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Abstract

We live in a world where a vast amount of data is being continuously generated. Data is
coming in a variety of ways. For example, every time we do a search on Google, every time
we purchase something on Amazon, every time we click a ‘like’ on Facebook, every time
we upload an image on Instagram, every time a sensor is activated, etc., it will generate new
data. Data is different than simple numerical information, it now comes in a variety of forms.
However, isolated data is valueless. But when this huge amount of data is connected, it is
very valuable to look for new insights. At the same time, data is time sensitive. The most
accurate and effective way of describing data is to express it as a data stream. If the latest
data is not promptly processed, the opportunity of having the most useful results will be
missed.

So a parallel and distributed system for processing large amount of data streams in real
time has an important research value and a good application prospect. This thesis focuses
on the study of parallel and continuous data stream Joins. We divide this problem into two
categories. The first one is Data Driven Parallel and Continuous Join, and the second one is
Query Driven Parallel and Continuous Join.

In a Data Driven Join, the query never changes, but the type (format, dimension, etc.) of
data does change. We use kNN Join (k Nearest Neighbor) as our use case for this category
of Join. The Data Parallel model should be used for this kind of Join. The difficulties lie
on the preprocessing and the partitioning of data. We review five different kinds of parallel
and distributed processing methods for kNN Join. We then summarize the workflow into
the following three steps: data-preprocessing, data-partitioning and data-computation. The
pre-processing stage is used to either select the pivot points or reduce the dimensionality
of data. We introduce two different types of partition method, one size-based, the other
distance-based. In the computation step, we also present two strategies, one which produces
directly the global result, and one which firstly produces a local result. We then analyze
the methods theoretically from Load Balance, Accuracy and Complexity aspects. We have
implemented every method in Hadoop MapReduce to do Benchmarks, thereby quantitatively
determine the application scenarios for each method. After having evaluated the parallel
methods, we extend some of them to continuously process data streams. We use the Sliding
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Window model for processing the most recent data, and update the results periodically. We
design two data re-partition strategies — a naive one and an advanced one based on Naive
Bayes. Finally, we implement the algorithms on Apache Storm, and evaluate its real-time
performance.

In a Query Driven Join, the format of data does not change. Queries, however, can be
arbitrary, because it is written by the users, which is unpredictable. A Task Parallel model
should be applied for a Query Driven Join. We use a Join on RDF data (Semantic Web) as an
example for this kind of Join. The difficulties lie in the efficient decomposition of queries
for parallel and distributed processing. We design several strategies to decompose queries
according to their structure and generate a parallel query plan. We use Bloom Filters for data
transmission among nodes in order to minimize the communication overhead. We propose a
Query Topological Sort algorithm to determine the order of information exchange among
different sub-queries. After the design for the parallel parts, we also extend it to continuously
process data streams. We introduce strategies for data re-evaluation and expiration. We
also introduce a method for using Sliding Bloom Filters. We then theoretically analyze the
efficiency of the algorithm, and we calculate the dominating parameters for the system. The
probability of having false positive results is also discussed. Finally, we implement the whole
system on Apache Storm platform to evaluate the algorithms from the parallel aspect and the
streaming aspect using both synthetic data and LUBM Benchmarks.



Abstract

Nous vivons dans un monde où une grande quantité de données est généré en continu. Par
exemple, quand on fait une recherche sur Google, quand on achète quelque chose sur Amazon,
quand on clique en ‘Aimer’ sur Facebook, quand on upload une image sur Instagram, et
quand un capteur est activé, etc., de nouvelles données vont être généré. Les données sont
différentes d’une simple information numérique, mais viennent dans de nombreux format.
Cependant, les données prisent isolément n’ont aucun sens. Mais quand ces données sont
reliées ensemble, on peut en extraire de nouvelles informations. De plus, les données sont
sensibles au temps. La façon la plus précise et efficace de représenter les données est de les
exprimer en tant que flux de données. Si les données les plus récentes ne sont pas traitées
rapidement, les résultats obtenus ne sont pas aussi utiles.

Ainsi, un système parallèle et distribué pour traiter de grandes quantités de flux de
données en temps réel est un problème de recherche important. Il offre aussi de bonne
perspective d’application. Dans cette thèse nous étudions l’opération de jointure sur des flux
de données, de manière parallèle et continue. Nous séparons ce problème en deux catégories.
La première est la jointure en parallèle et continue guidée par les données. La seconde est la
jointure en parallèle et continue guidée par les requêtes.

Pour une jointure guidée par les données, la requête ne change jamais, contrairement au
type (format, dimension, nature, etc.) des données. Nous utilisons l’opération de kNN (k
plus proche voisins) comme cas d’utilisation pour cette catégorie de jointure. Un modèle est
nécessaire pour paralléliser les données pour ce type de jointure. La difficulté se situe dans le
prétraitement et le partitionment des données. Nous examinons cinq types de méthodes en
parallèles et distribuées pour traiter l’opération de jointure dans le kNN. Nous décomposons
l’algorithme en trois étapes de traitement: le prétraitement des données, leur partitionnement
et leur traitement. L’étape de prétraitement est utilisée soit pour organiser les données ou
réduire leur dimensionnalité. Nous introduisons deux types de méthodes de partitionnement,
l’une basée sur la taille et l’autre sur la distance. Dans l’étape de calcul, nous présentons
également deux stratégies, l’une donne directement les résultats finaux, et l’autre produit
des résultats intermédiaires. Nous analysons de manière théorique les méthodes du point
de vue de l’équilibre, de la précision et de la complexité. Nous implémentons toutes les
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méthodes en Hadoop MapReduce afin de les évaluer, et ainsi déterminer quantitativement
les scénarios d’application pour chacune. Après avoir évalué les méthodes parallèles, nous
les étendons pour traiter des flux de données en continu en temps réel. Nous utilisons le
modèle de ‘Fenêtre Glissante’ pour traiter les données les plus récentes, et mettre à jour
périodiquement les résultats. Nous proposons deux stratégies pour le repartitionnement.
Enfin, nous implémentons les algorithmes sur la plateforme Apache Storm, et évaluons
leur performances. Concernant la jointure guidée par les requêtes, le format de données
ne change pas, mais la requête, écrite par les utilisateurs, est arbitraire. Un modèle de
parallélisme de tâche peut être appliqué pour ce type de jointure. Nous étudions la jointure
sur les données RDF comme un cas d’utilisation. La difficulté se situe dans la décomposition
des requêtes en sous-requêtes pouvant être distribuées et parallélisées. Nous proposons
plusieurs stratégies pour décomposer les requêtes en fonction de leur structure et générer un
plan d’exécution. Nous utilisons des Bloom Filters pour la transmission de données entre
les nœuds afin de minimiser les coûts de communication. Nous proposons un algorithme,
appelé ‘Query Topological Sort’, pour déterminer l’ordre d’échange d’informations entre les
différentes sous-requêtes. Nous étendons ce mécanisme ensuite au cas continu des flux de
données. Nous introduisons des stratégies pour la réévaluation et l’expiration des données.
Nous présentons également la méthode de ‘Sliding Bloom Filters’. Nous analysons ensuite
théoriquement l’efficacité de notre méthode, et nous calculons les paramètres dominants du
système. La probabilité d’avoir des faux positifs est aussi discutée. Enfin, nous implémentons
l’ensemble du système sur la plateforme Apache Storm en utilisant à la fois des données
synthétiques et LUBM Benchmarks.
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Chapter 1

Introduction

1.1 Big Data Processing

We are awash in a flood of data today. With a rapid growth of applications like social network
analysis, semantic web analysis and bio-information analysis, a large amount of data needs
to be processed to witness this quick increase. For example: Google deals with more than 24
PB of data every day (a thousand times the volume of all the publications contained by the
US National Library); Facebook updates more than 10 million photos and 3 billion "likes"
per day; YouTube accommodates up to 800 million visitors monthly (a video more than an
hour uploaded every second); and Twitter is almost doubling its size every year, etc.

Data is being collected every second in a broad range of areas. Information which
previously relied on guesswork and experience, can now be discovered directly from the
data. The rising of internet search engine technology and the development of social networks,
have given the data more power. It also makes the related technologies which depend on the
processing of large amount of data such as machine learning, data mining, recommendation
systems etc, a hot topic in both IT industry and academic.

Big data has four features:

• Volume:
The amount of data is very large, usually in an order (such as TB and PB) that can not
be stored and processed by a single machine. So, data need to be distributed stored in a
cluster, then processed in a parallel and distributed way. Therefore, big data processing
and cloud computing technologies are closely linked.

• Variety:
The data types are variety. There are low-dimensional data (such as geographic
coordinates), and also high-dimensional data (such as audio, video, pictures, etc.) as
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well. The formats of data could also be different. So when processing big data, the
model needs to adapt to different kinds of data, or transform them into a unified format.

• Value:
Information is everywhere, but the density of data value is relatively low. So before
embarking on a high-density computing, a pre-processing step needs to firstly be used
to clean and extract information from the original data.

• Velocity:
The timeliness is high, so the processing speed should also be high. Generally, recent
data is more valuable, so old data should be withdrawn when new data arrives. At the
same time, the system needs to respond in a real-time or quasi real-time manner.

The revolution of big data has brought a lot of benefits to us, but at the same time, it
requires an upgrading for the relevant technologies.

1.2 Issues with Big Data

While the potential benefits of big data is really significant, there remain many challenges
that should be addressed.

The most significant issue comes from the size of Big Data.The flip side of size is speed.
The larger the data set to be processed, the longer it will take to analyze. Processing large
and rapidly increasing amounts of data has been a target for many decades. In the past, this
target was relying on the computation capacity of the processors, following Moore’s law
[16]. But now the data volume is scaling faster than the resources, and the capacity of CPU
increases slowly. Thus, parallel and distributed solutions have been searched for, from Open
MPI [15], to the famous Hadoop ecosystem [2], until the latest Apache Spark [3]. To meet
the increasingly growing large amount of data and to optimize the performance, the parallel
and distributed computing platforms are also engaged in constantly upgrading.

The second dramatic issue is the cost of network communication in transferring data.
The transmission of data always became the bottleneck of a parallel platform according to
our previous study in paper [130]. So when designing a method to compute an algorithm in
parallel, minimizing the data transmission cost is a very important aspect.

The last but not least important issue comes from the dynamics of data. After the
revolution of the Internet technologies and the popularity of social networks, data is now
more dynamic. Users add new data to the network every second. And often, the latest data
is the most valuable. This process can be described as a stream of data which constantly
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updates. Traditional distributed processing platforms process the data in batch. Each data
update will trigger a re-calculation. This obviously can not meet the real-time processing
requirement.

1.3 Real-Time processing for data stream

Recently a new type of data-intensive computation mode has been widely recognized: appli-
cations where the data is not processed as persistent static relations but rather as transient
dynamic data streams. These applications include financial analysis, network monitoring,
telecommunications data management, traffic data monitoring, web applications, manufac-
turing, sensor networks, and so on. In this model, individual data items are represented
by a record with a time-stamp. The data streams continuously arrive in multiple, rapid,
time-varying, unpredictable and unbounded manners.

For this type of data, the shortcoming and drawbacks of batch-oriented data processing
are obvious. Real-time query processing and in-stream processing is the immediate need in
many practical applications. An important feature for a data stream processing system is
that it needs to cope with the huge dynamicity in data streams in the near future, both at the
architecture and the application level. At the architecture level it should be possible to add or
remove computational nodes based on the current load. At the application level, it should
be able to withdraw old results and take new coming data into account. However, current
parallel processing systems for big data, being tailored to optimal realization of predefined
analytics (static monitoring), are lacking the flexibility required for sensing and dynamic
processing of changes in the data.

That is why, in recent years, many solutions for stream processing like Twitter’s Storm
[5], Yahoo’s S4 [19], Cloudera’s Impala [12], Apache Spark Streaming [21], and Apache
Tez [22] appeared and joined the group of Big Data and NoSQL systems. Wherein Twitter
Storm is the most successful and most widely used one.

1.4 Objectives and Contributions

The join operation is a popular problem in the big data area. It needs more than two inputs
data sets, and outputs one or more required information. It has different kinds of applications,
varying from kNN join (a join process for two data sets to find the k nearest neighbors for
every elements in the query set) to semantic join (a join process in the semantic web area). It
is a simple but not trivial and often used operation.

The challenges for designing a good parallel and distributed join method are:
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• How to partition data and distribute the partitions to the computing cluster. Since
more than one input data sets is involved, we need to make sure that the merge of the
calculation of each partition is identical to the join of the whole data set.

• How to minimize the intermediate data communicated through network. Data trans-
mission is unavoidable. So some clustering or classification method needs to be used
to avoid unnecessary data transfers. Or some advanced data structures need to be used
in order to reduce the size of data to be transferred.

More challenges for designing a good streaming join method are:

• How to withdraw old data.

• How to partition data when we do not have a global knowledge of the whole data set.

In this thesis, we are going to address the streaming join operation for data streams in a
parallel and distributed way, both for data driven join and for query driven join, using two
representative applications k nearest neighbor join and semantic join respectively.

The major contributions of this thesis are the following:

• A survey of all the method for processing k nearest neighbor join in a parallel
way, including the pre-processing step, the data partitioning step and the main compu-
tation step. We analyze the performance in both a theoretical way and an experimental
way.

• Design parallel processing of k nearest neighbor join to a continuous manner for
processing data streams, after summarizing and analyzing all the technologies used
for parallel processing kNN join, a parallel and continuous manner of processing kNN
join on data stream is proposed. We separate the scenarios into 3 different categories,
and we focus on two of them. We design data re-partition and re-computation strategies.
And we implement the methods proposed on Apache Storm in order to evaluate their
performance.

• Design a parallel and distributed way to process semantic RDF joins, both for
distributing data and for decomposing queries. We use Bloom Filters as the media to
transfer intermediate data. This method minimizes the communication cost among
nodes. We propose a Query Topological Sort method to determine the order of
communications. We then extend this method to process RDF joins in a continuous
way for streams. Data expiration and re-evaluation strategies are proposed. We analyze



1.5 Organization of Dissertation 5

the performance in a theoretical way, for false positive rate, parameter tuning and
efficiency. In the end, we implement the whole design on Apache Storm and design
benchmarks in order to evaluate the performance.

1.5 Organization of Dissertation

This thesis studies the parallel and continuous join operation for data stream. Overall, this
thesis is organized as follows:

• Chapter 2: introduces the state of the art of the related domains. It begins from the
background of parallel computing, and firstly introduces two main forms of parallelism:
data parallelism and task parallelism. Then it presents the most popular Big Data
management systems, mainly systems based on the MapReduce paradigm, including
Hadoop [2] and its improvements, Spark [3] and YARN [4]. The second part of the
background introduces the concepts of stream processing. It first talks about the rules
in data stream processing, followed by the introduction of the Sliding Window model
and Sliding Window join. Then it analyzes the history about data stream management
systems, focuses on the comparison of the 3 most used parallel streaming processing
systems: Storm [5], Spark Streaming [21] and S4 [19]. In the end we detail the use
of Apache Storm. Another important aspect of this Chapter is to introduce the use
cases which will be presented in the following Chapters. Section 2.2.1 introduces the
definition of k Nearest Neighbor algorithm, its applications and the traditional way
of computing this algorithm. Section 2.2.2 presents the concepts of Semantic Web,
including the purpose of Semantic Web, RDF data model and its corresponding query
language SPARQL.

• Chapter 3: presents the techniques about processing data driven streaming join in a
parallel and distributed manner. We choose kNN and its applications as our key use
case to study. This Chapter begins with a short introduction about the methods we
have evaluated, followed by an introduction of kNN join for centralized environment,
parallel kNN join and continuous kNN join. In the main part of this Chapter, we first
decompose the workflow of processing kNN in three steps: data preprocessing, data
partitioning and main computation. Some corresponding methods are proposed for
each steps. For data preprocessing, we introduce the pre-processing for reducing the
dimension of data and to select the central points of data clusters respectively. For data
partitioning, we discuss two different types of partition: size based partition which
intends to gain a better load balance and distance based partition which tries to gather
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the most relevant data inside each partition. We separate the main computation steps
into two types: the ones with an intermediate computation to get local results, and
those which directly calculate the global results. We then theoretically analyze each
method from the perspective of load balance, accuracy and complexity. In Section
3.4, we extend the parallel methods presented previously to adapt to a computation for
streams. We separate the streaming scenario into three types. New strategies about
re-partition and re-computation of the streams are proposed for each type respectively.
In the end, Section 3.5 presents an extensive experimental evaluation for each method,
first on MapReduce and from the parallel point of view, then on Storm for evaluating
the streaming characteristics.

• Chapter 4: introduces our techniques for processing query driven streaming join in a
parallel and distributed manner. We choose RDF data and its query as our key use case
to study. This Chapter begins with an introduction of the background and explains the
motivation and the goal of this work, followed by a detailed state of the art on RDF
processing technologies. In the main parts, we first describe query decomposition, and
data distribution. We then explain our method for generating the query plan in 4 rules
in Section 4.3. In Section 4.4, we extend the method proposed in Section 4.3 to work
in a continuous way with sliding windows. We then analyze our methods in Section
4.5 from the aspects of main parameters of Bloom Filters, dominating parameters, and
complexity points of view. The implementation issues are discussed in Section 4.6,
where the algorithms for finding the join vertices, judging the category of join vertex,
Query Topological Sort and Sliding Bloom Filters, are shown. Finally, we evaluate our
method in Section 4.7 with both synthetic and LUBM [14] benchmarks.

• Chapter 5: reviews the contributions and presents some research and development
perspectives that may arise from this thesis.
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Background and Preliminaries

2.1 Background

2.1.1 Parallel Computing

Parallel computing is a computation model which uses two or more processors (cores or
computers) in combination to perform multiple operations concurrently. The basic condition
for parallel computing is that in general, a large problem can be divided into a limited number
of smaller problems, and these small problems can be handled simultaneously.

Unlike the traditional serial computation, parallel computing uses multiple resources
simultaneously to solve a problem. The problem should first be cut into a series of instructions,
which will later be executed simultaneously on different processors. This model is much
more suitable for explaining, modeling and solving complex real world phenomena. It does
not only speed up the time spent to perform a large task, but also makes it possible to process
large-scale data sets or complex problems which cannot be handled by a single machine.

In parallel computing, there are mainly two forms of parallelism:

- Data Parallelism

- Task Parallelism

We will introduce them separately in the coming two sections.

2.1.1.1 Data Parallelism

Data parallelism focuses on distributing data across different parallel computing resources,
in which the same computation is applied to multiple pieces of data. This is usually used for
data-intensive tasks. Fig. 2.1 shows the schematic of data parallelism.
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Fig. 2.1 Data Parallelism Schematic

In a data parallelism process, the data set is first divided into partitions, which will
later be processed by different processors using the same task. This simple idea makes the
storing and handling of big data possible. For example, Facebook has several million photos
uploaded each day. But these photos are too large to be stored in a single machine. Then a
data parallelism strategy is suitable for this problem.

However, because each machine only has a subset of data, gathering the results together
is a problem that this model needs to address. At the same time, the main factor affecting
the performance of this model is the transmission of intermediate data, hence reducing the
amount of data to be transferred is another problem to face.

Since data parallelism emphasizes the parallel and distributed nature of data, when the
size of data is growing, it is inevitable to use this model in parallel computing. Examples
of Big Data frameworks that uses data parallelism are: Hadoop MapReduce [2], Apache
Spark[3], YARN[4], and Apache Storm[5].

2.1.1.2 Task Parallelism

Task parallelism focuses on distributing tasks concretely performed by processors across
different parallel computing resources, in which the same data (or may be different data in a
hybrid system) is processed by different tasks. This is usually used for computation-intensive
tasks.

In a task parallelism process, the parallelism is organized around the functions to be run
rather than around the data. It depends on task decomposition. This idea makes it possible to
handle a complex problem. For example, in a semantic join, task 1 needs to save the data
which meets a certain condition in a specific data structure, and task 2 needs to use the data
which meets another condition to probe this data structure. This process can be considered as
a task parallel process.
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Fig. 2.2 Image Pipeline Processing

The difficulties of this type of process lies first on the decomposition of the work,
specifically the decomposition of queries in a join process. Also task parallelism processes
usually suffer from bad load balancing, since it is not easy to divide tasks with equal
complexity. The communication among tasks is another problem. Synchronization is the
most important communication approach in task parallelism processes, and can be divided
into thread synchronization and data synchronization. Thread synchronization focuses on
determining the order of execution in order to avoid Data Race Condition problems. Data
synchronization is mainly used to ensure the consistency among multiple copies of data.

The most common task parallelism is pipelining. Suppose you have multiple tasks, task I,
task II and task III, instead of having each one operating on the data independently, pipelining
takes the data and first give it to task I, then task II and finally task III. Image processing
often chooses to use a pipeline. Images are coming in a stream, some of the processing starts
with the first task, and applies a certain filter on the images, then passes on to the second task,
and so on. This is a very common combination of task parallelism and data parallelism. An
example of pipeline processing of images is shown in Fig. 2.2.

Recently, the most popular task parallelism example is deep learning. Deep learning is a
branch of machine learning which is based on a set of algorithms which attempt to model
high-level abstractions in data by using multiple processing layers. The difference between
deep learning and traditional machine learning is that in deep learning instead of having
one model to train all the data, we separate the model into layers, and each layer can be
considered as a sub-task of the whole model.
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Task parallelism and data parallelism complement each other, and they are often used
together to tackle large-scale data processing problems. The Big Data frameworks that uses
task parallelism are: Apache YARN [4] and Apache Storm [5]. They are hybrid systems
which support both task and data parallelism.

2.1.1.3 Big Data Management Systems

MapReduce is a flexible and scalable parallel and distributed programming paradigm which
is specially designed for data-intensive processing. It was initially introduced by Google [70]
and popularized by the Hadoop framework.

The concept of MapReduce has been widely known since 1995 with the message passing
Interface (MPI) [78] standard, having reduce 1 and scatter operations 2. The MapReduce
programming model is composed of a Map procedure and a Reduce procedure. The Map
task is usually used for performing some preliminary and cleaning work such as filtering and
sorting. For example we can use a Map task to sort the students by alphabetical order of their
surname, and then filter the students whose score is below a certain level.The Reduce task is
used to perform a summary operation such as count or aggregation. For example we can use
a Reduce task to count the number of students whose score is above a given level.

The idea of the MapReduce paradigm comes from high-order functional programming,
where Map and Reduce are two primitives. In this paradigm every record is represented
by a < key,value > pair. The Map function processes a fragment of < key,value > pairs
in order to generate a list of intermediate < key,value > pairs. Each < key,value > pair is
processed by the same map function on different machines without depending on other pairs.
The output keys of the Map tasks could be either the same as the input keys or different from
them. The output < key,value > pairs have an information of partition which indicates to
which Reduce task this pair needs to be sent. The partition information makes sure that all
pairs with the same key can be later sent to the same Reduce task. The Reduce function
gathers the outputs of the same partition from all map tasks together through a Shuffle phase
and merges all the values associated with the same key, then produces a list of < key,value >
pairs as output.

Hadoop [2] is an open-source framework written in Java for distributed storing and
processing large scale data sets. The core of Hadoop contains a distributed storage named
Hadoop Distributed File System (HDFS), the MapReduce programming paradigm. HDFS is
a distributed, scalable, and portable file-system written in Java. It stores large files across
multiple machines on a cluster. Its reliability is achieved by replicating the data among

1http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
2http://mpitutorial.com/tutorials/performing-parallel-rank-with-mpi/

http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
http://mpitutorial.com/tutorials/performing-parallel-rank-with-mpi/
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Fig. 2.3 Physical Structure of Hadoop System

multiple nodes. The default number of replications is set to 3, which means the same piece
of data is stored on three nodes. It is very popular not only among the academic institution
but also in many companies such as web search, social network, economic computation and
so on. A lot of research work focuses on optimizing Hadoop performance and its efficiency
in many different aspects [77] [138] [124].

The whole system of Hadoop works in a master-slave manner, with JobTracker as the
master, and the other nodes as slaves. A TaskTracker daemon runs on each slave node.
The JobTracker daemon is responsible for resource allocation (e.g. managing the worker
nodes), tracking (e.g. resource consumption or resource availability) and management
(e.g. scheduling). The TaskTracker has much more simple responsibilities. It is in charge
of launching tasks with an order decided by the JobTracker, and sending the task status
information back to JobTracker periodically. The schematic of this process is shown in
Fig. 2.3.

When running a Hadoop job, input data will first be divided into some splits (64M by
default). Then each split will be processed by a user-defined map task.

So the whole process of a Hadoop job as shown in Fig. 2.4 can be summarized as follow:

• Step 1: Split data into blocks (64M by default)

• Step 2: Map Phase: Extract information from data (filter, sort)

• Step 3: Shuffle Phase: Exchange data through network from Map Phase to Reduce
Phase
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Fig. 2.4 Logical View of Hadoop Framework

• Step 4: Reduce Phase: Summary operation (count, aggregation)

The previous introduction on Hadoop shows that a Hadoop MapReduce job has some
special characteristics as shown below,

• Execution Similarity: According to the programming model, users only have to
provide a map function and a reduce function. And the execution for each Map task
(or Reduce task) is very similar to others. In other words, all data will be processed
by these functions repeatedly. Thanks to this design, we only need to study how each
< key,value > pairs are processed for a particular job, as reading, sorting, transferring
and writing data are independent of these two functions.

• Data Similarity: MapReduce is well suited for off-line batches processing. And it is
usually used to do repeated work in which the input data has very similar format, such
as log analysis, inverted index and so on. We can just take a look at a small sample and
then we can estimate the whole dataset.

Hadoop is now a very mature system, with specific application and user groups. However,
due to the limitation of the MapReduce paradigm and the Hadoop implementation, it has
performance limitations in some application scenarios. In order to better integrate Hadoop in
the applications, many works have been done from the very beginning to extend Hadoop and
to improve its performance. We discuss a limited number of them.

The first type of effort intends to improve the performance of Hadoop by predicting its
performance and tuning the parameters.
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In our previous work [130], we have introduced a Hadoop performance prediction model.
This model is implemented through 2 parts, a job analyzer and a prediction module. The
job analyzer is in charge of collecting the important properties related to the jobs for the
prediction module. Then, the prediction module will use this information to train a locally
linear model based on locally weighted regression. This work can predict job performance
metrics such as map task execution time, reduce task execution time, network communication
etc. The overhead (i.e. the cost of computing the prediction) is low. Moreover, when the
amount of data augments the overhead decreases. This work can not only help us to tune the
parameters when writing a MapReduce job, but also help us to find out the bottlenecks of the
Hadoop framework.

WaxElephant [127] is a Hadoop simulator. It proposes a solution to address two chal-
lenging issues for a large-scale Hadoop clusters. The first one is to analyze the scalability.
The second one is to identify the optimal parameters of configurations. WaxElephant has 4
main capabilities. It can firstly load real MapReduce workloads derived from the historical
log of Hadoop clusters and replay the job execution history. It can then synthesize workflows
and execute these workflows based on some statistical characteristics of the workfloads. Its
main functionality is to identify the optimal parameters of the configurations. Finally, it can
analyze the scalability of the cluster.

The second type of effort aims at extending Hadoop to have database-like operations.
Hive [134] plays a role of data warehouse on top of Hadoop. It originates from Facebook.

It provides a SQL-like interface to operate the data stored in a Hadoop cluster. It offers
operations like select, join, etc.

HBase [81] is a column-oriented No-SQL database running on HDFS. It fills up the lack
of immediately reading and writing operations in HDFS.

Yahoo! used Hadoop clusters to do data analysis tasks. They created a new data
processing environment called Pig [120], and its associated query language Pig Latin, whose
target is to provide a MapReduce style programming, a SQL style programming as well
as the ability to control the execution plan together. It offers high-level data manipulation
primitives such as projection and join in a much less declarative style than in SQL.

The third type of work proposes to combine with other programming language or model.
Ricardo [67] is a scalable platform for deep analytics. It decomposes data analysis

algorithms into parts executed by the R statistical analysis system and parts handled by the
Hadoop cluster. This decomposition attempts to minimize the transfer of data across the
system. It avoids re-implementing either statistical or data-management functionality, and it
can be used to solve complex problems.
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Paper [144] presents three contributions towards tight integration of Hadoop and Teradata
EDW. They provide fast parallel loading of Hadop data to Teradata EDW. And they also
make MapReduce programs efficient and direct parallel access to Teradata EDW data without
external steps of exporting and loading data from Teradata EDW to Hadoop.

HadoopDB [29] combines MapReduce with existing relational database techniques. It
is therefore a hybrid system of parallel DBMS and Hadoop approaches for data analysis,
achieving the performance and efficiency of parallel databases and yielding the scalability,
fault tolerance and flexibility at the same time. It is flexible and extensible for performing
data analysis at large scales.

The Nephele/PACTs programming model [33] is a generalization of the MapReduce
paradigm and extends MapReduce by adding additional second-order functions with addi-
tional plug-in points for developing parallel applications.

Apache Spark[3] is another popular parallel computing framework after Hadoop MapRe-
duce. Spark provides an application programming interface in Java, Scala, Python and R on a
data structure called the resilient distributed dataset (RDD). Spark also uses the MapReduce
paradigm but it overcomes the limitations in MapReduce. Hadoop MapReduce forces a
particular linear data flow, it reads input data from disk, maps a function across the data,
reduces the results of the map, and stores reduction results on disk. The resilient distributed
dataset structure works as a working set for distributed programs, it offers a restricted form
of distributed shared memory. Unlike Hadoop jobs, the intermediate data of Spark can be
saved in memory, which avoids the unnecessary reading and writing from HDFS. Therefore
Spark is better for data mining and machine learning algorithms, which require iterations.
RDD facilitates the implementation of iterative algorithms which need to visit the dataset
multiple times in a loop. It also makes it easy to do interactive or exploratory data analysis,
like repeated database-style querying of data.

Spark requires a manager which is in charge of the cluster, and a distributed file system.
Spark also supports a pseudo distributed mode (local mode), which is usually needed for
testing.

Compared with Hadoop, Spark has the following advantages:

• Store intermediate data into memory, providing a higher efficiency for iterative opera-
tions. So Spark is more suitable for Data Mining and Machine Learning algorithms
containing a lot of iterations.

