1 t
§0(1)—|—/ R;ds+/ |dgvs(qs ()| ME ds
0 0

el

< <0(1) +/01 |i|R§ ds) exp(clv]r) .

This proves the second point of (7).

(#4) If v is continuous, N is empty, and qt’ is differentiable every where. At last, we
<t

can show that for any t € [0, 1], L; is continuous on X;. Note that by construction, for
any € X, t — Ly(x) is continuous so that

|L(z)|oo = sup |Li(x)|ge < 00.
te(0,1]

The two first terms of L; are continuous in space. Let be x € X; and y in a neighborhood

U C X; of x. We have

‘Lt@/) - Lt(x)‘op < |dQO(y) - d%(@\op + ‘%’(y)(qf(y) (y))dT(y) = Ur(z) <QT(x)($))dT(x)‘op

T(y)
4 / (0@ 0 Loy s

+ / d0a(45()) 0 La(z) — dva(gs(4)) © La(®)lop ds.
T(y)

By continuity in space of dqg, 7 and d7, and continuity in space and time of ¢ and v,

El(y) = |dQO(y) - dQO(x”Op + |UT(y) (qT(y) (y))dT(y) — Ur(x) (QT(x) (ZL‘))dT(l‘)|0p tends to 0 when
y tends to x.

Under the (H{") conditions there exists thus ¢ > 0 such that

T(y)

7(y) 7(y)
ex(y) = / 1dvs(s(2)) © L(@)]op ds < / lvaly | Ls ()| op ds < / ellvIL@)o s,

() T(T (x

so that e3(y) tends to 0 when y tends to z. Likewise, the constant ¢ also satisfies for any

144



yelU

/ (0o L) — dus(as) © Lo
T\Y

< / 0@ 0 (L4(2) = o) by s

+ / |dvy(gs(2)) © L (y) — dvs(gs()) 0 Lo(y)|op ds
7(y)

t t
< /  ellvILa(e) Lo s + /  ellvlan(s) ~ @ )o s
T\Y T\Y

Using the Cauchy-Schwartz inequality and Proposition 4.7, we deduce that

es(y) = / ey (6) — 0ol L) s
T\Y

tends to 0 when y tends to x. Putting every piece together, the Gronwall’s lemma says
that

[ Le(y) = Li()]op < €(y) exp(efvfr),
where €(y) = €1(y) + €2(y) + €3(y) which ends the proof. O

Remark 4.2. For any t €]0,1], the level line Xy = {z € X |[7(x) = t} is the critical
boundary of points starting to move at time t. The previous proof could be adapted to show
that the shape has there two tangent spaces given by:
1. dqo(z) for the set of stationary points (when Xy is seen as the extension of {z €
X|7(x) >1t})
2. dqo(7) — Vr(2)(qr () (7)) VdT () for the active points (when Xy is seen as the exten-
sion of {x € X |7(x) <t} and when t is a Bochner-Lebesgue point of v).
See Figure 3.7.

Remark 4.3. Ifz € C(xo;0x0) is a path included in a level line of T, ie. for anye € [—1,1],
T(ze) = 7(x0), then dr(xp) - dxg = 0 and we retrieve a standard behavior of the LDDMM
setting:

qr(we) — (o) = dgi(x) - 0o + O([e])

= (dQO(fE) +

t

. dvs(qs(z)) o dgs(x) ds) -0z + O(le]) .

In conclusion, we saw that the spatial regularity of the solution results from the tem-
poral regularity of the vector field. If v has a discontinuity at time ¢y €]0, 1[, the regularity
of the shape will suffer on the whole level line Xy;y from time ¢y and this accident will
remain throughout the end of the evolution (on the time interval ]to, 1]).

Remark 4.4 (Non injective mapping). The injectivity of q has never been requested. Note
that we saw in the proof of Proposition 4.4, that there exists M > 0 such that

0:(y) — ae(@)ls < M (lao(y) — ao(@)lge + I7() = 7(w)|2) .
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Therefore, if two points x and y appear at the same time (i.e. belong to the same layer
X{t)) and at the same place, then T(x) = 7(y) and qo(v) = qo(y) and at all time t € [0, 1],

() = q(y).

However, if they appear at the same place but at different times 7(z) # 7(y), they can
evolve independently. If T(x) < 7(y), then at time 7(x), q(x) starts to leave the birth
place qo(x) = qo(y) but q:(y) remains still. Hence, at time 7(y) when q(y) starts to move,
qt(x) and q(y) have no reason to be equal and from this time they are carried by the flow

together and will never meet again.

5 Reduced Hamiltonian system properties
We assume hereafter that the dynamic of the model is given by an operator
€:Bx|[0,1] - L(V,B)
instead of a more general function f (see Section 1.4), i.e. we have formally

Gt = &gy t(vt) -
The Hamiltonian function is then given by

H:BxB*xVx|[0,1] — R
((Lp: v, t) — (p ’ g(q,t) (’U)) - C(’U, t) :

Let us recall that we defined in Section 3.4, under the names of adapted norm setup
and nondegenerate adapted norm setup, two sets of cost functions of the common
type

1
C(v,t) = 5(1},&1})‘/.

5.1 Compatible spaces

In the next section, we will prove the local existence and uniqueness of solutions to
the reduced Hamiltonian system introduced in Section 2.4. This system is defined on the
product space B x B* by

Qt aagT (Qtv Dt t)
pt - 681—£T (qt)pta t)

However, we would like to establish the existence and the uniqueness of its solutions on a
smaller space product that we will note By x Bj.

Example 5.1. When we consider B = LOO(X,Rd), we would like to constrain the mo-
menta in a space smaller than B*. For example, we would like to keep By = B =
L®(X,RY) but to define a new space By = LY(X,R%) and study the solutions of the

reduced Hamiltonian system in the subspace
By x B} = L%®(X,R%) x L®(X,R%)
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of B x B*.

In order to ensure that the system is well defined and stable on the smaller space
By x Bj, we introduce a notion of compatibility.

Definition 5.1. Let B, By and B be three Banach spaces. We say that (Bg, By) is
compatible with B if

i1

B — B

10

By

with ig and i1 two continuous linear embeddings such that the image i1(B) is dense in By.
Moreover, we say that (By, B1) is compatible with the system (B,V,€) if (By, By) is
compatible with B and if there exist two functions

¢Y: By x [0,1] = L(V, By),

¢l By x[0,1] = L(V, By),

such that at any time t € [0,1], & odg = ig 0 &) and £} oiy = i1 0&.

Proposition 5.1. Let be B, By and B; three Banach spaces such that (By, By) is com-

patible with B. Then there exists a continuous linear embedding

i
B < B*.
Proof. This is a consequence of a well known result. Let £ and F be two Banach spaces
and ¢ : E — F a continuous linear mapping. Let us introduce ¢* : F* — E* f — foi.
For any f € F™, i*(f) = f o4 is continuous and [i*(f)|g~ < |f|p+|ilz(p,F) so that i is
also a continuous linear map. Assume now that i(E) is dense in F. Let be f € F*,
if *(f) = foi =0, then f = fli(g) is null on the dense subset i(FE) of F. Since f is
continuous on F', we get that f = 0. O

In the following, up to the embedding iy and 7; we will consider that By C B C B;
and consider ¢! as an extension of £ on B! and £€° as the restriction of ¢ to By. Likewise,
up to the embedding ¢ we will consider B} as a subset of B*.

We will consider throughout this section the previously introduced conditions

(i) & € CY(B, L(V, B) for any t € [0,1].
(7i) There exists ¢ > 0 such that

1€(q, V)| v,By < cllglp + 1) and |0,6(q, )| (B c(v,B)) < C
for any (¢,t) € B x [0,1].

(H?)

The introduction of compatible spaces (By, B1) calls yet for an additional set of conditions
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defined as follows:

(i) ¢ — €'(q,t) is Gateaux-differentiable at any location (q,t) € By x [0, 1]
and its differential denoted 9,£'(g,t) belongs to £(B1, L(V, By)).

(71) There exists qp € By such that

) sup (1€°(q0: )| £(v.By) + 106" (90: ) (B1.£(v,By)) < 00
Bo,B1

(#11) There exists ¢ > 0 such that
{ ‘§O(Q7 t) - §O<q/7 t)‘ﬁ(V,Bo) S C|q - q/’Bov

046" (q,) — 3q§1(q/775)|ﬁ(31,c(v,31)) <clg—4q'|,,
for any ¢,¢' € By and ¢t € [0,1].

Lemma 5.1. The (Hf) and (Hgo B,) conditions imply the following properties. There
exists ¢ > 0 such that for any q,0q € By, any p € BY, any (t,v) € [0,1] x V, we have

(P1) [€%q,t)l2v,Bo) < c(lals, +1),

(Py)  1€%(q, )" - plv+ < c(lalB, + 1)Ipls:

(P3) 105" (0, 0)|c(By,c(vpyy < cllals, + 1),

(P) 046" (q:1) - 0qlqv.y) < cldals,(lal, + 1),

(P5)  (0g&(q)(v))" - = (94" (q,1)(v))* - p € By,

(Ps) 1(&%g,t) = €%(d, )" - plv+ < clplBslg — ¢'| 3,

(Pr) (046" (q,) — 046" (d,1)) - 0aleqvpyy < clbalByla — I, -

Proof. These properties will be used in the proof of Proposition 5.3 and 5.4. (P;) and
(Ps) result directly from <H1£Bo,Bl)' Then, for any ¢ € By, £%(q,t) € L(V, By) so that
€%q,t)* € L(Bg,V*) and since Bj is continuously embedded in B, we deduce (P%) from
(P1). Since B is continuously embedded in Bj, we deduce likewise (Py) from (Ps).

Since B is continuously embedded in By, for any t € [0,1], & and & have the same
Gateaux-derivatives at any location ¢ € By C B in any direction dq € B C By, i.e.

0 (q,r) 00 = 04" (a,1) - 0. (3.77)

It follows that y§(4¢) : B — L(V, By) is continuous when B is equipped with the norm of
B and since B is dense in Bj, it can be continuously extended and by uniqueness, this
extension is equal to 9,6 (¢, t). Hence, for any v € V, since 9,1 (¢, t)(v)* € L(B}) and we
have for any p € BY,

(Og(qy(v))" - p = (0g€" (a,)(v))" - p € By .

At last, we have with (H]%O B,) (@), Bf — Bf that induces (Fs) and By — Bj that
induces (Py). O
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5.2 Local analysis of the reduced Hamiltonian system

In order to apply the Cauchy-Lipchitz Theorem 4.1, we need to establish some regu-
larity of the reduced Hamiltonian.

Proposition 5.2. Let E, F and G be three Banach spaces. Let be r > 0, we note B(0,r)
the ball of E of radius r. Let be f : B(0,r) — F and g : B(0,r) — G two functions. Let
b: F x G — H be a continuous bilinear function. Assume that f and g are both bounded
and Lipschitz continuous and note my, my, ky and ky four respective upper bounds of f,
g and of their Lipschitz constants.

Then there exists ¢, > 0 such that B(0,r) 3 z +— b(f(x),g(x)) is Lipschitz continous
and the Lipschitz constant is bounded by cp(m kg + mgky).

Proof. Since b is continuous, there exists ¢; > 0 such that for any (X,Y) € F x G
(X, Y)|r < el X|F]Y]c.

Then for any z, 2’ € B(0,r), we have

[b(f(x), 9(x)) = b(f(2'), g(&")| < b(f(2), 9(x) — g(a)) + b(f (2) — f(a"), 9(a"))]
< ol f(@)llg(x) — g(@) + el f(z) = f(2)]lg(2)]

< cp(mykg +mgky)|lz — 2'| .

Let us introduce a new class of functions.

Definition 5.2. We define Lip'. .(E x [0,1], F) the set of applications g such that

unif
— for almost every t € [0,1], g := g(+,t) is locally Lipschitz continuous,

— for any r > 0, if we note ki the Lipschitz constant of g, on the ball B(0,r) (defined
a.e.), then t — ki is bounded on [0, 1].

We recall that we introduced the class Lip i;’ﬁ in Definition 4.1. The only difference
between these two classes lies on the properties of the Lipschitz constant k] (integrable or

uniformly bounded) .

Proposition 5.3. Let (By, B1) be two Banach spaces compatible with the system
(B,V,€). Assume that w : By x B x [0,1] — V is a function of class Lip'%. For
any r > 0 and almost any t € [0,1], assume that w; is locally bounded and note mj its
supremum on the ball B(0,r). Then under the (HEO,BI) and (Hf) conditions, if t — mj

1s integrable, the function
h" : By x Bf x [0,1] — By x B}

f(q,t) (w(q7p7t)) (378)
(¢:p,t) +—

_(6q€(q,t))(w(Q7pa t))* P
loc

is of class Lip 25(Bo x Bf x [0,1], By x BY) (with |(q,p)|Byx5: = lalB, + plB:) -
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Proof. The proof results from the regulariy of £ and Proposition 5.2.

We start our proof by checking that h"(q,p,t) € By x B for any (¢,p,t) € By %
Bj x [0,1]. Since By and Bj are compatible with (B, V,§), we have for any (q,t,v) €
By x [0,1] x V,

£(g,t)(v) = €%(g,t) € Bo

and the first component of A" is in By. Lemma 5.1 (P5) ensures then that for any
(q,p) € Bo x B} and any v € V, we have (9,£(q,t)(v))* - p = (0,¢*(q,t)(v))* - p € B} so0
that A" is thus well defined.

Note ¢ > 0 the constant given by the (H f%’ B,) conditions and kf the Lipschitz constant
of w; on the ball B(0,7). Now, let E and F' be two Banach spaces. The bilinear function
b: L(E,F)x E— F, (L,z) — L(x) is continuous and satisfies for any L € L(E, F') and
any © € F,

b(L,2) - < | Lloplals

The bilinear function b* : L(E, F) x F* — E*, (L,z) — L*(z) is continuous and satisfies
for any L € L(E,F) and any z € F*, any y € E,

(0" (L, ) [9)] = [(L*(2) [9)| = [(= | L()] < [Lloplylelz]r-

so that
0" (L, z)

Ex < |L|0p|93|F*-

To prove the proposition, we will use repeatedly the previous result.

Let us first consider the regularity of the first component of h*. For any t € [0, 1] and
any r > 0, define the functions f;(q,p) = &%(¢,t) and g:(q,p) = w(q, p,t) on B(0,r) the
ball of By x Bf. Then g¢; takes values in V and f; takes values in £(V, By). Moreover,
we deduce from Lemma 5.1 (P;) that f; and g; satisfy the conditions of Proposition 5.2
and with the notation of the proposition we have my < ¢(r + 1), ky < ¢, mg < mj and
kg < ki. Therefore, the first component of hy’ is equal to b(f:(q,p), g:(¢,p)), is Lipschitz
continuous on B(0,7) and the Lipschitz constant satisfies

khw, < mygkg +mgky < c(r + 1)ki + mjc.

We turn now to the regularity of the second component of h". For any t € [0,1] and any
7 > 0, define the functions fi(q,p) = 9,&*(g,t) and g+(q,p) = w(g, p,t) on B(0,r) the ball
of By x Bj. Then g; takes values in V and f; takes values in £(V,L(B)). Moreover,
we deduce from Lemma 5.1 (P3) that f; and g; satisfy the conditions of Proposition 5.2
and with the notation of the proposition we have m; < ¢(r + 1), ky < ¢, my < mj and

kg < ki. Therefore, the function (¢,p) — (9,¢'(¢,1))(w(q,p,t)) = b(fi(q,p), ge(q,p)) is
Lipschitz continuous on B(0,r) and the Lipschitz constant satisfies

kﬁalfway < mfkg + mgkf < C(?’ + 1)1{7: + m;c :

To end the proof, let us define, for any t € [0,1] and any r > 0, the functions f;(q,p) =
046 (g,t)(w(gq,p,t)) and g¢(q,p) = p on B(0,7) the ball of By x B}. Then g; takes values
in B} and f; takes values in £(B;). Moreover, from the previous point, f; and g; satisfy
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the conditions of Proposition 5.2 and with the notation of the proposition we have m; <
c(r+1)ymyg, ky < c(r + 1)ki + mjc, mg <r and ky < 1. Therefore, the second component
of hy is equal to b*(f(q,p), 9:(¢,p)), is Lipschitz continuous on B(0,r) and the Lipschitz
constant satisfies

khy, < mypkg 4+ mgky < c(r+1)mi +r(c(r + 1)ki +mjc)

<c(2r+ 1)my +cr(r+ 1)k; .
Recall at last that ¢ — m] + kJ is integrable. Hence, h¥ is of class Lip!%(By x B} x
[0,1] — V). Indeed, on any ball of radius r > 0, its Lipschitz constant is bounded by
2¢(r + 1)my + ¢(r + 1)?k} and is thus integrable on [0, 1]. O

In the previous proposition, w plays the role of the optimal vector field v*. This last
one is built on the momentum map. Its regularity depends thus on the regularity of the
momentum map. In the following, we will note the momentum map J instead of J;. Let
us recall that it is defined for any (¢, p,t) € B x B* x [0, 1] by

j(q;pvt) = gqu,t) “p.

We note now J; = J(-,-,t). The next proposition gives some regularity properties of
the momentum map and will allow to use hereafter Proposition 5.3.

Proposition 5.4. Let (By, B1) be two Banach spaces compatible with the system (B, V,£).
The momentum map can be defined on By x Bf x[0,1]. Then under the (Hf) and (H%mBl)
conditions, for any t € [0,1], J; belongs to C*(By x Bf,V*). Moreover, J; and dJ,
are locally bounded on By x BY, uniformly with respect to t. Therefore, J belongs to
Liplee :(Bo x Bf x [0,1],V*).
Proof. Under the condition H 15, the momentum map is defined on B x B* so that we can
consider its restriction on By x Bf C B x B*. The most challenging part is to check that
this restriction is C! for the topology induced by associated norm on By x Bj. The proof
lies on the properties established in Lemma 5.1.

To prove this, it is sufficient to check that there exists A; € C(By x By, L(Bo x B}, V™))
such that for any direction (d¢, dp) € By x B} we have in V*

(Ji(q + €bg,p + €dp) = Ti(q,p)) /¢ —; Au(a;p) - (¢, 0p) (3.79)
Consider
Ai(q,p) - (0q,0p) = (0g&(q,t) - 0q)" - p+&(q,t)" - op.

Property (P) and (Py) of Lemma 5.1 ensure that there exists ¢ > 0 such that we have for
any (qapvt) € By x BT x [07 1] and any (5Q75p) € By x Bika

|A¢(q, p) - (9q,0p) v+ < clpl:1dq|By(lalBo + 1) + c|op|B: (lg|By + 1) . (3.80)

We have therefore A;(q,p) € L(Boy x B, V).
Let us check now that (¢,p) — A:(g,p) is continuous on By x Bi. For any (¢/,p’) €
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By x B, and any (dq,dp) € By x B} we have

[(Ae(q', ") = Au(q, p)) - (9q,p)|v+
= [(94(d',1) - 0q)" - ' — (04€(q,t) - 6q)" - p+ (£(d, 1) — (g, 1)) - Oplv-
< (0gEM(d' 1) — 04" (a,1)) - 04l covB) P | B
+104€"(0,) - 8alcvmn P — plBr + (€, 1) — &(q, )" - 5plv~

We have thus from (P7), (Ps) and (Fg) that there exists a constant ¢ > 0, that does not
depend on the variables, such that

’(At(qlap/)_At(Q7p)) : ((Sqa 5p)’V*
< c(lp'|:1d" — alBy1ddl B, + | — plB: 104l By (1901 By + 1) + [P B:ld" — alB,) -

This upper bound tends to 0 when (¢, p’) tends to (g,p) so that we get A; € C(By X
B:, L(Bo x B, V¥)).
The last thing to prove is equation (3.79). We have

(T (q+ €dq,p+ edp,t) — T (q,p,1)) /e — Alg,p) - (64, p)|y,
(51 (q + 6(5Q7 t) - 51 (Q7 t))/é - aqgl(q’ t) : 6q’£(V,B1)
+ [ (6(q + €dq,t) — &gn)” - Op

< |pls;

Ve

From (FPs) we deduce that the last term tends to 0 when e tends to 0 and since from
(ngO B,) We know that ¢ — €!(q,t) is Gateaux differentiable at any location ¢ € By we
get the result.

At this point, we have proved that J; : ((¢,p) — J(q,p,t)) € C*(By x B},V*) and
that for any (¢,p,t) € By x B x [0,1] and any (d¢,dp) € By x B

dJ1(q,p) - (69,0p) = &l sy - 00 + (0g(qy - 00)” - p-

Moreover, we get from (P,) and (3.80) that there exists ¢ > 0 such that for any
(g,p,t) € By x B} x [0,1],

\Te(a,p)lv+ = 10,0 - Plv+ < c(lalB, + L)lpls;

and

1dT: (¢, )| (Box By < cllalB, + 1)(Ipls; +1).

The next theorem finally proves the local existence and uniqueness of the solutions
when the Hamiltonian is defined with the cost function of the adapted norm setup

1
C(v,t) = 5(1}, L)y .
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The core of the proof lies on the more general Proposition 5.3.

Theorem 5.1 (Local existence and uniqueness of the solutions to the reduced Hamiltonian
system). Let us consider the adapted norm setup. Let (By, B1) be two Banach spaces
compatible with the system (B,V,§). Assume the (Hf) and (I—If_-),0 B,) conditions. Then
we have:

1. The momentum map J belongs to Lip!° .(By x Bf x [0,1],V*) and J; is locally

unif
bounded on By x By. Note mj its supremum and kj its Lipschitz constant on the

ball B(0,7) of By x Bj.
2. Assume that for any r > 0, the function t — |€;'|(m} + kJ) belongs to L'([0,1],R).

Then for any r > 0, there exists € > 0 such that the Cauchy problem associated to
the reduced Hamiltonian system for any initial condition (qo, po) € B(0,7) in By x B}
and to € [0, 1] has a unique solution on the interval [to,to+ €] N[0, 1]. Moreover, this
solution stays in By x Bj.

Proof. In the adapted norm setup, the optimal vector field is given by the function
v (q,p,t) = £, ' KT (q,p, 1)

The assumption of 2) allows to verify that v* satisfies the conditions of Proposition 5.3
in order to apply the Cauchy-Lipschitz Theorem 4.1. Note h the reduced Hamiltonian

system:
Qt 86[—1[; (qta Dt t) (S(Qt,t) (U:)
h(qtapta t) = = =
Dt —837[ (at,pt,t) —(0g&(a)(vF))™ - e

The compatibility assumption and Proposition 5.1 ensure that there exists a continuous

linear embedding
By x B] — B x B* (3.81)

and implies that the system can be defined on By x B} and is stable. We have thus By x B}
a Banach space and h : By x B} x [0,1] — By x B} a measurable function.

The second condition of the Cauchy-Lipschitz Theorem 4.1 is satisfied for the point
(¢,p) = (0,0). We have indeed for almost any ¢t € [0, 1], 853 (0,0,¢t) = 0 and since J is
linear with respect to p, v*(0,0,t) = 0 so that agf (0,0,t) = 0.

Now, Proposition 5.4 says that J € Lip ffrfif(Bo x B x[0,1],V*) and that J; is locally
bounded. Therefore, since for any ¢ €]0,1], ¢, !is linear and continuous, v} is also locally

bounded and locally Lipschitz continuous. Indeed, for any r > 0, the supremum and the
Lipschitz constant of v} restricted to the ball B(0,r) are respectively bounded by |£;*|m]
and |[¢,'|k}. The assumption ¢ — |¢;|(m} + k}) € L*([0,1],R) implies thus that v* is
at least of class Lip i‘;ﬁ Proposition 5.3 says then that A belongs to Lip ﬁ%i(Bo X B X

[0,1], By x B). The Cauchy-Lipschitz theorem can thus be applied. O

Corollary 5.1. Let us consider the nondegenerate adapted norm setup. Then for any
set (Bo, B1) compatible with the system (B,V,&) and that satisfies the (Hf) anal(Hj%0 B,)
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conditions, there exists a unique mazximal solution to the Cauchy problem associated to the
reduced Hamiltonian system for any initial condition (qo,po) € Bo x Bj. This solutions
stays in By x BJ.

Proof. The assumption of point 2) of the previous theorem is always satisfied in the non-
degenerate adapted norm setup. Indeed, t — ¢; ' is bounded on [0, 1] (see Proposi-
tion 3.5). Moreover, with the notation of the theorem, Proposition 5.4 says that for any
t € [0,1] and any r > 0, m} and k] are bounded uniformly with respect to time. Hence,
for any r > 0, t — [£;1|(m} + k7) belongs to L'([0,1],R). O

5.3 Applications with the growth dynamic

Let us recall that the operator £ : B x [0,1] — L(V,B) induced by the growth
dynamic is formally given by

g(q,t) (’U) = (.T = ﬂ‘r(x)gtv(q(x))) . (382)

The next three configurations are defined with the growth dynamic and under the (H}")
conditions. Theorem 5.1 and its Corollary 5.1 will allow us to show in each case the local

existence and uniqueness of solutions to the reduced Hamiltonian system.

Discrete coordinate space

The case of discrete shapes calls for the nondegenerate adapted norm setup and is thus
cover by Corollary 5.1. We have B = B* = (R%)* and there is in general no reason to
work with any particular subspaces By or BJ.

Shapes with initial boundary

Consider the situation where X is a compact submanifold and ¢ : X — R% The
choice of B depends then on the attachment term. For example, if the derivation of
the attachment term leads to a momentum that can be represented by an element of
L>™(X,R%), the natural configuration is to define

By = B = L®(X,R%),
By = LY(X,R%).

We saw in Section 3.2 that the current attachment term leads to a situation a bit more
complex. Let us recall the B space introduced in Definition 3.1.

Example 5.2 (Tube Case). We defined a measure p on X and we recall that for any
Borel set A C X, we have
p(A) = HF(A) + H (AN oX).

LZO(X, RY) is the space of functions from X to R? defined p-almost everywhere and
bounded, quotiented by the space of null functions.

To avoid any confusion, we will note here L7, (X, R%) the usual L= (X,R%) associated
to the Hausdorff measure. When a class of function of L3y, (X,R%) is defined HF-almost
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everywhere on X, a class of function of L7 (X, RY) is defined H*-almost everywhere on

X and H* -almost everywhere on 0X. We introduce then

_ 100 d
B = LY(X,R%),
By = B,

By = L,(X,RY).

Proposition 5.5. Let be B = L7°(X, RY). If ¢ is given by the growth dynamic then
under the (HY") conditions, the couple (Bo, B1) introduced in the Ezample 5.2 with

By =B,
By = L,(X,RY,

is compatible with the system (B,V,&) and the (H]go B,) conditions are satisfied.

Proof. We note |q|oo . the essential supremum with respect to p. (L (X, R%), | - loo,u) 18
a Banach space. Let us show now that (By, By) is compatible with B. We have trivially
By = B < B; with B dense in By. Therefore, (By, B;) is compatible with B.

Under the (H{") conditions, there exists ¢ > 0 such that for any ¢ € B, any t € [0, 1]
and any v € V
[€(0) (V)] B < clvlv (ldloc,u +1) < elolv(lalp +1).

Consequently, ¢ : B x [0,1] — L(V, B).
Moreover, we can extend & to By. For any ¢ € B!, any t € [0,1] and any v € V by

& (q)(v) = l<tvog. (3.83)

We have then likely with the same constant ¢ > 0 that for any ¢ € By, any ¢ € [0, 1] and
any v € V

&:(@)(0) B, < clolv (lalB, + 1(X) -

Consequently, ¢! @ By x [0,1] — L£(V,B;) and (By, By) is compatible with the system
(B, V).
Let us check now that ¢! is Gateaux differentiable as a function with values in £(V, By)

at any location ¢ € By (and not only at location ¢ € By) . Indeed, we have for any ¢ € Bj,
dge Biandv eV

1
(€' (g + €dq,t)(v) — €' (q,1)(v)) /e — Lr<i dv(q) - 6q| B, S/O |dv(q + sedq) — dv(q)) - 6q|B,ds
< / eloly (2 A €l6g(z) [ga)l0a(@)gadu(z)
X

where we denote aAb = min(a, b). We get indeed from HY that |dv(z)—dv(y)| < clv|y|z—
y| and |dv(z) — dv(y)| < |dv(z)| + |dv(y)| < 2c|v|y. Using the dominated convergence
theorem, we get that [ ¢(2 A €|dq(z)|)|6g(x)|du(z) — 0 as € — 0 and 94& (g, t)(v) - 6q =
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1,<¢dv(q) - 6q for which we have

|1,<;dv(q) - 6q|B, < clv|v|dg|B, .

so that
048" (¢ 1) € L(B1, L(V, Br)) with [04€" (a, )| £(51,£(v,81)) < €

At last, for any ¢,¢’ € By, any dq € By, any t € [0,1] and any v € V

(€)= &) ) Bo < clvlvlg — ¢,
(B4t (@) = 84t () (v) - 8a| 5, < elvlvla — ¢'Bo1dd| B, -

Therefore, the (Héo p,) conditions are satisfied. O

Remark 5.1. An important point to note here is that even if 8q§1(q,t) is defined for any
q € By as an element of L(B1, L(V, By)) from directional derivative, the continuity is only
on By for the topology of Bo. In particular, £'(.,t) is not C' on By so that Hf cannot be
verified for B = Bj.

In fine, since B; can be identified with L%—tk (X,RY) x L%{k,l(ﬁX, RY), we get that

B} = LY (X, RY) ~ L (X, RY) x L1 (0X, R9Y) and we have as wanted

By = LY (X, RY) = By,

and for any dq € By and any p € By, the action of p on dq is given by

(v]6q) = /X (p(2), 64(2))ga dis(z)

and is well defined.

This configuration calls again for the nondegenerate adapted norm setup and the local
existence and uniqueness of the solutions of the reduced Hamiltonian system in By x B}
are given by Corollary 5.1.

Horns represented by currents

The horns with the current attachment term are a specific case of the previous configu-
ration. As we said in Section 3.3, the image of the first layer {0} x X is reduced to a point.
This implies that the boundary component of the momentum (of an optimal solution) is
null on this set. A class of function of L7°(X, R9) is defined H*~!-almost everywhere on
{0} x Xp. This allows to consider the following setup.

Definition 5.3 (Horn setup). We call the horn setup the following configuration.

Consider B = L?(X, RY) where X = [0,1] x Xo, 0Xo = 0, T is the projection on the
first coordinate and & given by the growth dynamic. The shapes are actually modeled by
the elements of

By={qe B|3ycR? q0,)=y H  -a.e. on Xo}. (3.84)
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We consider By = L}L(X, RY) and the following subspace
Bi ={pe LP(X,RY | p(x) =0 H 1 ae. on 0X } ~ L2 (X, RY) (3.85)
of Bf = L*(X,R%).

Remark 5.2. Note that the more natural condition on the momenta would be p(x) =
0 HE1-a.e. on Xy but since 0X = XoU X1 and since the momenta associated to X, play
no role in the evolution of the shape, we consider this subspace B} to simplify the notation.

Proposition 5.6. Consider the horn setup. Under the (H}) conditions, (Bo, B1) is
compatible with the system (B,V ) and the (Hj%,0 B,) conditions are satisfied.

Proof. We note |g|oo,, the essential supremum with respect to p. (B, ] |x,.) is a Banach
space. Let us show that (B, |- |c,u.) is @ Banach space. Let (¢, )n>0 be a Cauchy sequence
in By. The sequence converges to a function g in B. By definition, for any n > 0, there
exists y, € R? such that for g-almost every zo € Xo, ¢n(0,20) = %,,. The sequence (Yn)n>0
is a Cauchy sequence in R% and converges thus to y € R?. We have finally

’CI|{0}><X0 - y’oo,Hk*1 < ‘Q|{O}><X0 - yn‘oo,?—tk’l + [Yn — y|ra

< ‘q|{0}><X0 - an{O}xX0|oo,7.[k71 + |Yyn — Y|pa njo 0.

