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Résumé en français

1 Objectifs de la thèse

Cette thèse se consacre à une analyse rigoureuse des algorithmes d’optimisation globale

séquentielle. L’optimisation globale apparaît dans de nombreux domaines, y compris les

sciences naturelles (Floudas and Pardalos, 2000), le génie industriel (Wang and Shan, 2007),

la bioinformatique (Moles et al., 2003), la finance (Ziemba and Vickson, 2006) et beaucoup

d’autres. Elle vise à trouver l’entrée d’un système donné qui optimise la sortie. L’objectif

d’optimisation est typiquement la maximisation d’une récompense, ou la minimisation d’un

coûts. La fonction qui relie l’entrée à la sortie n’est pas connue, mais on dispose d’une

manière d’évaluer la sortie pour toute entrée. Les mesures peuvent provenir d’expériences en

laboratoire, de simulations numériques, de réponses de capteurs ou n’importe quel retour

en fonction de l’application. En particulier, cette fonction peut ne pas être convexe et peut

contenir un grand nombre d’optima locaux. Dans ce travail, nous abordons le cas difficile

où les évaluations sont coûteuses, ce qui exige de concevoir une sélection rigoureuse des

entrées à évaluer. Ainsi, une procédure itérative utilise les mesures acquises précédemment

pour choisir la prochaine requête la plus utile. Nous étudions deux objectifs différents,

d’une part la maximisation de la somme des récompenses reçues à chaque itération, qui est

pertinent pour l’optimisation “en ligne” telle que des essais cliniques ou des systèmes de

recommandation ; d’autre part la maximisation de la meilleure récompense trouvée jusqu’à

présent, pertinente pour la recherche d’un optimum telle que l’optimisation numérique. La

complexité numérique est souvent une préoccupation essentielle pour un praticien, nous

décrivons des solutions pratiques tout au long de ce travail et nous fournissons des détails

de mise en œuvre. L’objectif est d’apporter de nouveaux concepts issus de la théorie visant à

décrire l’efficacité des procédures d’optimisation par rapport à des notions génériques de la

complexité du problème.

Notations et critères de performance

On modélise le système à optimiser par une fonction inconnue f : X Ñ R. L’espace d’entrée

X peut être fini ou infini, paramétrique ou non paramétrique. Un problème d’optimisation

avec contrainte sera simplement modélisé en restreignant X aux entrées qui satisfont les

contraintes. Un algorithme d’optimisation propose des évaluations de f en tout point x P X ,

et reçoit alors l’observation associée bruitée y “ fpxq`‘, où ‘ modélise un bruit centré, additif

et indépendant de tout le reste. Nous considérons en particulier le cas du bruit gaussien :

‘ „ N p0, ÷2q.

7



On parlera d’optimisation déterministe lorsque les observations ne sont pas bruitées (‘ “ 0

presque sûrement). Nous nous intéressons au cas où les évaluations de f ont un coût élevé,

forçant l’algorithme d’optimisation à choisir avec soin ses requêtes pour minimiser le nombre

d’évaluations nécessaires. Nous définissons deux critères de performance d’un algorithme.

Soit x1, . . . , xn les requêtes de l’algorithme après n itérations. Le regret simple est la différence

entre l’optimum de la fonction inconnue et la meilleur valeur trouvée jusqu’à présent :

Sn “ sup
x‹PX

fpx‹q ´ max
i§n

fpxiq.

Cette quantité n’est pas accessible en pratique, et l’enjeu de l’analyse théorique est de fournir

des preuves de convergences vers zéro et des vitesses de convergence. Le regret cumulé est la

somme des différences entre l’optimum inconnu et les valeurs des points évalués :

Rn “
nÿ

i“1

´
sup
x‹PX

fpx‹q ´ fpxiq
¯

.

Le but d’un algorithme concernant le regret cumulé est d’obtenir des bornes supérieures

sous-linéaires les plus faibles possibles. On remarque qu’une borne sur ce regret induit une

borne sur le regret simple puisque Sn § Rn

n
.

2 Revue de la littérature

Le domaine de la théorie de l’optimisation englobe de nombreuses approches, cette thèse

s’inscrit dans les cadres suivants :

- les algorithmes de bandits stochastique à K bras, où X “ p1, . . . , Kq,

- l’optimisation lipschitzienne, où X Ä R
d et f est lipschitzienne,

- l’optimisation bayésienne, où f est tirée suivant un processus stochastique connu.

Dans ce qui suit, nous présentons une courte perspective historique sur les travaux étroitement

liés. Sur des questions connexes dans des cadres différents, nous nous référons par exemple

aux travaux de Boyd and Vandenberghe (2004) et Bubeck (2015) sur les approches par

gradient lorsque la fonction est convexe, ce qui n’est pas adapté à l’optimisation globale

puisque trouver un minimum local ne permet pas de contrôler le regret ; les travaux de Sebag

and Ducoulombier (1998), Garnier and Kallel (2000) et Eiben and Smith (2003) sur les

algorithmes évolutionnaires lorsque le coût des évaluations est faible, qui ne donnent pas de

garanties sur le regret ; et les travaux de Papadimitriou and Steiglitz (1982) et Garnier and

Kallel (2001) sur l’optimisation combinatoire.

2.1 Bref historique de l’optimisation de fonctions “boîtes noires”

Méthode des surfaces de réponse

Une des façons les plus courantes pour faire face à ce problème consiste à construire et mettre

à jour une fonction de substitution à partir des évaluations. Cette fonction de substitution est

calculée grâce aux observations et généralise aux entrées inconnues. Cette étape peut être vue

comme l’estimation d’un modèle type régression, en particulier lorsque les observations sont
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bruitées. On utilise alors traditionnellement l’interpolation polynomiale ou les régressions par

noyau et moindres carrés. Les évaluations de cette fonction de substitution sont immédiates.

Il est donc facile d’utiliser cette estimation empirique pour choisir la prochaine entrée de

la fonction “boîte noire” à mesurer. Cette technique est appelée la méthode des surfaces de

réponse (Myers and Montgomery, 1995; Jones, 2001) et a été introduite dans Box and Wilson

(1951). Les inconvénients majeurs de ce qui précède sont tout d’abord que la sélection de la

famille de substitution—c’est à dire la sélection de modèles—est un sujet crucial et délicat,

deuxièmement la présence d’optima locaux pose problème à toutes les approches locales qui

n’incluent pas de termes d’exploration globale, et troisièmement ça n’est pas adapté à une

analyse théorique complète.

Optimisation lipschitzienne

Motivées par l’objectif de prouver la convergence globale des algorithmes d’optimisation,

des techniques sont apparues plus tard utilisant le fait que la fonction inconnue f satisfait

une condition de régularité. Ce cadre suppose que f est lipschitzienne, c’est à dire que son

gradient est borné. Connaissant un ensemble de valeurs de la fonction et la borne de son

gradient, on peut supprimer de l’espace de recherche la région où l’optimum ne peut pas se

trouver sans casser la propriété lipschitzienne. En échantillonnant dans la région restante, il

est possible d’obtenir des garanties théoriques de convergence. Cette idée date de l’algorithme

de Shubert-Mladineo (Shubert, 1972; Mladineo, 1986). Malheureusement, la connaissance

de la constante de Lipschitz n’est souvent pas réaliste. Des algorithmes adaptatifs estiment

cette constante sur les données acquises au cours de l’optimisation. Cependant, ils peuvent

produire une mauvaise vitesse de convergence lorsque la constante de Lipschitz est estimée

très grande à cause d’un motif non régulier isolé dans la fonction, ce qui pourrait être une

valeur aberrante non pertinente pour la tâche d’optimisation. L’algorithme DIRECT (Jones

et al., 1993) résout ce problème en utilisant une recherche dichotomique améliorée qui ne

nécessite pas d’estimer la constante de Lipschitz. La robustesse de la méthode résultante en

fait un choix encore aujourd’hui utilisé couramment pour l’optimisation globale non bruitée.

Optimisation bayésienne

Un cadre plus moderne, l’optimisation Bayésienne, introduite dans Kushner (1964) et Močkus

(1974), surmonte certains des problèmes précédents et s’adapte facilement au bruit des

observations. En supposant a priori que la fonction sous-jacente inconnue est une réalisation

d’un processus stochastique il est possible de calculer une distribution a posteriori via les

données acquises, à partir de laquelle on déduit une espérance et des incertitudes pour les

entrées inconnues. Nous nous intéressons alors au comportement moyen d’une procédure

d’optimisation où la fonction est stochastique, ou pour obtenir des résultats plus forts, on

tâchera de démontrer des propriétés valides avec une forte probabilité. Les distributions a

priori les plus courantes sont de loin les processus gaussiens. La régularité de leur covariance

implique une hypothèse sur la régularité de la fonction, en forçant les valeurs proches dans

l’espace induit par le noyau à être fortement corrélées. Cependant, cette hypothèse est moins

restrictive qu’une borne sur la constante de Lipschitz puisqu’il suffit que les contraintes soient

vraies avec une forte probabilité. Les stratégies d’optimisation peuvent alors utiliser des

intervalles de confiance (Cox and John, 1997; Srinivas et al., 2012), ou un critère intégré

comme Expected Improvement (Jones et al., 1998) ou Expected Information Gain (Hennig

2 Revue de la littérature 9



and Schuler, 2012). Nous renvoyons à Brochu et al. (2010) pour une revue des différentes

méthodes d’acquisition.

2.2 Résultats théoriques connus

Modèle des bandits à K bras

L’analyse théorique des algorithmes visant à maximiser la récompense cumulée est souvent

présentée dans le cadre des bandits manchots à plusieurs bras. Ce modèle considère qu’on

présente à un joueur K bras, les entrées possibles. On note alors X “ p1, . . . , Kq , et f

ne possède aucune structure particulière. Quand le joueur choisit un bras, il reçoit une

récompense bruitée distribuée indépendamment des récompenses précédentes, d’une loi

dépendante du bras choisi. Afin de maximiser les récompenses, on doit faire face au compromis

exploration/exploitation. Le premier algorithme Bayésien dans cette perspective remonte à

Thompson (1933), et la première analyse Bayésienne à Gittins (1979). L’analyse théorique

du regret cumulé Rn a été effectuée de manière approfondie dans Lai and Robbins (1985) où

une borne inférieure générique est présentée. Soit ‹a la distribution d’une observation bruitée

du bras a P X , c’est à dire une gaussienne de moyenne fpaq et de variance ÷2 dans le cas

gaussien. Les auteurs du précédent article montrent que pour un algorithme dont le regret est

sous-linéaire,

lim inf
nÑ8

E
“
Nnpaq

‰

log n
• DKLp‹a } ‹‹q´1 ,

où Nnpaq est le nombre de fois que le bras a a été tiré après n itérations, et DKLp‹a } ‹‹q est

la divergence de Kullback-Leibler entre les distributions des observations du bras a et du bras

optimal. Dans le cas gaussien,

DKLp‹a } ‹‹q “ ∆2
a{p2÷2q,

où ∆a “ supx‹PX fpx‹q ´ fpaq. En décomposant le regret cumulé, on obtient :

lim inf
nÑ8

E
“
Rn

‰

log n
• 2÷2

ÿ

a:∆a°0

∆´1
a .

Il existe des algorithmes d’optimisation tels que l’on peut prouver une borne supérieure

associée. Dans Auer et al. (2002), les auteurs donnent une stratégie obtenant un regret

cumulé optimal à constante prêt. Cet algorithme nommé UCB maintient pour tout les bras

une borne de confiance supérieure, et évalue à chaque itération le bras dont cette borne est

maximale. Soit pµnpaq la moyenne empirique d’un bras a P X :

pµnpaq “ Nnpaq´1
nÿ

i“1

yi1txi “ au.

Alors, la borne supérieure de confiance vaut :

Unpaq “ pµnpaq `
d

2÷2
3 log n

Nnpaq ,

10 French Summary



et l’algorithme choisit,

xn`1 P argmax
aPX

Unpaq.

Cet algorithme et son analyse ouvrent la voie à de nombreux travaux dans d’autres cadres.

Dans le modèle de bandit, l’étude du regret simple est couramment formulée par le problème

d’identification du meilleur bras. On dit qu’un algorithme est pÁ, ”q-PAC lorsque, connaissant

Á ° 0 et ” ° 0 , il s’arrête après nÁ,” itérations et P
“
Snε,δ

° Á
‰

† ” . L’article Mannor and

Tsitsiklis (2004) donne une borne inférieure sur l’espérance de nÁ,” nécessaire pour satisfaire

la propriété pÁ, ”q-PAC. Les auteurs prouvent qu’il existe c1, c2 P R tels que pour Á et ”

suffisamment petits,

E
“
nÁ,”

‰
• c1

K

Á2
log

c2

”
.

Dans un problème d’optimisation globale classique, Á n’est pas connu, mais la borne inférieure

est toujours valide, c’est à dire :

P

«
Sn •

c
c1

K

n
log

c2

”

ff
• 1 ´ ”.

Dans Even-Dar et al. (2006), un algorithme pÁ, ”q-PAC est présenté utilisant un nombre

d’itérations optimal à facteur multiplicatif près.

Bandits linéaires

L’approche précédente n’est pas adaptée au cas où l’espace de recherche n’est pas fini, par

exemple un compact. La première extension que l’on considère est la restriction de f à un

espace de fonctions linéaires dans X un fermé de R
d . Dans ce cadre un optimum se trouve

toujours sur E les points extrêmes de X, c’est à dire les points qui ne sont pas des combinaisons

convexes d’autres points. On distingue alors deux cas, suivant la valeur suivante :

∆ “ inf
!

sup
x‹PX

fpx‹q ´ fpxq : x P E , sup
x‹PX

fpx‹q ° fpxq
)

.

Lorsque ∆ ° 0, par exemple pour X un polytope, alors le problème est proche du problème

des bandits où les bras sont les coins du polytope. L’analyse effectuée par Auer et al. (2007)

et Dani et al. (2008) donne la borne inférieure suivante, pour c P R et pour tout u ° 0, pour

tout algorithme :

P

”
@n • 1, Rn • c÷2∆´1d2

`
u ` log3 n

˘ı
• 1 ´ e´u ,

ainsi que des algorithmes atteignant ce regret. Lorsque ∆ “ 0 , tel que pour X sphérique,

l’ordre de grandeur du regret cumulé n’est plus poly-logarithmique mais polynomial. Il existe

en effet des cas où la borne inférieure suivante est vérifiée pour tout algorithme :

E
“
Rn

‰
• Ω

`
d

?
n

˘
.

Optimisation lipschitzienne

L’hypothèse de linéarité de f limite grandement les applications pour certains problèmes

d’optimisation globale. Sous des conditions moins strictes que l’hypothèse de fonction cible
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linéaire, on trouve des méthodes présentant des garanties théoriques. Par exemple lorsque f

satisfait des conditions de Lipschitz affaiblies. Pour le regret cumulé, Kleinberg (2004) étudie

le cas unidimensionnel et prouve des limites supérieures et inférieures presque équivalentes,

sous continuité de Hölder. Les auteurs montrent que pour tout algorithme,

E
“
Rn

‰
• Ω

`
n

2{3
˘
,

et proposent également un algorithme atteignant cette borne à un facteur multiplicatif en

logarithme près :

E
“
Rn

‰
§ O

`
n

2{3 log
1{3 n

˘
.

En dimension supérieure, Kleinberg et al. (2008) et Bubeck et al. (2008) prouvent que le

regret de tout algorithme est plus grand que :

E
“
Rn

‰
• Ω

´
n

d`1
d`2

¯
,

et présentent de même des algorithmes possédant le regret optimal à un facteur poly-

logarithmique près,

E
“
Rn

‰
§ O

´
n

d`1
d`2

`
log n

˘ 1
d`2

¯
.

Ces approches supposent une régularité de f pour une métrique plus générale que la distance

euclidienne, et la dimension d est alors définie par des concepts proches des dimensions

de Minkowski ou de Hausdorff. Les précédents articles montrent qu’il suffit d’analyser le

comportement local de f autour du maximum, et définissent alors des notions de dimensions

locales potentiellement plus basses que la dimension globale. Dans Munos (2011), l’auteur

étudie le cas où l’algorithme ne connaît pas la régularité de la fonction mais aucun bruit

n’affecte les observations. Dans ce cas, un algorithme par partitionnement hiérarchique atteint

une convergence exponentielle du regret simple lorsque la dimension locale d vaut 0 et que le

partitionnement est suffisamment régulier,

Sn § O
`
e´n

˘
.

Pour obtenir d “ 0, il suffit que f puisse être localement bornée par valeurs supérieures et

inférieures par le même polynôme à facteur multiplicatif prêt. Cependant, même si l’algo-

rithme n’a pas besoin de connaître la régularité de la fonction, il requiert de connaître un

partitionnement hiérarchique de X adapté à cette régularité. Les auteurs ne présentent pas

de manière générique de construire ce partitionnement. Cette approche est étendue au cas

bruité par les récents travaux de Valko et al. (2013), Bull (2015) et Grill et al. (2015). Le

regret simple obtenu est borné par :

E
“
Sn

‰
§ O

´
n

1
d`2

`
log n

˘ 2
d`2

¯
,

ce qui est optimal à facteurs multiplifactif en logarithme près.

Optimisation bayésienne

L’analyse des algorithmes d’optimisation bayésienne est classiquement effectuée en modélisant

la fonction f par un processus gaussien de noyau k fixé et connu. Il n’existe pas à notre
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connaissance de bornes inférieures dans le cas général. On sépare dans la suite deux cas selon

que les observations soient déterministes ou bruitées. Pour le regret simple avec l’horizon

n fixé et connu et des observations déterministes, Grünewälder et al. (2010) prouvent une

borne inférieure lorsque le noyau k satisfait une condition de Hölder avec exposant –, alors :

E
“
Sn

‰
• Ω

´
n´ α

2d log´ 1
2 n

¯
.

Les auteurs montrent également qu’un algorithme n’utilisant pas les observations qui effectue

ses requêtes selon une grille pré-définie obtient un regret :

E
“
Sn

‰
§ O

´
n´ α

2d

¯
.

Lorsque X est fini et que f a presque sûrement un comportement quadratique autour de

son maximum, de Freitas et al. (2012) donne un algorithme dont le regret simple décroît

exponentiellement vite, pour a ° 0, avec forte probabilité :

Sn § O
´

log
1
2 |X |e

´ an

logd{4 n

¯
.

Dans le cas bruité, les performances se dégradent brutalement. Même lorsque X Ä R
d et

le noyau est linéaire—ce qui modélise l’optimisation de fonctions linéaires avec un a priori

gaussien—Rusmevichientong and Tsitsiklis (2010) prouvent que pour tout algorithme,

E
“
Rn

‰
• Ω

`
d

?
n
˘
.

L’algorithme GP-UCB (Srinivas et al., 2012) atteint ce regret avec probabilité au moins 1´e´u

avec u ° 0 fixé et connu. Lorsque X est fini,

Rn § O
´b

n“n

`
u ` logpn|X |q

˘¯
,

et pour X non fini lorsque la distribution de la constante de Lipschitz de f possède une queue

sous-gaussienne de variance b2 connue,

Rn § O
´b

dn“n

`
u ` logpnbq

˘¯
.

La quantité “n mesure le coût d’exploration de X en fonction du noyau k et du bruit ‘, exprimé

en termes d’information mutuelle. Pour un noyau linéaire, on obtient “n § Opd log nq, et pour

un noyau stationnaire avec décroissance gaussienne, “n § O
`
logd`1 n

˘
. On remarque que

dans le cas où X est fini la borne obtenue avec forte probabilité est meilleure que la borne

inférieure précédente sur l’espérance, ce qui n’est pas une contradiction théorique puisque u

est fixé et connu et le regret pourrait être linéaire avec probabilité e´u . Les deux bornes sont

équivalentes pour X non fini.

Nous concluons cette section en mentionnant que dans l’article Srinivas et al. (2012) ainsi

que dans Bull (2011), les auteurs étudient également le cas où l’algorithme est Bayésien, mais

la fonction f est fixée dans le RKHS du noyau associé. Nous verrons dans la thèse que les

fonctions du RKHS sont strictement plus régulières que les réalisations du processus, et que

le RKHS est en général de mesure nulle pour le processus.
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3 Organisation du document

L’axe principal de ce document porte sur l’optimisation bayésienne par processus gaussiens et

des observations bruitées, un cadre similaire à l’article Srinivas et al. (2012). Ce document

aborde les questions suivantes :

- Quel est l’impact sur le regret de ne pas recevoir les observations après chaque requête

mais par batchs successifs de taille fixée ?

- Comment adapter de manière générique l’optimisation bayésienne à un espace de

recherche continu ou nonparamétrique ?

- Est-ce que l’analyse théorique de l’optimisation bayésienne s’étend à des processus non

gaussiens ?

- Dans un modèle fréquentiste, peut-on construire un algorithme avec garanties théo-

riques lorsque f n’est pas régulière voire non continue ?

La suite de ce résumé en français décrit les contributions pour les questions précédemment

citées. Le chapitre 1 développe une introduction détaillée de la thèse. Dans le chapitre 2, nous

présentons les concepts fondamentaux de l’optimisation globale et exposons les algorithmes

principaux et les résultats théoriques associés. Le chapitre 3 est consacré aux trois premiers

des points précédents. Nous commençons par analyser une extension de l’optimisation

séquentielle où les évaluations sont obtenues par batch et non une par une. Nous présentons

ensuite une approche novatrice pour déterminer des bornes de confiances supérieures sur

des processus gaussiens dans des espaces métriques qui s’adapte à une régularité arbitraire.

Cela permet de concevoir des algorithmes génériques présentant des garanties sur le regret

au niveau de l’état de l’art. Nous montrerons que cette approche s’étend naturellement à

des processus stochastiques non gaussiens, et nous illustrerons l’intérêt de cette extension

pour l’optimisation de formes quadratiques. Ensuite dans le chapitre 4, nous introduisons

un nouveau cadre théorique d’optimisation, où la fonction inconnue n’est plus supposée

régulière, mais satisfait seulement une condition sur ses ensembles de niveaux. Enfin dans le

chapitre 5, nous présentons nos contributions dans plusieurs applications. Nous fournissons

des détails d’implémentation, ainsi que le code source de nos implémentations sous forme de

librairies libres Matlab et Python.

4 Contributions

4.1 Optimisation séquentielle par batch

La première contribution de cette thèse est un algorithme d’optimisation globale sélectionnant

les évaluations par batch. Cela modélise en particulier les cas où les évaluations sont obtenues

en parallèle pour le coût d’une seule itération. Les exemples typiques sont l’optimisation

numérique avec plusieurs machines, ou la recherche de la réponse maximale d’un capteur

lorsque l’on dispose de plusieurs capteurs.

14 French Summary



Cadre et algorithme

Dans cette section, on note
 
xn,k

(
0§k†K

les K points de X sélectionnés à l’itération n, et de

même yn,k les observations bruitées associées. Soit rn,k le regret instantané d’un point :

rn,k “ sup
xPX

fpxq ´ fpxn,kq,

on distingue alors deux regrets, le regret cumulé complet :

Rn,K “
ÿ

i§n

ÿ

k†K

ri,k ,

et le regret cumulé par batch :
rRn,K “

ÿ

i§n

min
k†K

ri,k .

Cette dernière variante modélise le cas où le coût d’une itération est fixe, et l’on souhaite

optimiser la somme des coûts. Comme auparavant, le regret simple est borné par n´1 rRn,K .

Notre algorithme, GP-UCB-PE pour Gaussian Process Upper Confidence Bound with Pure

Exploration, se fonde sur le calcul de bornes de confiances supérieures et inférieures en tout

point de l’espace. Nous procédons comme dans Srinivas et al. (2012) pour X fini, soient

µn : X Ñ R et ‡2
n : X Ñ R

` les fonctions moyenne et variance a posteriori conditionnées aux

nK observations obtenue jusqu’à l’itération n. Pour tout u ° 0, on peut définir —n P X tel que

avec probabilité au moins 1 ´ e´u on ait :

@n • 1, @x P X , fpxq P
´

µnpxq ´
a

—n‡2
npxq, µnpxq `

a
—n‡2

npxq
¯

.

Sous cet évènement, la position du maximum appartient à l’ensemble Rn suivant,

Rn “
!

x P X : µnpxq `
a

—n‡2
npxq • sup

x1PX
µnpx1q ´

a
—n‡2

npx1q
)

.

L’algorithme sélectionne le premier point du batch comme GP-UCB, c’est à dire :

xn`1,0 “ argmax
xPX

!
µnpxq `

a
—n‡2

npxq
)

.

Les points suivants sont choisis de sorte à maximiser l’information sur f dans Rn. Pour cela

on utilise la stratégie gloutonne d’exploration pure maximisant la variance conditionnelle :

xn`1,k`1 “ argmax
xPRn

‡2
n,kpxq,

où ‡2
n,k est également conditionnée à xn`1,0, . . . , xn`1,k . On note que cette sélection peut

être effectuée en pratique car ‡2
n,k ne dépend pas des observations yn`1,k mais seulement des

positions xn`1,k choisies précédemment.

Garanties théoriques

Soit “nK la quantité introduite précédemment. Nous prouvons dans cette thèse les bornes

supérieures suivantes pour l’algorithme GP-UCB-PE. Soit u ° 0 et f un processus gaussien

centré de noyau k connu avec kp¨, ¨q § 1 perturbé par un bruit gaussien de variance ÷2 . Alors
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avec c÷ “ 2
logp1`÷´2q , le regret cumulé complet de GP-UCB-PE satisfait avec probabilité au

moins 1 ´ e´u :

@n • 1, Rn,K § 4

b
c÷pn ´ 1qK—n“nK ` K—0 ,

et le regret cumulé par batch satisfait :

@n • 1, rRn,K § 2

c
c÷

n

K
—n“nK .

Lorsque K ! n et “n ! n, la borne supérieure que l’on obtient pour rRn,K est meilleure d’un

facteur
?

K par rapport à celle de Rn pour l’algorithme purement séquentiel GP-UCB, et la

borne pour Rn,K est équivalente à celle de RnK pour GP-UCB.

4.2 Optimisation bayésienne et espaces métriques

Les bornes de confiance sont au cœur de l’algorithme précédent mais aussi de nombreux

autres algorithmes de la littérature présentant des garanties théoriques. Le calcul de bornes

de confiance satisfaites uniformément n’est pas aisé pour des processus stochastiques sur un

espace continu. L’article Srinivas et al. (2012) traite principalement le cas où X est fini, où la

borne de confiance est obtenue simplement par union sur tout les points de X . Les auteurs

montrent que l’algorithme peut être adapté au cas continu et d-dimensionnel lorsque la

distribution de la constante de Lipschitz de f possède une queue sous-gaussienne de variance

connue. Nous proposons dans ce document une solution adaptative à ce problème.

Algorithmes et bornes supérieures

Pour cela nous faisons appel aux techniques de chaînage générique (Talagrand, 2014). On

remarque que lorsque f est un processus gaussien centré, pour tout point x1, x2 P X , la

distribution a priori de fpx1q ´ fpx2q est une gaussienne centrée de variance :

¸2px1, x2q “ kpx1, x2q ` kpx2, x2q ´ 2kpx1, x2q.

Cette fonction est symétrique et satisfait l’inégalité triangulaire, on l’appelle la pseudo-

métrique canonique du processus. On a par inégalité classique que :

P

”
fpx1q ´ fpx2q °

?
2u¸px1, x2q

ı
† e´u .

On ne peut pas considérer une union sur tout X lorsqu’il n’est pas dénombrable. Les techniques

de chaînage consistent à discrétiser X de manière hiérarchique, puis à effectuer des bornes de

la réunion des probabilités sur les ensembles discrets. Soit
`
Th

˘
h•0

une séquence croissante

de sous-ensembles de X . Pour chaque niveau h • 0 on partitionne X suivant les cellules de

Voronoï des points de Th . On peut alors montrer que pour tout u ° 0, avec probabilité au

moins 1´ e´u ,

@h • 0, @s P Th, sup
xPCellpsq

fpxq ´ fpsq § sup
xPCellpsq

ÿ

i°h

?
2ui∆i´1pxq,

où ui “ u` log|Ti|` logpi2fi2{6q, et Cellpsq est la cellule de Voronoï de s et enfin ∆ipxq est le

¸-diamètre de la cellule de x pour Ti . Soient Ái “ ∆pX q2´i pour i P N. En construisant Th de
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sorte à minimiser |Th| tel que supsPTh
∆hpsq § Ái , on obtient avec Hp¨q l’entropie métrique de

X pour ¸,

@h • 0,@s P Th, sup
xPCellpsq

fpxq ´ fpsq §
ÿ

i°h

a
2u`HpÁiq ` logpi2fi2{6qÁi´1 ,

En dimension d, lorsque le noyau est stationnaire et dominé par la norme euclidienne, on a

@h • 0, @s P Th, sup
xPCellpsq

fpxq ´ fpsq § O
´?

u` dh2´h
¯

.

On peut donc dériver une stratégie d’optimisation qui, à l’itération n, choisit un niveau de

discrétisation hn , et calcule la borne supérieure de confiance sur Thn . En sélectionnant hn de

sorte que l’erreur d’approximation ne dépasse pas le regret, soit hn “ Oplog nq, nous prouvons

dans ce document qu’avec probabilité au moins 1´ 2e´u , le regret cumulé est inférieur à :

Rn § O
´b

c÷pu` d log nqn“n log3 n
¯

.

Bornes inférieures

Nous montrons également dans cette thèse un résultat complétant la précédente borne

supérieure sur l’erreur induite par la discrétisation. En effet après un élagage minutieux du

partitionnement hiérarchique, on obtient avec probabilité au moins 1´ e´u que, à constantes

multiplicatives près :

@h • 0,@s P Th, sup
xPCellpsq

fpxq ´ fpsq Á sup
xPCellpsq

ÿ

i°h

?
ui∆i´1pxq.

La preuve de ce résultat s’inspire de Talagrand (2014) qui prouve un résultat similaire en

espérance. Un ingrédient supplémentaire apporté dans la thèse est également l’utilisation

d’une méthode constructive pouvant s’implémenter via un algorithme concret.

Dépasser les processus gaussiens

Le cadre précédent s’étend aux processus non-gaussiens de la manière suivante. Nous rempla-

çons la pseudo-métrique canonique par :

¸upx1, x2q “ inf
!

s P R : P
“
fpx1q ´ fpx2q ° s

‰
† e´u

)
,

et étendons les résultats précédents pour toute borne supérieure sur ¸u . Pour un processus

stochastique général, la fonction ¸u n’est pas une pseudo-métrique. On s’intéressera parti-

culièrement aux processus tels qu’il existe une pseudo-métrique ¸p¨, ¨q et une fonction Âp¨, ¨q
qui vérifient :

@x1, x2 P X ,@⁄ P I Ä R, logE
”
e⁄pfpx1q´fpx2qq

ı
§ Â

`
⁄, ¸px1, x2q

˘
.

La croissance de Â en ses deux arguments contrôle la régularité du processus. Plus cette

fonction croît lentement et plus le processus est régulier. On a dans ce cas que la fonction

¸u est inférieure à l’inverse de la fonction conjuguée, ¸upx1, x2q § Â˚´1
`
u, ¸px1, x2q

˘
, avec

Â˚ps, ”q “ sup⁄PI

`
⁄s´ Âp⁄, ”q

˘
et Â˚´1pu, ”q “ inf

 
s P R : Â˚ps, ”q ° u

(
. Alors, les notions
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géométriques continuent de s’appliquer et nous retrouvons un théorème impliquant l’entropie

métrique de X par rapport à ¸. Nous illustrons les bénéfices de cette approche en considérant

l’optimisation de formes quadratiques de processus gaussiens qui peut modéliser l’optimisation

d’erreur des moindres carrés comme une vraisemblance gaussienne avec un a priori uniforme.

Nous introduisons un algorithme qui dans le cas de N processus gaussiens élevés au carré

obtient un regret inférieur à, avec forte probabilité :

Rn § O
´

N
`a

n“n log n` “n

˘
`
?

Nn log n
¯

.

4.3 Optimisation de fonctions non-régulières par ordonnancement

Les approches considérées jusqu’à présent requièrent que la fonction inconnue soit régulière.

Nous introduisons dans cette thèse un nouveau cadre d’optimisation, où la fonction sous-

jacente peut présenter des variations arbitraires, voire des discontinuités, mais telle que ses

ensembles de niveaux sont contrôlés. On analyse dans cette partie le cas des observations

non bruitées, et nous cherchons à contrôler la distance Îx‹ ´ xı̂nÎ entre la prédiction et

la vraie position d’un maximum global, où précisément fpx‹q “ supxPX fpx‹q et fpxı̂nq “
maxi“1,...,n fpxiq. L’étendue des valeurs de la fonction étant arbitraire, les regrets simple et

cumulé sont également arbitraires.

Structure d’ordonnancement

On définit rf : X ˆ X Ñ t´1, 0, 1u la règle d’ordonnancement induite par une fonction f

comme le signe de fpx1q ´ fpx2q. On remarque que cette règle est stable par composition de

f par n’importe quelle fonction monotone, non nécessairement continue. Cette propriété est

fondamentale pour déduire des résultats de convergence. Basé sur les règles d’ordonnance-

ment, notre algorithme n’effectue que des comparaisons entre les valeurs de la fonction et est

ainsi robuste aux compositions monotones. L’algorithme possède en entrée un ensemble R

de règles d’ordonnancement, et on suppose que rf P R. Par exemple, nous considérons en

particulier les règles induites par les polynômes de degré N :

RP,N “
!

rf : f P PN pX q
)

.

On note que rf P RP,N n’implique pas que f soit un polynôme. Nous considérons également

les règles pouvant être décrites par N convexes :

RC,N “
!

r : @x P X , DC1, . . . , CN Ä X ,
 
x1 P X : rpx1, xq ° 0

(
“

N§

i“1

Ci, Ci est convexe
)

.

Il est aisé de voir que ces règles correspondent aux fonctions dont les ensembles de niveaux

sont des unions d’au plus N convexes.

L’algorithme RankOpt

A chaque itération n, la requête suivante xn`1 est tirée uniformément dans le sous-espace de

X où le maximum peut se trouver sans briser l’hypothèse que rf P R. Formellement, on définit
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la perte empirique Lnprq “ 2
npn`1q

∞
1§i†j§n 1

 
rf pxi, xjq ‰ rpxi, xjq

(
, et le sous-ensemble

actif Rn “
 
r P R : Lnprq “ 0

(
. L’algorithme RankOpt choisit alors :

xn`1 „ U
` 

x P X : Dr P Rn, rpx, xı̂nq § 0
(˘

.

Les bornes sur la convergence de cet algorithme s’expriment en fonction de l’étroitesse des

ensembles de niveaux autour du maximum. Soit x‹ la position du maximum, – • 0 et c– ° 0

tels que les ensembles de niveaux f´1pyq “
 
x P X : fpxq “ y

(
satisfont :

sup
xPinf´1pyq

Îx‹ ´ xÎ § c– inf
xPf´1pyq

Îx‹ ´ xÎ1{p1`–q .

On remarque que lorsque les ensembles de niveaux rétrécissent dans toute les directions

avec une vitesse du même ordre, alors – “ 0. Nous prouvons la convergence suivante pour

l’algorithme RankOpt, pour tout u ° 0, avec probabilité au moins 1´ e´u :

Îx‹ ´ xı̂nÎ § C–

´u

n

¯ 1

dp1`αq2

,

où C– “ c
2`α
1`α
– ∆pX q

1

p1`αq2 et ∆pX q est le diamètre de X .

L’algorithme adaptatif AdaRankOpt

En pratique il n’est pas souvent possible de connaître R tel que rf P R. Nous proposons une

extension de l’algorithme précédent qui prend en entrée une suite croissante d’ensembles

de règles d’ordonnancement, R1 Ä R2 Ä . . ., et on suppose simplement qu’il existe un N‹

inconnu tel que rf P RN‹ . L’algorithme AdaRankOpt est paramétré par p P p0, 1q et effectue

alternativement deux tâches, avec probabilité p tirer uniformément un point dans X afin de

déterminer N‹ , avec probabilité 1´ p tirer un point comme l’algorithme AdaRankOpt avec

R “ RmintN :minrPRN
Lnprq“0u le plus petit R qui soit consistant avec les données. Soit Lprq “

P
X,X 1iid„UpX q

“
rf pX, X 1q ‰ rpX, X 1q

‰
la perte réelle. On définit la complexité de Rademacher

d’une structure d’ordonnancement R (Clémençon et al., 2008) comme :

E
X1,...,Xn

iid„UpX q

«
sup
rPR

1

tn{2u

-

-

-

-

-

tn{2uÿ

i“1

‘i1

!
rf pXi, Xtn{2u`iq ‰ rpXi, Xtn{2u`iq

)-

-

-

-

-

ff
.

Alors, lorsqu’il existe V ° 0 tel que la complexité de Rademacher de RN‹´1 est bornée para
V {n, on prouve avec probabilité au moins 1´ e´u :

Îx‹ ´ xı̂nÎ § C–

´u` log 2

n´ nu

¯ 1

dp1`αq2

,

nu “
Y
10

V ` u` log 4

p infrPRN‹´1
Lprq2

]
.

Nous présentons également dans ce document des formulations alternatives des concepts

introduits afin de faciliter l’implémentation pratique de ces algorithmes. Nous comparons

ensuite empiriquement leurs performances face à des compétiteurs classiques.
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4.4 Applications

Les thématiques de recherche de la thèse ont été constamment menées avec des perspec-

tives d’applications réelles. Nous présentons dans les paragraphes suivants deux études en

mécanique des fluides.