• Spark is more flexible than Hadoop. It provides many operators like: map, filter,
flatMap, sample, groupByKey, reduceByKey, union, join, cogroup, mapValues, sort,
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Fig. 2.5 Structure of Spark System.

partionBy, while Hadoop only provides Map and Reduce. However, due to the char-
acteristics of RDD, Spark does not perform well on the fine-grained asynchronous
update applications [152] or the applications with incremental changes, such as the
web crawlers with updates.

• By providing a wealth of Scala, Java, Python APIs and interactive Shell API, Spark has
a higher availability with different programming languages and different modes to use.

According to the characteristics of Spark, its applicable scenarios are:

• Iterative calculations requiring multiple operations

• Applications that require multiple operations on a specific data set

And the benefit increases with the amount of data and the number of operations. But the
benefit is smaller in applications with a small amount of data and intensive computations.

The structure of a Spark system is shown in Fig. 2.5.

YARN [4] is an attempt to take Apache Hadoop beyond MapReduce for data-processing.
As we explained above, in Hadoop, the two major responsibilities of the JobTracker are
resource management and job scheduling or monitoring. As there is only one JobTracker
in the whole system, it becomes a bottleneck. The fundamental idea of YARN is to split
these functions into two separate daemons — a global ResourceManager (RM) and a per-
application ApplicationMaster (AM).
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Fig. 2.6 Architectural View of YARN

The ResourceManager together with the per-node slave daemon NodeManger forms a new
generic system for managing tasks in a distributed manner. Moreover, the ResourceManager
is the ultimate authority that arbitrates resources among all applications in the system, while
the per-application ApplicationMaster is a framework specific entity and is used to negotiate
resources from the master ResourceManager and the slaves NodeManagers to execute and
monitor the tasks. A pluggable Scheduler is used in the ResourceManager to allocate
resources to jobs. The Scheduler works using an abstract concept of Resource Container
(RC) which incorporates resource elements such as CPU, Memory, Disk, Network etc. The
NodeManager is a per-node slave daemon, and its responsibility is to launch the tasks and to
monitor the resources (CPU, Memory, Disk, Network). From the system perspective, the
ApplicationMaster runs as a normal container. An architectural view of YARN is shown in
Fig. 2.6.

Hadoop, Spark and YARN all use the MapReduce paradigm as their abstract computa-
tional concept. The ecosystem of MapReduce and its derivative methods are mature and very
good for parallel processing of big data. But most of them are still an ‘offline’ processing
platform, which means that they can not handle dynamic data streams.

2.1.2 Stream Processing

As we introduced in Section 1.1, the characteristics of Big Data contains 4 Vs, among which
Volume, Variety and Velocity are the most important. The relations among these 3 Vs are
shown in Fig. 2.7.
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Fig. 2.7 The 3 Vs of Big Data

The need of velocity requires to process the data fast, so that the system can react to
the changing conditions in real time. This requirement of processing high-volume data
streams with low-latency becomes increasingly important in the areas of trading, fraud
detection, network monitoring, and many other aspects, thus increasing the demand for
stream processing. Under this requirement, the capacity of processing big volumes of data is
not enough, we also need to react as fast as possible to the update of data.

Stream processing is a programming paradigm, which is also called dataflow program-
ming or reactive programming. A stream is a sequence of data and a series of operations
will be applied to each element in the stream. Data items in streams are volatile, they are
discarded after some time. Since stream processing often involves large amount of data, and
requires the results in real-time, the stream processing platforms (e.g. Apache Storm) often
work in parallel. Besides, this paradigm is a good complement of parallel processing, and
allows applications to more easily exploit a limited form of parallel processing. It simplifies
parallel processing by restricting the parallel computation that can be performed.

Traditional popular big data processing frameworks like Hadoop and Spark assume that
they are processing data from a database, i.e. that all data is available when it is needed. And
it may require several passes over a static, archived data image. But when data arrives in a
stream or streams, data will be lost if it is not processed immediately or stored. Moreover, in
the streaming scenarios, usually the data arrives so rapidly that it is not feasible to store it
all in a conventional database, to process it when needed. So stream processing algorithms
often rely on concise, approximate synopses of the input streams in real time computed with
a simple pass over the streaming data.
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Below, we will first present the issues in data stream processing, then introduce an
approach to summarize a stream with only looking at fixed-length windows, and in the end
we will present some Stream management systems.

2.1.2.1 Rules in Data Stream processing

Definition 2.1 A data stream is a real-time, continuous, ordered (explicitly by timestamp or
implicitly by arrival time) sequence of items.

In general, we need to follow some rules for processing low-latency and high-volume
data streams [131]. The most important rules are:

• Rule 1: Keep the data moving
The first requirement for a real-time high-volume data stream processing framework is
to process data "on the fly", without storing everything.

• Rule 2: Handle Stream Imperfections
The second requirement is to provide resilience against "imperfections" in streams,
including delay, missing and out-of-order data.

• Rule 3: Generate Predictable Outcomes
A stream processing engine must guarantee predictable and repeatable outcomes.

• Rule 4: Integrate Stored and Streaming Data
A stream processing system also needs to efficiently store, access, and modify state
information, and combine it with new coming streaming data.

• Rule 5: Guarantee Data Safety and Availability
Fault-tolerance is another important point for such a system.

• Rule 6: Partition and Scale Applications Automatically
In order to meet the real-time requirement for high-volume and fast data streams, the
capability to distribute processings across multiple machines to achieve incremental
scalability is also important. Ideally, the system should automatically and transparently
distribute the data and queries.

• Rule 7: Process and Respond Instantaneously
The last but most important requirement is to have a highly-optimized, minimal-
overhead execution engine to deliver real-time response for high-volume applications.

When designing a stream processing algorithm, we need to keep two things in mind:
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• It can be more efficient to get an approximate answer than an exact solution.

• A variety of techniques related to hashing turn out to be very useful. Because, these
techniques introduce useful randomness, which produces an approximate answer that
is very close to the exact one.

The approximation of a streaming algorithm comes from two aspects: (1) from limiting
the size of states maintained for the process; (2) from reducing the precision of the result. An
approximate solution is defined as follows:

Definition 2.2 An e-approximation solution is a deterministic procedure that, given any
positive e < 1, computes an estimation bX for X which worst case relative error is at most e .

Definition 2.3 An (e,d )-approximation solution for a quantity X is a randomized procedure
that, given any positive e < 1 and d < 1, computes an estimate bX which is within a relative
error of X with the probability at least 1 - d .

The algorithms for processing streams usually involve summarization of the stream in
some ways. Summary data structures such as : wavelets, sketches, histograms and samples
have been widely used especially for streaming aggregation [30][61][83] [79][58][139]
[114][85][71]. These algorithms always begin by considering how to make a useful sample
or how to filter tout most of the undesirable elements. Another important approach to
summarize a stream is to process within a fixed-length window [133][66][57], then query the
window as if it were a relation in a database. This model is called "sliding window model",
the details about this model will be presented in the coming section.

A lot of prior work on stream processing focused on developing space-efficient, one-pass
algorithms for performing a wide range of centralized, one-shot computations over massive
streams. These applications involve: (1) computing quantiles [88]; (2) estimating distinct
values [82]; (3) counting frequent elements [60][65]; (4) estimating join sizes and stream
norms [34][64].

As the size of data is getting larger, some recent efforts have concentrated on distributed
stream processing and proposing communication efficient streaming frameworks to handle a
number of query tasks such as aggregation, quantiles and join (such as Apache Storm, Spark
Streaming, Yahoo! S4 etc.) which we will introduce Section 2.1.2.4.

2.1.2.2 Sliding Window Model

Through the analysis above, we can list the 3 most important issues arising in stream
processing:
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(1) Unbounded streams can not be wholly stored in bounded memory.

(2) New items in a stream are often more relevant than older ones, because streams are
temporally ordered. So outdated data should be withdrawn and no longer used when
evaluating queries.

(3) The query plans for streams may not use blocking operators that must consume the
entire input before any result is produced.

To solve these issues a common solution is to restrict the range of continuous queries to a
sliding window [87]. This process can be considered as maintaining a moving window of
the most recent elements in the stream. A sliding window protocol is a packet-based data
transmission protocols. It is used for reliable in-order delivery of data. Conceptually, each
portion of the transmission of data is assigned a unique consecutive sequence number, which
is later used to reorder the data received.

There are two types of sliding windows:

• Count-Based Sliding Window: also called sequence-based sliding window, which
contains the last T items.

• Time-Based Sliding Window: which contains the items that have arrived in the last
t time units.

Computing all queries within a sliding window allows continuous queries over unbounded
data streams to be executed with finite memory. This execution generates new results
incrementally as new items arrive. Furthermore, a windowed process over streams is practical
and useful in many applications.

Performing a continuous process over sliding windows poses two strategies need to be
well designed, which will affect the performance and efficiency of the algorithms:

- Re-execution Strategies

- Data Invalidation Strategies

Each strategy has two choices:

- Eager Re-execution Strategies: generates new results after each new data arrives.
This strategy may be not feasible when streams have a high arrival rate.
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Fig. 2.8 Streaming Join over Sliding Window

- Lazy Re-execution Strategies: is a more practical solution, which re-executes the
query periodically. The weak point of this strategy is that it causes an increased delay
between the arrival of new data and the generation of new results based on this new
data.

- Eager Expiration Strategies: proceed by scanning the sliding window, moving
forward upon arrival of new data and removing old data at the same time.

- Lazy Expiration Strategies: involve removing old data periodically and require more
memory to store data waiting for expiration.

Several algorithms have been proposed for maintaining different types of statistics over
data streams within a sliding window while requiring time and space that is sublinear
(typically, poly-logarithmic), in the same or different window sizes [68][84][125][135].
Clustering problems over sliding windows [53] [121] is a new trend of research in the
machine learning area.

2.1.2.3 Sliding Window Join

Sliding window joins have been widely studied. A sliding window join uses two (or more)
streams of data as input, with window sizes for each stream, as shown in Fig. 2.8. The
output is also a stream, containing all pairs (a, b), where a 2 CurrentWindow(A), b 2
CurrentWindow(B), such that:

(i) a and b satisfy the join predicate.

(ii) a is in the current active window of A as well as b is in the current active window of B.
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In a stream system, joins are only allowed when the state does not grow indefinitely. The
join condition must ensure that a data of one input stream only joins with a bounded range of
data from the other input streams. At the same time, a streaming join must have an equality
or band predicate [112] between progressing attributes of its inputs. Having n data streams,
and n corresponding sliding windows for each stream, the object of a sliding window join
is to evaluate the join operation of the n windows. The semantics of a sliding window join
is a monotonic query over append-only relations. For each newly arrived data s, the join
operation needs to probe all unexpired data and present in the sliding window at the arrival
time of s, and return all the results that satisfy all the join predicates. And s will be kept in
the window until it expires, and joined with other new coming data.

A binary incremental Nested Loop Join example is introduced in [105]. In this example
two sliding windows S1 and S2 are joined. For each newly arrived data in window S1, a
scan of S2 will be done to return the matching results. The same procedure is applied to
each newly arrived data in window S2. Paper [87] generalizes this model to more than two
windows. In this paper, for each newly arrived data t, an execution of join sequence according
to the query plan will be done. For example, suppose 3 sliding windows S1, S2 and S3 need
to be joined according to the query plan S1 on (S2 on S3). Upon arrival of new data in S1, after
invalidating expired data in S2 and S3, we need to probe all the data in S2 on S3. If a new S2

(or S3) data arrives, then we need firstly to withdraw the old data in S1 and S3 (or S2), and
compute the join of the newly arrived data with the data in the current window of S3, then
probe the results for each data in the current window of S1.

Parallel and distributed sliding window models have also been proposed. Paper [109]
presents a randomized (e,d )�approximation scheme for counting the number of 1 in a sliding
window on the union of distributed streams. Paper [122] uses the sliding window model
for answering complex queries over distributed and high dimensional data streams. They
proposes a compact structure ECM-sketches, which combines the state-of-the-art sketching
technique for data stream summarization with deterministic sliding window synopses. This
structure provides probabilistic accuracy guarantees for the quality of the estimation, for
point queries and self-join queries, which can be applied for finding heavy hitters, computing
quantiles, or answering range queries over sliding windows. Paper [84] proposes a Parallel
Sliding Windows (PSW) method, for processing very large graphs. PSW requires only a
very small number of non-sequential accesses to the disk. And it naturally implements the
asynchronous model of computation. Paper [146] studies the processing of asynchronous
event streams within sliding windows. They characterize the lattice structure of event stream
snapshots within the sliding window, then propose an only algorithm to maintain Lat-Win at
runtime.
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But to the best of our knowledge, a parallel and distributed sliding window model for
processing data driven complex Nested Loop Join such as kNN join, or for processing query
driven semantic join have not been studied yet.

2.1.2.4 Data Stream Management System

Some works have extended the MapReduce paradigm to process dynamic data.
ASTERIX [45] is a data-intensive storage and computing platform which deals with

data-feeds from multiple sources of data. It follows a "web warehousing" philosophy [35]
where social network or web data is ingested into and analyzed in a single scalable platform.
It also builds a logical plan for each query, which is a directed acyclic graph (DAG) of
algebraic operators that are similar to what one might expect to find in a nested-relational
algebra such as select, project, join, groupby, and other operations over streams of data.

Hadoop Online Prototype (HOP) [63] is an approach for getting early results from a
job while it is being executed by a flush API.

HaLoop [55] [56] is a novel parallel and distributed system that supports large-scale
iterative data analysis applications. It is built on top of Hadoop and extends it with a new
programming model and several important optimizations that include (1) a loop-aware
task scheduler, (2) a loop-invariant data chaching, and (3) caching for efficient fixpoint
verification.

Twister [75] is a distributed in-memory MapReduce runtime optimized for iterative
MapReduce computations. It performs and scales well for many iterative MapReduce
computations.

PIC [76] stands for Partitioned Iterative Convergence. It was designed for processing
iterative algorithms on clusters.

Continuous Hadoop [140] is a framework to support continuous MapReduce applica-
tions. In this framework, jobs registered by the users can be automatically re-executed when
new data is added to the system. New data is identified using a time stamping mechanism.
The new coming data is produced by a function called carry in the reduce phase and is
automatically added as an input for the subsequent run.

But these frameworks are not suitable for processing data streams and returning the
results in real-time because of the nature of MapReduce paradigm.

To address the limitation of database-based solutions, some stream processing engines
have been proposed. Here we list some of the most notable ones.

Aurona [25] is a Stream-Oriented Database to manage data streams for monitoring
applications. It provides storage organization, real-time scheduling, introspection, and load
shedding.
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Borealis [26] is a distributed stream processing engine. It is based on Aurora for the core
stream processing functionality and Medusa for the distribution functionality. It modifies and
extends both systems in non-trivial and critical ways to provide advanced capabilities that
are commonly required by newly-emerging stream processing applications.

StreamCloud [90] is a scalable and elastic stream processing engine for processing large
data streams. It uses a novel parallelization technique that splits queries into subqueries that
can be allocated to independent sets of nodes while minimizing the distribution overhead. It
works in a shared nothing cluster.

STREAM [37] is the STandford stREam datA Manager. It provides a general-purpose
system for processing continuous queries over multiple continuous data streams and stored
relations. It is designed to deal with high-volume and bursty data streams operated by
complex continuous queries. It introduces a declarative language(CQL [38]) to specify
queries.

TelegraphCQ [59] provides a suite of novel technologies for continuously adaptive query
processing. It is focused on meeting the challenges that arise in handling large streams of
continuous queries over high-volume, highly-variable data streams. It is based on individual
modules that communicate using the Fjord API. Its modules are generic units that produce
and consume data.

SPADE (IBM) [80] is a large scale, distributed data stream processing middleware under
development at IBM. It provides a programming language for flexible composition of parallel
and distributed data-flow graphs, a toolkit of stream processing operators and a a rich set of
stream adapters.

Spark Streaming is an extension of the Spark framework. It enables scalable, high-
throughput and fault-tolerant stream processing for dynamic data streams. Spark Streaming
receives input data streams and divides them into batches, which will later be processed by
the Spark engine to generate final stream in batches. It has APIs for Scala, Java and Python.
Spark Streaming is a data parallelism framework. It follows the same ideas as MapReduce
batch processing paradigm. It is not a real "real-time processing" framework: the incoming
events are cached and processed as a batch, resulting in a larger delay than the real streaming
processing frameworks such as Twitter Storm.

Yahoo! S4 [118] is a general-purpose, distributed, scalable, partially faut-tolerant,
pluggable platform for data stream processing that allows users to easily develop applications
for processing continuous unbounded streams of data. It is a java based solution which relies
on the user defined classes to process and produce stream data. It uses Apache Zookeeper
[97] to maintain the state of a distributed job. It allows a parallel execution of data streams.
But it does not provide a dynamic load balancing protocol, which is left for users to define.
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Table 2.1 A comparison of Storm, Spark Streaming and Yahoo! S4

Storm Spark
Streaming S4

Original Design Twitter UC Berkeley Yahoo!

Implemented In Clojure Scala Java

APIs Java (and others) Scala, Java Java

Processing Model Record at a time Mini Batches Record at a time

Latency Sub-Second Few Seconds Sub-Second

Data Units Tuple Java Object Java Object

Hadoop Distribution Hortonworks HDP Cloudera, MapR None

Resource Manager Mesos/Zookeeper YARN/Mesos Zookeeper

Distributing Work User Specifies MapReduce Evenly

Fault Tolerance
(Ever Record Processed:) At Least Once Exactly Once No Guarentee

Dynamic Deployment Yes No No

S4 uses "Plain Old Java Objects" (POJO) mode as its communication protocol and User
Datagram Protocol (UDP) as its underlying protocol, which has an impact on reliability.
Besides, it does not support dynamic deployment of the cluster or add or delete nodes during
run time.

Twitter Storm [137], is a distributed, parallel and fault tolerance framework for data
streams processing. Queries can be expressed in using the boxes and arrows model. A
Storm job, which is called a Topology, consists in two components: Spout and Bolt . Spout
nodes are responsible for generating the system input streams. Bolt nodes are in charge
of processing those streams and generate output results. It relies on Zookeeper servers to
maintain the state of distributed setups. Storm supports task parallelism. In a Storm cluster,
the data is flowing while the tasks do not. Storm is a real "flow processing" framework: every
incoming data will be handled as an event, which has a smaller delay than the mini-batch
processing frameworks such as Spark Streaming. It also supports dynamic deployment of
the cluster, and add or delete nodes during run time.

Among these frameworks, Spark Streaming, Yahoo! S4 and Twitter Storm are the
most widely used. Table. 2.1 shows a comparison of these three frameworks.

Through the above comparison, we think Storm is the best choice for a real-time and low
latency data stream processing problem. The reasons are:
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• Storm processes data in form of streams. And it processes intensive queries in parallel.
(Latency)

• It is scalable. As the amount of data increases, we can simply increase the number of
nodes for processing. (Dynamic Deployment)

• It has a good reliability, which can ensure that each event can be at least processed
once. (Fault Tolerance)

• It provides good fault tolerance. Once a node fails, the task on this node is re-assigned
to the other nodes. (Fault Tolerance)

• It provides a simple programming model, which reduces the complexity of real-time
processing. (Distributing Work)

• It supports multiple programming languages such as Clojure, Java, Ruby and Python.
(APIs)

For the above reasons, we chose to use Storm to evaluate the algorithms designed in this
thesis.

2.1.2.5 Introduction to Apache Storm

Storm is a distributed, reliable, fault-tolerant framework for data streams processing. It was
firstly developed in Twitter, and is now an Apache open source project.

A Storm job is called a Topology. A Topology is made of different types of components.
Each component is responsible for a simple specific task. The component for handling and
distributing the input streams is called a Spout. The component for processing the streams is
called a Bolt. A Spout passes data to Bolt(s), which transforms it in some ways. A Bolt is
a user defined task, it can either persist the data into different sort of storages, or pass it to
some other Bolts, or process it through some user specified functions. A Storm cluster can
be seen as a chain of a Spout followed by several Bolts, where each Bolt makes some kind of
transformation on the data. An example of a Topology is shown in Fig. 2.9.

A Storm cluster works in a master slave manner. A daemon called Nimbus runs on the
Master node. It is responsible for distributing the user specified code to the cluster: assigning
tasks to worker nodes, and monitoring the cluster for failures. A daemon called Supervisor
runs on the Worker nodes. It executes the task on this node and is part of the Topology.
Usually, a Topology runs across many worker nodes. Storm keeps the states of the cluster in
Zookeeper or on local disk. So the daemons are stateless. They can fail or restart without
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Fig. 2.9 An example of a Topology

Fig. 2.10 A physical view of a Storm cluster

affecting the health of the whole system. The physical view of a Storm cluster is shown in
Fig. 2.10

2.2 Concepts of use cases

2.2.1 k Nearest Neighbor

Given a set of query points R and a set of reference points S, a k nearest neighbor join is an
operation which, for each point in R, discovers the k nearest neighbors in S.

k nearest neighbor join (short for kNN) is frequently used as a classification or clustering
method in machine learning or data mining areas. The primary application of a kNN join
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is k-nearest neighbor classification. Some data points are given for training, and some new
unlabeled data is given for testing. The aim is to find the class labels for new points. For
each unlabeled data, a kNN query on the training set will be performed to estimate its class
membership. This process can be considered as a kNN join of the testing set with the training
set. The kNN operation can also be used to identify similar images. To do that, description
features (points in a dataspace of dimension 128 [44]) are first extracted from images using a
feature extractor technique. Then, the kNN operation is used to discover the points that are
close, which should indicates similar images. kNN join, together with other methods, can be
applied to a large number of fields, such as multimedia [111][108], social network [41], time
series analysis [126] [31], bio-information and medical imagery [100][107].

The basic idea to compute a kNN join is to perform a pairwise computation of distance
for each element in R and each element in S. The difficulties mainly lie in the following two
aspects: (1) Data Volume (2) Data Dimensionality. Suppose we are in a d dimension space,
the computational complexity of this pairwise calculation is O(d ⇥ |R|⇥ |S|). Finding the k
nearest neighbors in S for every r in R boils down to finding the smallest k distances, and leads
to a minimum complexity of |S|⇥ log |S|. As the amount of data or their complexity (number
of dimensions) increases, this approach becomes impractical. This is why a lot of work has
been dedicated to reducing the in-memory computational complexity [102][49][62][149][46].
These works mainly focus on two points: (1) Using indexes to decrease the number of
distances need to be calculated. However, these indexes can hardly be scaled on high
dimension data. (2) Using projections to reduce the dimensionality of data. But this results
in a loss of accuracy. Despite these efforts, there are still significant limitations to process
kNN on a single machine when the amount of data increases.

For large datasets (can not be processed in reasonable time on a single machine), only
distributed and parallel solutions prove to be powerful enough. The MapReduce paradigm
is the most used solution to parallel and distributed execution of kNN joins. Writing an
efficient kNN in MapReduce is also challenging for many reasons. First, classical algorithms
as well as the index and projection strategies have to be redesigned to fit the MapReduce
programming model and its share-nothing execution platform. Second, data partition and
distribution strategies have to be carefully designed to limit communications and data transfer.
Third, load balancing is a new problem to address. Not only the number of distances to
be sorted needs to be reduced, but also the number of MapReduce jobs and tasks. Finally,
parameter tuning remains a key point to improve performance.

In this section we will present the preliminaries about processing a kNN join both on
centralized environments and on parallel environments, both for static data and for dynamic
data streams.
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2.2.1.1 Definition

Given two data sets R and S in R

d , each record r 2 R and s 2 S can be considered as a d-
dimensional point in R

d . Suppose the L2 norm (Euclidean norm) is considered, the similarity
between two points is measured by their Euclidean distance d(r,s). Then, a nearest neighbors
query of r in S returns the set of k nearest neighbors of r from S. It consists in finding k
points in S with the smallest distance to the query point r.

More formally, given two data sets R and S in R

d , and given r and s, two elements, with
r 2 R and s 2 S, we have:

Definition 2.4 Let d(r,s) be the distance between r and s. The kNN query of r over S, noted
kNN(r,S) is the subset {si} ✓ S (|{si}|= k), which are the k nearest neighbors of r in S,
where 8 si 2 kNN(r,S), 8 s j 2 S� kNN(r,S), d(r,si) d(r,s j).

This definition can be extended to a set of query points:

Definition 2.5 The kNN join of two datasets R and S, kNN(R n S) is:
kNN(R n S)={(r,kNN(r,S)), 8 r 2 R}

Depending on the use case, it might not be necessary to find the exact solution of a
kNN query, and that is why approximate kNN queries have been introduced. The idea is to
have the kth approximate neighbor not far from the kth exact one, as shown in the following
definition.

Definition 2.6 The (1+ e)-approximate kNN query for a query point r in a dataset S,
AkNN(r,S) is a set of approximate k nearest neighbors of r from S, if the kth furthest result
sk satisfies sk⇤  sk  (1+ e)sk⇤ (e > 0) where sk⇤ is the exact kth nearest neighbor of r in S.

And as with the exact kNN, this definition can be extended to an approximate kNN join
AkNN(R n S).

The approximation of a kNN join mainly comes from the projection used for reducing
the dimensionality of data in a centralized method. It might also come from the partitioning
method used for a parallel and distributed method. And for a continuous kNN join, the
approximation may also come from the summarization method.

2.2.2 Semantic Web

The earlier data formats defined by W3C 3 such as HTML, XML etc. are mainly human-
readable contents. The object is to make the web pages pleasant to read and easy to navigate

3https://www.w3.org/TR/NOTE-rdfarch

https://www.w3.org/TR/NOTE-rdfarch
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Fig. 2.11 I want an Apple!

by users. But on the other side, these data are not easy to process by machines to discover
interesting knowledge because of their underlying representation. The direct effect of this
problem is the difficulty to manipulate each data. For example, when one wants to search
a specific subject on the internet, the search engine needs to first crawl the web pages and
index the information by keywords. Although many advanced machine learning and nature
language processing methods have been used, the results is still based on words, but not on
the context. An example Google query "I want an apple" is shown in Fig. 2.11. The search
engine gives answers about a song called "I want an apple", some results about the Apple
watch, Apple ID etc.

The problem comes from the web of documents design shown in Fig. 2.12. Under this
design, the machines can not understand the meaning of the content of data.

That’s why Tim Bernes-Lee expressed the concept of Semantic Web in 1998 as follows[47]:

"The Semantic Web is not a separate Web but an extension of the current one, in which
information is given well-defined meaning, better enabling computers and people to work in

cooperation.”

In brief, the Semantic Web aims at filling the gap between machines and humans. The
purpose is to integrate data at Web Scale. It is a framework for integrating multiple sources
to draw new conclusions and an architecture for describing all kinds of things. The Semantic
Web is also called Web of Data. It provides machine-understandable information by linking
everything together as shown in Fig. 2.13. This concept makes it possible to add a meaning
(semantic) to every data on the web, and link the data items through their semantics. The
search engines based on Semantic Web are more powerful to answer some natural questions
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Fig. 2.12 Web of Document

Fig. 2.13 Web of Data

in a concise and relevant manner. For example, when submitting a question like "Who is the
president of France", these semantic search engines will not only return a list of results related
to some of the keywords contained in the question, instead, they will search for the existing
facts extracted and combined from different structured documents to give a direct answer
along with relevant statements. Some search engines based on Semantic Web technologies
are: Google Knowledge Graph4, Ask Jeeves 5, Wolfram Alpha 6 and etc. An example from
Wolfram Alpha shown in Fig. 2.14.

However, compared to other web technologies, the Semantic Web is still young. It
requires many technologies to handle complex problems, including the processing of Big
Data and Data Streams. In the coming sections, we will introduce the RDF data model which
is a W3C data format designed for Semantic Web, and its corresponding query language

4https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html
5http://fr.ask.com/
6https://www.wolframalpha.com/

https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html
http://fr.ask.com/
https://www.wolframalpha.com/
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Fig. 2.14 Wolfram Alpha: a Semantic Search Engine

SPARQL. Then we will present the recent researches about parallel queries of RDF data and
continuous queries of RDF streams.

2.2.2.1 RDF data model

The Resource Description Framework (RDF) 7 is a data standard proposed by W3C. It
aims at representing semantic data in a machine understandable manner. It provides an
abstract data model for representing structured knowledge into independent statements. This
representation is used to describe semantic relations among data. In RDF format, data items
are expressed as triples in form of <subject, predicate, object>. The subject of a triple
indicates the resource that this triple is about; the predicates refers to the property of the
subject; and the object denotes to the projection value of the subject by the predicate. An
example of RDF triple in the XML format is shown in Fig. 2.15

There are three different kinds of values in an RDF triple:

• IRIs: IRI is short for Internationalized Resource Identifier. They are a complement of
URIs. They preserve all the benefits from URIs, which are global unique identifiers

7https://www.w3.org/RDF/

https://www.w3.org/RDF/
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Fig. 2.15 An RDF Triple

Fig. 2.16 RDF data naturally has semantics

of resources on the Web. The main advantage of using IRIs is that with the unique
identifier feature, anyone can "link to it, refer to it, or retrieve a representation of it".

• Literals: they are a convenient alternative of IRIs for identifying some fix values
such as strings, numbers or dates etc. Anything represented by a literal could also be
represented by a URI, but it is often more convenient or intuitive to use literals. There
are two different types of literals. The first one is plain literals which are unicode
strings combined with an optional language tag. The other one is typed literals which
are consist of unicode strings with a data type.

• Blank nodes: they are anonymous resources which name or identifier is not known
or not specified. They can be described as existential variables.

Note that, the subject can be either an IRI or a Blank node, the predicate can only be an
IRI and the object can be any of the 3 kinds of values.

One of the advantages that RDF format has is that it can link data together. The Predicate
in a triple acts as a link between subject and object. RDF can also be considered as a directed
graph, with predicate as edges in the graph, and subjects and objects as vertices in the graph.
These links bring semantics to data. And this semantic can not only be understood by humans
but also by machines. For example in Fig. 2.16, the 3 RDF triples shown provide more
information beyond their literal values because of the semantic relation among them. From
the semantic meaning of data, the machine can infer relationships of aunt, niece and cousins.