Therefore, H*=1({zo € Xo|q(0,20) # y}) = 0 so that q € By.
Since By is a closed subspace of B = LZO(X , Rd), stable for the growth dynamic, we

deduce immediately from Proposition 5.5 that (H%O ,) conditions hold.
O

Remark 5.3. Note in this last example that By is a strict closed subspace of B and
B ¢ Bi. Moreover, as mentioned previously, when consider the current data attachment
term, the momentum will be an element of B} with is also a strict closed subspace of B..

The interest of these specific momenta is to give a more explicit expression of the
momentum map. Its restriction to By x B} x [0, 1] is indeed given by

(Te(@rp,1) |0) = (0] €y () (3.86)
- /X (P(@), &gy (0) ()t dH () (3.87)

As seen in Section 3.3, this integral expression of the momentum map implies a degenerate
behavior at time 0 : the norm of the momentum map tends to 0 when ¢ tends to 0. To
counter this phenomenon, we use the cost function of the adapted norm setup with an
operator ¢ that also tends to 0 when ¢ tends to 0. The function giving the optimal vector
field

v*(Q7p7 t) = ft_lva(q,p’t) (3'88)

is not defined at time 0 and the norm of ¢, ! tends to +oo when ¢ tends to 0. We will thus
need to verify that v* still satisfies the conditions of Theorem 5.1.
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Proposition 5.7. Let us consider the combined adapted norm setup and horn setup.
Assume the (HY) conditions. Assume that there exist M > 0 and s € [0,2[ two constants

such that for any t €]0,1]
M

-1
16 op < 5 (3.89)
Then there exists a unique mazimal solution to the Cauchy problem associated to the
reduced Hamiltonian system for any initial condition (qo,po) € Bo x B}. This solutions
stays in By x B.

Proof. Proposition 5.6 says that (By, B;) is compatible with the system (B, V,¢) and
the (HS Bo.B,) conditions are satisfied.

Note also that for (g, p) € By X B 1,1 P = (048(q,t)(v))* - p then p € /B? Indeed, we
have p € B} and p(z) = 1.y <,dv(q(z))* - p(z) p-a.e. so that p(z) = 0 HF 1 a.e. on 0X
and p € Bvi‘ This implies that the reduced hamiltonian RV (see equation (3.78)) can be
restricted to h?" : By x B* x[0,1] — By X B* To complete the proof, we need to show that
this restriction belongs to Lip 1% ((By x B* x [0,1], By x B*) and use our Cauchy-Lipschitz
Theorem 4.1.

Proceeding as in the proof Theorem 5.1 it is sufficient to check that v* : By x E“ X

0,1] — V is a function of class Lip!°¢. We need to show for m} the supremum and % the
wnt t t

Lipschitz constant on the ball B(0,r) of By x Z?vi‘ of J; that the function t +— [£;(m] + k)
belongs to L([0,1],R) for any r > 0. The idea is to use the pointwise expression of the
momentum map to refine the results of Proposition 5.4. We deduce from equation (3.87)
and the decomposition of X that for any (q,p,t) € By X Bvi" x [0,1] and any v € V, the

momentum map is given by

a0 = [ [ oo olats, ) d N ads. 390
Xo
Let ¢ > 0 be the constant given by (H}). We have then

[(Fi(q,p) |0)| < telplselvlv (lgloe + DM (Xo)
< tc|p U’V(‘Q|BO + 1),Hk71(X0) )

By
so that m] < ter(r + 1)H*~1(X,). Moreover, we have for any (dq,p) € By x ]/35%

(AT (g, p - (8q,6p) |v)|

i (6p(s,0),v(q(s, 20)))ga + (p(s, o), dv(q(s, z0)) - 0q(s, 20))ga dH* 1 (x0)ds

S/ cloploo|vly (aloe + 1) + elplos|v]v[6gl H* " (Xo)ds
0

< tefo|y (1gloo + [Ploc + 1)(16g|00 + [6p]oc)H* " (X0)
< tclvlv(lals, + |plB; + 1)(16a|B, + 60| ) H* 1 (X0)

so that kI < te(2r + 1)HF1(Xy).
Consequently, there exists for any r > 0 a constant ¢ > 0 such that for any ¢ € [0, 1],

158



we have
my + ki <tc"

and we deduce with equation (3.89) that the function ¢ ~ |¢;!|(m} + kJ) belongs to
LY([0,1],R) for any r > 0. So we can applied a localized version of Theorem 5.1 to

By x Bj that gives the local existence and uniqueness of the solutions to the reduced
Hamiltonian system and the stability with respect to By x BJ. O

5.4 Specific theorems of global existence

We will now show that, in the previous configurations, the solutions do not explode.
The idea is for any solution (g, p) defined on a maximal interval I C [0, 1], to control the
reduced Hamiltonian I > ¢t — H,.(q¢, pt,t) then deduce that neither ¢ or p can explode.
The solution could thus be extended.

General coordinate space with the current norm

Given an initial condition (qg,po) € By X /B?‘, we just proved previously the existence
and uniqueness of a maximal solution (¢, p) = ¥(qo,po) € C(I, By x B}) with the growth
dynamic (i.e. {4 (v) = l-<tv 0 q) in two configurations.

1. In the tube case, with the non degenerate adapted norm setup and with

By = B = LY(X,RY),
Bf = B} = L?(X,R%).

2. In the horn case, with the adapted norm setup and with

B = LY(X,RY),

By={¢qeB|3dye Rd,q((), )=y HF1ae. on Xo},

Bf = LY(X,RY),

Bf ={pe LY(X,RY | p(z) =0 H ae on 0X } ~ L35 (X, RY).

Note that the non degenerate adapted norm setup is a subcase of the adapted norm
setup. Consider now a maximal solution (gq,p) = ¥(qo,po) € C(I, By X BE‘) such that
I = [0, tmax[C [0, 1]. We will show that this solution does not explode under the following
assumptions common to both cases

— the cost function satisfies the adapted norm setup (C(v,t) = 3 (v, {;v)y (see Defini-
tion 3.3)),

— le Cl([oa 1]7£(V>)7
— B = LY(X,R% and Bf = L°(X,R).
The three propositions following the next lemma aim to give a control independent of

time on the momentum map and then on the reduced Hamiltonian. With this last control,

we will prove in one theorem for each of the above cases that the solution cannot explode
ie. I =10,1].
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Lemma 5.2. The cost function is derivable with respect to time. Moreover, let « : [0,1] —
Ry be a lower bound function associated with ¢ (see Definition 3.3). There exists ¢ > 0
such that for any (q,p,t) € B x B* x [0,1] and any v € V we have

1. Hy(q,p,t) = C(v*(q,p, 1), t) = (v* (¢, p, 1), Lev* (g, p, 1))y > 0,
2. |Te(a,p, )Y < S5 Hr(a,p51)

8. v (a.p v <\ /o5 [ Te(a:p: 1)

where we recall that v} = ft_lvag(qt,pt,t)-

Ve

Proof. 1) We assume in the definition of the adapted norm setup that for any ¢ € [0, 1] and
any v € V, C(v,t) = 2(v, 4v)y > a(t)|[vf3, > 0. Moreover, we have the explicit expression
of the reduced Hamiltonian

Hy(q,p,t) = H(g,p, v, 1) = (Tela,p, 1) | o) = Cloy, 1)

= (vaf(%pat)avt>v - §<Utv‘€tvt>v = §<Uta€tvt>v = C(vf,t).

2) Let us consider v € V, t €]0,1] and w = £; 'v. We have then
(0,67 )y = (w, bw)y > a(®)|wli = a®)|6 vl

Since |v]y = |4 o £  oly < |€e|opll; M|y, we get € o]y > mwv and thus

- a(t)
04 0 2 i

Finally, since H,(q,p,t) = %<Kv\]£(q,p,t),E;IKV\]S(q,p,t»V, we have for ¢ € [0, 1]

H,(q,p,t) > 2’6(‘;

| Te(q,p, )|«

and we get the result since ¢t — ||, is continuous and so bounded.

3) At last, we have v} = f;lvag(qt,pt,t), so that [v*(gq,p, t)|v < \€;1|op |j§(q,p,t)lv*.
Since we get from Proposition 3.5 that |¢, llop < ﬁ, we get the result. O

The time derivative of the reduced Hamiltonian depends on the partial derivative with
respect to time of the cost function C' and the momentum map J;. The first one does
not depends on the variable (g, p). The main issue is thus to control the evolution of the
momentum map. The next proposition shows that this evolution actually only depends
on the initial state of the variable.

Proposition 5.8 (Control on the Momentum Map). Under the (H}) conditions, the
momentum map admits a partial derivative with respect to time at almost every time.
Moreover, there ezists a constant ¢ > 0 such that for any t € [0, tmax|

&7
BT 22 (Ge,pss s) | ds < clpol (ol + 1) (3.91)

V*
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Proof. Let recall that J¢(q,p,t) = §Ekq B P and that

g(q,t) (U) = (.’E = ﬂT(z)StU(Q(x))) .

The function § is not derivable with respect to time in B = L7°(X, R4). The pointwise
expression of the momentum allows yet to avoid this problem. When 7 is written as
a projection in X = [0,1] x Xg, the expression of the momentum map is given (see
Section 3.2) for any ¢ € B, any p € B}, any t € [0, 1] and any v € V by

el 019 = Gean.0 1)+ [ [ o) lato,zo))sa dt o)
0
= (Je(q,p, 0 / d, j jjg) ) dH* " (x0)ds .
Consider here g : [0,1] — V* defined for almost all ¢ by
/ 513(75 o) der 1( )
two :

The continuity of this function depends on the spatial regularity of ¢ and p. However,
there exists under the (H{") conditions, a constant ¢ > 0 such that for any yi,ys € RY

165 (0)] < clvlv |yalra(lyilre + 1),

so that

1 1
/0 9(8)lv-ds < /O /X (e, z0)lala(s, 70l + 1) 4 o)

¢ /X p() g (9(2) g + 1) dH (2) < clp

p(lalp+1)<oo.  (3.92)
Therefore, g € L'([0,1], V*) implies that ¢ — Je(q,p,t) = Je(q,p,0) + fo s)ds is abso-
lutely continuous on [0, 1], derivable for almost every ¢ € [0,1] and this derlvatlve, when
there exists, is

9T p(t,w0) g9/k—1
Srlann =g = [ o).

Moreover, if we consider again our solution (g, p) = ¥(qo, po) € C([0, tmax[, B X B}), we
saw in Section 3.2 (equation (3.43)) that with the growth dynamic this partial derivative
does not depend on ¢; and p; but on the initial conditions gy and pg. We have more
precisely at almost any time ¢ € [0, tyax| and for any v € V

0
< akzg (qtvpta t)

~> - /X (ps(t, o), 0(qe(t, 20)))pa dHF 1 (20)
:/X (po(t, o), 0(qo(t, z0)))pd deil(xo)

~)'

07
— (S
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We get then the final equation by (3.92). Note that we could prove this result with the
coarea formula when X is a general submanifold and 7 satisfies some simple regularity
conditions (smooth and dr(z) # 0). O

Proposition 5.9 (Control on the Hamiltonian 1). Let € €]0, tpax].
1. The function t — H.(qi, pt,t) is absolutely continuous on [€, tmax]|.
2. There exists M > 0 such that for almost every time t € [€, tmax|,

+1).
V*

Proof. We have H,(q¢, pt,t) = %(vag(q,p,t),é;lvag(q,p,t))v. Moreover, since t — £
is C' on [0,1] and ¢; invertible for t > 0, we deduce that t — £; ! is C! on ]0, 1[. Using the
fact that t — J(q¢, pt, t) is absolutely continuous on |0, tmax[ we deduce the first point.

d 0T
aln (1 +MHT(qt,pt,t))’ < M? < #(Qt,pti)

Then with the previous lemma, since « is non decreasing and «(e) > 0 there exists
M > 0 such that a.e.

dH, 0J¢
7(qt7pt7t) S M’jﬁ(qtapbt)h/* J(tht’t) +M‘j§<qtapt7t) ‘2/*
ar ai o
0J.
<0 (14 Welaen O -) (|G amn)| +1)
V*

N/
< M(l + MHT‘(Qt,pht)) (‘J(qbpt)t)

+1).
V*

Hence,

dH,

d M (gt pe, 1) oM/
—In (14 MH, )| < ESLULGAI NP VL s t
dt Il( + (Qt7pta )) =1 +MHr(qtapt7t) = ot (qtvptv )

+1).
V*

Proposition 5.10 (Control on the Hamiltonian 2). For any € €]0, tmax[, there exists an

O]

increasing function ™ : RY — RT such that for any t € [e, tmax[,

—

1
H,(q¢,pt,t) < §¢H(\q5!B + [pe|B*) + §<PH(IQO\B + [po|B+)

and o™ does not depend on (¢, p).

Proof. We saw with the two previous propositions that the function [€, tmax[> t — In (1 +
MHT(qt,pt,t)) —1In (1 + M H,(qe, pe, e)) is bounded by c1|po|B+(|qo|B + 1) + c2, where ¢;
and co are two positive constants independent of ¢, ¢ and p. Therefore, there exists an
increasing function ¢f : R* — R* such that for any ¢ € [e, tmax];

Hr(Qt,Pt,t) < Hr((kapeye) + @{Jqqo‘B + |p0|B*) .

Likewise, we have for an M > 0 sufficiently large (but independent of g, and p.) that
H’r(Qe;pe; 6) = C(U:7 6) < we|op’v:’%/ < M‘ng(q&7p€7 6)’V* < CM‘pe|B*(IQE’B + 1) )

162



so that there exists therefore another increasing function gof : RT™ — RT such that
H,(qe, pe,€) < 0¥ (|ge| B + [pe| B+). We get then the conclusion with o = 2(pf + ). O

We just prove that the reduced Hamiltonian system does not explode in finite time.
The last step is to deduce that (g,p) is also bounded on [0, ¢ax[ and leads to the next
theorems where all the assumptions are recalled.

Theorem 5.2 (Global Solutions of the Reduced Hamiltonian System : Horn Case).
Assume the (HY) conditions. Consider the adapted norm setup. Assume that { €
CL([0,1], L(V)) and that there exist M > 0 and s € [0,2[ two constants such that for any
t €]0,1]

M
[ op < 75 (3.93)

Consider the Banach spaces

B =LY (X,R),
By={¢qeB|3ye Rd,q(O, )=y HE 1 a.e. on Xo},
E% ={pe LZO(X,Rd) | p(x) =0 H 1 ae. on 0X } and B} = Lff(X,]Rd),

Then for any initial condition (qo,po) € Bo X ,B?, the reduced Hamiltonian system associ-
ated to the growth dynamic

(V) =lr<pvogq

admits a unique solution (g,p) € C([0, 1], By x Ei‘)

Proof. Let us show that our local solution (q,p) defined on [0, tmax[ is bounded. The
lemma gives us for any € €]0, 1] a constant M > 0 such that for any ¢ € [e, tmax|

’U*(qtapta t)’%/ S MHT(qtapt7 t)

and we have from the previous proposition

1
" (IgclB + Ipe|5) + 5%" (I90]5 + [pol-) -

| =

Hr(qt7pta t) S

It follows that

N

N 1 /1 1
o Ol < 3% (G0 a4 pcds) + 5o Qs + b)) 90

2

Now, since (HJ%O p,) is satisfied, the properties (P) and (P3) of Lemma 5.1 are true.
If we apply the Gronwall’s lemma and using (P;), we deduce that there exists ¢ > 0 such
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that for any t > €

t
aliy < lailm + 1< (g + 1)+ [ | ()], 45
t
< (almo+ 1)+ [ clotlv(laln, + 1 ds

tmax
Sﬂ%mo+1ﬁmMg/ w3y ds)

Equation (3.94) shows that |’ fmax 1y* |y ds is bounded and m = SUDPt e, tmax| |9t] By 15 thus
also bounded. Likewise, using (Ps), we have

t
il < ol + [ 10,60 @]y ol d
€

t
Smm+/d@MmﬁMMﬁ4M8
6 tmax
< Ipels exple(m + 1)/ Wiy ds)

€

We deduce that the solution is bounded (since it is continuous on [0, €]) and could thus
be extended. Since we assume that the solution was maximal, this is a contradiction that
proves the theorem. ]

Remark 5.4. We explained that in the case of a horn, we are interested into cost functions
such that £; tends to 0 when t tends to 07. Note however that this theorem obviously
includes the simplest case where [€; '],y is uniformly bounded on [0,1].

Theorem 5.3 (Global Solutions of the Reduced Hamiltonian System : Tube Case). As-
sume the (HY) conditions. Consider the nondegenerate adapted norm setup and
assume that £ € C1([0,1],L£(V)). Consider the Banach spaces

By =B = L?(X,R%
Bf = LP(X,RY).

Then for any initial condition (qo,po) € Bo x By, the reduced Hamiltonian system associ-
ated to the growth dynamic

f(q,t) (U) = ]]-Tgtv oq
admits a unique solution (q,p) € C([0,1], By x BY).

Moreover, there exists an increasing function ¢¥ : Rt — RY such that for any
(go,po) € Bo x Bf and any t € [0,1], we have

@B, + IpelBr < ©" (laolB, + PolB:) -

Proof. The proof is essentially the one of the previous theorem. All the properties satisfied
for any € > 0 are now true for e = 0 and this ensures the existence of the solution on [0, 1].
Replacing € by 0 also leads to the existence of ¢¥. We have indeed with the previous
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notation

B*))% :

1
v* (qe, pe, )| < M2 (" (0] 5 + |po

Since |- |p = |- |B, and B} < B*, we can rewrite

[v"(ge, i, H)lv < ¥ (|05, + lpol ;) »

where ¢ : RT™ — R is an increasing function.
Finally, we have m = sup;c(o1] a5, < (lq0lB, + 1) exp(ct(|golB, + [Polp;)) and then
sup;c(o,1] [p¢|B; < [pol B+ exp(emyy(|qolB, + [polB;))- O

Discrete coordinate space

In this section, assume that X is a finite set of k£ points with a mesh. Denote
{to,t1,...,tp} with 0 = ¢ty < t; < ... < t, = 1 the image of the temporal marker
7: X — [0,1. Consider B = R¥*? = B* and the nondegenerate adapted norm
setup (see Section 3.4). Let us recall that ¢t — ¢ 1'is thus defined at any time and
uniformly bounded. Assume additionally that ¢ is of class C' on each interval [t;, t;11][.

Lemma 5.3. There exists M > 0 such that for any (q,p,t) € B x B* x [0,1] and any
veV

1. Hy(¢q,p,t) >0,

2. |Te(a,p )5~ < MHy(q,p,1),

3. v (q,p, t)|lv < M |Te(q,p,t)] s -

Proof. The proof is essentially the one of the lemma 5.2 but here ¢ — ¢, Lis uniformly
bounded. O

Proposition 5.11. For any (¢,p) € B x B*, the function t — H,(q,p,t) is piecewise
continuous and derivable on any interval [t;,t;11]. There exists an increasing function
¢ : RT — RY such that for any i € [0,n — 1], if (q,p) € C([ti, tmax|, B X B*) is a local
solution of the reduced Hamiltonian system with an initial condition given at time t;, then
for any t € [t;, tmax[C [ti, tig1[,

HT(Qt,pt,t) S @(Hr(qtlvptﬂtl)) .

Proof. We have for any (¢,p,t) € B x B* x [0,1] (see Example 3.2)

Hy(a,0,0) = 5(T 02,0 |0°(0.0,0)) = 5 (T (@00 | 67 Kv T (a.0.1)).

We saw in Section 3.1 (Remark 3.2) that the momentum map is constant with respect to
time with on each interval [t;,t;+1[. The reduced Hamiltonian evaluated on a solution is
continuous and derivable with respect to time on any interval [t;, t;+1[. We have explicitly
(see Example 3.2)

dH,
dt

(gt e, t) = *E(Umt) = —(vy, vy )v -
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Therefore, with the previous lemma and since ¢ — ¢y is uniformly bounded on any interval
[ti, tit1], there exist My, My, M3 > 0 such that for any i € [0,n — 1] and any ¢ € [t;, ti11]

dH
'7» %/* < M3Hr(qtapt7t) :

7t (Qt,pt,t)‘ < M|l < M>|Te (gt e, t)

Finally, we deduce that !% In(1 + H,(q, pt, t))} < M3 and that there exists an increasing
function ¢ : Rt — R™ such that for any i € [0,n — 1], for any solution (g, p) defined on
[ti, tmax| and any t € [t;, tmax|

HT(Qt;pt; t) < @(Hr(qhapti:ti» .

Theorem 5.4 (Global Solutions of the Reduced Hamiltonian System : Discrete Case).
Assume the (HY) conditions. Assume that X is a finite set of k points with a mesh.
Denote {to,t1,...,tn} with 0 =tg < t1 < ... <t, =1 the image of the temporal marker
7: X = [0,1]. Consider B = (RY)* = R**? gnd the nondegenerate adapted norm
setup. Assume that { is of class C' on each interval [tiytiv1]-

Then for any initial condition (qo,po) € B X B, the reduced Hamiltonian system asso-
ctated to the growth dynamic

§(q) (V) = Lr<ivog
admits a unique solution (q,p) € C([0,1], B x B).

Moreover, there exists an increasing function @Y : Rt — Rt such that

|q]oo + [Ploo < ¢ (l90|5 + [P0l B)

and oY does not depend on (q,p).

Proof. The previous proposition says that given a local solution defined on an interval
[ti, tmax[C [ti, ti+1[, the reduced Hamiltonian ¢ — H, (g, pt,t) admits an upper bound on
[ti, tmax| that depends only on H,(q,,pt,,ti). We can show as before with the Gronwall’s
lemma (see the proof of Theorem 5.2 and 5.3) that ¢ — (g, pr) admits also an upper bound
on [ti, tmax| that depends only on (g, pt;) and can thus be extended to the whole interval
[ti,ti+1]. For any initial condition (go,pp), there exists thus by induction a global solution
defined on [0, 1].

Now consider the function ¢ of the previous proposition. Under the (H{") conditions,
it exits ¢ > 0 such that we have at any point of discontinuity of the reduced Hamiltonian
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system

H, (qti+1 yPtivqs ti+1) = H, (qti+1 yPtit1s 75;-1-1) + Z <pti+1 (‘/E)v U;Lk—i-l (Qti+1 (x)»Rd
T(af:):tH_l

= Hr(qti+1’pti+17tz‘_+1) + Z <p0($)7 U;:rl(qo(x)»]l{d
T(z)=tit1

< @(He(qu,pe i)+ D (po(@), v541(g0(2))) o

T(Z):ti+1
(Hr(qt;,pt;5 i) + clpolBlvis1 v (lgols + 1)
1 1
(H(qt;, 01, ti)) +cM2|po|p(lgo| B + 1) Hr (Git1, Pig1,tig1)?

IN

¥
¥

IN

A Dbasic study of the variations of the real valued function g(x) = —z + a + by/x (with
a,b € R") allows to conclude. Indeed, g is increasing (if b > 0) then strictly decreasing on
R*. We have ¢(0) = a = ¢(H,(qt,,pt;, ti)) > 0. There exists thus a unique point z such
that g(x) > 0 implies that < x. Moreover, zy depends only on a and b and when a or
b increases, x( increases. Hence, Hy(git+1,pi+1,ti+1) is bounded by an increasing function
of H.(qt;,pt;»ti) and |po|p(|go|ls + 1). By induction, Hy(gi+1,pi+1,ti+1) is bounded by an
increasing function of H,(qo,po,0) and [po|B(|go|p + 1). At last, we have H,(qo,po,0) =
O(lpo|B(|qo| B + 1)). Hence, there exists an increasing function ¢ : R* — R* such that
for any t € [0, 1],
Hy(q,pe:t) < 0™ (JaolB + [po| B)

and as before, we deduce from the Gronwall’s lemma the existence of another increasing
function ¢¥ : Rt — R* such that for any solution (g, p) = ¥(qo, po)

lqloo + [Pl < " (0] B + |polB) -

5.5 Second order regularity of the reduced Hamiltonian system

We presented in section 2.5 the shooting method to perform a matching by an opti-
mization of the initial momentum. We defined a new energy and expressed its gradient
under some regularity assumption on the reduced Hamiltonian system that we will prove
here. We will assume to simplify that the optimal vector field is directly given by the
momentum map (it would be enough to assume that there exists M > 0 such that for any
(q,p,t) € Bx B* x [07 1]’ ‘U*‘V < M’jé(%p?t)“/*)'

Let us recall the reduced Hamiltonian system given by the function

h : (BxB*)x|[0,1] — B x B*
(. 1)

(1) — :
_65[ (y,1)

where a couple of variable (g, p) is now denoted y.
In this small section, we will show that h; : y + h(y,t) is of class C! and that t
g—Z(y, t) is integrable. The regularity of h will result of the set of conditions (H2£ ) given by
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(i) For any t € [0,1],& € C*(B,L(V, B)).

(Hg) (1i) There exists ¢ > 0, such that for any (¢,t) € B x [0, 1],

9%¢
‘8(12 (q’t)‘op S C.

Proposition 5.12. If the optimal vector field is defined by v*(q,p,t) = Ky Je(q,p,t), then
under the (Hf) and (HS) conditions, hy is of class C*. Moreover, there exists an increasing
function @ : RT — RT such that

Oh h
a 7t < *)
)| < Pyl
where |y|pxp* = |q|B + |p|B*. Hence, for any continuous curve y € C([0,1], B x B*), the
function t — g—’;(yt, t) is integrable.

Proof. Let recall that J¢(q,p,t) = §E‘q PP and (Hf) is

(i) & € CY(B, L(V, B) for any t € [0,1].

(H) (7i) There exists ¢ > 0 such that

1

1€(g:t)|cvpy < cllalp + 1) and |9,6(q, )| c(B,c(v,B)) < ¢
for any (¢,t) € B x [0,1].

Moreover, Proposition 5.4 in Section 5.2 says that

Je(q,p, )| < clplp(la|p + 1) (3.95)

and

07
dq

If we denote A1 and ho the two components of h, we have

0T
(q,p,t)‘ + lai(q,p,t)‘ < c(lqlp + plB- +1).

hi(q,p,t) = Egny(v*)  and  ha(q,p,t) = (9g(gn)(v))" - p.

Hence, since J; is of class C, (¢,p) — v*(q,p,t) is of class C!, and since & is of class C2,
h is of class C' with respect to (g, p). Moreover, any term of both partial derivatives of
h with respect to ¢ or p are bounded by strictly increasing functions of |¢|p, |p|p+ and
|v*|y. Therefore, with the addition of equation (3.95), there exists an increasing function

©" : RT — R+ such that

Oh

— < ot ]
)| < o).

where |y|pxp< = |q|p + |p|p+- In particular, since ¢ does not depend on time, we have
for any continuous curve y € C([0,1], B x B*) that sup, ‘%Z(yt,t)‘ < ¢"(|y|so) and that
the function t — %Z(yt, t) is thus integrable on [0, 1]. O
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Application
We extend the conditions on V' as follows
(i) V c C3(R4 RY).
(i3) There exists ¢ > 0, such that for any (z,v) € R? x V, we have

[0(z)[re < clv]y(Jz|ga + 1),
|dv ()0 + |d*0(@)|o + d°v(2) |0 < clo]v-

Proposition 5.13. Consider B = L®(X,R%). If ¢ is given by the growth dynamic the
(HY) conditions imply (Hg)
Proof. We will show that the function
F : L®(X,RHYxV — L®X,R%
(¢, v) —  vog
is of class C2. Proposition 4.3 says that %—g(q, v)-0q = (dvogq)-dq and %%(q, v)-dv = dvogq
(note that F is not C' for L'(X,R?)). Therefore, we have

o
ov?

O°F / 2 /
qu(q,v) -(8q,0q') = (d*voq) - (q,0q),

O*F O*F
8qav(Q7U) : (6(]’ 6U) - avaq

(CL U) =0,

(q,v) - (dv,dq) = (dévoq) - dq.

Indeed, under the (Hg/ ) assumption, there exists ¢ > 0 such that

j(q, v) - 6q — (d*v o q) - (6q,0q")

OF , 9
‘aq(q+5q,v)-5q— 94

o0

< [d*vlool0q ]’ |3 < clvlv1dgloldd’ 3

and

oF oF
%(q +0q,v) - 6v — a—q(q,v) -6v — (ddv o q) - 6q‘ < \d25v|oo|5q]2 < c|5v|v|5q]go .

[e.9]

It follows that there exists ¢ > 0 such that for any (q,v) € L>®(X,R%) x V,

<e.

< clvly

O%F
\ (@.0)

Erd

O*F O*F O*F
w(qav)—o ’8q8v(q’v)‘ = ’avaq(q’“)‘

These partial derivatives are all continuous. Hence, F is of class C2 and also &(q)(v) =
HTStF(Q> U)' D

5.6 Directional derivative of the solution with respect to its parameters

The Gateaux-derivative of the solutions to the shooting system is the last ingredient
to give an expression of the gradient of the energy and allow an algorithm of gradient
descent on the initial momentum py (see Section 2.5). The proof presented here to ensure
the existence of this Gateaux-derivative requires that the solutions y = ¥(yg) are locally
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bounded with respect to the initial condition. We will assume to simplify that X is a
discrete set, i.e. B = (R%)F,

As before we can define the linearized equation of the reduced Hamiltonian system

L on
0y = dyo —i—/ — (s, 8) - dys ds. (3.96)
0 Oy

Since the application t — ‘g—;‘(yt, t)| is integrable on [0, 1], the Corollary 4.2 (linear Cauchy-
Lipschitz) ensures the existence and the uniqueness of such functions for any dyy € B x B*.
The same corollary also guarantees the existence and uniqueness of the covariable z defined

as introduced previously by z; = —dA(y1) € (B x B*)* and

Loc Oh

= Ys,S) — 5 s,S*'stsy 3.97
[0 ) - S (3.97

2t = 21 —

where the function ¢ — ‘%—g(yt, t)‘ is integrable thanks to the (H¢) conditions.

Theorem 5.5. We denoted V(qo, po) the unique solution in C([0, 1], B x B*) to the reduced
Hamiltonian system of initial conditions yo = (qo,po). The Gateaux-derivative of ¥ in the
direction 0yo = (0qo,0po) € B x B* exists and is given by the unique solution of the
linearized equation

ton
Syp = 6 “ys, 5) - Sys ds .
Yt yo+/0 8y(y s) - 0ys ds

Proof. For any € € [—1,1], denote ¢§ = qo + €dqo, p§j = po + €dpo, and y° = P(g§, pfj). For

any € # 0 and any t € [0, 1], consider Mf = Vi 6yt‘B o The proof consists thus to
>< *

€

show that this quantity ¢ — M tends uniformly to 0 when e tends to 0. It starts with
the following lemma.

Lemma 5.4. |y — y|oc = O(l¢]) .