Phénomènes d’amplification de tsunami

Les contributions sur l’optimisation bayésienne par batch ont été motivées par une collabo-

ration avec des chercheurs sur les tsunamis. Grâce à un code numérique nous avons simulé

l’impact d’une île sur la vague d’un tsunami, certaines configurations pouvant l’amplifier. En

optimisant les paramètres géométriques de l’île par rapport au ratio d’amplification nous

avons découvert quel est le pire cas, ce qui apporte une information cruciale sur ce phéno-

mène. Nous avons utilisé le nouvel algorithme par batch pour calculer plusieurs simulations

en parallèle et gagner un temps considérable.

Séries de convertisseurs d’énergie des vagues

Cette étude analyse les configurations spatiales de convertisseurs d’énergie des vagues. Des

séries de tels convertisseurs se trouvent proche des côtes pour produire de l’électricité. La

position de ces appareils les uns par rapport aux autres a un impact important sur l’énergie

totale produite puisque des interférences peuvent avoir lieu. Notre but est d’optimiser les

coordonnées en x et y de 40 appareils. L’énergie totale produite est calculée grâce à des

simulations numériques. Comme la dimension de l’espace de recherche est grande et qu’une

seule simulation demande deux semaines, nous devions considérer des approximations de

l’objectif. Nous avons proposé avec succès une relaxation du problème utilisant le nouvel

algorithme d’optimisation introduit précédemment.
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1Introduction

This chapter introduces the main motivations and context of the work presented in the

document. A review of global optimization methods and relevant bandit algorithms is

provided, and the main contributions of the thesis are summarized.
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1.1 Context of the Thesis

This dissertation is dedicated to a rigorous analysis of sequential global optimization al-

gorithms. Sequential global optimization is encountered in numerous domains including

natural sciences (Floudas and Pardalos, 2000), engineering design (Wang and Shan, 2007),

bioinformatics (Moles et al., 2003), finance (Ziemba and Vickson, 2006) and many others. It

aims at finding the input of a given system optimizing the output. The optimization could be

for instance the maximization of a reward, or the minimization of a cost. The function which

links the input to the output is not explicit, but we are provided a way to evaluate the output

for any input. Measurements could come from laboratory experiments, numerical simulations,

sensors responses or any feedback depending on the application. In particular this function

is not supposed to be convex and may display many local optima. In this work we tackle

the challenging case where the evaluations are expensive, which requires to design a careful

selection of the input to evaluate. In this view, an iterative procedure uses the previously

acquired measures to choose the next query predicted to be the most useful. We study two

different goals, either to maximize the sum of the rewards received at each iteration, which

is relevant for “online” optimization such as clinical trials or recommendation systems; or

to maximize the best reward found so far, relevant for optimum search such as numerical

optimization. The present thesis stresses on the theoretical properties of the proposed methods.

The numerical complexity is often a critical concern for a practitioner, we consistently come

up with tractable solutions throughout this work and provide implementation details. The

objective is to bring new concepts from the theory aiming at describing the efficiency of the

optimization procedures with respect to generic notions of complexity of the problem. This

permits to develop novel algorithms with guaranteed performance in well defined settings.

1.2 Related Work

The field of optimization theory encompasses lots of various frameworks, this thesis comprises

the following fields:

• multi-armed bandits,

• Lipschitzian optimization,

• Bayesian optimization.

In what follows, we present a short historical perspective on the closely related works. For

related matters but with different settings, we refer to the works of Boyd and Vandenberghe

(2004) and Bubeck (2015) on gradient-based approaches when the function is convex, which

are not suited for global optimization since the knowledge of a local minimum does not

permit to control the regret; the works and reviews of Sebag and Ducoulombier (1998),

Garnier and Kallel (2000) and Eiben and Smith (2003) on evolutionary algorithms when

the evaluations are not expensive, which do not provide guarantees on the regret; and the

works of Papadimitriou and Steiglitz (1982) and Garnier and Kallel (2001) for combinatorial

optimization.
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1.2.1 A Short History of Optimization of Expensive Black-Box

Functions

Response Surface Methodology

One of the most standard way to deal with this problem is to build and maintain a surrogate

function from the measurements. This surrogate function is computed to fit the observations

and generalize to any unknown input. This step can be thought of as model estimation

like regression, especially when the observations are noisy. It traditionally uses polynomial

interpolation or kernel-based regression with least-squares fitting term. Evaluations of this

surrogate are instantaneous. It is therefore easy to use this empirical estimation to select

which input to evaluate next. This technique is referred as the Response Surface Methodology

(Myers and Montgomery, 1995; Jones, 2001) and was introduced in Box and Wilson (1951).

The major drawbacks of the above are first that model selection is a crucial and tricky subject,

second that the presence of local minima is troublesome for approaches that do not include

global exploration criterion, and third that it is not adequate for a complete theoretical

analysis.

Lipschitzian Optimization

Motivated by the objective of proving global convergence of optimization algorithms, few

techniques emerged later using the fact that the unknown function satisfies a smoothness

condition. It is assumed in this respect that this function is Lipschitz-continuous, that is its

gradient is bounded. Knowing a set of values of the function and the bound on its gradient,

one can safely remove from the search space the region where the optimum cannot lie

without breaking the Lipschitz property. By sampling in the remaining region, it is easy to

obtain theoretical guarantees of convergence. This idea goes back to the Shubert-Mladineo

algorithm (Shubert, 1972; Mladineo, 1986). Yet, the knowledge of the Lipschitz constant is

often not realistic. Adaptive algorithms estimate this constant on the data acquired during

the optimization. However they may produce bad convergence speed when the Lipschitz

constant is found to be very large because of an isolated rough pattern in the function, which

could be an outlier not relevant for the optimization task. The DiRect algorithm (Jones et al.,

1993) solves this by using an improved dichotomy search which does not require to estimate

the Lipschitz constant. The robustness of the resulting method makes it still a commonly used

choice today for noiseless global optimization.

Bayesian Optimization

A more modern framework, Bayesian optimization, introduced in Kushner (1964) and Močkus

(1974), overcomes some of the former issues and easily adapts to observation noise. With the

prior assumption that the unknown underlying function is a realization of some stochastic

process, it is possible to compute a posterior distribution given the acquired data, from which

one deduces expectations and uncertainties for unknown inputs. We are then interested in

the expected behavior of an optimization procedure where the function is stochastic, or to

get stronger results we aim at proving properties that hold with high probability. By far the

most common prior distributions are Gaussian processes. The smoothness of the covariance

induces an assumption on the smoothness of the function by enforcing near-by locations to

have correlated values. Yet, this is a less stringent hypothesis than a bound on the Lipschitz
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constant since it suffices that the constrains hold with high probability, and not necessarily

everywhere. Optimization strategies may then use confidence intervals (Cox and John, 1997;

Srinivas et al., 2012), integrated criterion like the Expected Improvement (Jones et al., 1998)

or Expected Information Gain (Hennig and Schuler, 2012). See Brochu et al. (2010) for a

review of various acquisition functions.

1.2.2 Theoretical Analysis with the Bandit Framework

Multi-armed Bandits

The theoretical analysis of algorithms aiming at maximizing the cumulative reward is often

presented under the multi-armed bandit framework. This model considers that a player

is presented K arms, the possible inputs. When she chooses an arm, she receives a noisy

reward sampled independently from the previous rewards, from a distribution depending

on the chosen arm. In order to maximize the rewards, one has to deal with the exploration-

exploitation tradeoff. The first Bayesian algorithm in this view goes back to Thompson (1933),

and the first Bayesian analysis to Gittins (1979). The cumulative regret, the sum of the

differences between the rewards obtained and the optimum reward, has been considered in

depth in Lai and Robbins (1985) where a general lower bound is presented. Contemporary

proof techniques lead to finer upper and lower bounds on the cumulative regret. For multi-

armed bandit in the frequentist setting, Auer et al. (2002) give a finite time analysis when the

rewards are bounded, and Cappé et al. (2013) propose an asymptotically optimal algorithm

for more general distributions of rewards. For the Bayesian aspect Kaufmann et al. (2012)

give an asymptotically optimal algorithm for binary rewards. In the bandit framework, the

problem of identifying the best input is analyzed using the simple regret, that is the difference

between the best reward obtained and the optimum. Mannor and Tsitsiklis (2004) and

Even-Dar et al. (2006) prove both lower and upper bounds on the number of iterations

needed to obtain a given simple regret with given probability. Bubeck et al. (2009) explore

the link between low cumulative regret and low simple regret, and show that it is impossible

to have both together. Audibert et al. (2010) analyze the problem of identifying exactly the

best arm with a fixed budget and exhibit an almost optimal algorithm. Finally, Kaufmann

et al. (2016) propose an asymptotically optimal algorithm which finds the best arms with a

fixed confidence.

Continuous Bandits

The recent literature considered the extension to continuous settings under relaxed Lipschitz

assumptions. For the cumulative regret, Kleinberg (2004) focused on the one-dimensional

case and prove almost tight upper and lower bounds under Hölder continuity. Auer et al.

(2007) improve this assumption by considering only local smoothness. Dani et al. (2008)

provide tight lower and upper bounds in the linear case, and Rusmevichientong and Tsitsiklis

(2010) show Bayesian counterparts. And Bubeck et al. (2011) extend the algorithms for more

generic metric spaces with local constrains and define a new complexity dimension. With

respect to the simple regret analysis, Kleinberg et al. (2008) suggest a similar approach with a

closely related complexity dimension. Munos (2011) studies the case where the algorithm is

agnostic to the smoothness of the function but no noise affects the observations. Bull (2015)

introduces an almost optimal algorithm with noisy observations and only little assumptions
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on the smoothness. Finally, Grill et al. (2015) combine previous methods and weaken the

smoothness assumption.

Gaussian Processes

The theoretical study of Bayesian optimization is a newer interest. We refer to Srinivas et al.

(2012) for analysis of the cumulative regret, where the techniques from bandit theory and

information theory are leveraged and adapted to the case of Bayesian optimization. For the

simple regret with deterministic observations (no noise), Grünewälder et al. (2010) give an

optimal algorithm with a fixed budget, but with low practical feasibility. Bull (2011) provides

an analysis of the Expected Improvement criterion, and de Freitas et al. (2012) show that

the deterministic context allows one to obtain exponential convergence rate with additional

smoothness conditions. The previous approach cannot be used in practice, and Wang et al.

(2014) overcome this impracticability by combining the previous works along the same lines

as Grill et al. (2015) from the previous paragraph.

1.3 Contributions

The core axis of this work focuses on Bayesian optimization with Gaussian processes with

noisy observations, a setting similar to Srinivas et al. (2012). We first analyze extensions of

the sequential optimization procedure where the evaluations are acquired over successive

batches. We then present a novel approach to compute upper confidence bounds in metric

spaces, which adapts to arbitrary smoothness and allows to design generic algorithms with

state-of-the-art regret bounds. Next, we introduce a novel optimization framework where

the function is not supposed to be smooth, but satisfies some conditions on the inclusion

of its level sets. Finally, we present contributions for several applications and practical

considerations.

1.3.1 Batch Bayesian Optimization

The first contribution presented in this thesis is a global optimization algorithm querying

a batch of evaluations at each iteration instead of a single one. This approach accounts

for the case where the evaluations are acquired in parallel for the cost of a single iteration.

The typical examples are numerical optimization with a cluster of computing machines, or

optimization of sensor measurement based on several sensors.

An Efficient Algorithm for Parallel Queries

We introduce an efficient algorithm for this problem. We use a modification of the GP-UCB

algorithm from Srinivas et al. (2012) together with lower confidence bounds to focus the

evaluations in a relevant region. This relevant region is defined as the set of inputs having a

sufficiently large posterior probability of producing a value at least as high as the maximum

observed so far.

Theoretical Guarantees on the Convergence Speed

Our approach follows the lines of Desautels et al. (2012), but the use of the relevant region

leads to finer results on the regret bounds. We prove a convergence rate and upper bounds

on the cumulative regret of our algorithm. We establish that the cumulative regret of our
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strategy is similar, up to constants, to the one of the sequential algorithm that reads directly

the observations. When the cost of a batch of K query is the same as the cost of a single query,

we show that our algorithm converges faster that the state-of-the-art with an improvement of?
K in typical scenarios.

1.3.2 Bayesian Optimization in Metric Spaces

Upper confidence bounds are at the center of the GP-UCB algorithm and many other global

optimization schemes. Computing confidence bounds on a stochastic process which holds

everywhere is not an easy task when the input space is continuous. One can think of estimating

the maximum of an infinite number of correlated random variables.

Adaptive Partitioning Trees and Generic Chaining

The classical method found in the optimization literature, such as Srinivas et al. (2012) and

related works, is to build a finite discretization of the input space and then to compute upper

bounds for every individual discrete input. This is often unsatisfactory since the impact of

the approximation on the global optimization results is delicate, making the choice of the

sharpness of the approximation not clear. We solve this question by introducing partitions

built in a greedy and adaptive fashion.

Upper and Lower Bounds

We prove later that these partitions are optimal up to constant multiplicative factors, which

permits to derive tight lower and upper bounds for the stochastic process. This result holds

for arbitrary metric spaces, potentially nonparametric, without any additional assumption.

Our algorithm is inspired by the theory of stochastic processes, and enjoys efficient practical

implementations.

Beyond Gaussian Processes

Finally, we show that our techniques can be extended to more complex stochastic processes.

We expose that popular optimization settings are not captured by Gaussian processes, like

optimization of quadratic forms. We then exhibit a modification of the previous algorithm

that adapts to these sophisticated Bayesian priors, and enjoys similar guarantees on the

convergence rates.

1.3.3 Non-Smooth Optimization by Ranking

All the previously mentioned approaches do not hold when the underlying function is not

smooth around its optimum, or even discontinuous.

Function-Value Free Optimization

To alleviate this constraint, we give a global optimization algorithm which is function-value-

free and still presents efficient theoretical guarantees for deterministic optimization. This

algorithm only relies on pairwise comparisons.

Novel Optimization Framework

We define in this respect a notion of ranking structure, a condition on the level sets of the

unknown function. Our strategy is then to select the queries in the relevant region. In this
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non-Bayesian setting the relevant region is the set of inputs for which a function whose

ranking structure is consistent with the observations produces a value at least as high as the

best point seen so far. We provide here convergence rates on the distance between the best

query and the location of the true optimum.

1.3.4 Applications and Efficient Implementations

The research topics of this thesis have been consistently driven by real-life scenarios. The

following paragraphs present two projects from fluid mechanics which motivated the previous

contributions. Then, a short description of practical implementations is given.

Tsunami Amplification Phenomena

The work on batch Bayesian optimization comes from a collaboration with researchers on

tsunami analysis. We use a numerical code to simulate the impact of an island on the wave

of a tsunami. Some particular configurations may amplify the tsunami. By optimizing the

geometrical parameters of the island with respect to the amplification ratio, we discover what

is the worst case, and therefore obtain crucial knowledge on this phenomenon. We used the

novel batch algorithm to perform several simulations in parallel, leading to a significant gain

of time.

Wave Energy Converters Array

This project studies the spatial configuration of Wave Energy Converters. Groups of such

devices are found in the sea near the coast and produce electricity using the waves. The

positions of the devices with respect to each other have a significant impact on the total energy

produced, since interference may happen. Our aim is to optimize the x and y coordinates of

40 Wave Energy Converters. The total energy is computed using numerical simulations. Since

the dimension of the search space is large and a single simulation requires two weeks, we had

to carefully approximate the objective function to simplify the setting. We propose a successful

relaxation of this problem using the novel global optimization approaches introduced above.

Efficient Implementations

Since the aim of the research presented in this thesis is to tackle real challenges, the prac-

ticability of the proposed solutions has a significant impact. The new algorithms we derive

are consistently implemented and empirically assessed. In order to render the execution

possible on casual laptops, a lot of care is taken to perform the computation in an efficient way.

When approximations are necessary, we consider the heuristic as a part of our algorithm and

analyze the repercussion on the theoretical guarantees. All the code from the contributions in

Bayesian optimization is available as Matlab and Python packages.

1.4 Outline

The core of this dissertation is organized as follows.

In Chapter 2, we formalize the problem of sequential global optimization. We describe

precisely the mathematical foundations for both the noisy case and the deterministic case,

and both the Bayesian and non-Bayesian approach. We review some known results from the

literature having a crucial importance for the following.
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In Chapter 3, we focus on novel advances for Bayesian optimization. We first present results

for the batch setting, and then continue on the extension to arbitrary metric spaces. We prove

theoretical guarantees of performance, and perform numerical experiments. Finally, we show

that Bayesian optimization is well suited for distribution beyond Gaussian processes, and we

outline a novel algorithm with an example application.

In Chapter 4, we introduce a new framework for deterministic optimization of non-smooth

functions. We express the difficulty of the optimization problem with respect to ranking

structures. We first propose an efficient solution knowing the ranking structure of the

underlying function, and then show that this can be adapted when we remove this specification

while the theoretical properties are preserved.

Chapter 5 is dedicated to results obtained for various applications of the previous work. We

detail computation techniques leveraged to get efficient implementations. We then describe

applications in fluid mechanics and computational chemistry.

Finally, in Appendix A, we present an attempt of proof techniques to obtain improved

cumulative regret. Unfortunately, these results cannot be applied within the standard setting

of Bayesian optimization. Even if the theoretical guarantees do not hold, the algorithm we

derive exhibits fast convergence toward the optimum on our empirical assessments.
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2Sequential Global Optimization

This chapter presents the state-of-the-art of the theoretical advances in sequential global

optimization. In Section 2.1, we first define the setting and objectives, and show relevant

properties. We then review, in Section 2.2, existing algorithms from multi-armed bandits,

linear bandits, Lipschitzian optimization and Bayesian optimization. We provide available

guarantees and impossibility results for those multiple frameworks.
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2.1 Problem Formulation and Fundamental Ingredients

In this first section, we present the setup for optimization which is considered in this thesis.

Although the primary objective of this section is theoretical, we attempt to give insights and

intuitions on every notion involved. This part of the thesis does not contain real mathematical

contributions, yet, some concepts are defined using novel presentations to encompass multiple

existing works in the same framework. Here and in what follows, the fi symbol means equal

by definition and the ” symbol denotes simplifications of notations. The expectation of a

random variable X is written E
“
X
‰
. For real numbers a and b, a^ b (resp. a_ b) denotes the

minimum (resp. maximum) of a and b, and paq` fi 0_ a.

2.1.1 Sequential Optimization via Noisy Measurements

The Input Space

The system to be optimized is modeled by an unknown function f : X Ñ R. The input set

X is the search space, which could be either finite or infinite, parametric or nonparametric.

In the K-armed bandit framework X is the set of all arms, that is its cardinality is K and

it has no particular structure. For continuous optimization of d parameters, X is typically

a subset of Rd . Less common optimization settings also fit in our model, like optimization

over structured spaces such as graphs or shapes. It is easy to define constrained optimization

problems from a mathematical point of view, since it suffices to restrict X to the set of points

which satisfy the constraints.

The Gaussian Noise Model

An optimization algorithm is given the ability to query the function at any point x P X , to

receive the associated noisy evaluation y fi fpxq` ‘, where ‘ models an independent centered

additive noise, that is Erys “ fpxq . We will refer to the case without noise (‘ “ 0 almost

surely) as deterministic optimization. These evaluations are supposed to be expensive, the

optimization procedure should use the least possible amount of queries to attain its goal. The

additive noise can describe different scenarios. First the noise may come from the process of

acquisition of the observations. For example if one uses sensor responses, the sensor itself

may produce noisy outputs. Similarly, if one computes simulations performing numerical

approximations, the software used may invoke randomness such as MCMC solvers. Finally,

even outside these cases practitioners often consider that the output is noisy, in order to

render the algorithms robust again model misspecification. The Gaussian distribution with

known variance is the most common assumption for the distribution of the noise, although

some variants appear in the literature such as bounded noise with unknown variance or any

subgaussian distribution. Formally, an optimization algorithm A :
î

n•0

`
X ˆ Rqn Ñ X is a

function taking as input the history of queries and noisy observations px1, y1, . . . , xn, ynq and

returning the next query xn`1 P X . In the sequel we denote
`
Fn

˘
n•1

the filtration generated

by the history of available information:

Fn fi ‡px1, y1, . . . , xn, ynq. (2.1)

Here and in what follows, yn will denote yn ” fpxnq ` ‘n . The noise variables p‘nqn•0 are

independent and centered, and xn`1 is Fn-measurable.
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The Gaussian assumption on the noise is arbitrary to some extent, but one may argue that it

is the natural approach. First, this distribution maximizes entropy at given variance. Second,

by the central limit theorem any normalized average of numbers of independent noises

converges to a Gaussian distribution. Knowing the variance of the noise is required by the

theoretical analysis. In practice, this is often a hyper-parameter selected with cross-validation

(see Section 2.1.5).

2.1.2 Cumulative and Simple Regrets

Depending on the application, the aim of the optimization algorithm may vary. We consider

in this dissertation two different goals. The first objective is to find the best input as fast

as possible. The second is to maximize the sum of the rewards. We refer to Bubeck and

Cesa-Bianchi (2012) for additional discussions on these objectives.

Simple Regret

Let A be an optimization algorithm and x1, . . . , xn its queries until iteration n , that is

x1 “ A
`
H
˘
, x2 “ A

`
px1, y1q

˘
, x3 “ A

`
px1, y1q, px2, y2q

˘
and so on. The simple regret is

defined as the difference in function value between the unknown optimum and the best point

found so far:

Sn ” SnpA, f, ‘, X q fi sup
x‹PX

fpx‹q ´max
i§n

fpxiq. (2.2)

This quantity is not available in practice, the purpose of the theoretical analysis is to prove

convergence speed toward zero for A according to the properties of f and X . Remark that the

simple regret uses only function values, so the eventual presence of multiple global maxima in

f does not perturb our setting. This evaluation is well suited for problems similar to numerical

optimization, where all the (computational) cost of each query is fixed and independent from

the output. The typical example is hyper-parameter optimization in Machine Learning (Snoek

et al., 2012). Some authors define the simple regret differently (Audibert et al., 2010; Bubeck

et al., 2011), for instance the optimization algorithm may be allowed to output two locations

at each iterations, the queries xn and the guess xg
n . In this framework the observations are

given for xn only, and the simple regret is taken using xg
n . We do not consider this alternative

definition to simplify the sequel.

Cumulative Regret

Using the same notations as above, the (pseudo-) cumulative regret is defined as the sum of

the differences between the true optimum and the queried points:

Rn ” RnpA, f, ‘, X q fi
nÿ

i“1

ˆ
sup
x‹PX

fpx‹q ´ fpxiq
˙

(2.3)

“ n sup
x‹PX

fpx‹q ´
nÿ

i“1

fpxiq.

Generally this quantity does not converge, and we are interested in proving sublinear growth.

It is used to model online settings where the cost of evaluations is the regret. The typical

example is clinical trials, where we aim at minimizing the total wrong decisions. This also

encompasses other settings such as online advertising and recommendation. Note that one

32 Chapter 2 Sequential Global Optimization



ε

ε

Figure 2.1. – Example of function satisfying the weak-Lipschitz assumption (Bubeck et al., 2011)

can deduce convergence rate of the simple regret from upper bounds on the cumulative regret,

since Sn § n´1Rn . The obtained convergence speed on Sn cannot be faster than Opn´1q,
which is not a limitation in the noisy case since the presence of noise typically leads to simple

regret at least in Opn´1{2q.

2.1.3 Smoothness, Metric Spaces and Covering Dimensions

We first define the non-Bayesian optimization framework. Here the unknown function f is

assumed to belong to a known class C of functions satisfying a certain smoothness condition.

The aim of this section is to define precisely the various notions of smoothness that we will

subsequently use. For an algorithm A, we are looking for results under the form:

@f P C, @u ° 0, P

”
@n • 1, Rn § U1pX , C, n, ÷, uq

ı
• 1´ e´u ,

with U1 as small as possible, or results for the expected regret:

@f P C, @n • 1, E
“
Rn

‰
§ U2pX , C, n, ÷q,

and similarly for the simple regret Sn . Here the randomness comes from the observation

noise only.

Fixed Function in Metric Spaces

In the classical global optimization setting, either the input space X is finite, or the unknown

function f is assumed to belong to a restricted functional space. If f was arbitrary on

non-finite X , then any optimization algorithm would need an infinite amount of queries

to be certain about the location of the optimum. Lipschitz optimization considers that f

is Lipschitz-continuous for a metric ¸ such that pX , ¸q is totally bounded, that is it exists a

constant K P R such that for all x1, x2 P X :

-

-fpx1q ´ fpx2q
-

- § K¸px1, x2q, (2.4)

and we define ÎfÎ ” ÎfÎLip to be the smallest such constant. The typical example is the

euclidean d-parametric hyper-cube with X “ r´B, Bsd and ¸px1, x2q “ Îx1 ´ x2Î2 . This

generic definition allows to define smoothness in nonparametric spaces. A common extension
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Figure 2.2. – An Á-net for the Euclidean metric that needs 17 points to cover X

of Lipschitz-continuity is Hölder-continuity of order – ° 0, as in Kleinberg (2004), which

enforces:
-

-fpx1q ´ fpx2q
-

- § ÎfÎ ¸px1, x2q– .

The parameter – controls the smoothness of f . We often do not require that ¸ is actually a

metric but only a pre-metric or any positive “similarity measure” that satisfies ¸px1, x1q “ 0,

and can include the parameter – directly in ¸. Some authors (Bubeck et al., 2008) weaken

this assumption for points away from an optimum. For x‹ P X such that fpx‹q “ supxPX fpxq,
they require the following one-sided inequality called weak-Lipschitz smoothness:

fpx‹q ´ fpx1q § fpx‹q ´ fpx2q `max
!

fpx‹q ´ fpx2q, ÎfÎ ¸px1, x2q
)

. (2.5)

A illustration of this constraint is shown in Figure 2.1. Other authors (such as Munos (2011))

only require a local constraint around the optimum:

fpx‹q ´ fpx1q § ÎfÎ ¸px‹, x1q. (2.6)

Covering Dimension and Metric Entropy

Remark that if pX , ¸q is not totally bounded, such as R
d for the euclidean metric, then it is

easy to see that any algorithm cannot approach the optimum of all functions satisfying Eq. 2.4

in a finite number of queries. In the following, we denote by Bpx, Áq the ¸-ball of radius Á

centered in x, and ∆pX q the ¸-diameter of X :

Bpx, Áq ” Bpx, Á, X , ¸q fi
 
x1 P X : ¸px, x1q § Á

(
,

∆pX q ” ∆pX , ¸q fi sup
x1,x2PX

¸px1, x2q.

The covering numbers are useful to measure the “size” of the search space. They are defined

as the minimal number of ¸-balls of given radius needed to cover X ,

NpÁq ” NpÁ, X , ¸q fi inf
!

|T | : T Ñ X , @x P X , Dt P T, x P Bpt, Áq
)

. (2.7)
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Thanks to the Lipschitz assumption, these numbers are the minimal numbers of queries

required to approximate f everywhere with a precision of Á ÎfÎ . The logarithm of the

covering number,

HpÁq ” HpÁ, X , ¸q fi log NpÁ, X , ¸q, (2.8)

is called the metric entropy of X . The covering dimension (Kleinberg et al., 2008) can be

defined using the metric entropy as follows.

Definition 2.1 (COVERING DIMENSION). The covering dimension is the smallest scalar d such

that the rate of the ratio of the metric entropy by log Á´1 is d, precisely:

dimpX , ¸q fi inf
!

d P R : Dc P R, @Á ° 0, HpÁq § c´ d log Á
)

.

In the sequel, we say that the dimension is attained when the infimum is attained. The

concept of covering dimension is closely related to the Minkowski or Hausdorff dimensions.

For the d-parametric hyper-cube and the euclidean metric we have dimpX , ¸q “ d, and this

definition extends naturally to any totally bounded metric spaces.

Why this Abstraction is Useful

Although it may be difficult to imagine at this stage, we have found that the above definitions

may provide a solid basis for significant methodological improvements with impact on real-life

optimization problems. It is a convenient way to incorporate structural knowledge of the

system directly in the similarity ¸, without modifying the optimization algorithm. For example

with X “ R
d , knowing that the unknown function is symmetric or periodic can be expressed

by taking an appropriate similarity ¸. The resulting covering numbers become much smaller

than with the euclidean distance, that is the optimization procedure will accumulate more

information at each query. As a second example, take for instance the optimization of a

shape defined by a quasi-convex path in the two-dimensional plane, such as an airfoil. A

naive representation would be to discretize the shape with m two-dimensional points and

use the euclidean distance in R
2m . When taking a similarity ¸ that encodes invariance by

permutation of the two-dimensional points, one reduces the covering numbers by a factor

of m! . Furthermore, a nonparametric ¸ such as transportation distances may be invoked

to optimize the shape with arbitrarily fine discretization without increasing the covering

dimension.

Near-Optimality Dimension

Recent literature in optimization (Bubeck et al., 2011; Munos, 2011; Grill et al., 2015) shows

that measuring the local behavior around the optimum is enough to prove convergence rates.

For a fixed function f , calling XÁ ” XÁpf, X q the level set of Á-optimal points:

XÁ fi
!

x P X : fpxq • sup
x‹PX

fpx‹q ´ Á
)

, (2.9)

we can define the near-optimality dimension which measures the growth of the metric entropy

of the near-optimal sets.
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Definition 2.2 (NEAR-OPTIMALITY DIMENSION). The near-optimality dimension dimfl of pa-

rameter fl ° 0 is the smallest scalar d such that the metric entropy of XÁ with radius flÁ is smaller

that d log Á´1 . Precisely,

dimflpX , ¸q ” dimflpX , ¸, fq fi inf
!

d P R : Dc P R, @Á ° 0, HpflÁ, XÁ, ¸q § c´d log Á
)
. (2.10)

This alternative dimension is well suited for measuring the complexity of the search space

with respect to the global optimization objective. Similar definitions, the zooming dimensions,

are proposed in Kleinberg et al. (2008) and Bull (2015). It is at the heart of many branch-and-

bound algorithms like Zooming (Kleinberg et al., 2008), HOO (Bubeck et al., 2008), DOO and

SOO (Munos, 2011), TaxonomyZoom (Slivkins, 2011), StoSOO (Valko et al., 2013), ATB (Bull,

2015) or POO (Grill et al., 2015). We will see that for the deterministic case, the convergence

rate of optimization algorithm looks like n´1{ dimρpX ,¸q and e´n when dimflpX , ¸q “ 0. It is

interesting to note that the near-optimality dimension can be much smaller than the covering

dimension.

Illustrative Examples of Zero Near-Optimality Dimensions

Example 1. As a simple example, take X “ r´1, 1sd and f : x fiÑ 1 ´ ÎxÎ–
p for – • 1 and

p P RY t8u. We can choose ¸px1, x2q “ Îx1 ´ x2Î–
p so that XÁ “ Bp0, Áq, the centered ¸-ball

of radius Á. Therefore for all fl ° 0 it exists a constant cfl such that NpflÁ, XÁ, ¸q “ cfl . We

conclude dimflpX , ¸q “ 0.

Example 2. To construct a generic example, we take an arbitrary X with norm Î¨Î and f

with maximum at x‹ , and we set ¸ according to the local modulus of continuity of f at the

optimum,

¸px1, x2q “ Ê‹
f pÎx1 ´ x2Îq where Ê‹

f p”q “ fpx‹q ´ inf
xPBpx‹,”q

fpxq.

Then Eq. 2.6 directly holds. In order to obtain dimflpX , ¸q “ 0 , it suffices that it exists a

constant 0 † c § 1 such that for all x P X we have fpx‹q ´ fpxq • c¸px‹, xq, that is upper-

and lower-envelopes of f around x‹ are of the same order. Then XÁ Ñ Bpx‹, c´1Áq and

dimflpX , ¸q “ 0 as soon as pX , ¸q has finite doubling constant.

2.1.4 Bayesian Assumption, Gaussian Processes and Continuity

Instead of analyzing optimization for f in a given set of smooth functions, the Bayesian

optimization framework consists in assuming a probability distribution G over functions

X Ñ R, and analyze what happens with high probability when the objective function is a

realization of this probability distribution. Here for an algorithm A, we are looking for results

under the form:

@u ° 0, P

”
@n • 1, Rn § U3pG, n, uq

ı
• 1´ e´u ,

where U3 should be as small as possible, or in expectation, @n • 1, E
“
Rn

‰
§ U4pG, nq, where

the probability measure also includes both the noise and the randomness of f .
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Squared Exponential Matérn ‹ “ 3{2 Matérn ‹ “ 1{2

Figure 2.3. – Realizations of Gaussian processes with different kernels

Mathematical Foundations of Stochastic Processes

Formally, f is modeled as a stochastic process indexed by X having values in R, that is for

every x P X , fpxq is a real random variable. We recall the measure-theoretic definition of a

stochastic process and fix our notations below.

Definition 2.3 (STOCHASTIC PROCESS). Let pΩ, Σ,Pq be a probability space. A stochastic

process indexed by X is a function f : X ˆ Ω Ñ R such that for all x P X , fpxq ” fpx, ¨q is a

random variable on Ω. To simplify the sequel we also use the following notation f ” tfpx, ¨quxPX .

We model the independence of the noise sequence ‘ “ p‘nqn•0 by considering the product of

the probability spaces of both f and ‘. The expectations Er¨s and probabilities Pr¨s are taken

on this product space.

In this setting the distribution of supx‹PX fpx‹q is not trivial. To avoid unnecessary measur-

ability issues, we always assume that f is separable, that is it exists X 1 a countable dense

subset of X such that the following holds with probability one:

@x P X , Dx1, x2, . . . P X 1 s.t. xi Ñ x and fpxiq Ñ fpxq.

Note that is suffices that one of the following properties holds (Giné and Nickl, 2015):

1. X is countable;

2. f is continuous with probability one;

3. X is well-ordered and f is right-continuous with probability one.

With this assumption the supremum of f is well defined and we have:

sup
x‹PX

fpx‹q “ sup
X 1ÑX

|X 1|†8

sup
x‹PX 1

fpx‹q.

Introduction to Gaussian Processes

The most common (and almost the only) stochastic processes used in Bayesian optimization

are Gaussian processes. Intuitively, Gaussian processes are extension of multivariate normal

variable to continuous domains. Instead of having a mean vector they have a mean function,

and instead of a covariance matrix they have a covariance function. We state here the proper

definition of Gaussian processes.
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Definition 2.4 (GAUSSIAN PROCESS). A stochastic process f on X is a Gaussian process if for

all integer n • 1 and all x1, . . . , xn P X the finite dimensional marginal
`
fpx1q, . . . , fpxnq

˘
is

multivariate normal. The function m : x P X fiÑ E
“
fpxq

‰
is called the mean of the process and

the function k : x1, x2 fiÑ E
“`

fpx1q ´mpx1q
˘`

fpx2q ´mpx2q
˘‰

is called the covariance or kernel

of the process. We write:

f „ GPpm, kq.

Thanks to the Kolmogorov consistency theorem, given a function m : X Ñ R and a symmetric

and non-negative definite function k : X ˆ X Ñ R there exists a Gaussian process f „
GPpm, kq . We say that a kernel is stationary when it is a function of a distance of its

arguments:

@x1, x2 P X , kpx1, x2q “ 9k
`

Îx1 ´ x2Î
˘
,

for an appropriate norm Î¨Î. The kernel k of a Gaussian process controls the smoothness

of the realizations. For stationary kernels, the faster it decays toward zero, the rougher the

realizations are. Intuitively, the values at nearby locations are highly correlated, but the

values at distant locations are independent. In the sequel we will often focus on the following

three kernel functions, which are typically used in the Bayesian optimization literature. For

x1 and x2 in R
d , they are defined as follows:

Linear: kpx1, x2q “ xJ
1 x2 , (2.11)

Squared Exponential: kpx1, x2q “ e´ 1
2

Îx1´x2Î2
2 , (2.12)

Matérn with ‹ ° 0 : kpx1, x2q “
ª

X

eixJpx1´x2q
`
1` ÎxÎ2

2

˘‹`d{2
dx (2.13)

“21´‹

Γp‹q
`?

2‹ Îx1 ´ x2Î2

˘‹
K‹

`?
2‹ Îx1 ´ x2Î2

˘
,

where K‹ is the modified Bessel function of the second kind which for a real number z is

equal to 1
2
p1

2
zq‹

≥8
0

expp´t´ z2{p4tqqt´‹´1 dt. The Matérn kernel with parameter ‹ is rarely

implemented with this level of generality. When 2‹ is an odd integer, it simply writes as a

product of an exponential and a polynomial:

kpx1, x2q “ h2‹

`
Îx1 ´ x2Î2

˘
e´

?
2‹Îx1´x2Î2 ,

with h1prq “ 1,

h3prq “ 1`
?

3r,

h5prq “ 1`
?

5r ` 5
3
r2 .

We remark that a Gaussian process with Matérn kernel of parameter ‹ “ 1{2 is also known as

a Ornstein-Uhlenbeck process. And we finally note that the Matérn kernel converges to the

squared exponential kernel when ‹ Ñ 8. Samples from a Gaussian process with squared

exponential kernel are infinitely differentiable, and with a Matérn kernel of parameter ‹

are differentiable k times for the larger integer k † ‹ . Realizations of Gaussian processes
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Figure 2.4. – Posterior distribution of a Gaussian process in one dimension, with n “ 4 noisy observa-
tions (red crosses). The blue line is the posterior expectation µn , and the Gray area is
delimited by µnp¨q ˘

?
—n‡np¨q, where ‡2

n is the posterior variance and —n a confidence
parameter.

with various kernels are illustrated in Figure 2.3. Another notable Gaussian process is the

Brownian motion on r0, 1s, equal to the centered Gaussian process with kernel:

kpx1, x2q “ x1 ^ x2 .