The corresponding graph representation of these RDF triples is shown is Fig. 2.17.
To help machines to understand the relations among data, a structure of data must be

pre-defined. In Semantic Web, this pre-defined structure is called an Ontology. An ontology
of data is a set of knowledge about a particular domain (for ex. Family, Profession, Bio-
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Fig. 2.17 Graph representation of RDF triples

Fig. 2.18 A SPARQL Query: Triple Pattern Representation

Information etc.). The most common used standards to represent an Ontology are RDF
Schema (RDFS) [6] and Web Ontology Language (OWL) [7].

2.2.2.2 SPARQL Query Language

SPARQL [20] is a W3C recommendation query language for querying RDF data. The basic
component of a SPARQL query is the Basic Graph Pattern (BGP) [8]. A BGP is a conjunction
of triple patterns. A triple pattern is a special kind of triple where S, P and O can be either a
literal or a variable. The variable part in a triple pattern is used to retrieve unknown values;
or to link a triple pattern with others; or both. Two triple patterns are connected if they share
a common variable part. In this case, a conjunctive join is formed on this variable part.

A SPARQL query example is shown in Fig. 2.18. SPARQL syntax is similar to SQL.
The SELECT clause states the variables to be retrieved. The WHERE clause contains all the
triple patterns to be applied on RDF data. The conjunction is specified by a "." character. In
the example in Fig. 2.18, the SELECT clause indicates 3 variables to be returned, and 3 triple
patterns joined on ?S in the WHERE clause. SPARQL queries can also be represented by a
directed graph as shown in Fig. 2.19 or in a relational representation as shown in Fig. 2.20

Depending on its shape, a SPARQL query can be star-shaped or chain-shaped. Depending
on the processing mode, SPARQL join can be divided into hash join and nested loop join etc.
There are many different expressions for SPARQL queries, the most used are: triple patterns,
directed graphs and relational representation.
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Fig. 2.19 A SPARQL Query: Graph Representation

Fig. 2.20 A SPARQL Query: Relational Representation





Chapter 3

Data Driven Continuous Join (kNN)

3.1 Introduction

kNN computation is both a data and computation intensive job. The query applied over the
data to compute the k nearest neighbors is always the same. The difficulty comes from the
different types of data. The data for this problem may vary a lot, from the number of records
(this use case yields both small and big data sets), the number of dimensionality (e.g. GPS
data in 2 dimensions, twitter data in 77 dimensions, images feature data in 128 dimensions
etc.), and the data formats.

We call this kind of join a "data driven join". In this Chapter, we introduce the
technologies for processing a continuous kNN join over data streams in a parallel and
distributed manner. We first evaluate all the technologies used for processing a parallel and
distributed kNN join. The methods evaluated are divided into two categories: (1) Exact
Solutions: H-BkNNJ the basic kNN method, H-BNLJ [154] which is a parallel nested
loop method for computing kNN join, and PGBJ [113] based on Voronoi Diagrams; (2)
Approximate Solutions: H-zkNNJ [154] based on z-value and RankReduce [132] based
on LSH. Then we summarize a general work flow composed by data preprocessing, data
partitioning and kNN join computation for processing a parallel and distributed kNN
join. We then give a theoretical analysis about every technologies through load balancing,
accuracy and complexity aspects. After the summary for parallel and distributed kNN join
processing method, we introduce new technologies for processing Continuous kNN join for
data streams in a parallel and continuous manner. In the end we evaluate both parallel and
distributed kNN processing on Hadoop MapReduce 1 and continuous kNN processing on

1We only evaluate the parallel and distributed processing of kNN join on Hadoop MapReduce, but the ideas
presented in this Chapter can also be implemented on other parallel and distributed computing platform like
Spark, because they share the same workflow.
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Apache Storm. The evaluation and benchmarks of the parallel methods has been done in
collaboration with two other Ph.D students, Justine Rochas and Lea El Beze.

3.2 Related Work

3.2.1 kNN Join for centralized environment

The basic solution to compute kNN adopts a nested loop approach, which calculates the
distance between every object ri in R and s j in S and sorts the results to find the k smallest
ones. This approach is computational intensive, making it unpractical for large or complex
datasets. Two strategies have been proposed to work out this issue.

The first one consists in reducing the number of distances to compute, by avoiding
scanning the whole dataset. This strategy focuses on indexing the data through efficient
data structures. For example, a one-dimension index structure, the B+-Tree, is used in
[101] to index distances; [49] adopts a multipage overlapping index structure R-Tree; [62]
proposes to use a balanced and dynamic M-Tree to organize the dataset; [150] introduces
a sphere-tree with a sphere-shaped minimum bound to reduce the number of areas to be
searched; [36] presents a multidimensional quad-tree in order to handle large amounts of
data; [46] develops a kd-tree which is a clipping partition method to separate the search
space; and [103] introduces a loose coupling and shared nothing distributed Inverted Grid
Index structure for processing kNN queries on MapReduce.

Among them, the R-Tree index structure is the most widely used. R-Tree can be con-
sidered as an extension of B+-Tree for multidimensional data. It is also a balanced search
Tree. The general idea of R-Tree is to group close points and represent them in minimum
bounding rectangles (MBRs). The letter "R" is short for "Rectangles". The points are
recursively grouped into the MBRs. An example of R-Tree is shown in Fig. 3.1. R-Tree
can not guarantee worst-case performance, but it can give a good performance in average
cases for range queries and nearest neighbor queries. The idea of using an R-Tree structure
for indexing data in a kNN problem is to adopt branch-and-bound search techniques. The
R-Tree is usually traversed either in a depth-first manner or a breadth-first manner. The
distances between the query point and the MBRs are calculated, and later used for pruning
the search tree. However, R-Tree is proved to be unefficient for high-dimensional data in real
applications.

Reducing the searched dataset might not be sufficient: because for data in high dimension
space, even computing distances is very costly. That is why a second strategy focuses
on projecting the high-dimension dataset onto a low-dimension one, while maintaining the
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Fig. 3.1 An Example of R-Tree

locality relationship among data. Representative efforts are LSH (Locality-Sensitive Hashing)
[86] and Space Filling Curve [147].

Locality Sensitive Hashing supposes that if two points are close to each other, then after a
projection operation these two points should remain close together. Based on this idea, LSH
uses hash collisions to reduce the dimensionality of high-dimensional data. Different from
the conventional hash methods, LSH aims at maximizing the probability of a "collision" for
similar items. An example of the process of LSH is shown in Fig. 3.2. Essentially, LSH uses
a hash family2 to randomly project data from a high dimension space to a lower dimensional
one. An LSH function should make sure that nearby points will be projected to the same hash
value with high probability. This hash value is represented by a bucket in Fig. 3.2. Each data
is represented by a point with different colors. In this figure, the close points are projected in
the same or nearby buckets by 4 hash functions.

Space Filling Curve maps data from high dimensional spaces to a 1 dimensional space
while preserving locality of the data points. It is based on the idea that a continuous curve in
a high dimension (more than 2) space can be considered as the path of a continuously moving
point. There are many different kinds of Space Filling Curves, such as: Dragon Curve [1],
Gosper Curve [10], Hilbert Curve [11], Z-Value [23] etc. Among them, Z-Value is proved to
be the one which can better preserve the locality information. So it is the most frequently

2A hash family is a set of hash functions generated through a common rule
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Fig. 3.2 An Example of LSH

used for solving kNN problems. The Z-Value of a point is calculated by interleaving the
binary representations of its coordinate values. An example showing the calculation of
Z-Value is shown in Fig. 3.3. In this figure, the points are in 2 dimensions, with X and Y
its coordinates. X is written in blue and Y is written in red. The z-value is a value which
binary representation is written by a red and blue figure, and which decimal representation is
written in black. The "Z" in the figure indicates the neighborhood after projection.

3.2.2 Parallel kNN Join

With the increasing amount of data, these centralized methods still can not handle kNN
computation on a single machine efficiently. Experiments in [39] suggest using GPUs to
significantly improve the performance of distance computation, but this is still not applicable
for large datasets (over TB) that cannot reasonably be processed on a single machine.

There are only very few existing works on parallel and distributed kNN join compared
with the extensive research on traditional, centralized and single-threaded kNN join. In
general, optimizing a parallel join is more complex than a centralized one. Early studies
about parallel join algorithms in a shared-nothing and multi-core environment come from
paper [106] and paper [128]. However, these studies focus on relational join operations such
as equi-join or q -join, which can not be applied directly to a parallel kNN join problem.

A problem similar to kNN join is kNN graph. It can be considered as a special case of
a general kNN join. kNN graph is a self-join, where only one data set is used. The goal of
a kNN graph is to generate kNNs for every data item in the data set. It is a graph in which
every node is connected to its k nearest neighbors. Some studies about processing the kNN
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Fig. 3.3 An Example of Z-Value

graph problem with MPI is proposed in paper [123]. A kNN graph construction method
on MPI and OpenMP is presented in paper [141]. An approximate kNN graph generation
method on MapReduce is introduced in paper [73]. Although these papers propose very good
ideas to solve a kNN related problem, they can not be easily generalized for solving the kNN
join problem in parallel, since they only use one data set while a kNN join needs two. Two
data sets require more complex partitioning strategy than only one data set.

More recent papers have focused on providing efficient distributed implementations of
the kNN problem. Some of them use ad hoc protocols based on well-known distributed
architectures [119, 91]. But most of them use the MapReduce model.

Writing an efficient kNN join on MapReduce is challenging for many reasons:

• First, classical algorithms as well as the index and projection strategies have to be
redesigned to fit the MapReduce programming model and its share-nothing execution
platform.

• Second, data partition and distribution strategies have to be carefully designed to limit
communications and data transfer.

• Third, the load balancing problem which is new compared to the centralized version
should also be considered.

• Fourth, not only the number of distances needed to be reduced, but a balance between
the number of MapReduce jobs and map/reduce tasks has to be found.
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Fig. 3.4 An Example of Voronoi Diagram

• Finally, the parameter tuning of some methods remains a key point to improve perfor-
mance.

The outstanding contribution for parallel and distributed processing of kNN join are the
following works:

Paper [132] uses LSH to reduce the dimensionality of data, and implement it on MapRe-
duce.

Paper [113] proposes to use Voronoi diagrams to partition data, then distribute each
partition to different worker nodes of a Hadoop cluster. Voronoi diagrams are a partitioning
of a plane. They divide the plane into regions based on distance to a specific subset of pivots.
Each pivot is the leader of the region consisting of the points closer to that pivot than to any
other. An example of Voronoi Diagrams generated by Python is shown in Fig. 3.4.

Paper [154] first proposes a Nested Loop execution of a kNN Join on MapReduce. Then
it uses Z-Value to reduce the dimensionality of data, and tries to partition data into equal
sized blocks in order to get a good load balance.

We will analyze these frameworks in Section 3.3.

3.2.3 Continuous kNN Join

Continuous kNN join for data streams has also been widely studied. Different from a static
kNN join where the two join sets are fixed, in a Continuous kNN join, data is dynamic in at
least one data set.
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Paper [136] designs the join algorithms for data streaming systems, where memory is not
large enough to hold all data to be processed.

Paper [50] proposes an efficient technique for processing continuous k nearest neighbor
queries on data streams. They prove that this method can be used on high throughput data
streams using only very limited storage. Their method is mainly based on 3 ideas:

- Select the exact objects in the stream which can possibly become the nearest neighbor
of one or more continuous query points. Store them in a skyline data structure. Skyline
is a data structure used to summarize multidimensional data sets. Given a data set P
containing data points p1, p2, ..., pn, the Skyline of P is the set of all pi in P, where no
p j dominates pi. For example, when assisting a user to find a set of restaurants from a
larger set of candidate sets. Each restaurant is identified by two attributes: a distance
from the user and the rank. To help the user to narrow down the choices, the Skyline
structure can be used to find the set of all restaurants that are not dominated by another
restaurant. Restaurant A dominates restaurant B if A is at least as close as B and has a
higher rank than B.

- Index the query points.

- Delay the process for the points who are not immediately possible to be a nearest
neighbor for any query point.

These methods are only suitable for low dimension data sets, but not efficient for high
dimension data sets. To solve the problem of the "curse of dimensionality", paper [149] pro-
posed the kNNJoin+ method, which supports efficient incremental computation of kNN join
for dynamic high-dimensional data. This method is based on a Sphere-Tree index structure
which is shown in Fig. 3.5. Sphere-Tree is used to deal with the update of data. Sphere-Tree
is based on R-Tree and does not have a high pruning capability in high-dimensional space.
Moreover, the computation of distance in high-dimensional space has a very high cost. They
store every data on disk leading to a high disk I/O cost, which can not meet the real-time
requirement in a stream processing scenario.

Paper [145] addresses the problem of real-time continuous kNN join processing in the
context of content-based recommendation. As in a social network use case, data is always
represented by features of hundreds of dimensions, so the main solution proposed in this
paper is to maintain the high dimensional kNN join as data evolve. They proposed an
in-memory index structure called HDR-Tree, which combines a clustering technique and
PCA (Principal Component Analysis) [18].
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Fig. 3.5 Sphere-Tree

Unfortunately, these methods are all centralized. Since a "Tree" indexing structure is very
hard to extend in a parallel and distributed environment, these methods may only be used for
a local improvement in a parallel environment.

So far, to the best of our knowledge, no work can directly solve the kNN join in a parallel
and distributed manner for continuous update data streams.

3.3 Parallel kNN

3.3.1 Workflow

In this section, we introduce the workflow for processing a kNN join in parallel. It consists in
three ordered steps: (i) data pre-processing, (ii) data partitioning and (iii) kNN computation.
These three steps are analyzed in the coming sections.

3.3.1.1 Data Preprocessing

The purpose of data preprocessing is to transform the original data to benefit from particular
properties. This step is done before the partitioning of data to pursue two different goals:

(1) to reduce the dimension of data;
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(2) to select central points of data clusters.

To reduce the dimension, data from a high-dimensional space will be mapped to a low-
dimensional space by a linear or non-linear transformation. In this process, the challenge is
to maintain the locality of the data in the low dimension space. In this thesis, we focus on
two methods to reduce data dimensionality.

The first method is based on space filling curves. Paper [154] proves that z-value
is the best space-filling curve to keep the locality information. The z-value of a data is
a one dimensional value that is calculated by interleaving the binary representation of
data coordinates from the most significant bit to the least significant bit, as presented in
Section 3.2.2.

However, due to the loss of information during this process, this method can not fully
keep the spatial location of data. In order to increase the accuracy, we can use several shifted
copies of data and compute their z-values respectively. The shifted data set is generated by
moving the original data set into the direction of a random vector. But this increases the
computation cost, and occupies more disk space.

The second method to reduce data dimensionality is the locality sensitive hashing (LSH)
[86][69] method. This method maps high-dimensional data into low-dimensional one, with
L families of M locality preserving hash functions H = { ha,b(v) = ba·v+b

W c }, where a is a
random chosen vector, b is a real number chosen uniformly from the range [0,W ], and W is
the size of the buckets into which transformed values will fall. The principle of LSH is to
make sure that 8h 2 H :

i f d(x,y) d1,Pr [h(x) = h(y)]� p1 (3.1)

i f d(x,y)� d2,Pr [h(x) = h(y)] p2 (3.2)

where Pr is short for probability, d(x, y) is the distance between two points x and y, d1 < d2

and p1 > p2.
As a result, the closer two points x and y are, the higher the probability the hash values

of these two points h(x) and h(y) in the hash family H (the set of hash functions used) are
the same. The accuracy of LSH (how well it preserves locality) depends on the tuning of its
parameters L, M, and W. The parameter L impacts the accuracy of the projection: increasing
L increases the number of hash families that will be used, it thus increases the accuracy of
the positional relationship by avoiding fallacies of a single projection. But in return, it also
increases the processing time because of the duplication of data. The parameter M impacts
the probability that the adjacent points fall into the same bucket. The parameter W reflects
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the size of each bucket and thus, impacts the number of data in a bucket. All three parameters
are important for the accuracy of the result. Basically, the key concept of LSH for computing
kNN is to generate some collisions to find enough accurate neighbors.

The reference RankReduce paper [132] does not highlight enough the cost of setting the
right value for all parameters, and show only one specific setup that allows the authors to
have an accuracy greater than 70%.

Another aspect of the preprocessing step is to select central points of data clusters. Such
points are called pivots. Paper [113] proposes 3 methods to select pivots. The Random
Selection strategy generates a set of samples, then calculates the pairwise distance of the
points in the sample, and the sample with the biggest sum of distances is chosen as the set
of pivots. It provides good results if the sample is large enough to maximize the chance of
selecting points from different clusters. The Furthest Selection strategy randomly chooses
the first pivot, and calculates the furthest point to this chosen pivot as the second pivot, and so
on until having the desired number of pivots. This strategy ensures that the distance between
each selected point is as large as possible, but it is more complex to process than the random
selection method. Finally, the K-Means3 Selection applies the traditional k-means method on
a data sample to update the centroid of a cluster as the new pivot at each step, until the set of
pivots stabilizes. With this strategy, the pivots are ensured to be in the middle of a cluster, but
it is the most computational intensive strategy as it needs to converge towards the optimal
solution. The quality of the selected pivots is crucial, for effectiveness of the partitioning
step, as we will see in the experiments.

The pre-processing of data is summarized in Table 3.1. These methods not only can
be used in kNN join problems, but also can be used for any parallel and distributed data
processing problem.

Table 3.1 The summary about the pre-processing step

Purpose Method

Reduce the dimensionality Space Filling Curve (z-value)
Locality Sensitive Hashing (LSH)

Select the pivot points
Random Selection
Furthest Selection
K-Means Selection

3https://en.wikipedia.org/wiki/K-means_clustering

https://en.wikipedia.org/wiki/K-means_clustering
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3.3.1.2 Data Partitioning

In order to process data on a shared-nothing parallel and distributed environment, we need
to divide the dataset into independent pieces, which is called partitions. When computing
a kNN join, we need to divide R and S respectively. As in any parallel and distributed
process, the data partition strategy will strongly impact CPU, network communication and
disk usages, which in turn will impact the overall processing time [130]. Besides, a good
partition strategy could help reducing the number of data replications, thereby reducing the
number of distances needed to be calculated and sorted.

Fig. 3.6 Random Partition without any special strategies

We can choose different partition strategies to partition data. The simplest one is a
Random partition strategy. H-BNLJ simply divides R into rows and S into lines, making each
subset of R calculate with every subset of S. The process of this random partition is shown in
Fig. 3.6 This ensures the distance between each object ri in R and each object s j in S will be
calculated. But this way of dividing datasets generates a lot of data replications. For example,
in H-BNLJ, each piece of data is duplicated n times where n is the number of subsets of R
and S, resulting in a total of n2 tasks for calculating pairwise distances. This method wastes
a lot of hardware resources, and ultimately leads to low efficiency.

The key to improve performance is to preserve spatial locality of objects when decom-
posing data for tasks [155]. This means making a coarse clustering in order to produce a
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reduced set of neighbors that only contains the candidates for the final result. Intuitively, the
goal is to have a partition of data such that an element in a partition of R can find its k nearest
neighbors in only one partition of S.

More precisely, what we want is: for every partition Ri ([iRi = R), find a corresponding
partition S j ([ jS j = S), where:

kNN(Ri nS) = kNN(Ri nS j)

And,

kNN(RnS) =
S

kNN(Ri nS j)

which means that, not only it is possible to compute kNN for each element of Ri in a single
S j, but also the concatenation of the results for all Ri is equal to the global kNN join. Two
partitioning strategies that enable to separate the datasets into independent partitions, while
preserving locality information, have been proposed. They are the distance-based parti-
tioning strategy and the size-based partitioning strategy. We introduce these two strategies
respectively in the coming sections.

Distance-Based Partitioning Strategy

The distance-based partitioning strategy we study in this section is based on Voronoi
diagrams, a method to divide the space into disjoint cells as presented in Section 3.2.2. We
can find other distance-based partitioning methods in the litterature, such as in [103], but
we chose Voronoi diagrams because it can be applied to data in any dimension. The main
property of Voronoi diagrams is that every point in a cell is closer to the pivot of this cell
than to any other pivot. More formally, the definition of a Voronoi cell is as follow:

Definition 3.1 Given a set of disjoint pivots:

P = {p1, p2, ..., pi, ..., pn}

then, the Voronoi Cell of pi (0 < i  n) is:

8 i 6= j, VC (pi) =
�

pkd (p, pi) d
�

p, p j
� 

.

Paper [113] gives a method to partition datasets R and S using Voronoi diagrams. The
partitioning principles are illustrated in Fig. 3.7.

After having identified the pivots pi in R (c.f. Section 3.3.1.1), the distances between
elements of each dataset and the pivots are computed. The elements are then put in the cell
of the closest pivot, giving a partitioning of R (resp. S) into PR

i (resp. PS
i ). For each cell, the
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 pi

 pj

 ph

s

r

Fig. 3.7 Distance Based Partitioning Strategy : Voronoi Diagram

upper bound U(PR
i ) (resp. the lower bound L(PR

i )) is computed as a sphere determined by
the furthest (resp. nearest) point in PR

i from the pivot pi. The boundaries and other statistics
are used to find candidate data from S in the neighboring cells. This data is then replicated
in cell PS

i . For example, in Figure 3.7, the elements s of PS
j fall inside U(PR

i ) and are thus
copied to Si as a potential candidate for the kNN of r in PR

i .
The main issue with this method is that it requires computing the distance from all

elements to the pivots. Also, the distribution of the input data might not be known in advance.
Hence, pivots have to be recomputed if data change. More importantly, there is no guarantee
that all cells have an equal number of elements because of potential data skew. These
disadvantages may lead to a load imbalancing problem, which will later give a negative
impact on the overall performance. To alleviate this issue, the authors propose two grouping
strategies, which will be discussed in Section 3.3.2.1.

Size Based Partitioning Strategy

Another type of partitioning strategy aims at dividing data into equal size partitions.
Paper [154] proposes a partitioning strategy based on the z-value described in the previous
section.

In order to have a similar number of elements in all n partitions, the authors first sample
the dataset and compute the n quantiles. These quantiles are an unbiased estimation of the
bounds for each partition. Figure 3.8 shows an example for this method. In this example
data items are only shifted once. Then, data is projected using the z-value method. The “Z"
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in the figure indicates the neighborhood after projection. Data sets are projected into a one
dimension space, represented by ZR

i and ZS
i in the figure. ZR

i is divided into partitions using
the sampling estimation explained above. For a given partition Ri, its corresponding Si is
defined in ZS

i by copying the nearest k preceding and the nearest k succeeding points to the
boundaries of Si. In Fig. 3.8, four points of Si are copied in partition 2, because they are
considered as candidates for the query points in R2

i .

Fig. 3.8 Size-Based Partitioning Strategy : Z-Value

This method is likely to produce a substantially equivalent number of objects in each
partition, in order to naturally achieve load balancing. However, the quality of the result
depends solely on the quality of the z-curve, which might be an issue for high dimension
data.

Another similar size-based partitioning method uses Locality Sensitive Hashing to first
project data into low dimension space as illustrated in Fig. 3.9. In this example, data is
hashed twice using two hash families a1 and a2. Each hashed data is then projected in the
corresponding bucket. Ideally the data initially close in the high dimension space should be
hashed to the same bucket with a high probability, if the bucket size (parameter W in LSH) is
large enough to receive at least one copy of close data.

The strategy of partitioning directly impacts the number of tasks and the amount of
computation. Distance based methods aim at dividing the space into cells that are driven by
distance rules. Size based methods create equal size zones in which the points are ordered.
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Fig. 3.9 Size Based Partitioning Strategy : LSH

Although it’s more probable for the related objects to have the same hash value than the
distance ones, normally one hash function can not guarantee the accuracy. We often need a
group of hash functions to generate multiple hash tables to avoid the conflict probability of
distance objects.

3.3.1.3 Computation

The main principle to compute a kNN join, is to (i) calculate the distance between ri and
s j for all i, j, and (ii) sort these distances in ascending order to pick the first k results.
The number of jobs for computing and sorting also impacts the global performance of the
kNN computation, because of the complexity of MapReduce tasks and the amount of data
transmitted. The preprocessing and partitioning steps impact on the number of MapReduce
tasks that are further needed for the core computation. In this section, we review different
strategies used to finally compute and sort distances efficiently. These different strategies
can be divided into two categories, depending on the number of jobs they require. Those
categories can themselves be divided into two subcategories: the ones that do not require
special preprocessing and partition steps before computation and the ones that implement the
preprocessing and partitioning steps.

One MapReduce Job

Without preprocessing and partitioning strategies.
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The naive solution (H-BkNNJ) only uses one MapReduce job to calculate and sort the
distances, and only the Map Phase is done in parallel. The Map tasks will cut datasets into
splits, and label each split with its original dataset (R or S). The Reduce task then takes one
object ri and one object s j to form a key-value pair < ri,s j >, calculates the distance between
them, and for each key ri sorts the distances with every objects in S, resulting in |S| distances
to be sorted. Since only the Map phase is parallel, and only one Reduce task is used for
calculating and sorting, when the datasets becomes large, this method will quickly exceed
the processing capacity of the computer. Therefore, it is only suitable for small datasets.

With preprocessing and partitioning strategies.

PGBJ [113] uses a preprocessing step to select the pivot of each partition and a distance
based partitioning strategy to ensure that each subset Ri only needs one corresponding subset
Si to form a partition where the kNN of all ri 2 Ri can be found. Therefore, in the computation
step, Map tasks find the corresponding Si for each Ri according to the information provided
by the partitioning step. Reduce tasks then perform the kNN join inside each partition of
< Ri,Si >.

Overall, the main limitation of these two approaches is that the number of values to
be sorted in the Reduce task can be extremely large, up to |S|, if the preprocessing and
partitioning steps have not significantly reduced the set of searched points. This aspect can
limit the applicability of such approaches in practice.

Two Consecutive MapReduce Jobs

To overcome the previously described limitation, multiple successive MapReduce jobs
are required. The idea is to have the first job compute the local top k nearest neighbors for
each pair (Ri,S j). Then, the second job is used to merge all the top k values for a given ri and
to merge and sort all local top k values (instead of all values) producing the final global top k.

Without preprocessing and partitioning strategies.

H-BNLJ does not have any special preprocessing or partitioning strategy. The Map Phase
of the first job distributes R into n rows and S into n columns. The n2 Reduce tasks output
the local kNN for each object ri in the form of (rid,sid,d(r,s)).

Since each rid has been replicated n times, the Map Phase of the second MapReduce job
will pull every candidate of ri from the n pieces of R, and form (rid), list(sid,d(r,s)). Then
each Reduce task will sort list(sid,d(r,s)) in ascending order of d(r,s) for each ri, and finally,
give the top k results.

Moreover, in order to avoid the scan of the whole dataset of each block, some index
structures like R-Tree [154] or Hilbert R-Tree [74] can be used to index the local S blocks.



3.3 Parallel kNN 53

With preprocessing and partitioning strategies.

In H-zkNNJ [154] the authors propose to define the bounds of the partitions of R and then to
determine from this the corresponding Si in a preprocessing job. So here, the preprocessing
and partitioning steps are completely integrated in MapReduce. Then, a second MapReduce
job takes the partitions Ri and Si previously determined, and computes for all ri the candidate
neighbor set, which represents the points that could be in the final kNN4. To get this candidate
neighbor set, the closest k points are taken from either side of the considered point (the
partition is in dimension 1), which leads to exactly 2k candidate points. The third MapReduce
round determines the exact result for each ri from the candidate neighbor set. So in total,
this solution uses three MapReduce jobs, and among them, the last two are actually devoted
to the kNN core computation. As the number of points that are in the candidate neighbor
set is small (thanks to the drastic partitioning resulting from preprocessing), the cost of
computation and communication is extremely reduced.

In RankReduce [132]5, the authors first preprocess data to reduce the dimentionality
and partition data into buckets using LSH. In our implementation, like in H-zkNNJ, one
MapReduce job is used to calculate the local kNN for each ri, and a second one is used to
find the global ones.

3.3.1.4 Summary Work Flow

So far, we have studied different kNN computation workflows with three main steps. The first
step focuses on data preprocessing, either for selecting dominating points or for projecting
data from high dimension to low dimension. The second step aims at partitioning and
organizing data such that the following kNN core computation step is lighten. The last
step can use one or two MapReduce jobs depending on the number of distances we want to
calculate and sort.

Figure 3.10 summarizes the workflow we have gone through in this section and the
techniques associated with each step.

4Note that the notion of candidate points is different from local top k points.
5Although RankReduce only computes kNN for a single query, it is directly expandable to a full kNN join.
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Fig. 3.10 General Workflow for processing a parallel and distributed kNN Join

3.3.2 Theoretical Analysis

3.3.2.1 Load Balance

In a parallel and distributed environment like MapReduce, the Map tasks or the Reduce tasks
will be processed in parallel, so the overall computation time of each phase depends on the
completion time of the longest task. Therefore, in order to obtain the best performance, it
is important that each task performs substantially the same amount of computation. When
considering load balancing in this section, we mainly want to have the same time complexity
in each task. Ideally, we want to calculate roughly the same number of distances between
points in each task.

For H-BkNNJ, there is no load balancing problem. Because in this basic method, only
the Map Phase is treated in parallel. In Hadoop each task will process 64M data by default.

H-BNLJ cuts both the dataset R and the dataset S into p equal-size pieces, then those
pieces are combined pairwise to form a partition of < Ri,S j >. Each task will process one
block of data so we need to ensure that the size of the data block handled by each task is
roughly the same. However, H-BNLJ uses a random partitioning method which can not
exactly divide the data into equal-size blocks.

