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Résumé

En astronautique, une question importante est de controler le mouvement d’un satellite
soumis a la gravitation des corps célestes de telle sorte que certains indices de performance
soient minimisés (ou maximisés). Dans cette thése, nous nous intéressons a la minimisation
de la norme L! du controle pour le probléme circulaire restreint des trois corps. Les conditions
nécessaires a I’optimalité sont obtenues en utilisant le principe du maximum de Pontryagin,
révélant I’existence de contrdles bang-bang et singuliers. En s’appuyant sur les résultats de
Marchal [53] et Zelikin et al. [95, 96], la présence du phénomene de Fuller est mise en
évidence par I’analyse des es extrémales singulieres.

La controlabilité pour le probleme a deux corps (un cas dégénéré du probleme circulaire
restreint des trois corps) avec un controle prenant des valeurs dans une boule euclidienne est
caractérisée dans le chapitre 2. Le résultat de contrdlabilité est facilement étendu au probleme
des trois corps puisque le champ de vecteurs correspondant a la dérive est récurrent. En consé-
quence, si les trajectoires controlées admissibles restent dans un compact fixé, 1’existence des
solutions du probléme de minimisation L! peut étre obtenu par une combinaison du théoréme
de Filippov (voir [2, chapitre 10], par exemple) et une procédure appropriée de convexifica-
tion (voir, par exemple, [31]).

En dimension finie, le probléme de minimisation L' est bien connu pour générer des
solutions ou le contrdle s’annule sur certains intervalles de temps. Bien que le principe du
maximum de Pontryagin soit un outil puissant pour identifier les solutions candidates pour
le probléme de minimisation L, il ne peut pas garantir que ces candidats sont au moins lo-
calement optimaux sauf si certaines conditions d’optimalité suffisantes sont satisfaites. En
effet, il est une condition préalable pour établir (et pour étre capable de vérifier) les condi-
tions d’optimalité nécessaires et suffisantes pour résoudre le probléme de minimisation L!.
Dans cette these, 1’1dée cruciale pour obtenir de telles conditions est de construire une famille
paramétrée d’extrémales telle que I’extrémale de référence peut €tre intégrée dans un champ
d’extrémales. Deux conditions de non-pliage pour la projection canonique de la famille pa-
ramétrée d’extrémales sont proposées. En ce qui concerne le cas de points terminaux fixés,
ces conditions de non-pliage sont suffisantes pour garantir que 1’extrémale de référence est
localement minimisante tant que chaque point de commutation est régulier (cf. chapitre 3). Si
le point terminal n’est pas fixe mais varie sur une sous-variété lisse, une condition suffisante
supplémentaire impliquant la géométrie de variété de cible est établie (cf. chapitre 4).

Bien que diverses méthodes numériques, y compris celles considérées comme directes
[58, 79], indirectes [17, 18, 31], et hybrides [67], dans la littérature sont en mesure de calcu-
ler des solutions optimales, nous ne pouvons pas attendre d’un satellite piloté par le controle
optimal précalculé (ou le contrdle nominal) de se déplacer sur la trajectoire optimale pré-
calculée (ou trajectoire nominale) en raison de perturbations et des erreurs inévitables. Afin
d’éviter de recalculer une nouvelle trajectoire optimale une fois que la déviation de la trajec-
toire nominale s’est produite, le contrdle de rétroaction optimale voisin, qui est probablement
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’application pratique la plus importante de la théorie du contrdle optimal [82, Chapitre 5],
est obtenu en paramétrant les extrémales voisines autour de la nominale (cf. chapitre 5). Etant
donné que la fonction de contrdle optimal est bang-bang, le contrdle optimal voisin comprend
non seulement la rétroaction sur la direction de poussée, mais aussi celle sur les instants de
commutation. En outre, une analyse géométrique montre qu’il est impossible de construire un
controle optimal voisin une fois que le point conjugué apparaisse ou bien entre ou bien a des
instants de commutation.

Mots clés : poussée faible, minimisation L!, fuel-optimal, probléme circulaire restreint des
trois corps, probléme aux deux corps, condition d’optimalité suffisante, points conjugués,
points focaux, guide optimal voisin, controle de rétroaction optimal voisin.



Abstract

In astronautics, an important issue is to control the motion of a satellite subject to the
gravitation of celestial bodies in such a way that certain performance indices are minimized
(or maximized). In the thesis, we are interested in minimizing the L!-norm of control for the
circular restricted three-body problem. The necessary conditions for optimality are derived by
using the Pontryagin maximum principle, revealing the existence of bang-bang and singular
controls. Singular extremals are analyzed, and the Fuller phenomenon shows up according to
the theories developed by Marchal [53] and Zelikin et al. [95, 96].

The controllability for the controlled two-body problem (a degenerate case of the circular
restricted three-body problem) with control taking values in a Euclidean ball is addressed first
(cf. Chapter 2). The controllability result is readily extended to the three-body problem since
the drift vector field of the three-body problem is recurrent. As a result, if the admissible
controlled trajectories remain in a fixed compact set, the existence of the solutions of the L*-
minimizaion problem can be obtained by a combination of Filippov theorem (see [2, Chapter
10], e.g.) and a suitable convexification procedure (see, e.g., [31]).

In finite dimensions, the L!-minimization problem is well-known to generate solutions
where the control vanishes on some time intervals. While the Pontryagin maximum princi-
ple is a powerful tool to identify candidate solutions for L!-minimization problem, it cannot
guarantee that these candidates are at least locally optimal unless sufficient optimality condi-
tions are satisfied. Indeed, it is a prerequisite to establish (as well as to be able to verify) the
necessary and sufficient optimality conditions in order to solve the L!-minimization problem.
In this thesis, the crucial idea for establishing such conditions is to construct a parameter-
ized family of extremals such that the reference extremal can be embedded into a field of
extremals. Two no-fold conditions for the canonical projection of the parameterized family
of extremals are devised. For the scenario of fixed endpoints, these no-fold conditions are
sufficient to guarantee that the reference extremal is locally minimizing provided that each
switching point is regular (cf. Chapter 3). If the terminal point is not fixed but varies on a
smooth submanifold, an extra sufficient condition involving the geometry of the target mani-
fold is established (cf. Chapter 4).

Although various numerical methods, including the ones categorized as direct [58, 79],
indirect [17, 18, 31], and hybrid [67], in the literature are able to compute optimal solutions,
one cannot expect a satellite steered by the precomputed optimal control (or nominal control)
to move on the precomputed optimal trajectory (or nominal trajectory) due to unavoidable
perturbations and errors. In order to avoid recomputing a new optimal trajectory once a devi-
ation from the nominal trajectory occurs, the neighboring optimal feedback control, which is
probably the most important practical application of optimal control theory [82, Chapter 5],
is derived by parameterizing the neighboring extremals around the nominal one (cf. Chapter
5). Since the optimal control function is bang-bang, the neighboring optimal control consists
of not only the feedback on thrust direction but also that on switching times. Moreover, a
geometric analysis shows that it is impossible to construct the neighboring optimal control
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once a conjugate point occurs either between or at switching times.

Keywords: Low-thrust, L'-minimization, fuel-optimal, circular restricted three-body prob-
lem, two-body problem, sufficient optimality conditions, conjugate points, focal points, neigh-
boring optimal guidance, neighboring optimal feedback control.
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Introduction francaise

Ce travail s’intéresse au contrdle optimal appliqué a la mécanique spatiale. Plus précisément,
la détermination de trajectoires a consommation minimale est considérée ; comme expliqué
dans ce qui suit, cette fonction cofit (la plus importante pour la conception de missions spa-
tiales) se traduit en termes de norme L' du contrdle. Le manuscrit est organisé en six chapitres.
Apres un premier chapitre introductif rappelant notamment le modele circulaire restreint pour
le probleme des trois corps, la question de la controlabilité est étudiée au chapitre deux ; de
nouveaux résultats y sont donnés dans le cas ou des contraintes d’état supplémentaires sont
prises en comptes lors des manceuvres d’orbitation ou de désorbitation d’un engin spatial.
Le chapitre trois est consacré a la définition de conditions suffisantes d’optimalité pour des
extrémales brisées en contrdle optimal, telles celles apparaissant en minimisation L. Un ré-
sumé de cette contribution, basé sur Iarticle "L!-minimization for mechanical systems" paru
dans SIAM J. Control Optim. 54 (2016), no. 3, 1245-1265 (Chen, Z.; Caillau, J.-B.; Chi-
tour, Y.) est proposé ci-apres. Le chapitre quatre étend ces résultats au cas d’extrémales dont
la cible n’est plus ponctuelle mais définie par une sous-variété propre de I’ensemble d’état.
L’avant-dernier chapitre applique ces techniques au calcul d’extrémales voisines en détaillant
I’implémentation numérique associée. Le sixieme et dernier chapitre donne en conclusion les
pistes de recherche laissées ouvertes par ce travail. Trois annexes completent le texte ; la pre-
miere définit les éléments équinoxiaux utilisés pour décrire la dynamique d’un engin spatial
dans le champ de gravité d’un corps céleste, la deuxieme détaille les conditions suffisantes de
type point conjugué dans le cas lisse, la derniere précisant la méthode de calcul des champs
de Jacobi intervenant dans ces conditions d’optimalité.

On considere le probleme du contrdle optimal de systemes mécaniques de la forme suivante :
G(t) + VV(q(t)) = —=—=, M(t) = =plu(t)],

ou ¢ est a valeurs dans un ouvert () de R™, m > 2, sur lequel le potentiel V' est défini.

la deuxieme équation décrit la variation de la masse M du systetme quand un contrdle est

appliqué (/3 est une constante positive). La norme en dimension finie est euclidienne,

ul =t + e 2
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et on a une contrainte sur le contrdle :
lu(t)| <e, e>0. 0.1)

Etant données des conditions aux deux bouts dans I’espace d’état n-dimensionel X := TQ ~
@ x R™ (n = 2m), le probléme qui nous intéresse est la minimisation de la consommation,
c’est-a-dire la maximisation de la masse finale M (¢), le temps final ¢; étant fixé. Cela revient
A minimiser la norme L' du contrdle,

t
J " Ju(t)] df — min. 0.2)
0

A un facteur positif pres, on a deux cas : § = 1 ou S = 0. Dans le second, la masse est
constante ; bien qu’alors maximiser la masse finale n’ait plus de sens, le colt de Lagrange
(0.2) reste bien défini. De fait, dans la mesure ou le carburant ne représente qu’une fraction
limitée de la masse totale, on peut attendre de ce modele idéalisé "a masse constante" qu’il
capture les principaux traits du probleme de départ. On supposera donc 5 = 0 dans la suite,
si bien que 1’état se réduit au couple = := (¢, v) avec v := q.

Il est connu qu’en dimension finie la minimisation ¢! engendre des solutions parcimo-
nieuses ayant un grand nombre de coordonnées nulles ; cette propriété se traduit ici par I’exis-
tence de sous-intervalles du temps sur lesquels le contréle s’annule, comme on le voit immé-
diatement lorsqu’on applique le principe du maximum. Intuitivement, cela semble en accord
avec I’objectif recherché de minimisation de la consommation : il existe des valeurs privilé-
giées de I’état en lesquelles le controle est plus efficace et doit étre allumé (arcs de poussée),
tandis qu’il en existe d’autres en lesquelles il doit étre éteint (arcs balistiques). (Voir aussi
[5] pour une interprétation d’un autre type dans un contexte biologique, a nouveau en mini-
misation L'.) La parcimonie de la solution qui en résulte est ajustée par le ratio du temps final
fixé sur le temps minimum associé aux conditions aux limites : alors qu'une conséquence
immédiate de la forme de la dynamique (et de la contrainte de boule sur le contrdle) est qu’un
controle temps minimum doit étre de norme constante et maximale partout,' le temps addi-
tionnel disponible autorise une optimisation dont I’effet est 1’apparition d’arcs a contr6le nul.
(Voir la Proposition 1.) Une particularité notable de la dimension infinie est I’existence d’arcs
dits arcs singuliers sur lesquels la norme du contrdle prend des valeurs intérieures a 1’inter-
valle de variation prescrit. L’analyse de ce phénomene remonte au papier séminal de Robbins
[78] dans le cas du potentiel des deux corps, exemple qui illustre 1’interaction si fructueuse
entre mécanique spatiale et contrdle optimal dans les premieres années de la discipline. La
conséquence du fait que ces arcs singuliers soient d’ordre deux a été plus tard appréhendée
par Marchal qui a étudié le phénomene de chattering [53] ; cet exemple est probablement le
second apres celui, historique, de Fuller [30], et a ensuite été étudié en profondeur par Zelikin
et Borisov [95, 96].

"Voir par exemple [20] ; cette propriété reste vraie en temps minimum & masse variable 3 condition que la
masse finale soit laissée libre [ibid].
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Un exemple caractéristique de systeme du deuxieme ordre contrdlé est le probleme circu-
laire restreint des trois corps [17] pour lequel, en notation complexe (R? ~ C),

R— 1 _M — u .
lg + pett] g — (1 — p)et|

Viu(t,q) =

Dans ce cas, p est le ratio des masses des deux primaires en rotation uniforme autour de leur
centre de masse. Le troisiéme corps, contrdlé, est un engin spatial gravitant dans le potentiel
engendré par les deux primaires, mais qui n’influence pas leur mouvement. Quand p = 0,
le potentiel est autonome et on retrouve le probleme des deux corps controlé. L’étude des
stratégies de commande "continues" (par opposition a impulsionnelles) remonte aux années
60 ; voir par exemple les travaux de Lawden [46], ou le livre de Beletsky [4] ou I'importance
de la poussée faible (¢ dans (0.1)) pour "spiraler" depuis une orbite initiale avait été anticipée.
Il y a actuellement un fort intérét pour ces missions a poussée faible avec, par exemple, la
mission Lisa Pathfinder [60] de 'ESA? vers le point de Lagrange L, du systeme Soleil-Terre,
ou encore la mission BepiColombo [59] de ’ESA et de la JAXA?® vers Mercure.

Une question importante en controle optimal est la capacité a vérifier des conditions suf-
fisantes d’optimalité. En minimisation L, les premiers candidats sont les contrdles dont la
norme est bang-bang, commutant de zéro a la borne prescrite par (0.1) (les situations plus
riches incluant les contrdles singuliers.) Les conditions du second ordre dans le cas bang-
bang ont été assez largement étudiées ; citons les travaux de Sarychev [81], suivis par [3]
et [54, 64, 65]. Dans la méme direction, la notion plus forte de "state optimality" a été in-
troduite par [71] pour le temps final libre. Plus récemment, un procédé de régularisation a
été développé dans [85] pour des systemes mono-entrée. Ces références traitent du cas de
controles a valeurs dans des polyhedres ; les hypotheses qui y sont faites permettent de définir
un probleme accessoire dont les seules inconnues sont les instants de commutation. Il s’avere
dans ce cas qu’une vérification de conditions du deuxieéme ordre sur ce probleme auxiliaire
suffit a garantir I’optimalité locale des controles bang-bang. Un corollaire de cette analyse est
que les temps conjugués, en lesquels 1’optimalité locale est perdue, doivent étre des instants
de commutation. Une approche différente, basée sur Hamilton-Jacobi-Bellman et la méthode
des caracteristiques en contrdle optimal, est proposée par Noble et Schittler dans [63]. (Voir
aussi la référence plus récente [82].) Leurs résultats incluent le cas des extrémales brisées,
avec des points conjugués apparaissant soit en des temps de commutations, soit entre ceux-ci.
Nous obtenons des résultats similaires en étendant la condition de disconjugaison des champs
de Jacobi aux extrémales brisées, et en utilisant plutot un point de vue hamiltonien dans 1’es-
prit des travaux [27, 45]. Remarquons que les travaux de Maurer et Osmolovskii couvrent
également le cas de la minimisation L! avec encore une autre approche ; voir [66, Chap. 5]
sur les problemes de contrdle ou une partie du contrdle intervient linéairement dans la dyna-
mique. (La vérification numérique des conditions suffisantes passant alors par 1’étude d’une
équation de Riccati analogue a celle de [82].) Traiter le cas des extrémales brisées est crucial

“European Space Agency
3Japan Aerospace Exploration Agency
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pour la minimisation L' : Dans la mesure ol la norme sur le contrdle intervenant a la fois
dans la contrainte (0.1) et dans le coiit (0.2) est une norme ¢? (définissant ainsi un probleéme
de minimisation "L!-¢2"), le contrdle est astreint a prendre ses valeurs dans une boule eucli-
dienne de R™, pas dans un polyhedre dés que m > 1. Pour m = 1, la situation est dégénérée,
et on peut par exemple poser u = u, — u_, avec uy,u_ = 0. (Cette approche est également
possible pour m > 1 quand une norme ¢! ou ¢* est utilisée pour les valeurs du contrdle ; voir
par exemple [92].) Quand m > 1, il apparait clairement en passant en coordonnées sphériques
que nonobstant la possibilité pour la norme du contrdle d’étre bang-bang, les variations des
composantes sur S™ ! de ce controle empéchent une réduction a un probléme d’optimisation
en dimension finie. (La méme remarque vaut pour toute norme ¢ sur les valeurs du contrdle
avec 1 < p < o0.) Un exemple de conjugaison ayant lieu entre les instants de commutation
(et non en ceux-ci) est donné dans les tests numériques.

Analyse des singularités du flot extrémal

Quitte a renormaliser le temps et le potentiel, on peut supposer € = 1 dans (0.1), on considere
donc le contrdle L'-minimum de

G(t) + VV(q(t)) = u(?), |u@®)| <1,

avec z(t) = (q(t),v(t)) € X = TQ (v(t) = ¢(t)), Q étant un ouvert de R™ (m > 2), et on
fait les hypotheses suivantes sur les conditions aux limites :

2(0) =z9 et z(tf)e Xy X

ou (i) o n’appartient pas a la variété cible Xy, (i1) Xy est invariante par le flot de la dérive,*

Fo(g,v) = va—aq - VV(Q)a—aU7
et (iii) le temps final fixé ¢ est supposé strictement plus grand que le temps minimum
tf(xo, Xy) < oo du probleme. Comme le coiit n’est pas différentiable pour u = 0, plutdt
que d’utiliser un principe du maximum non-lisse (voir par exemple [5]), on fait une désingu-
larisation élémentaire : en coordonnées sphériques, u = pw ot p € [0,1] et w € S™!; ce
changement de coordonnées revient a ajouter une fibre S™~! au dessus de la singularité u = 0
du cofit. Dans ces variables, la dynamique s’écrit

z(t) = Fo(z(t)) + p(t) Z w;(t) Fy(x(t))

“4Cette hypothése peut étre affaiblie ; son seul objet est de garantir qu’un contrdle temps minimal prolongé
par zéro au dela du temps min reste admissible. (Voir la Proposition 1.)

4
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avec des champs de vecteurs F; = 0/0v;, i = 1,..., m canoniques, et un critere linéarisé :

tf
f p(t)dt — min.
0

Le hamiltonien du probleme est

H(z,p, p,w) = p°p + Hol(x,p) + p > witbi(x,p)
i=1

ol Hy(x,p) := pFy(x) et ou les ¢;(z, p) := pF;(x) sont les relevements hamiltoniens des F;,
t=1,...,m.Clairement, H < Hy + pH; avec

Hl ::p0+ i¢7,27
V i=1

et I’égalité peut toujours étre atteinte en un certainw € S™ 1 1w = /|| sih == (Y1, ..., Um)
n’est pas nul, w quelconque sinon. En vertu du principe du maximum, si (p, w) est un contrdle
mesurable minimisant, alors la trajectoire associée est la projection d’une courbe intégrale
(x,p) : [0,tf] — T*X de Hy + pH, telle que, presque partout,

Ho(x(t), p(t)) + p(t)Hi(x(t),p(t) = max Ho(z(t),p(t)) + rHi(z(t),p(t)).  (0.3)
De plus, la constante p° est négative et (p°, p) # (0, 0). Soit p® = 0 (cas anormal), soit p° peut
étre fixé a —1 par homogénéité (cas normal).

Proposition 1 (Gergaud et al. [31]). Il n’y a pas d’extrémales anormales.

On pose donc p° = —1, et H; := || — 1. A la différence du cas du temps minimum, la
singularité ¢) = 0 ne joue pas de role en minimisation L!. Au voisinage de ¢ tel que 1 (t) = 0,
H, est negatif, aussi p = 0. Localement, le contrdle s’annule et I’extrémale est lisse. Le seul
effet de la singularité est une discontinuité dans la fibre S™! au dessus de u = 0 dans laquelle
w(t+) = —w(t—) (voir [20]).

La singularité importante est //; = 0. Contrairement au cas mono-entrée classique, H
n’est pas le relevement d’un champ de vecteurs sur X ; les propriétés du flot dépendent de
Hy, Hy, et de leur crochets de Poisson. On note Hy,; le crochet { Hy, H}, ainsi de suite. Le
résultat ci-apres est classique (voir par exemple [10]) et traduit I’entrelacement d’arcs le long
desquels p = 0 (arcs vy) avec des arcs tels que p = 1 (arcs v,).

Proposition 2. Au voisinage de zy dans {H, = 0} tel que Hy(zy) # 0, toute extrémale est
localement bang-bang de la forme ~yyy ou 1o, selon le signe de Hy (2p).

De tels points de commutation sont dits réguliers et sont étudi€s dans ce qui suit a I’aide de
conditions d’optimalité du second ordre. Outre I’existence d’arcs ~, traduisant le caractere
parcimonieux des solutions, la particularité du probléme de controle (vu comme un probleme

5
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d’optimisation en dimension infinie) est I’existence d’arcs singuliers le long desquels H;
s’annule identiquement. Sur de tels arcs, p peut prendre des valeurs arbitraires entre [0, 1].

Théoreme 1 (Robbins [78]). Les extrémales singulieres sont d’ordre au moins deux, et les
singulieres minimisantes d’ordre deux sont contenues dans

{2 = (q,v,p4,p0) € T*X | V"(q)p2 = 0, V"(q)p? > 0}.

Corollaire 1. Dans le cas du potentiel des deux corps V(q) = —1/|q| (¢ # 0), le long d’une
singuliére d’ordre deux on a soit a € (7/2, ap|, soit & € [—a, —7/2), oit « est I’angle que

fait le contréle avec la direction radiale, et ot oy = acos(1/+/3).

L’existence de singulieres d’ordre deux dans le cas de deux corps a pour conséquence le phé-
nomene de Fuller ou "chattering”" [53, 95]. Le méme phénomene persiste pour le probleme
circulaire restreint comme cela est expliqué dans [96]. Bien que ces extrémales singulieres
soient contenues dans une sous-variété de codimension > 1 de I’espace cotangent, leur pré-
sence est une obstruction a I’existence de bornes globales sur le nombre de commutations des
extrémales régulieres décrites par la Proposition 2. Le paragraphe suivant établit des condi-
tions d’optimalité suffisantes pour ces extrémales bang-bang.

Conditions suffisantes pour des extrémales avec des commutations régu-
lieres

Soient X un ouvert de R", U une partie non-vide de R™, f un champ de vecteur sur X
parametrisé par u € U, et f* : X x U — R une fonction colit, toutes ces données étant

lisses. On considere le probléme de minimisation a temps final fixé suivant : trouver (z,u) :
[0,t7] = X x U, x absolument continu, u mesurable et borné, tel que

#(t) = fx(t), ut), te[0,t] (p.p.),

2(0) = @0, a(ty) =z,
et que

fo "ot u(t)) dt

soit minimisée. Le principe du maximum assure que, si (T, u) est une telle paire, il existe un
relevement absolument continu (Z,p) : [0,¢;] — T*X et un scalaire négatif p°, (p°,p) #
(0,0), tels que presque partout sur [0, ¢¢]

_0H
-5

(F0), P07, 5(E) =~ (70 ), ().

w(t)

et
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ou i : T*X x U — R est le hamiltonien du probleme,

H(z,p,u) = p° fO(x,u) + pf(z,u).
On suppose tout d’abord que
(AO) L’extrémale de référence est normale.

On fixe en conséquence p° & —1. Soient H,, Hy : T*X — R deux fonctions lisses, et soient
Y :={H) = Ha}, Qy := {H, > Hy} (Qy := {Hy > H,}, resp.) On fait I’hypothese que

mng(z, )=H;, zeQy; i=1,2, (0.4)

et on adopte le point de vue de [27] selon lequel ces deux hamiltoniens sont en "compétition".
Soit (Z, p, w) une extrémale de référence ayant un seul point de contact avec ¥ en z; := z({;),
t1 € (0,t7) (z := (7,D)). On note Hy, = {H;, Hs} le crochet de Poisson de H; avec H, et
on fait I’hypothese suivante :

(Al) Hi2(z1) > 0.

Dans la terminologie de [45], Z; est un point de commutation régulier (ou normal). Cette
condition est encore appelée condition de Legendre bang-bang stricte dans [3]. L’analyse
ci-apres s’étend de facon directe au cas d’une extrémale possédant un nombre fini de telles
commutations.

Lemme 1. Z est le concatenation des flots de H, puis Ho.

En conséquence de (A1), X est une sous-variété de codimension un au voisinage de z1, et on
peut définir localement une fonction zy — t1(z) telle que z;(¢1(20), 20) appartient a ¥ pour
2o dans un voisinage de Z, := Z(0). Comme cela vient d’étre fait, on notera

zi(t, z0) = etHi(zo), i=1,2,

les flots hamiltoniens de [, et Hs. Dans un souci de simplicité, ces flots sont supposés com-
plets. On note " = 0/0z.

Lemme 2. (H, — Hy
£1(20) = ~—=—(21(t1(20), %))} (11(20), 20)-
His
On définit localement zy — z(t,z0) = (x(t,20),p(t,20)) = 21(t,20) si t < t1(z) et

Z(t, Zo) = 2’2<t — t1<2’0), Zl(tl(Zo), Zo)) sit > tl(Zo).
Lemme 3. Pourt > t1(z),

0z

a—ZO(t, 20) = 25(t — t1(20), 21(t1(20), 20)) (I + 0(20)) 21 (t1(20); 20)
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avec

(Hy — Hy)'

12

O'(Z()) = H1 — HQ (Zl(tl (ZQ), Zo)) (05)

La fonction 5
5(t) = det —(t,%0), t# %, (0.6)

Ipo
est continue par morceaux le long de I’extrémale de référence, et on fait I’hypothese addition-
nelle que

(A2) (5(t> #* O, te (O,z1> ) (zl,tf], et 5(%14‘)(5(%1—) > 0.

Cette condition signifie qu’on suppose la disconjugaison sur (0,%;] et [¢1,¢f] le long des
flots linéarisés de H; et Ho, respectivement, et que le saut (encodé par la matrice o(2)) des
champs des Jacobi est tel qu’il n’y a pas de changement de signe du déterminant associé. Il
s’agit précisément de la condition qu’on est capable de vérifier numériquement en calculant
ces champs de Jacobi (voir par exemple [10, 18]). Géométriquement, cette hypothese est une
condition d’absence de singularité pli ("no-fold condition") [63, 82] (absence de pli en dehors
t1, de pli "brisé" en ;).