Posterior Distribution and Bayesian Inference

Since the effect of the mean function m is only additive, we assume without loss of generality

that the unknown function to be optimized is a realization of a centered Gaussian process

f „ GPp0, kq. We assume further that the noise variables ‘i are distributed as independent

centered Gaussian N p0, ÷2q like previously. The theoretical analysis presented in this thesis

requires the covariance function k and the variance of the noise ÷2 to be known in advance.

In practice this is not often the case, we will consider in Section 2.1.5 methods to learn k and

÷ from the observations. Having in hand an history of noisy measurements x1, y1, . . . , xn, yn ,

Bayesian inference consists in computing the posterior distribution of f given the observations.

The fame of Gaussian processes in Bayesian optimization is partially explained by the handy

property that the posterior distribution is another Gaussian process,

f |Fn „ GPpµn, knq,

where Fn is the associated ‡-field from Eq. 2.1, and the posterior mean µn and posterior

covariance kn enjoy the closed formulae below. We denote by Xn fi
 
xi

(
i§n

the set of queries

and Yn fi
“
yi

‰
i§n

the column vector of noisy observations. and Kn fi
“
kpxi, xjq

‰
i,j§n

the

kernel matrix of the data. Then for all x P X , let knpxq fi
“
kpx,xiq

‰
i§n

be the column vector

of the kernel evaluation between x and the queries Xn . We have:

µnpxq “ knpxqJC
´1
n Yn , (2.14)

knpx, x1q “ kpx, x1q ´ knpxqJC
´1
n knpx1q, (2.15)
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where Cn denotes Kn ` ÷2
I and I the identity matrix. We will denote by ‡2

npxq the posterior

variance at any point x:

‡2
npxq fi knpx, xq. (2.16)

Intuitively from a regression point of view, µnp¨q forms a prediction for the unknown values

of f at any locations, and ‡2
np¨q can be seen as the uncertainty of this prediction, as shown in

Figure 2.4. The posterior mean µn interpolates and extrapolates the noisy observations in a

similar way to kernel regression with Tikhonov regularization, since it is the solution of:

argmin
µ:X ÑR

#
nÿ

i“1

`
yi ´ µpxiq

˘2 ` ÷2 ÎµÎ2
Hk

+

,

where Î¨ÎHk
is the RKHS norm associated to the kernel k , which we will present later in this

section.

Stochastic Smoothness of Gaussian Processes

Since for a Gaussian process the marginals
`
fpx1q, fpx2q

˘
are bivariate normal for all x1, x2 P

X , we know that fpx1q ´ fpx2q is distributed as a centered Gaussian. Let ¸px1, x2q be its

standard deviation, that is the L2-distance between the random variables fpx1q and fpx2q:

¸2px1, x2q fi E

”`
fpx1q ´ fpx2q

˘2
ı

“ kpx1, x1q ` kpx2, x2q ´ 2kpx1, x2q.

The function ¸p¨, ¨q defines a pseudo-metric on X and we call it the canonical pseudo-distance

of the process f . The geometrical properties of pX , ¸q play a crucial role for Bayesian

optimization. We review useful properties of this particular pseudo-metric space similar to

the one from the previous section. Unfortunately, the fact that f is stochastic renders the

analysis difficult. We first remark that for all x1, x2 P X since we have:

fpx1q ´ fpx2q „ N
`
0, ¸2px1, x2q

˘
,

we know using classical Gaussian concentration that for all u ° 0,

P

”
fpx1q ´ fpx2q §

?
2u¸px1, x2q

ı
• 1´ e´u .

Therefore if one has |X | § m, a union bound leads to,

P

”
@x1, x2 P X , fpx1q ´ fpx2q §

?
2u¸px1, x2q

ı
• 1´m2e´u .

However, we cannot simply obtain an inequality similar to Eq. 2.4 holding everywhere with

high probability when |X | is not bounded. In fact, even the continuity of the realizations

on arbitrary X is not trivial. Borell (1975) and Cirel’son et al. (1976) proved that f is
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almost surely continuous everywhere if and only if the expected global modulus of continuity

converges:

lim
”Ñ0

E
“
Êf p”q

‰
“ 0 where Êf p”q ” Êf p”, X , ¸q fi sup

x1,x2PX
¸px1,x2q§”

`
fpx1q ´ fpx2q

˘
.

In Chapter 3, we describe techniques using the metric entropy HpÁ, X , ¸q from Eq. 2.8 to

handle such stochastic quantities involving supremum. It can be shown (Adler and Taylor,

2009; Giné and Nickl, 2015) that it exists a constant c P R such that for all Gaussian processes:

E
“
Êf p”q

‰
§ c

ª ”

0

a
HpÁqdÁ,

and that f is almost surely continuous when
≥∆pX q
0

a
HpÁqdÁ † 8. We can already comment

at this point that if the covering dimension dimpX , ¸q from Definition 2.1 is finite, then the

previous integral is finite and the stochastic process is almost surely continuous. For instance,

we may take the Ornstein-Uhlenbeck process with stationary kernel 9kprq “ e´
?

2r . For this

process, ¸px1, x2q § 2 Îx1 ´ x2Î
1{2
2 , hence on a compact X Ä R

d, there exists a constant

cX P R such that HpÁq § cX ` 2d log Á´1 . That is the covering dimension attains 2d and the

process is almost surely continuous. Yes, it is well known that this process is not differentiable.

Reproducing Kernel Hilbert Spaces

The realizations of Gaussian processes are closely linked to functional spaces called reproduc-

ing kernel Hilbert spaces (RKHS). These spaces play an important role in statistical learning

theory, notably for Support Vector Machines (Cristianini and Shawe-Taylor, 2000; Schölkopf

and Smola, 2002). We show here how they are linked to the Gaussian process model. Let k

by the kernel of a Gaussian process f , we define Hk the RKHS of k as follows:

Definition 2.5 (REPRODUCING KERNEL HILBERT SPACE). Let k : XˆX Ñ R be a symmetric and

non-negative definite function. Define the functional space C of the linear span of
 
kpx, ¨q

(
xPX

that is,

C fi

#

h : X Ñ R : Dm • 1, s1, . . . , sm P X , a1, . . . , am P R, hp¨q “
mÿ

i“1

aikpxi, ¨q
+

,

endowed with the inner product:

C
lÿ

i“1

aikpxi, ¨q,
mÿ

i“1

bikpx1
i, ¨q

G

Hk

fi
ÿ

i§l
j§m

aibjkpxi, x1
jq.

The reproducing kernel Hilbert space Hk of k is defined by the completion of C by this inner

product.

Functions in the RKHS enjoy the following reproducing kernel property:

@h “
mÿ

i“1

aikpxi, ¨q P C, x P X ,
@
h, kpx, ¨q

D
Hk
“

mÿ

i“1

aikpxi, xq “ hpxq,
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and it is the only Hilbert space satisfying this property. By denoting ÎhÎ2
Hk
“ xh, hyHk

and

G the linear span of the random variables
 
fpxq

(
xPX

, we have that the function „ : G Ñ C

defined as „pgqpxq fi E
“
g ¨ fpxq

‰
for x P X , is a linear isometry between

`
G, Î¨ÎL2

˘
and`

C, Î¨ÎHk

˘
. That is, we can alternatively define the RKHS Hk of a Gaussian process f as the

Hilbert space of functions, with sG is the closure of G in L2pX q,
!

x fiÑ E
“
g ¨ fpxq

‰
: g P sG

)
,

with inner product: @
E

“
g1f

‰
,E

“
g2f

‰D
Hk

fi E
“
g1g2

‰
.

We can immediately deduce that the expectation map x fiÑ E
“
fpxq

‰
lies in Hk . However, the

realizations of f are typically not in Hk . As a first example, let us consider the RKHS of the

Brownian motion process on X “ r0, 1s. We have seen before that we obtain kpx1, x2q “ x1^x2.

It can be shown (van der Vaart and van Zanten, 2008; Giné and Nickl, 2015) that:

Hk “
!

g : gp0q “ 0, g is absolutely continuous, g1 P L2pX q
)

,

xg1, g2yHk
“
ª 1

0

g1
1pxqg1

2pxqdx.

This space is well known and usually called the Cameron-Martin space, and P
“
f P Hk

‰
“ 0.

We conclude this section on Gaussian processes by stating a useful representation property. Let

⁄1 • ⁄2 • . . . and Â1, Â2, . . . be the eigenvalues and eigenfunctions of the Hilbert-Schmidt

integral operator Tk : L2pX q Ñ L2pX q defined by Tkpgqp¨q fi
≥
X kpx, ¨qgpxqdx , that is we

have:

ª

X
kpx, ¨qÂipxqdx “ ⁄iÂp¨q,

ª

X
ÂipxqÂjpxqdx “ 1ti “ ju.

Mercer’s theorem gives that for all x1, x2 P X ,

kpx1, x2q “
ÿ

i•1

⁄iÂipx1qÂjpx2q,

and that these series converge absolutely and uniformly. Furthermore we have that
 ?

⁄iÂi

(
i•1

is a complete orthonormal system of Hk . Finally, the Gaussian process f can be represented

as the following Karhunen-Loève expansion:

fp¨q “
ÿ

i•1

a
⁄iÂip¨qXi , (2.17)

Xi
iid„ N p0, 1q. (2.18)
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This permits to obtain the following results:

P
“
f P Hk

‰
“

#
1 if Hk is finite dimensional,

0 otherwise,

and that P
“

Îf ´ hÎ8 † ‘
‰
° 0 for any h P Hk and ‘ ° 0 and P

“
f P ÑHk

‰
“ 1 where ÑHk is

the closure of Hk in the Banach subspace of RX endowed with supremum norm. Functions

in the RKHS are smoother than samples from the corresponding Gaussian process, and the

distribution of the process put positive probability on any tight neighborhood of functions

from Hk .

2.1.5 Practical and Theoretical Properties of Priors and Posteriors

of Gaussian Processes

We conclude Section 2.1 by outlining central properties of the Gaussian process model, and

links with the frequentist model.

Design of the Prior

When we think of the unknown function f as a realization of a Gaussian process, the kernel

function should reflect all the available prior knowledge, typically its smoothness. In the

previous section, we reviewed three popular kernels. The choice of a linear kernel (Eq. 2.11)

implies the assumption that f is linear, and its parameters have multivariate standard normal

prior. The squared exponential kernel (Eq. 2.12) is a prior on infinitely differentiable functions

R
d Ñ R. The Matérn kernel with parameter ‹ (Eq. 2.13) models functions Rd Ñ R that are

differentiable k times for the largest integer k † ‹. Different kernels may be combined to form

a prior with multiple properties, typically by addition of two kernels. For example, consider

the addition of a quadratic kernel and a squared exponential kernel. This prior models

roughly-quadratic functions with additional smooth variations. As stated in Section 2.1.3, if

the unknown function satisfies some invariances such as symmetry or periodicity, an adequate

kernel avoids to waste queries during the optimization procedure. When the input space in

not a subset of Rd but another structured space, some care must be taken to design a positive

semi-definite kernel. A practitioner may pick and combine multiple kernels from the large

literature on this subject, we refer to Gärtner et al. (2003); Borgwardt and Kriegel (2005);

Vishwanathan et al. (2010) for graphs kernels, Lodhi et al. (2002); Leslie et al. (2002) for

string kernels, or Neuhaus and Bunke (2006) for edit-distance based kernels.

Empirical Confidence Intervals

A key property from the Gaussian process framework is that after observing n noisy evalua-

tions, the posterior distribution at any location x P X has a normal distribution of expectation

µnpxq and variance ‡2
npxq, with µn and ‡2

n defined in Eq. 2.14, 2.16. We can then define an

upper confidence bound Un and a lower confidence bound Ln , such that f is included in the

interval with high probability,

Unpxq fi µnpxq `
a

—n‡2
npxq, (2.19)

and Lnpxq fi µnpxq ´
a

—n‡2
npxq. (2.20)
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Let u ° 0, a ° 1 and X be finite. We fix accordingly,

—n fi 2u` 2 log
`
|X |na’paq

˘
, (2.21)

where ’ is the Riemann zeta function. For instance —n “ 2u ` 2 log
`
|X |n2fi2{6

˘
. We then

have the following guarantee by union bounds on n P N and x P X :

P

”
@n • 1,@x P X , fpxq P

`
Lnpxq, Unpxq

˘ı
• 1´ e´u . (2.22)

The upper and lower confidence bounds are illustrated on Figure 2.4 respectively by the

upper and lower envelopes of the gray area. The region delimited in that way, the high

confidence intervals, contains the unknown f with high probability. This statement will be a

main element in the subsequent analysis in Section 3.1, and we will see in Section 3.2 tools

to adapt to continuous search spaces.

Likelihood Maximization and Frequentist Properties of Bayesian Inference

In a real scenario, the unknown function may take values at an unknown scale, and similarly

the input dimensions may have unequal importance. To rectify these uncertainties, the kernel

is typically calibrated by scale and bandwidth parameters. Since the natural approach in

the Bayesian model is to consider the maximizer of the posterior likelihood, the parameters

of the kernel are then selected by maximizing the posterior likelihood. Other approaches

are often used to prevent over-fitting problems, like cross validation or maximization of the

pseudo-likelihood (Rasmussen and Williams, 2006). Unfortunately, there is only few known

frequentist statistical guarantees under this perspective, that is when f is not assumed to be a

realization of a known prior distribution. In van der Vaart and van Zanten (2011) the authors

show that when f is a fixed function in the support of the prior, then the posterior distribution

is consistent, in the sense that the L2-risk converges to zero as the number of observations

increases. They give guarantees on the convergence rates, and demonstrate that when the

smoothness of the kernel fits the smoothness of f the obtained rates are polynomial with

optimal exponent, but when the smoothness is overestimated the rates can be logarithmic, as

for a squared exponential kernel on a function only differentiable a finite number of times.

They use two possible notions of smoothness, the Hölder spaces C‹,–pRdq, that is functions

with ‹ continuous derivatives and whose ‹-th derivative is –-Hölder-continuous; and Sobolev

space H‹pRdq with finite Sobolev norm:

ÎfÎ2
‹ fi

ª `
1` Î⁄Î2

˘‹ -

-f̂p⁄q
-

-

2
d⁄,

where f̂ is the Fourier transform f̂p⁄q fi p2fiq´d
≥

ei⁄Jxfpxqdx . In van der Vaart and van

Zanten (2009) the same authors propose a prior built on the squared exponential kernel

with inverse Gamma “hyper”-prior on the bandwidth parameters. They prove that when f

belongs to C‹,–pRdq then the posterior obtained by full Bayesian inference obtained optimal

convergence rate without the knowledge of ‹ and –. However these results are only proved

for classification or regression and not for an active setting. Therefore in the sequel, we

consider that the prior used by our algorithms is always the true prior that generates the

unknown function in a passive batch setting.
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2.2 Optimization Algorithms and Theoretical Results

The second section of this chapter presents fundamental results for sequential optimization in

the various assumptions introduced above. This section does not aim at forming a complete

review of the literature but rather establishing comparisons of the state-of-the-art under

the same framework. We do not cover adversarial settings, and we refer to Bubeck and

Cesa-Bianchi (2012) for a complete and concise review of this problem.

2.2.1 Stochastic Multi-Armed Bandits

In the stochastic multi-armed bandits framework, the search space X is finite and f possesses

no particular structure. Let K be the cardinality of X , we denote the arms by integers without

loss of generality:

X “ p1, 2, . . . , Kq.

Multi-armed bandits are usually defined with an arbitrary distribution ‹a P D for each arm

a P X , where the set of allowed distributions D is known but ‹a is unknown (Bubeck and

Cesa-Bianchi, 2012). The observations yi for arm xi P X are then independent realizations of

‹xi
. In our setting, fpxiq “ E

“
yi

‰
and ‘i “ fpxiq ´ yi . Our definition of the cumulative regret

Rn from Eq. 2.3 corresponds to the pseudo-regret. We mainly focus on the case where the

noise ‘i are independent Gaussian random variables N p0, ÷2q to be consistent with further

settings, that is D is the set of Gaussian distribution with arbitrary mean and fixed variance.

A common extension it to consider various distribution such as one-parameter exponential

families or nonparametric distributions (Cappé et al., 2013; Perchet and Rigollet, 2013).

For an algorithm A playing arms x1, . . . , xn , the cumulative regret can be decomposed as

follows:

Rn “
nÿ

i“1

sup
x‹

fpx‹q ´ fpxiq “
Kÿ

a“1

∆aNnpaq,

where ∆a is the gap between the value of arm a and the optimum:

∆a ” ∆apf, X q fi sup
x‹PX

fpx‹q ´ fpaq,

and Nnpaq is the (random) number of times arm a has been selected until iteration n:

Nnpaq ” Nnpa, A, f, ‘q fi
nÿ

i“1

1txi “ au.

This particular decomposition leads to upper and lower bounds on the cumulative regret as

presented below.

Lower Bounds on the Cumulative Regret

In Lai and Robbins (1985) the authors prove a significant lower bound on the expected

number of times a sub-optimal arm should be queried. Thanks to the previous decomposition
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Algorithm 1: UCB with log-Laplace Â and exploration parameter — ° 2

@a § K, Npaq – 0

for n “ 0, 1, . . . do

for a “ 1, . . . , K do

pµnpaq – Npaq´1 ∞n
i“1 yi1txi “ au

Upaq – pµnpaq ` Â˚´1
`
Npaq´1— log n

˘

end

xn`1 – argmaxa§K Upaq
yn`1 – Querypxn`1q
Npxn`1q – Npxn`1q ` 1

end

of Rn , this allows to derive a lower bound for the expected cumulative regret. They show

that for any algorithm with sub-linear cumulative regret, for all sub-optimal arm a one has:

lim inf
nÑ8

E
“
Nnpaq

‰

log n
• DKLp‹a } ‹‹q´1 , (2.23)

where DKLp‹a } ‹‹q is the KL-divergence between the distribution of the noisy rewards for

arm a and an optimal arm. For Gaussian noise with fixed variance ÷2 , one has:

DKLp‹a } ‹‹q “
∆2

a

2÷2
. (2.24)

That is the expected cumulative regret of any algorithm satisfies:

lim inf
nÑ8

E
“
Rn

‰

log n
• 2÷2

ÿ

a:∆a°0

∆´1
a . (2.25)

This asymptotic lower bound becomes large when there is one ∆a close to zero for an almost

optimal arm a . Nevertheless, this lower bound is tight in the sense that there exists an

algorithm, presented in the next paragraph, with matching upper bound.

Asymptotically Optimal Algorithms for the Cumulative Regret

The canonical strategy to face the noise is to sample multiple times the same arms and

consider the empirical average to reduce the uncertainty. Since the noise variables are

independent, the Cramer-Chernoff bounding method (Boucheron et al., 2013) is a useful tool

to control the empirical confidence intervals. First, let Â denote the logarithm of the Laplace

transform of the noise variables:

Âp⁄q fi logE
“
e⁄‘1

‰
.

Then we define Â˚ the convex conjugate of Â (also known as Legendre-Fenchel transform):

Â˚psq fi sup
⁄PR

`
⁄s´ Âp⁄q

˘
.
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Algorithm 2: KL-UCB with set of distributions D and exploration parameter — ° 2

@a § K, Npaq – 0

for n “ 0, 1, . . . do

for a “ 1, . . . , K do

p‹a – Empirical
`
D, tyi : i † n, xi “ au

˘

Upaq – sup
!
Er‹s : ‹ P D, DKLpp‹a } ‹q § Npaq´1plog n` — log log nq

)

end

xn`1 – argmaxa§K Upaq
yn`1 – Querypxn`1q
Npxn`1q – Npxn`1q ` 1

end

Markov’s inequality tells us that for all s ° 0 we have:

P
“
‘1 ° s

‰
§ e´Â˚psq .

So, we can denote Â˚´1 the generalized inverse of Â˚ ,

Â˚´1puq fi inf
 
s P R : Â˚psq ° u

(
,

which leads to the following concentration inequality:

P

”
‘1 ° Â˚´1puq

ı
† e´u .

Now if we query N times arm a, by independence of the noise variables we directly obtain:

P

”
fpaq ´ pµnpaq ° Â˚´1

`
N´1u

˘ı
† e´u ,

where pµnpaq fi Nnpaq´1 ∞n
i“1 yi1txi “ au is the empirical average of arm a. This motivated

the UCB algorithm, presented in Algorithm 1. The UCB algorithm queries arms maximizing

pµnpaq`Â˚´1
`
Nnpaq´1u

˘
for appropriate u ° 0, which is an upper confidence bound for fpaq,

hence the name. For ÷-subgaussian noise distribution, we have:

Â÷p⁄q “
÷2⁄2

2
,

so by simple calculus the convex dual and its inverse simplify to:

Â˚
÷ psq “

s2

2÷2
and Â˚´1

÷ puq “
a

2÷2u.

It is well known that the expected cumulative regret of the UCB algorithm is asymptotically

optimal up to constants, on bounded or Gaussian noise (Auer et al., 2002; Bubeck and Cesa-

Bianchi, 2012). This algorithm paved the way for many other settings including Lipschitzian

and Bayesian optimization, as it will be discussed in the next sections.
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It is possible to build algorithms for which the expected cumulative regret follows exactly

the asymptotic given in Eq. 2.25 for any noise distributions, with the right constant. The

KL-UCB algorithm (Cappé et al., 2013) is designed to match the terms of Eq. 2.23. The

upper confidence bound from the dual of the log-Laplace is replaced by finer KL-divergence.

We detail this method in Algorithm 2 for generic noise distributions in D . The procedure

EmpiricalpD, Y q computes the projection on D of the empirical distribution of observations

Y . For Gaussian noise with variance ÷2 , the intriguing value Upaq in KL-UCB simplifies with

Eq. 2.24 to:

Upaq “ pµnpaq `
d

2
÷2—n

Nnpaq
,

The algorithm is then similar to the previous UCB strategy up to logarithmic terms in the

exploration parameter. We refer the reader to Audibert et al. (2009), Auer and Ortner (2010)

and Perchet and Rigollet (2013) for refined analysis of the expected cumulative reward in

multi-armed bandits.

High Probability Guarantees

For multi-armed bandits, high probability results of the form PrRn § gpK, D, n, uqs • 1´ e´u

are limited when the algorithm is agnostic to the time horizon n. Salomon and Audibert

(2011) proved that in the general case, no algorithm can have both a logarithmic expected

cumulative regret and concentration around the expectation better than 1´ plog nq´– for any

– ° 0. Yet, if the algorithm knows the value u for the log-probability, then one can modify

the UCB algorithm with refined upper confidence bound to obtain constant cumulative regret.

Such an algorithm for subgaussian noise is the improved UCB algorithm (Abbasi-Yadkori

et al., 2011), that uses the confidence intervals:

Unpaq fi pµnpaq `
d

Nnpaq ` 1

N2
npaq

´
1` 2pu` log Kq ` log

`
Nnpaq ` 1

˘¯ 1
2
,

and displays a surprising constant cumulative regret with high probability:

P

«
@n • 1, Rn § c

ÿ

i:∆i°0

´
∆i `∆´1

i

´
u` log

`
K∆´1

i

˘¯¯
ff

• 1´ e´u ,

where c P R.

Lower Bounds on the Simple Regret

There are several approaches in the multi-armed bandit literature to study the problem of

finding the optimum. The PAC model (Even-Dar et al., 2002) focuses on the number of

queries needed to obtain a simple regret Sn (Eq. 2.2) of at most Á with probability 1´ ” . If

an algorithm is pÁ, ”q-PAC, then it stops at nÁ,” such that PrSnε,δ
° Ás † ” , and the algorithm

knows in advance Á and ”. In Mannor and Tsitsiklis (2004), the authors exhibit a lower bound

on nÁ,” needed to have the pÁ, ”q-PAC guarantee in the case of Bernoulli observations. They

prove that it exists c1, c2 P R such that for all Á ° 0 small enough and ” ° 0 small enough,

E
“
n‘,”

‰
• c1

K

Á2
log

c2

”
. (2.26)
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Algorithm 3: MedianElimination(Á, ”)

S0 – X ; Á0 – ‘{4; ”0 – ”{2
for l “ 0, 1, . . . do

for a P Sl do

for i “ 1, . . . , pÁl{2q´2 logp3{”lq do

yl,a,i – Querypaq
Compute pµa

end

end

m – Median
`
tpµa : a P Slu

˘

Sl`1 – Slzta : pµa † mu
Ál`1 – 3Ál{4; ”l`1 – ”l{2
if

-

-Sl`1

-

- “ 1 then

return Sl`1

end

end

Since this framework gives strictly more information to the algorithm, the lower bound is

also valid for the simple regret and we deduce that:

@n • 1, P

«
Sn •

c
c1

K

n
log

c2

”

ff
• 1´ ”.

Another setting, the best arm identification problem, consists in evaluating the probability

that an algorithm find the exact optimum. We remark that for Bernoulli observations, the

simple regret is always smaller than this probability. In that case Audibert et al. (2010) prove

that there exists c1 P R such that,

E
“
Sn

‰
• exp

ˆ
´c1

n

H log K

˙
, (2.27)

where H fi
∞

a:∆a°0 ∆´2
a .

Optimal Algorithms for Pure Exploration Problems

The MedianElimination algorithm, shown in Algorithm 3, is pÁ, ”q-PAC with near optimal

number of queries (Even-Dar et al., 2002), that is it matches the lower bound from Eq. 2.26

up to constant multiplicative factors. This algorithm requires the knowledge of Á and ” , and

cannot be considered in our optimization framework. Other closely related procedure like

the Successive Reject algorithm (Audibert et al., 2010) have expected simple regret that

match the lower bound from Eq. 2.27 up to logarithmic terms. We refer to Karnin et al.

(2013), Jamieson et al. (2013), Kaufmann et al. (2016) and Garivier and Kaufmann (2016)

for further upper and lower bounds on best arm identification problems. These algorithms

are not suitable for optimization on continuous domain, since they heavily rely on the gaps

between the optimum of the values of the other arms.

2.2 Optimization Algorithms and Theoretical Results 49



2.2.2 Stochastic Linear Bandits

As a response to the previous remark a continuous bandit model has been proposed where

X Ä R
d is compact and f is in C a set of linear functions (Auer et al., 2007). Interesting

upper and lower bounds follow from Dani et al. (2008).

Algorithms and Logarithmic Upper Bounds on the Regret

Since f is linear, the candidate locations for the optimum are on E the extreme points of X ,

that is the set of points that are not a convex combination of other points in X . Then, we can

extend the definition of the gap by looking at sub-optimal points in E :

∆ fi inf
!

sup
x‹PX

fpx‹q ´ fpxq : x P E , sup
x‹PX

fpx‹q ° fpxq
)

.

When ∆ ° 0, for example if X is a polytope, then the linear bandits problem is equivalent to

classical multi-armed bandits and one can design algorithm with poly-logarithmic cumulative

regret. Precisely for a constant c P R depending on X and C :

P

”
@n • 1, Rn § c÷2∆´1d2pu` log3 nq

ı
• 1´ e´u . (2.28)

The ConfidenceBall or LinRel algorithm (Auer, 2002; Dani et al., 2008) attains this regret by

computing pfn a least-square estimate of f and considering an ellipsoid centered in pfn with

small square loss Ln :

Lnpgq fi
nÿ

i“1

`
gJxi ´ yi

˘2
,

pfn fi argmin
gPC

Lnpgq,

Cn fi
!

g P C : Lnpgq § Lnp pfnq ` —
)

,

where —2 fi O
`
÷2d log npu` log nq

˘
so that the following holds:

P

”
@n • 1, f P Cn

ı
• 1´ e´u .

The query is then selected to maximize the upper confidence bound:

xn`1 fi argmax
xPX

max
gPCn

gJx.

The OFUL algorithm (Abbasi-Yadkori et al., 2011) improves the regret bound by computing a

regularized least-square and tight confidence ellipsoids. It is presented in Algorithm 4, where

we used Ln,⁄ the regularized square loss and Cn,⁄ a re-scaled design matrix of the queries:

Ln,⁄pgq fi Lnpgq ` ⁄ ÎgÎ2 ,

Cn,⁄ fi ⁄´1XJ
n Xn ` I where Xn fi

“
xi

‰
i§n

.

The confidence ellipsoid Cn computed by the OFUL enjoys the same crucial property, that is
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Algorithm 4: OFUL(C, ⁄, ÷, u)

for n “ 0, 1, . . . do

pg – argmingPC Ln,⁄pgq
—2 – 2÷2pu` log det Cn,⁄q
Cn –

!
g P C : Ln,⁄pgq § Ln,⁄ppgnq ` — ` ⁄

1{2 supgPC ÎgÎ2

)

xn`1 – argmaxxPX maxgPCn gJx

yn`1 – Querypxn`1q
end

the unknown function f always lies in Cn with probability at least 1´ e´u . Its regret bound

strictly improves the one of Eq. 2.28.

Polynomial Regret and Lower Bounds

When the gap ∆ is 0, such as for a spherical X , the order of the cumulative regret leave the

poly-logarithmic magnitude and fall in a far worse polynomial range. Indeed there exists a

bounded space X and a class C such that for every algorithm the following lower bound holds

true for any iteration n (Dani et al., 2008):

E
“
Rn

‰
• Ω

`
d
?

n
˘
. (2.29)

The cumulative regret of the OFUL algorithm matches this lower bound up to poly-logarithmic

multiplicative factors, which makes this procedure almost optimal even when ∆ “ 0.

Upper and Lower Bounds for the Simple Regret

Compared to the fertile research in multi-armed bandit, the study of pure exploration for

stochastic linear bandits seems to raise limited interest. Recently, Soare et al. (2014) and

Soare (2015) adapted the analysis from Abbasi-Yadkori et al. (2011) and from preliminary

analysis of Kaufmann et al. (2016) for the p0, ”q-PAC setting in linear bandit, that is one wants

to find with probability 1´ ” the exact optimum. They came up with both lower and upper

bounds for the case where the noise is bounded and X is finite. They show that the expected

number · of queries required to be p0, ”q-PAC is lower bounded by:

Er· s • Ω

¨
˝u max

xPX
∆x°0

Îx‹ ´ xÎ2
K

´1
τ

∆2
x

˛
‚,

where u fi log ”´1, fpx‹q “ maxxPX fpxq and K· fi
∞

xPX ErN· pxq{· sxxJ . The upper bound

for the algorithms they propose does not match this lower bound, since additional quantities

which may be leading terms are involved. Up to our knowledge, no result has been given for

simple regret on non finite X .

2.2.3 Lipschitzian Optimization

The linearity assumption on f is extremely restrictive and may limit the practicability of

the former algorithms for real problems. Recently many authors proposed optimization

algorithms that only require the function to be Lipschitz-continuous under the setting from
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Section 2.1.3. In this view, the unknown function is assumed to satisfy Eq. 2.4 with known

norm ÎfÎ. One cannot hope for cumulative regret better than O
`
d
?

n
˘

in expectation since

the lower bound from Eq. 2.29 still holds.

One-Dimensional Spaces

The first analysis of the cumulative regret for one-dimensional Lipschitz-continuous functions

goes back to Agrawal (1995). In this work the authors exhibit an algorithm whose expected

cumulative regret is at most O
`
n

3{4
˘
. Kleinberg (2004) refined this bound and proved almost

matching lower bound. They show that under Gaussian noise, any algorithm incurs a regret

at least:

E
“
Rn

‰
• Ω

`
n

2{3
˘
.

They propose an algorithm for which the exponent is optimal, but with an additional logarith-

mic term,

E
“
Rn

‰
§ O

`
n

2{3 log
1{3 n

˘
.

This lower bound can be overcome under additional restrictions on f . For instance if it

possesses continuous second derivative, and the horizon n is fixed and known, then an

extension of the UCB algorithm on discretized intervals obtain regret in O
`?

n log n
˘
, and this

is the best possible regret for this case (Auer et al., 2007). In the same respect, an extension of

the KL-UCB algorithm is shown to obtain optimal cumulative regret with rates that explicitly

describe distribution-dependent KL-divergences (Magureanu et al., 2014).

Multi-dimensional Spaces

The d-dimensional optimization of Lipschitz function is challenging, since the volume of

the search space increases exponentially in d . We describe here several algorithms and

associated regret bounds. In the above-mentioned article (Kleinberg, 2004), the authors also

demonstrate that if f is convex, the exponential blowup can be avoided and replaced by

polynomial growth. They obtain a cumulative regret of O
`
d3n

3{4
˘
. Unfortunately, the convex

hypothesis is too stringent for global optimization problems. For related assumptions such as

unimodality of f , we refer to (Combes and Proutiere, 2014). For reasons explained in the

beginning of this chapter, modern approaches introduce the nonparametric similarity measure

¸ for which f is assumed to be Lipschitz. In order to measure the size of such a search space,

the most relevant quantity has shown to be the near-optimality dimension dimfl as defined

in Eq. 2.10, or similar dimension such as the Zooming dimension (Kleinberg et al., 2008).

Indeed in this article, the authors come up with a lower bound on the expected cumulative

regret of:

E
“
Rn

‰
• Ω

´
n

d`1
d`2

¯
, (2.30)

for all d ° dimflpX , ¸q (and d “ dimflpX , ¸q if the dimension is attained), and a strategy called

the Zooming algorithm with almost optimal regret when the horizon n is fixed and known:

E
“
Rn

‰
§ O

´
n

d`1
d`2

`
log n

˘ 1
d`2

¯
.

The fact that the upper and lower bounds differ only by a sub-logarithmic term indicates that

the near-optimality dimension is the right measure of complexity. Note that in d-dimensional
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Figure 2.5. – A partitioning tree of a rectangle for the euclidean metric

euclidean X this dimension can be much smaller that d . As explained before, common

scenarios enjoy d “ 0 , leading to E
“
Rn

‰
§ O

`?
n
˘

. Another strategy, called the HOO

algorithm (Bubeck et al., 2008, 2011), refines and extends this work by constraining only

the local behavior of f around the optimum (Eq. 2.5), and suppressing the knowledge of the

horizon. This approach leads to equivalent upper and lower bound, but requires to know a

hierarchical discretization of X which could be difficult to build if the metric space pX , ¸q is

not parametric. When the learner observes the function without noise the HOO algorithm

simplifies to the DOO algorithm (Munos, 2011), a tree-based search designed to obtain fast

converging simple regret. The procedure takes as input a tree of partitions of X adapted to ¸.

Partitioning Trees

First, let us formally define a discretization tree of X . These definition are more general than

what is typically found in the literature and will be reused in the next chapter.

Definition 2.6 (DISCRETIZATION TREE). A sequence T fi
`
Th

˘
h•0

with parent relation p : X Ñ
X is said to be a discretization tree of X when the following holds for all integer h • 0:

1. |T0| “ 1 and |Th| † 8,

2. @x P Th`1, ppxq P Th ,

3. Th Ä Th`1 ,

4. limhÑ8 Th “ X .

For
`
pThqh•0, p

˘
a discretization tree of X , we use the notation Children ” ChildrenT for the

set of children:

@h • 0,@s P Th, Childrenpsq fi
!

x P Th`1 : ppxq “ s
)

.

In the sequel, we will use an abuse of notation and denote a discretization tree simply by T .

For all h • 0, we define the set of nodes at depth lower than h as follows:

T§h fi
§

h1§h

Th1 .
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Algorithm 5: DOO with partitioning tree T

L – T0

for r “ 0, 1, . . . do

@x P L, Upxq – fpxq `∆pxq
s – argmaxxPL Upxq
for x P Childrenpsq do

fpxq – Querypxq
L – LY txu

end

L – Lztsu
end

Finally, for all h • 0 and a ° 0, we define the successor relation px ° sq ” px °T sq between

s P Th and x P Th`a by:

x ° s iff Dx1 P Childrenpsq, x2 P Childrenpx1q, . . . s.t. x P Childrenpxh`a´1q.

Such discretization trees permit to define hierarchical partitioning of X along the successor

relation. By denoting Cell ” CellT the set of all the successor nodes:

@s P X , Cellpsq fi
 
x P X : x • s

(
,

where the relation • extends the relation ° with the identity, we see that the set of cells at a

given depth forms a partition:

@h • 0,
§

sPTh

Cellpsq “ X ,

@s, s1 P Th, s ‰ s1 ùñ Cellpsq X Cellps1q “ H.

We now define a partitioning tree of X , for which the cells are nested between a larger and a

smaller ¸-balls of given radii.

Definition 2.7 (PARTITIONING TREE). Let T be a discretization tree of X . We say that T is a

p¸, ”, flq-partitioning tree of X for a function ” : N Ñ R and scalar fl ° 0 when the following

holds for all h • 0 and s P Th :

1. Cellpsq Ñ B
`
s, ”phq

˘
,

2. B
`
s, fl”phq

˘
Ñ Cellpsq.

The ¸-radius ∆psq ” ∆T psq of the cell of a node is the largest distance between s and a point in

the cell:

@s P X , ∆psq fi sup
x°s

¸ps, xq.

Let us assume that ÎfÎ “ 1 without loss of generality. Knowing T a p¸, ”, flq-partitioning tree

of X , for a similarity ¸ satisfying the one-sided Lipschitz property from Eq. 2.6, the DOO
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algorithm is described in Algorithm 5. It maintains a set of leafs of a finite sub-tree of T .

Thanks to the Lipschitz-continuity of f , the following property trivially holds:

@h • 0,@s P Th, sup
xPCellpsq

fpxq ´ fpsq § ∆psq

§ ”phq.