PGBJ uses Voronoi diagrams to cut the data space of R into cells, where each cell is
represented by its pivot. Then data items are assigned to the cell whose pivot is the nearest
from them. For each R cell, we need to find the corresponding pieces of data in S. Sometimes,
the data in S may be potentially needed by more than one R cell, which will lead to the
duplication of some elements of S. Thus the number of distances to be calculated in each
task, i.e. the relative time complexity of each task is:
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O (Task) =
��PR

i
��⇥

���PS
i
��+ |RepSc|

�

where
��PR

i
�� and

��PS
i
�� represents the number of elements in cell PR

i or PS
i respectively, and

|RepSc| the number of replicated elements for the cell. Therefore, to ensure load balancing,
we need to ensure that O (Task) is roughly the same for each task. PGBJ introduces two
methods to group the cells together to form a bigger cell. On one hand, the geo grouping
method supposes that close cells have a higher probability to replicate the same data. On the
other hand, the greedy grouping method estimates the cells whose data are more likely to be
replicated. This approximation gives an upper bound to the complexity of the computation
for a particular cell, which enables grouping of the cells that have the most replicated data in
common. This leads to a minimization of replication and to groups that generate the same
workload.

The H-zkNNJ method assumes:

8 i 6= j,
if |Ri| =

��R j
�� or |Si| =

��S j
��,

then |Ri| ⇥ |Si| ⇡
��R j

�� ⇥
��S j

��

That is to say, if the number of objects in each partition of R is equivalent, then the sum of the
number of k nearest neighbors of all objects in each partition can be considered approximately
equivalent, and vice versa. So an efficient partitioning should try to enforce either (i) |Ri| =��R j

�� or (ii) |Si| =
��S j

��. In paper [154], the authors give a short proof which shows that the
worst-case computational complexity for (i) is equal to:

O (|Ri|⇥ log |Si|) = O

✓
|R|
n

⇥ log |S|
◆

(3.3)

and for choice (ii), the worst-case complexity is equal to:

O (|Ri|⇥ log |Si|) = O

✓
|R|⇥ log

|S|
n

◆
(3.4)

where n is the number of partitions. Since n ⌧ |S|, the optimal partitioning is achieved when
|Ri| =

��R j
��.

In RankReduce, a custom partitioner is used to load balance tasks between reducers.
Let Wh =| Rh |⇥ | Sh | be the weight of bucket h. A bin packing algorithm is used such that
each reducer ends up with approximately the same amount of work. More precisely, let
O (Ri) = ÂhWh the work done by reducer Ri, then this methods guarantees that

8i 6= j,O (Ri)⇡ O
�
R j
�

(3.5)
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Because the weight of a bucket is only an approximation of the computing time, this method
can only give an approximate load balance. Having a large number of buckets compared to
the number of reducers significantly improves the load balancing.

3.3.2.2 Accuracy

Usually, the lack of accuracy is the direct consequence of techniques to reduce the dimension-
ality with techniques such as z-values and LSH. In [154] (H-zkNNJ), the authors show that
when the dimension of the data increases, the quality of the results tends to decrease. This can
be counterbalanced by increasing the number of random shifts applied to the data, thereby
increasing the size of the resulting dataset. Their experiments show that three shifts of the
initial dataset (in dimension 15) are sufficient to achieve a good approximation (less than
10% of errors measured), while controlling the computation time. Furthermore, paper [148]
processes a detailed theoretical analyses showing that, for any fixed dimension, by using only
O(1) random shifts of data, the z-value method returns a constant factor approximation in
terms of the radius of the k nearest neighbor ball.

For LSH, the accuracy is defined by the probability that the method will return the real
nearest neighbors. Suppose that the points within a distance d = |p�q| are considered as
close points. The probability [129] that these two points end up in the same bucket is:

p(d) = PrH [h(p) = h(q)] =
Z W

0

1
d

fs(
x
d
)(1� x

W
)dx (3.6)

where W is the size of the bucket and fs is the probability density function of the hash
function H . From this equation we can see that for a given bucket size W, this probability
decreases as the distance d increases. Another way to improve the accuracy of LSH is to
increase the number of hashing families used. The use of LSH in RankReduce has an
interesting consequence on the number of results. Depending on the parameters, the number
of elements in a bucket might be smaller than k. Overall, unlike z-value, the performance of
LSH depends a lot on parameter tuning.

3.3.2.3 Complexity

Carefully balancing the number of jobs, tasks, computation and communication is an impor-
tant part of designing an efficient distributed algorithm. All the kNN algorithms studied in
this Chapter have different characteristics. We will now describe them and outline how they
can impact the execution time.



3.3 Parallel kNN 57

(1) The number of MapReduce jobs: Starting a job (whether in Hadoop [104] or any
other platform) requires some initialization steps such as allocating resources and
copying data. Those steps can be very time consuming.

(2) The number of Map tasks and Reduce tasks used to calculate kNN(Ri nS): The
larger this number is, the more information is exchanged through the network during
the shuffle phase. Moreover, scheduling a task also incurs an overhead. But the smaller
this number is, the more computation is done by each machine.

(3) The number of final candidates for each object ri:

We have seen that advanced algorithms use pre-processing and partitioning techniques
to reduce this number as much as possible. The goal is to reduce the amount of data
transmitted and the computational cost.

Together these three points impact two main overheads that affect the performance:

• Communication overhead, which can be considered as the amount of data transmitted
over the network during the shuffle phases.

• Computation overhead, which is mainly composed of two parts: 1). computing the
distances, 2). finding the k smallest distances. It is also impacted by the dimension of
the data.

Suppose the dataset is d dimensional, the overhead for computing the distance is roughly
the same for every ri and s j for each method. The difference comes from the number of
distances to sort for each element ri to get the top k nearest neighbors. Suppose that the
dataset R is divided into n splits. Here n represents the number of partitions of R and S for
H-BNLJ and H-zkNNJ, the number of cells after using the grouping strategy for PGBJ and
the number of buckets for RankReduce. Assuming there is a good load balance for each
method, the number of elements in one split Ri can be considered as |R|

n . Finding the k closest
neighbors efficiently for a given ri can be done using a Priority Queue [24], which is less
costly than sorting all candidates.

Since all these algorithms uses different strategies, their steps cannot be directly compared.
Nonetheless, to provide a theoretical insight, we will now compare their complexity for the
last phase, which is common to all of them.

The basic method H-BkNNJ only uses one MapReduce job, and requires only one
Reduce task to compute and sort the distances. The communication overhead is O(|R|+ |S|).
The number of final candidates for one ri is |S|. The complexity of finding the k smallest
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distances for ri is O(|S| · log(k))6. Hence, the total cost for one task is O(|R| · |S| · log(k)).
Since R and S are usually large datasets, this method quickly becomes impracticable.

To overcome this limitation, H-BNLJ [154] uses two MapReduce jobs, with n2 tasks to
compute the distances. Using a second job significantly reduces the number of final candi-
dates to nk. The total communication overhead is O(n |R|+n |S|+ kn |R|). The complexity
of finding the k elements for each ri is reduced to (n · k) · log(k). Since each task has |R|

n
elements, the total sort overhead for one task is O(|R| · k · log(k)).

PGBJ [113] performs a preprocessing phase followed by two MapReduce jobs. This
method also only uses n Map tasks to compute the distances and the number of final
candidates falls to |Si|. Since this method uses a distance based partitioning method, the
size of |Si| varies, depending on the number of cells required to perform the computation
and the number of replications (|RepSc|, see Section 3.3.2.1) required by each cell. As such,
the computational complexity cannot be expressed easily. Overall, finding the k elements
is reduced to O(|Si| · log |k|) for each ri, and O( |R|n · |Si| · log |Si|) in total per task. The
communication overhead is O(|R|+ |S|+ |RepSc| ·n). In the original paper the authors gives
a formula to compute |RepSc| · n, which is the total number of replications for the whole
dataset S.

In RankReduce [132], the initial dataset is projected by L hash families into buckets.
After finding the local candidates in the second job, the third job combines the local results
to find the global k nearest neighbor. For each ri, the number of final candidates is L · k.
Finding the k elements takes O(L · k · log(k)) per ri, and O(|Ri| ·L · k · log(k)) per task. The
total communication cost becomes O(|R|+ |S|+ k · |R|).

H-zkNNJ[154] also begins by a preprocessing phase and uses in total three MapReduce
jobs in exchange for requiring only n Map tasks. For a given ri, these tasks process elements
from the candidate neighbor set C (ri). By construction, C (ri) only contains a · k neighbors,
where a is the number of shifts of the original dataset. The complexity is now reduced
to O((a · k) · log(k)) for one ri, and O( |R|n · (a · k) · log(k)) in total per task. The commu-
nication overhead is O( 1

e

2 + |S|+k · |R|), with e 2 (0,1), a parameter of the sampling process.

From the above analysis we can infer the following. H-BkNNJ only uses one task, but
this task needs to calculate the entire data set. H-BNLJ uses n2 tasks to greatly reduce the
amount of data processed by each task. However this also increases the amount of data
to be exchanged among the nodes. This should prove to be a major bottleneck. PGBJ,
RankReduce and H-zkNNJ all use three jobs which reduce the number of tasks to n, and
thus reduces the communication overhead.

6thanks to the priority queue, the complexity is smaller than sorting |S|
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Although the computational complexity of each task depends on various parameters of the
preprocessing phases, it is possible to outline a partial conclusion from this analysis. There are
basically three performance brackets. First, the least efficient should be H-BkNNJ, followed
by H-BNLJ. PGBJ, RankReduce and H-zkNNJ are theoretically the most efficient. Among
them, PGBJ has the largest number of final candidates. For RankReduce and H-zkNNJ ,
the number of final candidates is of the same order of magnitude. The main difference lies in
the communication complexity, more precisely in 1

e

2 compared to |R|. As the dataset size
increases, we will eventually have |R|� 1

e

2 . Hence, H-zkNNJ seems to be the theoretically
more efficient for large query sets.

3.3.2.4 Wrap up

Although the workflow for computing kNN in a parallel and distributed manner is the same
for all existing solutions, the guarantees offered by each of them vary a lot. As load balancing
is a key point to reduce completion time, one should carefully choose the partitioning method
to achieve this goal. Also, the accuracy of the computing system is crucial: are exact
results really needed? If not, then one might trade accuracy for efficiency, by using data
transformation techniques before the actual computation. Complexity of the global system
should also be taken into account for particular needs, although it is often related to the
accuracy: an exact system is usually more complex than an approximate one. Table 3.2
shows a summary of the systems we have examined and their main characteristics.

Methods Preprocessing Partitioning Accuracy

Complexity

Jobs Tasks
Final

Candidate
(per ri)

Communication

H-BkNNJ
(Basic Method)

None None Exact 1 1 |S| O(|R|+ |S|)

H-BNLJ [154]
(Zhang et al.)

None None Exact 2 n2 nk
O(n |R|

+n |S|+ kn |R|)
PGBJ [113]

(Lu et al.)
Pivots

Selection
Distance

Based
Exact 3 n |Si|

O(|R|
+ |S|+ |RepSc| ·n)

RankReduce [132]
(Stupar et al.)

LSH Size Based Approximate 3 n L · k
O(|R|+ |S|
+k · |R|)

H-zkNNJ [154]
(Zhang et al.)

Z-Value Size Based Approximate 3 n
a · k O( 1

e

2 + |S|+ k · |R|)

Table 3.2 Summary table of kNN computing systems with MapReduce

Due to the multiple parameters and very different steps for each algorithm, we had to limit
our complexity analysis to common operations. Moreover, for some of them, the complexity
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depends on parameters set by a user or some properties of the dataset. Therefore, the total
processing time might be different, in practice, than the one predicted by the theoretical
analysis. That is why it is important to have a thorough experimental study.

3.4 Continuous kNN

The parallel and distributed technologies introduced above can only be applied to static data.
For a static kNN join computation, the re-computation of the whole join is needed if there
is any insertion, deletion or change of a data point. If there is any change or update in data,
the expensive kNN join computation needs to be performed again. This drawback limits
the efficiency in many real applications where updates are inevitable. This restriction also
prevents these technologies to be applied directly for processing data streams. A parallel
and distributed kNN join for data streams follows a workflow similar to the one presented
in Section 3.3.1. But since data gets frequently updated, a more dynamic adaptation of the
computation is essential. We need to partition and compute new data based on previous
results, rather than re-compute everything. Furthermore the platform requires time for
initialization when a new job is launched.

According to the aforementioned factors, the following two strategies need to be designed:

(1) Re-partition strategy

(2) Re-computation strategy

In order to describe the impact of the dynamic nature of data, we extend the definition
given in Section 2.2.1.1 to account for the dynamicity of the dataset:

Definition 3.2 Given two data sets R and S, the kNN join of R and S is :

R nkNN S = {(r,kNN(r))|r 2 R^ kNN(r)✓ S}

The changes (insertion or/and deletion) in R or/and in S have individual impacts on the
join result, and also on the procedure of the join.

We can divide the continuous kNN joins into 3 types according to the dynamicity of R
and S:

(1) Static R and Dynamic S (SRDS): This kind of join rarely exists in real applications.
As the previous partition strategies are all based on R, and R will not change, we just
need to use the previous method to partition the corresponding S every time we got
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enough new values of s. We can use the method introduced in Section 3.2.3 (Sphere-
Tree) to avoid the re-computation of the existing ones as a local improvement on each
machine.

(2) Dynamic R and Static S (DRSS): This is the most used scenarios in real applications.
As R can be considered as the Query Set, and S as the Searching Set, usually the Query
Set is dynamic. For example, R is the dataset of user’s locations, and S is the set of
restaurants, and each time we want to search the top k nearest restaurants close to a
given person. In this case, R is dynamic, and S can be considered as static since the
opening or closing of restaurant is rare compared to our moving speed .

(3) Dynamic R and Dynamic S (DRDS): This is the general situation for a kNN stream
join. In the previous example, if at the same time we consider also restaurants opening
and closing, then S becomes dynamic.

Since (1) is trivial to be treated, we will only discuss (2) and (3) in the following sections.

3.4.1 Dynamic R and Static S kNN Join for Data Streams (DRSS)

3.4.1.1 Workflow for DRSS

When R is dynamic and S is static, the partitioning strategy will be different from what
we introduced in Section 3.3.1.2. Because, with static data, for efficiency reasons, all the
advanced partitioning strategies are based on R (please refer to the proof in Section 3.3.1.2.)
The size-based or distance based partitioning strategies will first partition R, then find the
appropriate S for each R. These partitioning strategies are not suitable when R is dynamic.
In this case, we need to re-partition data when new data arrives. As shown in Section 3.3.1.2,
the partition step requires a large amount of computation. Besides, the re-partition not
only involves the new data, but also the previous data which has already been partitioned.
This process will cause a transmission of data, which then results in huge network and disk
overhead. Hence, in the DRSS scenario, the size-based and distance-based partitioning
strategies described in the previous section. We can only use the random partition strategy.

The straightforward method for processing DRSS kNN join on a parallel and distributed
streaming processing platform (here we use Apache Storm as an example) is to adopt our
Sliding Block Nested Loop Join (SBNLJ) methodology.
Data update in SBNLJ:

For efficiency reasons, we choose to use lazy re-execution and lazy expiration strategies
for our sliding window. We remove old data and re-compute new data periodically, and we
call each period a generation. We update the data and results after each generation.
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Fig. 3.11 The process for partition S in SBNLJ

Partition process in SBNLJ:

The basic idea is to first divide S into n equal-sized blocks. This step is easy to achieve by
a linear scan, putting every |S|

n records into one block. Since the Random Partition strategy
will generate n2 buckets to make sure every ri can meet every s j to be further computed, we
need to vertically replicate each S blocks n times. This process is shown in Fig. 3.11. In this
figure, one block of S is represented by a lattice and the blocks in the same column hold the
same piece of data (with S1i = S2i = S3i = ...= Sni ).

Fig. 3.12 The process for partition each generation of R in SBNLJ
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Since S is static, the partition will never change. We can use one Spout and n2 Bolts to
achieve the partition for S. The Spout needs to divide S into n blocks, replicate each block n
times, and give each partition of S an ID as the subscript in Fig. 3.11. Then n2 Bolts will be
launched. Each will receive one partition of S and save it in the local disk of this Bolt.

Each time we receive a new generation of R, we will do the same partition process as
for S. Firstly, the current generation of R will be cut into n equal-sized blocks. To make
each Bolt receive a different pair of R and S, we horizontally replicate the blocks n times.
The whole process is shown in Fig. 3.12. In this figure, the blocks of R are represented by a
lattice and the lattices in the same row are identical. Then an output field is declared in Spout
with the subscript of each partition (one lattice in Fig. 3.12) as the IDs. Each partition will be
an input of the Bolt in the next step which holds the partition of S with the same ID.
Computation process in SBNLJ:

To improve the efficiency, we choose to use two rounds of Computation, the first round is
called kNNLocalBolt. It has n2 tasks. Each processes a nested loop for the local R and S on
this node, then emits the local top k nearest neighbors of each r as results in form of:

< tk,< ri,< s j,d(ri,s j)>>>

Where tk indicates the generation number. The emitted Field ID is set as the indicator of
rows in Fig. 3.11 or Fig. 3.12 (the first part of the partition ID), because the lattices in the
same row hold the same piece of R; and in the next step, we would like to gather all the
results for each ri on one single machine, in order to merge the local results to have the global
results. The second round has n nodes. Each receives one field as input. This input contains
one partition of R along with all the local top k results with every partitions of S. In the
second round of computation, we just sort the n local top k results to get the global results.
Re-Computation in SBNLJ:

As S is static, we do not need to re-compute the r we already computed. We only need to
compute the new r. After emitting the results of each generation, the results from the oldest
generation will expire, and the rest of the results will be stored in a temporal list.

3.4.2 Dynamic R and Dynamic S kNN Join for Data Streams

Dynamic R and dynamic S kNN join is the general case. To deal with this type of processes,
we need first to partition the data, then calculate and update. In order to improve the efficiency
and to reduce the network and disk overhead, we want to partition and transmit partitioned
data only once.
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3.4.2.1 Basic Method

The basic method is a random partition, we use the random partition method for each
generation of data. Unlike DRSS, S is also dynamic. The idea is to divide R and S into n
blocks, and replicate each block n times, then combine each different R and S into pairs,
using the subscript of R and S blocks as the ID of each partition. In each generation, the
partition with the same ID will be sent to the same node to be processed, to ensure that each
ri and s j in the same validity period can meet each other. The process is shown in Fig. 3.13.

Fig. 3.13 Sliding Radom Partition for DRDS

The partition step is performed on Spout. The current generation of R and S is divided
into n blocks separately, and each block will be replicated n times, then pairwise combined.
Each partition’s ID consists of two parts, the first part is the ID of an R block and the other
part is the ID of an S block. n2 fields will be declared, with each partition ID as the field
name.

The computation part is similar to the process of DRSS. The first step is also to find
local results. But in this scenario, S is also dynamic, so every time after a new generation
is received, every record in the current valid sliding window should be considered when
emitting new results. We call the already existing generations in the current valid Sliding
Window Rold and Sold , and the new coming one Rnew and Snew respectively. In order to avoid
multiple calculation, we only calculate { Rnew nkNN (Sold [Snew) } and { Rold nkNN Snew }
in each generation. The output of the first stage is in form of:

< tr,< ri,< ts,< s j,d(ri,s j)>>>>
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Where tr indicates the generation of r and ts represents the generation of s. The second step
for computation needs also to use n nodes to gather together all the local results for each
block of R, and merge them in order to get the global top k nearest neighbors. It will first
remove the previous r according to tr. Then for each valid r, remove the invalid results in
accordance with ts. Finally, it will sort all the potential distances for each r to get the final
results. The results will be temporarily stored in the Bolt for further comparison in the next
generation.

3.4.2.2 Advanced Method

The basic method requires n2 nodes, which leads to a lot of repeated calculation and network
and disk overhead. That is why an advanced partition strategy which produces only n
partitions (as for the static data) is highly required. But at the same time, we would like to
apply the partition strategy only to the new generations, and avoid moving the data which
has already been partitioned.

Suppose we already have n partitions for the first Sliding Window using any size-based
or distance-based partitioning method presented in Section 3.3.1.2. The partitions are
represented by:

N = {Ni|i 2 [1,n]} (3.7)

In order to partition the new generation of data without destroying existing partitions, we
use the Naive Bayes method to find the corresponding partition for each data record in the
new coming generations. Every new ri can still find its nearest neighbors inside the partition,
thereby limiting the number of partitions to n.

Theorem 3.1 Bayes’ Theorem: Given two independent events A and B, the conditional
probability of given B and A occurs is:

P(A|B) = P(B|A) ·P(A)
P(B)

(3.8)

The re-partitioning strategy is based on Naive Bayes classification. We consider the n
partitions from N1 to Nn as n different classes and the already partitioned data as training set.
The probability that a new point x belongs to Ni is:

P(Ni|x) =
P(x|Ni) ·P(Ni)

P(x)
(3.9)
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And x should be assigned to the partition Ny which has the biggest probability:

x 2 Ny, where P(Ny|x) = max{P(N1|x),P(N2|x), ...,P(Nn|x)} (3.10)

So the partitioning problem for new coming data x can be transferred to the calculation of
the probability P(Ni|x).

Suppose we use p different Locality Sensitive Hashing functions {l1, l2, ..., lp} to calculate
the LSH value {l1(x), l2(x), ..., lp(x)} of each data x 7, then these p LSH values can be
considered as p features of x. And:

P(Ni|x) = P(Ni|(l1(x), l2(x), ..., lp(x))) (3.11)

According to Bayes’ Theorem:

=
P((l1(x), l2(x), ..., lp(x))|Ni)

P(l1(x), l2(x), ..., lp(x))
(3.12)

Since l1, l2, ..., lp are independent, we have:

=
P(l1(x)|Ni) ·P(l2(x)|Ni)... ·P(lp(x)|Ni) ·P(Ni)

P(l1(x)) ·P(l2(x))... ·P(lp(x))
(3.13)

In order to gain load balance, we suppose that the number of records in each partition are the
same. That is to say, each partition has the same probability of being chosen with:

P(N1) = P(N2) = ...= P(Nn) =
1
n

(3.14)

And P(l1(x)) ·P(l2(x))... ·P(lp(x)) is independent of partitions, so it can be considered as
a constant for every partition. Then, the comparison of P(Ni|x) values is identical to the
comparison of P(l j(x)|Ni) values.

P(l j(x)|Ni) is the probability of the appearance of l j(x) on Ni, and this probability is
decided by the distribution of data on Ni. The naive method to compare this probability is
to compare the difference between l j(x) and the average value of l j on Ni. The larger this
difference, the smaller the probability that this data belongs to Ni.

More precisely, it can be decided by the probability density function 8 (PDF). A Prob-
ability Density Function(PDF) is a function which describes the relative likelihood for a
random variable to have a given value. The probability of the random variable falling within

7Here we can also use p different shifts to get p different z-values for each data as its features.
8https://en.wikipedia.org/wiki/Probability_density_function

https://en.wikipedia.org/wiki/Probability_density_function


3.5 Experiment Result 67

a particular range of values is defined by the integral of this variable’s density over that range.
PDF(x) can be considered as the probability of having x in the current distribution of data.

Suppose we have Gaussian Distribution (Normal Distribution)[17] with its Probability
Density Function as follows:

PDF(x) =
1

s

p
2p

· e�
(x�µ)2

2s

2 (3.15)

Where µ is the mean of the distribution, s

2 is the variance and s is the standard deviation.
We can continuously calculate the expectation and the standard deviation of each feature
on each partition, to estimate the Probability Density Function parameters, and use them to
compute P(l j(x)|Ni).

The partition phase is done in a Bolt, this partition Bolt receives data from Spouts and also
the computation Bolts. The computation Bolts will update the expectation and variance for
their current data periodically, and send this information to the partition Bolt. The partition
Bolt then partitions each generation according to the method presented before.

Since the results for each r can be found in a single node, we only need to use n nodes
for computation. Each node processes a nested loop for all the ri and s j pairs in the current
validate window on this nodes. For avoiding multiple computations, we also temporally store
the result in form of:

< tr,< ri,< ts,< s j,d(ri,s j)>>>>

and compute only { Rnew nkNN (Sold [Snew) } and { Rold nkNN Snew } in each generation.
The update process is the same as in the basic method.

3.5 Experiment Result

In this section, we present an extensive experimental evaluation for the methods described
in the previous sections. For a parallel and distributed kNN stream join, the most important
influence on performance comes from the parallel processing method presented in Section
3.3 including data pre-processing strategies, data partitioning strategies and the computation
stage. So we will first evaluate the parallel methods used for processing a static kNN join
on Hadoop MapReduce 9. This evaluation will guide us through choosing the methods for
processing kNN join on streams.

9These parallel methods can also be processed on Apache Storm or other parallel and distributed processing
platform using the same methodology
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The experiments were run on two clusters of Grid’500010, one with Opteron 2218
processors and 8GB of memory, the other with Xeon E5520 processors and 32GB of memory,
using Hadoop 1.3, 1Gb/s Ethernet and SATA hard drives. We follow the default configuration
of Hadoop: (1) the number of replications for each split of data is set to 3; (2) the number of
slots of each node is 1, so only one map or reduce task is processed on the node at one time.

We mainly evaluate 5 approaches.
For H-zkNNJ and H-BNLJ, we took the source code provided by the authors as a start11.

We also added some modifications to combine intermediate data in order to reduce the size
of intermediate files. The other approaches were implemented from scratch according to the
description provided in their respective papers.

When implementing RankReduce, we added a reduce phase in the first MapReduce job
to collect some statistical information of each bucket. This information is used for achieving
good load balance. Moreover, to improve the precision, we choose to use multiple families
and hash functions depending on the dataset. Finally, our version of RankReduce uses three
MapReduce jobs instead of two.

Most of the experiments were ran using two different datasets:

• OpenStreetMap: we call it the Geographic - or Geo - dataset. The Geo dataset
contains geographic XML data in two dimensions12. This is a dataset containing
real location and description of objects. The data is organized by region. We extract
256⇤105 records from the region of France.

• Catech 101: we call it the Speeded Up Robust Features - or SURF - dataset. It is a
public set of images13, which contains 101 categories of pictures of different objects,
and 40 to 800 images per category. SURF [43] is a detector and descriptor for points
of interest in images, which produces image data in 128 dimensions. We extract 32
images per category, each image has between 1000 and 2000 descriptors.

In order to learn the impact of dimension and dataset, we use 5 additional datasets:
El Nino: in 9 dimensions; HIGGS: in 28 dimensions; TWITTER: in 77 dimensions;
BlogFeedBack: in 281 dimensions; and Axial Axis: in 386 dimensions. These data sets
are all downloaded from the UCI Machine Learning Repository14.

10www.grid5000.fr
11http://ww2.cs.fsu.edu/~czhang/knnjedbt/
12Taken from: http://www.geofabrik.de/data/download.html
13Taken from: www.vision.caltech.edu/Image_Datasets/Caltech101
14Taken from: https://archive.ics.uci.edu/ml/

www.grid5000.fr
http://ww2.cs.fsu.edu/~czhang/knnjedbt/
http://www.geofabrik.de/data/download.html
www.vision.caltech.edu/Image_Datasets/Caltech101
https://archive.ics.uci.edu/ml/
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We use two equal-sized data-sets for R and S with |R|= |S|, in all our experiences. The
number of records of each dataset is varied from 0.125⇤105 to 256⇤105. For all experiments,
we have set k = 20 except when evaluating its impact.

We evaluate the methods through the following metrics:

• The impact of the size of data

• The impact of k

• The impact of the dimension of data and the nature of dataset

We record the following information: the processing time, the disk space required, the
recall and precision, and the communication overhead.

To assess the quality of the approximation algorithms, we compute two commonly used
metrics and use the results of the exact algorithm PGBJ as a reference. First, we define the
recall as recall = |A(v)

T
I(v)|

|I(v)| , where I(v) are the exact kNN of v and A(v) the kNN found
by the approximate methods. Intuitively, the recall measures the ability of an algorithm to
find the correct kNNs. Another metric, the precision is defined by precision = |A(v)

T
I(v)|

|A(v)| .
It measures the fraction of correct kNN in the final result set. By definition, the following
properties holds: (1) recall  precision because all the tested algorithms return up to k
elements. (2) if an approximate algorithms outputs k elements, then recall = precision.

Each algorithm produces intermediate data so we compute a metric called Space require-
ment based on the size of intermediate data (Sizeintermediate), the size of the result (Size f inal)
and the size of the correct kNN (Sizecorrect). We thus have space = Size f inal+Sizeintermediate

Sizecorrect
.

We start by evaluating the most efficient number of machines to use (hereafter called
nodes) in terms of resources and computing time. For that, we measure the computing time
of all algorithms for three different data input sizes of the geographic dataset. The result can
be seen on Figure 3.14. As expected, the computing time is strongly related to the number
of nodes. Adding more nodes increases parallelism, reducing the overall computing time.
There is however a significant slow down after using more than 15 machines. Based on those
results, and considering the fact that we later use larger datasets, we conducted all subsequent
experiments using at most 20 nodes.

3.5.1 Geographic dataset

For all experiments in this section, we used the parameters described in Table 3.3. Details
regarding each parameter can be found in sections 3.3.1.1 and 3.3.1.2. For RankReduce, the
value of W was adapted to get the best performance from each dataset. For datasets up to



70 Data Driven Continuous Join (kNN)

Fig. 3.14 Impact of the number of nodes on computing time

16⇤105 records, W = 32⇤105, up to 25⇤105 records, W = 25⇤105 and finally, W = 15⇤105

for the rest of the experiments.

Algorithm Partitioning Reducers Configuration
H-BNLJ 10 partitions 100 reducers

PGBJ 3000 pivots 25 reducers
k-means
+ greedy

RankReduce W =

8
><

>:

32⇤105

25⇤105

15⇤105
25 reducers

L = 2
M = 7

H-zkNNJ 10 partitions 30 reducers 3 shifts, p=10
Table 3.3 Algorithm parameters for geographic dataset

3.5.1.1 Impact of input data size

Our first set of experiments measures the impact of the data size on execution time, disk
space and recall. Figure 3.15a shows the global computing time of all algorithms, varying the
number of records from 0.125⇤105 to 256⇤105. The global computing time increases more
or less exponentially for all algorithms, but only H-zkNNJ and RankReduce can process
medium to large datasets. For small datasets, PGBJ can compute an exact solution as fast as
the other algorithms.
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(a) Time

(b) Result size and Disk Usage (c) Recall and Precision

Fig. 3.15 Geo dataset impact of the data set size

Figure 3.15b shows the space requirement of each algorithm as a function of the final
output size. To reduce the footprint of each run, intermediate data is compressed. For example,
for H-BNLJ, the size of intermediate data is 2.6 times bigger than the size of output data.
Overall, the algorithms with the lowest space requirements are RankReduce and PGBJ.