Théoreéme 2. Sous les hypothéses (A0)-(A2), la trajectoire de référence est un minimiseur

€"-local parmi toutes les trajectoires avec les mémes extrémités.

En vertu de (A2), 01/dpo(t, Zo) estinversible pour ¢ € (0, ¢1] ; on peut donc construire une
perturbation lagrangienne %} transverse a la fibre T';; X contenant %, et telle que dx1 /02 (%, Zo)
soit inversible pour ¢ € [0, #1], ¢ = 0 inclus, 0/0zy dénotant les n dérivées partielles par rapport
a zg € Z. Pour € > 0 assez petit, on définit

L= {(t,2) eRxT*X | (20 € L) : t € (—&,t1(20) + ) t.q. 2 = z1(t, 20) }

Quitte a restreindre %5, I1: R x T*X — R x X, (¢, 2) — (¢, ) induit un difféomorphisme
de .7} sur son image. De méme, (A2) implique que

0
a_po [Ig(t — tl(Zo), 21(t1(2’0), ZO))] |20=EO

est inversible pour ¢ € [f1,t¢]; quitte a restreindre & nouveau .4, on peut supposer que II
induit également un difféomorphisme de

.,%2 = {(t,Z) eRxT*X | (EIZO € jg) 1te (tl(ZO) - €,tf + 5)

t.q. z = 2(t — t1(20), 21(t1(20), 20))}

sur son image. On définit ensuite 3, := 2] n (R x X). Comme (t, z9) — (¢, z1(t, 2z0)) est un
difféomorphisme de R x % sur I1(.%)), il existe une fonction réciproque zo(t, x) telle que
I1(3) = {¢ = 0} avec

Y(t,x) =1t —t1(20(t, 2)).

8
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On note v(t) := (¢, T(t)) I’évaluation de cette fonction le long de la trajectoire de référence.
Par construction, ¢(t;—) = 1 > 0 et (voir aussi [63])

1
BB = 14 ) (G2 ) Vil - ()

Lemme 4.

5(+) = 6(t—) <1 + 2—;10(30) <g—;;(%1,zo)) OV, (H, - Hg)(?l)) .0

Comme 6(f,+) et 4(¢;—) ont le méme signe, I’expression entre parenthéses dans (0.7) doit
étre positive. Par conséquent, z/}(fl+) > (0 puisque %, peut étre choisi arbitraitement proche
de T} X. Localement donc, II(3;) est une sous-variété qui sépare R x X en deux et, en
restreignant au besoin %, toute extrémale du champ ¢ — x(t, z9) avec zg € %, intersecte
I1(3,) transversalement. En définissant

LT ={{t,2) e RxT*X | (Fz0€ £&) : t € [0,t1(20)] t.q. z = z1(¢, 20)}

et
L= {(t,2) e RxT*X | Qzp € L) : t € [t1(20), ]

t.q. z = 2ot — t1(20), 21(t1(20), 20))},

on peut recoller les restrictions de ITa %)~ et .%," en une bijection continue de £, U .%," sur
(% U %"). En se restreignant a un voisinage compact du graphe de z, on peut supposer
que II induit un homéomorphisme sur son image. (Voir Figure 0.1.) La fin de la preuve utilise
les résultats classiques d’exactitude de la forme de Poincaré-Cartan convenablement restreinte
en les étendant au cas d’extrémales brisées a I’aide du lemme ci-apres :

Lemme 5.
I+0(z) € Sp(2n, R).

Application au potentiel des deux corps

Suivant [31], on considére le controle du probléme des deux corps en dimension trois. A
énergie strictement négative, les orbites du mouvement libre sont des ellipses, et le but est
de réaliser un transfert 2 consommation minimale entre orbites non-coplanaires autour d’un
centre de masse fixe. Le potentiel V' (q) := —pu/|q| est défini sur Q := {q € R? | ¢ # 0}, eton
se restreint en fait a

X :={(qv) e TQ[[v]*/2— p/lg| <0, g Av>0}.

(La derniere condition sur le moment cinétique permet d’éviter les trajectoires de collision
et oriente les orbites elliptiques.) La constante p est la constante gravitationnelle qui dépend

9
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FIGURE 0.1 — Le champ d’extrémales.

du corps attracteur. Pour plus de clarté, deux transferts a poussées moyennes sont présentés ;
le temps final est fixé a 1.6 fois le temps min (cas A), ou a 1.3 fois le temps min (cas B),
approximativement, ce qui assure déja un gain satisfaisant de consommation [31]. Afin d’avoir
des extrémités fixées pour faire un test de point conjugué selon notre approche, les positions
initiales et finales sur les orbites sont fixées (on fixe les longitudes’) initiales et finales). Un
traitement plus réaliste consisterait a laisser libre la longitude finale; cela demanderait de
réaliser un test de point focal assez semblable (voir par exemple [18]). Les tableaux 1 et 2
résument les valeurs utilisées pour I’application numérique.

Comme expliqué précédemment, la minimisation L' correspond 2 la minimisation de la
consommation pour un modele idéal a masse constante. On a une compétition entre deux ha-

3La longitude [ est définie comme la somme de trois angles brisés : [ = Q + 6 + o, o1 { est la longitude
du nceud ascendant (premier angle d’Euler entre le plan de I’orbite avec le plan équatorial ; le deuxieéme angle
d’Euler définit I’inclinaison de 1’orbite), # est I’argument du perigée (angle du demi-grand axe de ’ellipse, égal
au troisieme angle d’Euler du plan de I’ orbite), et zo est I’anomalie vraie (angle polaire par rapport au demi-grand
axe dans le plan de I’orbite). Ici, {2 = O sur les orbites initiales et finales.

10
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TABLE 1 — Cas A. Valeurs numériques utilisées pour le calcul.

Constante gravitationnelle . de 1a Terre :

Masse de I’engin spatial : 1500 Kg
Périgée initial : 6643 Km
Apogée initial : 46500 Km
Inclinaison intiale : 06 deg
Longitude initiale : 7 rad
Temps minimum : 93.865 heures

L' Coflit (normalisé) obtenu :

398600.47 Km3s—2

Poussée : 20 Newtons
Périgée final : 42165 Km
Apogée final : 42165 Km
Inclinaison finale : 0 deg
Longitude finale : 56.659 rad
Temps final fixé :  147.28 heures

52.638

miltoniens : Hy (qui provient de la dérive seule) et Hy + H; (en supposant que la borne sur
le contrdle est normalisée par une homothétie appropriée). Les deux hamiltoniens sont lisses
de sorte qu’on est dans le bon cadre pour vérifier des conditions suffisantes d’optimalité. On
se restreint aux extrémales bang-bang (en la norme du contrdle) ; la régularité des commuta-
tions est aisément vérifiable numériquement, tandis que la normalité des extrémales provient
de la Proposition 1. Reste a vérifier la condition de disconjugaison sur les champs de Jacobi.
Les solutions optimales (voir Figs. 0.2 et 0.4) et ces champs sont calculés a 1’aide du code
hampath [86]. A P’instar de [18, 31], une régularisation par homotopie est mise en ceuvre
pour capturer la structure de commutation et initialiser le calcul des extrémales bang-bang
par une méthode de tir. On est alors capable de vérifier la condition (A2) par un simple test
de signe (tenant compte des sauts sur les champs de Jacobi en les instants de commutations
régulieres) sur le déterminant de ces champs (voir Figures 0.3 et 0.5). Une alternative serait
d’établir un résultat de convergence analogue a [85] puis de vérifier des conditions du se-
cond ordre sur les extrémales régularisées. Comme on 1’a précédemment souligné, les temps
conjugués peuvent apparai tre soit entre deux instants de commutation, soit en ces instants.
Sur les exemples traités, aucun point conjugué n’est détecté sur [0, ¢/], ce qui garantit I’op-
timalité locale forte des trajectoires calculées. Les extrémales sont prolongées jusqu’a 21
dans le cas A (resp. jusqu’a 3.5t dans le cas B), et un point conjugué est détecté vers 1.17
dans le cas A (resp. 3.2t¢; dans le cas B), a chaque fois en un instant de commutation (le
changement de signe du déterminant a lieu a la discontinuité). Un test sur une perturbation du
cas B est proposé Figure 0.6 ; en changeant légerement les conditions terminales, on observe
une conjugaison intervenant non plus en un temps de commutation, mais le long d’un arc de
poussée.

Remarque 1. Dans la mesure ou Hj est le relevement d’un champ de vecteurs, le déterminant
des champs de Jacobi est soit identiquement nul, soit sans z€ro le long d’un arc balistique
(p = 0). (Comparer au cas d’un ensemble de contrdle polyhédral ; voir aussi le Corollaire 3.9
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FIGURE 0.2 — Cas A. Trajectoire L!-minimale. La figure montre la trajectoire (en bleu), ainsi
que I’action du contrdle (en rouge). L’ orbite initiale est fortement excentrique (0.75) et for-
tement inclinée (56 degrés). La cible géostationnaire est atteinte en ¢y ~ 147.28 heures. La
structure creuse du controle est bien observée, avec des arcs de poussée concentrés autour des
périgées et apogées (voir [31]). La minimisation permet de ne pousser que 35% du temps.

TABLE 2 — Cas B. Valeurs numériques utilisées pour le calcul.

Constante gravitationnelle p de la Terre :
Masse de I’engin spatial : 1500 Kg

Périgée initial : 6643 Km

Apogée initial : 46500 Km
Inclinaison initiale : 7 deg
Longitude initiale : 7 rad

Temps minimum : 110.41 heures

L' Cofit (normalisé) obtenu :

398600.47 Km?>s 2

Poussée : 10 Newtons
Périgée final : 42165 Km
Apogée final : 42165 Km
Inclinaison finale : 0 deg
Longitude finale : 06.659 rad
Temps final fixé :  147.28 heures

67.617

dans [63].) De plus, la dérive Fj est le gradient symplectique d’une fonction d’énergie,
Lo
B(qv) i= 5o + V(a).

Par conséquent, la coordonnée dz = (dq, dv) du champ de Jacobi le long d’une intégrale de
ﬁo est solution de

—>/

0x(t) = E ((1))ox(t),

de sorte que dx a un déterminant constant le long d’un tel arc puisque le flot associé est
symplectique. En particulier, la condition de disconjugaison (A2) implique que la solution
optimale débute par un arc de poussée.
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FIGURE 0.3 — Cas A. Test de point conjugué sur I’extrémale bang-bang prolongée sur [0, 2 ].
La valeur du déterminant des champs de Jacobi (0.6) le long de I’extrémale est représentée
en fonction du temps. Le premier point conjugué apparai t a t;. ~ 171.20 heures > t;; on
en déduit I’optimalité locale sur [0, ¢ ;] de I’extrémale de référence. Des sauts sur les champs
de Jacobi sont observés en chaque instant de commutation, et la conjugaison a lieu en une
commutation (changement de signe du déterminant).

FIGURE 0.4 — Cas B. Trajectoire L' minimale. La figure montre la trajectoire (en bleu), ainsi
que I’action du contrdle (en rouge). L’orbite initiale est fortement excentrique (0.75) et fai-
blement inclinée (7 degrés). La cible géostationnaire est atteinte en ¢y ~ 147.28 heures. La
structure creuse du contrdle est clairement observée, avec des arcs de poussée a nouveau
concentrés autour des périgées et apogées. La minimisation permet de ne pousser que 46%
du temps. Ce pourcentage est supérieur a celui du cas A (voir Figure 0.2), ce qui est cohérent
avec le fait que la ratio temps final fixé sur temps minimum est diminué dans le cas B.
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FIGURE 0.5 — Cas B. Test de point conjugué sur I’extrémale bang-bang prolongée sur
[0,3.5¢¢]. La valeur du déterminant des champs de Jacobi (0.6) le long de I’extrémale est
représentée en fonction du temps sur le graphe en haut a gauche. Le premier point conju-
gué apparait a t;, ~ 475.93 heures > t;; I'optimalité locale de I’extrémale de référence
sur [0, %] s’ensuit. Sur le graphe en haut a droite, un zoom permet de voir les sauts sur les
champs de Jacobi (et donc sur leur déterminant) autour du premier temps conjugué ; plusieurs
sauts sont observés, le premier conduisant a un changement de signe en I’instant de commu-
tation. D’apres la Remarque 1, le déterminant doit étre constant le long des arcs balistiques
(p = 0) quand les coordonnées symplectiques = = (¢, v) sont utilisées ; ce n’est pas le cas ici
ou les éléments équinoxiaux [20] sont employés pour 1’état — d’ou les 1égeres variations du
déterminant. La norme bang-bang du controle, rescalé pour appartenir a [0, 1] puis prolongé
jusqu’a 3.5ty, est représentée sur le graphe du dessous. Sur I’intervalle de temps étendu, on
observe déja plus de 70 commutations alors que la poussée est simplement moyenne. Dans le
cas de poussées faibles, des centaines de commutation ont lieu.
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FIGURE 0.6 — Cas B (apres perturbation). Test de point conjugué sur I’extrémale bang-bang
prolongée sur [0,3.5¢¢]. La valeur du déterminant des champs de Jacobi (0.6) le long de
I’extrémale est représentée en fonction du temps (détails sur le graphe en bas a droite). Les
conditions aux deux bouts x(, z données Tab. 2 sont perturbées selon x — x + Az, |[Az| ~
le — 5, conduisant a observer un point conjugué non pas en un instant de commutation mais
entre deux instants de commutation — le long d’un arc de poussée (p = 1). Le premier temps
conjugué intervient en ;. ~ 489.23 heures > t, garantissant a nouveau 1’optimalité locale
de I’extrémale de référence sur [0, ¢].
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Chapter 1

Introduction and preliminaries

1.1 Definitions and notations

1.1.1 Circular restricted three-body problem

In celestial mechanics, the three-body problem is a classical problem of predicting the in-
dividual motions of celestial bodies interacting with one another gravitationally. Once one
body is light enough such that its influence on the other two is negligible, it is called the
restricted three-body problem. Furthermore, once the two massive bodies move on circu-
lar orbits around their common center of mass, it is called the circular restricted three-body
problem (CRTBP). Therefore, the CRTBP is an isolated dynamical system consisting of three
gravitationally interacting bodies. Let P, P, and P; be the three bodies (considered as mass
points) and denote their mass by my, ms, and ms, respectively. Then the following two
properties hold:

1) the third mass mg is so small that its gravitational influence on the motions of the other
two is negligible;

2) the two primaries, P, and P», move on circular orbits around their common center of

mass.

Without loss of generality, we assume m; > ms. Let us consider a rotating frame OXYZ
whose origin is located at the barycenter of the two bodies P, and P, (see Fig. 1.1). The
X-axis is oriented by the axis between the two primaries P; and P, and points toward P»;
the Z-axis is defined by the momentum vector of the motion of P, and P, and the Y -axis is
defined to complete a right-hand coordinate system.

We consider that the third body is an artificial satellite or a spacecraft. It is advantageous
to use non-dimensional parameters. Let us denote the distance between P, and P, by d, > 0
and the initial mass of a spacecraft by m, > 0. We then denote by d, and m, the unit of
length and mass, respectively. We also define the unit of time ¢, > 0 in such a way that the

17
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AL

Figure 1.1 — Rotating frame OXYZ of the CRTBP.

gravitational constant G > 0 is equal to one. Accordingly, one can obtain

d3
ty = A | —————
G(m1 + mg)
according to Kepler’s third law. If p := my/(my + my), the two constant vectors r; =

(—p, 0, 0) and ro = (1 — p, 0, 0) denote the positions of P, and P; in the rotating frame
OXYZ, respectively. The dynamics that governs the motion of a satellite in the Earth-Moon
system can be approximately modelled by the CRTBP ( see the physical parameters for the
Earth-Moon system in Tab. 1.1).

Table 1.1 — Physical parameters for the Earth-Moon system

The average distance between Earth and Moon: 384400.00 km
The eccentricity of the orbits of Earth and Moon: 5.49x1072
The unit of time for Earth-Moon system ¢,: 3.7521x 10° s (or 4.3427 days)
Earth’s mass m;: 5.972x10% kg Moon’s mass ms: 7.3477x10% kg
The ratio of ms to My + ma, f: 1.12153 %1072

From the astronautical point of view, an important issue is to control the motion of the
satellite subject to the gravitation of celestial bodies. In this thesis, we consider that the
satellite is controlled by propulsion systems, which is detailed in the next paragraph.

1.1.2 Propulsion control systems

The control of the motion of a satellite is generally performed by propulsion systems. A
propulsion system is a machine that produces thrust to push an object forward by ejecting
propellants in a high speed to generate an opposite reaction force according to Newton’s
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third law of motion. Nowadays, there are various types of propulsion systems available,
such as chemical engines (with high thrust) and electric engines (with low thrust). In this
thesis, we are interested in the low-thrust propulsion systems. The study of low-thrust optimal
space trajectories dates back to the 1960s (see, e.g., the work of Lawden [47] or Beletsky’s
book [4], where the importance of low thrust to spiral out from a given initial orbit was
foreseen.) Currently, there is also a strong interest for low-thrust missions, such as the Lisa
Pathfinder [60], an ESA mission toward the ,; Lagrangian point of the Sun-Earth system; or
BepiColombo [59], a mission of ESA and JAXA to Mercury.

Let us denote by 7 € R3 the thrust vector generated by the low-thrust engine; it takes
values in an Euclidean ball

B, = {1 eR®||7| < Tmax} (1.1)

where the constant 7,,,,, > 0 is the maximum magnitude of the thrust. An important parameter
of a thruster is the value of specific impulse (usually abbreviated as [,,), and it is a measure
of the efficiency of rocket and jet engines. By definition, it is the total impulse (or change
in momentum) delivered per unit of propellant consumed, and is dimensionally equivalent to
the generated thrust divided by the propellant flow rate. Assuming that gy = 9.81 m/s? is the
gravity of a unit mass at the see level of the Earth, the flow of propellant is therefore governed
by
1

ilt) =~ (o), (12)
sp

where ¢ € R, denotes time. Low-thrust systems are generally related to electrical propulsion
systems. Compared with the chemical propulsion systems, the low-thrust ones have especially
high specific impulse values but only can provide a few Newtons of thrust due to the power
limitations of the spacecraft. There are several types of electrical propulsion devices available,
including the ones classified as electrothermal, electrostatic, and electromagnetic. On one
hand, the use of low-thrust control systems saves fuel thanks to their high values of specific
impulse, ensuring a longer satellite lifetime for a given propellant mass; on the other hand, the
possible maximum thrust provided by the electrical propulsion systems is very low, resulting
in the challenge to control the motion of a satellite. Once the thrust is very low, an important
problem is to know if the motion of a satellite can be controlled in some region of the state
space. To address this problem, the controllability of the motion of a satellite in the two-body
problem (x = 0 or 1) with a low-thrust control system is established in Chapter 2. It is shown
that in some appropriate subregion of state space, the motion of a satellite is controllable for
every Tmax > 0.

It is worth mentioning that the model for the propellant flow rate in Eq. (1.2) is also
applicable to chemical propulsion systems only if 7,,,, is finite (compared with the impulsive
ones). Therefore, the results of this thesis can be straightforwardly applied to controlling the
motion of a satellite with a high thrust.
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1.1.3 Controlled equation for the CRTBP

Let t € R, be the non-dimensional time and let » € R? and v € R? be the non-dimensional
position and velocity vectors of Ps (or the satellite) in the rotating frame OXYZ. If m :=
ms/m is the non-dimensional mass of the spacecraft, the non-dimensional state x € R"
(n = 7) for the motion of the satellite consists of r, v, and m. Denote by r,,,, > 0 and
Tm, > 0 the radiuses of the two bodies P, and P, respectively, and denote by m, > 0 the
non-dimensional mass of the spacecraft without any fuel. Then we define the admissible
subset for the state « by

X ={(r,o,m) e R* xR’ xRy | |[r —ri| > 1y, |1 — 72| > rpny, m =m.},

where the notation “

- || ”” denotes the Euclidean norm. According to Newton’s second law
of motion, the differential equations for the controlled motion of the spacecraft in the CRTBP
in the admissible set X for positive times can be written as

r(t) = v(t),
24 b(t) = h(v(t) + g(r(t) + 24, (13
m(t) = =Bl 7(t) ||,
with
[0 20
h(v) = -2 0 0 |wv,
i 0O 0 0
(100
g(’l") = 010 ”,’,,_,’,,1”3( Tl)_%?bg(r_rﬂa
_0 0 0

where 5 = 1/(I5,90) > 0 (see Eq. (1.2)) is a scalar constant determined by the specific
impulse I, of the engine.

Remark 1.1. In Eq. (1.3), one has to multiply the ratio Tyax/m — where Ty is expressed
in Newtons and m in kilograms — by the normalization constant d=/(Gm.,) when performing

numerical computations.

1.1.4 Dynamics

Denote by p € [0, 1] the normalized magnitude of 7, i.e., p = ||7|/Tmax, and by w the unit-
length vector equal to 7/|7|. Then p and w are control variables. Let u := (p,w) be the
control, so U := [0, 1] x S? is the admissible set for u. For the sake of notational clarity, let
us define a smooth vector field f on X x U as

f:X Xu"T:ch f(m”u’) :f0($)+pf1(m’w)7
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where
v
folw) = | h(v)+g(r) |,
0
is the drift vector field and
0
fl(waT) = 7—][1120("‘)/771 s
_ﬁTmax

is the control vector field. According to Eq. (1.3), the following control-affine system,

Yra(t) = fz(t), plt),w(t)) = Folz(t) + p(t) f1(z(t), w(t)), € Ry, (1.4)
governs the controlled motion of a low-thrust spacecraft in the CRTBP.

Remark 1.2. The drift vector field f, describes the dynamics of the uncontrolled motion. It
has five equilibrium points, namely the Lagrangian points or libration points. Their locations
are calculated by solving f,(x) = 0. We refer the readers to [91] for detailed properties of

fo-

1.1.5 L!'-minimization

In astronautics, a significant issue is to minimize (or maximize) some performance indices
while controlling a satellite. The frequently used performance indices include, e.g., the trans-
fer time, the fuel consumption, and/or a linear combination of them. In this thesis, we are
interested in minimizing the L!-norm of the control.

Given an integer [ € N such that 0 < [ < n, we define the /[-codimensional constraint
submanifold on the final state by

M={zeX|¢() =0l (1.5)

where ¢ : X — R’ denotes a twice continuously differentiable function of & whose explicit
expression depends on specific mission requirements.

Regarding the two-body case (1 = 0 or 1), the system X in Eq. (1.4) is controllable in
the region with negative energy for every positive 7y,., (cf. Chapter 2). For € (0, 1), the
controllability of X holds in an appropriate subregion of the state space X as well (see, e.g.,
[17]). As a consequence, if xy ¢ M, there exists a well-defined time ¢,,, > 0 that is minimum
for all measurable controls (p(-),w(-)) € U to steer the system X from x, to M.

Assumption 1.1. Let t,, > 0 be the minimum time to steer the system Y. from x, to M, the
final time t; is assumed to be strictly greater than t,,, i.e., t; > t,,.
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CHAPTER 1. INTRODUCTION AND PRELIMINARIES

Definition 1.1 (L'-minimization). Given the final time t ¢ >ty the L!-minimization problem
consists of steering the system X in X by a measurable control (p(-),w(-)) : [0,ts] — U from
xg to M such that the L'-norm of control is minimized:

ty
J p(t)dt — min. (1.6)

0

Remark 1.3. Note that minimizing the cost functional in Eq. (1.6) is equivalent to maximizing
the final mass if 3 > 0 (see Eq. (1.2)). Thus, the L'-minimization problem is related to the
well-known fuel-optimal control problem in astronautics once the control is generated by

propulsion systems.

Assuming the admissible controlled trajectories of > remain in a fixed compact set, the ex-
istence of the L!-solutions can be obtained by a combination of Filippov theorem [2] and a
suitable convexification procedure(see, e.g., [31]).

1.2 Pontryagin Maximum Principle

Let us define by p € T; X, as usual, the costate of . According to the Pontryagin Maxi-
mum Principle [76], if a trajectory x(-) : [0,t;] — X associated with a measurable control
u(-) = (p(-),w(:)) : [0,¢;] — U is optimal, there exists a nonpositive real number p® and
an absolutely continuous mapping ¢ — p(-) € T ) X on [0, ¢;], satisfying (p(t),p°) # 0 for
t € [0,tf], such that almost everywhere on [0, ¢ /] there holds

(t) = G5 (x(t), p(1), p°, u(t)),

(1.7)
p(t) = — 5 (1), p(t), ", u(t)),
and
H((t), p(t).p" u(®)) = max H(@(t), p(t). 0’ n(t)), (1.8)
where
H(z,p,p",u) = pfo(x) + ppf1(z, 7) +p°p (1.9)
is the Hamiltonian. Moreover, the boundary transversality conditions assert
p(ty) L ToupyM. (1.10)

Every 4-tuple t — (x(-),p(-),p", u(-)) € T*X x R x U on [0, t], if satisfying Eqgs. (1.7
1.9), is called an extremal. Furthermore, an extremal is said normal if p° # 0 and abnormal if
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1.2. PONTRYAGIN MAXIMUM PRINCIPLE

p° = 0. Hereafter, define by p, € T*R3, p, € TR3, and p,,, € T/*R the costates of , v, and
m, respectively, such that p = (p,., D,, Pm)-

Proposition 1.1 (Gergaud et al. [31]). There are no abnormal extremals if t§ > t,,.

Lemma 1.1. Either the vector p,(-) on |0,t] along an extremal has isolated zeros or the

extremal is normal.