We deduce that the DOO algorithm only queries nodes with Upxq • supx‹PX fpx‹q. Let Ih be

the set of ”phq-optimal nodes at depth h:

Ih fi Th X X”phq .

As for the previous remark, the queries of DOO are focused in the children of
î

h•0 Ih . When

the round selects s P Ih such that supx°s fpxq “ supx‹PX fpx‹q the simple regret is at most

”phq, we can thus bound the regret of the DOO algorithm by the worst case which explores

first all I1 then I2 and so on. We can now invoke the properties of partitioning trees and the

near-optimality dimension of X to bound the number of nodes in Ih :

@d ° dimflpX , ¸q, Dc P R,@h • 0, |Ih| § c”phq´d .

We conclude for such d and c that the simple regret of DOO is bounded by:

Sn § ”
`
hpn{Kq

˘
,

where hpnq fi inf

#
h P N : c

hÿ

h1“0

”ph1q´d • n

+
,

and K fi sup
sPX

-

-Childrenpsq
-

-.

Finally, in the usual case where ´ log ”phq “ Ophq and K “ Op1q, we obtain Sn § O
`
e´n

˘

if dimflpX , ¸q “ 0, and Sn § O
`
n´1{d

˘
otherwise. The detailed proof can be found in Munos

(2011).

Unknown Smoothness and Adaptive Algorithms

A compelling feature of this approach is that the previous algorithm can easily be adapted to

the case where ¸ is not known, without paying a large cost for the regret. At each round, if

we select simultaneously all the nodes having the greatest function value for their depth, then

we are sure to select the maximizer of the unknown upper bound for the best possible ” . This

modification is implemented in the SOO algorithm (Algorithm 6), which also takes as input a

function hmax : NÑ N preventing the sub-tree to grow linearly. By selecting hmaxprq fi
?

r ,

the SOO algorithm attains simple regrets close to the ones from DOO with optimal similarity

¸ . Note that the optimal similarity may depend on the function f itself, as discussed in

Section 2.1.3. Let d “ dimflpX , ¸q for the best possible ¸ and fl . When ´ log ”phq “ Ophq
and K “ Op1q, then SOO satisfies Sn § O

`
e´?

n
˘

if d “ 0, and Sn § O
`
n´1{2d

˘
otherwise.

Finally, remark that despite the SOO algorithm is agnostic to the smoothness of the function, it

requires a partitioning tree T adapted to .̧ Computing a p¸, ”, flq-partitioning tree with optimal

but unknown smoothness ¸ has no general solution. In Grill et al. (2015), the authors use

2.2 Optimization Algorithms and Theoretical Results 55



Algorithm 6: SOO with partitioning tree T and max height hmax : NÑ N

L –
 
x0

(

for r “ 0, 1, . . . do

v – ´8
for h “ 0, ..., heightpLq ^ hmaxprq do

s – argmaxxPLXTh
fpxq

if fpsq • v then

for x P Childrenpsq do

fpxq – Querypxq
L – LY txu

end

L – Lztsu
v – fpsq

end

end

end

this technique together with UCB to face noisy observations without knowing the smoothness

of the function. The expected simple regret they obtain is bounded by:

E
“
Sn

‰
§ O

´
n

´ 1
d`2

`
log n

˘ 2
d`2

¯
,

which is the almost optimal (up to logarithmic multiplicative factors) simple regret one

can deduce from the lower bound 2.30. Finally, the independent work from Bull (2015)

analyzes cumulative regret in a slightly modified assumption equivalent to functions with

dimflpX , ¸q “ 0 and unknown smoothness. The obtain regret, Rn «
?

n up to logarithmic

terms with high probability, is equivalent to the previous approaches.

2.2.4 Bayesian Optimization and Gaussian Processes

We conclude this chapter by providing known upper and lower bounds in the Bayesian

optimization framework. As explained in Section 2.1.4, we do not consider here that f is a

fixed function in a set of smooth functions, but we assume instead a probability distribution

over functions. The randomness comes from the noise and the function itself. We refer to Bull

(2011) and Srinivas et al. (2012) for analysis of the regrets incurred by a Bayesian algorithm

on a fixed function in the corresponding RKHS. As discussed before functions in the RKHS

are smoother than samples from the process.

Simple Regret for Gaussian Processes with Deterministic Observations

In the previous section we have seen that the optimization of a Lipschitz-continuous function

without noise can be solved by algorithms with exponentially fast simple regret. When the

function is a realization of a Gaussian process GPp0, kq with smooth but arbitrary kernel, such

convergence rate are impossible to reach. In Grünewälder et al. (2010) the authors derive

almost tight lower bounds when X Ä R
d and the kernel k is Hölder-continuous with exponent
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Algorithm 7: GP-UCB (k, ÷, u) on finite X

for n “ 0, 1, . . . do

Compute µn and ‡2
n (Eq. 2.14, 2.16)

— – 2 log
`
|X |n2 π2

6

˘
` 2u

for x P X do

Upxq – µnpxq `
a

—‡2
npxq

end

xn`1 – argmaxxPX Upxq
yn`1 – Querypxn`1q

end

– with respect to the supremum norm. They prove that it exists such Gaussian processes on

which the expected simple regret of any algorithm is larger than:

E
“
Sn

‰
• Ω

´
n´ α

2d log´ 1
2 n

¯
.

They show that the optimal algorithm when the horizon n is known can be computed by the

impracticable resolutions of the nested integrals involved in the simple regret. Yet, they also

demonstrate that a blind exploration of the search space obtains an almost optimal simple

regret:

E
“
Sn

‰
§ O

´
n´ α

2d log
1
2 n

¯
.

Under more restrictive hypothesis on the kernel, exponential rates are still possible. In

this respect, de Freitas et al. (2012) analyze Gaussian process optimization on finite X

where k is a stationary and four times differentiable kernel, and f is locally similar to

x fiÑ supx‹ fpx‹q ´ Îx‹ ´ xÎ2
2 around its single global maximizer. They propose a branch-and-

bound algorithm whose simple regret satisfies with high probability for a ° 0:

Sn § O
´

log
1
2 |X |e

´ an

logd{4 n

¯
.

Finally, we refer to Vazquez and Bect (2010) and Bect et al. (2016) for convergence results

on the Expected Improvement algorithm.

Simple and Cumulative Regrets with Noisy Observations

This section is dedicated to the most general optimization framework we consider in this

dissertation, Bayesian optimization with noisy observations. As stated in the introduction,

this setting is heavily used in many applications, yet the theoretical results are limited. Up to

our knowledge, the only existing lower bound assumes Bayesian linear optimization, and all

the upper bounds are restricted to smooth Gaussian processes.

Bayesian linear optimization with multi-variate normal prior is equivalent to Gaussian process

optimization with linear kernel kpx1, x2q “ xJ
1 x2 . In Rusmevichientong and Tsitsiklis (2010),

it is shown that in this case for X Ä R
d , the expected cumulative regret of any algorithm

agnostic to the time horizon is lower bounded by:

E
“
Rn

‰
• Ω

`
d
?

n
˘
. (2.31)
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We note that this lower bound holds even when X is the unit sphere. Consequently there is

no hope of getting better expected cumulative regret when the problem is not simpler than

linear functions of the sphere. Srinivas et al. (2012) propose the GP-UCB algorithm which

attains this lower bound with high probability in the linear case and extends to more general

kernels, but require the knowledge of the probability of error e´u . When the search space

X is finite, the algorithm runs as the UCB Algorithm 1 where the U values are computed

with Bayesian inference (Eq. 2.14 and Eq. 2.16), as displayed in Algorithm 7. The GP-UCB is

guaranteed with probability at least 1´ e´u to incur a cumulative regret lower than:

Rn § O
´b

n“n

`
u` logpn|X |q

˘¯
. (2.32)

The quantity “n measures the cost of exploring the search space X with respect to the kernel

k . It is formally defined as the maximum information gain on f obtainable by a set of n

queries:

“n ” “npX , f, ‘q fi max
XÄX
|X|“n

IpXq, (2.33)

where I is the mutual information of f and the noisy observations YX “ tfpxiq ` ‘iuxiPX :

IpXq ” IpX, f, ‘q fi H
`
YX

˘
´H

´
YX

ˇ̌
ˇ
 
fpxiq

(
xiPX

¯
,

with HpZq “ Er´ log ppZqs the Shannon entropy of a random variable Z with distribution p,

and HpZ1 |Z2q “ HppZ1, Z2qq ´HpZ2q the conditional entropy. For Gaussian processes, the

Shannon entropy H has a simple form and the previous mutual information simplifies to:

IpXq “ 1

2
log det

`
I` ÷´2

KX

˘
, (2.34)

where KX fi
“
kpx1, x2q

‰
x1,x2PX

is the kernel matrix of the points in X and ÷2 is the variance

of the noise. In the worst case where the kernel k is a Kronecker delta, that is f is a Gaussian

white noise process, “n “ Opnq and the bound from Eq. 2.32 reflects the impossibility of

optimizing such processes. For more usual kernels “n is sub-linear. Upper bounds on its values

leads directly to upper bounds on the cumulative regret of the GP-UCB algorithm. When

X Ä R
d, we have the following results with high probability, where the rO notation hides

some logarithmic terms:

Linear kernel (Eq. 2.11): “n § O
`
d log n

˘
, Rn § rO

`?
dn

˘
,

SE kernel (Eq. 2.12): “n § O
´

logd`1 n
¯

, Rn § rO
´b

n logd`1 n
¯

,

Matérn kernel with ‹ ° 1 (Eq. 2.13): “n § O
´

n
dpd`1q

2ν`dpd`1q

¯
, Rn § rO

´
n

ν`dpd`1q
2ν`dpd`1q

¯
.

The regret in rO
`?

dn
˘

for the linear case is actually better than the lower bound 2.31. This

can be explained by the fact that this is a high probabilistic result and not an expectation, and

the GP-UCB algorithm knows the error probability e´u . Note also that the search space X is
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finite. When X is not finite, the authors propose to adapt the algorithm by changing only the

value of — . If the Lipschitz-norm of f has b-subgaussian tails, that is:

Da P R,@⁄ ° 0, P

”
ÎfÎLip ° ⁄

ı
§ ae

´ λ2

2b2 ,

and the values of a and b are known, then they obtain the following upper bound:

Rn § O
´b

dn“n

`
u` logpnbq

˘¯
.

Knowing the exact value of b is not an easy task. In practice the authors perform complete

cross-validations on — . Examples of Gaussian processes with b-subgaussian Lipschitz-norm

are processes whose kernel is stationary and four times differentiable. As mentioned in

Section 2.1.4, this does not holds for the Matérn kernel if ‹ § 1 such as the Ornsetin-

Uhlenbeck kernel. The high probabilistic upper bounds on the cumulative regret follow:

Linear kernel (Eq. 2.11): Rn § rO
`
d
?

n
˘
,

SE kernel (Eq. 2.12): Rn § rO
´b

dn logd`1 n
¯

,

Matérn kernel with ‹ ° 1 (Eq. 2.13): Rn § rO
´

d
1
2 n

ν`dpd`1q
2ν`dpd`1q

¯
.

The convergence rate of the simple regret one can deduce from these bounds remains good

for the linear kernel. Otherwise, this degrades rapidly with the dimension. As an example

for the squared exponential kernel with d “ 4 the number of iterations needed to havea
dn´1 logd`1 n † 0.1 is n ° 109 , for the Matérn kernel with ‹ “ 5{2 we need n ° 1013 .

The direct analysis of the simple regret with noisy observations is fairly limited. Up to our

knowledge, the only theoretical work not built on the GP-UCB algorithm comes from Hoffman

et al. (2014). They analyze the case where f is linear and X is finite. By denoting K fi |X |,

they propose an algorithm satisfying the following simple regret:

P

»
–Sn §

d
2÷2K

`
u` logpnKq

˘

n´K

fi
fl • 1´ e´u .

This previous article explores finer distribution-dependent regret bounds involving the sum

of the squared inverse gaps over the arms, similarly to the classical multi-armed bandit

framework as in Eq. 2.27.
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3Advances in Bayesian Optimization

This chapter describes novel advances in Bayesian optimization. We first consider in Sec-

tion 3.1 a contribution on optimization using mini-batches of queries at each iteration. In

Section 3.2, we then rigorously study Gaussian process optimization on continuous space

via geometrical arguments. We finally examine in Section 3.3 Bayesian optimization with

non-Gaussian stochastic processes. We show that our algorithms adapt easily to various more

complex priors that are used in natural applications. A significant part of the work from this

chapter has been published in Contal et al. (2013) and Contal et al. (2015).
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3.1 Batch Sequential Optimization

In this section, we focus on the case where the unknown function can be evaluated in parallel

with mini-batches of fixed size and analyze the benefits compared to the purely sequential

procedure in terms of cumulative regret. We present the Gaussian Process Upper Confidence

Bound and Pure Exploration algorithm (GP-UCB-PE), which combines the UCB strategy and

Pure Exploration in the same batch of evaluations along the parallel iterations. We prove

theoretical upper bounds on the regret with batches of size K for this procedure which reveals

the improvement of the order of
?

K for fixed iteration cost over purely sequential versions.

Moreover, the multiplicative constants involved have the property of being dimension-free.

We also confirm empirically the efficiency of GP-UCB-PE on real and synthetic problems

compared to state-of-the-art competitors.

3.1.1 Problem Formulation and Objectives

In some optimization scenarios, it is possible to evaluate the function in parallel with batches

of K queries with no increase in cost. This is typically the case in the sensors location problem

if K sensors are available at each iteration, or in the numerical optimization problem on a

cluster of K machines, or recommendation systems with batches of K customers. Parallel

strategies have been developed recently in Azimi et al. (2010) or Desautels et al. (2012). We

propose to explore further the potential of parallel strategies for noisy function optimization

with unknown horizon aiming simultaneously at practical efficiency and plausible theoretical

results. The novel algorithm we introduce, called GP-UCB-PE, combines the benefits of the

UCB policy with Pure Exploration queries in the same batch of K evaluations of f . The Pure

Exploration component helps to reduce the entropy of f around the maximum in order to

support the UCB policy in finding the location of the maximum, and therefore in increasing

the decay of the regret Rn at every iteration n. In comparison to other algorithms based on

Gaussian processes and UCB such as GP-BUCB (Desautels et al., 2012), the new algorithm

discards the need for the initialization phase and offers a tighter control on the uncertainty

parameter which monitors overconfidence. As a result, the derived regret bounds are more

robust against the curse of dimensionality since the multiplicative constants obtained are

dimension free in contrast with the doubly exponential dependence observed in previous work.

We also mention that Monte-Carlo simulations can be proposed as an alternative and this

idea has been implemented in the SimulationMatching algorithm with UCB policy (SM-UCB)

(Azimi et al., 2010) which we also consider for comparison in the present document. Unlike

GP-BUCB, no theoretical guarantees for the SM-UCB algorithm are known for the bounds on

the number of iterations needed to get close enough to the maximum, therefore the discussion

will be reduced to empirical comparisons over several benchmark problems.

Objectives

At each iteration n, we choose a batch of K points in X called the queries txn,ku0§k†K , and

then observe simultaneously the noisy values taken by f at these points, yn,k fi fpxn,kq` ‘n,k.

We denote by rn,k instantaneous regret, that is the difference between the optimum of f and

the point queried xn,k ,

rn,k fi sup
xPX

fpxq ´ fpxn,kq.
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x0

x1

Figure 3.1. – The first two queries of GP-UCB-PE in a batch. x0 maximize Unp¨q , the horizontal
dotted line is at pyn, the relevant region Rn (green area) contains all the points such that
Unp¨q • pyn , the dashed lines illustrates the updated deviation ‡n,1p¨q after choosing x0 ,
and x1 maximizes ‡n,1p¨q in Rn .

We aim at minimizing either the full cumulative regret:

Rn,K fi
ÿ

i§n

ÿ

k†K

ri,k ,

which accounts for the case where all the queries in a batch should have a low regret; or the

batch cumulative regret:
rRn,K fi

ÿ

i§n

min
k†K

ri,k ,

for the case where the cost for a batch of evaluations is fixed. An upper bound on rRn,K gives

an upper bound of n´1 rRn,K on the simple regret, the minimum gap between the best point

found so far and the true maximum. We restrict our analysis to the case where X is finite.

Note that it is easily adaptable for a compact and convex X when the Lipschitz norm of the

Gaussian process has subgaussian tail with known variance, and one contribution of the thesis

in the next section will be to remove this hypothesis.

3.1.2 Parallel Optimization Procedure

We describe here the GP-UCB-PE algorithm, which will be shown later to satisfy theoretical

guarantees on the three notions of regrets: full cumulative, batch cumulative and simple

regret. Our idea is to focus all the queries in a region of the search space called the relevant

region, where the maximizer will lie with high probability.

Relevant Region

We first recall µnp¨q and ‡2
np¨q the posterior expectation and variance computed with the

observations obtained after n iterations with Eq. 2.14, 2.16. They allow to define the high

confidence upper and lower bounds Unp¨q and Lnp¨q with Eq. 2.19, 2.20:

Unpxq fi µnpxq `
a

—n‡2
npxq,

Lnpxq fi µnpxq ´
a

—n‡2
npxq.
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Algorithm 8: GP-UCB-PE (k, ÷, u)

R0 – X
for n “ 0, 1, . . . do

Compute µn, ‡2
n, Un and Ln (Eq. 2.14, 2.16, 2.19, 2.20)

xn`1,0 – argmaxxPX Unpxq
Rn – Rn´1z

 
x P Rn´1 : Unpxq † supxPX Lnpxq

(

for k “ 1, . . . , K ´ 1 do

Compute ‡2
n,k

xn`1,k – argmaxxPRn
‡2

n,kpxq
end 
yn,k

(
k†K

– Query
` 

xn,k

(
k†K

˘

end

We define the relevant region Rn being the region which contains the maximizer(s) of f with

high probability. Let pyn be our lower confidence bound on the maximum:

pyn fi sup
xPX

Lnpxq. (3.1)

The value of pyn is represented by the horizontal dotted green line on Figure 3.1. The relevant

region is defined as the set of points whose UCB is larger than the best LCB:

Rn fi
!

x P X : Unpxq • pyn

)
.

This region discards the locations where the maximizer does not belong with high probability.

It is represented in green on Figure 3.1. We refer to de Freitas et al. (2012) for related use of

relevant regions in the special case of deterministic Gaussian Process bandits.

The GP-UCB-PE Algorithm

We present here the Gaussian Process Upper Confidence Bound with Pure Exploration al-

gorithm, GP-UCB-PE, a novel algorithm combining two strategies to determine the queries

txn,kuk†K for batches of size K . The first location is chosen according to the GP-UCB rule,

xn`1,0 P argmax
xPX

Unpxq. (3.2)

As described in the previous chapter, this single rule is enough to tackle the exploration-

exploitation tradeoff. The value of —n , fixed in Eq. 2.21, governs the trade-off between

exploring uncertain regions (high posterior variance ‡2
n) and focusing on the supposed

location of the maximum (high posterior mean µn). This policy is illustrated with the point

x0 on Figure 3.1. The K ´ 1 remaining locations are selected via Pure Exploration restricted

to the relevant region Rn . We aim to maximize InpXn`1,K´1q, the information gain on f by

the observations at locations Xn`1,K´1 “
 
xn`1,k

(
1§k†K

as defined in Eq. 2.34, conditioned

on the observations so far Yn at Xn :

InpXq fi H
`
f |Yn, Xn

˘
´H

´
f |Yn, Xn,

 
fpxi,kq ` ‘i,k

(
xi,kPX

¯
. (3.3)
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Finding the K ´ 1 points that maximize In for any integer K is known to be NP-complete

(Ko et al., 1995). However, due to the submodularity of In (Guestrin et al., 2005), it can be

efficiently approximated by the greedy procedure which selects the points one by one and

never backtracks. The location of the single point that maximizes the information gain is

easily computed by maximizing the posterior variance. For all 1 § k † K our greedy strategy

selects the following points one by one:

xn`1,k P argmax
xPRn

‡2
n,kpxq, (3.4)

where ‡2
n,k is the updated variance after choosing txn`1,k1uk1†k . We use here the fact that the

posterior variance does not depend on the values yn`1,k of the observations, but only on their

position xn`1,k . One such point is illustrated with x1 on Figure 3.1. These K ´ 1 locations

reduce the uncertainty about f , improving the guesses of the UCB procedure by xn`1,0 . The

overall procedure is shown in Algorithm 8.

Numerical Complexity

Even if the numerical cost of GP-UCB-PE is often not significant in practice compared to the

cost of the evaluation of f , the complexity of the exact update of the variances (Eq.2.16) is

in O
`
pnKq2

˘
, as discussed in Chapter 5, and might by prohibitive for large nK . One can

reduce drastically the computation time by means of Lazy Variance Calculation (Desautels

et al., 2012), built on the fact that ‡2
npxq always decreases when n increases for all x P X .

3.1.3 Theoretical Analysis

The main theoretical result of this section is the upper bound on the regret formulated in

Theorem 3.1.

Upper Bound on the Cumulative Regret

The regret bound are expressed in term of “nK , the maximum information gain from Eq. 2.33

obtainable by a sequence of nK queries. Under these assumptions, we obtain the following

result.

Theorem 3.1 (REGRET BOUND FOR GP-UCB-PE). Fix u ° 0 and consider the calibra-

tion of —n defined before (Eq. 2.21), assuming f „ GPp0, kq with bounded variance, @x P
X , kpx, xq § 1, then the full cumulative regret Rn,K incurred by GP-UCB-PE on f is bounded

by O
`?

nK—n“nK

˘
. More precisely with c÷ fi 2

logp1`÷´2q where ÷2 is the variance of the noise,

we have,

P

”
@n • 1, Rn,K § 4

b
c÷pn´ 1qK—n“nK `K—0

ı
• 1´ e´u .

For the batch cumulative regret we obtain similar bounds,

P

„
@n • 1, rRn,K § 2

c
c÷

n

K
—n“nK

⇢
• 1´ e´u .

Discussion and Comparison with the Sequential Setting

When K ! n and “n ! n, the upper bound for rRn,K is better than Rn for sequential GP-UCB

by an order of
?

K . For the simple regret, the upper bound we derive differs only by a
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GP-UCB-PE GP-BUCB

Rn,K

?
nK“nK log n c

?
nK“nK log nK

rRn,K

a
n
K

“nK log n c
a

n
K

“nK log nK

Kernel Linear SquaredExp Matérn

“nK d log nK logd`1 nK pnKqα log nK

c expp 2

e
q exppp 2d

e
qdq e

Table 3.1. – General forms of regret bounds for GP-UCB-PE and GP-BUCB

universal multiplicative constant from the simple regret obtained when the observations

are not delayed. Likewise when the regrets for all the points in the batch matter, the full

cumulative regret Rn,K is equivalent up to universal multiplicative constant from the upper

bound on RnK for GP-UCB.

Compared to Desautels et al. (2012), we remove the need of the initialization phase. Further-

more GP-UCB-PE does not need to multiply the uncertainty parameter —n by expp“init
nKq where

“init
nK is equal to the maximum information gain obtainable by a sequence of nK queries after

the initialization phase. The improvement can be doubly exponential in the dimension d in

the case of squared exponential kernels. The values of “nK for different common kernels are

reported in Table 3.1, where d is the dimension of the space considered and – fi dpd`1q
2‹`dpd`1q § 1,

‹ being the Matérn parameter. We also compare on Table 3.1 the general forms of the bounds

for the regret obtained by GP-UCB-PE and GP-BUCB up to constant terms. The cumulative

regret we obtained with squared exponential kernel is of the form rO
´b

n
K

logd nK
¯

against

rO
´

exppp2d
e
qdq

b
n
K

logd nK
¯

for GP-BUCB.

Proofs of the Upper Bound on the Cumulative Regret

In this section, we analyze theoretically the regret bounds for the GP-UCB-PE algorithm.

We provide here the main steps for the proof of Theorem 3.1. On one side the UCB rule of

the algorithm provides a regret bounded by the information we have on f conditioned on

the values observed so far. On the other side, the Pure Exploration part gathers information

and therefore accelerates the decrease in uncertainty. We refer to Desautels et al. (2012) for

the proofs of the bounds for GP-BUCB. Thanks to the relevant region, we express the regret

incurred by the queries xn,k in terms of the query xn,0 chosen by the UCB rule. This enables

to adapt the proof of the GP-UCB algorithm to this batch algorithm. Let u ° 0 be fixed. In

what follows, with high probability means with probability at least 1´ e´u , and we use the

notations:

sn ” sn,0 fi
b

‡2
n´1pxn,0q,

and sn,k fi
b

‡2
n´1,kpxn,kq for 1 § k † K.

Lemma 3.1 (REGRET BOUND FOR UCB QUERY). With —n calibrated as in Eq. 2.21, with high

probability,

rn,0 § 2
a

—n´1sn .
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Proof. As seen in the previous chapter in Eq. 2.22, this calibration of —n produces the following

inequality with high probability:

@x P X ,@n • 1,
-

-fpxq ´ µnpxq
-

- §
a

—n‡2
npxq.

Under this event, since xn`1,0 P argmaxxPX Unpxq, we directly obtain:

sup
x‹PX

fpx‹q ´ fpxn`1q § Unpxn`1q ´ Lnpxn`1q § 2
a

—nsn`1 .

We first show an intermediate result bounding the posterior variance at the points xn`1,0 by

the one at the points xn,K´1 .

Lemma 3.2 (DECREASE OF POSTERIOR VARIANCES). The posterior variance of the point selected

by the UCB policy satisfies the following inequality with high probability:

@n • 1, sn`1,0 § sn,K´1 .

Proof. By the definitions of xn`1,0 from Eq. 3.2 and pyn from Eq. 3.1, we have,

Unpxn`1,0q • pyn ,

thus xn`1,0 P Rn Ñ Rn´1 . We have as a result of the definition of xn,K´1 from Eq. 3.4 that,

‡n´1,K´1pxn`1,0q § sn,K´1 .

Using the “information never hurts” principle (Krause and Guestrin, 2005), we know that the

entropy of fpxq for all location x decreases while we observe f at points xn,k . For Gaussian

processes, the entropy is also a non-decreasing function of the variance, so that:

@x P X , ‡n,0pxq § ‡n´1,K´1pxq.

We thus prove sn`1,0 § sn,K´1 .

We now use this lemma to prove an inequality between the sum of the posterior deviations.

Lemma 3.3 (SUM OF POSTERIOR VARIANCES COMPARISON). The sum of the posterior deviations

of the points selected by the UCB policy are bounded by the sum of the average of the ones for all

the selected points. With high probability, for all n • 1,

nÿ

i“1

si,0 § K´1
nÿ

i“1

ÿ

k†K

si,k .

Proof. Using Lemma 3.2 and the definitions of xi,k , we have that si`1,0 § si,k for all k • 1.

Summing over k, we get for all i • 1, pK ´ 1qsi`1,0 § ∞K´1
k“1 si,k . Now, summing over i we

obtain the desired result.

Next, we can bound the sum of all posterior variances via the maximum information gain for

a sequence of nK locations.
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Lemma 3.4 (MAXIMUM INFORMATION GAIN). The sum of the posterior variances of the selected

points are bounded by a constant factor times “nK . With c÷ fi 2
logp1`÷´2q ,

nÿ

i“1

ÿ

k†K

s2
t,k § c÷“nK ,

where “nK is the informational quantity defined in Eq. 2.33.

Proof. We know that the information gain for a sequence of n locations xi can be expressed

in terms of the posterior variances ‡2
i pxiq . The deviations si,k being independent of the

observations yi,k , the same equality holds for the updated posterior variances s2
i,k . See

Lemmas 5.3 and 5.4 in Srinivas et al. (2012) for the detailed proof.

We are now ready to give an upper on the full and batch cumulative regret of our algorithm.

Lemma 3.5 (BATCH CUMULATIVE REGRET). The batch cumulative regret incurred by the GP-

UCB-PE can be bounded in terms of the maximum information gain with high probability,

rRn,K § 2

c
c÷

n

K
—n“nK .

Proof. Using the previous lemmas and the fact that —i § —n for all i § n, we have with high

probability,

rRn,K “
ÿ

i§n

min
k†K

ri,k §
ÿ

i§n

ri,0

§
ÿ

i§n

2
a

—n´1si , by Lemma 3.1

§ 2
a

—nK´1
ÿ

i§n

ÿ

k†K

si,k , by Lemma 3.3

§ 2
a

—nK´1

d
nK

ÿ

i§n

ÿ

k†K

s2
i,k , by Cauchy-Schwarz

§ 2
a

—nK´1
a

nKc÷“nK , by Lemma 3.4

§ 2

c
c÷

n

K
—n“nK .

Lemma 3.5 concludes the proof of Theorem 3.1 for the regret rRn,K . The analysis for Rn,K is

similar, using the same steps to bound the regret for the Pure Exploration queries.

Lemma 3.6 (FULL CUMULATIVE REGRET). The regret for the queries xt,k selected by Pure

Exploration in Rn are bounded with high probability by,

rn,k § 2
a

—n´1

`
sn ` ‡n´1pxn,kq

˘
.
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Gaussian process Gaussian mixture Himmelblau

Figure 3.2. – Visualization of the synthetic functions used for assessment

Proof. Under the event of Eq. 2.22, which holds with high probability, the values of f are

included in their confidence intervals µnp¨q ˘
?

—n‡np¨q. Therefore for all n • 1 and k § K ,

rn,k § sup
x‹PX

µn´1px‹q `
a

—n´1‡n´1px‹q ´ µn´1pxn,kq `
a

—n´1‡n´1pxn,kq

§ µn´1pxn,0q `
a

—n´1sn ´ µn´1pxn,kq `
a

—n´1‡n´1pxn,kq
§ pyn´1 ` 2

a
—n´1sn ´ µn´1pxn,kq `

a
—n´1‡n´1pxn,kq

§ µn´1pxn,kq `
a

—n´1‡n´1pxn,kq ` 2
a

—n´1sn ´ µn´1pxn,kq `
a

—n´1‡n´1pxn,kq
§ 2

a
—n´1‡n´1pxn,kq ` 2

a
—n´1sn

§ 2
a

—n´1 psn ` ‡n´1pxn,kqq ,

where used only the definitions of xn,0 and the properties of Ln´1 and pyn´1 .

Now as before, we have that ‡n´1pxn,kq § sn´1,K´1 that is for n ° 1,

rn,k § 2
a

—n´1

`
sn ` sn´1,k

˘
.

Therefore, summing over k,

ÿ

k†K

rn,k § 4
a

—n

ÿ

k†K

sn´1,k .

To conclude the analysis of RT K and prove Theorem 3.1, it suffices to use the last four steps

of Lemma 3.5, with an additional constant term coming from the shifting of the indexes.

3.1.4 Experiments

We compare the empirical performances of our algorithm against two global optimization

algorithms by batches, GP-BUCB (Desautels et al., 2012) and SM-UCB (Azimi et al., 2010).

The GP-BUCB algorithm selects the queries by pure exploration for the first n0 iterations,

where n0 is a predefined number depending on K , ÷ and the dimension d, and then follows

the UCB rule with updated variance. The SM-UCB algorithm attempts to match the expected

queries of the UCB rule approximated by repeated simulations. The batch of queries is then

selected with the K-medoids algorithm to optimize a matching cost.

70 Chapter 3 Advances in Bayesian Optimization



Protocol

The tasks used for assessment come from three real applications and three synthetic problems

described here. The results are shown in Figure 3.3. For all data sets and algorithms, the

size of the batches K was set to 10 and the learners were initialized with a random subset of

20 observations
 
pxi, yiq

(
. The curves on Figure 3.3 show the evolution of the simple regret

Sn in term of iteration n. We report the average value with the confidence interval over 64

experiments. The parameters for the prior distribution, like the bandwidth of the kernel, were

chosen through the maximization of the marginal likelihood.

Description of Data Sets

Gaussian processes. This assessment corresponds to functions randomly generated by a

Gaussian process with Matérn kernel of parameter ‹ “ 3{2 (Eq. 2.13). The search space was

set to X “ r0, 4s2 and the noise variance ÷2 set to 10´2 .

Gaussian Mixture. This synthetic function comes from the addition of three two-dimensional

Gaussian functions, in X “ r0, 1s2 , at p0.2, 0.5q, p0.9, 0.9q, and the maximum at p0.6, 0.1q. We

then perturb these Gaussian functions with smooth variations generated from a Gaussian

Process with Matérn kernel ‹ “ 3{2 and very few noise, ÷2 “ 10´2 . It is shown on Figure 3.2

(middle). The highest peak being thin, the sequential search for the maximum of this function

is quite challenging.

Himmelblau Function. The Himmelblau function is another synthetic function in dimension

two. We compute a slightly tilted version of the Himmelblau’s function, and take the opposite

to match the challenge of finding its maximum. This function presents four peaks but only

one global maximum. It gives a practical way to test the ability of a strategy to manage

exploration/exploitation tradeoffs. It is represented in Figure 3.2 (right).

Mackey-Glass Function. The Mackey-Glass function is the solution of a delay-differential

equation which describes a chaotic system in dimension six, but without noise. It models real

feedback systems and is used in physiological domains such as hematology, cardiology, neu-

rology, and psychiatry. The highly chaotic behavior of this function makes it an exceptionally

difficult optimization problem. It has been used as a benchmark for example by Flake and

Lawrence (2002).

Tsunamis. This data set is a real optimization challenge coming from Stefanakis et al.

(2012) and Stefanakis et al. (2014), presented in more details in Section 5.2.1. The goal is to

optimize the five physical parameters of an island and a sloping beach to find the maximal

amplification of a tsunami. Since this problem is too complex to be addressed analytically, the

amplification is computed by numerical solution of the nonlinear shallow water equations.

Abalone. The challenge of the Abalone data set is to predict the age of a specie of sea snails

from physical measurements. It comes from the study by Nash et al. (1994) and it is provided

by the UCI Machine Learning Repository 1. We use it as a maximization problem in dimension

eight.
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Figure 3.3. – Experiments on several real and synthetics tasks. The curves show the decay of the
mean of the simple regret Sn with respect to the iteration n, over 64 experiments, with
batch size K “ 10. We show with the translucent area the confidence intervals.

Comparison of Algorithms

The Simulation Matching algorithm described in Azimi et al. (2010), with UCB base policy,

has shown similar results to GP-UCB-PE on synthetic functions (Figures 3.3a, 3.3b, 3.3c) and

even better results on chaotic problem without noise (Figure 3.3d), but performs worse on

real noisy data (Figures 3.3e, 3.3f). On the contrary, the initialization phase of GP-BUCB

leads to good regret on difficult real tasks (Figure 3.3e), but shows slower convergence on

synthetic Gaussian or polynomial ones (Figures 3.3a, 3.3b, 3.3c). The number of dimensions

of the Abalone task is already a limitation for GP-BUCB, making the initialization phase time-

consuming. The mean regret for GP-BUCB converges to zero abruptly after the initialization

phase at iteration 55, and is therefore not visible on Figure 3.3f, as for 3.3c where its regret

decays at iteration 34. GP-UCB-PE achieves good performances on both sides. We obtained

better regret on synthetic data as well as on real problems from the domains of physics and

biology. Moreover, the computation time of SM-UCB was two order of magnitude longer than

the others.

3.1.5 Conclusion and Discussion

We presented the GP-UCB-PE algorithm which addresses the problem of finding in few

iterations the maximum of an unknown arbitrary function observed via batches of K noisy

evaluations. We provide theoretical bounds for the cumulative regret obtained by GP-UCB-PE

in the Gaussian process setting. Through parallelization, these bounds improve the ones for

the state-of-the-art of sequential Bayesian optimization by a ratio of
?

K, and are strictly better

than the ones for GP-BUCB, a concurrent algorithm for parallel Bayesian optimization. We

have compared experimentally our method to GP-BUCB and SM-UCB, another approach for

parallel Bayesian optimization lacking of theoretical guarantees. These empirical results have

confirmed the efficiency of GP-UCB-PE on several applications. The strategy of combining

in the same batch some queries selected via Pure Exploration is an intuitive idea that can

1http://archive.ics.uci.edu/ml/
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be applied in many other methods. We expect for example to obtain similar results with the

Maximum Expected Improvement policy (EI algorithm). Any proof of regret bound that relies

on the fact that the uncertainty decreases with the exploration should be easily adapted to a

paralleled extension with Pure Exploration. On the other hand, we observed in practice that

the strategies which focus more on exploitation often lead to faster decrease of the regret,

for example the strategy that uses K times the GP-UCB criterion with updated variance. We

formulate the conjecture that the regret for this strategy is unbounded for general Gaussian

processes, justifying the need for the initialization phase of GP-BUCB. However, it would

be relevant to specify formally the assumptions needed by this greedy strategy to guarantee

competitive performance.

3.2 Gaussian Processes in Metric Spaces

The previous algorithm suffers from the same drawbacks of the GP-UCB algorithm. The upper

confidence bound, at the heart of the theoretical properties, is computed via a union bound

over X . As a result its performance decreases when |X | increases, making this approach

unsuitable for continuous search spaces. In Srinivas et al. (2012) the authors show that

when the unknown function is sufficiently smooth and X compact and convex it is possible

to run the algorithm on a finite subset of X so that the discretization error is controlled.

Unfortunately, it is necessary to know the distribution of supremum of the gradient of f to

compute such a discretization. In usual settings, finding this number is strictly harder than

finding the supremum of f which limits the practicability of such technique. In this section,

we introduce a novel approach to compute upper confidence bound in an adaptive manner

for arbitrary search spaces without additional smoothness assumptions.