Figure 3.15c shows the recall and precision of the two approximate algorithms, H-
zkNNJ and RankReduce. Since H-zkNNJ always returns k elements, its precision and
recall are identical. As the number of records increases, its recall decreases, while still being
high, because of the space filling curves used in the preprocessing phase. On the other hand,
the recall of RankReduce is always lower than its precision because it outputs less than
k elements. It benefits from larger datasets because more data end up in the same bucket,
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increasing the number of candidates. Overall, the quality of RankReduce was found to be
better than H-zkNNJ on the Geo dataset.

3.5.1.2 Impact of k

Changing the value of k can have a significant impact on the performance of some of the
kNN algorithms. We experimented on a dataset of 2 ⇤ 105 records (only 5 ⇤ 104 for H-
BNLJ for performance reasons) with values for k varying from 2 to 512. Results are shown
in Figure 3.16 using a logarithmic scale on the x-axis.

First, we observe a global increase in computing time (Figure 3.16a) which matches
the complexity analysis performed earlier. As k increases, the performance of H-zkNNJ,
compared to the other advanced algorithms, decreases. This is due to the necessary replication
of the z-values of S throughout the partitions to find enough candidates: the core computation
is thus much more complex.

Second, the algorithms can also be distinguished considering their disk usage, visible on
Figure 3.16b. The global tendency is that the ratio of intermediate data size over the final data
size decreases. This means that for each algorithm the final data size grows faster than the
intermediate data size. As a consequence, there is no particular algorithm that suffers from
such a bottleneck at this point. PGBJ is the most efficient from this aspect. Its replication
of data occurs independently of the number of selected neighbors. Thus, increasing k has
a small impact on this algorithm, both in computing time and space requirements. On this
figure, an interesting observation can also be made for H-zkNNJ. For k = 2, it has by far
the largest disk usage but becomes similar to the others for larger values. This is because
H-zkNNJ creates a lot of intermediate data (copies of the initial dataset, vectors for the space
filling curve, sampling...) irrespective of the value of k. As k increases, so does the output
size, mitigating the impact of these intermediate data.

Surprisingly, changing k has a different impact on the recall of the approximate kNN
methods, as can be seen on Figure 3.16c. For RankReduce, increasing k has a negative
impact on the recall which sharply decreases when k � 64. This is because the window
parameter (W ) of LSH was set at the beginning of the experiments to achieve the best
performance for this particular dataset. However, it was not modified for various of k. Thus
it became less optimal as k increased. This shows there is a link between global parameters
such as k and parameters of the LSH process. When using H-zkNNJ, increasing k improves
the precision: the probability to have incorrect points is reduced as there are more candidates
in a single partition.
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(a) Time

(b) Result size and Disk Usage (c) Recall and Precision

Fig. 3.16 Geo dataset with 200k records (50k for H-BNLJ), impact of k

3.5.1.3 Communication Overhead

Our last set of experiments looks at inter-node communication by measuring the amount
of data transmitted during the shuffle phase (Figure 3.17). The goal is to compare these
measurements with the theoretical analysis in Section 3.3.2.3,

Impact of data size. For Geo dataset (Figure 3.17a), H-BNLJ has indeed a lot of
communication. For a dataset of 1⇤105 records, the shuffle phase transmits almost 4 times
the original size. Both RankReduce and H-zkNNJ have a constant factor of 1 because of
the duplication of the original dataset to improve the recall. The most efficient algorithm is
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(a) Impact of the data set size

(b) Impact of k with 2⇤105 records (0.5⇤105 for H-BNLJ)

Fig. 3.17 Geo dataset, communication overhead

PGBJ for two reasons. First it does not duplicate the original dataset and second, it relies on
various grouping strategies to minimize replication.

Impact of k. We have performed another set of experiments, with a fixed dataset of 2⇤105

records (only 0.5⇤105 for H-BNLJ). The results can be seen in Figure 3.17b. For different
values of k, we have a similar pattern as with the data size. For RankReduce and H-zkNNJ,
the shuffle increases linearly because the number of candidates in the second phase depends
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on k. Moreover H-zkNNJ also replicates k previous and succeeding elements in the first
phase, and because of that, its overhead becomes significant for large k. Finally in PGBJ, k
has no impact on the shuffle phase.

3.5.2 Image Feature Descriptors (SURF) dataset

We now investigate whether the dimension of input data has an impact on the kNN algorithms
using the SURF dataset. We used the Euclidian distance between descriptors to measure
image similarity. For all experiments in this section, the parameters mentioned in Table 3.4
are used.

Algorithm Partitioning Reducers Configuration
H-BNLJ 10 partitions 100 reducers

PGBJ 3000 pivots 25 reducers
k-means

+ geo

RankReduce W = 107 25 reducers
L = 5
M = 7

H-zkNNJ 6 partitions 30 reducers 5 shifts
Table 3.4 Algorithm parameters for SURF dataset

3.5.2.1 Impact of input data size

Results of experiments when varying the number of descriptors are shown in Figure 3.18
using a log scale on the x-axis. We omitted H-BkNNJ as it could not process the data in
reasonable time. In Figure 3.18a, we can see that the execution time of the algorithms follows
globally the same trend as with the Geo dataset, except for PGBJ. It is a computationally
intensive algorithm because the replication process implies calculating a lot of Euclidian
distances. When in dimension 128, this part tends to dominate the overall computation time.
Regarding disk usage (Figure 3.18b), H-zkNNJ is very high because we had to increase the
number of shifted copies from 3 to 5 to improve the recall. Indeed, compared to the Geo
dataset, recall is very low (Figure 3.18c). Moreover, as the number of descriptors increases,
H-zkNNJ goes from 30% to 15% recall. As explained before, the precision was found to be
equal to the recall, which means the algorithm always returned k results. This, together with
the improvement using more shifts, proves that the space filling curves using in H-zkNNJ are
less efficient with high dimension data.
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(a) Time

(b) Result size and Disk Usage (c) Recall and Precision

Fig. 3.18 Surf, impact of the dataset size

3.5.2.2 Impact of k

Figure 3.19 shows the impact of different values of k on the algorithms using a logarithmic
scale on the x-axis. Again, since for H-BNLJ and H-zkNNJ, the complexity of the sorting
phase depends on k, we can observe a corresponding increase of the execution time (Fig-
ure 3.19a). For RankReduce, the time varies a lot depending on k. This is because of the
stochastic nature of the projection used in LSH. It can lead to buckets containing different
numbers of elements, impacting the load balance and some values of k naturally lead to a
better load balancing. PGBJ is very dependent on the value of k because of the grouping
phase. Neighboring cells are added until there are enough elements to eventually identify
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(a) Time

(b) Result size and Disk Usage (c) Recall and Precision

Fig. 3.19 Surf dataset with 50k records, impact of k,

the k nearest neighbors. As a consequence, a large k will lead to larger group of cells and
increase the computing time.

Figure 3.19b shows the effect of k on disk usage. H-zkNNJ starts with a very high
ratio of 74 (not showed on the Figure) and quickly reduces to more acceptable values.
RankReduce also experiences a similar pattern to a lesser extend. As opposed to the Geo
dataset, SURF descriptors cannot be efficiently compressed, leading to large intermediate
files.

Finally, Figure 3.19c shows the effect of k on the recall. As k increases, the recall and
precision of RankReduce decreases for the same reason as with the Geo dataset. Also,
for large k, the recall becomes lower than the precision because we get less than k results.
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The precision of H-zkNNJ decreases but eventually shows an upward trend. The increased
number of requested neighbors increases the number of preceding and succeeding points
copied, slightly improving the recall.

3.5.2.3 Communication Overhead

With the SURF dataset, we get a very different behavior than with the Geo dataset. The
shuffle phase of PGBJ is very costly (Figure 3.20a). This is an indication of large replications
incurred by the large dimension of the data and a poor choice of pivots. When they are too
close to each other, entire cells have to be replicated during the grouping phase.

For RankReduce the shuffle is decreased but stay important, essentially because of
the replication factor of 5. Finally, the shifts of original data in H-zkNNJ lead to a large
communication overhead.

Considering now k, we have the same behavior we observed with the Geo dataset. The
only difference is PGBJ which now exhibits a large communication overhead (Figure 3.20b).
This is again because of the choice of pivots and the grouping of the cells. However, this
overhead remains constant, irrespectively of k.

3.5.3 Impact of Dimension and Dataset

We now analyze the behavior of these algorithms according to the dimension of data. Since
some algorithms are dataset dependent (i.e the spatial distribution of data has an impact on
the outcome), we need to separate data distribution from the dimension. Hence, we use two
different kinds of datasets for these experiments. First, we use real world data of various
dimensions15. Second, we have built specific datasets by generating uniformly distributed
data to limit the impact of clustering. All the experiments were performed using 0.5⇤105

records and k = 20.
Since H-BNLJ relies on the dot product, it is not dataset dependent and its execution

time increases with the dimension as seen on Figures 3.21a and 3.22a.
PGBJ is heavily dependent on data distribution and on the choice of pivots to build

clusters of equivalent size which improves parallelism. The comparison of execution times
for the datasets 128-sift and 281-blog in Figure 3.21a shows that, although the dimension
of data increases, the execution time is greatly reduced. Nonetheless, the clustering phase
of the algorithm performs a lot of dot product operations which makes it dependent on the
dimension, as can be seen in Figure 3.22a.

15archive.ics.uci.edu/ml/datasets.html
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(a) Surf, impact of the dataset size

(b) Surf dataset with 50k records, impact of k,

Fig. 3.20 Communication overhead for the Surf dataset

H-zkNNJ is an algorithm that depends on the spatial dimension. Very efficient for
low dimension, its execution time increases with the dimension (Figure 3.22a). A closer
analysis shows that all phases see their execution time increase. However, the overall time
is dominated by the first phase (generation of shifted copies and partitioning) whose time
complexity sharply increases with dimension. Data distribution has an impact on the recall
which gets much lower than the precision for some datasets (Figure 3.21b). With generated
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(a) Execution time

(b) Recall and Precision

Fig. 3.21 Real datasets of various dimensions

dataset (Figure 3.22b), both recall and precision are identical and initially very high. However
as dimension increases, the recall decreases because of the projection.

Finally, RankReduce is both dependent on the dimension and distribution of data. Ex-
periments with the real datasets have proved to be difficult because of the various parameters
of the algorithm to obtain the requested number of neighbors without dramatically increasing
the execution time (see discussion in Section 3.5.4.5). Despite our efforts, the precision was
very low for some datasets, in particular 28-higgs. Using the generated datasets, we see that
its execution time increases with the dimension (Figure 3.22a) but its recall remains stable
(Figure 3.22b).
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(a) Execution time

(b) Recall and Precision

Fig. 3.22 Generated datasets of various dimensions

3.5.4 Practical Analysis

In this section, we analyze the algorithms from a practical point of view, outlying their
sensitivity to the dataset, the environment or some internal parameters.

3.5.4.1 H-BkNNJ

The main drawback of H-BkNNJ is that only the Map phase is in parallel. In addition, the
optimal parallelization is subtle to achieve because the optimal number of nodes to use is
defined by input size

input split size . This algorithm is clearly not suitable for larger datasets but because
of its simplicity, it can, nonetheless, be used when the amount of data is small enough.
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3.5.4.2 H-BNLJ

In H-BNLJ, both Map and Reduce phases are in parallel, but the optimal number of tasks is
difficult to find. Given a number of partitions n, there will be n2 tasks. Intuitively, one would
choose a number of tasks that is a multiple of the number of processing units. The issue
with this strategy is that the distribution of the partitions might be unbalanced. Figure 3.23
shows an experiment with 6 partitions and 62 = 36 tasks, each executed on a reducer. Some
reducers will have more elements to process than others, slowing the computation.

Fig. 3.23 H-BNLJ, candidates job, 105 records , 6 partitions, Geo dataset

Overall, the challenge with this algorithm is to find the optimal number of partitions for a
given dataset.

3.5.4.3 PGBJ

A difficulty in PGBJ comes from its sampling-based preprocessing technique because it
impacts the partitioning and thus the load balancing. This raises many challenges. First, how
to choose the pivots from the initial dataset. The three techniques proposed by the authors,
farthest, k-means and random, lead to different pivots and different partitions and possibly
different executions. We found that with our datasets, both k-means and random techniques
gave the best performance. Second, the number of pivots is also important because it impacts
the number of partitions. A too small or too large number of pivots decreases performance.
Finally, another important parameter is the grouping strategy used (Section 3.3.2.1). In
Figure 3.24, we can see that the greedy grouping technique has a higher grouping time
(bars) than the geo grouping technique. However, the global computing time (line) using
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Fig. 3.24 PGBJ, overall time (lines) and Grouping time (bars) with Geo dataset, 3000 pivots,
KMeans Sampling

this technique is shorter thanks to the good load balancing. This is illustrated by Figure 3.25
which shows the distribution of elements processed by reducers when using geo grouping
(3.25a) or greedy grouping (3.25b).

3.5.4.4 H-zkNNJ

In H-zkNNJ, the z-value transformation leads to information loss. The recall of this algorithm
is influenced by the nature, the dimension and the size of the input data. More specifically,
this algorithm becomes biased if the initial data is very scattered, and the more input data or
the higher the dimension, the more difficult it is to draw the space filling curve. To improve
the recall, the authors propose to create duplicates in the original dataset by shifting data.
This greatly increases the amount of data to process and has a significant impact on the
execution time.

3.5.4.5 RankReduce

RankReduce, with the addition of a third job, can have the best performance of all, provided
that it is started with the optimal parameters. The most important ones are W , the size of each
bucket, L, the number of hash families and M, the number of hash functions in each family.
Since they are dependent on the dataset, experiments are needed to precisely tune them. In
[72], the authors suggests this can be achieved with a sample dataset and a theoretical model.
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(a) Geo (b) Greedy

Fig. 3.25 PGBJ, load balancing with 20 reducers

The first important metric to consider is the number of candidates available in each bucket.
Indeed, with some poorly chosen parameter values, it is possible to have less than k elements
in each bucket, making it impossible to have enough elements at the end of the computation
(there are less than k neighbors in the result). On the opposite, having too many candidates
in each bucket will increase too much the execution time. To illustrate the complexity of
the parameter tuning operation, we have run experiments on the Geo and SURF datasets.
First, Figure 3.26 shows that, for the Geo dataset, increasing W improves the recall and the
precision at the expense of the execution time, up to an optimal before decreasing. This can
be explained by looking at the number of buckets for a given W . As W increases, each bucket
contains more elements and thus their number decreases. As a consequence, the probability
to have the correct k neighbors inside a bucket increases, which improves the recall. However,
the computational load of each bucket also increases.

A similar pattern can be observed with the SURF dataset (Figure 3.27, left), where
increasing W improves the recall (from 5% to 35%) and the precision (from 22% to 35%).
Increasing the number of families L greatly improves both the precision and recall. However,
increasing the number of hash functions M, decreases the number of collisions, reducing
execution time but also the recall and precision. Overall, finding the optimal parameters for
the LSH part is complex and has to be done for every dataset

After finishing all the experiments, we found that the execution time of all algorithms
mostly follows the theoretical analysis presented in Section 3.3.2. However, as expected, the
computationally intensive part, which could not be expressed analytically, has proved to be
very sensitive to a lot of different factors. The dataset itself, through its dimension and the
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Algorithm Advantage Shortcoming Typical Usecase

H-BkNNJ Trivial to implement
1. Breaks very quickly

2. Optimal parallelism difficult
to achieve a priori

Any tiny and low dimension dataset
(⇠ 25000 records)

H-BNLJ Easy to implement
1. Slow

2. Very large communication overhead
Any small/medium dataset

(⇠ 100000 records)

PGBJ

1. Exact solution
2. Lowest disk usage

3. No impact on communication
overhead with the increase of k

1. Cannot finish in reasonable time
for large datasets

2. Poor performance for high
dimension data

3. Large communication overhead
4. Performance highly depends on
the quality of a priori chosen pivots

1. Medium/large dataset for
low/medium dimension

2. Exact results

H-zkNNJ

1. Fast
2. Does not require a priori parameter

tuning
3. More precise for large k

4. Always give the right number of k

1. High disk usage
2. Slow for large dimension

3. Very high space requirement ratio
for small values of k

1. Large dataset of small dimension
2. High values of k

3. Approximate results

RankReduce
1. Fast

2. Low footprint on disk usage

1. Fine parameter tuning required with
experimental set up

2. Multiple hash functions needed for
acceptable recall

3. Different quality metrics to consider
(recall + precision)

1. Large dataset of any dimension
2. Approximate results

3. Room for parameter tuning

Table 3.5 Summary table for each algorithm in practice

Fig. 3.26 LSH tuning, Geo dataset, 40k records, 20 nodes

data distribution, but also the parameters of some of the pre-processing steps. The magnitude
of this sensitivity and its impact on metrics such as recall and precision could not have been
inferred without thorough experiments.
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Fig. 3.27 LSH tuning, SURF dataset, 40k records, 20 nodes

3.5.5 Streaming Evaluation

In the parallel kNN method for processing streaming data, the performance follows the same
discipline as in a parallel kNN method for processing static data. The only difference is, in
a streaming processing platform like Storm, the output of one phase of calculation can be
directly used as the input of the next phase of calculation. Thereby, eliminating the time for
submitting different jobs and the time for initializing the platform for each job. Normally,
for the same amount of calculation, Storm needs less time than Hadoop, especially when
multiple jobs are needed.

The evaluation is run on Grid 5000 16, with 15 nodes. Among them, one is reserved to
Nimbus, and the other 14 nodes are used for computing. The setting of the cluster is: 15
nodes with 2 CPUs Intel Xeon E5-2660 v2; 10 cores/CPU; 126GB RAM; 5x558GB SATA
hard drives; 10Gbps ethernet; Opteron 2218 Processors; and 8GB Memory. Storm Version is
1.0, and we only use one slot on each machine to avoid the competition of disks (since disk
IO affects the performance of Hadoop the most).

In this part of experiment, we will evaluate the streaming feature of the algorithm. The
criteria for judging a streaming algorithm are mainly the Execution Latency and the Process
Latency. The execution latency is the time between the data being read by the system, and
the data finishing to be processed by the system (the time that we get all the kNN). The
process latency is the time between the data being read by the system, and the data starting to
be processed by the system. If the number of machines is fixed, these two latencies depend on
two parameters, which are: the Sliding Window Size and the Number of Generation. These
two parameters together determine the number of elements in a generation. Since we update

16https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home

https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home
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the calculation by generation, the number of elements inside each generation determines the
processing time of each generation, thus the latency of the process.

In this experiment, we implement the basic method (Sliding Block Nested Loop presented
in Section 3.4.2.1) for processing DRDS on Apache Storm. In this implementation, we
use two Spouts to generate GPS data (in two dimension), one for R and another for S. For
each Sliding Window, we partition each data streams into three partitions. So in total, we
need 9 LocalBolts to process each combination of the partitions to get the local results.
And three GlobalBolts are set to gather the local results and obtain the global results. The
Topology of this process is shown in Fig. 3.28 as displayed by Storm. In this topology we
have four different roles, they are getR (Spout), getS (Spout), local (Bolt) and global (Bolt).
The color represent the computation density. Red means the density is high, which leads
to a high latency. Green has a median computation density and latency. Blue has a low
computation density and latency. In this figure, each role has a different parallelism (number
of processors). Normally, the roles with a high computation latency should be assigned more
nodes to process.

Fig. 3.28 The Topology for the Basic Method of DRDS

First, we fix the size of the Sliding Window to 200 (both for R and S). Then we vary the
number of generations as 2, 4, 6, 8, 10 respectively. We measure the execution latency and
the process latency after 300 seconds of processing of the Topology. The results are shown
in Fig. 3.29 and Fig. 3.30.



88 Data Driven Continuous Join (kNN)

Fig. 3.29 Execution latency after 300 seconds of process (SW=200)

Fig. 3.30 The process latency after 300 seconds of process (SW=200)

For the execution latency, generally, when we increase the sliding window size, the
execution latency tends to decrease. This decrease is very fast at the beginning, then it
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becomes slower. The ideal number of generations inside a Sliding Window is the value
when the curve flattens, as it indicates an equilibrium has been reached in execution latency.
Another remarkable point is that, the execution latency is mainly due to the LocalBolt (the
Bolt which calculates the local results). That is because comparing with the LocalBolt,
the GlobalBolt (the Bolt which combine the local results into the global ones) has lower
computation complexity, and less elements to compute than the LocalBolt. Concerning the
process latency, it is negligible, which means that the data can be processed in time once it is
emitted.

In the second evaluation, we fix the number of generations to 5, then we change the
Sliding Window size to 200, 300, 400, 500 and 600 (both for R and S) respectively. We
record the execution latency and the process latency after 300 seconds of processing of the
Topology. The results are shown in Fig. 3.31 and Fig. 3.32.

Fig. 3.31 The execution latency after 300 seconds of process (G=5)

In this evaluation, the execution latency usually increases when the Sliding Window size
increases. And since, inside of each generation, the new r 2 R should be processed with all
the s 2 S of the current Sliding Window, when the size of the Sliding Window increases, the
execution latency shows a sharp increase. This is consistent with the (N · log(N)) theoretical
complexity of the Local Bolt processing. The process latency is still less than 1 ms. But it
also increases with the Sliding Window size.
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Fig. 3.32 The process latency after 300 seconds of process (G=5)

3.5.6 Lessons Learned

The first aspect is related to load balancing. H-BNLJ actually cannot guarantee load balanc-
ing, because of the random method it uses to split data. For PGBJ, Greedy grouping gives a
better load balance than Geo grouping, at the cost of an increased duration of the grouping
phase. At the same time, our experiments also confirm that H-zkNNJ and RankReduce,
which use size based partitioning strategies, have a very good load balance, with a very small
deviation of the completion time of each task.

Regarding disk usage, generally speaking, PGBJ has the lowest disk space requirement,
while H-zkNNJ has the largest for small k values. However, for large k, the space requirement
of all algorithms becomes similar.

The communication overhead of PGBJ is very sensitive to the choice of pivots.
The data is another important aspect affecting the performance of the algorithms. As

expected, the performance of all algorithms decreases as the dimension of data increases.
However, what exceeded the prediction of the theoretical analysis is that the dimension is
really a curse for PGBJ . Because of the cost of computing distances in the pre-processing
phase, its performance becomes really poor, sometimes worse than H-BNLJ. H-zkNNJ also
suffers from the data dimension, which decreases its recall. However, the major impact
comes from the distribution of data.
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In addition, the overall performance is also sensitive to some specific parameters, espe-
cially for RankReduce. Its performance depends a lot on some parameter tuning, which
requires extensive experiments.

Based on the experimental results, we summarize the advantages, disadvantages and
suitable usage scenarios for each algorithm, in Table 3.5.

For the streaming part, it is important to balance the Number of Generations and the
Sliding Window Size. Generally, it is good to have a smaller Sliding Window in order to
have less execution latency. The number of generations depends on the parameter tuning: the
balance should be achieved when the curve becomes flat. But to counterbalance the latency
and the Sliding Window size, one can also increase the number of nodes for processing the
topology.

3.6 Conclusion

In this Chapter we introduced our methods for processing kNN stream join in a parallel and
distributed manner. We have first approached the parallel methods from a workflow point of
view. We summarized the main processing steps as data preprocessing, data partitioning and
actual computation. We introduced and explained the different algorithms which could be
used for each step, and developed their pros and cons, in terms of load balancing, accuracy
of results, and overall complexity. We then extended the parallel methods for processing data
streams continuously, by designing the re-partition and re-computation strategies. We split
the streaming joins in 3 different scenarios: Dynamic R and Static S, Static R and Dynamic
S, Dynamic R and Dynamic S, and introduced our strategies for processing each kind of
streaming join respectively.

We then performed extensive experiments to compare the performance, disk usage and
accuracy of all the parallel algorithms in the same environment, mainly using two real world
datasets, a geographic coordinates-based one (in 2 dimensions) and an image-based one
(in 128 dimensions). Moreover, we performed a fine grained analysis, outlining, for each
algorithm, the importance and difficulty of fine tuning some parameters to obtain the best
performance. We also evaluated for the streaming part by comparing the execution latency
and the process latency.

Overall, our work first gives a clear and detailed view of the parallel and distributed
processing methods for a kNN join. It also clearly exhibits the limits of each of them in
practice and shows precisely the context in which they best perform. We then extended the
methods for processing a streaming kNN join in a parallel and distributed manner, which
makes it possible to deal with large-scale data streams and return the results in real-time.





Chapter 4

Query Driven Continuous Join (RDF)

4.1 Introduction

The continuous popularity of RDF data leads to a growth of the volume of RDF data at a
very high speed every year. By now, the RDF data format is one of the data formats with
the highest potential to achieve the goal of organizing the world’s information and making
it universally accessible and useful. But in order to accomplish this target, the amount of
data we need to handle has already far exceeded the processing and storage capacity of a
single machine. Moreover, static data are increasingly combined to streaming information,
leading to streaming reasoning [42]. In such a context, a parallel and distributed system for
processing RDF streams and returingn the results in real-time is strongly required.

In this Chapter, we present our work about the design of technologies for processing
continuous RDF join in a parallel and distributed manner. As opposed to the Data Driven
Join presented in Chapter 3, the conjunctive join for RDF data is a Query Driven Join.
Unlike kNN join, in an RDF join the format and the dimension of data never changes —- it
is always RDF triples. However, the queries written by the users vary a lot. The difficulties
of processing this kind of join are different from those of processing Data Driven Joins. For
a Query Driven Join, we need less effort to pre-process or partition data, because data is
already available in a suitable format. But, we need to prepare the query plan for the user
defined queries, and decompose it in order to process it in a parallel and continuous manner.

The rest of this Chapter is organized as follow: Section 4.2 presents the related work,
including centralized solutions, parallel and distributed solutions, and the systems for pro-
cessing continuous RDF streams along with their shortcomings. Section 4.3 introduces our
methods about parallel and distributed processing RDF joins. Section 4.4 talks about the
strategies for making the methods proposed in Section 4.3 work in a continuous way. Sec-
tion 4.5 gives the theoretical analyses about accuracy, efficiency and complexity. Section 4.6
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shows the implementation issues. The experiment results are shown in Section 4.7. And in
the end a conclusion is given in Section 4.8.

4.2 Related Work

4.2.1 Centralized Solutions for Processing Static RDF Data

Most publicly accessible RDF processing systems choose to map RDF triples onto relational
tables, such as FORTH RDF Suite [32], Sesame [54], 3store [94], Jena [115] and so on. They
choose to use traditional relational databases as their underlying persistent data store. There
are two ways of doing this:

(1) Store all triples in a single giant table, with subject, predicate, object as generic
attributes

(2) Group triples by their predicate, storing triples with the same predicate in the same
property table

In scenario (1), RDF data is decomposed into a large number of single statements (triples)
which are directly stored in relational tables or hash tables. Then simple statement-based
queries can be processed. A statement-based query has one or two variable parts of a triple,
and the answer is a set of resources that complement the variables. However, statement-
based queries are not the most representative and expressive way of querying RDF data.
More complex queries involve multiple filtering steps which are not efficiently supported in
relational databases.

Way (2) attempts to create relational-like property tables (for instance Jena 1). These
tables gather together information about multiple properties over a list of subjects. For
example in Jena, a property table is defined as a relational database table where each row
corresponds to one or more RDF triples. The property URIs for each triples are not stored in
the table. A Jena property table has one single column to store the subject. The rest columns
store the property values (objects) for the triples. The property URI for the column is stored
in the metadata of the table. Here is an example of property tables used by Jena shown in
Fig. 4.1.

Still, this strategy does not ensure good performance for queries that can not be answered
from one single property table (non-property-bound queries). Another problem of this
approach is that it imposes a relational-like structure on semi-structured RDF data. However

1https://jena.apache.org/

https://jena.apache.org/
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Fig. 4.1 Example of Property Tables (Taken from paper [143])

it results in a lot of NULL values in the property tables, since not all the subjects will use all
properties. Handling such sparse tables requests large computational overhead.

There has been a lot of work dedicated to efficiently store and query RDF data. The most
frequently used strategies are: Vertical Partitioning and Index Data.

The Vertical partitioning approach proposed in paper [27] is an improvement for prop-
erty tables. In a vertical partitioning scheme, triple tables are rewritten into two-column
tables for each property, one column for subjects the other for objects. Each table is sorted by
subject in order to quickly locate particular subjects. It has a great advantage for processing
queries in which properties act as bound variables. But the authors observe repeatedly the
problem of having non-property-bound queries. Actually, this approach suffers from similar
scalability problems as the property tables on the queries that are not bound by predicate
values.

Another improvement is to index data. However, due to the special nature of RDF data
— it is based on a triple format, multiple indexes need to be used to ensure the completeness.
Here we list some works about indexing RDF data.

Hexastore [142] indexes RDF data in six possible ways. It can be considered as a further
improvement of the Vertical Partitioning approach. The difference is that it treats subject,
predicate and object equally. In Hexastore, data is indexed in six possible ways, one for each
possible ordering of the three RDF elements. Thus each component in an RDF triple has a
special index structure. Moreover, every possible pairwise combination of the importance
or precedence of the three elements is also indexed. Each RDF instance is associated with
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two vectors, each of which gathers elements of one of the other types, and along with lists of
the third type resources attached to each vector, which realizes a system that maintains in
total six indices. Each index structure in this system is constructed based on one RDF triple
component and defines a prioritization between the other two components. According to the
authors, this format of index allows quick and scalable general-purpose query processing.
But the price is that it occupies five times more in space in the worst-case.

Here is an example of the ‘spo’ indexing in the Hexastore system shown in Fig. 4.2. In
this example, a subject key si is associated to a sorted vector of predicate keys {pi

1, pi
2, ..., pi

n}.
Each predicate key pi

j is, at the same time, linked to an associated sorted list of object keys
{oi, j

1 ,oi, j
2 , ...,oi, j

k }. These objects lists are accordingly shared with the ‘pso’ index. The same
‘spo’ pattern is repeated for every subject in the Hexastore. The analogous patterns are
realized in the other five indexing schemes.