Proof. Assume that p,(-) has a non isolated zero t, in [0,%¢], i.e., there exists a sequence
of distinct times (t,,) in [0, ;] such that p,(¢,) = 0 for n > 0 and lim, ¢, = t.. By
continuity, p,(t,) = 0. Moreover, one has p, = —p,dg(r) and p, = —p, — p,h, where h
denotes a 3 x 3 matrix. Integrating the last equation between ¢,, and ¢, yields that

1

Pu(t) = i | (o) (0 dglr() + R,

which clearly tends to zero as n tends to infinity. Therefore p,.(t.) = 0 as well and, since p,

and p, are governed by a set of linear differential equations, one gets that p,(-) = p,.(-) =0

on [0,s]. Note that

_ p,()7()
mA(t)

and p,,(ty) = 0 according to the transversality condition. As a result, p(-) on the whole

P () (1.11)

interval [0, ¢¢] vanishes identically. Since (p(-),p°) # 0, one gets that p° is strictly negative
and the corresponding extremal is normal. ]

Proof of the proposition. According to Lemma 1.1, one may assume that p,(-) has only iso-
lated zeros on [0, ] along the extremal. The maximization condition implies therefore that
p,()7T() = |p, ()| 7(-)| almost everywhere on [0,%¢]. Eq. (1.11) implies p,,(-) < 0 on
[0,) since p,,(t;) = 0 and p,,(-) = 0 on [0, ¢s]. Assume now that p = 0. It follows that

= (2B (5 e > 0

on [0, %], except maybe in a finite number of times. Thus, there holds p(-) = 1 on [0, ],

except maybe in a finite number of times, in accordance with the maximum condition. As
a result, Séf p(t)dt = ty > t,, by Assumption 1.1. Let us denote by u(-) : [0,¢,] — U
the minimum time control; it follows that there exists a control w.(-) : [0,t7] — U with
u,(t) = u(t) for t € [0, t,,] and w,(t) = O for [t,,,¢s] such that a smaller performance index
is reached. A contradiction is reached, which proves the proposition. ]

Consequently, we normalize (p,p°) such that p° = —1. Let us denote by H(x(-), p()) on
[0, ;] the maximized Hamiltonian of the extremal (x(-), p(-)) on [0, ¢7]. Then, we write the
maximized Hamiltonian as

H(z,p) := Ho(z,p) + p(z, p)Hi(x, p),
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where Hy(x,p) = pf,(x) is the drift Hamiltonian and H,(x,p) = pf,(x,w(x,p)) — 1is
the switching function. The maximum condition in Eq. (1.8) implies

w = p,/|p,|, if |p,|| # 0, (1.12)
and
1, if H; > 0,
p= (1.13)
0, if H; < 0.

Thus, the optimal direction of the thrust is collinear to p,,, a well known fact (“primer vector”
theory of Lawden [47]). If the switching function H; has either none or only isolated zeros
along an extremal (x(-),p(-)) on [0, t], this extremal is called a nonsingular one.

Definition 1.2. Along a nonsingular extremal (z(-), p(-)) on [0, t¢], an arc on a finite interval
[t1,tf] < [0,tf] with t; < ts is called a maximum-thrust (or burn) arc if p = 1, otherwise it
is called a zero-thrust (or coast) arc.

Given the extremal (x(-), p(-)) on [0, /], if there holds Hy(z(-), p(-)) = 0 on a finite interval
[t1,t2] < [0, ts] with t; < to, the arc on [¢1, t5] is called a singular one.

1.3 Singular solutions

The minimizing value of p along a singular extremal can be calculated by differentiating the
switching function /; until it explicitly appears [41].

Proposition 1.2. Given a singular extremal (x(-),p(-)) on [t1,t2] < [0,tf] with t; < t,
assume |p,(-)|| # 0 on [t1,t3]. Then, we have that the order of the singular extremal is at
least two.

Proof. Since H; = 0 along a singular arc, differentiating //; with respect to time, one obtains

p,(p! + dh(v)p])

0= Hov = {Ho, Hi} = —Tma ™= 2

, (1.14)

where the notation “ {-,-} ” denotes the Poisson bracket. Using Leibniz’s rule, Eq. (1.14)
implies

Hir = {Hl,Hm} =0,
HlOOl = {Hla{H()?HOl}}
= {_H017H01}+{H0,H101} = (.

Then, the equality, 0 = Hyy, + pHi01, implies Hyy; = 0, whose explicit expression is given
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P.dg(r)p, + [P, +2p,dh(v)][p, + p,dh(v)]"

Hoyo1 = Tmax

m | p, ||
A direct calculation on this equation yields
Hopor = {Ho, Hoo1}
Tmax
— m{[PdeQ(T)PZ]U — p,dg(r)[2p, + 3pvdh(v)]T

~ [2p,dg(r) + 3p,dh(r) + 4p, (dh(v)*][p, + p,dh(v)]"}.
Eventually, one has 0 = Hoom = Hoooo1 + pHio001- Let i (2 = 1, 2) be defined by

cos(a;) = py(r —Ti) ,

AR

the explicit expression of Hygoo1 := {H1, Hooo1} is therefore

[p,’g(r)p!|p!
Hipoo1 = Timas B 5
m? | p, |
3 — 5 cos? 3 — 5 cos?
_ gl [MC%%M I COSO”&O?]
m =72 [r =]

Note that the term /0001 does not vanish identically on a singular extremal. So the singular
extremal is of order two according to Kelley’s definition [41], which proves the proposition.
[]

This proposition for the 3-dimensional case expands the work in [96] where the motion of
the spacecraft is restricted into a 2-dimensional plane and the work in [78] where the model
of two-body problem (1 = 0 or 1) is considered. Note that Kelley’s second-order necessary
condition [41] in terms of p on singular arcs is Hyggg; < 0. Let

S = {(wap) eT*X | Hy = Hy = Hoon = Hooor = 0, Higoor < 0}

be the singular submanifold and denote by int(S) the interior of S. Note that int(S) is not
empty according to [96].

1.4 Fuller (or chattering) phenomena

The chattering phenomena originates from the Fuller problem (see [30]). In this paragraph,
it will be shown that the chattering phenomena may occur in the L!-minimization problem
when concatenating a nonsingular extremal with a singular one.
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Set
.
2 = Hlv
29 = —Hyy,
{7 o (1.15)
zg = —Hyo1,
2y = —Hoypo1

According to the equations in the proof of Proposition 1.2, we have

21 = —Z9,

2T (1.16)
23 = Z4,
24 = —a(xz,p)p — Bz, p),

\

where & = Higoo1 and f = Hogoo1- By virtue of [96, Lemma 2.1], the functions (z1, 29, 23, 24)
are functionally independent in the vicinity of the extremal (x, p) and we can complement
the coordinates z := (21, 22, 23, 24) by functions w = (wy, wy, - - , Wa,_4) € R?**~* such that
the Jacobian matrix of the mapping (z, w) — (x, p) is nondegenerate, i.e.,

or [ 52| 20

Hence, the variables (x, p) can be locally expressed as functions of (z,w). Substitution of
these functions in Eq. (1.15) and letting F'(z,w) € R?"~ be the differentiation of w with
respect to time yields

-

21 = —29,
Zy = 23,

| %3 =2, (1.17)
51 = —palz,w) — Bz, w),

k11) = F(z,w),

where
1, if 2y > 0,
p=10, ifz <0, (1.18)
—B/a, if z; = 0.

The choice of (z,w) is not unique and Eq. (1.17) is henceforth called semi-canonical form
of the Hamiltonian system of Eq. (1.7). Next, we will show that the semi-canonical system is
related to the well-known Fuller problem, defined as follow.
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Problem 1.1 (Unsymmetrical Fuller problem). Minimize
1,2
J Tt
0 2

t=y, y=au+b, uel0,1], a>0,

subject to

with the boundary conditions

z(0) = 2o, y(0) =wo, (1) =21, y(1) = .

The existence of the solution of the Fuller problem is proved by Zelikin and Borisov (see [95,
Chapter 5]). The Hamiltonian for this problem is

H = p,y + py(au + b) — 2*/2.

Then the variables (x, y, p., p,) are governed by

-

py = —DPzx,
'm =,

}P (1.19)
T =y,

ky =au+ b,

where
1, if p, > 0,
u=140, ifp, <0, (1.20)

—b/a, if p, = 0.

Note that the Hamiltonian system Eq. (1.19) of the Fuller problem is the same as Eq. (1.16)
once oz, w) and [5(z,w) are constant. The solution to Eq. (1.19) has an infinite number of
switching times on a finite time interval (see the typical picture for Fuller phenomenon in Fig.
1.2). This phenomenon is called chattering. Since the system in Eq. (1.17) is diffeomorphic
to the original Hamiltonian system in Eq. (1.7), there may occur chattering phenomena for
the extremal of L!-minimization problem, as shown by the following remark.

Remark 1.4 (Zelikin and Borisov [95]). Given every point (x,p) € int(S), there exists a one
parameter family of chattering solutions passing through the point (x,p) and another one

parameter family of chattering solutions coming out from the point (x, p).

Though the efficient computation of chattering solutions is an open problem (see, e.g., [32,
69]), Remark 1.4 gives some insights on the control structure of the L'-minimization trajec-
tory; there exists a chattering arc when concatenating a singular arc with a nonsingular arc if
p 1s not saturating at the instant prior to the junction time.
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T Y
x = —Cy? ?\ -

e x = Cy?
.

e

Figure 1.2 — Fuller phenomenon.

1.5 Computational method

Not considering the singular and chattering controls, even the computation the L!-minimization
solution with a bang-bang control structure is a challenging task. To address this problem,
various numerical methods, e.g., direct methods [58, 79], indirect methods [17, 18, 31], and
hybrid methods [67], have been developed in the literature in recent years. In this thesis,
the indirect method, the most popular way to solve optimal control problems, is employed to
compute the solutions for L!-minimization. In the next paragraph, the indirect method will
be detailed.

The PMP gives a Hamiltonian ODE (see Eq. (1.7)) of the state x and the adjoint state p.

Thus, let
— cH oJoH
H:=— ——
(@p’ &’L‘)

be the Hamiltonian vector field defined by Eq. (1.7) and Eq. (1.8); we denote by

t

(x(t, o, py), P(t, X0, Py)) = €7 (x0, Py)

the Hamiltonian flow parameterized by x, € & and p, 1 T; X. The Hamiltonian flow
(x(t, 0, py), P(t, o, Py)) is uniquely determined by (¢, xg, p,) and it can be computed nu-
merically using more or less sophisticated integration schemes, e.g., Runge-Kutta. Since the
initial state is fixed, i.e., (0) = o, and the final time ¢/ is fixed, we define a shooting

function
S:TE X xR - R (py,v) — S(p,,v), (1.21)
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such that

S(pg,v) = ¢(x(ty, o, Po)) , (1.22)

pT(tfv Lo, po) - V¢T(m(tf> Lo, po))”

where v € R' is the vector of the Lagrangian multipliers. In order to compute the solution of
the L' -minimization problem, it is sufficient to search a zero of the equation S(p,, ) = 0.

A simple shooting method does not allow one to solve this problem because one does not
know a priori the structure of the optimal control. Moreover, the numerical computation of the
shooting function and its differential may be intricate, as the function may not even be differ-
entiable (typically at points corresponding to a change in the structure of the control strategy,
which is a change in the number of switching times here). We will employ a regularization
procedure [31] that smoothes the control discontinuities and get an energy-optimal trajectory
first, then use a homotopy method to find the real trajectory with a bang-bang control.

1.6 Contributions of the PhD

1.6.1 Controllability

To study the controllability of the system Y. is a prerequisite to design a mission or to compute
an optimal trajectory. In this thesis, the controllability for the Keplerian motion (1 = 0 or 1)
with low-thrust control systems is addressed. Without taking into account state constraints,
the controllability for Keplerian motion was derived in [8, 20], showing that there exists ad-
missible controlled trajectories for orbital transfer problem (OTP) if the maximum thrust is
positive. In the current thesis, the controllability for OTP is established using alternative tech-
niques from geometric control (cf. [34, 87]). Considering the state constraint that the radius
of the orbit of a satellite is larger than the radius of the surface of the atmosphere around the
Earth, the orbital insertion problem (OIP) and the de-orbit problem (DOP) are defined. Some
controllability properties for OIP’s and DOP’s are then addressed and we show that there exist
admissible controlled trajectories for OIP and DOP if and only if the maximum thrust is big-
ger than a specific value (depending on the initial point or final point). It is worth mentioning
that the techniques used to establish the controllability for Keplerian motion are applicable
to establish the controllability of the CRTBP since the drift vector field f, of the CRTBP is
recurrent.

1.6.2 Sufficient optimality conditions

Though the above shooting method can be employed to compute candidate solutions, they
cannot be guaranteed to be at least locally optimal unless sufficient optimality conditions are
satisfied. In order to assess the optimality properties for the L!-minimization problem, the
sufficient optimality conditions for broken-extremals are established in this work.
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Definition 1.3 (First conjugate point [9]). Given the extremal (x(-),p(-)) on [0,ts], the first
conjugate point is defined as the first point at which the extremal ceases to be locally optimal
(essentially in L™ topology on the control).

Consequently, the sufficient conditions are related to the first conjugate point.

In the classical calculus of variations, the sufficient conditions are usually established by
ensuring that the second order variation of the cost functional is positive [13, 16], which yields
the accessory minimum problem. Based on this variational idea, some verifiable conditions
sufficient for the optimality of continuous-thrust problems were developed in [36, 77]. From
the geometric point of view, the sufficient conditions have been studied as well (see, e.g.,
[2, 3, 22, 23, 28, 45, 71, 80] and the references therein). The key idea in those papers is
to establish conditions ensuring the x-part of the Jacobi fields (the nonconstant solution to
the Jacobi equation with specific boundary conditions) is nonvanishing (see, e.g., [2, Chapter
21]); based on this method, a numerical procedure for testing conjugate points was proposed
in [9] for smooth extremals.

However, once the specified transfer time is greater than the minimum transfer time for the
same boundary conditions, the thrust is discontinuous [31], i.e., the optimal control function
exhibits a bang-bang behavior. Second order conditions in the bang-bang case have received
quite an extensive treatment; references include the paper of Sarychev [81], followed by [3]
and [54, 64, 65]. On a similar line, the stronger notion of state optimality was introduced
in [71] for free final time. More recently, a regularization procedure has been developed in
[85] for single-input systems. These papers consider controls taking values in polyhedra;
the standing assumptions allow one to define a finite dimensional accessory optimization
problem in the switching times only. Then, checking a second order sufficient condition on
this auxiliary problem turns out to be sufficient to ensure strong local optimality of the bang-
bang controls. A by-product of the analysis is that conjugate points occur at switching times.
A different approach, based on the Hamiltonian-Jacobi-Bellman equation and the method of
characteristics in optimal control, has been proposed by Noble and Schiittler in [63] (see also
the more recent reference [82]). Their results encompass the case of broken extremals with
conjugate points occurring at or between switching times. In this thesis, we will provide a
similar analysis by requiring some generalized (with respect to the smooth case) disconjugacy
condition on the Jacobi fields (cf. Chapter 3), and using instead a Hamiltonian point of view
reminiscent of [27, 45]. Also note that the work of Maurer and Osmolovskii actually covers
this situation with yet another approach; see [66, Chapter 5] on optimal control problems
with a part of the controls linearly entering the dynamics. (For the purpose of numerical
verification of their sufficient conditions, they devise a Riccati equation similar to the one in
[82].) Treating the case of such broken extremals is crucial for L!-minimization problem:
As the finite dimensional norm of the control involved in the constraint Eq. (1.1) and in the
cost Eq. (1.6) is an [?-norm (defining a so-called L!-/? minimization problem), the control is
valued in the Euclidean ball of R, not a polyhedron if m > 1. When m = 1, the situation is
degenerate, and one can, for instance, set v = u —u_, with u;,u_ > 0. (This approach also
works for m > 1 when an [! or [*-norm is used for the values of the control; see, e.g., [92].)
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When m > 1, it is clear using spherical coordinates that although the norm of the control
might be bang-bang, the variations of the control component on S™~! preclude the reduction
to a finite dimensional optimization problem. (The same remark holds true for any {’-norm of
the control values with 1 < p < c0.) An example of conjugacy occurring between switching
times is provided in Chapter 3.

Although the disconjugacy conditions, satisfying at or between switching times, are suf-
ficient to guarantee an extremal with fixed endpoints to be locally optimal, a further second-
order condition has to be formulated once the final point is not fixed but varies on a smooth
submanifold (see [2, 15, 93], e.g.). In Chapter 4, the extra condition related to the geometry
of the target manifold and the Jacobi fields is established. As a result, sufficient conditions
for strong optimality can be tested by only computing Jacobi fields.

1.6.3 Neighboring optimal feedback control

Due to numerous perturbations and errors, one cannot expect a spacecraft controlled by a
precomputed optimal control to exactly move on the corresponding precomputed optimal tra-
jectory to a desired target. The precomputed optimal trajectory and the associated optimal
control are generally referred to as the nominal trajectory and the nominal control, respec-
tively. The guidance is a process that calculates a new control according to navigational data
in each guidance cycle such that the spacecraft can be steered by the new control to track
the nominal trajectory or to move on a new optimal trajectory [49]. Since the 1960s, various
guidance schemes have been developed [7, 21, 25, 39, 40, 48, 50-52], among which there are
two main categories: implicit and explicit ones. While the implicit guidance strategy gener-
ally compares the measured state with the nominal state to generate control corrections, the
explicit guidance strategy solves the equations of motion and generates control corrections by
onboard computers during its motion. To implement an explicit guidance strategy, numeri-
cal iterations are required to solve a highly nonlinear two-point boundary-value problem and
the time required for convergence heavily depends on the merits of initial guesses. In recent
years, through employing a multiple shooting method and the analytical property in a linear
gravity field [35], an explicit closed-loop guidance has been developed by Lu et al. for exo-
atmospheric ascent flights [50] and for deorbit problems [7]. This explicit type of guidance
for endo-atmospheric ascent flights were investigated in [21, 51, 52] as well. However, the
duration of a low-thrust orbital transfer is so long that the onboard computer can hardly afford
the large amount of computational time for integrations and iterations once a shooting method
is employed; this fact makes the explicit guidance strategy unattractive to low-thrust orbital
transfer problems.

The neighboring optimal guidance (NOG) is an implicit and less demanding guidance
scheme based on the neighboring optimal feedback control, and the neighboring optimal con-
trol is probably the most important application of the optimal control theory (see [82, Chapter
5], e.g.). Once the gain matrices associated with the nominal extremal are computed offline
and stored in the onboard computer, the latter is able to compute the neighboring optimal
feedback control in real time. Moreover, the neighboring optimal feedback control handles
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disturbances well [61]. Assuming the optimal control function is totally continuous along the
nominal trajectory, through minimizing the second variation of the cost functional subject to
the variational state and adjoint equations, a linear feedback control was proposed indepen-
dently by Breakwell et al. [14], Kelley [39, 40], Lee [48], Speyer et al. [88], Bryson et al.
[16], and Hull [33]. Based on this variational idea, an increasing number of papers (see, e.g.,
[1, 62, 70, 83, 84] and the references therein) on the topic of the NOG for orbital transfer
problems have been published. More recently, the variable-time-domain NOG was proposed
by Pontani et al. [74, 75] to avoid the numerical difficulties arising from the singularity of the
gain matrices while approaching the final time and it was applied to a continuous thrust space
trajectories [73].

However, difficulties arise when we consider the L!-minimization problem because the
corresponding optimal control function exhibits a bang-bang behavior. Considering the con-
trol function as a discontinuous scalar, the corresponding neighboring optimal feedback con-
trol law was studied by Mcintyre [55] and Mcneal [56]. Then, Foerster et al. [29] extended
the work of Mcintyre and Mcneal to problems with discontinuous vector control functions.
Using a multiple shooting technique, the algorithm for computing the NOG of general opti-
mal control problems with discontinuous control and state constraints was developed in [43],
which was then applied to a space shuttle guidance in [44]. As far as the author knows, with
the exception of Chuang et al. [25], few have made efforts on developing the NOG for low-
thrust multi-burn orbital transfer problems. In the work [25] by Chuang et al., without taking
into account the feedback on thrust-on times, the second variation on each burn arc was min-
imized such that the neighboring optimal feedback on thrust direction and thrust off-times
were obtained. In this thesis, through deriving the first order term of the Taylor expansion
of the parameterized family of extremals, the neighboring optimal feedback on thrust direc-
tion and switching times (including not only the thrust on but also the thrust off times) are
established.

Note that the existence of neighboring extremals around the nominal extremal is a prereq-
uisite to implement the NOG (cf. e.g., [16, 33, 39, 48, 74]). For a smooth nominal extremal,
it is well-known that there exist neighboring extremals if the Jacobi necessary condition is
satisfied on the nominal extremal, as was readily obtained by Kelley [39], Lee [48], Korn-
hauser et al. [42], Chuang et al. [25], Pontani et al. [74, 75], and many others who minimize
the AMP to derive the NOG. Once a nominal extremal exhibits a bang-bang behavior, it is
however not clear that what conditions have to be satisfied in order to guarantee the existence
of neighboring extremals [42]. In this thesis, a geometric interpretation will be given to show
that, although the Jacobi necessary condition is satisfied, it is still impossible to construct the
NOG if a transversality condition at switching times is not satisfied.
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Chapter 2

Controllability of Keplerian Motion with
Low-Thrust Control Systems

If 4 = 0 or 1, the CRTBP degenerates to the classical two-body problem. A common example
of the two-body problem is the motion of an artificial body, i.e., spacecraft or satellite, around
the Earth (see Fig. 2.1). Once the atmospheric effects are negligible and the Earth overwhelm-

MNorth Paole

Figure 2.1 — The satellite moves in an Earth centered inertial Cartesian coordinate.

ingly dominates the gravitational influence, a satellite moves stably on a periodic orbit if the
mechanical energy of the satellite is negative. We say the motion is the Keplerian motion. Al-
though the low-thrust control systems can provide a fuel-efficient means to control the motion
of a satellite (see Sect. 1.1.2), it is important to know if they have the ability to steer a satellite
from one point to another one with some constraints being satisfied. This is actually related to
the controllability property. The study of the controllability property is a prerequisite to ana-
lyze mission feasibility before designing a space mission or computing an optimal trajectory.
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Restricting the mechanical energy of a satellite into negative region without any other state
constraints, the controlled motion is related to the orbital transfer problem (OTP), and the
controllability for OTP was derived in [8, 20] to show that there exist admissible controlled
trajectories for every OTP if the maximum thrust is positive.

In this chapter', the controllability for OTP is established using alternative techniques
from geometric control (see, e.g., [34, 87]). Taking into account the state constraint that the
orbit of the radius of a satellite is larger than the radius of the surface of the atmosphere around
the Earth, the orbital insertion problem (OIP) and de-orbit problem (DOP) are defined in this
chapter. Some controllability properties for the OIP and the DOP are then addressed and we
show that there exist admissible controlled trajectories for OIP’s and DOP’s if and only if the
maximum thrust is greater than a specific value (depending on the initial point or final point).

2.1 Definitions and notations

2.1.1 Dynamics for controlled two-body problem

For the two-body case (;x = 0 or 1), the dynamics in Eq. (1.4) is reduced to

r(t) = v(t),
Seat 1 B(t) = —rsmr(t) + % (2.1)
m(t) = =BT @),

where 1. > 0 is a constant, a multiplication of the gravitational constant and the mass of the
Earth. If ) = R3\{0} x R3 and y = (r,v), we define two vector fields f, and f, on ) by

Fo: V=R foly) = ( _LT ) , 2.2)
EBR

T 6x3 P 0

f1: Y—-R 7f1(y):<l>7 (2.3)
3

where R%*? denotes the set of 6 x 3 matrices with real entries and I3 denotes the identity
matrix of R?. Let B, be the closed ball in R? centered at the origin and of radius ¢ > 0. For
every € > 0, we consider the control-affine system >.. given by

~

Se 0 y(t) = Foly(1) + Fi(y(t)u(?), (2.4)

where the control vector u € R? takes values in B.. We will use in this chapter the vector
field point of view of [38, 89, 90]. For every point y € ) and every u € B., we denote by

FYxB. > T, (y,u)— fly,u) = foly) + F1(y)u, (2.5)

I'This chapter is based on the paper “Controllability of Keplerian Motion with Low-Thrust Control Systems”
(with Yacine Chitour) to appear in [24].
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where 7"0 and }'1 are referred to as the drift vector field and the control vector field, respec-
tively. Note that trajectories of X, starting at any y, € ) associated with measurable controls
u : R, — B, are well-defined on an open interval of R, containing 0, which depends in
general on y, and wu(-).

2.1.2 Study of the drift vector field in )/

In this paragraph, we recall the main properties of the drift vector field j~”0. For every y € ),
we use 7, to denote the restriction to R of the maximal trajectory of f, starting at y, i.e. 7,
is defined on some interval [0,¢(y)) where ¢¢(y) < co. Then the following holds true.

Property 2.1 (First integrals [6, 26]). For every y € Y, if 7,(t) = (¥*(t),0(t)) on [0,t;(y)),

the quantities

h(t) = () x ¥(t), (2.6)

(1)

L) = 1) x hlt) ~ pe 2.7)
RECT
B = = T Hor @9

are constant along v, and the corresponding constant values are the angular momentum

vector h € R3, the Laplace vector L € R3, and the mechanical energy of a unit mass E € R,
I

which is the sum of the relative kinetic energy || ¥(t) ||° /2 and the potential energy —yi./ |

(1) ||

As a consequence of Eq. (2.6) and Eq. (2.7), we have the following two properties.

Property 2.2 (Straight line [6, 26]). Let y € Y with h = 0, i.e., r and v are collinear. Then
the trajectory vy, is a straight line.

Property 2.3 (Conic section [6, 26]). Let y € Y with h # 0 i.e., T and v are not collinear.
Then, t¢(y) is infinite and the locus of trajectory -, defines a conic section lying in a two-

dimensional plane perpendicular to h called the orbital plane.

Let
37={(r,v)e)ﬂ|rxv=h7é0}. (2.9)

Define on ) the function e : y —|| L || /p.. Along every trajectory of 7"0 starting at y € ),
one gets, after multiplying Eq. (2.7) by 7(¢), that
- XE

pie(1 + e(y) cos0(t,y))’

| 7(t) (2.10)
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LT (1)

— FONIL
holds true if L = 0 since in that case e(y) cos §(t, y) is equal to zero and the orbit is a circle.
Notice from Eq. (2.10) that an orbit (7(¢), ¥(t)) = ~,(t) with y € Y on R* is a parabola

if e(y) = 1 and a hyperbola if e(y) > 1. Put a satellite on a parabolic or a hyperbolic orbit

where the angle (¢, y) is defined by cos0(t,y) = Note that the previous formula

without any control, then it can escape to infinity tEEFnOOF(t) = +o00. Thus, parabolic and
hyperbolic orbits are generally used for a satellite to escape from the gravitational attraction
of Earth. For every point y € Y,if 0 < e(y) < 1, the orbit v,(t) on R* is an ellipse,
whose orientation is illustrated in Fig. 2.2. Moreover, it is easy to deduce the following

Equatorial plane

Figure 2.2 — The orientation of a 2-dimensional orbital plane in GICC and the geometric shape
and orientation of an elliptic orbit on the orbital plane.

characterization of elliptic orbits.

Property 2.4. Given every point y € ? the mechanical energy E is negative if and only if
e(y) < L.

Thus, let us define the set
P={yecY|E <0} (2.11)
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then for every point (r,v) € P, the associated orbit ,, on R™ is periodic and the set P is
called the periodic region in V.

Definition 2.1 (Smallest period t,). Given every point y € P, we denote by
ty: P >R, y—t,(y),
the smallest period of the orbit 7y, on R™.