3.2.1 Hierarchical Discretizations of the Search Space

Our strategy is to build a partitioning tree of X in the spirit of Section 2.2.3. In this

respect, nodes at small depths in the tree form coarse discretizations, and nodes at bigger

depths form finer discretizations. The obstacle here is that the Lipschitz-norm of f is a

complicated random variable. When two points x1, x2 P X are fixed it is easy to obtain tight

high probabilistic bounds on fpx1q ´ fpx2q , as seen in Section 2.1.4. However bounds on

supx1,x2PX

`
fpx1q ´ fpx2q

˘
are not trivial. For continuous X it is necessary to consider the

spatial correlations of the process to obtain meaningful bounds.

The Canonical Pseudo-Metric of Gaussian Processes

For a Gaussian process f „ GPp0, kq on X and two points x1, x2 P X the distribution of the

difference in value is distributed as a Gaussian:

fpx1q ´ fpx2q „ N
`
0, ¸2px1, x2q

˘
,

where ¸2px1, x2q fi kpx1, x1q ` kpx2, x2q ´ 2kpx1, x2q. (3.5)
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Since the kernel k is non-negative definite, the function ¸ is positive and satisfies the triangle

inequality, we call it the canonical pseudo-metric of the process. For all u ° 0 we have the

following high probabilistic version of Eq. 2.4:

P

”
fpx1q ´ fpx2q °

?
2u¸px1, x2q

ı
† e´u . (3.6)

Therefore for a finite X a union bound gives, with ∆pX q its ¸-diameter:

P

„
sup

x1,x2PX
fpx1q ´ fpx2q °

a
2u` 4 log|X |∆pX q

⇢
† e´u .

In the sequel, we are looking for upper bounds that do not involve |X | but a finer notion of

geometrical size of X with respect to ¸. We will compute successive Á-nets and exhibit links

with the covering dimension.

Generic Chaining

Let T “
`
Th

˘
h•0

with parent map p be a discretization tree of X in the sense of Definition 2.6.

We recall the successor relation x ° s when x P X is a descendant of s P X . For all h P N, we

introduce the notation ph denoting the parent at depth h:

@s P Th,@x • s, phpxq fi s.

The generic chaining (Talagrand, 2014) permits to obtain the following inequality, bounding

the supremum of the difference of the values between a node and any of its descendant in T :

Theorem 3.2 (GENERIC CHAINING). Fix any u ° 0 and a ° 1 , and pnhqhPN an increasing

sequence of integers. Set ui fi u` ni ` log
`
ia’paq

˘
where ’ is the Riemann zeta function. Then

for any tree such that |Th| § enh we have that,

@h • 0,@s P Th, sup
x°s

fpxq ´ fpsq § Êpsq,

holds with probability at least 1´ e´u , where for s P Th ,

Êpsq ” Êps, X , T , ¸q fi sup
x°s

ÿ

i°h

?
2ui¸

`
pipxq, pi´1pxq

˘
.

Proof. For any s P Th and any x ° s, we have phpxq “ s and limiÑ8 pipxq “ x, therefore the

following sum collapses:

fpxq ´ fpsq “
ÿ

i°j

´
f
`
pipxq

˘
´ fppi´1pxq

˘¯
. (3.7)

By the properties of ¸, we have:

P

”
f
`
pipxq

˘
´ f

`
pi´1pxq

˘
•
?

2ui¸
`
pipxq, pi´1pxq

˘ı
† e´ui .
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Algorithm 9: DiscretizationTree(X , ¸)

h – 0

T –
 
x0

(
for any x0 P argminx0PX supxPX ¸px0, xq

while T ‰ X do

h – h` 1

‘h – 2´h´1∆pX q
Th – Cover

´
‘h, X zîtPT Bpt, ‘hq

¯

@t P Th, pptq – argminsPT ¸pt, sq
T – T Y Th

end

return T , p

Thanks to the fact that the process f is assumed to be separable, we can consider that it exists

h0 such that T§h0
“ X . Now using the tree structure, the number of pairs

`
pip¨q, pi´1p¨q

˘
is

upper bounded by |Ti|:
-

-

-

!`
pipxq, pi´1pxq

˘
: x P X

)
-

-

-
§ eni .

By a union bound on the pairs we obtain:

P

”
Dx P X , f

`
pipxq

˘
´ f

`
pi´1pxq

˘
•
?

2ui¸
`
pipxq, pi´1pxq

˘ı
† enie´ui .

With a second union bound over i ° 0, if we denote by Ec the following event:

Ec fi
!
Di ° 0, Dx P X , f

`
pipxq

˘
´ f

`
pi´1pxq

˘
°
?

2ui¸
`
pipxq, pi´1pxq

˘)
,

we have P
“
Ec

‰
† ∞

i°0 eni´ui . By setting ui “ u` ni ` log
`
ia’paq

˘
for a ° 1 this simplifies

to P
“
Ec

‰
† e´u , that is,

P

«
Dx P X ,

ÿ

i°h

´
f

`
pipxq

˘
´ f

`
pi´1pxq

˘¯
°

ÿ

i°h

?
2ui¸

`
pipxq, pi´1pxq

˘
ff

† e´u .

Theorem 3.2 can be read in terms of discretization error of Th . First, let us write,

Êh fi max
sPTh

Êpsq.

For h P N, the map ph associates for any x P X a point in Th and we have with probability at

least 1´ e´u :

fpxq ´ f
`
phpxq

˘
§ Êh .

Geometric Interpretation and Classical Chaining

The previous inequality suggests that to obtain a good upper bound on the discretization

error, one should take T such that ¸
`
pipxq, pi´1pxq

˘
is as small as possible for every i ° 0 and

3.2 Gaussian Processes in Metric Spaces 75



x P X . As before we denote by ∆psq the ¸-radius of Cellpsq. We extend this notation to the

radius of the cell at depth i of any x P X :

∆ipxq fi ∆
`
pipxq

˘
.

We have directly that the following property is satisfied for every i • 1,

¸
`
pipxq, pi´1pxq

˘
§ ∆i´1pxq.

Therefore Theorem 3.2 can be rewritten in terms of the radius:

@h • 0,@s P Th, sup
x°s

fpxq ´ fpsq § sup
x°s

ÿ

i°h

?
2ui∆i´1pxq, (3.8)

holds with probability at least 1 ´ e´u . In order to make this bound as small as possible,

one should spread the points of Th in X so that ∆ipxq are uniformly small, while satisfying

the requirement |Ti| § eni . In this view, we will use Á-nets to cover X . Let Ái decreases

geometrically:

Ái fi ∆pX q2´i . (3.9)

If one takes ni “ HpÁiq, the metric entropy of X from Eq. 2.8, there exists a tree such that

with probability at least 1´ e´u , for all h • 0 and s P Th :

sup
x°s

fpxq ´ fpsq §
ÿ

i°h

?
2uiÁi´1 , (3.10)

where ui “ u`HpÁiq ` logpia’paqq. The tree achieving this bound can be constructed using

Algorithm 9. It consists in computing a minimal Ái-net at each depth and assigning parents to

the nearest points in the upper Ái´1-net, leading to ∆ipxq § Ái for all i • 0 and x P X . This

technique is often called classical chaining (Dudley, 1967), and can be re-written in terms of

the metric entropy integral:

sup
x°s

fpxq ´ fpxq § c

ª ∆psq

Á“0

a
HpÁqdÁ, (3.11)

up to a constant c P R thanks to the geometric decay of Ái . We remark that the tree obtained

by this method is almost a p¸, ”, 1
2
q-partitioning tree of X in the sense of Definition 2.7 with

”phq “ Áh . However we will see later that the upper bound from Eq. 3.8 is tight but not the

one from Eq. 3.10, as for instance with a Gaussian process indexed by an ellipsoid. In general,

computing a minimal Á-net is NP-complete. The greedy heuristic from Algorithm 10 exhibits

an approximation ratio of maxxPX

a
log log|Bpx, ‘q| for finite X , as discussed in Section 3.2.3.

We will present in Section 3.2.4 an algorithm to compute a tree in quadratic time in |X |

leading to both a lower and upper bound on supx°s fpxq ´ fpsq.

Bounding with the Covering Dimension

The upper bound from Eq. 3.10 is particularly convenient when we know a bound on

dimpX , ¸q the covering dimension (Definition 2.1), as stated in the following theorem.

76 Chapter 3 Advances in Bayesian Optimization



Theorem 3.3 (CLASSICAL CHAINING WITH COVERING DIMENSION). For all d ° dimpX , ¸q and

d “ dimpX , ¸q if the dimension is attained, with probability at least 1´ e´u :

@h • 0,@s P Th, sup
x°s

fpxq ´ fpsq “ O
´?

u` dh2´h
¯

.

Proof. For all d ° dimpX , ¸q and d “ dimpX , ¸q if the dimension is attained, it exists a constant

c P R such that we can bound from above the metric entropy by:

HpÁiq § c´ d log Ái .

We obtain ui “ u` 2c´ 2d log Ái ` log
`
ia’paq

˘
. With Ái “ ∆pX q2´i , this leads to:

ui “ O
`
u` di

˘
.

With Eq. 3.10, knowing that
∞8

i“h

?
i2´i “ O

`?
h2´h

˘
, we get:

Êh “ O
´?

u` dh2´h
¯

.

Theorem 3.3 shows the difference between computing a discretization for a Lipschitz function

and for a Gaussian process. For a function with bounded Lipschitz norm with respect to ¸,

there exists a discretization with eHp2´hq points having error O
`
2´h

˘
. Here we pay an extra

price of
?

u` dh because the process is stochastic. Note that for Gaussian processes, we have

that the covering dimension attains dimpX , ¸q “ –d as soon as X Ä r0, Rsd and there exists

a constant c ° 0 such that ¸px1, x2q § c Îx1 ´ x2Î
1{–
2 for all x1, x2 P X . This condition is

fulfilled with – “ 1 for all the kernels presented in Section 2.1.4, including the Matérn kernel

with parameter ‹ ° 1. For the Matérn kernel with parameter ‹ “ 1{2 (Ornstein-Uhlenbeck

process), we have ¸px1, x2q § Îx1 ´ x2Î
1{2
2 , leading to dimpX , ¸q “ 2d.

3.2.2 Regret Bounds for Bandit Algorithms

Now we have a tool to discretize X at a certain accuracy, we show here how to adapt the

UCB strategy on the metric space pX , ¸q. Our first idea is to compute the upper confidence

bound directly using the chaining method. This is a joint work with Cédric Malherbe and has

been published in Contal et al. (2015). Since the posterior process given n observations is a

Gaussian process GPpµn, knq, with mean µn and kernel kn as defined in Eq. 2.14 and Eq. 2.15,

we can perform the above steps for the canonical pseudo-distance ¸n of this posterior process

to get the UCB at each iteration. The second method we present lightens the computational

burden by greedily growing the discretization tree along the iterations.

UCB Computed with Classical Chaining

In this section, we adapt the chaining technique to get upper bounds on:

sup
x‹PX

fpx‹q ´ fpxq,
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xx‹

Figure 3.4. – Illustration of the path fiipx, x‹q. The red edges connect the branch tpipx‹qui§4 and the
thick arrows show the points tfiipx, x‹qui§4 . Note that the positions of the nodes are
arbitrary and do not form an Á-net with respect to the Euclidean distance.

for every x P X , given n observations. Let Áh be such as Eq. 3.9 and T be a discretization tree

of X with ∆hpxq § Áh for all h • 0 and x P X . We first define for all x, x‹ P X a sequence

fihpx, x‹q ” fih,n,T px, x‹q of mappings from x to Th , converging to x‹ :

fihpx, x‹q fi

#
phpx‹q if Áh † ¸npx, x‹q,
x otherwise.

The sequence fihpx, x‹q is illustrated on Figure 3.4. We directly obtain that:

fi0px, x‹q “ x,

fiipx, x‹q ÑiÑ8 x‹ .

Therefore, we can replace pip¨q by fiipx, ¨q in Equation 3.7, and the rest of the proof of

Theorem 3.2 still holds, conditionally on the observations, for the centered posterior process

fp¨q ´ µnp¨q. Since fihpx, x‹q “ x while Áh • ¸npx, x‹q, we can rewrite Equation 3.10 with a

truncated sum:

sup
x‹PX

!
fpx‹q ´ fpxq ´

`
µnpx‹q ´ µnpxq

˘)
§ sup

x‹PX

ÿ

h:Áh†¸npx,x‹q

?
2uhÁh´1 .

We now decompose the indexes of the sum in two sets and take the supremum on both:

sup
x‹PX

ÿ

h:Áh†¸npx,x‹q

?
2uhÁh´1 § sup

x‹PX

ÿ

h:Áh†‡npx‹q

?
2uhÁh´1 ` sup

x‹PX

ÿ

h:‡npx‹q§Áh†¸npx,x‹q

?
2uhÁh´1 .

This suggests the following query:

xn`1 P argmax
xPX

#
µnpxq `

ÿ

h:Áh†‡npxq

?
2uhÁh´1

+
. (3.12)
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Figure 3.5. – Illustration of the UCB used in Eq. 3.12. The plain black line is the target function f .
The red crosses are the noisy observations. The dashed green line is the UCB used by the
Chaining-UCB algorithm. The rectangular form of the UCB is explained by the discrete
sum. The next query selected by the algorithm is the maximum of the UCB. The dotted
blue line is the target used by the GP-UCB algorithm.

The principle of this rule is compared intuitively to the classical UCB rule with a union bound

on Figure 3.5, where the union bound in the UCB rule is calibrated for |X | “ 104 points. By

using the discrete sum instead of the integral from Eq. 3.11, we limit the number of Á-nets

which need to be computed to only the Áh satisfying Áh ° minxPX ‡npxq. Indeed after this

level the summands are shared for all x and can be removed for the maximization in Eq. 3.12.

Thanks to the geometrical decay of Áh , the number of levels we need to compute remains low

in practice. This choice of query leads to, with probability at least 1´ e´u :

sup
x‹PX

fpx‹q ´ fpxn`1q §
ÿ

h:Áh†‡npxn`1q

?
2uhÁh´1 ` sup

x‹PX

ÿ

h:‡npx‹q§Áh

Áh†¸npxn`1,x‹q

?
2uhÁh´1 .

Using that ¸npx, x‹q § ‡npxq ` ‡npx‹q and the geometric decay of Áh, we know by elementary

calculations that the right sum is smaller than twice the first sum (see details in Contal et al.

(2015)). We get:

sup
x‹PX

fpx‹q ´ fpxn`1q § 3
ÿ

h:Áh†‡npxn`1q

?
2uhÁh´1 .

Finally, we can bound from above the metric entropy of pX , ¸nq appearing in uh by the metric

entropy of pX , ¸q, since ¸n § ¸. Therefore, when the covering dimension of pX , ¸q is finite we

can translate results from Theorem 3.3 to obtain regret bound for this method. Precisely, for

all d ° dimpX , ¸q and d “ dimpX , ¸q when the dimension is attained, denoting sn fi ‡n´1pxnq,

sup
x‹PX

fpx‹q ´ fpxnq À
?

d
`
sn ´ sn log sn

˘
,

where we used that for all s P p0, 1q, ∞h:2´h†s 2´h
?

log h † s´ s log s and
∞

h:2´h†s 2´h † 2s,

and the À notation hides universal constants. Concrete regret bounds are obtainable by

bounding from above
∞n

i“1psn ´ sn log snq for particular kernel. As an example for squared
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exponential kernel we have seen that
∞n

i“1 s2
n § Oplogd`1 nq, thus by maximizing the previous

sum under this constraint with Lagrange multipliers,

Rn § O
´b

n logd`2 n
¯

.

UCB on Adaptive Discretizations

The major drawback of the above approach is that it requires to compute nested Á-nets at each

iteration of the optimization procedure. Even if we propose efficient way to compute almost

optimal Á-nets, the computational cost may be prohibitive in some cases. In this section, we

introduce another way to build a sound UCB rule with chaining. Here we consider a single

tree T adapted for ¸ only (instead of ¸n), which will be built greedily. At each iteration n, we

select a depth hpnq P N and perform the UCB algorithm on Thpnq , that is for a ° 1, u ° 0 and

|Th| § enh for all h • 0:

xn`1 P argmax
xPThpnq

Unpxq,

where Unpxq fi µnpxq `
a

2un‡2
npxq,

and un fi u` nhpnq ` log
`
na’paq

˘
.

The error of the obtained algorithm can be decomposed in two terms, the discretization error

and the optimization error. This is rendered explicit in the following theorem.

Theorem 3.4 (REGRET BOUND ON METRIC SPACES). Fix any u ° 0 and a ° 1 . For any

discretization tree such that |Th| § enh and any sequence hpnq P N, when kp¨, ¨q § 1, the UCB

algorithm described above has a regret upper bounded with probability at least 1´ 2e´u by:

Rn § 2
a

2c÷unn“n `
nÿ

i“1

Êhpiq ,

where c÷ fi 2
logp1`÷´2q , ÷2 is the variance of the noise, and “n is the maximum information gain

of f attainable by n queries (Eq. 2.33).

Proof. Like previously we have that the values of f at Thpnq will lie in the upper and lower

confidence bounds with high probability:

P

”
Dn • 1, Dx P Thpnq,

-

-fpxq ´ µnpxq
-

- °
a

2un‡2
npxq

ı
† e´u .

Using Theorem 3.2, we have that,

@h • 0, sup
x‹PX

fpx‹q § Êh ` sup
x‹PX

f
`
phpx‹q

˘
,

holds with probability at least 1´ e´u. Since phpnqpx‹q P Thpnq for all x‹ P X , we can combine

both inequalities and obtain for all x P Thpnq :

@n • 1, sup
x‹PX

fpx‹q ´ fpxq § Êhpnq ` sup
x‹PThpnq

´
µnpx‹q `

?
2un‡npx‹q

¯
´ µnpxq `

?
2un‡npxq,
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Algorithm 10: GreedyCover (Á, X )

T –H
while X ‰ H do

x – argmaxxPX

-

-

 
x1 P Bpx, Áq

(
-

-

T – T Y txu
X – X zBpx, Áq

end

return T

holds with probability at least 1´ 2e´u . Thanks to our choice for xn`1 , we have:

P

„
@n • 1, sup

x‹PT
fpx‹q ´ fpxn`1q § Êhpnq ` 2

?
2un‡npxn`1q

⇢
• 1´ 2e´u .

Summing over n and taking the same steps as in Theorem 3.1, we obtain, with probability at

least 1´ 2e´u that,

Rn § 2
a

2c÷unn“n `
nÿ

i“1

Êhpiq .

Choice of the Discretization Depth

Since the first part of the previous upper bound on the regret is of order at least
?

unn “
Op?n log nq, we choose to select hpiq such that

∞n
i“1 Êhpiq § Op?n log nq. The general rule

to attain this order is to select, with c a constant:

hpiq “ min

#
i P N : Êi § c

c
log i

i

+
,

since
∞n

i“1

b
log i

i
§ 2

?
n log n. That is, when the covering dimension is finite, it suffices to

take:

hpiq “
Q

1
2

log2 i
U
,

to obtain, in the light of Theorem 3.3 with the tree computed by Algorithm 9,

Êhpiq § O

˜c
u` d log i

i

¸
,

leading to
∞n

i“1 Êhpiq § O
`a
pu` dqn log n

˘
. Finally, plugging this last inequality in Theo-

rem 3.4, we have with probability at least 1´ 2e´u :

Rn § O

ˆb
c÷pu` d log nqn“n loga`1 n

˙
.

As seen before in Section 2.2.4, the informational quantity “n may be further bounded for

usual kernels.
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3.2.3 Efficient Algorithms

The optimization algorithms described above require to build a discretization tree with

Algorithm 9, in order to compute the metric entropy HpÁiq for geometrically decreasing Ái .

In this section, we present an efficient heuristic for the optimal covering problem and prove

approximation ratio, that is the number of points in the net obtained by the heuristic divided

by the optimal one. We see also that it is not necessary to compute the entire discretization

tree: it suffices to stop at the required level hpnq. Finally, we provide tools to compute Á-nets

on a compact X with theoretical guarantees.

Greedy Cover

The exact computation of an optimal Á-net is NP-hard. We show here how to build in practice

a near-optimal Á-net using a greedy algorithm on a graph. First, remark that for any fixed Á

we can define a graph G where the nodes are the elements of X and there is an edge between

x1 and x2 if and only if ¸px1, x2q § Á. The size of this construction is Op|X |2q, but the sparse

structure of the underlying graph can be exploited to get an efficient representation. The

problem of finding an optimal Á-net reduces to the problem of finding a minimal dominating

set on G . We can therefore use the greedy Algorithm 10 which enjoys an approximation ratio

of log dmaxpGq, where dmaxpGq is the maximum degree of G, which is equal to maxxPX |Bpx, Áq|.
An interested reader may see for example Johnson (1973) for a proof of NP-hardness and

approximation results. This construction leads to an additional (almost constant) term of

maxxPX

a
log log|Bpx, Áq| in Theorem 3.3. Finally, note that this approximation is optimal

unless P “ NP as shown in Raz and Safra (1997).

UCB on Greedily Grown Tree

Combining the previous remarks we come up with Algorithm 11, a modification of the GP-

UCB algorithm for arbitrary metric spaces using a greedily grown discretization tree. The

tree is extended at logarithmic frequency, which reduces drastically the number of calls of

GreedyCover, and form therefore a tractable algorithm. In the light of the above inequalities,

we have the following result:

Theorem 3.5 (REGRET FOR UCB ON A GREEDILY GROWN TREE). Fix any u ° 0 and a ° 1. Let

d ° dimpX , ¸q or d “ dimpX , ¸q if the dimension is attained. When kp¨, ¨q § 1, the cumulative

regret of Algorithm 11 in upper bounded with probability at least 1´ 2e´u by:

Rn À
b

c÷pu` d log nqn“n loga`1 n,

where c÷ fi 2
logp1`÷´2q , ÷2 is the variance of the noise, and the À notation removes universal

constants and log log factors.

Computations on Non-Finite Compact Spaces

Even if all the theoretical analysis of this work assumes that X is finite for measurability

reasons, it is not satisfactory from a numerical point of view. We show here that if the search

space X is a compact, then there is a way to reduce computations to the finite case. First

note that is pX , ¸q is compact, then there exists a uniform distribution U on X with respect to

¸. We also point out that when the kernel is isotropic, then the uniform distribution for the
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Algorithm 11: GP-UCB on Greedily Grown Tree pk, ÷, u, aq
h0 – ´1

T –H
for n “ 0, 1, . . . do

hn – r1{2 log2 ns
if hn ‰ hn´1 then

Áh – 2´hn´1∆pX q
Th – GreedyCover

`
Áh, X zîxPT Bpx, Áhq

˘

@t P Th, pptq – argminsPT ¸pt, sq
T – T Y Th

end

Compute µn and ‡2
n (Eq. 2.14, 2.16)

un – u` log|T |` log
`
na’paq

˘

for x P T do

Unpxq – µnpxq `
a

2un‡2
npxq

end

xn`1 – argmaxxPTh
Unpxq

yn`1 – Query
`
xn`1

˘

end

return T

norm of X corresponds to the uniform distribution for pX , ¸q. The following lemma describes

the probability to get an Á-net via uniform sampling in X .

Lemma 3.7 (COVERING WITH UNIFORM SAMPLING). Let Á ° 0, U be the uniform distribution

on pX , ¸q, m fi NpÁq the covering numbers of X (Eq. 2.7), and Xn “ px1, . . . , xnq be n points

distributed independently according to U with n • mplog m` uq. Then with probability at least

1´ e´u , Xn is a 2Á-net of X .

Proof. Let T be an Á-net on X of cardinality |T | “ m. Then the probability P c that it exists

t P T such that mini§n ¸pt, xiq ° Á is less than:

P c §
ÿ

tPT

P

”
@i § n, xi R Bpt, Áq

ı
.

Since U attributes an equal probability mass for every ball of radius Á, P c § m
´

m´1
m

¯n

. With

log m
m´1

• 1
m

, we have for n • mplog m` uq that,

P c § e´u .

By the triangle inequality, with probability at least 1´ e´u , Xn is 2Á-net.

Therefore when we want to compute an Á-net on a compact X , an efficient way is to first

sample Xn “ px1, . . . , xnq uniformly with n • mplog m` uq and m “ Np1
4
Áq, which gives a

1
2
Á-net with probability at least 1´ e´u. Then running GreedyCover

`
Á{2, Xn

˘
outputs an Á-net

of X with probability at least 1´ e´u .
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3.2.4 Tightness Results on Discretization Trees

We present in this section a strong result on a tree T obtainable by a tractable algorithm such

that both upper and lower bounds on the discretization error are available. We show that a

converse of Theorem 3.2 is true with high probability, on arbitrary kernel k .

A High Probabilistic Lower Bound on the Supremum

We first recall that for all tree T such that |Th| § enh and u ° 0, we have:

@h • 0,@s P Th, sup
x°s

fpxq ´ fpsq § rO
´

sup
x°s

ÿ

i°h

∆ipxq
?

u` ni

¯
,

with probability at least 1´ e´u , where the rO notation hides the logarithmic factors. For the

sequel, we will fix for ni a geometric sequence ni “ 2i for all i • 1. Therefore we have the

following upper bound.

Corollary 3.1 (GENERIC CHAINING WITH DOUBLY EXPONENTIAL GROWTH). Fix any u ° 0 and

let T such that |Th| § e2h
. Then,

sup
x°s

fpxq ´ fpsq § rO
´

sup
x°s

ÿ

i°h

2
i
2 ∆ipxq

¯
,

holds for all h • 0 and s P Th with probability at least 1´ e´u .

To show the tightness of this result, we prove in Section 3.2.5 that for a tree constructed with

Algorithm 12, the following probabilistic bound also holds.

Theorem 3.6 (GENERIC CHAINING LOWER BOUND). Fix any u ° 0 and let T be constructed as

in Algorithm 12. Then,

sup
x°s

fpxq ´ fpsq • rO
´

sup
x°s

ÿ

i°h

2
i
2 ∆ipxq

¯
,

holds for all h • 0 and s P Th with probability at least 1´ e´u .

The benefit of this lower bound is huge for theoretical and practical reasons. It first says that

we cannot discretize X in a finer way that Algorithm 12 up to a constant multiplicative factor.

This also means that even if the search space X is “smaller” than what is suggested using the

metric entropy and Theorem 3.3, then Algorithm 12 finds the correct upper bound. Up to our

knowledge, this result is the first construction of a tree leading to both an upper and a lower

bounds at every depth with high probability. The proof of this theorem shares some similarity

with the construction to obtain lower bound in expectation, see for example Talagrand (2014)

or Ding et al. (2011) for a tractable algorithm.

Pruning the Discretization Tree to Obtain a Balanced Tree

Algorithm 12 proceeds as follows. It first computes pThqh•0 a succession of Áh-nets as in

the DiscretizationTree algorithm with the GreedyCover procedure. with Áh “ ∆pX q2´h . Like

before, the parent of a node is set to the closest node in the upper level,

@t P Th, pptq “ argmin
sPTh´1

¸pt, sq,
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that is the cells of the discretization are the Voronoï cells for ¸. Therefore we have ¸
`
t, pptq

˘
§

Áh´1 for all t P Th . Moreover, by looking at how the Áh-net is computed in the GreedyCover

procedure, we also have ¸pti, tjq • Áh for all ti, tj P Th . These two properties are crucial for

the proof of the lower bound.

Then, the algorithm updates the tree to make it well balanced, that is such that no node

t P Th has more that enh`1´nh “ e2h
children. We note at this time that this condition will

be already satisfied in every reasonable space, so that the complex procedure that follows is

only required in extreme cases. To force this condition, Algorithm 12 starts from the leaves

and “prunes” the branches if they outnumber e2h
. We remark that this backward step is not

present in the literature on generic chaining, and is needed for our objective of a lower bound

with high probability. By doing so, this creates a node called a pruned node which will take as

children the pruned branches. For this construction to be tight, the pruning step has to be

handled with care. Algorithm 12 attaches to every pruned node a value, computed using the

values of its children, making explicit the backward strategy. When pruning branches, the

algorithm keeps the e2h
nodes with maximum values and moves the others. The intuition

behind this strategy is to avoid pruning branches that already contain pruned nodes.

Finally, note that this pruning step may create unbalanced pruned nodes when the number

of nodes at depth h is way larger that e2h
. When this is the case, Algorithm 12 restarts the

pruning with the updated tree to recompute the values. Thanks to the doubly exponential

growth in the balance condition, this cannot occur more that log log|X | times and the total

complexity is O
`
|X |2

˘
up to log log factors.

Computing the Pruning Values and Anti-Concentration Inequalities

We end this section by describing the values used for the pruning step. We need a function

Ï satisfying the following anti-concentration inequality. For all m P N , let s P X and

t1, . . . , tm P X such that @i § m, pptiq “ s and ¸ps, tiq § ∆, and finally ¸pti, tjq • –. Then Ï

is such that:

P

”
max
i§m

fptiq ´ fpsq • Ïp–, ∆, m, uq
ı

° 1´ e´u . (3.13)

A function Ï satisfying this hypothesis is described in Lemma 3.10. Then the value Vhpsq of a

node s P Th is computed as:

Vhpsq fi sup
x°s

ÿ

i°h

Ï
´

1
2
∆hpxq, ∆hpxq, m, u

¯
1
 
pipxq is a pruned node

(
.

The two steps in Section 3.2.5 proving Theorem 3.6 are: first, show that supx°s fpxq ´
fpsq • cuVhpsq for cu ° 0 with probability at least 1 ´ e´u , second, show that Vhpsq •
c1

u supx°s

∞
i°h ∆ipxq2

i
2 for c1

u ° 0.

Gaussian Processes Indexed by Ellipsoids

As mentioned in Section 3.2.1, the classical chaining bound from Theorem 3.3 is not tight for

every Gaussian process. An important example is when the search space is a (possibly infinite

dimensional) ellipsoid:

X “
#

x P ¸2 :
ÿ

i•1

x2
i

a2
i

§ 1

+
.

3.2 Gaussian Processes in Metric Spaces 85



Algorithm 12: BalancedTree(X , ¸, Ï)

T – DiscretizationTreepX , ¸q with GreedyCover

done – K
while  done do // Restart if needed

done – J
h – heightpT q
@t P Th, Vhptq – 0 // Set value to 0 at the leafs

while h ° 0 do // Backward pruning

for s P Th´1 do

Ts –
 
t : pptq “ s

(
// The children of s

@t P Ts, Vhptq – supt1:ppt1q“t Vh`1pt1q // Default value

m – enh´nh´1

if |Ts| ° m then // If the tree is not balanced

Let t1, . . . , tn P Ts ordered by decreasing Vhptq
Create a pruned node t and set pptq – s

@i • m,@t1 s.t. ppt1q “ tj , ppt1q – t // Move the remaining to t

if
-

-

 
t1 : ppt1q “ t

(
-

- § enh`1´nh then

∆h – supx°t ¸px, tq // Update the value of the pruned node

uh – u` nh ` h log 2

Vhptq – supt1:ppt1q“t Vh`1pt1q ` Ï
´

1
2
∆h, ∆h, m, uh

¯

else

done – K // Cannot occur more that log log|X | times

end

end

end

end

end

return T

where a P ¸2 , and the Gaussian process is defined as:

@x P X , fpxq fi
ÿ

i•1

xigi ,

with gi independent Gaussian random variables N p0, 1q . Here the pseudo-metric ¸p¨, ¨q
coincides with the usual ¸2 metric. The study of the supremum of such processes is connected

to learning error bounds for kernel machines like Support Vector Machines, as a quantity

bounding the learning capacity of a class of functions in a RKHS, see for example Mendelson

(2002). It can be shown by geometrical arguments that,

@Á ° 0, s P X , E

«
sup

xPBps,Áq
fpxq ´ fpsq

ff
§ O

˜dÿ

i•1

minpa2
i , Á2q

¸
,

and that this supremum exhibits ‰2-tails around its expectation, see for example Boucheron

et al. (2013). This concentration is not grasped by Eq. 3.10. Indeed the previous equality is of
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order
b∞

i•1 2ia2
2i while the upper bound of Eq. 3.10 is of order

∞
i•1 2ia2i , see for instance

Talagrand (2014). It is therefore required to leverage the construction of Algorithm 12 to

get a tight estimate. The present work forms a step toward efficient and practical online

model selection in such classes in the spirit of Rakhlin and Sridharan (2014) and Gaillard

and Gerchinovitz (2015).

3.2.5 Proof of the Generic Chaining Lower Bound

In this section, we provide the proof Theorem 3.6 giving a high probabilistic lower bound

obtained via Algorithm 12.

Probabilistic Tools for Gaussian Processes

We first prove a probabilistic bound on independent Gaussian variables and then show that a

similar bound holds for f via a comparison inequality.

Lemma 3.8 (ANTI-CONCENTRATION FOR INDEPENDENT GAUSSIAN VARIABLES). Let pNiqi§m

be m independent standard normal variables. For m • 2.6u we have with probability at least

1´ e´u that:

max
i§m

Ni •
c

log
m

2.6u
.

Proof. With Ni
iid„ N p0, 1q for all i § m we obtain for all ⁄ P R:

P

”
max
i§m

Ni • ⁄
ı
“ 1´ Φp⁄qm ,

where Φ is the standard normal cumulative distribution function, which satisfies Φp⁄q §
1 ´ c1e´⁄2

with c1 ° 0.38 , see for example Côté et al. (2012). For ⁄ §
b

log c1

1´e´ u
m

and

u § m log 1
1´c1

we obtain Φp⁄qm § e´u . Using that 1 ´ e´x § x for x • 0, we obtain with

u § c1m that:

P

«
max
i§m

Ni •
c

log
c1m

u

ff
• 1´ e´u .

The following lemma will be useful to derive anti-concentration inequalities for non indepen-

dent Gaussian variables, provided that their L2 distance are large enough. Similar results are

well known if one replaces the probabilities by expectations, see for example Ledoux and

Talagrand (1991).

Lemma 3.9 (COMPARISON INEQUALITY FOR GAUSSIAN VARIABLES). Let pXiqi§m and pYiqi§m

be Gaussian random variables such that for all i, j § m, E
“
pXi ´Xjq2

‰
• E

“
pYi ´ Yjq2

‰
and

E
“
X2

i

‰
• E

“
Y 2

i

‰
. Then we have for all ⁄ P R:

P

”
max
i§m

Xi † ⁄´ 2‡
ı

§ P

”
max
i§m

Yi † ⁄
ı
,

where ‡ fi maxi§m E
“
X2

i

‰1{2
.
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Proof. Let g be a Rademacher variable independent of X and Y . We introduce the following

random variables:

rXi fi Xi ` g
`
‡2 ` E

“
Y 2

i

‰
´ E

“
X2

i

‰˘1{2
,

rYi fi Yi ` g‡.

With this definition, we have by simple calculus that E
“ rX2

i

‰
“ E

“
Y 2

i

‰
` ‡2 “ E

“rY 2
i

‰
. Further-

more, E
“
prYi ´ rYjq2

‰
“ E

`
Yi ´ Yjq2

‰
and E

“
p rXi ´ rYjq2

‰
• E

“
pXi ´Xjq2

‰
for all i and j , that

is:

E
“
p rXi ´ rXjq2

‰
• E

“
prYi ´ rYjq2

‰
.

Combining this with the previous remark we obtain E
“ rXi

rXj

‰
§ E

“rYi
rYj

‰
. Using Corollary

3.12 in Ledoux and Talagrand (1991) we know that for all ⁄ P R:

P

”
max
i§m

rXi • ⁄
ı

• P

”
max
i§m

rYi • ⁄
ı
. (3.14)

Now it is easy to check that P
“

maxi§m
rYi † ⁄´ ‡

‰
§ P

“
maxi§m Yi † ⁄

‰
and similarly for rX

that P
“

maxi§m Xi † ⁄´ p‡2 ` E
“
Y 2

i

‰
´ E

“
X2

i

‰
q 1

2

‰
§ P

“
maxi§m

rXi † ⁄
‰
. With Eq. 3.14 we

have:

P

”
max
i§m

Xi † ⁄´ ‡ ´ p‡2 ` E
“
Y 2

i

‰
´ E

“
X2

i

‰
q 1

2

ı
§ P

”
max
i§m

Yi † ⁄
ı
.

Using that E
“
X2

i

‰
• E

“
Y 2

i

‰
finishes the proof.

Proof of the Lower Bound

We now use the previous lemmas to bound from below supx°s fpxq ´ fpsq for a node s

satisfying properties of a pruned node. By doing so, we give the exact formula for the function

Ï in Eq. 3.13.

Lemma 3.10 (ANTI-CONCENTRATION FOR A PRUNED NODE). Let s P Th and ptiqi§m such that

t1 “ s and for all 2 § i § m, pptiq “ s and ¸ps, tiq § ∆. If ¸pti, tjq • – for all i ‰ j then the

following holds with probability at least 1´ e´u for 3u † m:

max
i§m

fptiq ´ fpsq • –?
2

c
log

m

3u
´ 2∆.

Proof. For i § m, let Xi fi fptiq ´ fpsq and Yi
iid„ N p0, –2

2
q be independent Gaussian variables.

We have E
“
pXi ´ Xjq2

‰
“ ¸pti, tjq2 • –2 “ E

“
pYi ´ Yjq2

‰
and ∆2 • E

“
X2

i

‰
• –2 ° E

“
Y 2

i

‰

since X1 “ 0. Then using Lemma 3.9 we know that for all ⁄ P R:

P

”
max
i§m

Xi † ⁄´ 2∆
ı

§ P

”
max
i§m

Yi † ⁄
ı
.