Fig. 4.2 ‘spo’ indexing in Hexastore (Taken from paper [142])

RDF-3X (short for RDF Triple eXpress) [117] is designed for managing and querying
RDF data. It designs an architecture for RDF indexing and querying. And it optimizes the
join for large RDF sets. In particular, RDF-3X addresses the challenge of schema free data.
And it copes well with data exhibiting large diversity of properties.

It stores all triples in a B+-bree 2 where the triples are sorted lexicographically. This
design makes it possible to converse SPARQL triple patterns into range scans. The indexes
of RDF-3X are built over all 6 permutations of the three components that compose an RDF
triple. More over, every two-dimensional and one-dimensional projections over the three

2https://en.wikipedia.org/wiki/B%2B_tree
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components have also been indexed, which makes the number of indexes up to 15. Each of
these indexes can be compressed to ensure that the total storage space for all indexes together
to be less than the size of the primary data. The design of the indexes eliminates the need for
physical-design tuning. The principle of this index method is shown in Fig. 4.3.

Fig. 4.3 Exhaustive Index of RDF-3X (Taken from paper [117])

The ‘exhaustive’ index of the triples table makes the query processor of RDF-3X possible
to rely mostly on merge joins over sorted index lists. In fact the triples table is a virtual
concept, because all processing is index-only. The processing overhead of this approach is
much lower than the traditional ones.

The query optimizer focuses on join order in its generation of execution plans. It uses the
dynamic programming method for plan enumeration, where the cost model is based on RDF
specific statistical synopses such as counters of frequent predicate-sequences.

TripleBit [151] provides a system to store and access RDF data. The system follows a
compact design which intends to reduce both the size of stored RDF data and that of the
indexes. It provides two auxiliary index structures in order to minimize the cost of index
selection during execution. Its query processor can dynamically generate optimal execution
orders which aims at improving the join efficiency and to reduce the size of intermediate data.
It uses a two dimensional bit matrix to represent data. One dimension (the row) is created
based on the union of subject and object, the other dimension (the column) is based on the
triple itself. Here we took an example from paper [151]. Suppose we have the following
triples:
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T1: person1 isNamed ”Tom”.
T2: publication1 hasAuthor person1.
T3: publication1 isTitled ”Pub1”.
T4: person2 isNamed ”James”.
T5: publication2 hasAuthor person2.
T6: publication2 isTitled ”Pub2”.
T7: publication1 hasCitation publication2.
Then the triple matrix is shown in Fig. 4.4.

Fig. 4.4 Example of Triple Matrix (Taken from paper [151])

In brief, the centralized systems mainly have the following three physical structures:

(1) Triple table. The ideas is to put the triples in a 3 or 4 columns table, where each row
represents one RDF statement. This representation is not efficient, because it requires
too many self-join operations over this large table for an RDF join.

(2) Property table. It consists of building one or more tables based on common set of
attributes which occur frequently. However, not all subjects share the common set of
attributes. More over, if a subject has more than one object for a given predicate, then
these objects need to be duplicated. In addition, a query may require complex join
plans if it needs to search multiple property tables.

(3) Vertical partition. In this strategy, a table with two columns is created for each predicate.
The first one contains the subjects of all tuples that share the predicate for this table.
And the second one contains the associated object. But this approach has scalability
problems.

In order to make the relational representation and management work efficiently, the index
strategy is often associated with the above 3 strategies as a forth strategy:
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(4) Index data. Many ways of indexing RDF data have been proposed. But due to the
special nature of RDF data, which contains 3 parts in each triple, in order to enhance
the index completeness and efficiency, multiple indexes need to be used.

However, these methods are not suitable for a parallel and distributed streaming process-
ing system. These duplication or tedious indexes increase the amount of data need to be
stored. Thus, it makes the partitioning and distribution of data become very complex. In
addition, these platforms typically require a complex query optimization plan, such as the
Dynamic Programming method used in RDF-3X to produce logical plans. This also do not
fit the requirements for a streaming processing system.

4.2.2 Parallel Solutions for Processing Static RDF Data

Storing huge amount of RDF triples and processing them in a parallel and distributed way
is also a challenging problem in the Semantic Web area. Current frameworks like Jena or
Virtouso do not scale very well for big data. Because they run on a single machine and cannot
process huge amount of triples. For example, we can only load 10 million triples in Jena
running in a machine with 2GB of main memory. This is far from the huge amount of triples
need to be processed (for example 3 billion RDF triples in DBpedia).

Many works have been done to attempt to process RDF data with MapReduce. Here we
list a short introduction about some of these works.

Paper [98] describes a framework built on Hadoop to store and retrieve large amount
of RDF triples. The authors store RDF data in HDFS, and they design their algorithms to
answer SPARQL queries in a MapReduce manner.

Paper [89] proposes an efficient distributed reasoning engine for the widely-used RDFS
and OWL rules. It is built on top of Spark. The authors implement parallel reasoning
algorithms with the Spark RDD programming model.

Paper [153] introduces a distributed and memory-based graph engine for processing web
scale RDF data. Instead of managing RDF data in triple stores or as bitmap matrices (as
explained previously), the authors store RDF data in its native graph form.

We will not discuss the details of the above methods running on MapReduce, because
the translation of SPARQL queries into MapReduce workflows is not efficient. For example,
the first two methods rely on translating the SPARQL query into a series of SQL joins, then
map these SQL join flows directly to MapReduce jobs. But this mapping is actually not
efficient. The fundamental reason is that MapReduce can only process parallel data but not
independent tasks. It needs to launch an entire MapReduce job for each sub-query which
results in costly MapReduce jobs where some subqueries only need a Reduce task. The third
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one relies on graph processing. MapReduce is proved to be inefficient in this case, because
most of the graph algorithms are iterative, and some of them require a large number of
iterations. However, a MapReduce procedure can only conduct one iteration. To implement
all these iterations, it involves heavy I/O costs and extra job starting and initialization time.

Generally, in the parallel and distributed platforms for processing RDF data, some works
choose to divide data (e.g. [96]), some others want to split queries into subqueries (e.g. [93]),
and others want to distribute both (e.g. [95] ). Paper [93] classifies the different paradigms
for building RDF querying systems into 4 different types, Q-I is a centralized one; Q-II
choose to divide data but not query, which means that every machine stores a piece of data,
and processes the entire query; Q-III devides both data and query, which means that each
machine only processes a sub-query on a sub-set of data; and Q-IV choose to divide queries
but not data, which means the entire data sets will be stored on every machine but processed
by a sub-query, as shown in Fig. 4.5

Fig. 4.5 The four different paradigms for building RDF querying systems (Taken from paper
[93])

Here we introduce one example for each type of different paradigm.

Q-II In order to solve the bottleneck caused by the transformation of intermediate data,
paper [96] has used a graph partition method and replicated the boundary data instead
of using a simple hash partition method by s, p, o. However, the authors choose to
divide data into different partitions, each partition still has many replications from
the other partitions. This requires extra space. Besides, the partition step requires
knowledge about the whole dataset, which is not possible for a streaming environment.
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Q-III YARS2[95] presents the architecture of a federated distributed graph-structured data
repository for a Semantic Web search engine. They divide local data structures with
constant seeks and linear throughput, in order to be able to optimize the performance
of the individual operations. They also present a general indexing framework for RDF
triples which is instantiated through a compressed index structure with near-constant
access times (of the index size). They investigate different data placement techniques
for distributing the index structure. And they introduce methods for parallel concurrent
query processing over the distributed index. Since indexing is not efficient for data
streams as explained before, this work cannot be extended for RDF streams neither.
In addition, data placement causes huge network communication, which leads to an
inability to return the results in real time.

Q-IV DREAM [93] chooses not to distribute the data but only to distribute the sub-queries
to avoid the intermediate data transformation, but when the volume of data exceeds the
capacity of the storage of one machine, this method will no longer work.

Actually, Q-II (distribute only data) may not be efficient in many use cases, especially
when the query is complex. Besides, it usually adopts some replication strategies in order
to avoid communications among nodes. These replication strategies usually require entire
dataset, which is not possible in a dynamic streaming processing system. Q-IV (distribute
only query) is not scalable when data increases. Because when the size of data is larger than
the storing capacity of one machine — which appears in most of the streaming use cases,
this kind of method can not work any more. Q-III (distribute both data and query) is the best
solution that fits a parallel and distributed streaming processing system.

In a Q-III method, the most important problem to address is data partitioning. Typically,
the partitioning strategies will seriously affect the amount of intermediate data transmission
among nodes and load balancing. Unfortunately, data partition is a theoretically NP-Hard
problem [92]. It is not obvious to choose an appropriate partitioning strategy. In accordance
with the triple and graph features of RDF data, the existing partition strategies for RDF
systems can be classified into two categories.

• The first one is based on vertex partitioning methods for graphs. Vertex partitioning is
a well-known problem using heuristics and approximates algorithms [28]. Therefore,
it is easy to leverage existing graph partitioning theory to partition RDF graphs [96].
Graph partitioning divides RDF Graphs into smaller sub-graphs which share minimum
connections among them. However, the high overhead of loading RDF data into an
existing graph partitioner will make these methods inefficient on large RDF graphs.
Secondly, classic graph partitioning algorithms (such as min-cut) require the entire
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graph information in order to make decisions, which is again not possible in stream
processing.

• The second method is hash partitioning. It divides RDF triples into smaller and similar
sized partitions, in order to get better load balance. Since the random hash partition
method will generate an enormous intermediate transmission of data [99], the more
commonly used method is to partition triples by hashing their index. The indices are
usually based on the permutation of the three parts of RDF triples and their projections
[110]. For example, Virtuoso [52] partitions each index of all RDBMS tables; YARS2
[95] uses hashing on the first element of all six alternately indices. Unfortunately, these
methods for hashing the index are also not applicable to the stream processing system,
in which we do not have enough time and space to calculate and store these indexes.

4.2.3 Continuous Solutions for Processing Dynamic RDF Data

The join approach (such as nested loop join, hash join, merge-sort join etc.) for traditional
static data does not work very well for dynamic data. For processing RDF streams, compared
to the static join method, the difficulties for stream joins lie in:

(1) The amount of data is too big to be completely stored, so the graph partitioning method
or the replication method are not suitable.

(2) It is difficult to decide the query plan in advance, which results in the lack of join order.

The reasoning on RDF data streams is an important step to make logical reasoning in real
time for huge and noisy data streams in order to support the decision process of large number
of concurrent users. So far, this area has received little attention by the whole Semantic Web
community.

The first attempt to extend SPARQL to support streams is Streaming SPARQL [51]. It
introduces a syntax for the specification of logical and physical windows (see introductions
about sliding window model in Section 2.1.2.2) in SPARQL queries by means of local
grammar extensions. However, this work omits talking about some important components,
such as aggregation and timestamp functions. It does not follow the established approach
where windows are used to transform streaming data into batch processing in order to apply
standard algebraic operations. It changes the standard SPARQL operators by making them
time-stamp-aware which results in a different query language.

The most significant work for processing streams is probably C-SPARQL [42]. It is an
extension of SPARQL designed to express continuous queries for RDF streams. C-SPARQL
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queries can be considered as inputs of specialized reasoners to make real-time decisions.
In this kind of applications, reasoners deal with the snapshots of knowledge, which are
continuously updated by queries.

C-SPARQL extends RDF to RDF streams in form of adding a time stamp. Each data in
RDF triple has a time stamp as following:

......
(< subi, prei,ob ji >,ti)

(< subi+1, prei+1,ob ji+1 >,ti+1)

......

Time stamps are annotations of RDF triples, and they are created in monotonically
non-decreasing order.

C-SPARQL uses a sliding window model, where a window extracts the last data elements
from RDF streams. So only part of the stream are considered by one execution of the query.
This extraction can be both physical and logical. Physical extraction means the window
contains a given number of triples (count-based sliding window). Logical extraction refers
to all triples occurring within a given time interval, whose number is variable over time
(time-based sliding window).

C-SPARQL is a very interesting attempt to extend traditional query languages like
SPARQL to work in a continuous manner. But unfortunately, it works on a single machine,
and it does not have any extension for working in a parallel and distributed way.

To the best of our knowledge, much research is still needed to construct a parallel and
distributed platform which can process the join of RDF streams continuously. This kind of
research has a high prospect of applications.

4.3 Parallel Join on RDF Streams

In this Section, we will introduce our strategies for processing RDF joins on a parallel and
distributed environment. The RDF triples will be distributed among several machines to
be pended; and the queries will be decomposed into sub-queries, and distributed to the
corresponding machines to be processed. Let us see the example shown in Fig. 4.6 in order
to clarify this process.

In this example, we want to find the person who has friend “person1", and likes the post
“post1" and attends to the event “event1" at the same time. This query could be an often used
query in social networks like Facebook or Twitter. This is a join processing on the subject ?S.
It is composed by 3 triple patterns, which are represented by Q1, Q2 and Q3 respectively.
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Fig. 4.6 A SPARQL query example

Suppose the triples we need to apply for this join are the following ones shown in Table
4.1.

Table 4.1 Triples

Triple Subject Predicate Object Triple Subject Predice Object
T1: person0 "hasFriend" person1 T13: person1 "likePost" "post4"
T2: person2 "hasFriend" person1 T14: person2 "likePost" "post2"
T3: person3 "hasFriend" person1 T15: person3 "likePost" "post4"
T4: person4 "hasFriend" person1 T16: person8 "likePost" "post1"
T5: person5 "hasFriend" person1 T17: person2 "likePost" "post5"
T6: person1 "hasFriend" person6 T18: person2 "likePost" "post3"
T7: person2 "hasFriend" person7 T19: person2 "likePost" "post4"
T8: person8 "hasFriend" person4 T20: person3 "likePost" "post1"
T9: person0 "likePost" "post1" T21: person0 "attendEvent" "event1"

T10: person0 "likePost" "post2" T22: person0 "attendEvent" "event2"
T11: person0 "likePost" "post3" T23: person3 "attendEvent" "event1"
T12: person1 "likePost" "post1" T24: person1 "attendEvent" "event2"

This process is shown in Fig. 4.7. In this figure, each machine is represented by a
rectangle, and it needs to process a sub-set of the RDF data using a sub-query.

According to our understanding, in order to complete the target of parallel and distributed
processing for RDF data streams, we need to address the following three problems:

(1) Partition the RDF streams, and disperse these sub-streams to the nodes

(2) Decompose the queries into sub-queries and assign these sub-queries to the appropriate
nodes

(3) Reply rapidly to the changes of data (the expiration of old data, and the update of new
data), and return the results in real-time

The strategies of step (1) and (2) need to ensure that the amount of data transmitted among
the nodes is as low as possible so that it will not become the bottleneck of the system. The
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Fig. 4.7 Process RDF joins in a parallel and distributed envirnoment

decomposition method of step (2) should avoid using complex or time-consuming algorithms.
The third step could be achieved only if the first two steps are well designed.

In this Section, we introduce a method to process conjunctive joins over massive RDF
streams in a parallel and distributed way. In this process, data is dynamic but the query is
static. So it is better to first decompose the query, then adapt the data to the sub-queries.
The number of machines used to process each sub-query can be dynamically decided by the
number of triples this sub-query needs to process in order to achieve load balance.

In this Section, we will introduce the following parts of our work:

• Firstly, we decompose SPARQL queries into triple patterns, and distribute them to the
nodes. The number of nodes for processing each triple pattern needs to be dynamically
adapted to the number of triples to be processed.

• Secondly, we partition RDF triples according to their predicate. The sub stream of
triples with the same predicate needs to be assigned to the nodes that hold the triple
pattern with the same predicate.

• Finally, we classify the joins into three types according to their shape. And an appro-
priate query plan is proposed, taking into account the communication among nodes
and data transfer order.

The transmission of information among nodes is carried by a Bloom Filter [48]. Com-
pared to other distributed platforms, we do not directly transfer triples, but transfer Bloom
Filters, thereby greatly reducing the amount of data to be transferred. Our method does not
need any index, data replication or complex query optimization strategy, which perfectly fit
the needs of a parallel stream processing platform.
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The rest of this Sections is organized as follows: Section 4.3.1 introduces the query
decomposition; Section 4.3.2 talks about data partition and assignment; Section 4.3.3 presents
the query planner.

4.3.1 Query Decomposition and Distribution

For a parallel and distributed RDF stream processing system, the decomposition strategy
should be simple and lightweight, not requiring any complex method for selecting data. The
general idea to decompose the queries is simple: we just divide the queries into triple patterns
— which are the basic elements in a query, and send each triple pattern to some corresponding
machines.

The reasons for choosing this method are numerous:

• It is simple, and does not require any complicated computations.

• The sub-streams can easily be assigned to the sub-queries.

• The performance or accuracy of this method does not depend on the index or replication
of data.

• Among the triples processed by a query, the number of different subjects or objects
involved could be tens of thousands; But the number of triple patterns is a limited and
fixed number.

In our design, as shown in Fig. 4.7, we both have:

(1) Each triple pattern is processed by multiple machines

(2) Each machine processes multiple triple patterns

Strategy (1) is used to achieve good load balance, because different triple patterns have
to process different number of triples. Strategy (2) is naturally applied when there are not
enough machines assigned for every predicate. We will introduce these strategies separately.

Each triple pattern processed by multiple machines: To avoid the load imbalance issue
caused by different number of triples processed by different triple patterns, a dynamic strategy
is used to increase or decrease the number of nodes for processing each triple pattern. This
strategy tries to ensure that the number of triples processed by each machine is similar. Thus
the processing time for each triple pattern is also similar. The calculation will be introduced
in Section. 4.5.2.
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Each machine processes multiple triple patterns: Furthermore, one node may also
receive multiple triple patterns, especially in the case we do not have enough nodes. To
maximize the parallelism of one join, we would like to send triple patterns forming this join
to different machines in order to process them in parallel. Another problem is to allow a node
to handle multiple triple patterns.

SPARQL Queries can be seen as a sub-graph matching problem. Therefore, the sub-
queries should be a sub-graph of an RDF Graph. We use the Edge Coloring method to solve
this problem. The edge coloring method is often used to solve scheduling problems. Because
of the graph nature of RDF data, this method is suitable for distributing the sub-queries. It is
used when we do not have enough nodes for each triple pattern. Furthermore, the coloring of
the Ontology 3 can be used for all the queries under this Ontology.

Edge coloring is one type of Graph Coloring. It assigns "colors" as labels to the edges of
a graph so that no adjacent edges share the same color.

We can find a minimum number of colors to color the query graph. The minimum
required number of colors for the edges of a given graph is called the chromatic index of
the graph. Suppose the degree of the graph is D. Then according to Vizing’s theorem4, the
number of colors used for coloring the graph is either D or D+1. There are many polynomial
time algorithms that can construct optimal colorings of a graph, although the general problem
of finding an optimal edge coloring is an NP-Complete problem.

An example is shown in Figure 4.8. In this example we omit the information about
subjects and objects, and we use the edges to represent predicates. As shown in Figure
4.8, after coloring the edges, the predicates are classified into four categories: C1(P1,P4,P9),
C2(P2,P3,P11,P12), C3(P6,P7,P8) and C4(P5,P10). The edges with the same color can not
form a join (because they are not adjacent), while the edges with different colors may form a
join. In order to ensure that the triple patterns sharing the same join variable are processed
in parallel, they should be spread over different machines. So the predicates with the same
color could be assigned to the same nodes to be processed.

4.3.2 Data Partition and Assignment

For a parallel and distributed RDF stream processing system, the data partition and assignment
strategy first needs to be adapted to the query decomposition strategy. It should also be
simple and lightweight. In our method, we choose to partition the triples by predicate. The
triples with the same predicate will be assigned to the same nodes that hold the triple pattern

3https://en.wikipedia.org/wiki/Ontology_(information_science)
4https://en.wikipedia.org/wiki/Vizing%27s_theorem

https://en.wikipedia.org/wiki/Vizing%27s_theorem
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Fig. 4.8 Edges Coloring

with that same predicate. If two or more triple patterns of the query graph use the same
predicate, they will receive the same triples.

The reasons for choosing this method are numerous:

• It does not require any index, and will not occupy more disk space.

• It can quickly adapt to changes in data, and it does not require any re-partitioning on
the existing data when new data arrives or old data expires.

• Among the triples processed in a query, the number of different types of subjects and
objects involved could be tens of thousands; But the number of different predicates
is limited, and this number must be smaller than the number of triple patterns that
compose this query.

From now till the end of this Chapter, we will use predicates to represent the triples and
triple patterns. When we say: we need to treat predicate P1, it means that we want to process
the triples or triple patterns whose predicate is P1

5.

4.3.3 Parallel and Distributed Query Planner

There are 3 main problems to be solved to complete this idea and to generate join results
efficiently, they are:

5Many triple patterns making up the query may have the same predicate. However, since each triple pattern
has a different position in the query, they should all be considered as different. If two triple patterns have
the same predicate, they will receive the same triples. In the description hereafter, for simplicity, we assume
that each triple pattern in a query has a different predicate. But we need to remind the readers that this is not
essential.
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(1) The communication among nodes

(2) The join of the intermediate results produced by each triple pattern

(3) The order of sending and receiving information

We will introduce our strategies for solving these 3 problems below.

The communication among nodes: The shuffle of the intermediate data will tremen-
dously affect the performance of a parallel and distributed system. In order to avoid the
communication through network, some previous works choose not to partition data (e.g.
[93]), while some others choose to replicate the boundary data of each sub graph (e.g. [96]),
as we introduced in the related works. These two methods are both not suitable in our case.
Unlike most other existing systems, in the method proposed in this Chapter, we do not avoid
the transmission of data among nodes in order to join the results of each triple patterns. But
instead, we use an advanced data structure to minimize the size of the intermediate data need
to be transferred.

The communication among nodes in our method is realized through Bloom Filters.
A Bloom Filter is composed of an m-bits array initially set to 0. It uses k hash functions

hi (1  i  k) to map elements to this array. Each of the hash functions maps the elements to
one of the m positions with a uniform random distribution. To insert an element in the filter,
we compute its hashes value with each of the k hash functions, then set the corresponding k
bits to 1. To query an element (check whether it is contained by the Bloom Filter), the same
hashed values are computed to get k positions. If any of the bits at these positions is 0, then
definitely, the element is not contained by the Bloom Filter. Conversely, if they are all 1, then
the element is considered to belong to this Bloom Filter.

Because of the collision of hash functions, there exists a small probability of having false
positive. This probability is fixed by the number of elements already inserted in the Bloom
Filter (n), the number of bits contained by the bit array (m), and the number of hash functions
used by this Bloom Filter (k). The calculation of the false positive rate will be presented in
Section 4.5.

Figure 4.9 shows the insertion of a dataset S = {s1,s2,s3} into a Bloom Filter of 30 bits
using 3 hash functions, and the query of three new subjects s1, sx, sy. We can see that s1 and
sx will be considered as members of S, whereas sx is a false positive.

The join of the intermediate results of each triple patterns The general idea to join the
intermediate results is to use some triple patterns to generate Bloom Filters, and some others
to probe these Bloom Filters. First we introduce the notion of join vertices:
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Fig. 4.9 Bloom Filter

Definition 4.1 The variable vertices with degree greater than 1 in the graph representation
of a query are considered as join vertices. Their degree corresponds to the number of triple
patterns involved in this join.

The nodes which generate Bloom Filters are called Builders, and the ones which receive
Bloom Filters and use them to probe the triples are called Probers. Each join vertex is
computed by a combination of several Builders and Probers. In general, each Builder and
Prober first need to process a triple pattern. Then the Builders use the results of the triple
pattern to form a Bloom Filter by injecting the projection of the join vertex of each result
into the Bloom Filter. The Probers check whether the projection on the join vertex of each
result is contained by the Bloom Filter.

The difficulty of designing a query plan first lies in how to choose the Prober and its
corresponding Builders.

For the purpose of simplicity, we summarize all the symbols and notations we will use in
Table 4.2.

Let J be a join formed by triple patterns P = {Pi} (i 2 [1,n], with n = |P| the degree of
this join). Joins can be divided into three categories according to the number of variables
contained by these triple patterns.

The first category is called 1-Variable Join.

Definition 4.2 Let J be a join formed by P = {Pi} with i 2 [1, n], and n = |P|. If 8 i 2 [1, n]
Pi contains one and only one variable which is the join vertex, join J is called a 1-Variable

Join.

An example of a 1-Variable Join is shown in Fig. 4.10. In this example, the join vertex
is ?S1. It contains 3 triple patterns P1, P2 and P3. Each triple pattern has and only has one
variable (?S1).

A 1-Variable Join is the usually encountered “star-shaped” join. The join-ordering
problem for this kind of join is known or conjectured to be NP-Hard. Since these nodes
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Symbol Definition
p Projection
s Selection
on Join
^ And (Cartesian product)
Pi A Triple Pattern
Pi,l The position of the constant part of Triple Pattern Pi

Pi,v The position of the variable part of Triple Pattern Pi

BFPi,l=li(Pi,v) The Bloom Filter containing the results of triple pattern Pi

BF(Pi,v) Short for BFPi,l=li(Pi,v)

Table 4.2 Symbols and their definitions

Fig. 4.10 A 1-Variable Join

are connected to many other nodes, it is hard for a graph partitioning method to cut them
(because well-connected graph is hard to partition). And since they involve many edges, it is
also difficult for the n-hop guarantee methods to classify them [93].

However, the status of all these triple patterns for this join vertex is the same, and the
only unknown part of these triple patterns is the join vertex. So these triple patterns can be
dispersed on different machines to be processed separately. Then the final results can be
considered as the integration of the results of these triple patterns.

For the simplicity of description, the constant part (either IRIs or Literals) of the triple
pattern Pi is expressed as Pi,l and its variable part as Pi,v. BFPi,l=li(Pi,v) represents the Bloom
filter containing the projection on the variable part (Pi,v) of the triples whose projection on
the constant part is li (Pi,l = li). In other words, BFPi,l=li(Pi,v) is the Bloom Filter formed by
the results of the triple pattern Pi. To simplify the notion, this Bloom Filter is written as
BF(Pi,v) for short.

Lemma 4.1 Given a 1-Variable join J with triple patterns P = {P1,P2} and join vertex ?v,
where P1,l = l1 , P2,l = l2 , and P1,v = P2,v = ?v, then:
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p(P1,v)sP1,l = l1(P1)on p(P2,v)sP2,l=l2(P2) (4.1)

⇡ (p(P1,v)sP1,l=l1(P1))^sP1,v2BF(P2,v)(P1,v) (4.2)

⇡ (p(P2,v)sP2,l=l2(P2))^sP2,v2BF(P1,v)(P2,v) (4.3)

Equation 4.2 is the Cartesian product of the projection on the variable part of P1 with the
elements of P1,v which belong to the Bloom Filter formed by the elements in P2,v. Equation
4.3 can be explained similarly. Equations 4.2 and 4.3 should be an approximate solution
of equation 4.1 with p ·n more false results where p is the False Positive probability of the
Bloom Filter, and n is the number of elements contained by this Bloom Filter.

Lemma 4.1 describes that the final results of the 1-Variable join formed by two triple
patterns is approximately equal to the result of one triple pattern filtered by the Bloom Filter
containing the results of the other triple pattern. The projections on the variable part of the
triples which matches one triple pattern (left part of equations 4.2 and 4.3) filtered by the
Bloom Filter containing all the projections on the variable part of the triples which match the
other triple pattern (right part of equations 4.2 and 4.3) should be an approximate solution
of the 1-Variable join (equation 4.1) with a deviation of the false positive probability of the
Bloom Filter.
Proof: Suppose T1 and T2 are the sets of triples which match triple patterns P1 and P2

respectively.
V1 and V2 are two sets of projections on the variable part of the triples in T1 and T2

respectively. And,

V1 = p(P1,v)sP1,l=l1(P1),
V2 = p(P2,v)sP2,l=l2(P2).

Then, BF(P1,v) and BF(P2,v) are Bloom Filters containing the elements of V1 and V2

respectively.
Let x = {vkv 2V1 ^V2}, be the result of equation 4.1.
Let bx = {v̂kv̂ 2V1 ^ v̂ 2 BF(P2,v)}.
By construction of a Bloom Filter we have:

if v̂ 2 BF(P2,v) then v̂ 2V2 with a probability p of false positive.

So x is a subset of bx , with p⇤n less elements, where p is the false positive probability of
BF(P2,v), and n is the number of elements contained by BF(P2,v).

Similarly, equation 4.3 is also an approximate solution of equation 4.1 with p⇤n more
elements.



4.3 Parallel Join on RDF Streams 113

Lemma 4.1 can be generalized to Theorem 4.1.

Theorem 4.1 Let J be a 1-Variable Join formed by n triple patterns P = {Pi} with i 2 [1,n],
Pi,v = ?v, and Pi,l = li.

Suppose 8 Pk 2 P, eP = P�{Pk}, with
���eP
��� = n-1, then 8i 2 [1,n] and 8 j 2 [1,n�1]:

on

n
i=1 p(Pi,v)sPi,l=li(Pi) (4.4)

⇡ (p(Pk,v)sPk,l=lk(Pk))^s(Pk,v)2\n�1
j=1BF(Pj,v)

(Pk,v), (4.5)

Equation 4.4 represents the join of triple patterns in P. Equation 4.5 denotes the results
of the sub-query Pk, which also belongs to the intersection of Bloom Filters formed by the
other triple patterns in P.

According to Theorem 4.1, the rule for handling 1-Variable Join can be made as follows:

Rule 4.1 For the 1-Variable Joins J formed by n triple patterns {P1, ...,Pn}, the Prober can
be chosen as any of these triple patterns, and the Builders should be the rest of these triple
patterns.

The Builders add the projection on the join vertex of the matching triples to its Bloom
Filter. Then the Prober pulls all the necessary Bloom Filters, and use them to filter the
projection on the join vertex of its matching triples. The results should be those which belong
to all these Bloom Filters.