According to Eq. (2.10), for every point y € P, if e(y) # 0, the associated orbit v, on
[0, ¢,(y)] has its perigee point and apogee point at §(¢,y) = 0 and T, respectively. Thus, let

rp: P —>R, r(y) = M 2.12

PR = ) @1

re . P—R, r,(y) = M (2.13)
7 Me(l_e(y))

We say 7,(y) and r,(y) are the perigee and apogee distances of the orbit v, on [0, ¢,(y)] if
e(y) # 0. Note that r,(y) = r,(y) if and only if e(y) = 0, which corresponds to a circular
orbit.

Property 2.5 (Minimum radius and maximum radius). Given every periodic orbit (7*(t),v(t)) =
Yy (t) on [0,t,(y)] in P, we have 1,(y) <|| #(t) ||< ro(y) on [0,t,(y)]. Thus, the perigee
distance r,(y) and apogee distance 1,(y) are the minimum radius and maximum radius of
the orbit (7(t),v(t)) on [0,%,(y)].

2.1.3 Admissible controlled trajectory of > ;

For every initial point ; = (y;,m;) € Y x R* and measurable control function 7(-) taking
values in B

Tmax ?

we use ['(¢, 7(t), x;) to denote the restriction to R, of the solution of ¥
starting from ;. Let #; € R* be the maximum time such that solution I'(, T, z;) lies in
Y x R* and set Ir = [0,%s). The restriction of I'(t, 7, ;) to Zp is said to be controlled
trajectory of >, starting from «; and associated with 7(-).

Remark 2.1. For every point x; = (y;,m;) € P x R¥, let (y(t),m(t)) = I'(¢,0, ;) on Ir,
we have that y(t) = 7, (t) and m(t) = m; for every t > 0, i.e., t; = 0.

Definition 2.2 (Controlled Keplerian motion). Given every initial point x; = (y,,m;) €

P x R% and measurable control function 7(-) taking values in B WIith Topax > 0, the

Tmax

corresponding motion of Y., is called a controlled Keplerian motion.

Let r. > 0 and M, > 0 denote the radius of the surface of atmosphere around the Earth
and the mass of a satellite without any fuel, respectively, then given every point (y,m) €
P x R* on the trajectories of Keplerian motions, it is required that || 7 ||> r. and m > M.
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Definition 2.3 (Admissible region). We define the set
A={y=(rv)eP]| | r]>r}, (2.14)

the admissible region in ‘P for Keplerian motion and/or controlled Keplerian motion.

Definition 2.4 (Admissible controlled trajectory). Given every My > 0, we say the controlled
trajectory (y(t),m(t)) =
initial condition (y;,m;) € A x R* is an admissible controlled trajectory if y(t) € A and
m(t) = M, fort e [0,ty].
[

For every time interval [0,t¢] < Zr, since m(t) < 0, it follows m(t;) < m(t) on [0,%].

L(t,7,y,;,m;) of Lsat on some finite intervals [0,t¢] < Ir with

1
Thus, the inequality m(t) > M, can be ensured by m(t;) = M.

2.1.4 Controlled problems in A

Fory € A, let (¥*(t),v(t)) = 74(t) on R". Then we have that the inequality || 7(¢) ||> 7. is
satisfied on R" if r,(y) > r.. Thus, we define the set:

Pt = {y=(r,v)eP:r(y)>r.l (2.15)

It is immediate to see that the periodic uncontrolled trajectory (¢, y) starting at any y € P+
remains in P,
Let

P = {y=(r,v)eP| ||r|>r, mp(y) <r.<r.(y)} (2.16)

Then, for every point y € P, there exists an interval [t,?2] € [0,1,(y)] such that || 7(¢) ||<
r.fort € [t1,t5]. Thus, placing a satellite on a point y € P, it can move out of the admissible
region A.

Definition 2.5 (Stable periodic region P* and unstable periodic region P~ in A). We say that
the two sets Pt and P~ are the stable and unstable periodic regions, respectively.

All the satellites periodically moving around the Earth are located in the stable periodic region
P*. In order to fulfill observation or other mission requirements, a satellite is controlled to
move from one point y; in P~ to another point y; in P* by its control system.

Definition 2.6 (Orbital Transfer Problem (OTP)). We say that the problem of controlling a
satellite from a point y, in P to another point y pin P+ is the orbital transfer problem, see
Fig. 2.3a.

For a typical space mission, in order to place a satellite into a stable orbit in P, a rocket
is used to carry the satellite from the surface of the Earth to a point y, in P, at which the
rocket and the satellite are separated. From this moment on, the satellite is controlled by its
own control system to be inserted into a stable orbit in P™.
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(a) OTP (b) OIP (c) DOP

Figure 2.3 — OTP, OIP, and DOP.

Definition 2.7 (Orbital Insertion Problem (OIP)). We say that the problem of controlling a
satellite from an initial point y; € P~ to a final point y; € P™ is the orbit insertion problem,
see Fig. 2.3b.

After a satellite in the stable region P finishes its mission, it should be decelerated to re-
turn to the unstable region P~. Then, the satellite will coast into atmosphere such that the
aerodynamic pressure will act as a control to control the satellite to fly to landing sites.

Definition 2.8 (De-Orbit Problem (DOP)). We say that the problem of controlling a satellite
from an initial point y, € P* to a final point Yy € P~ is the de-orbit problem, see Fig. 2.3c.

2.2 Prerequisite for controllability

According to the definition for controlled Keplerian motion in Definition 2.2, the controllabil-
ity of Keplerian motion deals with the existence of admissible controlled trajectories for OTP,
OIP, and DOP.

Definition 2.9 (Controllability for OTP). We say that the system ., is controllable for OTP
if there exists Tmax > 0 so that, for every initial mass m; > 0 and every initial and final
points (y;,y;) € (P*)? there exists a time t; € Ir and an admissible controlled trajectory
(y(t),m(t)) = T(t,7,y;,mi) of Esar on [0,15] in A x R* such that y(t;) = y.

Definition 2.10 (Controllability for OIP and DOP). We say that the system Y., is control-
lable for OIP (DOP respectively) from any point y, € P~ (y, € P* respectively) if for
every initial mass m; > 0 there exists Tmax > 0 so that, for every final point y; € Pt
(y; € P~ respectively), there exists a time ty € Ir and an admissible controlled trajectory
(y(t),m(t)) = T(t,T,y;, mi) of Bsar on [0, 5] in A x RY such that y(ts) = y;.

For every initial point y, € Y and ¢ > 0, we use ['.(¢, u(t), y,) to denote the trajectory of X,
in Eq. (2.4) associated with a measurable control u(-) : [0,7;] — B. and we define {; € R"
as the maximum time such that I'. (¢, u(t),y,) lies in ) on [0,%;). Set Z = [0,%;). We refer
to (¢, u(t),y;) as the controlled trajectory of 3. starting from y, and corresponding to the
control u(-).
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Remark 2.2. Since v, (t) = ['.(t,0,y) on Z, the uncontrolled trajectory T.(t,0,y) is peri-
odicon R" ify e P*.

Lemma 2.1. Fix ¢ > 0 and x; = (y;,m;) € Y x R%. Then, given every measurable
control u(-) : [0,ts] — Be, if Tmax = €my, then there exists My > 0 and an admissible
controlled trajectory (y(t), m(t)) = I'(¢t,7,y;, m;) of Xsa on [0, 4] in A x [ My, m;| such
that T (t,u,y,;) = y(t) for every t € [0,ts] and m(ts) = M.

Proof. Since m(t) < m, for each time ¢t € [0,t] and Tyax = emy, it follows that the thrust
vector 7(-) on [0, ?;] can take values in the set B, such that 7(¢)/m(t) = w(t) for every
time ¢ € [0,¢f]. Thus, let (y(t),m(t)) = I'(t,T,y,;,m;), we have I'.(¢t,u,y,) = y(t) for
every time ¢ € [0, ¢¢]. Since along the trajectory (y(t), m(t)) = I'(t, T,y;,m;) on [0, 1], we
have u(t) = 7(t)/m(t), which implies that m(t) = —( || w(t) || m(t). Thus, we obtain

m(t) = mye P lu®ld
> e @2.17)
Let My := m;e ¢ > 0. Then m(t;) > M, and the lemma is proved. ]

In order to study controllability, it is necessary to first show that the admissible region A is a
connected subset of P.

Lemma 2.2 (Connectedness of A). The admissible region A is an arc-connected subset of P,
i.e., for every initial point y; € A and every final point y; € A, there exists a continuous path
y(-) :[0,1] = A, A y(A) such that y(0) = y;, and y(1) = y.

Proof. We use the MEOE coordinates (cf. Definition A.2) to prove the result, i.e., it is enough
to show that Z is arc-connected. Let us choose two point z; and z; in Z given by

Zi = (Phexweywhxmhymli)a Zf = (Pfaexf7eyfahxfahyf7lf)7
with y; = y(z;) and y; = y(z;). We thus define the path z : [0,1] — Z by

Z()‘) = (P()‘)7636()‘)7ey()‘)>h$<)‘)vhy()‘)vl()‘))>

where
P(A) = [(1=X)ri + Arf][1 + ex(A) cos(I(N)) + ey(A) sin(l(N))],
ex(A) = (1= XNeg, + Aew,, ey(A) = (1= Ney, + Aey,,
he(N) = (1= Nha, + Mgy, hy(X) = (1= Nhp, + (1 = Neg,,
I(A) = (1—=Nl+ Ay,

where r; =|| r; || and r; =| 7; ||. Note that e,(\)* + e,(\)? < 1 for each X\ € [0,1].
Let g(A) = (P(A), ex(A), ey(N), ha(N), hy(N),1(N)) on [0, 1], we then have that g(0) = z;
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2.3. CONTROLLABILITY FOR OTP

and g(1) = z. Consider the continuous function y(\) = (r(z())),v(z()))) for A € [0, 1].
It follows that y(0) = y; and y(1) = y,. It is immediate that y(A) € A for A € [0,1].
Finally, since P(A\) = (r(\) x v(\))?/pe > 0and 0 < e = /e, (A\)? + ¢,(\)? < 1, we have

r(A\) x v(\) #0and E(\) = %)‘)2 — Teoop < Oon [0, 1]. This proves the lemma. O

We also need the following lemma.
Lemma 2.3 (Connectedness of P1). The set P" is a connected subset of A.

Proof. Given every two points y; € P* and y, € P*, using the same technique as in the
proof of Lemma 2.2, let y(A\) = (r(z(\)),v(z(A\))) on [0, 1], but we rewrite P(\) in the
following form,

P(A) = (1= )y, + M )(1+ 4 fea(N)2 + €, (V)2),

where 7, = 7,(y;) and r,, = ,(y,). Then, we have

P
r A)) = =(1=XN)ry,, + Ar,, > 1.
W) = Tt = (1
Thus, y(-) on [0, 1] takes values in P+ and this proves the lemma. O

2.3 Controllability for OTP

In this subsection, we first give a controllability property of 3. for OTP, then, according to
Lemma 2.1, we will establish the controllability of >.g,; for OTP.

Definition 2.11. For every controlled trajectory Y(-) = I'.(-,w,y;) of 3. (where ¢ > 0,
u(-) : [0,tf] — B is measurable and y,; € ), we define

S2() 1 M) = A(DA®) + B(t)u(t),
the linearized system along y(-) of . on [0, t¢], where

A(t) = F, (@), m(t), B(t) = F. @), ult),
on [0,tf].

We first have a result of local controllability for the systems >..’s around the periodic trajec-
tories of the drift vector field.

Lemma 2.4. Let y € P*. Then, for every p > 0, there exists o > 0 such that the following
properties hold: B,(y) < P* and, for every y € B,(y), there exists a controlled trajectory
L. (t,u(t),y) of X. such that

F6(07u>y) = y7 Fa(tp(y)vuﬂy) =Y,
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and
H Fs(t>u7y) - Fa(t70>y) H< P

fort e [0,t,(9)]

Proof. According to Theorem 7 of Chapter 3 in Ref. [87], it suffices to prove the controlla-
bility of the linearized system >*(I'.(¢, 0,%)) along the periodic trajectory I'.(¢,0,y) on the
interval [0, ¢,(y)]. Then, the latter controllability would follow, according to Corollary 3.5.18
of Chapter 3 in Ref. [87], by the following rank condition: there exists a time 7 € [0, ¢,(y)]
and a nonnegative integer & such that the rank of the matrix [ By(7), B1(7), - - - , Bi(7)] equals
6, where Biy1(t) = A(t)B;(t) — £B;(t) fori = 1,2,---, and By(t) = B(t). It therefore
amounts to compute some B;(-)’s. The explicit expressions for matrices A and B in terms of

N 0 I N 0
A= = dB = = .
Ty —ng—k?) “”5r~rT 0 ] an Fu [13 ]

[

y are

Since By(t) = B(t), it follows that

Bu(t) = A®)Bo(t) — 5 Boft)

~ AWB =] 1 0]

0 I
Thus, we have that the rank of the matrix [By(t), B1(t)] = [ I (;)’ ] is equal to 6 for every
3

time ¢ € [0, ,(Y)], proving the lemma.

Proposition 2.1. For ¢ > 0, the control system ¥, is controllable for OTP within P, i.e.,
for every initial point y, € P* and final point y F € P, there exists a controlled trajectory
I.(t,u,y;) of Xc in PT on a finite interval [0,t;] < T such that T (ty, u, y;) = y.

Proof. Since the subset P* is path-connected as is shown by Proposition 2.3, it follows that
any two different points y; and y; in P* are connected by apath y : [0,1] — P, A+ y())
such that y(0) = y, and y(1) = y,. By compactness of the support of y(-) in P* there exists,
for every o > 0, a finite sequence of points y,,y,, - , Yy, on the support of y(\) so that
Yo =YY, =Yrandy,,, € B,(y,),forj=0,1,--- ,N—1. According to Lemma 2.4, for
every p > (0, there exists ¢ > (0 small enough and a finite sequence of points y,, ¥y, - , Yy
as above such that, for j = 0,1,--- , N—1,y,,, € B,(y;) and one has a controlled trajectory
['.(t,u;,y,;) on the interval [0,%,(y;)] such that

Fe(oa’u’jvyj) = yj7 Fé(tp(y])au]’y]) = yj+17

and

H F€<t7 /u’j(t)v y]) - F€<t, anj) ||< P fort e [O7tp<y]>]
For ¢ > 0, let W; = P* be an open neighborhood of y; such that B,(y,;) < W; for
j=0,1,--,Nandset Py, = {I'.(t,0,W;), t > 0}. For p > 0 small enough, the open set
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2.4. CONTROLLABILITY FOR OIP

P;’Vj is included in P*. By concatenating the I'.(-, u;, y;) for j = 0,1,--- , N — 1, the initial
point y; can be steered to y;, proving the proposition. ]

According to Lemma 2.1, and recalling the definition of controllability for OTPs in Defini-
tion 2.6, we obtain the following result of controllability:

Corollary 2.1. Forevery pi. > 0, B > 0, Timax > 0, the system Y, is controllable for OTP.

Note that P* < A, so the system Y, is controllable for OTPs within .4 no matter what value
of Tmax the low-thrust control system can provide if the satellite takes high enough percent of
total fuel, i.e., (m; —my)/m; > 0 is big enough. This result makes senses in engineering for
electric thrust systems whose maximum thrust 7,,,, is very small.

2.4 Controllability for OIP

We provide next a controllability criterion for OIP.

Lemma 2.5. Assume that, for every point (y;,m;) € P~ x R*, there exists Ty > 0, a
positive time t € Ir, and a control 7(-) : [0,t] — B,,,. such that along the controlled
trajectory (y,m(t)) = L(t, 7(t),y;,m;) on [0,t], we have y(t) € A on [0,t], m(t) > 0, and
r,(Y(t)) > r.. Then, the system X is controllable for OIP from (y,, m;).

Proof. Note that the assumption implies that there exists a control 7(-) : [0,¢] — B, such

Tmax

~

that the admissible controlled trajectory (y(t), m(t)) = I'(¢t, T, y;, m;) in A x [m(t), m;] on
[0, ] steers (y;,m;) in P~ x R% to some (y(t), m(t)) in PT x R*. After arriving at y({)
in P*, according to Proposition 2.1, it follows that there exists an My € (0,m(t)], a finite
time ¢; € Zp, and a control 7(-) : [0,t;] — B,,.. such that along the controlled trajectory
(y(t),m(t)) = T'(t,7,y(7),m(7)) on [0,ts], we have y(t) € Aon [0,tf], y(t;) = y;, and
m(ts) > M. O

One cannot have controllability for OIP for every value of 7,,x > 0. Indeed, pick a point

(y;,m;) in P~ x R*. For every control 7(-) taking values in B the corresponding con-

trolled trajectory (y(-),m(-)) = I'(-, 7, y,;, m;) converges to I'(-, 0, y,,m;) on [0,%,(y,)] as
Tmax tends to zero. Then, since 7,(y;) < r., there exists ¢ € [0, t,(y,)] such that || r(¢) || < r.
implying that (y(-), m(:)) = T'(-, 7, y;, m;) is not admissible for every control 7(-) taking val-

uesin BB

Tmax

. For large values of 7., we can steer (y;,m;) € P~ xR to (y,,my) € PT xR}
as described in the following lemma.

Lemma 2.6. For every (3, . > 0 and point x; = (y;,m;) in P~ x R%, there exists Tyax > 0
such that the following holds:

1) if Tmax > Tmax there exists a control T(-) taking values in B, and a positive time t € Ir

Tmax

such that, along the controlled trajectory (y(t),m(t)) = T'(¢t,7,y,;, m;) on [0,t], we
have y(t) € Aon [0,t], m(t) > 0, and r,(y(t)) > re;
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2) if Tmax < Tmax for every control T(-) taking values in B

T the controlled trajectory
(y(-),m(-)) = I'(-, T,y;,m;) does not reach P* x R%.

Tmax’

Proof. At the light of the remark preceding the lemma, it is enough to find a value of Ty,

and a control 7(-) taking values in B; ,_steering x; = (y;, m;) to some point in P x R*

H1/2

along an admissible trajectory. We proceed as follows. Let Cy = |7;|'/#|v;| which belongs
to (0, 4/2ft). Choose now the function v(-) defined on some time interval [0, T] (with T to
be fixed later) as follows: v(0) = v;, 7(t) = v(t) and

Co r() r(t)t
(‘“ H

*0 = ey " el T 0]

Here 7(t)* denotes a continuous choice of vector perpendicular to r(¢) in the 2D plane

), te[0, 7).

spanned by 7; and v;. (Implicitly, we assume with no loss of generality that v; # 0 with
a; > 0and b; # 0.) For simplicity, we assume next that a; = b; = 1. The curve (r(-),v(-)) de-
fined previously can be explicitly integrated using polar coordinates for 7(-) = r(-) exp(i6(-)).

One gets that, on [0, 77,
_ 1/2
(1) = r(1)6(t) = (22(;)) |

After integration, one has for t € [0, T,

r(t) = (r% 4 3Cot/2)%3, 0(t) = 6; + 2In(r¥? + 3C,t/2)/3.

One also checks that h(t) = C’o(@)l/ 2e;, with e; a constant vector of unit norm parallel
tor; x v; and L(t) = (C2/2 — Me)%- One deduces that 7,(t) = Cy7(t)'/? for some
positive constant C';. One thus fixes T so that rp(T) > r.. It remains to determine T,ax SO

that (7(t), v(t)) is part of a controlled admissible trajectory of system X.. One first integrates
over [0, T'] the differential equation

() = =Blo() + s rOm()

and then take 7(¢) = ('v(t) + #r(t)) m(t) for t € [0, T]. The final bound 7,.x is simply
the maximum of || (¢)| over [0, T7]. O
As a combination of Lemmas 2.5 and 2.6, we obtain the following result.

Corollary 2.2. For every 8 > 0, u. > 0, and initial point (y;, m;) € P~ x R, there exists a
limiting value Tp,.x > 0 depending on (y,, m;) such that the following properties hold:

1) if Tmax > Tmax the system Y, is controllable for the OIP; and

2) if Tmax < Tmax, the system Y, is not controllable for the OIP.

The limiting value 7, can be computed by combining a shooting method and a bisection
method as described in Section 2.6.
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2.5. CONTROLLABILITY FOR DOP

2.5 Controllability for DOP

Let us define a system isat associated to Yg,; as

0e

r(t
sat - 'U(t

() = +6 11 (@) Il

) =v(t),
) = —esEr(®) + 2@ (2.18)

3.

where all variables are the same as defined in Eq. (2.1). For every x; € Y x R* and measurable
With Tmex > 0, we define by I'(¢, 7(t), ;) the
corresponding trajectory of f]sat for some positive times.

control function 7 taking values in B

Tmax

Remark 2.3. For every controlled trajectory (v(t),v(t), m(t)) = T'(t, 7(t), x;) of the system
Yat on some finite intervals [0,ts] < Zp with (r¢, vy, mf) = [(ty, T(ts), x;), the trajectory
(F(t),d(t), m(t) = I(t, T(ty — t),rp, —vs,my) of Seae runs backward in time along the
trajectory I'(t, T(t), ;) on [0, /], i.e.,

(7#(t),0(t), m(t)) = (r(ty —t),—v(ty —t),m(ty —t)) on [0,ts]. (2.19)
As a consequence, according to Lemma 2.6 and Corollary 2.2, we obtain the following result.

Corollary 2.3. For each f > 0, u. > 0, and m; > 0, given a point (ry,vs) € P~, there
exists a Trax > 0 depending on (v, vy) and m; such that the following properties hold:

1) if Tmax > Tmax the system Y, is controllable for the corresponding DOP; and

2) if Timax < Tmax the system X, is not controllable for the corresponding DOP.

2.6 Numerical Examples

In this section, we consider two numerical examples, one OIP and one DOP, to compute
the limiting value 7., in Corollaries 2.2 and 2.3, respectively. The gravitational constant
Lie in system Y (and/or S) equals 3986000.47 km?/s2, the radius of the Earth is r, =
6,374,004 m, and we consider the vertical depth of atmosphere around the Earth is 90, 000
m, which means r. = r, + 90, 000 m.

2.6.1 A numerical example for OIP

In order to be able to compute the limiting value 7, in Corollary 2.2, we first define the
following optimal control problem.
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Definition 2.12 (Optimal control problem (OCP) for OIP ). Given every initial point (y,, m;) €
P~ xR% and T4, > 0, the optimal control problem for OIP consists of steering a satellite by
T()eB
trajectory (r(t),v(t),m(t)) = L'(t, 7(t),y;, mi), the time t; > 0 is the first occurrence for
[ 7(tr) 1= rp(r(ty), v(ty)), e, | 7(8) [|> rp(r(t), v(t)) on [0,ty), and that ry(v(tg), v(is))
is maximized, i.e., the cost functional is

on a time interval [0,t;| < I along system Y, such that, along the controlled

Tmax

- ff %rp('r(t), w(t))dt. (2.20)

0

Let?; > 0 be the optimal final time of the OCP for OIP, and let (% (), m(t)) = T'(t, #(t), y;, m;)
on [0, 7] be the optimal controlled trajectory with the associated optimal control 7(t) € B;, .
on [0,%]. One can check, by using Pontryagin Maximum Principle as was done in Ref. [20],
that | #(-) ||= Timas on the whole interval [0,%]. Thus, fixing the initial point (y,,m;) €
P~ x R*, we have that the final time 7, the trajectory ((t), M(t)) at each time ¢ € [0, /],

~

and the final perigee distance r,(y(ts)) are functions of 7,,,x. Thus, let us define a function

~

s: Ry = R, s(Timaa) = 1p(Y(ty)) —re. (2.21)

If Thax > 0 is the limiting value in Corollary 2.2, there must hold $(Tax) = 0. Thus,
to compute the limiting value in Corollary 2.2, it amounts to find a 7, > 0 such that
$(Tmax) = 0. For every 7,,,,, > 0, using a shooting method as an inner loop to solve the OCP
for OIP, we can obtain a value for s(7,,,.). Then, using a bisection method as an outer loop,
one can obtain 7Ty,,, > 0 such that s(7Tp,.c) = 0. According to Eq. (2.13) and the objective of
the OCP for OIP, placing a satellite with the initial mass m; > 0 on a point (r;, v;) € P, the
optimal controlled trajectory lies on a 2-dimensional plane spanned by 7; and v;. Hence, the
limiting value 7.y in Corollary 2.2 is determined only by || 7; ||, || v; ||, and by the flight
path angle n; € [—7/2, /2], i.e., the angle between the velocity vector v; and local horizontal

N = sin! <—r§rvi )
Z |7 [l i |l

Assume that a rocket carries a satellite, whose initial mass is m; = 150 kg, from the surface
of the Earth to a point y, = (7, v;) in the unstable region P~ such that || r; ||= r. + 110, 000
v; ||= 7879.5 m/s, and 1; = 5°. The rocket and the satellite are separated at this point

plane, defined by

m,
y,. Then, the satellite has to use its own engine to steer itself from the point y; into the stable
region P*. We can see from Figure 2.4 that the periodic orbit 7, has collisions with the
surface of the atmosphere around the Earth.

We choose the specific impulse of the engine fixed on the satellite as I, = 2000 s, which

implies that 3 = Iﬂ%go = 5.102 x 107° m~2 where gy = 9.8 m?/s. The computed result of
the limiting value is 7Tp,.« = 8.052 N. Thus, in order to be able to insert the satellite from the
point y, into stable region P, the maximum thrust of the engine has to be larger than 8.052

N. The optimal controlled trajectory of the corresponding OCP for OIP with 7,,,x = 8.052 is
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Figure 2.4 — The periodic orbital 7, and the optimal controlled trajectory of the OCP for OIP
Wwith Typax = Tmax starting from y,.

plotted in Figure 2.4 as well. To see the numerical results for different initial points, another
two points y; = (r1,v1) and y, = (2, v3) are chosen on the periodic orbit ~,, such that

|| r1 ||=re + 379,494 m, || vy ||= 7,562 m/s, m = 4.3517°,

| 7o ||=re + 599,351 m, || ve ||= 7,312 m/s, ny = 3.0132°.

Then, the limiting value of Ty corresponding to the two initial points y,;, j = 1,2, are
computed as 9.037 N and 10.719 N, respectively. We see that the limiting values 7, are
different for different initial points on the same periodic orbit. The time history of radius
| 7(¢) || and perigee distance r,(x(¢)) along the optimal controlled trajectories starting from
the initial points y, and y,, j = 1,2, are plotted in Figure 2.5. Since the three points y, and
Y;»J = 1,2 lie on the same periodic orbit 7, , r, at initial time is the same, as shown in Figure
2.5.
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Figure 2.5 — The profile of || r || and 7, with respect to time for 3 different initial points, i.e.,
y; and y, (j = 1,2), for OIP; The subscripts, ¢, 1, and 2, correspond to the initial points y;,
Y, and y,, respectively.