Proof. Let us show that for € small enough, y¢ is bounded independently of €. Theorem 5.4
says that the solutions y = ¥(yg) are locally bounded with respect to the initial condition.
More precisely, there exists an increasing function ¢ such that for any (qo, po) € B x B*
if (q,p) = ¥(qo,po) then |qleo + |Ploo < ¢Y (lg0|B + |Po|B*). Therefore, for any |e| < 1,

16|00 + [Poe < " (l65] B + PG| B+)
< ©" (Jq0 + €5q0|B + |po + €dpo|B+)
< ¢ (ool + 16408 + ol 5= + [6polB+) -

With |y|pxB* = |q|B + |p|B*, it leads to
Yoo < " (|y0l Bx B + |0%0|BxB*) -
According to Proposition 5.12, there exists another increasing function " : Rt — R
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such that for any (y,t) € (B x B*) x [0, 1],
oh h
—(y,t)| < ).
Fat)| < Pyl

For any s,r € [0, 1], denote ys° = ys+7r(y¢—ys) and consider the application g : [0,1] — B
defined by gs(r) = h(ys, s) — h(ys, s). Then, gs(0) = 0, gs(1) = h(y<, s) — h(ys, s) and

h(yE,S)—h(ys,S)=/o s (r dr—/ oy (Y7, s) (Y — ys) dr. (3.98)

We have then

t
ly; — ytlBxB* < |€dyo|BxB* + / \h(ys,s) — h(ys, s)|BxB* ds
0
t
< ellowolmsa+ [ sup ys )| 1E — vl ds
0 re€0,1] op

t
< |el|6yolpxs- + / sup (1 m S — sl ds
0 ref0,1]

t
< lel|éyol Bx B+ + / " (2lys|Bx B + sl Bx )|V — Ys|Bxp+ ds
0
t
< le||6yolBx B + / ©"(30Y (ol Bx B+ + 10%0| BxB*)) Ve — ¥s|Bx B ds
0
< lel|6yo| Bx B exp (<Ph( Y (lyolBx s+ + 650l BxB+))) »

where the last inequality results from the Gronwall’s lemma. Since this upper bound does
not depend on time, we have thus |y¢ — y|ooc = O(|€]). O

We will now use again the Gronwall’s lemma to show the uniform convergence of

M= B2 oy
t Y g e
I h(ys, s) — h(ys oh
Mte S/ (ys7s) (y 73) _ 7(ys,5) - 8y, ds
0 € dy BxB*
“|oh 1
< [ |Grts)| M+ LRids,
0 |9y op €|
where RS is defined for any s € [0, 1] by
€ € 8h €
Ry = 'h(ysys) — hlys,8) = 5 (Ys: 8) - (s = ) :
Y BxB*
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In order to control RS, consider again ys = ys + r(y$ — ys). Equation (3.98) leads to

L 7on oh
RZ:/ < e s) — — 5,3) < — dr
; ay(y ) ay(y ) ) (s — vs) .
L1 on oh
< € - ER d i S *
_/0 ay(ys 78) ay(y 8) op T’ys Y |B><B
< a5y = Yloo s
where
oh Oh

T,€

8—y(ys ,s)—a—y(ys,s) dr.

op

Denote at last

1 !
Bez/ R ds.
lel Jo

The Gronwall’s lemma implies then that

1
Mf < Bexp </
0

and we saw previously that ¢ — ’g—’;(ys, s)
B¢ tends to 0 when € tends to 0.

oh
@<y87 3)

is)

is integrable. The final step is to prove that

Note that for any € € [-1,1], s — af is an integrable function on [0,1]. Indeed, we
have as in the proof of lemma 5.4

. oh
Qg S sSup =+ @<y873)

rs€[0,1]

oh Ts,€
@(ys 73)

op op

< 0" (30" (IyolBx* + 10v0|Bx ) + ¢ (|ys| Bx B+ )
< ¢"(3¢" (IyolBx B+ + 1630 BxB+)) + " (|y]o0)

and this bound does not depend on e.

Moreover, the same lemma says that |y¢ — y|ooc = O(|€|). There exists thus ¢ > 0 a
constant such that for any € € [—1, 1], \Le_y|oo < c¢. Hence,

1
B¢ = / R ds
lel Jo

</1ae|y6—y\oods
0

"o 7 e

1
Sc/ asds.
0
oh

Finally, since oy is continuous, for any sequence €, — 0, s — " tends to 0 almost every
where. The Lebesgue’s dominated convergence theorem ensures that |a|;1 tends to 0.
Hence, M€ converges uniformly to 0. ]
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6 Conclusion

We have studied in this chapter a generative model to create growth scenarios by time-
varying vector fields as used in the classic construction of a group of diffeomorphisms. This
construction leads to effective numerical implementations thanks to the introduction of
reproducing kernel of Hilbert spaces. The model required a specific theoretical analysis
since unlike the standard approach, the infinitesimal action of the vector field depends on
time. The main issue raised by this novelty lies in the spatial regularity of the generated
mappings that represent a new scenario.

This generative model allowed us to address the problem to retrieve the continuous
evolution of a time-varying shape from its final state. It led to a new optimal control
problem where the time dependency played again an important role. We extended the
Hamiltonian approach used to describe the optimal solutions. The main consequence
was yet the lost of the conservation property of an optimal vector field. To balance this
phenomenon, we introduced new cost functions that required yet to refine the analysis
of the minimization problem. Given a time-dependent dynamic, we defined a flexible
framework to ensure the existence of the solutions to the new Hamiltonian system. In
fine, a soughtafter growth scenario is encoded in a forecast initial position and initial
momentum (qo, po), providing the support to a statistical analysis.

Note at last that our model is able to produce a continuous path from a degener-
ated shape reduced to a point to a completely grown shape as for example a compact
submanifold of any finite dimension.

7 Appendix A: Bochner integral

7.1 Integration in Banach spaces

In this subsection, B is a Banach space over the field R, I is a compact interval of R
endowed with the Lebesgue measure denoted A. We are interested in integrating functions
f: I — B. There is a theory of integration of such functions introduced by Bochner (see
for example [46]).

Definition 7.1. We define two sets of functions : Fry, the finite valued measurable func-
tions, called as well simple functions, and Fcovy, the countable valued measurable functions.

k
Fry =< g:1— B, g(t):ij]lEj(t), keN s
j=1
Fevi=q9:1—=B, g(t)= ijﬂEj(t) ;
j=1

where the bj are vectors of B and the (Ej) en are pairwise disjoint measurable subsets of
1.

Definition 7.2 (Bochner measurable function). A function f : I — B is called measurable
if there exists a sequence (fn)nen of finite valued measurable functions, f, € Fpy, such
that f is the limit almost everywhere of (fn)n.-
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Proposition 7.1 (cf Schwabik-Ye : Corollary 1.1.8). A function f : I — B is measurable
if and only if there exists a sequence (fn)nen of countable valued measurable functions,
fn € Fov, such that f is the uniform limit almost everywhere of (fn)n.

Definition 7.3 (Integrability). Assume that g is a simple function given for anyt € I by
g(t) = Z§:1 bjllg,(t), we define the integral of g : I — B as:

k
[otwryar =S baE)
I e

We now say that a general function f : I — B is Bochner integrable if there exists a
sequence of simple functions (fn)nen such that (f,) converges almost everywhere to f and
if im [ [fu(t) — f(t)|pdt = 0. In this case, we define the integral of f as:

[ rwyar=tim [ g.0a
I

We let the reader look in Schwabik-Ye for more details on the Bochner theory. We will
focus on the few following results :

Theorem 7.1 (Density of continuous functions). C*°(I, B) is dense in LP(I,B), 1 <p <
00.

Proof. For any function f : I — B, we will note |f|p the function I > ¢ — |f(x)|p. Let
be f € LP(I,B) for p < oo and let be € > 0. We will successively show that f can be
approximated for the LP-norm by a countable valued function, a finite valued function
and a finite combination of smoothed indicator functions.

— By the previous proposition, there is a countable valued measurable function h €
Fev

ht):ibjllgj(t)

such that | f —h| is arbitrarily small over a complement of a negligeable set. Because
A(I) < o0, it follows that | f—h|, is also arbitrary small and since |h|, < |f—h|p+]|flp,
h belongs to LP(I, B).

— Let (hn)n € Fpv be the partial sums of h : h, = 377 bjllg,(t). Since the Ej
are disjoint, for any ¢ € I, |hy(t)|p = > 7 |bj|51E,(t) and by the scalar monotone
convergence theorem, we have |h,|gp — |h|p in LP(I,R), as n — +o0o. Moreover,

we have

|h — h|7’_/yh ()2, dt = /|Zb11E (t)[2dt

j>n
P

- / SO bslse, () | dt = |1ls — hals]?

i>n
Therefore |f — hp|p < |f — hlp + |h — hy|p can be arbitrarily small.
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— We approximated f with h,, a finite valued function, now we just have to smooth our
finite number of indicator functions 1 g; but these functions are scalar, they belong
to L1(I,R) (since A\(E;) < M(I) < oo) and C*(I,R) is dense in L'(I,R).

O]

7.2 Bochner-Lebesgue points

The Lebesgue differentiation theorem states that for almost every point, the value of
an integrable function is the limit of infinitesimal averages taken about the point. The
proof relies on the density of smooth functions in L!(R). We can now extend this result of
real analysis to the Bochner integrable functions. This section is adapted from [45]. We
will denote for any x € I,r >0, B(z,r) = [z —r,z+7r]NI.

Definition 7.4. For any f € L' (I, B), a point t € I is called Bochner-Lebesgue point of
fif

i o [ @) = f@)]di =0,

r—0 )‘(B(‘T}? T’)) B(z,r)

The mean here achieved on B(z,r) can also be done on a more general collection of
sets converging to {x}. We will for example need it on semi-intervals of the type ([z,7]),.

Proposition 7.2. Let be f € L*(I, B), t € I a Bochner-Lebesgue point of f and (A;)r>o
a collection of measurable non negligible sets containing x (i.e. for anyr >0, x € A, and
A(A;) > 0). If there exists ¢ € R such that for any r > 0 we have:

A, C B(z,r) and A(B(z,7)) < cA(Ar),

then
tim —— [ (@)~ f@lpdt =0
ro N4y Ju T Bt =1
Proof. We just have to notice that for every r > 0 :

1 C
A, /Ar\f(:w —f®)|pdt < A(B(x,m/,g(w) |f(z) — f(t)|pdt.

O

The Hardy-Littlewood maximal operator is a significant non-linear operator used in
real analysis. We recall its definition on locally integrable functions :

Definition 7.5 (Hardy-Littlewood maximal operator). The Hardy-Littlewood maximal
operator M applied to [ € L}OC(R,R) defines a function (M f) : R — R given for any
x€R by :

1
Mf(x) B ig% )‘(8@77 T)) /B(x,r) ’f<t)‘B ar-
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Proposition 7.3 (Inequality of Hardy-Littlewood). For any function f € L'(R) and any
c > 0, we have

MM S > e}) < 2)flh.

Theorem 7.2. If f € L'(I, B), then almost every point t € I is a Bochner-Lebesgue point
of f.

Proof. This proof is the same of the real case (B = R?), only one specificity appears when
we need to approximate f by a continuous function. Consider the family of operators
(T} f)r>0 defined for any = € B by

(T)(@) = 5o

SET /B W@ = Sl

and

(Tf)(@) = limyo(T,.f) (@) -

Let us show that T'f = 0 almost everywhere. Let be ¢ > 0 and n € N*. The previous
theorem gives us g € C(I, B) such that |f — g1 < % Let us note h = f — g. Since g is
continuous, T'g = 0. Then we have :

1
T @) < S50 /B INCCEE AT

and
Th < M|h|g + |h(z)|p.

Since T,.f < T,g + T,h, we have Tf < Tg+ Th < M|h|g + |h|p. Hence, {T'f > 2¢} C
{M|h|p > c}U{|h|p > c}. As |h|y <L, we have on one side A({|h|s > c}) < @ <L and
on the other side we have by the inequality of Hardy-Littlewood that A({M|h|p > c}) <

h .
% < % In conclusion, we have :

4

Ve > 0,Yn € N NTf > 2¢) < -

So for all ¢ > 0, A(T'f > ¢) = 0 which proves that almost every point of I is a Bochner-
Lebesgue point of f. O
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8 Appendix B: Regularity conditions

We summarize in the following table the regularity conditions used throughout this
chapter.

V c C}(R%,RY).
Je > 0,¥(z,v) e REX V,

()
[v(2)|ga < clv]v(|z|pe +1),
[dv(@)]o0 + |d*0(2)|oo < clo]v -
vV c C3(R%RY).
Je > 0,¥(z,v) e REX V,
(Hy)

[0(@)[re < clvlv(Jzlra + 1),
|dv(2) |0 + |d*0(@) o + |dPv(2) |0 < clvfv.

CecC'(V x[0,1,R).
(H) Je > 0,V(v,t) € V x [0,1],
C (v, 0)] + [VuC(o, 1)} < clul.

Je > 0,VYq,q¢ € B,Yv e V,Vt € [0,1],
(H]) 1 (g,0,8)|5 < clolv(lalp + 1),
1 (g,0,8) — F(d v, 8)| < clolvig— s

vt €[0,1], f; €CY (B x V,B).
de > 0,Y(q,v,t) € BxV x[0,1],

9
(=) ‘ag(q,v,w <clly,

op

<c(lqlp+1).
op

9
‘(f)i(q, v,t)

vt e [07 1]7€t 6C1(B,£(V,B)
(HY) Je > 0,Y(q,t) € B x [0,1],
104Ee(@)]op < c.

Vit € [07 1]7£t € CZ(Bvﬁ(‘/a B)) :
de > 0,Y(q,t) € B x [0,1],

<ec.

0q? op

vt € [0,1],& € C*(Bo, L(V, B1)) .
¢ Je > 0,Vq,q € By, vt € [0,1],
(HB(),Bl) /
{ €,t) — E@.n)leeviBo) < clg— 4| B,
106(q) — 0g&t(d) 2By c(viBr)) < €la—d'|B, -
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Chapter 4

Existence and Continuity of the
Global Minimizers for the Growth
Dynamic
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1 Introduction

We presented in the previous chapters a general framework to model the growth of a
horn by a continuous time-varying shape built on a biological coordinate system (X, )
where X is a compact smooth manifold and 7 : X — [0, 1] the birth tag. The shape is
represented by a path of mappings (¢; : X — Rd)te[o,l] C B in a Banach space B. The
deformation of the shape is partially modeled by a space of vector fields V' on the ambient
space R%. The birth tag 7 indicates a creation process that completes the description of the
shape’s deformation. The evolution of ¢ — ¢, is thus given by the action of a time-varying
vector field v defined via the birth tag by

4i(z) = ﬂr(x)gtU(Q(x))-

This dynamic, called growth dynamic, is studied in Chapter 3. We defined a set of
admissibility conditions on V to ensure the existence of a function

®(v) : L*([0,1],V) — C([0,1], B)

that returns, for any given initial condition go € B, the unique solution of the integral

equation
t
qt :q0+/ ﬂrgtUsOquS-
0

We investigated the reconstitution of a development via the inexact matching of an
initial condition gg to an implicit target S* . This problem can be expressed as a mini-
mization problem on an energy of the type

1
E(v) = /0 Clvy, t) dt + A(v) | (4.1)

where v belongs to L2([0,1],V), the initial mapping qo € B is fixed and ¢ = ®(qo,v) €
C([0,1], B). Moreover, C' : V x [0,1] — R and A : L} — R are two applications usually
called the cost function and the data attachment term. They respectively penalize the
deformation induced by v and the discrepancy between the target and the final shape

q1(X).

The model induced by the growth dynamic raises a new issue. The continuity of
the global minimizers of the energy is no longer free. Indeed, the sought-after solution
q = ®(qo,v) depends on the complete evolution of the time-varying vector field v even at
its last state ¢q;. Let us recall that conversely, under the classic dynamic, the final shape ¢;
only depends on the final diffeomorphism on the ambient space generated by v. Moreover,
the spatial regularity of ¢q; depends on the temporal regularity of v. The existence of
continuous solutions v* € C([0, 1], V) to the minimization problem is thus a crucial point.
The choice of the data attachment term plays an unexpected role in this problem studied
in the Section 2 and 4.

At last, we will see in Section 5 that the continuity of these optimal vector fields
ensures the existence of a pointwise expression of the momentum. This allows to explicit
the momentum map (as done in Chapter 3) in the general situation where X is a compact
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manifold.

2 Discontinuity for varifold data term

This section highlights a counterexample to the existence of continuous minimizers of
the energy when the attachment term is build on a space of varifolds. We present a first
counterexample in a 2D case that will then be adapted to a 3D case.

2.1 Setting of the counterexample

We aim for a particularly simple situation to produce a counterexample. The shape
is a horn modeled by a curve in R?. The coordinate space should be defined by X =
[0,1] x {—1,1} and the birth tag 7 by the projection on the first coordinate. However,
to simplify the notation, the curve will be parameterized by the interval I = [—1,1]
and the birth tag will be defined for any » € I by 7(r) = |r|. The initial condition is
given by go(r) = (r,0). The horn is thus initially flattened on the horizontal segment
[—-1,1] x {0} € R2. This means that as for the 3D case, all the creation occurs at the
base of the horn. The tip of the horn is thus modeled by the point 0 € I and appears at
the origin of R%. The horn grows from the center and extends progressively towards the
boundaries {—1} and {1} of its base. The deformations are reduced to vertical translations
and the space of vector fields V is canonically identified to R. For any v € L?([0,1],R),
the growth dynamic is given by

Ge(r) = (0,0(8)) Ly <t

and q(r) = (v, 1}y < fﬁ,' v(s)ds). The shape at its final age ¢t = 1 is given by ¢1(r) = v, (r)
where 7, : [~1,1] — R? is defined by

1

Yo (r) = (’I“,/| v(s)ds) . (4.2)
T

Note that the curve -, is symmetric about the vertical axis {0} x R.

The underlying problem of calculus of variations is provided by a penalization term
fol v%(s)ds and a data attachment term modeled on varifolds that we will now introduce.
As presented by Charon and Trouvé [15], and recalled in Chapter 1, the curves are modeled
by the dual of a reproducing kernel Hilbert space (RKHS) W on Co(R? x G1(R?), R) where
G'1(R?) is the Grassmanniann of all lines through the origin of R?2. W’ represents then a
space of varifolds. In all generality, a varifold p € W’ evaluated on a function w € W is
given by

u(w) = / w(z, V)du(z, V), (4.3)
R2xG1(R?)

where for any Borel subset A C R? x G1(R?), u(4) = H>({y € R?|(y,V) € A}). For
any v € L%([0,1],R), the varifold associated to the curve =, is denoted s, € W’ and it is
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defined for any w € W by

1
() = [ @) T o(r)ldr, (4.4)
where T, is the line of G (R?) generated by the vector 4, (r) = (1, —v(r)) (defined a.e.).
With the symmetry of the curve, this expression can be rewritten

1 1
) = 32 [ S u(), ST ) T 0 (45)
1=0

where S! = S is the symmetry with respect to the vertical axis through origin and S° = Id.

The kernel of the RKHS W is denoted ky and given by the tensor product kg ® kp
of a kernel kg (z,y) on the ambient space R? and a kernel k7(u,v) on the Grassmannian
G1(R?). We will assume that the target horn is also given by a parametric function
Yytar 1 [=1,1] — R? produced by a “vector field” v** € L2([0,1],R). The comparison of
the two curves 7y, and ~,tar is then achieved by the estimation of the distance between p,,
and fitar in W, this is to say with the norm g, — fytar |y

Finally, the problem consists in minimizing the energy given by the sum of the penal-
ization term on v and this data attachment term

1

1
. A
By(w) = 5 /0 o(rdr + 5t — sl (4.6)

Our aim is to know if the regularization L? on v and the data attachment term on
varifolds ensure the continuity of global minimizers of EI)/\V We will prove the following
theorem:

Theorem 2.1. There exist v € L?([0,1],R), A > 0 and W such that no global minizer
v* of E{/\V given by (4.6) is a continuous function on [0,1]. Moreover, one can assume that
v* e C>([0, 1], R).

Remark 2.1 (RKHS properties). Denote w = Ky (i — fiytar), where Ky : W' — W is
the canonical isomophism of Hilbert spaces. By construction of a RKHS, w is given at any
(z,V) € R? x G1(R?) by

w(e, V) = / v (2. V), (0, V') )t — prysos) (5, V7). (4.7)
R2x G (R2?)

Let us recall then that |p, — pytar [ = (o — fytar) (W) and

01 9 d

el ol = (im ) ). (43)
2.2 Proof of theorem 2.1

We will consider a perturbation parameterized by ¢ > 0 of a degenerate constant
kernel ky = 1. The solutions of the optimization problem associated to this kernel will
be especially easy to explicit.
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Definition 2.1. We fiz kp = 1 and kg is given by a set of kernels ke(z,y) = p(elz —y|3:)
where p is a positive function such that p(0) = 1, p is bounded on R and p(0) < 0. They
generate a set of kernels k. ® kr that do not see the tangential directions. Fach kernel
ke @ kr for € > 0 produces a RKHS denoted We. The test functions do thus not depend on
the Grassmanniann component. We will write w(z) instead of w(x,V') and du(x) instead
of du(z, V). Since W, depends on €, the energy will be denoted E*(e,v) to refer to EQVE (v).

This construction could probably be extended to a symmetric situation with a pertur-
bation k., of k7. Note yet that it would require to investigate the spatial regularity of the
curve -y,. Hence, we will only consider kr = 1.

The first step is to study the problem with the degenerate kernel. When ¢ = 0, the
kernel kw, = ko ® k7 is constant and Wy is a 1-dimensional space whose elements w are all
constant. In this case, the expression of the data attachment term is particularly simple:

‘/’LU - :u’vt‘“‘%/V(’) - // ko([l?, y)d(ﬂv - ,Umtar)(x)d(ﬂv - UUtar)<y)
R2 xRR?

RS uvm><w>>2
-(/ 11 00 = s (0]t

= (((v) = £(v"™))?,

2

where /(v) measures the length of the curve generated by v

U(v) =2 /0 i v2(t)dt . (4.9)

Finally, the energy in this case is given by
A 1 ! 2 A tary)2
E*N0,v) = 3 v(t)“dt + 5(6(1}) — ("))~ (4.10)
0

The global minimizers have then an explicit expression given by the following propo-
sition.
Proposition 2.1. Assume that ¢y = %ﬁ:ir) > 2. Then v* € L%*([0,1],R) is a global
minimizer of E*(0,-) if and only if we have at almost all time v*(t)? = (3/4 — 1. In
particular, if v* € C([0,1],R) then v* is constant.

Proof. We have the next elementary lemma:

_AN(vtar)

Lemma 2.1. If by = 55— > 2, then ly minimizes

274 -1
S AL

P(0) 5

DN >

(i) - )2

on R. Moreover, if v € L?([0,1],R) satisfies v(t)> = ¢?/4 — 1 a.e. where { € R, then
EXN0,v) = P(¢).
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Define for ¢ > 2, the function p; : R — R by

2

pe(z) = S g\/z + 1.

2 2

Z =
z24+1

This function is even, tends to +o0o when |z| tends to +oo and py(z) =0 < z — %

0 (z=00r 2% = % — 1). Therefore, py admits two minimizers that satisfy

2 =07/4-1>0
pe(z) = —(£2/4+1)/2

It results that the minimum of
1
Ri(w) = [ pulolt))at
0

is reached at v* € L2([0,1],R) if and only if v*(¢)? = £2/4 — 1 a.e.
By construction, these minimizers are exactly the solutions of the constrained opti-
mization problem
ming2 [o(t)2dt
with £(v) = ¢

Indeed, £(v*) = 2f01 Vv*(t)2 4+ 1dt = ¢ and if there exists another v € L?([0,1],R) such
that ¢(v) = ¢ and fol v(t)2dt < fol v*(t)2dt then Ry(v) < Ry(v*) which is absurd.
Consequently, any minimizer v* € L%([0,1],R) of E*(0,-) satisfies v*(¢)2 = £3/4 — 1
2/4—1
— +
2

tar
%(ﬁ(vtar) —0)?, ie fy = 4)‘1651/\) > 2. Moreover, there exist exactly two continuous

minimizers in L?([0,1],R) N C([0, 1], R) given by v = \/f2/4 — 1 and v~ = —v™. O

a.e. where £o = £(v*) is defined on [2, +o00[ and must minimize £ — E*(0,v*) =

/X / : \ ¥
— /X N YN
\ ’
\ / ’
\ 7
N/

Yv-

Figure 4.1 — On the left. Solutions generated by the continuous minimizers v+ and v~.
Each color is associated to a length £y. The dot line is the image of the initial position,
i.e. the base of the horn. On the right. Solutions generated by a set of discontinuous
minimizers v* at fixed ¢y (and vt on the top).

Remark 2.2. Note that with the degenerate kernel kyy = 1, the energy has continuous
global minimizers. However, they are only two of an infinite number of solutions. Fig-
ure 4.1 illustrates on its left the two curves generated by v* and v~ for four given lengths
by. Figure 4.1 illustrates on its right few examples where €y is fized. The condition to be
a minimizer leads to a large set of different type of curves. Assume now that the target is
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some kind of sinusoidal curve. One can then easily see that from a spatial point of view,
the two curves v,+ and v,- are probably the less optimal solutions among the complete
set of solutions v,+. Hence, as soon as the kernel kyy is perturbed and allowed to capture
some spatial position of the target, one can expect that the new energies associated to v+
and v~ are higher than the energy of at least one other solution v*.

Hypothesis: There exists v*, such that for any € > 0 small enough,
EMe,vt) > EMe,v*) and E*e,v™) > EMe,v").

The next step to prove the theorem is to investigate the minimizers of v — E*(e,v)
where € > 0. The following proposition will establish that if some of these minimizers are
continuous, they necessary lie in a neighborhood of vt or v~ (the two continuous global
minimizers of £*(0,v)). Analyzing the variations of € — E*(e,v) will then indicate that
in some situations these minimizers cannot be global minimizers.

4)f§3_tir) > 2. If for any € > 0 small enough, there

exists a continuous global minimizer ve of E*(e,-), then

Proposition 2.2. Assume that fy =

lim (min(Jve — v oo, [ve = v |s0)) =0, (4.11)
e—0

where vt = \/43/4— 1 and v~ = —v™ are the only continuous global minimizers of
ENO0, ).

Proof. Denote wy(€,-) = Ky, (fy — fytar). Since ky is reduced to kg, the tangential
component of the varifold g, — pi,tar can be ignored and we have (see Remark 2.1)

anfer) = [ Rl = ) 0).

We then symmetrize w, as follows

1
wilem) = Y wile, Sia Z/ (€S (x) — y[)d(y — rorer) W)

=0

where S is the reflection across the vertical axis so that

1
o(Ew, (1t — pryear)) = /0 (6270 (r)) /o0 + Ldr .

Note that for any v € L?

lim w? (€, ) = 2((v) — £(v*™)) . (4.12)

e—0

One can easily prove that v — E*(e,v) is differentiable with respect to v and we have for
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any dv € L?

(22 o) = [ om0 (2o (B o~ )

OE

)
<av(€’“) | 5v> _ /Olv(t)dv(t)dt

1 ' 1)
o [ (oSt | 0. [ 85)ds)) VIED + T e 0) — 2,
0 t ’L)Q(t) + 1
where 520%9 (e,x) is the derivative of w,f with respect to z. Denote

0cal®) = [ (Busle () | 0.1) Vi) + 1,

so that

OFA w (€, %)
W(Ea U) = <1 + )\m> V4 Qey -

Note then that |aey|oo = O(€). Indeed,

1

1
Dl(ex) = €3S ( [ 25w - i esita) Py, - uvmxy))

=0

and since p’ is bounded on R we deduce that for any bounded neighborhood of (0,0) in
R+ x L2(]0, 1], R), we have [Gaw? (€,70)]0o = O(€) and

|te v]oo = O€) . (4.13)

Assume now that for any e > 0, there exists a continuous solution v, that minimizes
Ee,-). It must thus satisfy

(1 + AW> Ve + A, = 0 ace. (4.14)

Vvi+1

Hence, for e small enough, equations (4.14) and (4.13) imply that there exist M > 0 and
Be > 0 such that at almost any time ¢ € [0, 1] we have either

I(V02() + 1 — B < M2 /02(t) + 1 or  |uc(t)] < Me'/?. (4.15)

According to equation (4.12), we have more precisely 3. = 2X\(£(v'*¥) — £(v,)) + o(1).
To go further let us first show that the length of the curves (7¢)e>o converge.

Lemma 2.2. {(v,) tends to £y = £(vp).

Proof. We have

EXN0,ve) < E*e,ve) +0(1) < E*(e,v0) + o(1) < EX0,vp) + o(1) . (4.16)

Left and right inequalities result from the continuity of E*(-,v). Since v. minimizes
tar

E*(e,-), the central inequality is also true. Consider now £y = 4/\455\11 ) > 2 and the poly-
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nomial P(¢) = 1(£2/4—1)+ 3 (£(v**) — £)? from Lemma 2.1. We have then £(vg) = £y and

EXN0,v0) = P(£(vg)) = P(fy). Moreover, if for any e > 0, we define dve = \/l(vc)2/4 — 1,
then £(6ve) = £(ve) and E*(0,6v.) < E*(0,v.) (see proof of Proposition 2.1). It results
from equation (4.16) and Lemma 2.1 that

P(l(ve)) = E)‘(O, dve) < P(ly) + o(1).
At last, since £y minimizes P, we have
P(ly) < P(l(ve)) < P(ly) +0(1).

Hence, since P is continuous and limy., P = 400, we have ¢(v.) = fg + o(1) = £(vg) +
o(1). O

We will now prove that the first case of equation (4.15) is the only one true. Denote for
any € > 0, Ac = {t € [0,1] | |\/02(t) + 1 = Bc| < O(eY/?)\/v2(t) + 1} and £, = 2(Ag(Ac)Se +
(1 — Ar(A.)) (where A is the Lebesgue measure), then ¢, = £(v¢) + O(e'/?). Lemma 2.2
implies then that £ = £o+o0(1). Moreover, 3. = 2XA(£(v*) —£(ve))+0(1) and £(v*™) — by =
lp/(4X) so that the lemma also implies that 28, = ¢y + o(1). Finally, we deduce that
Ar(Ae) =14 o(1).

Therefore, there exists M’ > 0 such that for almost any ¢ € [0, 1],

0e(t)? = (£3/4 = 1)| < M'e.
Since v, is continuous and £y > 2, it follows that v, satisfies either
Ve = 1T oo < M'e o |ve =V |00 < Me.
And finally,

lim (min(|v6 — v+|oo, |ve — 'U_’oo)) =0.
e—0

O]

The final step to prove the theorem is to study the variations of E*(-,v) with respect
to € at a global minimizer v = v*. The aim is to show that the energy around v+ and v~
increases too fast, with respect to €, to allow any v in their neighborhood to be a global
minimizer of E*(e,-). As announced in Remark 2.2, the idea is to compare the geometric
properties of all the minimizers of E*(0,-). We will thus rewrite the gradient of this energy

via some geometric descriptors.

Definition 2.2. Denote x, the centroid of the curve v, defined by

o1
Xy = @ /R2 xdpy(x) (4.17)

and V (v) the associated variance defined by
V) = g [ 1o = ool (4.18)
T ) Jre vl GHul®). '
18
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Lemma 2.3. The function ¢ — E*(e,v) is derivable and for e = 0, we have

OEX

¢ 0v) =

- 2/(0) ((am —0(0)) (L)V () = L™V (")) + @) ror — m?) -

Proof. The proof depends neither on the dimension of the ambient space nor the dimension
of the varifolds. Let assume that the ambient space is R? and let us start to establish
with varifolds the algebraic formulae for the variance (V(X) = E[X?] — E[X]?). For any

v € L?, we have

_ / 2 — 2| 2dpao ()
R

= [ Jof? + 2 = 2o ) (o)
Rd

:/ |22 dpy () + |20|* — 2:%/ x dpy (x)
R4 R4

= [ ol dna(a) = e .
]Rd

Then, one can easily show that ¢ — E*(e, v) is derivable and that

0 = sy

¢ 0v) = »
/ el — 521y — frygan) (@) (10 — o) (3)
R4 x R4
(0) / / & — Py — o) () (p0 — frysor)(v)

4 // (22 + 92 — 20 5))d(pty — prgear) (20 — proion) ()
R4 xRd

O ((000) ~ 10) [Pl o) = ([ o, - uytm)(x))g) .

~~

b

A
2
A
2

0
Oe
0
o
A
5
A
27

The terms denoted by a and b can be rewritten as follows:

a = (o) =€) [ loPd(us = o))

= (t(w) — L™ (/ ofans) ~ [ el

— (f(v) o [(vtar V(’U) o g(vtar tar))
+£(v) \%!2 — L))o |* + (0" )|wyrar [ = L)L) | ytar |
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and
b= | [ wdtes = pa) o]

2
= ‘/ :cd,uv(:c)—/ xduvtar(w’)‘
R4 R4

= ‘E(v)xv — (V") yrar 2

= 0(v)@y | + LW )2 |z yar |2 — 20(0) (V) (2, Typar) -

Then a — b is equal to

a— b — ( ’U) tar))( (Utar)V(Utar))
— 0(v)e(v tar)(\xv\u \xvmy — 2y, Tyiar))

(E(vtar L(v) )( (v)V(v) —E(vtar)V(vtar)) —l(v)l(v tar |xv — Tytar 2
We retrieve the announced formula. O

We exhibit now a condition to the existence of a sequence (v, ), C L? such that ¢, — 0
and for any n > 0, v, is a continuous global minimizer of E*(ep,.).