Now using Lemma 3.8 we obtain for m • 3u:

P

„
max
i§m

Xi † –?
2

c
log

m

3u
´ 2∆

⇢
§ e´u .
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The following lemma describes the key properties of the tree T as computed by Algorithm 12.

We show that the supremum supx°s fpxq ´ fpsq at every depth is bounded from below by the

sum of the values found in Lemma 3.10, up to constant factors.

Lemma 3.11 (ANTI-CONCENTRATION FOR THE TREE). Fix any u ° 0 and set accordingly

ui “ u ` 2i ` i log 2 for any i ° 0. For T the tree obtained by Algorithm 12, we have for all

s P Th with probability at least 1´ e´uh that:

sup
x°s

fpxq ´ fpsq • c´1
u sup

x°s
Vhps, xq,

where Vhps, xq “ ∞8
i“h ∆ipxq

´b
2i´3 ´ 1

8
logp3ui ` 3 log 2q ´ 2

¯
, and ∆ipxq is the radius of the

cell of x at depth i, and cu P R depends on u only.

Proof. We first show that we can restrict the study of Vhps, xq to only the summands obtained

by pruning T , up to constant factors. To lighten the notations, we write:

bi fi
b

2i´3 ´ 1
8

logp3ui ` 3 log 2q ´ 2.

Then for a sequence th fi phpxq, . . . , th`j fi ph`jpxq of parents of x, if th is the single pruned

node, then,
h`j´1ÿ

i“h

∆ipxqbi “ ∆hpxq
h`j´1ÿ

i“h

2h´ibi

§ cu∆hpxqbh ,

where cu P R depends on u only, and we used that ∆h`ipxq, the radius of the cell at depth

h` i containing x, decreases geometrically for non-pruned nodes. By denoting Phpxq the set

of parents of x from depth h which are pruned nodes, we thus proved for all x P X :

V 1
hps, xq fi

ÿ

tiPPhpxq
∆iptiqbi • c´1

u Vhps, xq. (3.15)

We now prove Lemma 3.11 by showing that supx°s fpxq ´ fpsq • V 1
hps, x‹q for all x‹ ° s

with probability at least 1´ e´uh , by backward induction on Phpxq, from the deepest nodes

to the shallowest ones. Since for the leaves supx°s fpxq ´ fpsq “ 0 “ V 1
hps, x‹q, the property

is initially true. Let us assume that it is true at depth h1 ° h and prove it at depth h. Let s in

Th and x‹ in X . If ph`1px‹q is not pruned, we have nothing to do and just call the induction

hypothesis with supx°s fpxq´ fpsq • supx°t fpxq´ fptq where pptq “ s. Otherwise note that,

sup
x°s

fpxq ´ fpsq “ max
t:pptq“s

´
fptq ´ fpsq ` sup

x•t
fpxq ´ fptq

¯

• max
t:pptq“s

´
fptq ´ fpsq

¯
` min

t:pptq“s

´
sup
x•t

fpxq ´ fptq
¯

. (3.16)

Since the children have been pruned, we know that their number is e2h
. Now thanks to

Lemma 3.10, with probability at least 1´ 1
2
e´uh ,

max
t:pptq“s

fptq ´ fpsq • ∆hpx‹q
2
?

2

b
2h ´ logp3uh ` 3 log 2q ´ 2∆hpx‹q “ ∆hpx‹qbh , (3.17)
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where we used that ¸pti, tjq • 1
2
∆hpx‹q for pptiq “ pptjq “ s by construction of T . Now by

the induction hypothesis and a union bound, we have with probability at least 1´ e´uh`1`2h

that:

min
t:pptq“s

sup
x•t

`
fpxq ´ fptq

˘
• min

t:pptq“s
sup
x°t

V 1
h`1pt, xq. (3.18)

By construction of the pruning procedure, we know that the children minimizing the function

t Ñ supx°t V 1
h`1pt, xq is the pruned node ph`1px‹q. With uh`1 ´ 2h “ uh ` log 2, the results

of Eq. 3.18 holds with probability at least 1´ 1
2
e´uh , we thus obtain with probability at least

1´ e´uh :

sup
x°s

fpxq ´ fpsq • V 1
hps, x‹q,

which uses Eq. 3.16 together with Eq. 3.17, closes the induction and the proof of Lemma 3.11

with Eq. 3.15.

The proof of Theorem 3.6 follows from Lemma 3.11 by a union bound on h P N and remarking

that Êh • supx°s Vhps, xq up to constant factors.

3.2.6 Conclusion and Discussions

In this section on Gaussian process optimization with metric spaces, we showed that sound

algorithms can be implemented when the kernel generates arbitrary totally bounded metric

spaces. By using generic chaining and discretization trees, we exhibited the link between the

metric entropy of this metric space and regret bounds for optimization algorithms. These

contributions form a step toward Bayesian optimization for non-parametric search spaces.

The lower bound we derived is a crucial element to further derive lower bounds on the

cumulative regret.

3.3 Beyond Gaussian Processes

One benefit of the nonparametric model presented in the previous section is that it is easily

adaptable to other stochastic processes more complex that centered Gaussian processes. We

first describe what properties are necessary for the theorems to hold. We then give a concrete

example of non-Gaussian processes relevant for many settings.

3.3.1 Generic Stochastic Processes

For arbitrary stochastic process f , we first define the following function, which extends the

previous canonical pseudo-metric of Gaussian processes. Let ¸upx1, x2q for x1, x2 P X and

u • 0 be the following confidence bound on the increments of f :

¸upx1, x2q fi inf
!

s P R : P
“
fpx1q ´ fpx2q ° s

‰
† e´u

)
.

In short, ¸upx1, x2q is the best bound satisfying P
“
fpx1q ´ fpx2q • ¸upx1, x2q

‰
† e´u . For

particular distributions of f , it is possible to obtain closed formulae for ¸u . However in the
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present work, upper bounds on ¸u will suffice. If it exists a pseudo-metric ¸p¨, ¨q and a function

Âp¨, ¨q bounding the logarithm of the Laplace transform of the increments, that is,

logE
”
e⁄pfpx1q´fpx2qq

ı
§ Âp⁄, ¸px1, x2qq,

for x1, x2 P X and ⁄ P I Ñ R, then using the Cramer-Chernoff method as before,

¸upx1, x2q § Â˚´1pu, ¸px1, x2qq, (3.19)

where Â˚ps, ”q fi sup⁄PI

`
⁄s ´ Âp⁄, ”q

˘
is the Legendre-Fenchel dual of Â and Â˚´1pu, ”q fi

inf
 
s P R : Â˚ps, ”q ° u

(
denotes its generalized inverse. In that case, we say that f is a

p¸, Âq-process. For example if f is pc, ‹q-sub-Gamma, that is:

Âp⁄, ”q § ‹⁄2”2

2p1´ c⁄”q , (3.20)

for c, ‹ P R, we obtain,

¸upx1, x2q §
`
cu`

?
2‹u

˘
¸px1, x2q. (3.21)

The generality of Eq. 3.20 makes it convenient to derive bounds for a wide variety of processes

beyond Gaussian processes, as we see for example in Section 3.3.2.

Generic Chaining for Stochastic Processes

Without any additional effort, we can take the proof of Theorem 3.2 and obtain directly an

equivalent result for stochastic processes. It suffices to replace all occurrences of
?

2u¸p¨, ¨q by

the corresponding term ¸up¨, ¨q.

Theorem 3.7 (GENERIC CHAINING FOR STOCHASTIC PROCESSES). Fix any u ° 0 and a ° 1,

and pnhqhPN an increasing sequence of integers. Set ui fi u ` ni ` log
`
ia’paq

˘
where ’ is the

Riemann zeta function. Then for any tree such that |Th| § enh we have that,

@h • 0,@s P Th, sup
x°s

fpxq ´ fpsq § Êpsq,

holds with probability at least 1´ e´u , where for s P Th ,

Êpsq ” Êps, X , T , ¸q fi sup
x°s

ÿ

i°h

¸ui

`
pipxq, pi´1pxq

˘
.

Classical Chaining for p¸, Âq-Processes and Sub-Gamma Processes

The previous theorem is extremely general but one cannot tell much without restricting to

smooth classes of stochastic processes. We specify what it implies for p¸, Âq-processes. In that

case, we have with Eq. 3.19:

@h • 0,@s P Th, Êpsq § sup
x°s

ÿ

i°h

Â˚´1
´

ui, ¸
`
pipxq, pi´1pxq

˘¯
.
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Introducing the ¸-radius of the cells, this rewrites as:

@h • 0,@s P Th, Êpsq § sup
x°s

ÿ

i°h

Â˚´1
`
ui, ∆i´1pxq

˘
.

Therefore, the previous greedy construction of a discretization tree by Algorithm 9 leads to

the following upper bound involving the metric entropy Hp¨, X , ¸q:

@h • 0, Êh §
ÿ

i°h

Â˚´1pui, Áiq, (3.22)

where Áh fi ∆pX q2´h ,

and uh “ u`HpÁhq ` log
`
ha’paq

˘
.

When f is sub-Gamma and the covering dimension (Definition 2.1) is finite, we obtain a

generalization of the classical chaining Theorem 3.3.

Theorem 3.8 (SUB-GAMMA PROCESS WITH COVERING DIMENSION). If f is pc, ‹q-sub-Gamma,

for all d ° dimpX , ¸q and d “ dimpX , ¸q if the dimension is attained, with probability at least

1´ e´u :

@h • 0,@s P Th, sup
x°s

fpxq ´ fpsq “ O
´`

cpu` dhq `
a

‹pu` dhq
˘
2´h

¯
.

Proof. Following the lines of Theorem 3.3 we know that is exists a constant c1 P R such that

for all i • 0,

HpÁiq § c1 ´ d log Ái ,

ui “ O
`
u` di

˘
.

With Eq. 3.22 for a sub-Gamma process we get, knowing that
∞

i•h i2´i “ O
`
h2´h

˘
,

Êh “ O
´`

cpu` dhq `
a

‹pu` dhq
˘
2´h

¯
.

High Confidence Empirical Intervals

Assume that given i observations Yi fi py1, . . . , yiq at queried locations Xi , we can compute

empirical bounds Li,upxq and Ui,upxq for all u ° 0 and x P X , such that:

P

”
fpxq P

`
Li,upxq, Ui,upxq

˘ı
• 1´ e´u . (3.23)

Then for any hpiq P N chosen like in Section 3.2.2, we obtain by union bounds on x P Thpiq
and i P N that:

P

”
@i P N,@x P Thpiq, fpxq P

`
Li,ui

pxq, Ui,ui
pxq

˘ı
• 1´ e´u ,

where ui “ u` nhpiq ` log
`
ia’paq

˘
for any a ° 1. Our UCB decision rule for the next query

becomes:

xi P argmax
xPThpiq

Ui,ui
pxq. (3.24)
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Combining this with Theorem 3.7, we are able to prove the following bound linking the regret

with Êhpiq and the width of the confidence interval.

Theorem 3.9 (GENERIC REGRET BOUND WITH STOCHASTIC PROCESSES). For all u ° 0, the

algorithm selecting xn`1 P argmaxxPThpnq
Un,unpxq has a cumulative regret lower than, with

probability at least 1´ 2e´u :

Rn §
nÿ

i“1

´
Êhpiq ` Ui,ui

pxiq ´ Li,ui
pxiq

¯
.

The proof is similar to the one of Theorem 3.4, using Ui,ui
and Li,ui

instead of the Gaussian

posterior distribution. In order to select the level of discretization hpiq to reduce the bound

on the regret, it is required to have explicit bounds on Êi and the confidence intervals. Like

before, choosing with c a constant,

@i P N, hpiq “ min

#
i : N : Êi § c

c
log i

i

+
,

we obtain
∞n

i“1 Êhpiq § O
`?

n log n
˘
. When f is sub-Gamma and the covering dimension is

finite, Theorem 3.8 tells us that our previous choice of hpiq “
P
1{2 log2 i

T
leads to:

Êhpiq § O
´
pu` d log iqi´1{2

¯
,

and since
∞n

i“1 i´1{2 § 2
?

n and
∞n

i“1 i´1{2 log i § 2
?

n log n, we know that:

nÿ

i“1

Êhpiq § O
´
pu` d log nq

?
n

¯
,

a slightly bigger term that what we obtained for centered Gaussian processes.

3.3.2 Quadratic Forms of Gaussian Processes

The dominating model in Bayesian optimization is by far the Gaussian process. Yet, it is

a very common task to attempt minimizing a regret on functions which do not look like

Gaussian processes. Consider the typical cases where f has the form of a mean square error

or a Gaussian likelihood. In both cases, minimizing f is equivalent to minimize a sum of

squares, which we cannot assume to be sampled from a Gaussian process. To alleviate this

problem, we show that this objective fits in our generic analysis. Indeed, if we consider that

f is a sum of squares of Gaussian processes, then f is sub-Gamma with respect to a natural

pseudo-metric. Three realizations of a sum of squared Gaussian processes are illustrated in

Figure 3.6. Note that in this section we are dealing with minimization instead of maximization.

In this particular setting we allow the algorithm to observe directly the noisy values of the

separated Gaussian processes, instead of the sum of their square. To simplify the forthcoming

arguments, we will choose independent and identically distributed processes, but one can

remove the covariances between the processes by Cholesky decomposition of the covariance

matrix, and then our analysis adapts easily to processes with non identical distributions.
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Figure 3.6. – Realizations of sums of squared Gaussian processes

The Stochastic Smoothness of a Sum of Squared Gaussian Processes

Let fpxq fi
∞N

j“1 g2
j pxq , where

`
gj

˘
1§j§N

are independent centered Gaussian processes

gj
iid„ GPp0, kq with stationary covariance k such that kpx, xq “ Ÿ for every x P X . We have by

exact computation of the squared Gaussian integral, for x1, x2 P X and ⁄ † p2Ÿq´1 :

logE
”
e⁄pfpx1q´fpx2qq

ı
“ ´N

2
log

´
1´ 4⁄2pŸ2 ´ k2px1, x2qq

¯
.

Therefore with ¸ and Â defined as follows:

¸px1, x2q “ 2
a

Ÿ2 ´ k2px1, x2q,
and Âp⁄, ”q “ ´N

2
log

`
1´ ⁄2”2

˘
,

we conclude that f is a p¸, Âq-process. Since ´ logp1´ x2q § x2

1´x
for 0 § x † 1, which can be

proved by series comparison, we obtain that f is sub-Gamma with parameters ‹ “ N and

c “ 1. Now with Eq. 3.21,

¸upx1, x2q § pu`
?

2uNq¸px1, x2q.

Furthermore when X Ñ r0, Rsd , we have that ¸px1, x2q § c1 Îx1 ´ x2Î
1{–
2 for all x1, x2 P X is

satisfied with – “ 1 when k is linear, squared exponential or Matérn with parameter ‹ ° 1,

and satisfied with – “ 2 for Matérn kernel with parameter ‹ “ 1{2 . In these cases, the

covering dimension attains dimpX , ¸q “ –d, and Theorem 3.8 leads to:

@h • 0, Êh § O
´`

u` –dh`
a

Npu` –dhq
˘
2´h

¯
. (3.25)

Confidence Intervals for Squared Gaussian Processes

As mentioned above, we consider here that we are given separated noisy observations Y
j
n

for each of the N processes. Deriving confidence intervals for f given
`
Y

j
n

˘
j§N

is a tedious

task since the posterior processes gj given Y
j
n are not standard nor centered, which excludes
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known results for ‰2 random variables. We propose here a solution based directly on a careful

analysis of Gaussian integrals. We write for positive a:

erfpaq fi
2?
fi

ª a

0

e´t2

dt and erfcpaq fi 1´ erfpaq.

Lemma 3.12 (TAILS OF SQUARED GAUSSIAN). Let X „ N pµ, ‡2q and s ° 0. We have:

P

”
X2 R

`
l2, u2

˘ı
† e´s2

,

for u • |µ|`
?

2‡s and l §
`
|µ|´

?
2‡s

˘
_
?

2‡ erf´1
´

1
2

erfp
?

2µ‡´1 ` sq ´ 1
2

erfpsq
¯

.

Proof. Let X „ N pµ, ‡2q with µ • 0 without loss of generality. For all 0 † l † u P R we have:

P

”
X2 R pl2, u2q

ı
“ P

”
X R pl, uq Y p´u,´lq

ı

“ 1
2

´
erfc

´u´ µ?
2‡

¯
` erfc

´u` µ?
2‡

¯
` erf

´µ` l?
2‡

¯
´ erf

´µ´ l?
2‡

¯¯
.

Fix s ° 0 and u “ µ`
?

2‡s. If l § µ´
?

2‡s, which means s † µp
?

2‡q´1 , we get:

P

”
X2 R pl2, u2q

ı
§ 1

2

´
erfcpsq ` erfc

`?
2µ‡´1 ` s

˘
` erf

`?
2µ‡´1 ´ s

˘
´ erfpsq

¯
.

Remarking that erfc
`?

2µ‡´1 ` s
˘
` erf

`?
2µ‡´1 ´ s

˘
§ 1, we obtain:

P
“
X2 R pl2, u2q

‰
§ erfcpsq.

Now for s ° µp
?

2‡q´1 , if l §
?

2‡ erf´1
´

1
2

erfp
?

2µ‡´1 ` sq ´ 1
2

erfpsq
¯

we have that

erf
´

µ`l?
2‡

¯
´ erf

´
µ´l?

2‡

¯
§ 2 erf

`
l?
2‡

˘
§ erfp

?
2µ‡´1 ` sq ´ erfpsq. Therefore we also get:

P

”
X2 R pl2, u2q

ı
§ erfcpsq.

We finish the proof of Lemma 3.12 by the standard inequality erfcpsq § e´s2

.

Using this lemma, we compute the confidence interval for fpxq by a union bound over N .

Denoting µ
j
i and ‡

j
i the posterior expectation and deviation of gj given Y

j
i (computed as in

Eq. 2.14 and 2.16), the confidence interval follows for all x P X :

P

”
@j § N, g2

j pxq P
`
L

j
i,upxq, U

j
i,upxq

˘ı
• 1´ e´u , (3.26)

where we choose:

U
j
i,upxq “

´
-

-µ
j
i pxq

-

-`
a

2pu` log Nq‡j
i´1pxq

¯2

(3.27)

and L
j
i,upxq “

´
-

-µ
j
i pxq

-

-´
a

2pu` log Nq‡j
i´1pxq

¯2

`
. (3.28)

3.3 Beyond Gaussian Processes 95



Note that in Lemma 3.12 we provide a better confidence interval for Li,u , but we do not use

it here to simplify the notations. We are now ready to use Theorem 3.9 to control Rn by a

union bound for all i P N and x P Thpiq . Note that under the event of Theorem 3.9, we have

the following:

@j § N,@i P N,@x P Thpiq, g2
j pxq P

`
L

j
i,ui
pxq, U

j
i,ui
pxq

˘
,

Then we also have:

@j § N,@i P N,@x P Thpiq,
-

-µ
j
i pxq

-

- §
-

-gjpxq
-

-`
a

2pui ` log Nq‡j
i´1pxq,

Since µ
j
0pxq “ 0, ‡

j
0pxq “ Ÿ and u0 § ui we obtain

-

-µ
j
i pxq

-

- §
a

2pui ` log Nq
`
‡

j
i´1pxq ` Ÿ

˘
.

We now consider the regret of Algorithm 13 that selects the minimizer of the lower confidence

bound. The regret here is taken with respect to the infimum of f to match the problem of

minimization. Theorem 3.9 says with probability at least 1´ 2e´u :

Rn §
ÿ

i§n

´
Êhpiq ` 8

ÿ

j§N

pui ` log Nq
`
‡

j
i´1pxq ` Ÿ

˘
‡

j
i´1pxiq

¯
.

It is now possible to proceed as in Section 2.2.4, and bound the sum of posterior variances

with the informational quantity “n :

Rn § O
´

Nun

`?
n“n ` “n

˘
`

ÿ

i§n

Êhpnq
¯

.

As before, under the conditions of Eq. 3.25 and choosing the discretization level hpiq “P
1
2

log2 i
T

we obtain Êhpiq “ O
´

i´ 1
2

`
u ` 1

2
D log i

˘?
N
¯

, that is, the following guarantees

holds.

Corollary 3.2 (REGRET BOUNDS FOR QUADRATIC FORM OF GAUSSIAN PROCESSES). Let f

be a sum of independent squared centered Gaussian processes with known kernel. For all

u ° 0, the algorithm selecting xn`1 P argminxPThpnq
Ln,unpxq with hpnq “

P
1
2

log2 i
T

and

Ln,upxq “
∞

j§N Lj
n,upxq from Eq. 3.28 incurs a (minimization) cumulative regret on f lower

than:

Rn § O
´

N
`a

n“n log n` “n

˘
`
?

Nn log n
¯

,

with probability at least 1´ 2e´u .

3.3.3 Conclusion and Discussions

In this section, we described a methodology to build sound Bayesian optimization algorithm

working on non-Gaussian processes. We illustrated the importance of non-Gaussian setting

with the optimization of quadratic forms, and gave a precise algorithm for this setting.

The regret bound we obtained are almost equivalent to the ones from Gaussian processes.

Since optimization of quadratic forms is an extremely common task, we believe that this

contribution may have substantial impact for practitioners.
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Algorithm 13: GP2-UCB pk, ÷, u, aq for Minimizing Sum of N Squared GPs

h0 – ´1

T –H
for n “ 0, 1, . . . do

hn – r1{2 log2 ns
if hn ‰ h0 then

Áh – 2´hn´1∆pX q
Th – GreedyCover

`
Áh, X zîxPT Bpx, Áhq

˘

@t P Th, pptq – argminsPT ¸pt, sq
T – T Y Th

end

for 1 § j § N do

Compute µj
n and ‡j

n (Eq. 2.14, 2.16)

un – u` log|T |` log
`
na’paq

˘

for x P T do

L1 –
-

-µj
npxq

-

-´
a

2pun ` log Nq‡j
npxq

L2 –
?

2‡j
npxq erf´1

´
1
2

erf
`?

2µj
npxq‡j

n
´1 ` un

˘
´ 1

2
erfpunq

¯

Lj
npxq –

`
L1 _ L2

˘2

end

end

xn`1 – argminxPTh

∞
j§N Lj

npxq 
y

j
n`1

(
j§N

– Query
`
xn`1

˘

end

return T
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4Non-Smooth Optimization and

Ranking

This chapter introduces the innovative framework from Malherbe et al. (2016), a joint

work with Cédric Malherbe for deterministic optimization of non-smooth functions, possibly

discontinuous. In Section 4.2, we describe the framework and provide the main definitions.

We express the complexity of the optimization problem with respect to ranking structures,

a novel assumption on the level sets. In Section 4.3, we propose and analyze the RankOpt

algorithm which requires a prior information on the ranking structure underlying the unknown

function. In Section 4.4, an adaptive version of the algorithm is presented. Companion results

which establish the equivalence between learning algorithms and optimization procedures

are discussed in Section 4.5, as they support implementation choices. The adaptive version of

the algorithm is compared to other global optimization algorithms in Section 4.6.
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4.1 Introduction

Previous theoretical works in the literature and in this thesis systematically require the

unknown function to be smooth, at least locally around the optimum. In this chapter, we

propose to explore concepts from ranking theory based on overlaying estimated level sets

Clémençon et al. (2008) in order to develop global optimization algorithms that do not

rely on the smoothness of the function. The idea behind this approach is simple: even if

the unknown function presents arbitrary large variations, most of the information required

to identify its optimum may be contained in its induced ranking rule, i.e. how the level

sets of the function are included one in another. To exploit this idea, we introduce a novel

optimization scheme where the complexity of the function is characterized by the underlying

pairwise ranking which it defines. Our contribution is twofold: first, we introduce two

novel global optimization algorithms that learn the ranking rule induced by the unknown

function with a sequential scheme, and second, we provide mathematical results in terms of

statistical consistency and convergence to the optimum. Moreover the algorithms proposed

lead to efficient implementations and they display competitive performance on the classical

benchmarks for global optimization as shown at the end of this chapter.

4.2 Global Optimization and Ranking Structure

This section introduces the definitions and concepts on which our approach is built. We define

the ranking rules of functions, and deduce our notion of complexity for the optimization

problem via ranking structures. We finally give the precise assumptions required to obtain

convergence rates.

4.2.1 Setup and Notations

In this chapter, we consider the problem of sequentially maximizing a fixed unknown function

f : X Ñ R, potentially not continuous, using deterministic observations. The regularity of f

will be controlled by ranking structures.

Setup

We restrict our analysis to X Ä R
d , and we further require that X is compact and convex for

technical reasons. We focus here on the objective of identifying some point

x‹ P argmax
xPX

fpxq,

with a minimal amount of function evaluations. Since we do not have assumptions neither on

the smoothness on f nor on its continuity, the extend of the values of f is arbitrary, so are the

cumulative or simple regrets Rn or Sn . The observations of an optimization algorithm do not

suffer any source of perturbation due to noise. After n iterations, the algorithm returns the

location of the highest value observed so far:

xı̂n where ı̂n P argmax
i“1,...,n

fpxiq.
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The analysis provided here considers that the horizon is unknown, that is the number n of

evaluation points is not fixed.

Notations

For any x fi rx1 . . . xds P Rd , we define the standard ¸2-norm ÎxÎ2
2 fi

∞d
i“1 x2

i , we denote by

x¨, ¨y the corresponding inner product and we denote by:

Bpx, rq fi
!

x1 P Rd :
.

.x´ x1.
.

2
§ r

)
,

the corresponding ¸2-ball of radius r • 0 centered in x. For any set X Ä R
d , we define its

inner-radius as:

radpX q fi sup
!

r ° 0 : Dx P X s.t. Bpx, rq Ñ X
)

,

and its diameter as:

∆pX q fi sup
x,x1PX

.

.x´ x1.
.

2
.

We denote by ⁄pX q the volume of X where ⁄ stands for the Lebesgue measure. Finally, we

denote by C0pX q the set of continuous functions defined on X taking values in R, and we

denote by PN pX q the set of (multivariate) polynomial functions of degree N defined on X .

We denote by UpAq the uniform distribution over a bounded measurable domain A.

4.2.2 The Ranking Structure of a Real-Valued Function

In this section, we introduce the ranking structure as a complexity characterization for a

general real-valued function to be optimized.

Induced Ranking Rules

First, we observe that every real-valued function induces an order relation over the input space

X , and the underlying ordering induces a ranking rule which records pairwise comparisons

between evaluation points.

Definition 4.1 (INDUCED RANKING RULE). The ranking rule rf : X ˆ X Ñ t´1, 0, 1u induced

by a function f : X Ñ R is defined by:

rf px, x1q fi

$
’’&
’’%

1 if fpxq ° fpx1q
0 if fpxq “ fpx1q

´1 if fpxq † fpx1q

for all x, x1 P X .

The key argument of the paper is that the difficulty of the optimization of any weakly regular

real-valued function only depends on the nested structure of its level sets. Hence there is

an equivalence class of real-valued functions that induce the same induced ranking rule as

shown by the following proposition.

Lemma 4.1 (RANKING RULE EQUIVALENCE). Let g P C0pX q be any continuous function. Then,

a function f : X Ñ R induces the same induced ranking rule with g (i.e. rf “ rg) if and only

if there exists a strictly increasing (not necessary continuous) function h : R Ñ R such that

g “ h ˝ f .
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f g

Figure 4.1. – Two functions f and g that induce the same ranking

Proof. The equivalence of the ranking rules when such a h exists is a direct consequence of

the definition of the ranking rules:

rgpx, x1q “ sgn
`
h ˝ fpxq ´ h ˝ fpx1q

˘
“ sgn

`
fpxq ´ fpx1q

˘
“ rf px, x1q.

To prove the existence of h when the ranking rules are equal, we introduce the function:

Mpxq fi ⁄
´ 

x1 P X : rf px, x1q “ ´1
(¯

.

We then show that there exists a strictly increasing function h1 : R Ñ R such that f “
h1 ˝M . Since for x, x1 P X we have that Mpxq “ Mpx1q implies fpxq “ fpx1q (proved by

contradiction), f is constant on the iso-level sets M´1pyq fi
 
x P X : Mpxq “ y

(
, and let

h1pyq be its value. We have fpxq “ h1pMpxqq for all x P X . Doing the same for g, there exists

h2 such that g “ h2 ˝M . Finally, g “ h ˝ f with h “ h2 ˝ h´1
1 .

Lemma 4.1 states that even if the unknown function f admits non-continuous or large

variations, up to a transformation h, there might exist a simpler function g “ h ˝ f that shares

the same induced ranking rule. Figure 4.1 gives an example of two functions that induce the

same ranking while they display highly different regularity properties. As a second example,

we may consider the problem of maximizing the following function over X “ r0, 1{2s:

fpxq “
#

1´
-

-lnpxq
-

-

´1
if x ‰ 0

1 otherwise
.

The function f in this case is not smooth around its unique global maximizer x‹ “ 0 but

shares the same induced ranking rule with gpxq “ ´x over X .

Ranking Structures

We can now introduce a complexity characterization of real-valued functions of a set X

through the complexity class of its induced ranking rule. We call this class a ranking structure.

Definition 4.2 (CONTINUOUS RANKING RULES). We denote by:

R8 fi
!

rf : f P C0pX q
)

,

the set of continuous ranking rules, that is ranking rules induced by continuous functions. Let f

be a real-valued function. We say that f has a continuous ranking rule if rf P R8 .
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fpx1, x2q “ exp p´x2
1 ´ 2x2

2q, – “ 0 fpx1, x2q “ ´x4
1 ´ x2

2, – “ 1

Figure 4.2. – Illustration of the regularity of the level sets on two simple functions

Note that f having a continuous ranking rule does not imply that f is continuous. In the

continuation of this definition, we further introduce two examples of more stringent ranking

structures.

Definition 4.3 (POLYNOMIAL RANKING RULES). The set of polynomial ranking rules of degree

N is defined as:

RP,N fi
!

rf : f P PN pX q
)

.

Similarly, we point out that even a polynomial function of degree N may admit a lower degree

polynomial ranking rule. For example, consider the polynomial function fpxq “ px2´3x`1q9.
Since fpxq “ gpx2 ´ 3xq where g : x fiÑ px` 1q9 is a strictly increasing function, the ranking

rule induced by f is a polynomial ranking rule of degree 2. The second class of ranking

structures we introduce is a class of non-parametric rankings.

Definition 4.4 (CONVEX RANKING RULES). The set of convex ranking rules of degree N is

defined as:

RC,N fi
!

r P R8 : @xPX , DC1, . . . , CN Ä X ,
 
x1PX : rpx1, xq • 0

(
“

N§

i“1

Ci, Ci is convex
)

.

It is easy to see that the ranking rule of a function f is a convex ranking rule of degree N if

and only if all the level sets of the function f are unions of at most N convex sets.

Identifiability and Regularity

We now state two conditions that will be used in the theoretical analysis: the first condition is

about the identifiability of the maximum of the function and the second is about the regularity

of f around its maximum.

Definition 4.5 (IDENTIFIABLE MAXIMUM). The maximum of a function f : X Ñ R is said to be

identifiable if for any Á ° 0 arbitrary small,

⁄
´ 

x P X : fpxq • sup
xPX

fpxq ´ Á
(¯
° 0.

Condition 4.5 prevents the function from having a jump on its maximum and will be useful to

state asymptotic results of the type fpxı̂nq Ñ supxPX fpxq when n Ñ8.

Definition 4.6 (REGULAR LEVEL SETS). A function f : X Ñ R has pc–, –q-regular level sets for

some c– ° 0 and – • 0 when:

• The global optimizer x‹ P X is unique.
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Algorithm 14: RankOptpRq
R0 – R
for n “ 0, 1, . . . do

done – K
while  done do

xn`1 – UpX q
if Dr P Rn, rpxn`1, xı̂nq • 0 then

yn`1 – Querypxn`1q
Rn`1 –

 
r P R : Ln`1prq “ 0

(

done – J
end

end

end

• The iso-level sets f´1pyq fi
 
x P X : fpxq “ y

(
satisfy:

sup
xPf´1pyq

Îx‹ ´ xÎ2 § c– inf
xPf´1pyq

Îx‹ ´ xÎ
1{p1`–q
2 .

Condition 4.6 guarantees that the points associated with high evaluations are close to the

unique optimizer with respect to the Euclidean distance. This condition will be used to derive

some finite-time bounds on the distance Îx‹ ´ xı̂nÎ2 between the optimizer and its estimation.

Note that for any iso-level set f´1pyq with bounded distance to the optimum, the condition is

satisfied with – “ 0 and c– fi ∆pX q{ infxPf´1pyq Îx‹ ´ x1Î2. Therefore, this condition concerns

the behavior of the level sets when infxPf´1pyq Îx‹ ´ xÎ2 Ñ 0. As an example, the iso-level

sets of two simple functions satisfying the condition with different values of – are shown in

Figure 4.2.

4.3 Optimization with Fixed Ranking Structure

In this section, we consider the problem of optimizing an unknown function f given the prior

knowledge that its ranking rf belongs to a given ranking structure R Ñ R8 .

4.3.1 The RankOpt Algorithm

The input of Algorithm 14 is a ranking structure R Ñ R8. At each iteration n, a point xn`1 is

uniformly sampled over X until the algorithm decides to evaluate the function at this point.

Active Subset of Ranking Rules

The decision rule involves the active subset of R which contains the ranking rules that are

consistent with the ranking rule induced by f over the points sampled so far. We thus set:

Rn fi
 
r P R : Lnprq “ 0

(
,
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Figure 4.3. – Two samples generated by the RankOpt algorithm after n “ 30 iterations with the
polynomial ranking rules RP,4 on the Styblinski-Tang function defined in Section 4.6.

where Ln is the empirical ranking loss:

Lnprq fi
2

npn` 1q
ÿ

1§i†j§n

1
 
rf pxi, xjq ‰ rpxi, xjq

(
.

This set contains the ranking rules that are still on the run to be the true ranking rule. Indeed,

it contains the rankings that perfectly rank the sample and we know, by definition of the

empirical ranking loss, that the true ranking of the unknown function satisfies rf P Rn since

Lnprf q “ 0. As a direct consequence of the definition of the active subset, if there does not

exist any r P Rn such that rpxn`1, xı̂nq • 0, it implies that rf pxn`1, xı̂nq “ ´1 which means

that fpxn`1q † fpxı̂nq. Thus, the algorithm never evaluates the function at a point that will

not return certainly an evaluation at least equal to the highest evaluation fpxı̂nq observed so

far.

Properties and Connection to Active Learning

The sampling strategy arising from Algorithm 14 can be interpreted as follows. After n

iterations the RankOpt algorithm evaluates the function on a sequence txiuni“1 distributed as:

x1 „ UpX q,
xn`1 |

 
pxi, yiq

(n

i“1
„ UpRnq,

where Rn fi
!

x P X : Dr P Rn s.t. rpx, xı̂tq • 0
)

.

The subspace Rn is similar to the relevant region used in the previous chapter. It is the

smallest set that contains certainly the level set
 
x P X : fpxq • fpxı̂tq

(
of the best value

observed so far. The set of the maximizers argmaxxPX fpxq always belong to Rn .

The algorithm can be seen as an extension to ranking of the active learning algorithm CAL

(Cohn et al., 1994; Hanneke, 2011). However, this algorithm aim at estimating a classifier

c : X Ñ t0, 1u where the goal in global optimization is to estimate the winner of a tournament

deriving from the ranking rule rf : X ˆ X Ñ t´1, 0, 1u and not the ranking rule itself.

4.3.2 Convergence analysis

We state here some convergence properties of the RankOpt algorithm. The results are stated

in a probabilistic framework. The source of randomness comes from the algorithm itself
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(which generates uniform random variables) and not from the evaluations which are assumed

noiseless.

Consistency

The next result will be important in order to formulate the consistency property of the

algorithm.

Lemma 4.2 (RANDOM SEARCH COMPARISON). Fix any n P N and let R Ñ R8 be any set of

ranking rules. Then, for any function f : X Ñ R such that rf P R and any y P R, if xı̂n denotes

the random output of RankOptpRq on f , we have that,

P
“
fpxı̂nq • y

‰
• P

”
max

i“1...n
fpx1

iq • y
ı
,

where x1
i

iid„ UpX q.

Proof. The result is obtained by induction. Since x1 „ UpX q , the result trivially holds for

n “ 1. Assume that the statement holds for a given n ° 0, fix any y P R and let

X•y fi
 
x P X : fpxq • y

(
.

Using the fact that,  
x P X : fpxq • fpXı̂nq

(
Ñ Rn Ñ X ,

we show that,

P
“
fpxı̂n`1

q • y
‰
• P

“
fpxı̂nq • y

‰
` P

“
fpxı̂nq † y

‰⁄pX•yq
⁄pX q .

Now plugging the induction assumption in the last equation and using the fact that:

P
“
fpx1

n`1q • y
‰
“ ⁄pX•yq

⁄pX q ,

gives the result.

Combining the previous proposition with the identifiability condition gives the following

asymptotic result.

Corollary 4.1 (CONSISTENCY OF RankOpt). Using the same notations and assumptions as in

Lemma 4.2 and if the maximum of the function f is identifiable (Definition 4.5), then,

fpxı̂nq Ñ sup
xPX

fpxq in probability.

Proof. Fix any Á ° 0 and let

XÁ fi
!

x P X : fpxq • sup
xPX

fpxq ´ Á
)

,
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be the corresponding near-optimal level set. Applying Lemma 4.2 leads to

P

”
fpxı̂nq † sup

xPX
fpxq ´ Á

ı
§
´

1´ ⁄pXÁq
⁄pX q

¯n

Ñ
nÑ8 0,

which proves the corollary.