2.6.2 A numerical example for DOP

A DOP is a powered flight phase of a satellite in the region .A x R*, during which a
decelerating manoeuvre is performed so that the satellite will move to the desired final point
y; = (ry,vy) € P~ at the entry interface (EI). The condition at EI permits the satellite to
have a subsequent safe entry flight in atmosphere to a landing site. A typical condition at EI,
see Ref. [7], is given as:

H ’I"f ||= TET, H ’Uf HZ VE], and T‘? . ’Uf = VE[TE[Sin<7]E]), (222)

where rg; = 7. + 122,000 m, Vg, = 7879.5 m/s, and ng; = —15° denote the norm of
position vector, the norm of velocity vector, and the flight path angle at EI, respectively. In
order to compute the limiting value 7y,ax in Corollary 2.3 for the DOP to a point (r;,vy) in
P, we first define the below optimal control problem.

Definition 2.13 (Optimal control problem (OCP) for DOP ). Given every final point y; =
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(rp,vp) € P~ and Tyap > 0, let m; > 0 be the initial mass of a satellite, the optimal control

problem for DOP consists of steering the satellite by T(-) € B on a time interval [0,t;]

Ip subject to the system S such that, along the controlled trajectory (v(t),v(t), m(t)) =
L(t,7(t),rs, —vs,my) (ms > 0 is free) of System Xy, the time ty is the first occurrence for
| (ts) ||= mp(r(ts),v(ts)), mi = m(ty), and r,(r(ts),v(ts)) is maximized, i.e., the cost

functional is the same as Eq. (2.20).

Given every initial mass m; > 0 and final point (r;,v) in P, let t; > 0 be the optimal

final time of the OCP for DOP, and let (y(t),m(t)) = I'(t,7(t), rs, —vs, my) be the optimal

controlled trajectory associated to the control 7(¢) € B,,,.. on [0,¢;]. Then, the same as the

Tmax

OCP for OIP, the perigee distance 7,(g(ts)) is a function of 7y,.x. Let us define a function
5:Ry = R, 5(Tmax) = 1p(Y(ty)) — 7e. (2.23)

Then, according to Eq. (2.19), in order to compute the limiting value 7,,,, in Corollary 2.3,
it suffices to combine a shooting method and a bisection method to compute the value 7.«
such that 5(Tax) = 0.

What we developed in this chapter is applicable not only for low-thrust control systems
but also for high-thrust control systems if only the thrust is finite. Thus, we consider the
space shuttle’s parameters in Refs. [11, 37]. The initial mass is 95,254.38 kg. The spe-
cific impulse of the engine is 313 s that means 3 = 3.26 x 10~%. The numerical result is
Tmax = 14,004.62 N. Note that the propulsion for a space shuttle is provided by the orbital
maneuvering system (OMS) engines, which produce a total vacuum thrust of 53, 378.6 NV,
see Refs. [11, 37]. Thus, according to Lemma 2.5, for every initial point y, in P*, the space
shuttle can reach the EI condition in Eq.(2.22) by admissible controlled trajectories of the sys-
tem X, if the satellite takes enough fuel. The periodic trajectory 7, and associated optimal
controlled trajectory with Tyax = Tmax are illustrated in Figure 2.6. The profile of || = || and
r, along optimal controlled trajectories for the DOP with 7,0, = Timax, Tmax + 100 N, and
Tmax — 100 N, are illustrated in Figure 2.7. We can see from Figure 2.7 that the optimal con-
trolled trajectory of the OCP for DOP with 7,,,,, = Tmax + 100 N is an admissible controlled
trajectory in A and the final point lies in P*. However, the optimal controlled trajectory of the
OCP for DOP with 7,4, = Tmax — 100 N cannot reach a point in P* by admissible controlled
trajectories of the system isat.

2.7 Conclusion

In this chapter, the basic properties of the uncontrolled dynamics in two-body problem are
represented, showing that the locus of the drift vector field describes a conic section. Then
the controllability property for the Keplerian motion in the periodic region P is established.
According to the state constraint that the radius of the Keplerian motion has to be larger than
the radius of the surface of the atmosphere around the Earth, the periodic region is separated
into two sets: P and P~. The controlled motion in the set P* is the typical OTP and

49



CHAPTER 2. CONTROLLABILITY OF KEPLERIAN MOTION WITH LOW-THRUST CONTROL SYSTEMS
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Figure 2.6 — The periodic trajectory 7, . determined by the EI condition in Eq.(2.22) and the
optimal controlled trajectory of the OCP for DOP with 7,,,. = Tmax-

we obtain that the motion is controllable in the set P* for every positive maximum thrust.
Moreover, we obtain that there exist a limiting value of 7,,,,, depending on the initial point
(the final point, respectively) such that the Keplerian motion for OIP (DOP, respectively)
is controllable if and only if 7,,,x > Tmax. Finally, two numerical examples are simulated to
show that a shooting method and a bisection method can be combined to compute the limiting
value 7 ax-

Recall that the drift vector field f, in Eq. (1.4) for the CRTBP (11 € (0, 1)) is recurrent” in
an appropriate subregion X of state space. Thus, one can apply Lemma 2.4 and Proposition
2.1 to obtain that for every positive T,,, there exists an admissible controlled trajectory of X
in X’ connecting every two points in X" (see [17] for establishing the controllability of X using
another technique).

2Given a vector field f,, a pointx € X is recurrent or positively Poisson stable for f, if for any neighborhood
V < X of @, for any positive T', there is ¢t > T such that exp(tf,(x)) is defined and belongs to V. The vector
field itself is said to be recurrent when it has a dense subset of recurrent points.
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Figure 2.7 — The profile of » =|| = || and r, along the optimal controlled trajectory of the OCP
for the DOP with 75,00 = Tmaxs Tmax + 100 N, and 7.« — 100 N.

51



CHAPTER 2. CONTROLLABILITY OF KEPLERIAN MOTION WITH LOW-THRUST CONTROL SYSTEMS

52



Chapter 3

Sufficient conditions for L!-extremals
with fixed endpoints

In this chapter,' the sufficient conditions for nonsingular L!-extremals with fixed endpoints
are treated in detail. Although maximizing the final mass does not make sense anymore for the
constant mass model (8 = 0), the Lagrangian cost in Eq. (1.6) is still meaningful. Actually,
as propellant is only a limited fraction of the total mass, one can expect this idealized constant
mass model to capture the main features of ¥ in Eq. (1.4). Henceforth, we shall assume /5 = 0
in this chapter such that the state x consists of position  and velocity v without mass m.

To avoid confusing the notations with those in the previous chapters, we reiterate that
@ = (r,v) is the state valued in an open subset X — R” (n = 6 in this chapter), u := (p, w)
is the control valued in I/ := [0, 1] x S?, f is a smooth vector field on X" given by

f:X XUHTw?C f(a:,u) :f()(w)—i_pfl(waw)a

where ~
Julw) = [ h(v) + g(r) |

and .
fl(wa w) = [ Tmaxg/mo )

and f© : X x U — R is a smooth cost function. We consider the following minimization
problem with fixed endpoints and fixed final time ¢;: Find (x,u) : [0,t;] - X x U, =
absolutely continuous, u© measurable and bounded, such that

z(t) = fz(t),u(t), te]0,t] (ae),

ZB(O) = Lo, m(tf) =<y,

I'This chapter is based on the paper “L!-minimization for mechanical systems" (with Jean-Baptiste Caillau
and Yacine Chitour) appeared in [23].
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CHAPTER 3. SUFFICIENT CONDITIONS FOR L!-EXTREMALS WITH FIXED ENDPOINTS

and such that .,
| o, u
0

is minimized. The first order necessary conditions formulated by the Pontryagin Maximum
Principle in Sect. 1.2 can be directly applied. Let p € T, X be the costate of . Recall that the
abnormal extremals have been ruled out by Proposition 1.1, i.e., p° = —1. Then denote by
H(x,p,u) and H(x, p) the controlled Hamiltonian and maximum Hamiltonian, respectively.

Throughout this chapter, we assume that the nonsingular extremal (Z(-),p(-)) € T*X on
[0, ] is computed based on the Pontryagin maximum principle and we say it is the reference
extremal.

3.1 Parameterized family of extremals

— 0H O0H
7 (%)

be the Hamiltonian vector field defined by Egs. (1.7,1.8) and denote by et (xo, py) the
corresponding Hamiltonian flow starting at (xg, p,). For the sake of notational clarity, let

Let

Zo := (£(0),p(0)) and Zy < T*X be an open neighborhood of Z,. Then, we denote by

—

(®(t, 20), p(t, 20)) : [0, 5] x 20 — T*X, (¢, 20) — e (20),

the Hamiltonian flow starting at zo € Z,. Note that (Z(-),p(-)) = (x(-,Z0),p(+,Z0)) on

[0,7]. To avoid heavy notations, we also set (¢, p,) := etH(E(O),pO) for (t,py) € [0, ] x
T X.
o

Definition 3.1 (Parameterized family F of extremals). Given the reference extremal (Z(-),P(-))
on [0,ts], let Py T )X be an open neighborhood of P(0). Then, we denote by

F o

(

(t,xz(t),p(t) e R x T*X |
z(t),p(t)) = ¢ (@(0),py), t € [0,47], Py € Po}, (3.1)

the py-parameterized family of extremals around the reference one.

Define the projection from R x 7T*X onto R x X by
I :RxT*X >R x X, (t,x(t),p(t)) — (t,z(t)).

According to Agrachev’s approach [2], the optimality of the reference extremal is related
to the fold singularity of the projection II;(F) through the notion of conjugate point (see
Definition 1.3), as is shown by the typical picture for conjugate points in Fig. 3.1. We say
the conditions ensuring the projection IT; of F at each time ¢ € (0,t¢] is a diffeomorphism is
the no-fold conditions [63, 82]. In next paragraph, the no-fold conditions will be established.
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3.2. NO-FOLD CONDITIONS FOR THE PROJECTION OF F

Figure 3.1 — A typical picture for a conjugate point (the fold singularity of the projection
IL(F). [2]

3.2 No-fold conditions for the projection of F

Given the reference extremal (Z(-),Pp(+)) on [0, ], without loss of generality, let the positive
integer k be the number of switching times¢; (i = 1, 2, --- , k)suchthat 0 = t; < t; <ty <
- < Ek < Ek+1 = tf.

Assumption 3.1. Along the reference extremal (Z(-),p(-)) on [0,t], each switching point
(at the switching time t; € (0,t5)) is assumed to be a regular one, i.e., H\(Z(t;),p(t;)) = 0
and Ho, ((t:),P(t;)) # 0.

Note that the notation Hy; is defined in Eq. (1.14). The condition Hy; (Z(;), P(¢;)) # 0 is
called the strict bang-bang Legendre condition in [3]. As a result of Assumption 3.1, if the
subset Zj is small enough, the number of switching times on each extremal (x(-, z), p(+, 20))
on [0, ] for zy € Z, remains equal to k, and we denote by

ti: 20 — Ry, zo — ti(20), (3.2)

the i-th switching time of the extremal (x(-, 2¢), p(+, 20)) for z¢ € Z,. Note that t; = t;(Z).
Let

= {(, ) eR x T*X |

—

(z(t),p(t) =€ H@oapo)v t € (ti-1(To, py), ti(To, Py)], Po € Po}, (3.3)
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CHAPTER 3. SUFFICIENT CONDITIONS FOR L!'-EXTREMALS WITH FIXED ENDPOINTS

wheret =1, 2, --- | k, k + 1. If the open neighborhood P is small enough, there holds
F=FuFu- - UFrUFri,

and
FinFua=9,1=1,2 - k. (3.4)

For the sake of notational clarity, let §(¢) be the determinant of the matrix dx(¢,Zy)/dp, for
te[0,tf], ie.,

ox
0(t) :=det | =—(t,20) |, t€[0,tf].
()= det| £ 070 e 0.1,

Note that () is piecewise continuous (see [63], e.g.).
Condition 3.1. §(ts) # 0 and 6(-) # 0 on each subinterval (t;,t;41), i =0, 1, --- , k.
By restricting the subset P if necessary, this condition is sufficient to guarantee the projection
IT; of each subset F; ( = 1, 2, --- | k+ 1) is a diffeomorphism (see, e.g., [2, 82]). However,
this condition satisfied on each subinterval (¢;_1,¢;) fori =1, 2, --- | k + 1 is not sufficient

to guarantee that the projection II; of F is a diffeomorphism as well, as Fig. 3.2 shows that the
composite flows may intersect with each other near the switching time ¢;. This is the typical

Figure 3.2 — Transversally crossing and fold singularity near switching surface [63, 82].

conjugate point behavior as can also be seen near the fold singularity for smooth projections.
Let

©:={(t,xz,p) e Rx T*X | Hi(x(t, 20),p(t,20)) =0, t € [0,ts], 2o € 2o}

be the switching surface in R x 7*X’; one immediately gets that ©; := F; n O is the set of
all terminal points of F; for i = 1, 2, --- | k. Note that the set I1;(©;) is of codimension
one. With some abuses of notations, set ¢;(p,) := t;(Z(0),p,). As the mapping (¢,p,) —
(t,x(t;(py), Py)) is a diffeomorphism from R x Py onto I1;(F;) if Condition 3.1 holds, there
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3.2. NO-FOLD CONDITIONS FOR THE PROJECTION OF F

exists an inverse function (¢, ) — p,(t, ) such that I1;(0;) = {(t,x) e R x X' | ¢y(t,x) =
0} with
w’L(ta CC) =1t— tz(p0<t7 CC))

Clearly, the set I1,(0;) fori = 1, 2, --- | k is the switching surface in (¢, x)-space.

Denote the tangent vectors of the flows ¢ — (¢, Z(t)) at¢;— and ¢;+ by T'; € (R"*!1)* and
TF € (R™™1)*, respectively, i.e.,

T = L ae300) = (L)) (3.5)

Let the vector IN; € R™*! be the normal vector of the switching surface I1;(0;) at (;, E(¢;)),
1.e.,

Remark 3.1. By restricting the subset Py if necessary, the projection 11, of F at t; is a dif-
feomorphism (respectively, a fold singularity) if the two vectors T; and T point to the same
side (respectively, the two different sides) of the switching surface 11,(0;) (see Fig. 3.2).

Accordingly, one immediately gets that the projection II; of F around ¢; is a diffeomorphism
if

(T; N:)(T{ N;) >0, (3.6)
and it is a fold singularity if

The explicit expression for N; = V) (t;—, x(t,—,Z0)) is

d((t;—) — t:(Z0)) ld(fi,m(g_zo))]_l

d(tap()) i d(t7p0)
L dt(Z) 1 0 -
= & dpy )_ x(ti—,Z0) 2 (ti 730)]
(1, dulz0)) L Y
" dp, __(g_;o@_,zo)) a(ti-20) (Z(-%)

[1 4 ) (63} (%i—,zo>)1m(fi—,zo), _%ulz) (a—”’@—,zo))l] 38)

dpy a_po
Substituting Eq. (3.5) into Eq. (3.8) leads to
T, N,=1,
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and

dtz(zo) (8:1: — _ )_1 .
T/IN, =1+ =Y - &
dp, apo( 2 [

ti—, Zo) — @(t;+,Z0o)]-

If Ap; == p(ti+) — p(t;—), we get

By virtue of Lemma 2.6 in [63], we have

ox - . dx o oo dE(Zo)
a_po(tiJrsz) = a_po(tz ,20) — Apif1(@(t:), w(t:)) .

If 6(t;—) # 0, taking determinants yields

-1 -
0(04) = 8- det [ 1~ A, (S2 (-20)) (ot () 5
Since there holds
det(I, + ab”) =1 +a’b
for every a, b € R", one immediately gets
-1 -
= A | om0 | (w0, @ ()
- -1
- 1 00BN Gz s @)
Therefore, Eq. (3.6) is satisfied if and only if there holds
o(t;—)o(t;+) > 0. (3.9)
In an analogous way, Eq. (3.7) is satisfied if and only if there holds
§(t;i—)o(t:+) < 0. (3.10)

Remark 3.2. Along the reference extremal, conjugate points can occur not only on each
subinterval (t;_1,t;), between switching times, if (t) = 0 but also at each switching time t;
once Eq. (3.10) is satisfied.

The fact that conjugate points can occur at switching times generalizes the conjugate point
theory developed by the classical variational methods for totally smooth extremals (see, e.g.,
[13, 16,57, 93]).

Condition 3.2. §(t,—)0(t;+) > O0fori=1, 2, ---, k.
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3.3. SUFFICIENT CONDITIONS FOR STRONG LOCAL OPTIMALITY

According to the previous analysis, Conditions 3.1 and 3.2, once satisfied, are sufficient to
guarantee the projection II; of the family F on (0, ] is a diffeomorphism if the subset Py
is small enough. Thus, for broken extremals, the no-fold conditions consists of not only
Condition 3.1 between switching times but also Condition 3.2 at switching times. By virtue
of the Shadow-price lemma, the two no-fold conditions readily ensure the reference extremal
to be a relative optimum (see, e.g., [82, Definition 5.3.2]). In the next paragraph, we will
show that Conditions 3.1 and 3.2 are also sufficient for strong local optimality in C°-topology
provided that each switching point is regular (cf. Assumption 3.1).

3.3 Sufficient conditions for strong local optimality

Definition 3.2 (Local optimality with fixed endpoints). An extremal trajectory Z(-) : [0,t;] —
X associated with a measurable control u(-) = (p(-),@(-)) : [0,tf] — U is said to realize
a weak local optimum in L®-topology (resp. strong local optimum in C°-topology) if there
exists an open neighborhood W,, < U of u(-) in L*-topology (resp. an open neighborhood
W, € X of Z(+) in C°-topology) such that for every admissible controlled trajectory x(-) :
[0,t7] — X associated with a measurable control u(-) = (p(-),w(-)) : [0,t7] — Wy
(resp. for every admissible controlled trajectory x(-) : [0,tf] — W, associated with a
measurable control u(-) = (p(-),w(:)) : [0,t;] — U) with the same endpoints x(0) = Z(0)
and x(ts) = Z(ts), there holds

ty ty
| @ ua= | @ o)
0 0
It realizes a strict weak-local (resp. strong-local) optimum if the strict inequality holds.

From a Hamiltonian point of view, we will prove that Conditions 3.1 and 3.2 are sufficient for
strong local optimality? provided that each switching point is regular.

Theorem 3.1. Given the reference extremal (Z(-),p(-)) : [0,tf] — X such that each switch-
ing point is regular (cf. Assumption 3.1), if Conditions 3.1 and 3.2 are satisfied, the reference
extremal trajectory T(-) on [0,t¢| realizes a strict minimum cost among all the admissible
controlled trajectories x(-) : [0,tf] — X in a small tubular neighborhood of T(-) with the
same endpoints x(0) = Z(0) and x(t;) = T(ty).

Proof. Without loss of generality, we assume there is only one switching time along the ref-
erence extremal, i.e., k = 1. We proceed in five steps.

Step 1. According to Condition 3.1, the matrix dx(t,Z,)/dp, is invertible for ¢t € (0,];
one can then construct a Lagrangian perturbation £ transverse to T; X containing Z such
that dx(t,Zy)/0z is invertible for ¢ € [0, ¢;] with 0/0z, denoting the n partials with respect

2If a trajectory () : [0, 7] — X realizes a strong local optimum, it automatically realizes a weak local one.
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to zg € Ly. (See Appendix B.) By restricting L, if necessary, the mapping II; induces a
diffeomorphism from

—

L1:={(t,z(t) eRxT*X | z(t) = etH(Zo), 2z € Lo, t € [to, t1(20)]}

onto its image. Similarly, Condition 3.1 implies that

0
= —(@2(t — t1(20), 21(11(20), 20))) |20 -2
P
is invertible for ¢ € [fy,%;]. Restricting £, again if necessary, one can assume that II; also
induces a diffeomorphism from

—

Loi={(t,z(t) e R x T*X | 2(t) = " (29), 2o € Lo, t € [t1(20), 4]}
onto its image.

Step 2. As L, can be taken arbitrary close to T;UX , Condition 3.2 also indicates that every
extremal trajectory ¢ — x(t, zg) for zg € Z crosses the switching surface transversally.
Thus, one can piece together the restrictions II; to £, and £, into a continuous bijection from
L1 v Ly into T1;(L1 U L5). By restricting to a compact neighborhood of the graph of Z, one
may assume that II; induces a homeomorphism on its image.

Step 3. Let H', i = 1, 2, be the Hamiltonian on the field £; and we denote «; := pdx —
H i(z)dt the Poincaré-Cartan forms associated with H*. To prove that o is exact on L1, it is
enough to prove that it is closed. Indeed, if v(s) := (£(s), z1(t(s), zo(s))) is a closed curve
on Ly, it retracts continuously on 7y, := (0, 2¢(s)) so that, provided o is closed,

Jalzf 041:J pdx =0
i Yo Y0

because z(s) belongs to L, that can be chosen such that pde is exact on it. (Compare [2,
Chapter 17].) Similarly, to prove that a5 is exact on Lo, it suffices to prove that it is closed:
If v(s) = (t(s), z2(t(s) — t1(z0(8)), z1(t1(20(s)), 20(s)))) is a closed curve in Lo, it readily
retracts continuously on the curve v;(s) = (t1(20($)), z1(t1(20(5)), 20(s))) in ©, which
retracts continuously on o(s) = (0, z¢(s)) again. Then, as H' = H? on O,

2l 7 At Y0

To prove that o is closed, consider tangent vectors at (¢, z) € L;; a parameterization of

that vanishes as before.

this tangent space is
(6t, H (2)6t + 2,(t, 20)020), (5t,020) € R x Ty, Lo
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where 2z € Ly is such that z = z4(¢, z(). For two such vectors vy, vs,

doy(t, z)(vi,v5) = (dp A dx — dH'(2)dt)(vi,vs)
= dp A dx(2)(t, 20)02}, 2} (t, 20)022)
= dp A dx(02},02])
= 0

—1
because exp(tH ) is symplectic and L, is Lagrangian. Regarding as, the tangent space at
(t,z) € L, is parameterized according to

(ot, o5t + 25(t — t1(20), 21(t1(20), 20)) (I + 0(20))21020)

with (6t,0z¢) € Rx T, Ly, and where zy € Ly is such that z = zo(t—t1(20), z1(t1(20), 20))-
For two such vectors v, va,

dos(t, z)(vi,v3) = (dp A dx — dH?(2)dt)(vi,vs)
= dp A dx((I + 0(20))2(t, 20)02h, (I + 0(20))2)(t, 20)02)
= dp A dx(2)(t, 20)024, 2, (t, 20)027)

because exp(tﬁﬂ) is symplectic and because of the following lemma.

Lemma 3.1.
I+ o(z) € Sp(2n,R).

Proof of the lemma. For any z € R?",

T+ J2'2)J(I+ Jz2'z) = J - 22+ 2"z + 2('2J2)'z = J.
0

This proves the lemma because of

2\/

otz) = == (20 20)).

a His
]

One then concludes as before that s is closed using the fact that exp(tﬁ) is symplectic and
L, is Lagrangian.

Step 4. Let (x,u) : [0,t7] — X x U be an admissible pair. We first assume that x is of class
C! and that its graph has only one isolated contact with IT;(©;) at some point (¢1,x(t1)).
For x close enough to T in the C’-topology, this graph has a unique lift ¢t — (¢, z(t), p(t))
in £; U L9 once the projection II; of £ U Ly is a diffeomorphism. As a gluing at ¢; of
two absolutely continuous functions, z := (x,p) : [0,t;] — T*X is absolutely continuous.

61



CHAPTER 3. SUFFICIENT CONDITIONS FOR L!'-EXTREMALS WITH FIXED ENDPOINTS

Denote v, and v, the two pieces of this lift. Denote similarly 7, and 7, the pieces of the graph
of the extremal Z. One has

Lt'ff(’(a:(t),u(t))dt _ (J f )  H(a(t), plt), u(t))dt

> Jo (p(t @(t) — H' (x(t), p(t)))dt

] (p(t)a(t) — H*(=(t), p(t)))dt

t1

- | a1+J o (3.11)
m 2
since (¢, z(t)) belongs to £ for ¢ € [0,;] (resp. to L, for t € [t1,1s]). By connectedness,
there exists a smooth curve v, © ©; connecting (f1,Z(¢1)) to (1, 2(¢1)); having the same
endpoints, v, and 7; U 12 (resp. 2 and —v12 U 7,) are homotopic. Since «; and oy are exact
one forms on £; and L, respectively,

n
f a1 + J Qo = J a1 + J (%)
71 Y2 Y1972 —Y12U%9

~
a1 + f (0]
Y1 Y2

rts

= fO(@(t), u(t))dt (3.12)

0

l
[ S—

since H; = H, on ©.

Step 5. Consider finally an admissible pair (z,u),  close enough to Z in the C°-topology.
One can find Z of class C! arbitrarily close to « in the W5 — topology such that Z(0) = x
and Z(t;) = x;. Moreover, as I1;(0;) is locally a smooth manifold, up to some C'-small
perturbation one can assume that the graph of & has only transverse intersections with I1(© ).
Let Z : (&, p) denote the associated lift; one has

FO@ (), u(t) = (BO@() — H@ (1), p(t), ult)) + D) (F@(), ult) — &(1)),

and the second term in the right-hand side can be made arbitrarily small when & gets closer to
x in the W*-topology since (¢, 2(t)) = II; (¢, &(t)) remains bounded by continuity of the
inverse of II;. Let then £ > 0; as a result of the previous discussion, there exists Z of class C*
with the same endpoints as « and whose graph has only isolated contacts with I1;(0;) such

that .
fo CPOa(t), ul f PO (), w(t)dt - =,

and



3.4. NUMERICAL EXAMPLES FOR PROBLEMS WITH FIXED ENDPOINTS: THE TWO-BODY CASE

One can extend straightforwardly the analysis of the previous step to finitely many contacts
with I1;(©1), and bound below the integral in the right-hand side of the second inequality by
the cost of the reference trajectory. As ¢ is arbitrary, this allows to conclude. ]

3.4 Numerical examples for problems with fixed endpoints:
the two-body case

We consider the two-body problem (1 = 0 or 1) in dimension three. Two medium thrust cases
are presented below; the final time is fixed to 1.6 times of the minimum time (case A), or to
1.3 times of the minimum time (case B), approximately, where already ensures a satisfying
gain of consumption [31]. In order to have fixed endpoints to perform a conjugate point test
according to the result in Sect. 3.3, the initial and final positions are fixed on the orbits (fixed
longitude?).

3.4.1 Case A

The physical constants for numerical computations are listed in Tab. 3.1. Restricting to bang-

Table 3.1 — Case A. Summary of physical constants used for the numerical computation.