ANO(vtar)
AT

en — 0 such that ve, is a continuous global minimizer of E*(e,,0) then for any global

Proposition 2.3. Assume that fy =

> 2. If there exists a decreasing sequence
minimizer v* of EX0,-), we have

A A A
min <8§ (0,v™), %(o,v )> < 88%(0 v*), (4.19)

where vt and v~ are the only two continuous global minimizers of EX(0,-) (they are
constant and defined by vt = \/3/4—1 and v~ = —v™).

Proof. Denote v, = ve,. According to Proposition 2.2, either v or v~ is an accumulation
point of (vy,)n. Assume that (v,), converges to v™ (one can extract a subsequence if
necessary) and consider v* a global minimizer of E*(0,-). The continuity of (e,v)
0.E*(e,v) on a neighborhood of (0,v") implies then that

EMen,v™) = EMen, vn) = EN0,v5) + €20:E(0,vn) + 0(en)
= EMN0,v,) + €,0.EMN0,0) 4 0(en)
> EM0,0%) + €,0.E0,v7) + o(ep)
> EMen, v*) — €n0.EMN0,0%) 4 €,0.E2(0,vF) + o(ey)

In fine, we have €, (9. E*(0,v") — 0.E*0,v*) + 0(1)) < 0 and we deduced as wanted that
0.EMN0,vT) < 0. EMN0,v*).
Likewise, if (v,), converges to v™, we get that 9.E*(0,v™) < 9. FE*(0,v*). O

In conclusion, one needs to find a target, a well-chosen A\ and v* a global minimizer
of E*(0,-) such that the inequality (4.19) is invalidated. It would consequently exist a
deleted neighborhood of € = 0 (meaning a neighborhood of € = 0 without 0) for which
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there exists no continuous global minimizer of E*(e,.). The sought-after vector fields v*a*
and v* must thus induce \ \
or OF
7(07 U*) < 7(07 Ua) ) (420)
Oe Oe

where v* € {v", v }. Let us recall that we chose a decreasing function p (which is the case
of most usual kernels used to model varifolds) so that p’(0) < 0. Since all optimal curves
have the same length, one can define ¢y = ¢(v*) = £(v®) and according to Proposition 2.3,
this inequality (4.20) is equivalent to

(L") = o)V (0*) + L(0"™) @ ytar — 0 |* < (L(0") = Lo) V (0Y) + £(0") | ptar — Ty |2

ANE(vtor)
1
fine, the counterexample must satisfy

> 2 then () = 4);&3}:?) and £(v") — by =1/(4X+1). In

Moreover, if we can have

V(v®)

Dol + 00" ) |z ptar — Ty |? . (4.21)

+ E(Utar”:ﬂvtar - l’v* |2 <

Let us construct it explicitly. Consider for example v*"(t) = al;<; /2 With a > 0. The
target curve cytar is then given by t — (¢,a(1/2—1)") and we have £(v**") = (1++va2 + 1),

al+1 a
e 0,77> 4.22
vor = Ty (4.22)

Tyo = (0, ‘;‘\/f - 1) , (4.23)

AN0(v'aT) > 9

and

where we assume that A is large enough so that £ =

40+1

Figure 4.2 — The target ¢, is the blue curve. The red curve is c,+ where v is the
positive unique global continuous minimizer of E*(0,v). The pink curve belongs to the
set of curves generated by the v®*. The three dots in the middle are the respective centroid
of the curves. One can see on this figure that z2 — xztar is strictly positive and it increases
when s tends to 0 (the pink dot tends to the red dot when s tends to 0).

It results that the optimal continuous solution is v® = v*. Let us introduce a set of
vector fields (v**)s>0 defined by

’Us’*(t) = 52/4 — 1(1t<172s + sign(t — (1 — S))ltzlfgs) .
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We have v = v%* and for any s > 0, (v5*)? + 1 = ¢2/4 so that v** is a global minimizer
of E*(0,-) that is not continuous when s > 0. In order to prove inequality (4.21), we just
have to show that the derivative with respect to s of

V(v5*
e

is strictly negative on a neighborhood of s = 0%.
Denote x5 = x4s+. We have

Ty = (0, (s2+ (1—25)(1 — 25)/2) \/m)
(O (35 — 25+ 2)\/62/4 )

2)|S:0 < 0. It follows that d%(v(vs’*))\s:o <0.
dﬁ |5=0 < 0. At last, we need to

show that there exist @ and A such that x — thar > 0. Assume then that X is close to +o00

One can easily show that 2 (|z,wr — ys-

If we denote 25 = (z},22) then s — z}

2
so that £ = £(v*®") + o(1). Then since the sign of g(a) = \/£?/4—1/2 — ﬁ a/4d =

22 — 2., + o(1) where £ = (1 + Va? + 1) is strictly p081tlve when a > 0 (see Figure 4.2),
we deduce the final result.

Value of x2—xZ

o 10 20 30 ao 50 60 70 80
a

[0}
¢}
n
o]
¢}

Figure 4.3 — Plot of the function g

In conclusion, we showed that for any a > 0, if A is large enough and € > 0 small
enough, the energy E*(e,.) admits no global minimizer in C([0,1],R) N L2([0, 1], R). Let
us remark additionally that this is not a consequence of the discontinuity of v***. Indeed,

tar

one can easily replace v'* by an approximation in C* with respect to the L?-norm and

deduce the same result.

Remark 2.3. Note that this counterexample could not be applied to the currents. Indeed,
the choice of the kernel kr is not open and the canceling effect of this kernel on opposite
normal vectors would reduce the length of the set of curves generated by the v®* (the pink
curve displayed in Figure 4.2).

2.3 Extension to the 3D case
As in the 2D case, we attempt now to show the following theorem for surfaces in R3.

Theorem 2.2. There exist v € L2([0,1],R), A > 0 and W such that E{}, has no time-
continuous global minimizer.
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The main ideas of the proof remain the same. We consider as in Definition 2.1 a
similar set of RKHS W, whose kernel is given by ke(z,y) = p(elz — y|3s) where p is
positive, p(0) = 1 and p/(0) < 0. Proposition 2.4 will establish that EQVO admits again
exactly two continuous global minimizers v and v~ among an infinite number of global
minimizers. Proposition 2.5 will then show that the continuous solutions relative to € > 0
lie necessary in a neighborhood of v+ or v~. At last, we will present a situation where
the continuity is a constraint too restrictive as there exist global minimizers of Eﬁ‘VO more
stable with respect to € than v+ and v~. In other words, if the energy increases more slowly
around a discontinuous minimizer v* than around v and v~ the existence of continuous
global minimizers of EQVE for € in a deleted neighborhood of 0 is excluded. As before,
this will require to compare the gradients of Ea‘VO with respect to € at the minimizers of
v = EIéVo (v). We will denote again E*(e, -) = EI//\VG'

The coordinate space X is now the unit disc, equipped with the polar coordinate
system. Points at their initial position are given by qo(6,7) = (rcos@,rsinf,0). The birth
tag 7 is equal to the radius 7(6,r) = r. The growth dynamic is as before limited to vertical
translations:

(S LQ([Oa 1]7R)7 qt(67r) = (Ouoavt)]]-‘rﬁt .

The energy only refers to the final state of the shape. Thus, defining ~,(0,7) = ¢1(6,r),
it follows that any “vector field” v € L?(]0,1],R) generates a surface described by the
parametric function

1
Yo(0,7) = (rcos @, rsin 9,/ vs ds) . (4.24)

Let Jv, be the Jacobian determinant of ~,,

Ogvu(0,7) = (—rsinb,rcosb,0), Jv(0,7) = [0y (0,7) A Oryp(6,7)]
Oryu(0,1) = (cosb,sinb, —v,.) , Jv(0,7) = Iy (r) =ry/1+ 02,

The linear form pu, € W’ representing the horn ~, is given for any w € W by

27 1
o) = | e V) (V) = [ [ 0.0, T, o)/ T+ o drs,
R3x G2 (R3) o Jo

where 17, 5 )70 is tangent plane at Yu(0,7). The energy functions to minimize, associated
to the spaces W, are unchanged

A 1ty A 2
E (e,v):§ ; v} dt"‘i‘/‘vt‘“—“v‘wg‘

Consider now the case ¢ = 0. The kernel of Wy is the constant unit kernel. By analogy
with the 2D case, the area of the surface ~, is denoted ¢(v) and we have

2 1
l(v) = Wvﬁ/v(g = /0 /0 rv/1 4 v(r)?drdf (4.25)
P /1 /T4 o2 dr. (4.26)
0
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Remark 2.4. Note that for any v € L*([0,1],V), we have £(v) > 7. The growth process
can only expand the initial unit disc.

In the degenerate situation (for e = 0 and ky, = 1) the energy is thus given by

A

1
B0, v) = % /0 ot di 45 (00™) — )

The next proposition will establish the minimizers of this energy. For this purpose,
given any constant ¢ > 1, we will say that v € L?([0, 1], V) satisfies the (P.) property if

for almost any time ¢ € [0, 1],

P, ift<i
( ) 7}2 (t) _ 0 , lf t ~ C'
(ct)* —1 otherwise.

Proposition 2.4. For any A > 0, there exists a unique constant co > 1 such that:
v* € L2([0,1],R) is a global minimizer of E*0,-) if and only if it satisfies the (Pe,)
property.

Additionally, co = 1 if and only if £(v*™) < 7w+ 1/(27\). In this last case, v* = 0 is
the unique global minimizer of EX0,-).

Proof. The proof is similar as the one of Proposition 2.1. Introduce for ¢ > 1

2
pe(zt) = 5 —ctv 22 +1,

defined on R x [0, 1]. Given ¢ € [0, 1], the function p.(z,t) reaches its minimum at z = 0
if t <1andat z.==4\/(ct)? — 1 otherwise. Thus v € L*([0, 1], R) minimizes

1 1 c
/0 pe(0(1), 1) dt:;/o ot dt — - t(0)

if and only if it satisfies the (P,.) property. Now, if v, satisfies (P,) then

l(ve) =27 /01 t\/1 4 v2(t) dt

1

— o (/Octdwrft\/@dt)

Denote £ : [1,4+00[— R the function defined by

N 2 1
feoy=Tesr T

— 4.2
3 3c? (4.27)

and remark that £ is a bijection from [1, 400 to [r, +00[. (P,) characterizes the minimizers
of the constrained optimization problem
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minge [vF dt
with £(v) = ¢(c)

Therefore, (P.) also determines exactly the minimizers of £*(0,-) when ¢ minimizes

g(C) = EA(O,’UC) — ;/11(615)2 —1dt+ 7(@(6) - E(Utar))2

where C' is the constant %E(vtar)z -1
Since the uniqueness of c¢ is required, let us study the variations of this function. We have

o= (33 (5))e- (3 (5) ) -3 () & oaom (-

and

. 1 om\ 2 1 a/2r\?\ 1 _A/2r\?1 2T arn 1
=|Z+X[= 2(=+2 (=) | 455 () = =3 v@™)= .
g(e) <3+ 5) )25 3\F) Jatoals) a5 a
4 1

For ¢ > 1, ¢ = 0 is thus equivalent to h(c) = 0 where h(c) = ¢*¢”(c). The derivative of h
is given by

, 1 om\ 2 1 A /2m\? A f2m\?% 1
h(c)—4<3+/\<3> >c3+2<3+2 <3> ) - 103 <3> >
=cQ(),
where Q(X) =4 (54 (3)") X2 +2 (5 + 3 (5)*) x - 103 (3)*.

Therefore, since @ is strictly increasing on [1,+oo[ and Q(1) = 2, ¥ > 0 and h is
strictly increasing on [1,+oo[. Moreover, £(v'®) > 7 so there exists s > 1 such that
{(v**) = sm. Then h(1) = 1 +272A(1 — 5) and (1) < 0 is equivalent to s > 14 1/(27%)\).
Under this condition, g” has only one zero and ¢’ is decreasing then increasing. Otherwise,
g is strictly increasing.

Finally, since ¢’(1) = 0, g has always only one global minimum on [1, +oo[. Addition-
ally, if £(v'*¥) < 7 + 1/(27)), the minimizer is ¢ = 1 and corresponds to the solution
v* = 0. Otherwise, ¢y > 1. ]
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di t = Jo(t)]
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.4 — Plot of the norm of any optimal vector field. The (P.) condition on this
example is defined with ¢ = 4.5 so that ¢(v) ~ 3w. The area of the surface has tripled
with respect to its initial position.

Remark 2.5. As in the 2D case, the energy associated to the degenerate kernel admits
two continuous global minimizers

() = 1V (cot)? — 1 and v = —vt. (4.28)
€0

They are again surrounded by an infinite number of discontinuous global minimizers. How-
ever, these two solutions are not constant anymore. Indeed, in the 2D case, a constant
vertical translation creates at all time the same amount of new matter measured by the
length of the curve just created above the base between two times t and t + 0t. In the 3D
case, the surface created by a constant vertical translation between two times t and t + 6t
1s stmilar to a cylinder whose radius increases with t. The penalization term on v tends
thus to accelerate the creation over time (see the new cost functions in Chapter 2 and 5).

As before, we will now follow the continuous global minimizers of v + E*(e,v) when
€ tends to 0 and show that they belong to a neighborhood of v+ or v~

Proposition 2.5. Assume that A > 0, {(v**) > m + 1/(27\) and that for ¢ > 0 small
enough, there exists a global continuous minimum ve of E*(e,-). Then

. . _ + _ — —
ll_rf(l)(nnnﬂv6 0 ooy [ve =17 [o)) =0 (4.29)

where vt and v~ are the only continuous global minimizers of E*(0,).
Proof. We first show the convergence of the areas.

Lemma 2.4. Denote ly = {(co) = £(vg), then €(v.) tends to (.

Proof. Consider the function ¢ defined by equation (4.27). Recall that ? is a bijection
from [1,+o00[ to [m, +0o[ and as we said in Remark 2.4, that for any v € L%, ¢(v) > .
Therefore, for any € > 0, there exists a unique ¢, > 1 such that £(v.) = £(c.). Let us show
that

EXN0,v) < EMe,ve) 4 o(1) < Ee, vp) + 0(1) < EN0,v0) + o(1) .
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Left and right inequalities result from the continuity of E*(-,v). Since v. minimizes
E)‘( -), the central inequality is also true. Moreover, Proposition 2.4 ensures that for
any v., that satisfies (P.. ), we also have E*(0,v.,) < E*(0,v.). We introduced in the
proof of Proposition 2.4 a function g that satisfies for any € > 0, g(c.) = E0,ve,).
Moreover, cg is the unique minimum of g. It results that

9(co) < g(ce) < g(co) +o(1).

Hence, g(ce) tends to g(co) and since ¢ is continuous and increases around 400, ¢ tends
to ¢o. The continuity of ¢ ensures at last that /(c.) tends to #(co) so that £(v¢) converges
as announced to £y = £(co) = £(vo). O

For any € > 0, v is a zero of the gradient with respect to v of the energy
1t A
EMe,v) = 2/0 v? dt + 5 |ty — /,Lvtar‘%/[/el .
Consider wy (€, ) = K. (fty — pytar) given for any z € R by
nlera) = Kur = o)) = [ plele =9I2) dlg = i) 9),
so that
2 pl
oo (K. (fy — pytar)) = / / w(e, v (0,7))rv/1 4+ v2drdf .
o Jo

We have then for any variation dv € L?([0, 1], R)

1
<3UE)\(5,U) ‘ 57)) = / vy 6vp dt + N(Oupty | 00) (Kw, (po — fytar))
0

1
= / V¢ (51),5 dt
0

morl ! U0V,
3 [ ] (a0 0.0, [ G0,d) )T e l0,7) 22 v,
0 0 r

+ vy
with dawy (€, 2) = 2€ [pa p'(e|lz — y|*)(x — y) d(py — frytar) (y). Denote at last
2
Zew (T) = / va(g ’Yv(97 T)) o
0
2w s
Qen(s) = )\/ / (am(e,%(o,r)) | (0,0, 1))7"\/1 +v2drdf .
o Jo
The gradient can thus be written

z
VUEA(E,’U) = (]_ + )\\/1:_#1}2) v + aﬁ’v .
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We have as before lim._,gwy (¢, ) = £(v) — £(v*") and therefore
lim z, »(t) = —27t(£(v"™) — £(v)) .
e—0

Moreover, on any bounded neighborhood of (0, 0) of R* x L2([0, 1], V'), 7, is bounded, dj,
and dpi,tar are finite, so that with p’ bounded we have

|02wy (€, 70)] o = O(e) and e ], = O(e) .

Now, a continuous minimizers of E*(e,-) must satisfy

1+ )\72671}E Ve + e, = 0. (4.30)
1+ v?

Hence, there exist for € > 0 small enough M > 0 and B > 0 such that we have either
() [VI+ o7 - 1.

More precisely, denote By = 2w A(£(v'?) — £p) then Lemma 2.4 implies that 3. = 8o+ o(1).
Note that if Sy < 0, then v, tends to 0 so that ¢(v.) tends to 7 and Lemma 2.4 implies that
lo = . It results that if By < 0 then £(v*") < £y = 7. Hence, since £(v*) > 7+ 1/(27N),
Proposition 2.4 ensures that £y > 7 so that v, does not tend to 0 and By > O.

Denote as before for any € > 0, Ac = {t € [0,1] | |\/v2(t) + 1 —tB| < Me%\/vg(t) +1}.
Ift € A, then

<Mer/I+v(t)2  or (i) |oe(t)| < Me2.

1= Mez < (1 Me2)/T+02(8) < 8. < .,

1
so that A, C [1_2{ €2 1]. Consequently, v, tends uniformly to 0 on [0, %[ and since v, is

continuous, this is also true on [0, %]
Now, if t € A, is large enough, v2(¢) admits a lower bound strictly positive. This will
allow us to show that if t € A, then [t,1] C A.. For any t € A,

t8. < (1+ Me2)\/T + 2. (4.31)

Consider a small & > 0 and let us show that for € > 0 small enough, I, =] %(H—a), 1] C A..
There exists 17 > 0 such that for any € < 7, we have

1. for any t € I, tBe > 1+ a/2,
2. 14+ Me2 < (1+a/2)(1+a/3)"2 and Mez < a/d.
Equation (4.31) ensures then that for any € < n, if t € I, N A, then

HOESS (4.32)
Conversely, if ¢ € I, N AS where A = [0, 1] \ A, then
HOESS (4.33)

Since v, is continuous, either I, N A or I, N A¢ is empty. Since £(v,) tends to £y > m, it
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results that for o and 7 small enough, for any € <, I, z]%(l +a),1] C A..

Finally, v, converges uniformly to 0 on [0, %] and /14 v2 converges uniformly to
t — Bot on [B%’ 1]. In other words, this uniform limit satisfies the (P.) property for ¢ = fy.
Additionally, equation (4.30) says that any minimizer of E*(0,-) must also satisfy (P.).
Proposition 2.4 ensures the uniqueness of this constant ¢ when (P.) characterizes the
minimizers of E*(0,-). Consider then v+ and v~ the two continuous global minimizers of
E0,-). Since v, is continuous, we just prove that there exists M’ > 0 such that for any
e>0

Ve =0T oo < Me  or  |ve—vT |00 < Me.

O]

As before, we will now show that if such a sequence exists, then the energy, considered
on a neighborhood of € = 07, must remain minimal on a neighborhood in L? of the limit
vT or v~ of the sequence (or both if the sequence oscillates).

Proposition 2.6. If there exists a decreasing sequence €, — 0 such that v, is a continuous
global minimizers of EM(e,,-) then for any global minimizers v* of EX0,-), we have

min (9. E*(0,v7), 0:E*(0,v7)) < 0.E(0,v%). (4.34)

Proof. According to Proposition 2.5, there exists a subsquence of (ve, ), which converges
either to v™ or v~. The proof of Proposition 2.3 can then be applied here. O

The final step is to construct the counterexample for which inequality (4.34) does not
occur. Recall the geometric expression of 9.FE* given by Lemma 2.3 :

DeEN0,v) = Ap'(0) ((ﬁ(vtar) — () (L™ (") = L(0)V (v)) = L(0)€(V"™)| @ prar — %‘2) ,
where

1 1
$U:M/xduv($) V(U)ZM/’$—$u|2dliv($)-
Since all global minimizers of E*(0,-) have the same length, denote £y = £(v*) = £(vT)
and since p’(0) < 0, a counterexample should thus lead to a couple (v*,v") satisfying:

V(%) [007) — o] + 60" |z par — e [2 < V(1) [001) = £o] + L(0") [2year — 25|
(4.35)

We exclude the negative continuous solution v~ as it is easy to show that for a target
above the plane Z = 0, this solution will not be approached by any global minimizer
of E} for € > 0. Moreover, we have explicitly V (vT) = V(v™) and if yr C (Z > 0),
| tar — Tyt | < |Tytar — Ty—|.

Proposition 2.7. There ezists a target such that for \ large enough inequality (4.35)

OCCUurs.

As we saw earlier, the minimization of E*(0,-) admits either a unique solution (equal
to 0) or an infinite number of solutions. In this last case, there are only two continuous
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solutions. One can observe that these solutions are those which, at a fixed area, produce the
most widely deployed surface. We will show with the following example that this property
can be very restrictive. The partial derivative of E* with respect to € at (0,v), where v
is a minimum, measures the stability of this minimum with respect to small variations
of €. Intuitively, the best candidate among this infinite number of solutions, is the one
which generates the surface that is geometrically the closest to the target. The previous
expression gives an explicit description of this closeness according to the attachment term
we chose. It requires a small variance and a centroid close the target’s one. Here is then
a possible example.

The idea is to create a compact accordion. It will allow to create a surface with a large
area that yet remains close to the horizontal plane. Consider a target generated by one of
the following vector fields

V() = nhs,(t) with 0,1] — {-1,1}
t = M=o = g1z

with n € N, h €]0,1] a scale constant. Figure 4.5 displays an example for n = 21 and
h=0.1.

1.8

05 0.06

05 004

A 4 0.03
I 0.02
0.01
at
o

a 02 04 06 08 1 1) 02 04 06 0& 1

Figure 4.5 — From left to right: the target, the vector field which generates it from the unit
disc with vertical translations, a radial cut of the surface (plot of the vertical component

Zytar (T)).

Let us recall that

1
Y(0,7) = (rcos @, rsin 9,/ vg ds) .

Denote 2, the third component of . It satisfies for v = v2*, for any r € [0,1], |zytar ()] =
]frl viAt(s)ds| < h. Moreover, ((vi") = 2m\/1 + (nh)?. Therefore, no matter the choice
of n, the target shape remains concentrated in D x [—h,+h] (where D is the unit disc).

Yet, one can fix its area as large as necessary by increasing n.

The solutions v* that minimize E*(0,-) are characterized by the (P.) property with a
optimal constant ¢ to define and such that ¢(v*) = ¢(c) denoted again ¢y. One can easily
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show that if A tends to +oo, £y tends to £(v*). For X large enough, we have thus

to = i(c) = %”H T o /T B = (')

3c2

If hn is large enough, one can do the approximation ¢ = 3hn.
Let us compare v and v}, defined for any ¢ € [0, 1] by
v () =11/ (ct)? — 1 and vi(t) = sp (v (1),
where n is given by the choice of the target. They both satisfy (P.). These two vector
fields are displayed in Figure 4.7 and the surfaces that they generate are presented in
Figure 4.6. When n increases, the continuous solution grows in space when the other one
remains concentrated since |zyx (r)] < 1v/c2 —1 ~ 3h.

A 4

Figure 4.6 — Surfaces generated from two solutions for the matching of the surface displayed
in Figure 4.5. On the left: with the discontinuous vector field s,v™, on the right: with
the continuous vector field v™

w
w

]
5]

o
o

ra
#
fa

Figure 4.7 — On the left: v} = s,v™, on the right: v™.

More precisely, for any surface generated by v € L?, the centroid belongs to the vertical
axis through the origin. When z,+ will move upwards when n increase, we have conversely
for any n

|Zytar | < max |zyar (1) <A and  [@yy| < max |2y (1) < 3R
T T
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Likewise, for any v € L?

Vo) = o5 [ o= o)

—L rcosf)? rsin€)? + |z, (r) — xp|? T
_E(v)/( 0)% + ( 0)° + |2u(1) — 20 |” dp ()

_ Lt 1 e
_f(v)3+£(v)/|v() ol dpy () -

It follows that

2T 2

% 1
V)< gr+0mF and V) = o [ 1) = P dis (@),

In fine, if nh is fixed, V(v") and |z, — 2,4+ |* are fixed and strictly positive. Yet in
the same time, if A tends to 0, V(v}) can be reduced to the minimal variance over the
vector fields that satisfy (P) and [z — Zyx|? tends to 0. Therefore, the inequality

V(o) [0(0"™) — bo] + (™) |z yar — T2 < V(vT) [6(0"™) — o] + £(0"™)|mytar — Tyt |?

can be satisfied.

In conclusion, note that v* = s,v" might not be the best candidate to minimize
O.E*(e,-) on a neighborhood of € = 0, but it was easy to demonstrate that it is strictly
better than vt for n and A large enough. As in the 2D case, one could generate similar
surfaces with a smooth function s,. This counterexample is not built on the discontinuity
of vtar,

At last, as pointed in Remark 2.5, this 3D example highlights a property of the optimal
vector field that did not appear in the 2D case. With the growth dynamic, the norm of
the optimal vector field tends to increase over time.

3 Foliation on the biological coordinate system

The development of a time-varying shape is modeled by a mapping between the bio-
logical coordinate system (X, 7) and the ambient space R?. In order to study the growth
dynamic in Chapter 3, we assumed that the coordinate space X has a canonical decompo-
sition in a direct product for which the birth tag 7 is the projection on the first coordinate.
This setting reflects a regularity of the birth tag that plays a role in the evolution of an
optimal vector field in the registration problem.

The coordinate space X is then not a regular manifold. We have thus to investigate
the boundary of X and the profile of the birth tag 7 : X — [0, 1] that will give to X a
structure of foliated manifold.

We will assume that X is a k-dimensional manifold with corners. We start with
some properties of manifolds with corners. For more details, we refer to [13, 35].
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3.1 Manifolds with corners

An orthant of R? is a subset {(x1,...,24) € R?|ex; >0 for any 4 € {1,...,d}} where
€ € {—1,1}. A semi-orthant is a subset of R? defined by specifying the signs of some of
the coordinates. The simplest examples of semi-orthant are the sets R P x Rﬁ where
pe{0,...,d}.

A k-dimensional manifold with corners extends the definition of regular manifolds (in
the usual sense) to allow the shape to locally resemble a semi-orthant of R¥. At any

xo € X, there exists a chart (U, )

k— P
U — R*P x RE. (436
X — (xlv'--,xk—paylv"'ayp)v
centered at xg, i.e. ¥ (xg) = (0,---,0) between a open set U 5 xg and a semi-orthant

RE—P x RE for an integer p = p(xo) > 0 called the depth of z¢. For a regular manifold,
p is always null. When p(x) > 0, x belongs to the boundary 90X of X. This boundary is
a (k-1)-dimensional manifold with corners. If p takes values only in {0,1} on X, then X
is called a manifold with boundary and 0X is a regular manifold. See Figure 4.8 for two
examples of compact manifolds with corners. We will assume that the transition maps
are of class C*. The depth can be seen as a function p : X — {0,...,k} that induces a
natural stratification of X. Given any x € X, there exists a maximal (k-p(z))-dimensional
connected regular manifold that contains z, denoted M,. These sets are the connected
components of the inverse images of p. X is the disjoint union of these sets and 90X is the
disjoint union of all the sets of non maximal dimension.

Example 3.1. Consider x a point of the full cube. If p(x) =0, M, = X is the interior
of the cube. If p(x) = 1, respectively p(x) = 2, M, is the face, respectively the edge, of
the cube that contains x. At last, if p(x) = 3, My = {x} is a vertex.

Figure 4.8 — Examples of manifolds with corners for k¥ = 3. The colors of the points
correspond to the value of the depth: cyan when p = 1, blue when p = 2, red when p = 3.
The depth of any point in the interior of the shape is null. The full cube acts as the
reference since for any manifold of dimension 3, there exists a local chart to map any of
its point to a point of the cube with equal depth.

For any x € X, the tangent space 1, X is generated by <8%1’ s Mf 78%1’ . ,a%p>
—P
for the local coordinates associated to v, with p = p(x), and T, M, is the (k-p)-dimensional
subspace of T, X generated by (8%1’ e awf )
—-Pp

Example 3.2. When p(z) =0, TuM, = T, X. Consider now the manifolds X given in
Figure 4.8. When p(x) = 1, = belongs locally to a regular surface painted in cyan and
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T, M, is the tangent plane to this surface. When p(x) = 2, x belongs locally to a regular
curve painted in blue and T, M, is the tangent line to this curve. When p(x) = 3, the
depth is maximal and dim T, M, = 0.

The tangent space at any point z of the cube is identified to R3. Yet, when z belongs to
the boundary, one might want to reduced this space to the minimal semi-orthant through
x that encompasses the cube. More precisely, when p(z) > 0, the tangent space T, X is
divided in two disjoint sets

p
THX =TyM, & @]Rqaa T, X =T X\ TuM, . (4.37)
- Yj
=1
k—p P
G, 5,
- MR R, -2 4.38

The vectors of the first set are called inward pointing tangent vectors. Given a vector field
uw on X with values in T X, this definition allows to follow any path in X directed by u
and be ensured that it does not end outside X (one could then extend the definition of
the exponential map for Riemannian manifolds as a map between T, X and X).

Proposition 3.1. Consider u a C* wvector field on X. For any xg € X, there exist € > 0
and a smooth curve 7y : I — X such that v(0) = xo and ¥(t) = u(v(t)) where I 0 is an
interval defined as follows:

1. if u(zo) € Tpy My, and if there exists U C X a neighborhood of xo such that for any
zeU, u(z) € Tf X, then I. =] — €, €,

2. if u(xo) € TF X, I = [0, €[,
3. if u(wg) € T, X, I =] — €,0].

Moreover, «y locally lies in My, if and only if there exists U C X a neighborhood of xg
such that for any x € U N My, u(x) € TyMy,.

Proof. Denote p = p(xg). The existence of v in a local chart (U, ) is a standard
Cauchy-Lipschitz problem in R* but we need to verify the stability of the solution in
RE—P x RY . Denote (z1,...,Zk—p,Y1,---,¥k) the coordinates associated to (U,1)). The
local image v : ¥(U) C RF 7P x RY — R¥ of u is given by v(T1,...,Tk_p, Y1, -, Yk) =
(al, .. ak »B1,...,0p) where o and 3 are given by the unique decomposition u(z) =
Zl faz o T Z -1 Bjaiyj' One can extend v to a C* vector field on R* and deduce the
existence of a solution v that satisfies ¥ = v o ~.

When p =0, TpyMyy = Tt X = Ty X ~ ~ R¥ and 1. is immediate. Otherwise, denote
V =9¢(U) C R*P? xRE and let us prove in each case that y(I.) C V.

1. The conditions of the first point imply that §(0) = v(0) € R¥~P and that we have
on U\ {0} small enough, 8; > 0. There exists thus € > 0 such that y(] —€,€[) C V.

2. u(zg) € T X is equivalent to 8; > 0 and thus §(0) = v(0) € RF"P x RE. The
integration forward is thus stable and there exists € > 0 such that v([0,¢[) C V.