Corollary 4.1 reveals that the generic optimization scheme ends up finding the true maximum

of any identifiable function that has a ranking in the given ranking structure R.

Upper and Lower Bounds on the Loss

We now provide our finite-sample loss bounds.

Theorem 4.1 (LOSS UPPER BOUND FOR RankOpt). Under the same assumptions as in

Lemma 4.2 and if the function f has pc–, –q-regular level sets (Definition 4.6), then, for any

u ° 0, with probability at least 1´ e´u ,

Îx‹ ´ xı̂nÎ2 § C–

´u

n

¯ 1

dp1`αq2

,

where C– fi c
p2`–q{p1`–q
– ∆pX q1{p1`–q2

.

Proof. Fix u ° 0 and let rn,u be the upper bound of the theorem, and r1
n,u fi prn,u{c–q1`–. Let

us denote x1
i

iid„ UpX q and SÁ fi
 
x P X : Îx‹ ´ xÎ2 “ Á

(
the sphere or radius Á centered in x‹.

We have

P

”
Îxı̂n ´ x‹Î2 § rn,u

ı
“ P

”
xı̂n P Bpx‹, rn,uq

ı

• P

”
fpxı̂nq • inf

xPSr1
n,u

fpxq
ı

• P

”
max
i§n

fpx1
iq • inf

xPSr1
n,u

fpxq
ı
,

where the first inequality comes from the regularity of the level sets and the second inequality

comes from Lemma 4.2. Now, let r2
n,u fi pr1

n,u{c–q1`– “ ∆pX q
`
u{n

˘1{d
. Applying once more

the regularity assumption,

P
“

Îxı̂n ´ x‹Î2 § rn,u

‰
• P

” §

i§n

x1
i P X X Bpx‹, r2

n,uq
ı
,

“ 1´
˜

1´
⁄
`
X X Bpx‹, r2

n,uq
˘

⁄pX q

¸n

,

by independence of the x1
i . From Zabinsky and Smith (1992), we have that for all r ° 0,

⁄
`
X X Bpx‹, r2

n,uq
˘

⁄pX q •
´ r2

n,u

∆pX q
¯d

“ u

n
.

Finally, by classical comparison, P
“

Îxı̂n ´ x‹Î2 § rn,u

‰
• 1´ e´u .
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More surprisingly, a lower bound can be derived by making the link with the theoretical

PureAdaptiveSearch (Zabinsky and Smith, 1992) that uses the knowledge of the level sets of

the unknown function.

Lemma 4.3 (PureAdaptiveSearch COMPARISON). Fix any n ° 0 and let
`
rxn

˘
i§n

be a

sequence distributed as the Markov process defined by:

rx1 „ UpX q
rxn`1 | rxn „ UpX•fprxnqq

Then, using the same notations and assumptions as in Lemma 4.2, for any y P R, we have that,

P
“
fpxı̂nq • y

‰
§ P

“
fprxnq • y

‰
.

Proof. We use again an induction argument. Assume that the result holds for a given n ° 0

and fix any y P R. Using the fact that X•fpXı̂n q Ñ Rn we show that:

P
“
fpxı̂n`1

q • y
‰

§ E

«
1^ ⁄pX•yq

⁄pX•fpxı̂n qq

ff
.

Using the induction hypothesis we show that:

E

«
1^ ⁄pX§yq

⁄pX§fpxı̂n qq

ff
§ E

„
1^ ⁄pX§yq

⁄pX§fprxnqq

⇢

§ P
“
fprxn`1q • y

‰
.

We are now ready to establish our second loss bound by combining Lemma 4.3 with the level

set assumption.

Theorem 4.2 (LOSS LOWER BOUND FOR RankOpt). Under the same assumptions as in

Lemma 4.2 and if the function f has pc–, –q-regular level sets (Definition 4.6), then, for any

u ° 0, with probability at least 1´ e´u ,

C–e´ p1`αq2

d pn`
?

2nu`uq § Îx‹ ´ xı̂nÎ2 ,

where C– fi c
´p1`–qp2`–q
– radpX qp1`–q2

.

Proof. Let rn,u be the lower bound of the theorem. Using Lemma 4.3 and the level set

assumption, with the same steps as before with r1
n,u fi c–r

1{p1`–q
n,u and r2

n,u fi c–r1
n,u

1{p1`–q, we

have:

P

”
Îxı̂n ´ rxÎ2 § rn,u

‰
§ P

«
fprxnq • inf

xPSr1
n,u

fpxq
ff

§ P

„
⁄pX•fprxnqq

⁄pX q §
⁄pBpx‹, r2

n,uqq
⁄pX q

⇢
,
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P

”
Îxı̂n ´ rxÎ2 § rn,u

‰
§ P

«
⁄pX•fprxnqq

⁄pX q §
ˆ

r2
n,u

radpX q

˙d
ff

§ P

„
⁄pX•fprxnqq

⁄pX q § exp
`
u´ n´

?
2nu

˘⇢
.

Now, since

@u ° 0, P

„
⁄pX•fprxnqq

⁄pX q § u

⇢
§ P

«
π

i§n

Ui § u

ff
,

where Ui
iid„ Upr0, 1sq , we have using concentration inequalities for sub-Gamma random

variables that:

P

«
π

i§n

Ui § exp
`
u´ n´

?
2nu

˘
ff

† e´u .

The level set assumption, which is used in Theorem 4.1 and Theorem 4.2, is invariant to

any strictly increasing composition h (i.e. if f has pc–, –q-regular level sets so has g “ h ˝ f).

It implies that the bounds on the distance Îx‹ ´ xı̂nÎ2 between the exact solution and its

approximation hold independently of the smoothness of the function. To the best of our

knowledge, this is the first analysis of an optimization algorithm which uses the ranking rule

induced by the unknown function.

4.4 Adaptive Algorithm and Stopping Time Analysis

We now consider the problem of optimizing a function f when no information is available on

its ranking rule.

4.4.1 The AdaRankOpt Algorithm

The AdaRankOpt algorithm (Algorithm 15) is an extension of the RankOpt algorithm which

involves model selection following the principle of Structural Risk Minimization. We consider

a parameter 0 † p † 1 and a nested sequence of ranking structures tRNuN°0 satisfying:

R1 Ä R2 Ä . . . Ä R8 . (4.1)

The algorithm is initialized by considering the smallest ranking structure R1 of the sequence.

At each iteration n, with probability p the algorithm explores the space by evaluating the

function at a point uniformly sampled over X . Otherwise, the algorithm exploits the previous

evaluations by making an iteration of the RankOpt algorithm with the smallest ranking

structure RNn of the sequence that probably contains the true ranking rf . Once a new

evaluation has been made, the index Nn`1 is updated. The parameter p drives the trade-off

between the exploitation phase and the exploration phase which prevents the algorithm from

getting stuck in a local maximum. Condition 4.1 is crucial for practical reasons discussed in

Section 4.5. We point out that both the sequence of polynomial ranking rules pRP,N qN°0 and

the sequence of convex ranking rules pRC,N qN°0 defined in Section 4.2 satisfy this condition.
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Algorithm 15: AdaRankOpt
`
p,
`
RN

˘
N°0

˘

N – 1

R – R1

for n “ 0, 1, . . . do

B – Upr0, 1sq
if B † p then

xn`1 – UpX q
else

xn`1 – U
` 

x P X : Dr P R, rpx, xı̂nq • 0
(˘

end

yn`1 – Querypxn`1q
iı̂n`1

– argmaxi§n`1 yi

N – min
 
N ° 0 : minrPRN

Lnprq “ 0
(

R –
 
r P RN : Lnprq “ 0

(

end

4.4.2 Theoretical Properties of AdaRankOpt

Consistency

We start by casting the consistency result for the AdaRankOpt algorithm.

Lemma 4.4 (CONSISTENCY OF AdaRankOpt). Fix any 0 † p † 1 and any sequence of

ranking structures pRN qN°0 satisfying Eq. 4.1. Then, if the function f has an identifiable

maximum (Definition 4.5) and xı̂n denotes the random output of AdaRankOptpp, pRN qN°0q on

f , we have that,

fpxı̂nq Ñ sup
xPX

fpxq in probability.

Proof. Fix any Á ° 0. Using the fact that

P
“
Xi P XÁ

‰
• p

⁄pXÁq
⁄pX q ,

for any i ° 0, we have by induction that

P

”
fpxı̂nq † sup

xPX
fpxq ´ Á

ı
§
ˆ

1´ p
⁄pXÁq
⁄pX q

˙n

Ñ 0.

Lemma 4.4 reveals that even if the algorithm is poorly tuned, it will end up finding the true

maximum of any function with an identifiable maximum.

Stopping Time and Rademacher Complexity

We now investigate the number of iterations required to identify a ranking structure that

contains the true ranking rule.
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Definition 4.7 (IDENTIFICATION STOPPING TIME). Let N‹ fi min
 
N ° 0 : rf P RN

(
be the

index of the smallest ranking structure that contains the true ranking rule. Let pNnqn°0 be the

sequence of random variables defined in the AdaRankOpt algorithm. We define the stopping time:

·N‹ fi min
 
n ° 0 : Nn “ N‹(,

which corresponds to the number of iterations required to identify N‹ .

In order to bound ·N‹ we need to control the complexity of the sequence of ranking structures.

Let us denote by:

Lprq fi P
“
rf pX, X 1q ‰ rpX, X 1q

‰

X, X 1 iid„ UpX q,

the true ranking loss, and define the Rademacher average of a ranking structure R as:

pRn ” pRnpRq fi sup
rPR

1

tn{2u

-

-

-

-

-

tn{2uÿ

i“1

‘i1

!
rf pXi, Xtn{2u`iq ‰ rpXi, Xtn{2u`iq

)-

-

-

-

-

where Xi
iid„ UpX q and ‘1 . . . ‘tn{2u are tn{2u independent Rademacher random variables.

Lemma 4.5 (STOPPING TIME UPPER BOUND). Assume that the index N‹ ° 1 is finite, and that

infrPRN‹´1
Lprq ° 0, and that there exists V ° 0 such that the Rademacher complexity of RN‹´1

satisfies:

@n ° 0, E
“ pRn

‰
§

a
V {n.

Then, for any u ° 0, with probability at least 1´ e´u ,

·N‹ § 10

p

ˆ
V ` u` log 2

infrPRN‹´1
Lprq2

˙
.

Proof. Fix any u ° 0 and let nu be the integer part of the upper bound of the proposition.

Since we have a nested sequence of sets of ranking rules,

P
“
· § nu

‰
“ P

”
min

rPRN‹´1

Lnuprq ° 0
ı
.

Let us write n1
u fi

Y
pn” ´

b
1
2
nupu` log 2q

]
. Using Hoeffding’s inequality gives a lower bound

on the number of exploration samples collected:

P

«
ÿ

i§nδ

Bi • n1
u

ff
• 1´ 1

2
e´u ,

where Bi
iid„ Bppq. Applying concentration results of ranking rules over the n1

u exploration

samples gives that:

P

«
min

rPRN‹´1

Ln1
u
prq • min

rPRN‹´1

Lprq ´ 2

d
V

n1
u

´ 2

d
u` log 2

n1
u ´ 1

° 0

ff
• 1´ 1

2
e´u .
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Upper Bound on the Loss

In the situation described above, one can recover an upper bound similar to the one of

Theorem 4.1 using the fact that the ranking structure RN‹ can be identified in a finite time

and by combining the previous result with the analysis of the RankOpt algorithm where the

structure RN‹ is assumed to be known.

Theorem 4.3 (LOSS UPPER BOUND FOR AdaRankOpt). Consider the same assumptions as in

Lemma 4.5 and assume that the function f has pc–, –q-regular level sets (Definition 4.6). Then,

if xı̂n denotes the random output of AdaRankOptpp, pRN qN°0q, for any u ° 0 and any n ° nu ,

with probability at least 1´ e´u ,

Îx‹ ´ xı̂nÎ2 § C–

ˆ
u` log 2

n´ nu

˙ 1

dp1`αq2

,

where C– is the same constant as in Theorem 4.1 and:

nu fi

Z
10

V ` u` log 4

p infrPRN‹´1
Lprq2

^
.

Proof. Fix any u ° 0 . We know that after nu iterations the true ranking structure RN‹

is identified with probability at least 1 ´ 1
2
e´u by Lemma 4.5. Once the structure RN‹ is

identified, one can use a similar technique as the one used in Theorem 4.1 to get an upper

bound with probability at least 1´ 1
2
e´u thanks to the n´ nu samples.

We point out that standard metric entropy arguments can be used in order to bound E
“ pRn

‰

(Agarwal et al., 2005; Clémençon et al., 2008; Clémençon, 2011). If the class of functions 
x, x1 P X fiÑ 1trf px, x1q ‰ rpx, x1qu : r P R

(
is a VC-major class with finite VC-dimension V ,

then for a universal constant c ° 0,

E
“ pRn

‰
§ c

a
V {n.

This covers the case of polynomial ranking rules, and we refer to Boucheron et al. (2005) for

similar inequalities for nonparametric classes such as kernel machines.

4.5 Computational Aspects

We discuss here some technical aspects involved in the practical implementation of the

AdaRankOpt algorithm.

4.5.1 General ranking structures

Fix any nested sequence of ranking structures pRN qN°0 and any sample tpxi, fpxiqqui§n . We

first address the questions of sampling xn`1 uniformly over the non-trivial subset

Rn “
!

x P X : Dr P RNn s.t. Lnprq “ 0 and rpx, xı̂nq • 0
)

,
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and second updating the index Nn`1 once fpxn`1q has been evaluated. We start to show that

both these steps can be done by testing if:

min
rPRN

Ln`1prq “ 0 (4.2)

holds true for a given N ° 0 where the empirical ranking loss is taken over a set of n ` 1

samples.

Uniform Sampling in the Relevant Region

Sampling x „ UpX q until x P Rn allows to sample uniformly over Rn . Using the definition

of the subset, we know that x P Rn if there exists a ranking r P RNn X tr : Lnprq “ 0u such

that rpx, xı̂nq P t0, 1u. Rewriting the previous statement in terms of minimal error gives that

x P Rn if:

• either minrPRNn
Ln`1prq “ 0, where Ln`1 is taken over the sample:

 
pxi, fpxiqq

(
i§n

Y
 
px, fpxı̂nqq

(
;

• or minrPRNn
Ln`1prq “ 0 where Ln`1 is taken over the sample:

 
pxi, fpxiqq

(
i§n

Y
 
px, fpxı̂nq ` Áq

(
,

and Á is any strictly positive constant.

Updating the Index

Now, assume that fpxn`1q has been evaluated. Since tRNuN°0 forms a nested sequence, we

have that:

Nn`1 “ Nn `min
!

i ° 0 : min
rPRNn`i

Ln`1prq “ 0
)

,

where the empirical loss is taken over:

 
pxi, fpxiqq

(
i§n`1

.

Therefore, Nn`1 can be updated by sequentially testing if:

min
rPRNn`i

Ln`1prq “ 0,

for i “ 0, 1, 2 . . ..

As mentioned earlier, both the previous steps can be done using a generic procedure that tests

if Eq. 4.2 holds true.

4.5.2 Practical Solutions for Particular Ranking Structures

We now provide some equivalences that can be used to design this procedure for the ranking

structures introduced in Section 4.2. For simplicity, we assume that all the evaluations of the

sample are distinct:

fpxp1qq † fpxp2qq † . . . † fpxpn`1qq, (4.3)
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where p1q . . . pn` 1q denote the indexes of the corresponding reordering.

Polynomial ranking rules

Consider the sequence of polynomial ranking rules pRP,N qN°0 and let „N : Rd Ñ R
Dpd,Nq be

the function that maps any point of Rd into the polynomial feature space of degree N where

Dpd, Nq fi
`

N`d
d

˘
´ 1. For example, „2px1, x2q “

`
x1, x2, x1x2, x2

1, x2
2

˘
. We start by making

the link with linear separability in the polynomial feature space.

Lemma 4.6 (LINEAR SEPARABILITY). Fix any N ° 0 and assume that all the evaluations are

distinct. Then, Eq. 4.2 holds true if and only if there exists h P RDpd,Nq such that,

@i § n,
@
h, „N pxpi`1qq ´ „N pxpiqq

D
° 0.

Proof. The proof is a consequence of the definition of polynomial ranking rules: if r P RP,N

then there exists h P RDpd,Nq and c P R such that:

rpx, x1q “ sgn
´

hJ„N pxq ` c´ hJ„N px1q ´ c
¯

“ sgn
´

hJ`„N pxq ´ „N px1q
˘¯

.

Noticing that for all i § n we have rf pxpi`1q, xpiqq “ 1, gives the result.

Interestingly, testing the linear separability of a sample is equivalent to testing the emptiness

of a sample-dependent polyhedron.

Corollary 4.2 (EMPTINESS OF A POLYHEDRON). Let MN be the pDpd, Nq, nq-matrix where its

i-th column is equal to: “
MN

‰
¨,i “ p„N pxpi`1qq ´ „N pxpiqqqJ ,

and let the © operator stands for the component-wise inequality. Then, under the same assump-

tions as in Lemma 4.6, Eq. 4.2 holds true if and only if the following polyhedron is empty:

!
v P Rn : MN v “ 0, 1

J
v “ 1, v © 0

)
“ H.

Proof. For any i § n let Xi fi „N pxpi`1qq´„N pxpiqq and let conv
`
tXiui§n

˘
be the convex hull

of tXiui§n . First, we have by convexity the following equivalence:

@i § n, Dh P RDpd,Nq, hJXi ° 0 ñ 0 R conv
`
tXiui§n

˘
.

Then using the definition of convex hull we get that:

0 P conv
`
tXiui§n

˘
ñ Dv P Rn, XJ

v “ 0, 1
J

v “ 1, v © 0.

We remark that the problem of testing the emptiness of a polyhedron can be seen as the

problem of finding a feasible point of a linear program. We refer to Chapter 11.4 in Boyd and

Vandenberghe (2004) where algorithmic solutions are discussed.
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Convex ranking rules

Consider the sequence of convex ranking rules tRC,NuN°0 . Following the steps of Clémençon

and Vayatis (2010) leads to the next equivalence.

Lemma 4.7 (OVERLAYING CLASSIFIERS). Fix any N ° 0 and let X “ ra, bs. Then, Eq. 4.2 holds

true if and only if there a exists a nested sequence h1 • h2 • . . . • hn`1 of n` 1 classifiers of

the form:

hipxq “
ÿ

k§N

1
 
li,k § x § ui,k

(
,

satisfying for all i, j § n` 1:

hipxpjqq “ 1tpjq • iu.

Proof. The implication from left to right a direct consequence of the definition of convex

ranking rules. Now, assume that there exists such a nested sequence of classifiers h1 •
. . . • hn`1 satisfying the conditions. To state the reverse implication we build a continuous

approximation of the step function:

hpxq “
ÿ

i§n

hipxq,

that perfectly ranks the sample and induces a convex ranking, for Á small enough:

phpxq “
ÿ

i§n`1

ÿ

k§N

„px, li,k, ui,kq

where „px, l, uq “

$
’’’’’&
’’’’’%

1´ l´x
Á

if x P pl ´ Á, lq
1 if x P pl, uq
1´ x´u

Á
if x P pu, u` Áq

0 otherwise.

By construction we have that Ln`1prphq “ Ln`1prhq “ 0 and rph P RC,N .

The problem of overlaying classifiers admits a tractable solution when d “ 1. In the specific

case where N “ 1 and d • 1, the problem of testing the existence of nested convex classifiers

is equivalent to the problem of testing the emptiness of a cascade of polyhedrons.

Lemma 4.8 (EMPTINESS OF A CASCADE OF POLYHEDRONS). Fix any d • 1 , let N “ 1 and

assume that all the evaluations are distinct. Then, Eq. 4.2 holds true if and only if for each k § n

the following polyhedron is empty:

!
v P Rk : Mkv “ xpn`1´kq, 1

J
v “ 1, v © 0

)
,

where Mk is the pd, kq-matrix where its i-th column is equal to xJ
pn`2´iq .

Proof. Using the definition of convex hulls, we show that each polyhedron of the cascade is

empty if and only if:

conv
`
txpiqun`1

i“n

˘
Ä conv

`
txpiqun`1

i“n´1

˘
Ä . . . Ä conv

`
txpiqun`1

i“1

˘
.
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Like above, we can build a continuous approximation of the function

hpxq “
ÿ

k§n

1
 
x P convptxpiquk§i§n`1q

(
,

which has a convex ranking rule and perfectly ranks the sample.

4.6 Experiments

We now assess the empirical performances of the AdaRankOpt algorithm on several bench-

marks functions and compare the results to other deterministic optimization algorithms.

4.6.1 Protocol of the Empirical Assessment

Parameters of AdaRankOpt

The tuning parameters of the competitors were set to default and the parameter p of

AdaRankOpt was set to 1{4 for the convex ranking rules and to 1{10 for the polynomial

ranking rules. We consider three synthetic problems:

Optimization Objectives

1. This task consists in maximizing the function:

fpxq “ 1
10
1tx§x‹u

´
-

-cosp50px´x‹qq
-

-

3{2´15
-

-x´x‹-

-

1{2
¯
´1tx°x‹u

´
|x|1{2` 1

20

-

-sin p50xq
-

-

3{2
¯
,

over X “ r0, 1s where x‹ “ 0.499. The function f has 17 local maxima and presents a

discontinuity around its unique optimizer x‹ . The convex ranking rules were used.

2. This task consists in minimizing a perturbed version of the Styblinski-Tang function:

fpxq “
2ÿ

i“1

px4
i ´ 16x2

i ` 5xiq{2` cospx1 ` x2q,

over X “ r´5, 5s2 . The level sets of the Styblinski-Tang function are displayed on

Figure 4.3 and the function has 4 local optima. The polynomial ranking rules were

used.

3. This task consists in maximizing the function:

fpxq “ 1´
-

-

-

-

-

1

10

10ÿ

i“1

pxi ´ 4.5q
-

-

-

-

-

5{2

,

over X “ r´5, 5s10 . The hyperplane
!

x P R10 :
∞10

i“1 xi “ 45
)

maximizes the function.

The polynomial ranking rules were used.
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Figure 4.4. – Empirical estimation of maxxPX fpxq ´ Erfpxı̂t
qs in terms of iteration n where the

expectation was obtained by running a 1000 times each algorithm.

4.6.2 Empirical Comparisons

We compared the performances of the AdaRankOpt against four global optimization algorithms

taken from the NLOpt library (Johnson, 2014): The results are shown in Figure 4.4. The plots

present the values of the approximation of the expected simple regret:

E
“
Sn

‰
“ sup

x‹PX
fpx‹q ´ E

“
fpxı̂nq

‰
,

for each iteration n, where the expectation was obtained by running 1000 times each algorithm.

We remark that the AdaRankOpt converges fast and avoids falling in local maxima, as opposed

to most of its competitors.

Controlled Random Search

The CRS algorithm from Kaelo and Ali (2006) is a controlled random search with local

mutations. It starts with a random population and randomly evolve these points by an

heuristic rule. This strategy consistently find the maximum of the objective, but we observed

that it requires more evaluations than AdaRankOpt to attain a given simple regret.

Lipschitz Optimization

The DIRECT algorithm from Jones et al. (1993) is a Lipschitz optimization algorithm where

the Lipschitz constant is unknown. It uses partitioning techniques of the search space. Since

the splitting threshold are deterministic, the curve from Figure 4.4 are not smoothed by

the empirical expectation. We see on Figure 4.4 that the performances of this algorithm

are not consistent, in that it sometimes requires an order of magnitude more iteration than

AdaRankOpt to obtain a given simple regret.

Evolutionary Algorithms

The ESCH algorithm from da Sliva Santos et al. (2010) and the ISRES algorithm from

Runarsson and Yao (2000) are two evolutionary algorithms. The evolution strategies are

based on a combination of mutation rules and differential variations. The drawback of

evolutionary algorithms is that they typically use lots of queries to maintain a “population” of

candidates, which results in slow convergence.
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4.7 Conclusion and Discussion

We have provided a global optimization strategy based on a sequential estimation of the

ranking of the unknown function. We introduced two algorithms: RankOpt which requires

a prior knowledge of the ranking rule of the unknown function and its adaptive version

AdaRankOpt which performs model selection. A theoretical analysis is provided and the

adaptive algorithm is shown to be empirically competitive with the state-of-the-art methods

on representative synthetic examples. To the best of our knowledge, this is the first approach

of this nature. Possible future research directions include extension of the algorithms to noisy

evaluations and characterization of the class of functions that attain the exponential rate

presented in the lower bound.
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5Applications and Implementation

Details

As stated in the introduction, the research presented in this dissertation has been motivated

by specific applications. In Section 5.1, we review practical and numerical tools required

for efficient implementations of the proposed algorithms. We then present, in Section 5.2,

two physical applications where we leverage these algorithms to solve research questions

from various domains. The first one relates to tsunamis analysis, and is a joint work with

Themistoklis Stefanakis published in Stefanakis et al. (2014). The second one relates to wave

energy converters, and is a joint work with Dripta Sarkar published in Sarkar et al. (2015)

and Sarkar et al. (2016). In Section 5.3, we describe applications for model calibration and

we present a joint work with Fabien Cailliez and Pascal Pernot on force field calibration.
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5.1 Efficient Computations and Software Library for

Bayesian Optimization

In this section, we describe computational techniques and implementation details for the

Bayesian optimization algorithms presented in Chapter 3.

5.1.1 Bayesian Inference

The computational complexity of Bayesian inference, from Eq. 2.14 and Eq. 2.16, is Opn3q,
where n is the number of observations. When not implemented carefully this may create a

computational barrier even for problems of medium size.

Computation of Posterior Distributions

Let us recall the following notations: Yn is the vector of observations at points Xn , k the

kernel of the Gaussian process, and ÷2 the variance of the noise. We write Kn for the square

matrix of kernel evaluations between the points in Xn. The computational cost of the Bayesian

inference is driven by the inversion of the kernel matrix plus a diagonal of noise variance,

Cn fi Kn ` ÷2
I.

Since this matrix is positive semi-definite by definition, we heavily rely on Cholesky decompo-

sition (Stewart, 1998), that is we find an upper triangular matrix Un such that:

U
J
n Un “ Cn .

The inversion is then replaced by the direct resolutions of two triangular systems, in Opn2q:

C
´1
n Yn “ U

´1
n U

´J
n Yn .

Cholesky decomposition is faster and more stable than normal inversion (Press, 2007). If

÷ “ 0 and the kernel is degenerate, like a linear or polynomial kernel, Cn might not be

strictly positive-definite and available algorithms may fail. To alleviate this constraint, we

numerically approximate the limit of the Cholesky decompositions:

U
J
n,iUn,i “ Cn ` i´1

I,

when i Ñ 8. The sequence of Un,i converges to Un,8 , and the limit satisfies the required

property:

U
J
n,8Un,8 “ Cn .

Iterative Updates of Posteriors

The computational complexity of Cholesky decomposition is still Opn3q. Fortunately, the cost

to compute Un`1 knowing Un is only Opn2q. Therefore, Bayesian optimization algorithm

may do only updates of the posterior at each iterations. Using the block notation,

Cn`1 “
«

Cn Cn,n`1

C
J
n,n`1 Cn`1,n`1

ff
,
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we give here the update formulae for the Cholesky decomposition (Stewart, 1998):

Un`1 “
«

Un V

0 Z

ff
,

where V fi U
´J
n Cn,n`1 ,

and Z fi choleskypCn`1,n`1 ´V
J

Vq.

These formulae adapt to the case where we update the posterior after a batch of K observa-

tions. In that case the computational complexity is Opn2K3q.

5.1.2 Gaussian Process Prior Selection and Validation

As mentioned in Section 2.1.5, the parameters ◊ of the prior Gaussian process distribution

and the noise variance are typically not known. A common method to select these parameters

is to minimize the negative posterior log-likelihood:

Lnp◊q fi 1
2
Y

J
n C

´1
n,θYn ` 1

2
log

-

-Cn,θ

-

-` n
2

log 2fi.

Full-Bayesian perspectives where one puts prior on the parameters ◊ is often not a practical

approach for Bayesian optimization since the computational burden is prohibitive.

Leave-One-Out Posterior Likelihood

One drawback of optimizing the likelihood is that it is prone to overfitting for general priors.

The popular solution in machine learning is to perform cross-validations (Hastie et al., 2008).

We consider here the simplest case of cross-validation, the leave-out-out validation, where we

perform the above step with all single observations successively hidden. That is, we try to

minimize the loss:

Lloo
n p◊q fi

nÿ

i“1

´
1
2

log ‡2
nzi,θpxiq `

`
2‡2

nzi,θpxiq
˘´1`

yi ´ µnzi,θpxiq
˘2
¯

, (5.1)

where µnzi,θ and ‡2
nzi,θ are respectively the posterior expectation and variance using the n

observations but the i-th. In general, the Lloo
n function may not be convex. Nevertheless, its

values can be computed quickly together with its gradients, and the minimization is commonly

performed with gradient-based algorithm like the BFGS algorithm or the ConjugateGradient

descent (Press, 2007).

Efficient Computations of the Likelihoods

As before, the value of Ln can be efficiently obtained by Cholesky decomposition of Cn , since

both the quadratic form and the determinant are easily extracted thereafter. An efficient way

to get the values of Lloo
n is to first compute the Cholesky decomposition of Cn using all the

observations, and then successively extract the decompositions with one hidden observation.

Removing one observation requires a rank-one update of the decomposition. Using the block

notation:

Un “

»
—–

Un,i´1 Un,i´1,i Un,i´1,i`1

U
J
n,i´1,i Un,i Un,i,i`1

U
J
n,i´1,i`1 U

J
i,i`1 Un,i`1

fi
ffifl ,
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the formulae to downgrade the Cholesky decomposition is:

Unzi “
«

Un,i´1 Un,i´1,i`1

0 V

ff
,

where V “ cholupdatepUn,i`1, Un,i,i`1q,

where cholupdatepU, Zq returns in Opn2q the decomposition of U` Z
J

Z.

5.1.3 Non-Gaussian Processes

For Gaussian processes, deriving confidence intervals is easy thanks to closed formulae for

the Bayesian inference. In the case of other stochastic processes, like the one presented in

Section 3.3.2, such closed formulae may be hard to derive. In that case, we fall back to the

numerical inversion of one-dimensional functions involved in the Cramer-Chernoff method.

This techniques may be used both in the computation of the smoothness ¸p¨, ¨q from Eq. 3.19

and the upper and lower confidence bounds Unp¨q and Lnp¨q from Eq. 3.23.

Computing Confidence Bounds with the Cramer-Chernoff Method

Let X by a random variable, and Â its log-Laplace transform, which is a convex function on a

set I Ñ R:

@⁄ P I, Âp⁄q fi logE
“
e⁄X

‰
.

As in the previous chapters, lets Â˚ be the Legendre-Fenchel dual of Â:

Â˚psq fi sup
⁄PI

`
⁄s´ Âp⁄q

˘
.

Since Â is increasing, computing Â˚ is equivalent to invert the derivative:

Â˚psq fi Â
`
Â1´1psq

˘
.

For a squared Gaussian X “ Y 2 with Y „ N pµ, ‡2q, we obtain by classical calculus:

Â1´1psq “ 1

4

˜
´2s‡2`2µ2‡2`‡4´

a
´4sµ2‡4 ` 4µ4‡4 ` 4µ2‡6 ` ‡8

¸´
s‡4´µ2‡2´‡6

¯´1

.

When closed forms are not available Â˚ can be computed by numerical inversion, as described

in the next paragraph. Next, we recall Â˚´1 the generalized inverse of Â˚ , that is:

Â˚´1puq “ inf
 
s P R : Â˚psq ° u

(
.

Up to our knowledge, no closed formulae exists in case of a squared Gaussian. Since the

convex conjugate is also convex the inversion is easily done by classical numerical algorithm

as in the previous case. With this techniques we obtain the high confidence bound:

P
“
X § Â˚´1puq

‰
• 1´ e´u .
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Numerical Inversion with Newton’s Method

The two numerical inversions introduced above are easily solved by Newton’s method or

even a dichotomic search. Both the derivative Â1 and the convex dual Â˚ are monotonic one-

dimensional functions, so the numerical convergence is extremely fast. In our experiments,

we performed Newton’s algorithm combined with the bisection method (Press, 2007), and

always observed quadratic convergence. We modified the Newton’s algorithm to include

lower and upper bounds on the targeted root, and performed a bisection step each time

the Newton’s step fall outside the bounds. Other techniques such as the secant method, the

Regula Falsi method or the Brent’s method (Press, 2007) could be other approaches if initial

upper and lower bounds are known.

5.1.4 Software Library Release

We released the source code of the algorithms presented in Chapter 3 as a Matlab library and

a Python library. The code is available at this address:

https://reine.cmla.ens-cachan.fr/e.contal/gpoptimization

and the documentation on the following web page:

http://econtal.perso.math.cnrs.fr/software

The previous numerical techniques from Section 5.1.1 to Section 5.1.3 are all implemented in

vector forms, which makes the software roughly as fast as the low level linear algebra libraries.

For example the previous Newton-bisection method is implemented so as to compute a large

number of steps together and, in Matlab, using all the available cores.

5.2 Applications for Physical Simulations

This section is dedicated to a presentation of the results obtained in two optimization problems

in fluid dynamics applications.

5.2.1 Tsunamis Amplification Phenomenon

Small islands in the vicinity of the mainland are widely believed to offer protection from

wind waves, and, under some conditions they do. Thus many coastal communities have

grown in mainland areas behind small islands. However, whether they offer protection

from tsunamis is unclear. Recent post-tsunami onland survey measurements supported by

numerical simulations suggest that the run-up—the elevation of the maximum wave uprush

on a beach or structure above still water level—on coastal areas behind small islands was

significantly higher than on neighboring locations, not affected by the presence of the islands.

To study the conditions of this run-up amplification, we solved numerically the nonlinear

shallow water equations (NSWE). We use the simplified geometry of a conical island on a flat

seafloor in front of a uniform sloping beach. Our objective is to find the maximum run-up

amplification with the least number of simulations. To achieve this goal, we used Bayesian

optimization with Gaussian process. The search space is defined by five physical parameters,

namely the island slope, the beach slope, the water depth, the distance between the island

and the plane beach and the incoming wavelength. Our active learning approach reduces
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substantially the computations required to determine the maximum run-up amplification. We

found that in none of the geometries considered do islands offer any protection, and, that in

most cases they amplify the run-up in the shadow zone behind them compared to adjacent

unshadowed locales.

Maximization of the Output of Tsunamis Simulations

In the last decade, the 26 December 2004 tsunami in Indonesia and the 11 March 2011 event

in Japan spread death and destruction and huge economic loss at affected sites. Both events

increased public understanding of tsunamis, and raised awareness and preparedness in at-risk

communities. Preparedness remains the only effective countermeasure to save lives. The

most used quantitative indicator for tsunami impact is the run-up. Since the 1950s tsunami

run-up on a plane beach has been extensively studied by Stefanakis et al. (2011) and many

authors. Laboratory experiments, numerical computations and analytical models showed

that long waves can amplify wave run-up on the lee side of conical islands, compared with

the run-up on the side of the island fronting the wave. Interesting recent observations have

shown enhanced tsunami run-up in coastal areas in the Mentawai islands off Sumatra, in

locales behind small islands, supposedly protected by the islands. Can small islands widely

believed to act as natural barriers for tsunamis, transform into amplifiers of wave energy in

coastal areas they shadow, which is often where coastal communities thrive? We investigated

whether the observation for the 25 October 2010 Mentawais tsunami was caused by unusual

combinations of bathymetry and tsunami characteristics, or whether it is indicative of a

more general phenomenon. Without computational enhancements, we would have to vary

island geometries, coastal beach slopes, offshore depths, distance between the islands and

the coastline, and tsunami wavelengths, independently, performing literally thousands of

computations to identify patterns, and whether combinations of these parameters produce

unusual amplification. We used the GP-UCB-PE algorithm from Section 3.1.2 to limit the

numbers of combinations and identify run-up extremes to help us better understand the

interaction of the physical parameters and thus identify locales which may be at higher risk

of inundation. Moreover, building a Bayesian posterior has further advantages, the most

important one being the ability to use it instead of the actual simulator, as it is much less

computationally demanding to evaluate, and thus can be applied very rapidly. This can be

a substantial advantage in tsunami prediction, when a quick forecast is needed. It is also

possible to perform a sensitivity analysis of the model output to the several input parameters.

In none of our experiments, did our small islands produce amplification less than one. It

appears that, contrary to popular belief and intuition, small islands can act as tsunami lenses

focusing energy behind them.

Experimental Configuration

Our simplified bathymetric profile consists of a conical island sitting on a flat seafloor fronting

a plane beach (Figure 5.1 Left). The height of the crest of the island above still water level

is always 100m. The numerical simulations were performed using VOLNA (Dutykh et al.,

2011) which solves the NSWE. VOLNA can simulate the whole life cycle of a tsunami from

generation to run-up. The run-up was measured on the plane beach exactly behind the island

and on a lateral location along the beach, which was far enough from the island and thus

was not directly affected by its presence (Figure 5.1 Right). Since the unknown function
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Figure 5.1. – Experimental set-up for tsunami amplification phenomenon

was assumed to be smooth, we choose a squared exponential kernel (Eq. 2.12) as a prior

covariance structure. We selected the parameters of the kernel and the noise variance by

empirical minimization of the pseudo likelihood (Eq. 5.1) on a data set of 200 observations at

locations placed by LHS design (McKay et al., 2000). The fact that the physical simulations

were obtainable in parallel by computations on multiple cores motivated the development

of novel algorithms for batch-sequential optimization. We then introduced the GP-UCB-PE

algorithm (displayed as Algorithm 8 in Chapter 3). The batch size was 20, which led to large

improvement compared to purely sequential strategies. We performed 35 iterations, until an

innovative stopping criterion was fulfilled.