Gravitational constant p of the Earth: 398600.47 Km3s~2
Mass of the spacecraft: 1500 Kg Thrust: 20 Newtons
Initial perigee: 6643 Km Final perigee: 42165 Km
Initial apogee: 46500 Km Final apogee: 42165 deg
Initial inclination: 56 rad Final inclination: 0 rad
Initial longitude: mrad Final longitude: 56.659 rad
Minimum time: 93.865 hours Fixed final time:  147.28 hours
L! cost achieved (normalized): 52.638

bang (in the norm of the control) extremals, regularity of the switchings is easily verified
numerically. Then one has to check the no-fold conditions (cf. Conditions 3.1 and 3.2) on
the Jacobi fields. The optimal solution (see Fig. 3.3) and the Jacobi fields are computed using
the hampath software [86]; as in [18, 31], a regularization by homotopy is used to capture
the switching structure and initialize the computation of the bang-bang extremal by a single
shooting method. We are then able to check Conditions 3.1 and 3.2 directly on this extremal
by a simple sign test (including the jumps on the Jacobi fields at the regular switchings) on
the determinant of the fields (see the numerical procedure in Appendix C). The piecewise
continuous function d(-) is plotted in Fig. 3.4. An alternative approach would be to establish

3The definition of true longitude is given in Appendix A
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Figure 3.3 — Case A. L!-minimum trajectory. The graph displays the trajectory (solid curve)
as well as the action of the control (arrows). The initial orbit is strongly eccentric (the eccen-
tricity equals 0.75) and strongly inclined (the inclination is 56 degrees). The geostationary
target orbit around the Earth is reached at ¢ ; ~ 147.28 hours. The sparse structure of the con-
trol is clearly observed, with burn arcs concentrated around perigees and apogees (see [31]).
The minimization leads to thrust only 35% of the time.

0.5 i
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Figure 3.4 — Case A. Conjugate point test on the bang-bang L'-extremal extended to [0, 2¢].
The value of the determinant of Jacobi fields along the extremal is plotted against time. The
first conjugate point occurs at t1. ~ 171.20 hours > ¢ ; optimality of the reference extremal on
[0, 7] follows. Jumps on the Jacobi fields are observed at each switching time, and conjugacy
occurs at such a switching (sign change of the determinant).
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a convergence result as in [85], and to verify the second order conditions on the sequence of
regularized extremals. As underlined in Sect. 3.1, conjugate times may occur at or between
switching times. On the example treated, no conjugate point is detected on [0, /], ensuring
a strong local optimum (cf. Theorem 3.1). The extremal is then extended up to 27, and a
conjugate point is detected about 1.17¢, at a switching point (sign change occurring at the

jump).

Remark 3.3. As H is the lift of a vector field, the determinant of Jacobi fields is either iden-
tically zero or non-vanishing along a cost arc (p = 0). (Compare with the case of polyhedral
control set; see also Corollary 3.9 in [63].) Moreover, coming from the two-body case, the
drift f is the symplectic gradient of the energy function,

1

1
E(’r,’v) = 5"0|2 — W

Accordingly, the x = (dr, dv) part of the Jacobi fields along an integral arc Ofﬁg verifies

—>/

0x(t) = B (x(t))dz(t),

so dx has a constant determinant along such an arc since the associated flow is symplectic.
In particular, the disconjugacy condition (or Conditions 3.1 and 3.2) implies that the optimal
solution starts with a burn arc.

3.4.2 CaseB

In case B, we compute the transfer problem with a different inclination and a different max-
imum thrust (see Tab. 3.2). Using the same numerical method as in case A, the optimal

Table 3.2 — Case B. Summary of physical constants used for the numerical computation.

Gravitational constant p of the Earth:
Mass of the spacecraft: 1500 Kg

Initial perigee: 6643 Km

Initial apogee: 46500 Km
Initial inclination: 7 deg
Initial longitude: 7 rad

Minimum time: 110.41 hours

L! cost achieved (normalized):

398600.47 Km®s—2

Thrust: 10 Newtons
Final perigee: 42165 Km
Final apogee: 42165 Km
Final inclination: 0 deg
Final longitude: 56.659 rad

Fixed final time: 147.28 hours

67.617

solution is computed and displayed in Fig. 3.5. The piecewise continuous function d(¢) is

computed by the numerical procedure in Appendix C. The extremal is then extended up to
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Figure 3.5 — Case B. L! minimum trajectory. The graph displays the trajectory (blue line),
as well as the action of the control (red arrows). The initial orbit is strongly eccentric (0.75)
and slightly inclined (7 degrees). The geostationary target orbit around the Earth is reached
at ty ~ 147.28 hours. The sparse structure of the control is clearly observed, with burn arcs
concentrated around perigees and apogees (see [31]). The minimization leads to thrust only
46% of the time. This percentage is higher than for case A (compared with Fig. 3.3), which
is qualitatively consistent with the fact that the ratio of the final time vs. the minimum time is
diminished in Case B.
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Figure 3.6 — Case B. Conjugate point test on a perturbed bang-bang L!-extremal extended
to [0,3.5t¢]. The value of the determinant of Jacobi fields along the extremal is plotted
against time (detail on the right subgraph). The endpoint conditions x, x; given in Tab. 3.1
are perturbed according to * <« x + Az, |Ax| ~ le — 5, leading to conjugacy not at but
between switching points—along a burn arc (p = 1). The first conjugate point occurs at
t1c >~ 489.23 hours > t;, ensuring again optimality of the reference extremal on [0, ¢f].

3.5t¢, and a conjugate point is detected about 3.2¢; at a switching point (see Fig. 3.7). A
test on a perturbation of case B is provided in Fig. 3.6; by slightly changing the endpoint
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Figure 3.7 — Conjugate point test on the bang-bang L'-extremal extended to [0, 3.5¢;]. The
value of the determinant of Jacobi fields along the extremal is plotted against time on the
upper left subgraph. The first conjugate point occurs at ¢, ~ 475.93 hours > ¢¢; optimality
of the reference extremal on [0, ¢¢] follows. On the upper right subgraph, a zoom is provided
to show the jumps on the Jacobi fields (then on their determinant) around the first conjugate
time; several jumps are observed, the first one leading to a sign change at the conjugate time.
Note that in accordance with Remark 3.3, the determinant must be constant along the cost arcs
(p = 0) provided the symplectic coordinates « = (7, v) are used; this is not the case here as
the so called equinoctial elements [20] are used for the state—hence the slight change in the
determinant. The bang-bang norm of the control, rescaled to belong to [0, 1] and extended to
3.5ty, is portrayed on the lower graph. On the extended time span, there are already more than
70 switchings though the thrust is just a medium one. For low thrusts, hundreds of switchings
occur.

conditions, one observes that conjugacy occurs not at a switching anymore, but along a burn
(maximum-thrust) arc.
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3.5 Conclusion

The sufficient second order conditions for bang-bang extremals with fixed endpoints are
treated in detail. To establish such conditions, a parameterized family of extremals is con-
structed such that the reference extremal is embedded into a field of extremals. The projection
behavior of the parameterized family is analyzed and two no-fold conditions (cf. Conditions
3.1 and 3.2) ensuring the projection is a local diffeomorphism are established. As a result, it
is shown that conjugate points may occur not only on maximum-thrust arcs between switch-
ing times but also at switching times. Provided that the no-fold conditions are satisfied, a
perturbation of Lagrangian submanifold is constructed such that its projection is a diffeomor-
phism and covers the graph of the reference trajectory in C°-topology. By proving that the
Poincaré-Cartan form pdax — Hdt is exact on the Lagrangian submanifold, it is shown that the
no-fold conditions are sufficient to ensure a strong-local optimum for the reference extremal
with fixed endpoints provided that each switching point is regular. Finally, two numerical ex-
amples in the two-body case (v = 0 or 1) are computed and the optimality of each trajectory
is tested thanks to the second order conditions developed in this chapter.

68



Chapter 4

Sufficient conditions for L!-extremals
with variable target

The sufficient optimality conditions for broken extremals with fixed endpoints have been de-
veloped in Chapter 3. From the practical point of view, the boundary points may not be fixed
but vary on a manifold. In this chapter', we shall establish the sufficient second-order condi-
tions for the L!-minimization with a general final condition defined by a smooth submanifold.
The notations in this chapter are the same as those in Chapter 3 and we consider the following
minimization problem with fixed final time ¢;: Find (z,u) : [0,tf] — X x U, x absolutely
continuous, v measurable and bounded, such that

x(t) = fa(t),ud), tel0t](ae),

x(0) = xo, x(ty) e M,
where M is defined in Eq. (1.5), and such that

fo " (), wlt))dt

is minimized. Note that M reduces to a singleton if [ = n where the optimality conditions
have been addressed in the Chapter 3. In this chapter, we only consider the case of [ < n.

Definition 4.1 (Local Optimality with variable target (I < n)). Given a fixed final time t; > 0,
an extremal trajectory T(-) € X associated with the extremal control u(-) = (p(-),@(-)) inU
on [0, t] is said to be a weak-local optimum in L*-topology (resp. a strong-local optimum in
CP-topology) if there exists an open neighborhood W, < U of u(-) in L*-topology (resp. an
open neighborhood W,, = X of Z(-) in C°-topology) such that for every admissible controlled
trajectory x(-) # T(-) in X associated with the measurable control u(-) = (p(-),w(:)) in W,
on [0, 1] (resp. for every admissible controlled trajectory x(-) # Z(-) in W, associated with
the measurable control u(-) = (p(-),w(:)) in U on [0,ts]) with the boundary conditions

I'This chapter is based on the paper “L!-optimality conditions for the circular restricted three-body problem”
to appear in [22].
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x(0) = x(0) and x(t;) € M, there holds

Lf fO(IB(t),u(t))dt > fof fo(f(t),ﬂ(t))dt_

We say it is a strict weak-local (resp. strong-local) optimum if the strict inequality holds.

If | < n, to ensure the reference extremal trajectory Z(-) : [0,¢;] — X is a strict strong-
local optimum, in addition to the no-fold conditions (Conditions 3.1 and 3.2), an extra second-
order condition (see, e.g., [15, 93]) is required to guarantee that every admissible controlled
trajectory @, (-) : [0,¢;] — A& in a small tubular neighborhood of Z(-) on [0, /], verifying
the boundary conditions Z(0) = x.(0) and x.(tf) € M\{Z(ts)}, has a higher cost than the
reference one.

4.1 Variation of the Poincaré-Cartan form on M

Set
:7x - X, (z,p) — x,

and

N ={xeX |z =T(2(t;,py), pts,Po)): Py € Po}. (4.1)

Note that the mapping p, — x(ty, p,) on the sufficiently small subset P is a diffeomorphism
if () # 0, which indicates that the subset A is an open neighborhood of Z(ty). Thus, in
the case of [ < n, the subset M N N\{Z(¢;} is not empty if 6(¢;) # 0. (See Fig 4.1.) For
every sufficiently small subset Py, let us define by Qy < P, a subset of all p, € P, satisfying
H(v(tr,py)) € M AN, ie.,

Qp = {Po e Po | H(v(tr,py)) € M m./\/}.
Note that for every p, € Qy there holds ¢ = I1(v(0, p,)) and II(v(ts, py)) € M.

Remark 4.1. For every p, € Qy, the extremal trajectory x(-,p,) = H(y(-,py)) on [0,tf] is
an admissible controlled trajectory of the L'-minimization problem.

Definition 4.2. Given the extremal (Z(-),p(-)) on [0,t;] and a small € > 0, let | < n. Then,

we define by y : [—¢,e] > M N, n— y(n) a twice continuously differentiable curve on
M N such that y(0) = Z(ty).

Lemma 4.1. Given the extremal (Z(-),p(-)) on [0, t¢] such that each switching point is regu-
lar (cf. Assumption 3.1) and Conditions 3.1 and 3.2 are satisfied, let | < n. Then, if the subset
Py is small enough, for every smooth curve y(-) € M n N on [—e, €], there exists a smooth

path 1) — po(n) on ¢, e in Qo such that y(-) = T(y(-, py(-))) on [—€, €].
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Figure 4.1 — The relationship between N and M.

Proof. Note that the mapping p, — x(ts, p,) restricted to the subset Qy is a diffeomorphism
under the hypotheses of the lemma. Then, according to the inverse function theorem, the
lemma is proved. O]

Definition 4.3. Let us define a path X : [—e,e] — T5 X, n — X(n) in such a way that
(y(-), A()) = v(,py()) on [—e,€]. Then, for every & € [—¢, €|, we define by J : [—¢,¢] —
R, & — J(&) the integrand of the Poincaré-Cartan form pdx — Hdt along the extremal lift
(y(-), A()) on [0,£], ie.,

3
J(E) = f Ay () - H(y(n%)\(n))(fi—i;dm Eel el 42)

Proposition 4.1. In the case of | < n, given the extremal (Z(-),p(-)) on [0,ts] such that
each switching point is regular (cf. Assumption 3.1) and Conditions 3.1 and 3.2 are satisfied,
assume € > 0 is small enough. Then, the extremal trajectory T(-) on [0, 1] is a strict strong-
local optimum (cf. Definition 4.1) if and only if there holds

J(f) > ‘](O)a 56 [_6’5]\{0}7 (43)

for every smooth curve y(-) € M n N on [—¢, €]

Proof. Let us first prove that, under the hypotheses of this proposition, Eq. (4.3) is a sufficient
condition for the strict strong-local optimality. Denote by x.(-) on [0, ;] (with its graph in
I1(L;)) be an admissible controlled trajectory with the boundary conditions x,(0) = (0) and
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Zulty) € M o N\@(E7)}. Let (pu(-),wa () € U and (p(-, py),w (-, py)) € U on [0, 4] be
the measurable control and the optimal control associated with x.(-) and x(-, p,) on [0, ¢¢],
respectively. According to Definition 4.2 and Lemma 4.1, for every final point @, (t;) €
MAN\{Z(tf)}, there must exists a £ € [—¢,£]\{0} and a smooth path p,(-) € Q associated
with the smooth curve y(-) € M n N on [—¢, €] such that y(0) = Z(tf) = II(7(0,p,(€)))
and y(&) = x.(ty) = (y(ts, py(§))). Since the trajectory x.(-) on [0,?;] has the same
endpoints with the extremal trajectory (-, py(§)) = II(v(-, py(§))) on [0,%/], according to
Theorem 3.1, one obtains

Ly Ly
j‘m@ﬁ>fpmm@wa (4.4

0 0

where the equality holds if and only if z,.(-) = x(-, p,(£)) on [0, t/].
Note that the four paths

1) (@0, py(+)) on [0, €],

2)v(+,Po) on [0, t¢],

3) (z(-,po(£)), P(,Po(£))) = V(- Po(€)) on [0, 2], and
4) (y(), A(-)) on [0,¢]

form a closed curve on the family F. Since the integrand of the Poincaré-Cartan form pdx —
Hdt is exact on F (see [2, 23, 82]), one obtains

Ly

5©) + | [pyate) - Hea (o). plo)i

0

= Jf [P(t, po()E(t, po(€)) — H (2 (t,po(€)), P(t, Po(€)))]dt

0
¢ dwg dto
e | [ 5 = o) G2 5)

where ¢ty = 0. Since x is fixed, one obtains

for every £ € [—¢, €]. Then a combination of Eq. (4.5) with Eq. (4.4) leads to

L%wﬁ:=ff@maw—ﬂﬁwﬁwﬂﬁ

= —J(§)+JO [P(t, po(€))®(t, Py (&) — H (2(t, po(€)), P(t, Po(£))) |t

= —J(€)+JO p(t, po(§))dt

rtr
< 3o+ pa. (4.6)
Jo

72



4.2. VERIFIABLE CONDITION

Since J(0) = 0, Eq. (4.3) implies the strict inequality

iy ty
J p(t)dt < J ps(t)dt, 4.7)
0 0
holds if £ # 0 or @, (t;) # ®(ts). For the case of . (ty) = Z(ts), Eq. (4.7) is satisfied as
well according to Theorem 3.1, which proves that Eq. (4.3) is a sufficient condition.

Next, let us prove that Eq. (4.3) is a necessary condition. Assume Eq. (4.3) is not satisfied,
i.e., there exists a smooth curve y(-) € M n N on [—¢,¢e] and a § € [—¢,£]\{0} such that
J(&§) < J(0) = 0. Then, according to Eq. (4.6), one obtains

[ s> [ tepipar

Note that the extremal trajectory I1(7(+, p,(£))) is an admissible controlled trajectory of the
L'-minimization problem (cf. Remark 4.1). Thus, the proposition is proved. ]

Proposition 4.2. Given the extremal (Z(-),p(-)) on [0,t¢] such that each switching point is
regular (cf. Assumption 3.1) and Conditions 3.1 and 3.2 are satisfied, let | < n. Then, ifc > 0
is small enough, the inequality J"(0) = 0 (resp. the strict inequality J"(0) > 0) for every
smooth curve y(-) € M n N on [—¢, €] is a necessary condition (resp. a sufficient condition)

for the strict strong-local optimality of the extremal trajectory Z(-) on [0, t¢].

Proof. Since the final time ¢ is fixed, Eq. (4.2) is reduced to

J'(€) = A&) -y (&) (4.83)

Note that A(0) = p(t;). Taking into account the transversality condition that p(t;) L
do(Z(ts)), for every smooth curve y(-) € M NN on[—¢,e], we have J'(0) = A(0)y’(0) = 0
since y'(0) is a tangent vector of the submanifold M at Z(¢). Then, according to Proposition
4.1, this proposition is proved. []

4.2 Verifiable condition

Definition 4.4. Given the extremal (Z(-),p(+)) on [0,t;], denote by U € (R")* the vector of
the Lagrangian multipliers of this extremal such that

pty) = vdp(z(ty)).
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Proposition 4.3. In the case of | < n, given the extremal (Z(-),p(-)) on [0, ] such that each
switching point is regular (cf. Assumption 3.1), assume Conditions 3.1 and 3.2 are satisfied.
Then, the inequality J"(0) = 0 (resp. strict inequality J"(0) > 0) is satisfied for every smooth
curve Y(-) € M n N on [—¢, €] if and only if there holds

o {ap%f,z—oo) l&w(tf,z—m

~1
op, op, } N vd%(f(tf))} ¢ =0(resp. >0),

for every tangent vector ¢ € Tf(tf)/\/l\{()}.

Proof. Differentiating J'(£) in Eq. (4.8) with respect to ¢ yields

J'(E) = N(OY' (&) + Ay (&) (4.9)

Then, differentiating ¢(y(&)) with respect to £ yields

d%ﬂﬁ@(é)) = do(y())y'(€) =0,

d2
e (w(&) = [doy(€)y' ()Y (&) + do(y(€))y"(€) = 0. (4.10)
Since (Z(ts),p(ty)) = (y(0), A(0)), according to the definition of the vector 7 in Definition
4.4, one immediately has A(0) = vd¢(y(0)). Thus, multiplying  on both sides of Eq. (4.10)

and fixing £ = 0, we obtain

EAYOL X0 0) + 5 [Fou0)y 0] 5 0
= AO)y"(0) + [y ()] [Fd(y(0))] ¥/ (0)
= 0.

Substituting this equation into Eq. (4.9) yields

7(0) = X' 0) ~ [y O [P o(y(0)] y/0). @i
Note that we have
y(e - LR Sl o
e @1

Since the matrix dx(t s, p,(£))/0p, is nonsingular if Condition 3.1 is satisfied, we have

ox(ty, po(§))
0Py

ph(©)]" - )
| |
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Substituting this equation into Eq. (4.12) yields

VE) = op’ (tr, po(€)) laa’:(tf’po(g))]—l

P P Y'(§).

Again, substituting this equation into Eq. (4.11) and taking into account p, = p,(0) and
Z(ts) = y(0), we eventually get that for every smooth curve y(-) € M n N on [—¢, ] there
holds

70 = O { LR BB | o)y, @

Note that the vector '(0) can be an arbitrary vector in the tangent space Tz ,)X'\{0}, one
proves this proposition. O]

Condition 4.1. Given the extremal (Z(-),p(-)) on [0,t¢], let

CT apT (tf7 1_90) [aw(tfa 1_70
op, op,

)]_ —vd%@@m} >0,

be satisfied for every vector § € Ty ) M\{0}.
Then, as a combination Propositions 4.2 and 4.3, we eventually obtain the following result.

Theorem 4.1. Given the extremal (Z(-),p(-)) on [0,ts] such that every switching point is
regular (cf. Assumption 3.1), let | < n. Then, if Conditions 3.1, 3.2, and 4.1 are satisfied, the
extremal trajectory T(-) on [0, t¢| realizes a strict strong-local optimality (cf. Definition 4.1).

Consequently, in the case of [ < n, Conditions 3.1, 3.2, and 4.1, once satisfied, are sufficient
to guarantee a bang-bang extremal with regular switching points to be a strict strong-local
optimum.

4.3 Numerical implementation for sufficient conditions

To test Conditions 3.1 and 3.2, it amounts to compute the matrix 0x(t, Zo)/0p, on [0, t¢]. The
numerical procedure for computing the matrix dx(t, p,)/0p, is presented in Appendix C.

Once the extremal (Z(-),p(-)) = v(-,Py) on [0, ;] is computed, according to Definition
4.4, the vector v of Lagrangian multipliers in Condition 4.1 can be computed by

1

v = Blt;)do" (@(t7)) [do(@(t)))do" (= (t7)] " @.14)

Definition 4.5. We define by C € R™* "~V q full-rank matrix such that its columns form a
basis of the tangent space Tz ,) M.

75



CHAPTER 4. SUFFICIENT CONDITIONS FOR L!-EXTREMALS WITH VARIABLE TARGET

Then, one immediately gets that Condition 4.1 is satisfied if and only if there holds

CT { apT(tfa 1_90) law<tf7ﬁ0

N e
op, P, ] —vd ¢(w(tf))} C > 0. (4.15)

Note that the matrix C' can be computed by a simple Gram—Schmidt process once the ex-
plicit expression of the matrix d¢(Z(ty)) is derived. Thus, it suffices to compute the ma-
trix 0x(-,Py)/0p, on [0,tr] and the matrix dp” (-, B,)/0p, at t; in order to test Conditions
3.1, 3.2, and 4.1. (See Appendix C for the numerical procedure of computing the matrices

ox(-,py)/0p, and apT(-,z_QO)/ﬁpo on [0,%s].)

4.4 Numerical example for problems with variable target:
the three-body case

In this section, we consider the three-body problem modeled by Earth, Moon and a spacecraft.
Since the orbits of the Earth and the Moon around their common center of mass are nearly
circular (the eccentricity is around 5.49 x 10~2), and since the mass of a spacecraft is negligible
compared with that of the two celestial bodies, the CRTBP is valid (see, e.g., [91]). The
physical parameters corresponding to the Earth-Moon system are p = 1.2153 x 1072, d,, =
384,400.00 km, and ¢, = 3.7521 x 10° seconds (or 4.3427 days). The initial mass of the
spacecraft is specified as m, = 500 kg, the maximum thrust of the spacecraft engine is 1.0 N,

s

My

Tmaz = 1.0 ,
so that the initial maximum acceleration is 2.0 x 10~2 m?/s. The spacecraft initially evolves on
a circular geosynchronous Earth orbit (GEO) lying on the XY-plane such that the radius of the
initial orbitis r, = 42, 165.00 km. When the spacecraft moves to the point on X -axis between
the Earth and the Moon, i.e., || 7(0) ||= r,/d. — p (the initial state is fixed), we start to control
the spacecraft to reach a circular orbit around the Moon with radius r,,, = 13, 069.60 km such
that the L'-norm of control is minimized at the fixed final time ¢; = 38.46 days. Accordingly,
the initial state xq = (7o, vg) is given as

ro = (1,/dy — 11,0,0)" and vy = (0,v,,0)",

where v, is the non-dimensional velocity taking the value such that, without any control,
the spacecraft moves freely on the GEO, and an explicit expression of the function ¢(+) in
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Eq. (1.5) therefore is

[ 5 () = [1— 50,01 |7 —5(rm/ds)? |
3 holts) 17 =5

¢(xs) = vl (ty) - (r(ty) = [1 = p,0,0]") : (4.16)

r(ty) 1z

v (ty) 1z

where 1, = [0, 0, 1]7 denotes the unit vector of the Z-axis of the rotating frame OXYZ and
v, 18 the non-dimensional velocity taking the value such that the spacecraft, once steered to
a point x ; with ¢(x¢) = 0, will freely move on the final circular orbit around the Moon with
radius r,,,.

First, we compute the extremal (Z(-),p(-)) on [0,¢7]. We search a zero of the shoot-
ing function corresponding to a two-point boundary value problem [68]. A simple shooting
method does not allow one to solve this problem because one does not know a priori the struc-
ture of the optimal control. Moreover, the numerical computation of the shooting function and
its differential may be intricate, as the function may not even be differentiable (typically at
points corresponding to a change in the structure of the control strategy, that is a change in the
number of switchings, here). We use a regularization procedure [18] that smoothes the con-
trols discontinuities and get an energy-optimal trajectory first, then use a homotopy method
to find the real trajectory with a bang-bang control. Note that both the initial point &, and the
final constraint submanifold M lie on the XY -plane, in order that the whole trajectory lies on
the XY -plane as well. Fig. 4.2 illustrates the (non-dimensional) profile of the position vector
r along the computed extremal trajectory. The profiles of p, || p, ||, and H; with respect to
time are shown in Fig. 4.3; we can see that the number of maximum-thrust arcs is 15 with 29
switching points and that the regularity condition in Assumption 3.1 at every switching point
is satisfied. Since the extremal trajectory is computed thanks to necessary conditions, one
has to check sufficient optimality conditions to make sure that it is at least locally optimal.
According to what has been developed in Sect. 4, it suffices to check if Conditions 3.1, 3.2,
and 4.1 are satisfied. Using Eqgs. (C-1-C-4), one can compute §(-) on [0, ¢¢]. In order to have
a clear view, the profile of 4(-) on [0, ¢,] is rescaled by sgn(d(-)) = |6(-)|/*2 (see Fig. 4.4).
We can see that there exist no sign changes at switching points, and no zeros on smooth bang
subarcs. Thus, Conditions 3.1 and 3.2 are satisfied along the computed extremal. To check
Condition 4.1, differentiating ¢(-) in Eq. (4.16) yields

T

r(ty) —[1—p,0,0]" 0341 v(ty) 17 O34 @.17)

dqb(j(tf)) = 0351 'U(tf) r(tf> — [1 — 1,0, O]T 0551 1z
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Figure 4.2 — Non-dimensional profile of the position vector 7 of the L!-minimization trajec-
tory in the rotating frame O XY Z. The thick curves are the maximum-thrust arcs, while the
thin curves are the zero-thrust ones. The bigger dashed circle and the smaller one are the
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initial and final circular orbits around the Earth and the Moon, respectively.