3. Conversely, u(zo) € T, X is equivalent to 8; < 0. It follows that —¥(0) = —v(0) €
RF=P x RE . The 1ntegrat10n backward is thus stable.
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Regarding the last assertion the necessary condition is immediate. The sufficient condition
is equivalent to the case p = 0. One can consider the restriction of the chart to UNM,. [

As we saw previously, the boundary of X is a disjoint union of regular submanifolds
of X of maximal dimension. A natural question is to know if the solutions generated by
u are stable with respect to M,,. For example, if z¢ belongs to an edge of the cube,
one might want v to be included in this edge. The last assertion of Proposition 3.1 gives
the condition to this stability. Note that when p(xz¢) = k, My, is reduced to {zo} so
that any path in M_, is constant equal to xg. It brings conversely the question to move
from a regular submanifold to another one. When p(z) > 0, M, is the boundary of a
larger manifold and any point x € M, can then jump into it so that its depth decreases.
One can easily show by its definition that locally the depth along a path cannot increase.
According to the proposition, as opposed to the necessary and sufficient condition for the
stability, if u(zo) € T,f X \ Ty My, the path v exits My, and for € > 0 small enough, we
have for any ¢ €]0, €[, p(7(t)) < p(x¢). More precisely, with the notation of the proposition
ifu(z) = E§:1 Bja%j where 8 admits exactly n non zero coordinates then u(x) is a tangent
vector pointing toward an adjacent (k-p+n)-dimensional submanifold M,,.

Consider for example a corner x of the cube. This corner is at the intersection of p = 3

half hyperplanes. It can locally jump into one of the ( p ) =3 edges (n=1), ( p ) =3
n n
faces (n = 2) or the interior of the cube (n = 3).
We will be especially interesting in the case n = 1. It involves then the set of tangent

vectors

p
)
(T.X) = R —. (4.39)
i O

3.2 Regularity of the birth tag and foliation

In Chapter 3, we assumed that X could be written as a direct product space X =
[0,1] x Xy for which the birth tag 7 : X — [0, 1] would be given by the projection on
the first coordinate. When a horn is modeled as a surface, the coordinate space is fixed
to X = [0,1] x St. All the level sets of 7 are diffeomorphic to a circle. In this example,
Xo = S! is a regular manifold but X is a manifold with boundary. Likewise, when the
horn is full, X = [0,1] x D!, where D! denotes the unit disc of R? and the level sets are
diffeomorphic to a disc. In this example Xy = D! is a manifold with boundary and X is
a manifold with corners. The maximal depth is 2 and the respective points belong to the
boundary of X = 771({0}) = {0} x D' and X33 = 7~ ({1}). We highlight one last
interesting example that could be pertinent to study the atrophy of subcortical structures
in the brain due to degenerative diseases (see for example [56]). These shapes could be
modeled by an onion structure X = [0,1] x S? to analyze thickness data.

We will show, now, that this canonical decomposition of X as a direct product of
manifolds is not reductive since more general situations can be reduced to this case. We
assume that X is a k-dimensional manifold with corners and that 7 is a surjective
submersion of class C*°, meaning that d7(z) is surjective for any x € X or equivalently
that 7 has no critical points. We will see that, under some additional regularity conditions,
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this function induces a foliation on the manifold X. This means that it locally decomposes
X as a union of parallel submanifolds of smaller dimension. These submanifolds are called
the leaves of the foliation. For more details on foliated manifolds, see [35, 24].

We denote for any ¢ € [0, 1] the so-called leaf

X =7'({t}), (4.40)

which is the subset of X whose points are called new points of X at time t. Since 7 is
surjective, X is the disjoint union of the leaves Xy, for t € [0, 1]. The sets Xy for ¢ €]0,1]
are called inner leaves. We will call Xy and Xyqy outer leaves of X. They belong to the
boundary of X.

Lemma 3.1. (X U Xyyy) COX.

Proof. If x € X; and x ¢ 0X then there exists a chart (U, ) centered on z to an open
set V 3 0 of R¥. Moreover, 7 0 ¢~! is maximal at 0 so that  is a critical point of 7. Yet,
7 is a submersion which leads to a contradiction. Likewise, X5y C 0X. O

Remark 3.1. The leaves Xy are compact manifolds with corners. For any t € [0, 1]
and any v € Xy, ToXyyy C ker(dr(x)). Although 7 is a submersion, the dimensions of
these leaves can vary from 0 to k — 1. Indeed, consider a chart (U,1)) centered at x € 0X
to RFP x RY . The tangent space of a level set 7= Yx) is included in an hyperplane of
RF.  Its intersection with RF7P x ]R]Jyr is then a n-dimensional semi-orthant where n €
{k —p,....,k —1}. The most degenerated situation occurs when p = k and for example
ker(d(T 0o p™1)(0)) C (1,...,1)%. Conversely, if there exists x € Xy such that p(z) = 0,
then dimX g =k — 1.

For example, consider X a square or a cube that lies on a corner at the origin so that
one of its diagonal follows the vertical axis and consider T the projection on this diagonal.
Then Xyoy and X1y are the south corner and north corner.

We will then assume that:

i) if x € 0X \ (X{oy U X{1}) then T, M, + ker(dr(z)) = T, X ,
(HT) (4.41)
ii) for i = 0,1 if z € Xy, then ker(dr(v)) =T, X;.

Remark 3.2. Since 7 is a submersion, ker(dr(x)) is a (k-1)-dimensional space of TpX .
The first condition of (4.41) implies that for any x € Xy where t €]0,1], if x € 90X, then
TpoMy ¢ ker(dr(x)) and there exists u € Ty M, such that dr(x) - u # 0.

The (H™) conditions is intended to ensure that all the leaves are diffeomorphic as it will
be proved in the next proposition. The first point of (4.41) is a transversality condition.
It implies that the intersection of an inner leaf Xy, and the boundary 90X is a (k-2)-
dimensional submanifold with corners. The second point partially answers to the issues
raised by Remark 3.1. The ends Xg, and Xy are (k-1)-dimensional manifolds.

We can investigate furthermore the decomposition of X in leaves with the ideas of the
Morse theory. A Morse function is a smooth function f : M — R on a compact manifold
that admits no degenerate critical points. The time marker 7, that we assumed to be a
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submersion, will play the role of the Morse function. A fundamental theorem of the Morse
theory says that

Theorem 3.1. If f is a smooth real-valued function on a manifold M such that f~'([a,b]),
with a < b, is compact, and there are no critical values between a and b. Then M, =

f~*({a}) is diffeomorphic to My = f~*({b}).
We will prove a similar result in the more general case of a manifold with corners:

Proposition 3.2. Under the (H™) conditions given by (4.41), there exists a submersion
m: X — Xqy of class C*° such that for any t € [0,1], TX(, is a C* diffeomorphism
between Xy and Xg1y. Moreover, x w (7(x),7(x)) is a C* diffeomorphism between
X and the product manifold [0,1] x Xy1y. The image of the time marker T on this last
manifold is the projection on the first coordinate.

Our coordinate space admits thus a canonical decomposition as a product manifold
[0,1] x X{3y where Xy) is a compact manifold with corners. In our examples, Xy
is mostly a regular or with boundary. According to this proposition, all the leaves are
diffeomorphic to X(;3. This means that the topology of the leaves cannot change during
the development of the shape. Such a change would induce a critical point for the time
marker.

At last, note that we will choose the first leaf as reference, meaning that we will write
X =1[0,1] x X{oy which is just a change of notation since all the leaves are diffeomorphic.

3.3 Proof of Proposition 3.2

The proof starts as in the Morse setup by providing a C* vector field on X that will
generate a flow similar to a gradient flow.
Lemma 3.2. There exists u a C*° wector field on X such that for any x € X, we have
1. dr(z)-u(z) =1,
2. (a) if v € 90X \ (Xqoy U X(1y), then u(x) € T, M,
(b) if x € X; fori=0,1, then

p(x)
‘ 0
1) 1) -
(—1)u(z) € (TuM,) D = le <Tx/\/lx ® R+ayj>
where (x1,...,Tk—p,Y1,---,Yp) are local coordinates associated to a chart (U, 1)

centered at = to the semi-orthant RF~P x Rﬁ_ and p = p(x) is the depth of x.

Remark 3.3. Since we want the leaves to be diffeomorphic to each other, the flow gen-
erated by u needs to conserve the depth. The conditions (2a) ensures this property (see
Proposition 3.1). The situation is yet different for the outer leaves Xygy and X1y since
they are embedded in the boundary of X. A point along a path from Xygy to Xy1y will thus
have its depth decrease when exiting X(oy, remain constant while crossing all the inner
leaves, and increase at the very end.
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Remark 3.4. Note in condition (2b) that (TyM,)1) does not depend on the choice of
the chart. Moreover, since u is of class C*° and Ty X; = ker(dr(z)), one could show that
if (2b) is replaced by (—1)'u(x) € T," X; then (2a) allows to retrieve the initial condition

(2b).

Proof. Recall that the transition maps are of class C*°. We will establish for any z € X
the existence of a neighborhood U, C X and a C* vector field u,(-) on U, that satisfies
the required conditions on U,. By linearity of these conditions, one can then consider a
partition of unity to prove the final result. Note that the first condition can be relaxed
to dr(x) - u(x) > 0 (consider o : X — R defined by a(z) = dr(x) - u(x) then u = u/w).
Consider for any = € X a chart (U,, 1)) centered at x to the semi-orthant R¥~P x RE where
p = p(z) and denote (z1,...,Tk—p,Y1,.-.,Yp) the associated coordinates. The idea of the
proof is to select one coordinate z; or y; and define u, = 8%1_ or U, = a%j on U,.

— Let be x ¢ 0X (i.e. p(z) = 0). Since dr(x) # 0, there exists necessarily one
coordinate x; such that g—;(:c) > 0 and by continuity this inequality is conserved on
a small neighborhood of z in U,. We define thus u, = %.

— Let be x € X \ (X{op U Xyq3) (so that p(z) > 0). Equation (4.41) implies that
ToMy ¢ ker(dr(x)) (see Remark 3.2). By definition T, M, is generated by the

vectors (a‘zi ) There exists thus ¢ € {1,...,k — p} such that g—;(x) >0
and one can conclude as before.

— Let be z € X{g;. From Lemma 3.1, p(z) > 0. Equation (4.41) implies that T, M, C
ker(dr(z)) and therefore for any i € {1,...,k — p}, g—;(m) = 0. Since dr(z) # 0,
there exists then j € {1,...,p} such that g—;j(x) > 0.

O
We can now prove Proposition 3.2.

Proof. The sketch of the proof is standard and relies on the flow generated by u. Propo-
sition 3.1 ensures that for any ¢ € [0,1] and any z; € X (¢}, there exist € > 0 and a unique
path v : s — x5 on I =]t — ¢,t + €[N[0, 1] that satisfies the equation 4 = u o ~y. More-
over, since 7(xy) = t and %T(JZS) = dr(xs) - u(xs) = 1, this solution satisfies at any time
s €|t — e, t + €], T(xs) = s. Since X is compact, the solution can be extended to [0, 1].
Hence, for any x € X, there exists a unique path [0, 1] 3 s — x4 such that Tr(z) = T
One can then define 7 : X — Xy by m(x) = x1. Let us show that 7 is of class C>°. For
any x € X\ Xy, u(r) € T.F X and since u is of class C*°, there exists for any x € X\ Xy
a chart (U,9) centered at x such that uy = 8%1. Consider then ¢, : U Cc U —» U
defined by ¢p,(7) = 2444 for t = 7(2) and h > 0. Then 1 o ¢p, o ¥b~! is the translation
by the vector (h,Ogr-1) and for U’ and h small enough, ¢, is well defined and is a C*
diffeomorphism between U’ and ¢, (U’). Moreover, given 1 € X (1}, there exists a path
[0,1] > s = x5 and therefore there also exist € X \ X33 and a chart (U, ) centered at
x such that x1 € U. One can then define U’ > x such that z1 € (U’ N X)) and ¢p,
is thus a C*° diffeomorphism between U’ N X7(z) and a neighborhood of 1. For any path
[0,1] 2 s = x5, for any s € [0, 1[, there exists ¢, such that zsy, = ¢p(zs) and for s large
enough xgyp = x1. Since [0, 1] is compact, one can extract a finite number of functions
¢p, such that for any s € [0, 1], zs — x1 is given by composition of these functions. We
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deduce at last that 7 is a submersion of class C*°. Moreover, for any z € X \ X3,
T(pn(z)) = T(241n) =t +hie. pp(z) € Xy4n) and @y can thus be extended to Xy;. By
uniqueness of the solutions of & = u(x), ¢, is one-to-one. It results that for any t € [0, 1],
on + Xyy = Xqiqny is a C diffeomorphism and by composition ¢, can be defined for any
he€0,1—t].

In fine, m can be rewritten for any z € X by 7(x) = ¢1_;(;)(z) and we prove that
f o (r(x),7(x)) is a bijective C> submersion from X to [0,1] x Xyqy. Indeed, the
surjectivity is immediate and for any z,y € X, if f(z) = f(y), denote t = 7(x) = 7(y),
then f(r) = (t,p1-1(x)) = f(y) = (t,p1-4(y)). Since p1; is injective on Xy, f is
injective. O

4 Existence of continuous minimizers in the current case

4.1 Reminder on differential geometry

We will assume from here that X is a k-dimensional submanifold with corners and
we will use the classical notation ¥ for the k-dimensional Hausdorff measure on R
We remind that H* is defined as an outer measure on R? that basically measures the
k-dimensional volume of a subset of R?. In particular, when k = d, we have H?% = A% the
usual Lebesgue measure. If M is a p-dimensional submanifold of RY, then H*(M) is the
k-volume of M if p = k, vanishes if p < k and equals +o0o when k£ < p.

The interior product will highlight the linearity property of the currents with respect
to the tangential data.

Definition 4.1. The interior product is defined to be the contraction of a differential form
with a vector field. Thus if v is a vector field on the manifold M, then

Lo s (AFM)* = (AF101)”

is the map which sends a (k-1)-form w to the (k-1)-form v,w defined by the property that
for any m € M, (k-1)-vector & N -+ N&g—1, & € TrnM,

(Low)(m) (&1 A A1) =w(m) (v(m) A& A+ A1) .
Hence, 1 is linear with respect to v.

The corollary 4.1, given hereafter, results from the Stokes’ theorem and the Cartan’s
formula and will play a central role to exploit the linearity of the current representation
with respect to the tangential data of a shape.

Theorem 4.1 (Stokes’ theorem). Let M be an oriented compact k-dimensional differential
manifold with corners. For any differential (k-1)-form w of class C*

/ dw:/ w.
M oM

Proof. See [35]. O
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The Lie derivative of differential forms with respect to vector fields in the direction of a
vector field v expresses how a current associated to a shape X varies when X is deformed
in the direction of v. More precisely, given a flow ¢; such that ¢9 = Id and ¢y,_, = v

Pjw—w 0

Low = %g% ; = aqﬁtwhzo . (4.42)
It follows that
0
Htenx) (@))—p = Hx(Low) . (4.43)

Theorem 4.2 (Cartan’s formula). Let w be a differential form of class C' and v a vector
field then
Low = diyw + tpdw .

Proof. See [34] (in french) Lemma 7.2.1 and 10.3.2. O

We will apply the Cartan’s formula in a particularly simple case. The manifold M is
embedded in [0, 1] x M and the deformation is the translation among the first coordinate.

Corollary 4.1. We denote v = 0, the vector field defined at any point (t,m) € [0,1] x M
by (1,07, a1) and My = {t} x M then

8(/ w)‘ :/ va—i—/ Lpdw .
ot \Ju, t=0  Jom M

Proof. We deduce from the Cartan’s formula that

0 0 N B B
g </Mt w) ‘tzo = at/M ?btw\t:o = /M Loyw = /M diyw + Lydw .

The Stokes’ theorem allows then to conclude. O

4.2 Definition of the current representation with the growth dynamic

We return to the problem of the reconstitution of a scenario t — S; whose final state
is known and given by a shape denoted S'®. The scenario is modeled on a biological
coordinate system (X, 7) and generated by a initial position go € L>(X,R%) and a time-
varying vector field v € L. More precisely, the development ¢ : [0, 1] x X — R? is defined
by the ODE in L>(X,R%)

() = 0(t, () Ly - (4.44)

We will assume here that the initial position go belongs to C®(X,R?). Regarding the
space of vector field V', we will assume the following conditions:

i)V C C3(R%RY).
i1) There exists ¢ > 0 such that for any v € V and any z € Rd,

0(2)|ga < clv|v(|z|ga + 1),
|dv()] 0 + |d*v(2)]0 < clv]y .

(HY) (4.45)
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It ensures the existence and uniqueness of a solution to the previous ODE (see Chapter 3).

We want to minimize an energy of the type:
1
E(v) = / lvel3dt + NA(S™, q1(X)),
0

where S* is the target shape, A the data attachment term and A > 0 a weight parameter.
To consider a data attachment term built from a distance on a space of currents requires
to investigate the regularity of the final shape ¢;1(X). A current cannot be defined from
an L°° mapping. So far, currents as varifolds have been applied to model shapes that are

MU, =
«m)\/ x jkl t

(0,0)

least rectifiable sets.

Y

Initial position, before the deformation

Figure 4.9 — The final state ¢; (X) displayed on the top left is a serrated curve with as many
discontinuities as its associated vector field v given on the right as real-valued function
modeling vertical translations upwards and downwards. The initial position go(X) is a
segment. This example is essentially the 2D analogue of the 3D shape illustrated in
Figure 4.5

We saw in the previous chapter that the spatial regularity of ¢; is related to the
temporal regularity of v. Even when the initial condition qq is smooth, if v is any element
of L%,, we can only show that ¢ is differentiable almost everywhere. In Figure 4.9, we
illustrate the impact of the discontinuity of v on the generated shape (rectifiable yet on
this basic example, but not C1).

However, we did show in Chapter 3 that if v is time continuous, ¢; is then of class C!.
Its differential is given for any = € X by

dq1(x) = dor(2)1(go(x)) 0 (dgo(x) — vr(z)(qo(x))dr(2)), (4.46)

where ¢ ; is the flow of v on the ambient space R?. Tt is well-known that under the (H{")
conditions, this flow is of class C! and has a differential continuous in time and space
[26, 55]. Note yet that when V is a general RKHS, it actually requires to assume that V'
is continuously embedded in CZ(R?) the space of C?> mappings v : R? — R? vanishing at
the infinity, equipped with the usual sup norm. However, this assumption is not satisfied
when the deformations belong to the group of rotations and translations on the ambient
space for which the existence and the regularity of the differential of the flow are hopefully
immediate. To encompass this last situation, we will thus only assume the less restrictive
(HY") conditions for the results presented hereafter.

Hence, to define properly a current associated to ¢1(X), we will extend a definition
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based on continuous trajectories v € C([0,1],V) to all the solutions generated by L% .
Let us first recall how we can represent a shape by a current. Consider M is a smooth
oriented k-dimensional submanifold and denote for any =z € M, (Ti(z),...,Tk(z)) an
orthonormal oriented basis of the tangent space T, M. Then M is then identified to the
current jup € Co(R%, (A¥ RY)*) defined for any w € Co(R%, (A¥ R%)*) by

(o) = /M (@) (To(@) A+ .. A Ti())dHE (z) (4.47)

We can now define the current associated to the final mapping ¢; generated by a continuous
vector field.

Definition 4.2. For any v € C([0,1],V), the current associated to the mapping q1 : X —
R? is defined for any w € Co(RY, (\*R%)*) by

o (w) = /quw = /Xw(ql(a:)) (ggll(a;) AN 8ql(m)> dxy...dzy . (4.48)

The key of the next proposition is to use the density C([0,1],V) in L?([0,1],V) to
extend by continuity the definition of u, to L?([0,1],V). For this purpose we rewrite
equation (4.48) with the foliation of X given by its tagging function 7. With the result of
the previous section, we can assume that X = [0,1] x B where B is an oriented compact
manifold with corners so that 7 is just the projection on the first coordinate (for any
(t,b) € [0,1] x B, 7(t,b) = t). In this case, we introduce the set of submanifolds (Y})o<i<1
of R? that are the images of B; = {t} x B by go. Moreover, we will assume that

(H®) The restriction of go to an inner leaf X4, (¢ €]0, 1[) is a smooth immersion between

X1 and RY.

This condition ensures that for almost every t € [0, 1] the restriction qp : By — Y} is a ct
diffeomorphism.

Remark 4.1. The initial condition qy has no reason to be an embedding of the whole
coordinate space X. See for example the scenarios in Figure 4.10 where its image is
reduced to a point. However, to ensure that a scenario generated by q globally corresponds
to the trivial scenario induced by the coordinate system (see Chapter 2 and 3), we want
each leaf X4y to be embedded in R?. Some exceptions are yet allowed, typically for the
outer leaves X gy and X(1y. It is for example necessary to model the tip of the horn.

We can now extend for any L%/—Scenario the definition of the current associated to its
final age. The proof lies on the fact that almost all the restrictions of ¢; to the leaves X4
are of class Cl.

Proposition 4.1. The function v — p, defined for v € C([0,1], V) has a unique continu-
ous extension

(LQ([()? 1]7 V)? ’ : ‘L%/) — (CU(Rd7 (Ade)*)v | : ‘OO)>k

4.49
v — W fol [fYt L(ht_vt)qﬁzlw} dt , ( )

where (pst)s<t is the flow of v, @7 w is the pullback of w by ¢i1, ¢ is the interior product
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and hy is the unique vector field on'Y; defined for almost any t € [0,1] and any = € By by
hi(qo(x)) = %2 ().

Proof. Let us call here ¢ the application v — pu, given by Definition 4.2 when v €
C([0,1], V) and @ the application defined here by equation (4.49). We will first show that
¢ and @ coincides on v € C([0,1],V). Then, we will show that % is indeed a continuous
linear application.

We decompose X = [0,1] x B with a partition of unity of B. Hence, we just have
to consider the case of a support [0,1] x U where (U,1) is a coordinate chart around
a point b € B (consistent with the orientation). We can thus define a local coordinate
system z = (£,b%,--- ,bF"1) on [0,1] x U and we have 24 (z) = dor1(qo(w)) o o 99 () and

5 9 ob? ob?
(@) = dora(q0()) o (G2 (x) — velgo(x))) = dra(qo(x)) o (he — vt)(qo()). Therefore,

X 0
/ q1w=/ w(q1(t,0)) ( I
[0,1]xU [0,1]xU

_ / (1 (qo(t, b))
[0,1]xU

) db - dbFdt

<d¢t’1<qo(t’ e é:?t t:b) /\ dr,1(qo(t,b)) 0 gb (t b)) db' -~ db* Lt
1 —
:/o [/B(éﬁf,w)(%(t, b)) ((ht —vt)(qo(t, b))i:/\1 g?)?(t, b)> dbl---db’“l] "

1
:/ I:/ [‘(ht—vt)¢;1w:| dt.
0 Yi

Now, we have sup;cpg ] |doe1| = Ci(Jv %2 ), dqo is also bounded X, so that h; and v; are
’ v
bounded on ¢o(X) and therefore

1
L nmatias] ] < lolcatofty). (450)
0 Yy

where C; and Cy are increasing functions independent of v and w. Consequently, for
any v € L?, B(v) = p, belongs to Co(RY, (A*R?)*)* and @ is continuous due to the
regularity of the interior product and of ¢1. Hence, since C([0,1],V) is dense in L} and
(Co(RY, (A*R%)*), | - |s)* is a Banach space, @ is the unique continuous extension of ¢. [J

Remark 4.2. Note that u, is not exactly the current associated to the image qi(X).
Indeed, even if q is differentiable, it might not be an embedding. Two counter-examples
are presented in Figure 4.10. In the first case, the direction of the development is suddenly
reversed twice so that the curve is folding on itself. Hence, if we refer to number of inverse
images of each point of q1(X) as a thickness of the shape, then the thickness here is equal
to 1 or 3. On the second case, the curve completely overwrites itself, so that the thickness
1s equal to 2 on each point.

This phenomenon depends on qy and v and cannot be anticipated. The current associ-
ated to our shapes counts therefore these repetitions. However, in the first scenario, since
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Figure 4.10 — Two examples of scenarios. In both situations, X is a segment but ¢o(X) is
reduced to a point. On top, v is given by piecewise constant vertical translations upwards
and downwards, modeled by real-valued function. The final image is a segment but when
v changed its sign, the curve folded on itself. The scenario is displayed again on the left
but we slightly separated the multiple fibers of the curve. One can think to a magic
trick where colored attached strings are pulling out from the initial position point. On
the bottom, the scenario is generated by a constant rotation anticlockwise. The ambient
space is exactly rotated twice during the time interval [0, 1]. We display the development
of the curves with three colors depending of the thickness : dark for 1, blue for 2 and red
for 3. The green star on the bottom is just displayed to highlight the evolution of one
specific point.

the orientation is reversed twice and by linearity of the currents with respect to the tangen-
tial data, the repetition is canceled and we have p,(w) = fq1(X) w. On the second example,
the orientation is the same on each layer so that p,(w) = 2fq1(X) w. At last, note that in
practice, these situations should not happen with optimal vector fields. The penalization
of v should prevent these artifacts. Generating a cancel effect via an overlapping should
mduce an additional cost on v with yet no reduction of the data attachment term since the
current would be the same without this overlapping. Likewise, the gain of thickness as in
the second example is necessary taken from spatial correspondences with the target shape
and should therefore not be profitable (at least for a metric with a reasonable scale so that
the position of the points are enough discriminated).

4.3 Existence of global minimizers in L?([0,1],V)

tar and represent the solution

We can now consider a target generated by a vector field v
and the target with currents. We denote as before piar and p, the associated currents
defined by equation (4.49). Unlike the varifolds, the currents provides a data attachment

term that ensures the existence of continuous vector fields that minimizes the energy

1
E(w)= 1 / o2t + 2 — gl
2 Jo 2
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where W is now a RKHS embedded in the space of test functions Co(R%, (A" R?)*). How-
ever, this result is not immediate. In this section, we will first prove the existence of a
solution in L2([0,1], V). The expression of the current y, given by Proposition 4.1 enlight-
ens and isolates the specificity of our generated shapes. It also allows to show a central
property of the current attachment terms that is not verified by the varifold attachment
terms: the lower semi-continuity (l.s.c.) on L%.

Proposition 4.2. For any w € Co(R?, (AFR%)*), the application v — p,(w) is continuous
with respect to the weak topology of L%,. In particular, v — |ftar — ,uv|12/V* s l.s.c. with
respect to the weak topology.

Proof. We recall partially the assumptions on the space of vector fields V'

There exists ¢ > 0 such that for any v € V and any = € R?,
() ' ' (451)
[v()|ge < clvlv(|z|ge +1) .

Consider a weakly convergent sequence v, — voo in L2,, we have for any w € Co(R%, (A*R?)*)

|/~Lvn (W) — Hyoe (w)‘

! v % ! o™ % v % (4'52)
/ [/ Lop—vpe Ppp w] dt' + / {/ thy—vp (Pp1 W — @y w)} dt‘ .
0o v 0 LUw

The first term of the right-hand side is a continuous linear form ¢ on L%, evaluated on

<

v — v, This is where the linearity of the currents attachment terms on the tangential
data plays its role. Indeed, we have for any u € L%/

1
/ [/ Lutgbgio’*w} dt
0 Y:
1
/ [ |ut<y>|RddH’f—1<y>} dt\
0 Y:
< sup 16y L w(y)e

1
/ [ [ el + 1>|utrvcmk—1<y>] dt\
t,yeYr 0 Y:

1
< ¢ sup |dgyT 5 w(y)loo sup (lylma + 1) sup vol(Y) / vt
t,yeYs t,yeYr t 0

[0(u)] =

< sup "b& 7*w(y)|oo
t,ycYy

< C/|u|L%,7

where vol(Y;) is the volume of Y;. Consequently, since (v™), weakly converges to v*°,
£(v™ — v>°) converges to 0. The second term can be bounded as follows

1
/ [/ thi—vp (P17 W — b4 ’*w)] dt‘ <mima,
o v
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where m1 = sup; ey, \qﬁzolo’*w(y) - qﬁznl’*w(y)]oo tends to 0 and

dqo
ot (v)

mg = sup vol(Yz) (sup + ¢ sup (|y|ge + 1) ]’U”\L% ).
t X

tyeYs ——
<sup,, Iv”\Lg/

We already know that if a sequence (vy,), weakly converges to v then (t,y) — qbfﬁ (y)
converges compactly to (¢,y) — ¢;5 (y). Moreover, since (vy)n, is weakly convergent, (vn)n
is bounded, so that finally this upper bound tends to 0. Therefore, the function v — p,,
with values in Co(R%, (A¥R?)*)*, is continuous with respect to the weak topology of L2,
and the first result is proved.

Moreover, since W is continuously embedded into Co(R?, (A¥R%)*), there exists ¢/ > 0
such that for any linear form ¢ € Co(R?, (AFRY)*)*, [£(w)| < |€]oc|w]oo < ¢|€]oo|w|w so that
Ww+ < |l|so- It follows that for any w € W, pyn(w) tends to piye (w), i.e. pyn weakly
converges to fiyee in W*. Hence, pyn(ftar) = (o, ttar)w+ tends to (tyee, pear)w+ and
since the square norm of a Hilbert space is always lower semi-continuous with respect to
the weak topology, we deduce that

|tar — ﬂv“ﬁ/[/* = |:utar|l2/V* — 2(pyoo, Ptar) W + |Nv°°|%/[/*
< |pttar[fy= — 2Hm{ppee, figar)w+ + M [gpn |3y
< lim (|/Ltar|%/v* - 2<,U”v"nutar>W* + |,U"U”|I2/V*)

< lim |Mtar - Nv”’[z/v* .
J

This proposition induces a first main result: the existence of a solution in L?([0,1], V)
of the energy

1 A
E(U) = §|U|i% + §|Mtar - Nv|124/* .

Theorem 4.3. Consider X = [0,1] x B where B is a compact oriented manifold with
corners and T the projection on the first coordinate of X. Assume that qo € C(X,R%).
Consider the standard cost function

S
C(v) = 5 v |§-dt .
0
Under the (H®) and (HY') conditions, the energy defined for any v in L?([0,1],V) by

A
E(v) =C(v) + §|MU - Ntar|12/V*
admaits a global minimizer.

Proof. Note that E is always positive. Let (v"), be a minimizing sequence of E. One
can easily show that (v™), is bounded and we can then assume that v™ weakly converges
in L%/. Denote v*° this limit. Proposition 4.2 says that F is lower semi-continuous with
respect to the weak topology of L?.. It follows that E(v™) tends to E(v™°) so that v™
minimizes F. O
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Remark 4.3. One can generalize the previous theorem with a cost function C that satisfies
C(v) tends to +oo when |U‘L%/ tends to +oo. In Chapter 3, we presented a set of cost
functions (in the so-called adapted norm setup) similar to

1 1
Clv) = 2/0 alvg[f-dt

where « : [0,1] — R*. The theorem can thus be applied as soon as « admits a strictly
positive lower bound, which will always be the case when the coordinate space X is a discrete
set. However, we saw in the case of horns or more generally when H*(qo(X)) = 0 that
we are interested in functions a that tends to 0 at time 0. This could thus require deeper
1nvestigation.

4.4 Continuity of the global minimizers

At this point, the continuity of a minimizer v* of EF is not acquired. This continuity
is yet necessary to provide an algorithm of shooting on the momentum (see Chapter 3).
We will show now that all minimizers belong to C([0, 1], V'), which is not true when the
attachment term is defined on varifolds. The outline of the proof is simple. We will show
that F is differentiable with respect to v and study the critical points of E. We keep
the assumptions of the previous theorem. We assume in this section that W is a RKHS
embedded in the space of C! differential forms C} (R, ( AFRDY).

We recall a standard result on the flow of a vector field.