A Novel Stopping Criterion with Ranking

Our approach to decide when to stop the iterative strategy is to monitor when the procedure

ceases to learn relevant information. We attempt to measure the global changes in the

estimator µn between two successive iterations, with more focus on the highest values, where

µn from Eq. 2.14 is the posterior expectation of the process. The algorithm then stops when

these changes become insignificant for a short period. The change between µn and µn`1 is

measured by the correlation between their respective values on a finite validation data set

Xv Ä X . Let us denote by nv the number of elements in the validation set Xv , and Gnv the

set of all permutations of 1, . . . , nn . Let fin P Gnv be the ranking function associated to µn ,

such that:

fin

`
argmax

xPXv

µnpxq
˘
“ 1,

and fin

`
argmin

xPXv

µnpxq
˘
“ nv .

We then define the discounted rank dissimilarity dXv as:

dXvpfin´1, finq fi
ÿ

xPXv

`
finpxq ´ fin´1pxq

˘2

finpxq2
,
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Figure 5.2. – Empirical relationship between the simple regret Sn and the rank dissimilarity 1´ ρn

(in log-scale) on a synthetic function.

and the normalized rank correlation ρn as:

ρn fi ρXvpπn´1, πnq “ 1´ Z´1dXvpπn´1, πnq where Z fi max
π`,π´PGnv

dXvpπ`, π
´q.

The normalization factor Z represents the discounted rank dissimilarity between two reversed

ranks π
` and π

´ . This normalized rank correlation can be seen as a modified Spearman’s

rank correlation adapted to measure changes around the maximum. We stop the algorithm

when ρn stays below a given threshold t0 for i0 iterations in a row. The value of this threshold

is fixed empirically. In Figure 5.2, we performed a comparison between ρn and the simple

regret Sn on synthetic functions, and fixed t0 “ 10´4 and i0 “ 4.

The Effect of the Island

After running the algorithm, we have found that in none of the situations considered did

the island offer protection to the coastal area behind it. On the contrary, we have measured

amplified run-up on the beach behind it, compared with a lateral location on the beach,

not directly affected by the presence of the island. This finding shows that small islands in

the vicinity of the mainland act as amplifiers of long waves at the region directly behind

them and not as natural barriers as it was commonly believed. The maximum amplification

found by GP-UCB-PE was approximately 70% more than if the island was absent. The island

focuses the wave on its lee side. The amplified wave propagates towards the beach and

causes higher run-up in the region directly behind the island. One of the key questions is

which parameters control the run-up amplification and how. To answer these questions, we

can use the posterior mean function of the Gaussian process. We perform a local sensitivity

analysis around the maximum by fixing all parameters, except one each time at the value

which corresponds to the maximum, and we vary the excluded parameter across the whole

range of its input space. We observed that the water depth, the beach slope and the frequency

the wave are more important. Our analysis provided one example of what may be possible

in the future for tsunami forecasts. Instead of relying on vast databases of pre-computed
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Schematic of a WEC Simplified interactions in a WECs array

Figure 5.3. – Simple model of wave energy converters

scenarios, it may well be possible to vary uncertainties in parameters of the initial estimates of

fault characteristics available shortly after an event and obtain faster than real time estimates

of maximal inundation.

5.2.2 Wave Energy Converters

The wave energy converters (WECs) are devices that uses the motion of the waves to generate

electricity. Optimization of the layouts of arrays of wave energy converters (WECs) is a

challenging problem. The hydrodynamic analysis and performance estimation of such systems

are obtained using semi-analytical and numerical models such as the boundary element

method. However, the analysis of an array of such converters becomes computationally

expensive, and the computational time increases rapidly with the number of devices in the

system. Therefore finding of optimal layouts of WECs in arrays becomes extremely difficult.

We present a methodology involving multiple optimization strategies to arrive at the solution

to the complex problem. The approach includes predictions of the performance of the WECs

in arrays from a Gaussian process learned with the GP-UCB-PE algorithm, followed by a

genetic algorithm to obtain the optimal layouts of WECs. The method is extremely fast and

easily scalable to arrays of any size. Case studies are performed on a wavefarm comprising of

40 WECs subject to arbitrary bathymetry and space constraints.

Optimization of Spatial Layout of an Array of WECs

Arrays of WECs have been extensively studied in the literature (Budal, 1977; Simon, 1982;

Kagemoto and Yue, 1986; Child and Venugopal, 2010). Advances in numerical and analytical

techniques in the analysis of wave-structure interactions have enabled the investigation of

the behavior of arrays of WECs of arbitrary shapes, taking into account the effects of both

the diffracted and the radiated wave fields. The general objective is to understand the effect

of the interactions on the performance of the WECs and to determine layouts which would

maximize the power captured from the whole system. In order to quantify the effects of the

interactions on the performance of the array, the q factor is defined as the ratio of the net

power captured (ideally the maximum possible) to the power absorbed by the same WECs in

isolation. It is possible to have q factors larger than 1 for particular wave frequencies. But

the peaks in the q factor are accompanied with wide troughs in its variation, and since a

real ocean is polychromatic, it was suggested that a properly designed array configuration

should minimize the effect of the destructive influences. However, the identification of

optimal layouts for a particular wave-climate is still a big challenge. The complexity of the

optimization problem is manifold. The number of WECs in arrays can vary from one site
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Figure 5.4. – Example of bathymetry constraints for the locations of the 40 WECs

to another, and separate optimization needs to be performed in each case. Every single

evaluation of the numerical/semi-analytical models has a computational cost which increases

with the size of the array. In addition, there can be various constraints to such a problem

(e.g. bathymetry variations for nearshore WECs). In Child and Venugopal (2010) the authors

present a parabolic intersection method and a genetic algorithm to arrive at the optimal

layouts of arrays. While the parabolic intersection approach uses simple calculations for a

quick estimate of the array layouts, the genetic algorithm requires many evaluations of a

semi-analytical (or numerical) method which is computationally expensive. Such a direct

application of sequential optimization techniques also implies that if the number of WECs

is changed, a new set of evaluations needs to be computed and analyzed. In this work we

propose a fast and scalable approach to address the challenge of determining the best layout

for any number of WECs and arbitrary bathymetry constraints. We first use GP-UCB-PE

to train a statistical emulator of the individual WECs inside the array. We then predict the

performance of the whole wavefarm by evaluating only the quasi-instantaneous posterior. The

optimization of the layout under the various constraints is then performed on the predicted

performances with a genetic algorithm designed specifically for this task.

Methodology and Bayesian Inference

A wavefarm comprising of M “ 40 WECs is considered, and so the 2M variables that needs

to be optimized are x1, y1, . . . , xM , yM the horizontal and vertical coordinates of the centers

of the WECs. The overall performance q of the array is decomposed as the sum of the powers

qi captured by each individual WEC:

q fi 1`M´1
ÿ

i§M

qi .

In a realistic scenario, the seas are highly irregular, and the interaction effects on a particular

WEC due to WECs located away from it are largely diminished. It is reasonable to assume

that individual WECs in an array are predominantly influenced by those located very close

to them, as illustrated on Figure 5.3. Our approach targets the approximated performance

rq where we simplify the model of the individual WECs in order to take into account only a

limited number of interactions. A WEC located inside the array is strongly influenced by the

two WECs which are nearest to it, i.e. one on each side. To model the behavior of such a
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WEC, we consider a 3-WECs cluster and focus on the behavior of the central WEC. On the

other hand, the edge WECs are modeled using a 2-WECs cluster:

rqpx1, y1, . . . , xM , yM q fi 1`M´1
´
rq2px1, y1, x2, y2q

`
M´1ÿ

i“2

rq3pxi´1, yi´1, xi, yi, xi`1, yi`1q

` rq2pxM´1, yM´1, xM , yM q
¯

.

The prediction function is computed with the posterior of a Gaussian process with a modified

squared exponential kernel, trained with the GP-UCB-PE algorithm on both rq2 and rq3 . The

introduction of the GP-UCB-PE algorithm is crucial for this approach to succeed. It permits

to explore the values of rq2 and rq3 while converging to their optimal configurations using

only a manageable number of expensive physical simulations. A traditional methodology

involving any space filling exploration would not be affordable in this context. The kernel

was designed to incorporate invariance by translation and symmetry of the clusters along

the vertical axis. Note that in this setting, computing the exact value of q was not possible

in a reasonable amount of time, so we cannot perform optimization of q directly but only

rq . In our optimization methodology, we considered some constraints which are relevant

to the problem. The devices are nearshore WECs with depth specific designs, and as such

bathymetry will play a significant role in deciding their locations. We consider an upper and

a lower bound on the bathymetry contours, within which the placement of the center of

the devices is restricted. Although the mathematical model (for simulations) is based on a

constant water depth assumption, the bathymetry constraints in the optimization problem

take account of the spatial limitations imposed by the depth variations at real locations, in

the placement of the WECs, as illustrated in Figure 5.4. The simulations for the various

layouts are performed using the mathematical model of Sarkar et al. (2014). As previously,

the parameters of the prior were selected by minimization of the pseudo likelihood, on a data

set of 200 observations for rq2 and 800 observations for rq3 , and the same stopping criterion

was used. The algorithm stopped after 7 iterations for rq3 and only 2 iterations for pq2 , which is

explained by its highly predictable value with a single neighboring WEC.

Optimization of the Predictions with Genetic Algorithms

The determination of the optimal layouts is a challenging task, due to the number of variables

and the various constraints. Thanks to the quasi-instantaneous computations of the posterior,

we are able to approximate the power captured by any layout in a fast and scalable manner.

Once we trained the two predictors of the performance of a WEC, we validated the quality

of the predictions by performing leave-one-out cross-validation, which ensured that the

predictors are able to generalize the physical properties of any WEC array. We then summed

the outputs for the M WECs to get pq a prediction of rq , and finally aimed at optimizing pq . The

optimization of the predicted performance of an array given some bathymetry constraints

is fundamentally different from the global optimization problems considered in this thesis.

Indeed the dimension of the search space is large and the evaluations are immediate. We

explored the space of valid layouts using a genetic algorithm. The population size of each

generation of the genetic algorithm is chosen to be 211 , since the computational time per
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Figure 5.5. – Best WEC array after 16.106 array predictions. The displayed values q account for the
predicted pq factor.

unit prediction ceased to improve beyond it. The initial population of the WEC layouts was

selected uniformly such that the bathymetry constraints are all satisfied. In our approach, we

used custom crossover and mutation operators such that all the constraints are kept satisfied.

Our methodology for initialization, crossover and mutation is described in the reference

(Sarkar et al., 2016).

Optimal Predicted WEC Arrays

We considered five different arbitrary bathymetry constraints which take account of the

limitations in the placement of the WECs due to depth variations, and fixed the spatial

extend of the wavefarm in the horizontal direction. In Figure 5.5 we show the output of the

genetic algorithm after 8000 generations (which corresponds to 16 millions array predictions)

compared to the best prediction obtained with 16 millions random arrays stratifying the

constraints. The predicted pq factor obtained by the genetic algorithm is consistently greater

than 1, even for stringent bathymetries, which indicates WEC array of performance larger

than if the WEC were placed far from each other. The comparison to the best of purely

random arrays confirms that the genetic algorithm is useful in that case. The predicted pq
factor obtained by randomly generated arrays is consistently lower than 1. In our paper

(Sarkar et al., 2016), we further analyze the quality and scientific relevance of the predictions

by assessing the predictions pq and the approximations rq of q, on specific layouts with known q

factors. These results are not of optimization concern and go beyond the scope of this thesis.

Conclusion

The developments in this work can have several implications. Besides providing a procedure

for optimization, the analysis can offer some practical guidelines to wavefarm developers
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in designing arrays. In general, many problems related to ocean engineering/wave energy

require evaluation of costly functions (simulation models). Surrogate models based on

Gaussian processes can be used to mimic the outcome of the simulations, and the introduction

of Bayesian optimization is crucial to obtain relevant emulators in few iterations. The general

approach of developing a Bayesian predictor and then performing an optimization using

genetic algorithm could be pursued for determining optimal layouts of other type of WECs or

renewable energy devices.

5.3 Applications to Model Calibration

In this section, we present further experiments on real applications requiring the non-Gaussian

model from Section 3.3.2.

5.3.1 Calibration of Force Fields Parameters for Molecular

Simulation

Thanks to the large computational power available, simulations of molecular mixtures is

now a popular way to study thermodynamic properties of pure chemical compounds. These

force field models define the interactions between molecules, and the involved analytical

expressions require calibration parameters that do not have physical interpretation.

Computational Chemistry Methodology

In order to calibrate the force field parameters, we consider the simplified approach below.

For a vector of parameters ◊ P Θ, molecular dynamics simulations are computed and multiple

thermodynamic properties
 
gip◊q

(
i§N

are obtained with respective uncertainty ui , where

gi : Θ Ñ R and ui P R for 1 § i § N . These properties correspond to measurable

physical quantities such as liquid density at N different temperatures. Let
 
g

exp
i

(
i§N

be the

experimental values of these quantities. In a Bayesian framework with Gaussian assumptions

and uniform prior, the likelihood of the force field parameters is given by:

P

”
◊ |

 
gip◊q, g

exp
i

(
i§N

ı
“ Z exp

`
´ 1

2
fp◊q

˘
,

where fp◊q fi
Nÿ

i“1

`
gipxq ´ g

exp
i

˘2

u2
i

,

and Z P R is a normalization constant. The methodology is then to minimize f with respect

to ◊ by successive computations of molecular dynamics. Once the parameters ◊ are optimized,

the force field model can be used to predict unknown thermodynamic properties gp◊q.

Global Optimization of Quadratic Forms

The minimization of f is often done with gradient-based algorithms. However, the function

f may not be convex and this approach may fail to find the global minimum. In Cailliez

et al. (2014), the authors assumed that the properties gip¨q are realizations of independent
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Figure 5.6. – Empirical mean and confidence interval of the simple regret Sn in term of iteration n on
sums of squared Gaussian process.

Gaussian processes Θ Ñ R. They used the EI rule (Jones et al., 1998) to sequentially optimize

f :

xn`1 P argmax
xPX

E

”`
fpxı̂nq ´ fpxq

˘
` |Fn

ı
,

where ı̂n P argmin
i§n

yi .

However this selection strategy is designed for f being a Gaussian process, not a quadratic

form. The authors bypassed this issue by computing numerical expectation of f , along

samples of the Gaussian processes gi . A collaboration with the authors motivated the work

previously presented in Section 3.3.2, where we introduce a sound and computationally

efficient algorithm to optimize sums of squared Gaussian processes.

Experimental Results

We present here an experimental comparison of the performances of our novel Algorithm 13

from Section 3.3.2, that we called GP2-UCB, against the EI strategy with Monte Carlo

expectations. The objective function is a sum three squared non-centered Gaussian processes:

fpxq “
3ÿ

i“1

g2
i pxq,

where gi „ GPpmi, kiq.

In this setting ki is known but mi is not. Bayesian inference adapts easily to the problem of

estimating mi, as stated in Section 2.7 of Rasmussen and Williams (2006). For the EI strategy,

the expectation is computed with 104 Monte Carlo samples. The evolution of the simple regret

Sn along the iterations is reported in Figure 5.6. It is clear that the EI rule fails to converge to

the global optimum of f . As guaranteed by the theoretical analysis, the GP2-UCB algorithm

consistently finds the optimum.

5.3.2 Hyper-Parameter Optimization and Further Perspectives

We conclude this section by presenting further possible applications of the algorithms deve-

loped in this thesis.
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Squared Gaussian Processes

A famous application of Bayesian optimization is the selection of hyper-parameters of machine

learning algorithms. The hyper-parameters are typically selected in order to minimize a

generalization loss computed empirically by cross-validation (Snoek et al., 2012). However

standard loss functions do not look like Gaussian processes. A common approach considers

to model the logarithm of the loss function as a Gaussian process, to alleviate the positivity

and scale issues. The previous methodology using the GP2-UCB Algorithm 13 is a perfect

candidate for optimizing any (monotone composition of) sum of squares, when one has access

to the individual terms. The classical mean-squared-error loss is the canonical example of

such objective, and other losses such as Gaussian likelihood also fit in this setting.

Simple Ranking Structures in High Dimension

In addition to the GP2-UCB algorithm, we have stated that the AdaRankOpt Algorithm 15

has shown fast empirical convergence for functions in higher dimension with simple ranking

structures. From empirical observation, we believe that the optimization objectives from cross-

validation have simple ranking structures even when the number of hyper-parameters is large.

The AdaRankOpt algorithm will perform better than its competitor for many dimensional

functions with few modes and a presence of “barriers”, that is regions in the search space

where the loss explodes. Indeed, Lipschitzian or Bayesian optimization are not well suited for

such cases.
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Conclusion and Perspectives

This thesis presented new algorithms and theoretical results for global optimization. We first

described a Bayesian optimization technique selecting the sequential queries by mini-batches

instead of one by one. We proved theoretical guarantees for this method for various notions of

regrets. In particular for the usual cumulative regret, the fact that we select multiple queries

simultaneously without waiting for observations has an impact on the regret only by constant

factors. We then leveraged novel techniques using discretization trees for the canonical metric

of Gaussian processes, in order to adapt Bayesian optimization algorithms such as UCB to

arbitrary compact spaces. The regret bounds we derived are similar to the state-of-the-art

on finite search space up to poly-logarithmic factors. These regret bounds involve the metric

entropy of X instead of its cardinality, and especially the covering dimension. We proved that

the discretization error of our method is optimal up to constant terms, which forms a step

toward proving regret lower bounds for Bayesian optimization in metric spaces. We then gave

further results on Bayesian optimization, and shown that Bayesian optimization is still sound

for objectives that are not Gaussian processes but other stochastic processes with less stringent

smoothness assumptions. We analyzed in particular quadratic forms of Gaussian processes.

Later we introduced a novel optimization framework for non-smooth functions. Our method

relies on ranking structures, a condition on the level sets, and the obtained algorithms perform

only function comparisons. We gave theoretical analysis of the error under mild assumptions,

and shown that this method performs well in practice against state-of-the-art competitors.

Finally, we presented practical considerations and multiple applications leveraging the above

works, for various real research problems.

This thesis exhibits connections between hierarchical optimistic optimization and Bayesian

optimization. Yet, we plan to analyze further the links between those approaches, and notably

with respect to fast rates for the simple regret in Bayesian optimization algorithms. The work

on Bayesian optimization in metric space opens new perspectives to deriving theoretical lower

bounds on the regret and optimal algorithms. Another benefit of having lower bounds on the

supremum is that it permits to derive strategies with fast convergence rate for deterministic

observations, in the spirit of the DOO Algorithm 5 from Section 2.2.3. Unlike Lipschitzian

optimization, in Bayesian optimization the metric ¸ does not control directly the maximum

increment of f , and we may use instead the values Êpxq obtained by generic chaining from

Theorem 3.2. We believe that the following deterministic optimization algorithm may exhibit

fast convergence rates in typical scenarios, and we planed to analyze its simple regret. This

strategy, detailed in Algorithm 16 performs as follows: it greedily grows a sub-tree of the

discretization tree, for which every internal nodes has been evaluated, and queries leaf nodes.
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Algorithm 16: GP-DOO

x1 – T0

fpx1q – Querypx1q
L – Childrenpx1q
for n “ 1, 2, . . . do

@x P L, Upxq – fpppxqq ` Êpppxqq
xn`1 – argmaxxPL Upxq
fpxn`1q – Querypxn`1q
L – LY Childrenpxn`1q
L – Lztxn`1u

end

The selected leaf is among the ones whose parent maximizes the upper confidence bound,

that is, with L the current set of leaves:

xn`1 – argmax
xPL

fpppxqq ` Êpppxqq.

The tree is computed incrementally with the GreedyCover procedure as for Algorithm 11.

Like in Section 2.2.3, this algorithm selects queries in a particular set of near-optimal nodes

containing the optimum of f . Now, when it exists Á ° 0 such that Êpppxn`1qq † Á, the simple

regret is at most Á. An analysis of the near-optimal dimension would lead to fast regret bounds

when dimflpX , ¸q “ 0 holds. Yet the analysis of the near-optimal dimension, a complicated

random variable, cannot be done with usual tools from global optimization.

Finally, the work on non-smooth optimization using ranking opens new prospects, specifically

to adapt the algorithm for noisy observations, and to investigate sufficient conditions to obtain

fast convergence rates.
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AAppendix

Attempt for Improved Regret Bounds

In this section, we describe a fruitless attempt to prove logarithmic cumulative regrets with

high probability for Gaussian process optimization. This work has been presented in Contal

et al. (2014), before we discovered a mistake in the proof.

1 Proof Techniques to Get Rid of the Square Root

The lower bound from Eq. 2.31 tells us that logarithmic cumulative regrets cannot be achieved

in expectation, in the general setting. Yet, this does not include results with high probability

1 ´ e´u if the parameter u is fixed and known. Since the Op?nq regret obtained by the

GP-UCB algorithm and other related algorithms comes from the use of the Cauchy-Schwarz

inequality:
nÿ

i“1

sn §
d

n

nÿ

i“1

s2
n § ?

c÷n“n ,

this motivates the investigation of better regret bounds in particular settings where the

Cauchy-Schwarz inequality would be over conservative.

Preliminary Observations

Our idea works as follows. Since for Gaussian processes the posterior given n observations at

points x1, x2 is Gaussian, as stated in Eq. 3.5, we may be able to get better concentration from

analysis of Gaussian martingale. Let x‹ be a fixed point of X and xn a Fn´1-measurable query.

Given Fn´1, we have that fpx‹q ´ fpxnq is a Gaussian N
`
µn´1px‹q ´ µn´1pxnq, ¸2

n´1px‹, xnq
˘
.

Let Mn be the centered cumulative differences,

Mn fi
nÿ

i“1

∆Mi , (A.1)

with ∆Mi fi fpx‹q ´ fpxiq ´
`
µi´1px‹q ´ µi´1pxiq

˘
.

The increment ∆Mi is thus distributed as a centered Gaussian with variance ¸2
i´1px‹, xiq §

‡2
i´1px‹q ` ‡2

i´1pxiq . Let the deterministic sequence yn equals to c÷“n and the stochastic

sequence Nn equals to
∞n

i“1 ‡2
i´1px‹q, with c÷ “ 2

logp1`÷´2q like previously and “n defined in

Eq. 2.33, so that
∞n

i“1 ¸2
i´1px‹, xiq § yn `Nn .

Self-Normalized Martingale Inequalities

In the next lemma we get self-normalized Cramér-type exponential inequalities for a Gaussian

martingale, also known as the method of mixtures. Unfortunately, we will see later that this

lemma cannot be applied to obtain upper bounds on the cumulative regret.
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Lemma A.1 (GAUSSIAN MARTINGALE WITH PREDICTABLE QUADRATIC VARIATION). Let pMnqn•1

be a Gaussian martingale adapted to Fn , that is it exists p¸nqn•1 a sequence such that ¸n is

Fn-measurable and for all ⁄ P R:

logE
”
e⁄∆Mn |Fn´1

ı
“ 1

2
⁄2¸2

n´1 ,

where ∆Mn fi Mn`1 ´Mn .

If xMyn fi
∞

i§n ¸2
i´1 § yn `Nn where Nn is Fn´1-measurable and yn is a scalar, then for all

u ° 0:

P

„
Mn §

a
2uyn `

c
u

2yn
Nn

⇢
• 1´ e´u .

Proof. The proof of this lemma is inspired by the work of de la Peña (1999) and Bercu and

Touati (2008). For all x ° 0, let An the event
!

Mn • x
´

1` Nn

2yn

¯)
. By Markov’s inequality,

for all a ° 0 we know that:

P
“
An

‰
§ E

„
exp

ˆ
aMT ´ ax

ˆ
1` NT

2yT

˙˙⇢
.

Let us define Wnpaq fi exp
´

aMn ´ a2

2
xMyn

¯
. Plugging Wn in the previous inequality we

obtain P
“
An

‰
§ E

”
Wnpaq exp

´
a2

2
xMyn ´ ax

´
1` Nn

2yn

¯¯ı
. Using xMyn § yn ` Nn and

choosing a “ x
yn

, this simplifies to:

P
“
An

‰
§ exp

ˆ
´ x2

2yn

˙
E

“
Wnpaq

‰
.

The martingale pMnq being Gaussian, we know by the law of iterated expectations and by

induction that E
“
Wnpaq

‰
“ 1 for all a ° 0 . The proof of Lemma A.1 follows by choosing

x “ –
?

yn .

In order to obtain sharp bounds on the martingale from Lemma A.1, we choose xn such that

the sum of the expectations µn´1px‹q´µn´1pxnq cancels out the term involving Nn, at a price

smaller than
?

2uyn .

Lemma A.2 (INEQUALITY WITH THE EXPLORATION FUNCTION). Let yn P R , µn : X Ñ R

and ‡n : X Ñ R such that 0 § ‡npxq § 1 . Fix u ° 0 and let xn be the maximizer of

µn´1pxq ` „n´1pxq for x P X , where the exploration function „n´1 is defined as:

@x P X , „n´1pxq fi
?

2u

˜
‡2

n´1pxq `
n´1ÿ

i“1

‡2
i´1pxiq

¸ 1
2

.

Then the following inequality holds for all x‹ P X :

nÿ

i“1

`
µi´1px‹q ´ µi´1pxnq

˘
§

a
2uyn ´

c
u

2pyn ` 1q
nÿ

i“1

‡2
n´1px‹q,

when yn • ∞n
i“1 ‡2

i´1pxiq.
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Proof. By construction of xn , for all n • 1, µn´1px‹q ´ µn´1pxnq § „n´1pxnq ´ „n´1px‹q. We

can then rewrite the sum of the exploration terms as follows,

nÿ

i“1

`
„i´1pxiq ´ „i´1px‹q

˘
“

nÿ

i“1

`r„i´1pxiq ´ r„i´1px‹q
˘
,

where r„n differs from „n only by a constant term,

r„npxq fi „npxq ´
n´1ÿ

i“1

r„ipxiq.

Let ›n fi
∞n

i“1 ‡2
i´1pxiq . With the introduction of r„n it is easy to see that

∞n
i“1

r„i´1pxiq “?
2u›n and,

nÿ

i“1

`
„i´1pxiq ´ „i´1px‹q

˘
“
a

2u›n `
?

2u

nÿ

i“1

´a
›i´1 ´

b
›i´1 ` ‡2

i´1px‹q
¯

.

By concavity of the square root, we have for all a • ´b that
?

a` b´?a § b
2

?
a

. Introducing

the notations ai fi ›i´1 ` ‡2
i´1px‹q and bi fi ´‡2

i´1px‹q, we obtain,

nÿ

i“1

`
„i´1pxiq ´ „i´1px‹q

˘
§
a

2u›n `
?

2u

nÿ

i“1

bi

2
?

ai
.

Moreover, with 0 § ‡2
i pxq § 1 for all x P X , we have ai § ›i` 1 and bi § 0 for all i • 1 which

gives,
nÿ

i“1

bi?
ai

§ ´
∞n

i“1 ‡2
i´1px‹q?

›n ` 1
,

leading to the inequality of Lemma A.2.

We now combine both Lemma to obtain an upper bound which does not involves an additional?
n term.

Lemma A.3 (CONCENTRATION WITH EXPLORATION FUNCTION). Let Mn be a sequence adapted

to Fn , such that for all ⁄ P R:

logE
”

expp⁄∆Mnq |Fn´1

ı
“ ⁄

`
µn´1px‹q ´ µn´1pxnq

˘
` ⁄2

2
¸2

n´1px‹, xnq,

with ¸2
n´1px‹, xnq § ‡2

n´1px‹q ` ‡2
n´1pxnq. When xn “ argmaxxPX

 
µn´1pxq ` „n´1pxq

(
with

the notations and conditions of Lemma A.1 and A.2:

P

”
Mn § 2

a
2uyn `

?
2u

ı
• 1´ e´u .

Proof. The process defined by the increments ∆Mn ´ E
“
∆Mn |Fn´1

‰
is a centered Gaussian

martingale adapted to Fn . Therefore using Lemma A.1,

P

«
Mn §

nÿ

i“1

´
µn´1px‹q ´ µn´1pxnq

¯
`
a

2upyn ` 1q `
c

u

2pyn ` 1qNn

ff
• 1´ e´u .
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Algorithm 17: GP-MI (k, ÷, u)

›0 – 0

for n “ 1, 2, . . . do

Compute µn and ‡2
n (Eq. 2.14, 2.16)

@x P X „pxq –
?

2u
`
‡2

n´1pxq ` ›n´1

˘ 1
2 ,

xn`1 – argmaxxPX

 
µnpxq ` „pxq

(

yn`1 – Querypxn`1q
›n`1 – ›n`1 ` ‡2

npxn`1q
end

Now by the selection of xn , Lemma A.2 gives:

P

”
Mn § 2

a
2uyn `

?
2u

ı
• 1´ e´u .

2 The GP-MI Algorithm and Theoretical Obstacles

Following the query rule from Lemma A.2, we define the Gaussian Process with Mutual

Information algorithm (GP-MI), selecting:

xn`1 fi argmax
xPX

 
µnpxq ` „npxq

(
,

where „npxq fi
?

2u
`
‡2

npxq ` ›n

˘ 1
2 ,

and ›n fi
nÿ

i“1

‡2
i´1pxiq.

We have the informational upper bound ›n § c÷“n where c÷ fi 2
logp1`÷´2q and “n the maximal

mutual information on f defined in Eq. 2.33, hence the name of the GP-MI algorithm. If the

upper bound from Lemma A.3 was valid for the cumulative regret Rn of the GP-MI algorithm,

we would have:

Rn § O
`?

“n

˘
,

with high probability, that is logarithmic regret for linear kernel and poly-logarithmic regret

for squared exponential kernel. Unfortunately, we face two obstacles to apply the previous

lemmas. These two difficulties may be bypassed by slight modifications, but getting rid of

both obstacles together is not possible for usual Bayesian optimization.

The Supremum is Not Gaussian

First, in the previous section we fixed a point x‹ P X and considered fpx‹q which is distributed

as Gaussian, instead of considering supx‹PX fpx‹q, which is not Gaussian. It is simple to get

rid of this problem by taking union bounds on finite X at a price log|X |, or applying chaining

and discretization tools from Chapter 3 for continuous X .
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The Cumulative Regret is not Adapted to the Filtration

The second obstacle is that Rn is not Fn´1-measurable. If we are interested in expected

cumulative regret instead of high probability results, the measurability issue can be solved by

the following trick. We can decompose the expected cumulative regret as:

E
“
Rn

‰
“ E

«
ÿ

i§n

sup
x‹PX

`
fpx‹q ´ fpxiq

˘
ff

“
ÿ

i§n

E

„
E

„
sup
x‹PX

fpx‹q ´ fpxiq
ˇ̌
ˇ̌Fi´1

⇢⇢
.

At every iteration i, we introduce a stochastic processes rfi such that given Fi´1, this stochastic

process is independent and has the same distribution as f :

L
` rfi |Fi´1

˘
fi L

`
f |Fi´1

˘
.

For an algorithm that only observes information from Fi´1 , both stochastic processes f and
rfi are equivalent. Let us define a corresponding regret we denote by resampling cumulative

regret:
rRn fi

ÿ

i§n

sup
x‹PX

` rfipx‹q ´ rfipxiq
˘
.

Thanks to the above decomposition we verify that it is equal to the usual cumulative regret in

expectation,

E
“
Rn

‰
“ E

“ rRn

‰
.

However, since we instantiate a new stochastic process at each iteration, the variance of the

resampling cumulative regret is typically much smaller. Now, we define the instantaneous

regret for the resampled process as:

rrn fi sup
x‹PX

rfnpx‹q ´ rfnpxnq,

and
` rFn

˘
n•1

the following filtration:

rFn fi ‡
´

x1, y1, rr1, . . . , xn, yn, rrn

¯
.

The resampling cumulative regret is rFn-measurable, and since the additional information in
rFn compared to Fn is independent of rfn`1 , the analysis is not changed. However, we face

now the first obstacle—that is supx‹
rfnpx‹q is not a Gaussian—and the previous trick cannot

be applied for the expected resampling cumulative regret since the supremum is moved inside

the sum. Another method to bypass this difficulty is to use the natural filtration of Rn , that is:

‡
´

f‹ ´ fpx1q, ¨ ¨ ¨ , f‹ ´ fpxnq
¯

,

with f‹ fi supx‹ fpx‹q . In order to build an algorithm, one has to know f‹ in advance.

We do not consider this as a valid approach for global optimization, but we mention that
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Figure A.1. – Empirical mean and confidence interval of the average regret Rn

n
in term of iteration n

on real and synthetic tasks for the GP-MI and GP-UCB algorithms and the EI heuristic
(lower is better).

this assumption has been used to prove constant cumulative regret in multi-armed bandits

(Bubeck et al., 2013).

3 Empirical Assessment

Although the GP-MI algorithm is left unproved, we performed some numerical comparison

against two competitors: the GP-UCB algorithm (Srinivas et al., 2012) and the EI algorithm

(Jones et al., 1998).

Experimental Protocol

The tasks used for assessment are similar to the ones from Section 3.1.4, and we refer to this

section for a detailed description. For all data sets, the algorithms were initialized with a

random subset of 10 observations
 
pxi, yiq

(
i§10

. When the prior distribution of the underlying

function was not known, the Bayesian inference was made using a squared exponential kernel.

We first picked the half of the data set to estimate the hyper-parameters of the kernel via

cross validation in this subset. In this way, each algorithm was running with the same

prior information. The value of the confidence parameter u for the GP-MI and the GP-UCB

algorithms was fixed to e´u “ 10´6 for all these experimental tasks. The results are provided

in Figure A.1. The curves show the evolution of the average regret n´1Rn in term of iteration

n. We report the mean value with the confidence interval over a hundred experiments.

Empirical Comparisons

For the most difficult assessments the GP-UCB algorithm performs poorly against the two

others, and the GP-MI algorithm always surpasses the EI heuristic. However, for more difficult

or large scale optimization problems, the GP-MI algorithm is not guaranteed to converge to

the optimum. This may be explained by the fact that theory-driven algorithms, like GP-UCB,

are typically over-conservative. Those observations are encouraging to pursue research on

algorithm incurring better regrets.
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Titre : Méthodes d’apprentissage statistique pour l’optimisation globale

Mots clefs : optimisation globale, bandits stochastiques, optimisation bayésienne.

Résumé : Cette thèse se consacre à une analyse

rigoureuse des algorithmes d’optimisation globale

séquentielle. On se place dans un modèle de ban-

dits stochastiques où un agent vise à déterminer

l’entrée d’un système optimisant un critère. Cette

fonction cible n’est pas connue et l’agent effectue

séquentiellement des requêtes pour évaluer sa va-

leur aux entrées qu’il choisit. Cette fonction peut ne

pas être convexe et contenir un grand nombre d’op-

tima locaux. Nous abordons le cas difficile où les

évaluations sont coûteuses, ce qui exige de conce-

voir une sélection rigoureuse des requêtes. Nous

considérons deux objectifs, d’une part l’optimisa-

tion de la somme des valeurs reçues à chaque ité-

ration, d’autre part l’optimisation de la meilleure

valeur trouvée jusqu’à présent. Cette thèse s’ins-

crit dans le cadre de l’optimisation bayésienne

lorsque la fonction est une réalisation d’un proces-

sus stochastique connu, et introduit également une

nouvelle approche d’optimisation par ordonnance-

ment où l’on effectue seulement des comparaisons

des valeurs de la fonction. Nous proposons des

algorithmes nouveaux et apportons des concepts

théoriques pour obtenir des garanties de perfor-

mance. Nous donnons une stratégie d’optimisation

qui s’adapte à des observations reçues par batch

et non individuellement. Une étude générique des

supremums locaux de processus stochastiques nous

permet d’analyser l’optimisation bayésienne sur des

espaces de recherche nonparamétriques. Nous mon-

trons également que notre approche s’étend à des

processus naturels non gaussiens. Nous établissons

des liens entre l’apprentissage actif et l’apprentis-

sage statistique d’ordonnancements et déduisons

un algorithme d’optimisation de fonctions poten-

tiellement discontinue.

Title : Statistical Learning Approaches for Global Optimization

Keywords : global optimization, stochastic bandits, Bayesian optimization.

Abstract : This dissertation is dedicated to a rigo-

rous analysis of sequential global optimization al-

gorithms. We consider the stochastic bandit mo-

del where an agent aim at finding the input of a

given system optimizing the output. The function

which links the input to the output is not explicit,

the agent requests sequentially an oracle to eva-

luate the output for any input. This function is not

supposed to be convex and may display many lo-

cal optima. In this work we tackle the challenging

case where the evaluations are expensive, which re-

quires to design a careful selection of the input to

evaluate. We study two different goals, either to

maximize the sum of the rewards received at each

iteration, or to maximize the best reward found so

far. The present thesis comprises the field of glo-

bal optimization where the function is a realization

from a known stochastic process, and the novel field

of optimization by ranking where we only perform

function value comparisons. We propose novel al-

gorithms and provide theoretical concepts leading

to performance guarantees. We first introduce an

optimization strategy for observations received by

batch instead of individually. A generic study of

local supremum of stochastic processes allows to

analyze Bayesian optimization on nonparametric

search spaces. In addition, we show that our ap-

proach extends to natural non-Gaussian processes.

We build connections between active learning and

ranking and deduce an optimization algorithm of

potentially discontinuous functions.
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