According to Rule 4.1, the distribution of the 1-Variable Join example in Fig. 4.10 is
shown in Fig. 4.11. This is a 1-Variable Join, so we can choose any triple pattern as the
Prober and the rest as Builders. In this example, we choose P2 as the Prober, P1 and P3 as
Builders. The machine holding P1 needs to first process the sub-query P1 <?S1,P1,O1 >,
then uses the variable part of the matching triples to form a Bloom Filter BF(P1,v). The
machine holding P3 similarly computes a Bloom Filter BF(P3,v). The Prober P2 first needs
to match with the sub-query P2, then pull the 2 Bloom Filters BF(P1,v) and BF(P3,v) and use
the projection on the variable part of the matching triples to probe them. In the end, it will
return the ones which belong to BF(P1,v) and BF(P3,v) at the same time as the results of this
join.

The second category is called 2-Variable Join

Definition 4.3 Let J be a join formed by P = {Pi} ( i 2 [1, n]), and the join vertex is ?v. If
P contains one and only one triple pattern Pj which has 2 variable parts, join J is called a
2-Variable Join.
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Fig. 4.11 Distribution of 1-Variable Join

An example of a 2-Variable Join is shown in Fig. 4.12. In this example, the Join vertex
is ?S1, and it is formed by 3 triple patterns P1, P2 and P3. The triple pattern P2 has a second
variable part ?O2 besides the join variable ?S1.

Fig. 4.12 A 2-Variable Join

2-Variable Joins contain two unknown parts, the first one is the join vertex ?v, the second
one is the other variable part in Pj. The Bloom Filters used for exchanging information
contain only the join vertex ?v, the other parts of the triples can not be carried by the Bloom
Filters. So the triple pattern Pj which has two variable parts can only be used as Prober but
not as Builder.

Rule 4.2 For a 2-Variable Join J formed by n triple patterns P = {Pi} (with i 2 [1, n]) ,
let PII = {Pj} be a subset of P, which contains the only triple pattern with 2 variable parts
(|PII|=1). Let PI = P - PII be the set of the remaining triple patterns with only one variable
part. Then the Builders for this join are all the triples in PI, and the Prober is the only triple
in PII.

Like in 1-Variable Joins, the Builders in the 2-Variable Joins add the projection on the
join vertex of the matching triples to a Bloom Filter. Then the Prober pulls all these Bloom
Filters it needs and uses them to filter the projection on the join vertex of its matching triples.
The results should be the ones which belong to all these Bloom Filters.
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According to Rule 4.2, the solution of the 2-Variable Join example in Fig. 4.12 is shown
in Fig. 4.13.

Fig. 4.13 Solution of 2-Variable Join

In this example, the triple pattern P2 which contains 2 variable parts need to be chosen as
the Prober. P1 and P3 should be the Builders. The machines holding P1 need to first process
the sub-query P1 <?S1,P1,O1 >. They use the projection on the join vertex of the matching
triples to form a Bloom Filter BF(P1,v). The machines holding P3 similarly compute Bloom
Filter BF(P3,v). The Prober P2 first needs to match with the sub-query <?S1,P2,?O2 >, then
pulls all these Bloom Filters and uses them to filter the matching triples. In the end, it returns
the ones which belong to these two Bloom Filters as the results of this join.

Finally we now study the third category which is called multiple-Variable Join

Definition 4.4 Let J be a join formed by n triple patterns P = {Pi} (with i 2 [1, n]), and
the join vertex is ?v. If P contains k (with 1<kn) triple patterns PII = {Pj} (with j 2
[1, k]) , which contain 2 variable parts (the join vertex plus another), join J is called a
multiple-Variable Join.

An example of a multiple-Variable Join is shown in Fig. 4.14. In this example, the join
vertex is ?S1. It is formed by 3 triple patterns, P1, P2 and P3. The triple patterns P2 and P3

both have two variable parts, the first one is ?S1, the other ones are ?O2 and ?O3 respectively.
As the name suggests, a multiple-Variable join contains multiple unknown parts. The

multiple-Variable join is more difficult to treat because it often involves a complex query
graph which makes it difficult to determine the communication order.

For simplicity, the variable part other than the join vertex of the triple pattern Pi is
expressed as Pi,v2 . BFPi,v2BFX (Pi,v) represents the Bloom Filter containing the projection on
the join vertex of the matching triples of Pi and filtered by the Bloom Filter BFX
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Fig. 4.14 A multiple-Variable Join

Lemma 4.2 Let J be a multiple-Variable Join with join vertex ?v formed by 3 triple patterns
P = {P1,P2,P3}, with PII = {P1,P2} 2 triple patterns which have another variable part other
than the join vertex, and PI = {P3} the subset containing the triple pattern which only has the
join vertex as its variable part. P1,v = P2,v = P3,v = ?v, P1,v2 = ?v1, P2,v2 = ?v2 and P3,l = l3.

Let BF(P3,v) (short for BFP3,l=l3(P3,v) be a Bloom Filter containing the projection on the
join vertex of the matching triples of P3.

Let BF(P1,v) (short for BFP1,v2BF(P3,v)(P1,v) be a Bloom Filter containing the projection
on the join vertex of the join results of P1,v and P3,v.

Let BF(P2,v) (short for BFP2,v2BF(P3,v)(P2,v) be a Bloom Filter containing the projection
on the join vertex of the join results of P2,v and P3,v.

Then,

p(?v1)[p(?v)s(P1)on p(?v)s(P2)on p(?v)sP3,l=l3(P3)] (4.6)

⇡ p(?v1)[p(?v)s(P1)^s(P1,v)2BF(P2,v)(P1,v)] (4.7)

And,

p(?v2)(p(?v)s(P1)on p(?v)s(P2)on p(?v)sP3,l=l3(P3)) (4.8)

⇡ p(?v2)[p(?v)s(P2)^s(P2,v)2BF(P1,v)(P2,v)] (4.9)

Lemma 4.2 states that the query results for the variable parts other than join vertex in a
multiple-Variable join is approximately equal to the results of the triple pattern containing
this variable part filtered by the Bloom Filter formed by the results of the other triple patterns.
In a multiple-Variable join, the process for finding the unknown parts besides ?v is equivalent
to finding the qualified triples containing these unknown parts. In Lemma 4.2, the constrain
condition for finding the qualified triples is the join vertex ?v. Similarly to the 2-Variable
joins, in order to obtain the other unknown part, all the triple patterns containing two variables
should be chosen as a Prober (the formula p(?v)s(P1) and p(?v)s(P2) in the equations 4.7
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and 4.9). Meanwhile, as part of the constraints, they should also be used as a Builder at the
same time. Nevertheless, the Bloom Filters built by the triple patterns containing 2 variables
(BF(P2,v) and BF(P1,v) in the equations 4.7 and 4.9) are based on the triples already filtered
by the Bloom Filter built by the triple pattern containing only one variable part (BF(P3,v)).
Proof: Suppose T1, T2 and T3 are the sets of triples which match triple patterns P1, P2 and
P3 respectively.

Suppose V1, V2 and V3 are the projections on the join vertex of the triples in T1, T2 and T3

respectively.
Then,

V1 = p(?v)s(P1) (4.10)

V2 = p(?v)s(P2) (4.11)

V3 = p(?v)sP3,l=l3(P3) (4.12)

BF(P3,v) is the Bloom Filter containing all the elements in V3.
Suppose

c = {vkv 2V2 ^V3} (4.13)

and

b
c = {v̂kv̂ 2V2 ^ v̂ 2 BFP3,l=l3(P3,v)} (4.14)

c is the results for p(?v)s(P2) on p(?v)sP3,l=l3(P3) which is the join of P2 and P3, and
according to Lemma 4.1, c is a subset of bc , where b

c also includes some false positive
elements.

Now suppose
x = {vkv 2V1 ^V2 ^V3} (4.15)

and
b
x = {v̂kv̂ 2V1 ^ v̂ 2 BF(P2,v)}. (4.16)

Then x is the result of p(?v)s(P1)on p(?v)s(P2)on p(?v)sP3,l=l3(P3), which is the projection
on the join vertex of the join results of P1, P2 and P3. If v̂ 2 BF(P2,v), then v̂ will be in c with
a deviation of false positive probability.

So x is a subset of bx . This proves that equation 4.6 is approximately equal to equation
4.7. A similar reasoning can be applied for equations 4.8 and 4.9.

Lemma 4.2 can be generalized to Theorem 4.2.

Theorem 4.2 Let J be a multiple-Variable Join formed by n triple patterns P = {Pi} (1 < i 6
n), where p (1 6 p 6 n�2) triple patterns contain only the join vertex as one variable part
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and PI = {Pj} ( j 2 [1, p]) is the set of such triple patterns, and q (p+q = n) triple patterns
contain two variable parts and PII = {Qk} (k 2 [1, q]) the set of such triple patterns. P = PI

[ PII.
The join vertex is Pi,v = ?v. The constant part of the triple patterns in PI is Pj,l = l j. The

other variable part of the triple patterns in PII is Pk,v2 = ?vk.
Suppose 8 Qx 2 PII, fPII = PII - {Qx}, with

���fPII

��� = q-1, and the other variable part other
than join vertex of Qx is ?vx.

Let BF(Pj,v) = BFPj,l=l j(Pj,v), be the Bloom Filter containing the projection on the join
vertex of the matching triples of Pj, and X = \p

j=1BF(Pj,v) the intersection of the Bloom
Filters built by all the triple patterns in PI.

Let BF(Qk,v) = BFQk,v2X(Qk,v), be the Bloom Filter formed by the projection on the join
vertex of the matching triples of Qk and filtered by the intersection of all the Bloom Filters
built by the triple patterns in PI.

Then:

p(?vx)(on
q
k=1 p(?v)s(Qk)on

p
j=1 p(?v)sPj,l=l j(Pj)),with Qk 2 PII and Pj 2 PI (4.17)

⇡ p(?vx)(p(?v)s(Qx)^sQx,v2\q�1
k=1BF(Qk,v)

(Qx,v),

with Qk 2 fPII and Pj 2 PI (4.18)

Theorem 4.2 states that the result on the other variable part other than the join vertex of
any triple patterns containing 2 variable parts in PII , should be the projection of the join results
on this variable part (Equation 4.17). The join results are defined by two constrains. The
first one is the Bloom Filters (\p

j=1BF(Pj,v)) formed by the triple patterns containing only
one variable parts in PI . The second one is the Bloom Filters (\q�1

k=1BFQk,v2\
p
j=1BF(Pj,v)

(Qk,v))
formed by the results after filtering by the first constrain of the triple patterns with two
variable parts in PII .

According to Theorem 4.2, the rule for handling multiple-Variable Joins can be made as
following:

Rule 4.3 For a multiple-Variable Join J formed by n triple patterns P = {Pi}, with p triple
patterns containing only the join vertex PI = {Pj}, and q triple patterns containing two
variable parts PII = {Qk}. Every triple patterns in PII should be Probers and Builders at
the same time. But the elements forming the Builders for the triple patterns in PII should be
first filtered by the Builders formed by the triple patterns in PI.

According to Rule 4.3, the solution for the Multiple-Variable Join example in Fig. 4.14 is
shown in Fig. 4.15
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Fig. 4.15 Solution of multiple-Variable Join

In this example, P2 and P3 are triple patterns with 2 variable parts, so they need both
to be a Prober and a Builder at the same time. P1 has only one variable part, so it first
needs to process the sub-query <?S1,P1,O1 >, then use the projection of the matching triples
to form BF(P1,v). P2 and P3 first pull BF(P1,v), and use it to filter the matching results of
<?S1,P2,?O2 > and <?S1,P3,?O3 > respectively. Then P2 uses the projection on the join
vertex of the filtered results to form BF(P2,v) and send it to P3. P3 uses the projection on the
join vertex of the filtered results to form BF(P3,v) and send it to P2. The results on P2 should
be the remaining ones after filtering by BF(P3,v), and those on P3 should the remained ones
after filtering by BF(P2,v).

The order of sending and receiving information Until now we introduced our strategies
about how to convey information among nodes and how to join the intermediate data of the
triple patterns for a join, through the previous three rules. However, in some complex queries
(such as nested loop join), there always exist some triple patterns containing two variable
parts, which need to be both a Builder and a Prober (multiple-variable join). The order for
transmitting and receiving Bloom Filters is another important issue.

The nature of these three rules is that: for any join vertex J, the dependencies of J are
the adjacent nodes around it. If one (or more) dependency is also a variable node, then the
dependencies of this variable node are also considered as the dependencies of J.

Thus, a join place can be abstracted into a task, with dependencies. Thereby, a query can
be considered as a directed graph. The execution order of this query is a topological sort
of this graph. If two nodes of an edge are both join places, they depends on each other. As
shown in Lemma 4.2, the direction does not matter so we can choose an arbitrary one.

A topological sort of a directed graph is a linear ordering of its vertices such that for
every directed edge (u, v) from vertex u to vertex v, u comes before v in the ordering. A
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topological sort can be found if and only if the graph is a directed acyclic graph (DAG). Any
directed acyclic graph has at least one topological sort.

Different topological sort algorithms exit, such as graph Depth-First Search (DFS), or
Kahn’s Algorithm. The Kahn’s Algorithm first finds a list of starting points whose degree
is zero, and insert them in a stack. At least one such kind of points can be found in a DAG.
And a solution will be returned in a list. We need to remind the readers that the solution is
not necessarily unique. Or we can just use a Depth-First Search to solve the topological sort
problem, and the Topological Sort of a graph is the reverse of a Depth-First Search of this
graph.

Definition 4.5 A query graph is a graph describing the dependencies of each join place in
the query. Each dependency within one triple pattern will only be described once.

In the topological sort for query graph, we give constant nodes a higher priority over
variable ones, which are thus to be sorted after the constant nodes at the same level.

Fig. 4.16 Query with cycle

Definition 4.6 Query Topological Sort is a topological sort for the query graphs, where the
constant nodes on the graph have higher priority than the variable nodes at the same level.

Rule 4.4 Suppose the Query Topological Sort for a query graph of query q is Q. Then, the
constrain formed by a variable node n needs to be released after the constrains formed by
the constant nodes before n in Q have all been released.

Since Topological Sort can only be applied for directed acyclic graphs (DAG), unfortu-
nately, our method can not be used for queries whose query graph contains cycles as shown
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in Fig. 4.16. It has been proven that this kind of queries can not be processed independently
in parallel because a cycle in a graph can not be further partitioned.

An example of the order of sending and receiving Bloom Filters is shown as following.
A query q is shown in Fig. 4.17a, and one of its query graph g is shown in Fig. 4.17b.

(a) An example query (b) The query graph of the example

Fig. 4.17 An example sending and receiving order

In this query, there are two join vertices, ?O1 and ?S2. ?O1 is a multiple-Variable join,
since P2 and P4 both have two variable parts. ?S2 is a 2-Variable join, because only P4 has
two variable parts. The Probers should be P2 and P4. P1 to P5 should all be Builders. P2

needs to receive BF(P1,?O1), BF(P3,?O1) and BF(P4,?O1), and build BF(P2,?O1). P4 needs to
receive BF(P1,?O1), BF(P2,?O1), BF(P3,?O1) and BF(P5,?S2), and send BF(P4,?O1).

One query topological sort result from join place ?O1 is:

{“O4”,?S2,“S1”,“O3”,?O2,?O1}.

From this result, we can see that ?S2 should be released after “O4”; and ?O3 should be
released after “O4”, “S1” and “O3”; and the same for ?O2. So, P2 needs to be first filtered
by BF(P1,?O1) and BF(P3,?O1) then build BF(P2,?O1) and send it to P4. P4 needs to be first
filtered by BF(P1,?O1), BF(P3,?O1) and BF(P5,?S2) then build BF(P4,?O1) and send it to P2.
This process vividly describes Theorem. 4.2.

4.4 Continuous RDF Join

In this scenario, we assume that the query needs to process RDF streams which increase over
time. To solve this problem, we add the sliding window model and the sliding Bloom Filter
model to the parallel RDF query framework we presented previously.

For a streaming system, usually, only the newest updates of the streams will be treated.
One of the most commonly used model for processing data streams in this manner is the
sliding window model [40].
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The sliding window model defines the processing of data within a certain range, which
makes sure to process the latest data every time. There are two types of sliding window
models. The first one is time-based sliding window model, which processes the elements from
the last T time units each time. The other type is count-based sliding window model, which
processes the latest N elements each time. The two main factors affecting the sliding window
query efficiency are the re-evaluation strategies and tuple invalidation procedures. There are
usually two re-evalution and expiration mode, the eager way and the lazy way. The eager way
re-executes the query and generates the new results right after each new tuple arrives, then
withdraws old tuples upon arrival of each new tuple. However this ideal mode is infeasible
in real situations where the streams have very high arrival rates. So real applications (like
C-SPARQL) usually run in lazy mode, re-executing the query and removing the old tuples
periodically.

In our work, we call the period of re-execution and expiration of the sliding window the
generation. The generation could be count-based or time-based, depending on the type of
sliding window we choose to use. We can say that the window slides forward in the units of
generation, as shown in figure 4.18.

Fig. 4.18 Sliding Window Model with Generation

In a streaming system, a Bloom Filter which is considered as a footprint of data should
also be updated for each new generation. To minimize the network communication, we
want to send a smaller Bloom Filter without increasing the false positive rate. So, instead of
building a Bloom Filter for the whole Sliding Window as done in paper [116], we choose
to build a Bloom Filter for each generation. Each time, we only send the Bloom Filter for
the current generation to the Prober. We store all the Bloom Filters for the current Sliding
Window in a list on the Prober side. This list is called a Builder list and will be updated when
the Sliding Window moves forward. An element x on the Prober A will only be considered
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Fig. 4.19 Continuous RDF Join

as contained by the Builder B, if it belongs to at least one Generation of the Bloom Filters
of Builder B.

We call the Sliding Window on the Probers the Prober Window. The Sliding Bloom
Filters are called Builder Filters.

Once the stream goes forward a generation, the Prober Window will send a request to
all the Builders it needs, to pull the desired current Generation of Bloom Filter from the
Builder Filter, and add it to the Builder list. Then it will check every triples in the current
Prober Window to select the triples that belong to all the Builder Filters, and return the results
to the user for the current Sliding Window. The processing of the current Prober Windows
with the current Builder Filters can be considered as a static RDF Query, which should follow
the rules proposed in 4.3.3.

For each join vertex Ji, we use Ji_Prober to represent the sub-queries which need to
receive Bloom Filters, and Ji_Builder to represent the sub-queries which need to build Bloom
Filters. The current Prober Window is represented by SW (Pj) and the current Builder Filter
is represented by SW (Bi) respectively. The process of the Sliding Window model of a join
Ji consisting of two Builders and one Prober is shown in Fig. 4.19. In this figure, the join
Ji consists of one Prober Ji_Prober and two Builders Ji_Builder1 and Ji_Builder2. After
finishing one generation, the Prober will request (the blue dashed arrow in the figure) the
Builders to send their current generation of Bloom Filter to the Prober (the red dashed arrow
in the figure).

All the algorithms presented in this section will be shown in the Section 4.6.
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Table 4.3 Symbols and their definitions

Symbol Definition
k The number of hash functions used by a Bloom Filter

n The number of elements need to be inserted
in the Bloom Filter

m The number of bits contained by a Bloom Filter
p The false positive probability
g The number of elements contained by a generation
s The number of elements contained by a Sliding Window

c The number of generations containing by
a Sliding Window

4.5 Analysis

In this Section, we analyze the methods introduced in Section 4.3 and Section 4.4 theoretically.
Firstly, we analyze the relations between the number of elements inserted and the dominating
parameters of a Bloom Filter such as the number of hash functions and the false positive
rate. Then we give the theoretical value of the main parameters in the system, including
the number of nodes for processing each triple pattern, and the parameters for constructing
each Bloom Filter. Finally, we will analyze the theoretically complexity from the following
aspects: the insertion and expiration cost for building a Bloom Filter, the transmitting cost of
a Bloom Filter and the probing cost for a Bloom Filter.

4.5.1 Analysis of Bloom Filters

The dominating parameters for a Bloom Filter are shown in table 4.3.
First, we need to calculate the false positive rate of a Bloom Filter.

Lemma 4.3 Suppose that we use k hash functions to insert n elements into an m bits Bloom
Filter, then the probability that a certain bit is 0 should be no more than e

�kn
m

Proof: The probability that a certain bit is 0 after the insertion of one elements by one hash
function is:

1- 1
m

So the probability that a certain bit is 0 after the insertion of n elements by k hash function is:

(1� 1
m)

kn

And:
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lim
m!•

(1� 1
m)

kn = e
�kn

m

Lemma 4.4 Suppose that we use the simple uniform hashing functions, then the false positive
rate p for a standard Bloom Filter is a function of n, m and k, and p = (1� e�

nk
m )k

Proof: The simple uniform hashing functions will hash each element to one of the m bits in
the Bloom Filter with the same probability. When a certain hash function deals with a certain
element, the probability for not setting a certain bit bx to 1 is:

1� 1
m

So when k hash functions deal with this specific element, the probability for not setting the
bit bx to 1 is:

(1� 1
m)

k

And the probability for not setting the bit bx to 1 when k hash functions deal with n elements
is:

(1� 1
m)

kn

In contrast, the probability for setting this bit bx to 1 is:

1� (1� 1
m)

kn

In the query stage, we consider that an element e is in a dataset, if all the hash bits for this
element are set to 1 in the Bloom Filter formed by the elements of this dataset. So the false
possitive rate is:

p = (1� (1� 1
m)

kn)k

lim
x!0

(1+ x)
1
x = e and lim

m!•
(� 1

m) = 0

) lim
m!•

(1� (1� 1
m)

kn)k

= lim
m!•

(1� (1� 1
m)

�m⇥�kn
m )k

=(1� e�
nk
m )k
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Remark 4.1 Most of the research works about Bloom Filters consider p = (1� e�
nk
m )k

as

the false positive rate of a Bloom Filter. Actually, this is not the false positive rate, this is

the probability that an element is considered as belonging to the Bloom Filter, so it also

contains the true positives. But this probability can be considered as the upper bound of

the false positive rate. In this thesis, we choose to use this probability as the probability of

false positive. All the calculations are based on this rate.

Lemma 4.5 Suppose that we use k hash functions to insert n elements into an m bits Bloom
Filter, then the expected number of non zero bits should be m · (1� e

�kn
m )

Proof: Suppose that Xj is a set of random variables and that Xj=1 when the jth bit is 0, and
0 otherwise, then according to Lemma 4.4

E
⇥
Xj
⇤

= (1� 1
m)

kn ⇡ e
�kn

m

Suppose now that X is a random variable representing the number of the bits which are still
0, then:

E [X ] = E [Âm
i=1 Xi] = Âm

i=1 E [Xi]⇡ me
�kn

m

So the expectation of the number of bits which are not 0 should be:

m · (1� e
�kn

m )

4.5.2 Dominating Parameters

(1) Dynamically assign the number of nodes for processing triples Pi.

Generally, the number of triples for each predicate in the data source is different. So
the proportion of each predicate in the Sliding Window is also different. If the computation
resources are equally assigned to each predicate, it will probably trigger a load imbalance
problem caused by data skew (a waste of resources for some predicates, and lack of resources
for others). To achieve load balancing, a dynamic allocation of nodes for each predicate is
very important.

Suppose the processing capacity of a node is w elements. Suppose the size of a Sliding
Window is s, the size of a generation is g. Then the number of generations in the Sliding
Window is

c = s
g
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Suppose counteri j is a counter which counts the number of elements already received for
triple pattern Pi in the jth generation, the dynamic allocation strategy will add a new node for
predicate Pi when:

Âc
j=1 counteri j > w

Each time a new node is added, the corresponding counteri j will be reduced by w.

(2) Bloom Filter parameters

Increasing the number of bits for a Bloom Filter can reduce the chance of hash collisions,
which reduces the false positive rate. But the larger the Bloom Filter is, the higher the
transmission costs. We assume that if half of the bits in a Bloom Filter is set to 1, then this
Bloom Filter reaches the state of equilibrium between space efficiency and hash collision.
Under this assumption, we can give the calculations of the relations among the dominating
parameters of a Bloom Filter.

Suppose the Bloom Filter contains n elements when it reaches its equilibrium state. Then,
the following equation describes the relation among the number of bits of this Bloom Filter,
and the number of hash functions it uses:

m = k·n
50% = 2 · k ·n bits

Lemma 4.6 The false positive p reaches the minimum value, when e�
nk
m = 1

2 . At this extreme
point k = ln2 ⇥m

n and p = 1
2

k = 2�ln2⇥m
n

Proof: According to Lemma 4.4:

p = (1� e�
nk
m )k

So, the false positive rate p can be considered as a function of the number of hash functions
k:

p = f (k) = (1� e�
nk
m )k

Then,

f (k) = (1�b�k)k with b = e�
n
m (4.19)

Using the logarithm operator on both sides of Equation 4.19, we get:
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ln[ f (k)] = k · ln(1�b�k) (4.20)

Then calculating the derivation of both sides of Equation 4.20, we get:

1
f (x)

· f 0(x) = ln(1�b�k)+k · 1
1�b�k · (�1) · (�b�k) · ln(b) = ln(1�b�k)+k · b�k · ln(b)

1�b�k

(4.21)

When Equation 4.21 equals to 0, Equation 4.20 reaches its minimum value. At this time we
get:

ln(1�b�k)+ k · b�k · ln(b)
1�b�k = 0 (4.22)

) (1�b�k) · ln(1�b�k) = b�k · ln(b�k) (4.23)

According to the symmetrical characteristic of Equation 4.23, we get:

1�b�k = b�k (4.24)

) e�
kn
m =

1
2

(4.25)

) k = ln2 · m
n

(4.26)

And since:

p = f (k) = (1� 1
2
)k = (

1
2
)k = 2ln2·m

n (4.27)

According to Lemma 4.6, we have the following Theorem:

Theorem 4.3 Given the false positive rate p, and the maximum number need to be inserted
in the Bloom Filter n, The number of bits of this Bloom Filter m should be:



4.5 Analysis 129

m =�n · lnp
(ln2)2 (4.28)

And the number of hash functions k should be:

k = ln2 · m
n
= log2

1
p

(4.29)

In our case, we use the maximum number of elements to be inserted in the Bloom Filter
and its false positive rate to construct a Bloom Filter. In all experiences, we set the false
positive rate to 0.01. The maximum number of triples that need to be inserted in the Bloom
Filter is set to the number of triples of each generation.

4.5.3 Complexity

The cost for the join method proposed in this paper contains the 3 following parts:

1. The insertion and expiration cost for building a Bloom Filter

2. The cost for transmitting a Bloom Filter

3. The cost for probing a Bloom Filter

Suppose there are w triples on a node. Suppose the number of generations contained by a
Sliding Window is c. In the worst case we need to insert all w elements into the Bloom Filter.
Then the cost for inserting a generation should be

O(
wk
c
) (4.30)

And the cost for transmission of a generation should be O(m), where m is the number of
bits in a Bloom Filter. When p gets the optimal value, it becomes:

m =�w · ln(p)
(ln(2))2 bits. (4.31)

Suppose the data transmission rate is µ Mbps, then the cost for transmitting a Bloom
Filter is:
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t =
m
µ

(4.32)

=� w · ln(p)
µ · (ln(2))2 (4.33)

= O(w) (4.34)

In the worst case we need to probe all the elements from the current Sliding Window, the
probe cost is:

s · k (4.35)

The complexity of searching an element in a Bloom Filter is O(k), where k is the number
of hash functions. Usually this number is a very small constant, so this cost is O(1). Then
the probing cost of a Bloom Filter depends on the number of elements in a Sliding Window,
since each time we need to use the whole elements in the Sliding Window to probe the Bloom
Filter of the current Sliding Window. So in order to reduce the probing cost, we need to use
small generations. However smaller generations cause frequent requests for Bloom Filters,
which will increase the overall communication cost.

So in a real application, the performance depends on fine tuning the size of the Sliding
Window and the number of generations.

4.6 Implementations

The whole system contains three main parts : Query Planner, Executor and the Topology
(please refer to the introduction about Topology in Section 2.1.2.5) on Storm.

Query Planner
The Query Planner analyzes the queries, returns the join vertices and their type, and the

results of the Query Topological Sort, as shown in Fig. 4.20.
The main algorithms used for Query Planner are: Find Join Vertices in Algo. 1; Define

Join Types in Algo. 2 and Query Topological Sort in Algo. 3.
In Algo. 1, we go through a query graph, and add the variable nodes whose degree is

bigger than 1 into a list. This list is used to store the Join Vertices.
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Fig. 4.20 Query Planner

Algorithm 1 Algorithm for finding the Join Vertices
Require:

A SPARQL query Q, with vertices set V ;
Output: A List of Join Vertices JVList;

1: for each v in V do
2: if v is a variable and d(v) > 1 then
3: JVList.add(v);
4: end if
5: end for
6: return JVList;

Algorithm 2 Algorithm for computing the category of the Join Vertex
Require:

A join vertex v, with a set P of connected edges;
3 categories I, II and III of join vertex as defined in Section 4.3.3;
Output: the category of this join vertex v;

1: List 1VTriple = new List();
2: List 2VTriple = new List();
3: for each p in P do
4: if p has one variable then
5: 1VTriple.add(p);
6: else if p has two variables then
7: 2VTriple.add(p);
8: end if
9: end for

10: if 2VTriple.size()==0 then
11: return v 2 Category I;
12: else if 2VTriple.size()==1 then
13: return v 2 Category II;
14: else
15: return v 2 Category III;
16: end if
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Algo. 2 is based on the the rules presented in Section 4.3.
There are many methods to do a Topological Sort for a Graph. In our system, we choose

to use a Depth First Search method. In this method, we use a queue to mark the vertices that
we are going to visit, and a list to store the final result. We first add the start Join Place ?Q
into the queue. Then, while the queue is not empty, we pop the top element in the queue, and
we sort its adjacent nodes starting with fixed vertices and ending with variable vertices. Then
we go through its adjacent list and add each node to the queue. Each time we add a node we
reduce its degree by 1, and when it reaches 0, we add this node to the result list.

Algorithm 3 Query Topological Sort
Require:

A Query Graph G;
A Multiple-Variable Join Place ?Q to start;
Output: The dependency order of the query graph

1: Queue queue = new Queue();
2: List result = new List();
3: queue.enqueue(?Q);
4: while !queue.isEmpty() do
5: Vertex v = queue.dequeue();
6: Collections.sort(v.adjacent, Comparator(Fix > Variable));
7: for each Vertex adj in v.adjacent() do
8: queue.enqueue(adj);
9: if - -adj.indegree==0 then

10: result.add(adj);
11: end if
12: end for
13: end while
14: return result;

Executor
The Executor is responsible for producing the Topology to be executed on a Storm Cluster.