Proposition 4.3. Assume the (H)) conditions given by equation (4.45). Let be v, 6v € L}
and introduce the variations vi = vi+edv of v in the direction dv where € € [0,1]. Consider
@54 the flow of v¢, meaning that ¢, = ¢; o ¢§’_1 where ¢ is the unique solution on [0, 1]

of
1
¢>§:1d+/ Ve 0 ¢ ds.
0

Then, the application € — (¢S ,(y), doS 1 (y)) is of class C*. We have for any y € R4,

5]y = [ 600306 0)

and

50050 g = [ (6000620 (0)] 30,60 0)

+ dgbu,t(qss,u(y))dévu (¢s,u(y))d¢s7u (y) du.

4.4.1 Differentiability of the current representation

A first step consists in studying the directional derivative of the current

o (W) = /01 [/n Lhtvtﬁ,M] di
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with respect to the vector field v. Let be v,dv € L%, and consider vy = v; + €dv; where
€ € [0,1] and ¢, its flow. From the linearity of the interior product, we have

1
o) = [ [ inesgoii] (453)

1 1
= / [/ Lht_ytqb;’ikw} dt — e/ [/ L(;thbz’fw} dt. (4.54)
0 Y: 0 Y:

We will address the derivation with respect to € of these two terms separately and we start
with the first one that we denote:

In order to rewrite g, let us introduce some notation. The variables are grouped in pairs:

vi(y) = (v5(y), dvg(y)) »
©5(y) = (95.1(v), dd51(y))

9
(Sys(y) = EVS(y)‘e:O’

9 .
6()08(y) = &SOS(:U)‘G:O :

Hence, 0vs(y) = (dvs(y), dovs(y)) and it results from Proposition 4.3 that for any s € [0, 1],
for any y € R?, dp,(y) € R? x L(R?) is given by

1
Siosly) = / A3(y) - vn(us(y)dt (4.55)

where (t,y) — A$(y) belongs to C([0, 1] x R4, L(R? x L(R%))).

Given w € W, define f, : (R? x L(RY)) — (AFR%)* such that f,(o5(y)) = (qﬁ;;‘w)y
This is to say that for any k-vector & A --- A & € AFRY,

Jol@f @) (L A A& = w(@f1 (1) (51 ()€ A+ Add 1 (y)Ek) -

We can easily check that f,, is C'. At last, we get

g(e) i/ol Un Lhtvtfw(‘:p;)] dt .

Let us show now that ¢ is derivable in 0 and let us explicit this derivative.

Lemma 4.1. Consider the application

90 = [ [ [ mosts o] as (156)



Then g is derivable and there exists t — J an application in C(]0, 1], V*) such that

0) = /0 ' To(Sua)ds. (4.57)

Proof. Denote K = (J,¢jg 1 ¥s, i.e. K = qo(X) and since go € C(X, R?) and X is compact,
K is bounded. We apply the Leibniz’s rule to derive under the integral sign so that we

1
:/01 /th_vs d,f (s / As 5uto¢st)dt}ds
:/01 // T @f(cps))«aytogz)s,t)dt} ds

where Af(y)* denotes the adjoint operator of Aj(y) € L(R? L(R?)). For any y € Y,
the integrand tp, v, (A5 (y)* dy f(¢s(y)) - (6v¢(¢s,(y))) belongs to (AFR?)* and we want to
bound its norm independently of y to guarantee its integrability. This will come from the

get

[ thienn ot 500 ds

(HY") conditions that gives a spatial control of the elements of V and their differential.

For any y € Yj, the application Af(y)* d,, f(s(y)) belongs to £L(R? x L(R?), (APR?)*)
and can be identified to an element of (A*R?)* @ (R? x L£(R%))*. Moreover, for any
¢ € (AWPRY)* @ (RY x L(RY))*, consider I : V — (AFRY)* by

15(u) = C(u(y), du(y)).

Then lf, is linear and under the (H}) conditions, there exists cyy € V, such that for any
u eV, forany y € K, if p = (u,du), then

|15 (u) | (argay- = 1C(1(y))] (ArRa)-
< [ClarRay @ (Ré x £(RAY)* | (Y) [Rax £(RAY
< cyluly SHII;(l + [ylra) [C] (AFRY) @ (R X £(RA))~ -

ye

Hence, lg belongs to (A*R%)* @ V* and
‘lg‘(Ade QV* <cy Sup(l + ‘y‘Rd)‘C‘ AFRA)* @ (R x L(RD))* -

yeK

We can therefore apply Fubini’s theorem to get that for any v € V

t *
g = ([ o (7 w) Y as. (458)
0 Ys ’

Finally, since t — Aj(y) is continuous, we deduce easily that t — J2 is continuous. O

To study the second term of p€ in equation (4.54), we introduce the next lemma.

Lemma 4.2. Define for a given w € C}(R?, (A*RY)*) the function t — JP such that for
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anyu €V

) = / (). (4.59)
Y
Then J° is a continuous function defined from [0,1] to V*.

Proof. For any t € [0,1], J? is linear on V and with the (H}) conditions, there exists
¢ > 0 such that for any u € V,

IJ?WNfEl;qumAw@deH“4@)

< esup(1+ [y|ga) vol(Ye)|wlos|ulv -
yeK

Thus, J? € V*. Moreover, we can show that ¢ — J? is derivable (and in particular
continuous). From the spatial regularity of any u € V, we deduce that w" = ¢, (w) €
CL (R4, (AF=1R4)*). Now, under the (H%) conditions, we can pull backward the integrand

of JY :
kﬁw=/° g
{t}xB

Therefore, if % is the vector field on X defined at any point (t,zp) € [0,1] x B by
(1,01, ,,B), then % generates a flow ¢, on X satisfying ¢y (s,z5) = (s + t,zp). Thus,
a = guwt € CYX,A*'T*X) is a (k-1)-form on X and it results from the Cartan’s
formula and the Stokes’ theorem that

d d
jbu:/ a:/ Lada+/ Lo . 4.60
dt ) dt Jinxm {t}xB o {tyxoB 9 (4.60)

O]

4.4.2 Continuity of the minimizers

Finally, we can conclude that all solutions are continuous and the next theorem recalls
all assumptions.

Theorem 4.4. Consider X = [0,1] x B where B is a compact oriented manifold with
corners and T the projection on the first coordinate of X. Assume that qo € C°(X,R%).
Under the (H®) and (H{) conditions, if v* € L*([0,1],V) minimizes the energy defined
by
e A
B) =5 [ R+ Sl i
0
then v* belongs to C([0,1],V).

More precisely, for any (v,dv) in L} x L2,, the application € — g(€) = E(v + efv) is
derivable at 0 and we have

/ 1 1 Ot w 1 .
g(0)= / (v, Ovg)dt + )\/ {/ Lht_vt(a’.év)] dt — )\/ [/ L5Ut¢t’1w:| dt
0 0 Ly v 0 LUy

1
= / vat(évt) + jt“(évt) — Zb(évt) dt,
0
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where Ky and Ly = K‘jl are the isomorphisms between V and V*, w = Kw (uy — ltar),
J4 TP € C([0,1],V*) are defined by equations (4.58) and (4.59) and hy is the unique
vector field on Yy defined for almost any t € [0,1] and any x € By by hy(qo(z)) = %(z)

Proof. We have

01

0
a?/ﬁv - Ntar’%/V*

e=0 aﬂve (w)‘e=0 :

The expression of e (w) is given by equation (4.54) and its derivative with respect to € is
given above in Section 4.4.1.

At last, if v* minimizes E then Ly v} = JP — J2 for almost every t € [0,1]. Since J¢
and J? are continuous, t — v = Ky (J? — J) is continuous at any ¢ € [0, 1]. O

Remark 4.4. One can easily generalize this theorem with a cost function on L%/ of the
type C(v) = %fol C(vg, t)dt. More precisely, assume that there exists ¢ € C([0,1], V*) such
that for any t € [0, 1], %(v,t) = l;(v) and 4y is invertible. If v* € L?([0,1],V) minimizes
the energy

1t A )
B =5 [ Clontidt+ 5o~ iy
0
then for any t € [0,1]
v =6 (Kv(TP = T9) -
It will follow that v* € C(]0,1],V).

Remark 4.5. Note that J° — J% can be identified with the momentum map J. See
Chapter 3.

Remark 4.6. Note that J? is always null. Moreover, if H*=1(Y;) is null, then J2 is also
null. In the case of the horn, Yy represents the tip of the horn. It is thus reduced to a
point, so that we retrieve the fact that vy is necessary null. See Chapter 3.

5 Continuous pointwise expression of the momentum

The continuity of the global minimizers of the energy allows to explicit the momentum.
This is the key point to explicit then the momentum map with a general coordinate space
X (i.e. non discrete) and therefore to explicit an optimal vector field. This result cannot
be directly prove with the varifolds and the growth dynamic since it also implies the
continuity of the momentum map and thus of all global minimizers of the energy (see
Chapter 3).

We saw in Chapter 3 that in order to explicit the gradient of the energy

1
E(qo,v) = /0 C(vg, t)dt + A(v), (4.61)

one could use in the discrete model (i.e. for X = (R?)*) the fact that there exists a final
momentum p; € L®(X,R?)) = (R?)* such that

A (v; 6v) = <p175Q1>(Rd)k .
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The aim of this section is to show in the general case of a compact manifold X, the
existence of an equivalent pointwise momentum variable p; acting on dq1, and to give its
expression.

5.1 A lemma

Let X be a smooth orientable compact manifold of dimension & (possibly with corners)
and let M = R x X be the cylinder generated by X so that M is again a smooth orientable
manifold (possibly with corners). Let us introduce for any € € R the submanifold M, =
{e} x X of M. The tangent space at a point (e, z) is identified with R x T, X and %
denotes the vector field defined at any point (e, x) by (1,07, x).

Lemma 5.1. Let f : M — N be a C' mapping from M to a smooth manifold N and w be
a C! k-form on N. Consider for e € R

gle)= | flw,
M.

where f*w denotes the pull-back of w by f. Then we have:
1. The function g belongs to C(R,R) and

g/(E)z/M Laf*dw+/ Lo ffw. (4.62)

2. There exist two functions a: X — T*N and b: X — T*N such that for any x € X,
a(x) and b(x) belong to T} ()N and

¢(0) = /X a(z) (61 () dH (x) + /8 ba) (3 @) M ). (4.63)

where fo = fojo, 6f = %f O Je|o—o and je : X — Me is the trivial embedding given
by je(x) = (e,x). Moreover, a and b only depend on fo and w.

Proof. % is a smooth vector field generating a flow 1y on M that satisfies 1;(e,x) =

(e+t,x). If a = f*w, ais a C! k-form on M and g(e + h) = S, ¥i(@) so that we get
from the Cartan formula

d(e) = £aa:/ Lade—i—/ Lo o, (4.64)
M, oM.

M. Oe . Oe Oe

Since @ = f*w and da = d(f*w) = f*(dw), we retrieve the equation (4.62). Now if
fe = foj57 then

g (0) :/ Laf*dw—i-/ Lo ffw
ji (X) de jo(ax) Jde
:/ 70 <Lgf*dw> —|—/ 7o <L@f*w> . (4.65)
X Oe X Oe
We can explicit these two terms. Consider a coordinate chart (U, ¢), then the first term
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of the right-hand side of (4.65) can be rewritten

of N oof
/wa(fo(:c)) <8E(O,x) /\/\1 P, (o,@) dxy - - dxy, .

Consider now a coordinate chart (9U, ) from an open set OU of 90X, then the second
term of the right-hand side of (4.65) can be rewritten

k—1

/an(fo(x)) (g{(O,m) A /\ gi (0,30)) dxy---drg_; .

i=1

Finally, since w and f are of class C!, the integrands of these two terms are both
continuous linear forms applied to df(x) = %(0,1‘) and they only depend on fy and
w. O

5.2 Application

We will apply this lemma in a general situation. The shape ¢; : X — R? generated by
a vector field v € L}([0,1], V) is given by an operator ® where X is a compact submanifold
with corners. We will although assume that ® need to be restricted to continuous vector
field to ensure the regularity of ¢q;. Yet, we do not specify that v generates ¢; with the
growth dynamic. We consider a space of currents W < C}(R? A*RY). The current
generated by v is denoted pi,.

Theorem 5.1. Consider
®: L([0,1],V) = C(X,R%)

such that

1. For any v € C([0,1],V), ®(v) € CY(X,R%) and 0,®(v) is continuous with respect to
v.

2. ® is Gateaus-derivable and for any dv € L3, v+ ®'(v; dv) is continuous.

If v and Sv belong to C([0,1],V) and if W — C}(R?, AFR?), then there exists pi* €
C(X,R™) and p?X € C(0X,RY) such that

0

Sl e = sl = [ @ (@) G (@) (o)
€le=0 X

+ / X (1), 641 (1) dHE ()
0X

Proof. Let be v and dv in C([0, 1], V') and denote for any € € R, v = v + edv, ¢f = ®(v°),
5q5 = @' (v%; 6v). Consider f : Rx X — RY, defined by f(e, ) = ¢{(z) and let us show that
f is of class C'. We have for any € € R, ¢f € C'(X,R?) and d¢f € C(X,R?). Moreover,
since dg; and dq; are continuous with respect to v, dg{ and dqf are continuous with respect
to e.
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Now, we just have to notice that

def(e,x) = dqi(x),
0y f(e,x) = dgi(z).

Since these partial derivatives are continuous, it follows that f is of class C!.

Finally, we have
portw) = [ ()= [ .
X M.

Hence, if we apply Lemma 5.1 to f(e,z) = ¢{(z) so that ogo = dq1, we get

0 0

- € — 2 x — €
De o | o Ntar|W De foe (W)

e=0

= /Xd <5ql /\ dq1(x )) dH"(x)
+ /ax <5Q1 /\ dgi (z T¢8X($)> dH " (x),

where (q1,8q1) = (¢, 9q¢5) for € = 0, w = Ky (py — pirar) € W and (T7¥); is an orthonormal
basis of T, X, the tangent space at x € X and (Tiax ); is an orthonormal basis of T,0X,
the tangent space at x € 0X.

For any x € X or any = € 90X, these two integrands are linear with respect to dq; (z).
There exist thus for any x € X, a unique vector p{( (x) € R? and likewise for any = € X,
a unique vector p?X € R such that we get the final result. Moreover, since ¢; and w are
of class C!, pf( and p‘?X are continuous. ]

Remark 5.1. Note that with the usual reqular conditions on V', this theorem can be applied
to the classic dynamic as the growth dynamic.

6 Conclusion

We examined in this chapter the existence and regularity of global minimizers v to the
optimization problem discussed in the previous chapter when the infinitesimal action &
reproduces the growth dynamic. These questions lie on the choice of the data attachment
term. We exhibited two counterexamples for the varifold representation. These situations
highlighted the lack of spatial regularity of a shape generated by a discontinuous time-
varying vector field ¢ — wv;. This issue is well addressed by the current representation
that has a regularization effect of the shapes. We proved indeed, with a data attachment
term built on a current representation, the existence of global minimizers as well as their
continuity.

We detailed in this chapter the foliated structure induced by the birth tag 7 on the
coordinate space X when the creation process is regular meaning that the amount of
newly created points at each time, i.e. the level sets of 7, evolves smoothly. We justified
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the canonical description of the biological coordinate system (X, 7) via a direct product
X = [0,1] x Xy where 7 is identified with the projection on the first coordinate. An
important consequence of this rewriting is the ability to overcome the reparameterizations
in time of the scenarios generated by the biological coordinate system (see Chapter 2).

In the last section, we established a pointwise expression of the final momentum p;.
This expression plays a key role to describe the solutions of the optimization problem. The
study of the growth dynamic achieved in Chapter 3 and the calibration of the optimization
problem by new cost functions are based on this pointwise expression that allows to exploit
the previous decomposition of the biological coordinate system.
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Chapter 5

Numerical Study of the Growth
Model
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1 Introduction

From the point of view of one to one correspondences between homologous points, a
growth process can be described by the nonlinear combination of two different processes:
a deformation process when a living organism is deforming through time and an expansion
process when the growth results from the creation of new material. The observation of the
shape without more information does not allow to distinguish these two processes. The
development of a horn is thus a interesting case study. We consider indeed a population
of horn sharing a basic common pattern defined as follows. The base of the horn plays
the role of an active area where new leaves are gradually created pushing outwards the
rest of the horn. The horn is assumed to be rigid and is thus only subjected to rotations
and translations due to the physical constraints (see figure 5.1). This example allows to
isolate the creation process from the general deformation and reduce to its minimum any
kind of distortions of the shape due to other biological phenomena.

.
S
— —)
T~
Classic diffeomorphic matching Actual development

Figure 5.1 — A classic diffeomorphic matching would stretch the small horn to the large
one and would thus not reflect the actual development of the horn. Instead, we would like
to see an embedding of the small horn inside the target and additionally creation of new
material at the base.

The aim is, given few observations at different times of a horn, to reconstruct its
continuous development from its youngest state to its oldest one. We will see that our
model can actually produce a path modeling the complete deployment of a horn from only
one observation. If we imagine the horn at its birth as reduced to a single point, we can
construct an optimal continuous path from this point to a nontrivial shape matching the
given observation. In fine, the complete evolution is encoded in a forecast initial position
and its momentum (qo, po), providing the support to a statistical analysis.

In order to model the evolution of a shape during a growth process, we developed in
Chapter 2 the concept of growth mapped evolution (GME). A GME is given as a path of
shapes [0,1] 5 ¢ — S; and a flow of mappings (¢s+)s<+ such that for any pair s <t € [0, 1],
the flow deforms the older shape S, into the younger one S;: ¢5+(Ss) C Si. The shape
St is thus made of the image of Ss at time t and of a set of new points created in the
time interval ]s,t]. When ¢,(Ss) = S for any s,¢, the shape evolves through a pure
deformation process and we retrieve the standard dynamic through the flow. On the
contrary, in the absence of global deformation, ¢s; = Id for any s,? so that the shape
evolves by pure expansion and we have S5 C S;. This last type of scenario plays a central
role and such GMEs are called centered. Following D’Arcy Thompson’s ideas, these GMEs
represent the biological coordinate system of a set of homologous scenarios.
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Figure 5.2 — Sequence of three discrete times to illustrate the development of a horn.

1.1 Biological coordinate system

A biological coordinate system is a pair (X,7) where X is a space called the
coordinate space and 7 : X — [0, 1] the birth tag on X. It induces a set of shapes

Xi={ze X|7(z) <t}, (5.1)

of the so called active points of the coordinate space X at time t. In this chapter, the
biological coordinate system is fixed to

X =10,1] x St,
(5.2)
T(x) =t forany z = (t,z9) € X.

When X is a discrete set, it will be defined by X = {0,t1,...,tp—1,1} X Xo where 0 <
t1 < ... <th_1 < 1and Xy a finite subset of S'. A biological coordinate system can be
itself identified to the growth scenario of a shape. The sequence of nested shapes X;, here
given by X; = [0,¢] x S, forms a canonical scenario that describes the growth pattern of
a population of related shapes. Figure 5.3 displays this scenario in our situation. At time
0, the shape is a circle. It growths into a cylinder under a pure expansion process by the
progressive adjunction of identical circles. These circles are given by the sets of points

X{t}i{a:GX\T(:c):t}:{t}xSl.

Any shape X is a connected disjoint reunion of some of these sets called the leaves of

%

the shape.

X, X, X, Xy, X, X, X

Figure 5.3 — Trivial scenario of the biological coordinate system.
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A general scenario (t — St)ic[,1) is modeled on the biological coordinate space by a
sequence of spatial mappings ¢t — (¢ : X — ]Rd). The shape S; is given by the image
q1(Xy) of the active points of X. Depending on the injectivity of the mappings (q;)¢,
the generated scenario follows the same expansion process of the biological coordinate
system. At each time ¢ €]0, 1], a new leaf ¢;(X () appears whose points have no biological
correspondence with the points of the older shapes Ss, s < t.

Figure 5.4 illustrates two such types of scenario built on the coordinate system (X, 7).
The only difference between these two types is the behavior of the spatial mapping on the
first leaf Xyqy. For the first scenario, the spatial mapping is an embedding at all time. For
the second one, ¢ is an embedding of all leaves but the first one and ¢ (X {0}) is reduced
to a point.

an®

G, (Xty) 40, (Xpy) Qe (Xey)

rr r r Lo
[ |: X:,[
P Xy, b

Xy

)

G (Xt1) e (Xen) @0a (X)) ey (X))

Figure 5.4 — Two examples of scenarios built on the biological coordinate system (X, 7).

In these two examples, the last leaf is always included in the horizontal plane. The
birth place function introduced in Chapter 2 allows to express this constraint. The
birth place function ¢ : X — R? of a scenario associated to a mapping ¢ is defined by

i(@) = g0y (@) = 674, (@1 (@)

It can be seen as the pull backward through the flow of each leaf qi(Xy)) of the final
shape to its initial position ¢;(Xy) at time ¢t = 7(z) when it appeared. The evolution
of this leaf can then be completely retrieved by the flow (¢s+)s<; of the scenario: for any
z € X and any t € [7(z), 1]

(%) = Or(),t(4r () (7)) = Dr()1((7)) - (5.3)

To extend the mappings ¢ : X; — R? into homologous mappings on X, we then say that

¢T(m),t(‘j(x)) if T(:E) <t,
q(z) = (5.4)
q(z) otherwise.

Hence, we have
g0 = ¢. (5.5)

This mapping qq is called the initial condition and the planar constraint can then easily
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be written as a constraint on the image of qg.

Remark 1.1. The birth place function can be highly non injective. For example as we
will see in Section 6.4 with the tube, all the new leaves can appear at the same place. The
flow of a scenario is able to separate two different leaves. However, if two points of the
same leaf Xy appear at the same position, they will never be separated.

1.2 Reconstitution of a growth scenario

In this chapter, we will study surfaces embedded in R3 whose scenario is consistent
with the biological coordinate system previously defined. Assume that a target scenario is
given by (S!T); a collection of shapes at a finite number of intermediate times (¢;); C [0, 1]
(with max{t;,i} = 1). The aim is to retrieve its complete development from its creation at
time 0 to its final age at time 1. In practice, it leads to generate a scenario (t +— St)se(o1]
such that Sy, =~ S,

We developed in Chapter 3 a generative model based on an initial position ¢y : X —
R? and the growth dynamic

gt = Lr<tvi o q,

where v is a time-varying vector field on R? (v € L2([0,1],V)).

An inexact registration between two scenarios consists then in minimizing an energy
that penalizes on one side the deformation with a cost function C and on the other
side the discrepancy between the two scenarios at the different times ¢; with a data
attachment term A of the type

n

Algo,v) =Y _d(Sp, Si™)?.

1=0

Remark 1.2. Note as we saw in Chapter 4, that in some critical cases where the shape
is folding on itself, the current or the varifold ® modeling the form SP = {q:(x) |z € X¢}
can be different from the one u® defined to represent the mapping q; : X; — R%.

The energy to minimize can thus be written

1
E(qo,v):/o C(v, t) dt + A(qo,v) -

In all our experiments we will present different tools to specify this general model
presented in Chapter 3. As we saw in this chapter, an optimal solution v* € L%/ must
then satisfy at all time

V,C(vi,t) — KV T (qs,pi,t) =0, (5.6)

where KV : V* — V is the canonical isomorphism and J is the momentum map whose
expression will be recalled in equations 5.10 and 5.11.
1.3 Deformation spaces

The deformations involved in the model are determined by the choice of the space of
vector fields V. This space is usually a Reproducing Kernel Hilbert Space (RKHS) and
the representations of the data rely thus on the choice of the kernel.
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The choice to study animal horns intended to avoid the ill-posed distinction between
diffeomorphic and intrinsic changes. For example, one can think to the question of how to
balance the emergence of new matter and the stretching of a shape. In order to exclude
this issue, the numerical applications will be mainly performed with affine transformations.
These transformations respect the idea that once a portion of the horn has appeared, it
behaves as a solid. It is not deformed, only displaced.

Rigid deformations

The group of rotations and translations is the semi-direct product R% x SO4(R), for
which V = Ay x R%, where Ay is the space of skew-symmetric matrices. The space V is
then naturally equipped with a set of norms with a parameter o € R* defined for any
v=(A,N) € Ay x R? by

|v|%/7a = atr(ATA) + |N|I2Rd . (5.7)

The rotations are applied to the horn from the center of its base.

Remark 1.3. In practice, we will work in R® and actually only use vertical translations.
The space V is then reduced to V- = Az x R(0,0,1). We will therefore project at every
time the optimal translation on the vertical axis.

The numerical experiments to retrieve the development of an animal horn will mainly
be achieved with this space of vector fields.

Reproducing kernel Hilbert space with scalar Gaussian kernel (RKHS)

The case study of horns with rigid deformations is a first step to initiate the study of
growth models. Yet, the presented model also works with non rigid deformations. In order
to pave the way for more general applications, we will present in the end few experiments
with a RKHS with a scalar Gaussian kernel:

ky: RIxRT — R
) (5.8)

(z,y)  +— eXp( o

2 Cost functions

2.1 Inadequacy of the classic cost function

An important novelty appears with the growth dynamic. When there is no creation
on a small interval I C [0, 1], we retrieve the classic LDDMM case and the norm of the
vector field is constant on I. Otherwise, when there is appearance of new points, this
norm should increase. More explicitly, we have in the discrete setup when V' is a RKHS
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with a kernel noted ky

KYJ(qp.t)= ) kvlq(z), )p(x) (5.9)

zeX
T(z)<t

z) —|?
“ree(ag e e

reX
T(x)<t

In the case of rotations and translations, where V is the direct product Skewy x R¢
equipped with the usual norm, this equation becomes

KYJ(q,p,t) = | projsiewy | Y p@)a(@)" |, > plx) | . (5.11)
rzeX rzeX
@<t )<t

We call X; = {z € X, 7(z) < t} the support of KV 7(q,p,t). The sequence of the supports
at times t; is increasing
Xti C X

i+1

and therefore, the norm of KV 7 should in general be increasing.

2.1.1 Infinitesimal action of a deformation and growth

This property of the vector field seems prima facie appreciable. Indeed, since the shape
is growing, the energy required to deform it should also be increasing. However, we have to
distinguish the groups of diffeomorphisms built with global deformations (especially rigid
deformations) from the groups built with local deformations (like RKHS whose kernel has
a local support) (see Figure 5.5).

The infinitesimal action of a deformation through the growth dynamic can be inter-
preted in two main parts. At a time ¢, the local action on the last leaf appeared will define
with the initial position the amount of creation of matter at time ¢+ dt. Anywhere else the
action defines the evolution of the old part of the shape through the standard dynamic.
With local deformations, these two parts are more or less independent. But, with rigid
deformations, these two parts are inseparable.

In the case of the horn, the weight of the rotations and translations is directly linked to
the amount of creation of new matter on the base of the horn (see Figure 5.6). A natural
approach to reproduce real observations is to consider that this amount of creation is
rather constant with respect to time than linear. This is thus in contradiction with the
model.

In Figure 5.7, we illustrate the kind of results we can get so far. The model is not
able to create efficiently the sharp tip of the horn. This inadequacy induces a considerable
slowdown of the convergence of the gradient descent.
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Figure 5.5 — Translation of two segments with a Gaussian kernel (left column) and with
the group R? of translations in the plan (right column). In all cases, the global translation
is given by the two identical blue arrows. The blob in the left column illustrates the scale
of the kernel. With a Gaussian kernel, the translation of the segment is given by the sum
of the momenta through a convolution with the kernel with respect to their position (see
equation 5.10). Otherwise, the translation is the sum of all momenta independently of
their position (see equation 5.11). In the first case, the norm of the deformation depends
on the size of the segment (see explicit equation 5.28). Conversely, with the Euclidean
norm on R2, the norm of the deformation is the norm of the translation and does not
depend on the size of the segment.

4

Figure 5.6 — Example of development
with the growth dynamic when the de-
formations are reduced to vertical trans-
lations. The vertical expansion of horn
is equivalent to the global deformation.
Note yet that if we want to quantify the
complete amount of expansion, we also
have to consider the horizontal compo-
nent due to the birth position of points
to appear. On the top right corner is dis-
T played a top view of the younger horn
with the points to appear at their birth
position.

2.1.2 Additional property of the rotations and translations Group

The balance between the rotations and the translations in our growth model depends
of course on the norm defined on V = Ay xR? but also on the scale of the shape. We give a
heuristic figure (see Figure 5.8) to explain this property. Regarding the optimal matching
for a horn, the model tends to favor the translations to deploy the horn at the beginning
then to favor the rotations toward the end of the development. Figure 5.9 illustrates this
phenomenon: we display after a basic matching with the classic cost function the norms of
the two components of the optimal vector field respectively associated to the rotations and
the translations. The natural development of a horn requires yet to avoid this behavior.
We will see with the adaptive norm how to fix this balance.
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Figure 5.7 — Result of a matching with the classic cost function. On the left after 20k
iterations, on the right after 200k iterations (i.e. lday of runtime).

Figure 5.8 — Comparaison of rotation and trans-
lation displacements. Consider two matchings of
x the green point to the green cross and of the blue
point to the blue cross. In both cases, we give one
rotation and one translation leading to an approx-
imate match. For both green and blue matchings,
x we use the same rotation of angle a.. Yet the sec-
a | ond translation is three times more expensive than

o the first one.

Norm of At'(blue) Norm of Nt'(blue)

\J

N

N

0.5

0

0 05 o 0s :
Figure 5.9 — Comparison of the norms of the deformations between the solution (in blue)
and the target (in red) for the experiment displayed in Figure 5.7 (on the right). We display

separately the norms of the skew-symmetric matrices and the norms of the translations
over the time interval [0, 1].

2.1.3 Alternatives and conclusion

The previous observations show that the current theoretical solution is not adapted to
model the development of a horn. One can then either change the cost function or the data
attachment term in the energy. The addition of intermediate times of the development
to favor the convergence of the solution toward the actual development is not enough to
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modify the global behavior of the solution. Note yet that it does improve the results
of some numerical experiments and it will be exploited (see Section 3.3, 6.3 and 7.2).
The choice of varifolds over currents also helps to avoid the cancellation of the tip of the
horn. At last, an additional landmark on the tips of the horns to match can force the
convergence. In order to balance the fact that the support of the vector field is increasing
it would yet request to apply a strong weight on the contribution of the tip so that the
vector field would primarily be build on this single point. This possibility does not seem
reasonable.

In conclusion, one has to change the cost function. In the following sections, we will
present different cost functions and explicit the gradient of the energy in each case. We
will apply the theorem showed in Chapter 3. An interesting aspect of these new models
is that the new cost functions do not require much more computational time in contrast
to the addition of intermediate times (that also requires more data).

2.2 Adaptive norm: rotations and translations
2.2.1 Aim

For any time-variant vector field v = L2([0, 1], V), the classic cost function leads in the
expression of the energy to the global regularization term

1 1
R(v) = 2/0 onl?, dt

The deformation is thus uniformly penalized over time. The idea of the adapted norm
is simple. It involves a time-dependent weight to create a time-variant penalization as
follows
1 /1
Vo= L(0,1],V), Ru(v)= 2/0 wlodf? dt. (5.12)

where v belongs to C*°([0,1],R* ). The initial growth model tends to generate optimal
vector fields with an increasing norm. Since we would rather like to have a norm more or
less constant, this weighting function should increase the penalization over time. Hence,
v will be an increasing function of the time. In Chapter 3, we showed that with a dis-
crete coordinate space X this function does not need to tends to 0 at time 0". In our
experiments, v will be almost linear with a special care of time 0.

The space of vector fields is now fixed to V = Ay x R%. For any v € L([0,1],V), we
note its canonical decomposition v = (A, N) and at each time t € [0, 1],

v = (At,Nt) S Ad X Rd.