Figure 4.3 — Profiles of p, || p, ||, and H; with respect to time along the L'-minimization

trajectory.

and

d*¢1(z(ty)) = (

d*63(T(ty)) = (
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4.5. CONCLUSION
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Figure 4.4 — The profile of sgn(5(t))|5(t)|*/1? with respect to time along the L'-minimization
extremal for the CRTBP.

where ¢;(-) : X > R, & — ¢;(x) fori =1, 2, --- , [ are the elements of the vector-valued
function ¢(x). Then, substituting the values of Z(ty) and p(¢y) into Eq. (4.14), the vector
can be computed. With the exception of the matrix C|, all quantities in Eq. (4.15) are obtained.
One can use a Gram-Schmidt process to compute the matrix C' associated with the matrix in
Eq. (4.17). Substituting numerical values into Eq. (4.15), we eventually obtain

T(t. D — -1
¢t {ap (gZ’pO) lam(g; pO)] N Ud2¢<f(tf))} C ~ 0.5292 > 0.
0 0

Thus, Condition 4.1 is satisfied. Fig. 4.5 shows the profile of J(-) with respect to y(-) € M N
N in a small neighborhood of Z(¢;). One can clearly see that J(-) > J(0) on [—&,]\{0}.
All the conditions in Theorem 4.1 are satisfied, So the computed L!-minimization trajectory
realizes a strict strong-local optimum in C-topology.

4.5 Conclusion

When the dimension of the target manifold is not zero, an extra second-order condition (cf.
Condition 4.1) involving the geometry of the target manifold and the Jacobi fields is devised.
This condition, once met, guarantees the variation of the cost functional on the target manifold
is positive. Therefore, if the final point is not fixed but varies on the target manifold, the extra
condition together with the no-fold conditions, i.e., Conditions 3.1 and 3.2, are sufficient
for the strict strong-local optimality of a bang-bang extremal (cf. Theorem 4.1). Finally,
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Figure 4.5 — Let X (¢) and Y (§) be the projection of the position vector r(£) on X- and Y-
axis of the rotating frame OXY Z, respectively, and let V,,(£) and V,(£) be the projection of
the velocity vector v(£) on X- and Y-axis of the rotating frame O XY Z, respectively. The

figure plots the profiles .J (&) with respect to X (), Y (§), Vx(£), and V,,(§). The dots on each
plot denote (J(0),y(0)).

approximating the Earth-Moon-spacecraft system by the CRTBP model, a transfer trajectory
is computed by combining a shooting method with a continuation method. The optimality of
the computed trajectory is tested thanks to the second order conditions developed.
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Chapter 5

Neighboring optimal feedback control

Due to numerous unavoidable perturbations and errors, one cannot expect a spacecraft con-
trolled by a precomputed optimal control (or nominal control) to exactly move on the corre-
sponding precomputed optimal trajectory (or nominal trajectory) to a desired target. In this
chapter, we shall establish the neighboring optimal feedback control, which is able to reduce
the errors of final conditions. Indeed, the neighboring optimal optimal feedback control is
one of the most important practical applications of optimal control theory (see [82, Chapter
5], e.g.). The classical way (see, e.g., [16, Chapter 6] and [33, Chapter 11]) to design the
neighboring optimal control is to solve an accessory minimum problem by minimizing the
second variation of the cost functional; a by-product is that it is impossible to construct the
neighboring optimal feedback control if the typical Jacobi necessary condition is violated (see
[48], e.g.). In those papers, a standing assumption is that the control function is continuous.
Regarding the bang-bang case, the neighboring optimal control consists not only of the cor-
rection of thrust direction but also of switching times. In this chapter, the neighboring optimal
control for L!-minimization problem is constructed from the geometric point of view based
on [82]. First, a parameterized family of neighboring extremals is constructed. Then, deriv-
ing the first-order term of the Taylor expansion of the parameterized neighboring extremals,
the neighboring optimal feedback on the direction of thrust as well as on switching times are
established.

5.1 Neighboring extremals

Throughout the chapter, we denote by (Z(-),p(+)) : [0,t;] = T*X and w(-) = (p(-),7(-)) :
[0,t7] — U the nominal extremal and the nominal control, respectively, and we assume the
nominal extremal is computed in advance.

Definition 5.1. Let W < T*X be a small tubular neighborhood of the nominal extremal
(Z(-),p(:)) on [0,ts], we say every Hamiltonian flow etH(a:O,po) on |0,ts], with the final

condition:

—

e (@, po) € {(x,p) e T*X |me M, p L T* M},

is a neighboring extremal of the nominal one if it lies in V.
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CHAPTER 5. NEIGHBORING OPTIMAL FEEDBACK CONTROL

In the next paragraph, the neighboring extremals will be parameterized.

5.1.1 Parameterization of neighboring extremals

Assumption 5.1. The matrix V(T (ty)) is of full rank.

As a result of this assumption, the manifold M is a local submersion. Then, let us define the
Lagrangian submanifold £; < T*X by

Ly={(z,p)eT*X |z e M, p L T:M}.

According to Definition 5.1, for every neighboring extremal (z(-), p()) € W on [0, ¢;], there
holds (xz(ts),p(ty)) € L;. Assuming N < Ly is a sufficiently small open neighborhood of
(Z(ty),p(tr)), there exists an invertible function F' : N” — R" such that both the function and
its inverse F'~! are smooth, i.e., for every g € R” there exists one and only one (x,p) e N
such that ¢ = F'(x, p). Let us define by

v :[0,t5] x F(N) - T*X, ~(t,q) = ¢! (a, p)

the Hamiltonian flow with the final condition v(¢;,q) = F~'(q), i.e., v(t;,q) e N = L; for
every q € F(N). Then, if g = F(z(t), B(t,)), we have (&(-),5()) = 7(-.@) on [0, /]

Definition 5.2. Given the nominal extremal (Z(-),p(-)) on [0,t¢], we denote by

Fq={t,z(t),p(t) e R x T*X | (z(t),p(t)) = ~(t.q), t€[0,t;], ge F(N)}

the g-parametrized family of neighboring extremals around the nominal one.

Obviously, once the tubular neighborhood JV is small enough, the graph of all the neighboring
extremals is covered by the projection II; of F.

Definition 5.3 (Existence of neighboring extremals). Given the nominal extremal (Z(-),p())
on [0,ty], we say that there exist neighboring extremals around this nominal one if and only if,
for every infinitesimal deviation Ax € R"™ and every time t € [0, y), there existsa q, € F(N')
such that (t) + Az = T1(y(¢, q,)).

Recall that the existence of neighboring extremals around the nominal one is a prerequisite
to construct the neighboring optimal feedback control (see, e.g., [16, 48]). In the next para-
graph, through analyzing the projection behavior of the family 7, at each time ¢ € [0, ¢5), the
conditions for the existence of neighboring extremals around a bang-bang nominal extremal
will be presented.
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5.1. NEIGHBORING EXTREMALS

5.1.2 Existence conditions for neighboring extremals

Hereafter, we denote by t, € [0, ;) the current time and let «, € X'\ M be the measured (or
actual) state of the spacecraft at ¢;. Generally speaking, there holds

Ax :=x, — T(tg) # 0,
due to unavoidable perturbations and errors.

Assumption 5.2. Let t,, > 0 be the minimum time to steer the system Y. by measurable
controls u(-) : [0,t,,] — U from the actual state x, € X\M to M. We assume that there
exists at least one point x; € M such thatty —ty = t,,.

As a combination of this assumption and the controllability results in Chapter 2, there exists
at least one optimal trajectory «(-) € X’ on [to, t¢] such that x(ty) = x, and z(t;) € M. (See
[31] for the existence of optimal solution.)

Remark 5.1. Given the nominal extremal (Z(-),p(-)) on [0,ts] and a time t, € [0,ty), de-
note by O,, ¢ X\ M an infinitesimal open neighborhood of the point Z(ty). Then, if the
point T(ty) lies on the boundary of the domain 11(~(ty, F(N))) for a subset N < Ly,
no matter how small the neighborhood Oy, is, there are some x, € O;,\{Z(ty)} such that

. ¢ I(7(to, F(N))).

If the projection II of F, at t, is a fold singularity, the point () lies on the boundary of
the domain TI(v(to, F'(N))) for a sufficiently small subset V, as is shown by the right plot in
Fig. 5.1.

p p
"]{[:f,F(N:l) / E“’"“h«-.,m_
Il I
>‘\“f(t=ti))
“a(t) 7(t, q) ) (t) (t, F(N))
B T -
II(y(t, F(N))) I(y(t, F(N)))

Figure 5.1 — The section of the family F, at a time ¢ € [0, ).

Without loss of generality, we assume that, from the current time ¢, on, there exist k € N
switching times ¢; (i = 1,2,--- , k) such that ty < t; <ty < --- < {} <ty along the nominal
extremal (Z(-),p(-)) on [tg,tf].
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CHAPTER 5. NEIGHBORING OPTIMAL FEEDBACK CONTROL

Assumption 5.3. Along the nominal extremal (Z(-),p(-)) on [to,ts], each switching point
(®Z(t;), P(t;)) is assumed to be a regular one, i.e., H\(Z(t;),D(t;)) = 0and HyZ(t;),p(t;)) #
Ofori=1,2, ---, k.

For the sake of notational clarity, let J,(¢) be the determinant of the matrix dx(¢,q)/dq, i.e.,

-~

ox

Og(t) := det laq (t,a)] te0,tf].

According to the technique to establish the no-fold conditions in Chapter 3, one immediately
gets that the projection II of F, ceases to be a diffeomorphism if either 4(¢) = 0 for ¢t €
(ti,tiz1) or 0g(t;i—)0q(t;+) < Ofori =1, 2, --- | k. As aresult of Remark 5.1, one obtains
the following.

Remark 5.2. Around the nominal extremal (Z(-),p(-)) on [to, ts], there exist some deviations
Ax with |Ax|| > 0 small enough such that T(t) + Ax +# I(y(t,q)) for every q € F(N) if
either 04(t) = 0 or §4(t;—)dq(ti+) < 0.

This remark shows every neighboring extremal (-, q) for ¢ € F(N') cannot pass through
the point @, at ¢, if either d4(t) = 0 or d4(t;—)0q(t;+) < 0. Recall that the classical vari-
ational method states that there exist no neighboring extremals if ,(¢) = 0 since the gain
matrix explodes in this case (see [16], e.g.). The geometric interpretation is that the equality
dq(t) = 0 actually induces the lose of the diffeomorphism of II(F,). As a consequence, al-
though the Jacobi necessary condition is satisfied, i.e., d4(t) # 0 for t € [to, ), there exist
no neighboring extremals if the transversality condition at a switching time is violated, i.e.,
8q(ti—)oq(ti+) < 0.

Remark 5.3. Given the nominal extremal (Z(-),p(-)) = v(-,q) on [0,t¢] and a point ., €
X\M such that the deviation Ax = x, — T(ty) is small enough for ty € [0,ts), assume
Assumption 5.2 is satisfied. According to the inverse function theorem, there then exists a
q. € F(N) such that x, = I1(~(to,q,)) if the mapping q — 11(~(to,q)) on the domain
F(N) is a diffeomorphism.

Accordingly, the conditions that guarantee the projection II of the family JF, at each time
t € [to,ts) is a diffeomorphism are also sufficient for the existence of neighboring extremals.
According to Chapter 3, if Assumption 5.3 is satisfied and the subset V' is small enough, the
mapping q — x(t, q) is a diffeomorphism for each time ¢ € [¢y,ts) if §4(¢) # O on [0, %) and
0q(ti—)0q(t;i+) > 0fori =1, 2, --- | k. Then, we make the following assumption.

Assumption 5.4. 0,(t) # 0 fort € [0,t5) and 64(t;—)0q(ti+) > 0fori=1,2,--- k.

5.2 Neighboring optimal feedback control law

Due to unavoidable navigational errors and uncertainties in dynamical models, a spacecraft
cannot be expected to exactly fly on the nominal trajectory (-) = II(vy(-,q)) on [to,tf]. As
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5.2. NEIGHBORING OPTIMAL FEEDBACK CONTROL LAW

a result of Assumption 5.4, if the deviation Az is small enough, there then exists g, € F(N)
such that Z(ty) + Az = x(ty, q,.). Obviously, a straightforward idea to generate the optimal
control command is to recompute the new extremal (-, g,,) on the interval [ty, ¢ ;| such that,
if no further perturbations occur, the spacecraft can be steered by the associated new optimal
control function u(7(-, q,.)) on [to, t¢] to fly to M at ¢;. Although various numerical methods,
e.g., direct methods [58, 79], indirect methods [17, 18, 31], and hybrid methods [67], are
available in the literature, the onboard computers can hardly afford this computation in each
guidance cycle, especially for the low-thrust orbital transfer problem with a long transfer time.

Next, the neighboring optimal feedback control law, which is the first-order term of the
Taylor expansion of the new optimal control u(v(-,q,)) on [ty,?s], will be derived such
that the spacecraft can be controlled to approximately move on the new extremal trajectory

H(V(? q*)) on [t07 tf]'

5.2.1 Neighboring optimal feedback on switching times

Note that ¢;(q,,) is exactly the i-th switching time of the new extremal v(-, g,.) on [to,¢f]. Set
Aq := q, — q. Then the Taylor expansion of ¢;(q,,) is

dt;(q

where Oy, (|Aq|2) is the sum of second and higher order terms. Note that there holds
Hy(z(ti(q). q),p(ti(q),q)) =0

for every g € F(N). Differentiating the identity H,(x(t;(q), q), p(ti(q),q)) = 0 with re-
spect to q yields

0 - 8H1(7(gZ(Tq),q)) (:b(ti(q),q)dté;q) +8w(t;(;1),q))
N 5H1(7§Z§¢1%Q)) (p(ti(q),q)dt;;q) N 5p(ti(a(;1)7q))
_ HI(V(ti(q)’q»dtZéEJq) +5H1(va(Z(Tq),Q))0w(t§;1),q)
0H,(y(ti(q),q)) op(ti(q), q)

. 2
* op” oq (5-2)

Since Hy(%Z(t;), P(t;)) # 0 by Assumption 5.3, one obtains

dii(@) _[aH@(ti),ﬁ(ti))&w(ti,a)
dq oxT q
+3H1($él;;;,p(ti)) 5p(;;, q)] JEL (@ (), B(1), (5.3)
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where the two vectors

T @) 5(0) = 7100 L2 @0, w(@(0). B(0)),
@), Blt) = £ (@(t). w(@(). B),

can be directly computed once the nominal extremal (-, q) on [to,tf] is given. For every
sufficiently small Az and every time ¢, € [0, ?s), one has the following the Taylor expansion

Agq" = q, -7

—\ 711
- l%ﬁ;q)} Az + Og(|Az|?), (5.4)

where O,(|Az|*) denotes the sum of second and higher order terms. For notational clarity,
let us define a matrix-valued function S : [to,tf] — R"*™ as

s - Lig) [Z—Z”(t@] . (5:5)

Set 3 5
&L xr
(Silz—ti,_ —t,_ Ax.
It is clear that dx; is the first order term of the Taylor series of x(;, q,) — T (¢;). Substituting
Eq. (5.4) and Eq. (5.3) into Eq. (5.1), one gets

OH\(x(t). P(t:)) | OH: (T (1), B(t:))
oxT op”

dti(q)
dq

s<ti>] Sz, FL (@ (1), BI(1)

Oq(|Azl) + Oy, (|1Ag]).

Let

ity = [5H1<f<ti>vﬁ<ti>> | Hi(&(t). B(t,)

= G s(0) | swyi(@te)pe)) 59

be the first-order term of the Taylor series of At¢;. Then, if Az is infinitesimal, it suffices to
use t; + dt; as the neighboring optimal feedback on switching times.

5.2.2 Neighboring optimal feedback on thrust direction

Set (Ap,, Ap,, Apy,) := Ap := p(ty, q,.) — p(t;, q). Note that the maximum condition in
Eq. (1.12) gives a natural feedback on thrust direction, i.e., if |p, (to) + Ap,|| # 0, the optimal
thrust direction on the new extremal (-, q,.) at ¢y is

_ p,(to) + Ap,
ol il +09) = A
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5.3. NUMERICAL IMPLEMENTATION

The Taylor expansion of p(tg, g, ) around q is

__op, _

Ap = plto,0.) ~ p(to.@) = 5t DAG" + Op(lAgl). (5.7)
where Op(|Aq|2) is the sum of second and higher order terms. Substituting Eq. (5.4) into
Eq. (5.7) leads to

op(to.q
8p = slt)de + PLTo,(aaf) + 0,(|20P) 58)
Denote by S; € R3*7 the first three rows, S, € R**7 the forth to sixth rows, and S5 € (R7)*

the last row of the gain matrix S such that

S
S =1 S,
S3

Let
5pv = SQ(tO)Ama

be the first order term of the Taylor series of Ap,. It suffices to use dp, to replace Ap, if
Az is infinitesimal. Consequently, assuming that the deviation Ax is infinitesimal and that
[P (to) + 0p, | # 0, we can use

_ pv(to) + 6pv
Hﬁv(tO) + 5pv“ 7

w(zs, P(to) + dp(to)) (5.9

as the neighboring optimal feedback on the thrust direction.

5.3 Numerical implementation

Once the perturbation Az is measured at ¢y € [0, ?s), it amounts to compute the two matri-
ces 0x(ty,q)/0q and dp(ty,q)/0q in order to compute the neighboring optimal feedback in
Eq. (5.6) and Eq. (5.9).

5.3.1 Differential equations

It follows from the classical results about solutions to ordinary differential equations that the
trajectory (x(-,q), p(-,q)) and its time derivative (x(-, q), p(-, q)) between switching times
are continuously differentiable with respect to gq. Thus, taking derivative of Eq. (1.7) with
respect to g on each subinterval (¢;,7;,1) yields the following homogeneous linear matrix
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differential equations

d ox —
d % (¢
i N BRER TS
dt oq (t7 q)
Recall that the two matrices dx(-,q)/dq and dp(-, q)/dq are discontinuous at each switching

time t; (i = 1,2,---,k). By virtue of [63, Lemma 2.6], the updating formulas for the two
matrices at each switching time #; are

2 (f, 4 q) = 2F—,q) — ApP0w) d@)

oq oq op dq (5 11)
op (T — op (T 0H; ( dt;(q ’
D(1+,q) = Z(t—,q) + Ap Gl LD

where Ap; = p(t;+) — p(t;—) and dt;(q)/dq can be computed by using Eq. (5.3).

Once the final conditions are given, one can use Eq. (5.10) and Eq. (5.11) to compute the
two matrices 0x(-, q)/0q and 0p(-, q)/0q on the whole interval [ty, ¢]. In the next paragraph,
the procedure for computing the values of the final matrices dxz(t, q)/0q and dp(ts,q)/0q
will be presented.

5.3.2 Final conditions

Typically, the sweep variables are used to compute the final values 0z (s, q)/dq and Op(ts,q)/0q
(see [16, 82], e.g.). In fact, the row vectors of the matrix

ox(tr,q)/0q
op(ts,q)/0q
form a set of basis vectors of the tangent space Tz, Ly with Z; = (Z(t;),p(ts)). Therefore,

to compute the final values dx(t;,q)/0q and Op(ts,q)/0q, it amounts to compute a basis of
T:. L.
zp~f

Final conditions for the case of [ = n

If | = n, the final state is fixed since the submanifold M reduces to a singleton. Thus, in
the case of [ = n, one can simply set ¢ = p” (¢;), which indicates

ox

op
tr,q) =0, and —(tr,q) = I, (5.12)
q(fQ) 3q(fQ)

where 0,, and [,, denote the zero and identity matrix of R™*", respectively.

Final conditions for the case of 0 <[ < n

Note that II(N) < II(Lf) and II(L;) = M. Thus, the subset II(N\) is diffeomorphic to
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5.3. NUMERICAL IMPLEMENTATION

R"~!. In analogy with parameterizing neighboring extremals, if the subset " is small enough
and if | < n, there exists an invertible function F'; : II(N') — R" ! such that both the function
and its inverse F';! are smooth. According to Eq. (1.10), for every (x, p) € N, there exists a
v € (R))* such that

p =vVo(x). (5.13)

Let us define a function Fy : N' — (RY)*, (z,p) — Fa(zx,p) as

Fy(x,p) = p' Vo' (x)[Vo(x) Vo' ()],

such that v = Fy(x, p). By Assumption 5.1, if the subset N is small enough, the function
F, is a diffeomorphism from the domain A onto its image. Thus, it is enough to set F' =
(F'1, F5) such that g = (q,,v). Let

q, = Fl(i(tf))a

then we have g = (q,, V) where

1

v =B (t) VT (@ (1)) [Vo(@(ty) Vo' (@ ()]

denotes the vector of the Lagrangian multipliers for the nominal extremal v(-,q) on [0, /]. A
direct calculation leads to

S - |t ). .14
2—’;@@ _ :819;21,6)’513(;556)]
- leﬁiVQQbi(w(tf,a))%;’a),VQBT(:c(tf,G)) : (5.15)
[ i=1
where ¢; : X — Rand7; € R forv = 1,2,--- [ are the elements of the vector-valued

function ¢(x) and the vector 7, respectively. Since (¢, q) is not a function of v, there holds

8$(tf, G)
ov

= 0, x;- (5.16)

Taking the differentiation of ¢(x (s, q)) = 0 with respect to g, leads to

ox(tr, q)

= 0. (5.17)
0q,

v¢(w<tf7 ﬁ))

Once the matrix V¢(z (s, q)) is given, one can compute the full-rank matrix dx(ts,q)/dq,
by a Gram-Schmidt orthogonalization.

All the necessary quantities for computing the final conditions are now available for | <
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CHAPTER 5. NEIGHBORING OPTIMAL FEEDBACK CONTROL

n. Therefore, one can compute the gain matrix S by integrating Eq. (5.10) from the above
conditions backward between switching times and by using Eq. (5.11) to update the boundary
condition at each switching.

5.3.3 Riccati differential equation

Note that one has to solve a 2 x n? order of differential equations in order to compute the gain
matrix S(t) if using Eq. (5.10) and Eq. (5.11). Next, based on [82], the differential equations
of the gain matrix S(¢) will be derived such that only n? order of differential equations are
required to solve.

According to Eq. (5.5), we have

ox op
S(t)—(t,q) = =—(t,q
05t = L),
for t € [t;,t;41] withé = 0, 1, ---, k. Differentiating this equation with respect to time
yields
. O0x ox op
S()==(,q) + S()=—=(-,q) = =(-,9),
()aq( q) <)aq( q) é’q( q)

on [t;,t;11]. Substituting Eq. (5.10) into this equation, we hence obtain

S() = —Hea(®@(-),B()
(-

) — Hap(Z(-),P())S(-
—5() Hpe (Z(-), P(-)) —

)
S()Hpp(®(-),P(1)S(), (5.18)
on [¢;,t;1]. According to Eq. (5.11), the gain matrix S(-) is discontinuous at each switching

time 7;. Assuming the matrix dz(Z;—, q)/dq is nonsingular and multiplying [0z ({;,—, q)/q] -
on the latter equation of Eq. (5.11), one obtains

s6-) = Lo ||
- | Zar - 80 L) w0)p0) 4L
< | + st ) @(0) L |
- { ) - a0 L@, o)) 42 [j—”{j(m,a)]_}
< L) | + S a@)e@) L | L s
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Let us define a vector-valued function R(%;) : R, — (R™)* as

R - @ [a_w(zﬁ,a)}_l.

dqg | dq

Substituting this equation into Eq. (5.3) yields

Bt~ - | PO SR PO 1) | (@) o)

Given a nonsingular matrix A € R™*™ and two vectors b € R” and ¢ € R", if the matrix
A + be? is nonsingular, the equation

- ., A'bc’AT!
(A + bCT) ! =A T m, (520)

is satisfied (see, e.g., [82, Lemma 6.1.4]). Thus, if the matrix 0z (¢;+, q)/dq is nonsingular,
taking into account Eq. (5.20), one gets

S ) | o) + Aot (0. B(0)

o h@E).@E)RE)
<3} N AR=TATE

Substituting this equation into Eq. (5.19), we eventually obtain the result

of

(5.21)

@k

S(tm) = [s< - 80 L @0 w) B R <>]

o fﬂ (1), (1) R(t)
P" T R R 7 (), <>J' 622

This formula provides the required boundary condition for Eq. (5.18) on the interval [¢;_1, ;].
Then, the gain matrix S(-) can be propagated further backward by integrating the Riccati
differential equation in Eq. (5.18). Note that S(t;) = oo since the matrix dx(ts,q)/0q is
singular. One can use Eq. (5.10) to integrate backward from ¢; on a short interval [t, ]
with t; < t;. Then, substitute the corresponding values into the matrix S(¢;), one can use
Eq. (5.18) and Eq. (5.22) to get S(-) on [0, t,].

Once the matrix S(-) on [0,ty) is computed offline and stored in the onboard computer,
the online computation is left to compute Eq. (5.6) and Eq. (5.9) by interpolating the sampled
gain matrices stored in the onboard computer.

Remark 5.4. This chapter is a preliminary step to derive the neighboring optimal feedback
on thrust direction and switching times and to present a geometric interpretation between the
sufficient conditions and the existence of neighboring extremals. So, the computational and
operational issues in practice for storing and interpolating the gain matrix is not discussed
here.
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5.4 Numerical examples for neighboring optimal control

The NOC derived in this chapter is applied to orbital transfer problems in the two-body prob-
lem and two cases (case A and case B) are simulated.

5.4.1 Case A: Constant mass model

For case A, we consider that the parameters are the same as those in Tab. 3.2. The nominal
trajectory and control have been computed (see Fig. 3.5). Perturbations on the initial state and
on the propulsive parameters are considered. Each perturbed component of the initial state is
subject to a normal distribution ( X ~ N(u,0?)) where the mean value y and the 30-value
are presented in Tab. 5.1. According to [73], the thrust magnitude (or the acceleration) is

Table 5.1 — Case A: Statistical information for the perturbations.

Initial state: X Y A Ve Vy V.,
w: -46,500.0 km 0 0 0 -1,452.98 m/s -178.51 m/s
30: 10 km 100km 10km 50 m/s 50 m/s 50 m/s

subject to small fluctuations, which has been modelled through a trigonometric series with
random coefficients

5 5
Tmax(t) = Toort ( Z ay sin(2kmt) + 2 Akt5 COS(2k;7rt)> (5.23)

k=1 k=1

nom

where 722" > ( is the nominal maximum thrust. The coefficients {aj};—1.... 10 have a random

Gaussian dlstrlbutlon centered around zero and with a 30 value of 0.027,297".
A Monte Carlo campaign (with 100 runs) is performed to show the statistical information
on the accuracy of the NOC. The statistical information for the errors on the final conditions

are presented in Tab. 5.2. Moreover, the time evolutions of the errors on semi-major axis,

Table 5.2 — Case A: Statistical information for the errors on final conditions.

Final errors:  da (m) de 01 (deg)
p: -1535 1.33x107*% 4.32x 1076
o: 9098 3.75 x107* 9.93 x 1076

inclination, and eccentricity are portrayed in Figs. 5.2-5.4, respectively, showing that the
errors tend to zero at the final time.
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Figure 5.3 — Evolution of errors on inclination for Monte Carlo campaigns.
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CHAPTER 5. NEIGHBORING OPTIMAL FEEDBACK CONTROL

5.4.2 Case B: Varying mass model
For case B, the physical parameters for numerical computations are listed in Tab. 5.3. Denote

Table 5.3 — Physical parameters for computing the nominal trajectory for the NOC.