The work flow of an Executor is shown in Fig. 4.21.

Fig. 4.21 Executor Work Flow
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A Storm Topology contains two different components: Spout and Bolt. The Spouts are
used to distribute resources. The Bolts are used to process each data. We can define different
kinds of Bolt. In our case, a Bolt task is an instance of a Builder or/and a Prober. We also
need to define the input of the Bolts, which in our case is the sending and receiving orders of
Bloom Filters.

Executor needs to use the output of Query Planner, and define the Builders and the
Probers, and the sending and receiving orders as described in Section 4.3.3. The UML
Graph for an Executor is shown in Fig. 4.22.

Fig. 4.22 Executor UML Graph

The most important part on an Executor is the Sliding Bloom Filter. We create a Bloom
Filter for each generation, and store these Bloom Filters in a temporary hash table at the
Prober side. We use an integer to indicate the generation index as the hash key associated to
the Bloom Filter value. We periodically update the hash table in order to withdraw the old
generation of Bloom Filters.
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4.7 Experiment Result

In this section, we evaluate the performance and accuracy of the system.

4.7.1 Experiment Setup

We evaluate the system on Grid 5000 6, with 11 nodes. Among them, one is reserved to be
Nimbus, and the rest 10 nodes are used for computing. The setting of the cluster is shown as
below.

We use 11 nodes (2 CPUs Intel Xeon E5-2660 v2, 10 cores/CPU, 126GB RAM, 5x558GB
HDD, 10Gbps ethernet). The Storm version is 1.0, and we only use one slot on each machine.
The Apache Jena[13] API is used for reading triples.

Apache Jena is an open source Semantic Web framework for Java. It provides an API
to extract data from, and write to, RDF graphs. The graphs are represented as an abstract
"model". A model can be sourced with data from files, databases, URLs or a combination of
these. A Model can also be queried through SPARQL. We use both synthetic and real-world
benchmarks. The real benchmark we used in the evaluation is LUBM[14]. LUBM is a
widely used benchmark for Semantic Web. It consists of a university domain ontology. It is
customizable and repeatable Data. It contains a set of test queries and several performance
metrics. The original LUBM generator generates triples class by class, which means for
example, it will generate first all triples for "Professor", then for "GraduateStudent", etc. In
our experiment, we modified the original LUBM generator in order to have a random order
of triples directly generated in Spouts.

4.7.2 Evaluation about the 3 basic types of join Using Synthetic data

We first use synthetic data to test the three basic types of Join shown in Fig. 4.23.
The RDF triples generated in Spouts are distributed to the nodes according to their

predicate. Two sub-sets of data are generated. The first sub-set contains only matching
results whereas the second one contains only non matching ones. For generating the matching
sub-set, we choose a common range of subjects for each predicate. Since each predicate
has this same set of subjects, this set can be considered as the results of the join. We then
generate a different range of subjects for each predicate, making sure all these subjects are
different from the ones in the previous set. They form the non matching set. We collect
the final result set of the Join, and compare it with the generated matching sub-set, in order
to calculate the precision and recall as we defined in Section 3.5 of the system. Besides,

6https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home

https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home
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(a) 1-Variable Join (b) 2-Variable Join

(c) Multiple-Variable Join

Fig. 4.23 3 Basic Types of Join

we record the generation time of each result triple, and the emitting time of the result, to
calculate the execution latency.

Another metric we have used is the process latency, which is defined as the difference
between the time a triple begins to be processed and the time it is generated.

We use Count Based Sliding Window for all the experiences.

4.7.2.1 The evaluation of parallel performance

In this evaluation we use synthetic data to evaluate the 3 basic types of join. At this step we
want to evaluate the parallel efficiency of our method, so we use different number of nodes
to process each type of join, and we record the number of triples, the execution latency and
process latency.

Fig. 4.24(a), 4.24(b) and 4.24(c) show the execution latency of each sliding window for
each kind of join with a varying number of nodes.

From these 3 figures we can see that the execution latency decreases while the number
of nodes increases. When the number of machine for executing is set to 10, the execution
latency does not change with time, which means that we have achieved a good balance of
parallelism, each sub-query is executed separately on different nodes in parallel. At this time,
the execution latency is approximately equal to the execution time of each Sliding Window.
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(a) The Execution Latency of 1-Variable Join

(b) The Execution Latency of 2-Variable Join

(c) The Execution Latency of Multiple-Variable Join

Fig. 4.24 Basic Types of Join
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Another important metric for evaluating the algorithms is the accuracy, which is presented
by recall and precision the same as we defined in Section 3.5. In our evaluation, we got
all the elements from the results sub-set we generated in the final result sets. So for us the
accuracy is 100%.

The reason can be explained as follows: as we described in Section 3.3.2, we can use
two parameters to determine all the parameters for constructing a Bloom Filter. In our
implementation, each time we choose to use the maximum number of elements needed to be
inserted in the Bloom Filter and the false positive probability to determine all the parameters
for constructing the Bloom Filter. We set the false positive probability to a low value (0.01)
for every Bloom Filter. Secondly, we choose to use the number of triples contained by each
generation as the maximum number needed to be inserted in the Bloom Filter. But, actually,
we only need to insert the matching results in the Bloom Filter, which is much smaller than
the generation size. So the real false positive probability of our Bloom Filters should be
much less than 0.01 in practice. And that is the reason why we got 100% accuracy for the
results.

4.7.2.2 Impact of number of generations

Here we use Storm to deal with data streams. There are two parameters which strongly affect
the performance of a streaming process. The first one is the Sliding Window Size, the second
one is the number of generations.

We first fix the Sliding Window size to 400 triples, and we vary the number of generations
G to 2, 4, 6, 8 and 10. The number of generations in a Sliding Window affects the frequency
of execution and transformation of data. We record the number of Sliding Windows executed,
the Execution Latency, the Processing Latency and the Data Transferred through network for
each type of Join.

Fig. 4.25(a), Fig. 4.25(b) and Fig. 4.25(c) show the number of Sliding Window executed
over time. When we increase the number of generations, the system can execute more Sliding
Windows. Because each generation has less triples to process, and we can finish each Sliding
Window faster.

Correspondingly, the execution latency decreases while the number of generations in-
creases, as shown in Fig. 4.26(a), Fig. 4.26(b) and Fig. 4.26(c). There is a peak for 2-Variable
and Multiple-Variable join at the very beginning, because the system has not reached the
balance yet.

The process latency behaviors is opposite. When the generation size is large, the elements
do not need to wait until the right generation for execution. Conversely, when the generation
size is small, the elements need to wait until their generation for processing. Anyway, the
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(a) Number of Sliding Window
Executed for 1-Variable Join

(b) Number of Sliding Window
Executed for 2-Variable Join

(c) Number of Sliding Window Executed
for Multiple-Variable Join

Fig. 4.25 Number of Sliding Window Executed (SW=400)
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(a) Execution Latency for 1-Variable Join

(b) Execution Latency for 2-Variable Join

(c) Execution Latency for M-Variable Join

Fig. 4.26 Execution Latency (SW = 400)



140 Query Driven Continuous Join (RDF)

process latency is very small compared to the execution latency, as shown in Fig. 4.27(a),
Fig. 4.27(b) and Fig. 4.27(c).

Another important metric to evaluate our method is the communication overhead. Be-
cause, the Bloom Filter size depends on the number of elements to be inserted into the Bloom
Filter once the false positive rate is chosen. In this benchmark, we only consider the data
transmitted among the Bolts, and we ignore the triples transmitted from the Spouts to the
Bolts. The only data transmitted through the network is the Bloom Filters. So we record the
size of Bloom Filters with different number of generations. In 2-Variable Join, the amount of
data transmitted is similar when G=4 and G=6 (the same for 1-Variable Join when G=6 and
G=8). We can consider that at this time the system is balanced from the data transmission
point of view. The results for 1-variable join, 2-variable join and multiple-variable join are
shown in Fig. 4.28(a), Fig. 4.28(b) and Fig. 4.28(c) respectively.

4.7.2.3 Impact of number of Sliding Window Size

In this part, we evaluate the impact of the Sliding Window size on performance. This time,
we fix the number of generations at 4, and we vary the Sliding Window size at 200, 400, 600
and 800.

We first evaluate the number of Sliding Window executed over time. Fig. 4.29(a),
Fig. 4.29(b) and Fig. 4.29(c) show the results for the three different types of joins respectively.
We can see from these figures that, as we increase the size of a Sliding Window, the number
of Sliding Windows executed decreases, since the time for executing one Sliding Window
increases.

We then evaluate the execution latency. The results are shown in Fig. 4.30(a), Fig. 4.30(b)
and Fig. 4.30(c). The execution latency increases with the size of the Sliding Window,
because the execution time for one Sliding Window increases with its size.

The process latency has a different behavior. The results are shown in Fig. 4.31(a),
Fig. 4.31(b) and Fig. 4.31(c). They do not have any regular patterns. But since the process
latency is not very high (less than 0.5 ms ), they are not considered as a critical factor which
affects the performance.

The last thing we want to evaluate is the amount of data transferred through the network.
As shown in Fig. 4.32(a), Fig. 4.32(b) and Fig. 4.32(c), the amount of data transferred through
the network grows while we increase the Sliding Window size. But when the Sliding Window
size is 800, the data becomes inaccurate, because the execution latency is too long, and the
Sliding Window can not be finished in time.

Generally, the execution latency for 1-Variable Join is smaller than that of 2-Variable Join,
and Multiple-Variable Join has the highest latency. The number of matching triple patterns is
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(a) Process Latency for 1-Variable Join

(b) Process Latency for 2-Variable Join

(c) Process Latency for M-Variable Join

Fig. 4.27 Process Latency (SW = 400)
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(a) Communication Overhead for 1-V Join

(b) Communication Overhead for 2-V Join

(c) Communication Overhead for Multiple-Variable Join

Fig. 4.28 Communication Overhead (SW = 400)
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(a) Number of Sliding Window
Executed for 1-Variable Join

(b) Number of Sliding Window
Executed for 2-Variable Join

(c) Number of Sliding Window Executed
for Multiple-Variable Join

Fig. 4.29 Number of Sliding Window Executed (G = 4)
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(a) Execution Latency for 1-Variable Join

(b) Execution Latency for 2-Variable Join

(c) Execution Latency for M-Variable Join

Fig. 4.30 Execution Latency (G = 4)
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(a) Process Latency for 1-Variable Join

(b) Process Latency for 2-Variable Join

(c) Process Latency for M-Variable Join

Fig. 4.31 Process Latency (G = 4)
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(a) Communication Overhead for 1-V Join

(b) Communication Overhead for 2-V Join

(c) Communication Overhead for Multiple-Variable Join

Fig. 4.32 Communication Overhead (G = 4)
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smaller for 1-Variable join than for 2-Variable Join and Multiple-Variable Join, resulting in a
shorter probe list (defined in Section 4.4), and a faster execution. But this general result is
mitigated by the distribution of triples.

4.7.3 LUBM Benchmark

In this Section, we use the LUBM Benchmarks to evaluate our framework.
LUBM has 14 queries, and we have tested query No.1, query No.3, and query No.4. The

remaining queries either didn’t have a join or were too complex to implement due to time
constraints. LUBM is intended to evaluate the performance of the repositories with respect
to extensional queries over a large data set that commits to a single realistic ontology. It
consists of a university domain. It is customizable and repeatable.

Query1 bears large input and high selectivity. It only queries one class and one property
and does not assume any hierarchy information or inference. Query1 is shown in Fig. 4.33.

Fig. 4.33 Query1 in LUBM

Query3 is similar to Query 1 but class Publication has a wide hierarchy. Query3 is shown
in Fig. 4.34.

Fig. 4.34 Query3 in LUBM

Query4 has small input and high selectivity. It assumes subClassOf relationship between
Professor and its subclasses. Class Professor has a wide hierarchy. Another feature is that it
queries about multiple properties of a single class. Query4 is shown in Fig. 4.35.
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Fig. 4.35 Query4 in LUBM

We generate 6 Million triples for each benchmark. But these triples are filtered: only the
triples used by the Bolts (i.e. with a matching predicate) are emitted by the Spout. Hence
we only record the number of triples really processed by the Bolts. But we need to remind
the readers, that the number of triples processed (including the triples already filtered before
arriving at the Bolts) by the system is 6 Million for each query. For this part of experiences,
we set the sliding window size to 600, and the number of generations to 4.

Fig. 4.36(a) and Fig. 4.36(b) show the execution latency and the process latency of query
No.1. The process latency begins to increase at the beginning, and it fluctuates up and down
around 0.04 ms when the process is stable. The execution latency increases sharply at the
beginning, because it waited for the triples to be filtered by the Spouts. Then, when it gets
enough triples for one generation, the execution latency starts to increase slowly. At this
time, the execution latency can be considered as the execution time for each generation. It
does not show the same trends as in the synthetic benchmarks, because the triples generated
by the Spouts have first been filtered by the Spouts, and only the useful triples (the triples
which match with the predicate rdf:type or ub:takesCourse) have been sent to the Bolts. But
the number which really affects the processing time is the number of triples which are really
processed by the Bolts, and this number is not predictable.

Fig. 4.37(a) and Fig. 4.37(b) show the execution latency and the process latency of query
No.3 respectively. The process latency increases sharply at the beginning for Q3. This is
because the Bolts are waiting for the triples filtered by the Spouts to be sent. The execution
latency does not follow any pattern, because the number of triples executed by the Bolts can
not be predicted.

Fig. 4.38(a) and Fig. 4.38(b) show the execution latency and the process latency of query
No.4 respectively. The process latency of Q4 became stable at 0.28 ms after a sharp increase
at the begin. The execution latency of Q4 follows waves up and down at 1200 ms after the
system reaching a steady state. Because Q4 is a Multiple-Variable join, the latency mainly
comes from the execution time of the triple patterns which are both a Prober and a Builder.
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(a) Execution Latency for Q1

(b) Process Latency for Q1

Fig. 4.36 Evaluation for Q1

Besides, it has more different predicates, which means that more triples generated by the
Spouts have been executed by the Bolts.

Fig. 4.39(a), Fig. 4.39(b) and Fig. 4.39(c) show the data transferred through network for
each query. The amount of data transmitted in Q1 and Q3 is almost the same, because they
are both 1-Variable Join formed by 2 triple patterns. They have the same Sliding Window
size and number of generations, leading to the same size of Bloom Filter in each generation.
Correspondingly, Q4 has approximately 5 times (comparing to Q1 and Q3) the amount of data
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(a) Execution Latency for Q3

(b) Process Latency for Q3

Fig. 4.37 Evaluation for Q3

transmitted through network inside each Sliding Window, because it is a Multiple-Variable
Join, and it has 5 Bloom Filters to be transmitted through the network for each generation.

4.8 Conclusion

In this Chapter we have introduced our methods for processing RDF stream joins in a
parallel and distributed manner. We began with an introduction about the background, and
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(a) Execution Latency for Q4

(b) Process Latency for Q4

Fig. 4.38 Evaluation for Q4

explained the motivation and the goal of our work. Then we showed some related works,
and composed our approach to this state of the art. In Section 4.3 we explained our method
for processing RDF joins in a parallel and distributed way. Generally, for processing a
parallel and distributed RDF join, we need to address two problems: (1) partition RDF triples
and distribute them to machines; (2) decompose the queries into sub-queries and assign
them to the appropriate machines. We distribute the data according to their predicate. In
our method, one predicate can be processed by multiple machines in order to avoid load
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(a) Data Transferred for Q1

(b) Data Transferred for Q3

(c) Data Transferred for Q4

Fig. 4.39 Data Transferred
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balancing problems. At the same time, one machine can also process multiple predicates, in
the case there are not enough machines available. We decompose queries into triple patterns,
and send them to the corresponding machines, holding the triples with the same predicate.
We use Bloom Filters to minimize the communication among nodes. The joins are classified
into 3 categories according to their shape, and we introduce 3 rules to join the intermediate
results of each triple pattern. A Query Topological Sort method is proposed to determine
the order of sending and receiving information. In Section 4.4, we extended the methods
proposed in Section 4.3 to make them work for continuous RDF stream joins. We use a
sliding window model and sliding window Bloom Filters. Each window “slides" in the
unit of a generation. We then analyzed our methods in Section 4.5, focusing on Bloom
Filters, dominating parameters, and complexity. The implementation issues are presented in
Section 4.6, where the algorithm for finding the join vertices, the algorithm for judging the
category of the join vertex, the algorithm for Query Topological Sort and the algorithm for
sliding Bloom Filter are shown. In the end we evaluate our method in Section 4.7.

Our method does not need any tedious index which occupy more disk spaces. It does not
need any complicated query plan which requires NP-hard computations neither. Besides, we
do not directly transfer triples, but transfer Bloom Filters, thereby greatly reducing the amount
of intermediate data transmitted. Although Bloom Filter might increase the probability of
having false positive results, we got 100% of correct results in practice when we evaluated
our methods. We avoid the strategies which depend on the analysis of the whole dataset to be
able to process dynamic data streams. In brief, we proposed a both time and space efficient
method to process the join operation on RDF streams in a parallel and distributed way.





Chapter 5

Conclusion and Future Work

The purpose of this thesis is to study parallel and continuous joins for data streams. We divide
the joins into two different categories, Data Driven and Query Driven. We chose a classic
use case for each type of join to study the technologies for processing them in a parallel and
continuous manner. Then, we carefully and exhaustively analyzed and evaluated our methods
both theoretically and experimentally. In this Chapter, we summarize our contributions and
propose some research perspective.

5.1 Conclusion

5.1.1 Data Driven Join

In a Data Driven Join, the query never changes, but the format of data does. For example, in
our use case of kNN (k nearest neighbor), the query is always finding k nearest neighbors.
But the data could be GPS data in 2 dimensions, Twitter data in 77 dimensions, image data
(SURF) in 128 dimensions, etc. A Data Parallel model can be applied for this problem. The
difficulties for processing this kind of join in a parallel way is mainly caused by the data.

For a Data Parallel model, the data should first be pre-processed and then partitioned
before it is dispatched to different nodes in order to achieve a better performance. The
pre-processing step is mainly used for selecting the pivot points of data as the center of
each partition or/and reducing the dimension of data. In this thesis, we studied 3 different
techniques, proposed in the literature, for selecting the pivot data: Random Selection, Furthest
Selection and K-Means Selection. Random Selection requires less calculation than the other
methods, but the results it delivers are worse. We reviewed 2 methods for reducing the
dimension of data in the pre-processing step. The first one is based on z-value which is a
Space Filling Curve. This method projects high dimensional data into a one dimensional



156 Conclusion and Future Work

space while maintaining the locality information with a high probability. Because of the
loss of information due to the projection, we usually need to create some more shifts of
the original data and compute the z-value multiple times. In practice, 2 shifts of data are
sufficient to have a good accuracy. Another method for reducing the dimension is based on
LSH (Locality Sensitive Hashing). This method uses a hash family to map high dimension
data into lower dimension space. It makes use of the hashing collision to map closer points
to the same bucket with a higher probability. In order to increase the accuracy, multiple hash
families can be used. But in return, the processing time will also increase because of the
duplication of data.

The partitioning step is used for dividing data. The number of partitions and the type of
partitions dictates the amount of computation in the following steps. In this thesis, we first
introduced a Random partitioning method, which does not apply any particular strategies.
This method generates n2 partitions, which results in too many data duplication and low
performance. We then reviewed 2 advanced partitioning strategies in order to produce only
n partitions. The first method is called Distance-Based Partitioning. Voronoi Diagrams are
the main concept of this strategy. The idea is to group the most relevant points in each
partition. The second method is called Size-Based Partitioning. It aims at creating roughly
equal size partitions to gain a better load balance. The Size-Based method is based on a
Sampling strategy. It is proven that the quantiles in the Gibbs Sampling [9] of the data set is
an unbiased estimation of the quantiles for the whole data set.

We summarized two ideas about the main computation step. The first one generates the
global data directly in only one processing phase. But the shortcoming is that each task
should process a large amount of computation. When the size of each partition is large,
this will be a major bottleneck. Another way of processing the main computation step is
introduced where local results will first be generated. Then the local results will be merged
in the second processing phase in order to produce the global results. Overall, each task has
less computation than with the previous method but more computation phases are required.

In order to extend the parallel method to process data streams continuously, we applied
a Sliding Window Model. We classified the scenario into 3 different types according to
the dynamic of the data set. For the streaming join, we first proposed a basic method for
each type of scenario based on a random partitioning strategy. In this basic method, the
partitioning will apply the random partition introduced before to every generation. This
generates n2 blocks of data, which occupy more disk space and leads to a lot of unnecessary
computation. We then proposed an advanced re-partitioning strategy based on the Naive
Bayes method. In this method, the re-partitioning method partitions the new generation of
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data without moving the already partitioned data. It computes the conditional probability of
having the new data in each existing partition.

We also proposed a theoretical and experimental analysis of all these methods. We
evaluated each method from a practical point of view, and summarized the advantage,
shortcoming and typical use cases for each method.

Overall, we proposed a comprehensive strategy for processing Data Driven streaming
join in a parallel and continuous manner. We offered a variety of methods, in order to adapt
different scenarios such as different size of data set, different requirement about accuracy
and execution time etc.

5.1.2 Query Driven Join

In a Query Driven Join, the format of data never changes, but the query does. We use RDF
join in Semantic Web as the typical use case for this kind of process. In an RDF join, the
format of data is always triples (< sub ject, predicate,ob ject >). Conversely, the queries
are written by the users and are not predictable. A Task Parallel model is typically used
for solving these tasks. The difficulties for processing this kind of join in a parallel way is
caused by queries. We proposed to decompose them into sub-queries before assigning them
to different processing nodes. There are 3 important issues which are difficult to address
when designing a decomposing strategy:

• Minimize the communication among sub-queries

• Minimize the usage of disk space

• Combine the result of the sub-queries

The decomposition of queries is proved to be an NP-hard problem in many research
works. It is time consuming when the query graph is complicated. In order to minimize
the communication among nodes some previous works just choose to either decompose the
query or parallel the data, but not both. However these methods cannot deal with neither
large data sets nor complex queries. In our method, we chose to decompose the queries into
triple patterns, the smallest part of a query.

In order to minimize the communication, we used Bloom Filters as the footprint of the
intermediate results to be joined. Bloom Filters are advanced data structure based on bit
arrays for membership querying. In the decomposed query, some triple patterns (sub-queries)
are responsible for building the Bloom Filters and are called Builders. The rest of triple
patterns are used to probe the corresponding Bloom Filters, and are called Probers. The
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main part of generating a query plan in our method is thus determining the Probers and the
Builders, and deciding the order of communication between them.

We designed several rules to determine the Probers and Builders. We classify the joins
into 3 different types according to their structure. 1-Variable join contains only one variable
part which is the join vertex. A 1-Variable join is usually star-shaped which is difficult to
decompose according to the Graph Theory. However, this is the simplest type of join to be
processed in our rules. Since each triple pattern in an 1-Variable join is in the same position,
any of them can be chosen as the Prober and the rest as the Builders. A 2-Variable join
contains two variable parts. Since the Bloom Filters can only carry the information of the
join vertex but not the other parts, the triple pattern which has two variable parts can only be
chosen as the Prober. Thus the other triple patterns act as Builders. Multiple-Variable join
is the most complex case. It has more than 2 triple patterns with two variable parts. Each of
these triple patterns with two variable parts should act both as a Prober and as a Builder.

To decide the order of communication, we created a Query Topological Sort method
where we give a higher priority to the constant vertex over variable ones.

After finishing the design of the parallel part, we extended our method to process data
streams in a continuous way. We also used a Sliding Window model. We updated the Sliding
Window periodically. We design the data re-evaluation strategy and data expiration strategy
for our method. We introduced our strategies of using a Sliding Window Model on Probers
which we call Prober Windows, and a Sliding Bloom Filter strategy on Builders which is
called Builder Filters.

Before evaluating our method experimentally, we analyzed it theoretically. The theoretical
analysis aimed at providing the appropriate parameters for the whole system, including the
parameters for constructing the Bloom Filters, the number of generations and the size of the
Sliding Windows.

In the end, we evaluated the whole system on Apache Storm using both synthetic data
and real benchmarks. Despite the use of Bloom Filters, we obtained a very high accuracy in
most of the experiments We were able to generate and process 6 million triples in 12 minutes.
With 400 elements in each Sliding Window and 10 generations, the execution latency was
around 100 ms for each kind of join on 10 machines, and the process latency was less than
0.5 ms.

In conclusion, compared to other distributed platforms, we do not directly transfer triples,
but Bloom Filters, thereby greatly reducing the amount of data to be transmitted. Our method
does not need any index, data replications or complex query optimization strategies, which
perfectly fits the needs of a parallel stream processing platform.
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5.2 Future Directions

In this part, we will give some outlooks about the future directions of research with respect
to the work presented in this thesis.

5.2.1 Research Part

Some of the work presented in this thesis could be further expanded.
The first thing we need to do is to enrich the advanced re-partitioning strategy for kNN

streaming join. We only gave a rough introduction about our method based on Naive
Bayes. The theoretical and experimental analysis and proof have not been done due to time
limitation. We will continue working on this part to provide a study about the accuracy using
this partitioning method, the load balance issue, the computation overhead etc.

Another future research is further improve SPARQL support. There are many more
operations besides JOIN for processing RDF data, such as FILTER, OPTIONAL, etc. In
order to build a complete query engine, we need also to provide other operations. Supporting
these operators will certainly have an impact on the decomposition strategy we have proposed
and the use of Bloom Filters.

5.2.2 Use Cases

5.2.2.1 Real Time Recommendation System

Recommendation systems are in widespread use today. For example, e-commerce websites
such as Amazon provide recommendations on products; reservation websites such as Book-
ing.com provides recommendations about hotels to their users; telecommunication providers
such as Orange usually recommend movies or musics to their users; search engines like
Google tailor search results based on the knowledge of the users’ past searches, etc.

Recommendation systems usually provide contextual relevant user experiences in order
to increase conversion rates and user satisfaction. Traditionally, these recommendations
have been processed in offline batches, which generated new recommended results with a
nightly, weekly or even monthly delay using kNN based algorithms. However, usually it
is necessary to react in a much shorter time frame in scenarios such as geo-location-based
recommendations, timeliness topics, etc.

The methods proposed in this thesis for processing parallel and continuous Data Driven
streaming joins can be applied in such systems.
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5.2.2.2 Real Time Nature Language Processing System

The purpose of Semantic Web is to make machines process structured and semantically
formalized data. There already exists some Semantic Search Engine. These technologies
are also used in question-answering communities to make machines better "understand"
the questions posed in a human language. Natural language processing (NLP) systems
aim at translating human languages into a way that can be processed by computers. The
methods for processing natural languages are divided into two categories: rule-based and
machine learning-based. Nowadays, the machine learning one is the most used. There
already exist some works which combines RDF and NLP, suche as FRED 1, a tool for
automatically producing RDF/OWL ontology. In a natural language processing scenario, in
order to improve the users’ satisfaction, we usually need to provide the results in real time.
But the machine learning methods used here such as Support Vector Machine or Hidden
Markov Model usually require a long time to train data, which is not very efficient for a
streaming process where data is dynamically updated. So combining RDF and Semantic
Web technologies with traditional machine learning based NLP methods is an interesting and
challenging area.

The methods proposed in this thesis for processing the continuous RDF join in a parallel
manner can be applied to systems doing real time natural language processing for queries
submitted by users.

1http://wit.istc.cnr.it/stlab-tools/fred

http://wit.istc.cnr.it/stlab-tools/fred
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Résumé : Nous vivons dans un monde où une 
grande quantité de données est généré en 
continu. Par exemple, quand on fait une 
recherche sur Google, quand on achète quelque 
chose sur Amazon, quand on clique en ‘Aimer’ 
sur Facebook, quand on upload une image sur 
Instagram, et quand un capteur est activé, etc., 
de nouvelles données vont être généré. Les 
données sont différentes d’une simple 
information numérique, mais viennent dans de 
nombreux format. Cependant, les données 
prisent isolément n’ont aucun sens. Mais quand 
ces données sont reliées ensemble on peut en 
extraire de nouvelles informations. De plus, les 
données sont sensibles au temps. La façon la 
plus précise et efficace de représenter les 
données est de les exprimer en tant que flux de  

données. Si les données les plus récentes ne sont 
pas traitées rapidement, les résultats obtenus ne 
sont pas aussi utiles.  
   Ainsi, un système parallèle et distribué pour 
traiter de grandes quantités de flux de données 
en temps réel est un problème de recherche 
important. Il offre aussi de bonne perspective 
d’application. Dans cette thèse nous étudions 
l’opération de jointure sur des flux de données, 
de manière parallèle et continue. Nous séparons 
ce problème en deux catégories. La première est 
la jointure en parallèle et continue guidée par 
les données. La second est la jointure en 
parallèle et continue guidée par les requêtes. 

 

 

Title : Parallel and continuous join processing for data stream (in English) 
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Abstract : We live in a world where a vast 
amount of data is being continuously 
generated. Data is coming in a variety of ways. 
For example, every time we do a search on 
Google, every time we purchase something on 
Amazon, every time we click a ‘like’ on 
Facebook, every time we upload an image on 
Instagram, every time a sensor is activated, 
etc., it will generate new data. Data is different 
than simple numerical information, it now 
comes in a variety of forms. However, isolated 
data is valueless. But when this huge amount of 
data is connected, it is very valuable to look for 
new insights. At the same time, data is time 
sensitive. The most accurate and effective way 
of describing data is to express it as a data  

stream. If the latest data is not promptly 
processed, the opportunity of having the most 
useful results will be missed.     
    So a parallel and distributed system for 
processing large amount of data streams in real 
time has an important research value and a 
good application prospect. This thesis focuses 
on the study of parallel and continuous data 
stream Joins. We divide this problem into two 
categories. The first one is Data Driven Parallel 
and Continuous Join, and the second one is 
Query Driven Parallel and Continuous Join. 
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