As explained previously around the Figure 5.8 and 5.9, applied to the horn developments,
this space brings another issue of balance between the rotations and the translations.
We recall that V' is equipped with the norm |v]%,7a = a|A|?> + |N|? where « is a strictly
positive constant. We apply the same concept of weighted penalization to handle this
issue. The constant « is replaced by another scalar function that we will still denote
a € C*>([0,1],R% ) to create a penalization on the skew-symmetric matrix increasing over
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time. In fine, we get

1 L
Vo =L*[0,1,V), Ryalv)= / vilvelig, dt = 2/ vi (eu Al + [Nlga) dt.
0 0

2
(5.13)

As for v, since the size of the horn is increasing, the function « should also be increasing.
The problem of time 0 is yet a bit more complicated even with the discrete setup. Indeed,
let us recall that at any time ¢, the optimal vector field is built as an integration of
contributions of any point of the actual shape at time ¢t. At time 0, the shape is reduced
to a single point. This single point allows in the discrete configuration to generate a non
zero initial vector field. However, if this point is located at the center of the ambient
space, the model cannot generate an initial rotational impulse. Consider the expression
of the momentum map given by equation 5.11. Let us note its canonical decomposition
KVT = (KAJ,KNJ). Then the first component applied to a solution (g,p) at time 0 is

KT (g0,p0,0) = projs, | Y po(@)qo(z)”
T?ze)i()
At the beginning, the horn is reduced to its tip. We assume this tip to be in the center
of the base (see Figure 5.16 for an example of initial position) which is the point 0 of R
We have thus for any z € X such that 7(z) =0, go(x) = 0 and consequently

KAj(q()?pOa 0) =0.

In summary, if we note the optimal vector field v* = (A*, N*), at the beginning of the
development, we can have v§ # 0 but we will always have Aj = 0.

We end this section with some notations. The time-variant parameter « implies to
change the norm on V over time. Each norm |- |y, induces a specific isomorphism
KY :V* = V. For any | € V*, KY (l) is defined as the unique element of V' such that for
any v € V,

1(0) = (K1), 0}V -

Throughout the next sections, we will hence use the notation K when « is a constant
and K 0‘2 otherwise. Likewise, we will note K2 or K C‘i these isomorphims composed with
the projection on the first component and simply K7 the composition with the second
component since this last one does not depend on the parameter c.

2.2.2 New cost function and energy

In order to retrieve the regularization term defined by equation 5.13, we define a new
cost function given for any v € V and any ¢ € [0, 1] by

%
Coa(v,t) = S [vfq, - (5.14)
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This cost function is smooth and for any (v,t) € V x [0,1] and any év € V, if v = (A, N)
we have

oC
%(v,t) - 0U = (1B, 00)V,q, -

Consequently, we have as expected

1
1
Elgo,v) = / Clont) dt + Alar) = 510l 0+ Alao,v).
0
At last, since we have

oC
VvE(QO7U)t = %(Utat) - j(qtvptvt)

= VUt — K(‘l/tj(thtat) )

any local minimizer v* € V' of E must satisfy at any time ¢ € [0, 1]

1
/U;( - U*(Qt,pt,t) - ;szj(qtapht) .

2.3 Constrained norm: general situation
2.3.1 Aim

Another solution is to consider the classic energy

1
v
Blao.) = [ Sl de+ Algo,0)
0
and minimize it under the constraint that for any ¢ € [0, 1],
"Utﬁ/ = Ct,

where v is a constant and ¢ : [0,1] — R is a smooth known function. Note that this
constraint requires some additional information on the target. However, numerical exper-
iments show that one does not need a precise estimation of ¢;.

2.3.2 New cost function and energy

For this purpose, we apply the augmented Lagrangian method. This method is detailed
for example in [32] and was also recently used in [5]. The constraint is turn into an additive
penalization term in the energy. For this purpose, we define a new cost function given for
any v € V and any t € [0, 1] by

.V At 12 Y2
Con(0,8) = ZJolt = Z(lof} — ) + 2(lof} — c0)?. (5.15)
The method consists alternately in minimizing the energy and updating the parameters
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A and «. Assume that we obtained an optimal control v™ of the function

1
E"(qo,v) = / Crnyn(v,t) dt + A(qo, v) ,
0
then A is updated according to
AL an n+1‘2 — )
t =M o UVt |y ¢

and we choose 4" ™! €]y™, +o0| with many possible variants (but it is not required to
increase v toward +00).

This cost function is smooth and for any (v,t) € V' x [0, 1] and any dv € V, we have

VoC(v,t) = (v — N + 2y(|v]? — a))v.

With the notation 9, FE(qg,v) - dv = fol < (VuE), 6ve >y dt, it follows that

(VoE)t = vvr — Mvg + 29(Joe]? = eo)ve — KV T (g, pis 1) -

Consequently, any local minimizer v € V of E can be written at any time t € [0, 1]
Vg = ntKVjt )
where n; satisfies
(I/ + 2’y(nf }vatf —ct) — /\t)nt —-1=0.

Since this expression can have multiple solutions in R, we look for the one that maximize
the Hamiltonian (see Chapter 3).

Proposition 2.1. With the cost function defined by equation 5.15, the maximum of the
Hamiltonian

v H(g,p,v,t) = (I (g, p,t)|v) — C(v,1)

s given by
Vg = ntKVjt )

where ng s the largest root of the polynomial
R(X) =2y |EVF* X3+ (v — A — 2yen) X — 1.
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Proof.

Hr(qvpvt) = Iglea‘i.{ (j(Q7pat) |’U) - C(U’ t)

At

= max (7| v) = 5 [ol} + G (1ol = ) = S (0l — )

v 2 A 9 )
= max | KV Jift - 2o [KV T + Sk |[KV [ = ) = To? [KV 7] = e?
Y 4 v )\t 2 702 )\tct
= max— o [KV 2| X = (5 = 5 ) [V X2+ KV x - 5 - 5
= RV xt (YN 2
R Q}K Ti|” X (53— 5 —re) X +X.

The right hand side of this last expression is the sum of a pair polynomial and an increasing
affine function. Therefore, its maximum is reached at the largest zero of its derivative.
The derivative of this polynomial is the polynomial —R introduced above. ]

2.4 Constrained norm: rotations and translations

In the specific case of the group of rotations and translations, a general constraint
as introduced above will not solve the issue of balance previously presented between the
rotations and the translation. We will thus refine the constraint as follows.

2.4.1 Aim

We consider the space V = Ag x R For any v € L2([0,1],V), we note v = (A4, N) its
canonical decomposition and at each time ¢ € [0, 1],

Vt = (At,Nt) S Ad X Rd.

We recall then that V' is equipped with the norm |v|%/7a = a|A]? + |N|>. We want to
minimize the energy

1
v
Fgo,v) = 2/ lnl?, dt+ Algo, v),
0
under the constraint that for any ¢ € [0, 1],

2
{ ’At‘Ad - 024 ?

(5.16)
|Nt|12gd = Cév .

where ¢ and ¢V are smooth known functions.
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2.4.2 New cost function and energy

The augmented Lagrangian method leads then to introduce the new cost function

. v 2
Cra(v,1) = 5 luelyg

A o 2 A2
(|At‘Ad ')+ 7(‘At|Ad —c)
)\N ,.)/N

= 5 (INifa = ) + - (INefza — f')?

and to minimize the new energy

1
E(qo,v) :/0 Ch~(vg, t) dt + A(qo,v) .

2.4.3 Gradient of the cost function

We have
VO (vg,t) = vy

1 1
A (At, 0) + 294 (| A2 — ¢ <At, 0>

- (0, )+27 (1N ]? — )(O N) .

With the notation KY 7; = (K27, KN J;), the gradient of the energy
(VoEB) = VoC(vg, t) — KY T

admits two components with respect to the spaces Ag and R%. Tt can be rewritten (V,E); =
(VAE); + (VN E); where

A e oA A
(VAE)t = VAt — ;At + Qz(yAt‘ — G )At — Ka._7t,

(VNE); = vN; = AVN, + 2N (IN 2 = YN, — KN T, .

2.4.4 Expression of a minimizer

A zero of this gradient is thus written
= (K3 T, KN T)
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where a; and n; are respectively the largest root of the polynomials:
A A Y (2 A 2 A
RAX)=vX — 2Lx 427 (X |KA7| —ct>X—1
! @

A . A4 A
:2%|K§‘$\2X‘3+ (1/— - Vac{‘) X-1

RY(X) = 29N |EN TP X3+ (v = AN — 29V e)X — 1,

2.5 Combined cost functions in the rotations and translations case

At last, since the adapted norm and the constrained norm are two complementary
tools, it seems natural to combined them. We exploited it in the case of rotations and
translations. With the same notations as before, we summarize here this new setup. Note
that with the right choice of parameters, we can always retrieve either the adapted norm

setup or the constrained norm setup.

2.5.1 Energy

E QO7 / C Uta dt+A(QO7 )

_n
- /|m%

A 1
——7<ww @ﬁ+7/6M&ﬂ%%

2
)\N 9
A [0 eyae 5 [l - e
+ A(QO: ’U) :

2.5.2 Gradient of the cost function

VUC(’Ut, t) = VtU¢

1 1
= (400 + 2P ) (- A00)

= A0, Ny) 4+ 29N (N — V) (0, )

2.5.3 Expression of a minimizer

With the notation KY 7, = (K2 7, KN J;), we have
vy (atK Tt nKNT),
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where a; and n; are respectively the largest root of the polynomials:
A A e A 2 A
RAX) =X - SEx 42 (X2 KA ) X -1
(673 (67

A )\A
=2 K 7" X° + <ut—f— i A)X—l.
Q¢ ¢ (677

RY(X) = 29N |V X3+ (= AN — 29V e)X — 1.

3 Data attachment term

3.1 RKHS of currents and varifolds

We recalled in Chapter 1 how to identify smooth shapes to linear forms on some spaces
of test functions independently of the parameterization of these shapes. Reproducing
Kernel Hilbert Spaces (RKHSs) allow then to compute very efficiently distances between
these shapes. We give here a computational approach. We will focus here on discrete
surfaces embedding in R3. More details on currents and varifolds can be found in [28, 26,
15].

Locally, a surface S can be encoded by a position and a unit normal vector, i.e. a palr
(z, N, 2) €ER3xS2. A test functlon is then a fi function w : R3 x S — R and the pair (z, N, )
is associated to the Dirac 559” defined by 55” (w) = w(x, Nw). Figure 5.10 introduces with
triangles how we will model triangulated surfaces.

ﬁ’l

Figure 5.10 — Modeling of a triangle. A triangle

Realit
Y is approximated by the position of its center x, its

normal unit vector N, and its area ¢, that can also

/ 14 be coded as the length of its normal vector (f N, z)-
Model

The first triangle is approximated by £, 5NI

H
A small triangle is approximated by a linear form of the type j, = £,0)=. Given a
space of test functions W, this representative u, : W — R is applied to any w € W by
H
g (W) = Lyw(z, Ny) .

The union of two triangles is then represented by a sum pu, + p,. More generally, a
triangulated surfaces can be approximated by a finite sum

-
Smp=> L0 (5.17)
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and we have R
pw) = Low(z, Ny). (5.18)

The construction of metrics via RKHSs becomes from there rather simple in practice
and can be induced by the choice of two real positive kernels on the ambient space £ = R"
and on the set of tangential data T (general situation). These two kernels generate the
RKHS W, i.e. the set of test functions. A kernel kg measures the distance between the
positions of two infinitesimal shapes and a kernel kr measures the distance between their
respective tangential data (here, a unit normal vector with eventually the orientation).

We can now explicit a scalar product between two shapes represented in W’ by two
sums of Diracs as in equation (5.18). Thanks to the RKHS properties, we have

~ N ~ — — —
(03,00 wr = 02 (ke p)br( ) = kp(@,pkr(Ne, Ny) . (5:19)

— —
The scalar product between two shapes S ~ g =Y., 0+ and S’ ~ pg = >y Eyéévy
is then deduced by linearity:

— —
<MS;MS’>W’ - ZfogykE($,y)kT(Nx,Ny) . (520)
z Yy

Finally, we return now to the definition of a data attachment term to compare a target
shape to a deformed source shape. Once we have fixed a RKHS W, we denote ut® € W’
the representative of the target shape and u” € W’ the representative of the final state
of the solution generated by a vector field v € L%([0,1],V). The data attachment term is
then given by

1
Algo,v) = 5 n” = ™

5 (5.21)

2
o =l

Note that this brief overview is common to currents and varifolds. We can now present
three examples Wo, Wy and Woy of RKHSs whose dual embeds respectively currents,
non-oriented varifolds or oriented varifolds. The only differences between these RKHSs lie
in the choice of the kernels.

1. When kr is the usual scalar product on R?, the dual of generated RKHS embeds
currents and we have for example with a Gaussian kernel kg:

v N lz—y2s\ = =
(627,65 " hwy, = exp (—202R (Na, Ny)gs -

2. In the case of non-oriented varifolds, a trick as suggested in [15] is to define T as

the set of oriented tangent spaces and then to symmetrize a kernel kpr with respect
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to the orientation. We get for example with two Gaussian kernels:

Wy, —

’x—y’%gs 1 ‘Nr—Ny@:s 1 ‘Nm"‘Ny‘%zs
exp (— 552 5 exp | — 2012\7 + 9 exp | — 2012\7 .

3. The advantage of varifolds in our situation is their non linearity with respect to

— —
(62 5"

the tangent space that enables them to model sharp tails as the tip of horns (see
Chapter 1). Since shapes like horns are easily oriented, there is no reason to call for
non-oriented varifolds. In our experiments, we used a Gaussian kernel for kp and a
little more complex kernel for kp:

B

N, <N, . |z -yl INy — Nyl25\ — —

<5i\7z’ 6y y>W,OV = exp <—%‘_2RS exp —ZTZ/RS <Nx, Ny>R3 . (522)
N

The choice of the additional euclidean scalar product to the kernel kp actually facil-
itates the computation but moreover when oy tends to 4o it retrieves the scalar
product of W{, on currents. Figure 5.11 illustrates the differences on the gradient of
the attachment term for a small and a large oy.

Figure 5.11 — Opposite gradient of the attachment term built with the metric given by
equation 5.22. Current model on the left (ony = 999), oriented varifold model on the
right (o = 1). Note how the distribution of the gradient on the tip of the horn is more
important with the oriented varifold norm. In both case the scale o of the spatial kernel
is equal to the radius of the base of the horn.

We also computed the energy of the introductory experiment with the classic cost
function (see Figure 5.7) with the scalar product defined by equation 5.22 with oy = 99999
and oy = 1. Let us recall that the energy is the sum of the cost function C' and the
attachment term A.

oy = 99999 oy =1
Iterations C A Energy Iterations C A Energy
20k 0.3423 | 2.7009 | 3.0433 20k 0.3423 | 10.6736 | 11.0160
200k 0.3695 | 0.5407 | 0.9102 200k 0.3695 | 2.4765 | 2.8459

We can see that the norm on oriented varifolds (o = 1) amplifies significantly the
difference between the two steps of the gradient descent.

Figure 5.12 illustrates the role played by the orientation of shapes. Note yet that if one
might not know the true orientation and generate it randomly, the matching could then
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Figure 5.12 — Two matchings by rotation of two crosses. In both case, the doted cross is the
source, the other one is the target. On the left side, the lines are not oriented. They should
thus be modeled by varifolds and the natural deformation would be a rotation clockwise.
On the right side, the lines are oriented. They could thus be modeled by currents or non
oriented varifolds and the natural deformation would be a rotation anticlockwise.

be irrelevant and misled. This situation is typical in the case of matching of fiber bundles
(see for example [20] on white matter fiber). The orientation on horns can prevent some
local minimums. Figure 5.13 displays a case where the boundary of the two horns meet
with a wrong correspondence. This situation could be a local minimum of the energy.

Figure 5.13 — Without orientation the attachment term could not distinguish the two
boundaries in the grey area. The separation of these two parts would thus partially
increase the energy and could lead to a local minimum.

3.2 Additional landmark

For the specific case of the horn, we add a penalization on the tip of the horns. This tip
is the point image by ¢ of the first leaf Xp,. Consider any & € Xy, the new attachment
term can then be defined by

Chead data

d ~\ ntar ¢
5@ (2),9") + ——

v tar |2

A(q()vv) = ’/‘L w ’W’ )

where %" is the tip of the target horn and d could be simply defined for any wu;,us € R?
as the L2 distance between uq and us

d(ul,ug) = ‘ul - UQ‘Q.
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However, we preferred to localize the influence of this attachment term through a Gaussian

blob
d(uj,ug) =1—exp | ————— | .

Ohead

It allows to delay the influence of this term. Indeed, since the horns might have a high
curvature, the gradient descent does naturally not lead the tip of the horn straightforward
to its landmark target and force this behavior might actually be a brake. Hence, with this
last distance, as long as the tip ¢1(Z) is far away from the tip of the target, we stand in a
flat area of d.

Without this additional landmark, the tips of both horns have no particular reason
to be matched together. This single landmark gives a strong input toward the natural
structure of the temporal foliation (see Figure 5.15). Note that the group of rotations and
translations is yet rigid enough to avoid the behavior displayed in the figure. Nevertheless,
this additional attachment term leads the last step of the gradient descent to a better visual
result because at some point, we fall below the scale of details of the general attachment
term (current or varifold type).

Figure 5.14 — Illustration of the contribution of the Gaussian-L? landmark on the tip of
the horns (pointed in red). On each row, we display two steps of a gradient descent. The
black horn is the target, the green horn is the solution (in progress) at its final state. The
blue blob represents the Gaussian blob window of the landmark attachment term. On the
second example (on the bottom), the matching of the two landmarks is counterproductive
at the beginning of the gradient descent. The Gaussian filter remedies this inconvenience.
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Figure 5.15 — Reconstituted example of a perfect geometric match of the final shape to its
target without landmark correspondence. The algorithm fails yet to retrieve a coherent
scenario to model the growth of the horn as highlighted by the temporal stratification of
the generated shape. The arrow points the flat tip of the generated horn. Note however
that this situation is very unlikely with the group of rotations and translations, especially
when the translations of V' are reduced to vertical translations.

3.3 Intermediate times in the input data

Since we want to retrieve an evolution and not only perform a matching to the final
state, the intermediate states should have an important role in this model. The rigidity of
the rotations and translations can allow to bypass them in some case : for example with
simple horns (i.e. with regular growth and low curvature). We will see otherwise and with
a Gaussian kernel their influence on the trajectory.

Let v € L?([0,1],V) be a vector field that generates a scenario t + Sy. Assume that a
target scenario is given by a collection (Sf*'); of shapes at a finite number of intermediate
times (t;); C [0,1] (with max{¢;,i} = 1). Given a distance d on shapes, the discrepancy
between the two scenarios can be estimated at the different times ¢; by an attachment
term A of the form

n

Algo,v) =Y _d(Sp, Si™).

=1

Let us recall that the shape Sy, is given by the image g;,(X;) of the set
Xi:{$€X|T($) St,}

of active points of the coordinate space X at time ¢;. If the shapes are modeled by currents
or varifolds in a RKHS W' and these are respectively denoted pf € W' for the solution
generated by v and p{* € W’ and for the target, the attachment term can be

n_ _data e (2
A(qo7v) = Z Z?‘M;} - :U’iar i
i=1
where a set of real positive coefficients (cd#2); can be added to weight the terms.

Once again, we can add the Gaussian-L? distance on landmarks d; on each pair of
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tips of the horns. With the previous notations, the final attachment term is given by

Chead ¢ Cd ta tar |2
dr(ae, (), 55™) + ~5— | — 1™ -

2

Ao, ) =Y .

i=1

4 Presentation of the algorithms and code

The code used is entirely performed with Matlab. We recall briefly the classic gradient
descent on the vector field.

Algorithm 5 Gradient descent on v

1 - Initialize v° € L%/ at zero.

Then for any n € N, given gg and v™,

2 - Compute ¢" the solution generated by v" € L%,.

3 - Compute p! = —dA(q}") and integrate it backward to construct ¢ — p} over [0, 1].
4 - Compute the gradient at v™: t — 6vf = V,C(vi*) — KvJr(qf, pY)-

5 - Update the vector field by vt = v™ + edv™ for a small € > 0.

However, all the experiments are actually achieved with the Gradient descent on the
momentum (Shooting). It results from the transformation of the initial problem of match-
ing to an optimization problem of the initial momentum pg. The new energy to minimize
is of the type

1
E(qo,po) = /0 C(v*(qt, pt, 1), t) dt + A(qo, v), (5.23)

where (g, p) is generated by the reduced Hamiltonian system. We will modulate this prob-
lem with the new cost functions presented in Section 2. The gradient of this energy requires
to introduce the auxiliary variable (Q,P) of (¢, p) presented hereafter. The gradient has
then a particularly simple expression:

(VE(q0, po); (690,940)) = —(Qo,dq0) — (Po, 6po) - (5.24)

The code for the gradient descent in this situation is given in Algorithm 2. We present

Algorithm 6 Gradient descent on the momentum (Shooting)

1 - Initialize: gop = init(S8*") and py = 0.

2 - Integrate forward: (qi1,p1) = compute.forward(qo, po).

3 - Compute the co-variables: Q; = gradient.attachment.term(q;,S*"), P; = 0.
4 - Integrate backward: (Qp,Py) = compute.backward(q, p, Q1,P1).

5 - Update the parameters: (qo,po) = update(qo,po)-

here the steps 2 to 5 of the algorithm. The initialization will be discussed further below
in Section 5. To simplify, we will only assume that the target is given at the final time.
In practice, A only depends on the target S** and on the final shape ¢; generated by the
forward equations.
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4.1 Compute forward

The function compute.forward performs a integration forward with a Runge Kutta
method (RK2). It requires to compute the derivatives

(qtapt) = ComPUte'quOt(qt7pt) t) 3

given by the system

g = Lr<v*(qe,pe,t)(qe),
(5.25)

Py = —HTSt(dv*(qtvptvt)(qt))*'pt'

The optimal vector field v*(g, p,t) must satisfies the equation
VoC(ve,t) = KV T (qu, pest) = 0.

In all situations, this vector field is built on the momentum map K7 up to some
projections and weighting. We will explicit it in each case after a brief description of the
momentum map.

4.1.1 Momentum map

For a RKHS with a kernel ki, we have

KEYJ(qpt)= > kv(,q@)px)

and thus for any u, du € R¢

dKY T (q,p,t)(u) - du = Z (O1ky (u, q(z))du)p(z) .

zeX,1(x)<t

When ky is a scalar Gaussian kernel, we will always use the classic cost function so
that

U;gk - va(qtaptat) .

At any time t € [0, 1], we need thus to compute for any = € X such that 7(z) <t

@@= Y kvla(@),a@))p()

zeX,r(z')<t
|2
Qi\T) — qe(T
_ Z exp <_‘ t( )202t( )| >pt(x,>
'eX,r(z")<t v

and

xr) — tx/ 2 / /
ORI DR (—"-’“ )~ 2(&) )<pt<w>Tpt<x>><qt<w>—qt<a:>>.

2
r'eX,r(z)<t Vv 2UV
When the kernel generates the direct product of antisymmetric matrices and transla-
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tions on R4, i.e. V = Ay x R%, we have

KV T (q,p,t) = (KLT(q,p,t), KN T (q,p,1))

|
= | =poja, | Do p@a@" . p(x)
zeX,r(x)<t zeX,(x)<t

and for any u € R?
dKY T (q,p,1)(u) = KT (4,p,1).

Hence, if v* = (A*, N*), the forward equations are given by
g = Lr<tAfq+ Ny,
(5.26)
pr = L < Afpe.

From these equations, we can now describe each specific setup. Hereafter, we will mark
the cost function with subscripts to indicate the main parameters. Note however than for
the constrained norm, the cost functions depend on the two constants v and «.

4.1.2 Adaptive norm
The cost function is given by
Vt 2
Ca,u(vat) = g\va,at :

The optimal vector field is given by

1
U*(Q7p7t) = ;tK;/tj(QItht) .

4.1.3 Constrained norm: general situation
The cost function is given by

v At 2 Y2
Coqy(v:t) = Sofia = S (10l = a) + S ([vly — e)?.

2 2 2
The optimal vector field is given by

U*(q7p7 t) - ntKXj(Q7p7 t) )
where ny = n(q,p,t) is the largest root of the polynomial:

2
R(X)=2v|KY T X? + (v — A\ — 2v¢) X — 1.
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4.1.4 Constrained norm: rotations and translations

The cost function is given by

v
Crn(v,t) =S [0fia

)\A ,}/A

- 7(‘A|Ad o)+ 7(|A|Ad — )
)\N ,YN

—*(’N’Rd Ct ) 7(’Nt’Rd—Ct )2-

The optimal vector field is given by
* _ * *\ A N
v (qap7t) - (Atth) - (atKaxytantK u7t),

where a; and n; are respectively the largest root of the polynomials:

A )\A
RAX) = 2% KA X3 + <y - 27c;;‘) X -1,

RY(X) = 29N [N X3+ (v = AN — 29V e)X — 1,

4.1.5 Combined cost functions in the rotations and translations case

The cost function is given by

14
Coc,l/)\,v(va t) = 7|U|%/ozt
)\A 'y
AR AR, - ey +
)\N ,YN
ANV o) + (N - ).

A
AR, — i)’

The optimal vector field is again given by
* _ * *\ A N
v (qvpvt) - (AtaNt) - (atKatu7t7ntK \71‘,)7

where a; and n; are respectively the largest root of almost the same polynomials R4 and
RN defined above where however the constants « and v depends now on time:

A . )\A
RAX) =2 [KL0[° X° + (Vt— My A) X-1,
Qi ay 0%

RY(X) = 29N [N X3+ (i = AN — 29V e)X — 1.

Note that when the parameters A and « are null, we retrieve the coeflicient of the adapted

1

norm setup : a = ng = v
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4.2 Compute backward

The function compute.backward performs a integration backward of a covariable (or
dual variable) (@, P) with a Runge Kutta method (RK2). Let us recall the definition of
these covariables (see Chapter3 for the details). For any trajectory y = (¢,p) € C([0, 1], Bx
B*), the covariable (Q, P) associated to (g, p) is initialized at time ¢ = 1 by

Q1 = —dA(q1) and Py =0.

They then satisfy the system

Qi = 0,C(v*(qt, iy 1), t) — OpOg Hr(qe, P, t) - Ot + 33Hr(Qt,pt,t) Py,
(5.27)
Pr = 0,C(0*(qr, pr, 1), t) — O2H, (g1, pis t) - Qi + 0g0pHy (g1, 1 t) - Py -

The second derivatives of the Hamiltonian are computed by finite difference (see [5]). Note
that in the case of rotations and translations, these derivatives have yet an expression
simple enough to be used.

We explicit now the gradient of the cost function for a general RKHS V' or for rotations
and translations. The optimal time-varying vector field at any time ¢, v} depends only on
Y+ = (qt, p¢) and t. We replaced then the notation C'(v;,t) by C(y,1).

4.2.1 General RKHS

With the classic cost function, we have

1 *
C(ytvt) = *|U (ytvt”%/

B} Z > (@) kv(a(@'), q(@))p(x) . (5.28)

rzeX z'eXx
7(x)<t T(ac’)<t

Since Hy(y,t) = [v*(yi, )|} = C(yt, t), we have as with the standard dynamic

VoC(ye,t) = —pr, (5.29)
VpC’(yt, t) = (jt . (530)

4.2.2 Rotations and translations

In the case of rotations and translations, the constrained norm setup generates for any
t € [0,1] the coefficients a and n that depend on y; = (g, p:). The gradient of the cost
function becomes thus slightly more complicated since we have to compute the derivatives
of these two coefficients with respect to y;. With the combined cost function, we recall
that v* is the solution at all time ¢ € [0, 1] of

0,C (v, t) = T (qt, pe,t) -
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If we rewrite C(,

0yC(yt,t) - 6y = 0,C(vy,t) 0 Oyvyf - Oy

= J Yz, t) 0 9yv* (s, 1) - Oy
=0y (T (1, 1) [v* (1, 1))

| /— y

t) as a function of y;, C(ys,t) = C(v

Oyt

*(y¢,t),t), we have then

= Gy (at<
= 8 CLt 5yt|
= Oyay - 0Yy|
= ay(lt . 5yt|

KL T K,

A7)+ n(KNTL KN g, )

Oy

TN+ Oyn - Sy KN T +

at‘jt’2 + 8ynt ' 5yt‘KN‘-7t‘2

K2 T+ 0yne - oy KN T * +

)

+ (9, % oyt | vy)
+ (0p | €ar, t(vf)) +
+(

opy | Qt)

(0gqut (vi)”
(=Dt | 6qr) -

- pe | Oqyr)

The variables a and n are roots of the polynomials R4 and RY. Consider R4 as a

functional of the variables (y,t,a) and assume that a is a simple root then on a small

neighborhood of (y,t), there exists a unique root a(y,t) of X — R4(y,t, X) and we have

thus locally R4 (y,t,a(y,t)) = 0. We denote a; = a(y,t) and derive this expression.

ayRA(ya t, a’(ya t)) : 61/

ety 1) 0 = =75 Ry, t,a(y, 1)
7 3
- _6% !Ka“%\Qa;;a(zt— AL 92 ey (O 162
A
6 KAGS a;f(zg— AL g1t i(@’ lrsid-a)p = (lr<iA - p,00) )
Likewise,
&m(y, t) SOy = _8y£;(]%//7(;7z(g7(2)t))6y
N, 3
T 6N | KN, |2 n;: (:t— AN — 29N el (00T 0y K2 )
N, 3
:_MWMWﬁﬁiéiﬂv 29N %@’me
4.3 Update

The update is simply given by

q0
Pbo

=qo + 1q9o0,
= po + pPo -

(5.31)

The step size (jq, f1p) of the gradient descent is slightly increased after each successful step

and decreased when the energy increases.

In some case, especially when we want to interpolate intermediates times, the gradient

Py is smoothed before the update. This is achieved by a convolution with a Gaussian with
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respect to space (go(z) € X) and time (7(z) € [0, 1]) as follows:

Smooth Py — 3 exp ( o) — qo<x'>|2) exp (H@—(rv)!) Po(a!)

2 2
% 20p 20

T

We could have smooth Py with respect to spatial localization in the coordinate space
(x € X). The choice of using go brings the geometry of the shape in the ambient space.
However, since the shape has not been deployed yet, the addition of the time correlation
is then important since gp can be strongly not injective (see the example of the tube).

5 Numerical experiments: general settings

5.1 Model

The meshes all have the same structure : 3 x 1 x L points. We will indeed only consider
horns or tubes. This means that the shape at time 0 is reduce to one leaf of [ points in R3.
For the horns, this leaf is merged to a single point to model the end of the tip. Otherwise,
this leaf is a curve that will form the first boundary of the shape. Then, the L — 1 other
leaves of | new points of R? will gradually appear during the development. The leaves
always appear at regular time intervals. For example if L = 2k 4 1, at half time the shape
is formed by the k + 1 first leaves.

The time discretization of the interval [0, 1] used for the integration steps (forward and
backward) is equal to the image of 7. Which means that L = T'. Refine this discretization
did not seem to improve significantly the results in the following examples. However,
in Section 7, to display the norm of the optimal vector field obtained, we compute the
associated trajectory one more time at the end of the algorithm with a finer discretization
to show that between the appearance of two successive leaves, the dynamic is classic (no
creation from a discrete point of view) and the norm is thus constant.

For most experiences displayed below, we will give the runtime of the algorithm. Since
the decision to stop the gradient descent can be quite subjective, we will give the average
time for 100 iterations then the full time associated to the results as they are displayed.

5.2 Initial position

Once the number of leaves and the number of points of the meshes are fixed, the first
step to create a scenario is to generate its initial position. Let us recall that the initial
position can be seen as the pull backward through the flow of each leaf g1 (X)) of the
final shape to its position qt(X{t}) at time ¢t when it appeared.

In order to generate a horn target, we define the form of the last leaf that will be the
base of the target at its final state and compute a linear reduction of this leaf toward the
center that will be the tip of the horn at its birth. To initialize the algorithm, the initial
position gy is defined likewise via the base of the target. We compute a linear reduction
of the base (closed polyline) to generate the L initial leaves.

In Section 6.4, we will see that the initial position of a tube is very different. Since
every leaves of the tube have a similar shape, their pull backward at their initial position
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Figure 5.16 — Generation of the initial position from the base of the target.

leads to a superimposition in the plan embedding the creation process (as for the horns)
of circular curves eventually completely identical.