Earth gravitational constant z.:  398600.47 km3/s?

Gravity at sea level go: 9.80 m/s?
Initial mass my: 1500.00 kg
Specific impulse value /,: 2000.00 s
Maximum thrust 7 ,: 10.00 N
Fixed final time ¢ : 157.88 hours

by a, e, i, w, €, f the semi-major axis, the eccentricity, the inclination, the argument of
periapsis, the argument of ascending node, and the true anomaly of the classical orbital ele-
ments (COE’s). The conditions for initial and final orbits are presented in Tab. 5.4 in terms
of the COE’s. In order to achieve a stable numerical computation [19], we use the modified

Table 5.4 — The initial and final conditions in terms of the COE’s.

COE Initial conditions Final conditions

a 26,571.429 km  42,165.000 km

e 0.750 0

! 30.000 deg 0

w 0 Undefined
0 Undefined

f 7 Undefined

equatorial orbital elements (MEOE),

P = a(l—¢%,

e, = ecos(w+Q),

e, = esin(w+ Q),

h, = tan(i/2)cos(Q2),
y = tan(i/2)sin(Q),
I = f+w+Q,

to compute the optimal solution. Note that the initial true longitude is [, = 7 (see Tab. 5.4).
Let the final true longitude be [; = 9 x 27.
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The 3-dimensional position vector () on [0, ¢¢] is plotted in Fig. 5.5, showing that all

10 o Initial Orbit

° e — ~ Final Orbit
- - ‘ e
= 0
N

-5 e

Figure 5.5 — The 3-dimensional trajectory 7(-) on [0, ] for the low-thrust multi-burn fuel-
optimal orbital transfer problem in a Cartesian coordinate system. The arrows denote the
thrust direction on burn arcs.

the burn arcs occur around the apogees and perigees.

Remark 5.5. Note that B > 0 as I, takes a finite value (see Tab. 5.3). Thus, the L!-solution

realizes a minimum fuel consumption.

To see the regularity conditions, the profiles of p(-), H;(+), and ||p,(-)| with respect to time on
[0, ] are plotted in Fig. 5.6. It is seen from that figure that the number of burn arcs along the
fuel-optimal trajectory is 13 with 24 switching points and that each switching point is regular
(cf. Assumption 5.3). The profiles of semi-major axis a, eccentricity e, and inclination ¢ along
the low-thrust fuel-optimal trajectory are reported in Fig. 5.7.

With the exception the final mass m ¢, all other final states are fixed if we use the MEOE as
states such that @ = (P, e, ey, by, hy, [, m)" and p = (pp, Pe, . Pe, > Phos Phys D1s Pm) " - Thus,
applying Eqgs. (5.14-5.17), we get the following final condition:

ox 06 Ogx1 op, _ Is  Ogx1
0T @) = d P, q) - . 5.24
aq( £4) ( 0. 1 ) an aq( X)) ( 0a 0 > (5.24)

Starting from this final condition, we propagate Eq. (5.10) backward and use the updat-
ing formulas in Eq. (5.11) at each switching time to compute the matrices dx(-,q)/dq and

op(-,q)/dq on [0,s].
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1 | | | | | |
0 20 40 60 80 100 120

Time (h)

Figure 5.6 — The profiles of p(-), H1(-), and || p,(-) || with respect to time on [0, ¢ 7] along the
low-thrust multi-burn fuel-optimal trajectory.
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Figure 5.7 — The profiles of eccentricity e, inclination ¢, and semi-major axis a against time
along the low-thrust multi-burn fuel-optimal trajectory.

To have a clear view, the profile of sgn(d,(-)) x |64(-)|/? instead of &,(-) on [0,] is
plotted in Fig. 5.8. Note that the function sgn(J,(-)) x |§]/2° on [0, ;] can capture the sign
property of J,(-) on [0,7;]. We can clearly see from this figure that d,(t) # 0 for ¢t € [0, t¢)
and 04(t;—)04(t;+) > 0 at each switching time. According to [82], the low-thrust multi-burn
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5.4. NUMERICAL EXAMPLES FOR NEIGHBORING OPTIMAL CONTROL

fuel-optimal trajectory on [0, ¢ ¢] realizes a relative optimum. (See [82] for detailed definition
of relative optimum.) In addition, for every sufficiently small deviation Az from the nominal
trajectory Z(-) at every time t, € [0, tf), there exists a neighboring extremal (z(-), p(-)) with
its graph in F, such that x(ty) = Z(to) + Ax. Thus, one can construct the neighboring
optimal feedback control around the nominal trajectory. In order to see the occurrence of

Switching time

A
= 0.4 [ UMA / ey

=03 ——N
———, |
S o2r | ™
= -
T 01f N
4 —
O 1 | | | | | | \ J
0 20 40 60 80 100 120 140 160
Time (h)

0.2 W
—tf .
Focal time
° / / T

-0.2 b~

I | | |
-150 -100 -50 0 50 100 150

Figure 5.8 — The top plot is the profile of sgn(d,(t)) x |04(t)[*? on [0,¢;] and the bottom
plot is the profile of sgn(J,(t)) x |64(t)|Y/1° on [, %] .

1/10 on the

focal points or to see the sign change of d,4(t), the profile of sgn(dq(-)) % |4()|
extended time interval [—t¢, ¢ /] is plotted in the bottom subplot of Fig. 5.8. Apparently, there
exists a sign change of J,(t) at the switching time ¢, ~ —81.716 h. Thus, a focal point occurs
at t., which implies that the nominal extremal (Z(-), p(-)) on [to, 7] is not optimal any more
if ty < t.. In addition, as is shown by Remark 5.2, it is impossible to construct the NOC once
to < te.

Perturbations on the initial state and on the propulsive parameters are considered. Each
perturbed component of the initial state is subject to a normal distribution where the mean
value 1 and the 3o-value are presented in Tab. 5.5. Note that the perturbations on the initial
mass are not considered since the corresponding perturbations are equivalent to those on the
thrust magnitude or on the acceleration. The perturbations on thrust magnitude on burn arcs
are subject to Eq. (5.23). Then, a Monte Carlo simulation (including 100 runs) is performed to
show the statistical information on final conditions. The statistical information for the errors
of final conditions is presented in Tab. 5.6, showing that the standard deviation is reduced
from 10 km at initial time to 0.45 km at the final time in terms of semi-major axis. In addition,
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Table 5.5 — Case B: Statistical information for the perturbations.

State: P €s ey h Dy l
pe 11,6250 km  0.75 0 0.26795 0 T
30: 10 km 0.001 0.001 0.001 0.001 0.001

Table 5.6 — Case B: Statistical information for the errors on final conditions.

Errors:  da (m) de 017 (deg)
p: o 90.11  9.25x 1075 1.39 x 10~*
o: 451.69 7.59 x107% 1.08 x 107*

the standard deviations in terms of the inclination and the eccentricity are small enough.
Figs. 5.9-5.11 portray the time evolutions of the errors on semi-major axis, inclination,
and eccentricity, respectively, showing that the corresponding errors tend to zero at the final
time.

5.5 Conclusion

In this chapter, the neighboring optimal feedback control for the L!-minimization problem
with fixed final time is established. The crucial step is to construct a parameterized family
of neighboring extremals around a nominal extremal. A geometric interpretation is given
to show that the projection of the parameterized family is a fold singularity if the Jacobi
necessary condition is violated. As a result, it is concluded that it is impossible to construct
the neighboring optimal control for the bang-bang case if either the Jacobi necessary condition
between switching times or a transversality condition at switching times is violated. On the
contrary, there exist neighboring extremals around the nominal one such that any sufficiently
small deviated state can be passed by a neighboring extremal if the generalized disconjugacy
conditions between and at switching times are satisfied.

The neighboring optimal feedback control is exactly the first-order term of the Taylor
expansion of the extremal control corresponding to the parameterized neighboring extremal.
Results show that the differential equation of gain matrix between switching times is more
or less the same as the Riccati differential equation of [16]. However, the gain matrix is
discontinuous at each switching time. So, the gain matrix has to be updated by an extra
formula at each switching. Finally, two fixed-time finite-thrust orbital transfer problems are
computed and Monte Carlo tests are performed to show that the neighboring optimal feedback
control significantly reduces the errors of final conditions.
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Figure 5.10 — Case B: Evolution of errors on inclination for Monte Carlo campaigns.
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Chapter 6

Research summary and future directions

6.1 Research summary

This thesis is concerned with the L!-minimization for the translational motion of a space-
craft controlled by finite-thrust propulsion systems and subject to the gravitation of multiple
celestial bodies. The applications into the circular restricted three-body problem have been
treated in detail. First order necessary conditions have been derived by using the Pontryagin
maximum principle, revealing the existence of bang-bang and singular controls. Singular ex-
tremals have been analyzed, recalling the existence of the Fuller (or chattering) phenomena
according to the theorems developed by Marchal [53] and Zelikin and Borisov [95, 96].

The first contribution of this work is that the controllability for the Keplerian motion
(u = 0 or 1) with low-thrust control systems has been addressed (cf. Chapter 2) by using
some geometric techniques of [34, 87]. Since the drift vector field for the circular restricted
three-body problem, where i € (0, 1), is recurrent, the theorems established in Chapter 2
shows that the controllability of the CRTBP with low-thrust control systems holds as well
in some appropriate subregion of state space [17]. Moreover, taking into account some state
constraints, it is shown that the Keplerian motion is controllable if and only if the maximum
thrust is bigger than a limiting value. This result makes sense for de-orbit problems and orbital
insertion problems where one has to make sure the satellite moves outside of the atmosphere
around the Earth.

The second contribution of this work is that the sufficient second order conditions for
strong-local optimality in C°-topology were established in Chapters 3 and 4. To establish
the sufficient conditions, a parameterized family of extremals has been constructed such that
the reference extremal can be embedded into a field of extremals. By studying the projection
behavior of the parameterized family, two “no-fold conditions” ensuring the projection of the
field is a local diffeomorphism have been devised (see Conditions 3.1 and 3.2). If the end-
points are fixed, the two no-fold conditions are sufficient to guarantee the reference extremal
is a strong-local optimum in C°-topology provided that each switching point is regular (cf.
Theorem 3.1). Regarding the scenario that the target point is not fixed but varies on a mani-
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fold, an extra condition (cf. Condition 4.1) involving the geometry of the target manifold and
the Jacobi fields has been established for the strong-local optimality. It is concluded that the
extra condition together with the two no-fold conditions are sufficient to guarantee the strong-
local optimum of the reference extremal (cf. Theorem 4.1). Since those three conditions are
related to the Jacobi fields, the numerical test of the sufficient conditions eventually turns to
computing the Jacobi fields. The associated numerical procedure is detailed in Appendix C.

The last part of the research aims at establishing neighboring optimal feedback control
law for the L!-minimization (cf. Chapter 5). The neighboring optimal control is a classical
topic in optimal control and dates back to the work of, e.g., Bryson [16], Kelley [39], and
Breakwell [13]. Since the optimal control function for the L!-minimization exhibits a bang-
bang behavior, the neighboring optimal feedback consist not only of the correction of thrust
direction but also of the correction of switching times. Unlike the classical variational method
to solve an accessory minimum problem, the neighboring optimal feedback control in this
work has been established by deriving the first order term of the Taylor expansion of the
extremal control corresponding to a parameterized family of neighboring extremals.

6.2 Future directions

In this work, the time interval is considered fixed, the mass of the satellite is considered as
a constant, and the constraints are active only at boundary points. Therefore, the following
possible extensions are identified:

Sufficient optimality conditions for fuel-optimal problems: The L!-minimization is equiv-
alent to maximizing the final mass if 5 > 0; that is the important fuel-optimal control problem
in astronautics. Once the mass is not constant but varying (3 > 0), the state & consists of not
only r and v but also m. Note that

ot ) = 5P =
since p(t, p,) for t € [0,t/] is a piecewise constant along every nonsingular extremal. Thus,
the matrix dx(t,p,)/0p, is singular on [0,t,] as dm(0,p,)/0p, = 0. Consequently, the
inequality §(¢) # 0 in Condition 3.1 cannot be used to test conjugate points any more. There-
fore, a natural extension of this work is to establish numerically verifiable no-fold conditions

for mass varying model.

Sufficient optimality conditions for free-time problems: Once the final time ¢ is left free,
there holds H (z(-), p(-)) = 0 on [0, t;] for every minimizing extremal (x,p) € T*X. Thus,
every minimizing extremal lies in the codimension one manifold

H:={(x,p) e T*"X | H(z,p) = 0}.
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As a result, there holds
vank [0 (t, By)/Opy] < n — 1

for t € [0,t7] (see [9]). Again, the inequality 6(¢) # 0 in Condition 3.1 cannot be used to
test conjugate points for free-time problems. Therefore, an extension of this work would be
to establish the numerically verifiable no-fold conditions for free-time problem.

Sufficient optimality conditions for optimal control problems with path constraints: In
this research, the sufficient optimality conditions have been established for optimal control
problems with constraints of boundary points only. Many practical problems of engineering
or scientific interest can be formulated in the framework of optimal control problems with
state space constraints. Examples come from various disciplines, e.g., the space shuttle re-
entry problem. Despite of its importance, there still exists a large gap between the theories
of necessary and sufficient conditions for optimality for optimal control problems with state
space constraints. The literature on sufficient conditions for optimality for optimal control
problems with state space constraints is limited. A natural extension of this work would be to
establish such conditions for the optimal control problems with path constraints.

Sufficient optimality conditions for singular extremals: The sufficient optimality condi-
tions for singular extremals have not been considered in this research although the existence
of singular extremals is presented. Restricting the order of singular extremals to one, the
sufficient conditions for bang-singular extremals have been studied by Poggiolini and Stefani
[72] from the Hamiltonian point of view. A possible extension of this work is to establish the
sufficient second order optimality conditions for second order singular extremals.

Neighboring optimal feedback control for free-time problems: Once the final time ¢ is
left free, the neighboring optimal feedback control consists of not only the correction of the
thrust direction and the switching times but also the correction of the final time. Moreover,
the conditions for the existence of neighboring extremals would be different from Conditions
3.1 and 3.2. Therefore, a future work would be to consider the neighboring optimal feedback
control for free-time problems.

Neighboring optimal feedback control with path constraints: The computation of solu-
tions for optimal control problems with state constraints is much more difficult than that for
optimal control problems without state constraints. Therefore, the applications of the optimal
control problems with state constraints demand for a theory of neighboring extremals.

Neighboring optimal feedback control for singular extremals: Since the order of the sin-
gular extremals is of order two, a variation at endpoints may induce the occurrence of chat-
tering or Fuller phenomena (see [12], e.g.). It is necessary to analyze under what conditions
the chattering phenomena occur when dealing with neighboring optimal feedback control for
singular extremals. Moreover, the efficient computation of chattering solutions is an open
problem (see, e.g., [32, 69]).
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Appendix A

Modified equinoctial orbital elements

In this appendix, we provide two sets of coordinates for points in the periodic region P (see,
e.g., [94] for all the results given here).

Definition A.1 (Classical orbital elements (COE)). For x = (r,v) € P, define the following
functions:

a(z) = —%, (A-1)
: AT

i(x) = cos™t (A-2)
R[] 1: ]
S IL

w(x) = cost 1 (A-3)
L[]~ |
o 117

Qx) = cos ! L — (A-4)
I Lo [l 72 |]

where 1, = [1,0,0]7, n = 1, x h with 1, = [0,0,1]". The quantity a(x) is called the
semi-major axis of the orbit vy, whose shape is thus determined by a(x) and e(x). The angles
i(x), w(x) and Q(x) are called the inclination of the orbit v,, the argument of perigee of the
orbit vy, and the right ascension of the ascending node of the orbit vy, respectively. Then, the
variables (a(x),e(x),i(x), w(x), Q(x), 0(x)) are called the classical orbital elements of the
orbit 7.

(Note that the set of COEs is singularife = 0 and 2 = 0, 7.)

Definition A.2 (Modified equinoctial orbital elements (MEOE)). For x € P, define the fol-
lowing functions:

P(x) = a(x)(1—e(x)?)/u, (A-5)
ex(x) = e(x)cos(w(x) + Qx)), (A-6)
ey(x) = e(x)sin(w(x)+ Q(x)), (A-7)
he(x) = tan(i(x)/2)cos(Q(x)), (A-8)
hy(x) = tan(i(x)/2)sin(Q(x)), (A-9)

() = w(x)+ Qx)+6(x), (A-10)
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where (a(x),e(x),i(x),w(x), Qx),0(x)) are the COE defined previously. Then the 6-tuple
z = (P ey ey, hy hy,l) € R5 x S gathers the so-called modified equinoctial orbit elements
(MEOE), Moreover, we also have that

p (1 + h2 = h2)cosl + 2h,h, sinl
r= (1= h2 + h2)sinl + 2hghy cosl |, (A-11)
2hgsinl — 2h,, cosl

Nz 2hyhy(ex + cosl) — (1 + hZ — h2)(ey, + sinl)
v = % —2h,hy (e, +sinl) + (1= h2 + h2)(e, +cosl) |,  (A-12)
2h, (e, + cosl) 4+ 2h,(e, + sinl)

where C = 1+ hZ + hZ and W = 1 + e, cosl + eysinl. Note that e = \/e2 + ¢2 and
P = h?/pi. Thus, let us define the set

Z={2zeR°xS:P>0and0<e+e, <1},

then the transformation (r,v) : Z — P, z — (r(z),v(z)) is a covering map. Hence P is
arc-connected if Z is.
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Appendix B

Sufficient conditions in the smooth case

Consider the same minimization problem as in Chapter 3. Suppose that
Assumption B.1. The reference extremal is normal.

Having fixed p° to —1, we make a stronger assumption that the maximized Hamiltonian is
well defined and smooth, and set

h(z) := mﬁmxH(z, ), zeT*X.

Scholium B.1. For almost allt € [0,1],

W () = S (E0, 7). V() - VLHED,6(0) > 0

Proof. Fora.a.te [0,tf], h(Z(t)) — H(Z(t),u(t)) = 0, while

h(z)— H(z,u) >0, zeT*X,
by definition of h. Applying the first and second order necessary conditions for optimality on
T*X at z = Z gives the result. [
We make the following assumption on the smooth reference extremal.
Assumption B.2. The matrix 0x(t,Z,)/0p, is invertible for t € (0,1].

Theorem B.1. Under Assumptions B.1 and B.2, the reference trajectory is a C°-local opti-
mizer among all trajectories with the same endpoints.

The disconjugacy condition (cf. Assumption B.2) can be numerically verified, e.g., by a rank
test while integrating the variational system along the reference extremal. For the sake of
completeness, we provide a proof that essentially goes along the lines of [2, Chapter 21].
Note that no Legendre type assumption is needed, though.

Proof. For Sy symmetric of order n, Ly := {dxy = Sodp,} is a Lagrangian subspace of
T5,(T*X). Denote by dz = (dx, Ip) the solution of the linearized system

—>/

5x(t) = T (Z(1))52(t), 62(0) = (So, 1),
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and set 02(t) = (0&(t),6p(t)) := @, '6z(t) where @, is the fundamental solution of the
linearized system

Sl

0

o, =
LT oz

(z(2),u(t)®:, o =1.

As 0p(0) = 0p(0) = 1,
S(t) == o (t)op(t)

is well defined for small enough ¢ > 0. Since

—\ /
L;:= (et h ) (Z(t))(Lo) and @;'(Ly)
are Lagrangian as images of L through linear symplectic mappings, S(¢) must by symmetric.

Lemma B.1. S(t) > 0.

Proof of the lemma. Let t; > 0 such that S(¢1) is well defined, and let £ € R". Set
50 = 6ﬁ<t1)_1§ and 6%1@) = (5%(75)50

Then 02 (t;) = (S(t1)€,€), and §&,(t) = S(t)dp,(t). Differentiating the previous relation
and using S(t) symmetry leads to

(S(8)3B1 (£)[0P1 (1)) = w(dZ1(8), %4 (1)).
Differentiating now
0Z1(t) = @, 10z(t)S,
one gets

—
-/,

) = o (B =0) - 70, m0) 220
— J'D(V2h(Z(t)) — V2, H(Z(t), T(t)) 0%, (1)

~

~~
=0

(J denotes the standard symplectic matrix.) Evaluating at ¢ = ¢1, one eventually gets (S(t)£|€) =
0. O

For Sy = 0, there is n > 0 such that S(t) is well defined on [0, 7], which remains true for
So > 0 with |Sp| > 0 small enough. By the lemma before, S; > 0 on [0, n]. In particular, it
is an invertible matrix, which ensures that ®; *(L;) is transversal to kerI'(Zy) (Il : T*X —
X being the canonical projection), that is L, is transversal to kerIl'(Z(¢)) by virtue of the
following lemma.

Lemma B.2. ®,(kerIl'(Z))) = kerIl'(Z(t)).
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Proof of the lemma. Note that in the linearized system defining ©,,

Sa(t) = V2 H(Z(t),u(t))oe,
op(t) = —Vi H(Z(t),u(t))dx — Vy,(Z(t),u(t))op,

the equation on 0« is linear. Hence dx(0) = 0 implies dx = 0. O

By restricting |Sp| if necessary, Assumption B.2 allows to assume that jx(t) remains
invertible for ¢ € [n,ts], so transversality of L, holds on [0, ¢;]. As a result, one can devise a
Lagrangian submanifold £, < T*X whose tangent space at Z is Lo; then

—

Li={(t,z) eRxT*X|(Qzge Lo) i te(—ct;+e)stz=el(z)}

is well defined for ¢ small enough, and such that II; : R x T*X — R x X induces a dif-
feomorphism from £ onto its image. One can moreover choose L, such that pdx is not only
closed but an exact on L. This, together with Assumption B.1, allows to conclude as usual
that the reference trajectory is optimal with respect to C°-neighboring trajectories with the
same endpoints. ]
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Appendix C

Numerical implementation of the Jacobi field computation

It follows from the classical results about solutions to ODEs that the extremal trajectory
(x(t,p,), p(t,py)) and its time derivative are continuously differentiable with respect to p,
on (t;,t;41) fori =0,1,--- , k. Thus, taking derivative of Eq. (1.7) with respect to p, on each

(1)) 22.(t,Dy)
B20) ] [ (1.5, ] (D

Since the initial point x is fixed, one can obtain the initial conditions as

segment (t;,t;,1), we obtain

[%%@,m]:[ po(@(0). (1) Hpp(@(1)
a P(t) —Hap((t

ox op”

—(0,P,) = 0, and =— (0, ) = Iy, (C-2)

Py Py ’
where 0,, and I,, denote the zero and identity matrix of R"*", respectively. Note that the
two matrices 0z (-, P,)/0p, and dp” (-, P,)/0p, are discontinuous at each switching time ;.
Comparing with [23, 63, 82], the update formulas for the two matrices ox(-, p,)/0p, and
op” (-, P,y)/0p, at each switching time ¢; can be written as

0 0
6—;@#,1—»@) - a—;@i—,m — Apify(@(t), wlt))dt: (By), (C-3)
op’ o _ 5pT 8f1 T _

where Ap; = p(t;+) — p(t;—). With the exception of dt;(p,), every requested quantity can
be explicitly computed. For every p, € P there holds

Hi(z(ti(po), Po), P(ti(Py), o)) = 0. (C-5)
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Taking into account Hy (x(t), p(t)) = Hy (2(t),p(t)) and differentiating Eq. (C-5) with re-
spect to p, yields

0 = Hulalts ).t 2ot o) + Bt 2y) L (00 o)) 2P
op” (¢,
bl p). it py) PP,
Dy
By virtue of Assumption 3.1, there holds Hy, (Z(t;),p(t;)) # 0fori = 1, 2, --- | k. Thus,
we obtain
N _\0f4 ox(t;, py)
di(p) = —[plts Bo) G (b po). it ) =
— — apT tlaz_j — —
+ £ (ot po)w(tp) PP sl i),

Therefore, in order to compute the two matrices 0z (-, Py )/dp, and op” (-, py)/dp, on [0, ],
it is sufficient to choose the initial condition in Eq. (C-2), then to numerically integrate Eq. (C-
1) between switching times and to use Eq. (C-3) and Eq. (C-4) to update the Jacobi fields at
each switching time.
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théoreme de Filippov et une procédure
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questions de controdlabilité sous contraintes
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principe du maximum de Pontryagin
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solutions du probléme de minimisation L',
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localement optimaux, sauf si certaines
conditions d’optimalité suffisantes sont
satisfaites. Dans cette thése, 1’idée cruciale
pour obtenir de telles conditions pour des
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dans un champ d’extrémales, en utilisant le
point de vue d’Ekeland et Kupka
(“compétition entre hamiltoniens”). En
I’absence de singularité pli, deux types de
conditions sont proposées. Dans le cas de
points terminaux fixés, ces conditions sont
suffisantes pour garantir que I’extrémale de
référence est localement minimisante tant
que chaque point de commutation est
régulier. Si le point terminal n’est pas fixe
mais appartient a une sous-variété lisse, une
condition suffisante supplémentaire
impliquant la géométrie de cette variété
cible est établie. L’application au calcul
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Abstract : An important question in space
mechanics is to control the motion of a
satellite in the gravitational field of
celestial bodies, in order that prescribed
performance indices are minimized. In this
work, we are interested in minimizing the
L' norm of the control for the circular
restricted three-body problem. (This cost
models theconsumption of the spacecraft.)
Necessary conditions for optimality are
obtained thanks to Pontryagin maximum
principle, revealing the existence of both
bang and singular controls. In finite
dimension, minimizing L' norms is well
known to generate parsimonious solutions;
bang controls account for this property
whereas the existence of singular ones is a
peculiarity of the infinite dimensional
setting. Building upon Marchal and Zelikin
results, the occurence of the Fuller
phenomenon is related to singular
extremals of order two. The controllability
of the two-body problem (a degenerate
subcase of the three-body problem) with a
control valued in a Euclidean ball is
established, then easily extended to the
restricted three-body case by using the
recurrence of the drift on a appropriate
submanifold. As a result, provided that

the trajectories remain into a fix compact
subset, existence of solution for the L
minimization problem is obtained by
combining Filippov's theorem with a
suitable convexification procedure.
Controllabilty  under  specific  state
constraints is also addressed. Although the
maximum principle allows to select
candidates to be L' minimizers, it cannot
guarantee that these candidates are locally
optimal unless sufficient optimality
conditions hold. In this work, the idea to
obtain such conditions for broken extremals
is to embed these into a field of extremals,
using moreover Ekeland and Kupka point
of view ("competing Hamiltonians"). In the
absence of fold singularity, two types of
conditions are devised. In the case of fixed
endpoints, these conditions are sufficient
for local optimality whenever switching
points are regular ones. When the terminal
point lies on a whole submanifold, an
additional  condition  involving  the
geometry of this target manifold has to be

taken into account.These results are
eventually applied to the computation of
neighbouring extremals for L'
minimization.
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