5.3 Target simulation

All our experiments are achieved with simulated target shapes. These targets are
simulated with the generative model implied by the growth dynamic. We create a flat
initial position as presented above on the right side of Figure 5.16, a deformation and
we compute the target’s growth scenario. All our targets are generated by rotations and
translations (i.e. we generate a deformation from V = Ay x RY). We will note hereafter
V' = (A% N'T) the vector field that generates the target.

To be more accurate, we only use vertical translations. Since we also always work in
R3, it leads to
V =A3 xR(0,0,1).

In all our experiments, the meshes of the target and the solutions have the same
number of points. This implies that for both shapes the new leaves appear at the same
time. The alignment of the leaves when the shapes are displayed one over the other allows
then to visually measure the correlation of the evolution of each pair of leaves. Since this
alignment can be disturbingly perfect, we add a slight noise to the target. The scale of
this noise is not significant with respect to the scale of the attachment term on the shape.
It will just allow to clear any doubt when the matching of the leaves with the target
are visually perfect. The comparisons between the results and the target (final shape,
development, deformation) will then be done with the initial data but the algorithm runs
with these noisy targets (see Figure 5.17).

5.4 Parameters of the data attachment term

We refer to Section 3 for the notations. The scale with respect to the position is given
by

o=r,



Figure 5.17 — Example of a target (on the right) and its noisy version used in the algorithm.
In case of intermediate times, we will apply this noise to every input shape.

where 7 is the radius of the base of the horn. The scale of the kernel that compares the
unit normal vector does not depend on the shape and is either fixed to

oy =1

or
oy >>1

to retrieve a current attachment term.

In case of multiple intermediate times of the growth scenario of the target, we have to
choose the weights of the different terms induced by these input in the attachment term.
These weight are given by

" _head Cdata

¢ S\ 4 i v ar|2
Alqo,v) = Z 9 d(Qti (), ytar(i)) + 9 ‘:uz - /L:
i=1

We tried few possibilities to define ¢4t

data

as a decreasing coefficient with respect to time.

It appeared that choosing ¢ constant gave better results.

5.5 Parameters of the cost function

A general expression of the cost function embedding every cases described previously
is given by

Vi
CO(W)\:’Y(”’ t) = §‘v|%/yat
A a0 A
- ?t(‘ALid -G ) + 7(|A’12§d -G )2
A

S (N, — ) 4 (ViR — )2
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The adapted norm setup corresponds to the case A = v = 0 and the constrained norm
setup corresponds to the case o and v constant. For this last setup, we always use the
exact norm of the vector field that generates the target (i.e. ¢4 = |A®|? and ¢V = |Ntar|?
with the notations introduced above).

Besides the global relative weight of all these parameters, we need to choose for the

adapted norm parameters o and v their evolution in time. We tried on a basic horn (as in
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the first example we will see) few possibilities (linear, t + In(1+t), t + /) and a linear
function of the time seemed to be the best solution. We use thus the increasing sequence
r1,...,rr of the radius of the L leaves of ¢y to initiate a and v. In fine, we just have
to adjust two constants to weight these two sequences. At this point however, we have
a(0) = v(0) = 0. To obtain two strictly positive coefficients, we replace the radius r; =0
associated to the tip of the horn by r; = %Hrg (since there is a ratio of 1 point against
1+ points between the two first leaves).

Figure 5.18 — Solution after 1 iteration of gradient descent with too high constraints (on
the top, the target, on the bottom, the solution).

Remark 5.1 (Soft Constraint : Initialization). When the horn is long and curved as
in Section 6.3, the coefficients A and v must be chosen really small (note that they will
increase during the gradient descent) otherwise quite unpleasant behaviors can be produced
during the first steps of the gradient descent. Indeed, the constraints will strongly increase
the weight of the rotation and the horn will rotated around its base. The energy will
decrease compared to the flat disc that is the shape at the beginning but then there is no
chance to recover a shape close to a horn (see Figure 5.18).

Remark 5.2 (Soft Constraint : Update). Besides a soft initialization of the constraints,
we also keep these constraints relatively soft through the update as described in the recall
of the augmented Lagrangian method (in Section 2.3). The main reason is to show that we
do not need a strong constraint to obtain good results and therefore if we do not have the
initial information, we could still proceed to the constrained gradient descent with a rough
estimation of the norm. Moreover, we will see with the rotations that this constraint can
be tricky because the algorithm does not equally treat every axes of rotation.

Remark 5.3 (Balance of the Parameters between the Cost Function and the Attachment
Term). We observed that with the constrained norm, the global weight of the cost function
in the energy is much less important than with a classic cost function. With the Gaussian
kernel, we choose the coefficient of the cost function such that at the steady-state the cost

function and the attachment term have the same order of magnitude.

259



6 Numerical experiments: rotations and translations

We present in this section four examples of matchings with the deformation group of
rotations and translations. For all the experiments, the aim is to retrieve the complete
development of the shape over time. The faithful recovering of the development will be
evaluated by visual comparison of the shapes, of the norm of the vector fields or of the
laddering of the leaves. The different cost functions previously introduced will be fully
exploited and compared throughout these examples. We recall that the constrained norm
setup applies a constraint on the norm of the optimal vector field, the adapted norm setup
changes the weight on this norm over time to favor the growth at the beginning of the
development and the combined setup mixes this two tools.

For Examples 1, 2 and 4, the only input data is the final state of the target. For
Example 3, the horn being more complex, we also consider some intermediate times of the
development of the target. In Example 4, the horns are exchanged for tubes: besides the
exploration of other types of shapes, it will highlight the complexity of horns with their
singularity at the top. At last, the optimization of the initial position will be explored in
Example 5.

6.1 Example 1 - Cost functions competition

For this first example, we consider a simple horn with a low curvature and a regular
growth pattern. This means that the norm of the vector field used to generate the target
is constant (see the red curves in Figure 5.20).

From a shape point of view, we can say from Figure 5.19 that the development is very
well recovered. The perfect alignment of the horizontal leaves between the solution and
the target at the final state reflects by itself the quality of the matching on the whole
development. In all experiments, the target and the solution have willingly the same
number of leaves in order to observe this alignment (see Section 5.3).

The transverse curves however seem to slightly diverge at the top of the horns. This
indicates that the deformation associated to the solution is not exactly the one used to
generate the target. This difference will be deepened hereafter.

Regarding the norm of the vector fields, let us note |A*| and |N*| the norms of the
skew-symmetric matrices and the norm of the translations for a solution and likewise | A*"|
and | N'*T| the respective norms associated the target, all defined on the time interval [0, 1]
of the development of the horns. Figure 5.20 compares for each setup these norms for the
solution (in blue) and for the target (in red). As a first observation, |[N*| is no longer
null at time 0 and although |A*| is always null at time 0 (as explained in Section 2.2),
it jumps immediately for ¢ > 0 towards |A®|. These behaviors are thus quite different
from those observed with the classic function in Figure 5.9. Moreover, the norms with
the contrained norm setup are not perfectly recovered because we chose to apply a soft
constraint as explained in Remark 5.2. They are even softer in the combined setup but as
we can observe it is enough to force the jump of |A*| at t = 0.

An interesting property of the group of rotations and translations is that the momenta
can only be rotated over time. Hence, their norms remain constant and the initial momen-
tum allows to visualize how the vector field v* is built. The initial momentum with the
adapted norm displayed in Figure 5.21 is homogeneous. This implies that all the points
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Figure 5.19 — We display on each row the development of the solution overlayed with the
target’s development. These three experiments have been computed in 30 minutes for
the adapted norm setup and 1 hour for the two other setups. The time required for 100
iterations of the gradient descent lies in all cases around 30sec.
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Figure 5.20 — Comparison of the norms of the deformations between the solution (in blue)
and the target (in red). From left to right, with the adapted norm setup, the combined
setup, and the constrained norm setup. We display separately in each case the norms
of the skew-symmetric matrices and the norms of the translations over the time interval

[0, 1].

contribute to v* with equal importance. On the contrary, with the constrained norm the
initial momentum is concentrated around the first leaves. This initial momentum looks
similar to the one obtained with the classic cost function (see Figure 5.22). The con-
straints seem thus to generate the same solution but to accelerate the convergence of the
gradient descent when the adapted norm setup tends to create a different solution. The
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Figure 5.21 — Initial momentum py on the initial position gg. From left to right, with
the adapted norm setup, the combined setup, and the constrained norm setup. Note how
the initial momentum pg is concentrated on the first points around the tip in the case of
the constrained norm. We take here the opportunity to remind that with the shooting
method on the initial momentum, the initial momentum and position encode the whole
development of the shape.

main difference between these two momenta is the orientation around the tip of the horn.
In Figure 5.22, the momentum is mainly directed upwards in the middle. This can be
explained by the balance issue between the rotations and the translations as discussed in
Section 2.1 (see Figure 5.8): the model favors the translations over the rotations at the
beginning of the development.

t— ny

x10° t— ay

900

Figure 5.22 — Initial momentum with the 0 0
classic cost function. The final state of
the horn is displayed in Figure 5.7 (result
after 200k iterations).

Figure 5.23 — Coefficients in the equa-
tion of the optimal vector field v* =
(@ K2 T, ni KN J;) obtained with the
constrained norm setup (see Section 2.4).

6.1.1 Horizontal rotation

Figure 5.20 reveals that the skew-symmetric matrix is always underestimated by the
algorithm. We tried to adjust the weight between A and N but the problem lies elsewhere.
As noticed previously and as it can be observed again on Figure 5.24, the vertical lines
on the horns slightly diverge on their way from the base to the top. These lines highlight
how the horn turns on itself during its development and ends twisted (the emerging part
of the shape is rotated but the future points remains static at their initial position which
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creates the twist effect).
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Figure 5.25 — To complete Figure 5.24,
we display here t — w; the angular ve-
locity vector of the solution in the com-
bined setup (in blue) and the target (in
red) (equivalent to A* and A%r).

Figure 5.24 — Comparison of the horizon-
tal rotations through the vertical lines be-
tween the solution in the combined setup
(on the left) and the target (on the right).

This type of deformation leaves the horn almost invariant unless under a high cur-
vature (or for example completely invariant for a regular cone). Hence, as confirmed by
Figure 5.25, the algorithm ignores the vertical component of the angular velocity vector
equivalent to the skew-symmetric matrix. In Example 6.3 the horn will have a higher
curvature that will enforce the algorithm to retrieve this horizontal rotation.

Remark 6.1. Let us recall that to apply a constraint on the norm, we always use the
exact norm of the vector field that generates the target (i.e. ¢ =|A%|? and N = |Ntar|?
with the notations of Section 2.4). This choice can thus lead to a bad setting of these
parameters. A strong constraint that takes into account a large horizontal rotation can be
in conflict with an optimal solution. We tried on this example to apply a strong constraint.
The algorithm does not retrieve the horizontal rotation but twists in a wrong direction the
tip of the horn to compensate for the lack of rotation. Moreover, we also ran the algorithm
under a soft constraint with different values of ¢® and ¢V with success on this example.
This shows a large flexibility of the constrained norm setup.

6.1.2 Additional landmark on the tip of the horn

Figure 5.26 displays the result of the matching with the adapted norm but without
landmarks on the tip of the horns. We can observe that the tip of the horn has been
turned inside. At the beginning of the gradient descent, the tip of the horn is outside. At
some point, the generated horn becomes close to the target but bigger. We can assume
that the momentum of the tip of the horn is used to recalibrate the deformation. The
momentum on this particular point is used more than the others because the position of
the tip of the horn barely change the shape at the scale of the global attachment term.

On the bottom of the figure, we can observe that all the initial localized momenta are
directed upward except the one of the tip. After the end of the algorithm, we computed
one more time the covariable Py and looked at the tip point. Although the gradient Q of
the attachment term displayed on the right side of the figure tends to push the tip outside
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Figure 5.26 — Matching without landmarks on the tip of the horns. On the left, the overlay
of the solution and the target at time 1. On the right, the solution at time 1 with the
gradient Q7 of the attachment term. On the bottom, the initial momentum py on the
initial position gg.

the horn (it requires a strong zoom on the figure to observe it), the vertical component of
Po at the tip point was still negative.

Remark 6.2. This problem of the tip illustrates well an important property of the model.
When the localized momenta of the last leaves determines only the evolution of their area
of the shape, the momenta of the first leaves plays a role on the evolution of the whole
shape. The dependence of these last momenta to the whole shape is accentuated in the
case of the horn since the relative size of their local area tends to 0. We will see another
situation with the example of a tube in Section 6.4.

Remark 6.3. At last, a natural question is to consider a basic setup with the classic cost
function and this additional landmark on the tip of the horn. A strong weight on this
landmark accelerates indeed the convergence of the algorithm and offers a non null initial
vector field (which allows to create the tip of the horn instead of a flat top). However, this
setup accentuates the concentration of the momentum on the tip of the horn as commented
before. The momentum tends to a Dirac on the landmark. An optimal vector field would
thus be built on a punctual momentum. This solution could be enough for simple horns
but becomes quickly inadequate for more complex horns.

6.2 Example 2 - Non constant growth

Now that the model is optimized to favor vector field with a constant norm, an inter-
esting question is to test its flexibility. Indeed, if we think to the applications in medical
imaging, one would like to be able to detect abnormal growth. The vector field v'¥ used
to generate the target in this example has a non constant norm. The parameters of the
constraint takes into account this variation since we fixed as before for any ¢ € [0,1],
cft = |A |2 and ¢y = |Nf*|2. Surprisingly, the adapted norm setup, that should promote
a constant growth, achieved a better matching than the constrained norm setup.
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Adapted Norm

Constrained Norm

Figure 5.27 — We display on each row the development of the solution overlayed with the
target’s development, then the final state ¢ in each case and the target. Note that besides
the issue on the tip of the horn for the constrained norm setup, the horizontal rotation is
slightly better recovered with the adapted norm setup.
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Figure 5.28 — Comparison of the deformations between the solution (in blue) and the target
(in red). On the left, with the adapted norm setup. On the right, with the constrained
norm setup. We display separately in each case the norms of the skew-symmetric matrices
and the norms of the translations over the time interval [0, 1].

For this example, we only performed three updates of the Lagrangian coefficients. The
constraint seem strong enough to retrieve the global behavior of the development. We tried
several settings of parameters without resolving the issue at the tip of the horn for the
constrained norm setup. Note that as for the first example with the classic cost function,
the horn is globally recovered with the first step of the gradient descent, then the energy
continues to decrease very slowly (see Figure 5.30). It would be interesting to deepen this
problem and find a way to accelerate the convergence.
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Figure 5.29 — Observation of the norm of the mean initial momentum pg on each leaf with
the adapted norm setup: t; — |mean{pg(x)|7(x) = t;}|gs. On the left, for the previous
Example 1 where the expected norm of v* is constant, in the middle, for this Example
2. On the right, norm of the optimal vector field v* for Example 2. The addition of a
new leaf of initial momenta at each time of creation ¢; explains the ability of the model to
highlight delay in the growth.
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Figure 5.30 — Evolution of the energy during the gradient descent with the constrained
norm setup. We cut the 50 first iterations. The three pikes at the beginning correspond
to the update of the Lagrangian parameters. Time for 100 iterations : 27.5 sec (250k
iterations : 18 hours). Comparison with the adapted norm setup : time for 100 iterations
: 21 sec (25k iterations : 1,5 hour). (size of the mesh in both cases : 3 x 6 x 13).

6.3 Example 3 - Intermediate times

We saw with the previous examples than in a case of a short horn, the final state is
enough to retrieve very well the growth dynamic of the horn during its complete devel-
opment. In the next example, we generate a much longer horn with a higher curvature.
We will here compare the result of the matching with and without intermediate times.
Four intermediate times of the horn are added to the input data (see Section 5.4 for the
expression of the data attachment term). In both situations, we will use the combined
norms setup. The results are displayed in Figure 5.31 to 5.33.
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Figure 5.31 — Display of the final state gq; of the solution overlayed with the target from
two points of view. On the top row, without intermediate times. On the bottom row, with
intermediate times. The matching of the final shape is better with intermediate times.
Moreover, we can also already see here that the horizontal rotations are better recovered
with the intermediate times. Indeed, if we look closely, we can see the longitudinal lines
diverging on the first row. This difference will striking on the complete development (see
Figure 5.32).

Without intermediate times

With intermediate times

[

Figure 5.32 — We display on each row the development of the solution overlayed with the
target’s development. On the top row, without intermediate times. On the bottom row,
with intermediate times. The growth dynamic of the development is significantly better
retrieved with the intermediate times. Note that with intermediate times, the average
time for 100 iterations is 72 sec (110k iterations : 22 hours) and without intermediate
times, the average time for 100 iterations is 40 sec (230k iterations : 25 hours).
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We see on this example that the horizontal rotation that might leave the final shape
invariant has a deep impact on the growth scenario of the horn’s development. Without
the additional information of few intermediate times, the model does not retrieve this
component of the deformation. Figure 5.33 gives a finer analysis of the situation.

Figure 5.33 — We display here the angular velocity vector ¢ — w; associated to the skew-
symmetric matrices of the solution A* (in blue) and of the target A'* (in red). On the
left side, for the solution without intermediate times. On the right side, for the solution
with intermediate times through three different points of view of the same figure. Note
that the target has a vector w more or less constant over time, evolving as a small wave.
In the first case, we can observe an important change of the solution at the end. The
rotation on itself of the horn is adjusted only at the end of its development. This explains
the differences at the beginning of the development on the first row of Figure 5.32.

Remark 6.4. On this ezample, the Lagrangian parameters have been updated in both cases
about 50 times. The constraint needed yet to be treated carefully. Indeed, when the norms
converge faster than the shapes, the gradient descent tends to end prematurely.
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Figure 5.34 — Comparison of the deformations between the solution (in blue) and the
target (in red). On the left, without intermediate times. On the right, with intermediate
times. We display separately in each case the norms of the skew-symmetric matrices and
the norms of the translations over the time interval [0, 1].

6.4 Example 4 - Boundary effect

The attachment term built with metrics on currents and varifolds grants an important
role to the boundary of the shapes. The Cartan’s formula shows that the optimal vector
field is given as an integral operator on two domains, the shape and its boundary, with
their respective volume form. The dependence of these two terms in the discretization of
the shapes with respect to the number of points has been studied for example in [16]. Here,
we give a new example of shapes : tubes. The coordinate space remains X = [0,1] x S!
and the birth tag is the projection of the first coordinate. Yet, the image of the first leaf
is now a close curve. This changes completely the form of the initial position. Instead of
a disc as for the horns, the initial leaves could be here all superimposed into one single
curve. We display in Figure 5.37 the initial momentum on the initial position.

We will see that the existence of a boundary attenuates slightly the issues discussed
in Section 2.1 but does not solve them. At the initial time 0, the shape is not anymore
reduced to a point but to a curve. This implies that v # 0 even before the discretization
of the shape.

In this specific example, the attachment term is reduced to the oriented varifold norm.
No landmark is added on the initial boundary.

In the three experiments displayed in Figure 5.35, the final state of the target is always
perfectly recovered. However, from left to right the laddering of the leaves becomes more
regular. With the classic cost function, the development of the tube strongly accelerates
over time as the thickness of the slices increases from the top to the bottom. On the
contrary, with the constrained norm setup the thickness of the slices is almost constant.
These observations are corroborated by norms of the vector fields displayed in Figure 5.36.
In the last setup, these norms for the target and the solution are almost perfectly equal.
We took indeed the opportunity on this example to strengthen the constraint in the
constrained norm setup (mainly by the number of update of the Lagrangian parameters
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Figure 5.35 — We display on the top row the solution overlayed with the target at time
1. On the second row, we display the momentum of the solution at time 1. From left to
right, the results are produced with the classic cost function, the adapted norm setup and
the constrained norm setup.

: 12 against 3 for the two first examples). The evolution of the energy for this setup is
displayed in Figure 5.38.
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Figure 5.36 — Comparison of the deformations between the solution (in blue) and the
target (in red). From left to right, with the classic cost function, with the adapted norm
setup and the constrained norm setup. We display separately in each case the norms of the
skew-symmetric matrices and the norms of the translations over the time interval [0, 1].
Note that for shapes with boundary like these tubes and unlike horns, |A*| is no longer null
at time 0. In every setup, the runtime for 100 iterations is 32 sec. In the two first cases,
the algorithm had roughly converged after 8min (1500 iterations). We let the algorithm
run a bit longer for the constrained norm setup, as an example, with 7000 iterations (i.e.
30min).
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Figure 5.37 — Initial momentum pg on the initial position gq.

This example also allows to illustrate the possibility for the initial position g : X — R¢
to be highly non injective. If the creation process occurs at a specific fixed area independent
of the time, each leaf appears at the same position of the other ones. Hence the set
{a0(X1ny),t € [0,1]} of all initial position of the leaves would be reduced here to one close
curve.

Evolution of the energy
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Figure 5.38 — Evolution of the energy during the gradient descent with the constrained
norm setup. The peaks correspond to the updates of the Lagrangian coefficients. These
updates are achieved at a minimal interval of 500 iterations and below a given threshold
for the slope of the energy curve. We cut the 50 first iterations.

Remark 6.5. We can observe on this example that the runtimes of the algorithm is shorter
than for the horns. The time for 100 iterations is equivalent, but the algorithm converges
much faster. This is due to the difficulty to match the peak of horns. The main part of
the horn is retrieved quickly but then the most part of the gradient descent is dedicated to
the peaks.

Remark 6.6. On this experiment, the initial position is exactly the one used to generate
the target. We will see in the next example that we could have proceed without this input.
Without the initial position of the target, we could have compute a interpolation, similar
to that described in Section 5.2, from the base of the target to the projection of its top
boundary in the initial plan.
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6.5 Example 5 - Optimization of the initial position

To finish the numerical experiments with the

group of rotations and translations, we gen- 04

erate a target with a disturbance of the po- 03 ¢

sitions of the initial leaves. Figure 5.39 dis- oz ¢

plays the initial position of the target. Unlike o f

before, the arrangement of the leaves is no or

longer regular. The external curve that mod- oy

els the base is close to a circle but the next o2y

curves are then gradually deformed into el- o3y

lipses. This behavior can hardly be estimated oy —

from the final state of the target. Hence, the 05 04 03 02 a1 0 01 0z 03 04 05

initial position qq is initialized here as before:
as a linear reduction of the base (last leaf) of
the target (see Section 5.2).

Figure 5.39 — Initial position of the tar-
get.

The algorithm is applied with the combined norms setup. The constraint on the norm
is rather high to compensate the freedom induced by the relaxation of the initial position.

Figure 5.40 — Display of the final state g; of the solution overlayed with the target from two
points of view. The black arrows point the few areas where the matching is non optimum.
Figure 5.24 displayed a similar front view of the horn and highlights how, here, the horn
strongly tapers from the base to the top.

During the gradient descent, qg is updated by the equation

qo = qo + g 20 -

Yet, qo is then projected in the horizontal plane. The optimization of ¢¢ in this example
is rather successful. We can observe in Figure 5.41 how the leaves have been transformed
from circles (in cyan) to ellipses (in blue) and perform a close match to the initial position of
the target (in red) after this optimization. The gradient )y has been smooth as described
for Py in Section 4.3 and cancel on the boundary. The balance between the optimization
of pp and gy has yet not been deepen. Note that one or few additional intermediate times
would be a strong input in this typical situation. One could for example expect to resolve
the issue pointed by the arrow on the left in Figure 5.40. Indeed, the initialization of
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Figure 5.41 — Deformation of the initial position qo. On the left, the initial positions of
the solution at the first step of the algorithm (in cyan) and at the end of the algorithm
(blue dash line). On the right, comparison of the optimized initial position of the solution
(blue dash line) with the initial position of the target (in red).

the initial position would be more accurate with the simple input of the bases of the
intermediate times (i.e. a distribution of few leaves of the initial position of the target
that we could interpolate).
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7 Numerical experiments: RKHS with a Gaussian kernel

To retrieve the rigidity of the rotations and translations, we used a large scale for the
Gaussian kernel of V' (see Figure 5.54). In the two following example, a landmark on the
tip of the shape was added to estimate the data attachment term.

7.1 Example 1 - The cone

The cone is the first example we tested with simply translations. Its construction is
almost perfectly retrieved after few iterations (with the adapted norm as the constrained
norm). A Gaussian kernel produces a result a bit less regular as displayed in Figure 5.42.
Five intermediate times are used to ensure the regularity of the development.

AA‘@A%

Figure 5.42 — Development of a cone. The faded evolution is the target. These five
intermediate states of the target have been used to estimate the data attachment term
during the gradient descent.
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Figure 5.43 — Square norm of the vector Figure 5.44 — Initial momenta po on the

field. The time subdivision is refined by initial position go. The arrangement of
a factor of 5. Between the birth of two the momentum (concentrated around the

tip) is strongly linked to the scale of the

leaves, the growth dynamic is reduced
kernel. Here, we have : oy = 0.9

to the standard dynamic and the norm
of the vector field is constant.
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Figure 5.46 — Evolution of the thickness
of each slice of the cone over time. The
first slice is the part of the cone between
the two first leaves and its thickness is
displayed by the first curve (the longest
one).

Figure 5.45 — Partial information on the
amount of creation at the base of the cone
measured by the thickness of every new
slice. In blue for the solution, in red for
the target.

As discussed in Section 2.1.1, the growth process is more complex to exhibit with non
rigid deformations like here. A constant amount of creation at the base of the horn is no
longer linked to a constant norm of the vector field as before. The norm of the vector
field also depends on the size of the shape and the scale of the kernel. We can observe
on Figure 5.42 that the growth retrieved by the algorithm seems too strong during the
beginning of the development then too slow. Indeed, on the last three states displayed,
the leaves are farther apart on the top of the cone then they become closer. However,
the growth is not anymore reduced to the creation process on the base since we can also
observe that the thickness between two leaves tends to increase slightly over time.

To deepen these observations, we display on Figure 5.45 the thickness between the last
two leaves appeared at each appearance of a new leaf. It measures thus the amount of
pure creation over time at the base of the cone (we only measure the thickness here but we
could then estimate the mass). The growth of the target is perfectly regular (red constant
curve). For the solution, besides a difficulty at the first times, this quantity decreases
strongly. However, the algorithm compensates this lack of creation by stretching the cone
afterwards. Indeed, Figure 5.46 displayed the thickness of each slice (part of the cone
between two leaves) of the cone over time. The thickness of the 3 first slices are rather
constant but the next slices continue to grow during all the evolution of the shape.

The start of each horizontal lines corresponds to its thickness at the appearance of the
second leaf that delimits its boundary. Hence, connecting the beginning of each line with
the faded curve restores the blue curve of Figure 5.45.
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Figure 5.47 — Evolution of the energy during the gradient descent. Time for 100 iterations
: 4min. Global runtime : 1h45 (size of the mesh : 3 x 10 x 25).

7.2 Example 2 - Basic horn

We take the opportunity on this last example to observe the impact of intermediate
times. The orientation of the leaves are much better retrieved with the intermediate
times. Yet, the global curvature of the horn struggles to emerge in this last setup (see also
Figure 5.49 and 5.50). Moreover, the two red slices are smaller than expected while the
blue, the cyan and the green slices have been gradually spread during the development.
On the other hand, the thickness of the slices without intermediate times are globally
more regular. At last, we observe for the cone as for the basic horn, a tendency to see
the thickness of the layers increase from the bottom to the top. Moreover, this thickness
increases during the development of the shape illustrating that the growth process can
also results from deformations as soon as we leave the rigid setting.

Without intermediate times

With intermediate times

Figure 5.48 — Development of the horn with and without intermediate times. The faded
evolution is the target. On the first row, the matching only included the final state of the
target. On the second row, all the intermediate states displayed have been used in the
gradient descent.
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Figure 5.49 — Final state of the horn without intermediate times. On the left, the result
at time 1. On the right, the target. In the middle, the overlay of both.

N

Figure 5.50 — Final state of the horn with intermediate times. On the left, the result at
time 1. On the right, the target. In the middle, the overlay of both.

Figure 5.51 displays the initial momenta py on the initial position ¢g. In both cases,
the momenta have been smoothed during their optimization as described in Section 4.3.
It led to a significant improvement especially with intermediate input. This operation did
not seem necessary with the group of rotations and translations (see previous Example 3).
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Figure 5.51 — Initial momenta py on the initial position gg. On the left, without inter-
mediate times. On the right, with intermediate times. Note that although the gradient
of the momentum is smoothed with a significant impact in the result, the optimal initial
momentum is in the end not very smooth.
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Figure 5.52 — Square norm of the vector field. Blue curve for the solution without inter-
mediate times, red curve for the solution with intermediate times.
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Figure 5.53 — Evolution of the energy during the gradient descent. On the left, without
intermediate times. Time for 100 iterations : 23sec (size of the mesh : 3 x 10 x 9). On
the right, with intermediate times. Time for 100 iterations : 40sec (size of the mesh :
3 x 10 x 9, 4 intermediate and final times). Global runtime for both experiments : 50mn.

7.2.1 Scale of the deformation

Let us recall that the Gaussian kernel is given by

ky: RExR? — R

(v,y) +— exp <—%) (5.32)

and that the optimal vector field v* is given at time ¢ as the sum of the contribution of
every active point x € X, 7(x) < ¢ via their current position and momentum:

vy = Z kv (- qi(x))pe(z) .

zeX,1(x)<t

Figure 5.54 highlights the scale of the deformations used in these two experiments.
We display on the same horn two vector fields with different scales oy, generated by the
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same Dirac momentum (arbitrary chosen) attached to the tip of the horn. Note that for
the smallest scale, the acceleration of the norm of the optimal vector field is stronger than
for the largest scale (see the global slopes on Figure 5.52). Despite this acceleration, the
flexibility of the smallest scale seems to favor a more regular creation process as discussed
above regarding the thickness of the layers.

0.8 0.8

0.6/ 0.6

0.4 0.4

0.2 0.2 4

o o

Figure 5.54 — The vector fields displayed on each horn are both generated by a Dirac mo-
mentum on the tip of the horn. It can be seen for a general momentum as the contribution
of one active point to the optimal vector field. Each picture illustrates one scale. The scale
on the left is oy = 0.5 as used without the intermediate times and on the right, oy = 0.7
as used with the intermediate times.
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8 Conclusion

We examined in this chapter the algorithm to optimize the initial momentum py and
applied it to illustrate the matching problem detailed in Chapter 3. We modulated this
problem with new cost functions corresponding either to a time-varying weighting of the
penalization on the flow (adapted norm setup) or to the addition of a constraint on the
norm of the vector field (constrained norm setup). We applied a new data attachment
term using the representation of surfaces by oriented varifolds. It was joined with a local
landmark attachment term to refine the result at small scale around the landmark.

This thesis was motivated by the need for new models to faithfully reproduce a bio-
logical phenomenon. It raises the issue to integrate additional prior information into the
traditional framework proposed by the LDDMM methods. In the case of growth scenar-
ios, the aim is to model the creation process but also to quantify it. The validation of
the numerical experiments focused specifically on the latter criterion. The different cost
functions were compared regarding the goal to retrieve the norm of the vector field used to
generate the target. The flexibility of the model was tested in order to evaluate its ability
to identify abnormal behavior such as growth delay. In contrast to the classic LDDMM,
building the momentum map with the growth dynamic through a gradual influx of new
initial momenta gives this flexibility and eliminates the need of reparametrizations in time
to detect such anomalies.

The model integrated without difficulty the addition of input data at known inter-
mediate times to reconstruct a scenario by interpolation. It can improve the results of
an experiment that could have approached the limits of the model by the high sharpness
and curvature of the studied horn. We also experimented the optimization of the initial
position go and investigated the initial boundary effect. Since the model should not be
limited to affine deformations, the chapter is concluded with some experiments with a
Gaussian kernel RKHS to model vector fields.

At last, as in the classic LDDMM framework, each scenario is completely characterized

by the low dimensional variables initial position ¢y and initial momentum pg, paving the
way to a statistical analysis of the scenarios’ population.
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